
Guidance, control, and navigation of a quadrotor choreography for a real-time

musician-in-the-loop performance

Michael El-Jiz

A Thesis

in the department of

Electrical and Computer Engineering

Presented in partial fulfillment of the requirements

for the degree of

Master of Applied Science at

Concordia University

Montreal, Quebec, Canada

June, 2015

c©Michael El-Jiz, 2015

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

______________________________________ Chair

______________________________________ Examiner

______________________________________ Examiner

______________________________________ Supervisor

Approved by __
Chair of Department or Graduate Program Director

__
Dean of Faculty

Date __

Michael El-Jiz

Guidance, control, and navigation of a quadrotor choreography for a real-time musician-in-the-loop performance

Master of Applied Science

Dr. R. Raut

Dr. B. Vorn

Dr. K. Skonieczny

Dr. L. Rodrigues

June 30, 2015

Michael El-Jiz

Guidance, control, and navigation of a quadrotor choreography for a real-time musician-in-the-loop performance

Master of Applied Science

Dr. R. Raut

Dr. B. Vorn

Dr. K. Skonieczny

Dr. L. Rodrigues

June 30, 2015

Michael El-Jiz

Guidance, control, and navigation of a quadrotor choreography for a real-time musician-in-the-loop performance

Master of Applied Science

Dr. R. Raut

Dr. B. Vorn

Dr. K. Skonieczny

Dr. L. Rodrigues

June 30, 2015

Michael El-Jiz

Guidance, control, and navigation of a quadrotor choreography for a real-time musician-in-the-loop performance

Master of Applied Science

Dr. R. Raut

Dr. B. Vorn

Dr. K. Skonieczny

Dr. L. Rodrigues

June 30, 2015

ii

Abstract

Guidance, control, and navigation of a quadrotor choreography for a real-time

musician-in-the-loop performance

Michael El-Jiz

This thesis proposes a systematic methodology for the guidance, control, and navigation,

of a quadrotor to perform a choreographed dance in real-time as a function of the music

performed by a musician.

The four main components of a human choreography (namely the notions of space,

shape, time and structure) are analyzed and mathematically formulated for a robotic

performance. This allows for a real-time interaction with a musician without prior

knowledge of the music, and based on the pitch of the acoustic signal. A novel approach

for mapping music features to trajectory parameters is proposed, as well as the design

of a trajectory shaping filter based on two coefficients that are set in real-time by an

artist through a MIDI foot-pedal board. The two coefficients are inspired by a mathe-

matical description of acoustic signals. The proposed approach maps motion parameters

and the music to trajectory motifs that are then switched in harmony with the music

chord structure. The mathematical formulation of a quadrotor choreography is simu-

lated. The simulation relies on the linearized dynamics and the physical properties of a

quadrotor, and produces a graphical representation of the quadrotor choreography. To

validate the control system, the position of the quadrotor is compared with the desired

position. To measure the effectiveness of the link between music and the position of the

quadrotor, the trajectory generator system is inverted to generate a sequence of music

pitches. The melodic phrase generated by the position of the quadrotor is played back

to the musician. A real-time musical interaction occurs between the musician and the

quadrotor. Simulation results show that the proposed methodology yields an effective

real-time performance for a quadrotor choreography.

iii

Acknowledgements

My thesis would not have gone past draft −1 without the constant and amazing help of

my supervisor, Dr. Rodrigues. You were very patient with me. Second on my thanks-list

would be Michael Di Perna, my colleague and friend. I also want to thank (and say ”hi!”

to) all the students I met that worked under the supervision of Dr. Rodrigues in the

HYCONS Lab: Jesus Villaroel, Julia Ghorayeb, Alexander Botros, Ronnilson Rocha,

Miad Moarref, and all the others. You have all helped me, even if you think you didn’t.

You too, undergrads in the flight simulator lab!

Thank you Patrick Edwards-Daugherty and Caroline Glass, from Pleiades Robotics Inc.,

for your selfless help and support, for your artistically relevant input, and for Dallas.

Ian Hattwick’s (from CIRMMT - McGill) expertise in Digital Musical Instruments cre-

atively extended this project. Thanks Brad Luckhart (from the fluids lab at Concordia

University) - the results might not be relevant to this thesis, but you helped me con-

cretize some fluids concepts.

I guess my family and friends are also to thank - without them, I probably would have

finished earlier. Just kidding, love you.

iv

“The fundamental forms which occur in the decorative arts of all ages and races – for

instance the circle, the triangle, the spiral, the parallel — are known as motifs of design.

They are not art ‘works’, not even ornaments, themselves, but they lend themselves to

artistic creation. The word motifs bespeaks this function: motifs are organizing devices

that give the artists imagination a start, and so ‘motivate’ the work. They drive it

forward and guide its progress.”

- Susanne Langer

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 System Overview . 3

1.3 Literature Survey . 4

1.3.1 Music feature extraction . 4

1.3.2 Robotic choreography and music, and quadrotor control 5

1.4 Contributions . 7

1.5 Structure of the Thesis . 8

2 Background in music and choreography 9

2.1 Music . 9

2.1.1 Music theory . 9

2.1.2 Pitch Detection . 10

2.1.3 The MIDI Format and musical representation 13

2.1.4 Chord Recognition . 14

2.2 Choreography . 15

3 Guidance, navigation, and quadrotor control 17

3.1 Introduction . 17

3.1.1 Music moods and survey . 19

3.1.2 Description of space . 21

3.1.3 Description of shape . 22

3.1.3.1 Acoustics . 23

3.1.4 Description of time and structure 25

3.2 Mathematical formulation of space . 26

3.2.1 Straight line path motif . 26

3.2.2 Circular path motif . 27

3.2.3 Helicoidal trajectory and variations motifs 28

3.3 Mathematical formulation of shape . 30

3.4 Mathematical formulation of structure . 33

3.5 Mathematical formulation of time . 35

3.5.1 Mathematical Model of the Quadrotor 36

3.5.1.1 Nonlinear Model . 36

3.5.1.2 Linearized Model . 37

3.5.2 Controller Design . 38

3.5.2.1 Position Controller . 39

vi

Contents vii

3.5.2.2 Attitude Controller . 39

3.5.3 Controller performance . 40

3.5.3.1 Attitude controller performance 41

3.5.3.2 Position controller performance 41

4 Simulation and validation 44

4.1 Hardware-in-the-loop simulation . 44

4.1.1 Hardware . 44

4.1.2 Software . 45

4.2 Quadrotor music playback . 47

4.2.1 Analytical solution . 48

4.2.1.1 Straight line path motif 49

4.2.1.2 Circular path motif . 49

4.2.2 Heuristic solution . 50

4.3 System validation . 51

4.3.1 Straight line path motif . 51

4.3.2 Circle path motif . 52

4.3.3 Helix path motif . 52

4.3.4 Cone path motif . 53

5 Extensions and conclusions 62

5.1 Extensions . 62

5.1.1 Beat of the music . 62

5.1.2 Multiple quadrotors and multiple artists 63

5.2 Concluding remarks . 63

A chordDetection.cpp 66

B Survey questions 69

C Survey results 73

D main.py 74

E controllers.py 82

F shape.py 87

G motifs.py 88

H TCP.py 90

I MIDI.py 91

J model.py 94

List of Figures

1.1 Venn Diagram representing the work of this thesis, at the intersection of
art, acoustics, and control systems . 2

1.2 System overview. The musician block is the supervising artist-in-the-loop. 3

1.3 Quadrotor Artistic Performance [69] . 6

1.4 Map of the thesis . 8

2.1 Circular pitch class space . 10

2.2 Fast-Fourier transform of a 1205Hz tone. 11

2.3 Drawing of the cochlea and the frequency-location mapping of mechanosen-
sory cells [62]. 12

2.4 Comparison of resonant filters (left) and FFT (right) for the frequency
decomposition of a sound. Picture from [87] 12

2.5 Circle of notes in green, in which the notes of a C-major chord are con-
nected through black lines. 15

2.6 Progression of a dance as a function of different phases of a dance, as
noted by Annable [26] . 16

3.1 Choreography simplified block diagram . 17

3.2 Block diagram of the system. (Space: blue, shape: green, structure:
orange, time: yellow) . 18

3.3 Categorical model of emotions [94] . 20

3.4 Dimensional model of emotions [95] . 20

3.5 Survey answers to the MIREX music mood clusters, in percentage 21

3.6 Shape filter with graphical representations of the signals 23

3.7 The FCB1010 Behringer MIDI pedal, with 10 button pedals and two
expressive pedals [93] . 23

3.8 Amplitude of a MATLAB generated sound as a function of time. 24

3.9 Representation of the structure of a choreography as a function of the
structure of the music. 25

3.10 Simulation of the straight line path motif. 27

3.11 Simulation of the circle path motif. 28

3.12 Simulation of the first helicoidal path motif, with R = 2m. 29

3.13 Simulation of the second helicoidal path motif, with R = 2m. 30

3.14 Simulation of the third helicoidal path motif, with α = 0.02. 31

3.15 Second Order system step response with changes in ωn with ζ = 0.1 (top),
and in ζ with ωn = 2π (bottom). 32

3.16 Desired x, y, and z motions of the quadrotor based on the cone motif
using the shape filter. 33

3.17 Popular chord progression with chord follower notation 34

viii

List of Figures ix

3.18 Block diagram of the structure component 34

3.19 Switching algorithm, depending on the chords detected 35

3.20 Image of the simulation of the quadrotor. 36

3.21 Controller block diagram in a hardware implementation. 38

3.22 Response of the attitude controller for roll 41

3.23 Height of the quadrotor system for a motion in the z-axis 42

3.24 Response of the quadrotor system for a motion in the x-axis 43

4.1 Image of quadrotor simulation at the CIRMMT symposium booth 45

4.2 Screen capture of the quadrotor simulation with the straight line motif . . 52

4.3 Changes of the shape parameters (the damping ratio and the natural
frequency) and the distance as a function of time. 53

4.4 Changes of the pitch, the shaped pitch and the pitch played by the quadro-
tor. 54

4.5 Position of the quadrotor and the desired trajectory. 54

4.6 Screen capture of the quadrotor simulation with the circle motif 55

4.7 Changes of the shape parameters (the damping ratio and the natural
frequency) and the distance as a function of time. 56

4.8 Changes of the pitch, the shaped pitch and the pitch played by the quadro-
tor. 57

4.9 Position of the quadrotor and the desired trajectory. 57

4.10 Screen capture of the quadrotor simulation with the helix motif 58

4.11 Changes of the shape parameters (the damping ratio and the natural
frequency) and the distance as a function of time. 58

4.12 Changes of the pitch, the shaped pitch and the pitch played by the quadro-
tor. 59

4.13 Position of the quadrotor and the desired trajectory. 59

4.14 Screen capture of the quadrotor simulation with the cone motif 60

4.15 Changes of the shape parameters (the damping ratio and the natural
frequency) and the distance as a function of time. 60

4.16 Changes of the pitch, the shaped pitch and the pitch played by the quadro-
tor. 61

4.17 Position of the quadrotor and the desired trajectory. 61

1. e4

x

Chapter 1

Introduction

An Unmanned Aerial Vehicle (UAV) is an aircraft without a human pilot aboard. The

concept of UAVs is not a new one: they first appeared as military weapons in the mid

1800s when Austrians used unmanned, bomb-filled balloons to attack Venice [1], where a

fuse on-board the balloons dropped the bombs at an a priori calculated time. In a non-

military context, the use of UAVs can save time, money, and most importantly human

lives, by performing remotely-monitored or autonomous tasks. Their tasks include but

are not limited to traffic surveillance, road conditions and emergency response [2], forest

fire monitoring [3], building inspections [4, 5], package delivery with Amazon’s Prime

Air [6], and many more.

This thesis will focus on fixed-rotor quadrotors, which are a sub-category of UAVs. As

the name suggests, they are characterized by having four fixed rotors. Quadrotors are

mechanically simple; they consist of a frame, batteries, four rotors, four motors, four

motor controllers, four propellers, an Inertial Measurement Unit (IMU), a radio module

and a processor. The quadrotor is controlled by varying the thrust generated by the

four propellers. The thesis will specifically focus on the mathematical formulation of a

choreography for the guidance and the navigation of a quadrotor, as a function of the

pitch of acoustic signals, in real-time.

This chapter is an introduction to the thesis. Section 1 will present the motivation

behind the research. The system overview is presented in Section 2. Section 3 will cover

the literature survey. The structure of the thesis is presented at the end of this chapter,

in Section 4.

1

2

Figure 1.1: Venn Diagram representing the work of this thesis, at the intersection of
art, acoustics, and control systems

1.1 Motivation

The presence of quadrotors in consumer electronics is increasing. More than a dozen of

quadrotors (sometimes called drones) were presented at the Consumer Electronic Show

2015 in Las Vegas [7]. Their piloting is limited to predefined maneuvers, predefined tasks,

or to the direct control of the navigation parameters from remote control of a pilot. This

allows for precise maneuvering using knobs, buttons and control sticks. However, UAV

systems have never been designed for an artist-in-the-loop performance. Traditionally,

the navigation parameters of a UAV are the heading angle, the altitude (or the height),

and the speed.

An artistic performance is a way for artists to convey their artistic expression through

their body or through objects. A robotic artistic performance, by extension, would

convey artistic expression through or with a quadrotor.

It is the opinion of the author that humans will interact with quadrotors through human-

understandable ways, such as music. The extraction of the pitch of a sound has been

an active area of acoustic research for more than 30 years. However, to the best of the

author’s knowledge, this expertise has not been directly translated to quadrotors for

real-time artistic applications, as discussed in the literature survey.

The motivation behind this research is the combination of control systems, performing

arts, and acoustics, in a multidisciplinary research (fig 1.1). The system inherits stability

from control systems, applies acoustic models in the trajectory design, and is supervised

by an artist-in-the-loop.

3

Figure 1.2: System overview. The musician block is the supervising artist-in-the-loop.

What are the specifications of a quadrotor system that allow for real-time control with

an artist-in-the-loop? How can the basic components of a human choreography be math-

ematically translated to quadrotor commands for a musician-quadrotor choreography?

These are the two main questions to which this research will find answers.

1.2 System Overview

Figure 1.2 presents an overview of the proposed methodology in a hardware-based im-

plementation. This thesis proposes a mathematical formulation of choreography com-

ponents for performing arts applications with quadrotors, reacting in real-time to the

pitch of acoustic musical signals. The system consists of a musician interacting with a

quadrotor. During an artistic performance, the musician plays his instrument to generate

acoustic signals. The required acoustic features are extracted. A trajectory generator

and a trajectory filter transform the parameters into a trajectory, which is then for-

warded to the quadrotor control system. Each choreography component is represented

by a different color in figure 1.2. For the purposes of this thesis, the system is simulated

on a computer.

The proposed combination of art and engineering allows for a stable, dynamic, and

eloquent performance, while providing artists the tools to control quadrotors, design a

choreography for quadrotors, and to integrate them in a real-time artistic performance.

4

1.3 Literature Survey

This thesis focuses on the choreography and synchronicity between real-time inputs

and quadrotor control. Therefore, a background in robotic choreography and quadrotor

control is presented. The literature survey focuses on both parts of the methodology: the

art and the engineering. A brief overview of available feature extraction algorithms for

the recognition and parameterization of music is also presented. The main components

and ideas of designing a choreography are detailed in Chapter 2.

1.3.1 Music feature extraction

This section presents a literature survey of the extraction of the features required for

the navigation of the quadrotor. The pitch of a sound is an important notion for both

speech and music recognition. Some beat extraction algorithms are presented.

The pitch of a sound is associated with the fundamental frequency of the sound. The

pitch of a sound is not a physical property, but a subjective psycho-acoustical attribute

of sound. Contrary to popular misconception, the pitch of a sound is the fundamental

frequency, but it is not always the frequency component of the sound with the highest

amplitude; all the different frequency components of a sound are integer multiples of the

fundamental frequency [8].

The pitch of a sound can be extracted through frequency-based or time-based ap-

proaches. The standard approach to frequency analysis of a signal is the Fourier Trans-

form. The Fast Fourier Transform (FFT) can be used in real-time digital applications to

extract the frequency components of a sound [41]. The principles of harmonic product

spectrum, cepstrum or maximum likelihood [36–39], can be applied to find the funda-

mental frequency of a sound.

The problem of pitch detection has also been solved from a time-based approach. Ref-

erence [32] uses a sharp band-pass filter bank at several frequencies to corner the fun-

damental frequency of the sound. A resonnant-filter approach is used in [40] to extract

the frequency components of sounds, and can be used to extract the pitch of sounds.

This method, based on a bank of resonnant filters, is computationally expensive, and

requires fine parameter tuning. The use of auto-correlation also allows for fundamen-

tal period extraction [22]. Dynamic Programming (DP) and Artificial Neural Networks

(ANN) are used in [33] to extract the pitch. The positive zero crossings for each voiced

segment are determined, then the search space of pitch period hypotheses is generated,

and finally the best path is computed. The period hypotheses along this path repre-

sent the sequence of pitch periods within the voiced segment. Another probabilistic

5

approach is proposed in [35] through the use of a temporally-constrained convolutive

models. Reference [34] detects the pitch through an envelope estimator. The topic was

also addressed in references [23, 31] where different algorithms to detect the pitch of a

sound were compared.

