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Abstract

Modeling and Control of Magnetostrictive-actuated Dynamic Systems

Zhi Li, Ph.D.

Concordia University, 2015

Magnetostrictive actuators featuring high energy densities, large strokes and fast responses

appear poised to play an increasingly important role in the field of nano/micro positioning

applications. However, the performance of the actuator, in terms of precision, is mainly

limited by 1) inherent hysteretic behaviors resulting from the irreversible rotation of magnetic

domains within the magnetostrictive material; and 2) dynamic responses caused by the

inertia and flexibility of the magnetostrictive actuator and the applied external mechanical

loads. Due to the presence of the above limitations, it will prevent the magnetostrictive

actuator from providing the desired performance and cause the system inaccuracy.

This dissertation aims to develop a modeling and control methodology to improve the

control performance of the magnetostrictive-actuated dynamic systems. Through thorough

experimental investigations, a dynamic model based on the physical principle of the mag-

netostrictive actuator is proposed, in which the nonlinear hysteresis effect and the dynamic

behaviors can both be represented. Furthermore, the hysteresis effect of the magnetostrictive

actuator presents asymmetric characteristics. To capture these characteristics, an asymmet-

ric shifted Prandtl-Ishlinskii (ASPI) model is proposed, being composed by three compo-

nents: a Prandtl-Ishlinskii (PI) operator, a shift operator and an auxiliary function. The

advantages of the proposed model are: 1) it is able to represent the asymmetric hysteresis

behavior; 2) it facilitates the construction of the analytical inverse; 3) the analytical expres-

sion of the inverse compensation error can also be derived. The validity of the proposed

ASPI model and the entire dynamic model was demonstrated through experimental tests on

the magnetostrictive-actuated dynamic system.
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According to the proposed hysteresis model, the inverse compensation approach is applied

for the purpose of mitigating the hysteresis effect. However, in real systems, there always

exists a modeling error between the hysteresis model and the true hysteresis. The use of

an estimated hysteresis model in deriving the inverse compensator will yield some degree of

hysteresis compensation error. This error will cause tracking error in the closed-loop control

system. To accommodate such a compensation error, an analytical expression of the inverse

compensation error is derived first. Then, a prescribed adaptive control method is developed

to suppress the compensation error and simultaneously guaranteeing global stability of the

closed loop system with a prescribed transient and steady-state performance of the tracking

error. The effectiveness of the proposed control scheme is validated on the magnetostrictive-

actuated experimental platform. The experimental results illustrate an excellent tracking

performance by using the developed control scheme.
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Chapter 1

Introduction

This dissertation aims to present a systematic study on modeling and control of the mag-

netostrictive-actuated dynamic system. The core component in the system is the magne-

tostrictive actuator. Therefore, in this chapter a brief introduction on the magnetostrictive

actuator including magnetostrictive materials and the principal of the magnetostrictive ac-

tuator is given first. According to the literature, the input and output responses of the

magnetostrictive actuator present complex dynamic behaviors. However, the reported ex-

perimental results are different from one to the other and thus can not be directly used for our

research. Therefore, we established our own experimental platform, the magnetostrictive-

actuated dynamic system, and conducted the tests on the platform in order to thoroughly

investigate and fully understand the input-output behaviors of the magnetostrictive actuator

with different input amplitudes, frequencies as well as mechanical loads. Based on the col-

lected experimental data, the modeling and control approaches are proposed for the purpose

of increasing the control precision of the magnetostrictive actuator, which constitutes the

main objective of this dissertation.
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1.1 Magnetostriction and Magnetostrictive Materials

Magnetostrictive materials are a class of materials that change their shape when exposed to

an external magnetic field. This property of the magnetostrictive materials is called mag-

netostriction [4] which was first discovered by James Joule in the 1842. Magnetostriction

appears in most of ferromagnetic materials. It causes the expansion, positive magnetostric-

tion or the contraction, negative magnetostriction, of a magnetostrictive rod in relation to

a longitudinal static magnetic field [6]. From the atomic level speaking, magnetostriction

occurs as magnetic domains within magnetostrictive materials rotate or realign in response

to variation in either magnetic or mechanical energy, causing a change in a material’s shape.

Among the available magnetostrictive materials, the giant magnetostrictive material Ter

-fenol-D, which was discovered by A.E. Clark in the 1970s at Naval Ordnance Laboratory,

is considered the most ideal material for fabricating magnetostrictive actuators. Terfenol-D

(Tb0.3D0.7Fe1.9) is a rare earth alloy [4]. It is named after Terbium (where "Ter" is from),

iron (where "Fe" is from), Naval Ordnance Laboratory (NOL), and the D comes from Dys-

prosium (Ter + Fe + Nol-D). Terfenol-D has the largest room temperature magnetostriction

of any known magnetostrictive material which presents a good trade-off between high strain

and high Curie temperature [4]. Because magnetostriction only appears in a material at

temperatures below the Curie temperature. However, in general the temperature of the en-

vironment is above the Curie temperature of the common used magnetostrictive materials,

which severely limits their applications. Table 1.1 shows the saturation strain and Curie

temperature in different magnetostrictive materials. In addition, Terfenol-D is capable of

providing a positive magnetostrain of 1000-2000 ppm (parts per million) at 50 - 200 kA/m

in bulk materials, while nickel contracts by 50 ppm and iron elongates by about 14 ppm

subjected to the same magnetic field.

Terfenol-D has been commercially available since 1987 and opens the possibility of devel-

oping high power transducers and low voltage high force density actuators. So far, Terfenol-D

actuators have been successfully utilized in applications of micro/nano-positioning [7], high

2



accuracy milling and vibration attenuation [8], high dynamic servo valves [9], high-frequency

micro-pumps [10], etc.

Table 1.1: Comparison of strain capability and Curie temperature [4] [5]

Material Saturation strain in (ppm) Curie temperature in (K)

Ni -50 630

Fe 14 1040

Fe3O4 60 860

Terfenol −D 2000 650

Tb0.5Zn0.5 5500 180

Tb0.5DyxZn 5000 200

1.2 Principle of the Magnetostrictive Actuators

The magnetostrictive actuators are solid state magnetic actuators and they convert electri-

cal current inputs into corresponding mechanical outputs. The magnetostrictive actuators

provide an efficient way to harness the power of Terfenol-D technology and respond quickly

to input current with repeatable, forceful mechanical motion. Figure 1.1 shows the insid-

e structure of magnetostrictive actuator. The actuator consists of a Terfenol-D drive rod

surrounded by the winding coil, bias permanent magnets that produce the bidirectional

movement of the rod, a pair of preloaded springs and an output rod attached to the end of

one Terfenol-D rod. Since the Terfenol-D rod can produce a large stroke and output force,

no additional mechanism is designed to amplify the output motion.

The magnetostrictive actuator works on the principle that when a supplied current flows

through the winding coils, a magnetic field H is created, see the schematic illustration of the

actuator in Figure 1.2. In the presence of the magnetic field, small magnetic domains rotate

3



or re-orient themselves along the magnetic lines, see Figure 1.3, to cause internal strains

in the Terfenol-D rod. As a result, a magnetostrictive force is produced and exerts on the

output rod of the actuator, which causes an output displacement of the output rod. The

above process including the transformation among electrical domains, magnetic domains,

and mechanical domains thus causes a very complex dynamic input and output responses.

Figure 1.1: The schematic illustration of the magnetostrictive actuator
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Figure 1.2: Schematic illustration of the Terfenol-D based magnetostrictive actuator

Figure 1.3: Magnetostriction effect
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1.3 Input and Output Responses of the Magnetostrictive

Actuator

The input and output responses of the magnetostrictive actuator are very important index

to evaluate the performance of the actuator. In the literature, the input-output responses

of the actuator have been thoroughly studied. However, most of them only investigate the

input-output responses with different input frequencies but without considering the loading

effect [11] [12] [13] [14] [15]. In [16] [17], although the loading effect (load range 30N-700N)

is studied, the experimental tests are conducted under very low input frequency (lower than

0.5Hz), which only show the performance in very limited frequency range. To our best

knowledge, there is no comprehensive study on the input-output responses of the actua-

tor both with wide range of input frequencies and mechanical loads. This motivates us

to conduct experimental tests on the input-output responses by ourselves. To this end,

a magnetostrictive-actuated experimental platform is established first (designed by Prof.

Subhash Rakheja, Concordia University and implemented by Dr. Omar Aljanaideh, Con-

cordia University), then a series of experimental tests with different input frequencies, input

amplitudes as well as mechanical loads are conducted on the experimental platform. The

collected experimental data are utilized for the further study of the modeling and control of

the input-output responses of the actuator in the dissertation.

1.3.1 Description of the Experimental Platform

The input and output responses are tested on the designed magnetostrictive-actuated exper-

imental system. The system concludes a magnetostrictive actuator, a capacitive sensor with

a sensor driver, a power amplifier, and a dSPACE control board, and the following provides

the detailed information.

• The magnetostrictive actuator (Model: MFR OTY77) is manufactured by Etrema

Products, Inc, which provides a peak-to-peak output displacement of 100 μ m under

6



Table 1.2: Actuator Description

Feature 100-LL

Frequency Range, Hz 0-1250

Maximum Dynamic Force, lb(N) 250(1100)

Maximum Stroke (DC), in (μm) ±0.002 (±50)

Blocked Force, lb(N) 500(2220)

Temp. Range, ◦F (◦C) -4 to 212 (-20 to 100)

Max, AC Current, Arms 5

DC Resistance, Ω 1.9

Inductance, mH 3.6

Weight, lb(kg) 8.4(3.8)

excitations at frequencies up to 1250 Hz. Table 1.2 shows the performance of the

actuator.

• The capacitive sensor (Lion Precision, model C23-C) with a capacitive sensor driver

(Lion Precision, Elite Series CPL190) is used for measuring the displacement of the

actuator with a sensitivity of 80 mV/μm, and bandwidth of 15 kHz.

• The power amplifier LVC2016 produced by AE Techron Inc. amplifies the excitation

current from the dSPACE to the actuator.

• The dSPACE control board equipped with 16-bit analog-to-digital converters (ADC)

and 16-bit digital-to-analog converters (DAC) is used to collect the data from the

integrated capacitive sensor and apply the control signal to the amplifier. The Control

Desk software in dSPACE is used for the system implementation and to interface the

DS1104 PCI dSPACE board

Figure 1.4 illustrates the entire experimental system without mechanical loads. Figure 1.5

demonstrates the magnetostrictive-actuated dynamic system with a mechanical load. The

7



magnetostrictive actuator 1) is mounted on an aluminum plate 2) via two pillow blocks

3). The mechanical loads 4) are applied to the actuator via the load support frame 5).

The capacitive sensor 6) is fixed by a aluminum block attached to the plate. Based on

the developed experimental platform, the experimental tests on input-output responses of

magnetostrictive-actuated dynamic system could be done under different input amplitudes,

input frequencies as well as mechanical loads.

Figure 1.4: The experimental platform
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Figure 1.5: The experimental platform with mechanical loads
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1.3.2 The Input and Output Responses with Different Input Fre-

quencies without Mechanical Loads

The input and output responses of the magnetostrictive-actuated dynamic system with d-

ifferent input frequencies (1Hz-200Hz) but without mechanical loads are presented in this

section. The input signal to the actuated system is current (A) and the output is displace-

ment (μm) which can be measured via the capacitive sensor. Then we put the input data

on the x-axis and the output data on the y-axis, therefore the input-output relationship of

the actuated system can be obtained, see Figure 1.6.

Figure 1.6: The input-output relationship of the magnetostrictive actuator
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We first conduct the experimental tests with sinusoidal input signals (i = A1sin(2πt),

A1 = 1, 2, 3, 4, 5). Figure 1.7 illustrates the input and output responses of the actuator.

From the figures, it is obviously seen that the input-output responses of the actuator show

looped relationship. We call this phenomena hysteresis effect (the definition of the hysteresis

will be given in the following development). We also find that the output displacement i.e.

peak-to-peak value, is not proportional to the input current, see Figure 1.8. In other words,

the magnitude (peak-to-peak value divided by twice the input current) is not constant, see

Figure 1.8. From Figures 1.7 and 1.8, we can conclude that the input and output responses

present nonlinear hysteresis phenomena. To verify this conclusion in case of the input-output

property of the magnetostrictive actuator depending on the specific type of input signal, the

triangular signals are also applied to the actuator. Figure 1.9 shows the input and output

relationship of the actuator which also demonstrates the nonlinear hysteresis behaviors.

To investigate the input and output responses of the actuator with higher input frequen-

cies, we applied signals (i = sin(2πft), f = 50Hz, 100Hz, 150Hz and 200Hz). Figure 1.10

shows the input and output relationship of the magnetostrictive actuator with different input

frequencies. It can be seen that with the increase of the input frequency the width of the

hysteresis loop becomes wider and wider.

In addition, we also studied the input and output responses of the actuator with complex

harmonic signal y = 2.16sin(0.35 × 2πf0t) + 2.7sin(0.1 × 2πf0t +
π
2
f0) for the purpose of

observing the influence of the input frequency on the minor loops (small loops inside of the

major loops). Figure 1.11(a) shows the input signal with f0 = 1. The input and output

responses of the actuator is shown in Figure 1.11(b) from which we can see that the minor

loop AB and CD are congruent under the same two consecutive extrema at point 1, 4, see

Figure 1.11(a). Applying the input signals with higher values of f0 (f0 = 101, 401), the

input-output responses are obtained in Figures 1.12-1.13. From Figure 1.13, it can be seen

that the minor loops AB and CD are no longer congruent to each other, i.e. the point E on

AB is not congruent with the point F on CD. Therefore, the input frequencies also influence

the input-output behaviors of the actuator in their minor loops characteristics.
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Figure 1.7: The input-output relationship of the magnetostrictive actuator with sinusoid

input signal
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Figure 1.10: The input and output relationship under multiple input frequency
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Figure 1.11: The responses of the actuator under complex harmonic signals with f0 = 1
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Figure 1.12: The responses of the actuator under complex harmonic signals with f0 = 101
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Figure 1.13: The responses of the actuator under complex harmonic signals with f0 = 401
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1.3.3 The Input and Output Responses with Different Input Fre-

quencies and Mechanical Loads

In this section, the input-output responses of the magnetostrictive actuator with mechanical

loads (m = 10.0 Kg, 21. 5Kg and 33 Kg) and different input frequency (f = 1Hz, 10Hz, 50Hz,

100Hz, 150Hz, 200Hz) are investigated, see Figure 1.14. From Figures 1.14(a)-1.14(b), it

can be seen that when the actuator operates in the low frequency, i.e. in Figures 1.14(a)

and 1.14(b), the mechanical load shows little influence on the performance of the actuator.

However, when the actuator works in a high frequency range, i.e. in Figures 1.14(e)- 1.14(f),

the mechanical loads impose a great influence on the input-output behaviors of the system.

To clearly show the influence of the mechanical loads and input frequencies on the input-

output behaviors, a vertical gap function is adopted as

Φ[u] = |Γasc[u, ζ0]− Γdes[u, ζ1]| (1.1)

where u ∈ IR, IR is the set of real numbers; Γasc[·, ζ0] is defined as the ascending branch of

the input-output curve, Γdes[·, ζ1] is defined as the descending branch of the input-output

curve; ζ0, ζ1 denote the internal state of the input and output responses, see Figure 1.15.

Figure 1.16 shows the vertical gap values of the input and output responses of the ac-

tuator with different input frequencies and the mechanical loads. In the figure, it can be

obviously seen that the value of the vertical gap becomes greater with the increase of the

input frequency and mechanical loads. For example, the vertical gap value of the input and

output curve at frequency f = 200Hz, mechanical load m = 33kg is around 16 times over

that at frequency f = 1Hz, mechanical load m = 0kg. Therefore, from the experimental

observations, we can conclude that when the magnetostrictive actuator operates in high

frequency, the loading effects dominate the input-output behaviors of the actuator.
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Figure 1.14: The input and output responses of the magnetostrictive actuator with mechan-

ical loads under different input frequencies
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1.3.4 Experimental Results Summary

From the above experimental tests, we can summarize the following experimental phenom-

ena:

• When the magnetostrictive actuator operates with different input frequencies and with-

out mechanical loads, the input and output responses of the magnetostrictive actuator

show dynamic hysteretic behaviors. The width of the hysteretic loop increases with

increasing with input frequencies.

• When the magnetostrictive actuator operates with different input frequencies and me-

chanical loads, the input and output responses of the magnetostrictive actuator show

strongly frequency-dependence and load-dependence properties, especially for operat-

ing in high input frequency and heavy mechanical load.

