Computational Procedures for Robust Nonblocking
Supervisory Control of Discrete-Event Systems

Farid Yari

A Thesis
in
The Department
of
Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science at
Concordia University
Montréal, Québec, Canada

June 2015

(© Farid Yari, 2015

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared
By : Farid Yari

Entitled : Computational Procedures for Robust Nonblocking
Supervisory Control of Discrete-Event Systems

and submitted in partial fulfillment of the requirements for the degree of
Master of Applied Science

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee :

Chair
Dr. R. Raut
Examiner, External
Dr. F. Nasiri (BCEE) To the Program
Examiner
Dr. K. Khorasani
Supervisor

Dr. S. Hashtrudi Zad

Approved by

Dr. W. E. Lynch, Chair
Department of Electrical and Computer Engineering

2015.

Dr. Amir Asif, Dean
Faculty of Engineering and Computer Science

ABSTRACT

Computational Procedures for Robust Nonblocking

Supervisory Control of Discrete-Event Systems

Farid Yari

The concept of robust control arises in control theory in dealing with modeling
uncertainties and model changes. In the study of supervisory control of discrete-event
systems (DES), one approach to robustness is to assume that the exact plant model
is unknown but it belongs to a finite family of DES models. The design objective is to
find a supervisor such that any of the plant DES models in the aforementioned family,
under the supervision of the designed supervisor, meets its design specifications. The
set of solutions of the robust nonblocking supervisory control problem (RNSCP) is
available in the literature in terms of a class of languages. For the case of control
with full event observation, RNSCP has an optimal (maximally permissive) solution.
In the case of control under partial event observation (RNSCP-PO), a maximally
permissive solution does not necessarily exist; however suboptimal solutions (in terms
of normal languages) that are generally more suitable for computational procedures
have been identified.

In this thesis, computational algorithms are developed for finding the solution
of RNSCP in the form of finite-state automaton. First, a computational algorithm
for supremal G-nonblocking languages is presented. Next this algorithm is used
to develop an iterative algorithm that obtains the maximally permissive solution
of RNSCP as the largest fixed point of a suitable operator. It is shown that the

algorithm converges in a bounded number of steps for finite-state plant models and

il

regular specification languages. The computational complexities of the algorithms
are also derived. The resulting algorithms have been implemented in MATLAB
environment using Discrete Event Control Kit (DECK) and applied to solve a problem
of control and fault recovery in a simplified spacecraft propulsion system. Next the
computational algorithm for RNSCP is extended to the case of control under partial
event observation. In this case the maximally permissive solution of RNSCP-PO

among the solutions that have the normality property is obtained.

v

Acknowledgments

It is hard to overstate my gratitude to my supervisor Dr. Shahin Hashtrudi Zad.
I really appreciate the time and energy he devoted to this work. Completion of my
masters would not have been possible without his never-ending support, patience and
guidance. I feel fortunate to work under his supervision.

I would also thank Dr. Siamak Tafazoli for his valuable guidance in the spacecraft
propulsion system analysis.

I owe sincere gratitude to Farzam Boroomand, Hamid Mahboubi, and Nazanin
Hashemi for their kind help during research and thesis completion.

Special thanks to Sepide Movaghati for her continued support, understanding and
never failing faith in me in the past years.

I dedicate this thesis to my parents for their unconditional love, support and

encouragement throughout my life.

Contents

List of Figures

1 Introduction

1.1
1.2
1.3
1.4

1.5
1.6

Supervisory Control of Discrete-event Systems
Robust Supervisory Control
Computational Procedures
Literature Review
1.4.1 Supervisory Control
1.4.2 Robust Supervisory Control,
1.4.3 Computational Procedures,
Thesis Contributions

Thesis Outline

2 Background

2.1

2.2

Discrete-Event Systems oL Lo
2.1.1 Languages
2.1.2 Operations on Languages
2.1.3 Automata
2.1.4 Operations on Automata
Supervisory Controlo oo
2.2.1 Full Observation
2.2.2 Control under Partial Event Observation

vi

vi

© oo O Ut Ut = W = -

—_
(e}

2.3 Robust Supervisory Control
2.3.1 Full Observation
2.3.2 Partial Observation

2.4 Computational Procedures

3 Robust Nonblocking Supervisory Control Problem (RNSCP)
3.1 Problem Formulation
3.2 Basic Computational Algorithms
3.2.1 Automata for union model and legal behavior
3.2.2 L, (G)-closed sublanguage
3.2.3 G;-nonblocking sublanguage
3.3 Computational Algorithm for calculating the solution of RNSCP . . .
3.4 Examples
3.5 Application Example: Spacecraft Propulsion System

3.6 Conclusions

4 Robust Nonblocking Supervisory Control Problem with Partial Ob-

servation

4.1 Problem Formulation L.

4.2 Computation of Supremal Normal Sublanguage

4.3 Computational Procedure for RNSCP-PO

4.4 Examples
441 Example1
442 Example 2

4.5 Conclusion

5 Conclusions
5.1 Summary

5.2 Future Work

Bibliography

vii

42

59
60
61
65
66
67
71
7

78
78
79

86

A Cassini Propulsion System
B Discrete Event Control Kit (DECK)

C Computer Code for Robust Control

viii

87

89

91

List of Figures

1.1
1.2

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

Supervisory control structure.

Spacecraft propulsion system.

Supervisory control configuration.

Supervisory control with multiple sets of marked states.

Example 3.1. Plants and specifications automata.
Example 3.1. Using Algorithm 3.2tofind E.
Example 3.2. Plants and specifications automata.
Example 3.2. Automaton G.
Example 3.2. Automaton E and suprel(E,G).
Example 3.2. Automata in iteration j=1..
Example 3.2. Automata in iteration j=2..
Spacecraft propulsion module subsystem.
DES model of valve V4.
DES model of valves Vo,Vsand V,.
DES model of pyro valves.
Sensors and Master Controller models
INT1: Interaction between PV, PV, Viand P,..
Interactions between pressure sensors and temperature sensors.
DES model of start up and shutdown procedure in normal mode.
DES model of start-up and shutdown procedure in faulty mode.

Mark state 1 for OFF and state 2 for ON.

X

18
26

3.18 Mark state 3 for OFF and state 4 for ON. 56

3.19 Sample start-up and shutdown sequences. 57
4.1 Example 4.4.1. Plant and legal behavior. 67
4.2 Example 4.4.1. Automaton E obtained from Algorithm 3.2. 67
4.3 Example 4.4.1. Procedures for obtaining automaton H. 68
4.4 Example 4.4.1. Automaton H obtained from E x P~'P(G). 69
4.5 Example 4.4.1. Using Algorithm 4.1 in the first iteration. 70
4.6 FExample 4.4.1. Using Algorithm 4.1 in the second iteration. 70
4.7 Example 4.4.1. Automaton FE,,,,, marking the supremal normal sub-
language. 70
4.8 Example 4.4.2. Plants and legal behaviors automata. 72
4.9 Example 4.4.2. Automaton G. 73
4.10 Example 4.4.2. Automaton E. 73
4.11 Example 4.4.2. Automaton H and suprel(H,G). 74
4.12 Example 4.4.2. Automata in iteration j=1.. 75
4.13 Example 4.4.2. Automaton in R] iteration j=1.. 76
4.14 Example 4.4.2. Automata in iteration j=2.. 76
4.15 Example 4.4.2. Automaton R} in iteration j=3.. 7
A.1 Cassini propulsion module subsystem schematic [28]. 88

Chapter 1

Introduction

In this thesis computational algorithms are developed for the robust nonblocking
supervisory control problem of discrete-event systems. In this problem, it is assumed
that the true model of the system is unknown. However, it belongs to a set of
possible models. We show that for finite-state models and regular language design
specifications, the algorithms terminate in a finite number of steps.

In this chapter, discrete-event systems and conventional (non-robust) supervisory
control problem are reviewed in Section 1.1. The robust supervisory control with
model uncertainty under full observation and partial observation of events is discussed
in Section 1.2. Some important features of computational algorithms are examined
in Section 1.3 followed by a literature review on conventional supervisory control,
robust supervisory control and computational algorithms in Section 1.4. Next the
the objectives and contributions of this thesis are presented in Section 1.5, and the

organization of the thesis is described in Section 1.6.

1.1 Supervisory Control of Discrete-event Systems

A discrete-event system (DES) is a dynamic system with discrete state-space and
event-driven state transition. Therefore, the dynamics of these systems can be mod-

eled as sequences of events. Consider a spacecraft propulsion system as an example.

The engine can be in one of the two states ON or OFF and this engine state can be
changed by commands START-UP or SHUTDOWN (both events).

However, not all the sequences generated by a system are desirable (safe). For
instance, there could be some illegal states in the system that must be avoided. In
this case, the behavior of the DES has to be modified by means of a controller in
order to ensure that the system’s behavior is admissible.

In the supervisory control theory of discrete-event systems proposed by Ramadge
and Wonham [33], a supervisor (controller) is responsible for restricting the system
(plant) behavior so that certain specifications are satisfied. In this theory, the events
are assumed to be either controllable or uncontrollable. Supervisory control is de-
scribed as a feedback control structure where the supervisor (placed in the feedback
loop) commands the control action by enabling or disabling certain events after mon-
itoring the event sequences generated by the plant. Such control framework is shown
in Figure 1.1. In this problem the supervisor is only allowed to disable the controllable

events.

h d

Supervisor ———

Ohserved evant
sROUSNCE Control sclion

Plant -

Figure 1.1: Supervisory control structure.

The specifications can be in terms of a set of legal sequences (also known as
legal language) or they can be characterized using automata. In automata theory
and many practical cases, finite-state automata are used to describe the system’s
behavior, specifications and the supervisor (to be designed). The supervisor has
to restrict the behavior of the system under supervision to a legal behavior (which

satisfies the design specifications) by disabling controllable events whenever necessary.

2

1.2 Robust Supervisory Control

Although it is assumed that the system model is known in the conventional super-
visory control problem, the system dynamics are prone to changes due to failures
or new conditions during its operation. In order to tackle modeling uncertainty or
changes to the system, the notion of robust control is developed.

Several approaches have been proposed to deal with robust supervisory control.
We consider the setup in which the system model is among a finite family of plant
models. The main goal is to design a robust supervisor such that it works for all
plant models. In other words, it can restrict every plant model to its legal behavior.

Fault recovery is a problem that can be regarded as a robust control problem. In
a fault recovery problem, the system can operate either in normal mode or in several
faulty modes. In each of these different modes, there are certain design specifications
which the system under supervision is expected to follow. Thus, a robust supervisor
is to be designed to guarantee that system under supervision satisfies all of the design
specifications in every mode of operation.

As an example for this kind of problem, consider the propulsion system shown
in Figure 1.2. Now, suppose that the valves may fail stuck-open or stuck-closed.
Therefore, every valve has two failure modes in addition to the normal mode. Thus,
the overall system has several possible modes of operation including a normal mode
where there is no failure in the system, and failure modes in which at least one of the
valves is failed, either stuck-open or stuck-closed.

Robust control can also be used to find solutions to problems that do not involve
model uncertainties or changes. One such example is the problem of Supervisory
Control with Multiple sets of Marked states [9, 14]. In supervisory control, the set
of states in which the goals are met are “marked”. It is desirable that these marked
states can always be reached in which case the system is said to be nonblocking. In
problems with multiple marked sets, nonblocking property is desired with respect to

more than one set of marked states. The study of this problem is motivated by the

fact that many systems have multiple operational modes (each corresponding to a
set of marked states) and it is desirable to be able to steer the system to any one
of these modes. For instance, in a propulsion system with two engines E'1 and E2,
it is desirable to have the ability to take the system to any of the three operational
modes of OFF, F1:ON and E2:ON. In other industries, examples can be easily
found of systems that operate in different modes or configurations. In all these cases,

nonblocking with respect to more than one set of marked states is required.

LT W

Figure 1.2: Spacecraft propulsion system.

1.3 Computational Procedures

In supervisory control theory, discrete-cvent systems are modeled by automata. How-
ever, design specifications are usually described using natural language (e.g. avoid
buffer overflow). In order to tackle the supervisor synthesis, we have to find an
automaton representation for the specification languages. We assume that the spec-
ification languages can be represented by finite-state automata. In the supervisory
control problem, the question of existence and the synthesis of a minimally restrictive
supervisor is reduced to finding the supremal controllable sublanguage of the specifi-

cation language. This calculation is done by a recursive algorithm and the supremal

4

controllable sublanguage is characterized as the largest fixed point of a monotone
operator. This iterative algorithm is shown to be finitely convergent if the plant is
finite-state automaton and the specifications are regular languages (hence represented
by finite-state automata).

Computational algorithms for calculating other supremal sublanguages of regu-
lar languages are also developed as recursions on an initial automaton. The most
challenging part in solving such problems is to come up with an automaton that
has enough information about the states and transitions of the plants and the legal
behaviors. In each iteration of these recursive algorithms, certain illegal states and
transitions which do not satisfy the desired property are removed. In this framework,
the finite convergence is evident since no state or transition is added to the starting
automaton and the pruning of the initial automaton terminates in a finite number of
steps.

In this thesis, we take a similar approach to find computational algorithms for

solving the robust nonblocking supervisory control problem.

1.4 Literature Review

Robust supervisory control and computational algorithms for (non-robust) supervi-
sory control problem have been studied by several researchers so far. We briefly

review some relevant studies and discuss their results.

1.4.1 Supervisory Control

Supervisory control of discrete-event systems was first introduced in [32, 33]. In
this framework, the event set is partitioned into two disjoint sets of controllable
and uncontrollable events. A supervisor can disable or enable events in each state
to restrict the behavior of the plant within a desired behavior called specification.

In such framework, a supervisor is called “admissible” if no uncontrollable event

is disabled. In [32, 33|, the concept of controllability is introduced to tackle the
supervisor synthesis problem.

[11, 25] extend the theory of supervisory control of discrete-event systems [32] to
the problem of supervisory control under partial observation. There the set of events
is partitioned into two disjoint sets of observable and unobservable events. The notion
of language observability is introduced to solve the partial observation supervisory
control problems. The solution of these supervisory control problems are obtained
in terms of controllable and observable languages. A subset of the solutions have
also been identified in terms of controllable and normal languages. This subset lends
itself better to computational algorithms and in some cases, it includes the optimal
solution to the original supervisory control problem.

The supervisory control problem in [32, 44] has been extended to many areas. In
the following section, we review one of these extensions, robust supervisory control,

which deals with model uncertainties or changes.

1.4.2 Robust Supervisory Control

The concept of robust control arises in control theory in dealing with modeling un-
certainties or model changes. Several approaches have been explored for robust su-
pervisory control of discrete-event systems (DES) (see, e.g. [12], [13], [24], [31]). In
[24], the plant model belongs to a finite family of DES models Gj,...,G,,, and the ob-
jective is to design a supervisor such that all plant models under supervision satisfy a
common design specification K which is assumed to be a sublanguage of the marked
behavior of all plant models, i.e. K C (), L.(G;).

In [36] the results of [24] are extended to timed discrete-event systems and assumes
separate design specifications for each plant model which are obtained by taking the
intersection of a language E with each plant’s closed behavior. The discussion in [36]
is limited to closed languages.

The results of [24] are generalized in [3] to the case involving separate non-prefix

closed design specification for each plant model and considers the nonblocking prop-
erty. In this framework, the overall legal behavior is obtained from each plant’s
specification. The nonblocking property is guaranteed through the (sufficient condi-
tion of) nonconflicting property. [3] considers that all of the events are observable
and also provides an algorithm for finding the optimal solution of the aforementioned
robust nonblocking supervisory control problem.