According to [20], rhythm is ”the aspect of music concerned with the organization [of

sounds and silences...] in time”. Therefore, besides responding to the pitch of a musical

piece, rhythm recognition is a very important task in the control of robots in response

to music. The beat-tracking algorithm used in [18, 19] is proposed in reference [27],

which describes a real-time audio-based beat-tracking system for music with or without

drums. This method is based on multi-agent beat predictors with a score assignment

approach. Reference [21] proposes a tempo and beat analysis of music through a network

of resonnators to phase-lock with the beat of the signal. As an update, reference [24]

uses simpler filters and a more heavily processed signal. The beat-detector works by

passing the signal through band-pass filters, extracting and processing the envelope of

each band. The envelopes are then passed through a bank of comb filters such that

a filter with delay matching the period of a pulse train will have larger output than a

filter with mismatched delay. The outputs are summed across frequency subbands and

the energy output of these filters will reveal the strongest periodic component of the

signal. This approach, similar to [40] for pitch extraction, requires fine-tuning of the

parameters.

1.3.2 Robotic choreography and music, and quadrotor control

A choreography is the sequence of steps and movements in a dance, usually performed

by human dancers. By extension, choreography has been defined in a robotic sense as

the artistic motion of a robot [75]. An artistic robotic performance is an approach for

an artist to express his or her idea through the use of a robot. The artist controlling the

robot is ”twice removed” from the performance (artist to computer, computer to robot),

and therefore the conveyability of emotions is reduced in a traditional sense, while new

and different freedoms of expression are granted to the artist [75].

References [18, 19] present a humanoid robot that tracks real-time musical cues through

an on-board microphone and dances (sways side-to-side) and sings with the music. How-

ever, the robot was simply comparing the detected tempo with that of songs in a limited

database to find the matching song it was listening to. Robots have also been taught

to play music. Reference [65] presents an interactive improvisational robotic marimba

player that responds to a pianist’s cues, with preset and improvisational musical phrases.

6

Figure 1.3: Quadrotor Artistic Performance [69]

Other instruments have been played by robots, such as bagpipes [64], theremin [66], vi-

olin [67], piano [68], to name a few.

The integration of UAVs in artistic performances has only been studied during the last

five years. The pioneering work in reference [9] appears to be the first paper on in-

tegration of quadrotors with music choreography. The paper addresses the control of

a quadrotor that sways to the beat of a music piece with offline beat detection. The

problem is not one of music extraction and real-time mapping since the music feature

extraction happens offline, but rather a control problem of a quadrotor following a time-

sensitive periodic trajectory. This limits the musical interaction and does not allow for

musical improvisation by a human player in real-time, or new maneuvers from the robot.

This work has later been extended in reference [10] where a framework that identifies

feed-forward parameters for precise periodic quadrotor motions was introduced. An ex-

tension to the work [97] describes a quadrotor choreography mathematically, based solely

on the beat of the music, following periodic trajectories. Naturally, the trajectories are

generated through a Fourier series, and the coefficients are designed to create the de-

sired effect. Figure 1.3 taken from reference [69] displays a multi-quadrotor performance

using lights and mirrors. Reference [29] is an artistic project combining lamp shades

and quadrotors. These performances are pre-programmed and do not allow for human

input. The approach in [12] differs by having the quadrotor create music by flying and

interacting with instruments. However, this is also prepared, pre-programmed, and does

not allow for human-robot interaction. In reference [76], three types of paths serve as a

trajectory generation basis, depending on pre-identified melodic phrases.

As mentioned, fixed-rotor quadrotors are mechanically simple: their motion is controlled

7

by adjustments to the individual rotational speeds of four propellers. The direction of

the total thrust with respect to the world frame is managed by controlling the orientation

of the quadrotor.

Throughout the literature, modeling the quadrotor reveals similar system dynamics

with different properties (such as the mass, the size, and the moments of inertia of the

UAV). However, different control algorithms can be applied to stabilize the quadrotor.

Reference [77] models the quadrotor along with aerodynamical effects and utilizes a

Proportional-Derivative (PD) controller. However, the gains of the controller are ac-

quired through trial and error. Reference [78] uses integral backstepping to stabilize the

UAV. The same author in reference [79] compares the performance of a Proportional-

Integral-Derivative (PID) controller with that of a Linear Quadratic (LQ) regulator -

the latter performs poorly due to model imperfections.

1.4 Contributions

The main contribution of this thesis is the proposition of a systematic methodology for

the control of a quadrotor robot based on acoustic musical signals in real-time. The

goal of the proposed approach is to give an artist the tools to control and choreograph

a quadrotor performance in real-time. To streamline the research effort, the thesis

will focus on controlling a quadrotor based on the pitch of the acoustic music signal.

Possible extensions to other features will be briefly covered in Chapter 5. As a proof

of concept, the system has been implemented in a simulation. The following are the

detailed contributions of this thesis:

1. The four main components of a human choreography (namely the notions of space,

shape, time and structure) are analyzed and mathematically formulated for a

robotic performance. To the best of the author’s knowledge, the robotic chore-

ography problem has never been approached for a real-time interaction with a

musician without prior knowledge of the music, and based on the pitch of the

acoustic signal.

2. A novel approach for mapping music features to trajectory parameters is proposed,

as well as the design of a trajectory shaping filter based on two coefficients that are

set in real-time by an artist. The two coefficients are inspired by a mathematical

description of acoustic signals.

3. The mathematical formulation of a quadrotor choreography performance is sim-

ulated in Python. The simulation relies on the linear dynamics and the physical

8

Figure 1.4: Map of the thesis

properties of a quadrotor, and produces a graphical representation of the quadro-

tor choreography. As a validation, musicians can control the simulation with their

musical instrument to design a quadrotor choreography.

4. To validate the control system, the position of the quadrotor is compared with the

desired position. To measure the effectiveness of the link between music and the

position of the quadrotor, the trajectory generator system is inverted to generate

a sequence of music pitches. The melodic phrase generated by the position of

the quadrotor is played back to the musician. Therefore, a real-time musical

interaction between the musician and the quadrotor occurs.

1.5 Structure of the Thesis

Chapter 2 presents the required background in music, choreography composition, and

dance. Chapter 3 presents all the mathematics leading to the trajectory generation, the

dynamics of the quadrotor, and the controllers based on the linearized dynamics. This

is the theory behind the quadrotor control subsystem of 1.2 (contributions 1 and 2).

Chapter 4 discusses the simulation setup and validates the results (contributions 3 and

4). Chapter 5 concludes the thesis and presents possible future work. Figure 1.4 is a

graphical representation of the structure of the thesis.

Chapter 2

Background in music and

choreography

This chapter presents notions in music and choreography required to understand the

work developed in this thesis. It explains the notions of pitch and chords. This chapter

also discusses the main components of a human dance composition.

2.1 Music

Music is an art form based on sound. It has been theorized that music has been around

since the Palaeolithic era (around 35,000 years ago); archaeologists found flutes carved

from bones in which lateral holes had been pierced [90]. According to [92], music is

an inherent and universal human quality. This quality can tentatively be translated to

robots by extracting the necessary musical features and turning them into parameters

the robot could interpret. In order to parametrize music, one must understand the basic

components that define a melodic phrase.

2.1.1 Music theory

The pitch of a sound generated by a musical instrument is the fundamental frequency

of a sound. The pitch is usually associated to a note. Notes go from A to G in what

are called tone intervals, except for the intervals B−C and E−F which are semitones.

An octave contains 12 notes in total. Geometrically, the pitch space of an octave can be

represented by a circle, which is a one dimensional manifold (see Fig. 2.1 and reference

[80]). The same notes repeat themselves every octave, but at fundamental frequencies

9

10

Figure 2.1: Circular pitch class space

that are doubled (if the octave is higher) or halved (if the octave is lower). For example,

the note A4 (the note A on the 4th octave) has a fundamental frequency of 440Hz. The

fundamental frequency of A5, the A an octave higher, is 880Hz. A melodic phrase is a

combination of notes or pitches held for different times in a specific order.

2.1.2 Pitch Detection

The pitch is a psycho-acoustic property. The human ear can reconstruct that missing

frequency from the harmonic components of a sound. To extract the pitch information

from the physical sound created by a musical instrument, signal processing is performed

on the captured sound. The fundamental frequency - or the pitch - of a sound is not

necessarily the frequency with the highest amplitude. For most acoustic instruments,

finding the fundamental frequency equates to finding the highest frequency peak in the

spectral representation of a sound.

Any sound can be represented by the sum of its frequency components [42]. The Fourier

transform is a mathematical procedure that decomposes a signal into a function of

frequency. The Fourier transform F (ω) of a function f(t) can be found through equation

(2.1), where f is a real number that represents frequency.

F (ω) =

∫ +∞

−∞
f(t)e−2πjtfdt (2.1)

The discrete equivalent of the Fourier transform, the discrete Fourier transform, converts

a finite sequence of equally spaced samples of a function into the sequence of coefficients

of a finite combination of complex sinusoids, ordered by their frequencies. The discrete

Fourier transform of a signal x[n] with N samples can be obtained as:

X[k] =

N−1∑
n=0

x[n]e−2πjkn/N (2.2)

11

Figure 2.2: Fast-Fourier transform of a 1205Hz tone.

In equation (2.2), the frequency ωk can be retrieved through equation (2.3), where Fs is

the sampling frequency.

ωk = 2πkFs/N ; (2.3)

The fast Fourier transform (FFT) is a method that efficiently computes the discrete

Fourier transform. The FFT requires the number of samples to be a multiple of 2 [60].

It can be utilized to recognize the frequency components of an acoustic signal. Figure

2.2 presents the FFT of a sound. The sound is a 1205 Hz audio signal generated from

the Tone Generator app on Windows Phone, recorded through the internal microphone

of a Samsung Series 9 laptop and processed on Matlab. The sound is sampled at 8KHz

and the FFT is run on 1024 samples. The 1205 Hz sound is accompanied by a harmonic

component at 3650 Hz.

The resonant filters approach [87] is another frequency decomposition technique. The

idea stems from the cochlea: the auditory portion of the inner ear in mammals. The

shape of the cochlea allows different frequency components of a sound to stimulate

different mechanosensory cells [61]. Figure 2.3 is a drawing of the cochlea; the location

of audible frequency resonances are marked along the cochlea. Similar to a filter-bank

model of the mammalian cochlea, the resonant filters approach is based on an array

of simple physical resonating receivers. Figure 2.4 is a spectrogram comparing two

frequency decomposition approaches for the same signal. Higher amplitude components

are represented in red, and lower amplitudes are in blue. The resonant filters approach

is compared to a simple Fast Fourier Transform. The precision of the resonant filters is

12

Figure 2.3: Drawing of the cochlea and the frequency-location mapping of
mechanosensory cells [62].

Figure 2.4: Comparison of resonant filters (left) and FFT (right) for the frequency
decomposition of a sound. Picture from [87]

remarkable. However, the resonant filters are more computationally expensive and rely

on the fine tuning of the parameters of the bank of filters.

The following code is a pitch extractor, written in MATLAB, based on the fast Fourier

transform:

13

function freq=frequency(signal,Ts)

\%function freq=frequency(signal,Ts);

\% This function determines the fundamental frequency of a signal sampled

\% every Ts seconds

z=abs(fft(signal));

noise_level=(max(z)-mean(z))/5;

n=2;

while abs(z(n)-z(n-1)) < noise_level

n=n+1;

end;

freq=n/length(z)/Ts;

end

There are several other publicly available approaches at pitch extraction. Max/MSP is

a graphical programming language for music processing in which algorithmic blocks are

called patches. One could use the MIDI Merlin patch [82] to extract the pitch of a sound

from the audible physical signal of a monophonic instrument, in real-time. The pitch is

described in the MIDI format. For polyphonic melodies, an alternative to MIDI Merlin

on MaxMSP is the PredominantMelody function, part of the C++ open-source audio

library Essentia [83].

2.1.3 The MIDI Format and musical representation

The Musical Instrument Digital Interface (MIDI) is a popular standard, used to connect

electronic musical instruments and computers. It was developed by a company called

Sequential Circuits in 1970 (now owned by Yamaha) as a standard way to control analog

synthesizers [81]. In the MIDI format, a positive integer is associated to each note.

Therefore, MIDI information can be stored and processed digitally. The lowest note

that the MIDI digital format can represent is a C−1, five octaves below middle C. This

note has a fundamental frequency of 8.176Hz. Let P be an integer representing a note,

where P = 0 represents the lowest note. The highest note reached by MIDI is a G9, at

12544Hz, represented by P = 127. Equation (2.4) converts the frequency of a sound to

the integer P [70].

P = 69 + 12 log

(
2πf

440

)
(2.4)

14

Let O be the octave to which the played note belongs and let P̃ be the pitch class of

the note. The mod operator returns the remainder of a division by a certain number.

The expressions for the pitch class P̃ and octave O are:

P̃ = P mod 12

O = (P − P̃)/12
(2.5)

The use of the extracted features from the music into trajectory planning algorithms is

discussed in Chapter 3. It is noteworthy to mention that the MIDI format is very popular

and includes other information not used in this thesis, such as pitch-bend, program change

and aftertouch messages. It also has non-musical applications, such as light control in

concerts.

2.1.4 Chord Recognition

A chord is a combination of multiple pitches played at the same time. During musi-

cal performances, musicians play chords regularly on polyphonic instruments (musical

instruments that can play more than one note at a time). The chord being played is

extracted and analyzed in this thesis to create new quadrotor mappings. The most

frequent type of chords are triads, chords created by three pitches. The most popular

triads are Major, Minor, Augmented and Diminished chords. This section will explain

the difference between those chords and will also present a chord recognition algorithm.

An A-Major chord will have a difference of 4 semi-tones between the first note (an A)

and the second note (a C#), 3 semi-tones between the second note (C#) and third note

(E), and 5 semi-tones between the third note (E) and the first note of the chord on

the next octave (also an A). Based on this information we can form what are called

difference matrices (∆) of a chord. For example, the A-major chord is represented by a

semi-tone difference matrix of [4 3 5]. A C-Major chord would have the pitch classes

C−E−G, and would have the same difference matrix than the A-major chord. A minor

chord, for example, would have a difference matrix of [3 4 5]. Notice that the sum of

all entries in the matrices is equal to 12, which is the total number of semi-tones in an

octave. The template difference matrices for the four triads are given by

∆major = [4 3 5]

∆minor = [3 4 5]

∆augmented = [4 4 4]

∆diminished = [3 3 6]

(2.6)

15

Figure 2.5: Circle of notes in green, in which the notes of a C-major chord are
connected through black lines.

The use of difference matrices enables triad chord recognition (even for the case where

the base note is not the lowest note played, called inverted chords). Appendix A contains

C++ code which detects the mentioned triads.

In order to recognize chords, a difference matrix is generated based on the notes played

and compared to the template difference matrices. This difference matrix can be rep-

resented in the circle of notes. Figure 2.5 is a circle of notes in which the notes that

constitue a C-major chord are connected in a triangle. A graphical representation of the

difference matrices would be the triangles that form triads. The notes that constitute

any major chord are connected by a triangle identical to the C-major chord.

2.2 Choreography

A choreography, derived from the greek words choria (circular dance) and graphia (writ-

ing) is the art of designing a sequence of movements. There are four main notions a

choreographer takes into consideration when designing a human dance: space, shape or

energy, time, and structure or dynamics [25, 26]. This section will present the main

components of a human choreography.

The space of a choreography refers to the space utilized by the dancer(s) during the

performance. The space can be studied from a symmetry point of view, by analyzing if

the dancers move in a symmetrical or asymmetrical motion. The dancers can move in a

straight line, in curved motions, and other geometric forms. These geometric forms are

also studied by the choreographer. The scale of the occupied space is also an important

aspect of a dance - it refers to the space occupied by the dancer in comparison to the

allowable space. Reference [26] describes the space as the ”geometry of space articulated

16

Figure 2.6: Progression of a dance as a function of different phases of a dance, as
noted by Annable [26]

in terms of ’complex configurations’, ’oppositions’, ’balance’, ’intersecting planes’ and

’form’, to name but a few concepts”.

The shape of a choreography refers to the shape of the dancer and the motion of his/her

body. Symmetry and asymmetry of the dancer’s body shape can be used to infer stability

or instability. The level of a shape refers to the different physical levels that the dancer

or dancers reach. As the level changes, the dancers can support themselves on different

elements on a stage. The scale of the dance can be explained by the type of motion -

such as the contrast between angular, curved, or straight shapes, or the contrast between

shrinking and expanding motions, or the difference between contracted and extended

body shapes. The shape could also refer to the energy behind specific dance moves. In

her notebook, choreographer Annable (reference [26]) describes the shape of 5 dancers

as follows:

• Dancer 1 is elongated, smooth and extended

• Dancer 2 is fluid and sustained

• Dancer 3 tends to be fast, sharp and precise in her movements

• Dancer 4 is sharp and cutting

• Dancer 5 has a slow and suspended quality

The timing of the choreography usually accompanies that of the music the dancers are

following. The tempo, the metre and the dynamics of the dance are important aspects

of the choreography as they usually relate the music to the dance.

The fourth element of dance composition is the structure (or the flow) of a dance. Similar

to a song, a dance has different motions, or phases. The different movements of the

dancers along the different spaces create a structure through combinations, variations

and repetitions. Annable (reference [26]) describes the flow of a dance by the changes

in phases of the dance as a function of the main timeline (figure 2.6).

These elements are mathematically formulated and transposed for a quadrotor dance in

Chapter 3.

Chapter 3

Guidance, navigation, and

quadrotor control

Chapter 2 presented different acoustic feature extraction techniques, and the main com-

ponents of a human choreography. This chapter provides a mathematical description of

the choreography components defined in chapter 2. Each section will cover one of the

main choreography components, namely space, shape, structure, and time. Figure 3.1

is a simple block diagram outlining how the musician interacts with the system during

the performance.

Figure 3.1: Choreography simplified block diagram

3.1 Introduction

This section will describe the main components of a quadrotor choreography. As a

reminder, there are four main components that constitute a human choreography:

• The notion of space refers to the geographical space occupied by the dancer.

