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Abstract

Electronic Thermal Conductivity Measurements in Graphene

Serap Yiğen, Ph.D.

Concordia University, 2015

The electronic thermal conductivity in graphene describes how energy is

transported by the charge carriers in graphene, and how these carriers lose their

energy via diffusion and interactions with phonons and impurities. Understanding

these interactions can shed light on electron-phonon scatterings, thermal relaxation

processes, and the electron cooling mechanisms in graphene. We developed a method

to experimentally isolate the electronic thermal conductivity in suspended graphene

transistors by adapting a Joule self-heating method. We extracted the electronic

thermal conductivity, Ke, as a function of electron temperature and charge carrier

density.

We fabricated two-point suspended graphene transistors using micro-fabrication

methods. We used the electrical contacts as source and drain to apply a bias voltage

and a back-gate electrode to tune the carrier density. We adapted a Joule self-heating

method in which we used graphene as its own heater and thermometer. To do so,

we prepared thermometry (calibration) curves by measuring low-bias resistance of

the graphene devices versus temperature. As we increased the bias voltage, we could

measure and control the temperature of electrons. We solved a one-dimensional heat

diffusion equation and extracted the electronic thermal conductivity. We studied

our samples at low bias voltages and intermediate temperatures where the electron

and lattice temperatures are decoupled. This minimized the energy transfer between

phonons and charge carriers. Since the suspended devices isolate the graphene crystals

from the substrate, there were no interactions with the substrate phonons and no heat

leakage to the substrate. Therefore, the heat was diffused only by the charge carriers.
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We extracted the electronic thermal conductivity in intrinsic monolayer graphene

over a temperature range of 20 to 300 K. We found that Ke has a strong temperature

dependence, ranging from 0.5 to 11 W/m.K. We compared our data with a model

of diffusing charged quasiparticles which have the same mean free path and velocity

as graphene’s charge carriers. Data from three different devices are in very good

agreement with the model, supporting that the heat is carried by diffusing Dirac

quasiparticles.

We doped our devices using the back-gate electrode, and extracted Ke in doped

graphene over a temperature range of 50 to 160 K. We found that Ke is proportional

to the charge conductivity times the temperature, and thus the Wiedemann-Franz

Law is obeyed in suspended graphene. The Lorenz coefficient is estimated to be 1.1

to 1.7 × 10−8 W Ω K−2. We observed a strong thermal transistor effect in our devices

as the charge carrier density is changed from ≈ 0.5 to 1.8 × 1011 cm−2, showing that

Ke can be tuned by more than a factor of 2 by applying a few volts of gate voltage.

The methods presented here could be extended to bilayer graphene devices and

other two-dimensional materials to isolate Ke to study electron-electron and electron-

phonon interactions. The ability to control Ke could be useful for energy harvesting

in nano and opto-electronic devices.
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Chapter 1

Introduction: Graphene

Graphene, a two-dimensional (2D) crystal made up of carbon atoms, has attracted

tremendous attention owing to its exceptional electronic quality, mechanical strength

and transparent optical nature. Graphene was previously assumed not to be stable

in nature until 2004, when two scientists produced single-layer graphene by using

a simple micro-cleaving method [1]. The isolation of single-layer graphene was a

groundbreaking discovery which opened up opportunities to explore relativistic-like

electrons in simple bench-top experiments, and develop real world applications in

electronics [2, 3] and opto-electronics [4–6].

Thermal transport in graphene has been studied extensively [7–12], since heat

transport studies serve as a powerful tool to explore electronic and phononic properties

of materials as well as their interactions. It was shown that graphene’s thermal

conductivity can reach extremely high values in suspended devices and that heat is

mostly carried by phonons [7,11,13]. Due to this phonon-dominated heat conductivity

in graphene, it has been challenging to isolate and measure the electronic thermal

conductivity. In this thesis we report some of the first experimental measurements of

the electronic thermal conductivity in suspended graphene [14,15]

Understanding the electronic thermal conductivity, Ke, is key to assess the amount

of heat carried by the charge carriers in graphene (electrons and holes). It can also

identify the main cooling mechanisms through which hot electrons cool down as

they diffuse through the crystal. This understanding is essential to optimize devices

such as photoelectric cell designed to harvest solar energy and turn it into electrical

currents [16–18]. This can be useful to explain the interactions of charge carriers
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with themselves, with phonons, and with impurities in the crystal. Furthermore,

understanding and controlling the energy carried by the charge carriers in materials

can be helpful for the thermal management of highly doped nano scale devices. In

this chapter, we will briefly review the electronic and thermal properties of graphene

to give a background for the work presented in this thesis. We will derive the linear

low-energy band structure of graphene and discuss its effect on the charge carriers

and the density of states. We will also explain how we can tune the carrier density

in graphene via electrical gating. Lastly, we will discuss the thermal properties of

graphene.

In this thesis, we report the development of a method to isolate the electronic

thermal conductivity in suspended graphene [14, 15]. We fabricated two-point

suspended graphene devices. A scanning electron microscope (SEM) image of one

of our devices is shown in Fig. 1.1. The electrical contacts serve as source and drain,

as well as mechanical anchors. The back-gate electrode (substrate) is used to apply a

gate voltage and tune the carrier density in the suspended channel. The suspension

of graphene decouples the crystal from the substrate, preventing interactions with

the substrate disorder. In addition, it allows for effective Joule self-heating annealing

which results in high-mobility devices. Decoupling of the crystal from the substrate

is also particularly important for heat transport studies, since any heat leakage to

the substrate can greatly complicate the measurements. For instance, in one set

of experiments, it has been shown that 77% of the heat is dissipated through the

substrate (300 nm SiO2 on Si) directly below the graphene channel rather than carried

along the graphene to the metallic contacts [19].

To extract the electronic thermal conductivity of graphene, we adopt a self-

heating method in which a bias voltage is applied to the electrical contacts creating

Joule heating effect in the graphene channel. Joule self-heating has been previously

applied to carbon nanotubes [20–22] and proved to be a successful method to study

thermal transport. Joule heating (or Ohmic heating) generates heat in the material

proportionally to the material’s resistance and the current flowing through it;

P = RI2 (1.1)

We first use Joule self-heating to anneal our samples. We flow high current through

the source and drain contacts which heats up the graphene channel. The elevated
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Figure 1.1: Scanning electron microscope image of one of our two-point suspended
graphene transistors. The electrical contacts are used as mechanical anchors as well
as to apply a bias voltage. The Si substrate is used as a back gate electrode to
tune the charge carrier density in the channel. The graphene flake is suspended and
completely decoupled from the substrate.

temperature expels any chemical residues from the micro-fabrication process. The

annealing removes external dopants from the graphene crystal and thus reduces the

interactions between the charge carriers and impurities. Annealing the samples is

a critical step to minimize the energy transfer (heat loss) from hot electrons to

impurities and also to phonons since impurities can mediate energy transfer from

charge carriers to phonons via so called supercollison [23].

We then measured the two-point resistance of our devices at different

temperatures. We used very low bias (± 1 mV) to avoid any Joule Heating effect

so that the resistance is obtained exactly at the temperature of measurement. The

resistance (R) versus temperature (T ) dependence in our devices was well-behaved

(i.e. monotonic) in the intermediate temperature range, from 20 K up to 300 K,

proving that graphene’s resistance can serve as an accurate secondary thermometer

for electron temperature with an accuracy better than 1 K. The R vs T (calibration)

curves are then used to determine the temperature of electrons from the measured

resistance.

We applied higher bias voltages to heat up the graphene’s charge carriers above

the cryostat’s (and electrical contacts’) temperature. This created a temperature

bias, ΔT , between the center of the graphene channel and the electronic contacts.

We studied our samples at low bias and at intermediate temperatures where the
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electron-phonon energy transfer is very low [16, 17, 24, 25]. We made use of this

decoupling between the temperature of electrons and phonons to be able to isolate the

electronic thermal conductivity. Thus, hot electrons could thermalize only through

charge carriers and the heat was mainly carried by the charge carriers. To extract the

electronic thermal conductivity, we solved a one-dimensional heat diffusion equation

as:

Ke =
QL2

12ΔT
(1.2)

where Q = RI2/WLh is the Joule heating power per unit volume, W the width, L

the length, and h = 0.335 nm the thickness of the graphene channel.

1.1 Graphene Electronics

Graphene is being the first two-dimensional crystal that is transparent, flexible yet

strong and an excellent conductor of electricity and heat, no wonder its popularity

spread out so quickly across the scientific and engineering community. Graphene has a

unique electronic band structure with a linear energy dispersion at low-energy, which

allows its charge carriers to behave like relativistic particles. These charge carriers

can reach extremely high mobilities. This section will introduce the basic concepts

to understand the electronic properties of graphene.

Graphene is a monolayer of graphite, a two-atom basis hexagonal lattice of carbon

atoms. A carbon atom has six electrons which occupy the orbitals 1s2 2s2 2p2. The

two electrons in the inner shell (1s) remain inert and the four electrons in the outer

shells (2s and 2p) are available for chemical bonding. In graphene, each carbon atom

is connected to three adjacent carbon atoms on the two-dimensional plane with σ

bonds, leaving one 2pz electron freely available. These highly-mobile fourth electrons

on the outer shell occupy a π-orbital and thus are called π electrons. These π orbitals

overlap with the adjacent π orbitals, forming a band which allows easy movement of

electrons across the plane of graphene. This is why graphene can have a high electrical

conductivity. This type of hybridization of orbitals is called sp2 hybridization in which

the sp2 orbitals are arranged in a hexagonal (honeycomb) lattice structure and form

strong three σ-bonds with the neighboring carbon atoms [26–28]. The π orbitals

projecting from the plane of graphene give rise to valance and conduction bands and
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unique electronic properties of graphene.

In this section, we will review some basic electronic properties of graphene in

order to understand the work presented in this thesis. First we will start by deriving

the energy band structure of graphene and find the low energy dispersion of charge

carriers. Then we will show how to calculate the density of available states for

electrons as a function of energy. We will also explain how we can tune the number

of charge carriers in graphene by applying a gate voltage and calculate the carrier

density in our samples.

1.1.1 Electronic band structure

In this subsection, we will derive the electronic band structure of graphene using

the tight-binding model [29, 30]. This will allow us to understand how the energy

of the charge carriers changes with their momentum and how the density of states

changes with energy. Fig. 1.2 shows the honeycomb lattice structure of graphene

which can be thought as a triangular lattice with a basis of two atoms (sublattice-A

and sublattice-B are shown in black and red respectively in Fig. 1.2) per unit cell

with the following primitive lattice vectors,

�a1 =
a

2
(3,

√
3) �a2 =

a

2
(3,−

√
3) (1.3)

where a is the spacing between the nearest carbon atoms (≈ 1.42 Å). The reciprocal

lattice vectors which are useful to map the electronic band structure of graphene can

be derived from the relation ai · bj = 2πδij as

�b1 =
2π

3a
(1,

√
3) �b2 =

2π

3a
(1,−

√
3) (1.4)

The three nearest-neighbor vectors in real space are given by,

�δ1 =
a

2
(1,

√
3) �δ2 =

a

2
(1,−

√
3) �δ3 = a(−1, 0) (1.5)

We can start by defining Bloch functions for a crystal with N unit cell for the

M th atomic orbitals,

Φm(k, r) =
1√
N

N∑
i = 1

eik.Rm,i φm(r−Rm,i) (1.6)
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Figure 1.2: The hexagonal lattice of graphene with the lattice unit vectors, �a1 and
�a2. Black and red colors indicate the two triangular sublattices, labeled as A and B.
The nearest-neighbour vectors �δ1, �δ2 and �δ3 connect the atoms in sublattices.
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where Rm,i is the position vector of the mth orbital in the ith unit cell. Then the

electronic wave function can be expressed as a superposition of Bloch functions,

Ψj(k, r) =
M∑

m = 1

cj,m(k) Φm(k, r) (1.7)

The transfer integral matrix, Hm, can be formed by finding the matrix elements

Hmm′ = 〈Φm|H |Φm′〉 where H is the Hamiltonian. Therefore the diagonal matrix

elements for graphene can be written as [29]

HAA ≈ 1

N

N∑
i = 1

〈φA(r−RA,i)|H |φA(r−RA,i)〉 (1.8)

and the off-diagonal matrix element, considering the hopping of the electrons from

sublattice-A to its three nearest-neighbor B atoms, will be

HAB ≈ 1

N

N∑
i = 1

3∑
l = 1

eik.δl × 〈φA(r−RA,i)|H |φB(r−RB,l)〉 (1.9)

where δl = RB,l − RA,i. If γ0 = −〈φA(r−RA,i)|H |φB(r−RB,l)〉 is defined as a

hopping parameter, the off-diagonal matrix element will reduce to

HAB ≈ −γ0 f(k) f(k) =
3∑

l = 1

eik.δl (1.10)

where f(k) is a function which describes nearest-neighbour hopping and its conjugate

gives the other off-diagonal matrix element, HBA = H∗
AB = −γ0 f ∗(k). Solving the

eigenvalue equation, HmΨj = EΨj:(
0 −γ0f(k)

−γ0f
∗(k) 0

)
Ψj = E(k)Ψj (1.11)

the eigenvalues can be found as

E(k) = ±γ0 f(k) (1.12)
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The function f(k) can be calculated by using the primitive lattice and nearest-

neighbor vectors (Eq. 1.3 - 1.5). Then, the function can be written in the explicit

form [30];

f(k) = 2 cos
(√

3kya
)
+ 4 cos

(√3

2
kya

)
cos

(3
2
kxa

)
(1.13)

When the energy dispersion E(k) (Eq. 1.12) is plotted, it looks like in Fig. 1.3

(adapted from Ref. [30]). The energy goes to zero at six points which are the corners

of Brillouin zone. The two manifolds, +γ0 f(k) and −γ0 f(k), touch each other at

these points. The "+" sign refers to upper band (π∗) and the "-" sign refers to lower

band (π). The vertices of Brillouin zone are divided into two inequivalent sets of three

points which are labeled as K and K
′
(see Fig. 1.3). These points are located at [30]

K = (
2π

3a
,

2π

3
√
3a

) , K
′
= (

2π

3a
,− 2π

3
√
3a

) (1.14)

and are called charge neutrality points (CNP) or Dirac Points for a reason that will

be clear soon. The Dirac points are especially important for low-energy electronic

properties, as the Fermi level resides at these points and the energy bands are

symmetric about the point E = 0. When the energy band is half-filled, the density

of states at the Fermi-level is exactly zero. This means that undoped graphene is a

perfect semimetal. This will be further discussed in the following section.

The inset of Fig. 1.3 shows an enlarged portion of the spectrum around the CNP.

The low-energy spectrum at the CNP is linear, not quadratically as in conventional

semiconductors. This is already a very interesting feature, since we know that the

energy of free electrons changes quadratically with their momentum. It can be clearly

seen that the low-energy excitations in graphene will behave differently from free

electrons.

To support this statement, we need to find a dispersion that is valid around K

and K
′
points. We can derive an effective low-energy Hamiltonian by expanding the

function f(k) in the vicinity of CNP. By using the first two terms in the Taylor series

expansion of f(K+ k), we can approximate the Hamiltonian as

HK
eff = υF

(
0 kx − iky

kx + iky 0

)
(1.15)
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which can be simplified to the following form

HK
eff = υF σ.p (1.16)

where υF is the Fermi velocity and σ are the Pauli matrices. This is called Dirac-

Weyl equation which is a usual Dirac equation in the limit of zero mass (m → 0).

The eigenvalues clearly show that at very low energy (near K and K
′
), the energy of

charge carriers is linear as a function of momentum;

E±(k) = ± � υF |k| (1.17)

The (+) and (-) signs refer to the conduction and valence bands respectively. This

energy dispersion was first derived by Wallace [31–33]. The Fermi velocity of charge

carriers in graphene is υF = c/300 = 106 m/s and the k is their momentum. At the

point, k = 0, the conduction and valance band meet at the Dirac point, and thus

there is no energy gap between them [34]. The low-energy excitations in graphene

mimic relativistic particles; they are governed by a Dirac-like equation, can travel

with 1/300th of the speed of light and carry zero effective mass. Therefore, these

relativistic quasiparticles are called massless Dirac fermions.

1.1.2 Density of states of charge carriers

The charge carriers, Dirac fermions, in graphene behave differently than charge

carriers in conventional two-dimensional (2D) semiconductors. The energy of charged

quasiparticles in regular two-dimensional electron gas (2DEG) changes quadratically

with momentum. Thus, they are described by the Schrödinger equation. However,

graphene’s charge carriers have a linear dispersion and obey Dirac’s equation. In this

section, we will review the distinct electronic properties of graphene’s charge carriers

arising from the Dirac linear dispersion.

One of the consequences of graphene’s unique energy band structure can be seen

in the density of states of Dirac fermions. Density of states (DOS) is defined as

the number of states available for charged quasiparticles to occupy and is essential

for determining the Fermi level position. The density of state for charge carriers in
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K
K '

K

Figure 1.3: Electronic dispersion of graphene [30]. The conduction band and the
valence band touch each other at six discrete points. These points are called Dirac
points. The zoom shows the low-energy linear dispersion and the cone-shaped valence
and conduction bands.

graphene differs from regular 2DEG’s and is given by [35]

D(E) =
gsgvE

2π�2υ2
F

∝ E (1.18)

where gs = 2 and gv = 2, being spin and valley degeneracy respectively, and υF = 106

m/s is the Fermi velocity. The DOS changes linearly with energy and at zero energy,

Dirac point, the DOS is zero. On the other hand, the DOS of charge carriers in a

conventional 2D semiconductor (or 2DEG) is given by [35,36]:

D(E) =
gsgvm

∗

2π�2
∝ constant (1.19)

where gs = 2 and gv = 1 for 2DEG, and m∗ is the effective mass of the charge carriers.