In [35], the results of [3] are extended to the case of control under partial observa-
tion. Furthermore, [35] replaces the nonconflicting property with the G;-nonblocking
property. This results in a characterization of the solution of nonblocking robust
control in the form of a set of necessary and sufficient conditions of controllability,
observability, L,,(G)-closure and G;-nonblocking.

Some of the extensions of this framework include modular implementation in
closed languages [15], control with communication delays [30], networked DES [40],
limited lookahead policies [2], robust diagnosis [37] and robust failure prognosis [38].

As mentioned earlier, robust control is used to deal with model changes. For
instance in fault recovery problems, the plant model can be in normal or a set of
faulty modes and a robust supervisor can be designed to meet the design specification
of each mode [34], [35]. Robust control can also be used to find solutions to problems
that do not involve model uncertainties or changes. One such example is the problem
of Supervisory Control with Multiple sets of Marked states [9].

Other approaches for fault detection and recovery problems in DES have been
also studied. [29] uses a diagnoser for fault detection and after the failure it switches
to another supervisor. The approach in [29] is to safely detect faults and switch over
from one supervisor to another from a set of reconfigured control laws. In [22], it is
considered that there is a post-fault specification and it has to be satisfied after the
failure. Furthermore, the supervisor is reconfigured only after detecting the fault.
[42] develops a fault tolerant supervisor that enforces the behavior of the system to
a non-faulty behavior in a finite number of steps after the failure. [41] studies the

synthesis of the fault tolerant supervisor in [42].

In this thesis we model the system uncertainty as done in [24] and develop com-
putational algorithms for obtaining the solution of robust nonblocking supervisory
control problem presented in [35]. In the following section we review some of the
works in the area of computational algorithms for obtaining supremal sublanguages

in supervisory control problems.

1.4.3 Computational Procedures

In the supervisory control theory for discrete-event systems, the notion of control-
lable languages plays a key role in supervisor design. Specifically the main issue is to
calculate the supremal controllable sublanguage of a given specification (or legal be-
havior). [44] characterizes the supremal controllable sublanguage as the largest fixed
point of an operator and provides a recursive computational algorithm for calculat-
ing the resulting maximally permissive solution of the supervisory control problem.
The finite convergence of this algorithm is also shown, provided that the plant and
specification can be modeled as finite-state automata.

[17] develops a general unifying framework for computational algorithms for cal-
culating supremal elements. The computational algorithm for obtaining the supremal
controllable sublanguage in [44] is a special case of the algorithm in [17].

The class of observable sublanguages of a given language need not have a supremal
element. [10] extends the results of [11, 25] to develop algorithms for the computation
of the supremal normal and controllable sublanguage. The concept of normality is
stronger than observability; therefore the obtained solution is not necessarily opti-
mal. [39] comes up with a subclass of observable sublanguages which has a supremal
element and develops a computational algorithm for finding the supremal language
of the subclass of observable sublanguage that are controllable and L,,(G)-closed.
This solution is in general a superset of the supremal L,,(G)-closed, controllable
and normal sublanguage of that specified language. The algorithm in this work is a

modification of the algorithm presented in [10].

[8] studies the class of nonconflicting sublanguages of a given language and presents
closed-form expressions as well as computational algorithms for computing the supre-
mal nonconflicting sublanguage of a given language. It also investigates computa-
tional algorithms for obtaining the supremal controllable and nonconflicting sublan-
guage.

[4] provides closed-form formulas for computing the supremal controllable and
normal sublanguage provided that all the languages are prefix-closed. Next, [21]
extends this result to develop closed-form expressions for calculating the supremal
normal and supremal closed and normal sublanguages of given non-closed languages
and arbitrary masks. [45] introduces a new iterative algorithm for computing the
supremal controllable and normal sublanguage of a given non-closed language using
the formula provided in [4] for calculating the supremal controllable and normal
sublanguage of a closed language. The presented algorithm in this work does not
iterate between the supremal controllable and supremal normal operations (as done in
[10]). [18] presents a non-iterative algorithm for computation of supremal controllable
and normal sublanguage provided that the plant and the projection mapping satisfy
certain assumptions.

[20] provides computational algorithms for supremal controllable and normal sub-
language to solve the supervisory control under partial observation from an optimal
control point of view.

In this thesis, we develop computational algorithms for solving the robust control

problems of [35].

1.5 Thesis Contributions
The major contributions of this thesis can be summarized as follows.

e We develop computational algorithms for obtaining the optimal (maximally

permissive) solution to the Robust Nonblocking Supervisory Control Problem

(RNSCP) with full event observation presented in [35]. Computational algo-
rithms are presented for finding the supremal L,,(G)-closed and supremal G;-
nonblocking sublanguages of a given legal language. We show that the algorithm
converges in a bounded number of steps assuming finite-state plant models and

regular specification languages.

We extend the iterative computational algorithm for the RNSCP with full ob-
servation to the case of partial event observation by developing a new computa-
tional algorithm for obtaining the supremal normal sublanguage and combining
it with the solution of RNSCP. The finite convergence of the proposed algorithm

is also shown in this thesis.

All of the algorithms for computing the solution of RNSCP with full observation
are implemented in MATLAB using Discrete Event Control Kit (DECK) [46].

The proposed computational algorithm is used to solve a problem of supervisory
control and fault recovery in a simplified spacecraft propulsion system. We will
see that non-robust supervisory control does not provide a satisfactory solution

to this problem and using a robust supervisor is essential.

1.6 Thesis Outline

In Chapter 2, we review the required background on supervisory control (conventional

and robust) and on existing computational algorithms. In Chapter 3, we develop an

iterative algorithm for obtaining the optimal solution of RNSCP with full observation

and provide the related computational algorithms. We also discuss the computational

complexity of the proposed algorithms. We also formulate and solve a problem of

robust supervisory control of a spacecraft propulsion system. Chapter 4 extends the

computational algorithms of RNSCP with full observation to the case of partial event

observation. Chapter 5 summarizes the thesis contributions and discusses possible

future research.

10

Chapter 2

Background

In this thesis we aim to develop computational procedures for robust nonblocking
supervisory control problem under full observation and extend the results to deal
with partial event observation. Therefore in this chapter, we briefly review some
background materials and preliminaries on supervisory control theory of discrete-
event systems which are required for presenting our work. The first section introduces
the discrete-event system models and language theory used to describe them. The
conventional supervisory control problem is discussed in Section 2.2 followed by a
review of robust nonblocking supervisory control problem for full observation and
then partial event observation in Section 2.3. Finally, computational procedures for

supervisory control problem are reviewed in Section 2.4.

2.1 Discrete-Event Systems

A discrete-event system (DES) is defined as an event-driven system with a discrete
state space. The state transition mechanism in DES depends on occurrence of asyn-
chronous discrete events. Discrete-event systems cover a wide range of systems such
as manufacturing systems, computer and communication networks, traffic systems
and robotics. Among many approaches for modeling discrete-event systems, we use

the automata theory. In this work, discrete-event systems are modeled by finite-state

11

automata. Before discussing automata, we review some basic definitions related to

sequences (words) and languages.

2.1.1 Languages

Let ¥ be a finite set of events (symbols), also known as alphabet. The set £1 denotes

the set of all finite event sequences (strings or words) over alphabet ¥ [43, 7].
Sti={oy,...,on | k> 1,0, € B}

The empty string is defined as a sequence with no events and denoted by e¢. Then we

write

Y=t u{e}.

A language over ¥ is defined as any subset of ¥*. The catenation of two strings u

and v is the new string uv. Furthermore, a string u is a prefix of v if

Jw e ¥ (v=uw).

2.1.2 Operations on Languages

Since a language is defined as a set of strings, basic set operations can be applied
to languages, namely intersection L; N Ly, union L; U Ly, complement L{°, and

subtraction Ly — L.

Definition 2.1. Catenation:

Let Ly, Lo C3*, then L1, Ly :={u €¥* : u=vw,v € Ly, w € Ly}.

In other words, L L, is the result of catenation of the strings in L,; with the strings

n L2.

Definition 2.2. Prefix-closure:

Let L C *. The prefiz-closure of L is L := {s € X* | 3t € ¥*, st € L}.

12

In other words, L, the prefix-closure of L, consists of all the prefixes of the strings

in L.

Definition 2.3. Natural Projection:
Let ¥ be an alphabet and £, C X be a subset of X. The natural projection onto X%

can be defined as a map P : ¥* — X% in which

o, if o€ X

€, otherwise

P(so) = P(s)P(o) for s€¥* 0€X

The following lemma is used later in this thesis.

Lemma 2.1. [/] Consider A,B C ¥*. If A= A, then A — BY¥* must be closed.

2.1.3 Automata

In order to develop computational algorithms, we need to use other modeling methods

such as automata. Formally, a (deterministic) automaton is a five-tuple
G = (X7 27 777 Zo, Xm)

where X is the state set, X is the finite set of events (alphabet), n: X x ¥ — X is
the partial transition function, x is the initial state and X,, C X is the set of marked
states. The term generator may also be used instead of automaton. In a state z, if
a o-transition is possible, then we write n(x, o)!.

L(G) and L,,(G) denote the closed and marked behavior of G respectively [43]:
L(G) = {s € ¥ | n(xo, s) is defined}
Lin(G) = {s € L(G) | n(wo, 5) € Xin}

13

The language L(G) represents all the strings that can be generated in automaton G
starting at the initial state zy. Similarly, L,,(G) is the set of all strings in L(G) that
end in a marked state. It is clear that L(G) is prefix-closed and L,,(G) is a subset
of L(G).

Suppose for a language L and an automaton G
L,(G)=1L

We say G represents L. Not all languages can be represented by a finite-state au-

tomata. An example of these languages is L = {a"b" | n > 0}.

Definition 2.4. Regular Language [19]

A language L is called regular if it can be marked by a finite-state automaton.

The following theorem states that the regularity of languages is preserved under

closure, complement, intersection, union and catenation operations.

Theorem 2.1. [19] Let Ly and Lo be regular languages. Then the languages Ly, LS,
LiN Ly, L1 ULy and LiLy are regular languages.

Definition 2.5. Strict Subautomaton [10]
Consider automata G = (X1,21,M, 201, Xm1) and Go = (X2, Xa, 12, 20,2, Xim 2)-

)

We say G is a strict subautomaton of G and write G1 T Gs if the following

conditions are satisfied:
1. X1 C Xy, woq = w2 and X1 C X o5

2. Forallz € Xy and 0 € X, if m(x,0) is defined, then ne(z,0) is defined and
Th(%U) = 772(1'70-);

3. For all s € L(G2) — L(G), there ezists s' € 5 such that na(x2,s") ¢ X;.

Definition 2.6. Refinement [}4]
Suppose Gy and Gy are trim and L,,(G1) C L, (G2). Then we say Gy refines Gy if
Jor all s,t € L(G4), m(zo1,s) = m(xo1,t) implies na(x2,8) = ma2(xg2,t).

14

2.1.4 Operations on Automata

In this section we introduce some basic operation on autoamta.

Definition 2.7. Reachability [}3, 7]
Let G = (X, %, 0,20, X). A state x € X is called reachable if there is a path from

the initial state xo to x. Formally, = is reachable if there erists s € L(G) such that
(o, 8) = .

Definition 2.8. Reachable Automaton

Automaton G is called a reachable automaton if every state x € X is reachable.

Definition 2.9. Coreachability
Let G = (X, 2, n, 20, X,). A state x € X is called coreachable if there exists a path

from x to a marked state, i.e. there exists a string s € ¥* such that n(z,s) € X,,.

Definition 2.10. Coreachable Automaton

Automaton G is called coreachable if every state x € X 1is coreachable.

An automaton is called nonblocking if every reachable state is coreachable. In

other words, if there exists a path from every reachable state to a marked state.

Definition 2.11. Nonblocking
Automaton G is called nonblocking if and only if L,,(G) = L(G).

Definition 2.12. Trim
Automaton G is called a trim automaton if it is both reachable and coreachable.
Trim operation is denoted by trim(G) and defined as the reachable and coreachable

subautomaton of G.

Remark 2.1. If Gi and G5 are trim and G is a strict subautomaton of Go, then

G, refines Gs.

Definition 2.13. Complement

Consider automaton G = (X, 2,1, x9, X). G is an automaton which generates ¥*

15

and marks ¥* — L,,(G) = [L,(G)].
L(Gco) — E* , Lm(Gco) — E* _ Lm(G)

Definition 2.14. Product
Consider automata Gy = (X1,21,m. 201, Xm1) and Go = (Xa, Yo, M2, Zo,2, Xim2)-
The product of these two automata, denoted by G1 x Go, is

G x Gy = The reachable part of (X7 x X2, X1 N Yo, n(201,%02), Xm1 X Xim2)

with

(m(x1,0),m2(72,0)) ifo € X1 N Yy, (1, 0)! and ny(za,0)!
T]((LL‘l, x2)7 U) =
unde fined otherwise

Therefore,
L(Gl X GQ) = L(Gl) N L(Gz)

Lm(Gl X Gg) = Lm(Gl) n Lm(Gg)

Definition 2.15. Synchronous Product
Consider automata G = (X1,21, M, 201, Xm1) and Go = (X, Xo, 12, 20,2, X 2)-

The synchronous product of these two automata, G1||Gs, is defined as

G1||Gy = The reachable part of (X1 x Xo, 31 N Xg, (201, T02): Xin1 X Xm2)

with
(
(m(x1,0),m(x2,0)) if o€ XNy, ni(x1,0)! and na(x2,0)!
(m(z1,0),22) if 0 €31 — % and my(z1,0)!
77((9317332)70-) =)
(z1,m2(z9,0)) if 0 €3y —3%1 and ny(z2,0)!
\ unde fined otherwise

Thus [43, 7]
L(G1||Ga) = Py (L(Gh)) N Py H(L(Ga))

16

Lm(G1||G2) = Pl_l(Lm(Gl)) N P2_1(LT’L(G2))

where P; is a natural projection defined as
P (2, UX)" +— XF (for i=1,2)

Definition 2.16. Complete Automaton
Automaton G is called a complete automaton if the transition function n is a total

function; i.e. L(G) = %*.

If an automaton G = (X, X, n, xg, X,,) is not complete, it can be turned into a

complete automaton in the following way:
1. Add a new dump state d to the state set.

2. For every z € X, 0 € ¥, if n(z, o) is not defined, add a transition 2 % d to the

transition list.
3. For every o € %, add selfloops d % d to the dump state.

Let G’ denote the resulting automaton. Then L(G') = ¥* and L,,(G’) = L,,,(G).

2.2 Supervisory Control

2.2.1 Full Observation

Let automaton G = (X, X, 7,29, X,,) be a model of the plant. Since the plant’s
behavior is not always admissible (legal or safe), it has to be restricted such that
it satisfies certain conditions and characteristics. In the supervisory control theory
of DES [32], it is assumed that the event set ¥ can be partitioned into two dis-
joint subsets, Y. and X, which are the sets of controllable and uncontrollable events
respectively. Suppose that a language E C L,,(G) represents the legal marked se-
quences. In the supervisory control theory, a supervisor S is to be designed to restrict

the behavior of the plant G to the legal behavior £. The configuration of supervisory

17

control is shown in Figure 2.1.

> Plant

S(S) =)0y

Supervisor <

Figure 2.1: Supervisory control configuration.