• The shape of a dancer is the physical shape of his or her body and movements.

17

18

Figure 3.2: Block diagram of the system. (Space: blue, shape: green, structure:
orange, time: yellow)

• The structure is the succession of the dance moves, the changes in the flow of the

dancers, and the general structure of a dance along the main time-line.

• The time component is the timing of the movements and the rhythm of the music

and the dance.

In order to make a quadrotor dance, each of these components will be mathematically

formulated. Figure 3.2 is a block diagram of the quadrotor choreography system. The

blocks that correspond to each choreography component have been highlighted in a

specific color: the space is in blue, the shape is in green, the structure is in orange, and

the time is in yellow. The overall objective is to use the control inputs (time component)

to make the quadrotor follow a trajectory as a function of the music played by a musician.

The trajectories are generated along the path motifs (space) and following the motion

specifications of the musician (shape). The path motifs can be changed (structure)

throughout a performance, in order to add structure to the choreography.

Before describing each of the dance components in more detail, the next section will

motivate this discussion by presenting the results of a survey conducted at the Centre for

Interdisciplinary Research in Music Media and Technology (CIRMMT) that highlights

the features that artists expect to see as a reaction of a robot to a piece of music.

19

3.1.1 Music moods and survey

There is an undeniable, scientifically-proven relationship between music and emotion

[103, 104]. Moods are a manifestation of emotion, and mood classification is also applied

to music. There are two recurrent types of representation regarding moods in music.

In the first type of representation, the music is categorized according to four or five

basic emotions (such as happiness, sadness, fear, anger, and tenderness); emotions are

grouped together in clusters (see figure 3.3). In the second type, emotions are spread

in a two-dimensional graph as a function of two distinct emotions, for example, valence

and arousal. This is called the dimensional model (see figure 3.4) [106]. Music mood

classification algorithms have been developed. Reference [106] categorizes the moods

and emotions felt by music listeners according to user-generated tags on online music-

streaming services such as last.fm, while reference [105] categorizes music using audio and

lyrics information. Moodswings [102] is a game that harnesses ”human computation”

for the collection of label data for mood ratings of music. Music Information Retrieval

Evaluation eXchange (MIREX) classifies the moods of music in five main music clusters

[107]. Each musical mood cluster is described by distinct and precise emotions:

• Cluster 1: passionate, rousing, confident, boisterous, rowdy

• Cluster 2: rollicking, cheerful, fun, sweet, amiable/good natured

• Cluster 3: literate, poignant, wistful, bittersweet, autumnal, brooding

• Cluster 4: humorous, silly, campy, quirky, whimsical, witty, wry

• Cluster 5: aggressive, fiery, tense/anxious, intense, volatile, visceral

A survey has been sent to members of the Center for Interdisciplinary Research in Music

Media Technology (CIRMMT) in an attempt to find a correlation between the motion

of a robot and the five different MIREX music mood clusters. The complete survey

is available in Appendices B and C. Participants were asked to assign an expected

quadrotor motion to each music mood cluster. The following options were given as

possible quadrotor motions:

• Fast and oscillatory

• Fast and sharp

• Slow and oscillatory

• Slow and sharp

20

Figure 3.3: Categorical model of emotions [94]

Figure 3.4: Dimensional model of emotions [95]

21

Figure 3.5: Survey answers to the MIREX music mood clusters, in percentage

• Other (please describe)

Figure 3.5 presents the answers from the 41 participants who answered “Yes” to the

question “Are you a musician, or a performance artist?”. The results are worth dis-

cussing. The answers regarding clusters 2 and 4 are very similar to each other. It

is important to also notice the similarities in the adjectives used to describe the two

clusters. For cluster 3, 75.6% of the 41 participants have chosen a ”slow” motion. For

cluster 5, 63.4% of the 41 participants agreed that the expected motion would be ”fast

and sharp”. The two contradictory motions “fast and oscillatory” and “slow and sharp”

were chosen for cluster 1 at around 30% of the 41 participants. There certainly is some

correlation between the music mood clusters and the expected motion of the robot. For

music evoking the aggressive mood (cluster 5), the ”fast and sharp” motion is expected.

For the happy and humorous emotions (such as cluster 2 and 4), the ”fast and oscil-

latory” motions are expected. Participants were able to associate robotic motions to

certain mood clusters. This shows that the fast-slow and oscillatory-sharp descriptors

for robotic motions can be utilized to convey a mood. The final shape is controlled by

the artist; it can be chosen to contrast the music or accompany it.

3.1.2 Description of space

For any music being played, the desired position of the quadrotor will be in the space it

is assigned. The concept of path motifs is introduced: path motifs are one dimensional

manifolds embedded in a three-dimensional space, parameterized by a musical feature.

22

A path motif serves as a basis for the trajectory generation system. The quadrotor

system is designed such that the desired trajectory is along the path motif. The desired

trajectory and the path motif are similar to trains and rails: a train can only navigate

along its rails - the desired trajectory can only exist along a path motif. The final desired

trajectory of the quadrotor is generated from the equations of a specific path motif, and

any point of the final desired trajectory will satisfy the equations of the motif it is based

on. The idea and the motif designation stems from a quote by philosopher of mind and

of art Susanne Langer [26]: “The fundamental forms which occur in the decorative arts

of all ages and races – for instance the circle, the triangle, the spiral, the parallel — are

known as motifs of design. They are not art ‘works’, not even ornaments, themselves,

but they lend themselves to artistic creation. The word motifs bespeaks this function:

motifs are organizing devices that give the artist’s imagination a start, and so ‘motivate’

the work. They drive it forward and guide its progress.” The straight line, the circle,

and the helix, are presented later as motifs in the mathematical formulation of space.

The quadrotor will be tracking the final desired trajectory through a control system.

The desired trajectory is along the path motif. However, it is noteworthy to mention

that the quadrotor might not be always moving along the desired path: the quadrotor

control system is designed to track the desired trajectory and guarantee convergence,

but there are always tracking errors. The results are detailed in Chapter 4.

3.1.3 Description of shape

The quadrotor is a rigid body, and cannot alter its shape. However, the shape of the

quadrotor refers to the motion of the quadrotor. The desired trajectory of the quadrotor

is within the flying space by generating specific trajectories along a path motif. Any point

along the generated desired trajectory of the quadrotor will belong to the path motif,

and the equations of the path motifs are used in the trajectory generation. Without

a shape filter, the path motifs will generate geographic waypoints as a function of the

different integer pitches the musician plays. A shape filter generates trajectories along

a path motif by filtering the step pitch input to generate a continuous shaped pitch.

Figure 3.6 is a block diagram detailing the function of the shape filter: it generates a

continuous shaped pitch from discrete pitches.

The continuous pitch can have different responses, based on the motion parameters (see

figure 3.6). Changing the properties of the shape filter will result in changes in the

overall trajectory. A fast filter response generates a faster trajectory, and, vice versa,

slower responses generate slower trajectories. Different desired quadrotor motions along

the path motif can be generated through the shape filter. The musician that is making

23

Figure 3.6: Shape filter with graphical representations of the signals

Figure 3.7: The FCB1010 Behringer MIDI pedal, with 10 button pedals and two
expressive pedals [93]

the quadrotor dance can control the speed and the oscillatory nature of the shaped pitch

and of the trajectory through two expressive foot-pedals on a MIDI pedal board (see

Figure 3.7). The trajectory generation method is based on the physical properties of a

sound, which will be described in the next section.

3.1.3.1 Acoustics

A sound is a vibration, and its propagation medium is the air. Biological auditory

receptors, namely the ears for humans, capture those vibrations. Each species that is

capable of hearing has a different auditory range; the human ear can hear frequencies

between 20 Hertz and 18000 Hertz. Naturally, a sound decays over time. There are

three important physical properties in a sound [59]:

• The frequency, which is associated to the pitch of a sound, is the most essential

component - it is the frequency at which the physical body (a resonator) that

generates the sound vibrates.

• The amplitude of a sound is commonly referred to as the volume.

• The decay of a sound describes how fast the resonator stops vibrating.

If k is the starting amplitude of the vibration, ω is the angular frequency of vibration,

a is the decay time constant, and φ is the phase, a real sound signal A can be modeled

by the following equation:

24

Figure 3.8: Amplitude of a MATLAB generated sound as a function of time.

A(t) = keat cos (ωt+ φ) (3.1)

Figure 3.8 represents the amplitude of a MATLAB 1 generated sound as a function of

time, with ω ≈ 3770 rad/sec, k = 1, a = 0.5, and φ = 0. A trajectory that mimics the

physical properties of a sound can be generated. Let us suppose the simplest example:

the artist wishes to control the movement of the quadrotor from point A to point B. The

points are set, and the path motif is the straight line connecting those two points. By

following the physical properties of sound, the amplitude, the frequency, and the decay,

are translated into the following trajectory generation parameters:

• The amplitude of the motion is set by the distance between points A and B. The

resonator stimulated at t = 0 can be associated to the beginning of the movement

of the quadrotor.

• The frequency of the resonator is translated to the speed of the motion of the

quadrotor as it reaches (or overshoots and oscillates around) the desired waypoint

(B) along the path motif.

• The decay rate is related to the damping of the motion of the quadrotor - oscillatory

or sharp.

The motion of the quadrotor will therefore be described as oscillatory or sharp to repli-

cate the decay rate of a sound, and as fast or slow to relate to the frequency component

in the model of a sound.
1MATLAB is a trademark of MathWorks Inc.

25

Figure 3.9: Representation of the structure of a choreography as a function of the
structure of the music.

3.1.4 Description of time and structure

A quadrotor choreography, as a whole, can be mathematically modelled as a switched

system. A switched system is a system composed of two different mathematical objects:

• Object 1: differential equations that describe the flow of the continuous dynamics,

depending on a continuous control input U .

• Object 2: a switching rule that orchestrates among different subsystems, which is

usually called the discrete-event input σ.

Object 1 will refer to the time in a quadrotor choreography. It is the mathematics behind

the physical properties of the quadrotor and the control system.

Object 2 is the structure of the choreography. For quadrotors, the structure refers to the

changes in path motifs as a function of the changes in music chords. The appropriate

sequence of chords can be detected through switching theory. The right sequence of

chords could trigger changes in the path motif.

A bar is a structural element of music that consists of a specific number of beats.

Figure 3.9 is an example of a simple musical structure consisting of three measures

with four bars each. The first two measures have the same chord sequence (Cmajor −
Gmajor − Aminor − Fmajor); they are therefore given the same path motif. The third

measure could indicate a change in the structure of the song, such as, for example, a

change from a verse to the chorus. The chord sequence of the third measure is different

(G#maj − Bbmaj − C − C). This change in the chord sequence, detected through the

use of a chord-detection algorithm, triggers a change in the current motif. This change

is represented by an arrow in figure 3.9.

Note that two different chord sequences that trigger two different path motifs might

have the same first chord. For the purposes of this thesis, it is assumed that all chord

sequences have different first chords. Since this is not always the case, an alternative is

proposed with the use of the MIDI pedals in section 3.4.

26

3.2 Mathematical formulation of space

This section describes different parametrized path motifs to represent the space the

dancing quadrotor will utilize. In all the motif figures in this section, the path motif is

the red line, and the red points are the waypoints for integer pitches.

The following musical and physical parameters are used in this section:

• P is the pitch (P ∈ [0; 127])

• N is the highest pitch an instrument can play

• Q is the maximum number of octaves an instrument can reach (0 ≤ O ≤ Q)

• 12 is the number of semitones in an octave

The physical constraints of the flight space are also needed in this section:

• the allowable maximum flight height is denoted as hmax (in meters)

• the minimum flight height is denoted by hmin (in meters)

In this section, hmax = 5m, hmin = 0.3m, N = 127, and Q = 11. This work considers

three path motifs: the straight line, the circle, and the helix.

3.2.1 Straight line path motif

In this music-to-motif mapping, the concept of ”higher pitch” is applied. The path

motif is a vertical line, and the pitch of the current note being played by the musician

is associated to a particular height. As the melody goes higher in pitch, the quadrotor

will hover higher, and conversely the quadrotor will hover lower if the pitch goes lower.

The equation of a straight line passing through the point (x0, y0, z0) and parallel to the

vector (a, b, c) is characterized by the parametric equations:

x = x0 + aλ

y = y0 + bλ

z = z0 + cλ

(3.2)

where a, b, c, and λ are real numbers (with λ 6= 0). Equation (3.2) is most useful when

studying the displacement of a body from the starting point (x0, y0, z0) in the (a, b, c)

27

Figure 3.10: Simulation of the straight line path motif.

direction. Assume a = 0 and b = 0 such that x = x0 and y = y0. The quadrotor

can then be controlled along the z-axis by varying the λ parameter. By replacing z0, c

and λ by hmin, (hmax − hmin)/N , and P , respectively, in equation (3.2), equation (3.3)

becomes the equation for z. Figure 3.10 is an image from the simulation of the straight

line path motif.

z = (hmax − hmin)
P

N
+ hmin (3.3)

3.2.2 Circular path motif

This path motif is an extrapolation of the circular pitch class space (Figure 2.5, see also

[80]). A circular trajectory parallel to the x− y plane is parameterized by

x = R cos(θ)

y = R sin(θ)

z = z0

(3.4)

where x and y are the Cartesian coordinates of the world frame, R is the radius of the

circle, θ is the heading angle, and z0 is the height. A proposed mapping assumes that a

zero heading angle corresponds to the note C according to figure 2.1. The trajectories

are parameterized by the fixed radius R and by the heading angle defined by:

28

Figure 3.11: Simulation of the circle path motif.

θ = 2πP/12 (3.5)

Figure 3.11 is an image from the simulation of the circle path motif, with R = 2m, and

z0 = 2m.

3.2.3 Helicoidal trajectory and variations motifs

A helix is parametrized in space by the following equations:

x = R cos(βλ)

y = R sin(βλ)

z = λα+ c

(3.6)

where R is the radius of the helix, β is the rate of rotation around the z-axis as a function

of λ, α is the height rate of climb as a function of λ, z0 is the base height, and λ is a

free parameter. In the first musical mapping, the concept of ”higher pitch” and the

circle of notes are brought together. Different circles of notes are generated at different

heights: the heading angle depends on the pitch, and the height depends on the octave

in which the pitch lies. The desired motif is achieved by replacing λ by P , β by 2π/12,

α by (hmax−hmin)/Q and c by hmin. This path motif is represented in figure 3.12, with

R = 2m, and can be described by the following equations:

29

Figure 3.12: Simulation of the first helicoidal path motif, with R = 2m.

x = R cos(2πP/12)

y = R sin(2πP/12)

z = (hmax − hmin)
(P − P mod (12))

12Q
+ hmin

(3.7)

This particular motif is discontinuous: the jumps in height are due to the jump in

octaves. In a second mapping, the different circles of notes are connected in a more

smooth way. The height is continuous and dependent on the pitch instead of the octave.

The idea is presented in figure 3.13 and is described by the following equations:

x = R cos(2πP/12)

y = R sin(2πP/12)

z = (hmax − hmin)
P

N
+ hmin

(3.8)

In a third mapping, the circles of notes are smoothly connected since the height is a

function of the pitch instead of the octave. However, the radius of the circles is not

constant. The radius R is made to decrease as the pitch increases to create a set of

circles that form a cone-shaped outline. This can be seen in figure 3.14 and is described

by the following equations, where α is fixed:

30

Figure 3.13: Simulation of the second helicoidal path motif, with R = 2m.

x = α(P −N) cos(2πP/12)

y = α(P −N) sin(2πP/12)

z = (hmax − hmin)
P

N
+ hmin

(3.9)

The path motif possibilities are endless, and their design is only limited by the creativity

of the artist.

3.3 Mathematical formulation of shape

The path motifs and the extracted music features generate discrete geographic way-

points. In order to generate a continuous trajectory, the pitch is filtered to generate a

‘modified pitch’ continuous signal. The proposed solution combines the frequency and

the decay of a sound and is a second order system that filters the pitch values to generate

a continuous signal. The transfer function of the system is presented in equation (3.10)

where ωn is the undamped natural frequency, and ζ is the damping ratio. Figure 3.15

shows the effect of the changes in ζ and ωn on the step response of the system. A higher

ωn will result in a faster response, and conversely a lower ωn results in a slower response.

The natural frequency ωn is the oscillation frequency of the undamped response. The

damping ratio ζ controls the overshoot of the oscillations - a higher damping ratio will

result in a more damped response with smaller overshoot.

31

Figure 3.14: Simulation of the third helicoidal path motif, with α = 0.02.

H(s) =
ω2
n

s2 + 2ζωn + ω2
n

(3.10)

As mentioned earlier, the desired motion of the quadrotor is along the path motif, and

the pitches generated by the artist are discrete. In order to generate trajectories along

the motif, the pitch needs to be continuous. The pitches of the melodic phrase played

by the musician are therefore filtered to create a smoother pitch flow. The different

responses generated by the shape filter will affect the motion of the quadrotor along

the path motif. These different responses can be controlled through the damping ratio

and the natural frequency of the second order system. Figure 3.16 is a simulation of

the desired motion of the quadrotor along the cone path motif, using the shape filter.