Density of states for a 2DEG is constant and does not change with energy. The

difference between the DOS in graphene and 2DEG affects the electronic transport

properties. For example, the screening of electrons depends on the DOS. In monolayer

graphene, the screened and unscreened Coulomb scatterings are same and do not

change with carrier density. However in 2DEG, the effective screening becomes

stronger as the carrier density decreases.
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The charge carrier density can be tuned by applying a voltage to the back gate

electrode. Using a parallel capacitor model, the carrier density per unit area induced

by the gate, nG, can be calculated with the following equation:

nG =
CGVG

e
(1.20)

where CG is the capacitance, VG is the gate voltage, e is the electron’s electric charge.

When graphene is undoped, the Fermi level, the highest energy level occupied, resides

exactly at the Dirac point (see Fig. 1.4). This implies that the valence band is fully

filled and the conduction band is completely empty. This is called intrinsic graphene.

By applying an external voltage from a gate electrode or chemical doping, the Fermi

can be shifted up or down. Graphene is then doped with electrons or holes. The

system can be tuned from being electron-like (n-type) to being hole-like (p-type) [35].

In practice, there is always a small amount a doping due to thermally generated

charge carriers or small amounts of surface adsorbate, thus we refer to our annealed

samples at low temperature as being in the “nearly” intrinsic regime.

The charge carrier density is important for determining the mobility of the charge

carriers. Mobility is a quantity which describes how easy the charge carriers can move

through a crystal under the influence of an electric field. Mobility is controlled by the

electron scattering processes in the crystal. These scatterings are caused by charged

and neutral impurities, defects, and phonons in the crystal. Hence, the mobility

can give hints about the scattering processes in the system. The mobility of charge

carriers can be found from the measured electrical conductivity (σ) and the total

charge carrier density (n),

μ =
σ

ne
(1.21)

The mobility of graphene samples on a SiO2 substrate was measured up to be

15,000 cm2/V.s, but often much lower [37–39]. Mobility was then improved by making

suspended samples eliminating impurity scattering from the substrate. Measurements

on suspended samples reported that the mobility can reach up to 200,000 cm2/V.s

[40, 41]. Recent experiments showed that on cleaner suspended samples, a mobility

of 1,000,000 cm2/V.s [42] can be achieved.
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p-type

0 V+V-

G
n-type

intrinsic

EF

EF

Figure 1.4: Diagram of conductance (G) versus gate voltage (VG) for a graphene
transistor. When graphene is undoped, the Fermi level resides exactly at the Dirac
point. This is called the intrinsic regime. A gate voltage shifts the Fermi level down
or up, doping graphene with holes (p-type) or electrons (n-type) respectively.
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1.2 Electronic Thermal Transport in Graphene

In solids, heat is carried by phonons and electrons, thus the thermal conductivity is

defined asK = Kph+Ke, whereKe andKph are the electron and phonon contributions

respectively. In metals, K is dominated by electrons and the Ke contribution is given

byWiedemann-Franz Law [43],Ke = σLTe, where σ is the electrical conductivity, Te is

the electronic temperature and L is the Lorenz number. However in carbon materials,

including graphite, K is usually dominated by phonons [44]. It was shown that heat

is mainly carried by phonons in graphene and the phononic thermal conductivity of

graphene can reach extremely high values up to 5300 W/K.m at room temperature [7,

11,13]. Because of the phonon-dominated thermal transport, it has been challenging

to isolate Ke in graphene. There have been experimental reports of Ke in disordered

graphene at very low temperatures [45,46]. However, a detailed mapping of electronic

thermal conductivity of graphene is still lacking.

Graphene has 6 phonon modes; 3 acoustic and 3 optical modes [47]. Longitudinal

and transverse acoustic modes (LA and TA) have linear dispersion relations ω ∝
k and are the in-plane translation and stretching modes. Since graphene is a 2-

dimensional material sitting in 3-dimensional space, it can vibrate out of the plane

as well, allowing for out-of-plane phonons (flexural mode, ZA). The acoustic flexural

mode’s energy disperses quadratically with momentum ω ∝ k2. The remaining 3

branches correspond to optical modes: one out-of-plane mode (ZO) and two in-plane

modes (TO) and (LO). The acoustic phonons serve as the main heat carriers in

graphene, whereas the optical phonons are detected in the Raman measurements to

determine the number of graphene layers.

Non-contact optical measurement is a useful technique to study thermal transport.

A laser is shined on a graphene flake to heat up the crystal and the Raman spectrum

is used as a thermometer to detect the change in the temperature from the shift of

spectrum. The high phonon thermal conductivity of graphene has been extensively

studied using Raman spectroscopy and proved to be dominated by phonons [7–11,48–

51]. Even though Raman spectroscopy provides the measurement of heat transport,

it has no control over the charge carrier density, as the heat can thermally populate

the charge carriers in the system, mobility etc..

Direct-contact measurements can also be used to study heat transport. The

traditional way to measure thermal conductivity of a material using a micro-fabricated
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device is shown in Fig. 1.5. Thin wire-contacts are made at each end of the material

which serve as a solid-state heater and thermometer [52]. A large current is flowed in

the heater so that the wire heats up the crystal underneath and the temperature

at each end is detected from the resistance of the wires. Thermal transport

measurements have been done on graphene [12,53–56] using similar micro-fabricated

devices shown in Fig. 1.5 and the total thermal conductivity was measured. However,

there have been no reports of electronic contributions of thermal conductivity in

graphene, as it is difficult to distinguish the temperature of electrons and phonons in

the system and thus isolate the electronic thermal conductivity independently from

phononic one. Furthermore, the geometry and the size of these type of devices are

quite challenging to fabricate with the current nano fabrication methods. The size of

graphene crystal needed for this device design would be to large to suspend it over

the substrate and building the device on a substrate would cause heat leakage to the

substrate.

I
R

Heater Thermometer

Th Tc

Figure 1.5: Cartoon of a device design to study thermal conductivity in graphene
using a traditional heat transport measurement. The two micro-fabricated thin
wires at each end of the graphene flake are used as a heater and a thermometer.
A high current is flowed in the heater which heats up the crystal underneath and the
temperature at each end is detected from the resistance of the wires.

In this work, we present a method to isolate the electronic thermal conductivity

which makes use of a decoupling between the temperature of electrons and phonons.

We designed two-point suspended graphene devices which are less challenging to

fabricate, since the electrical contacts on graphene are simple large geometrical

patterns. The thick and large contacts at each end of graphene channel serve as
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sturdy anchors, allowing the suspension of the graphene flake above the substrate.

The suspended graphene devices prevented any heat leakage to the substrate and

allowed for better annealing. The Si substrate was used as a back gate electrode,

thus we could control and tune the carrier density in the system. We adopted Joule

self-heating method in which a current is flowed through source and drain contacts

which heats up graphene channel due to graphene’s resistance. We used graphene’s

resistance both as a heater and thermometer. We studied our samples at low bias

and intermediate temperatures so that the energy transfer between charge carriers

and phonons was negligible. This ensured that electrons rarely scatter with phonons,

thus charge carriers do not transfer their energy to the phonons and heat is only

carried by electrons. Therefore, the temperature of electrons (Te) is decoupled from

the temperature of phonons. We solved a one dimensional heat equation to extract

the electronic thermal conductivity in our devices.

We studied our samples in the nearly intrinsic regime where the Fermi level resides

close to the Dirac Point. We extracted Ke in the quasi-intrinsic regime, ntot,T=0 ≈
1.7 - 2.1 ×1010 cm−2, from Te = 20 K to 300 K. We find that Ke shows a strong

Te dependence ranging from 0.5 to 11 W/m.K over the studied temperature range.

The data from three different samples are consistent with a model in which heat

is carried by quasiparticles with the same mean free path and velocity as graphene’s

charge carriers. In our devices, we extract a cooling length for hot electrons [57] which

ranges from 100 μm to 10 μm for Te = 20 to 300 K. Since the electron cooling length

is much longer than the length of graphene channels and we kept the bias voltage

below the energy of optical phonons, we expect Te and T to be decoupled in our

devices when VB �= 0, and all of the Joule heat to be carried to the contacts by charge

carriers. Our results provide an experimental evidence that the dominant electron

cooling mechanism in intrinsic high-mobility (μ ≈ 3.5 × 10 4 cm2/V.s) sub-micron

graphene devices below 300 K is hot-electron diffusion.

In addition, we extracted the electronic thermal conductivity, Ke, in doped

graphene. Our data show that the thermal conductivity is proportional to the charge

conductivity times the temperature, Ke ∝ σ T , confirming that the Wiedemann-

Franz relation is obeyed in suspended graphene. In the temperature range we

studied (between 150 K- 200 K), our data clearly show onsets of the electron-phonon

coupling as expected from the theoretical calculations [58]. Our measurements were
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recently confirmed by other experiments which measured Ke using Johnson noise

thermometry [59]. We also report Ke over a broad range of carrier densities. We

showed that Ke could be tuned by applying a gate voltage. Even using a modest

VG range, Ke could be changed by a factor of ≥ 2, showing a very strong thermal-

transistor effect in suspended graphene.

In this chapter, we briefly introduced our method and device design to study

electronic thermal conductivity. We gave a background for some of the relevant

electronic and phononic properties of graphene which is necessary to understand

our work in the following chapters. In chapter 2, we will present the details of the

fabrication to prepare our suspended graphene devices. In chapter 3 we provide the

details of our measurement technique to extract the electronic thermal conductivity

in intrinsic graphene. We will present data for electronic thermal conductivity versus

temperature and show the strong temperature dependence of Ke. Chapter 4 will

present the data for doped graphene. We will discuss how Ke changes with T and

the carrier density in the doped graphene. We will show that Ke can be tuned by

n and T and verify that the Wiedemann-Franz Law is obeyed in doped graphene at

intermediate temperatures. Chapter 5 presents a conclusion and discusses ongoing

and future projects.
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Chapter 2

Fabrication of Suspended

Graphene Transistors

Heat is propagated across a material by phonons, charge carriers and other excitations

of the crystal. How easily the energy flows (conductivity) depends on the number

of carriers, the interactions between the various energy carriers (mostly phonons

and charge carriers), the crystal structure (dispersion relation), and the disorder

(impurities). Therefore thermal properties of a disorder free material are key to

understand energy carrier interactions. We focus on understanding how heat is

diffused by charge carriers in graphene, also referred to as Dirac fermions. To do so, we

must fabricate devices which minimize the interactions of charge carriers with phonons

and impurities so that we can isolate the component of thermal conductivity due to

charged quasiparticles. In our graphene devices, we work at low bias voltages and

intermediate temperatures where there are almost no interactions between electrons

and phonons [60]. This will be further discussed in Chapters 3 and 4 where we will

explain our method to extract electronic thermal conductivity. To carry out these

measurements, we designed suspended two-point graphene transistors, as shown in

Fig. 2.1. We can anneal these suspended devices in order to remove adsorbed charge

impurities on the graphene crystal. Cleaner devices help to reduce the electron-

impurity interactions [23]. An additional challenge is to minimize contact resistance.

To lower the contact resistance, we maximize the interface area between the electronic

contacts and graphene by making several square micron contact areas. Suspended

samples will not only enable better annealing of the channel but also prevent any
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heat leakage to the substrate by removing any interactions of electrons with substrate

phonons. Thus any heat generated within the graphene crystal will only spread in

the plane of the graphene crystal.

Si 
SiO2 

SiO2 

         Au 

          SiO2 

  Au 

Graphene 

Figure 2.1: Cartoon of a suspended graphene transistor

Our fabrication aim is to make a suspended device like the one depicted in Fig. 2.1.

We utilize standard micro fabrication techniques to prepare our samples. Here, we will

present the fabrication procedure as well as our dc electron transport measurement

setup. The chapter is organized in the same order as the fabrication steps of the

samples. We will start by preparing the substrate, a 4" SiO2 / Si wafer, on which we

deposit graphene crystals. To do so, we first define an alignment grid on the wafer

using photolithography. This coordinate grid will later allow us to precisely locate

graphene flakes. The wafer is then diced into 6 mm × 6 mm chips. After exfoliating

graphene on these chips, an initial inspection is made under an optical microscope.

Graphene flakes are sorted out based on their contrasts. The most transparent looking

flakes are categorized as monolayer. As their contrast gets darker, they are grouped as

bilayer and few-layer graphene. The final measurement of the number of layers is made

by looking at their Raman spectra. After verifying the number of layers, we define

metal electronic contacts on these graphene flakes using electron-beam lithography.

Then, the oxide under the flakes is removed using a wet oxide etch which suspends the

graphene channel above the substrate. Suspension of the devices thermally isolates

them from the substrate, enabling us to anneal them via Joule heating. In addition,

suspension removes substrate disorder. At the end of this chapter, we discuss how

18



the devices are packaged and handled. We also present our dc transport circuit and

explain how the data acquisition is made at low and high temperatures.

2.1 Deposition and Characterization of Graphene

Crystals

In this section, we will describe the first steps of our fabrication process. We

will start by preparing our substrates and defining a coordinate grid on them via

photolithography. We then exfoliate graphene crystals on them, and characterize the

flakes using optical and Raman spectroscopy.

2.1.1 Etching the back-side oxide of wafers

We use 4" SiO2 / Si {100} wafers as substrates. The wafers have 300 nm thick SiO2

layers thermally grown on both faces. For our devices, the heavily doped Si substrate

will serve as a back gate electrode where we can apply a voltage to change the carrier

density in our graphene devices. To be able to make electrical contact to the Si, we

have to remove the SiO2 layer on the back of the wafers. We use a dry etching method

called Reactive Ion Etching (RIE). In Fig. 2.2(a), a cartoon of the RIE process is

shown. A reactive ion etcher has a vacuum chamber in which there are two parallel

plate electrodes, one at the bottom and the other on the top. The SiO2 / Si wafers

are placed in this chamber with their back side up. After pumping the chamber, a

little bit of gas is introduced and by applying a RF (radio frequency) electromagnetic

field, these gas molecules can be ionized to create a plasma. The ions in the plasma

are accelerated and strike the wafers to etch the SiO2.

Our recipe for SiO2 etching is as follows. We first clean the chamber with O2

plasma, with a gas flow of 20 sccm (standard cubic centimetres per minute), RF

power of 300 W, and a chamber pressure of 100 mTorr for 15 min. Then we place

our wafers in the RIE chamber. We introduce CHF3 (22.5 sccm) and O2 (2.5 sccm)

gases with RF power of 300 W and chamber pressure of 100 mTorr. We etch for 15

min and then purge the chamber with N2 gas 3 times before the wafers are taken

out. Fig. 2.2(b) shows a picture of the back-sides of two wafers. The back of the

first one has not been etched yet and the SiO2 layer appears as a purple colour. The
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back of the second wafer was etched using RIE and the Si surface appears as a silver

color. This color difference provides a visual check of the quality of etching. However,

further confirmation needs to be done by measuring the thickness of the oxide with

an ellipsometer or reflectometer to make sure that the oxide is completely removed.

SiO2 Si

Pre-etch Etched

Upper electrode

Si

Plasma

Lower electrode

RF signal
Vacuum Chamber

Si

SiO2

SiO2

Si

SiO2

(a)

(b)

Figure 2.2: Etching SiO2 from the back-side of wafers. (a) Cartoon of the reactive
ion etching process. (b) Images of the back-side of wafers before and after the RIE.
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2.1.2 Patterning of coordinate grids via photolithography

After etching the back-side of our wafers, we start preparing the front side where we

will fabricate graphene devices. We dice the wafers into 6 × 6 mm chips and use these

chips as substrate for the devices. If graphene is deposited on blank chips, it is very

difficult to locate precisely the position of any flake and align electrical contacts on

it. For this reason, before dicing our chips, we define a reference coordinate system

on them. We designed a grid formed of letters, numbers and L-shaped markers. The

alignment grid is 4 mm × 4 mm in size, starts with A1 on the top left corner. It

continues as B1, C1 so on to I1 on horizontal and goes as A2, A3 down to A9 on

vertical. Each letter-number symbol is spaced 500 μm apart. In between them, we

place L-shaped markers each 100 μm. See Fig. 2.3 for details.

To draw this coordinate grid on the wafers, we use photolithography.

Photolithography is a microfabrication process used for transferring micron size

shapes on a substrate using UV light. We prepared a photolithography mask

containing 15 dies where each die contains a 4 mm × 4 mm alignment grid. These

dies are arranged in a 3 × 5 matrix on the mask. In Fig. 2.3(a), a cartoon of a wafer

with 45 dies is shown. The mask pattern is exposed at least 3 times on a wafer to

maximize the number of dies. Fig. 2.3(b) is an optical image on a die where part of

the coordinate grid is visible. In Fig. 2.3(c), we zoomed-in on this image to show a

closer view of the symbols and the alignment marks.

To do the photolithography, we start with spin coating the substrate with a

photoresist (see Fig. 2.4). The exposure to UV light changes the chemical properties

of the resist and make it soluble in a developer. We first clean the substrate with

acetone and IPA and then spin coat the photoresist, Shipley 1813, at 4000 rpm for 30

seconds which results in a uniform thickness of 1.4 μm. We soft-bake at 115 ◦C for 60

seconds to harden the resist. Then the wafer is aligned using a mask aligner and is

brought in hard-contact with the mask. The intensity of UV light is measured prior

to exposure and based on this intensity, the exposure time is calculated to achieve a

dose of 40 mJ / cm2 (= Exposure time × Intensity). The wafer is exposed. During the

exposure, light can only go through transparent parts on the mask where the patterns

are. It changes the chemical properties of the resist at these locations and leaves the

rest unchanged. Our resist (S1813) is a positive-type resist, therefore the exposed

parts can be removed in the developer (see Fig. 2.4). The wafer is immersed in the
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4 mm

100 μm

4'' wafer

(a) (b)

(c)

Figure 2.3: Mask pattern for coordinate grids. (a) Cartoon of a wafer showing dies
of 4 mm × 4 mm. Each die has a coordinate grid patterned by photolithography.
(b) Optical image of a die showing a part of the coordinate grid. Some of the letter-
number symbols and L-shaped alignment marks of the grid pattern are visible. (c)
A zoom-in on the image presented in (b). The alignment markers are spaced 100 μm
apart.
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developer, MF-319 for 1 minute and then rinsed with deionized (DI) water to stop the

developing process. After drying with nitrogen gas, the quality of the exposed pattern

can be checked under a yellow light optical microscope. If resist residues remained

inside the pattern, the wafer can be soaked in the developer for short period of times

and checked, until the pattern is completely developed. However, if the exposure is

not good enough or can not be fixed with development, the resist should be removed

completely with acetone, and the process repeated.

