
 A Cloud Infrastructure for Scalable and Elastic

Multimedia Conferencing Applications
Flora Taheri

#1
, Jerry George

#2
, Fatna Belqasmi

#3
, Nadjia Kara

*4
, Roch Glitho

#5

Abstract – Multimedia conferencing applications play a

critical role in business and everyday life. However,

scalability and elasticity remain quite elusive, even

though they are the keys to efficiency in resource usage.

A cloud-based approach could solve the scalability and

elasticity issues and bring other benefits such as an easy

introduction of new applications. This paper proposes a

cloud infrastructure that relies on fine-grained

conferencing substrates. These substrates are virtualized

and shared by conferencing applications. They enable

scalability and elasticity.

Keywords— Multimedia conferencing, cloud

infrastructure, scalable conferencing applications, elastic

conferencing applications.

I. INTRODUCTION

Conferencing [1] can be defined as the conversational/real

time exchange of media between several parties. It is the

basis of a plethora of multimedia applications and services

(e.g. audio/video conferencing, multiparty games and

distance learning). Despite having become ubiquitous, these

applications still face challenges such as scalability and

elasticity. Cloud computing [2] is an emerging paradigm,

with three key facets: Software as Service (SaaS), Platform

as a Service (PaaS) and Infrastructure as a Service (IaaS). It

has several inherent benefits (e.g. efficient usage of

resources, scalability, elasticity, and the rapid development

and introduction of new applications). Cloud computing can

potentially transform the business landscape in a significant

manner, a situation which has led to the proposal of new

business models. One example is the business model

proposed for cloud-based conferencing in reference [3]. It

has six roles: connectivity provider, broker, conferencing

substrate provider, conferencing infrastructure provider,

conferencing platform provider and conferencing

application/service provider. This paper proposes a

virtualized infrastructure for cloud-based conferencing. The

infrastructure relies on fined-grained sharable conferencing

substrates (e.g. audio mixer and dial-out signalling) that can

be assembled on the fly to build scalable and elastic

multimedia conferencing applications. A scenario is

presented in the next section along with the technical

challenges. This is followed by a summary of related work,

the proposed architecture and its early validation.

II. SCENARIO AND TECHNICAL CHALLENGES

 Figure 1 depicts three conferencing applications offered

by three different providers over a same cloud conferencing

IaaS: an audio/video conference application offered by

provider A, a multiparty game application offered by

provider B, and a distance learning application offered by

provider C. The figure shows as well the conferencing PaaS

offered by a conferencing PaaS provider. These applications

may have different characteristics (e.g. different Quality of

Service (QoS), number of users, cost, etc.). In our vision,

they will rely on fine-grained and sharable substrates offered

by the conferencing IaaS provider. It should be noted that

the conferencing IaaS provider may rely on third party

substrate providers, as per the business model proposed in

reference[3].

Figure1. Cloud-based Conferencing Illustration

A first challenge is that the IaaS architecture should rely on

an open business model. Another one is the ability for all

players to publish and discover. Yet another challenge is

scalability in terms of the number of end users that use the

conferencing applications as well as in terms of the number

of applications that can be offered by application providers

as SaaS. The last challenge is elasticity to ensure efficiency

in resource usage.

III. RELATED WORK

 Conferencing has been extensively studied by standards

bodies (e.g. by IETF [4, 5, 6] and 3GPP [7]), especially in

non-cloud environments. None of these works fully meets

the scalability and elasticity requirements. The same applies

to the existing cloud-based products, such as Cisco’s WebEx

[8]. A few embryonic architectures have been put forward

for conferencing in the cloud. Reference [9] proposes an

audio/video conference application as SaaS. It does not rely

on fine-grained substrates and consequently does not scale

in an elastic manner. Reference [8] also offers audio/video

conferencing as a cloud-based service. It provides scalability

and elasticity. However, it does not rely on an open

business model in which third parties could provide

conferencing substrates. Reference [10] aims at deploying

#Concordia University, Canada
#l
fl_taher@encs.concordia.ca

#2
je_georg@encs.concordia.ca

#3
fbelqasmi@alumni.concordia.ca
#5
glitho@ciise.concordia.ca

*
ETS, University of Quebec, Canada

*4
nadjia.kara@etsmtl.ca

video conferencing applications as SaaS in a hybrid cloud,

but faces scalability and elasticity issues.

IV. PROPOSED ARCHITECTURE

 Figure 2 shows the proposed conferencing architecture.

It has two layers, Conferencing IaaS and Conferencing

SubaaS (Substrate as a Service), in addition to a broker.

