
Approaches and Techniques for Fingerprinting and Attributing

Probing Activities by Observing Network Telescopes

Elias Bou-Harb

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montreal, Quebec, Canada

April 2015

c© Elias Bou-Harb, 2015

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Elias Bou-Harb

Entitled: Approaches and Techniques for Fingerprinting and Attributing

Probing Activities by Observing Network Telescopes

and submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair

External Examiner

External to Program

Examiner

Examiner

Thesis Supervisor

Co-supervisor

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty

umroot
Typewritten Text
C. Mulligan

umroot
Typewritten Text

umroot
Typewritten Text
N. Zincir-Heywood

umroot
Typewritten Text
D. Qiu

umroot
Typewritten Text
T. Eavis

umroot
Typewritten Text
J. Bentahar

umroot
Typewritten Text
M. Debbabi

umroot
Typewritten Text
C. Assi

umroot
Typewritten Text

ABSTRACT

Approaches and Techniques for Fingerprinting and Attributing Probing

Activities by Observing Network Telescopes

Elias Bou-Harb, Ph.D.

Concordia University, 2015

The explosive growth, complexity, adoption and dynamism of cyberspace over the

last decade has radically altered the globe. A plethora of nations have been at the very

forefront of this change, fully embracing the opportunities provided by the advancements

in science and technology in order to fortify the economy and to increase the productivity

of everyday’s life. However, the significant dependence on cyberspace has indeed brought

new risks that often compromise, exploit and damage invaluable data and systems. Thus,

the capability to proactively infer malicious activities is of paramount importance. In

this context, generating cyber threat intelligence related to probing or scanning activities

render an effective tactic to achieve the latter.

In this thesis, we investigate such malicious activities, which are typically the precursors

of various amplified, debilitating and disrupting cyber attacks. To achieve this task, we

analyze real Internet-scale traffic targeting network telescopes or darknets, which are de-

fined by routable, allocated yet unused Internet Protocol addresses.

First, we present a comprehensive survey of the entire probing topic. Specifically, we cat-

egorize this topic by elaborating on the nature, strategies and approaches of such probing

activities. Additionally, we provide the reader with a classification and an exhaustive re-

view of various techniques that could be employed in such malicious activities. Finally, we

iii

depict a taxonomy of the current literature by focusing on distributed probing detection

methods.

Second, we focus on the problem of fingerprinting probing activities. To this end, we

design, develop and validate approaches that can identify such activities targeting enter-

prise networks as well as those targeting the Internet-space. On one hand, the corporate

probing detection approach uniquely exploits the information that could be leaked to the

scanner, inferred from the internal network topology, to perform the detection. On the

other hand, the more darknet tailored probing fingerprinting approach adopts a statistical

approach to not only detect the probing activities but also identify the exact technique

that was employed in the such activities.

Third, for attribution purposes, we propose a correlation approach that fuses probing

activities with malware samples. The approach aims at detecting whether Internet-scale

machines are infected or not as well as pinpointing the exact malware type/family, if the

machines were found to be compromised. To achieve the intended goals, the proposed

approach initially devises a probabilistic model to filter out darknet misconfiguration traf-

fic. Consequently, probing activities are correlated with malware samples by leveraging

fuzzy hashing and entropy based techniques. To this end, we also investigate and report

a rare Internet-scale probing event by proposing a multifaceted approach that correlates

darknet, malware and passive dns traffic.

Fourth, we focus on the problem of identifying and attributing large-scale probing cam-

paigns, which render a new era of probing events. These are distinguished from previous

probing incidents as (1) the population of the participating bots is several orders of mag-

nitude larger, (2) the target scope is generally the entire Internet Protocol (IP) address

space, and (3) the bots adopt well-orchestrated, often botmaster coordinated, stealth scan

strategies that maximize targets’ coverage while minimizing redundancy and overlap. To

this end, we propose and validate three approaches. On one hand, two of the approaches

rely on a set of behavioral analytics that aim at scrutinizing the generated traffic by the

probing sources. Subsequently, they employ data mining and graph theoretic techniques

iv

to systematically cluster the probing sources into well-defined campaigns possessing sim-

ilar behavioral similarity. The third approach, on the other hand, exploit time series

interpolation and prediction to pinpoint orchestrated probing campaigns and to filter out

non-coordinated probing flows.

We conclude this thesis by highlighting some research gaps that pave the way for future

work.

v

DEDICATION

I dedicate this thesis to my family. Without their unconditional love and ever-lasting

support, nothing of this would have been possible.

vi

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere and utmost gratitude to my supervisors,

professors Mourad Debbabi and Chadi Assi. Without their crucial guidance, genuine care

and paramount support, I would have not been where I am today. As I move forward in

my career, I promise them to abide with what they have taught me from the academic as

well as the personal perspectives.