2.1.3 Metal deposition of coordinate grids

After the photolithography of coordinate grids, we deposit a layer of metal to transfer

the pattern on the substrate. Gold (Au) is evaporated on the substrate using an

electron-beam or a thermal evaporator. Fig. 2.5(a) shows an image of an electron-

beam evaporator that is equipped with multiple evaporation sources (Au, Pt, Ti,

Cr..). The electron-beam is accelerated to a high kinetic energy and is targeted on

the source metal under a high vacuum. This evaporates the solid metal. The released

metal atoms hit everything in the vacuum chamber, including the substrate. These

atoms eventually loose their energy and solidify into a thin film which coats the

substrate. Fig. 2.5(b) shows a picture of a thermal evaporator which can deposit

Chromium (Cr) and Gold (Au). The source metal is evaporated by applying current

through it and the deposition is made in a vacuum chamber like in the electron-beam

evaporator.

After patterning the alignment marks on the resist (see Fig. 2.5(c) for the cartoon),

we deposit metal using either an e-beam or a thermal evaporator. We first coat the

substrate with a thin layer of titanium (Ti) or chromium (Cr). This layer will help

the second layer, gold (Au), to stick on the substrate. We only deposit 3 to 5 nm of

this adhesive layer which is sufficient to hold the Au layer. As for the Au film, we

usually evaporate 50 nm for coordinate grids. Thicker than 50 nm can be used, but

it would not be necessary. During deposition, the thickness of the film is monitored

with a crystal thickness monitor installed in the evaporator. After evaporation, we

place the samples in a solvent, acetone, for the lift-off process. Acetone dissolves the

unexposed resist and lifts the metal layers on top. Thus the substrate will only be

left with the coordinate grid pattern as seen in Fig. 2.5(c).
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Mask

Substrate is spin-coated with photoresist

Radiation exposes only specific parts on 
the resist where the light can pass 
through the mask

Chemical properties of the resist are 
changed by the exposure to light

If photoresist is a positive resist, 
the developer removes the 
exposed parts

If photoresist is a negative 
resist, the developer removes 
the unexposed parts

Resist Resist
SiO2

Si

Resist
SiO2

Si
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SiO2
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SiO2

Si
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SiO2

Si

Figure 2.4: Cartoon of the photolithography procedure: spinning of photoresist,
exposure and development.
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(a) (b)

(c) Resist Resist Resist Resist
SiO2SiO2

SiSi

Au
Au

Au

SiO2

Si

Au

After photolithography
and developing

Metal deposition Lift off

Figure 2.5: (a) Pictures of electron-beam evaporator and (b) thermal evaporator. (c)
Cartoon of the metal deposition and lift-off procedure.
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2.1.4 Mechanical exfoliation of graphene crystals

We use a regular scotch tape to exfoliate and deposit graphene crystals on our

substrate. This, so-called “mechanical exfoliation” or simply “scotch tape method”,

was invented and used by A. Geim and K. Novoselov to isolate the first single layer of

graphene in 2004 [1, 37, 61]. Before graphene deposition, we first dice the wafer into

6 mm × 6 mm chips containing a coordinate grid pattern. Then we clean the chips

to ensure that their surfaces are completely clean. To do so, we soft etch SiO2 in a

solution of H2O : H2O2 : HCl (8 : 1 : 1) at 75 ◦C for 5 minutes. The chips are rinse

with DI water and dried with N2 gas. Finally they are baked for 2 minutes at 150 ◦C

to remove water from the surface. The graphene deposition is done right away after

cleaning to avoid any surface contamination.

For the exfoliation process (see Fig. 2.6(a)-(c)), we start with placing pieces of

good quality Kish Graphite on a scotch tape. We then fold the scotch tape on itself

sandwiching the graphite pieces between. As the tape is pulled apart, it cleaves the

graphite into thinner crystals. Repeating this process over and over will peel off

thinner graphene flakes from graphite. We do approximately 20 folds and peeling

before transferring to the substrate. The tape is covered with graphite flakes as in

Fig. 2.6(d). We finally stick the tape on a cleaned chip (Fig. 2.6(e)) and gently press

down with plastic tweezers. Then the tape is slowly peeled away from the chip (Fig.

2.6(f)).

2.1.5 Verification of the number of atomic planes in the

crystals

After graphene deposition, we look over the chips to see if there are any graphene

flakes of interest. We would like to get monolayer graphene, the thinnest crystal

possible. The determination of the number of atomic layers is a two step

verification. The first step is done with an optical microscope which provides quick

preliminary thickness measurements. The measurements are then confirmed by

Raman spectroscopy. The second step is more reliable, as it can directly probe the

characteristics of the lattice and provide quantitative results to verify the number of

layers.
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: Mechanical exfoliation (scotch tape) method. (a) Graphite flakes are
placed on a piece of scotch tape. (b) The tape is folded on itself so that graphite is
sandwiched. (c) The tape is slowly peeled apart layering down the graphite crystals.
(d) After 20 folding steps, the tape is covered with thin graphite flakes. (e) A substrate
chip is sticked on the tape. (f) The tape is slowly peeled away from the chip.

27



Optical Spectroscopy

Despite being only one atom thick, graphene surprisingly has a strong interaction with

light. Graphene on a SiO2 / Si substrate in vacuum absorbs 2.3 % of the visible light

intensity, independent of the wavelength. This leads to a light transmission coefficient

of 97.7 % which makes graphene almost a transparent material [4]. Using an optical

microscope, it is possible to see graphene on a SiO2 / Si substrate. The thickness of

the SiO2 on Si wafer is chosen to be 300 nm, since it provides the best contrast for

graphene under an optical microscope. Monolayer graphene crystals appear as the

most transparent ones, and as the number of layers increases, the crystals’ contrast

increases.

30 μm 60 μm

Single layer

Single layer

Bilayer

(a) (b)
Bilayer

30 μm

(c)

Figure 2.7: Optical images of graphene crystals. (a) Image of a monolayer graphene
on SiO2, which has the lowest contrast under an optical microscope. (b) Image of
a flake containing both mono and bilayer graphene. As seen in the image, bilayer
graphene appears darker than monolayer graphene. (c) Image of a bilayer graphene
flake.

In Fig. 2.7, optical images of mono and bilayer graphene flakes are shown. Single

layer graphene is very transparent and almost the same colour as the background

(Fig. 2.7(a)). On the other hand, bilayer graphene appears darker (Fig. 2.7(b) and

(c)). Figure 2.7(b) provides a good visual comparison of the contrasts of mono and

bilayer graphene, since they are located side by side.

We survey the surface of our chips with an optical microscope at 50× and record

the image and position of the most transparent looking flakes with respect to the

reference grid. These flakes are initially labeled as monolayer flakes. We also locate

the ones that have roughly double the contrast and we group them as bilayer flakes.

Their thickness is then confirmed using Raman spectroscopy.
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Raman Spectroscopy

Raman spectroscopy is a spectroscopic technique used to measure the phonon modes

of a crystal. This method is based on inelastic scattering of a monochromatic light,

usually from a laser source. A laser beam is illuminated on the sample and the

scattered light’s wavelength is measured. The energy of the photons in the scattered

light is shifted up or down due to the interactions between incident light and molecular

vibrations or phonons in the sample. This shift in energy provides information for

sample identifications. Raman spectroscopy is a popular and widely used method

to count the number of layers in graphene flakes [62–64]. Monolayer graphene has

specific peaks in its Raman spectrum. The two distinct features are called G and 2D

peaks (Fig. 2.8). The G peak appears around 1582 ± 3 cm−2 and is due to stretching

of C−C bonds (in-plane vibrations) [65]. Monolayer graphene exhibits a single and

sharp 2D peak at around 2679 ± 3 cm−2 that results from double-resonant inter-

valley scattering [66]. The position and FWHM (full-width-half-maximum) of the 2D

band is sensitive to the number of atomic planes. Another peak which can be seen in

graphene’s spectrum is the D peak which appears around 1350 ± 3 cm−2. It arises

from the breathing modes of six-atom rings and needs defects to be activated [64,67].

Hence, D peak is only seen in defective graphene and edges.

We use a Raman microscope with 514 nm laser excitation. A good spectrum

can be acquired by optimizing the laser power and exposure time which we use. We

first run tests on one graphene flake using different powers and exposure times and

compare the spectrums. We start with a very small laser power and increase it in

small steps with different exposure times until we acquire a low-noise spectrum. As

soon as we obtain a good spectrum which takes a reasonable time to acquire, we keep

using the same parameters for the rest of the samples. These parameters are usually

in 25 - 35 μW and 60 - 90 seconds range. Using higher powers could provide a better

signal in shorter times, but we avoid using such higher laser powers as they can distort

the spectrum due to sample heating. After recording the spectrum, we look at the

positions and FWHM of G and 2D peaks to confirm the number of layers. In Fig. 2.8,

G and 2D peaks data from some of our samples are shown. The insets show optical

images of the crystals. In panel (a), the G peak is located at 1583 ± 3 cm−1 and 2D

peak is at 2681 ± 3 cm−1 which confirms that the flake is a single-layer graphene.

In panel (b), the Raman peaks for a different graphene flake are shown. The inset
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depicts an optical image of this flake. The data is taken from the most transparent

part of the flake. The G peak appears 1582 ± 3 cm−1 and 2D peak sits at 2678 ± 3

cm−1. In Fig. 2.8, we zoomed-in on the Raman peaks and only show narrow sections

of the whole spectrum. We can also make use of the G / 2D area under the peak to

identify single vs bilayer and multiple layers as will be shown in Section 5.2.2.
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Figure 2.8: Raman spectroscopy is used to determine the thickness of graphene flakes.
The positions of G (blue) and 2D (red) Raman peaks of monolayer graphene are
shown. (a) The G peak is located at 1583 ± 3 cm−1 and 2D peak is at 2681 ± 3
cm−1. Inset: Optical image of the graphene flake from which the Raman data are
taken. (b) Zoom-in on the G and 2D peaks of another monolayer graphene. The
Raman data are taken from the flake shown in the inset picture. The G peak is at
1582 ± 3 cm−1 and 2D peak sits at 2678 ± 3 cm−1. The positions and FWHM of the
peaks agree with the spectrum of monolayer grapehene.
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2.2 Making Electrical Contacts on Graphene

This section presents the fabrication of metal contacts on graphene flakes. We use

electron-beam lithography to pattern and align the electrical contacts precisely on

the flake. We also describe how we thermally evaporate metal to make mechanically

sturdy contacts which will be very helpful for the suspension of the graphene.

2.2.1 Patterning contacts via electron-beam lithography

Electron-beam lithography is, like photolithography, a patterning technique to create

structures on a resist. Instead of UV light, e-beam lithography uses a focused beam of

electrons to scan the surface and draw patterns. The advantage of e-beam lithography

over photolithography is that it can pattern any custom designed shapes with a very

high resolution down to the 10 nm scale. This writing resolution is limited to about

one micron in the case of standard photolithography.

Since e-beam lithography is a maskless patterning system, we create a design file

using an AutoCAD design software. The e-beam writer software can read and expose

the design file. Fig. 2.9(a) depicts a design which contains 8 large contacts. The

dashed square is enlarged in the inset where the small contacts and alignment marks

can be clearly seen. The alignment marks in the design file are drawn identically to

the ones on the alignment grid patterned on the substrate (see section 2.1.2). The

marks in design file will be overlaid on the markers on the substrate so that the

whole pattern is properly aligned and drawn at the right location. Before exposing

a pattern on the flake shown in Fig. 2.9(b), we first coat the chip with an electron

sensitive resist. We use a bilayer resist of Copolymer EL9 (9 % in ethyl lactate)

and PMMA A4 resist (polymethyl methacrylate 4 % in anisole). We spin coat each

layer at 3000 rpm for 1 min, and bake them for 15 min each at 170 ◦C on a hot

plate. This gives a copolymer and PMMA thicknesses of ≈ 300 nm and ≈ 200 nm

respectively. After exposure, the samples are developed in a solvent to remove the

exposed parts of the resist. We use a solution of 1:3 MIBK (methyl isobutyl ketone) :

IPA (isopropyl alcohol) for 30 seconds followed by a rinse in methanol for 15 seconds.

Finally the chip is transferred into IPA and is rinsed for at least 45 seconds to ensure

that the developer is completely removed. Fig. 2.9(c) and (d) show optical images

of the sample after exposure and development of the pattern. The small and large
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contacts are drawn on the resist as they were designed. The small contacts are aligned

precisely on the flake thanks to the alignment marks.

200 μm

40 μm

40 μm

(a)

Alignment marks

(b)

(c)

(d)Contacts on graphene

Big contacts

Figure 2.9: Electron-beam lithography of electrical contacts. (a) Image of an AutoCad
design of contacts to be patterned via e-beam lithography (EBL). (b) Optical image
of a graphene flake. (c) Image of the flake after EBL exposure. (d) Zoomed-out image
of the sample showing large contact pads.

2.2.2 Metal deposition of contacts

After exposing and developing the contacts on the resist, we deposit a metal film using

thermal evaporation. We first evaporate 3 nm of Chromium (Cr) as an adhesive layer

and then deposit Gold (Au) on top. In the next step, we will suspend the graphene
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flakes above the substrate by removing the oxide underneath. Having sturdy gold

contacts will be extremely helpful during this process. Thick contacts will create a

stronger supporting structure. Therefore we evaporate at least 80 nm of Au on the

samples. If possible, we prefer to make even thicker contacts, up to 120 nm thick.

200 μm

40 μm

(a) (b)

(c) (d)

40 μm

200 μm

Figure 2.10: Metal transfer of contacts. (a) Image of contacts before and (b) after
metal deposition at 100x magnification. (c) Image of contact pads before and (d)
after metal deposition at 5x magnification.

After evaporation, we liftoff unexposed parts of the resist layer in acetone leaving

the actual pattern on the substrate, and then rinse in IPA. Fig. 2.10(a) and (b) show

small electrodes before and after evaporation. Similarly, Fig. 2.10(c) and (d) show

the big contact pads before and after evaporation for the same sample.
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2.3 Suspension of Graphene

After contacting graphene crystals with metal electrodes, our devices are now ready

to be suspended. We remove the SiO2 underneath the graphene channel so that it

will be left hanging above the substrate anchored to the contacts at each end. The

suspension will thermally isolate the devices from the substrate and thus remove any

heat leakage to the substrate. Moreover, the suspension will decouple the charge

transport from the impurities in the substrate.

2.3.1 Wet-etching

For suspension of graphene flakes, we use a wet-etching process in which the samples

are immersed in a solution which eats away the oxide. We use a wet etchant, BOE

(buffered oxide etch), a mixture of HF (hydrofluoric acid) and NH4F (ammonium

fluoride). Depending on the mixing ratio, the etch rate is tunable. For our samples,

we prepare the BOE with 10:1 ratio (10 parts NH4F and 1 part HF) which yield an

etch rate of about 50 nm per minute. The etch rate of the mixture must be well-

calibrated and the etching time must be well-adjusted in order to achieve a successful

suspension. If the etching time is not long enough to etch the oxide underneath of

graphene, it will not be fully suspended. Fig. 2.11(a) shows a SEM image of such a

device which was not etched enough and therefore not suspended. It can clearly be

seen that the flake is suspended on the edges, but oxide is left under the center of the

flake. Fig. 2.11(b) shows a properly suspended device where the oxide underneath is

smooth and the flake is completely detached from the substrate.

To etch the devices, we start by immersing the samples in the BOE solution.

The samples are quickly removed as soon as the etching time is up and rinsed in

DI (deionized) water. At this stage, the samples are rinsed in fresh DI water for

at last 3 times to ensure there is no HF left on them. The samples are then put

in IPA (isopropyl alcohol) for a final rinse before drying. It is extremely important

to keep the samples wet at all times when moving them between any two solutions.

The drying process is dependent on the size of the sample. If the length of the flake

between the contacts is � 1.3 μm, the sample is gently dried with N2 gas flow. For

longer devices, we use CPD (critical point drying). CPD is used for sensitive devices

which can be damaged due to the surface tension of the IPA. In a CPD chamber, IPA
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Figure 2.11: SEM images of devices after BOE etching. (a) A device which was not
fully suspended as the oxide underneath was not completely removed. Oxide was left
along the middle of the flake. (b) A perfectly suspended device.

is first replaced with liquid CO2 (carbon dioxide). Then, the CO2 is brought around

its critical point using a high temperature and pressure. In this process, CO2 become

a supercritical fluid, a medium where the liquid and gas states are indistinguishable,

which reduces the surface tension between the interfaces to zero. Finally, the sample

is dried and returned to room temperature and pressure.

2.3.2 Ellipsometry and reflectometry

Ellipsometry or reflectometry is an optical method to characterize thin films such as

SiO2, resists, etc., on substrates. The light is incident on the surface with an angle or

directly and the reflected light is detected. The polarization difference between the

incident and reflected light is analyzed to obtain the thickness of the film. Fig. 2.12

shows the ellipsometer that we use to measure the thickness of the SiO2 films on our

samples. We do this before wet-etching devices to calibrate the etch rate of the BOE

solution, as well as after the etching to keep record of the thickness of SiO2 remaining

on the samples.
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Light Source Detector

Sample
Stage

Figure 2.12: Picture of an ellipsometer showing its light source, sample stage and
detector. An ellipsometer analyzes the change in polarization between incident
and reflected light from a thin film to measure the thickness the film. We use an
ellipsometer to measure the thickness of the SiO2 films on our samples.

2.3.3 Scanning electron and atomic force microscopy imaging

of devices

Scanning electron microscope (SEM) is used to capture images of the devices. We

take tilted SEM images of devices as in Fig. 2.11 to check if they are completely

suspended, and top-view images to measure the width and length of graphene flakes.