1.4 Objectives and Contributions

1.4.1 Objectives of the Dissertation Research

From the experimental results reported in Section 1.3, it can be seen that the input and

output responses of the magnetostrictive actuated dynamic systems show complex dynamic

nonlinear effect. As is well known, control systems with actuators showing such a nonlin-

earity will generate inaccuracy, oscillations and some other unexpected effects, which poses

great challenge on applications of the actuator. Therefore, this dissertation research aims at

developing an effective modeling and control methodology to compensate the complex non-

linear effect and improve the tracking performance of the magnetostrictive-actuated dynamic

systems.

In order to describe this complex nonlinear phenomenon, a model that can represent

the input and output responses needs to be developed first. In the literature, the common

approach to describe the input and output behaviors of the magnetostrictive actuator is
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to establish a phenomenon model (black box model). This approach only works under

certain input frequencies and without mechanical loads or very low input frequencies with

mechanical loads. From last section, we have known that the input-output behaviors of

the magnetostrictive-actuated dynamic system associated with different input frequencies

and mechanical loads present complex nonlinear behaviors. Only treat the actuated system

as a black box can not completely predict its behaviors. Therefore, the physical principle

that takes place inside of the actuated system should be considered. Towards this target in

the dissertation, a physical based dynamic model, comprehensively considering the electric,

magnetic and mechanical domain inside of the actuated system as well as the interactions

among them, should be developed.

To improve the positioning and tracking performance of the magnetostrictive-actuated

dynamic system, a control scheme needs to be developed based on the proposed dynamic

model. In the literature, there are many control approaches available, such as sliding mode

control, back-stepping control, etc. Among them the back-stepping based prescribed adap-

tive control, which can both guarantee the global stability of the closed loop system and the

transient and steady-state performance of the dynamic system, is a good option. The chal-

lenge here lies in how to fuse the available prescribed control approaches with the developed

dynamic model. To reach this goal, the feedforward inverse compensation approaches based

on the developed dynamic model will be applied and serve as a bridge to connect the model

and control approaches.

1.4.2 Contributions of the Dissertation Research

According to the objectives mentioned above, the main contributions of the dissertation are

highlighted as follows

• Experimental tests are conducted to study the input-output characteristics of

magnetostrictive-actuated dynamic system under different input amplitudes (1A-5A),

frequencies (1Hz-200Hz) as well as mechanical loads (m = 0 Kg, 10.0 Kg, 21. 5Kg and
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33 Kg). The experimental results are thoroughly investigated. It can be observed from

the experiments that: 1) when the magnetostrictive actuator operates with different

input frequencies and without mechanical loads, the input and output responses of the

actuator show dynamic hysteretic behaviors and the width of input and output curves

increase with increasing of the input frequencies; 2) when the magnetostrictive actuator

operates with different input frequencies and mechanical loads, the input and output

responses of the magnetostrictive actuator show strongly frequency-dependence and

load-dependence properties, especially operating in high input frequency and heavy

mechanical load.

• A dynamic model both considering the nonlinear hysteresis effect and the dynamic be-

haviors is proposed. The developed model is based on the principle of operation of the

magnetostrictive actuator, which comprehensively considers the electric, magnetic and

mechanical domain as well as the interactions among them. In order to describe the

asymmetric hysteresis effect, an asymmetric shifted Prandtl-Ishlinskii (ASPI) model,

which is composed by three components: a Prandtl-Ishlinskii (PI) operator, a shift

operator and an auxiliary function, is proposed. The advantages of the proposed AS-

PI model are that it can represent the asymmetric hysteresis behavior and facilities

the inverse compensation for the purpose of canceling the hysteresis effects in the

magnetostrictive actuator. Then, the dynamic model validation is conducted on the

magnetostrictive actuated platform. The experimental results illustrate that the pro-

posed dynamic model has an excellent agreement with the dynamic behavior of the

system.

• Since the hysteresis effect shown in the magnetostrictive actuator generates undesired

and detrimental effects, which will deteriorate the performance of the magnetostrictive

actuator and cause inaccuracy and oscillations, the feedforward inverse compensation

approaches are applied. At beginning, the Preisach model is selected to represent

the hysteresis effect in the proposed dynamic model, and the inverse multiplicative

structure compensator is then developed and applied for compensating the hysteresis
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effect. However, inverse multiplicative structure needs the exact knowledge of the

hysteresis model, which is very restrict for a practical actuator. Based on this point,

the proposed ASPI model is utilized to describe the asymmetric hysteresis effect in the

dynamic model and the direct inverse compensation approach is applied to find the

inverse of the ASPI model. Both inverse compensation approaches have been examined

on the magnetostrictive-actuated platform.

• In practical control systems, the use of an estimated hysteresis model in deriving the

inverse compensator will yield some degree of hysteresis compensation error. This

error will cause tracking error in the closed-loop control system. To accommodate

such a compensation error, the analytical expression of the inverse compensation error

is derived first. Then, a prescribed adaptive control method is applied to suppress

the compensation error and simultaneously guaranteeing global stability of the closed

loop system with a prescribed transient and steady-state performance of the tracking

error without knowledge of system parameters. The effectiveness of the proposed

control scheme is validated on the magnetostrictive-actuated experimental platform.

The experimental results show excellent tracking performance by using the proposed

control scheme.

1.5 Organization of the Thesis

The dissertation is organized in the following way:

In Chapter 2, based on the experimental tests shown in the introduction, a dynamic model

both considering the nonlinear hysteresis effect and the dynamic behaviors is presented.

In order to specially describe the hysteresis effect in the proposed dynamic model in

Chapter 2, an asymmetric shifted Prandtl-Ishlinskii (ASPI) model which is constructed by

three components: a PI model, a shift model and an auxiliary function, is reported in Chapter

3.
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In Chapter 4, the model parameters identification and model validation are conducted to

verify the effectiveness of the proposed model in Chapter 2 and Chapter 3.

In Chapter 5, in order to compensate the hysteresis effect in the magnetostrictive actuator,

the feedforward inverse compensators are constructed for the Preisach model and the ASPI

model separately. The effectiveness of the developed inverse compensation approaches are

verified on the magnetostrictive-actuated experimental platform.

In practical control systems, using the inverse for hysteresis compensation generally ex-

hibits notable compensation errors which will yield the tracking error in the closed-loop con-

trol system. To accommodate such a compensation error, the analytical expression of the

inverse compensation error is obtained first and then a prescribed adaptive control method

is adopted in Chapter 6. The effectiveness of the proposed control scheme is verified on the

magnetostrictive-actuated platform.

Finally, the Chapter 7 gives a conclusion and recommendations for further work.
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Chapter 2

Modeling of Magnetostrictive-actuated

Dynamic Systems

From the experimental results reported in Chapter 1, it can be seen that the input and

output responses of the magnetostrictive actuator associated with input frequencies and

mechanical loads demonstrate complex dynamic nonlinear effect. Such a complex effect

poses a great challenge to come up with a proper model that is capable of representing

all the relevant behaviors. To face this challenge, comprehensively considering the electric,

magnetic and mechanical domain inside of the actuator as well as the interactions among

them, a dynamic model is therefore developed for the purpose of describing the complex

input-output behaviors of the magnetostrictive actuator in this chapter.

A literature review is presented in Section 2.1 to introduce the available modeling ap-

proaches of the magnetostrictive actuator. In Section 2.2, the proposed dynamic model of

the magnetostrictive-actuated dynamic system is provided in details.
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2.1 Literature Review

In Chapter 1, we have shown that the input and output responses of the magnetostrictive-

actuated dynamic system associated with different input frequencies and mechanical loads

present complex dynamic behaviors. For example, when the magnetostrictive actuator op-

erates in low input frequency and no mechanical loads, the input and output responses only

show hysteretic behaviors, however when it operates in high input frequency and heavy me-

chanical loads, the input and output responses not only present hysteretic behaviors but

become highly depending on the input frequency and the mechanical loads. The reason for

this phenomenon can be explained as with the increase of the input frequency and the me-

chanical loads, the inertia force and flexibility of the magnetostrictive actuator greatly hinder

the rapid change of the actuator, which leads to larger phase lag and wider hysteresis curves,

thus the dynamic responses start to dominate the input-output relations of the system. In

order to reflect these complex behaviors, in the literature, several models are established,

which can be classified into two categories: the phenomenon-based modeling approach and

the physical-based modeling approach.

The main idea of the phenomenon-based modeling approach is to use the input (current)

and output (displacement) experimental data of the magnetostrictive actuator to do the

curve fitting. For the operation of the magnetostrictive actuator in low input frequency

and no mechanical loads, the input and output responses can be predicted only using the

hysteresis models [11], [12], [18], [19], [20] (the detailed information of the hysteresis models

will be introduced in the following chapter). However, these models are only focusing on

describing the hysteresis effect in the working condition with low input frequency and without

mechanical load, and thus they fail to describe the dynamic behaviors of the actuator when

the magnetostrictive actuator operates in high input frequencies and heavy mechanical loads.

To reflect the influence of the input frequency, the rate-dependent dynamic model can

be therefore adopted. In [21] [22] [23], the time derivative of the model output or the time

derivative of the input signal is introduced into the model to characterize the variation of
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the input frequency as

u(t) =

∫∫
T0

μ0(α, β)γ̂α,β[v](t)dαdβ +
du

dt

∫∫
T0

μ0(α, β)γ̂α,β[v](t)dαdβ (2.1)

The term du
dt

is utilized to reflect the change of the input frequency in (2.1). In [24], the

rate-dependent model is proposed as

up = w(v, v̇)v +

∫ R

0

g(v, v̇)p(r)Fr[v]dr (2.2)

where w(v, v̇) and g(v, v̇) are both functions of v̇, and the variable r

r = α

z∑
l=1

ln(βl + λl|v̇(t)|εl) (2.3)

is also function of v̇. By introducing v̇ into the function w(·, ·) and the variable r(·), the

proposed rate-dependent model is capable of describing the dynamic behavior with different

input frequencies. However, the rate-dependent dynamic model can only reflect the change

of the input frequencies but fail to describe the loading effect, since no load variable appears

in the model (2.1) and (2.2).

To characterize the loading effect, similar with the modeling strategy on frequency de-

pendence, the load term should be introduced into the model as [16]

ε(t) = Γ[f(i, T )](t) (2.4)

where ε(t) is the output, i is the input current, T denotes the applied load. Similarly, the

load term m can also be introduced into the weight function μ(α, β,m) of the model as [25],

y(t) = Ξ[u, ζ0,m](t) =

∫∫
T0

μ(α, β,m)γ̂α,β[u](t)dαdβ (2.5)

Although the proposed model in [16] and [25] can describe the loading effect, the working

conditions of the magnetostrictive actuator in different input frequencies are not considered.

Besides the phenomenon based model mentioned above, there are also some physics based

models, which are built according to physical principles such as electromagnetic theory, mag-

netism theory and continuum mechanics equations [26]. Among the physical-based models,
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the Jiles-Atherton model [27] is the most popular one. The Jiles-Atherton model developed

based on the energy balance theory presents the capability of depicting the input and output

responses with different input frequencies and mechanical loads. Unfortunately, the input of

the model is magnetic filed and the output is magnetization, which are not our research in-

terests. Moreover, this kind of physical-based model normally has complex structure and the

parameters are difficult to determine. Therefore, the physical-based model can not directly

applied for our research purpose.

2.2 Development of the Dynamic Model for the Magne-

tostrictive Actuators

Based on analysis reported in Section 2.1, we can conclude that in the literature, there is

no such a comprehensive model that can describe the input (current) and output (displace-

ment) responses of the actuator both with a wide range of input frequencies and mechanical

loads. In order to capture the complex input and output behaviors, current-magnetic flux

hysteresis, frequency responses of the actuator, nonlinear magnetic behaviors, as well as the

mechanical loads should be comprehensively considered in the modeling strategy. To this

end, a dynamic model based on the principle of operation of the magnetostrictive actuator,

which comprehensively considers the electric, magnetic and mechanical domain as well as

the interactions among them is proposed in this dissertation.

Figure 1.1 clearly shows the inside structure of the magnetostrictive actuator, which

consists of current-carrying winding coils, a movable Terfenol-D drive rod surrounded by

the winding coils, bias permanent magnets that produce the bidirectional movement of the

rod, a pair of preloaded springs and an output rod attached to the Terfenol-D rod. The

drive rod produces a stroke and output force by the moving magnetic field generated by

the current-carrying winding coils on the physical principles of Terfenol-D. The preloaded

springs and the bias permanent magnets are utilized to produce bidirectional movement of
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the Terfenol-D rod. Since the Terfenol-D rod can produce a large stroke and output force,

no additional mechanism is designed to amplify the output motion.

The magnetostrictive actuator works on the principle that when a supplied current i flows

through the solenoid, a magnetic field H is created, according to Ampere’s Law

H = Ni (2.6)

where N denotes the total turns of the solenoid. In the presence of the magnetic field H,

small magnetic domains rotate themselves to cause internal strains in the Terfenol-D rod,

leading to a magnetostrictive force Fa as

Fa = AEHd33H (2.7)

where A denotes the area of the magnetostrictive rod, EH denotes the Young’s modulus

at constant value of magnetic field H, d33 is the slope of the strain versus magnetic field.

Submitting (2.6) into (2.7), we have

Fa = AEHd33Ni = Temi (2.8)

where Tem = AEHd33N denotes the electromechanical transduction coefficient. Since we

only interest in the displacement of the endpoint of the actuator, the mechanical dynamic

(force-displacement) responses of magnetostrictive actuator can be equivalent as a simple

mass-spring-damper system, which is defined as

mẍ+ bsẋ+ ksx = Fa (2.9)

where x denotes the displacement of the endpoint of the actuator, m is the mass of the moving

part with the mechanical loads, bs is the damping coefficient, and ks is the stiffness. Thus,

the dynamic responses of magnetostrictive actuator can be expressed by (2.8) and (2.9),

which indicate a linear relationship between the supplied current i and the displacement x.

However, due to the existence of electrical-magnetic losses: hysteresis loss and eddy cur-

rent loss (the definition will be given in the following development), the responses of the

36



Figure 2.1: The hysteresis nonlinear behavior

supplied current i and the displacement x actually exhibit nonlinear characteristics. Figure

2.1 shows the hysteresis effect of the magnetostrictive rod and its physical meaning is briefly

explained as follows. When a current is applied to the winding coils, a magnetic field is

produced along the magnetostrictive rod and the rod elongates at point (i1, x1). Then re-

move the supplied current, the produced magnetic field disappears immediately, while the

magnetostrictive rod, point (0, x′0), will not relax back exactly to zero magnetization, point

(0, 0), before the current was applied. It must be driven to zero by imposing a current in the

opposite direction to force the magnetic domain to rotate back, point (i′1, 0). Therefore, the

current-displacement curve of the actuator shows a looped relationship, namely hysteresis

loop. For every loop, due to this domain reversal there will be extra work done. For this

reason, there will be a consumption of electrical energy which is known as hysteresis loss

of the transducer. Due to the presence of the hysteresis loss, the actual current ia flowing

through the inductance is no longer equal to the supplied current i, and one has

ia = i− iH (2.10)

where iH denotes the hysteresis loss current, which shows a nonlinear relationship with the

displacement x as

iH = Π[x] (2.11)
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Π represents the hysteresis operator, which can be described by the ASPI model reported in

Chapter 3.

In addition to the hysteresis loss, the actuator also has the eddy current effect. In presence

of a supplied current i, a magnetic field is created, which leads to a magnetic flux Φ′.

Meanwhile, according to the Faraday’s law and Lenz’s law, an induced electromotive force

upon the rod gives rise to a current (eddy current) whose magnetic field (with a magnetic

flux Φeddy) opposes the original change in magnetic flux Φ′. Then the opposed magnetic flux

Φeddy will react to the winding coils and creates an opposed current (eddy current loss) iR,

see Figure 2.2.

Figure 2.2: The illustration of the eddy current effect

Considering both hysteresis loss and eddy current effect, the actual current ia flowing

through the winding coils is obtained as

ia = i− iH − iR (2.12)

Based on the Faraday’s law, the eddy current loss iR is obtained as

iR =
Φ̇

R0

(2.13)

where R0 is the equivalent resistor of the eddy current effect. Φ denotes the overall magnetic

flux as

Φ = ΦL + ΦT (2.14)
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where ΦL = iaLa is the magnetic flux generated by the actual driven current, La denotes the

equivalent inductor of the winding coils, ΦT = TMmx is transformed from the mechanical side

which is similar to the back-emf in piezoelectric actuator [28] [29], TMm is magnetomechan-

ical transduction coefficient. Figure 2.3 illustrates the dynamic electro-magneto-mechanical

model of the magnetostrictive actuator resulting from the aforementioned analysis.