The supervisor is only allowed to disable controllable events. A supervisory control

for DES G can be defined as a map
S Y= I's
where
I's ={y € Pwr(®) | ¥u. €~}

denotes the set of all control patterns in 3. In this context, for s € ¥* S(s) is the
set of events enabled by the supervisor. Note that S cannot disable uncontrollable
events, i.e. X,. C S(s). Let S/G represent the plant G under the supervision of .S (or
the closed-loop system) and L(S/G) C L(G) the closed behavior of the closed-loop
system. The language generated by the system under supervision L(S/G) is defined

as follows.
1. e€ L(S/G)
2. If s€ L(S/G),0 € S(s), and so € L(G), then so € L(S/G)

The marked behavior of the system under supervision is defined as L,,(S/G) =
L(S/G)N L,,(G).

18

Problem 2.1. Nonblocking Supervisory Control Problem (NSCP) [32]
Consider an automaton G = (X,3,n,x9, X,,) with ¥ = ¥, U X,.. Let the legal
marked behavior of the plant E C L,,(G) be nonempty. Find a supervisor S such
that

1. Lo(S/G)C E

2. L(S/G) = L. (5/G)

The Nonblocking Supervisory Control Problem (NSCP) does not necessarily have

a unique solution in general. Consider
S :={S| S solves the NSCP}.
A supervisor S is called maximally permissive if and only if
vs'eS: L,(S'/G) C L,(S/G), L(S'/G) C L(S/G).
In order to identify the solutions of NSCP we need the following definitions.

Definition 2.17. Controllability [32]
A language I € X* is said to be controllable with respect to a closed language L(G)
and Yy if

K. NL(G) C K

It is ecasy to show that the set of controllable sublanguages is closed with respect
to the union operation; it is nonempty since the empty language () is controllable.
Thus, there exists a supremal element for the set of controllable sublanguages of a
given language K. SupC(K) denotes the supremal controllable sublanguage of K
with respect to L(G) and X,,..

Definition 2.18. L,,(G)-closure [32]
A language K C L, (G) is L, (G)-closed if

K =KNLy(G)

19

The set of L,,(G)-closed sublanguages of K denoted by Rg(K) has also a supre-
mal element since it is closed under arbitrary unions and 0 is L,,(G)-closed. The
supremal L,,(G)-closed sublanguages of K is denoted by SupRg(K) and can be
calculated as

SupRg(K) = K — (Ln,(G) — K)X*.

Lemma 2.2. [32] If language K is L,,(G)-closed, then SupC(K) will be L,,(G)-

closed.

Theorem 2.2 characterizes the solutions to the nonblocking supervisory control

problem (NSCP) defined in Problem 2.1.

Theorem 2.2. [32] Consider DES G = (X, X, 1, %0, Xpn), and let X, C X be the set
of uncontrollable events and K C E C L,,(G) be a nonempty language. Then NSCP
is solvable with L,(S/G) = K and L(S/G) = K if and only if

1. K is controllable with respect to G and 3,.;
2. K is L, (G)-closed.

The supremal L,,(G)-closed and controllable sublanguage of a given language K
provides the maximally permissive solution to NSCP. Since the supremal controllable
sublanguage of a L,,(G)-closed language remains L, (G)-closed, the optimal solution
of this problem can be computed by obtaining the L,,(G)-closed sublanguage of K

and then computing the supremal controllable sublanguage. In other words:

SupRgC(K) = SupC(SupRg(K))

2.2.2 Control under Partial Event Observation

Now consider the supervisory control problem in case that only a subset of events
which the plant can generate can be observed by the supervisor. In this case, we can
partition the event set into 3 = »,U X, where ¥, and >, are the sets of observable

and unobservable events respectively.

20

The events in the plant may become unobservable because of the limitations of
the sensors connected to the plant or because some events at some locations cannot
be observed at other locations.

Let the natural projection P be defined as P : ¥* — X7. If two strings s; and s9
have the same projection, i.e. P(s1) = P(ss), the supervisor cannot tell them apart.

Therefore, the supervisor has to issue the same control action for lookalike sequences.

Problem 2.2. Nonblocking Supervisory Control Problem with Partial Ob-
servation (NSCP-PO) [11, 25]

Consider DES G = (X, 3,1, 29, X;n) with ¥ = X, U, and X =X, U .. Also, let
E C L,(G) be a nonempty legal marked behavior. Find a supervisor S such that

1. L.(S/G) C E
2. L(S/G) = Ln(S/G)

In order to characterize the solutions of NSCP-PO, we need to define observability.

Definition 2.19. Observability [11, 25]
A language K is called (L(G), P)-observable if and only if

Vs, €Y : [€ K and s'o € L(G) and so € K and P(s) = P(s')] = so € K

In other words, in case of an observable language, the same control action is used

for any two strings in the language that have the same projection.

Theorem 2.3. [11, 25] Let DES G = (X,%,n, 29, Xn) with ¥ = X, U Xy, and
Y =3.UXy.. Also, let K C E C L, (G) be a nonempty legal marked behavior. Then
NSCP-PO is solvable with L,,(S/G) = K and L(S/G) = K if and only if

1. K is controllable with respect to G and 3.,
2. K is L, (G)-closed;
3. K is (L(G), P)-observable.

21

Theorem 2.3 characterizes all the solutions of the NSCP-PO problem. Since the
set of (L(G), P)-observable sublanguages of a given language K is not closed under
union operation, a supremal element may not exist for this set. Consequently, the set
of controllable, L,,(G)-closed and (L(G), P)-observable sublanguages of a language
K does not have a supremal element. Thus unlike the full observation case, an
optimal (minimally restrictive) solution may not exist for NSCP-PO in general.

In order to characterize a suboptimal solution for NSCP-PO, we can define a new

property which is stronger than observability, and is called normality.

Definition 2.20. Normality [11, 25/
A language K is called (L(G), P)-normal if and only if

K = L(G)n P~ (PK)

This property states that the language K is (L(G), P)-normal if and only if the
legality of its sequences can be determined from its projection PK and the closed
behavior of the system L(G). A main difference between observability and normality
is that in a normal language, by watching the projection of a string generated by
plant we can determine if the string belongs to the language or not. In general this
is not the case for observable languages. Normality always implies observability (but
the converse is not always true). If all controllable events are observable, then any
controllable and observable language is normal.

Let E be a language such that £ C L(G). The class of normal sublanguages of
E can be defined as N(E, L(G)) = {K C F|K = L(G) N P"'P(K)}. N(E,L(G))
is nonempty (§ € N(E, L(G))) and closed under union. Therefore it has a supremal
element.

The following lemma provides a formula for calculating the supremal normal sub-

language of a closed language.

Lemma 2.3. [}/ Let E be a closed language and E C L(G), thus
SupN(E,L(G)) = E — P'P(L(G) — E)%*

22

Lemma 2.4. [10] If a language E C L,,(G) is L,,(G)-closed, then the supremal
normal sublanguage of E denoted by SupN(E, L(Q)) is also L,,(G)-closed.

Since the class of normal languages are also observable, the class of controllable,
L (G)-closed and (L(G), P)-normal sublanguages of a given legal marked behavior
E characterizes a subset of solutions to NSCP-PO. Let SupN RgC(F) denotes the
supremal element of the aforementioned class of languages. Then it provides the

minimally restrictive solution among those based on normal sublanguages.

2.3 Robust Supervisory Control

2.3.1 Full Observation

Conventional (non-robust) supervisory control assumes that the plant model is known
and may not change. On the contrary, this assumption does not hold all the time.
For instance, there might be some uncertainties in the system modeling or the system
may change over time. Moreover, we can also consider a system that has to perform
different tasks so that it may have various configurations. Robust supervisory control
is one way to deal with the aforementioned issues.

Among several methods for formulating the robust supervisory control problem,
we are interested in the setup in which the system model belongs to a finite set of

possible models.

Problem 2.3. Robust Nonblocking Supervisory Control Problem (RN-
SCP) [3, 35].

Consider n DES models G; = (X;, X4, 0, %o,y Xmi) where i € I = {1,2,....,n}, and
the corresponding legal behaviors E;. The set of plant models is G= {G, ..., G, }. Let
the event set, and the controllable and uncontrollable sets of events in G; be denoted
by i, X and Xy.; respectively. It is assumed that all plant models agree on the
controllability of events, that is X.; N Xy.; = 0 for alli,j € {1,....n}. Furthermore,

suppose language K; denotes the design specification for plant model G; and hence

23

E;, = K;N L,,(G;) denotes the corresponding legal marked behavior. In RNSCP, su-
pervisor S should be designed such that L,,(S/G;) C E; and L,,(S/G;) = L(S/G;)
forallieI.

The solutions to RNSCP are given in [35]. Before discussing these solutions, we

review the definition of G-nonblocking languages.

Definition 2.21. G-nonblocking [35]
A language K C X* is called G-nonblocking if K N L,,(G) = K N L(G).

It has been shown in [35] that the class of G-nonblocking sublanguages of a given
language £ C ¥* is nonempty and has a supremal element. Furthermore, [35] proves

that this supremal sublanguage can be obtained from
SupNbg(E) =FE — (ENL(G) — EN L,(G))x* (2.1)

It follows from (2.1) that for a finite-state automaton G, if the legal behavior F
is a regular language, then the supremal G-nonblocking sublanguage is also regular
and can be represented with a finite-state automaton. In Chapter 3, a computa-
tional procedure will be introduced to build an automaton marking the supremal

G-nonblocking sublanguage.

Theorem 2.4. [35] Consider the Robust Nonblocking Supervisory Control Problem
(RNSCP). Let G be an automaton such that L,(G) = U;c; Lm(G;) and L(G) =
Uies L(G;). Furthermore, let ¥ = J;o; 5i and Bye = J;e; Luci and define E as

iel i€l

E=()(EU(Z — Ln(G))) N Ln(G) (2.2)

icl

If there exists a nonempty sublanguage K C E that satisfies the following conditions:
1. K is controllable with respect to G (K¥,.N L(G) C K);
2. K is L,(G)-closed (K N L,(G) = K);

3. K is Gi-nonblocking (K N L,,(G;) = KN L(G;) for alli € I).

24

Then RNSCP has a solution S with K = L,,(S/G) and K = L(S/G). Conversely,
if S is a solution of RNSCP, K = L,,(S/G) satisfies conditions (1), (2) and (3).

Theorem 2.4 characterizes the set of solutions of RNSCP. Note that the legal

language E' in (2.2) can be rewritten in terms of design specification languages K; as
E = (KU (S = Lu(Gi)) N Lin(G) (2.3)

If we define RCNb(E, G) as the set of L, (G)-closed, controllable and G;-nonblocking
sublanguages of E (for all G; € G), this set is nonempty and closed under arbitrary

unions. Thus, it has a supremal element denoted by E*,
E* = SupRCNbO(E,G) (2.4)

Then E* is the maximally permissive solution of RNSCP.

The robust supervisory control described in RNSCP has applications in various
problems. Fault recovery problems can be solved as special cases of robust control
[34],[35]. In this case, the plant models Gy, GnF, ..., GnF,, represent the plant dy-
namics in normal and m normal-faulty modes, and each mode of the system has its
own design specification. The objective is to design a supervisor such that the sys-
tem under supervision meets the design specifications in each mode while remaining
nonblocking in all modes.

Another problem that can be solved as a especial case of robust control is the

problem of supervisory control of DES with multiple sets of marked states [14].

Problem 2.4. Nonblocking Supervisory Control Problem with Multiple
sets of Marked states (NSCP-MM)

Consider automaton G with multiple sets of marked states G = (X, X, n, xo, Xin 1,
Xin2s ooy Xmm). Let Ly, i(G) = {s € L(G) | n(vo,s) € Xy} denote the marked
behavior with respect to X,,,; and furthermore E; C L., ;(G) the corresponding legal
language. Find a supervisor S such that L, (S/G) C E; and Ly, ;(S/G) = L(S/G).

25

In this problem, nonblocking property is desired with respect to multiple sets of
marked states.

The problem of supervisory control with multiple sets of marked states can be
converted to an equivalent robust nonblocking supervisory control (RNSCP) [9] if
we define automata G, ...,G,, as G; = (X, X, 1,20, X;ni) (¢ = 1,...,n) and design a
robust supervisor S such that L,,(S/G;) C E; and L,,(S/G;) = L(S/G5).

As an example, consider the propulsion system with two engines shown in Fig-
ure 2.2. The system has three modes of operation: (1) both engines off, (2) engine
El on, and (3) engine E2 on. The supervisor (controller) should open or close the
valves in such a way that at anytime the propulsion system can move from one mode
to another. Each of the three modes corresponds to a set of marked states in the
NSCP-MM problem. As an instance for safety specification, both engines should not

fire simultaneously. We will revisit a more complete version of this problem which

also involves fault recovery later in Chapter 3.

¥XFEX %X

&

Figure 2.2: Supervisory control with multiple sets of marked states.

26

2.3.2 Partial Observation

As we discussed in Section 2.3.1, the notion of robust supervisory control of discrete
event systems has been introduced in order to deal with the situations in which the
plant’s model and dynamics are unknown. In Section 2.3.1, we studied RNSCP when
all the events were assumed to be observable. This problem can be extended to the
case of partial event observation. In the following we review the robust nonblocking

supervisory control problem in case of partial observation and its solutiomn.

Problem 2.5. Robust Nonblocking Supervisory Control Problem with Par-
tial Observation (RNSCP-PO) [35].

Consider n DES models G; = (X;, X, M, %04, Xmi) where i € I = {1,2,...,n}, and
the corresponding legal behaviors E;. The set of plant models is G= {Gh, ...,G,}. Let
the event set, and the controllable and uncontrollable sets of events in G; be denoted
by 3, Yei and Xy, respectively. Similarly, let the observable and unobservable sets
of events in G; be denoted by X,; and X,,; respectively. It is assumed that all plant
models agree on the controllability and observability of events, that is ¥.; N Xye; =0
and Xp;NEyoj =0 for alli, j € {1,...,n}. Furthermore, suppose language K; denotes
the design specification for plant model G; and hence E; = K; N L,,(G;) denotes the
corresponding legal marked behavior. In RNSCP-PO, supervisor S should be designed

such that L,(S/G;) C E; and L,,(S/G;) = L(S/G;) for alli € I.
The solution to RNSCP with partial observation (RNSCP-PO) is given in [35].

Theorem 2.5. [35] Consider the Robust Nonblocking Supervisory Control Problem
with Partial Observation (RNSCP-PO). Let G be an automaton such that L,,(G) =
Uier Ln(G:) and L(G) = U,c; L(G;). Furthermore, let ¥ = J,c; 2, Be = U, B
and 3, = U, ; Lo and define E as

iel
E =K U(Z" = Ln(G)) N Ln(G) (25)
If there exists a nonempty sublanguage K C E that satisfies the following conditions:

27

1. K is controllable with respect to G: K¥,.N L(G) C K;

2. K is L, (Q)-closed: KN L,(G) = K;

3. K is (L(G), P)-observable;

4. K is Gi-nonblocking: K N L,(G;) = KN L(G;) for alli €1,

then RNSCP-PO has a solution S with K = L,,(S/G) and K = L(S/G). Conversely,
if supervisor S is a solution of RNSCP-PO, then K = L,,(S/G) satisfies conditions
(1) to (4)-

If we define RCOND(E,G) as the set of L,,(G)-closed, controllable, observable
and G;-nonblocking sublanguages of E for all G; € G, this set may not have a
supremal element since the class of observable sublanguages of E' is not closed under
the union operation. Therefore, unlike RNSCP with full observation, RNSCP with
partial observation may not have a maximally permissive (optimal) solution.

Next we restate Theorem 2.5 by replacing the normality property instead of ob-

servability.