However, we avoid using SEM before measuring transport data in the devices. SEM

scans the surface with a beam of electrons, and deposits amorphous carbon (from

background pressure in the vacuum chamber) on the graphene which later cannot

be removed. Since it alters the properties of graphene, we do not take SEM images

until we are done with studying the samples. Instead, we prefer using an atomic

force microscope (AFM) which keeps the samples cleaner. AFM can provide precise

measurements of the height of suspension as well as the length and width of the flake.

It is important to use tapping mode instead of contact mode not to rip the flake apart

as the AFM tip scans. Fig. 2.13 illustrates a screenshot from the AFM software. The

panel (a) is an AFM scan of a suspended device. The white line on the image can

be moved around anywhere on the scan to extract a 1-dimensional cut from height

data. The plot in panel (b) displays a 1-dimensional cut from the data taken along
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the line. It shows a step-like shape where the flake is suspended above the substrate.

(a) (b)

Figure 2.13: AFM imaging of suspended graphene transistors. (a) A screenshot of
the AFM software showing an AFM scan of a suspended device. The white line is
placed perpendicular to the channel to extract 1-dimensional data. (b) Plot showing
the data cut along the white line in (a), which presents the height profile of the
suspended channel.

2.4 Measurement Set-up and Circuits

This section describes how we package the samples after fabrication and prepare

them for measurements. In addition, we present our measurement circuits and data

acquisition procedure.

2.4.1 Testing graphene devices with a probe station

Before packaging the samples, we can test them with a probe station (shown in Fig.

2.14). The needle-shaped probes can be aligned and touched down on the contact

pads of the devices by looking through a stereoscope. Current − voltage (I−V ) data

are taken to verify if the transistor is working, and its resistance is extracted from

the slope of the I − V curve.
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Figure 2.14: Image of the probe station we use to test the samples.

2.4.2 Wire-bonding and handling of samples

In section 2.2.1, we described the fabrication of micron-size electrical contacts on

graphene along with large contact pads using EBL. In order to make measurements

through these contacts, we need to interconnect the large pads to chip carriers. To

do so, we use a wire-bonder which welds (ultrasonic welding) aluminum wires from

chip carriers to the gold contact pads. Fig. 2.15(a) shows an optical image of a

device with wire-bonds on its gold pads. The wire-bonds on the chip carrier can be

seen in the zoom-out image in Fig. 2.15(b). The sample is glued on the chip carrier

using a conducting silver print on its back side. The back of the sample must be

electrically connected on the gold plate in the middle of the chip carrier to use the

Si substrate as a back-gate electrode. We make wire-bonds to the gold plate as well

in order to control back-gate voltage. During and after wire-bonding, the samples

must be handled very carefully and be grounded to protect the devices from any

possible electrical discharges. Wire-bonded samples are stored with the chip carriers

in gel-paks to shield them until measurements. To acquire data, the chip carriers are

mounted on the chip socket of the cryostats (see Fig. 2.15(b)). The pins of the chip

carrier are connected via the chip socket to the electronic measurement set-up.
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Figure 2.15: Wiring-bonding of the samples. (a) Optical image of a device with wire-
bonds on the contact pads. (b) Image of a chip carrier with a sample wire-bonded on
it. The chip carrier is mounted on the chip socket made for the measurement set-up.
The chip socket provides the connection between the pins of the chip carrier and the
electronic set-up.

2.4.3 Cooling down to low temperatures

The experiments are performed under high vacuum and at different temperatures

ranging from low to high (usually up to room temperature). We need to have a good

control of the temperature at which the data are taken. Hence, we make use of a

variable temperature cryostat (VTI) which can make use of Liquid He-4 or Liquid

N2 (see Fig. 2.16) to cool down. It can reach down to 1.5 K with LHe and to 77 K

with LN2. The sample space in the cryostat can be pumped out and kept under high

vacuum (10−6 Torr). There is a thermometer and a heater, inside the sample space,

which are controlled by a temperature controller. This latter measures and adjusts

the temperature of the sample space. We can control the temperature of the sample

up to 420 K.
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Figure 2.16: Picture of the variable temperature cryostat (VTI) with a turbo-pump
attached to the sample space. It pumps down the sample space to a high vacuum.
The VTI can cool down to 1.5 K and reach up to 420 K.

2.4.4 Electronic set-up and circuits

Our electronic set-up is designed in a such a way that the sample is kept grounded

and shielded at all times when not being measured. While data are taken, we make

sure that there are no ground loops in the circuit and all electronics are grounded at

one common ground. We also use a personal grounding strap on our wrist. Fig. 2.17

is a cartoon of our DC circuit. Data are collected using a National Instruments Data

Acquisition System (DAQ) with a custom coded GUI (graphical user interface), and

GPIB instrument control. The connections between the sample and any apparatus

shown in Fig. 2.17 are made using BNC coaxial cables. We keep these cables as

short as possible to prevent any noise pick-up and wrap them with additional coaxial

cables to create shielding. We use a voltage-divider in our circuits when we apply

small voltages, and low-pass filter for the Keithley voltage source to avoid any spikes

in gate voltages. The data are collected and stored in the computer with a chosen

file name as well as the date and time of acquisition.
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Figure 2.17: Electrical circuit for dc measurements.

2.5 Fabrication Results

In this chapter we described the fabrication procedure that we developed to make

suspended graphene transistors. Our aim is to understand and extract electronic

thermal conductivity in graphene. To do so, we proposed a device design at the

beginning of this chapter in Fig. 2.1. Throughout the chapter, we explained step-by-

step the fabrication procedure to make such suspended graphene devices. Fig. 2.18

shows the device design and SEM image of an actual device we fabricated. It clearly

shows that we achieved our fabrication objectives. By isolating the graphene crystal

from the substrate, we aim to reach high mobilities for charge carriers and remove any

heat leakage to the substrate. In addition, we use the mechanical exfoliation method

to create graphene crystals, since it provides the highest quality graphene crystals.

This method has no control over the size and shape of the flakes. For our suspended

devices, we need rectangular shaped flakes (for easy modelling) with widths up to

2.5 μm and lengths of at least 5 μm to be able to fit two large area (low resistance)

contacts on it. Larger and irregularly shaped graphene flakes can be cut into specific

sizes by etching them with RIE. This is a commonly used method to get regular
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shaped flakes of any size. However this creates disorder on the edges of the flakes and

affects the transport measurements. Therefore we never used RIE to cut down and

shape our graphene devices. We only used the flakes that were naturally in the shape

and size that we needed.

In the following chapter, we will present how we studied these samples to extract

their electronic thermal conductivity.

Gate

Source Drain

Source Drain

Gate

(a)

(b)

1 μm

Au Au

Graphene

SiO2

Figure 2.18: (a) Target design of a suspended two-point device. (b) SEM image of a
device that we fabricated.
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Chapter 3

Electronic Thermal Conductivity

of Monolayer Graphene in Intrinsic

Regime

The electronic thermal conductivity of graphene and two-dimensional (2D) Dirac

materials is of fundamental interest and can play an important role in the performance

of nanoscale devices [3, 5]. We report the electronic thermal conductivity Ke in

suspended graphene in the nearly intrinsic regime over a temperature range of 20

to 300 K. We present a method to extract Ke using two-point DC electron transport

at low bias voltages, where the electron and lattice temperatures are decoupled. We

find Ke ranging from 0.5 to 11 W/m.K over the studied temperature range. The data

are consistent with a model in which heat is carried by quasiparticles with the same

mean free path and velocity as graphene’s charge carriers.

We first describe our samples and present their resistance vs gate voltage data from

which we can deduce the cleanliness of our samples by calculating their impurity

density. Secondly, we discuss the contact resistance in our samples. After that

we will move on to our thermometry technique where we will explain how we can

monitor and control the temperature of electrons in graphene. By solving a one-

dimensional heat equation, we will be able to extract Ke at different temperatures.

Finally we will present the theoretical model we used to model our experimental

data. The work presented in this chapter was adapted from the following publication:

“Electronic thermal conductivity measurements in intrinsic graphene”, Serap Yiğen
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et al., Physical Review B, 87 (2013) [14]. I did vast majority of the fabrication of

all samples and I acquired 100% of the data presented in this thesis. The data were

analyzed by me and Dr. Alexandre Champagne. The co-authors contributed with

technical helps and discussions during fabrication and measurements.

3.1 Introduction

The electronic heat conductivity of graphene Ke describes how charged quasiparticles

carry energy as they diffuse in this material. It could also shed light on Ke in other

2D Dirac systems whose electronic band structure is related to graphene’s, such

as the surface states of topological insulators [68]. When a hot electron diffuses

out of graphene, it cools down the electronic distribution. Thus, measurements

of Ke are needed to complement the understanding of the other hot-electron

cooling mechanisms in graphene which involve various electron-phonon couplings

[23, 57, 69–76]. Measuring and controlling Ke could have applications in the heat

management of heavily-doped nm-scale devices where Ke can be dominant [77], and

in optimizing graphene’s electro-optical properties [16, 17]. While there have been

several experimental reports of the phononic thermal conductivity Kp in graphene

[11,16,17,19,44,51,54,78,79], reports of Ke measurements in suspended graphene are

lacking. This is because in most regimes Kp is much larger than Ke, which makes it

difficult to measure the amount of heat carried by the charged quasiparticles (electron

and holes).

We present a carefully calibrated method to extract Ke in graphene using DC

electron transport in suspended devices. The accuracy of the method is dependent

on high-mobility (annealed) devices. We present data from three different samples

which show consistent results. The extractedKe are compared with calculated values,

Ke−th, for a diffusing gas of Dirac quasiparticles. The agreement between theory and

measurements is quantitative for all three devices over the temperature range (20 -

300 K) studied. Throughout the text we use T to designate the lattice (cryostat)

temperature, and Te for the average electron temperature in the suspended devices.

At very low bias, |VB| � 1 mV, T = Te. We first describe our samples, second, we

present our Te thermometry, then show how we apply a controlled ΔT using Joule

heating, and finally extract Ke from the transport data.
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Figure 3.1: Suspended graphene devices. (a) - (c) Tilted SEM images of 650 nm, 400
nm and 400 nm long suspended graphene transistors (samples A, B and C). (d) - (f)
Resistance R of sample A, B and C vs gate voltage VG at Te = T = 11, 50, 100, 150,
210, and 300 K (Samples A and B) and Te = T = 80, 100, 125, 150, 180, and 210 K
(sample C) and VB = 0.5 mV.
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Figure 3.1(a)-(c) show tilted scanning electron microscopy (SEM) images of

Sample A, B and C respectively. We confirmed using optical contrast and Raman

spectroscopy that all three samples are single-layer graphene. Sample A is 650 nm

long, 675 nm wide, and suspended 140 ± 10 nm above the substrate [atomic force

microscopy (AFM) measurement] which consists of 100 ± 2 nm of SiO2 (ellipsometry

measurement) on degenerately doped (Si) which is used as a back-gate electrode.

Sample B is 400 nm long, 1.05 μm wide, and suspended 175 ± 10 nm above

a 74 ± 2 nm SiO2 film on Si. Sample C is 400 nm long, 0.97 μm wide, and

suspended 227 ± 10 nm above a 74 ± 2 nm SiO2 film on Si. To prepare the

samples, we followed the fabrication methods which are explained in Chapter 2. We

used exfoliated graphene, and standard electron beam lithography (EBL) to define

Ti(5nm)/Au(80nm) contacts. The samples were suspended with a wet BOE etch

such that their only thermal connection is to the gold contacts. We annealed the

devices using Joule heating in situ by flowing a large current in the devices [40] (up

to 540, 840 and 837 μA for A, B and C). Fig. 3.2 shows the two-point dc transport

data in Sample A before (red) and after (black) current annealing. Annealing and

subsequent measurements were done under high vacuum, 10−6 Torr.
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Figure 3.2: Sample annealing data. G = I/VB vs VG data for Sample A before (red)
and after (black) current annealing, T ≈ 20 K.

Figures 3.1(d)-(f) show DC two-point resistance data, R = VB/I, for Samples A,

B and C respectively, after annealing, versus gate voltage VG, which controls charge
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density. From the width of the R maximum at 11 K, we extract a half width at half

maximum (HWHM) of 0.45, 0.6 and 0.95 V for Samples A, B, and C. Using a parallel

plate model for the gate capacitance of the devices, these HWHMs correspond to an

impurity induced charge density [80] of n∗ ≈ 1.5, 1.7 and 2.1 ×1010 cm−2.

3.1.1 Upper bond for contact resistance

Our thermometry technique is based on two-point resistance measurement of graphene

transistors. We used R both as a thermometer and heater to measure and control

Te in graphene. This is valid only if the contact resistance between graphene and

contacts is not dominant over the graphene’s resistance. Otherwise, the self-heating

would happen at the contacts instead of in graphene crystal. In addition, the change

of resistance with temperature would not be a good representation of Te profile in

graphene.

The devices were fabricated with large contact areas between the gold electrodes

and graphene crystals, 1.1 to 3 μm2 per contact, to minimize the contact resistance

Rc. An upper bound for Rc of our devices can be extracted from the two-point

R−nG curves. The data for Sample A is shown in Fig. 3.3. We fit the data with the

expression [42],

R = Ro +
( L

W

)( 1

nGeμ

)
(3.1)

where Ro is the resistance due to neutral scatterers plus Rc, L is the length of the

device, W the width, nG the charge density induced by VG, μ the mobility, and e the

electron’s charge. We fit the data at T = Te = 100 K for (VG−VD) > 1.3 V to avoid the

thermal smearing around the Dirac point, VD. The fit for the hole (electron) regime

is shown as a light blue (red) dashed line in Fig. 3.3(a). The extracted mobility for

Sample A in the doped regime is μ ≈ 8.5×104 cm2/V.s at 100 K, and Ro ≈ 682 ± 53

and 1135 ± 80 Ω for hole and electron doping respectively. The difference between

hole, Ro−h and electron doping, Ro−e, is understood as an additional p − n barrier

for the electron due to p-doping from the gold electrodes [42]. Figure 3.3(b) shows

the conductance, G = 1/R, for Sample A before the series resistance Ro is subtracted

(black line) and after Ro is subtracted for the hole (light blue) and electron (red)
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doped data. The corrected conductance depends linearly on the gate induced charge

density, nG.
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Figure 3.3: Upper bound for contact resistance of Sample A. (a) R− nG data at 100
K for Sample A. The light blue and red dashed lines are fits as described in the text
from which the total series resistance, Ro, is extracted. (b) The same G−nG data as
in panel (a), before (black line) and after (blue and red lines) subtracting Ro.

At the Dirac point, we let Ro−Dirac = (Ro−h + Ro−e)/2 = 908.5 Ω for Sample A.

For Sample C, we find Ro−Dirac = 1097 Ω. We note that Ro−Dirac is much smaller

than R of Samples A and C, therefore Rc < Ro−Dirac has at most a modest impact

on our measurements in these devices. It is not possible to extract Ro for Sample B

because it enters the ballistic regime away from the Dirac point (doped regime). In

the doped regime (away from the Dirac point) and at low temperature, the R vs T

data for Sample B are consistent with ballistic electron transport. These data will

be discussed in Chapter 4. The contact areas of Sample B are larger, and its width

wider, than for Samples A and C. Assuming a similar resistance per unit area as for

A and C, we expect Rc � 657 Ω for B. Based on the reported thermal conductance

of Au/Ti/Graphene and Graphene/SiO2 interfaces [81], the thermal resistance of our

contacts are several orders of magnitude lower than the one we measure below for

graphene. Thus, the thermal resistance of the contacts can safely be neglected.
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3.2 Electron Thermometry and Joule Heating of

Electrons

After understanding the contact resistance in our devices, we present our technique

by which we measure two-point R of the samples to monitor Te in graphene.

Figure 3.4 shows R vs cryostat temperature, T , calibration curves for Samples A

(circles, left axis), B (squares, right axis), and C (triangles, left axis) near VG = VD.

R = VB/I data are extracted from the slope of the I − VB data as shown in the inset

of Fig. 3.4 at 11 K (solid) and 300 K (dashed), for ± 1 mV bias where no Joule

heating effect is present (Te = T ). The data are taken at VG = 0.5 V close to VD =

0.33 V for Sample A, and at VG = 0 V for Samples B and C (VD = -0.1 and 0.07 V),

corresponding to nG = 5.7, 2.9, and -1.5 ×109 cm−2. The T dependence of the data

shows an insulating behavior up to ≈ 200 K for Sample A and C, and up to 300 K

for Sample B. The interpolated dashed lines in panel (a) will be used as thermometry

curves to monitor Te. Note that the thermometry is most accurate where the curves

are steepest.

Figure 3.5 shows the relative conductance G(T )/G11K in the intrinsic regime

extracted from Fig. 3.4 for Sample A and B. The T dependence of G in graphene, at

low charge density, is strongly dependent on the type of charge transport. For ballistic

transport, we expect a very weak temperature dependence at low T , and a linear

dependence when kBT >> EF [82]. In the diffusive regime, the expected temperature

dependence depends on the type of charge scatterers, and G(T )/G11K ∝ T α with

α = -1, 0, 2 for acoustic phonon, short-range (neutral), and long-range (charged)

scatterers respectively [25, 76]. The temperature dependence of real samples is

expected to combine all three types of scattering. We fit the data with a function

G/G11K = 1 + AT p, and extract p = 1.85, 1.74, 1.72 and 1.63 ± 0.03 for Sample

A with Rc = Ro−Dirac and 0 (open and filled circles), and Sample B with Rc = 657

and 0 Ω (open and filled squares). This T -dependence strongly supports diffusive

charge transport dominated by long-range charge impurities, as reported in previous

experiments on high-mobility devices [40, 76] and expected theoretically [25]. The

small departure from a T 2 dependence is expected as the samples are not exactly at

the Dirac point.
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Figure 3.4: Electron thermometry. Temperature dependence of R in Sample A
(circles, left axis), Sample B (squares, right axis), and Sample C (triangles, left axis)
near the charge degeneracy nG = 5.7, 2.9 and -1.5 ×109 cm−2. The dashed lines are
numerically interpolated curves used for thermometry. Inset: I−VB data for Sample
A, |VB| < 1 mV, whose slope is used to extract R. The solid (dashed) line is at
T = Te = 11 (300) K.
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Figure 3.5: Relative conductance G/G11K of Sample A (circles) and Sample B
(squares) versus T = Te. The filled symbols show the raw two-point data, and
the open symbols the data after subtracting Rc = Ro−Dirac (see text). The solid and
dashed lines are power law fits consistent with charge impurity scattering.