Figure 2.3: Dynamic modeling of the magnetostrictive positioning platform system

According to (2.7)-(2.14), the dynamic model of the magnetostrictive-actuated dynamic

system is represented by the following equations:

mẍ(t) + bsẋ(t) + (ks +
TemTMm

La

)x(t) =
Tem

La

Φ (2.15)

La
Φ̇

R0

+ Φ− TMmx = La(i− Π[x]) (2.16)

Remark: It is well known that dynamic model of a permanent magnet dc motor can be

described as:

Lm
dim(t)

dt
+Rmim(t) +Kemf

dθ(t)

dt
= vin(t) (2.17)

Jθ̈(t) + Bθ̇(t) = Ktim(t) (2.18)

where im(t) is the armature current, θ(t) is the angular position, Lm, Rm, Kemf , and Kt

are the inductance, resistance, back-emf constant, and torque constant of the motor, re-

spectively, J is the inertia of the rotor and the equivalent mechanical load, and B is the

damping coefficient. From (2.15) and (2.16), we can find that the dynamic model of the
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magnetostrictive-actuated system is similar to the traditional dc motor (2.17) and (2.18)

except the hysteresis nonlinearity Π[x]. Therefore, the challenge for control of the magne-

tostrictive positioning platform system mainly lies in accommodating the nonsmooth non-

linear hysteresis Π[x], which usually deteriorates the system performance in such manners

as generating undesirable inaccuracies or oscillations.

2.3 Concluding Remarks

In this chapter, a dynamic model considering both the nonlinear hysteresis effect and the

dynamic behaviors has been proposed. The developed model is based on the physical princi-

ple of the magnetostrictive actuator, which comprehensively considers the electric, magnetic

and mechanical domain as well as the interactions among them. It should be noted that

the dynamic model of the magnetostrictive-actuated system is similar to the traditional dc

motor. The only difference between the proposed dynamic model and the model of the dc

motor is the hysteresis nonlinearity Π[x] in (2.16), which brings a great challenge in the

modeling work.

Moreover, it should mention that the model validation is not reported in this section since

it depends on the selection of the hysteresis model. In the next section, we will address the

issue of hysteresis modeling. After the determination of the hysteresis description, we will

then demonstrate the validation of the developed model.
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Chapter 3

Hysteresis Modeling in

Magnetostrictive-actuated Dynamic

Systems

In Chapter 2, a dynamic model that can both represent the hysteresis effect and the dynamic

behaviors in the magnetostrictive actuator has been proposed. In order to conduct the

model validation, a proper hysteresis model needs to be developed first. Therefore, in this

chapter, we are going to discuss the hysteresis modeling strategy and the developed modeling

approaches for describing the hysteresis nonlinearity Π[x] in the model (2.15) and (2.16) in

Chapter 2.

In Section 3.1, a literature review is presented to give a general status on the hysteresis

modeling. In Section 3.2, the proposed asymmetric shifted Prandtl-Ishlinskii (ASPI) model

for describing the hysteresis behaviors of the magnetostrictive actuator is reported.
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3.1 Literature Review

The hysteresis effect shown in magnetostrictive actuators is a very common phenomenon

which appears in many different fields. Ferromagnetic hysteresis [30] and plastic hystere-

sis [27] are two typical examples. Hysteresis appears in all the smart materials, such as mag-

netostrictive materials, piezoceramics, SMA, etc., which all reveal a looped and branched

nonlinear relation between the input excitation and the output displacement. Hysteretic

behaviors also arise in aerodynamics [31] [32], where the aerodynamic forces and moments

show hysteresis when the attack angle of the airplane varies. Others are encountered in

mechanical systems [33] [34] [35], economics [36], neuroscience [37] [38] and electronics en-

gineering [39] [40] etc. Therefore, in this section, we starts with the historical overview of

the hysteresis. Then, we will review the available modeling approaches for describing the

hysteresis effect.

3.1.1 Historical Overview of the Hysteresis

The study of hysteresis has a long history. The term hysteresis was coined by the Scottish

physicist James Alfred Ewing in 1881 to describe the effects observed on iron and steel wires

when they were magnetized [36]. The specific definition of the hysteresis was given as

When there are two quantities M and N , such that cyclic variations of N cause cyclic

variations of M , then if the changes of M lag behind those of N , we may say that there is

hysteresis in the relation of M and N .

In 1905, Madelung [30] formalized three practical rules from the experiments to determine

a hysteresis behavior in ferromagnetic materials:

• 1) Any curve Γ1 emanating from a turning point A of the input-output graph, see

Figure 3.1, is uniquely determined by the coordinates of A.

• 2) If any point B on the curve Γ1 becomes a new turning point, then the curve Γ2

originating at B leads back to the point A.
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• 3) If the curve Γ2 is continued beyond the point A, then it coincides with the continu-

ation of the curve Γ which led to the point A before the Γ1 − Γ2 cycle was traversed.

Figure 3.1: Madelung’s rules

If a nonlinear relation satisfy the Madelung’s rules, this nonlinear relation can be called

as hysteresis. Following Madelung’s rules, in 1928, L. Prandtl [30] proposed the Prandtl

model which was constructed by superposing the stop operators with a designed density

function to describe the hysteresis effect in elastic-plastic materials. In 1935, F. Preisach [41]

proposed the Preisach model based on some hypotheses concerning the physical mechanisms

of magnetization [42]. The model is defined as a superposition of the relay operators, which

has a similar structure with Prandtl model. However, the proposed Prandtl model and

Preisach model were still associated with specific physical meaning and no mathematical

analysis of these models were conducted [43]. It was until 1966, an engineering student R.

Bouc [35] firstly demonstrated a mathematical methodology to analyze hysteresis where he

treated hysteresis as a map between function spaces.

In 1970s, a group of Russian mathematicians led by Krasnosel’skii [44] conducted a sys-

tematic analysis of the mathematical properties of Prandtl-Ishlinskii model. They suggested

an investigation of hysteresis phenomenon using the theory of nonlinear operators (or hys-

terons). Moreover, they separated Preisach model from its physical meaning and represented

43



it in a purely mathematical form.

In 1980’s, a further study on Preisach model was conducted by Mayergoyz [42]. He sum-

marized two conditions for the Preisach model: the wiping-out property and the congruency

property, which constitute necessary and sufficient conditions for hysteresis transducer to

be represented by the Preisach model. In addition, he also put forward an identification

technique for Preisach model by using a set of first-order reversal curves, which was the first

time to provide a systematic identification approach for the Preisach model. Meanwhile,

Visintin [45], Brokate and Sprekels [46] studied the existence and uniqueness of solutions of

ordinary differential equations (ODE) and partial differential equations (PDE) coupled with

hysteresis operators [47].

From 1990’s to present, the hysteresis phenomenon re-attracts the attention of many

researchers due to the development and explosive growth research on smart materials. The

hysteresis modeling techniques are therefore well developed. Some novel characteristics of the

hysteresis models have been explored and numerous extended and modified hysteresis models

have been proposed for describing more complex hysteretic behaviors, such as asymmetric

hysteresis phenomenon, rate-dependent hysteresis. The further development of the hysteresis

models are summarized as follows.

3.1.2 Hysteresis Models

In the literature, the developed hysteresis models can roughly be classified into two cate-

gories: the operator-based hysteresis model and differential equation based hysteresis model,

see Figure 3.2. Operator-based hysteresis models including Preisach model [41], Prandtl-

Ishlinskii (PI) model [30] and Krasnosel’skii-Pokrovkii (KP) model [48] are constructed by

superposing weighted elementary operators, such as relay operator, play operator, KP ker-

nel. Operator-based hysteresis models show excellent hysteresis prediction. However, the

modeling accuracy is proportional to the number of the superposed elementary operators.

A large number of operators will bring heavy computational cost. The differential equation-
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Figure 3.2: Classification of the hysteresis models

based hysteresis models, on the other hand, are finite dimensional, which only need limited

parameters to govern the scale and general shape of the hysteresis curves. Thus they can

avoid the computation complexity when conducting the model identification. Nevertheless,

limited model parameters lead to large model estimation errors. In the following develop-

ment, a brief summarization of the general operator based hysteresis models and differential

equation based hysteresis models are reviewed.

Preisach Model

The Preisach model was first suggested in 1935 by F. Preisach in his paper "Über die mag-

netische Nachwirkung" [41]. The model was established on some plausible hypotheses con-

cerning the physical mechanisms of magnetization. Therefore, at first the Preisach model

was regarded as a physical hysteresis model. In 1970, a group of Russian mathematicians led

by Krasnosel’skii separated Preisach model from its physical meaning and represented it in

a general mathematical form. As a result, the Preisach model becomes a phenomenological

model and can describe different types of physical nature of hysteresis, such as ferromagnetic

hysteresis, adsorption hysteresis, ferroelectric hysteresis, etc. The phenomenological treat-

ment of the Preisach model opens a new way in the study of hysteresis as it can be found in
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Mayergoyz [42] [21] [49], Visintin [45], Bertotti [50] and Brokate [30].

The Preisach model is defined as

u(t) = Γ[v](t) =

∫∫
T0

μ(r, s)γ̂s−r,s+r[v](t)drds (3.1)

where γ̂s−r,s+r[v](t) denotes the relay operator, see Figure 3.3 as

γ̂s−r,s+r[v](t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+1 if v(t) > s+ r

−1 if v(t) < s− r

γ̂s−r,s+r[v](t
−) if s− r ≤ v(t) ≤ s+ r

t− = lim�>0,�→0 t − �, s and r are two parameters that determine switching values +1 (the

switch is "on") and -1 (the switch is "off"), v(t) denotes the input signal, μ(r, s) is the

density function of the Preisach model, which is selected by designers. Without losing the

generality, the density function μ(r, s) is defined on a compact support [51]: T = {(r, s) ∈
T0|r − R ≤ s ≤ −r + R,R > 0} with a bound R > 0, and μ(r, s) is equal to zero outside

the triangle T , T0 denotes the set {(s, r)| − ∞ < s < ∞, r ≥ 0}. The Preisach model is

a widely accepted hysteresis model in the literature which has been employed to describe

various hysteretic behaviors in smart materials, such as piezoelectric materials [52] [53],

magnetostrictive materials [20], ion-exchange polymer-metal composites (IPMCs) [54] and

electro-rheological (ER) fluid [55] etc.

Prandtl Ishlinskii(PI) Model

The Prandtl-Ishlinskii (PI) model is defined as a superposition of play operator or stop

operator, which is expressed as

P [v](t) = p0v(t) +

∫ Λ

0

p(r)Fr[v](t)dr (3.2)

where p0 is a positive constant; p(r) is a given density function, satisfying p(r) ≥ 0 with∫∞
0

rp(r)dr < ∞. Since the density function p(r) vanishes for large values of r, the choice
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Figure 3.3: Relay operator

Figure 3.4: Play operator
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of Λ as the upper limit of integration in the literature is just a matter of convenience [56].

Fr[v] is the play operator, see Figure 3.4:

Fr[v](0) = fr(v(0), 0) (3.3)

Fr[v](t) = fr(v(t), Fr[v](ti)) (3.4)

for ti < t ≤ ti+1, 0 ≤ i ≤ N − 1, with

fr(v, w) = max(v − r,min(v + r, w)) (3.5)

where 0 = t0 < t1 < . . . < tN is a partition of [0, tN ], such that the function v(t) is monotone

on each of the subintervals [ti, ti+1].

According to the definition of the play operator, the PI model can only describe the

symmetric hysteresis effect. However, there are many cases that the hysteresis exhibits

asymmetric behaviors such as hysteresis in magnetostrictive actuators, shape memory al-

loys (SMA) actuators. To keep the feature of PI model, the extension of the PI model to

describe the asymmetric hysteresis behavior has been exploited in the literature, including:

1) cascading a nonlinear operator with the PI model. In [57], a modified PI model, super-

position of one-sided dead-zone operators proceeded by the PI model, was proposed. This

model can describe certain asymmetric hysteresis behaviors and has analytical solutions of

its inversion, but it cannot describe the saturated asymmetric hysteresis behaviors; 2) mod-

ifying the elementary play operator. In [58], the elementary play operator was redefined

as a right-side play operator and a left-side play operator. In [59], a non-symmetric play

operator was considered as the elementary operator. In [60], a generalized play operator

with envelope functions was proposed. The disadvantage of this type of modified model is

its inverse construction and the selection of the asymmetric function.

Krasnoselskii-Pokrovskii(KP) Model

The Krasnoselskii-Pokrovskii model developed by Banks, Kurdila and Webb [48] [61] repre-

sents scalar hysteresis as the cumulative effect of weighted elementary hysteresis operators
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kp[v, ξp](t) that are distributed over the domain in R2. The KP model can be expressed as

u (t) = H [v] (t) =

∫
P

kp [v, ξp] (t)μ (p) dp (3.6)

where μ(p) is the distribution function, P is the Plane defined by

P =
{
p (p1, p2) ∈ R2 : v+ ≥ p2 ≥ p1 ≥ −v−

}
(3.7)

where v− and v+ denote input values of negative and positive saturation states of hysteresis,

respectively. The kernel kp is defined as

kp [v, ξp] (t) =

⎧⎪⎨
⎪⎩
max{ ξp(t), r(v(t)− p2)} for v̇(t) ≥ 0

min{ ξp(t), r(v(t)− p1)} for v̇(t) ≤ 0

Figure 3.5: KP kernel

In comparison with Preisach model and PI model, the KP model is seldomly unitized to

represent the hysteresis effect in the smart materials due to its complex structure. Banks [61]

investigated the properties of the KP model and employed this model in describing the

hysteresis in SMA, similar work can also be found in [62].

Duhem Model

The Duhem model was proposed by P. Duhem for description of the thermodynamical pro-

cesses in 1897. This differential equation-based hysteresis model focuses on the fact the
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output can change its character when the input changes direction. The Duhem model is

given by

Ḃ (t) = α
∣∣∣Ḣ

∣∣∣ [f (H)− B] + Ḣg (H) (3.8)

where α > 0 is a constant, H is the applied magnetic field and B is the flux density, f(H)

and g(H) are continuous functions. Equation (3.8) confirms Duhem model has a form of

rate-independent hysteresis. In additions the functions f(H) and g(H) have to meet the

following three conditions: [63]

1) f(·) is piecewise smooth, monotone increasing, odd function of H, with limH→∞ ḟ(H) < ∞;

2) g(·) is piecewise continuous, even function, with limH→∞ g(H) = limH→∞ ḟ(H);

3) ḟ(H) > g(H) > αeαH
∫∞
H

|ḟ(η)− g(η)|e−αηdη for all H > 0.

In the literature, the Duhem model is often utilized to describe saturated hysteresis effect in

the SMA [64] actuators by selecting different functions f(v) and g(v).

Bouc-Wen Model

The Bouc-Wen hysteresis model is expressed as

ż = −α|ẋ|zn − βẋ|zn|+ Aẋ, for n odd (3.9)

ż = −α|ẋ|zn−1|z| − βẋzn + Aẋ, for n even (3.10)

where α, β, and A are parameters that govern the scale and general shape of the hysteresis

loops, z is the output, x denotes the input. In the literature, the Bouc-Wen model has been

widely used in the field of structural engineering, since they greatly facilitate deterministic

and stochastic dynamic analysis of real structures with reasonable accuracy [65]. Bouc-Wen

model is also used to describe the hysteresis in piezoelectric materials [66].
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3.2 The Development of an Asymmetric Hysteresis Mod-

el for the Magnetostrictive Actuator

From experimental results reported in Chapter 1, the input and output responses of the mag-

netostrictive actuator show asymmetric hysteretic characteristics. Among above reviewed

hysteresis models, except for the Preisach model, all the models can only describe sym-

metric hysteresis effects. In order to describe the asymmetric hysteresis effect, the original

models should be modified. Inspired by the modeling approaches reported in [57] [59] [60],

an asymmetric shifted Prandtl-Ishlinskii (ASPI) model is proposed, which is constructed by

three components: a PI model, a shift model and an auxiliary function. The advantages

of the proposed model are 1) it is able to represent the asymmetric hysteresis behavior in

magnetostrictive actuators, 2) it facilitates the inverse cancelation by utilizing the available

results in [1] and [67]. Before introducing the proposed model, an analysis regarding to the

asymmetric hysteretic responses in the magnetostrictive actuator is presented first.

