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Abstract. Multivalued maps have many applications. We consider one di-
mensional multivalued maps whose graphs are defined by lower and upper

boundary maps. Let I = [0,1] and let P be a partition of I into a finite num-
ber of intervals. Let τ`, τu : I → I be two piecewise expanding maps on P

such that τ` ≤ τu. Let G ⊂ I × I be the region bounded by the graphs of τ`

and τu. Any map η : I → I that takes values in G is called a selector of the

multivalued map defined by G. We assume that τ` and τu as well as all the
selectors we consider have invariant distribution functions. Let F∗ be a tar-

get distribution. We prove the existence of a selector η
∗ which minimizes the

functional J(η) =
R

I
(Fη (t)−F∗(t))2dt, where η has invariant distribution Fη .

Other results pertain to the functional J1(η) =
R

I
(PηF∗(t)−F∗(t))2dt, where

Pη is the Frobenius-Perron operator of η acting on distribution functions. We

present an algorithm for finding selectors which minimize J1(η).
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1. INTRODUCTION

A function f : X → X maps every t ∈ X to only one point y = f(t). There are
applications where this is not the case. For example, in economics a consumer’s
action may not manifest itself in a uniquely determined process. To study such
problems we use multivalued functions. A multivalued function Γ from a set X
to a set X, denoted by Γ : X ⇒ X, is a function from X to the set 2X of all
subsets of X. The theory of such maps is well developed [2, 11] and have important
applications in rigorous numerics [12], economics [5], dynamical systems [17], and
differential relations [1].

The graph of Γ is the set: G = {(t, s) ∈ X ×X, s ∈ Γ(t)}. Once Γ is specified,
we consider maps η : X → X with η(t) ∈ Γ(t). Such maps are called selectors.
Establishing the existence of continuous selectors in topological spaces has been an
area of active interest for more than 60 years [14, 16, 1, 20, 21]. In the setting of
chaotic dynamical systems, however, selectors possessing measure theoretic, rather
than topological, properties are of paramount interest. The study of such selectors
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and their properties was begun in [7, 10], where we studied families of selectors
that possess absolutely continuous invariant measures (acim). In [7] we studied the
properties of the associated attainable probability distribution functions of these
families. In simple terms we considered the capacity of a set G ⊂ X×X to possess
selectors that have acims. This is an entirely new problem and may have applica-
tion to economics, brain modeling and modeling complex physical processes such
as the two-slit experiment of quantum mechanics. In [10] we studied the following
problem: given a set G and a selector inside G with invariant distribution F, can
F be realized by a dynamical system on the boundary of G? We described a proce-
dure where this can be accomplished for large classes of selectors by using position
dependent random maps ([8, 19]) based on the boundaries of the multivalued func-
tion. We also studied the extreme points of the attainable distributions of families
of selectors that possess acims and showed that in certain settings these extreme
points come from selectors that are bang-bang, that is, they take their values in a
deterministic way only on the boundaries of the multivalued map.

The inverse Frobenius-Perron operator problem has been solved in a number of
ways [6, 9, 15]. None of these methods, however, impose constraints on the dy-
namical systems (maps) which produce the desired statistical dynamics. The main
objective of this note is to solve the inverse Frobenius-Perron problem in special
cases under the constraint that the chaotic map which possesses or approximates
a targeted density or distribution function has its graph entirely inside a specified
region of the space.

Consider, for example, the following economic problem. A desired gross domestic
product (GDP) growth for a country is between 2% and 4%. Let X = [2, 4]. Let
F ∗(x) be the target distribution function of a sharply peaked probability density
function centered at x = 3. Now we can readily invert the Frobenius-Perron operator
for a class of maps without constraints on their images and obtain a map whose
dynamics display F ∗. However, in a realistic setting, economists do not want the
GDP to range freely across X. For example, if the GDP growth is close to 4%,
they may want the following year to have lower GDP growth to prevent inflation.
On the other hand, if the GDP is 2% or less, economists would want to stimulate
the economy the next year and obtain a GDP of 4%. Such conditions impose
constraints on the range of maps that are admissible, forcing the use of boundaries
(defined by the graphs of maps) that define a multivalued map and describe the
allowable image space for the graphs of selectors.

In many control problems, the boundaries play an important role. For exam-
ple, in the time optimal problem the control is bang-bang, i.e., entirely on the
boundaries of the admissible control region. In the context of selectors, the im-
posed constraints on the images, may preclude the possibility of solving the inverse
Frobenius-Problem problem exactly. For an exact solution the image of the map
may be partly or entirely outside the admissible range. In such situations, our
target pdf can only be approximated by maps which are entirely or partly on the
boundaries of the admissible range defined by the multivalued map. In this note
we treat such problems for the first time in the literature.