3.2.1 Mean-free path in the nearly intrinsic regime

We calculated the mean free path of charge carriers in the nearly intrinsic regime

to further support the existence of diffusive transport in our devices. In order to

extract an approximate elastic mean free path, l, for charge carriers when the chemical

potential is close to the Dirac point, we consider doping due to impurities, n∗, and

thermally activated electron-hole pairs,

nth =
(π
6

)(kBT
�νF

)2

(3.2)

where kB is Boltzmann’s constant, T the lattice temperature, νF = 106 m/s the Fermi

velocity. The total charge carrier density is [83]

ntot = n+ p =

√
n2
G + 4

[(n∗
2

)2

+ n2
th

]
(3.3)

where nG is the charge density induced by the gate electrode. For instance, at T =

100 K we find ntot(100 K) = 2.4, 2.5 and 2.8 × 1010 cm−2 for Samples A, B and C.

We calculate the charge carrier mobility,
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μ =
σ

ntote
(3.4)

where σ is the charge conductivity. At T = 100 K, μ = 4.1 (4.8), 2.9 (3.6), and 2.0

(2.7) × 104 cm2/V.s using Rc = 0(Ro−Dirac) for Samples A, B and C respectively.

The mobility decreases with T for all samples. From the mobility, we extract the

mean-free path of the carriers as,

l =

√
ntot

π

hμ

2e
(3.5)

At T = 100 K, we find l = 74 (87), 54 (67), 39 (52) nm for A, B and C, which is

several times shorter than the size of the samples.

Hence, we conclude that all samples are in the diffusive regime at low charge

density (Fig. 3.5 and mean-free path calculations) and scattering is predominantly

due to charged impurities. The data in Fig. 3.4, and its agreement with theory, serves

as a reliable thermometer for Te in our devices.

3.2.2 Joule self-heating of electrons

After establishing the Te thermometry, we demonstrate controlled Joule self-heating

of the electrons to apply a thermal bias ΔT = Te−T between the suspended graphene

and the electrodes. Figure 3.6(a) shows R vs VB for Sample A at T = 50, 100, 150

K (for Samples B and C see Figs. 3.7 and 3.8). Panel (b) shows the details of the

data at 100 K. R decreases monotonically with increasing VB, at all T . We argue

that this change in the R vs VB data is caused by Joule heating of the sample.

Other mechanisms which could cause a non-linear I −VB relation include: scattering

from flexural phonons, in-plane optical phonons, substrate phonons, and Zener-Klein

tunneling. We restrict our measurements to VB � 30 meV. This rules out any R

change due to scattering from optical in-plane phonons, ≈ 200 meV, and flexural

phonons, ≈ 70 meV, in graphene [76]. Phonons in the substrate can also be ruled

out as the samples are suspended. The contribution of Zener-Klein tunneling to

I−VB non-linearity was only observed in very low-mobility devices, and at VB > 100

mV [84]. This leaves Joule heating as the only plausible cause for the observed R vs

VB behavior [24]. Using the calibration curve for the samples, Fig. 3.4, and data from

Fig. 3.6(a) and 3.6(b), we extract the average Te vs VB, as shown for Sample A in Fig.
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3.6(c) and 3.6(d). In Fig. 3.6(d), we fit a power law (solid line) Te = 100+BV x
B , and

find x = 2.00 ± 0.04, as expected for Joule heating over a small Te range whereKe and

R do not change appreciably (Samples B and C, see Figs. 3.7 and 3.8). Figs. 3.6(d),

3.7(d), and 3.8(d) show that the accuracy with which Te can be extracted is much

better than 1 K. We calculate Te errors from the scatter of the data in Fig. 3.6(d),

and similar plots at each T , to vary from 0.2 K (steepest regions of Fig. 3.4) up to 2

K (flat regions of Fig. 3.4). The smooth dependence of Te on VB at all T is consistent

with electrons having a well defined temperature, as predicted by calculations of the

e − e collision length [85] in the following section. This is also confirmed by the Ke

data shown below.
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Figure 3.6: Electron heating for Sample A. (a) R vs VB at various T for Device A at
VG = 0.5 V ≈ VD. (b) Details of the data at T = 100 K. Joule heating due to VB

raises the flake’s average Te above T . Te is extracted using Fig. 3.4(a). Panels (c) and
(d) show Te vs VB in Sample A at a few different T , and at T = 100 K respectively.
All of our Ke data is extracted with VB � 30 mV. The solid line in panel (d) is a
power law fit Te = 100 + BV x

B , and we find x = 2.00 ± 0.04, as expected for Joule
heating over a small Te range.
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Figure 3.7: Electron heating for Sample B. (a) R vs VB at T = 50, 100, 150, 210 K
at VG = 0.0 V ≈ VD. (b) Zoom-in on the 100 K data. Joule heating due to VB raises
the flake’s average Te above T . Te is extracted using Fig. 3.4(a). Panels (c) and (d)
show Te vs VB in Sample B at several T , and at T = 100 K respectively. All of our
Ke data is extracted with VB � 30 mV. The solid line in panel (d) is a power law fit
Te = 100 + BV x

B , and we find x = 2.02 ± 0.04, as expected for Joule heating over a
small Te range.
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Figure 3.8: Electron heating for Sample C. (a) R vs VB at T = 100, 150, 180 K for
Device C at VG = 0.0 V ≈ VD. (b) Zoom-in on the 100 K data. Joule heating due to
VB raises the flake’s average Te above T . Te is extracted using Fig. 3.4(a). Panels (c)
and (d) show Te vs VB in Sample B at a few T , and at T = 100 K respectively. All
of our Ke data is extracted with VB � 30 mV. The solid line in panel (d) is a power
law fit Te = 100 + BV x

B , and we find x = 2.00 ± 0.02, as expected for Joule heating
over a small Te range.
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3.2.3 Electron-electron scattering length

The electron-electron (inelastic) mean-free path, lee, in graphene was calculated by

Li and Das Sarma [85] for various charge densities and temperatures, but for disorder

free samples (ballistic transport). They found that lee decreases rapidly with T . For

instance, in their Fig. 3(a) they calculated lee in suspended graphene at a charge

density n = 1010 cm−2 which is close to the density in our devices (1.7 and 2.1 × 1010

cm−2). They found that lee ≈ 200 nm at T = 100 K. This is shorter than our devices,

but only by a factor of 2 or 3. However, the lee in our devices should be much shorter

due to disorder (measured from the width of the R− VG peak). Quoting Li and Das

Sarma (conclusion): “It is well known that disorder has qualitative and quantitative

effects on the inelastic mean free path and the phase breaking length, in general,

suppressing the mean free path substantially from its ballistic limit.”

Another piece of evidence supporting that lee in our devices is much shorter than

their total length is shown in Fig. 3.9 where we observe a small, but clearly visible,

mesoscopic oscillation in the G − VG characteristic of Sample B at T = 17 K. This

oscillation disappears as T is raised above T = 30 K. Mesoscopic oscillations (quantum

interferences) are expected when lee is much longer than le−imp, and should disappear

when lee � le−imp. Thus, Fig. 3.9 suggests that lee � le−imp at T � 30 K. Since le−imp

is significantly shorter than the size of the sample (see section 3.2.1), we expect the

same to hold for lee. We do not observe mesoscopic fluctuations in our 3 devices over

the T range where we report Ke. We also note that Du et al. [80] studied samples

which are very similar to ours (length of 0.5 micron, suspended, current annealed,

and showing similar mobility and elastic mean-free path), and also observed that

mesoscopic fluctuations disappeared above T ≈ 20 - 40 K (see their Fig. 3(c)). Finally,

the agreement between our experimentally extracted and theoretically calculated Ke,

over the entire T range studied, strongly supports a well defined Te(x).

We also note that since the graphene which is buried under the gold contacts was

not current annealed, it is much more disordered that the suspended portion of the

device. This large increase in disorder should lead to a reduced lee under the gold,

implying that lee−under < lee−exposed.
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3.3 Extracting Electronic Thermal Conductivity

(Ke) in Intrinsic Graphene

Since our devices are much wider than the elastic mean-free path (section 3.2.1), the

effect of their edges on transport should be small. We use a 1-d heat equation to

extract Ke in our devices:

Ke
d2Te

dx2
+Q = 0 (3.6)

where Q = RI2/WLh is the Joule heating power per unit volume, W the width, L

the length, and h = 0.335 nm the thickness. Using boundary conditions Te = T at

the two ends (contacts) of the flake, we find

Te(x) = T +
LQx−Qx2

2Ke

(3.7)

Averaging over the length we find,

Te =
1

L

∫ L

0

Te(x)dx = T +
QL2

12Ke

(3.8)

Finally,

Ke =
QL2

12ΔT
(3.9)

where ΔT = Te − T . Using R and I from Fig. 3.6 and similar plots, for ΔT = 1, 2

and 5 K we extract Ke vs Te in Fig. 3.10(a) for Sample A. Fig. 3.10(b) shows Ke vs

Te for all three samples for ΔT = 5 K. Data in Fig. 3.10 show a strong Ke dependence

on Te ranging from roughly 0.5 W/K.m at 20 K to 11 W/K.m at 300 K. The Te range

is limited to the region where we have accurate thermometry (Fig. 3.4), up to ≈ 200

K for A and C, and 300 K for B. Error bars representing the total uncertainty on

Ke are shown for the ΔT = 5 K data (see section 3.3.1). If the VB needed to apply

ΔT were to dope significantly the samples, it could affect the measured Ke. Using
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ntot(T ) (Eq. 4.2) [83], we define an effective chemical potential:

μeff (T ) = �vF
√

πntot(T ) (3.10)

For instance, at T = 100 K, μeff (100 K) = 18, 18.4 and 19.5 meV respectively for the

three devices. The VB necessary to achieve ΔT ≤ 5 K in Fig. 3.10 is always smaller

than μeff (T ). We only observe a change in the extracted Ke values when ΔT exceeds

8 K, and VB > μeff (T ). Thus VB does not affect our Ke, with the caveat that we

cannot extract Ke precisely at n = 0. The thermoelectric voltages in our devices are

negligible compared to VB [86, 87].

3.3.1 Error analysis

To calculate the uncertainties on the values extracted for Ke, using equation 4.4

below, we account for four sources of uncertainty: error on the sample’s length, ΔL ,

width ΔW , resistance ΔR due to the contact resistance Rc, and extracted electronic

temperature ΔTe. We estimate ΔL ≈ 40 nm, ΔW ≈ 50 nm, ΔR = Rc = Ro (which

is an upper limit since Ro = Rc+ resistance from neutral scatterers), and ΔTe = the

standard deviation of Te from the fit of Te vs VB as shown in Figs. 3.6(d), 3.7(d) and

3.8(d). We note that the uncertainty ΔTe is inversely proportional to the slope of the

calibration curve, Figure 3.4, at Te.

Ke =
RI2L

12WhΔT
(3.11)

The error on the measured current I is negligible compared to the other sources of

error, and the thickness h = 0.335 nm is a standard value used by all experiments

and theory. Note that ΔT = Te − T where T is the cryostat temperature. The error

on T is about 0.1 K and comes from the accuracy of our temperature controller, thus

the error on ΔT is roughly ΔTe + 0.1 K. We calculate ΔKe using the equation:

ΔKe

Ke

=

√(ΔL

L

)2

+
(ΔW

W

)2

+
(ΔR

R

)2

+
(Δ(ΔT )

ΔT

)2

(3.12)
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Figure 3.10: Electronic thermal conductivity, Ke, in the quasi-intrinsic regime,
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ΔT = 5 K for Samples A, B and C, and Ke−th for each sample.

62



The calculated errors are shown in Fig. 3.10. For example, the error bars ΔKe/Ke

at T = 100 K are 18.3%, 24.1% and 25.8% from Samples A, B, and C.

3.4 Ke for Diffusing Dirac Quasiparticles in 2D

We compare our data with the usual model for diffusing particles in 2-dimensions:

Ke−th =
1

2
Cvl (3.13)

If the heat flow is due to charge carriers, then the specific heat is C = Ce, the

velocity is vF = 106 m/s, and the mean free path l is the same as for charge transport.

We find (section 3.2.1), lA−avg, lB−avg, and lC−avg = 71 (85), 47 (59), and 37 (51)

nm on average over the Te range with Rc = 0 (Ro−Dirac). We calculate the charge

carrier specific heat, Ce, using the density of states for graphene and the Fermi-Dirac

distribution:

Ce =
dUe

dT
(3.14)

where the total energy of the charged quasiparticles, Ue, is calculated from the density

of states and Dirac statistic for quasiparticles in graphene as,

Ue =

∫ ∞

0

2ε2

π(�vF )2
1

e(
ε−μ
kT

) + 1
dε−

∫ 0

−∞

2ε2

π(�vF )2

( 1

e(
ε−μ
kT

) + 1
− 1

)
dε (3.15)

where μ = μeff (T = 0) = �vF
√
πntot(T = 0) = 14.8, 15.4 and 17.1 meV are the

effective chemical potential for Samples A, B and C respectively. ntot is defined above

in Eq. 4.2 and includes both the gate induced charge density and the impurity induced

density.

We plot Ke−th in Figs. 3.10(a) and 3.10(b) as solid lines with Rc = 0. They

capture the quantitative Te dependence of our Ke data. The Ke data points are in

good quantitative agreement with the calculated values for all three samples, and

especially for Samples A and C. The dashed line in Fig. 3.10(a) shows Ke−th if

we use Rc = Ro−Dirac. If we account for Rc, i.e., smaller Q, Ke changes by the

same magnitude as Ke−th but in the opposite direction (not shown for clarity). The
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quantitative agreement between data and theory is not as accurate for Sample B since

its R is smaller than for Samples A and C, and the impact of Rc could be bigger. The

data and calculations shown in Fig. 3.10(b) with Rc = 0 are within 20%, 30%, and 15

% of each other for Samples A, B and C. If we include Rc = Ro, which overestimates

the effect due to Rc, the agreement between the data and theory for Sample B is at

worst within a factor of 2, and much better for Samples A and C. We fit a power

law expression Ke ∝ T p over Te = 45 - 185 K for Samples A and B, and find p =

1.73 ± 0.15 and 1.63 ± 0.13 which is very close to the fit on Ke−th, pth = 1.62 and

1.59. This agreement is preserved even if we let Rc = Ro. As expected pth goes to 2

when μ/kT � 1. We conclude that the Ke data is consistent with heat being carried

by particles moving with the vF and l of the charge carriers. The magnitude of Ke

reaches ≈ 11 W / K.m at 300 K with ntot,T=0 ≈ 1.7 - 2.1 ×1010 cm−2.

A condition to make reliableKe measurements is that all of the Joule heat remains

in the carriers until they diffuse to the leads. Both experiments and theory confirm

that the electron-phonon energy transfer in high-mobility graphene, at low VB, is very

small below 300 K [16, 17, 24, 25], and decreases at lower T and n. In our devices,

we extract a cooling length for hot electrons (section 3.4.1 below), ξ ≈ 100 to 10 μm

for Te = 20 to 300 K. Since ξ is much longer than L, and VB below the energy of

optical phonons, we expect Te and T to be decoupled in our devices when VB �= 0,

and all of the Joule heat to be carried to the contacts by charge carriers. Indeed, the

Ke we measure are two to three orders of magnitude lower than the reported phonon

thermal conductivity Kp in graphene [44, 51].

3.4.1 Electron cooling length estimate

Bistritzer and MacDonald [57] calculated the electron-acoustic phonon scattering rate

for graphene in the intrinsic regime. They found,

γe−ac = 1.18× 103D2(meV 2.s)−1 × (kBTe)
2 (3.16)

where D is the deformation potential measured in eV. The value of is not well known

and has been reported in the range of 10 - 50 eV. We set D = 20 eV, as in Ref. [57]

and most other theoretical work. We find γe−ac = 1.7 × 106 - 1.2 × 108 s−1 for Sample
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A over the studied Te range, 3.2 × 106 - 3.3 × 108 s−1 for Sample B, and 2.4 × 107

- 1.6 × 108 s−1 for Sample C. Based on these scattering rates, we can estimate the

electron cooling length as

ξ =

√
Ke

γe−acCe

(3.17)

where Ke is the measured heat conductivity in Fig. 3.10, and Ce the calculated

specific heat from Eq. 3.14. We find ξ = 150 to 14 μm for Sample A, ξ = 74 to 8.5

μm for Sample B, and ξ = 27 to 11 μm for sample C over the Te range in Fig. 3.10.

These values are always much larger than the length of the devices, 650 nm for A

and 400 nm for B and C, which ensures that most of the Joule heating stays in the

charge carriers until they reach the gold contacts.