Two motions are presented. In both examples, the pitch is increased from 1 to 2, and

the natural frequency is maintained at 1 rad/s. The waypoint for P = 1 is the point

(−2.18,−1.26, 0.337), and the point for P = 2 is (−1.25,−2.16, 0.374). In motion 1, the

damping ratio is 0.8. It is then changed to 0.3. The shape of the trajectory is different

for these two motions: notice the oscillations in the undamped response. Leaving the

parameters tunable enables artists to shape the trajectory of the quadrotor along the

path motif. These two parameters are made available to the artist through two MIDI

pedals: each MIDI pedal generates values between 0 and 127, depending on the position

of the pedal. These values are linearly mapped to the allowable range of damping ratio

(ζ ∈ [ζmin, ζmax]) and the allowable range of natural frequency (ωn ∈ [ωn,min, ωn,max]),

32

(a)

(b)

Figure 3.15: Second Order system step response with changes in ωn with ζ = 0.1
(top), and in ζ with ωn = 2π (bottom).

according to equation (3.11), where Ei is the MIDI value of the ith pedal (i = 1, 2).

Both parameters are positive.

ωn = (ωn,max − ωn,min)
E1

127
+ ωn,min

ζ = (ζmax − ζmin)
E2

127
+ ζmin

(3.11)

The code for the shape filter is available in Appendix F.

33

Figure 3.16: Desired x, y, and z motions of the quadrotor based on the cone motif
using the shape filter.

3.4 Mathematical formulation of structure

The structure of the quadrotor choreography is the changes in path motifs as a function

of chord sequences. The chord detection algorithm has been presented in Chapter 2.

This section will present the path motif switching algorithm, based on the chords played.

Figure 3.18 is a block diagram of the algorithm. The chord sequences are the highlighted

blue blocks, and the following variables are used in figure 3.18:

• M is the total number of chord sequences the artist wishes to play, with M ≥ 1.

• k, m, and n are the total number of chords in chord sequences 1, 2, and N ,

respectively, with k,m, n ≥ 1.

• a, b and h refer to specific path motifs.

The example presented in section 3.1 is revisited in figure 3.17 - the table is extended to

include information presented in figure 3.18. In the example, there are two different chord

sequences (M = 2), and each of these chord sequences contains four chords (k,m = 4).

The path motif will change according to the change from ‘chord sequence 1’ to ‘chord

sequence 2’.

A chord sequence has a finite number of chords, and is predefined by the artist. The

switching algorithm will follow the predefined chord sequence, such that changes in chord

sequences will trigger changes in path motifs. A sequence can be repeated (see figure

3.17). The switching algorithm starts when a chord is detected. If the detected chord is

34

Figure 3.17: Popular chord progression with chord follower notation

Figure 3.18: Block diagram of the structure component

not identical to any of the first chords in the predefined sequences, then the path motif

is unchanged. If the detected chord is identical to the first chord in a predefined chord

sequence, then the switching algorithm applies the appropriate path motif and waits for

a new chord to be played. If the next chord is part of the same chord sequence, then

the path motif stays unchanged. The flow chart of the switching algorithm is drawn in

figure 3.19.

35

Figure 3.19: Switching algorithm, depending on the chords detected

This algorithm is not flexible: it does not allow for musical flexibility throughout a

performance, two sequences cannot have the same first chord, and it does not apply to

monophonic instruments incapable of playing chords (such as the clarinet or the flute).

Therefore, an alternative method is presented. The structure is controlled through MIDI

button pedals that trigger changes in path motifs (see figure 3.7). Each path motif is

assigned to a button pedal.

3.5 Mathematical formulation of time

In the context of the quadrotor, the timing will refer to the control of the time evolution

of the dynamic system. A quadrotor is a Vertical Take-Off and Landing (VTOL) multi-

rotor helicopter that is lifted and propelled by four rotors. The quadrotor can move

along the x, y and z axes of the inertial reference frame, and rotations are described by

φ for roll, θ for pitch and ψ for yaw. Figure 3.20 shows a 3-D render of the quadrotor

in simulation with the body fixed reference frame attached to it.

36

Figure 3.20: Image of the simulation of the quadrotor.

3.5.1 Mathematical Model of the Quadrotor

This section presents the nonlinear and the linearized mathematical model of the quadro-

tor using Newton-Euler’s equations.

3.5.1.1 Nonlinear Model

Three assumptions have been made to derive the dynamics of the quadrotor.

1. The quadrotor is a rigid body.

2. The quadrotor rotates around its center of mass, which coincides with the origin

of the body fixed reference frame.

3. The quadrotor is symmetrical in the x-z and y-z planes, causing the products of

inertia Ixy, Iyz and Ixz to be 0.

The translational dynamics in the inertial reference frame can be described by (see [109],

[110]):

ẍ = (sin(ψ) sin(φ) + cos(ψ) sin(θ) cos(φ))
U1

m

ÿ = (sin(ψ) sin(θ) cos(φ)− cos(ψ) sin(φ))
U1

m

z̈ = −g + (cos(θ) cos(φ))
U1

m

(3.12)

where m is the mass (kg) of the quadrotor and g is the magnitude of gravitational

acceleration on Earth (9.81m/s2).

37

Following a similar approach to [100][109][112], the nonlinear attitude dynamics are

described by

φ̈ =
Iyy − Izz
Ixx

θ̇ψ̇ − JTP
Ixx

θ̇Ω +
U2

Ixx

θ̈ =
Izz − Ixx
Iyy

φ̇ψ̇ +
JTP
Iyy

φ̇Ω +
U3

Iyy

ψ̈ =
Ixx − Iyy

Izz
φ̇θ̇ +

U4

Izz

Ω = −Ω1 + Ω2 − Ω3 + Ω4

(3.13)

where Ωj is the angular speed of the jth motor and JTP is the rotational moment of

inertia about the propeller axis.

The control inputs Ui are defined as:

U1 = T1 + T2 + T3 + T4

U2 = l(−T1 − T2 + T3 + T4)

U3 = l(+T1 − T2 + T3 − T4)

U4 = kψ(−T1 + T2 + T3 − T4)

(3.14)

where Ti represents the thrust generated by the corresponding ith motor, kψ is the drag

factor due to yaw, and l is the length in meters from the center of rotation of the motor

to the center of mass of the quadrotor. Equation (3.14) represents the vertical, roll,

pitch, and yaw control inputs, respectively.

3.5.1.2 Linearized Model

It is assumed that the quadrotor will operate around a hovering state with small angle

deflections. Linearizing equation (3.12) about the hovering state, where φ ≈ 0, θ ≈ 0,

and ψ ≈ ψ0, results in

ẍ = (cos(ψ0)θ + sin(ψ0)φ)
U1

m

ÿ = (sin(ψ0)θ − cos(ψ0)φ)
U1

m

z̈ = −g +
U1

m

(3.15)

38

Figure 3.21: Controller block diagram in a hardware implementation.

Linearizing equation (3.13) about the hovering state, with φ̇ ≈ 0, and θ̇ ≈ 0 and ψ̇ ≈ 0

yields the following linear attitude dynamics

φ̈ =
U2

Ixx

θ̈ =
U3

Iyy

ψ̈ =
U4

Izz

(3.16)

The model parameters are based on an Arduino prototype, designed in the Hycons lab:

Parameter Value

m(kg) 0.431

Ixx(kg.m2) 0.0021

Iyy(kg.m
2) 0.0018

Izz(kg.m
2) 0.0027

l(m) 0.19

kψ 0.1

3.5.2 Controller Design

The control structure consists of two separate controllers: the position controller and the

attitude controller. These two controllers provide a nested closed loop solution, where

the position control is the outer loop, and the attitude control is the inner loop (see

figure 3.21).

39

3.5.2.1 Position Controller

The position controller is designed such that the closed loop dynamics are described

by equations (3.17), where ωi is the natural frequency and ζi is the damping ratio, for

i = x, y, z.

0 = ω2
x(xdesired − x) + 2ζxωx(ẋdesired − ẋ) + (ẍdesired − ẍ)

0 = ω2
y(ydesired − y) + 2ζyωy(ẏdesired − ẏ) + (ÿdesired − ÿ)

0 = ω2
z(zdesired − z) + 2ζzωz(żdesired − ż) + (z̈desired − z̈)

(3.17)

Replacing z̈ from equation (3.15) in equation (3.17) yields the control law for U1:

U1

m
= ω2

n(zdesired − z) + 2ζωn(żdesired − ż) + z̈desired + g (3.18)

Solving equations (3.15) at hover conditions (U1=mg) for ẍ and ÿ yields equations (3.19).

The values of ẍ and ÿ are then obtained from equations (3.17).

φdesired =
1

g
(ẍsin(ψ0)− ÿcos(ψ0))

θdesired =
1

g
(ẍcos(ψ0) + ÿsin(ψ0))

(3.19)

The values of U1, φdesired and θdesired are then processed by the attitude controller.

3.5.2.2 Attitude Controller

The attitude controller is responsible for the orientation of the quadrotor. It receives

the desired roll, pitch, and yaw angles from the position controller and computes the

control inputs U2, U3, and U4. The linearized roll, pitch, and yaw dynamics are similar

to each other, and so are the mathematics behind the controllers. Therefore, only the

roll controller is presented in detail. The following notation is used:

• φ, φ̇ and φ̈ are the roll, the roll rate and the roll acceleration, respectively. In a

hardware implementation, these values are read and calculated from the on-board

inertial measurement unit.

• φdesired, φ̇desired and φ̈desired are the desired roll, the desired roll rate and the

desired roll acceleration, respectively. The desired roll is obtained from equation

40

(3.19), while the desired roll rate and acceleration are calculated from the changes

in the desired angle.

The linearized system for roll is described by the following equation:

φ̈ =
U2

Ixx
(3.20)

The control input U2 can be designed such that the dynamics for roll behave like a

second order system with damping ratio ζ and natural frequency ω as follows:

0 = ω2(φdesired − φ) + 2ζω(φ̇desired − φ̇) + (φ̈desired − φ̈) (3.21)

By including the dynamics for φ̈ from equation (3.20) in the desired second-order re-

sponse, we get the following control law for U2:

U2

Ixx
= ω2(φdesired − φ) + 2ζω(φ̇desired − φ̇) + φ̈desired (3.22)

It is noteworthy to compare the simulation implementation to a hardware implementa-

tion. In the simulation, the values of the desired and actual angular rates and accelera-

tions φ̇desired, φ̈desired, φ̇ and φ̈ are numerically derived. In a hardware implementation,

the numerical derivation might lead to a noisy signal, and an unstable controller. There-

fore, for a physical implementation, a proportional feedback law for U2 is preferred, where

k is a real number:

U2 = k(φ− φdesired) (3.23)

The pitch and yaw controllers are designed following the same procedure.

3.5.3 Controller performance

In this section, the step response of the simulated system is measured. The quadrotor

is first commanded fixed values of orientation angles, and then position coordinates.

41

Figure 3.22: Response of the attitude controller for roll

3.5.3.1 Attitude controller performance

Since the linear dynamics for roll, pitch, and yaw are identical, the controller for the dif-

ferent orientations are designed similarly. Therefore, only the roll controller is presented.

The attitude controller natural frequency and damping ratio are:

• ωn = 2π

• ζ = 0.6

The quadrotor starts with a roll angle of 0. At t = 1, the quadrotor is assigned a roll

angle of −π
4 rad, and a roll angle of π

4 rad at t = 2. The rise time is tr = 0.15s, with no

overshoot.

3.5.3.2 Position controller performance

The position controller is divided into a height controller and a position reference an-

gle generator. The height controller is presented first. The height controller natural

frequency and damping ratio are:

• ωn = 3π

42

Figure 3.23: Height of the quadrotor system for a motion in the z-axis

• ζ = 0.6

At t = 0, the quadrotor is assigned a height of z = 1m. Figure 3.23 shows the response

of the quadrotor from rest at z = 0m. The rise time is tr = 0.3s, with no overshoot.

As a reminder, the horizontal position controller consists of a reference angle generator

sending the desired angles to the attitude controller (see figure 3.21). The angle generator

natural frequency and damping ratio are:

• ωn = 2π

• ζ = 1.2

Figure 3.24 is a response of the quadrotor for a displacement from x = 0m to x = 1m.

The rise time is tr = 0.76s, and the system overshoots by 13%. The settle time is

ts = 1.3s.

43

Figure 3.24: Response of the quadrotor system for a motion in the x-axis

Chapter 4

Simulation and validation

The mathematical formulation of a choreography was presented in Chapter 3. The

contribution of this chapter is to develop a new simulation tool, programmed in Python,

to validate the quadrotor choreography. Section 4.1 presents the details of the hardware-

in-the-loop implementation of the quadrotor choreography simulation. In section 4.2,

the position of the quadrotor is used to play back music to the musician. Section 4.3

presents a validation of the functionality of the system. The complete code of the

quadrotor simulation is available in Appendices D to J.

4.1 Hardware-in-the-loop simulation

This section will present the software implementation of the quadrotor choreography,

along with all the hardware used. Figure 4.1 is an image of a hardware-in-the-loop

simulation of the quadrotor choreography system, where the laptop, the pedal board,

and the MIDI keyboard are clearly visible. The hardware is presented first. The software

will be presented second.

4.1.1 Hardware

There are three hardware components in the simulation implementation. The following

is a list of the components, visible in figure 4.1.

• The simulation is run on a Samsung Series 9 laptop running Windows 10 Technical

Preview. The laptop has 8GB of RAM and an Intel i5 1.7GHz CPU. However,

there are no restrictions to the operating system: the simulation is written in

Python, and the MIDI standard is available on all operating systems.

44

45

Figure 4.1: Image of quadrotor simulation at the CIRMMT symposium booth

• A MIDI keyboard is used to play music to the quadrotor. The korg microKEY-37

MIDI keyboard connects to the main computer through a USB cable [115]. Using a

digital musical instrument focuses the scope of the thesis on the implementation of

the mathematical formulation of a choreography. An acoustic musical instrument

and a pitch detection algorithm could also be used, as discussed in Chapter 2.

• The Behringer FCB1010 [93] MIDI pedal board has two expressive pedals to control

the damping ratio and the natural frequency of the shape filter, and 10 button

pedals to control the path motif (see Chapter 3). The physical output on the

pedal is a MIDI connector - a converter is required to connect the pedal to a

computer through USB (see figure 4.1).

4.1.2 Software

The system is simulated in a Python environment. “Python is an interpreted, object-

oriented, high-level programming language with dynamic semantics. Its high-level built

in data structures, combined with dynamic typing and dynamic binding, make it very

46

attractive for Rapid Application Development” [116]. Two open-source Python add-ons

have been used:

• VPython is a graphical library which gives programmers the tools to draw 3-D

objects [117].

• The Pygame library is a set of modules designed for programming video games

[118]. One of the modules reads MIDI hardware input events and plays MIDI

music. [119].

For code clarity, the simulation code has been divided into different files.

• The main file contains the linearized equations of translational and rotational

dynamics. main is also responsible for drawing the simulation, and playing the

music generated by the quadrotor back to the musician. This file also starts the

threads for the controllers, the shape filter, and the TCP listener. This code is

available in Appendix D.

• controller contains the position and attitude controllers of the quadrotor. The

file consists of a function which receives the current and desired position, velocity,

and acceleration of the quadrotor, and returns the control inputs U1,...,4. This file

contains code that runs on a thread related to the main process. This code is

available in Appendix E.

• shape is the shape filter for the pitch played to the quadrotor. This file contains

code that runs on a thread related to the main process. This code is available in

Appendix F.

• motifs contains a function that takes two parameters (the motif number and a

pitch), and returns the desired trajectory. This file also contains code for the

function that retrieves the properties of the music the quadrotor plays back to the

musician. This code is available in Appendix G.

• TCP receives the MIDI commands from the separate MIDI process. This file

contains code that runs on a thread related to the main process. This code is

available in Appendix H.

• A separate MIDI process reads the USB MIDI inputs from the MIDI keyboard

and the pedal board. This process also transmits the MIDI information through

TCP to the main process. This code is available in Appendix I.

47

• A model file contains all the simulation and quadrotor parameters, such as the

simulation frequency and the moments of inertia of the quadrotor. This code is

available in Appendix J.

The simulation is run at a frequency of 100Hz. The controllers and the shape filter

are transformed to a discrete time equivalent system through the bilinear transform in

equation (4.1), where T is the samping period, s is the derivative operator, and z−1 is

the one step advance operator:

s =
2

T

z − 1

z + 1
(4.1)

The bilinear transform discretizes continuous systems. The left half-plane of the Laplace

domain is mapped to the unit circle of the z-domain, and therefore the bilinear transform

preserves stability [111].

4.2 Quadrotor music playback

The desired position of the quadrotor is along the path motif and, as explained in

Chapter 3, the path motif is a one-dimensional manifold embedded in a 3-D space

where the musical parameter that controls the desired position of the quadrotor along

the path motif is the pitch. Any point along the manifold is assigned at least one pitch.

Retrieving the pitch of the path motif from the position of the quadrotor allows for

a musical interaction between the quadrotor and the musician. Even though control

systems are designed such that the quadrotor follows the desired trajectory, the actual

position of the quadrotor might not belong to the path motif. This section presents a

music generation algorithm depending on the position of the quadrotor and the path

motif.

When generating MIDI music, multiple parameters can be modified to better design the

sound. There are two main parameters:

• The pitch of the sound.

• The amplitude of the sound.

The tracking error between the quadrotor’s position and the path motif can be charac-

terized by, incidentally, two parameters as well:

• The shortest distance between the path motif and the quadrotor

• The closest point to the quadrotor which belongs to the path motif

48

The tracking error parameters and MIDI generation parameters are mapped such that:

• The distance between the path motif and the quadrotor is mapped to the amplitude

of the sound.

• The pitch of the sound is extracted from the closest point to the quadrotor that

belongs to the path motif.

The distance and the pitch played by the quadrotor can be retrieved through analytical

or heuristic methods. Both methods use the same notation:

• The pitch associated to the position of the quadrotor is P.

• The total number of pitches, N, is 128.

• hmax and hmin are the maximum and minimum allowable flight heights, respec-

tively.