Theorem 2.6. Consider RNSCP-PO in Problem 2.5. Let G be an automaton such
that L (G) = U,y Lin(Gi) and L(G) = U,c; L(G;). Furthermore, let ¥ = J,c; 5,
e = Uies Xeir and Xo = ;o) Xoi and define E as

E = (KU (5" = Lu(G)) N Ln(G) (2.6)
If there exists a nonempty sublanguage K C E that satisfies the following conditions:
1. K is controllable with respect to G: K¥,.N L(G) C K;
2. K is Ly(Q)-closed: KN Ly,(G) = K;
3. K is (L(GQ), P)-normal: K = L(G) N P~Y(PK);

4. K is Gi-nonblocking: K N L,,(G;) = K N L(G;) for alli € 1,

28

Then RNSCP-PO has a solution S with K = L,,(S/G) and K = L(S/G).

Now, if we define RNCNb(FE, G) as the set of L,,(G)-closed, normal, controllable
and G;-nonblocking sublanguages of F for all G; € G, this set is closed under union
operation and also nonempty. Therefore, it has a supremal element denoted by E*,

ie. B* = SupRNCNb(E,G).

2.4 Computational Procedures

In supervisory control, discrete-event systems are modeled by automata. The syn-
thesis of the supervisor is the main challenge in solving supervisory control problems.
In general, design specifications and system requirements are not represented as au-
tomata since they are mostly given using natural language. So, another key step in
design problem is to find an automaton representation for the system specifications.
We saw in previous sections that in supervisory control with full event observation,
the maximally permissive supervisor is described in terms of a supremal sublanguage
of design specification. In the case of partial event observation, where a maximally
permissive solution may not exist but suitable solution in terms of a supremal sub-
language (based on the property of normality) can be identified.

In order to develop computational procedures to find these supremal sublanguages

we need to review some important definitions from lattice theory.

Definition 2.22. Poset [27]
Let X be a set and < be a binary relation on X. Then (X, <) is called a poset if:

1. reflevive: (Vx € X) z<u
2. transitive: (Vry, 29,23 € X) x1 <9 & a9 <13 = 17 < 13

3. antisymmetric: (Vry, 20 € X) 11 < a9 & 29 <71 = 21 = X9

29

Definition 2.23. Lattice [27]
A lattice is a poset L in which the meet and join (N and V) of any two elements
always exist.

If the least upper bound and greatest lower bound of each subset in the lattice

always exist, then the lattice is called a complete lattice.

Definition 2.24. Upper semilattice [27]
An upper semilattice is a posel in which the join operation (V) of any two element

always exist.

Similarly, if an upper semilattice has the least upper bound, it is called a complete
upper semilattice.

Next, suppose Pwr(%*) denotes the set of all sublanguages of ¥*. Then, (Pwr(X*), <
) with A,V forms a complete lattice.

Now, let L be a complete lattice and S C L be a complete upper semilattice under

the join operation V of L. For every z € L, define
1= sup{zlr € S, < 2}

Before we proceed to introduce the computational algorithms for calculating the

supremal element, we need to define some properties of the operators.

Definition 2.25. Monotone

Let (L, <) be a poset. An operator ¢ : L — L is called monotone if and only if
(Var, 20 € L) 21 < 29 = @(21) < (a2)

Definition 2.26. Contractive

Let (L, <) be a poset. An operator ¢ : L — L is contractive if and only if
VeeL: o)<z

Definition 2.27. Fized point
Let (L, <) be a poset. x € L is called a fixed point of ¢ if p(x) = x.

30

Theorem 2.7. [17] Let L be a complete lattice and S C L be a complete upper
semilattice under the join operation V of L. Suppose operator ¢ : L — L has the

following properties:
1. ¢(.) is monotone,
2. ¢(.) is contractive,
3. S is the set of fixed points of p.

Let z € L and assume the recursion
20 = Z,
241 = @(zk)

terminates in k* steps where k* > 0 is an integer. Then
Vk >k 2l =sup{zlr €S, » <z} =z

In [44] it is shown that SupC(L), the supremal controllable sublanguage of L
with respect to M and ¥, is the largest fixed point of an operator € : Pwr(¥*) —
Pwr(¥*) with

QK)=LNsup{T: TS, "M C K}

When L and M are regular languages, the iteration defined by
Ky=1L,
Kjor = Q(Kj))

is known to converge in a finite number of steps to SupC/(L).

Many computational algorithms for calculating other supremal sublanguages in-
volve iterative procedures to find fixed points of suitable operators. These procedures
are implemented in such a way that in each iteration of the algorithm, some transitions
and /or states which violate the desired property are removed from an automaton. In

such algorithms, the finite-state automaton becomes smaller (or it remains at the

31

same size) in each iteration. Hence, the finite convergence follows immediately. The
main challenge is the careful choice of the initial automaton which has to have suffi-
cient information about the strings in the languages being examined. As an example,
we go over the computational algorithm given in [44] for computing the supremal
controllable sublanguage.

Consider an automaton G = (X, X, n,xg, X,,) with ¥ = ¥, U X,. and assume
the nonempty legal marked behavior of the plant £ C L,,(G) is regular. Since
E is a regular language, we can represent it as a finite-state automaton E where
L.(E)=F and L(E) = E. In [44] H = G x E which also marks E is the initial
automaton for computing the supremal controllable sublanguage of E (with respect
to L(G) and X,.). According to Definition 2.6, it is obvious that H refines G. The
following algorithm uses G and E to build a trim automaton, say K, such that K is
a strict subautomaton of E and refines E, and marks SupC(E). Let us refer to this

procedure as supcon : K = supcon(E, G).
Algorithm 2.1. Algorithm for computing supcon(E,G)
1. 2=0

2. Construct H = (Xp, 2. 0, Tho, Xnm) as H = G x E. Therefore, L,,(H) = E,
L(H)=FE and H refines G.

3. Compare H and G. Ifn(x,0) is defined for o € ¥, and ny(z,0) is not defined
and x € Xy, then simply remove state x and all of its associated transitions

from automaton H. Then trim H.

4. Repeat step 3 for all the states of H until there is no state or transition removed

mn step 3.

<

Name the final automaton K. K marks SupC(FE).

Algorithm 2.1 implements (2.7) and computes the supremal controllable sublan-

guage of E with respect to L(G) and ¥,.. In each step of this algorithm the states

32

and transitions which violate the controllability property are removed and the final
automaton marks the supremal controllable sublanguage of E.

Next, we present another example of computational procedures which is comput-
ing the supremal normal sublanguage. In order to calculate the supremal normal
sublanguage, a closed formula is provided in the literature when the legal behav-
ior £ is a closed language. However, the language F need not to be closed. In
this case, the supremal normal sublanguage of this language can be calculated us-
ing the following recursive operator. Let operator ¥ : Pwr(¥*) — Pwr(X*) where
U(Z) = ZNSupN(Z,L(G)), Z C %*. Now, consider the following iterative proce-

dure

(2.8)
Z,j = \I/(Zi_l), 7 Z 1

Since Z is closed in operator ¥, we can use the formula provided in Lemma 2.3,
thus ¥ can be rewritten as ¥(Z) = ZN(Z — P7'P(L(G) — Z)%*).

In dealing with supervisory control problem under partial observation, it is useful
to build a projected model G, = P(G) which marks and generates projected lan-
guages L, (G,) = P(L,(G)) and L(G,) = P(L(QG)). The procedure is described in
[19] and is omitted here for brevity. It is important to note that G, can be regarded
as an observer for G. That is because for every sequence s € L(G), there exists
a projected sequence in P(s) € L(G)) such that the state in G, corresponds to a
subset of states of G and this subset is the state estimate of G based on observation
P(s).

Furthermore, the inverse projection of an automaton G, denoted by P~1(G)),
can be computed by adding self-loops of all unobservable events o € ¥,,, to every state
of G,. If we call the resulting automaton Gy, it is clear that L(G;) = P~[L(G))]
and L,,(G,) = P~ L (G,)].

33

Chapter 3

Robust Nonblocking Supervisory
Control Problem (RNSCP)

Robust control has been introduced to supervisory control of discrete-event systems
to deal with plant’s model and dynamics uncertainties. In Chapter 2, we discussed
the RNSCP and reviewed its solution. In this chapter, we develop a computational
procedure to obtain a maximally permissive solution for the RNSCP. Moreover, in
the process, the finite convergence of the procedure will be proved.

The organization of this chapter is as follows. The main problem is formulated
in Section 3.1. Section 3.2 proposes computational procedures for constructing the
union and legal behavior automata as well as algorithms for obtaining the supremal
L, (G)-closed and G;-nonblocking sublanguages. The computational procedure for
robust nonblocking supervisory control problem is discussed in Section 3.3. Section
3.4 provides two illustrative examples. We apply the proposed procedures in this
chapter to a control and fault recovery problem of a simplified spacecraft propulsion

system in Section 3.5. The results of the chapter are summarized in Section 3.6.

34

3.1 Problem Formulation

In this section we revisit the Robust Nonblocking Supervisory Control Problem (RN-
SCP) (Problem 2.3). In this problem full event observation is assumed. We in-
tend to develop a computational procedure to find the optimal (maximally per-
missive) solution of RNSCP. We also establish the finite convergence of this pro-
cedure in case of regular languages for design specifications. Define the operator

Y : Pur(¥*) — Puwr(¥X") as
QV(K) = SupNbg, (...SupNbg, (SupC(SupRg(K))))

and consider the iterative procedure

EO=pF
3.1
ERHD) — Q’(E(k)) (3.1)

Theorem 3.1. Procedure (3.1) computes E* if it converges after a finite number of

steps.

Proof. Operator ' is monotone (K; C K, implies ' (K;) C ¥ (K>)) and contractive
(V(K) C K). Therefore by Theorem 2.7, if procedure (3.1) terminates after k* steps,
then E® = E* for k > k*. O

In [32] it is proved that the supremal controllable sublanguage of an L,,(G)-closed
language is L,,(G)-closed. We prove that the supremal G;-Nonblocking sublanguage

of a given L,,(G)-closed language will remain L,,(G)-closed too.

Proposition 3.1. If E C L,,(G) C X* is L,,(G)-closed (i.e. E = ENLy(G)), then
the supremal G;-nonblocking sublanguage of E is L, (G)-closed.

Proof. We need to show SupNbg,(E) N Ly,(G) = SupNbg,(F). According to (2.1),
with R = E N L(G;) — EN L, (G)), SupNbg,(E) = E — RX*. Now observe that
SupNbg,(E) = E— RY* C E— RY* = E — RY* (The last equality follows from

35

Lemma 2.1). Therefore,
SupNbe, (E) € SupNbg,(E) N Ly (G)
C (E - R¥*)N Ly(G)
=(ENL,(G)) - RZ*
=F —RY* (Since E is L,,(G)-closed)
= SupNbg, (F)

This shows that SupNbg,(E) N L,,,(G) = SupNbg,(E). O

Since SupC and SupNbg, preserve the L,,(G)-closure property, we can simplify
procedure (3.1) by computing the supremal L,,(G)-closed sublanguage first before
starting the iterative procedure with the operator Q2 : Pwr(¥X*) — Pwr(X*) with
Q(K) = SupNbg, (...SupNbg, (SupC(K))). Therefore:

E® = SupRe(F) 5.
EU+D — o(E®) '

Theorem 3.2. Procedure (3.2) computes E* if it converges after a finite number of

steps.

The proof is similar to the proof of Theorem 3.1 and is omitted for brevity.
This fixed point can be computed recursively by applying the supremal controllable
and supremal G;-nonblocking operators. In Section 3.3 we show that considering n
finite-state automata G; (i = 1,...,n), and assuming the design specifications K; are
regular languages, the iterative procedure (3.2) converges in a finite number of steps.

We will also present a computational procedure for implementing procedure (3.2).

3.2 Basic Computational Algorithms

In this section we develop some computational algorithms which can be regarded as
building blocks of the main result for obtaining the maximally permissive solution of

RNSCP. We start by presenting a lemma which helps us in this chapter.

36

Lemma 3.1. Consider a deterministic automaton G = (X, %, 1, xo, X,n). Let X' C
X be a subset of states and Lx/(G) = {s € L(G) | n(xo,s) € X'} the set of strings
leading to states in X'. If G* is the finite-state automaton remaining from G after
removing the states in X', then L(G*) = L(G) — Lx/(G)¥* and L,,(G*) = L,,,(G) —
Lx/(G)X".

Proof. Removing states in X’ results in the removal of trajectories that include a state
(or states) from X’. These trajectories correspond exactly to sequences Lyx/(G)X*

(since G is deterministic by assumption). O

3.2.1 Automata for union model and legal behavior

The following algorithm obtains a “union” automaton G that generates L(G) =

Lnj L(G;) and marks L,,(G) = O L,,(G;) (Theorem 2.4).
=1 i=1

Algorithm 3.1. Algorithm for constructing automaton G

G = Gu(Gy,...,G,)

1. Change automata Gy, Gs,..., and G, to complete automata (with respect to
Y= U ¥;) as discussed in Sec. 2.1.4 to obtain G, Gy,..., and G,.
2. Define a new automaton G = Gy x Gy X ... x G!,. Each state in G is an

n-tuple * = (1, ..., z,) where x; is the corresponding state of G'.

3. Remove the dump state (dy,ds, ...,d,) (and all of the transitions leading to this
state) where d; is the dump state in G

4. For every state x = (21, ..., x,), mark x if and only if v1 € Xin1 or 9 € X2

or ... or Tp € Xy p.

Automata GY,..., G, generate X* and so does G. Step 3 removes sequences that

are not in U L(G;). Thus L(G) = | L(G;). Step 4 marks the sequences that belong
i= i=1

to Lin(Gh) or Lin(Ga) or, ..., or L (Gr), ie. Lin(G) = U Lin(G).

37

The following algorithm builds a trim automaton which marks the overall legal be-
havior E in (2.2). In addition to automata Gi, ..., G,,, the inputs to the algorithm
include trim automata K, Ko,..., and K, that mark specification languages K7,

Ks,..., and K,.

Algorithm 3.2. Algorithm for constructing automaton marking the legal
behavior E

E = legal(Gy,....G, K4, ..., K,)

1. Complete automata Gy,..., Gy, and K,..., K, (with respect to ¥ = |J ¥;) to
i=1
obtain G',..., G and K',,..., K',.

n n

2. Define a new automaton Hy =G} x Gy x ... x G, x K| x Ky x ... x K/, It
is immediate from the definition of automaton H that each state in Hy is a
2n-tuple & = (T1, ..., Tp, Tpit, -y Ton) 0 which z1, ..., x,, are the states of GY,...,

G, and Ty 1, ..., T2y, are the states of K',..., K. Mark all states of Hy.

3. Fori=1,2,...,n
For every state © = (21, ..., Tp, Tpit, ooy Tan) € X,
Unmark x if ©; € Xy and xpp & Xon(KG)
end

end

4. Unmark any state © = (21, ..., Tp, Tng1, .., Topn) 0 which x; ¢ X, for all 1 <

1< n.
5. Trim H,.

6. Rename cvery state © = (1, ..., Ty, Tty -, Ton) of Ho as © = (21, ..., 2,,Y)

where y = (11, ..., Tap) and call the resulting automaton E.

Theorem 3.3. Upon exiting Algorithm 3.2, the trim automaton E marks E in (2.2).

38

Proof. After step 2, H, will generate and mark ¥* since L(H,) = [, L(G;)] N
N, L(K})] = ¥* and L,,(H,) = X*. In step 3, after the first iteration (i = 1),
H, will mark ¥* — (K{° N L,,(Gy)) = ¥* — (K, U L(Gy))®. After iteration i,
L, (Hy) = X* — U;Zl((Kj U Ly (GY))). In step 4, the states corresponding to the
sequences in L,,(G)* will also be unmarked. Thus, L,,(Ho) = X* — (U;_, (K; U
Le(G;))° U Ly, (G)*°) which is exactly the same as (2.2). d

Remark 3.1. Automaton E refines G.