3.5 Conclusion and Outlook

In summary, we fabricated high quality suspended monolayer graphene devices,

developed self-thermometry and self-heating methods to extract and control Te, and

the electronic thermal conductivity in graphene. We extracted Ke in the quasi-

intrinsic regime, ntot,T=0 ≈ 1.7 - 2.1 ×1010 cm−2, from Te = 20 K to 300 K. The

Ke data in three different devices are in very good agreement with a model where

heat is carried by diffusing Dirac quasiparticles. Our results provide evidence that

the dominant electron cooling mechanism in intrinsic sub-micron graphene devices

below 300 K is hot-electron diffusion to the leads. The theoretical model we use

naturally leads to the Wiedemann-Franz relation in the doped-regime and suggests

that it should be obeyed in graphene. This will be discussed in the following chapter

(Ch. 4). We will present data from the doped regime (electron and hole doping). We

will test Wiedemann-Franz law and also study how Ke changes with carrier density

in graphene.
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Chapter 4

Wiedemann-Franz Relation and

Thermal-Transistor Effect in

Graphene

We extract experimentally the electronic thermal conductivity, Ke, in suspended

graphene that we dope using a back-gate electrode. We make use of two-point dc

electron transport at low bias voltages and intermediate temperatures (50 - 160 K),

where the electron and lattice temperatures are decoupled. The thermal conductivity

is proportional to the charge conductivity times the temperature, confirming that the

Wiedemann-Franz relation is obeyed in suspended graphene. We extract an estimate

of the Lorenz coefficient as 1.1 to 1.7 ×10−8 W ΩK−2. Ke shows a transistor effect

and can be tuned with the back-gate by more than a factor of 2 as the charge carrier

density ranges from ≈ 0.5 to 1.8 ×1011cm−2. The work presented in this chapter is

adapted from the following publication: “Wiedemann-Franz Relation and Thermal-

Transistor Effect in Suspended Graphene”, Serap Yiğen and Alexandre Champagne,

Nano Letters 14, 289 (2014) [15].

4.1 Introduction

Graphene’s electronic thermal conductivity, Ke, describes how easily Dirac charge

carriers (electron and hole quasiparticles) can carry energy. In low-disorder graphene

at moderate temperatures (< 200 - 300 K), the energy transfer rate between charge
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carriers and acoustic phonons is extremely slow [14, 16, 17, 24, 45, 58]. Thus, Ke

impacts how a hot electron cools down, and the efficiency of charge harvesting in

graphene optoelectronic devices [16–18]. Moreover, understanding and controlling Ke

could help develop graphene bolometers capable of detecting single terahertz photons

[45, 46]. There are theoretical calculations of Ke [77, 88, 89], and recent experimental

data near the charge neutrality point (CNP) in clean suspended graphene [14] and in

disordered samples at very low temperatures [45, 46]. However, a detailed mapping

of Ke vs charge density at intermediate temperatures is lacking. Understanding how

Ke in clean (suspended) graphene depends on charge density, n, and the electronic

temperature, Te, is crucial for applications. An important fundamental question

is whether the Wiedemann-Franz (WF) law, Ke = σLTe where σ is the charge

conductivity, and L is the Lorenz number, is obeyed in graphene. In clean graphene

at low charge densities (hydrodynamic regime), strong electron-electron interactions

could lead to departures from the generalized WF law [88,89].

We report Ke in monolayer graphene extracted from carefully calibrated dc

electron transport measurements following a method we previously discussed (chapter

3 and [14]). We study a temperature range of T = 50 - 160 K, where the

electron and lattice temperatures are very well decoupled in low-disorder graphene

[14, 16, 17, 24, 45, 58], over a charge density range of ≈ 0.5 to 1.8 ×1011cm−2. We

extract data in the hole and electron doped regimes from two high-mobility suspended

devices. The extracted Ke are compared with predictions from the WF law. The

agreement between the WF relation and measurements is very good for both devices

over the n range studied and T up to 160 K. The value of L is ≈ 0.5 - 0.7 Lo,

where Lo is the Lorenz factor for metals. We observe a sudden jump in the extracted

thermal conductivity above 160 K which is consistent with the onset of strong coupling

between electrons and acoustic phonons [58]. Finally, we observe a thermal transistor

effect consistent with the WF prediction, whereKe can be tuned by more than a factor

of 2 with a back-gate voltage, VG, ranging up to ± 5 V. Throughout the text we use

T to designate the lattice (cryostat) temperature, and Te for the average electron

temperature in the suspended devices. At very low bias, |VB| ≤ 1 mV, T = Te.

Figure 4.1(a) and (b) shows dc two-point resistance data, R = VB/I, versus gate

voltage, VG, which controls the charge density, nG (upper axis) for Samples A and C
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Figure 4.1: Suspended and annealed graphene devices. (a) R of Sample A vs. gate
voltage, VG, at Te = T = 11, 50, 100, 150 and 210 K, and VB = 0.5 mV. (b) R - VG

data for Sample C at Te = T = 80, 100, 125, 150 and 210 K, and VB = 5 mV. The
insets show tilted SEM images of the suspended graphene transistors: Sample A (650
nm long), and a device identical to Sample C (400 nm long). For clarity, the data
curves in (a) and (b) are slightly shifted along the VG axis so that all the maxima line
up at VG = 0, the shifts in (a) range from -0.3 to -0.45 V, and in (b) from 0 to 0.2 V.
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respectively. From the width of the R maximum at low T , we extract a half-width-

half-maximum, HWHM, of 0.45 and 0.95 V for Samples A and C. These HWHMs

correspond to an impurity induced charge density of n∗ ≈ 1.5 and 2.1 ×1010 cm−2.

For clarity, the data in Fig. 4.1 is slightly shifted along the VG axis so that all the

maxima (Dirac points) line up at VG = 0, the shifts in Fig. 4.1(a) range from -0.3

to -0.45 V at various T , and in Fig. 4.1(b) from 0 to 0.2 V. The insets in Fig. 4.1

show scanning electron microscope (SEM) tilted images of Sample A and a sample

identical to Sample C.

We confirmed, using optical contrast and Raman spectroscopy, that both samples

are single-layer graphene. Sample A is 650 nm long, 675 nm wide, and suspended

140 ± 10 nm above the substrate (AFM measurement) which consists of 100 ± 2

nm of SiO2 (ellipsometry measurement) on degenerately-doped Si which is used as a

back-gate electrode. Sample C is 400 nm long, 0.97 μm wide, and suspended 227 ±
10 nm above a 74 ± 2 nm SiO2 film on Si. To prepare the samples, we followed the

fabrication procedure that is presented in Chapter 2. We used exfoliated graphene,

and standard e-beam lithography to define Ti(5nm)/Au(80nm) contacts. The samples

were suspended with a wet BOE etch such that their only thermal connection was

to the gold contacts. We annealed the devices using Joule heating in situ by flowing

a large current in the devices [14, 40] (up to 540 and 837 μA for Samples A and C).

Annealing and all subsequent measurements were done under high vacuum, ≤ 10−6

Torr.

4.1.1 Upper bond for contact resistance

To minimize contact resistance, Rc, the devices were fabricated with large contact

areas between the gold electrodes and graphene crystals, ranging from 1.1 to 3 μm2

per contact. An upper bound for series resistance, Ro, which includes both the contact

resistance, Rc, and the resistance from neutral scatterers, can be extracted from the

two-point R − VG curves [90] in Fig. 4.1 (similar to section 3.1.1). We fit the data

with the expression

R = Ro +
( 1

nGeμW
�

+GCNP

)
(4.1)
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where Ro is the resistance due to neutral scatterers plus Rc, � is the length of

the device, W the width, nG the charge density induced by VG, μ the mobility, and

e the electron’s charge. We fit the data at T = Te = 100 K, and for (VG − VD) >

1.3 V to avoid the thermal smearing around the Dirac point, VD. The fit for the

hole (electron) regime is shown as a light blue (red) dashed line in Fig. 3.3(a). The

extracted mobility for Sample A in the doped regime is μ ≈ 5.5 × 104 cm2 / V.s

at 100 K. 3.3(b) shows the conductance, G = 1/R, for Sample A before the series

resistance Ro is subtracted (black line) and after Ro is subtracted for the hole (blue)

and electron (red) doped data. The corrected conductance depends linearly on the

gate induced charge density, nG.

The extracted series resistances for Sample A are Ro−h ≈ 477 ± 53 and Ro−e ≈
944 ± 80 Ω for hole and electron doping, respectively. The difference between Ro−h
and Ro−e is understood as an additional p− n barrier for the electron due to doping

from the gold electrodes [42]. For Sample C, we find Ro−h = 1563 Ω and Ro−e =

812 Ω. We note that series resistance is smallest for hole doping in Sample A and

for electron doping in Sample C. In annealed samples, oxygen desorbs from the gold

contacts and changes the work function of the electrodes. This means that graphene

under the gold electrodes can be either electron doped or hole doped depending on

the thoroughness of the contact annealing [42,91,92]. To minimize the effect of Rc on

our data, we study the lowest resistance side of the Dirac point for each Sample. This

allows us to study hole transport in Sample A and electron transport in Sample C.

Since Ro includes both Rc and the resistance due to neutral scatterers in the channel,

we conservatively set Rc = Ro/2 with an uncertainty ranging up to Rc−max = Ro,

and down to Rc−min = lowest reported resistance for Au/graphene [93] with similar

n, which is ≈ 100 Ω.μm2. Thus, in the following data analysis we use for Samples A

and C, Rc−A = 239 ±239
120 and Rc−C = 406 ±406

281. We extract a conservative estimate

of the charge carrier mobility in our devices, over the n and Te range studied, as

μ = σ/(ntote) ≈ 3.5 × 10 4 cm2/V.s, where ntot is the total carrier density including

the gate, impurity and thermal doping [14, 83]:

ntot = n+ p =

√
n2
G + 4

[(n∗
2

)2

+ n2
th

]
(4.2)

where nG is the charge density induced by the gate electrode. For instance, for

Sample A at 100 K and VG = −5.3 V (nG = −1.8 × 1011 cm−2) we find ntot(100
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K) ≈ nG and for Sample C at 100 K and VG = 5.0 V (nG = 1.1 × 1011 cm−2) we

find ntot(100 K) ≈ 1.15 × 1011 cm−2. We calculate a realistic estimate of the charge

carrier mobility by using μ = σ
ntote

, where σ is the charge conductivity. At T = 100

K, μ = 3.6 and 2.9 × 104 cm2 / V.s using Rc = Ro/2 for Samples A (VG = −5.3 V)

and C (VG = 5.0 V) respectively. The extracted mobility decreases with T . From the

mobility, we extract the mean-free path of the carriers as,

l =

√
ntot

π

hμ

2e
(4.3)

At T = 100 K, we find l = 177 and 114 nm for A (VG = −5.3 V) and C (VG =

5.0 V), which is several times shorter than the length and width of the samples (650

nm × 675 nm for A, and 400 nm × 970 nm for C).

Based on the reported thermal conductance of Au/Ti/Graphene and

Graphene/SiO2 interfaces [81], the thermal resistance of the contacts can safely be

neglected [79] compared to our Ke data presented below.

4.2 Extracting Electronic Thermal Conductivity

(Ke) in Doped Graphene

Figure 4.2 summarizes our approach to extract Ke in suspended high-mobility

graphene, whose details we previously discussed (chapter 3 and [14]). We repeat

some of the discussion of our methods because the charge densities studied here are

much higher than in Ref. [14], which leads to several important changes. Figure

4.2(a)-(b) presents how we monitor the charged quasiparticle temperature in our

devices by monitoring R, and Fig.4.2(c)-(d) shows how we can controllably heat-up

these quasiparticles at a temperature slightly above the contacts’ temperature via

Joule heating. By combining these two capabilities and using the heat equation, we

will later extract Ke vs T and n.

Figure 4.2(a) shows the two-point dc R vs cryostat temperature, T , calibration

curves for Sample A (circles, left axis), and Sample C (squares, right axis) which

are respectively hole-doped with a gate-induced density of nG = -1.8×1011 cm−2 and

electron-doped with nG = 1.1×1011 cm−2. R = VB/I is extracted from the slope

of the I − VB data as shown in the inset of Fig.4.2(a). Note that for ± 1 mV bias
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Figure 4.2: Electron thermometry and electron Joule heating. (a) R vs Te in Sample
A (circles, left axis) and Sample C (squares, right axis), respectively hole (nG =
-1.8×1011 cm−2) and electron doped (nG = 1.1×1011 cm−2). The solid lines are
numerically interpolated curves used for thermometry. Inset: example of I−VB data
at 100 K for Sample A whose slope is used to extract R, |VB| < 1 mV such that
Te = T . (b) Relative conductance G/G11K of Sample A vs Te = T . The solid circles
show the raw two-point data, and the open circles the data using Rc = 239 Ω. The
solid and dashed lines are power law fits consistent with charge impurity scattering.
Inset: G/G11K of Sample A at high T showing a linear decrease in R consistent with
acoustic phonon scattering. (c) R vs VB data for Sample A at T = 100 K, and nG =
-1.8 (circles, left axis) and -0.8 (squares, right axis) × 1011 cm−2 (i.e. VG = -5.3 and
-2.3 V). Joule heating due to VB raises the flake’s average Te above T . (d) Te vs VB

in Sample A extracted from (c) using the calibration in (a) and similar curves.
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no Joule heating effect is present and Te = T . As showed in Fig. 4.2(a)-inset, the

I−VB characteristics at very low VB are precisely linear (no Joule heating). In which

case VB/I = dVB/dI, and we use the slope to extract R to avoid an error due to a

very small (experimental) offset in VB (few 10s of micro-Volt). At higher bias, this

small offset is negligible and we can safely use R = VB/I. In Figure 4.2(c), Te is not

constant versus VB due to Joule heating, thus dVB/dI also contains information about

how quickly the temperature is changing with VB, rather than only the temperature at

one specific VB value. Since ΔT is small, we find no significant quantitative difference

in our results using either dVB/dI or VB/I to extract Te, but the correct quantity

which represents Te is VB/I. The Te dependence of the data shows a metallic behavior

with R increasing with Te. The interpolated lines in Fig.4.2(a), and similar curves,

will be used as secondary thermometry curves to monitor Te in the devices.

Figure 4.2(b) shows the relative conductance G(T )/G11K for Sample A extracted

from Fig.4.2(a) and similar data. The solid circles show the raw two-point data, and

the open circles the data after subtracting Rc = Ro/2. The T dependence of G = 1/R

in graphene, at modest charge density, is strongly dependent on the type of charge

transport. We fit the data in Fig. 4.2(b) with a function G/G11K = 1 − AT p, and

extract p = 2.1 ± 0.2 for both curves. This T -dependence strongly supports diffusive

charge transport dominated by long-range charge impurities, as reported in previous

experiments on high-mobility devices [40,76,80] and expected theoretically [58]. The

inset of Fig. 4.2(b) shows that G/G11K of Sample A decreases linearly for T ≥ 200 K,

which suggests a relatively strong acoustic phonon scattering above this temperature,

as expected theoretically [58]. Sample C shows a qualitatively identical behavior of its

R vs T in Fig. 4.2(a), but the absence of low temperature data proscribes an accurate

fit of its dependence. We will focus our measurements on the T < 200 K range (see Eq.

4.3), where both samples are in the diffusive regime with scattering predominantly

due to charged impurities. This scattering is elastic, and its Te dependence (used for

thermometry) comes mostly from the temperature dependence of its screening [76].

Electron-electron scattering between charge carriers is inelastic. By applying a

VB one can inject high-energy carriers in the suspended device which then thermalize

with the carriers in the sample and raise Te in the suspended graphene relative to

the temperature in the gold contacts. Note that when writing Te, we always refer to

the average temperature of charged quasiparticles in our devices. We demonstrate
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controlled Joule self-heating of the electrons to apply a thermal bias ΔT = Te − T

between the suspended graphene and the electrodes (cryostat temperature). Figure

4.2(c) shows R vs VB for Sample A at T = 100 K and nG = -1.8 × 1011 (circles, left

axis) and -0.8 × 1011 cm−2 (squares, right axis). Sample C data is shown in Fig. 4.3.
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Figure 4.3: Electron heating in Sample C. (a) R vs VB at T = 100 K for device C
at VG = 5 V (circle data, ntot,T=0 ≈ 1.1 × 1011 cm−2) and VG = 2 V (square data,
ntot,T=0 ≈ 0.5 × 1011 cm−2). Joule heating due to VB raises the flake’s average Te

above the cryostat T . (b) Te vs VB in Sample C at T = 100 K extracted from (a)
using the thermometry curves as in Fig. 4.2(a). All of our Ke data is extracted with
VB � 27 mV. The solid lines in panel (b) are power law fit Te = 100 +BV x

B , and we
find x = 2.10 ± 0.03 and 1.99 ± 0.02, which is very close the expected x = 2 for Joule
heating over a small Te range.

R increases monotonically with increasing VB, at all T . We restrict our

measurements to VB ≤ 27 meV. We have previously argued (chapter 3 and [14])

that in our high-mobility devices, under such low VB and in the T range we study,

the change in R is caused by Joule heating of the charge carriers [14, 24]. Using the

curves, R vs Te and R vs VB, we extract Te vs VB as shown for Sample A in Fig.

4.2(d). We fit a power law (dashed lines) Te = 100 +BV x
B , and find x = 1.93 ± 0.04

for both data sets, as expected for Joule heating where Te ∝ V 2
B. Figures 4.2(d) and

4.3(b) show that the accuracy with which Te can be extracted is much better than 1

K. The smooth dependence of Te on VB at all T is consistent with electrons having a

well defined temperature as predicted by calculations of the e− e collision length [85]

(see section 3.4.1), and confirmed by the Ke data shown below.
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We use a 1-d heat equation (Section 3.3 and [14]) to extract Ke in our devices,

and find

Ke =
Q�2

12ΔT
(4.4)

where ΔT = Te − T , Q = RI2/W�h is the Joule heating power per unit volume,

W the width, � the length, h = 0.335 nm the thickness, and Te is the electronic

temperature averaged over �. In Fig. 4.4(a)-(b) we plot Ke vs Te for Samples A and

C for ΔT = 10 K, where the circle, square and triangle data show Ke at ntot,T=0 ≈
-1.8, -1.1, -0.8 ×1011 cm−2 for Sample A, and ntot,T=0 ≈ 1.1, 0.7, 0.5 ×1011 cm−2 for

Sample C. The quantity ntot,T=0 refers to the total charge density induced by VG and

charged impurities (Eq. 4.2). We clearly observe that Ke increases with both n and

Te in both samples. For instance, Ke ranges from roughly 1 W/K.m at 60 K and

n = -8 × 1010cm−2 to 5 W/K.m at 135 K and n = -1.8 × 1011cm−2 for Sample A.