3.2.1 The Asymmetric Hysteretic Behaviors in the Magnetostric-

tive Actuator

From Figure 1.7 we can see that the input-output hysteresis loop is not symmetric. In order

to analyze the symmetry property of hysteresis loops, a vertical gap function is defined as

Φ[u] = |Γasc[u, ζ0]− Γdes[u, ζ1]| (3.11)

where u ∈ IR, IR is the set of real numbers; Γasc[·, ζ0] is defined as the ascending branch of

the hysteresis loop, Γdes[·, ζ1] is defined as the descending branch of the hysteresis loop; ζ0,

ζ1 denote the internal state of the hysteresis operator. Figure 3.6 shows the hysteresis loop

and its vertical gap function curve.

Property 1 : If a hysteresis loop Γ[·, ζ] is symmetric, then its vertical gap function Φ[u]

(u ∈ [−u0, u0], umax = u0, umin = −u0) is symmetric with the center line u = 0.
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Figure 3.6: The symmetric hysteresis curve and its vertical gap function curve

Proof : In order to prove this property, we have to prove that ∀ ue ∈ IR and 0 ≤ ue ≤ u0,

Φ[ue] = Φ[−ue]. For any ue ∈ IR we have,

Φ[ue] = |Γasc[ue, ζ0]− Γdes[ue, ζ1]| (3.12)

Since the hysteresis loop Γ[·, ζ] is symmetric with respect to the origin, it satisfies

Γasc[ue, ζ0] = −Γdes[−ue,−ζ0] (3.13)

Γdes[ue, ζ1] = −Γasc[−ue,−ζ1] (3.14)

Substituting (3.13) and (3.14) into (3.12), we have

Φ[ue] = | − Γdes[−ue,−ζ0] + Γasc[−ue,−ζ1]|
= Φ[−ue] (3.15)

In Figure 3.6, because the hysteresis loop is symmetric, according to Property 1, the

vertical gap function is symmetric with the center line u = 0.

Property 2 : If the vertical gap function Φ[u] (u ∈ [−u0, u0], umax = u0, umin = −u0) of a

hysteresis loop Γ[·, ζ] is not symmetric with its center line u = 0, then the hysteresis operator

is asymmetric.
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Figure 3.7: The asymmetric hysteresis curve of the magnetostrictive actuator and its vertical

gap function curve

Figure 3.7 shows the input-output relation of the magnetostrictive actuator and its vertical

gap function curve. Due to the asymmetric property of the vertical gap curve, the hysteresis

loop of the magnetostrictive actuator is asymmetric according to Property 2. Figure 3.8

shows the vertical gap curve under different input amplitudes which indicates the asymmetric

hysteresis property in the magnetostrictive actuator.

3.2.2 The Asymmetric Shifted Prandtl-Ishlinskii (ASPI) Model

In order to extend the PI model to describe the asymmetric hysteresis effect, still possessing

its unique property of being analytically invertible, an asymmetric shifted Prandtl-Ishlinskii

(ASPI) model is proposed in this section, which is composed of three components: a Prandtl-

Ishlinskii (PI) model, a shift model and an auxiliary function. The purpose for introducing

the shift model is to change the symmetric characteristics of the ASPI model and the auxiliary

function is used for representing the saturated phenomenon. The ASPI model is defined as

u(t) = Π[v](t) = P [v](t) + Ψ[v](t) + g(v)(t) (3.16)
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where the first term P [v](t) is the PI model defined in (3.2), and the second term Ψ[v](t) is

defined as the superposition of the weighted shift operators:

Ψ[v](t) =

∫ C1

C0

χ(c)Ψc[v](t)dc (3.17)

where χ(c) ≥ 0 is the density function with
∫ C1

C0
cχ(c)dc = Lχ < ∞. Ψc[v](t) is the shift

operator defined as

Ψc[v](0) = ψc(v(0), 0) (3.18)

Ψc[v](t) = ψc(v(t), ψc[v](ti)) (3.19)

for ti < t ≤ ti+1, 0 ≤ i ≤ N − 1, with

ψc(v, w) = max(cv,min(v, w)) (3.20)

where 0 = t0 < t1 < . . . < tN is the same partition of [0, tN ] as defined in (3.5). c ∈ IR+,

IR+ := {x ∈ IR|x ≥ 0} is a parameter to determine the shape of the shift operator. When
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c > 1, Ψc[v](t) is called left shift operator, see Figure 3.9(a); when 0 < c < 1, Ψc[v](t) is

called right shift operator, see Figure 3.9(b). The last term g(v)(t) in (3.16) is an auxiliary

function, which assists to represent the saturation behavior of hysteresis nonlinearity. Figure

3.10 shows responses of the PI model and the ASPI model with selected density functions

p(r), χ(c) as well as auxiliary function g(v) in Table 3.1.

Table 3.1: Coefficients of the PI model and the ASPI model

The PI model The ASPI model

p(r) r ∈ [0, 4] 0.4e−0.01(r+
1
6
) 0.4e−0.01(r+

1
6
)

χ(c) c ∈ [1, 4] 0.02e−0.1(c−1)

g(v) 0.8arctan(3v − 2)

−0.05v2 + 0.05v

Some of the essential properties of the ASPI model can be described as follows:

Rate Independent: The ASPI model w[v](t) is rate independent. For all v ∈ Cpm[0, T ],

Cpm[0, T ] denotes space of monotone, continuous functions on [0, T ], and all admissible time

transformation τ : [0, T ] → [0, T ] with τ(0) = 0 and τ(T ) = T the elementary shift operator

satisfies

w[v ◦ τ ] = w[v] ◦ τ (3.21)

Monotonicity: The ASPI model w[v](t) is a monotone operator. For a given input v ∈
C[0, T ], C[0, T ] denotes space of continuous functions on [0, T ], for arbitrary T > 0 and any

initial condition ζ0, the following property holds

(w[v(·), ζ0](T )− w[v(·), ζ0](0)) · (v(T )− v(0)) ≥ 0 (3.22)

Discussion on the Selection of Shift Model Ψ[v] and Function g(v)

The purpose for introducing the shift model is to describe the asymmetric hysteresis. In order

to demonstrate characteristics of the asymmetric hysteresis, the vertical gap function can be
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Figure 3.9: The shift operator
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Figure 3.10: Input-output responses of the PI model and the ASPI model

utilized. Figure 3.11 shows the vertical gap value of the shift operators where vp denotes the

input value as the vertical hysteresis gap reaches its peak value. For an asymmetric hysteresis,

if vp is at the left of the center line v = 0, v ∈ [−v0, v0], it is called left asymmetric hysteresis.

Otherwise, it is called right asymmetric hysteresis. Therefore, we can superpose left shift

operators with c > 1 to describe the left asymmetric hysteresis and right shift operators with

0 < c < 1 to describe the right asymmetric hysteresis.

Remark: As a matter of fact, the right asymmetric hysteresis Γ[v] can be transformed into

the left asymmetric hysteresis by using Π[v] = −Γ[−v]. Therefore, we can always select the

left shift operators (c > 1) to represent the asymmetric hysteresis. As an illustration, to get

the left asymmetric hysteresis, Figure 3.12 demonstrates the superposition of the left shift

operators with the PI model to describe the left asymmetric hysteresis.

Since the PI model and the shift model are the monotone models, the derivatives of the

upscale of the hysteresis loops described by these models are monotone under piecewise

monotone input signal v(t). However, for saturated asymmetric hysteresis, the derivative

of the upscale of the hysteresis loop is non-monotone, see Figure 3.13. Thus, we introduce

the auxiliary function g(v) into the ASPI model to change the monotone property of the

derivative of the upscale in the ASPI model. For such a purpose, g(v) needs to satisfy the
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following condition:

Condition 1 :

1) for the monotonic increase input v(t), g′(v) > −(P ′[v] + Ψ′[v]);

2) g(v1+v2
2

) > g(v1)+g(v2)
2

, where v1, v2 ∈ [vmin, vmax].

Remarks :

1) The selection of the g(v) is not unique, any function can be qualified as far as it is Lipschitz

continuous, derivative and satisfying the above condition.

2) Similar to the PI model, the exact shape of the hysteresis depends on the selection of the

density functions, c, g(v), which can be determined once the hysteresis loops are available.

3.3 Concluding Remarks

In this chapter, a literature review including a historical overview of the hysteresis and avail-

able hysteresis models has been presented to give a general status on the hysteresis model-

ing. Inspired by the reviewed modeling approaches, an asymmetric shifted Prandtl-Ishlinskii

(ASPI) model has been therefore proposed, which is constructed by three components: a PI

model, a shift model and an auxiliary function. The advantages of the proposed model are

1) it is able to represent the asymmetric hysteresis behavior in magnetostrictive actuators,

2) it facilitates the inverse construction. The model identification and experimental verifica-

tion will be conducted in the next chapter to demonstrate the effectiveness of the proposed

hysteresis model.
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Chapter 4

Model Parameters Identification and

Model Validation

In Chapter 2, a dynamic model both considering the nonlinear hysteresis effect and the

dynamic behaviors was proposed to describe the input output dynamic responses of the

magnetostrictive-actuated system. To particularly describe the asymmetric hysteresis effect

in the magnetostrictive actuator, an asymmetric shifted Prandtl-Ishlinskii (ASPI) model was

proposed in Chapter 3. Therefore, in this chapter, the model parameters identification and

the model verification are conducted on the magnetostrictive-actuated experimental platform

to verify the proposed modeling strategy.

The model identification is taken into two steps: the identification of the hysteresis com-

ponent and the identification of the dynamic component. To identify the hysteresis part,

a designed decreasing sinusoid signal is applied to the actuator and the input and output

experimental data are utilized to determine the parameters of the hysteresis model. To i-

dentify the dynamic part, the frequency response of the magnetostrictive-actuated system

is obtained, and the parameters of the dynamic part can be found based on the obtained

frequency response figure. The identified model then is verified by applying a series of

excitation signals with different amplitudes and frequencies. The experimental results illus-
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trate that the dynamic model has an excellent agreement with the dynamic behavior of the

magnetostrictive actuator.

4.1 Model Parameters Identification

From (2.15) and (2.16), one has

...
x + ρ2ẍ+ ρ1ẋ+ ρ0x = b(i− Π[x]) (4.1)

where ρ2 = Labs+R0m
Lam

, ρ1 = Laks+TemTMm+R0

Lam
, ρ0 = ksR0

Lam
, b = R0Tem

Lam
. Because the displacement

x can be represented as a function of supplied current i(t), i.e. x(t) = ζ(i(t)), the term

i− Π[ζ[i]] in (4.1) can be defined as a new hysteresis nonlinearity Γ[i](t)

Γ[i](t) = u(t) = i(t)− Π[x](t) (4.2)

We finally have the model of the magnetostrictive actuated dynamic system as

...
x + ρ2ẍ+ ρ1ẋ+ ρ0x = bΓ[i](t) (4.3)

Figure 4.1 shows the cascading structure of the dynamic model. This cascading structure

Figure 4.1: The structure of the dynamic model

where a nonlinear component followed by a linear system is called Hammerstein model. In the

literature, there are numerous papers working towards the identification of the Hammerstein

model, and the available are the iterative method [68]; overparameterization method [69];

stochastic method [70] and so on. However, these approaches are only applicable for iden-

tifying simple nonlinear component, such as deadzone or backlash. For the hysteresis, to
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our best knowledge, it is still an unsolved question. Therefore, in this section, we avoid

to identify the parameters of the hysteresis model and dynamic model together, instead we

identify them separately. To this end, we have to normalize one part first, in this section,

we normalize the dynamic part.

The s domain expression of the dynamic part is expressed as

G(s) =
X(s)

Γ(s)
=

b

s3 + ρ2s2 + ρ1s+ ρ0
(4.4)

where ρ2, ρ1, ρ0 and b are unknown parameters. By performing the normalization, the

numerator of the (4.4) is divided by a term b/ρ0 as

G1(s) =
ρ0

s3 + ρ2s2 + ρ1s+ ρ0
(4.5)

To keep the equivalence of the model, the hysteresis part is multiplied by the term b/ρ0,

see Figure 4.2. Then we conduct the model parameters identification.

Figure 4.2: The structure of the dynamic model after normalization

Step 1: Identification of the hysteresis part. In Chapter 3, we have proposed an asymmet-

ric hysteresis model ASPI model to describe the hysteresis behaviors in the magnetostrictive

actuator. To facilitate the identification, the numerical expression of the ASPI model (3.16)

is written as

u(t) = P [v](t) + Ψ[v](t) + g(v)(t)

= p0v(t) +
n∑

j=1

pjFrj [v](t) +
m∑
j=1

qjΨcj [v](t) + g(v)(t) (4.6)

where pj denotes the weight of the play operator; Frj [v](t) is the play operator at the thresh-

old of rj; n is the number of the play operator used for identification. qj denotes the weight
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of the elementary shift operator; Ψcj [v](t) is the elementary shift operator at the slope of

cj; m is the number of the elementary shift operator used for identification. g(v)(t) is an

auxiliary function, which is selected as

g(v)(t) = −a3v(t)
3 − a2v(t)

2 − a1v(t)− a0 (4.7)

The thresholds rj were selected as rj = 0.3j (j = 1, 2, ...n), where the current is a designed

decreasing sine signal as i(t) = 5e−0.1tsin(2πt), see Figure 4.3(a). The weights pj in (4.11)

can be found by the following constrained quadratic optimization:

min{[CΛ− d]T [CΛ− d]} (4.8)

with the constraints

p(j) ≥ 0, j ∈ {0, 1, 2, ..., N} (4.9)

where Λ = [p0, ...pm+n+4]
T , C = [Fr1 , ..., FrN ], N = m + n + 4, d is the output of the

magnetostrictive actuator under a designed amplitude decreasing sinusoidal input signal.

Then, the nonlinear least-square optimization toolbox in MATLAB was employed to identify

the above parameters and the results are shown in Table 4.1. Figure 4.3(b) and Figure 4.3(c)

show the comparison between the experimental data and the model.

Remark 1: Different initial values have been tried in order to obtain the minimum mean

squared error, which is defined as

eMSE =
1

n

n∑
i=1

(u− uexp)
2 (4.10)

Remark 2: 9 play operators in (4.11) were employed in the identification. In fact, different

numbers have been tried considering the calculation cost and modeling accuracy. Figure 4.4

shows the relation between the number of play operators and the related mean squared error.

Remark 3: Different orders of function g(v) have been tried and the mean squared error

were listed in Table.4.2. Because the third order of g(v) shows lower MSE, therefore, g(v) =

−a3v
3 − a2v

2 − a1v − a0 was utilized in (4.11).

65



Table 4.1: Coefficients of the ASPI model

Numbers rj pj cj qj aj

0 0 0.9002 0

1 0.3 0.8445 1.1 1.3809 0

2 0.6 0.4276 1.2 0 0.3106

3 0.9 1.4821 1.3 0 0.0417

4 1.2 0.6097 1.4 0

5 1.5 1.3596 1.5 0

6 1.8 1.2051 1.6 0

7 2.1 1.0574 1.7 0

8 2.4 0.2835 1.8 1.0056

9 2.7 0.1636

Table 4.2: Coefficients of the auxiliary function

g(v) eMSE

−a1v − a0 1.2885

−a2v
2 − a1v − a0 0.3737

−a3v
3 − a2v

2 − a1v − a0 0.2811

−a4v
4 − a3v

3 − a2v
2 − a1v − a0 0.2811
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Therefore, we have

u(t) = P [v](t) + Ψ[v](t) + g(v)(t)

= p0v(t) +
n∑

j=1

pjFrj [v](t) +
m∑
j=1

qjΨcj [v](t) + g(v)(t) (4.11)

with

g(v)(t) = −a3v(t)
3 − a2v(t)

2 − a1v(t)− a0 (4.12)

where the identified parameters pj, qj and aj can be found in Table 4.1.

Step 2: Identification of the dynamic part. We first decompose G1(s) as

G1(s) =
τ

s+ τ
· ω2

n

s2 + 2ξωns+ ω2
n

(4.13)

with ρ2 = 2ξωn + τ , ρ1 = ω2
n + 2ξωnτ , ρ0 = τω2

n. The objective is to identify the parameters

of τ , ξ, ωn. To this end, a frequency response (1 to 500Hz) of the magnetostrictive actuator

is obtained in Figure 4.5, where the applied mechanical load is 16Kg.
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Figure 4.5: Amplitude/frequency characteristics of the system

From the magnitude response in Figure 4.5, we can find that ωn = 230× 2πrad/s. Then,

the least square approach is utilized to identify the parameters as ξ = 0.13 and τ = 800×2π,

and G1(s) is expressed as

G1(s) =
1.05× 1010

s3 + 5402s2 + 3.98× 106s+ 1.05× 1010
(4.14)

69



4.2 Model Validation

The model validation is conducted on the experimental platform reported in Chapter 1,

Section 1.3.1. The applied mechanical load is 16 Kg. We first verify the dynamic model

with the operation of the magnetostrictive actuator in low frequency, which means the input

and output responses only show hysteresis effect. Figures 4.6(a), 4.7(a), and 4.8(a) show

comparisons of the experimental data and the ASPI model under sine input signals with

amplitudes 2A to 4A. Figures 4.6(b), 4.7(b), and 4.8(b) show the modeling error which is

defined as

em(t) =
100(ue(t)− u(t))

max(v(t))−min(v(t))
(4.15)

where ue(t) and u(t) denote the output of the magnetostrictive actuator and the ASPI model.