We consider only the one dimensional situation; that is X is the interval I = [0, 1]
and m is Lebesgue measure on I. We are concerned with the existence of optimal
selectors, that is, selectors that minimize a functional. We have a multivalued map
Γ : I ⇒ I. Let S denote a class of selectors. We assume that each map η in S
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has an invariant measure µη with distribution Fη (Fη(t) = µη([0, t]). Let F ∗ be
a target distribution function. We will prove that under certain conditions on F ∗

and S, there exists a selector η
∗ in S which minimizes the functional:

(1) J(η) =

∫

I

(Fη(t) − F ∗(t))2dm(t).

In Section 2 we assume that Γ(t) = [τ`(t), τu(t)] is an interval for each t ∈ I and
we define the lower and upper boundary maps to be τ`(t), and τu(t), respectively. A
simple example is where the admissible class of selectors is characterized by having
distributions that are convex combinations of the invariant distributions for the
boundary maps, as shown below in Section 2.

In Section 3 we prove the existence of an optimal selector in a general setting.
Although the functional (1) seems simple, it is actually difficult to work with since
Fη is the solution of a functional equation (Frobenius-Perron equation) involving
the unknown selector η. In Sections 4 and 5 we consider the simpler functional

(2) J1(η) =

∫

I

(PηF ∗(t) − F ∗(t))2dm(t),

where Pη is the Frobenius-Perron operator of η acting on distribution functions [4]
and present a complete solution to the optimal problem for symmetric maps. Since
we can write

Fη − F ∗ = (Fη − PηFη) + (PηFη − PηF ∗) + (PηF ∗ − F ∗) ,

J1 is a part of J. J1 also has the property that if the minimum of J is 0 for the
selector η

∗, then the minimum of J1 is also 0 for η
∗.

In Section 5 we define a class of target distribution functions and a class of
admissible selectors for which we can apply a practical algorithm which achieves an
optimal selector. An example will show that the optimal selectors can have their
images on the boundaries of the admissible region.

2. SIMPLE EXAMPLE

Let P be a partition of I into a finite number of intervals. Let the lower and
upper boundary maps τ`, τu : I → I be two piecewise expanding maps on P, i.e.,
piecewise monotonic, piecewise C2 maps with inf |τ ′| > 1. Then, the graph of Γ
is the region G ⊂ I × I bounded by the graphs of τ` and τu. Any map η : I → I
whose graph is in G is a selector. Since τ`, τu are piecewise expanding they
possess acims ([3]) µ` and µu, respectively. Let F` and Fu denote the probability
distribution functions of µ` and µu, respectively. From [7] we know that, for any
convex combination F of F` and Fu, we can find a selector η such that F is the
η-invariant distribution function. Let Fη = λF` + (1 − λ)Fu. Then,

J(η) =

∫

I

(λF` + (1 − λ)Fu − F ∗)2dm

= λ2

∫

I

(F` − Fu)2dm + 2λ

∫

I

(F` − Fu)(Fu − F ∗)dm +

∫

I

(Fu − F ∗)2dm

To minimize, we differentiate in λ and obtain the optimal λ∗:

(3) λ∗ =

∫

I
(Fu − F`)(Fu − F ∗)dm

∫

I(F` − Fu)2dm
.
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If λ∗ does not satisfy 0 ≤ λ∗ ≤ 1, we choose λ∗ equal to 0 or 1. Note that, by the
Cauchy-Schwarz inequality, λ∗ ≤ 1 if

∫

I

(Fu − F ∗)2dm ≤
∫

I

(Fu − F`)
2dm .

3. EXISTENCE THEOREM

In this section, we consider the case where the boundary maps τ` and τu are
piecewise expanding and piecewise onto on the partition P = {I1, I2} of I, where
I1 = [0, 1/2] and I2 = [1/2, 1]. We assume that both boundary maps are increasing
on I1 and decreasing on I2.

Let T be the class of maps η : I → I satisfying the following conditions:
(a) Each η ∈ T is piecewise expanding on P with the same monotonicity as the

boundary maps on elements of P.
(b) There is a α > 1 such that |η′| > α whenever |η′| exists, for all η ∈ T .
(c) There is a M > 0 such that V[0,1]η

′ ≤ M , for all η ∈ T , where V[0,1]f denotes
the total variation of the function f on [0, 1].