Figure 2. Architecture of Conferencing IaaS

 Conferencing substrate providers may offer different types

of conferencing substrates. Two third-party conferencing

substrate providers are shown in figure 2, but there could be

many more. In the figure, substrate provider A is offering a

Dial-out signaling substrate and substrate provider B is

offering an Audio mixer substrate. The architectural

components and interfaces are described in details next, and

we end the section with an illustrative scenario.

A. Architectural Components

The Broker
 The broker is from our previous work [11]. It is a

semantic-oriented general framework for the publication and

discovery of cloud-based conferencing substrates.

IaaS layer components
 The key functional component of the conferencing IaaS is

the IaaS Management Engine. This component accepts

activation requests for conference applications from the

conferencing PaaS. Through the broker, it discovers the

adequate substrates and contacts the corresponding substrate

providers to activate the required substrates. The IaaS

Management Engine also accepts the service execution

requests from PaaS and redirects them to the target

SubaaSes. There are two other components in this layer: the

Substrate Mapping Repository and the Constraint/Policy

Repository. The substrate mapping repository contains

information on the substrate instances for given conference

applications. This information is provided by the substrate

providers. Each substrate involved in an application is

mapped to a substrate instance provided by a substrate

provider. This mapping information is used during

execution. The constraint/policy repository contains the

constraints on the substrates used for a given conference

application.

SubaaS layer components
 The key component of SubaaS is the SubaaS Management

Engine. This component has several functions: substrate

publication and instantiation, substrate instance monitoring,

and resource allocation and management. Each substrate

provider has an internal repository (Substrate Instance

Repository) that contains information pertaining to substrate

instances (e.g., type of substrate, the IP address of the

Virtual Machines (VM) hosting the substrate, etc.)

 Each SubaaS has a data center with the Physical

Machines (PMs) that host the VMs running the substrates.

To manage resource allocation to substrates, the substrate

providers need an appropriate elastic scaling mechanism. It

is the SubaaS Management Engine which implements the

mechanism. It monitors the usage of substrate instances,

and, based on the usage, it may allocate de-allocate

resources. There are several requirements that the

mechanism should meet. Resource needs in conference

applications may fluctuate and change rapidly. A dynamic

demand resource allocation mechanism is therefore required

to scale up/down. In some cases, the application level

information should be taken into account. For example,

when scaling down, a substrate instance that still has an

ongoing conference/active user should not be totally deleted.

The mechanism should also cover a customized support for

scaling multitenant substrates where a substrate is shared

between several applications. Each individual tenant expects

the application to be scalable and the actions of other tenants

should not affect the application’s performance. None of

existing scaling algorithms meets all requirements. We

therefore propose a new mechanism which is still at a very

preliminary stage.

 Most dynamic on-demand resource allocation approaches

are based on VM-level elasticity, wherein scaling is

performed by increasing or decreasing the number of VMs

that serve an application [12]. The drawback of this

approach is that when the application is not using newly-

created VMs efficiently, considerable computing resources

will be wasted, resulting in extra cost. Also, creating,

shutting down, and removing the VMs dynamically at run

time will increase overhead [12].

 Another approach is fine-grained resource-level elasticity

[12] which focuses on changing the VM capacity at the level

of the underlying resources components (e.g. CPU, memory,

I/O) instead of using VMs as basic units for dynamic

resource provisioning. Based on the fact that VM-level

elasticity may not be always required, and in some

scenarios, lightweight resource-level elasticity can be

sufficient, our resource allocation mechanism performs a

fine-grained resource-level scaling based on the level of

resource utilization to improve efficiency in the resource

utilization of conferencing substrates.

B. Interfaces

REST is the technology used for the interface

implementation. The interfaces are Substrate Publication

interface for the the publication of substrates to broker,

Substrate Discovery interface for substrates discovery from

the broker, Pi interface for PaaS and IaaS interactions and Si

interface for IaaS and SubaaS interactions. As an

illustration, table 1 depicts a subset of the Pi interface. It is

the subset used for the execution of a dial-out audio

conference application that relies on two substrates: dial-out

signaling and audio mixer. This subset contains operations

for creation and deletion of a conference.

Table 1. A Subset of the Pi interface APIs

C. Illustrative Scenario

 We consider a dial-out audio conference application in

which a conference chair can perform different requests,

such as Create Conference, Add Participant to conference,

Delete Participant from conference and Delete Conference.