Remark 3.2. The computation of automaton E using Algorithm 3.2 has a time
complezity of O(nm™k™) where m and k are the number of states of G; and K;
respectively and n is the number of plants. This can be explained as follows. Adding
a dump state in step 1 and completing the automaton is linear with respect to the
number of states in each automaton. Constructing the product of these plants and
their specifications has a time complezity of O(m™k™). The number of states of Hy
is O(m™k™). Step 3 involves n changes of marking for each state of Hy. The final
trim operation has a time complexity of O(m™k™). Therefore, the total complexity of

this algorithm is O(nm™k™).

3.2.2 L,,(G)-closed sublanguage

Now, we provide an algorithm to build the supremal L,,(G)-closed sublanguage of
a given language £ C L,,(G) in the case that F is regular and G is a finite-state
automaton. This algorithm is different from the one in [10] and fits our overall
procedure better.

Let E be a finite-state automaton such that L(E) = E and L,,(E) = E, and E
refines G. This algorithm takes G and E (obtained from Algorithms 3.1 and 3.2) as
inputs and constructs a strict subautomaton of E, denoted by F*, that marks the

supremal L,,(G)-closed (closed relative to L,,(G)) sublanguage.

Algorithm 3.3. Algorithm for computing the supremal L, (G)-closed sub-

language

39

F* = suprel(E, G)

1. Remove any state x = (T1,...,Tn,y) of E if (x1,....;2n,y) € Xpn(G) and = ¢
X (E) to obtain F'.

2. Trim F to obtain F*.
Theorem 3.4. Automaton F* obtained in Algorithm 3.3 is a strict subautomaton of
E and marks the supremal Ly, (G)-closed sublanguage of Ly, (E).

Proof. The strings leading to the states that are removed in step 1 are:

(se¥*se LE)As € Ln(G)As ¢ LE) — L(E)} = EN L (G) N (L(E) — Li,(E))

Therefore by Lemma 3.1,

Liy(F) = L(E) = (EN (Li(G) — E))%*

= E— (EN(Lp(G) — E))=*

Next rewrite L(G) — E a8 Ly (G) — E = [(Ln(G) — E) NV E|U[(Ln(G) — E) — B =
(Ln(G) — E) NE] U [L(G) — B). Therefore,
E— (Ln(G) — E)Y* = E — ([(Lm(G) — E) N U [Ln(G) — E))x*

= E— ([(Ln(G) — E)NE|S* U[Ln(G) — E|Z*)

= (E = [(Ln(G) = E)NEX) N (E — [Ln(G) — E]XY)

(Since A — (BUC) = (A— B)N(A—C))

Since EN[(Ly(G) — E)Y*] =0, E — (L,w(G) — E)Y* = E, and therefore
E—(L,(G) - E)X*=FE—|[(L,(G) — E)n E]x*
Substituting in (3.4), we obtain
Ln(F) = E — (Ln(G) — E)S*
= SupRg(E)

40

Thus, after step 2, automaton F* will mark the supremal L,,(G)-closed sublanguage

of E. O

Remark 3.3. Algorithm 3.3 has a time complexity of O(|Xg|) where |Xg| is the

number of states in the finite-state automaton E.

Remark 3.4. Algorithm 3.3 can be used even if E and G are not obtained from
Algorithms 3.1 and 3.2. In such case, if E does not refine G, this automaton should
be substituted with the product of G and E, i.e. E = G x E. Then the time
complezity of computing the supremal L,,(G)-closed sublanguage using Algorithm 3.3
will be O(|Xg|.|XE|) where | Xq| and | Xg| are the sizes of the state sets of G and E.

3.2.3 G,;-nonblocking sublanguage

The notion of G;-nonblocking sublanguage has been introduced in Chapter 2. Next,
we will present an algorithm which takes the automaton E marking the legal behavior,
and the union plant G as constructed in Algorithms 3.1 and 3.2, to build a trim
automaton E,; that marks the supremal G;-nonblocking sublanguage of E. In other
words, Ly, (E,;) = SupNbg,(F).

Before studying the algorithm, recall that the states of E are (n + 1)-tuples
belonging to (X; U{d;}) x (XoU{d2}) x ... x (X,, U{d,}) x Y.

Algorithm 3.4. Algorithm for obtaining the supremal G;-nonblocking sub-
language

E,; = supnblki(E, G)

1. Let Hq be a copy of automaton E but with marked state set X,,(H,) = {x |z =
(1) ooy Ty y) € Xn(E) and x; € X, }.

2. Identify all of the uncoreachable states of Hy whose i-th element, x;, is not a

dump state and remove them from E and call the automaton E,;.
8. Trim E,,;.

41

Theorem 3.5. The trim automaton E,; obtained from Algorithm 3.4 is a strict

subautomaton of E and marks the supremal G;-nonblocking sublanguage of E.

Proof. Tt is straight-forward that after step 1, automaton H; marks
Ln(H1) = Ln(Gy) N Ly(E) = L,(G;) N E.

The set of sequences leading to states x = (x1, ..., z,,y) in H; that are coreachable

or x; =d; is Ly,(Hy) U L(G;)®. Therefore the sequences leading to states in H

that are identified in step 2 are

L(Hy) — (L(Gy)* U L,,(H,)) = EN (L(G;)* U L,,(H,))®
= (BN L(GY)) = Lm(H))
= (ENL(GY)) = EN Ln(G)

Using Lemma 3.1, after step 2,

Ln(E,;) = Lyn(E)— (ENL(G;) — EN L, (G)))%*
=FE— (ENL(G;) — EN L, (Gy))%*
Therefore, we can conclude that after step 3 the resulting trim automaton F,; marks

the supremal G;-nonblocking sublanguage of E. O

Remark 3.5. The computational complexity of the above algorithm is O(m"k™) since

(m+1)"(k+1)" is the mazimum number of states of E.

3.3 Computational Algorithm for calculating the
solution of RNSCP

In this section we present the main result which is an algorithm for solving RN-
SCP. The inputs are the plant models G4, ..., G,, and automata K, ..., K, which
mark the specification languages. The algorithm, which constructs a trim automaton
E” marking the supremal element E* = SupRCNb(F,G), implements the iterative
procedure (3.2).

42

Algorithm 3.5. Algorithm for obtaining the solution of RNSCP
E* = supren(Gy, Ky, ..., G, K)

1. Build G := Gu(Gh, ..., G,) using Algorithm 3.1.
2. Build E :=legal(Gh, ..., Gy, K1, ..., K,,) using Algorithm 3.2.
3. Ry = suprel(E.G)

4 j=1
While R}, is nonempty
R} = supcon(R}, G)
Fori=1,...,n
R, = supnblki(R.,G)
End
IfR),, # R}
R‘SH = R%H
j=i+1
Else
E* = Ri;ﬂ,
stop
End(If)
End(While)
E* = empty automaton,

stop.

Theorem 3.6. Algorithm 3.5 terminates in at most p steps where p is the num-
ber of states of E calculated in Algorithm 3.2. The resulting automaton E* marks

SupRCNb(E,G).

Proof. In step 3, R} is a strict subautomaton of E and marks the supremal L,,(G)-

closed sublanguage of E. This corresponds to the first step in procedure (3.2).

43

Next R} C R, C FE is obtained that marks SupC(L,,(Ry)). Then the sequence
R} , C R} C .. C Rjisobtained in which R} 1 marks the supremal G;-nonblocking
sublanguage of L,,(R}). This completes the first iteration of procedure (3.2). The
algorithm proceeds with the next iterations. Since in each step of each iteration, a
strict subautomaton of an automaton of the previous step (and that of E) is obtained,
and all automata, including E, are finite-state, then the algorithm terminates in at

most p steps (where p is the number of states of E). O

Remark 3.6. Since E refines G and has O(m"k™) states, the complexity of supcon
algorithm in step 1 is O(m"k™). Similarly the complexity of computing supnblki is
O(m"k™). Therefore, the computational complexity of each iteration of step 4 would
be O(nm"k™). This algorithm will iterate O(m"k™) times since automaton E has
at most (m + 1)"(k + 1) states. Thus, Algorithm 3.5 has a time complexity of
O(nm?"k*").

3.4 Examples

In this section we present two examples to illustrate the algorithms. In the first
example, given two plant models and their specifications we find the overall legal
behavior E as well as the supremal G-nonblocking sublanguage of E. In the second

example, we seek the solution of the RNSCP with two plant models.

Example 3.1. Consider plants G and G5 and the automata representing their
design specifications K1 and K, in Fig. 3.1. In these representations, the doubly
circled states denote the marked states of each automaton.

The overall legal marked behavior E for RNSCP can be built following the steps of
Algorithm 3.2 as described below.

1. This step is straight-forward and its results are omitted for brevity.

2. Automaton H from step 2 where all the states are marked is shown in Fig.

3.2(a).

44

(a) Hy after step 2.

O CERCSN®

(b) E

Figure 3.2: Example 3.1. Using Algorithm 3.2 to find E.

45

3. In this step, state (5,d.d,d) will be unmarked since z; =5 € X,,; and z3 =
dé¢ X, (K1).

4. State (2,2,2,2) becomes unmarked in this stage since z; = 2 ¢ X,,; and
xg =2 ¢ X, 5. Using the same argument, states (d, d, d,3) and (d,d, d,d) will
be unmarked too. The sequences leading to these states do not belong to the

marked behavior of the union plant G.

5. Finally Hy is trimmed and after renaming states, automaton FE is obtained

(Fig. 3.2(b)).

Example 3.2. In this example the problem of robust nonblocking supervisory control
is being discussed. Consider plants G; and G5 and their specifications K; and K
in Fig. 3.3. The illegal transitions in G; and G5 are shown with dotted lines. Let
the set of uncontrollable events be ¥,. = {u,v,w}. Algorithm 3.5 is used to solve

the problem.
1. Automaton G constructed using Algorithm 3.1 is shown in Fig. 3.4.

2. The overall legal marked behavior can be obtained using Algorithm 3.2 (Fig.
3.5).

3. The legal behavior E is L,,(G)-closed, and suprel(E,G) returns E.

4. Now we can go through the iterative procedure in step 4 of Algorithm 3.5. The
first step in iteration j = 1 is to find an automaton marking the supremal con-
trollable sublanguage. It is easy to see that states (3,7,9) and (10, d, 10) violate
controllability and are removed from automaton Ry which results in R; in Fig.
3.6(a). Since R; is G -nonblocking, Rj remains the same as R with no state

or transition elimination.

46

Figure 3.3: Example 3.2. Plants and specifications automata.

47

Next observe that the sequence aya violates Ga-nonblocking property. Fol-
lowing Algorithm 3.4 to obtain the supremal Gs-nonblocking sublanguage of
Ln(R), in step 1, states (2,6,6) and (7,11, 8) are unmarked and since (7, 11, 8)
is not coreachable and xs = 11 is not a dump state, (7,11,8) will be removed

from R, to obtain R;.

Figure 3.5: Example 3.2. Automaton E and suprel(E, G).

Since R} is not the same as R}, we should proceed to the second iteration.
Thus, R? := R} (Fig. 3.7(a)). R} satisfies the controllability condition and
therefore R} = Rj. State (6,10,7) is removed in this step since a7y violates
G 1-nonblocking. The result is R3. In the next step, R3 is obtained by removing
state (2,6,6) to achieve Go-nonblocking property.

48

Figure 3.7: Example 3.2. Automata in iteration j = 2.

As R% is not the same as Rg, we should go through the third iteration by
substituting Rj with R3. It can be easily checked that this automaton is

controllable, G{-nonblocking and Gs-nonblocking. Thus, no new state and

49

transition will be removed in this iteration and Rj = Ry = R} = R3. Hence,
automaton E* = Rg marks the supremal L,,(G)-closed, controllable and G-

nonblocking and Ge-nonblocking sublanguage of the legal behavior E.

3.5 Application Example: Spacecraft Propulsion
System

In this section we study supervisory control of a simplified version of the Propulsion
Module Subsystem (PMS) of the Cassini spacecraft [23, 28]. Fig. A.1 shows the full
schematic of Cassini propulsion module subsystem. Fig. 3.8 shows the simplified
propulsion system which consists of two propellant tanks and two engines E1 and E2.
The valve assembly for E1 includes valves Vi, V5, normally-open pyro valves PV; and
PVy, and normally-closed pyro valves PV3 and PV,. Two pressure sensors measure
pressures P; and P, and a temperature sensor T'1 monitors chemical reactions and

thrust generation in E1.

) (@)

* (OXidzzer) (Fuel) /

P\J’ZJ"
St

f_'_.

Pl P2 P P4

Tl El @—‘7 E2 A

Figure 3.8: Spacecraft propulsion module subsystem.

PV1

G

50

The valve assembly for E2 is simpler consisting of valves V3, V, and pressure sen-
sors P3, P, and temperature sensor 7'2. When the fuel paths between the propellant
tanks and engines are open, propellants can combine, ignite and produce thrust. In
this example, we intend to design a supervisor that in response to a high-level Master
Controller fires the engine in such a way that the design specifications are satisfied.
In our problem, for simplicity, only valve V] is assumed prone to “stuck-open” failure
and valves V3, V3 and Vj are assumed fault-free. Fig. 3.9 and 3.10 show the DES
models of valve V; and valves V5, V3 and V} respectively. We assume that the valves
arc initially closed. The “stuck-open” failure mode of V; is permanent and the valve
never returns to normal mode. Hence, any open or close command for valve V) after

a failure has no effect.

V1-Q.VI1-C

V1-0 _{?’%\ VI-50 i

(i-2.3.1)

Figure 3.10: DES model of valves V5,V3 and V.

The models of the normally-open and normally-closed pyro valves are shown in
Fig. 3.11.

The models of the four pressure sensors and two sensors measuring temperature
as well as the Master Controller are shown in Fig. 3.12. Start and stop commands
can be generated at any time by the Master Controller (Fig. 3.12(c)). Table 3.1

provides the list of events and their controllability status.

51

{i=1,2) (i=35.1)

(a) Normally-open pyro valves PV; and (b) Normally-closed pyro valves PV3 and
PVs,. PVy.

Figure 3.11: DES model of pyro valves.

Table 3.1: List of Events and descriptions

Event Description Controllable
Vi—C | Valve Vi closes (i=1,...,4) Yes
Vi—0O | Valve Vi opens (i=1,....4) Yes
Vi— SO | Valve Vi fails stuck open No
PVi—C | Pyro valve Vi closes (i=1,2) Yes
PVi— 0O | Pyro valve Vi opens (i=3,4) Yes
PiH Pressure sensor ¢ becomes high (i=1,...,4) | No
PiL Pressure sensor i becomes low (i=1,...,4) | No
TiH Thrust of engine ¢ becomes high (i=1,2) | No
TiL Thrust of engine i becomes low (i=1,2) No
start Master Controller issues start command | No
stop Master Controller issues stop command No

start , stop

(a) Pressure sensors P; (i = 1,2,3,4). (b) Temperature sensors T7,Ts. (c) Master

Controller

Figure 3.12: Sensors and Master Controller models

52

To complete the model, we build DES models INT1 to INT4 to describe the effect
of valve positions on the pressure sensors, and INT5H and INT6 to model the reading
of the temperature (thrust) sensors as a function of the pressures measured by P,
Py, P3 and Py. The reading of pressure sensor P, depends on the state of Vi, PV}
and PV3. Specifically the pressure goes high only when PVj is open, and either V;
is open (or stuck-open) or PVj is open. This dependency is represented by INT1 in
Fig. 3.13. INT1 is obtained by adding selfloops of pressure sensor readings to the
sync(PVy, PV3, V1) (The transitions of sync are not displayed to avoid cluttering the
figure). The state names in Fig. 3.13 indicate the current state of PV;, PV3 and V)
respectively. INT2, INT3 and INT4 are constructed similarly for pressure sensors P,
P and Py.