(d) τ`(t) ≤ η(t) ≤ τu(t) for all η ∈ T , t ∈ [0, 1].
Then, any η ∈ T preserves a distribution function F whose density function is

supported on all of I, i.e., F ′ > 0 a.e., [3]. From [4] we know that F satisfies the
equation F (t) = F (η−1

1 (t)) + 1 − F (η−1
2 (t)), t a.e., where ηi = η|Ii

, i = 1, 2.
We define the set of attainable distribution functions, D ={F

∣

∣ F is a distribution
function preserved by some selector η ∈ T }. For a given target distribution function
F ∗, we will show the existence of a selector minimizing the functional J defined in
(1)

J(η) =

∫

I

(Fη − F ∗)2 dm .

We first prove the existence of an optimal distribution function in the set D.

Lemma 1. The set D is compact in L1 and convex.

Proof. For each F ∈ D, we have both |F | ≤ 1 and V[0,1]F = 1. Thus, by Helly’s

Theorem the set D is pre-compact in L1. We show that D is closed. Let Fn → F ,
n = 1, 2, . . . , be a convergent sequence of distributions in D. Let {ηn} ⊂ T be the
sequence of corresponding selectors. Let us consider the sequence of their derivatives
{η′

n}. It follows from the assumption (c) of T and Helly’s theorem that {η′
n}

contains a subsequence convergent to a function η
′, which satisfies assumptions b),

c), d). Its integral is the map η which is clearly in T . Because of acim stability of
η ( [3]) its invariant distribution is F , the limit of the Fn’s.

Now we will prove that D is convex. Let F (1), F (2) ∈ D be two different
distributions which are preserved by selectors γ

(1) and γ
(2), respectively. Let 0 <

λ < 1 and F = λF (1) + (1 − λ)F (2).
We define the inverse of each branch of a new selector η by

(4) η
−1
i (t) = F−1

(

λF (1)((γ
(1)
i )−1(t)) + (1 − λ)F (2)((γ

(2)
i )−1(t))

)

,

where η
−1
i = η|Ii

−1
, (γ

(1)
i )−1 = (γ(1)|Ii

)−1, (γ
(2)
i )−1 = (γ(2)|Ii

)−1, i = 1, 2. The
selector η defined in this way has the same monotonicity and number of branches as
γ

(1) and γ
(2). Invoking the proof of Theorem 1 of [7], we can show that η preserves

F .
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To show that F ∈ D it suffices to prove that η is a selector, that is, that its
graph is between the graphs of selectors γ

(1) and γ
(2). There are two possibilities.

(I): If γ
(1)
i ≤ γ

(2)
i , i = 1, 2, then we can think of γ

(1) and γ
(2) as boundary maps,

and the lemma can be proved as in Theorem 1 of [7].

(II): (I) is not the case, which means one of the selectors γ
(1) and γ

(2) is not
always above the other. Let us consider the first branch. The proof for the second
branch is similar. Let us further assume that on an interval [a, b] ⊆ I, we have

(γ
(1)
1 )−1 ≥ (γ

(2)
1 )−1 (the proof for the case (γ

(1)
1 )−1 ≤ (γ

(2)
1 )−1 is similar), and

(γ
(1)
1 )−1(a) = (γ

(2)
1 )−1(a), (γ

(1)
1 )−1(b) = (γ

(2)
1 )−1(b). Now, for t ∈ [a, b], it follows

from equation (4) that

F
(

η
−1
1 (t)

)

= λF (1)((γ
(1)
1 )−1(t)) + (1 − λ)F (2)((γ

(2)
1 )−1(t)) .

Since F (1) and F (2) are non-decreasing, we have

λF (1)((γ
(2)
1 )−1(t)) + (1 − λ)F (2)((γ

(2)
1 )−1(t))

≤ F
(

η
−1
1 (t)

)

≤ λF (1)((γ
(1)
1 )−1(t)) + (1 − λ)F (2)((γ

(1)
1 )−1(t)) ,

which is equivalent to

F ((γ
(2)
1 )−1(t)) ≤ F

(

η
−1
1 (t)

)

≤ F ((γ
(1)
1 )−1(t)) ,

implying that η
−1
1 defined in (4) has its graph between those of (γ

(1)
1 )−1 and

(γ
(2)
1 )−1. Thus, η defined by equation (4) is located between γ

(1) and γ
(2). Since

γ
(1) and γ

(1) are selectors, η is also a selector. This shows that F ∈ D and
completes the proof of the lemma. �

Remark 2. The above proof can be generalized to maps and selectors having more
than two branches and not necessarily piecewise onto as well as to random maps
[8, 19].