The distance between the path motif and the quadrotor is mapped to the amplitude A

of the sound generated by the music motif, as seen in equation (4.2) - the amplitude

will be lower if the quadrotor is further from the motif, and the amplitude will be 0 if

the quadrotor is further than one meter away from the path motif. The MIDI standard

is used to play the music generated by the quadrotor - the maximum and minimum

amplitudes are 127 and 0, respectively [70].

A =

(Amin −Amax)d+Amax d ∈ [0; 1]

0 d > 1
(4.2)

The analytical solution is presented first in section 4.2.1. Section 4.2.2 presents the

heuristic solution.

4.2.1 Analytical solution

Analytically retrieving the pitch from a point along the manifold involves inverting the

equations of the path motifs, such that a point along the path motif is mapped to a

pitch. The straight line path motif and the circular path motif are presented. To the

best of the author’s knowledge, there is no analytical solution for the shortest distance

between a point and a helix.

49

4.2.1.1 Straight line path motif

The straight line motif follows the concept of higher pitch - as the melody goes higher in

pitch, the quadrotor will hover higher, and conversely the quadrotor will go lower if the

pitch goes lower. The pitch can be extracted from the height of the quadrotor through

the following equation:

P = N
z − hmin

hmax − hmin
(4.3)

The distance between the quadrotor and the z-axis can be calculated from equation 4.4:

d =
√
x2 + y2 (4.4)

4.2.1.2 Circular path motif

The circular path motif is based on the circle of notes. In this mapping, the same note at

different octaves is mapped to the same quadrotor waypoint. Therefore, the music note

(or the pitch class) being played can be retrieved from the position of the quadrotor,

while the pitch of the music (or the octave in which the pitch class lies) cannot. It is

assumed that the note being played by the quadrotor lies in the fourth octave. The

heading angle of the position of the quadrotor is essential, and is obtained through the

following equation:

θ = tan−1(y/x) (4.5)

The pitch class of the music motif is then extracted through equation 4.6, and is placed

in the fourth octave. As a reminder, there are 12 semi-tones in an octave.

P =
12θ

2π
+ 4× 12 (4.6)

The shortest distance between a circle (parallel to the x− y plane and with center along

the z-axis at z = zcenter) and any point is obtained through the following equation:

d =

√
(
√
x2 + y2 −R)2 + (z − zcenter)2 (4.7)

50

This inverse mapping is achieved through the Python math library function, atan2. This

function takes two parameters (y, x) and returns an angle between −π and π, handles

the singularities at angles −π
2 and π

2 , and at the point (x, y) = (0, 0) [120].

4.2.2 Heuristic solution

Since the pitches are discrete, the space is limited to 128 points along the motif. Measur-

ing the distance d between the quadrotor and 128 waypoints is not a computationally

expensive operation on computers today. Therefore, the distance d, and the pitch P

of the closest point along the path motif to the quadrotor S, are obtained through an

extensive search.

The distances between pitch waypoints of the path motif and the quadrotor is measured

through equation (4.8) for all pitches between 0 and 127, where (xS , yS , zS) are the

coordinates of the quadrotor, and (xP , yP , zP) are the coordinates of a waypoint. Only

the shortest distance and the corresponding pitch are used in the music generation

process.

d =
√

(xP − xS)2 + (yP − yS)2 + (zP − zS)2 (4.8)

The following code returns the pitch of the waypoint along the path motif which is

closest to the quadrotor, along with the MIDI scaled amplitude.

def inverseMotif(motifNumber, x, y, z):

distance = 100

closestPitch = 1

for numericalPitch in my_range(0,127,1):

numX, numY, numZ = motif(motifNumber, numericalPitch)

distanceTemp = sqrt ((x - numX)**2 + (y - numY)**2 + (z - numZ)**2)

if (distanceTemp < distance):

distance = distanceTemp

closestPitch = numericalPitch

closestPitch = round(closestPitch)

amplitude = round(-127*distance + 127)

return closestPitch, amplitude

51

The sound generated from the music motif equations is played back to the musician in

real-time through the pygame MIDI library. The timber of the sound, which distin-

guishes different types of sound production sources, such as voices and musical instru-

ments, string instruments, wind instruments, and percussion instruments, is unaltered

throughout the performance. The timber could be associated to a path motif, or can be

changed through the Behringer FCB1010 MIDI pedal board. Other music generation

parameters can be modified throughout the performance.

4.3 System validation

The complete quadrotor choreography system is validated in this section. The system

is tested for different values of music and choreography parameters. The parameters of

the mathematical formulation of the choreography, and the music the quadrotor dances

to, are changed as a function of time. The path motif switching element will be time

dependent. The shape filter parameters, ζ and ω are changed twice for each motif. The

pitch is changed once for each variation of the previously presented parameters. Section

4.3.1 will present the straight line motif. Section 4.3.2 contains results of the circle motif.

Section 4.3.3 and section 4.3.4 show the helix and the cone motifs, respectively.

Each section contains 4 figures. The first figure is a screen capture of the quadrotor

simulation implementation. The path motif is drawn in red. The second figure shows

the changes in the shape parameters ζ and ω, along with the distance between the

quadrotor and the path motif, as a function of time. The third figure compares the

music pitch, the filtered pitch (called shaped pitch), and the pitch the quadrotor plays

back to the musician. Notice the changes in the response of the shaped pitch as a

function of the variations in the shape parameters ζ and ω. As a reminder, the music

played back to the musician by the quadrotor are integer pitches played through the

Pygame MIDI library. The fourth figure represents the x, y and z position of the actual

and the desired position of the quadrotor, as a function of time.

4.3.1 Straight line path motif

Figure 4.2 is an image of the quadrotor simulation with the straight line motif. Figure

4.3 shows the changes in the shape parameters ζ and ω, along with the changes in the

distance between the quadrotor and the path motif. Figure 4.4 displays the changes of

the music pitch, the pitch processed by the shape filter, and the pitch the quadrotor

plays back to the musician. The position of the quadrotor and of the desired position of

the quadrotor are shown in figure 4.5.

52

Figure 4.2: Screen capture of the quadrotor simulation with the straight line motif

4.3.2 Circle path motif

Figure 4.6 is an image of the quadrotor simulation with the circle path motif. Figure

4.7 shows the changes in the shape parameters ζ and ω, along with the changes in the

distance between the quadrotor and the path motif. Figure 4.8 displays the changes of

the music pitch, the pitch processed by the shape filter, and the pitch the quadrotor

plays back to the musician. Notice how the pitch is contained within the fourth octave

(P ∈ [48 − 60]). Since the octave in which the pitch class lies cannot be retrieved, it

is assumed that the pitch class lies in the fourth octave. The position of the quadrotor

and of the desired position of the quadrotor are shown in figure 4.9.

4.3.3 Helix path motif

Figure 4.10 is an image of the quadrotor simulation with the helix path motif. Figure

4.11 shows the changes in the shape parameters ζ and ω, along with the changes in the

distance between the quadrotor and the path motif. Figure 4.12 displays the changes

of the music pitch, the pitch processed by the shape filter, and the pitch the quadrotor

53

Figure 4.3: Changes of the shape parameters (the damping ratio and the natural
frequency) and the distance as a function of time.

plays back to the musician. The position of the quadrotor and of the desired position of

the quadrotor are shown in figure 4.13.

4.3.4 Cone path motif

Figure 4.10 is an image of the quadrotor simulation with the cone path motif. Figure

4.15 shows the changes in the shape parameters ζ and ω, along with the changes in the

distance between the quadrotor and the path motif. Figure 4.16 displays the changes

of the music pitch, the pitch processed by the shape filter, and the pitch the quadrotor

plays back to the musician. The position of the quadrotor and of the desired position of

the quadrotor are shown in figure 4.17.

54

Figure 4.4: Changes of the pitch, the shaped pitch and the pitch played by the
quadrotor.

Figure 4.5: Position of the quadrotor and the desired trajectory.

55

Figure 4.6: Screen capture of the quadrotor simulation with the circle motif

56

Figure 4.7: Changes of the shape parameters (the damping ratio and the natural
frequency) and the distance as a function of time.

57

Figure 4.8: Changes of the pitch, the shaped pitch and the pitch played by the
quadrotor.

Figure 4.9: Position of the quadrotor and the desired trajectory.

58

Figure 4.10: Screen capture of the quadrotor simulation with the helix motif

Figure 4.11: Changes of the shape parameters (the damping ratio and the natural
frequency) and the distance as a function of time.

59

Figure 4.12: Changes of the pitch, the shaped pitch and the pitch played by the
quadrotor.

Figure 4.13: Position of the quadrotor and the desired trajectory.

60

Figure 4.14: Screen capture of the quadrotor simulation with the cone motif

Figure 4.15: Changes of the shape parameters (the damping ratio and the natural
frequency) and the distance as a function of time.

61

Figure 4.16: Changes of the pitch, the shaped pitch and the pitch played by the
quadrotor.

Figure 4.17: Position of the quadrotor and the desired trajectory.

Chapter 5

Extensions and conclusions

This chapter is the final chapter of the thesis, and includes two sections. The first section

presents possible extensions to this work. The second section consists of a summary of

the thesis, along with some concluding remarks.

5.1 Extensions

Several extensions to the system are proposed. First, the beat of the music is presented

for potential use in the quadrotor choreography system. Second, an extension to multiple

quadrotors is presented.

5.1.1 Beat of the music

In music and music theory, the beat is the basic unit of time [121]. It is the unit of

time at which humans tap their feet when listening to music. The beat of the music

can either be given a-priori by the musician (as done many times in a live performance)

or it can be estimated by an off-the-shelf beat extraction software (see for example

references [84, 88, 99]). The beat can be expressed in beats per minute, and in Hz.

The beat can be used in combination with the space component of the choreography.

Let ωb be the frequency of the beat, in rad/s. A simple path motif can be presented in

which the concept of higher pitch is maintained, while introducing the notion of beat.

While listening to the beat, the quadrotor would sway from side to side. In reference

[10], quadrotors sway from side to side at an offline beat detection, where a phase-locked

loop synchronizes the beat of the music and the periodic motion. As an extension, the

pitch of the music being played can be associated to a particular height, similar to the

62

63

straight line mapping. This mapping can be described by equations (5.1), where hmax

and hmin are the maximum and minimum allowable flight heights, N is the total number

of allowable MIDI pitches, P is the pitch of the music currently being played, t is the

time, and L is the sway length:

x = L cos(ωbt)

y = 0

z = (hmax − hmin)
P

N
+ hmin

(5.1)

5.1.2 Multiple quadrotors and multiple artists

In order to extend the mathematical formulation of a choreography to multiple quadro-

tors, several methods can be applied, depending on the desire of the artist(s). The

system should include an obstacle avoidance algorithm.

Should the artist require multiple quadrotors to behave in the same way, different flying

spaces can be assigned to each quadrotor. All the quadrotor displacements will be the

same, and the performance will be identical in movement. Mathematically speaking, this

requires an offset in any direction from the origin of the flying space of each quadrotor,

and, of course, of the desired trajectories.

In the presence of multiple artists performing at the same time, different quadrotors can

”listen” to different artists. In a simple implementation, different quadrotors will be

receiving different pitch inputs. The quadrotors would be in different interchangeable

flying spaces. Several parameters could be modified from one quadrotor to another, such

as the path motif, or the shape filter parameters. An example would be a music band

in a concert; the band could have a different quadrotor assigned to each musician. The

quadrotor is assigned the flying space over the performer, such that the flying space

offset is as dynamic as the movement of the performer on stage.

5.2 Concluding remarks

This thesis presented a novel systematic methodology to perform guidance navigation

and control of a quadrotor in response to real-time music commands from a musician,

based on the main components of a choreography. The methodology uses only one

parameter extracted from musical features, and two parameters can be modified in real-

time by an artist, to send guidance commands to the quadrotor allowing an effective

real-time interaction with the musician.

64

Reference [122] is a recording of the first quadrotor performance designed by an artist,

entitled Geometry of Curves: Prelude on a Ramped Spiral. This performance uses the

mathematical formulation of a choreography and the elements presented in this thesis.

In this performance, The music played by the artist is muted, and the quadrotor music

playback sounds are generated in Ableton Live, a software for music production [123].

The MIDI information is sent to Ableton Live through a virtual port. The virtual port

is managed by ipMIDI [124].

The four main components of a choreography are the space a dancer occupies, the shape

of the body of the dancer, the structure of a dance with relation to the main timeline, and

the timing of the dance. These four components were mathematically formulated for a

quadrotor choreography. For the space component, different path motifs, parameterized

by music, were presented: a straight line, a circle, and three helicoidal variations. For the

shape component, a shapeless quadrotor is given movement characteristics by filtering

the pitch through a second order filter to generate a shaped pitch. The parameters of this

filter can be modified in real-time by the musician. The structure of the choreography

is modified by a switching algorithm based on chord sequences, or by a pedal board

and button-pedals. The time component refers to the dynamic equations describing the

motion of the quadrotor, and the associated control system. The results show that the

methodology for real-time guidance navigation and control in response to improvised

music works effectively although it may present overshoot and some oscillation.

The quadrotor system allows for real-time control with an artist-in-the-loop. It is a

system with minimal delays, in which the musician is given access to parameters that

modify the performance:

• The pitch of the music the musician is playing.

• The damping ratio of the shape filter.

• The natural frequency of the shape filter.

The pitch of the music is designed by the artist, and can have a specific mood associated

to it. A survey shows that the two parameters that control the motion of the quadrotor

are intuitive, such that specific responses were expected by the survey participants for

different musical moods. These responses have been associated to the changes caused

by changes in the two parameters, the damping ratio and the natural frequency. Prior

to the performance, several parameters can be modified such as the path motifs or the

chord sequences.

65

Future research could focus on smoothing out the overshoot and oscillations by including

a state predictor to compensate for delays. Future research could also include finding

artistic and innovating mappings between music and quadrotor trajectories.

Appendix A

chordDetection.cpp

#include <iostream>

using namespace std;

int main()

{

//changes depending on the pitches received;

int number_of_pitches = 3;

int pitches_received[3] = { 7,4,13}; // any positive integers

int pitches[12] = { 0, 0, 0 ,0,0,0,0,0,0,0,0,0};

int differences[3] = { 0, 0, 0 };

//chords in semi-tone differences, recircling

//major example: in semitones, it’s 1-5-8

//in differences, it’s 4-3, and since it wraps around,

//to detect, for example, an A major, pitch starts at 10

//instead of 1

//major

int chords[4][3] = { { 4, 3, 5 }, //major

{ 3, 4, 5 },//minor

{ 4, 4, 4 },//aug

{ 3, 3, 6 } };//dim

//wrap it around

for (int i = 0; i < number_of_pitches; i++)

66

67

{

pitches[pitches_received[i] % 12] = 1;

}

//get differences array

int temp1=-1, temp2=-1;

for (int i = 0; i < 12; i++)

{

if (pitches[i] == 1)

{

if (temp1 != -1)

{

temp2 = i;

for (int j = 0; j < 2; j++)

{

if (differences[j] == 0)

{

differences[j] = temp2 - temp1;

break;

}

}

temp1 = i;

}

else

{

temp1 = i;

}

}

}

differences[2] = 12 - differences[0] - differences[1];

for (int chord_test = 0; chord_test < 4; chord_test++)

{

for (int offset = 0; offset < 3; offset++)

{

bool test[3] = { false, false, false };

for (int i = 0; i < 3; i++)

{

if (chords[chord_test][i] == differences[((i + offset) \% 3)])

68

{

test[i] = true;

}

else

{

for (int i = 0; i < 3; i++)

{

test[i] = false;

}

break;

}

if ((test[0] == true) && (test[1] = true) && (test[2] == true))

{

cout << "Chord found: ";

switch (chord_test){

case 0:

cout << "major" << endl;

break;

case 1:

cout << "minor" << endl;

break;

case 2:

cout << "augmented" << endl;

break;

case 3:

cout << "diminishied" << endl;

break;

}

return 0;

}

}

}

}

cout << "no chord found" << endl;

return 0;

}

Appendix B

Survey questions

69

70

71

72

Appendix C

Survey results

73

Appendix D

main.py

from visual import *

from model import *

from visual.graph import * # import graphing features

def within(x, lowerRange, higherRange):

if (x > lowerRange and x < higherRange):

return True

else:

return False

Graphics

declare scene and camera orientation

scene = display(title=’Quadrotor simulation’,

x=0, y=0, z=0, width=1024, height=768,

center=(0,0,2), up = (0,0,1), forward = (-3,-1,-1))

axes and floor

checkerboard = ((0.2,0.8,0.2,0.8,0.2,0.8,0.2,0.8),

(0.8,0.2,0.8,0.2,0.8,0.2,0.8,0.2),

(0.2,0.8,0.2,0.8,0.2,0.8,0.2,0.8),

(0.8,0.2,0.8,0.2,0.8,0.2,0.8,0.2),

(0.2,0.8,0.2,0.8,0.2,0.8,0.2,0.8),

(0.8,0.2,0.8,0.2,0.8,0.2,0.8,0.2),

(0.2,0.8,0.2,0.8,0.2,0.8,0.2,0.8),

(0.8,0.2,0.8,0.2,0.8,0.2,0.8,0.2)