From the comparison results and the modeling errors (less than 5%), it can be concluded that

the proposed ASPI model shows a good agreement with the experimental data. Moreover,

the triangular input signal is also applied, which indicates the effectiveness of the proposed

ASPI model in different input signal, see Figure 4.9. To validate the dynamic part, we

first obtain the frequency response test on the model. Figure 4.10 shows the comparison

of the frequency responses between the experimental data and the developed model. From

the comparison, it can be seen that the model can capture the main characteristics of the

frequency responses of the magnetostrictive actuated dynamic system. Figures 4.11 and

4.12 demonstrate the comparisons of the experimental data and the model with the sinusoid

input signal under different frequency (1Hz, 10Hz, 50Hz, 100Hz, 200Hz) and with triangular

input signal under different frequency (10Hz, 50Hz, 150Hz, 200Hz). To validate the transient

responses of the model, a square wave is also applied to the actuator. Moreover, a harmonic

input y = 2.16sin(0.35× 2πf0t) + 2.7sin(0.1× 2πf0t +
π
2
f0) (f0 = 1, 401) is also applied to

verify the model with complex input signals. From the comparisons of above the results, it is

clearly shown that the proposed model shows an excellent agreement with the experimental

data.
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Figure 4.6: Model validation with sinusoidal input 2sin(2πt)
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Figure 4.11: Model verification with sinusoid signal under different input frequency
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Figure 4.12: Model verification with triangular signal under different input frequency

0 5 10 15 20 25 30 35
−30

−25

−20

−15

−10

−5

0

5

10

15

20

 Time (sec)

 D
is

pl
ac

em
en

t (
 µ

 m
)

Experimental data
Model
Experimental data
Model

Figure 4.13: Model verification with square wave
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Figure 4.14: Model validation with complex harmonic input

81



4.3 Concluding Remarks

In this chapter, the model parameters identification and experimental verification have been

conducted to demonstrate the effectiveness of the proposed dynamic model. Different input

signals with different input frequencies were applied to magnetostrictive actuators. From

the comparisons between the model and experimental data, it illustrates that the proposed

model has an excellent agreement with the experimental data.

82



Chapter 5

Compensation of Hysteresis Nonlinearity

with Inverse Approaches

In previous chapters, a cascading model structure (dynamic component preceded by a hys-

teresis model) is proposed to describe the complex nonlinear dynamic behaviors of the

magnetostrictive-actuated systems. From the experimental results, we find it is this pre-

ceded hysteresis that generates undesired and detrimental effects, which will deteriorate the

performance of the magnetostrictive actuator and cause inaccuracy and oscillations. There-

fore, in this chapter we specifically fucus on open-loop inverse compensation strategy for

remedying the hysteresis phenomenon based on the cascaded hysteresis model.

In the literature, two compensation approaches are generally used: direct construction of

complete inverse function of the hysteresis function (model) [67] [57], and use of an inverse

multiplicative structure [1] [71] of the models to compensate the complicated component in

the model, for which the development of inverse function for the complicated function is not

required.

In Section 5.1, a literature review on the strategy of constructing the inverse compensator

is presented. In Section 5.3, the direct inverse construction is constructed to compensate

the hysteresis effect described by the ASPI model. In Section 5.2, the inverse multiplicative
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structure is applied to find the inverse compensator for the Preisach model.

5.1 The Review of Feedforward Inverse Compensation

with Open-loop Schemes

The common approach for remedying the hysteresis nonlinearity is to use an open loop control

technique, i.e., construct a hysteresis inverse [1] [67] [57] [72] [73] [74] in putting in cascade as a

compensator to cancel the hysteresis effect. Figure 5.1 illustrates the general structure of the

feedforward inverse compensation. For construction of the hysteresis inverse, two approaches

are generally used: direct construction of complete inverse of the hysteresis model [57] [67],

and the inverse multiplicative structure [1] [71]. Direct construction of inverse hysteresis

model is mainly for the Prandtl-Ishlinskii (PI) model. When the hysteresis is represented by

differential equations such as Bouc-Wen model [1] or the Preisach model, the direct inverse is

either impossible or extremely difficult to be obtained. In this case, the inverse multiplicative

structure technique developed in [1] [71] can be used to compensate the complicated function

in the model. In the following development, the two inverse compensation approaches are

briefly reviewed.

Figure 5.1: Feedforward inverse compensation structure
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5.1.1 The Direct Inverse Compensation Approach

In the direct inverse construction approach, only the inverse of the PI model was reported

[67] in which the properties of the initial loading curve of the PI model were adopted for

constructing the analytical solution for the inverse. In this section, we briefly present this

available result as follows.

In [67], the definition of the PI model is given as

P [v](t) = p0v(t) +

∫ Λ

0

p(r)Fr[v](t)dr (5.1)

where p0 is a positive constant; p(r) is a given density function, satisfying p(r) ≥ 0 with∫∞
0

rp(r)dr < ∞. Fr[v] is the play operator. The initial loading curve of the PI model is

defined as follows

ϕ(r) = p0r +

∫ r

0

p(κ)(r − κ)dκ (5.2)

The initial loading curve reflects the characteristics of the output of the PI model starting

at the initial condition. And the first derivative and second derivative of the initial loading

curve function satisfy

ϕ′(0) = p0 (5.3)

ϕ′′(r) = p(r) (5.4)

Therefore, the inverse of the PI model [67] is derived as

P [u]−1(t) = p̄0u(t) +

∫ Λ̄

0

p̄(r)Fr[u](t)dr (5.5)

where,

p̄0 =
1

p0
(5.6)

p̄(r) = (ϕ−1)′′(r) (5.7)

In order to implement the inverse compensation numerically, we have the numerical expres-

sion of the PI model as

P [v](t) = p0v(t) +
n∑

j=1

pjFrj [v](t) (5.8)
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The direct inverse expression of the PI model is expressed as

P−1[u](t) = p̄0v(t) +
n∑

i=1

p̄iFr̄i [u](t) (5.9)

where r̄i, p̄0 and p̄i can be found as

r̄i = p0ri +
i∑

l=1

l−1∑
j=1

pj(rl − rl−1) (5.10)

p̄0 = 1/p0 (5.11)

p̄i = − pi

(p0 +
∑i

j=1 pj)(p0 +
∑i−1

j=1 pj)
(5.12)

Therefore, as long as we find the parameters of r̄i, p̄0, and p̄i in (5.10) based on the parameters

in the PI model (5.8), the direct inverse of the PI model can be obtained. An illustration

example is given as follows. A PI model with the thresholds and weights which are shown

in Table 5.1. According to (5.10), the corresponding r̄i, p̄0, and p̄i are computed in Table

5.1. Figure 5.2 shows the input and output relationship of the PI model, the direct inverse

of the PI model as well as the compensation results.

Table 5.1: Coefficients of the PI model and its direct inverse

Numbers ri pi r̄i p̄i

0 0 1 0 1

1 0.25 0.5 0.25 -0.1667

2 0.5 0.5 0.55 -0.119

3 0.75 0.5 0.9 -0.0893

As we mentioned before, the direct inverse compensation approach can only be applied to

the PI model and the extended PI models such as the modified PI model [57], the generalized

PI model [60], etc. If the hysteresis effect shown in the cascading model structure reported

in Chapter 2 is described by other hysteresis models, i.e. Preisach model or Bouc-Wen

model, this direct inverse compensation approach may generate approximating error or not be
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(c) The I/O of the combination of the PI model and the direct inverse PI model

Figure 5.2: The simulation of the inverse compensation of the PI model

applicable. Therefore, the second inverse compensation approach, the inverse multiplicative

structure technique [1], is considered.

5.1.2 The Inverse Multiplicative Structure Approach

The inverse multiplicative structure technique was first reported in [1] for constructing the

inverse of the Bouc-Wen hysteresis model. The advantages of the inverse multiplicative struc-

ture compensator are 1) it does not require the direct inverse calculations of the hysteresis

model; 2) no additional computation is required. Therefore, the inverse multiplicative struc-

ture provides the possibility to construct the inverse for complex hysteresis models, such as

the Preisach model. A brief overview of the inverse multiplicative structure technique in [1]

is presented first.

In [1], the Bouc-Wen model is utilized to describe the hysteresis effect in piezoelectric
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actuators, which is defined as

y(t) = dpU −H(U) (5.13)

where,

H(U) = h(t)

dh

dt
= Abw

dU

dt
−Bbw|dU

dt
|h− Γbw

dU

dt
|h| (5.14)

and Abw, Bbw, and Γbw are parameters that govern the scale and general shape of the hys-

teresis loops, y is the displacement output, U denotes the input. The inverse multiplicative

structure compensator is obtained as

U =
1

dp
(yr +H(U)) (5.15)

where yr is the desired output. The structure of the compensator is shown in Figure 5.3.

A simulation is given to demonstrate the compensation result of the inverse multiplicative

structure for the Bouc-Wen model. Figures 5.4(a) and 5.4(b) show the input and output

relationship of the Bouc-Wen model and the inverse multiplicative structure compensator,

where bp = 2, Abw = 2, Bbw = 1.5, and Γbw = 0.1 in (5.13) and (5.14). The linear relationship

shown in Figure 5.4(c) indicates the Bouc-Wen hysteresis has been completely canceled.

Figure 5.3: Hysteresis compensation. (a) General principle. (b) The proposed structure [1]
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Figure 5.4: The inverse multiplicative structure compensator for Bouc-Wen model

5.2 The Inverse Multiplicative Structure Compensator

for the Preisach Model

In the literature, the Preisach model is a very popular model to describe the hysteresis

behaviors. If we use the Preisach model to represent the hysteresis effect in the cascading

model structure in (4.3) of Chapter 4, the challenge addressed here is how to construct its

feedforward inverse compensator. In the literature, some results have obtained for the inverse

construction of the Preisach model. However, since the input signal is implicitly involved

in the Preisach model, the results are mainly numerical inversion algorithms [2] [75]. The

application of these approximate inverse models would thus yield considerable compensation

errors under excitations at higher frequencies. Therefore, it would be desirable if the inverse

multiplicative structure technique [1] developed for the Bouc-Wen model can be utilized for

the Preisach model inverse construction. However, unlike the Bouc-Wen model, the input
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signal in the Preisach model is implicitly involved into its complex dual integral formulation

and does not possess the required multiplicative structure.

Therefore, in this section, we attempt to develop an inverse compensator for the Preisach

model using the inverse multiplicative structure technique [1]. For such a purpose, by ex-

ploiting the properties of the Preisach model, it is decomposed as two parts: non-memory

part and memory part. Based on this separation, it only requires to solve the inverse of the

non-memory part to obtain an explicit expression of the input signal, making it possible to

use the inverse multiplicative structure technique. Then, by solving the exact inverse of the

non-memory part, the entire inverse of the Preisach model has been developed. To validate

the result, the inverse model is applied in a cascade configuration with the Preisach hystere-

sis model using the laboratory-measured input-output characteristics of the magnetostric-

tive actuator to study its effectiveness as an open-loop feedforward hysteresis nonlinearity

compensator. The experimental results validated the effectiveness of the proposed inverse

compensation method.

5.2.1 The Preisach Model

The Preisach model was first developed in 1935 by F. Preisach [41] for the purpose of

describing the hysteresis effect in ferromagnetic materials. A detailed discussion on this

model can be found in the monograph [49]. The Preisach model is constructed by superposing

relay operators as [49]

u(t) = Γ[v](t) =

∫∫
T0

μ(r, s)γ̂s−r,s+r[v](t)drds (5.16)

where γ̂s−r,s+r[v](t) denotes the relay operator as

γ̂s−r,s+r[v](t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+1 if v(t) > s+ r

−1 if v(t) < s− r

γ̂s−r,s+r[v](t
−) if s− r ≤ v(t) ≤ s+ r
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t− = lim�>0,�→0 t − �, s and r are two parameters that determine switching values +1

(the switch is "on") and -1 (the switch is "off"), v(t) denotes the input signal, μ(r, s) is

the density function of the Preisach model, which is selected by designers. Without losing

the generality, in the following development μ(r, s) is defined on a compact support [51]:

T = {(r, s) ∈ T0|r − R ≤ s ≤ −r + R,R > 0} with a bound R > 0, and μ(r, s) is equal to

zero outside the triangle T , T0 denotes the set {(s, r)| −∞ < s < ∞, r ≥ 0}.

5.2.2 The Inverse Construction of the Preisach Model Using the

Inverse Multiplicative Structure

It is obvious that the inverse multiplicative structure technique cannot be directly applied

to the Preisach model (5.16) due to the input signal u(t) which is implicitly involved in

its complex double integral formulation. To utilize the above technique, the task in the

following development is to re-formulate the Preisach model (5.16) into a form similar to

the Bouc-Wen model (5.13), i.e., obtain an explicit expression of the input signal from its

implicit form, so that the inverse multiplicative technique can be applied. To this end, a

Preisach plane (r-s plane) [49] on which the geometric interpretation of the Preisach model

can be best visualized is introduced first.

Consider the isosceles right triangle T = {(r, s) ∈ T0|r − R ≤ s ≤ −r + R,R > 0} on

the r-s plane, as illustrated in Figure 5.5, for any v(t), −R ≤ v(t) ≤ R, the triangle T is

subdivided by a interface L(t) into two parts: S+(t), all switches γ̂s−r,s+r[v](t) within this area

are on (γ̂s−r,s+r[v](t) = +1); S−(t) , all switches γ̂s−r,s+r[v](t) are off (γ̂s−r,s+r[v](t) = −1).

Therefore, based on the geometric interpretation, the Preisach model (5.16) is decomposed

as:

u(t) =

∫∫
S+

μ(r, s)γ̂s−r,s+r[v](t)drds+∫∫
S−

μ(r, s)γ̂s−r,s+r[v](t)drds

= 2

∫∫
S+

μ(r, s)γ̂s−r,s+r[v](t)drds−Δ (5.17)
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Figure 5.5: The geometric interpretation of the Preisach model

where Δ =
∫∫

T
μ(r, s)γ̂s−r,s+r[v](t)drds =

∫ R

0

∫ −r+R

r−R μ(r, s)dsdr is a constant. From (5.17)

and the geometric interpretations

γ̂s−r,s+r[v](t) = +1, if (r, s) ∈ S+(t) (5.18)

the model (5.16) can be re-expressed as:

u(t) = 2

∫∫
S+

μ(r, s)drds−Δ (5.19)

for the purpose of calculation.

From (5.19), it follows that the output of the Preisach model u(t) depends on the evo-

lution in time of S+(t) and S−(t) governed by the input signal v(t), which implies that the

input signal v(t) is implicitly involved in (5.19), causing the challenge for stable controller

designs. In order to derive a new expression where the input signal v(t) in (5.19) can be

expressed explicitly, a discrete Preisach model is considered. In the literature, there exist

several discretization strategies [75] [76] [77]. For our purpose, we adopted the discretization
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approach reported in [75], see Figure 5.6. We divide the interval [0, R] into N+1 subintervals

of equal width, Δr, and from each interval choose the point, ri. Then the discrete Preisach

model (5.17) is written as

u(t) = Γκ[v](t)

= 2

∫ r1

r0

∫ L[r0](t)

r0−R
μ(r0, s)dsdr + ...

2

∫ ri+1

ri

∫ L[ri](t)

ri−R
μ(ri, s)dsdr + ...

2

∫ rN+1

rN

∫ L[rN ](t)

rN−R
μ(rN , s)dsdr −Δκ

= 2Δr

N∑
i=0

∫ L[ri](t)

ri−R
μ(ri, s)γ̂s−ri,s+ri [v](t)ds−Δκ (5.20)

where Δκ = Δr
∑N

i=0

∫ −ri+R

ri−R μ(ri, s)ds is a constant. L[ri](t) denotes the values on the

interface L(t), see Figure 5.6, and we have L[r0](t) = v(t).