Let d(·, ·) be the metric induced by the norm on L2. We now present the main
result of this section.

Theorem 3. There exists a unique point F in D such that

d(F ∗, F ) = d(F ∗, D),

and there exists a selector η ∈ T which preserves the distribution F and minimizes
the functional J .

Proof. Since D consists of uniformly bounded functions it is compact and convex in
L2. The existence of a unique F follows by strict convexity of L2. The existence of
a corresponding η follows from the definition of D, although there might be more
than one selector preserving the distribution F . �

4. SYMMETRIC OPTIMAL SELECTORS

In this section we consider selectors that are symmetric and prove the existence
of an optimal selector. Let the boundary maps τs : [0, 1] → [0, 1], s ∈ {`, u}, satisfy

(a) τs is continuous and monotonic on I1 = [0, 1/2] and on I2 = [1/2, 1] with
τs(0) = τs(1) = 0 and τs(1/2) = 1, s ∈ {`, u}. Also, τ` ≤ τu.

(b) τs(t) = τs(1−t) for all t ∈ [0, 1], i.e., τs’s are symmetric with respect t = 1/2,
s ∈ {`, u}.
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Let F ∗ be a distribution with f∗ = (F ∗)′ > 0 on all of [0, 1]. We are looking
for a map τ` ≤ η ≤ τu satisfying conditions (a) and (b) and which minimizes the
functional J1(η) =

∫

I
(Pη(F ∗)−F ∗)2dm defined in (2). If we define x(t) = η

−1
1 (t) :

[0, 1] → [0, 1/2] (where η1 = η|I1
), then we have

J1(η) =

∫

I

[F ∗(x(t)) + 1 − F ∗(1 − x(t)) − F ∗(t)]2dm(t) .

It is enough to find the x∗ that minimizes J1(η). Since η(t) is symmetric, x(t) =
η
−1
1 (t) determines η(t) uniquely on [0, 1]. Hence we can write J1(η) = J1(x).
We have the following obvious proposition:

Proposition 4. If for each t ∈ [0, 1], x∗(t) is admissible and such that [F ∗(x∗(t))+
1 − F ∗(1 − x∗(t)) − F ∗(t)]2 is minimal, then J1(x

∗) is the minimum.

We now prove:

Proposition 5. The optimal admissible solution x∗(t) =: [0, 1] → [0, 1/2] is an
increasing continuous union of pieces which satisfy the Frobenius-Perron operator
equation for distributions [4]:

(5) [F ∗(x) + 1 − F ∗(1 − x) − F ∗(t)]2 = 0,

together with pieces of the graphs of τ−1
` and τ−1

u .

Proof. First, we will show that equation (5) has a unique solution. We rewrite
equation (5) as

(6) F ∗(1 − x) − F ∗(x) = 1 − F ∗(t) .

Since F ∗′ > 0, both sides are strictly decreasing functions. The left hand side
equals 1 for x = 0 and equals 0 for x = 1/2. The right hand side equals 1 for t = 0
and 0 for t = 1. This means that for any t ∈ [0, 1] there is exactly one x ∈ [0, 1/2]
satisfying equation (6). Thus, x(t) is a continuous strictly increasing function from
[0, 1] onto [0, 1/2].

1/2

0  t             t              t          t          t                1
1 2 3 4 5

t

t

l,1

u,1

-1

-1x

Figure 1. Lower and upper inverses and the solution x(t) of (5)
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The remainder of the proof is motivated by Figure 1 which shows the first
branches of the inverses of the lower boundary map τ−1

`,1 (red) and of upper bound-

ary map τ−1
u,1 (green) and the curve x(t), the unique solution of G(t, x) = [F ∗(x) +

1 − F ∗(1 − x) − F ∗(t)]2 = 0 (blue). Note that τ` ≤ τu implies τ−1
`,1 ≥ τ−1

u,1. Since

G(t, x) is non-negative and the value of G(t, x) at x(t) is 0, x(t) is the minimum
point of G(t, x). We have

∂G(t, x)

∂x
= 2[F ∗(x) + 1 − F ∗(1 − x) − F ∗(t)](f∗(x) + f∗(1 − x)) .