Error bars representing the uncertainty on the extracted Ke are shown in Fig. 4.4.

For error analysis, we used the same method presented in section 3.3.1. To calculate

the uncertainties on the values extracted for Ke, using Eq. 4.4, we account for four

sources of uncertainty: error on the sample’s length, Δ�, width ΔW , resistance ΔR

due to the contact resistance uncertainty ΔRc, and extracted electronic temperature

ΔTe. We estimate Δ� = one mean free-path (extracted using Eq. 4.3) which ranges

from 205 nm at 80 K (VG = -5.3 V) to 158 nm at 150 K (VG = -2.3 V) for Sample A

and from 135 nm at 80 K (VG = +5.0 V) to 87 nm at 150 K (VG = -2.0 V) for sample

C. ΔW ≈ 50 nm, ΔR = ΔRc = Ro/2 = 239 and 406 Ω for Samples A and C, and

ΔTe = the standard deviation of Te from the fit of Te vs VB as shown in Figs. 4.2(d)

and 4.3(b).

The error on the measured current I is negligible compared to the other sources

of error, and the thickness h = 0.335 nm is a standard value used by all experiments

and theory. Note that ΔT = Te − T where T is the cryostat temperature. The error

on T is about 0.1 K and comes from the accuracy of our temperature controller, thus

the error on ΔT is roughly ΔTe+ 0.1 K. We calculate ΔKe using equation:

ΔKe

Ke

=

√(ΔL

L

)2

+
(ΔW

W

)2

+
(ΔR

R

)2

+
(Δ(ΔT )

ΔT

)2

(4.5)
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Figure 4.4: Wiedemann-Franz (WF) law. (a) The electronic thermal conductivity,
Ke, of Sample A in the hole-doped regime versus Te for ΔT = Te − T = 10 K. The
circle, square and triangle data show Ke at VG = -5.3, -3.3 and -2.3 V, respectively,
corresponding to ntot,T=0 ≈ -1.8, -1.1, -0.8 × 1011 cm−2. The solid lines are given
by the WF relation KWF = LσTe with L = 0.45, 0.53 and 0.55 × Lo respectively.
(b) Ke vs Te for ΔT = 10 K for Sample C in the electron-doped regime. The circle,
square and triangle data show Ke at VG = 5, 3 and 2 V corresponding to ntot,T=0 ≈
1.1, 0.7, 0.5 × 1011 cm−2. The solid lines are the KWF with L = 0.66, 0.68, 0.7 ×
Lo. (c) and (d) show the same data as in (a) and (b) up to higher Te where the
apparent departure between the data and WF prediction is understood as the onset
of electron-phonon coupling.
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The calculated errors are shown in Figs. 4.4 and 4.6. For example, the error bars
ΔKe

Ke
at T = 100 K are approximately 20% for Samples A and 40% for Sample C.

We confirmed that the VB needed to create ΔT did not dope significantly the

samples or affect the measured Ke. Using ntot(T ) (Eq. 4.2) [14, 83], we define an

effective chemical potential μeff (T ) = �vF
√

πntot(T ). For instance, for Sample A at

VG = -5.3 V and T = 100 K, μeff (100K) = 49 meV. The various VB necessary to

achieve ΔT ≤ 10 K in Fig. 4.4 are always significantly smaller than μeff (T ) and

never larger than 27 mV. We only observe a change in the extracted Ke values (in

the doped-regime) when ΔT exceeds 20 K, and VB > μeff (T ). The thermoelectric

voltages in our devices are negligible compared to VB [86, 87].

4.3 Theoretical Model: Wiedemann-Franz Law

We test the WF law (Ke = σLTe, where σ is the electrical conductivity, Te is the

electronic temperature and L is the Lorenz number) in our samples, which have a

mobility of μ ≈ 3.5 × 10 4 cm2/V.s, as a function of Te and n. While the Lorenz

number in most metals is close to Lo = 2.44 × 10−8 WΩK−2, it is well known that its

value can be reduced in semiconductors at low charge density [94,95]. The solid lines

in Fig. 4.4 show Ke−WF given by the WF law using the measured σ and extracted

Te (Fig. 4.2), with L used as the single fitting parameter. The WF relation holds

for both Samples at all Te between 50 K and 160 K, and densities nh = -1.8 to -0.8

×1011 cm−2 and ne = 0.5 to 1.1 ×1011 cm−2. For Sample A, L = 0.45, 0.53 and

0.55 × Lo, and for Sample C L = 0.66, 0.68, 0.7 × Lo (triangle, square, and circle

data, respectively). The main uncertainty on L comes from the uncertainty on Rc,

and corresponds to ±0.1
0.2 Lo for Sample A, and ± 0.4 Lo for Sample C. We note that

the qualitative temperature and density dependence of the data in Fig. 4.4, and the

agreement with the WF law, is preserved even if we use either the maximum Rc = Ro

or minimum Rc = 120 Ω (see section 4.3.1). The increase in L as n increases is

consistent with previous studies in semiconductors where the value of L tends toward

Lo at higher carrier density [95].

Electron to acoustic phonon coupling is very weak in clean graphene at moderate

doping and temperature (< 200 - 300 K) [14,16,17,24,58], but increases at higher n
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and T . In the context of our experiment, if the thermal energy conductance between

electrons and phonons Ge−p is non-negligeable compared to the electronic thermal

conductance Ge, the heat conductivity we extract is a mixture of Ke and Ke−p in

parallel. As can be seen in Fig. 4.4(c)-(d), above ≈ 160 K the extracted K no longer

agrees with the WF prediction (solid line), indicating that we cannot isolate Ke for

Te > 160K. Previously we found that we could extract Ke up to 300 K in samples

whose n was very close to the CNP [14] (Chapter 3), suggesting that e− p coupling

is weaker at lower n as expected theoretically [58]. In Fig. 4.4(c)-(d), the departure

between the K data and WF prediction starts around 150 K for Samples A and 200

K for Sample C. The different T ranges over which Ke dominates in the two devices

comes from the ratio Ge/Ge−ph = W/(W�) = 1/� which is 60 % larger for Sample C

than Sample A.

4.3.1 Contact resistance effect on extracted Lorenz numbers

The uncertainty on the contact resistance does not significantly affect the accuracy

of the agreement of the data in Fig. 4.4 of the main text with the Wiedemann-Franz

relation. We used Rc = Ro/2 = 239 and 406 Ω for Samples A and C respectively in

Fig. 4.4. Figures 4.5 and 4.4 show that the quality of the fit of the data to the WF

law is not affected by the systematic uncertainty on Rc. The only effect of the Rc

uncertainty is a quantitative change in the extracted Lorenz number L. Fig. 4.5(a)

shows the WF law fit to the data if we let Rc = Rmin = 120 Ω (calculated using the

lowest reported gold-graphene resistance [93] at similar densities), and Fig. 4.5(b)

shows the WF law fit to the data if we let Rc = Rmax = 477 Ω (extracted in section

4.1.1)
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Figure 4.5: Effect of the contact resistance uncertainty on data in Fig. 4.4(a). The
electronic thermal conductivity, Ke, of Sample A in the hole-doped regime vs Te for
ΔT = Te−T = 10 K. The circle, square and triangle data show Ke at VG = -5.3, -3.3
and -2.3 V respectively corresponding to ntot,T=0 ≈ -1.8, -1.1, -0.8 × 1011 cm−2. (a)
Using Rc = Rmin = 120 Ω. The solid lines are given by the WF relation KWF = LσTe

with L = 0.53, 0.64 and 0.68 × Lo respectively. (b) Using Rc = Rmax = 477 Ω. The
solid lines are given by the WF relation with L = 0.33 × Lo for all three curves.

4.4 Thermal Transistor Effect in Graphene

Figure 4.6 shows the extracted Ke vs VG at Te = T + ΔT = 100 + 10 K for Sample

A (C) as solid red squares (black circles). For reference only, we also show two data

points (open grey symbols) close to VG ≈ 0 which are taken from Ref. [14] for the

same Samples. We cannot extract Ke at intermediate n, i.e. when 0.3 V ≤ |VG| ≤
1.5 V. This is because while R smoothly increases with Te in the metal-like regime

(Fig. 4.2(a)), |VG| ≥ 1.5 V, and smoothly decrease in the insulator-like regime [14],

|VG| ≤ 0.3 V, the R vs Te behavior does not act as a good thermometer at intermediate

densities. We also note that the WF relation we discuss in this work, Ke = σLTe, only

applies in the degenerately doped regime where the Fermi energy μ >> kBTe, and we

focus our discussion on this regime. The solid symbol data in Fig. 4.6 show that Ke is

tuned by the charge carrier density in the samples. The solid lines are the WF values

Ke−WF calculated using the measured σ, Te = 110 K, and setting L = 0.53 and 0.67

Lo for Samples A and C. The agreement between the WF law and data in the doped

regime is excellent. Even using a modest VG range, Ke could be tuned by a factor of

≥ 2 in Fig. 4.6. This is a very strong thermal-transistor effect (with the caveat that

Kp >> Ke [44, 51]). This could have applications in optoelectronics. A larger Ke
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means that when a charge carrier is excited by a photon, it can travel a larger distance

and excite additional carriers before it thermalizes with the lattice. Thus, more of

the photon energy is harvested as electrical current [18]. Additionally, a tunable

Ke implies a tunable Ce which could be used to optimize bolometric applications of

graphene [45,46].
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Figure 4.6: Electronic thermal conductivity transistor effect. Ke vs VG data for
Samples A (solid squares, n < 0) and C (solid circles, n > 0), for T = 100 K and
ΔT = 10 K. VG ≈ 0 data (open symbols, ΔT = 5 K) are from Ref. [14]. The solid
lines show KWF predicted by the Wiedemann-Franz relation using a Lorenz number
of L = 0.53 Lo and 0.67 Lo for A and C respectively
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4.5 Conclusion and Outlook

In summary, we fabricated high quality suspended graphene devices. We used

a self-thermometry and self-heating method [14] to extract the electronic thermal

conductivity in doped graphene. We report for the first time Ke in suspended

graphene over a broad range of T and n. The data presented clearly demonstrates

that Ke ∝ σT , which confirms that the Wiedemann-Franz law holds in high-mobility

(μ ≈ 3.5 × 10 4 cm2/V.s) suspended graphene over our accessible temperature range,

50 K - 160 K. This temperature range is limited at high-temperature by a turning on

of the electron-phonon coupling, which prevents us from isolatingKe at higher T . The

clear onsets of the electron-phonon coupling (Fig. 4.2(b), and 4.4(c)-(d)) between 150

K- 200 K is consistent with theoretical calculations [58]. We studied charge densities

of holes and electrons ranging up to 1.8 × 1011 cm−2 and found Lorenz numbers

L ≈ 0.5 - 0.7 Lo, where Lo is the standard Lorenz number for metals. The quality

of the agreement between the data and the WF relation in Figs. 4.4 and 4.6 is not

affected by the uncertainty on the extracted Lorenz numbers (section 4.3.1). Finally,

we demonstrated a strong thermal-transistor effect where we could tune Ke by more

than a factor of 2 by applying only a few volts to a gate electrode.

In the future, these measurements could be extended to even cleaner devices at

lower densities to study possible corrections to the generalized WF relation due to

strong electron-electron interactions [88,89]. The demonstrated density control of Ke

could be useful to make energy harvesting optoelectronic devices [16–18] and sensitive

bolometers [45, 46].
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Chapter 5

Conclusion and Ongoing Projects

In this chapter, we will conclude the work presented in this thesis and discuss our

results in the context of literature. We will also discuss the outlook of this work and

an ongoing project about bilayer graphene. We will motivate this work and describe

how we prepare bilayer graphene transistors. Finally, we will discuss the possible

experiment ideas which could be explored with these devices.

5.1 Conclusion: Electronic Thermal Conductivity

in Monolayer Graphene

In this thesis, we studied the electronic thermal conductivity, Ke, in monolayer

graphene versus temperature and carrier density. We designed and fabricated high

quality two-point suspended graphene transistors. We adopted a Joule self-heating

and self-thermometry method, and extracted the electronic thermal conductivity

from two-point charge transport measurements. We studied our samples at low bias

voltages and intermediate temperatures where the electron-phonon energy transfer is

negligible. Thus we could decouple the temperature of electrons from phonons and

isolate Ke.

In chapter 1, we briefly introduced the electronic and thermal properties of

graphene to give a background for the work presented in this thesis. We started by

deriving the linear low-energy band structure and discussed its effect on the behaviour

of charge carriers and the density of states. We also explained how we dope (p-type or

n-type) and undope (intrinsic) graphene via electrical doping. Finally we reviewed the
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thermal properties of graphene and proposed our work to measure electronic thermal

conductivity in graphene.

In chapter 2, we explained how we fabricate two-point suspended graphene

devices (Fig. 5.1(a)). We used standard micro fabrication methods to prepare our

samples. We started with preparing the substrates and making graphene flakes

using mechanical exfoliation method. We selected single layer graphene flakes and

made electronic contacts on them using lithography techniques. We used wet etching

method to suspend our devices above the substrate. This ensured that the graphene

crystal is completely decoupled from the substrate, thus there will not be any

interactions with the substrate phonons. Lastly, we presented the electrical circuit

which we used to acquire data from our samples.

In chapter 3, we presented the electronic thermal conductivity measurements

in intrinsic high-mobility graphene devices. First, we explained the electron

thermometry technique in which we used graphene’s resistance both as a heater and a

thermometer. We measured two-point resistance of graphene versus temperature (Fig.

5.1(b)). This thermometry curve was then used to monitor temperature of electrons

from the resistance. We applied Joule self-heating to increase the temperature of

electrons (Fig. 5.1(c)). We solved one dimensional heat equation and extracted Ke.

We found that Ke has a strong temperature dependence in the nearly intrinsic

regime (ntot,T=0 ≈ 1.7 − 2.1 × 1010cm−2), ranging from 0.5 to 11 W/m.K over a

temperature range 20 to 300 K (Fig. 5.1(d)). We compared our results with a

model of diffusing quasiparticles which has the same mean free path and velocity as

graphene’s charge carriers. Our data had a very good agreement with the model,

confirming that the heat is carried by diffusing Dirac quasiparticles. Our data proved

that the main cooling mechanism in our intrinsic graphene devices is hot-electron

diffusion to the leads.

In chapter 4, we reported Ke in our samples in the doped regime. We doped our

samples using a back-gate electrode which results in a total carrier charge density

of ≈ 0.5 − 1.8 × 1011 cm−2. We applied our well-calibrated self-heating and self-

thermometry techniques and extract Ke in the hole and electron doped regimes over

a temperature range of T = 50 - 160 K. We extracted Ke in our devices and tested

Wiedemann-Franz (WF), Ke = σLTe where σ is the charge conductivity and L is the

Lorenz number (Fig. 5.2(a)-(b)).
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Figure 5.1: Summary of Ke in intrinsic graphene. (a) SEM image of a two-point
suspended device. (b) Electron thermometry curve for Sample A (circles, left axis),
Sample B (squares, right axis), and Sample C (triangles, left axis). Each resistance
point is extracted from the slope of an I − VB curve like the one shown in the inset.
(c) Joule self-heating at T = 100 K. (d) Ke versus Te for Sample A, B and C.
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Figure 5.2: Summary of Ke in doped graphene. (a) Joule self-heating at T = 100
K and VG = -5.3 V (circles), VG = -2.3 V (squares). (b) Ke versus Te in the hole-
doped regime. Solid lines are given by the WF relation. (c) shows the same data as
in (b) up to higher Te where the departure between the data and WF prediction is
understood as the onset of electron-phonon coupling. (d) Ke versus VG for Sample A
(solid squares, n < 0) and B (solid circles, n > 0). Open symbols data are at VG ≈
0. Solid lines are given by WF relation.
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We found that the measured Ke is in a very good agreement with the prediction

of WF over the carrier density and temperature range studied. Our data showed that

the WF law is obeyed in graphene. The value of L is ≈ 0.5 - 0.7 Lo, where Lo is the

Lorenz factor for metals. We observed an inconsistency between extracted Ke and

the WF law above 160 K as expected due to the onset of strong coupling between

electrons and acoustic phonons (Fig. 5.1(c)). Finally, we observed a strong thermal

transistor effect where Ke could be tuned by more than a factor of 2 with a back-gate

voltage, ranging up to ± 5 V (Fig. 5.1(d)).

In conclusion, our work gives a detailed mapping ofKe in graphene with respect to

temperature and carrier density. Self-thermometry and Joule self-heating methods are

proven to be efficient to study and isolate Ke in materials. Hence, the experimental

technique used in this thesis offers a good base which can be extended to other two-

dimensional materials.

5.2 Ongoing Projects: Bilayer Graphene

Graphene’s perfect lattice and unusual band structure has quickly attracted

tremendous attention within the scientific community. The simple scotch tape method

made it possible to exfoliate two-dimensional (2D) graphene flakes from 3D graphite

and to study them in bench-top experiments. The invention of this exfoliation

method of graphene leaded to a new era in two-dimensional materials and opened up

the possibilities to study other two-dimensional materials (boron nitride, topological

insulators, etc..) as well as few-layer graphene.

Bilayer graphene, consisting two layers of graphene, is particularly of interest to

scientists and engineers due its high quality electronic properties, mechanical strength

and transparent nature [96, 97]. The low energy band structure of bilayer graphene

is gapless as in monolayer graphene, but its low energy dispersion is quadratic. The

charge carriers are no longer massless in bilayer graphene. Bilayer graphene offers

the advantage of opening a band gap in its electronic dispersion through electrical

or chemical doping. So far, it has been possible to open an energy band up to 300

meV [98–102]. This is an enormous advantage of bilayer devices over monolayer ones.

Bilayer graphene shares many similar properties with monolayer graphene as

well. The mobility of charge carriers can reach as high as 40,000 cm2/V.s at room
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temperatures, in air, on boron nitride substrates [90]. It has been shown that the

total thermal conductivity of bilayer graphene is high and is dominated by phonons

as in monolayer graphene. The room temperature thermal conductivity is measured

to be about 2,800 W/K.m [44, 49]. Furthermore, bilayer graphene has remarkable

mechanical strength and flexibility. Taking all these outstanding properties into

consideration, bilayer graphene definitely has a huge potential for future applications

like monolayer graphene. It could be applied in many areas including high-speed

electronics, photonic devices, flexible touch screens, photodetectors, and energy

storage applications.