74

75

)

tex = materials.texture(data=checkerboard,

mapping="rectangular",

interpolate=False)

floor = box(size = (0.1,8,8), material = tex, axis = (0,0,1))

xaxis = arrow(pos = (0,0,0), axis = (5,0,0), title = "x", shaftwidth=0.1)

yaxis = arrow(pos = (0,0,0), axis = (0,5,0), title = "y", shaftwidth=0.1)

zaxis = arrow(pos = (0,0,0), axis = (0,0,5), title = "z", shaftwidth=0.1)

label(text = "x", pos = (5.2,0,0), opacity = 0, box=0, line=0, color = color.red)

label(text = "y", pos = (0,5.2,0), opacity = 0, box=0, line=0, color = color.red)

label(text = "z", pos = (0,0,5.2), opacity = 0, box=0, line=0, color = color.red)

quadrotor graphics

quadrotor = frame(make_trail=False)

box (frame = quadrotor, size = (0.5,0.5,0.1), axis = (0,0,-1), color = color.red)

cylinder (frame = quadrotor, radius = 0.25, axis = (0.05,0,0), pos = (0,-0.5,0))

cylinder (frame = quadrotor, radius = 0.25, axis = (0.05,0,0), pos = (0,0.5,0))

cylinder (frame = quadrotor, radius = 0.25, axis = (0.05,0,0), pos = (0,0,0.5))

cylinder (frame = quadrotor, radius = 0.25, axis = (0.05,0,0), pos = (0,0,-0.5))

arrow(frame = quadrotor, axis = (0,0,-0.25), pos = (0.1,0,0), shaftwidth = 0.05, color = color.black)

arrow(frame = quadrotor, axis = (0.2,0,0), shaftwidth = 0.15, color = color.blue)

quadrotor.axis = (0,0,1)

desired position and waypoint position

waypointPosition = sphere(pos=(0,0,0), radius=0.1, color=color.blue, make_trail = False)

Simulation time and display

simulationTime = 0

lbl = label(yoffset=350, line=0)

quadrotor initial conditions

x = 0

y = 0

z = 0

xdot = 0

ydot = 0

zdot = 0

xddot = 0

yddot = 0

zddot = 0

76

yaw = 0

roll = 0

pitch = 0

yawdot = 0

rolldot = 0

pitchdot = 0

desired

x_waypoint = 0

y_waypoint = 0

z_waypoint = 2

TIME (Controller input)

from controllers import *

declare position controller

control = Control()

SHAPE (second order filter)

from shape import *

###declare motion controller

shapeFilter = ShapeControl()

Listen to MIDI process through TCP

from TCP import *

declare TCP thread

##listener = ListenToTCP(socket.getfqdn(),5005)

listener = ListenToTCP(’127.0.0.1’,5005)

##listener = ListenToTCP(’192.168.1.2’,5005)

listener.daemon = True

listener.start();

SPACE and STRUCTURE (path motifs and switching)

motifSphere = sphere(radius = 0.05, color = color.red, make_trail = True, retain=127*2)

from motifs import motif

from motifs import inverseMotif

music parameters

77

musicPitch = 0

shapedPitch = 0

drawMotifPitch = 0

dancing = False

motifNumber = 1

updateMotif = True

redrawMotif = True

def changeMotifNumberTo(number):

global motifNumber

global redrawMotif

if not(number == motifNumber):

motifNumber = number;

global updateMotif

updateMotif = True

redrawMotif = True

MIDI playback

playMusic = True

if(playMusic):

import pygame.midi

pygame.mixer.pre_init(22050, -16, 1, 512)

pygame.init()

pygame.fastevent.init()

event_get = pygame.fastevent.get

event_post = pygame.fastevent.post

pygame.midi.init()

1-8 Piano 65-72 Reed

9-16 Chromatic Percussion 73-80 Pipe

17-24 Organ 81-88 Synth Lead

25-32 Guitar 89-96 Synth Pad

33-40 Bass 97-104 Synth Effects

41-48 Strings 105-112 Ethnic

49-56 Ensemble 113-120 Percussive

57-64 Brass 121-128 Sound Effects

instrument = 17

78

midi_out = pygame.midi.Output(pygame.midi.get_default_output_id(), 0)

midi_out.set_instrument(instrument)

quadrotorMusicPitch = 60

quadrotorMusicAmplitude = 127

playRate = 0.05

shapeFilter.omega = 0.5

lastPlayTime = 0

LOOP

musicPitch = 100

while True:

draw motif (trail of motifSphere)

if updateMotif == True:

if(redrawMotif):

drawMotifPitch = 0

redrawMotif = False

if (drawMotifPitch > 127):

drawMotifPitch = 0

updateMotif = False

else:

motifSphere.pos = motif(motifNumber,drawMotifPitch)

drawMotifPitch += .5

if (simulationTime < 5):

changeMotifNumberTo(2)

musicPitch = 69

shapeFilter.zeta = 0.707

shapeFilter.omega = 1*pi

elif (simulationTime < 10):

musicPitch = 60

shapeFilter.zeta = 0.307

elif (simulationTime < 15):

changeMotifNumberTo(1)

elif (simulationTime < 30):

shapeFilter.omega = 0.1*pi

79

musicPitch = 69

elif (simulationTime < 45):

musicPitch = 60

shapeFilter.zeta = 0.8

shapeFilter.omega = 0.2*pi

elif (simulationTime < 60):

writeFile = False

trajectory motifs

if(dancing == True):

x_waypoint,y_waypoint,z_waypoint = motif(motifNumber, shapedPitch)

shapedPitch = shapeFilter.update(musicPitch)

control.update(x,y,z,x_waypoint,y_waypoint,z_waypoint, roll, pitch, yaw)

simulationTime += model.dt

rate(1/(model.dt))

F1 = control.U1/4 - control.U2/(4*model.l) + control.U3/(4*model.l)# - control.U4/(4*model.kYaw)

F2 = control.U1/4 - control.U2/(4*model.l) - control.U3/(4*model.l)# + control.U4/(4*model.kYaw)

F3 = control.U1/4 + control.U2/(4*model.l) + control.U3/(4*model.l)# + control.U4/(4*model.kYaw)

F4 = control.U1/4 + control.U2/(4*model.l) - control.U3/(4*model.l)# - control.U4/(4*model.kYaw)

linear dynamics

xddot = (sin(yaw)*roll + cos(yaw)*pitch)*(F1 + F2 + F3 + F4)

yddot = (sin(yaw)*pitch - cos(yaw)*roll)* (F1 + F2 + F3 + F4)

zddot = (F1 + F2 + F3 + F4)/mass - g

rollddot = model.l*(-F1 - F2 + F3 + F4)/Ixx

pitchddot = model.l*(+F1 - F2 + F3 - F4)/Iyy

yawddot = model.kYaw * (-F1 + F2 + F3 - F4)/Izz

integration

xdot = xdot + xddot*model.dt

x = x + xdot*model.dt

ydot = ydot + yddot*model.dt

y = y + ydot*model.dt

zdot = zdot + zddot*model.dt

z = z + zdot*model.dt

80

rolldot = rolldot + rollddot*model.dt

roll = roll + rolldot*model.dt

pitchdot = pitchdot + pitchddot*model.dt

pitch = pitch + pitchdot*model.dt

yawdot = yawdot + yawddot*model.dt

yaw = yaw + yawdot*model.dt

update graphics

quadrotor.pos = (x,y,z)

quadrotor.rotate(angle = yawdot*model.dt)

quadrotor.axis = (sin(yaw)*sin(roll) + cos(yaw)*sin(pitch)*cos(roll),sin(yaw)*sin(pitch)*cos(roll) - cos(yaw)*sin(roll), cos(pitch)*cos(roll));

waypointPosition.pos = (x_waypoint, y_waypoint, z_waypoint)

check TCP thread for updates

if not listener.q.empty():

listenerData = listener.q.get()

if listenerData[0] == "x":

x_waypoint = float(listenerData[1:]) - 50

dancing = False

if listenerData[0] == "y":

y_waypoint = float(listenerData[1:]) - 50

dancing = False

if listenerData[0] == "z":

z_waypoint = float(listenerData[1:]) - 50

dancing = False

if listenerData[0] == "d":

shapeFilter.zeta = (float(listenerData[1:]) - 50.0)

if listenerData[0] == "w":

shapeFilter.omega = (float(listenerData[1:]) - 50.0)

if listenerData[0] == "p":

dancing = True

musicPitch = float(listenerData[1:])- 50

if listenerData[0] == "m":

dancing = True

changeMotifNumberTo(int(listenerData[1:])- 50)

Extract music pitch from quadrotor position

81

dancing = True

if(playMusic):

if ((simulationTime < playRate) or (simulationTime - lastPlayTime > playRate)):

newPitch , quadrotorMusicAmplitude = inverseMotif(motifNumber, x, y, z)

pygame.mixer.Sound.set_volume(quadrotorMusicAmplitude/127)

if (not(quadrotorMusicPitch == newPitch)):

if True:

midi_out.note_off(int(quadrotorMusicPitch))

quadrotorMusicPitch = newPitch

midi_out.note_on(int(quadrotorMusicPitch),int(round(quadrotorMusicAmplitude)))

lastPlayTime = simulationTime

Appendix E

controllers.py

from math import *

import model

def bound(value, low, high):

return max(low, min(high, value))

writeFile = True

class Control:

def __init__(self):

controller gains

attitude

self.omegaAttitude = 2*3.141592

self.zetaAttitude = 0.6

position

self.zetaZ = 0.6

self.omegaZ = 3*3.141592

self.zetaSides = 1.2

self.omegaSides = 2*3.141592

z variables

self.z_camera = [0,0,0]

self.z_waypoint = [0,0,0]

self.z_ddot_ref = [0,0,0]

horizontal variables

self.x_camera = [0,0,0]

82

83

self.x_waypoint = [0,0,0]

self.x_ddot_ref = [0,0,0]

self.y_camera = [0,0,0]

self.y_waypoint = [0,0,0]

self.y_ddot_ref = [0,0,0]

orientation variables

self.roll_camera = [0,0,0]

self.roll_waypoint = [0,0,0]

self.roll_ddot_ref = [0,0,0]

self.roll_error = [0,0,0]

self.pitch_camera = [0,0,0]

self.pitch_waypoint = [0,0,0]

self.pitch_ddot_ref = [0,0,0]

self.yaw_camera = [0,0,0]

self.yaw_waypoint = [0,0,0]

self.yaw_ddot_ref = [0,0,0]

control inputs

self.U1 = 0

self.U2 = 0

self.U3 = 0

self.U4 = 0

self.U1d = 0

self.U2d = 0

self.U3d = 0

self.U4d = 0

self.U1dp = 0

self.U2dp = 0

self.U3dp = 0

self.U4dp = 0

self.tauU = 0.004

def update(self,x = 0, y = 0, z = 0, xDesired = 0, yDesired = 0, zDesired = 0, roll = 0, pitch = 0, yaw = 0):

self.U1dp = self.U1d

self.U2dp = self.U2d

self.U3dp = self.U3d

self.U4dp = self.U4d

z calculations

self.z_camera[2] = self.z_camera[1]

84

self.z_camera[1] = self.z_camera[0]

self.z_camera[0] = z

self.z_waypoint[2] = self.z_waypoint[1]

self.z_waypoint[1] = self.z_waypoint[0]

self.z_waypoint[0] = zDesired

self.z_ddot_ref[2] = self.z_ddot_ref[1]

self.z_ddot_ref[1] = self.z_ddot_ref[0]

k1 = self.omegaZ*self.omegaZ

k2 = 2*self.zetaZ*self.omegaZ

self.z_ddot_ref[0] = self.z_camera[0]*(k1 + 2*k2/model.dt) + self.z_camera[1]*(2*k1) + self.z_camera[2]*(k1-2*k2/model.dt) - self.z_waypoint[0]*(k1 + 2*k2/model.dt + 4/(model.dt*model.dt)) - self.z_waypoint[1]*(2*k1 - 8/(model.dt*model.dt)) - self.z_waypoint[2]*(k1 - 2*k2/model.dt + 4/(model.dt*model.dt))

self.z_ddot_ref[0] *= -1

x calculations

self.x_camera[2] = self.x_camera[1]

self.x_camera[1] = self.x_camera[0]

self.x_camera[0] = x

self.x_waypoint[2] = self.x_waypoint[1]

self.x_waypoint[1] = self.x_waypoint[0]

self.x_waypoint[0] = xDesired

self.x_ddot_ref[2] = self.x_ddot_ref[1]

self.x_ddot_ref[1] = self.x_ddot_ref[0]

k1 = self.omegaSides*self.omegaSides

k2 = 2*self.zetaSides*self.omegaSides

self.x_ddot_ref[0] = self.x_camera[0]*(k1 + 2*k2/model.dt) + self.x_camera[1]*(2*k1) + self.x_camera[2]*(k1-2*k2/model.dt) - self.x_waypoint[0]*(k1 + 2*k2/model.dt + 4/(model.dt*model.dt)) - self.x_waypoint[1]*(2*k1 - 8/(model.dt*model.dt)) - self.x_waypoint[2]*(k1 - 2*k2/model.dt + 4/(model.dt*model.dt))

self.x_ddot_ref[0] *= -1

y calculations

self.y_camera[2] = self.y_camera[1]

self.y_camera[1] = self.y_camera[0]

self.y_camera[0] = y

self.y_waypoint[2] = self.y_waypoint[1]

self.y_waypoint[1] = self.y_waypoint[0]

self.y_waypoint[0] = yDesired

self.y_ddot_ref[2] = self.y_ddot_ref[1]

self.y_ddot_ref[1] = self.y_ddot_ref[0]

k1 = self.omegaSides*self.omegaSides

k2 = 2*self.zetaSides*self.omegaSides

self.y_ddot_ref[0] = self.y_camera[0]*(k1 + 2*k2/model.dt) + self.y_camera[1]*(2*k1) + self.y_camera[2]*(k1-2*k2/model.dt) - self.y_waypoint[0]*(k1 + 2*k2/model.dt + 4/(model.dt*model.dt)) - self.y_waypoint[1]*(2*k1 - 8/(model.dt*model.dt)) - self.y_waypoint[2]*(k1 - 2*k2/model.dt + 4/(model.dt*model.dt))

self.y_ddot_ref[0] *= -1

into angles and U1

85

self.U1d = model.mass*(self.z_ddot_ref[0] + model.g)

roll_desired = (model.mass/model.g)*(self.x_ddot_ref[0]*sin(yaw) - self.y_ddot_ref[0]*cos(yaw))

pitch_desired = (model.mass/model.g)*(self.x_ddot_ref[0]*cos(yaw) + self.y_ddot_ref[0]*sin(yaw))

yaw_desired = yaw

attitude controller

bound desired angles

orientationLimit = pi/4

pitch_desired = bound(pitch_desired,-orientationLimit, orientationLimit)

roll_desired = bound(roll_desired, -orientationLimit, orientationLimit)

roll calculations

self.roll_camera[2] = self.roll_camera[1]

self.roll_camera[1] = self.roll_camera[0]

self.roll_camera[0] = roll

self.roll_waypoint[2] = self.roll_waypoint[1]

self.roll_waypoint[1] = self.roll_waypoint[0]

self.roll_waypoint[0] = roll_desired

self.roll_ddot_ref[2] = self.roll_ddot_ref[1]

self.roll_ddot_ref[1] = self.roll_ddot_ref[0]

k1 = self.omegaAttitude*self.omegaAttitude

k2 = 2*self.zetaAttitude*self.omegaAttitude

self.roll_ddot_ref[0] = self.roll_camera[0]*(k1 + 2*k2/model.dt) + self.roll_camera[1]*(2*k1) + self.roll_camera[2]*(k1-2*k2/model.dt) - self.roll_waypoint[0]*(k1 + 2*k2/model.dt + 4/(model.dt*model.dt)) - self.roll_waypoint[1]*(2*k1 - 8/(model.dt*model.dt)) - self.roll_waypoint[2]*(k1 - 2*k2/model.dt + 4/(model.dt*model.dt))

self.roll_ddot_ref[0] *= -1

self.roll_ddot_ref[0] = bound(self.roll_ddot_ref[0], -300, 300)

self.U2d = model.Ixx*self.roll_ddot_ref[0]

pitch calculations

self.pitch_camera[2] = self.pitch_camera[1]

self.pitch_camera[1] = self.pitch_camera[0]

self.pitch_camera[0] = pitch

self.pitch_waypoint[2] = self.pitch_waypoint[1]

self.pitch_waypoint[1] = self.pitch_waypoint[0]

self.pitch_waypoint[0] = pitch_desired

self.pitch_ddot_ref[2] = self.pitch_ddot_ref[1]

self.pitch_ddot_ref[1] = self.pitch_ddot_ref[0]

k1 = self.omegaAttitude*self.omegaAttitude

86

k2 = 2*self.zetaAttitude*self.omegaAttitude

self.pitch_ddot_ref[0] = self.pitch_camera[0]*(k1 + 2*k2/model.dt) + self.pitch_camera[1]*(2*k1) + self.pitch_camera[2]*(k1-2*k2/model.dt) - self.pitch_waypoint[0]*(k1 + 2*k2/model.dt + 4/(model.dt*model.dt)) - self.pitch_waypoint[1]*(2*k1 - 8/(model.dt*model.dt)) - self.pitch_waypoint[2]*(k1 - 2*k2/model.dt + 4/(model.dt*model.dt))

self.pitch_ddot_ref[0] *= -1

self.pitch_ddot_ref[0] = bound(self.pitch_ddot_ref[0], -300, 300)

self.U3d = model.Iyy*self.pitch_ddot_ref[0]

yaw calculations

self.yaw_camera[2] = self.yaw_camera[1]

self.yaw_camera[1] = self.yaw_camera[0]

self.yaw_camera[0] = yaw

self.yaw_waypoint[2] = yaw_desired

self.yaw_waypoint[1] = yaw_desired

self.yaw_waypoint[0] = yaw_desired

self.yaw_ddot_ref[2] = self.yaw_ddot_ref[1]

self.yaw_ddot_ref[1] = self.yaw_ddot_ref[0]

self.yaw_ddot_ref[0] = (4 * self.yaw_waypoint[2] - 8 * self.yaw_waypoint[1] + 4 * self.yaw_waypoint[0] - model.dt*model.dt*self.yaw_camera[2] * self.omegaAttitude*self.omegaAttitude + model.dt*model.dt*self.yaw_waypoint[2] * self.omegaAttitude*self.omegaAttitude - model.dt*model.dt*self.yaw_camera[0] * self.omegaAttitude*self.omegaAttitude + model.dt*model.dt*self.yaw_waypoint[0] * self.omegaAttitude*self.omegaAttitude - 2 * model.dt*model.dt*self.yaw_camera[1] * self.omegaAttitude*self.omegaAttitude + 2 * model.dt*model.dt*self.yaw_waypoint[1] * self.omegaAttitude*self.omegaAttitude + 4 * model.dt*self.yaw_camera[2] * self.zetaAttitude*self.omegaAttitude - 4 * model.dt*self.zetaAttitude*self.yaw_waypoint[2] * self.omegaAttitude - 4 * model.dt*self.yaw_camera[0] * self.zetaAttitude*self.omegaAttitude + 4 * model.dt*self.zetaAttitude*self.yaw_waypoint[0] * self.omegaAttitude) / (model.dt*model.dt)

self.yaw_ddot_ref[0] = bound(self.yaw_ddot_ref[0], -300, 300)

self.U4d = model.Izz*self.yaw_ddot_ref[0]