Since f∗ > 0, x(t) is the only zero of ∂G(t,x)
∂x for any fixed t. Thus, for each fixed t

the graph of G(t, x) is similar to that of the parabola x2.
Thus, the surface [F ∗(x) + 1− F ∗(1 − x) −F ∗(t)]2 looks like a river valley with

the graph of x(t) (blue) the river at the bottom. Now, we construct the optimal
admissible solution x∗(t). We set

x∗(t) = max{min{x(t), τ−1
`,1 (t)}, τ−1

u,1(t)} ,

i.e.,

x∗(t) =











x(t) if τ−1
u,1(t) ≤ x(t) ≤ τ−1

`,1 (t);

τ−1
`,1 (t) if x(t) ≥ τ−1

`,1 (t);

τ−1
u,1(t) if x(t) ≤ τ−1

u,1(t).

Whenever x∗(t) 6= x(t), the graph of x∗(t) separates the curve x(t) from all other
admissible points so x∗(t) has the lowest admissible values. x∗(t) constructed in
this way is continuous, increasing and for each point t has the lowest admissible
value. Thus, x∗(t) minimizes J1(x) by Proposition 4. �

In the example shown in Figure 1 the optimal solution x∗(t) is defined as follows:

x∗(t) =







































τ−1
`,1 (t), for t ∈ [0, t1]; (red)

x(t), for t ∈ [t1, t2]; (blue)

τ−1
u,1(t), for t ∈ [t2, t3]; (green)

x(t), for t ∈ [t3, t4]; (blue)

τ−1
`,1 (t), for t ∈ [t4, t5]; (red)

x(t), for t ∈ [t5, 1]. (blue)

It is interesting to summarize that segments of the optimal solution are on the
boundaries of the admissible region.

We will now consider slightly more general cases. The first case has boundary
maps which are tent-shaped and the other with the boundary maps shaped like the
2x (mod 1) map.

A: Tent-shaped maps: Let τs : [0, 1] → [0, 1], s ∈ {`, u}, satisfy
(a) τs is continuous and monotonic on [0, 1/2] and on [1/2, 1] with τs(0) = τs(1) =

0 and τs(1/2) = 1, s ∈ {`, u}. Also, τ` ≤ τu.
(b) There exists a strictly decreasing continuous function w : [0, 1/2] → [1/2, 1],

w(0) = 1, w(1/2) = 1/2 such that τs,1(t) = τs,2(w(t)) for all t ∈ [0, 1/2], s ∈ {`, u}.
Let F ∗ be a target distribution with f∗ = F ∗′ > 0 on all of [0, 1]. We are looking

for a map τ` ≤ η ≤ τu satisfying conditions (a) and (b) and which minimizes the
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Figure 2. Maps τ` (red), τu (green) and the optimal solution η

(blue) for F ∗(t) = t2.

functional J1(η). If we define x(t) = η
−1
1 : [0, 1] → [0, 1/2], then we have

J1(η) =

∫

I

[F ∗(x(t)) + 1 − F ∗(w(x(t))) − F ∗(t)]2dm(t) .

Since η(t) satisfies condition (b), x(t) = η
−1
1 (t) determines η(t) uniquely on [0, 1].

Hence, we can write J1(η) = J1(x). It is enough to find x∗ that minimizes J1(x).

Proposition 6. The optimal admissible solution x∗(t) =: [0, 1] → [0, 1/2] is an
increasing continuous union of pieces which satisfy the Frobenius-Perron operator
equation for distributions [4]:

(7) [F ∗(x) + 1 − F ∗(w(x)) − F ∗(t)]2 = 0

together with pieces of the graphs of τ−1
` and τ−1

u .

The proof is almost identical to that of Proposition 5.
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Figure 3. Inverse branches of τ` (red), τu (green) and of solution
x (blue) for F ∗(t) defined by equation ( 8).

Example 7.

Let w(t) = 1 − 2t2, t ∈ [0, 1/2]. Let τ`,1(t) = 2t, τu,1(t) =
√

2t for 0 ≤ t ≤ 1/2
and define

τs(t) =

{

τs,1(t) , for 0 ≤ t ≤ 1/2 ;

τs,1(w
−1(t)) , for 1/2 < t ≤ 1 ,

s ∈ {`, u}, see the red and green graphs in Figure 2. For the target distribution

F ∗(t) = t2 we can solve the equation (7) and obtain x(t) = 1
4

√

10− 2
√

25 − 16t2.

Then, η1(t) = x−1(t) = t
√

5 − 4t2 and η2(t) = η1(w
−1(t)). See the blue graph in

Figure 2. In this case the map η is between maps τ` and τu and it is the selector
which minimizes the functional J1(η). It minimizes the functional J(η) as well.