There have been reports on the total or phonon thermal conductivity of bilayer

graphene, yet no report of its electronic thermal conductivity, Ke. Electronic thermal

conductivity measurements in bilayer graphene could help understand how much

energy is carried by charge carriers. Also, it can help understanding the energy

transfer between charge carriers and phonons in bilayer graphene, and how the

charge carriers cool down. Managing and understanding how electrons carry energy

in bilayer graphene would be very helpful for future nanoscale devices. To pursue

Ke measurements in bilayers, we fabricate suspended two-point bilayer graphene

transistors. We benefited from our experience and knowledge from monolayer

graphene samples to build high-quality bilayer graphene devices.

In this section, we present the status of our ongoing bilayer graphene project.

First, we will introduce the electronic band structure of bilayer graphene and

derive the low energy dispersion relation of its charge carriers. Then we will

describe the fabrication of our bilayer graphene devices and explain how we use

Raman spectroscopy to identify the number of layers. Finally we will discuss the

measurements we propose to make on the bilayer devices.

5.2.1 Electronic band structure

In this section, we briefly derive the electronic band structure of bilayer graphene

from the tight-binding model [29,103,104]. Bilayer graphene is formed of two coupled

monolayers of graphene where the carbon atoms are arranged in a honeycomb lattice

(see Chapter 1). Figure 5.3 shows the crystal structure of bilayer graphene. The

first layer is made up of atoms Ã (red) and B̃ (black) and is drawn with solid lines.

The second layer which is drawn with dashed lines, consists of atoms A (grey) and B
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(white). This crystal configuration is called Bernal stacking (Ã-B) in which the atom

Ã from the first layer and the atom B from the second layer overlay on each other.

These atomic sites (Ã-B) are referred as dimers and the rest is called as non-dimer

sites.

Ã

ÃB

B̃

A

B
A A

Ã

A

Figure 5.3: Crystal structure of bilayer graphene. The top layer is shown with solid
lines and the atoms are labeled as Ã (red) and B̃ (black). The bottom layer is drawn

with dashed lines and the atoms are labeled as A (grey) and B (white). The atom Ã of
upper layer and the atom B of bottom layer overlay on each other. These atomic sites
(Ã-B) are referred as dimers and this crystal configuration is called Bernal stacking

(Ã-B stacking).

Solving for the energy spectrum of electrons in bilayer (or few-layers) graphene

is more complex than for monolayer graphene due to the stacking of layers. In the

case of monolayer graphene, we only considered the hopping of electrons between

nearest-atoms (γ0, A −→ B). For bilayer graphene, we have to consider the hopping

between the layers and as well as between adjacent atoms. Thus, we need to define

the following tight-binding parameters to describe the hopping integrals:
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γ0 = −〈φA|H |φB〉 = −〈φ
˜A|H |φ

˜B〉 (5.1)

γ1 = 〈φ
˜A|H |φB〉 (5.2)

γ3 = −〈φA|H |φ
˜B〉 (5.3)

γ4 = 〈φA|H |φ
˜A〉 = 〈φB|H |φ

˜B〉 (5.4)

where H is the Hamiltonian [29]. The parameter γ1 describes the vertical hopping

between the orbitals on the dimer sites (Ã-B), γ3 describes the interlayer coupling

between non-dimer sites (A-B̃) and γ4 describes interlayer coupling between dimer and

non-dimer orbitals (A-Ã or B-B̃). The transfer integral matrix for bilayer graphene

can be written as

H =

⎛⎜⎜⎜⎜⎝
EA −γ0f(k) γ4f(k) −γ3f

∗(k)

−γ0f
∗(k) EB γ1 γ4f(k)

γ4f
∗(k) γ1 E

˜A −γ0f(k)

−γ3f(k) γ4f
∗(k) −γ0f

∗(k) E
˜B

⎞⎟⎟⎟⎟⎠ (5.5)

where EA, EB, E ˜A and E
˜B are the on-site energies on the four atomic sites and the

function f(k) describes the nearest-neighbour hopping [29,103] which was derived in

Section 1.1 (Equation 1.13). This Hamiltonian gives rise to four valley-degenerate

bands shown in Fig. 5.4, of which there are two valance and two conduction bands.

One valance and one conduction band (V1 and C1) touch each other at zero energy

whereas the other two (V2 and C2) are shifted away from the zero energy. This

splitting energy is of the order of the interlayer coupling γ1 and stems from the strong

coupling of the orbitals on the dimer sites (Ã-B). The low-energy bands, on the

other hand, arise from the hopping between the non-dimer sites. In intrinsic bilayer

graphene, like in monolayer, the Fermi level sits at the zero energy where low-energy

bands touch each other.

The energy spectrum of electrons can be determined by solving the eigenvalue

equation, HΨ = EΨ. Defining an effective four-band Hamiltonian near the Dirac

points, the four valley-degenerate energy bands can be determined as E = ε±α , with

α = 1, 2. Energy ε2 describes higher energy bands (V2 - C2). Energy ε1 describes
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Figure 5.4: The low-energy electronic band structure of bilayer graphene. The lowest
energy bands (V1 and C1) touch each other at zero energy and the higher energy
bands (V2 and C2) are shifted away from the zero energy by the interlayer coupling
γ1.
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the low energy bands (V1 - C1) that are related to orbital on non-dimer sites. The

low energy bands can be approximated as [29, 104].

ε±1 ≈ ±1

2
γ1
[√

1 + 4υ2p2/γ2
1 − 1

]
(5.6)

At large momentum, it approximately reduces to linear dispersion, ε1 ≈ υp and at

small momentum it approximates to quadratic dispersion ε1 ≈ p2/2m where the mass

is m = γ1/2υ
2.

5.2.2 Suspended bilayer graphene FETs

We fabricated suspended bilayer graphene field-effect transistors (FET) by following

the fabrication procedure presented in Chapter 2. We used SiO2 / Si wafers as

substrate. The Si substrate will be used as back gate electrodes to control the charge

carrier density, nG. Bilayer graphene crystals are exfoliated on the substrate and

preselected based on their optical contrast. Then their thicknesses are confirmed

with Raman spectroscopy.

For the preselection of graphene flakes, we used an optical microscope under

which the contrast of graphene flakes on silicon substrate can be observed. The

most transparent flakes are grouped as monolayer graphene. The darker flakes are

categorized depending on their contrasts. We use the optical images of previous

samples, the thicknesses of which were confirmed with Raman Spectroscopy, as

reference. This allows us to compare their contrasts and make more precise selection

of flakes. Figure 5.5 shows optical images of monolayer, bilayer and trilayer graphene

on SiO2 substrate. Single layer graphene shown in panel (a) appears to be the most

transparent. Bilayer graphene, in panel (b), has a darker contrast than single layers.

In panel (c), trilayer graphene has an even darker contrast.

Even though the optical contrast method provides a good visual selection of

graphene flakes, we still need to confirm our predictions. The most reliable way

to distinguish the number of layers is to compare their Raman spectra. Using Raman

spectroscopy, we can measure accurately the thickness of graphene crystals up to 6

layers. As the number of layer increases, there is a noticeable change in the shapes of

2D and G Raman peaks. Figure 5.6(a) shows the Raman spectrum of a single layer

with G (blue) and 2D (red) Raman peaks. The G peak is located at 1583 ± 3 cm−1
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Figure 5.5: Optical images of (a) Monolayer, (b) Bilayer and (c) Trilayer graphene.
The flakes appear to be darker as the number of layers increases.

and 2D peak is at 2681 ± 3 cm−1. Panel (b) shows the Raman spectrum of a bilayer

graphene with G peak locating at 1583 ± 3 cm−1 and 2D peak locating at 2702 ±
3 cm−1. Panel (c) depicts the Raman spectrum of a trilayer graphene. The G peak

is at 1583 ± 3 cm−1 and 2D peak is at 2712 ± 3 cm−1. The insets show the optical

images of the flakes from which the data were acquired.

The Raman spectra shown in Figure 5.6 have apparent differences in the shape and

height of their G and 2D bands which can give hints about the thickness of graphene.

However, the most accurate way to confirm the number of layers is to compare the

G/2D ratios. In table 5.1, we calculate the intensity ratio of height and area under

the G and 2D bands of the Raman spectra presented in Fig. 5.6 and also give the

positions of the center of 2D peaks which appear at different positions for single-layer,

bilayer and trilayer graphene. As seen in the table, the position of 2D peaks shifts and

the G/2D values differ as the number of layers increases. The integrated intensities

(area under the peaks) are used as a reference to determine the number of layers [63].

Figure 5.7 shows the previously reported values for the integrated intensity ratios of

G/2D bands as the number of layer increases (reproduced from reference [63]). Our

values for the ratios of G/2D are consistent with the previous reported values [63,105].

After confirming that our flakes are bilayers using Raman spectroscopy, we build

two-point transistors with them. We followed the fabrication process explained in

Chapter 2. Fig 5.8 shows optical images of some of the bilayer devices we fabricated.

We prepared devices with various length and widths. The width of the graphene

flakes ranges from 0.5 μm to 2 μm. The length of the graphene channel (between

the contacts) ranges from 0.5 μm to 4 μm. For devices longer than 1.5 μm, we used
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Figure 5.6: Raman spectroscopy of graphene flakes. (a) Raman spectrum of a single
layer graphene flake showing G (blue) and 2D (red) Raman peaks. The inset shows
an optical image of the flake. (b) Optical image and Raman spectrum of a bilayer
graphene, showing G and 2D Raman peaks. (c) Optical image and raman spectrum
of a trilayer graphene, showing G and 2D Raman peaks.
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G/2D Monolayer Bilayer Trilayer

Height ≈ 0.34 ≈ 0.85 ≈ 1.65
Area ≈ 0.19 ≈ 0.4 ≈ 0.5

Position (2D) 2681 cm−1 2702 cm−1 2712 cm−1

Table 5.1: Comparison of G/2D intensity ratios for our single-layer, bilayer and
trilayer graphene devices. These numbers are extracted from the Raman peaks shown
in Fig. 5.6 by fitting with Lorentzian function and finding the height of the peaks
and the area under the peaks. The last row presents the positions of the center of 2D
peaks.

Figure 5.7: Integrated intensities (area) of Raman peaks of single and few layers
graphene. Change in the ratio of the integrated intensities of G and 2D (D’) peaks
versus the number of layers. Reproduced from reference [63].
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CPD (critical point dryer) to suspend. CPD reduces the surface tension of drying

process during the wet etching. They are suspended to decouple the graphene crystals

from the substrate. These samples are suitable for both electron and heat transport

studies.

(a) (b)

(c) (d)

Figure 5.8: Optical images of the bilayer graphene samples. (a) A Sample with six
2-point devices. The length (the distance between the contacts) of the graphene
channel ranges from 0.75 μm to 2 μm. (b) A Sample with seven 2-point devices.The
length of the devices ranges from 0.5 μm to 2.25 μm. (c) A Sample with two 2-point
devices. The length of devices is 1 μm. (d) A sample with three 2-point devices. The
length of the devices is 1 μm. The dashed lines show the flakes lying underneath the
contacts. The scale bar represents 20 μm.
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5.2.3 Electronic thermal conductivity in bilayer graphene

Electronic thermal conductivity measurements would give information about how

much energy is carried by charge carriers in bilayer graphene. Furthermore, it would

help us understand electron-phonon interactions and electron cooling mechanisms

in bilayer graphene. Understanding electron-phonon interaction is a significant step

towards explaining many other physical processes in solids. For example, electron-

phonon interaction can affect the electron transport, relaxation processes, electronic

and phononic thermal conductivity, heat capacity, superconductivity and so on.

Bilayer graphene has been favoured to be used in applications thanks to the

possibility of opening a band gap [98–102]. Because of this gap, bilayer graphene

FETs can have a higher on/off ratio which can be up to 100 at room temperatures

[97, 106, 107]. Studying the electronic thermal conductivity in bilayer graphene

FETs can give us the knowledge necessary to control (via doping, strain, etc..)

the amount of heat carried by the charge carriers which would be very helpful for

developing novel applications in nano-electronics [108] and opto-electronics [97] such

as bolometers [109,110], photodetectors for terahertz detection [96, 111].

For our measurements, the suspension of the bilayer graphene channels will prevent

any heat leakage to the substrate. Thus, the heat will only diffuse through the

graphene crystal via scattering processes. The heat is transferred through electron-

phonon scattering which is described by the following power law:

P = Σ (T δ
e − T δ

ph) (5.7)

where Σ is the coupling constant, Te is the electron temperature and Tph is the phonon

temperature [60, 112]. At intermediate temperatures, the thermal relaxation of hot-

electrons through acoustic phonons [110] would be Pe−ac ∝ (T 4
e − T 4

o ) where To is

the bath temperature, while the heat diffused by hot-electron scatterings is given

by Pdiff ∝ (T 2
e − T 2

o ) [60]. Therefore, at low enough temperatures and low bias,

electron-phonon energy transfer in bilayer graphene shouldd be small and the heat

transport dominated by hot electrons diffusion [60,109,113]. In the high temperature

regime and at high bias voltages, optical phonons will come into effect and electronic

heat diffusion will be dominated by phonon scatterings (Pe−op ∝ T 2
e − T 2

o ) [60, 112].

It was shown that electron-optical phonon scattering in bilayer graphene dominates

at electronic temperatures of T = 300 - 1000 K [112]. Figure 5.9 shows a plot of
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estimated Pe−ph in bilayer graphene as a function of electronic temperature Te (for

n = 1011 cm−2 and Tph = 0), due to different phonon scattering processes (adapted

from Reference [112]).

Figure 5.9: Expected Pe−ph in bilayer graphene versus electronic temperature Te (for
n = 1011 cm−2 and Tph = 0), due to different phonon scattering processes (adapted
from Reference [112]).

It is both experimentally and theoretically suggested that at intermediate

temperatures and low bias voltage (corresponding to electronic temperatures of <

300 K), electron-phonon energy transfer will be minimum. As a result, it should

be possible to decouple the electron temperature (Te) from the lattice temperature

(Tphonon) in bilayer graphene and isolate the electronic thermal conductivity. Based

on our work with monolayer graphene, we can propose that the electronic thermal

conductivity can be isolated in our suspended bilayer grapehene FETs by working

at low bias voltages and temperatures (< 300 K). Bilayer graphene FETs should be

annealed to increase the mobility of charge carriers, however it should be left in the

diffusive regime.

Another way to study Ke in bilayer graphene FETs would be ac measurements

[114, 115]. If an alternating-current at an angular frequency ω, I = I0Sin(ωt), is

applied to a material, an oscillating power will be created. The power at the same

frequency, Pω, is due to the Peltier effect and is called first harmonic. The power

induced at frequency 2ω, P2ω, arises from the Joule heating and is called second
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harmonic. From the second harmonic, the temperature rise ΔT2ω can be extracted.

These experiment can be extended to the Quantum Hall regime. By applying a

perpendicular magnetic field to the devices, Quantum Hall Effects (QHE) in bilayer

graphene can be observed [116, 117]. QHE experiments have been successful on

bilayer graphene with similar two-point devices and found a temperature dependent

differential conductance around the CNP at very low temperatures [118]. Therefore

one can try to studyKe with our approach in the QHE regime. The contact resistance

of the devices can be extracted by adapting the technique presented in the Ref. [118].

This work can help to understand how heat / energy is carried by the QHE edge

states.

5.3 Contributions to Other Projects

I made contribution to other projects which resulted in two publications in peer-

reviewed journals [119, 120]. In this section, we will briefly mention the results of

these two projects.

5.3.1 Ultra-short suspended single-wall carbon nanotube

transistors

We described a method to fabricate clean suspended single-wall carbon nanotube

(SWCNT) transistors hosting a single quantum dot ranging in length from a few

10s of nm down to ≈ 3 nm. We first aligned narrow gold bow-tie junctions on

top of individual SWCNTs and suspend the devices. We then used a feedback-

controlled electromigration to break the gold junctions and expose nm-sized sections

of SWCNTs. We measured electron transport in these devices at low temperature

and showed that they form clean and tunable single-electron transistors. These ultra-

short suspended transistors offer the prospect of studying THz oscillators with strong

electron-vibron coupling.
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(a) (b)

Figure 5.10: Ultra-short suspended single-wall carbon nanotube transistors. (a) Top
view SEM image of SWCNT device after breaking. The inset shows a zoom-in on the
22 ± 5 nm-long SWCNT-QD. (b) I − VB − VG data for SWCNT device. The data
show clean SWCNT-QD [119].

5.3.2 Tailoring 10 nm scale suspended graphene junctions

and quantum dots

The possibility to make 10 nm scale, and low-disorder, suspended graphene devices

would open up many possibilities to study and make use of strongly coupled quantum

electronics, quantum mechanics, and optics. We presented a versatile method, based

on the electromigration of gold-on-graphene bow-tie bridges, to fabricate low-disorder

suspended graphene junctions and quantum dots with lengths ranging from 6 nm up

to 55 nm. We controlled the length of the junctions, and shape of their gold contacts

by adjusting the power at which the electromigration process is allowed to avalanche.

Using carefully engineered gold contacts and a nonuniform downward electrostatic

force, we could controllably tear the width of suspended graphene channels from over

100 nm down to 27 nm. We demonstrated that this lateral confinement creates high-

quality suspended quantum dots. This fabrication method could be extended to other

two-dimensional materials.
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(a) (b)

Figure 5.11: Tailoring 10 nm scale suspended graphene junctions and quantum dots.
(a) Top view SEM image of a device whose graphene channel was cut down to the
width of its sharp source contact. (b) dI/dVB−VB−VG data for the graphene junction
depicted in (a). The dashed lines show Coulomb diamonds.The data indicates that
there is a single QD in the channel [120].
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