We assume that the application has already been created

using an application creation tool provided by the

conferencing PaaS. The activation process deals with the

instantiation of the substrates. The PaaS starts the process by

sending a request to the IaaS Management Engine for the

activation of the substrates required for that application

(dial-out signaling and audio mixer substrates in this

scenario). The request comes with the characteristics of the

substrates (e.g., QoS requirements). Upon receipt of the

request, the IaaS Management Engine searches the broker to

find the appropriate substrates. The broker returns the search

result to the IaaS Management Engine.

 Let us assume that the discovered substrates are a dial-out

signalling substrate offered by substrate provider A and an

audio mixer substrate offered by substrate provider B. The

IaaS Management Engine will contact the SubaaS

Management Engines of the two substrate owners to request

the instantiation of the substrates. Each of the two SubaaS

Management Engines instantiate its substrate, saves the

instance information in the internal substrate instance

repository, and returns back the activation result to the IaaS

Management Engine. When both substrates are successfully

activated, the IaaS Management Engine sends the activation

response back to the conferencing PaaS. The substrate

mapping information will also be saved in the substrate

mapping repository of the IaaS for later use. Now that the

back end of the application has been provided, the execution

becomes feasible. Conferencing PaaS has the

logic/workflow of the application requests (this workflow is

produced at the time of service creation). Upon reception of

the requests from the conference chair, the conferencing

PaaS sends execution requests to the IaaS Management

Engine, which in turn directs the requests to the target

SubaaS Management Engines. The requests are eventually

forwarded to the actual substrate instances by the SubaaS

Management Engines. The execution of a request may

involve several substrates. Depending on the request, the

request workflow may contain several sub-processes which

will be executed one after another until the initial request

has been executed completely. Figure 3 shows the execution

sequence of Create Conference request based on the REST

interfaces.

 Figure 3. Sequence of the Create Conference Process

V. PROOF OF CONCEPT PROTOTYPE AND PERFORMANCE

EVALUATION

A. Software Architecture

 Figure 4 shows the software architecture. In the

conferencing IaaS, the IaaS Management Engine includes

Request Manager, Service Activation Engine, Substrate

Discovery/Selection Engine and Service Execution Enigine

as software entities. The Activation Request Manager

realizes the activation interface provided by IaaS (Pi1). The

Service Activation Engine searches for the substrates using

a substrate discovery engine, and after finding them contacts

the corresponding substrate providers for substrate

instantiation. The Execution Request Manager receives the

execution requests from PaaS (through Pi2 interface) and

sends them to the corresponding service execution engine

instance. A service execution instance provides the required

interface for redirecting execution requests to the target

substrates. There is a service exution instance for each

application.

 Figure 4. Software Architecture

 A SubaaS Mangement Engine in SubaaS includes

Publication Engine, Request Manager, Substrate Activation

Engine, and Monitoring and Resource Allocation Engine as

software entities. The Publication Engine publishes the

description of the substrates provided by the substrate

provider to the broker through the RESTful publication

interface. The ActivationRequest Manager receives the

activation requests from IaaS (through the Si1 interface) and

sends them to the substrate activation engine.

 The Substrate Activation Engine checks the availbility of

resourses upon receiving an instantiation request and then

instantiates the substrate. The Execution Request Manager

receives the execution requests from IaaS (through an Si2

interface) and sends them to a substrates instance to be

executed. There can be several instances of a substrate

serving an application. The Monitoring and Resource

Allocation Engine monitors the substrates. It also

implements the resource allocation mechanim proposed

earlier.

B. Prototype

 We have implemented a prototype as a proof of concept.

The implemented scenario for our prototype consists of a

conference application provider, a platform provider, an

Infrastructure provider and 2 substrate providers: substrate

provider A offering a dial-out signalling substrate, and

substrate provider B offering an audio mixer substrate.

There are also several end users and a conference chair. The

type of conference application offered is a dial-out audio

conference hosted on conferencing PaaS and offered as

SaaS by the application provider. It is offered as a web

application that provides a GUI to be used by the conference

chair. We also provide a simple web GUI through which the

application can be activated. The workflow of the execution

requests is hard coded since we do not address service

composition in this paper. We have implemented a subset

of components from the software architecture. We assume

that IaaS already knows the two substrates. Hence there is

no substrate discovery engine implemented in IaaS. The

monitoring and resource allocation engine is not

implemented. The resource allocation to substrates is static.