For the target distribution

(8) F ∗(t) =

{

t , for 0 ≤ t ≤ 1/2 ;

2t2 − 2t + 1 , for 1/2 < t ≤ 1 ,

we found x(t), the solution of equation (7), numerically. The graphs presented in
Figure 3 are: τ−1

`,1 and τ−1
`,2 in red, τ−1

u,1 and τ−1
u,2 in green, x and w ◦ x in blue. This

time the graph of x is not entirely between the graphs of τ−1
`,1 and τ−1

u,1 . The optimal
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solution is

x∗(t) =











τ−1
`,1 (t) , for 0 ≤ t ≤ 0.5259574806 ;

x(t) , for 0.5259574806 < t ≤ 0.846817465580226 ;

τ−1
u,1(t) , for 0.846817465580226 < t ≤ 1 ,

and the optimal selector is

η
∗(t) =

{

(x∗)−1(t) , for 0 ≤ t ≤ 1/2 ;

(x∗)−1(w−1(t)) , for 1/2 < t ≤ 1 .

B: 2x (mod 1)-shaped maps: Let τs : [0, 1] → [0, 1], s ∈ {`, u}, satisfy:
(a) τs is continuous and monotonic on [0, 1/2] and on [1/2, 1] with τs(0) =

τs(1/2+) = 0 and τs(1/2−) = τs(1) = 1, s ∈ {`, u}. Also τ` ≤ τu.
(b) There exists a strictly increasing continuous function w : [0, 1/2] → [1/2, 1],

w(0) = 1/2, w(1/2) = 1 such that τs,1(t) = τs,2(w(t)) for all t ∈ [0, 1/2],s ∈ {`, u}.
Let F ∗ be a distribution with f∗ = (F ∗)′ > 0 on all of [0, 1]. We are looking

for a map τ` ≤ η ≤ τu satisfying conditions (a) and (b) and which minimizes the
functional J1(η) =

∫

I
(Pη(F ∗) − F ∗)2dm. If we define x(t) = η

−1
1 (t) : [0, 1] →

[0, 1/2], then we have

J1(η) =

∫

I

[F ∗(x(t)) + F ∗(w(x(t))) − F ∗(1/2)− F ∗(t)]2dm(t) .

The form of Pη(F ∗) is different than before since the shape of the maps we now

consider is different. Since η(t) satisfies condition (b), x(t) = η
−1
1 (t) determines

η(t) uniquely on [0, 1]. Hence, we can write J1(η) = J1(x). It is enough to find x∗

that minimizes J1(x).

Proposition 8. The optimal admissible solution x∗(t) =: [0, 1] → [0, 1/2] is an
increasing continuous union of pieces which satisfy the Frobenius-Perron operator
equation for distributions:

(9) [F ∗(x) + F ∗(w(x)) − F ∗(1/2) − F ∗(t)]2 = 0

together with pieces of the graphs of τ−1
` and τ−1

u .

Again, the proof follows closely that of Proposition 5.

5. An algorithm

We consider maps τ`, τu (τ` ≤ τu) and η shaped like 2x (mod 1), i.e., if ρ denotes
any of these maps we have: both branches ρ1 , ρ2 are increasing, ρ1(0) = ρ2(1/2) =
0, ρ1(1/2) = ρ2(1) = 1 and ρ1(t) ≥ t, 0 ≤ t ≤ 1/2, ρ2(t) ≤ t, 1/2 ≤ t ≤ 1. See
Figure 4. We also assume ρ′1 > 1, ρ′2 > 1. We let x(t) = η

−1
1 (t) and y(t) = η

−1
2 (t),

0 ≤ t ≤ 1. Thus, x′ < 1 and y′ < 1.
The fixed point Frobenius-Perron operator equation we want satisfied as closely

as possible is

(10) F ∗(t) = F ∗(x(t)) + F ∗(y(t)) − F ∗(1/2) ,

where F ∗ is a given target distribution function. We assume f∗ = (F ∗)′ > 0 on all
of [0, 1].

We present an algorithm which, for any given y(t), produces a sequence of selec-
tors η

(n) with diminishing values of J1(η
(n)).

We assume:
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h

h

0              1/2               1         0                                 1

1

2 x

�

1/2

Figure 4. η1, η2 and their inverses.

(i) (F ∗)′ is decreasing;
(ii) the inverses τ−1

`,1 and τ−1
u,1 of the boundary maps satisfy the following condition

related to equation (10): the functions

ys(t) = F ∗−1 [

F ∗(t) − F ∗(τ−1
s,1 (t)) + F ∗(1/2)

]

, s ∈ {`, u} ,

satisfy

(11) 0 ≤ y′s(t) ≤ 1 , t ∈ [0, 1], s ∈ {`, u} .