Figure 5.6: The discretization in geometric interpretation of the Preisach model

Remark: The discretization procedure of the original Preisach model is based on the
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definition of the integral. When the number of the integgral subintervals goes to infinity, the

error eΓ(t) between the original Preisach model Γ[v](t) in (5.19) and the discrete Preisach

model Γκ[v](t) in (5.20) will converge to zero,

lim
N→∞

Γ[v](t)− Γκ[v](t) = lim
N→∞

eΓ(t) = 0 (5.21)

Therefore, if we select a sufficiently large N, we regard the discrete Preisach model is equiv-

alent to the original Preisach model.

With the help of r-s plane, in the following development we will further explore the model

(5.20) to obtain a new expression that is suitable for controller design where the input signal

can be explicitly expressed in the Preisach model. By further examining the geometric

interpretation of the Preisach model in Figure 5.6, the model (5.20) on the area S+(t) in r-s

plane can be further divided into two parts: Γ+
r0

and
∑N

i=1 Γ
+
ri
[v](t) . In this case, (5.20) can

be re-written as

u(t) = 2(Γ+
r0
[v](t) +

N∑
i=1

Γ+
ri
[v](t))−Δκ (5.22)

where

Γ+
r0
[v](t) = (r1 − r0)

∫ L[r0](t)

r0−R
μ(r0, s)γ̂s[v]ds

= Δr

∫ v(t)

−R
μ1(s)ds

= Δr(λ(v)− λ(−R)) (5.23)

where λ(·) = ∫
μ1(s)ds and

γ̂s[v] =

⎧⎪⎨
⎪⎩
+1 if v(t) ≥ s

−1 if v(t) < s

and

Γ+
ri
[v](t) = (ri+1 − ri)

∫ L[ri](t)

ri−R
μ(ri, s)γ̂s−ri,s+ri [v](t)ds (5.24)

Remark: In (5.23), we denote μ(r0, s) = μ1(s) because r0 = 0 and μ(0, s) is only with respect

of variable s, we therefore replace μ(r0, s) with μ1(s) just for convenience. Equation (5.22)
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can be further written as

u(t) = 2Δrλ(v) +G (5.25)

where G = 2
∑N

i=1 Γ
+
ri
[v](t) − 2Δrλ(−R) − Δκ. Now, the Preisach model (5.25) is in a

structure similar to the Bouc-Wen model (5.13). By applying the inverse multiplicative

structure technique, the inverse (feedforward) compensator of the Preisach model (5.25) can

be obtained as

u = λ−1(
ur −G

2Δr
) (5.26)

Figure 5.7: The inverse multiplicative structure for the Preisach model

The scheme of the inverse compensator is shown in Figure 5.7. The only difference is

the inclusion of λ−1, which makes it possible to obtain the explicit expression of the input

signal v(t) from the Preisach model (1), imposing a major challenge. It should be noted that

unlike the Bouc-Wen hysteresis model, whose input signal v(t) is explicit already because

its structure is fixed and the shape depends on the coefficients of the model, the input

signal v(t) of the Preisach model can only be obtained by calculating λ−1. The analytical

form of λ−1 cannot be determined a priori, depending on the density functions μ(·). This

is because the shape of the Preisach model is determined by the selection of the density

functions μ(·), which is not unique. The analytical form of λ−1 can only be obtained after

the density functions μ(·) is selected with a specific magnetostrictive actuator. For example,

the common used density function for the Preisach model are μ(s) = a (a is a constant), the
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exponential function [49] μ(s) = ae−s, as well as the lorentzian function [50] μ(s) = k
1+(s−a)2

(a, k are constants). Their corresponding λ(s) functions and the exact inverse expressions

λ−1(s) are listed in Table. 5.2 as illustrations.

Table 5.2: λ(s) function and its exact inverse λ−1(s)

μ(s) λ(s) λ−1(s)

a as s
a

ae−s −ae−s ln−a
s
(s < 0)

k
1+(s−a)2 k arctan(s− a) tan( s

k
) + a

5.2.3 Experimental Validation

The experimental validation is conducted on the experimental platform reported in Chapter

1, Section 1.3.1. In order to implement the inverse compensator (5.26) in the dSPACE, we

first need to identify the discrete Preisach model in (5.25) as

u = 2Δrλ(v) +G (5.27)

where G = 2
∑N

i=1 Γ
+
ri
[v](t)− 2Δrλ(−R)−Δκ.

To this end, the density function on the line r = 0 is selected as

μ(s) = a1e
−s (5.28)

where a1 is a coefficient and a1 > 0. Then, according to Table.5.2

λ(s) = −a1e
−s (5.29)

Δr is selected as 0.05. G is further discretized as

G =
M∑
k=1

Wk[v]μk + b1 (5.30)
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where Wk[v] denotes the delay operator, μk denotes identified coefficient. The number of

μk is K = L(L + 1)/2, where L is discretization level. L is sufficiently large, the Preisach

model with identified weights would correspond smoothly with the experimental data. b1 =

−2Δrλ(−R)−Δκ, which is a constant.

Then, we have

u = −2Δra1e
−v +

M∑
k=1

Wk[v]μk + b1

= WT[v]μk (5.31)

where W[v] = [−2Δre−v, w1, w2, ...wM , 1]T , μk = [a1, v1, v2, ..., vM , b1]
T . In W[v], the input

signal v and the bound of the triangle area R are all available, w1, w2, ..., wM are calculated

from the relay operators defined in (5.16) with the input signal v, therefore, W [v] can be

determined. The parameter μk of the Preisach model is unknown and needs to be determined

by the following constrained quadratic optimization:

min{[Cμk − dk]
T [Cμk − dk]} (5.32)

with the constraints

μk ≥ 0 (5.33)

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

WWW T [1]

WWW T [2]
...

WWW T [k]

⎞
⎟⎟⎟⎟⎟⎟⎠

where dk = [d1, d2...d3]
T is the output of the magnetostrictive actuator under a designed

decreasing input signal as 4.5sin(2πt)e−0.2t. Then, a nonlinear least-square optimization

function lsqnonneg in MATLAB was employed to find the parameters μk. Let the bound

of the triangle T be R = 5 and the discretization level L=200. Then, the total number of

the discrete components becomes M = L(L + 1)/2 − L = 19900. Figure 5.8 illustrates the

identified weights vvv[n](n = 2, 3, ...M), and μ1 is identified as a1 = 8.4, b1 = 62.33. Figure 5.9
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Figure 5.8: The identified weights

shows the comparison of output of the magnetostrictive actuator and the Preisach model.

The modeling error is defined as

em(t) =
100(μ(t)− y(t))

max(μ(t))
(5.34)

where μ(t) and y(t) are the output of the magnetostrictive actuator and the Preisach model.

The hysteresis loops are shown in Figure 5.9(b). As is shown in Figure 5.9(a), the output of

the Preisach model corresponds well with the experimental data and the maximum error is

less than 0.6% of the total range.

Based on the identified results, we have

u = 2× 0.05λ[v] +G (5.35)

where,

λ[v] = −8.4e−v (5.36)

G =
M∑
k=1

Wk[v]μk + 62.33 (5.37)
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Figure 5.9: Comparison of experimental data and the Preisach model
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The inverse multiplicative structure compensator can be expressed as

v = λ−1[
ur −G

2× 0.05
]

= ln
0.84

G− ur

(5.38)

The inverse compensation and experimental analysis have been carried using hardware-

in-the-loop techniques which efficiently connect the embedded system to the real plant.

The inverse multiplicative structure was implemented in the Matlab/simulink and the codes

were transformed into real-time control codes and downloaded to the dSPACE board. A

desired tracking signal ur was applied to the compensator with an amplitude of 35 μm

and a frequency of 1 Hz, and the output together with the actuator gain (0.1429 A μm−1)

was applied to the magnetostrictive actuator through the power amplifier. The measured

actuator displacement responses was subsequently obtained by using capacitive sensor (Lion

Precision, model C23-C) and uploaded into the dSPACE board. Figure 5.10(a) shows the

input-output relationship of the inverse multiplicative structure compensator. Figure 5.10(b)

shows the input-output responses of the magnetostrictive actuator, and Figure 5.10(c) shows

the inverse compensation result. The effectiveness of the inverse multiplicative structure

compensator is further evaluated by comparing the time history of the measured displacement

responses of the magnetostrictive actuator with and without the feedforward compensator.

Figure 5.11 illustrates the comparison of the compensation error of the magnetostrictive

actuator with and without the feedforward compensator.

The compensation error indicates a peak error of maximum 1.43% among the total range

which significantly lower than that obtained without the compensator 10.51 %. The ex-

perimental results suggest that the proposed multiplicative inverse structure of the Preisach

model could effectively compensate the hysteretic behavior in the magnetostrictive actuators.
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Figure 5.10: a) Input-output responses of the feedforward compensator b)Input-output re-

sponses of the magnetostrictive actuator c) Input-output responses of the magnetostrictive

actuator with a compensator
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5.3 The Direct Inverse Compensation Approach for the

ASPI Model

Since inverse multiplicative structure needs the exact knowledge of the hysteresis model,

it is very restrict for a practical actuator. In the following development, we will focus

on the direct inverse compensation approach, which allows the estimation of the unknown

hysteresis. Thus, we use the ASPI model to describe the hysteresis effect in the cascading

model structure in (4.3) of Chapter 4, the direct inverse compensation approach can therefore

be utilized to compensate the hysteresis in the actuator. In Chapter 3, the ASPI model is

developed as

u(t) = Π[v](t) = P [v](t) +H[v](t) (5.39)

where P [v](t) denotes the PI model, H[v](t) = Ψ[v](t) + g(v)(t), Ψ[v](t) is the shift model

and g(v)(t) is the auxiliary function.

The objective is that if we can find a Π−1 so that Π[Π−1[u]](t) = u(t), then such a Π−1

can be qualified as an inverse of the ASPI model.

Since u(t) in (5.39) is expressed as u(t) = Π[v](t) = P [v](t) +H[v](t). Then, P [v](t) can

be re-expressed as

P [v](t) = u(t)−H[v](t) (5.40)

Taking the inverse of P in (5.40) on both sides, one has

v(t) = P−1[P [v]](t) = P−1[u−H[v]](t) (5.41)

where P−1[·] denotes the inverse model of the PI model, which has been reported in the

previous section.

Thus, the inverse of the ASPI model Π−1 is obtained

Π−1[u](t) = P−1[u−H[v]](t) = v(t) (5.42)
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The merit of the above construction is the utilization of the analytic inverse result for the PI

operator in [67]. Only an extra signal H[v](t) is included to the input of P−1 for the inverse

construction of Π[v](t).

The experimental validation is conducted on the experimental platform reported in Chap-

ter 1, Section 1.3.1. The applied mechanical load is 16 Kg. In Chapter 4, numerical expression

of the ASPI model is defined as

u(t) = P [v](t) +H[v](t)

= P [v](t) + Ψ[v](t) + g(v)(t)

= p0v(t) +
n∑

j=1

pjFrj [v](t) +
m∑
j=1

qjΨcj [v](t) + g(v)(t) (5.43)

with

g(v)(t) = −a3v(t)
3 − a2v(t)

2 − a1v(t)− a0 (5.44)

where the identified parameters pj, qj and aj can be found in Table 4.1 in Chapter 4. Accord-

ing to (5.10), the thresholds and weights of P−1[·](t) are calculated as: r̄i = [0, 0.2701, 0.7935,

1.4452, 2.5415, 3.8207, 5.5078, 7.5565, 9.9223, 12.3732], p̄0 = 1.1109, p̄i = [−0.5377,−0.1128,

−0.1867,−0.0391,−0.0567,−0.0314,−0.0196,−0.0044,−0.0024]. Therefore, the inverse mul-

tiplicative structure compensator is therefore implemented as

v(t) = Π−1[u](t) = P−1[u−H[v]](t) (5.45)

Figure 5.12 shows the experimental compensation results. The desired input is ud =

15sin(2πt), the input and output responses of the inverse compensator are shown in Figure

5.12(a). Figure 5.12(b) shows the input and output hysteresis loops. The linear input and

output relationship of the combination of the inverse compensator and the actuator in Fig-

ure 5.12(c) indicates the proposed inverse compensator can effectively cancel the inherent

hysteresis effects in the magnetostrictive actuator. In order to demonstrate the effectiveness

of the proposed inverse compensator for overcoming the asymmetric hysteresis, the compar-

ison of the inverse compensation by using the inverse ASPI model and the inverse PI model

are conducted, see Figure 5.13(a). The large compensation error caused by the inverse PI
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(b) The I/O of the the magnetostrictive actuator
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Figure 5.12: The experimental results of the inverse compensation for the magnetostrictive

actuator
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Figure 5.13: The comparison of the inverse compensation results by using the inverse ASPI

model and the inverse PI model as a compensator

model in Figure 5.13(b) indicates that the inverse PI model cannot effectively cancel the

asymmetric hysteresis effect in the magnetostrictive actuator.

5.4 Concluding Remarks

In this chapter, two inverse compensation approaches: the direct inverse compensation ap-

proach and the inverse multiplicative structure have been reviewed. Firstly, we used the

Preisach model to represent the hysteresis effect in the cascading model structure, and the

inverse multiplicative structure compensator was then applied. However, inverse multiplica-

tive structure needs the exact knowledge of the hysteresis model, which is very restrict for

a practical actuator. Considering this point and specially focusing on the asymmetric hys-

teresis showing in the magnetostrictive actuator, the proposed ASPI model was therefore

utilized to describe the asymmetric hysteresis effect in the cascading model structure and
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the direct inverse compensation approach was applied to find the inverse of the ASPI model.

Both inverse compensation approaches have been examined on the magnetostrictive-actuated

platform.
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Chapter 6

Inverse Adaptive Control of

Magnetostrictive-actuated Dynamic

System

When dynamic systems are actuated by smart material based actuators, the systems exhibit

hysteresis nonlinearities and corresponding control is becoming a challenging task, especially

with magnetostrictive actuators which are dominated by asymmetric hysteresis. Therefore,

in this chapter, an inverse compensation based robust adaptive control is developed for the

purpose of mitigating the hysteresis effect in the magnetostrictive-actuated dynamic sys-

tem. Focusing on the asymmetric hysteresis phenomenon, the proposed asymmetric shifted

Prandtl-Ishlinskii (ASPI) model and its inverse are utilized to describe and compensate the

asymmetric hysteresis behaviors in the magnetostrictive actuator. To guarantee the global

stability of the closed loop system and the transient performance of the tracking error, a pre-

scribed adaptive control method will be applied. The effectiveness of the proposed control

scheme is validated on the magnetostrictive-actuated experimental platform.

In Section 6.1, the available feedback control of dynamic system preceded by hysteresis

nonlinearity is reviewed. The control problem statement is presented in Section 6.2. An
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analytical error of the inverse compensation for the asymmetric shifted Prandtl-Ishlinskii

(ASPI) model for the purpose of controller design is derived in Section 6.3. The prescribed

adaptive control approaches and the experimental validation are reported in Section 6.4 and

Section 6.5.

6.1 Review of Feedback Control of Dynamic System Pre-

ceded by Hysteresis Nonlinearity

Although the feedforward inverse compensation approaches are very effective to deal with

the hysteresis effect due to its simplicity and easy implementation, they only show good

performance when the actuators operate in low frequency and without external loads or

disturbances occur in the actuated systems. In addition, there always exists a modeling

error between the estimated model and the true hysteresis behaviors, therefore, the use of

an estimated hysteresis model in deriving the model inverse would be expected to yield some

degree of hysteresis compensation error. This error would cause the tracking error in the

closed-loop control system. For the purpose of alleviating these drawbacks of open loop

compensation, feedback control strategies are desired. In the literature, the feedback control

schemes for dealing with the hysteresis include the feedback control without hysteresis inverse

compensation and feedback control with hysteresis inverse compensation. The following

sections will give the detailed introduction.

6.1.1 Feedback Control without Inverse Construction

Figure 6.1 illustrates the structure of the control strategy without inverse compensator. In

this type of control strategy, the hysteresis nonlinearities are normally decomposed as a

linear term and an uncertainty term. Due to this division, many available control strategies

can be directly applied. In [78], a backlash-like hysteresis model is proposed to describe the

hysteresis effect and the solution of the backlash-like model is derived, in which the solution
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Figure 6.1: Feedback control without inverse construction

can be divided into a linear term and a bounded term. By using the properties of the solution

of the backlash-like model, a robust adaptive control scheme is adopted without constructing

the inverse of the hysteresis model. The stability of the dynamic nonlinear system preceded

by the unknown backlash-like hysteresis is guaranteed. Likewise, in [56], the PI model is

fused with a robust control approach without constructing the inverse of the PI model. The

challenges shown in [56] are that the separated uncertain term of the PI model is not bounded.