U1Limit = 42

self.U1d = bound(self.U1d, -U1Limit, U1Limit)

U23Limit = 80

self.U2d = bound(self.U2d, -U1Limit, U1Limit)

self.U3d = bound(self.U3d, -U1Limit, U1Limit)

self.U4d = bound(self.U4d, -U1Limit, U1Limit)

self.U1 = (model.dt*(self.U1dp + self.U1d) - (model.dt - 2 * self.tauU)*self.U1) / (model.dt + 2 * self.tauU)

self.U2 = (model.dt*(self.U2dp + self.U2d) - (model.dt - 2 * self.tauU)*self.U2) / (model.dt + 2 * self.tauU)

self.U3 = (model.dt*(self.U3dp + self.U2d) - (model.dt - 2 * self.tauU)*self.U2) / (model.dt + 2 * self.tauU)

self.U4 = (model.dt*(self.U4dp + self.U4d) - (model.dt - 2 * self.tauU)*self.U4) / (model.dt + 2 * self.tauU)

Appendix F

shape.py

import model

class ShapeControl:

def __init__(self):

pitch variable

self.musicPitch_output = [0,0,0]

self.musicPitch_reference = [0,0,0]

music parameters

self.zeta = 0.5

self.omega = 0.9*3.141592

def update(self,musicPitchDesired):

musicPitch calculations

self.musicPitch_reference[2] = self.musicPitch_reference[1]

self.musicPitch_reference[1] = self.musicPitch_reference[0]

self.musicPitch_reference[0] = musicPitchDesired

self.musicPitch_output[2] = self.musicPitch_output[1]

self.musicPitch_output[1] = self.musicPitch_output[0]

self.musicPitch_output[0] = (model.dt*model.dt*self.omega*self.omega*self.musicPitch_reference[0] + 2*model.dt*model.dt*self.omega*self.omega*self.musicPitch_reference[1] + model.dt*model.dt*self.omega*self.omega*self.musicPitch_reference[2] - (self.musicPitch_output[2]*(model.dt*model.dt*self.omega*self.omega - 4*self.zeta*model.dt*self.omega + 4) + self.musicPitch_output[1]*(2*model.dt*model.dt*self.omega*self.omega - 8)))/(model.dt*model.dt*self.omega*self.omega + 4*self.zeta*model.dt*self.omega + 4)

return self.musicPitch_output[0]

87

Appendix G

motifs.py

from math import *

def my_range(start, end, step):

while start <= end:

yield start

start += step

def motif(motifNumber, pitch):

Q = 12

if motifNumber == 0:

x = 0

y = 0

z = 1

elif motifNumber == 1:

helix

x = 2 * cos(2*3.141592*pitch/12)

y = 2 * sin(2*3.141592*pitch/12)

z = 4.3*pitch/127.0 + 0.3

elif motifNumber == 2:

vertical line

x = 0

y = 0

z = 4.7*pitch/127.0 + 0.3

elif motifNumber == 3:

horizontal line

88

89

x = 0

y = 4.7*pitch/127.0 + 0.3

z = 2

elif motifNumber == 4:

circle of notes

x = 2 * cos(2*3.141592*pitch/12)

y = 2 * sin(2*3.141592*pitch/12)

z = 2

elif motifNumber == 5:

cone

x = (pitch-127)/50 * cos(2*3.141592*pitch/12)

y = (pitch-127)/50 * sin(2*3.141592*pitch/12)

z = (pitch-127)/30 + 5

z = (pitch/127)*4.7 + 0.3

elif motifNumber == 6:

circles

x = 2 * cos(2*3.141592*pitch/12)

y = 2 * sin(2*3.141592*pitch/12)

z = 4.7*(pitch - (pitch\%12))/(12*11) + 0.3

else:

x = 0

y = 0

z = 0

return x,y,z

def inverseMotif(motifNumber, x, y, z):

distance = 100

closestPitch = 1

for numericalPitch in my_range(0,127,1):

numX, numY, numZ = motif(motifNumber, numericalPitch)

distanceTemp = sqrt ((x - numX)**2 + (y - numY)**2 + (z - numZ)**2)

if (distanceTemp < distance):

distance = distanceTemp

closestPitch = numericalPitch

closestPitch = round(closestPitch)

amplitude = round(-127*distance + 127)

return closestPitch, amplitude

Appendix H

TCP.py

import socket

import threading

import Queue

class ListenToTCP(threading.Thread):

def __init__(self, myIP, myPORT):

super(ListenToTCP, self).__init__()

self.myIP = myIP

self.myPORT = myPORT

self.q = Queue.Queue()

self.sock = socket.socket(socket.AF_INET, # Internet

socket.SOCK_STREAM) # TCP

self.sock.bind((myIP,myPORT)) #used for TCP

self.data = ""

def run(self):

self.sock.listen(1)

self.conn, self.addr = self.sock.accept()

print "CONNECTION SUCCESSFUL TO ", self.addr

while 1:

self.data= self.conn.recv(6) # buffer size is 6 bytes

self.q.put((self.data))

90

Appendix I

MIDI.py

import pygame

import pygame.midi

import socket

import Queue

import thread

MIDInotesON = [0] * 127

##def input_main(device_id = None):

pygame.init()

pygame.fastevent.init()

event_get = pygame.fastevent.get

event_post = pygame.fastevent.post

pygame.midi.init()

for i in range(pygame.midi.get_count()):

r = pygame.midi.get_device_info(i)

(interf, name, input, output, opened) = r

in_out = ""

if input:

in_out = "(input)"

if name == "microKEY-37":

keyboardID = i

print "KEYBOARD:",i

if name == "2- MIDISPORT 2x2 In A":

91

92

pedalID = i

print "PEDAL:",i

if output:

in_out = "(output)"

print ("%2i: interface :%s:, name :%s:, opened :%s: %s" %

(i, interf, name, opened, in_out))

Keyboard = pygame.midi.Input(keyboardID)

Pedal = pygame.midi.Input(pedalID)

pygame.display.set_mode((1,1))

maneuver = 0

pitch = 0

zeta = 0

omega = 0

TCP_IP = ’127.0.0.1’

TCP_PORT = 5005

BUFFER_SIZE = 6

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((TCP_IP, TCP_PORT))

output

instrument = 0 # GRAND PIANO

midi_out = pygame.midi.Output(pygame.midi.get_default_output_id(), 0)

midi_out.set_instrument(instrument)

going = True

while going:

events = event_get()

for e in events:

if e.type in [pygame.midi.MIDIIN]:

print (e)

print (e.data1)

93

if Keyboard.poll():

keyb_events = Keyboard.read(10)

keyboard_events = pygame.midi.midis2events(keyb_events, Keyboard.device_id)

for k_e in keyboard_events:

if k_e.status == 144:

MIDInotesON[k_e.data1] = 1

msg = "p" + format(k_e.data1 + 50, ’05’)

s.send(msg)

midi_out.note_on(k_e.data1,127)

if k_e.status == 128:

midi_out.note_off(k_e.data1)

MIDInotesON[k_e.data1] = 0

event_post(k_e)

if Pedal.poll():

ped_events = Pedal.read(10)

pedal_events = pygame.midi.midis2events(ped_events, Pedal.device_id)

for p_e in pedal_events:

if p_e.status == 176:

if p_e.data1 == 27: ## left pedal

msg = "d" + format(p_e.data2*1.2/127.0 + 0.2 + 50, ’05’)

s.send(msg)

if p_e.data1 == 7: ## right pedal

msg = "w" + format(p_e.data2*5/127.0 + 0.5 + 50, ’05’)

s.send(msg)

if p_e.status == 192: ## right pedal

msg = "m" + format(p_e.data1-39 + 50, ’05’)

s.send(msg)

event_post(p_e)

print msg

del Keyboard

del Pedal

s.close()

pygame.midi.quit()

Appendix J

model.py

quadrotor parameters

Ixx = 0.0021

Iyy = 0.0018

Izz = 0.0027

JTP = 0

l = 0.19 #m

mass = 0.431 #g

g = 9.81 #N/m/s

dt = 0.01

kYaw = 0.1

94

Bibliography

[1] News Article More About Balloons in Scientific American, 1849, available online at

http://www.ctie.monash.edu/hargrave/rpav home.html#Beginnings

[2] A. Puri, A Survey of Unmanned Aerial Vehicles (UAV) for Traffic Surveillance

[3] D. W. Casbeer, R. W. Beard, T. W. McLain, S. Li, R K. Mehra, Forest Fire Moni-

toring With Multiple Small UAVs, American COntrol Conference, June 8-10 2005

[4] F. Caballero, L. Merino, J. Ferruz, A. Ollero, A visual odometer without 3D recon-

struction for aerial vehicles. Applications to building inspections, Proceedings of the

2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain,

April 2005.

[5] J. R. MArtinez-De Dios, A. Ollero, Automatic Detection of Windows Thermal Heat

Losses in BUildings using UAVs, World Automation Congraess (WAC), Budapest,

Hungary, July 24-26 2006.

[6] Amazon.com, Amazon Prime Air, available on http://www.amazon.com/primeair

[7] Fischer, J, CES 2015: Drones, Drones, Drones, pcmag.com, available online at

http://www.pcmag.com/article2/0,2817,2474885,00.asp

[8] Hartmann, WM, Signals, Sound, and Sensation, pp. 145, 284, 287, Springer.

[9] A. Schollig, F. Augugliaro, S. Lupashin and R. D’Andrea, Synchronizing the Motion

of a Quadrocopter to Music, in IEEE International Conference on Robotics and

Automation, Anchorage, Alaska, USA, 2010.

[10] A. P. Schoellig, C. Wiltsche and R. D’Andrea, Feed-Forward Parameter Identifi-

cation for Precise Periodic Quadrocopter Motions, in Proc. of the 2012 American

Control Conference (ACC), 2012.

[11] M.M. Wanderley, P. Depalle, O. Warusfel, Improving instrumental sound synthesis

by modeling the effects of performer gesture, in ICRC, 1999

95

Bibliography 96

[12] V. Kumar, Robot Quadrotors Perform James Bond Theme, University of Pennsyl-

vania, General Robotics, Automation, Sensing and Perception (GRASP) Lab, Feb

2012, available at http://www.youtube.com/watch?v= sUeGC-8dyk

[13] C. Cadoz, M. M. Wanderley, Gesture - Music, Trends in Gestural Control of Music,

IRCAM 2000

[14] J. van der Linden, Erwin Schoonderwaldt, J. Bird, R. Johnson, MusicJacket Com-

bining Motion Capture and Vibrotactile Feedback to Teach Violin Bowing, in IEEE

Transactions on instrumentation and measurement, Vol. 60, No. 1, January 2011

[15] I. Choi, Cognitive Engineering of Gestural Primitives for Multi-modal interaction

in a Virtual Environment, IEEE International Conference on Systems, Man, and

Cybernetics (Vol. 2), San Diego, CA, 11-14 Oct 1998, pp 1101-1106

[16] G. Kurtenbach, E. A. Hulteen, Gestures in Human-Computer Interaction, In B.

Laurel (ed.): The Art of Human-Computer Interaction, Reading, Mass.: Addison-

Wesley, 1990, page 310

[17] P. Viviani, Pleins et dlis, Science et Vie, numro spcial, Le cerveau et le mouvement.

pp. 36-47, 1998

[18] K. Murata, K. Nakadai, R. Takeda, H. G. Okuno, T. Torii, Y. Hasegawa and H.

Tsujino, A Beat-Tracking Robot for Human-Robot Interaction and Its Evaluation, in

IEEE-RAS International Conference on Humanoid Robots, Daejeon, Korea, 2008.

[19] K. Murata, K. Nakadai, K. Yoshii, R. Takeda, T. Torii, H. G. Okuno, Y. Hasegawa

and H. Tsujino, A Robot Uses Its Own Microphone to Synchronize Its Steps to

Musical Beats While Scatting and Singing, in IEEE/RSJ International Conference

on Intelligent Robots and Systems, Nice, France, 2008.

[20] D. M. Randel, The Harvard Dictionary of Music, Harvard University Press Refer-

ence Library, Dec 28, 2003

[21] E. W. Large, J. F. Kollen, Resonnance and the Perception of Musical Meter, Con-

nection Science, Vol. 6, Ns. 2 & 3, 1994

[22] L. P. Rabiner, On the Use of Autocorrelation Analysis for Pitch Detection, IEEE

Transactions on Acoustics, Speech, and Signal processing, Vol. ASSP-25, No. 1,

February 1977, pp 24-33

[23] P. de la Cuadra, A. Master, C. Sapp, Efficient Pitch Detection Techniques for

Interactive Music, Center for Computer research in Music and Acoustics, Stanford

University

Bibliography 97

[24] E. D. Scheirer, Tempo and beat analysis of acoustic musical signals, Journal of

Acoustic Society of America, January 1998

[25] P. Sofras, Dance Composition Basics: Capturing the Choreographer’s Craft, Human

Kinetics, 2006

[26] J. M. Smith-Autard, Dance Composition: A Practical Guide to Creative Success in

Dance Making, Bloomsbury Methuen Drama; 6th Revised edition edition (Aug. 3

2010)

[27] M. Goto, Y. Muraoka, An Audio-based Real-time Beat Tracking System and Its

Applications, in Proceedings of the 2001 International Computer Music Conference

(ICMC’1998), 1998.

[28] O. Rogalla, M. Ehrenmann, R. Zollner, R.Becher, R.Dillmann, Using Gesture and

Speech Control for Commanding a Robot Assistant, Proceedings of the 2002 IEEE

International Workshop on Robot and Human Interactive Communication, Berlin,

Germany, Sep 25-27 2002

[29] Cirque du Soleil, ETH Zurich, and Verity Studios, SPARKED: A

Live Interaction Between Humans and Quadcopters, available online at

https://www.youtube.com/watch?v=6C8OJsHfmpI, published on Sep 22, 2014

[30] D. Perzanowski, A. C. Schultz, W. Adams, E. Marsh, M. Bugajska, Building a

Multimodal Human-Robot Interface, IEEE Intelligent Systems, January/February

2001

[31] L. R. Rabiner, M. J. Cheng, A. E. Rosenberg and C. A. McGonegal, A Comparative

Performance Study of Several Pitch Detection Algorithms, IEEE Transactions on

Acoustics, Speech, and Signal Processing, Vols. ASSP-24, no. No. 5, pp. 399-418,

1976.

[32] W. B. Kuhn, A Real-Time Pitch Recognition Algorithm for Music Applications,

Computer Music Journal, Vol. 14 No. 3, Autumn 1990, pp. 60-71

[33] S. Harbeck, A. Kiebetaling, R. Kompe, H. Niemann and E. No”th, Robust Pitch

Period Detection Using Dynamic Programming with an ANN Cost Function, Univ.

Erlangen-Nurnberg, Lehrstuhl fur Mustererkennung (Inf. 5), Martensst r. 3,91058

Erlangen, F.R. of Germany, 1995.

[34] E. Benetos and S. Dixon, Joint Multi-Pitch Detection Using Harmonic Envelope

Estimation for Polyphonic Music Transcription, IEEE Journal of Selected Topics in

Signal Processing, vol. 5, no. 6, pp. 1111-1123, 2011.

Bibliography 98

[35] E. Benetos and S. Dixon, A Temporally-Constrained Convolutive Probabilistic Model

for Pitch Detection, in IEEE Workshop on Applications of Signal Processing to Audio

and Acoustics, New Paltz, NY, 2011.

[36] H. Ding, B. Qian, Y. Li, Z. Tang, A method combining LPC-Based Cepstrum and

Harmonic Product Spectrum for Pitch Detection, Proceedings of the 2006 Interna-

tional Conference on Intelligent Information Hiding and Multimedia Signal Process-

ing, 2006

[37] D. G. Childers, D. P. Skinner, R. C. Kemerait, The Cepstrum: A Guide to Pro-

cessing, Proceedings of the IEEE

[38] A. V. Oppenheim, R. W. Schafer, From Frequency to Quefrency: A History of the

Cepstrum, IEEE Signal Processing Magazine, September 2004.