The algorithm, with some modifications, can be applied even if condition (ii) does
not hold. The first loop of the procedure is illustrated in Figures 5, 6 and 7.

Let η
(0) be any selector and let y(1)(t) = (η

(0)
2 )−1(t). Then, y(1) satisfies the

assumptions of Proposition 9, which is proved in the sequel. Using equation (10),
we define the corresponding temporary inverse

x(2,T )(t) = (F ∗)
−1

[

F ∗(t) − F ∗(y(1)(t)) + F ∗(1/2)
]

.

In Figure 5 we show the initial inverse y(1)(t) and temporary x(2,T )(t). On intervals
[0, t1] and [t2, t3] this pair is already optimal, i.e., they contribute 0 to the value of
the functional J1(η

(1,T )) where

η
(1,T )(θ) =

{

(x(2,T ))−1(θ), 0 ≤ θ ≤ 1/2 ;

(y(1))−1(θ), 1/2 < θ ≤ 1 .

On intervals [t1, t2] and [t3, 1] the temporary x(2,T )(t) is outside the region defined
by the boundary maps and is, therefore, inadmissible. We correct it as follows: let

x(2)(t) = max{min{x(2,T )(t), τ−1
`,1 (t)}, τ−1

u,1(t)} .
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1/2

0                      t             t                         t       1
1 2 3

t

t

l,1

u,1

-1

-1

x 

t
-1

t u,2

-1

� � � �

� � � � �

1

l,2

Figure 5. The initial inverse y(1)(t) and the corresponding tem-
porary inverse x(2,T )(t).

It can be proven the same way as in Proposition 5 that, for given y(1), this choice
of x(2) produces the minimal possible value of J1(η

(1)), where

η
(1)(θ) =

{

(x(2))−1(θ), 0 ≤ θ ≤ 1/2 ;

(y(1))−1(θ), 1/2 < θ ≤ 1 .

In particular, J1(η
(1)) ≤ J1(η

(0)). The map x(2) is shown in Figure 6. Now we
produce the temporary inverse corresponding to x(2)(t) using equation (10):

y(3,T )(t) = (F ∗)
−1

[

F ∗(t) − F ∗(x(2)(t)) + F ∗(1/2)
]

.

By equation (11) it is an increasing function (on [0, t1] ∪ [t2, t3] it coinsides with

y(1)). By monotonicity of the functions in equation (10), we get y(3,T )(t) ≥ y(1)(t)
on [t1, t2] and y(3,T )(t) ≤ y(1)(t) on [t3, 1]. Since y(3,T ) is continuous, the intervals
on which it has to be corrected are strictly inside the intervals on which we have
corrected x(2,T ). In Figure 6 the temporary y(3,T )(t) is already optimal (for given
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1/2
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 �
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1

4

Figure 6. The inverse x(2)(t) and the corresponding temporary
inverse y(3,T )(t).

x(2)(t)) on interval [0, t4] and has to be corrected on [t4, 1]. We set

y3(t) = max{y(3,T )(t), τ−1
u,2(t)} .

Again, it can be shown the same way as in Proposition 5 that, for given x(2), this
choice of y(3) produces the minimal possible value of J1(η

(2)), where

η
(2)(θ) =

{

(x(2))−1(θ), 0 ≤ θ ≤ 1/2 ;

(y(3))−1(θ), 1/2 < θ ≤ 1 .

In particular, J1(η
(2)) ≤ J1(η

(1)). The map y(3) is shown in Figure 7.
The first loop of the algorithm is complete. Now we iterate, producing the

sequence of selectors η
(n). For odd indices n, we have

η
(n)(θ) = (x(n+1))−1(θ) · χ[0,1/2](θ) + (y(n))−1(θ) · χ[1/2,1](θ),

and for even indices n, we have

η
(n)(θ) = (x(n))−1(θ) · χ[0,1/2](θ) + (y(n+1))−1(θ) · χ[1/2,1](θ).
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1/2

t l,2
-1

t u,2

-1

� � � �

1

3t    t0 14

Figure 7. The inverse y(3)(t).

The values J1(η
(n)) are decreasing.

The following propositions justify the validity of the steps in the algorithm.

Proposition 9. Let x(t) and y(t) satisfy equation (10). If y(t) is increasing,
y′(t) < 1, y(t) ≥ t and y(t) ≥ 1/2, then x(t) is increasing, x′(t) < 1, x(t) ≤ t and
x(t) ≤ 1/2 for 0 ≤ t ≤ 1.