A A AAAA

PIT.]:’]_L F1L B /].E:]i PrIH
A N Z N\ N

Figure 3.13: INT1: Interaction between PV;, PV3, Vi and P;.

Now we proceed to model the interactions between pressure sensor readings and
the thrust of engines. The thrust of an engine goes high only when the corresponding
pressure sensors show high pressure reading. Fig. 3.14 shows these interactions.
The plant model G is obtained by the synchronous product of all component and
interaction models.

Broadly speaking, the design specifications require the use of E1 for normal mode
and E2 in case of valve V; failure and prohibit simultaneous firing of E1 and E2. In
normal (resp. faulty) mode, the supervisor must be able to turn on E1 (resp. E2)
and turn off E1 (resp. E2). (Other requirements that deal with other issues such as

fuel waste are not considered for brevity.) The detailed design specifications are as

53

follows.

In normal mode:
e The system should wait for the start command to start firing engine E1.

e After the start command is issued by the master controller, any start and
stop command should be ignored during the start-up procedure until thrust is

generated.

(b) INT6

Figure 3.14: Interactions between pressure sensors and temperature sensors.

e When the thrust is high, once the master controller issues the stop command,

the shutdown procedure starts.

e During the shutdown procedure, any start and stop command must be ignored.

o4

The automaton for start-up and shutdown in normal mode is shown in Fig. 3.15.

Engine 2 is a backup engine and must be used in case of engine 1 failure. When fault

start | stop

Figure 3.15: DES model of start up and shutdown procedure in normal mode.

(i.e. valve Vi stuck-open) occurs, engine 1 shall no longer be used and the system
must switch over to engine 2 based on the current state of the system. The design

specifications for the faulty mode of the system are given below.

o [f the fault occurs before a start command, the system should switch completely
to engine 2 and wait for the start command. In other words, the procedure for

starting and shutting down engine 2 should be followed.

e [f the fault occurs after the master controller issues a start command, engine 1
should continue firing until the master controller issues the stop command and
engine E1 is turned off. Then the system must switch to engine E2 for future

maneuvers.

e [f the fault occurs after the master controller issues a stop command but before
engine E1 is turned off, the engine must be turned off and then the system

should switch over to engine E2.

The DES model of these design specifications is shown in Fig. 3.16.
This supervisory control problem is a problem of fault recovery with a normal and

a faulty mode. In each mode there are two sets of marked states, one for thrust low

95

slad | slep

Figure 3.16: DES model of start-up and shutdown procedure in faulty mode.

(engine off) and another for thrust high (engine on). The problem can be solved as a
robust control problem with four plant models G'noff, Gnon, Gnrofs and Gy on-
Gnofs (resp. Gnp) are the subautomaton of plant model G with states in normal
mode Gy with thrust low (resp. high) marked. This marking can be done by the
synchronous product of G with automaton Marker N in Fig. 3.17 with state 1 (rep.
state 2) of Marker N marked. Similarly Gyross (resp. Gyron) are obtained by the
synchronous product of G with Marker F (Fig. 3.18) with state 3 (resp. state 4)

marked.

Marker N °°

Figure 3.17: Mark state 1 for OFF and state 2 for ON.

TIL,T1H TI1L,T1H

Marker F

Figure 3.18: Mark state 3 for OFF and state 4 for ON.

All algorithms presented in this chapter have been implemented using DECK [46],

56

[47]. The resulting plant model G has 16384 states and 278528 transitions. The so-
lution of the RNSCP has 944 states and 11438 transitions.

To illustrate what the robust supervisor does, consider a sample sequence from the
system under supervision automaton depicted in Fig. 3.19. Master Controller issues
a start command. After valves Vi and V5 become open, pressures P, and P become
high. At this stage the thrust of E1 becomes high and the first engine fires. Next
valve V| becomes stuck-open (It is assumed the failure is diagnosed quickly and hence
is treated an observable event.) Next when a stop command is issued, engine E1 is
switched off. This is done (in the sample sequence shown in Fig. 3.19) by firing PV}
to shut the path between the oxidizer tank and engine E1 and by closing valve 1,
which shuts off supply from the fuel tank. Following another start command from
Master Controller, the system switches to engine E2 and the start-up procedure for
E2 opens valves V3 and Vj, the pressure sensors P; and P; show high pressure and
E2 fires. Later, when a stop command comes from Master Controller, engine E2 is
turned off by closing the corresponding valves V3 and V4. When Master Controller
issues another start command to generate thrust, engine E2 is being used and the
same sequence happens to complete a thrust on and thrust off sequence.

s Y VIO T V0 N p N T

» } | »

\ ; LS ; '\ 4 \ g /
Ry N e S gl p A =T

\-’I—Sﬁl

{ Il ; P21 ,.: P11 () Vi-C .. : PWI1-({) stop {)

R N b L e S s .
slarl

P W v TN Ve Vi ¥ PG R

{ I\,B() ¢) V402 . ‘ Pill » P4l s 1211 .)

Mo N M b Fe N
start SHOR

e = ST PR T BAL T praprT v MO T N

e R T /.4#"—{\ «

Sy S S Ko S i

Figure 3.19: Sample start-up and shutdown sequences.

It should be noted that it is necessary to ensure nonblocking with respect to

o7

multiple sets of marked states (and not just one set). Suppose we choose the E1 off
states as the only marked state set for normal mode. Assume E1l is “on” in normal
mode and Master Controller issues thrust shutoff command. The conventional (non
robust) supervisory control solution allows the system to close PV to turn off the
thrust of engine 1. But the supervisor will no longer be able to turn on E1 since
the pyro valves cannot be opened again. The robust supervisor designed based on
RNSCP however does not fire PV, and PV, unless a fault occurs.

In the configuration shown in Fig. 3.8, pyro valves PV3 and PV} are redundant.
In fact, it can be validated that the RNSCP still has a solution event if PV3 and
PV, are removed from the propulsion system. This shows that the RNSCP and its
maximally permissive solution can be used as a design tool to validate different valve
configurations. Finally, it should be noted that the purpose of having PV3 and PV,
in Fig. 3.8 is to have the ability for handling stuck-closed failures of valves V; and V,

(which have not been studied in this example).

3.6 Conclusions

This section presents a computational algorithm for the supremal controllable, L, (G)-
closed and G;-nonblocking sublanguage. This sublanguage provides the maximally
permissive solution for the robust nonblocking supervisory control problem. The
algorithm is used to solve a control and fault recovery problem in a propulsion sys-
tem. In the next chapter, the algorithm will be extended to the case of partial event

observation.

58

Chapter 4

Robust Nonblocking Supervisory
Control Problem with Partial

Observation

The notion of robust supervisory control of discrete event systems has been intro-
duced in order to handle the situations in which the plant’s models and dynamics
are not known. In Chapter 3, we have examined RNSCP when all the events are
assumed to be observable. This problem can be extended so that it can cover partial
observation of the events. In this chapter we will consider the robust nonblocking
supervisory control problem in case of partial observation (RNSCP-PO) and will
present a computational algorithm for it.

This chapter is organized as follows. Section 4.1 describes the problem formu-
lation. In Section 4.2, the class of supremal normal sublanguage are introduced.
Section 4.2 proposes a computational algorithm for refining the automaton mark-
ing the legal behavior to have sufficient information on the states and transitions as
well as projection mapping. This algorithm is used later in this section to form the

initial automaton of the computational procedure for finding the supremal normal

59

sublanguage. In Section 4.3 the computational procedure for the RNSCP-PO is pro-
vided and its finite convergence is proved. Section 4.4 demonstrates the proposed
algorithms by providing illustrative examples. This chapter is concluded in Section

4.5.

4.1 Problem Formulation

As mentioned earlier in Chapter 2, the class of observable sublanguages of F need
not have a supremal element in general. Hence, the RNSCP-PO may not have an
optimal (maximally permissive) solution. However, if we substitute observability with
normality (restricting the set of solutions with an stronger property), we can find the
supremal element of the new set of solutions since the set of normal sublanguages has
a supremal element.

Now recall the robust nonblocking supervisory control problem with partial ob-
servation discussed in Chapter 2 (Problem 2.5).

Define the operator Q' : Pwr(3*) — Pwr(3*) as
Q' (K) = SupNbg, (...SupNbg, (SupC(SupN (SupRg(K)))))

and consider the iterative procedure

EO=F
4.1
E(k‘+1) — Q/(E(k)) ()

Theorem 4.1. Procedure (4.1) computes E* if it converges after a finite number of

steps.

Proof. Operator ' is monotone (K; C Ky implies ' (K;) C ¥ (K>)) and contractive
(' (K) C K). Therefore by Theorem 1 of [17], if procedure (4.1) terminates after k*
steps, then B = E* for k > k*. O

It has been shown in [32] and Chapter 2 that SupC' and SupNbg, preserve the

60

L,,(G)-closure property. Since SupN (E) also remains L,,(G)-closed if E is L,,(G)-
closed, then we can simplify procedure (4.1) by computing the supremal L,,(G)-
closed sublanguage first before starting the iterative procedure and use the operator

Q: Pwr(¥X*) — Pwr(X*) with
QK) = SuprGn(...SuprGI(SupC’(SupN(K))))

Therefore:

E©® = SupRg(F)
B — Q(E(k))

(4.2)

Theorem 4.2. Procedure (4.2) computes E* if it converges after a finite number of

steps.

The proof is similar to the proof of Theorem 4.1 and is omitted for brevity.
This fixed point can be computed recursively by applying the supremal normal, supre-
mal controllable and supremal G;-nonblocking operators. In the next section we show
that considering n finite-state automata G; (i = 1,...,n), and assuming the design
specifications K; are regular languages, the iterative procedure (4.2) converges in a
finite number of steps. We will also present a computational procedure for imple-
menting procedure (4.2).

In order to be able to find a computational procedure for obtaining the solution
of RNSCP with partial observation formulated above, we introduce a procedure for

calculating SupN (E, L(G)).

4.2 Computation of Supremal Normal Sublanguage

A computational algorithm for calculating the supremal normal sublanguage is pre-
sented in [10]. In this work, we aim to come up with an initial automaton and make
all the changes to this single automaton until we reach to the solution. The differ-

ence in our work and [10] is that the latter does some preprocessing on the input

61

automata to make their state name match each other. Then, in each iteration it uses
two intermediate automata. We will present an alternative algorithm which uses a
single automaton and appears to be simpler.

We start by presenting an algorithm for obtaining automaton H which has enough
information to find the supremal normal sublanguage by removing transitions and
states using the plant G, legal behavior automaton E and the projection map P. In
this approach, G and E are obtained using Algorithm 3.1 and 3.2 respectively.

Automaton H can be constructed by defining it as H = P~'P(G) with P(.) and
P~! are defined in Chapter 2. It is clear that L,,(H) = EN P~'P(G) = E since
ECL,(G) C P 'P(L,(H)). Similarly L(H) = E.

This new automaton can be used as the initial automaton for going through
the procedure of solving the Robust Nonblocking Supervisory Control problem with
Partial Observation stated in (4.2).

Remark 4.1. Automaton H refines G.

Recall that each state of automaton G is a n-tuple g = (21, ...,) and the states
of E are (n + 1)-tuples xg = (1, ..., n,y) according to Algorithms 3.1, 3.2. Now,
we simplify the names of state of G for further use in this work. Let zg denote the
state names of G where zg = (21, ...,x,). With this definition, we can rename the
states of E as pairs g = (zg,).

With the aforementioned comment on state renaming, it is easy to see that the states
of automaton H obtained from H = Ex P~!P(G) can be written as (g, y, 2g) with
zg € Pwr(zg). Before introducing some useful properties of this new automaton,

we need to provide new definitions.

Definition 4.1. Two states of H, (xq,y, 2c) and (g, V', zg), are called a matching

pair if zg = zg but xg # Tg.

This definition resembles matching pairs in [20].

62

Definition 4.2. Pair Deficiency
A state (zq,y, z2c) is called pair-deficient if it has less than |zg| matching pairs in

automaton H .

It is clear from the above definition that if a state (zq, v, 2¢) with |2g| = 1, can-

not be pair-deficient.

Lemma 4.1. If (zq,y. 2g) is pair deficient, then there exist v € zg and s € L(G)
such that s leads to vy (in G) and P(s) leads to z¢ (in P(G)), but s ¢ E.

Lemma 4.2. Suppose (xg,,v1,2a); --,(Ta,;, Vi, 2c) be matching pairs. Then, there
exists i different strings si,...,s; leading to (xg,, 1, 26),--,(Ta,, Vi, 2c) Tespectively

such that P(s1) = ... = P(s;).

Proof. States (zg,,y1, 2G),---(Ta,, i, 2c) are reachable states in automaton H. There-
fore, if string s; leads to state (v, y1,2¢) in H, then s; € L(E) N L(G). Thus,
string s; leads to state (xg,, y1) in E and from the structure of this automaton we can
deduce that execution of s; takes us to the state xg, € zg in automaton G. Similarly
Tg; € 2g (j = 2,...,1). Now, since s; leads to z¢ in P7'P(G) and zg,, ..., g, € 2a,

there exist strings sg,...,s; such that P(s;) = ... = P(s;). O

Next, we will present an algorithm which takes the automaton marking the legal
behavior, E, and the union plant G as constructed in Algorithms 3.2 and 3.1 (legal(.)
and Gu(.) respectively), to build a trim automaton E,,,.,, that marks the supremal
normal sublanguage of E with respect to P and L(G). In other words, L,,(H,) =
SupN (E, L(G)).

Algorithm 4.1. Algorithm for obtaining the supremal normal sublanguage

E, .. = supnorm(E, G)
1. Build automaton H = E x P7'P(Q).

2. Repeat the steps (a) and (b) until there is no state removal:

63

(a) Identify states (zq,y,za) where |zg| > 2. If the state is pair-deficient,
remove it along with all of its matching pairs. Name the new automaton

H.

(b) Trim H.
End(repeat)
3. Let E,,m.,, be the final automaton.

Theorem 4.3. The trim automaton E,,.,, obtained from Algorithm 4.1 is a subau-

tomaton of E and marks the supremal normal sublanguage of E.

Proof. At the start of algorithm, L,,(H) = FE and L(H) = E. In step 2, those
states which are pair deficient will be removed. Suppose (zg, ¥y, zg) is a pair-deficient
state. In this case, there exist strings s; and s, such that s; € E, 55 € L(G) — E and
P(s1) = P(s2). It is clear that the existence of these strings contradicts the normality
property. Therefore, by removing this pair deficient state and all of its remaining
matching pairs, all strings s; € P71(P(s3)) would be deleted from automaton H.
Thus, after step 2(a)

L.(H)=FENLH)
=En(E—-P'PL(G) - E)X%)
Next, in step 2(b) the uncoreachable states which correspond to unmarked states
in E are removed. The above operations correspond to the first iteration of procedure

(2.8). Finally after step 3 the resulting trim automaton E,,,,,, marks the supremal

normal sublanguage of E, SupN(E, L(G)). O

64

4.3 Computational Procedure for RNSCP-PO

In this section, we present an algorithm for solving RNSCP-PO. The inputs are the
plant models G+, ..., G, and K1, ..., K, which mark the specification languages. Al-
gorithm 4.2, which constructs a trim automaton E* that marks the supremal element

E* = SupRNCONb(E,G), implements the iterative procedure (4.2).