However, due to the time-invariability of the density function of the PI model, the uncertain

term can be treated as a parameter and estimated in the adaptive law. Following the work

in [56] and [78], numerous control approaches with the same treatment to the hysteresis are

developed: adaptive backstepping control approaches [79], decentralized adaptive output

feedback control [80], sliding mode control [81] [82] [83], adaptive neural control [84] [85],

adaptive fuzzy output feedback control [86] [87], etc. The advantages of these feedback

control approaches are that they avoid the calculation of the inverse of the hysteresis model.

However, these control methods may result in large control input magnitudes [3] [88], which

is not desirable in real control applications.

6.1.2 Inverse-based Feedback Control

The inverse-based feedback control means the inverse of the hysteresis is constructed first as

a feedforward compensator, then the feedback control approach is applied. The purpose for

developing the inverse of the hysteresis model first is to overcome the influence of the hystere-

sis nonlinearity since the existence of the hysteresis always brings inaccuracy and oscillations
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Figure 6.2: Inverse-based feedback control strategy [2] [3]

to the closed system. Figure 6.2 illustrates the general structure of the inverse-based feed-

back control strategy. As in the real control system, there always exists an modeling error

between the estimated model Π̂[·] and the true hysteresis Π[·]. The constructed inverse com-

pensator Π̂−1[·] based on the estimated model Π̂[·] can not completely cancel the hysteresis

nonlinearity Π[·] in the system. The incomplete compensation would yield some degrees of

inverse compensation error which generally can not be ignored in controller designs. There-

fore, the challenge that lies in the inverse-based feedback control strategy is how to handle

the inverse compensation error in the controller design.

In [75], a Preisach model is utilized to describe the hysteresis effect of the magnetostrictive

actuator, and a fast inverse algorithm is developed for compensating the hysteresis effect,

then a PI controller is applied to reduce the inverse compensation error or uncertainty

caused by the plants. However, the inverse compensation error is not explicitly expressed

and no stability analysis is given in this paper. In [13], a Preisach model is utilized and the

numerical inverse compensation approach is adopted. Although the inverse compensation

error is provided, the inverse compensation error is in a numerical expression, in which the

convergence of the numerical error can not be strictly proved. In addition, the numerical

inverse error can not be directly utilized in the adaptive controller design. In [89] and [90],

a backlash hysteresis is studied and the analytical inverse of the backlash model is derived.

Therefore, the analytical inverse compensation error for backlash hysteresis can be obtained,

and an adaptive control scheme is developed based on the analytical compensation error.

The global stability of the entire system is also achieved. Along this line, in [91], a PI model
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is adopted to describe the hysteresis effect and the composition theory developed by Pavel

Krejci [44] is applied for deriving the analytical formulation of the compensation error. An

adaptive control approach is developed to achieve high tracking performance in the closed-

loop control system using the obtained compensation error. Likewise, in [71], a Bouc-Wen

model is adopted and a multiplicative inverse structure is utilized to construct the inverse of

the Bouc-Wen model. The analytical inverse compensation error is analytical derived using

the lemma proposed in [92], finally an adaptive output feedback control strategy is developed

based on the inverse compensation error. However, the developed analytical inverse error

mentioned above are only for the symmetric hysteresis model (PI model and Bouc-Wen

model), it has not yet being exploited for asymmetric hysteresis cases in the literature. While

in the magnetostrictive-actuated dynamic system, the hysteresis effect shows asymmetric

hysteresis characteristics. Therefore, it is necessary to find the analytical expression of the

inverse compensation error for the asymmetric hysteresis model, and develop a feedback

controller based on this inverse compensation error.

6.2 Problem Statement

In Chapter 2, the dynamic model for describing the magnetostrictive-actuated dynamic

system is developed, where the dynamic part is described in the formation of the transfer

function. In order to facilitate the controller design, the transfer function is expressed in the

general formation as

x(n)(t) +
k∑

i=1

aiYi(x(t), ẋ(t), ..., x
(n−1)(t)) = bu(t) (6.1)

with the hysteresis nonlinearity output u(t)

u(t) = Π[v](t) (6.2)

where v(t) denotes the input, Yi are known continuous, linear or nonlinear functions. Param-

eters ai and control gain b are unknown constants, Π[v](t) can be expressed by the proposed
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ASPI model in chapter 3 as

u(t) = P [v](t) + Ψ[v](t) + g(v)(t)

= p0v(t) +
n∑

j=1

pjFrj [v](t) +
m∑
j=1

qjΨcj [v](t) + g(v)(t) (6.3)

with

g(v)(t) = −a3v(t)
3 − a2v(t)

2 − a1v(t)− a0 (6.4)

where pj denotes the weight of the play operator; Frj [v](t) is the play operator at the thresh-

old of rj; n is the number of the play operator used for identification. qj denotes the weight

of the elementary shift operator; Ψcj [v](t) is the elementary shift operator at the slope of

cj; m is the number of the elementary shift operator used for identification. g(v)(t) is the

selected auxiliary function.

The control objective is to design a control signal v(t) for system (6.1), such that:

P1: The system state x(t) tracks a desired xd(t) and all signals in the closed-loop are bounded;

P2: Both transient and steady-state performance of tracking error e1(t) = x(t)−xd(t) should

be within the prescribed area.

Throughout the chapter the following standard assumptions are required:

Assumption 1: The sign of uncertain parameter b is known. Without losing generality, it is

selected as b > 0 in this paper.

Assumption 2: The desired trajectory xd(t) and its (n-1)th-order derivatives are continuous.

Furthermore, [xd, ẋd, ..., x
n
d ]

T ∈ Ωd ⊂ Rn+1 with Ωd being a compact set.

Comparing with general nonlinear control for the system (6.1) only, the control signal

u(t) becomes the output of the hysteresis operator u(t) = Π[v](t), where the actual control

signal is v(t). As it is well known, the hysteresis nonlinearity will deteriorate the system

performance and cause inaccuracy or oscillations. Therefore, it imposes great challenges to

handle this cascaded term with a basic requirement that u(t) is not available/measurable.

The common approach for remedying the effect is to construct a hysteresis inverse as a

feedforward compensator. Then the control law can be designed with available control
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methods. The inverse compensator using the the direct inverse compensation approach is

constructed in Chapter 5 as

v(t) = Π−1[u](t) = P−1[u−H[v]](t) (6.5)

As a matter of fact, the inverse compensator was constructed using estimated ASPI

model Π̂[v] (there always exists a modeling error between the estimated model and the

true hysteresis). Therefore, the inverse compensation error is unavoidable and generally can

not be ignored. Therefore, we use Π̂[v] to represent the inverse compensator and (6.5) is

re-expressed as

v(t) = Π̂−1[u](t) = P̂−1[u− Ĥ[v]](t) (6.6)

Figure 6.3 shows the complete control scheme in which we can see that if there is no com-

pensation error, the hysteresis Π[v] will be completely canceled, which means ud(t) should

equal to u(t). However, due to the existence of the compensation error, ud(t) is no longer

equal to u(t), and hence we define this compensation error as

e(t) = ud(t)− u(t) (6.7)

In the following section, a detailed procedure on deriving the expression of the compensation

error e(t) is provided.

Figure 6.3: The control scheme
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6.3 Analytical Error of the Inverse Compensation for the

Asymmetric Shifted Prandtl-Ishlinskii (ASPI) Model

As reported in the previous section, use of an estimated hysteresis model in deriving the

inverse model would yield some degree of hysteresis compensation error. This error will cause

tracking error in the closed-loop control system. To accommodate such a compensation error,

the analytical expression of the inverse compensation error should be derived first. In [91], an

analytic inverse compensation error of the PI model is developed. However, such an approach

is only limited to the symmetric hysteresis case. Focusing on the asymmetric hysteresis, in

the following development we will derive the analytic inverse compensation error for the

asymmetric shifted Prandtl-Ishlinskii (ASPI) model.

6.3.1 Overview of Composition Theorem Applied to the PI Model

In order to use the composition theorem to find the compensation error of the PI model, we

first need to rewrite the PI model as [30]

P [u](t) = ϕ′(0)u(t) +
∫ Λ

0

ϕ′′(r)Fr[u](t)dr (6.8)

where ϕ(r) denotes the initial loading curve which uniquely determines the shape of hysteresis

loop described by the PI model and is defined as

ϕ(r) = p0r +

∫ r

0

p(κ)(r − κ)dκ (6.9)

Thus, ϕ′(0) = p0 is a positive constant, ϕ′′(r) = p(r) denotes the density function. According

to the composition theorem presented in [44], the composition between two PI models Pγ[·](t)
and Pδ[·](t) is expressed as

Pφ[u](t) = Pγ ◦ Pδ[u](t)

= φ′(0)u(t) +
∫ Λ

0

φ′′(r)Fr[u](t)dr (6.10)
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where φ(r) = γ ◦ δ(r), γ(r) and δ(r) denote the initial loading curves of the Pγ [·](t) and

Pδ[·](t), separately.

Since in practice, the exact density function p(r) in the PI model may not be available. It

needs to be estimated based on the measured data. In this case, the inverse model should be

constructed based on the estimated density function, which is denoted as p̂(r). Let P̂ [·](t)
denotes the estimation of the actual hysteretic behavior P [·](t) as

P̂ [u](t) = ϕ̂′(0)u(t) +
∫ Λ

0

ϕ̂′′(r)Fr[u](t)dr (6.11)

where ϕ̂(r) is defined as

ϕ̂(r) = p̂0r +

∫ r

0

p̂(κ)(r − κ)dκ (6.12)

P̂−1[·](t) denotes the inverse of P̂ [·](t) as

P̂ [u]−1(t) = ˆ̄p0u(t) +

∫ Λ̄

0

ˆ̄p(r)Fr[u](t)dr (6.13)

where,

ˆ̄p0 =
1

p̂0
(6.14)

ˆ̄p(r) = (ϕ̂−1)′′(r) (6.15)

ϕ̂−1(r) = ˆ̄p0r +

∫ r

0

ˆ̄p(ξ)(r − ξ)dξ (6.16)

Thus, by applying the composition theorem on the P [·](t) and P̂−1[·](t), yields

u(t) = P ◦ P̂−1[ud](t)

= φ′(0)ud(t) +

∫ Λ

0

φ′′(r)Fr[ud](t)dr (6.17)

where ud is the desired input signal. The compensation error epi(t) can be analytically

written as

epi(t) = ud(t)− u(t)

= (1− φ′(0))ud(t)−
∫ Λ

0

φ′′(r)Fr[ud](t)dr (6.18)
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6.3.2 Analytical Error of the Inverse Compensation for the Asym-

metric Shifted Prandtl-Ishlinskii (ASPI) Model

Due to the presence of the estimation error, we use Π̂[u](t) to estimate the true hysteresis

phenomenon Π[u](t), which is expressed as

Π̂[v](t) = P̂ [v](t) + Ĥ[v](t) (6.19)

where Ĥ[v] = Ψ̂[v](t) + ĝ(v)(t).

The output of the composition between the inverse compensation Π̂−1[u](t) and true

hysteretic behavior Π[u](t) is expressed as

u(t) = Π ◦ Π̂−1[ud](t) = P ◦ P̂−1[ud − Ĥ[v]](t) +H[v](t) (6.20)

According to the combined results in (6.10), (6.20) becomes

u(t) = φ′(0)(ud − Ĥ[v](t)) +

∫ Λ

0

φ′′(r)Fr[ud − Ĥ[v]](t)dr +H[v](t) (6.21)

Because of Er[v](t) + Fr[v](t) = v(t), where Er[v](t) denotes the stop operator as:

Er[v](0) = er(v(0)− w−1) (6.22)

Er[v](t) = er(v(t)− v(ti) + Er[v](ti)) (6.23)

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1, with

er(v) = min(r,max(−r, v)) (6.24)

w−1 is the initial value. Then, we have

u(t) = φ′(0)(ud − Ĥ[v](t)) +

∫ Λ

0

φ′′(r)(ud − Ĥ[v](t))dr

−
∫ Λ

0

φ′′(r)Er[ud − Ĥ[v]](t)dr +H[v](t)

= φ′(0)(ud − Ĥ[v](t)) + (φ′(Λ)− φ′(0))(ud − Ĥ[v](t))

−
∫ Λ

0

φ′′(r)Er[ud − Ĥ[v]](t)dr +H[v](t)
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= φ′(Λ)ud − db(t) (6.25)

where db(t) = φ′(Λ)Ĥ[v](t)−H[v](t) +
∫ Λ

0
φ′′(r)Er[ud − Ĥ[v]](t)dr. The estimation (inverse

compensation) error e(t) of the ASPI model is therefore expressed as

e(t) = ud(t)− u(t) = (1− φ′(Λ))ud(t) + db(t) (6.26)

It should be noted that if the estimated hysteresis operator Π̂[·](t) is equal to the true

hysteresis Π[·](t), it yields φ(r) = r, φ′(r) = 1, φ′′(r) = 0, then in (6.26) φ′(Λ) = 1, db(t) = 0,

leading to e(t) = 0. Before showing the way to utilize the estimation error in the next

section, the following lemma is exploited to facilitate the robust controller design.

Lemma: The term db(t) in (6.26) is bounded, i.e. |db(t)| ≤ D1 where D1 is a bounded

constant, for any time t ≥ 0.

Proof : Based on the definition of the stop operator [30], one has

|Er[·](t)dr| ≤ r ≤ Λ (6.27)

From (6.27), we have
∫ Λ

0

φ′′(r)Er[ud − Ĥ[v]](t)dr ≤ Λ

∫ Λ

0

φ′′(r)dr

≤ Λ(φ′(Λ)− φ′(0)) (6.28)

Thus,

|
∫ Λ

0

φ′′(r)Er[ud − Ĥ[v]](t)dr| ≤ |Λ(φ′(Λ)− φ′(0))| (6.29)

Here, we slightly modify the H[v] term in the ASPI model as

Ĥ[v] = R1sat(
Ĥ1[v]

R1

)

Ĥ1[v] = Ψ̂[v](t) + ĝ(v)(t) (6.30)

Since H[v] is a designed term, we just put a bound to the function. Moreover, if the output

of Ĥ1[v] is less than the bound R1, Ĥ[v] = Ĥ1[v], and normally R1 can be set as a sufficiently

large value. According to the definition in (6.30), it yields

−R1 ≤ H[v] ≤ R1 (6.31)
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−φ′(Λ)R1 ≤ φ′(Λ)Ĥ[v] ≤ φ′(Λ)R1 (6.32)

From (6.31) and (6.32), we have

|φ′(Λ)Ĥ[v]−H[v]| ≤ |(φ′(Λ) + 1)R1| (6.33)

Therefore, based on (6.29) and (6.33),

|db(t)| ≤ |(φ′(Λ) + 1)R1|+ |Λ(φ′(Λ)− φ′(0))| = D1 (6.34)

6.4 Prescribed Adaptive Control

Different from the standard procedure of backstepping control presented in the literature [56]

[79] [93], the transient and steady-state performance of tracking error are incorporated in the

design procedure of prescribed adaptive control. This control approach is originally developed

in [94], which is the first time that provides a systematic procedure to accurately compute

the required bounds, thus making tracking error converge to a predefined arbitrarily small

residual set, with convergence rate no less than a pre-specified value, exhibiting a maximum

overshoot less than a sufficiently small preassigned constant [94] [95].

To show the feasibility for the controller design with the inverse compensation, in this

section, as a demonstration, a prescribed adaptive control approach is adopted to ensure

the transient and steady-state performance of the system (6.1). In the literature, most of

controller design techniques can theoretically guarantee the boundedness of the closed-loop

system and the tracking error can converge to a residual set around zero. However, the

transient performance of the systems (e.g., overshoot, undershoot, and convergence rate)

has not been systematically studied [96]. In [94] [95], Bechlioulis and Rovithakis proposed a

novel control approach by introducing a prescribed performance function, which will lead to

global stability and yield the tracking error converge to a predefined arbitrarily small residual

set, with convergence rate no less than a pre-specified value and the maximum overshoot

less than a sufficiently small preassigned constant.
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6.4.1 Prescribed Performance Function and Error Transformation

The performance function is introduced in [94] for the purpose of depicting a convergent zone

in which the trajectory of tracking error which starts from a point in the zone remains for

all future time, see Figure 6.4. The performance function is a decreasing smooth function,

which is defined as ρ : R+ → R+ with limt→∞ ρ(t) = ρ∞ > 0.

It is noted that the control objective P2 can be guaranteed by satisfying

Mρ(t) < e1(t) < Mρ(t) (6.35)

for all t ≥ 0, where M < 0,M > 0 are selected parameters. Mρ(0) and Mρ(0) represent

the upper bound of the maximum overshoot and the lower bound of the undershoot. The

constant ρ∞ denotes the maximum tracking error at the steady state. Thus, the performance

function and the parameters M , M prescribe the convergent zone for the transient and steady

state performance of the tracking error.