Proof. Differentiating (10), we obtain

(12) F ∗′ = F ∗′(x) · x′ + F ∗′(y) · y′,
or

x′(t) =
F ∗′(t) − F ∗′(y(t)) · y′(t)

F ∗′(x(t))
.

We assume that F ∗′ is decreasing. Since y′ < 1, we have

x′(t) >
F ∗′(t) − F ∗′(y(t))

F ∗′(x(t))
,

and since y(t) > t we have F ∗′(t) > F ∗′(y(t)) and thus

x′ > 0 .

We now show that x(t) ≤ t. Our assumption is that y(t) is increasing and y(t) >
1/2. Since F ∗(t) = F ∗(x(t))+F ∗(y(t))−F ∗(1/2), it follows that F ∗(t) > F ∗(x(t)).
Since F ∗ is an increasing function, we have x(t) < t.

We rewrite (10) in the form

F ∗(t) − F ∗(y(t)) = F ∗(x(t)) − F ∗(1/2) .

Since F ∗ is an increasing function and y(t) ≥ t, we have x(t) < 1/2.
Now we show that x′ < 1. Since F ∗′(y(t)) · y′(t) > 0, we have

(13) x′(t) <
F ∗′(t)

F ∗′(x(t))
≤ 1,

since x(t) ≤ t. �
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Proposition 10. Let x(t) and y(t) satisfy equation (10). Assume that x(t) is
increasing, x′(t) < 1, x(t) ≤ t and x(t) ≤ 1/2. If y(t) is well defined, then y(t) ≥ t
and y(t) ≥ 1/2 for 0 ≤ t ≤ 1.

Proof. We will show that y(t) ≥ t and y(t) > 1/2. We rewrite equation (10) in the
form

F ∗(t) − F ∗(y(t)) = F ∗(x(t)) − F ∗(1/2) .

Since x(t) ≤ 1/2 and F ∗ is increasing we have y(t) ≥ t. By rewriting (10) in the
form

F ∗(t) − F ∗(x(t)) = F ∗(y(t)) − F ∗(1/2)

and noting that x(t) ≤ t and F ∗ is increasing, we obtain y(t) > 1/2.

Figure 8. Example 11: The inverse branches of τ`, τu (red and

green), the initial inverse y(1) and the corresponding temporary
x(2,T ) (blue).

�

Example 11.

We consider the boundary maps

τ`(t) = (1.1t)χ[0,1/4](t) + (2.9t− 0.45)χ[1/4,1/2](t)

+ (1.1t− 0.55)χ[1/2,3/4](t) + (2.9t− 1.9)χ[3/4,1](t) ,
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Figure 9. Example 11: The inverse branches of τ`, τu (red and
green), the corrected map x(2) and the corresponding inverse
y(3,T ) = y(3) (blue).

and

τu(t) = (4t)χ[0,1/8](t) +
1

3
(4t + 1)χ[1/8,1/2](t)

+ (4t − 2)χ[1/2,5/8](t) +
1

3
(4t − 1)χ[5/8,1](t) ,

and the concave target distribution function F ∗(t) = (9/8)t−(1/8)t2. The graphs of
the inverse branches of the maps τ`, τu are shown in Figures 8, 9 (red and green). It

can be checked that condition (ii) is satisfied. We start with y(1)(t) = t2/5+3t/10+
1/2 shown in Figure 8 together with the corresponding temporary inverse x(2,T )(t).

The corrected map x(2)(t) is shown in Figure 9 together with the corresponding
inverse y(3,T )(t). Since y(3,T )(t) is admissible, we set y(3)(t) = y(3,T )(t) and the
procedure is complete. The selector η

(2) whose inverse branches are x(2) and y(3)

preserves the distribution function F ∗. We have J1(η
(2)) = 0.

Example 11 continued: Since the maps τ`, τu in Example 11 are symmetric
we can look for an optimal selector using this symmetry (part B of Section 4). The
equation for x is

F ∗(t) = F ∗(x) + F ∗(x + 1/2) − F ∗(1/2) .
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Figure 10. Example 11 continued: The inverse branches of τ`, τu

(red and green) and the symmetric inverse branches of η : x and
y = x + 1/2 (blue).

The solution is x(t) = 2.472222222− 0.02777777778
√

648t2 − 3528t + 7921 and we
set y(t) = x(t) + 1/2. It turns out that the function η whose inverse branches
are these x(t) and y(t) is a selector. See Figure 10. The selector η preserves
the distribution function F ∗ and we have J1(η) = 0. Apparently this solution is
different from the solution obtained in the previous example. This shows that the
optimalization problem does not have a unique solution.
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