Algorithm 4.2. Algorithm for obtaining the solution of RNSCP-PO
E* = suprnen(Gy, Ky, ..., G, K,)

1. Build G := Gu(Gh, ..., G5).

2. Build E :=legal(Gq, ...,G, K1, ..., K,).
3. Build H = E x P~'P(G).

4. Ry = suprel(H,G)

5 5=1
While R% 15 nonempty
R} = supnorm(R), G)
R} = supcon(R), G)

Fori=1,....n
Rg+2 = supnblk:z'(RgH, G)
End

IfR, ., + R}
R%H = Ri+2
j=7+1

Else
E* = waz:
stop

End(If)

End(While)

65

E* = empty automaton,

stop.

Theorem 4.4. Algorithm 4.2 terminates in at most p steps where p is the number

of states of H. The resulting automaton E* marks SupRNCNb(E,G).

Proof. In step 4, Ry is constructed that is a strict subautomaton of H and marks
the supremal L,,(G)-closed sublanguage of E. This corresponds to the first step in
procedure (4.2).

In the first step of the iteration, R C R} C E is built which marks the supremal
normal sublanguage of E, SupN(L,,(R}), L(G)). Next Ry C R} is obtained that
marks SupC(L,,(R;)). Then the sequence R),, C R., T .. C R} is obtained
in which R} 4o marks the supremal G;-nonblocking sublanguages of Lm(Ril). This
completes the first iteration of procedure (4.2). The algorithm proceeds with the next
iterations. Since in each step of each iteration a strict subautomaton of an automaton
of the previous step (and that of H) is obtained, and all automata, including H, are
finite-state, then the algorithm terminates in at most p steps (where p is the number

of states of H). O

Remark 4.2. The states of H are of the form (vq,y, 2g). In supcon and supnblki

procedures the component zg is not used.

4.4 Examples

In this section we provide two illustrative examples for the computational procedures
developed in this chapter. In the first example, we show the computation of supremal
normal sublanguage. In the second example, we provide the solution of a robust
nonblocking supervisory control problem with partial observation using Algorithm

4.2.

66

4.4.1 Example 1

Consider the plant G and design specification K in Fig. 4.1. It is assumed that
events 0 and are not observable, i.e. ¥,, = {0,0}. In these representations, the

doubly circled states denote the marked states of each automaton.

Figure 4.1: Example 4.4.1. Plant and legal behavior.

The legal marked behavior E can be built following the steps of Algorithm 3.2.
This legal behavior is shown in Fig. 4.2.

g
— (o= {(anf g
\\%_ X M (82

&

Figure 4.2: Example 4.4.1. Automaton E obtained from Algorithm 3.2.

67

Next automaton H is built.

1. In the first step, the plant automaton G is projected and is denoted by G,
Fig. 4.3(a).

—> {5}
é.0
— {5}

(b) Gy after step 2

Figure 4.3: Example 4.4.1. Procedures for obtaining automaton H.

2. Next, self-loops of §, 0 are added to the states. The resulting automaton G, is
shown in Fig. 4.3(b).

3. In the final step of this algorithm, automaton H is obtained by building the
product of automata E and G, Fig. 4.4.

Next, the iterative step of Algorithm 4.1 is executed.

e In the first iteration, by checking the pair-deficiency property in all states, we

can see that state (4,1,{4,9}) is pair-deficient since the zg part of the state

68

name is {4, 9}, therefore |zg| = 2. Next, we remove (4, 1,{4,9}) and all of its
matching pairs (it is clear that the matching pair for this state does not exist).

The resulting automaton in this step, Hy, is shown in Fig. 4.5(a).

(3,1{2,3,6)) (4,144.91) (5,1.{5)

(N e .\ 5 @
" oA _/

(6,2,{2,3,6))

0 (7,247
(o 2)
LN

)

Figure 4.4: Example 4.4.1. Automaton H obtained from E x P~'P(G).

Next automaton Hy is trimmed, Fig. 4.5(b).

Since some states were removed in the first iteration we have to go through

another iteration.

In the first step of the second iteration we can see that state (6,2,{2,3,6}) is
pair-deficient since |zg| = 3 and there are only two matching pair states. Hence,
state (6,2,{2,3,6}) and its matching pair (2, 1,{2,3,6}) must be removed from

H . The resulting automaton is shown in Fig. 4.6.
In this step, the automaton Hy is trimmed Fig. 4.6.

No state removal is required in the third iteration and we can conclude that
the resulting automaton represents the supremal normal sublanguage of FE.

Automaton E,,., is shown in Fig. 4.7.

69

(3.L{23.6])

()
3
(LL{1h (2,1.42,3.6) %

ﬂ‘\ /-~ 622,36}
4(g | BN = (7,247}
L \\‘_-/j 4 /
L

(a) Hy after step 2.a.

J

(LL{1D (2,1{2,3,61

6,2,42,3.6}
0 (6,2,{2,3,6})

(7,247}

B

(b) Hy after trimming in step 2.b

Figure 4.5: Example 4.4.1. Using Algorithm 4.1 in the first iteration.
(L1{1}) (8.1.{8})
4 94.(*9)
Figure 4.6: Example 4.4.1. Using Algorithm 4.1 in the second iteration.

(1,1{1}) (8.1.{8})
- 1>4.(ﬁ)
Figure 4.7: Example 4.4.1. Automaton FE,,.,, marking the supremal normal
sublanguage.

70

4.4.2 Example 2

In this example, a problem of robust nonblocking supervisory control with partial

observation is solved. Consider plants G; and G5 and their legal behaviors K

and K5 in Fig. 4.8. Let the set of uncontrollable and unobservable events be ¥, =

{u,v,w} and ¥, = {e, ¢, w} respectively. Algorithm 4.2 is used to solve the problem.

ot

. Automaton G is constructed using Algorithm 3.1 and is shown in Fig. 4.9.

. The overall legal marked behavior can be obtained using Algorithm 3.2 (Fig.

4.10).

. Automaton H = E x P7'P(Q) is depicted in Fig. 4.11.

. The legal behavior H is L,,(G)-closed, and suprel(H,G) returns H in Fig.

4.11.

. Now we can go through the iterative procedure in step 5 of Algorithm 4.2.

e The first step in the first iteration j = 1 is to obtain an automaton marking
the supremal normal sublanguage. Using Algorithm 4.1, it is easy to see
that state (d,6,6,{(d,6),(6,d)}) is pair deficient and has to be removed.
Next, state (d, 5,5, {(d,5), (5,d)}) is removed after taking the trim opera-
tion since this state is not coreachable. In the next recursion of Algorithm
4.1, state (5,d,11,{(d,5), (5,d)}) is pair deficient now because its match-
ing pair has been removed in the previous iteration. Therefore, this state
has to be deleted from automaton H. The remaining automaton is trim
and after performing one more iteration, we can see that no new state
will be removed and the recursion ends. Automaton R; representing the

supremal normal sublanguage of H is shown in Fig. 4.12(a).

e In the next step of this iterative procedure, it can be seen that states

(d,4,4,{(d,4),(4,d)}) and (4,d,10,{(d,4),(4,d)}) violate controllability

71

Figure 4.8: Example 4.4.2. Plants and legal behaviors automata.

72

Figure 4.10: Example 4.4.2. Automaton E.

(since event u is uncontrollable and has been disabled) and would be re-

moved from automaton R; and results in R; in Fig. 4.12(b).

Next observe that the sequence aca violates G1-nonblocking property. Fol-
lowing Algorithm 3.4 to obtain supremal Gi-nonblocking sublanguage of
L.(R;), state (8,8,8,{8,8}) is unmarked and since it is not coreachable
and z; = 8 is not a dump state, (8,8,8,{8,8}) will be removed from R;
to obtain R3.

Similarly, sequence ac violates Gy-nonblocking property and using Algo-
rithm 3.4, state (7,7,7,{(2,2), (d,3),(3,d),(7,7)}) will be removed from
R} to obtain R} in Fig. 4.13.

73

d.l3.13.'{{2.12].-{d)3]a d.-q.-d.- (1,5,5, d.l6.16.'

(3.d).{7.7)} {{d.4),(4.d)} 1,5),(5,d 1(d.6),(6,d)}
d /™ U H(ﬁflix . b
2,2,2,{(2,2),{d,3), 7,7.7.4(2,2),(d,3),
(3,d)(7.7)} (3,d),(7,7]}
C a
.) @ 8,8,8,(8,8
1,1,1,41,1} W 4.d,10,
d,4),44,d)}
d (A) " =® dséd.ls‘_l,d_l
349409 4.3, o {{d,5).(5,d)}
(3,d),(7,7)}

(—b ()

99,12,{9,9} 10,10,13,{10,10} 11,11,14,{11,11}

Figure 4.11: Example 4.4.2. Automaton H and suprel(H,G).

e Since R}l is not the same as R(l)7 we proceed to the second iteration. Thus,
R’ := R; (Fig. 4.13). In the first step, the supremal normal sublanguage
of R} is computed. It is not difficult to see that state (d, 3,3, {(2,2), (d, 3),
(3,d),(7,7)}) is pair-deficient since [{(2,2),(d,3),(3,d),(7,7)}| = 4 and
there are only 3 matching pairs. Thus, state (d, 3,3,{(2,2), (d,3), (3,d),
(7,7)}) and all of its matching pairs (2,2,2,{(2,2),(d,3),(3,d),(7,7)})
and (3,d,9,{(2,2),(d,3),(3,d),

(7,7)}) are removed from automaton Rj. The remaining automaton is
trim and after one more iteration we can obtain automaton R? in Fig.

4.14(b) which represents the supremal normal sublanguage of RZ.

e In the next step, no new state or transition is removed from the automaton

R? since it is controllable. Therefore, R3 is the same as R?.

e Furthermore, since R is G1-nonblocking and Gs-nonblocking, automata

R? and R are the same as R;.

74

d,3,3,{{2,2),(d,3), dd.4,
(2.d).{7.7)} {ld4){4,d))
- d PN

2,2,2,((2,2),(d,3),
(3,d(7.7))

7,7,74(2,2),{d3),
(3,d),(7.7)}

. a - 1
O () sesia

4,d,10,

L1,1,{11}

9,9,12,{9,9} 10,10,13,{10,10} 11,11,14,{11,11}

(a) By

d,3,3,1{2,2),1d,3),
(3,d).{7.7)}

e
2,2,2,((2,2),{d,3), 7,7,7,1(2,2),{d,3),
{3.d),(7,7} ¢ (3,d)47.7)}

. a - 1
O () sesia

L1,1,{11}

a0 h @

9,9,12,{9,9} 10,10,13,{10,10} 11,11,14,{11,11}

(b) Ry

d,3,3,{{2,2),{d,3),
(3,d).{7,7)}

2,2,2,{12,2),0d,3),
{3.d),(7,7)1

7.7,7.12,2),(d,3),

{3,67]}

11,1{1,1}

3,d.84(2,2),(d,3),

[3,d)472. 70}
o oy f?
rl_/'l @

9,9,12,{9,9} 10,10,13,{10,10} 11,11,14,{11,11}

(c) Ry

Figure 4.12: Example 4.4.2. Automata in iteration j = 1.
75

d,3,3,{(2,2),(d,3),
(3.d)(7.7)}

2,2,2,{(2,2),(d,3),
(3,d).(7,7)}

) ; 7~ 3,d,9,{(2,2),(d,3),
* (3,d),(7,7)}
1,1,1{1,1}
' —b—0
9,9,1{9,9} 10,10,13,{10,10} 11,11,14,{11,11}

Figure 4.13: Example 4.4.2. Automaton in R} iteration j = 1.

3 d;3;3w{(2az)1‘d13]f
(3,d).{7,7)}

3,d,9,{(2,2),(d,3),

(3,d),(7.7)}
1,1,1,{1,1}
' > S o h ,@
- Kol
9,9,12,18,9} 10,10,13,{10,10} 11,11,14,{11,11}
(a) R
M - S h =©
N/
1,1,1,{1,1} 9,9,12,{9,9} 10,10,13,{10,10} 11,11,14,{11,11}

(b) RE=R:=R:=R?

Figure 4.14: Example 4.4.2. Automata in iteration j = 2.

e As R} is not the same as Rg, we should go through a third iteration by
substituting Ry with R3. It can be easily checked that this automaton is
normal, controllable, Gi-nonblocking and G-nonblocking. Thus, no new
state and transition will be removed in this iteration and R} = Rj =

R} = R} = R}. Hence, automaton E* = R} in Fig. 4.15 marks the

76

supremal L,,(G)-closed, normal, controllable and G;-nonblocking and G-

nonblocking sublanguage of the legal behavior E.

—0——0——O—b—0

0 s I 9,9,12,{9,9} 10,10,13,{10,10} 11,11,14,{11,11}

Figure 4.15: Example 4.4.2. Automaton R} in iteration j = 3.

4.5 Conclusion

This chapter presents a computational procedure for the supremal L,,(G)-closed,
controllable, normal and G;-nonblocking sublanguage. This sublanguage provides a
solution for the robust nonblocking supervisory control problem under partial event

observation.

77

Chapter 5

Conclusions

5.1 Summary

In this thesis, we present computational procedures for providing solutions to the
robust nonblocking supervisory control problem (RNSCP) in discrete-event systems.
First we consider the case of control with full event observation and focus on com-
puting the maximally permissive (optimal) supervisor such that the system under
supervision satisfies certain desired closed-loop properties. In the supervisory control
theory, maximally permissive supervisors can be characterized in terms of supremal
sublanguages. In this study, we assume that the plant can be modeled as finite-state
automata and the specifications are regular languages. Having these assumptions,
we prove the finite convergence of our proposed iterative algorithm. Each step of the
algorithm involves removing states and transitions from an initial automaton until
a final automaton which marks the desired supremal sublanguage is reached. The
main challenge of developing algorithms for computing supremal sublanguages is to
form the initial automaton in a way that adequate information about the important
sequences are embedded in the states and transition structures.

The solution of robust nonblocking supervisory control problem has been ad-

dressed in the literature. In order to obtain the optimal solution to this problem, we

78

develop a computational algorithm for calculating the supremal G-nonblocking sub-
language. Next, an algorithm for computing supremal L,,(G)-closed sublanguage is
developed. Combining these procedures with the algorithm for computation of supre-
mal controllable sublanguage provided in literature, leads us to the optimal solution
to the robust nonblocking supervisory control problem with full event observation.
We implement the proposed computational procedures in MATLAB environment us-
ing Discrete Event Control Kit (DECK). We also apply our procedures to a fault
recovery problem in a simplified spacecraft propulsion system.

To tackle the RNSCP with partial event observation, we extend the computa-
tional algorithms for finding the solution of the robust problem with full observation
by developing a computational procedure for obtaining the supremal normal sub-
language. In order to find the supremal normal sublanguage, first we provide an
algorithm to form a new initial automaton which has enough information about the
projected model as well as the states and transition structures. Then we develop an
iterative procedure to compute supremal normal sublanguage. Using this procedure
along with the computational algorithm provided for the case of full observation we
present the procedure for the solution of robust nonblocking supervisory control prob-
lem with partial observation. The resulting solution is the supremal solution based
on the normality property. Furthermore we show that the algorithm converges in a

bounded number of steps.