[39] M. R. Schroeder, Period Histogram and Product Spectrum: New Methods for Fun-

damental Frequency Measurement, Acoustical Society of America, 1968

[40] J. P. Kroeker, Resonant aperture detection of natural resonances, Wave

Reactive Network, available online at https://drive.google.com/file/d/0B-

XL4upneCeCdzhGNXJLNEtaMjQ/view

[41] A. V. Oppenheim, R. W. Schafer, Digital Signal Processing, Prentice Hall, 1975

[42] A. V. Oppenheim, R. W. Schafer, Discrete-time signal processing, Second edition,

Prentice Hall, 1998

[43] V. Fromkin, J. Rodman, An Introduction to Language, CBS College Publishing,

1983

[44] F. Weichert, D. Bachmann, B. Rudak, D. Fisseler, Analysis of the Accuracy and

Robustness of the Leap Motion Controller, in Sensors 2013, pp 6380-6393

[45] Z. Ren, J. Meng, J. Yuan, Z. Zhang, Robust hand gesture recognition with kinect

sensor, In Proceedings of the 19th ACM international conference on Multimedia

(MM ’11). ACM, New York, NY, USA, 759-760.

[46] K. K. Biswas, S. K. Basu, Gesture recognition using Microsoft Kinect, 5th Interna-

tional Conference on Automation, Robotics and Applications (ICARA),pp 100-103,

Dec 2011

[47] O. Patsadu, C. Nukoolkit, B. Watanapa, Human gesture recognition using Kinect

camera, in International Joint Conference on Computer Science and Software Engi-

neering (JCSSE), pp 28-32, May 30 - June 1 2012

Bibliography 99

[48] T. Schlmer, B. Poppinga, N. Henze, S. Boll. Gesture recognition with a Wii con-

troller, In Proceedings of the 2nd international conference on Tangible and embedded

interaction (TEI ’08). ACM, New York, NY, USA, pp 11-14.

[49] Thalmic Labs, Myo - Gesture control armband by Thalmic Labs, available online at

https://www.thalmic.com/en/myo/

[50] A. Malima, E. Ozgur, M. Cetin, A Fast Algorithm for Vision-Based Hand Ges-

ture Recognition for Robot Control, in IEEE Signal Processing and Communications

Applications, Antalya, Turkey, 2006

[51] Y. Wu, T. S. Huang, Vision-Based Gesture Recognition: A Review, in Gesture-

Based Communication in Human-Computer Interaction, International GestureWork-

shop, GW99 Gif-sur-Yvette, France, March 17-19, 1999 Proceedings pp 103-115

[52] L. Dipietro, A. M. Sabatini, P. Dario, A Survey of Glove-Based Systems and Their

Applications, in IEEE Transactions on Systems, Man, and Cybernetics - Part C:

Applications and Reviews, Vol 38, No. 4, July 2008

[53] J. P. Wachs, M. Kolsch, H. Stern, Y. Edan, Vision-Based Hand-Gesture Applica-

tions, in Communications of the ACM, February 2011, Vol 54, No. 2, pp 60-71

[54] F. Song, W. B. Croft, A General Language Model for Information Retrieval, in

Proceedings of the ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval, 1999, pp 279-280

[55] Y. Lv, C. Zhai, Positional Language Models for Information Retrieval, in SIGIR

’09, Boston, MA, Jul 19-23 2009

[56] L. R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition, Proceedings of the IEEE, Vol 77, No. 2, Feb 1989

[57] D. Hakkani-Tur, G. Riccardi, A. Gorin, Active Learning for Automatic Speech

Recognition in Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE In-

ternational Conference on (Vol. 4), Orlando, FL, 13-17 May 2002, pp 3904-3907

[58] M. J. F. Gales, S. J. Young, Robust Continuous Speech Recognition Using Parallel

Model Combination, IEEE transactions on Speech and Audio Processing (Vol. 4,

Issue 5), pp 352-359, 1996

[59] J. Bachus, The Acoustical Foundations of Music, W W Norton & Co Inc (Np); 2nd

Revised edition edition (Nov. 17 1977)

[60] J. W. Cooley, J. W. Tukey, An Algorithm for the Machine Calculation of Complex

Fourier Series, Mathematics of Computation, Vol. 19, No. 90, Apr 1965, pp 297-301

Bibliography 100

[61] L. Robles, M. A. Ruggero, Mechanics of the Mammalian Cochlea, Physiological

Reviews Published 1 July 2001 Vol. 81 no. 3, pp. 1305-1352

[62] Peter van Hengel, Cochlea (conceptual documentation), available online at

http://www.ai.rug.nl/acg/cpsp/docs/cochleaModel.html

[63] Y. Gong, Speech recognition in noisy environments: A survey, in Speech Commu-

nication (Vol. 16, Issue 3), April 1995, Pages 261291

[64] R. B. Dannenberg, B. Brown, G. Zeglin, R. Lupish, McBlare: A Robotic Bagpipe

Player, in Proceedings of the 2005 International Conference on New Interfaces for

Musical Expression (NIME05), Vancouver BC Canada, pp 80-84

[65] G. Hoffman, G. Weinberg, Shimon: An Interactive Improvisational Robotic

Marimba Plauer, in Computer-Human Interaction, Atlanta, GA, April 10-15 2010

[66] A. Alford, S. Northrup, K. Kawamura, K.W. Chan, J. Barile, Music Playing Robot,

in Proceedings of the Conference on Field and Service Robots, pp. 29-31. 1999.

[67] Y. Kusuda, Toyota’s violin playing robot, Industrial Robot: An International Jour-

nal, Vol. 35 Iss 6 pp. 504 - 506

[68] D. Zhang, J. Lei, B. Li, D. Lau, C. Cameron, Design and analysis of a piano

playing robot, in International Conference on Information and Automation (ICIA),

pp 757-761, 2009

[69] J. Santana, X. Smith, Saatchi P, MEET YOUR CREATOR - QUADROTOR

SHOW, available online at https://www.youtube.com/watch?v=cseTX rW3uM

[70] MIDI Manufacturers Association, The MIDI standard

[71] E. R. Miranda, M. M. Wanderley, New Digital Musical Instruments: Control and

Interaction beyond the Keyboard, The Computer Music and Digital Audio Series,

Vol. 21

[72] S. Iba, J. M. V. Weghe, C. J. J. Paredis, P. K Khosla, An Architecture for Gesture-

Based Control of Mobile Robots, in Proceedings of the IEE/RSJ International Con-

ference on Intelligent Robots and Systems, 1999

[73] S. Waldherr, R. Romero, S. Thrun, A Gesture Based Interface for Human-Robot

interaction, in Autonomous Robots 9, pp 151-174, 2000

[74] D. Bohus, C. W. Saw, E. Horvitz, Directions Robot: In-the-Wild Experiences and

Lessons Learned, in Proceedings of the 13th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2014) Paris, France, May 5-9, 2014

Bibliography 101

[75] M. K. Apostolos, M. Littman, S. Lane, D. Handelman, J. Gelfand, Robot Choreog-

raphy: An Artistic-Scientific Connection, in Computers Math. Applic. Vol 32, No.

1, pp 1-4, 1996

[76] S.F. de Sousa Junior, M.F.M. Campos, Shall we dance? A music-driven ap-

proach for mobile robots choreography, Intelligent Robots and Systems (IROS), 2011

IEEE/RSJ International Conference on , vol., no., pp.1974,1979, 25-30 Sept. 2011

[77] T. Luukkonen, Modelling and control of quadcopter, Aalto University, School of

Science, Independent research project in applied mathematics, August 22, 2011,

available online at http://sal.aalto.fi/publications/pdf-files/eluu11 public.pdf

[78] S. Bouabdallah, R. Siegwart, Full Control of a Quadrotor, Proceedings of the 2007

IEEE/RSJ International Conference on Intelligent Robots and Systems San Diego,

CA, USA, Oct 29 - Nov 2, 2007

[79] S. Bouabdallah, A. Noth, R. Siegwan PID vs LQ Control Techniques Applied to an

Indoor Micro Quadrotor, in Proceedings of 2004 1EEElRS.J Internationel Conference

On Intelligent Robots and Systems, Sep 28 - Oct 2, 2004, Sendal, Japan

[80] D. Tymoczko, A geometry of Music: Harmony and Counterpoint in the Extended

Common Practice, Oxford University Press, 2011.

[81] D. M. Huber, The MIDI Manual: A Practical Guide to MIDI in the Project Studio,

Focal Press, 3rd Edition, 2007.

[82] R. George, 2012, Project 326: MIDI Merlin [Online]. Available:

http://cycling74.com/project/midi-merlin/

[83] Music Technology Group of Universitat Pompeu Fabra, 2012, Algorithm ref-

erence: PredominantMelody - Essentia 2.0.1 documentation [Online]. Available:

http://essentia.upf.edu/documentation/reference/streaming PredominantMelody.html

[84] S. Dixon, An Interactive Beat Tracking and Visualisation System, in Proceedings

of the 2001 International Computer Music Conference (ICMC’2001), 2001. [Online]

Available: http://code.soundsoftware.ac.uk/projects/beatroot

[85] Benward & Saker, Music: In Theory and Practice, Vol. I, p. 67 & 359. Seventh

Edition.

[86] MohammedAG, [MOD][Xposed] Google Search / Now API, available online at

http://forum.xda-developers.com/xposed/modules/mod-google-search-api-t2554173

[87] Wave Reactive, available online at http://www.wavereactive.com/

Bibliography 102

[88] Circular Logic, Circular Logic — InTimeTM- Realtime synchonization,

beat tracking and tempo mapping, [Online] Available: http://www.circular-

logic.com/products.html

[89] I. Hattwick, J. Malloch, M. Wanderley, Forming Shapes to Bodies: Design for

Manufacturing in the Prosthetic Instruments, NIME, Goldsmiths College, Lewisham

Way, London, United Kingdom 2014

[90] N. J. Conard, M. Malina, S. C. Munzel, New flutes document the earliest musi-

cal tradition in southwestern Germany, Nature, Aug 6th 2009 available online at

http://www.nature.com/nature/journal/v460/n7256/pdf/nature08169.pdf

[91] J. Malloch, Adding Vibrotactile Feedback to the T-stick Digital Mu-

sical Instrument, report submitted in partial fulfillment of course

ECSE-618 ”Haptics”, McGill University, Fall 2007, available online at

http://www.vigliensoni.com/McGill/CURSOS/2009 09/MUMT620/PRESENTATION/Presentation%20-

%20Actuators/malloch vibrotactile.pdf

[92] J. Blacking, How musical is man?, 1973

[93] Behringer, Behringer: FCB1010, available online at

http://www.behringer.com/EN/Products/fcb1010.aspx

[94] Toddatkins, Managing emotions - Identifying feelings, available online at

http://batonrougecounseling.net/managing-emotions/, 12 February 2011

[95] I. Andjelkovic, M. Hetrick, F. M. Scotio, BrainTag, avilable online at

http://www.mat.ucsb.edu/ ivana/200a/background.htm

[96] S. Lupashin, A. Schollig, M. Sherback, R. D’Andrea, A simple learning strategy for

high-speed quadrocopter multi-flips, in Robotics and Automation (ICRA), 2010 IEEE

International Conference on, pp 1642-1648

[97] A. P. Schoellig, H. Siegel, F. Augugliaro, R. DAndrea, So You Think You Can

Dance? Rhythmic Flight Performances with Quadrocopters, Controls and Art,

Springer International Publishing Switzerland 2014, pp 73-105

[98] Max is a visual programming language for media, available online at

https://cycling74.com/products/max/

[99] zplane, zplane – music processing and analysis technol-

ogy - [aufTAKT] tempo and beat tracking, [Online] Available:

http://www.zplane.de/index.php?page=description-auftakt-ma

Bibliography 103

[100] T. Bresciani, Modelling, Identification and Control of a Quadrotor Helicopter M.S.

thesis, Dept. Automatic Control, Lund Univ., Lund, Sweden, 2008.

[101] N. Michael et al. ”The GRASP Multiple Micro-UAV Test Bed IEEE Robotics &

Automation Magazine, pp. 56-65, Sept. 2010.

[102] Y. E. Kim, E. Schmidt, L. Emelle, MoodSwings: A Collaborative Game for Music

Mood Label Collection, Session 2c - Knowledge Representation, Tags, Metadata,

ISMIR 2008, pp 231-236

[103] B. L. Wheeler, Relationship of Personal Characteristics to Mood and Enjoyment

after Hearing Live and Recorded Music and to Musical Taste, from the SAGE Social

Science Collections

[104] P. Kenealy, Validation of a music mood induction procedure: Some preliminary

findings, in Cognition and Emotion, 2:1, 41-48

[105] C. Laurier, J. Grivolla, P. Herrera, Multimodal Music Mood Classification using

Audio and Lyrics, International Conference on Machine Learning and Applications,

2008

[106] C. Laurier, M. Sordo, J. Serra, P. Herrera, Music Mood Representations from

Social Tags, in 10th International Society for Music Information Retrieval Conference

(ISMIR 2009), pp 381-386

[107] MIREX, Audio Music Mood Classification, available online at http://www.music-

ir.org/mirex/wiki/2010:Audio Music Mood Classification

[108] M. Di Perna, M. El-Jiz, C. Glass, P. Daugherty, L. Rodrigues, ”Spiri - a

robot in sync with music”, Concordia University, January 2014, available at

https://www.youtube.com/watch?v=kJSraZdnd3Y.

[109] C. Ossa-Gomez, ”Design, Construction and Control of a Quadrotor Helicopter

Using a New Multirate Technique”, Thesis, Concordia University, Montreal QC,

June 2012.

[110] S. Lupashin, M. Hehn, M.W. Mueller, A.P. Schoellig, M. Sherback, R. DAndrea, A

platform for aerial robotics research and demonstration: The Flying Machine Arena”,

Mechatronics, Volume 24, Issue 1, 2014, pp. 4154.

[111] G.F. Franklin, J. David Powell, A. Emami-Naeini, Feedback Control Of Dynamic

Systems, Pearson Prentice Hall, Fifth Edition, Chapter 7.

[112] B. Etkin, L. Duff Reid, Dynamics of Flight, Stability and Control, McGraw-Hill,

Third Edition, 1996.

Bibliography 104

[113] William L. Brogan, ”Design of Linear Feedback Control Systems” in Modern Con-

trol Theory, 3rd Ed. New Jersey: Prentice-Hall, 1991

[114] M. R. Jardin, E. R. Mueller, Optimized Measurements of Unmanned-Air-Vehicle

Mass Moment of Inertia with a Bifilar Pendulum, in Journal of Aircraft, Vol. 46,

No. 3, May-June 2009

[115] KORG, microKEY USB-POWERED KEYBOARD -

MIDI CONTROLLERS - KORG, available online at

http://www.korg.com/us/products/controllers/microkey/

[116] Python Software Foundation, What is Python? Executive Summary - Python.org,

available online at https://www.python.org/doc/essays/blurb/

[117] Visual Python, VPython, available online at http://vpython.org/

[118] Pygame, Wiki, available online at http://www.pygame.org/wiki/about

[119] Pygame, pygame.midi - Pygame v1.9.2 documentation, available online at

https://www.pygame.org/docs/ref/midi.html

[120] . Python Software Foundation, 9.2. math - Mathematical functions - Python 2.7.10

documentation, available online at https://docs.python.org/2/library/math.html

[121] Berry, Wallace (1976/1986), Structural Functions in Music, p.349.

[122] C. Glass, Quadrotor choreography performance by Caroline Glass, available online

at https://youtu.be/wVw2M RSegg

[123] Ableton, Music production with Live 9 and Push - Ableton, available online at

https://www.ableton.com/

[124] nerds.de, ipMIDI - MIDI over Ethernet port, available online at

http://www.nerds.de/en/ipmidi.html

	1 Introduction
	1.1 Motivation
	1.2 System Overview
	1.3 Literature Survey
	1.3.1 Music feature extraction
	1.3.2 Robotic choreography and music, and quadrotor control

	1.4 Contributions
	1.5 Structure of the Thesis

	2 Background in music and choreography
	2.1 Music
	2.1.1 Music theory
	2.1.2 Pitch Detection
	2.1.3 The MIDI Format and musical representation
	2.1.4 Chord Recognition

	2.2 Choreography

	3 Guidance, navigation, and quadrotor control
	3.1 Introduction
	3.1.1 Music moods and survey
	3.1.2 Description of space
	3.1.3 Description of shape
	3.1.3.1 Acoustics

	3.1.4 Description of time and structure

	3.2 Mathematical formulation of space
	3.2.1 Straight line path motif
	3.2.2 Circular path motif
	3.2.3 Helicoidal trajectory and variations motifs

	3.3 Mathematical formulation of shape
	3.4 Mathematical formulation of structure
	3.5 Mathematical formulation of time
	3.5.1 Mathematical Model of the Quadrotor
	3.5.1.1 Nonlinear Model
	3.5.1.2 Linearized Model

	3.5.2 Controller Design
	3.5.2.1 Position Controller
	3.5.2.2 Attitude Controller

	3.5.3 Controller performance
	3.5.3.1 Attitude controller performance
	3.5.3.2 Position controller performance

	4 Simulation and validation
	4.1 Hardware-in-the-loop simulation
	4.1.1 Hardware
	4.1.2 Software

	4.2 Quadrotor music playback
	4.2.1 Analytical solution
	4.2.1.1 Straight line path motif
	4.2.1.2 Circular path motif

	4.2.2 Heuristic solution

	4.3 System validation
	4.3.1 Straight line path motif
	4.3.2 Circle path motif
	4.3.3 Helix path motif
	4.3.4 Cone path motif

	5 Extensions and conclusions
	5.1 Extensions
	5.1.1 Beat of the music
	5.1.2 Multiple quadrotors and multiple artists

	5.2 Concluding remarks

	A chordDetection.cpp
	B Survey questions
	C Survey results
	D main.py
	E controllers.py
	F shape.py
	G motifs.py
	H TCP.py
	I MIDI.py
	J model.py