Figure 6.4: The prescribed performance of tracking error

In order to meet the requirements P1 and P2 together with condition (6.35), an error

transformation is developed [94] by transforming the original nonlinear system (6.1) into an
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equivalent unconstraint one. Define S(·) a smooth and strictly increasing function and z1 a

transformed error as

e1(t) = ρ(t)S(z1) (6.36)

S(·) conforms the following conditions:

1) M < S(z1) < M

2) limz1→+∞ S(z1) = M , limz1→−∞ S(z1) = M

Since S(·) is strictly increasing as well as ρ(t) > 0, the inverse transformation can be written

as:

z1 = S−1(
e1(t)

ρ(t)
) (6.37)

Assume z1(t) remains bounded z1 ∈ L∞, ∀t ≥ 0, then M < S(z1) < M holds, and hence the

condition (6.35) can be guaranteed. A candidate function S(·) is selected as

S(z1) =
Mez1 +Me−z1

ez1 + e−z1
(6.38)

Conduct inverse transformation on (6.38), yielding

z1 = S−1(
e1(t)

ρ(t)
) =

1

2
ln
e1(t)/ρ(t)−M

M − e1(t)/ρ(t)
(6.39)

Then the derivative of z1 with respect to time can be written as

ż1 =
∂S−1

∂ e1(t)
ρ(t)

(
e1(t)

ρ(t)
)

=
1

2
[

1

e1(t)/ρ(t)−M
− 1

e1(t)/ρ(t)−M
](
ė1(t)

ρ(t)
− e1(t)ρ̇(t)

ρ2(t)
)

= r1(ẋ1 − ẋd − e1(t)ρ̇(t)/ρ(t)) (6.40)

where r1 =
1

2ρ(t)
[ 1
e1(t)/ρ(t)−M − 1

e1(t)/ρ(t)−M ]. It is noted that both e1(t) and ρ(t) in (6.40) are

available and they can be involved in controller design.

6.4.2 Prescribed Adaptive Controller Design

The system (6.1) can be re-written as

ẋ1 = x2
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ẋ2 = x3

... (6.41)

ẋn−1 = xn

ẋn = aTY + bu(t)

where a = [−a1,−a2, · · · ,−ak]
T and Y = [Y1, Y2, · · · , Yk]

T . The parameters a, b are un-

known. u(t) denotes the system input with the inverse compensation as

u(t) = φ′(Λ)ud − db(t) (6.42)

Considering the time derivative of transformed error (6.40) and nonlinear system (6.41), the

transformed nonlinear system dynamics are given by:

ż1 = r1(x2 − ẋd − e1(t)ρ̇(t)/ρ(t))

ẋ2 = x3

...

ẋn−1 = xn

ẋn = aTY + bpud(t)− d(t) (6.43)

where bp = bφ′(Λ), d(t) = bdb(t). Thus, the entire transformed dynamic system can be

further written as:

ż1 = r(x2 − ẋd − e1(t)ρ̇(t)/ρ(t))

ż2 = x3 − ẍd − α̇1

...

żn−1 = xn − xn−1
d − α̇n−2

żn = aTY + bpud(t)− d(t)− xn
d − α̇n−1 (6.44)

The controller design is achieved by using the recursive back-stepping technique and is

summarized as follows. The control law is developed as

ud(t) = ζ̂ud1(t) (6.45)
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with

ud1(t) = −knzn − zn−1 + α̇n−1 + x
(n)
d − âTY + sgn(zn)D̂ (6.46)

where,

z1 =
1

2
ln
e1(t)/ρ(t)−M

M − e1(t)/ρ(t)
(6.47)

zi = xi − x
(i−1)
d − α(i−1), i = 2, 3, ..., n (6.48)

α1 = −k1z1/r1 + e1(t)ρ̇(t)/ρ(t) (6.49)

α2 = −k2z2 + α̇1 − r1z1 (6.50)

αi = −kizi + α̇i−1 − zi−1 (6.51)

where ki are positive designed parameters. The parameters ζ̂, D̂ and the vector â are

updated by the following adaptation laws:

˙̂
ζ = −ηζud1(t)zn (6.52)

˙̂a = ΓaY zn (6.53)
˙̂
D = −ηD|zn| (6.54)

where D = bD1 and D1 is the bound defined in the Lemma in Section 6.3.2. The stability

of the closed-loop system is established in the following theorem.

Theorem 2 : For the transformed nonlinear system (6.1) preceded by ASPI model in (6.42),

the prescribed adaptive controller presented by (6.45)-(6.54) guarantees that

(i) All signals in the closed-loop system remain bounded;

(ii) The tracking control with prescribed performance condition (6.35) is preserved.

Proof : From (6.40), and (6.47)-(6.51), and with bpud(t) = bpζ̂ud1 = ud1 − bpζ̃ud1, we have

z1ż1 = rz1z2 − k1z
2
1 (6.55)

z2ż2 = z2z3 − k2z
2
2 − rz1z2 (6.56)

ziżi = zizi+1 − kiz
2
i − zi−1zi (6.57)

znżn = zn(−knzn − zn−1 + ãTY + sgn(zn)D̂

−d(t)− bpζ̃ud1) (6.58)
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where ζ̃ = ζ − ζ̂, ã = a − â. Let D̃ = D − D̂. To establish the global boundedness, the

following Lyapunov function candidate is adopted

V (t) =
n∑

i=1

1

2
z2i +

1

2
ãTΓ−1a ã+

bp
2ηζ

ζ̃2 +
1

2ηD
D̃2 (6.59)

The derivative of V (t) with regard to the time is

V̇ (t) = −
n∑

i=1

kiz
2
i + ãTY zn − bpζ̃ud1zn + sgn(zn)D̂zn

−d(t)zn + ãTΓ−1a
˙̃a+

bp
ηζ

˙̃ζζ̃ +
1

ηD

˙̃DD̃

≤ −
n∑

i=1

kiz
2
i + ãT (Y zn + Γ−1a

˙̃a)− bpζ̃(ud1zn

− 1

ηζ

˙̃ζ)− D̃(|zn| − 1

ηD

˙̃D)

= −
n∑

i=1

kiz
2
i (6.60)

Equations (6.59) and (6.60) show that V (t) is nonincreasing. Therefore, zi(i = 1, ..., n), ζ̂, â,

and D̂ are bounded. By utilizing the Lasalle-Yoshizawa theorem in [97] to (6.60), it further

follows that zi → 0(i = 1 = 1, ..., n) as t → ∞, which concludes the tracking error is bounded

within the prescribed zone.

6.5 Experimental Results

In this section, the prescribed adaptive controller designed above will be verified in the

magnetostrictive-actuated dynamic system reported in Chapter 1, Section 1.3.1 with a me-

chanical load 16 Kg. The inverse compensator is first constructed and implemented in the

dSPACE. Then the prescribed adaptive controller is also applied in the dSPACE to sup-

press the inverse compensation error and meanwhile improve the control precision. Finally,

the experimental results will be provided to demonstrate the effectiveness of the developed

control scheme.
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6.5.1 Asymmetric Hysteresis Modeling and Its Inverse Compensa-

tion

In Chapter 3, the proposed ASPI model is expressed as

Π̂[v](t) = P̂ [v](t) + Ĥ[v](t)

= p̂0v(t) +
n∑

i=1

p̂iFri [v](t) + R1sat((
m∑
j=1

q̂iΨcj [v](t) + ĝ(v)(t))/R1) (6.61)

with

ĝ(v)(t) = −â3v(t)
3 − â2v(t)

2 − â1v(t)− â0 (6.62)

The identified parameters p̂i ĉi, q̂i, âi of the ASPI model can be found in Table 4.1 in Chapter

4, and R1 is selected as 100. Based on above parameters, the direct inverse compensator is

therefore implemented as

v(t) = Π̂−1[u](t) = P̂−1[u− Ĥ[v]](t) (6.63)

where

P̂ [u]−1(t) = ˆ̄p0u(t) +
n∑

i=1

ˆ̄piFˆ̄ri [v](t) (6.64)

ˆ̄ri = p0r̂i +
i∑

l=1

l−1∑
j=1

bj(r̂l − r̂l−1) (6.65)

ˆ̄p0 = 1/p̂0 (6.66)

ˆ̄pi = − p̂i

(p̂0 +
∑i

j=1 p̂j)(p̂0 +
∑i−1

j=1 p̂j)
(6.67)

Therefore, the thresholds and weights of P−1[·](t) are calculated as: ˆ̄ri[0, 0.2701, 0.7935, 1.4452,

2.5415, 3.82075.5078, 7.5565, 9.9223, 12.3732], ˆ̄p0 = 1.1109, ˆ̄pi = [−0.5377,−0.1128,−0.1867,

−0.0391,−0.0567,−0.0314,−0.0196,−0.0044,−0.0024].

The inverse compensator was implemented in the Matlab/Simulink and the codes were

transformed into real-time control codes and downloaded to the dSPACE board. A desired

tracking signal ud(t) = B1sin(2πt), B1 = 5, 10, 15 was applied to the compensator. In Chap-

ter 5, we have demonstrated that with the desired input ud = 15sin(2πt), the compensation
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result with the proposed inverse compensator shows an approximate linear relationship, see

Figure 6.5. However, due to the existence of the modeling error, the inverse compensation

error is unavoidable, see Figures 6.6 and 6.7 with different desired input amplitudes. To

accommodate this compensation error, the prescribed adaptive control scheme was therefore

applied.
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Figure 6.5: The inverse compensator with desired input ud(t) = 15sin(2πt)

6.5.2 The Implementation of the Prescribed Adaptive Control

The entire control scheme is illustrated in Figure 6.3. Since in experiments we only focus on

the low frequency application, the dynamic model of the magnetostrictive actuated system

is first reduced to a first-order system [98], namely we select n = 1, Y = x(t) in (6.41).

Similar treatment also can be found in [99], [100]. The control objective is to force the

output of the magnetostrictive-actuated system to follow the desired signal xd = 5sin(t) and

ensure the transient and steady-state performance of the tracking error within the prescribed

function area. The prescribed performance function is selected as ρ = (1 − 0.07)e−t + 0.07

with M = 10, M = −10. The parameters in the control and adaptive laws are selected as
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Figure 6.6: The inverse compensator with desired input ud(t) = 5sin(2πt)

Figure 6.7: The inverse compensator with desired input ud(t) = 10sin(2πt)
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Figure 6.8: The control input signal to the system
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Figure 6.9: The tracking error
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Figure 6.10: The input-output relation of the magnetostrictive actuator with prescribed

adaptive controller
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Figure 6.11: The tracking error with desired input xd = 5sin(100 · 2πt)
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Figure 6.12: The input-output relation of the magnetostrictive actuator with prescribed

adaptive controller under the desired input xd = 5sin(100 · 2πt)

c1 = 30, ηζ = 2, Γa = 2, ηD = 25. The initial state is chosen as x(0) = 1.3. In addition, in

the implementation the function sgn(zn) is replaced by sat(zn) to avoid the chattering effect.

The experimental results are shown in Figures 6.8-6.12. Figure 6.8 shows the control signal.

Figure 6.9 shows the tracking error. It can be seen that a fairly satisfactory tracking per-

formance is achieved and the tracking error converges to a small neighborhood of zero. The

input-output relation of the magnetostrictive actuator with prescribed adaptive controller

is demonstrated in Figure 6.10. The input and output responses of the actuator gradually

converges to a nearly linear relationship instead of nonlinear compensation error showing in

Figure 6.6. To further illustrate the effectiveness of the adopted controller, a desired signal

xd = 5sin(100 · 2πt) with higher frequency is applied. The prescribed performance function

is selected as ρ = (1 − 0.07)e−100t + 0.07 with M = 10, M = −10. Figures 6.11 and 6.12

show the tracking error and the input-output relation of the magnetostrictive-actuated dy-

namic system with the prescribed adaptive controller. From above experimental results, it
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can be seen that the developed prescribed adaptive controller shows an excellent tracking

performance.

6.6 Concluding Remarks

This chapter deals with the entire controller design for the magnetostrictive-actuated dynam-

ic system. The developed ASPI model was used to describe the asymmetric hysteresis effect,

the direct inverse compensation approach was utilized to obtain the inverse compensator

of the ASPI model. Due to the presence of the estimated error, the inverse compensation

error is unavoidable. By means of the composition theorem, the analytical inverse com-

pensation error was derived. To suppress such a compensation error, a prescribed adaptive

control method was applied, in which the global stability of the closed loop system with a

prescribed transient and steady-state performance of the tracking error can be guaranteed.

The effectiveness of the proposed control scheme was validated via the experimental tests.
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Chapter 7

Conclusions and Future Work

7.1 Concluding Remarks

Magnetostrictive actuators featuring high energy densities, large strokes and fast responses

appear poised to play an increasingly important role in fields of requiring micro positioning.

However, such actuators invariably exhibit hysteresis nonlinearities and dynamic behaviors

that could cause oscillations and instability in the system which will severely deteriorate the

micropositioning and tracking performance of the actuator. This dissertation research aims

at developing an effective modeling and control methodology to overcome the hysteresis and

dynamic effect and ensure the closed-loop stability and the micro-positioning performance

for the magnetostrictive-actuated dynamic system.

At beginning, a series of the experimental tests have been conducted to present the input-

output behaviors of the magnetostrictive-actuated dynamic system under different input

amplitudes (1A-5A), frequencies (1Hz-200Hz) as well as mechanical loads (m = 0 Kg, 10.0

Kg, 21. 5Kg and 33 Kg). The experimental results were thoroughly investigated. It can

be observed from the experimental tests that when the actuator works in the low frequency,

the mechanical loads have little influence on the input-output relationship of the actuator;

the input-output relationship of the actuator shows a static hysteretic phenomena. Howev-
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er, when the actuator works in high frequencies, the mechanical loads greatly change the

input-output behaviors of the system, which leads to a complex dynamic input and output

behaviors.

In order to describe the complex dynamic behaviors, a dynamic model based on the

principle of operation of the magnetostrictive actuator has been proposed, which compre-

hensively considers the electric, magnetic and mechanical domain as well as the interactions

among them. The developed model includes two parts the hysteresis components and the

dynamic components. To particularly describe the hysteresis effect, an asymmetric shifted

Prandtl-Ishlinskii (ASPI) model has been proposed, which concludes three components: a

Prandtl-Ishlinskii (PI) operator, a shift operator and an auxiliary function. The advantage

for the proposed ASPI model are that it can describe the asymmetric hysteresis behavior

and facilitates the construction of the analytical inverse of the ASPI model. The validity

of the proposed model was demonstrated through experimental tests and the experimental

results have verified the effectiveness of the proposed model.

In order to improve the positioning precision of the magnetostrictive actuator, the hys-

teresis effect shown in the actuator should be carefully treated. Therefore, the feedforward

inverse compensation approaches have been adopted. At beginning, we chose the Preisach

model to represent the hysteresis effect in the cascading model structure, and the inverse mul-

tiplicative structure compensator was then applied. However, inverse multiplicative structure

needs the exact knowledge of the hysteresis model, which is very restrict for a practical ac-

tuator. Then, we utilized the ASPI model to describe the asymmetric hysteresis effect in the

cascading model structure and applied the direct inverse compensation approach to find the

inverse of the ASPI model. Both inverse compensation approaches have been examined on

the magnetostrictive-actuated platform.

In the practical control systems, the use of an estimated hysteresis model in deriving

the inverse compensator would be expected to yield some degree of hysteresis compensation

error. This error causes tracking error in the closed-loop control system. To accommodate

such a compensation error, the analytical expression of the inverse compensation error has
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been derived first. Then, a prescribed adaptive control method was applied to suppress

the compensation error and simultaneously guaranteeing global stability of the closed loop

system with a prescribed transient and steady-state performance of the tracking error. The

effectiveness of the proposed control scheme has been validated on the magnetostrictive-

actuated experimental platform. The experimental results demonstrate an excellent tracking

performance by using the proposed control scheme.

7.2 Recommendations for Future Works

As the continuation of the studies in this dissertation research, the following research topics

in this area can be conducted in the future.

• In Chapter 4, for the identification of the dynamic system, we estimate the parameters

of the hysteresis part and dynamic part separately. Although the estimations show

the good agreement with the experiments, the challenge lies in how to come up with

an identification method that can estimate the parameters of the hysteresis part and

dynamic part together, which would be a very interesting topic for the further research.

• In Chapter 6, we implement the controller based on the reduced dynamic system, since

some states in the dynamic system are not measurable. Therefore, it is desirable to

develop an output feedback controller in the future work.
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