5.2 Future Work

The directions for future research may include the following:

e The computer code developed in this thesis implements the algorithms for con-
trol with full event observation. The extension of the code to the case of partial

observation would be a very useful step.

e In this thesis we developed iterative algorithms for computing the supremal

79

sublanguages that lead us to the optimal solutions for robust nonblocking su-
pervisory control problem. The downside of the iterative algorithms is their
high computational complexity. Hence, finding certain conditions on the plants,
specifications and projection map under which a non-iterative algorithm can be
developed is one of the future areas of research. Non-iterative algorithms have

been found for subsets of non-robust supervisory control problems (e.g. [18]).

Another possible area for the research is the development of computational
procedures using symbolic calculations. This approach has provided far more
efficient algorithms in verification problems (e.g., [5, 6]) and in (non-robust)

supervisory control (e.g., [1], [16] and [26]).

The implementation of the algorithms can be further improved using compilers
to speed up the calculation processing time. The code can be also optimized

by means of parallel computing and efficient memory management.

80

Bibliography

1]

[7]

S. Balemi, G. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. Franklin. Supervisory
control of a rapid thermal multiprocessor. IEFEFE Transactions on Automatic

Control, 38(7):1040-1059, Jul 1993.

F. Boroomand and S. Hashtrudi Zad. A limited lookahead policy in robust non-
blocking supervisory control of discrete event systems. Proc. American Control

Conference (ACC), 2013, pages 935-939, Washington, DC, June 2013.

S. Bourdon, M. Lawford, and W.M. Wonham. Robust nonblocking supervisory
control of discrete-event systems. [EEE Transactions on Automatic Control,

50(12):2015-2021, Dec. 2005.

R. Brandt, V. Garg, R. Kumar, F. Lin, S. Marcus, and W.M. Wonham. Formu-
las for calculating supremal controllable and normal sublanguages. Systems €

Control Letters, 15(2):111 — 117, 1990.

R. Bryant. Graph-based algorithms for boolean function manipulation. IFEE
Transactions on Computers, C-35(8):677-691, Aug 1986.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10 states and beyond. Inf. Comput., 98(2):142-170, June 1992.

C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.

Springer, 2008.

81

8]

[10]

[11]

[13]

[14]

[15]

E. Chen and S. Lafortune. On nonconflicting languages that arise in supervisory
control of discrete event systems. Systems € Control Letters, 17(2):105 — 113,
1991.

X. Y. Chen and S. Hashtrudi Zad. A direct approach to robust supervisory
control of discrete-event systems. Proc. Canadian Conference on Electrical and

Computer Engineering, pages 957-962, Niagara Falls, ON, Canada, May 2008.

H. Cho and S. Marcus. On supremal languages of classes of sublanguages that
arise in supervisor synthesis problems with partial observation. Mathematics of

Control, Signals and Systems, 2(1):47-69, 1989.

R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory control of
discrete-event processes with partial observations. IEEE Transactions on Auto-

matic Control, 33(3):249-260, Mar 1988.

J. Cury and B. Krogh. Design of robust supervisors for discrete event systems
with infinite behaviors. In Proceedings of the 35th IEEE Conference on Decision
and Control, 1996, volume 2, pages 2219-2224 vol.2, Dec 1996.

J. Cury and B. Krogh. Robustness of supervisors for discrete-event systems.

IEEFE Transactions on Automatic Control, 44(2):376-379, Feb 1999.

M. de Queiroz, J. Cury, and W.M. Wonham. Multitasking supervisory control of
discrete-event systems. Discrete Event Dynamic Systems, 15(4):375-395, 2005.

C. Economakos and F. Koumboulis. Modular implementation of robust super-
visory controllers for discrete event systems. [EFEE Transactions on Automatic

Control, 53(6):1559-1563, July 2008.

J. Gunnarsson. Symbolic methods and tools for discrete event dynamic systems.
Ph.D. dissertation, Linkoping Studies in Science and Technology, Linkoping,
Sweden, 1997.

82

[17]

[19]

[20]

[21]

S. Hashtrudi Zad, R. Kwong, and W.M. Wonham. Supremum operators and
computation of supremal elements in system theory. SIAM Journal on Control

and Optimization, 37(3):695-709, 1999.

S. Hashtrudi Zad, M. Moosaei, and W.M. Wonham. On computation of supremal
controllable, normal sublanguages. Systems €& Control Letters, 54(9):871 — 876,
2005.

J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Pearson/Addison Wesley, 2007.

R. Kumar and V. Garg. Optimal supervisory control of discrete event dynamical

systems. SIAM Journal on Control and Optimization, 33(2):419-439, 1995.

R. Kumar, V. Garg, and S. I. Marcus. On controllability and normality of
discrete event dynamical systems. Systems & Control Letters, 17(3):157 — 168,
1991.

R. Kumar and S. Takai. A framework for control-reconfiguration following fault-
detection in discrete event systems. In International symposium on fault detec-

tion, supervision and safety of technical processes, pages 848-853, 2012.

M. Leeds, R. Eberhardt, and R. Berry. Development of the Cassini spacecraft
propulsion subsystem. In 32nd Joint Propulsion Conference and Ezhibit, ATAA
96-2864, Lake Buena Vista, FL, 1996.

F. Lin. Robust and adaptive supervisory control of discrete event systems. IEEFE

Transactions on Automatic Control, 38(12):1848-1852, Dec 1993.

F. Lin and W.M. Wonham. On observability of discrete-event systems. Infor-

mation Sciences, 44(3):173 — 198, 1988.

C. Ma and W.M. Wonham. Nonblocking supervisory control of state tree struc-

tures. IEEE Transactions on Automatic Control, 51(5):782-793, May 2006.

83

[27]

28]

[29]

[30]

[31]

S. McLane and G. Birkhoff. Algebra. Chelsea Publishing Series. American Math-
ematical Society, 1999.

P. Morgan. Cassini spacecraft’s in-flight fault protection redesign for unexpected
regulator malfunction. Proc. 2010 IEEE Aerospace Conference, pages 1-14, Big
Sky, MT, March 2010.

A. Paoli, M. Sartini, and S. Lafortune. Active fault tolerant control of discrete

event systems using online diagnostics. Automatica, 47(4):639 — 649, 2011.

S.-J. Park. Robust and nonblocking supervisory control of nondeterministic
discrete event systems with communication delay and partial observation. In-

ternational Journal of Control, 85(1):58-68, 2012.

S.-J. Park and J.-T. Lim. Non-blocking supervision for uncertain discrete event
systems with internal unobservable transitions. IEE Proceedings : Control The-

ory and Applications,, 152(2):165-170, March 2005.

P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete
event processes. SIAM Journal on Control and Optimization, 25(1):206-230,
1987.

P.J. Ramadge and W.M. Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77(1):81-98, Jan 1989.

A. Saboori and S. Hashtrudi Zad. Fault recovery in discrete event systems. In
Proc. ICSC Congress on Computational Intelligence Methods and Applications,
Istanbul, Turkey, 6 pages, Dec. 2005.

A. Saboori and S. Hashtrudi Zad. Robust nonblocking supervisory control of
discrete-event systems under partial observation. Systems & Control Letters,

55(10):839 — 848, 2006.

84

[36]

[37]

[38]

[39]

[40]

[43]

S. Takai. Robust supervisory control of a class of timed discrete event systems

under partial observation. Systems & Control Letters, 39(4):267 — 273, 2000.

S. Takai. Verification of robust diagnosability for partially observed discrete

event systems. Automatica, 48(8):1913 — 1919, 2012.

S. Takai. Robust prognosability for a set of partially observed discrete event
systems. Automatica, 51(0):123 — 130, 2015.

S. Takai and T. Ushio. Effective computation of an lm(g)-closed, controllable,
and observable sublanguage arising in supervisory control. Systems € Control

Letters, 49(3):191 — 200, 2003.

F. Wang, S. Shu, and F. Lin. Robust supervisory control of networked discrete
event systems. In 2013 51st Annual Allerton Conference on Communication,

Control, and Computing (Allerton), pages 981-988, Monticello, IL, Oct 2013.

Q. Wen, R. Kumar, and J. Huang. Framework for optimal fault-tolerant control
synthesis: Maximize prefault while minimize post-fault behaviors. IEEE Trans-

actions on Systems, Man, and Cybernetics: Systems, 44(8):1056-1066, Aug 2014.

Q. Wen, R. Kumar, J. Huang, and H. Liu. A framework for fault-tolerant control
of discrete event systems. IEEE Transactions on Automatic Control, 53(8):1839—-
1849, Sept 2008.

W.M. Wonham. Supervisory Control of Discrete Event Systems. Systems Control
Group, Dept. of Electrical and Computer Engineering, University of Toronto,

Canada,, available at http://www.control.utoronto.ca/DES, 2014.

W.M. Wonham and P.J. Ramadge. On the supremal controllable sublanguage of
a given language. SIAM Journal on Control and Optimization, 25(3):637-659,
1987.

85

[45]

[46]

[47]

T.-S. Yoo, S. Lafortune, and F. Lin. A uniform approach for computing supre-
mal sublanguages arising in supervisory control theory. Technical Report, Dept.
of Flectrical Engineering and Computer Science, Universilty of Michigan, Ann

Arbor, 2001.

Discrete event control kit (deck 1.2013.11). http://www.ece.concordia.ca/
~shz/deck. [Online].

Computer code for robust control. http://www.ece.concordia.ca/~shz/

deck/robust. [Online].

86

87

Appendix A

Cassini Propulsion System

S)

i = oo g B ||
g a1 .k 15! Ppe gl) EE
EERL o i: fd I8, §
f RHEIT W N IE RN

= P Provenre

.....

e 163 aia? - - Venled REACE Ui 0 pa

Backup Held [LV17)

wure 365 paie 1 =

hrina Mgy 804 pate]
.y

Frims Hel ¥ [LV.10}

296 paia|

FEVESED MAZ0E s RGN Vaive 34 ain | smmmeaied (AID

LVinaer

CASSINI PMS SCHEMATIC

Tour Corfiguration

Figure A.1: Cassini propulsion module subsystem schematic [28].

88

Appendix B

Discrete Event Control Kit
(DECK)

DECK is a toolbox written in MATLAB for the analysis and synthesis of supervisory
control problem of discrete-event systems. In this appendix we review the functions

of this toolbox [46].

1. Automaton: Creates an automaton model for use by the toolbox (DECK).
Number of states, the matrix of transition list and a vector of marked states

are the inputs to this function.

2. Automatonchk: This function verifies the validity of the automaton model. It

gets the automaton model as input.
3. Complement: Returns the complement of the input deterministic automaton.

4. Controllable: This function determines if the input automaton is controllable
with respect to the second input automaton and the input vector of uncontrol-

lable events.

5. Deterministic: Converts the nondeterministic input automaton to a determin-

istic automaton.

89

10.

11.

12.

13.

14.

Isnondet: This function determines if the input automaton is nondeterministic.
Product: Computes the product of a finite number of input automata.

Project: Finds a deterministic automaton to represent the projected model of

the input automaton and the input vector of unobservable events.

. Reach: Computes the reachable states of a transition list matrix and the vector

of source states.

Reachable: This function computes the reachable subautomaton of an input

automaton.
Selfloop: Adds selfloop to the input automaton.

Supcon: Finds the supremal controllable sublanguage of the first input automa-
ton with respect to the second automaton and the input vector of uncontrollable

events.

Sync: This function computes the synchronous product of a finite number of

input automata.

Trim: Finds the trim (reachable and coreachable) subautomaton of the input

automaton.

90

Appendix C

Computer Code for Robust

Control

This appendix presents the functions written in DECK to implement the computa-
tional procedures proposed in the thesis for solving nonblocking robust supervisory

control (with full event observation)

1. Geo = completeE (G, Ea)

This function converts an automaton to a complete automaton (i.c., an au-

tomaton with a total transition function).

function Gco=completeE (G,Ea)

COMPLETEE make the transition function of a deterministic
automaton complete

SYNTAX: Gceco=completeE (G)
Gceco=completeE (G, Ea)

INPUTS: G Input deterministic automaton

Ea List of events (vector)

OUTPUTS: Geo Output deterministic automaton

91

2. [Gt, States] = Gu(Ghi)

Gu builds the union automaton of the input automata and also returns the

state labels for each new state of union automaton.

function [Gt, States]=Gu(Gi)
Gu Union of two automata
SYNTAX: G=Gu(Gi)
INPUTS: Gi The input automaton cell (Plants)
OUTPUTS: Gt The union automaton
States State numbers list in the G union

automaton

3. [E, EStates| = legal(Gi, K1)

The legal behavior and its state labels are built in this function from input

plants and specifications.

function [E,EStates|= legal (Gi, Ki)

Legal The Legal behavior

SYNTAX: [E, EStates]= legal (Gi,Ki)

INPUTS: Gi cell of input plants automaton

Ki cell of input specs automaton
OUTPUTS: E The overall legal behavior
EStates List of the current state numbers

of each plant

4. [ER, ERStates] = suprel(Gt, GtSt, E, ESt)

This function computes the supremal L,, (G)-closed sublanguage of L,,(E) with

respect to the union plant model Gt.

function [ER,ERStates]=suprel (Gt,GtSt,E,ESt)
SUPR Supremal Relative—Closed Sublanguage

92

SYNTAX: [ER, ERStates]=suprel (Gt, GtSt ,E, ESt)

INPUTS: G Plant (deterministic) automaton
GSt List of State numbers in automaton G
E Specification (deterministic) automaton
ESt List of State numbers in automaton E

OUTPUTS: ER Trim (deterministic) automaton marking supremal
Lm(G)—closed sublangage .
ERStates List of State numbers in automaton ER

. |[EN, EN States| = supnblki(Gi,i, E, ESt, XmSp)
This function computes the supremal G;-Nonblocking sublanguage of L, (E).

function [EN,ENStates]=supnblki(Gi,i,E,ESt,XmSp)
SUPNBLKI Supremal Gi—nonblocking Sublanguage
SYNTAX: [EN, ENStates]=supnblki (Gi,i,E, ESt,XmSp)
INPUTS: Gi Plant (deterministic) automaton
i The number of the specific automaton Gi
in the model cell
E Specification (deterministic) automaton
ESt Specification state list
XmSp The list of marked states in the legal behavior
OUTPUTS: EN Trim (deterministic) automaton marking supremal
Gi—nonblocking sublangage .
ENStates SupNbGi state list

. [K,KSt] = supC(H,HS,G,GS, Fuc, ESt)

This function computes the supremal controllable sublanguage of L,,(H) with

respect to the union plant G and uncontrollable events Fuc.

function [K,KSt]=supC(H,HS,G,GS,Euc,ESt)

93

SUPC Supremal Controllable Sublanguage
SYNTAX: [K KSt]=supC(H,HS,G,GS. Euc)
INPUTS: H Specification (deterministic) automaton
HS Spec state list
G Plant (deterministic) automaton
GS Plant State list
Euc Uncontrollable events (vector)
OUTPUTS: K Trim (deterministic) automaton marking supremal
controllable sublangage

KSt SupC state list

. [H, HSt] = SupRC N (Euc,varargin)

This is the main function for the Robust Nonblocking Supervisory Control
Problem (RNSCP) which uses the other functions in DECK and the developed

functions here to find the maximally permissive solution of RNSCP.

function [H, HSt]=SupRCN(Euc, varargin)

SUPRCN Supremal Relative—Closed, Controllable,
Gi—nonblocking Sublanguage

SYNTAX: K=supRCN (Euc,G1,El,...,Gi,Ei,...,Gn,En)
INPUTS: Euc List of uncontrllable events (vector)
Gi Plant models automata
Ei Spec models automata

OUTPUTS: H Trim (deterministic) automaton marking supremal
Im(G)—closed, controllable, Gi—nonblokcing
sublangage .

HSt States numbers representing the current state

in each plant

94