No request manager is used in IaaS, as there is only one

activation request and one service execution instance. No

request manager is used in SubaaS, since there is only one

substrate instance. RESTful interfaces are provided to

realize the roles of an IaaS service activation engine and a

SubaaS substrate activation engine. All these REST

interfaces used in the prototype are implemented using

Jersey. To simulate a PM in a datacenter environment, we

used a Xen server to host and virtualize the substrates. Upon

receiving an activation request, the substrate activation

engine creates a substrate instance from a predefined VM

template. Java binding of Xen’s XML-RPC based API is

used for the VM management operations (e.g. creation,

starting, etc.). Dial-out signaling and audio mixer substrates

run on two separate VMs. VMs are configured so that they

deploy the substrate programs at the start up (using init

scripts). Each VM sends a notification back to the requester

through a REST POST request to indicate that the VM has

started. All of the prototype’s components are located in a

local network. For a dial-out signaling substrate, we used

Medooze conference server implemented with SIP servlets.

For the audio mixer, we used Medooze media mixer, and for

end-users as SIP clients we used X-Lite softphones. The

softphones register with the dial-out signaling server. The

end users’, participants’ and the conferences’ information is

stored in a MySQL database. The conference chair can see

the list of registered users, create a conference and select

users to add to the conference as participants by using the

web GUI.

C. Performance Evaluation

 We measured the time delay for substrate activation. The

substrates’ activation time starts when an activation request

is sent from IaaS to SubaaS for the instantiation of a

conferencing substrate, and continues until the substrate

instance has been created and the notification of a successful

instantiation has been sent back to the requester. The time

delays for the activation of a dial-out signaling and an audio

mixer instance are shown in table 2. They are acceptable, as

activation is a onetime operation which happens before

execution.

 Table 2. . Substrate Activation Time Delay

VI. CONCLUSIONS

 We propose a scalable and elastic infrastructure for cloud-

based conferencing applications. Our architecture enables

various conferencing applications to be built using

virtualized conferencing substrates that can be provided by

different substrate providers. As a proof of concept we

implemented a prototype to validate the feasibility of the

proposed architecture. We have also proposed a very early

scaling mechanism to be used for scaling conferencing

substrates.

ACKNOWLEDGMENT

This work was supported in part by the new researcher start up

program of Fond de Recherche du Quebec – Nature et

Technologies (FQRNT), and by the Natural Science and

Engineering Council of Canada (NSERC) SAVI Research Network.

REFERENCES

[1] R. Even and N. Ismail, Conferencing scenarios, IETF RFC 4597,

July 2006.

[2] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, ‘A
break in the clouds: towards a cloud definition’, ACM SIGCOMM

Computer Communication Review, vol. 39, no. 1, pp. 50–55, 2008.

[3] R. H. Glitho, ‘Cloud-based Multimedia Conferencing: Business

Model, Research Agenda, State-of-the-Art’, IEEE 13th Conference

on Commerce and Enterprise Computing (CEC), 2011, pp. 226 –

230.

[4] M. B. nortel, C. B. Avaya, and O. Levin, 'A Framework for

Centralized Conferencing', IETF FRC 5239, June 2008.

[5] J. Rosenberg, 'A Framework for Conferencing with the Session
Initiation Protocol (SIP)', IETF RFC 4353, February 2006.

[6] A. Buono, S. Loreto, L. Miniero, and S. P. Romano, 'A distributed

IMS enabled conferencing architecture on top of a standard
centralized conferencing framework', IEEE Communications

Magazine, vol.45, No 3, March 2007.

[7] 3GPP TS 24.147, 'Conferencing Using the IP Multimedia (IM)
Core Network (CN)', Stage 3, Release 11, September 2012.

[8] J. Li, R. Guo, and X. Zhang, 'Study on Service Oriented Cloud

Conferencing', Third IEEE International Conference on Computer

Science and Information Technology, 2010.

[9] P. Rodriguez, D. Gallego, J. Cerviiio, F. Escribano, J. Quemada,

and J. Salvachua, 'VaaS: Videoconferencing as a Service', 5th

International Conference on Collaborative Computing:

Networking, Application and Work sharing, 2009.

[10] J. Cervino, F. Escribano, P. Rodriguez, I. Trajkovska, and J.
Salvachua, 'Videoconference Capacity Leasing on Hybrid Clouds',

IEEE 4th International Conference on Cloud Computing, 2011.

[11] J. George, F. Belqasmi, R. Glitho, and N. Kara, ‘A Semantic-
Oriented Description Framework and Broker Architecture for

Publication and Discovery of Cloud Based Conferencing’, 4th

Canadian Semantic Web Symposium, July 2013.
[12] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, ‘Lightweight

Resource Scaling for Cloud Applications’, Department of

Computing Imperial College London, 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing,

2012.