I would also like to thank my brothers and colleagues Claude Fachkha, Agop Koulakezian

and Mohamad Mehdi for always being there throughout the course of our doctorate de-

grees. Their continuous support, collaborative characters and authentic care were decisive

to complete this degree.

My gratitude also goes to my colleagues, Amine Boukhtouta, Hamad Binsalleeh, Nour-

Eddine Lakhdari, Farkhund Iqbal, Djedjiga Mouheb, Elise Epaillard, Ribal Atallah, Bas-

sam Moussa, Nicolas El Khoury, Son Dinh and Taher Azeb. I thank them for their

collaborations and their friendship, wishing them the best of luck in their future endeav-

ors.

I would also like to express my appreciation towards the staff of the Concordia Institute

for Information Systems Engineering. I thank them for providing crucial aid and constant

support throughout the 6 years that I have spent at Concordia University.

Finally, I would like to thank my partner Camille Perrin for her love and care and my

family for their ever-lasting support.

vii

TABLE OF CONTENTS

LIST OF FIGURES . xiii

LIST OF TABLES . xvii

1 Introduction 1

1.1 Context and Motivation . 4

1.2 Objectives and Contributions . 4

1.3 Organization . 5

2 Background 7

2.1 Cyber Scanning: A Comprehensive Survey 7

2.1.1 Related Surveys . 7

2.1.2 Cyber Scanning: Nature, Strategies & Approaches 8

Nature of Cyber Scanning . 8

Cyber Scanning Strategies . 12

Cyber Scanning Approaches . 13

Summary . 17

2.1.3 Cyber Scanning Techniques . 17

Open Scan . 17

Half-Open Scan . 19

Version Detection Scan . 21

Stealth Scans . 22

Sweep Scans . 29

Miscellaneous Scans . 31

Summary . 35

2.1.4 Literature Review - Distributed Detection Techniques 36

Statistical Approaches . 37

Algorithmic Approaches . 41

Mathematical Approaches . 44

Heursitical Approaches . 46

viii

Summary . 50

2.2 Network Telescopes . 50

3 Inferring Probing Activities 56

3.1 On the Inference of Enterprise Probing Activities 56

3.1.1 The Non-Attribution Anomaly Detection Technique 56

Idea Rationale . 57

ENF Management . 57

Using ENF for Scan Detection . 59

Discussion . 60

3.1.2 Evaluation: Datasets, Methodologies and Results 61

3.2 On Fingerprinting Internet-scale Probing Activities 66

3.2.1 Proposed Approach . 67

3.2.2 Observation Validation . 78

Is the probing random? . 85

How are the targets being scanned? 86

Who is generating the probing activity? 86

3.2.3 Empirical Evaluation . 87

3.2.4 Evasion Prevention . 93

3.2.5 Approach Limitations . 94

3.3 Related Work . 96

3.4 Summary . 98

4 Probing and Event Attribution 100

4.1 Inferring Internet-scale Infections by Correlating Malware and Probing Ac-

tivities . 100

4.1.1 Motivation and Contributions . 101

4.1.2 Proposed Approach . 103

Misconfiguration Filtering . 104

Probing Extraction . 113

Malware Invocation . 118

ix

Correlation Execution . 119

4.1.3 Empirical Evaluation . 121

4.1.4 Approach Limitations . 129

4.2 Multidimensional Investigation of Source Port 0 Probing 129

4.2.1 Background . 130

4.2.2 Contributions . 131

4.2.3 Proposed Approach . 132

Darknet Analysis . 132

Traffic Extraction . 133

Traffic Fingerprinting . 133

Traffic Clustering . 134

Behavioral Analytics . 134

Passive DNS Correlation . 137

Malware Correlation . 138

4.2.4 Empirical Evaluation . 139

Darknet Inferences . 140

Passive DNS Inferences . 143

Malware Inferences . 145

4.3 Related Work . 147

4.4 Summary . 150

5 Inferring and Attributing Probing Campaigns 152

5.1 Background . 152

5.2 CSC-Detector: A System to Infer Large-Scale Probing Campaigns 153

5.2.1 Proposed System . 154

The Fingerprinting Engine . 155

The Inference Engine . 157

The Analysis Engine . 157

5.2.2 System Evaluation . 161

5.2.3 Implementation . 161

x

Performance Evaluation . 161

Empirical Evaluation . 162

Evaluating the inference engine . 162

Evaluating the analysis engine . 164

5.3 Time Series Interpolation and Prediction For Inferring Orchestrated Prob-

ing Campaigns . 170

5.3.1 Proposed Model . 171

Problem Formulation . 172

Proposed Approach . 173

Fingerprinting Independent Flows 174

Flow Clustering & Time Series Generation 174

Time Series Interpolation . 175

Time Series Prediction . 178

Orchestration Confirmation . 181

5.3.2 Evaluation of Techniques . 185

5.3.3 Empirical Evaluation . 191

5.3.4 Comparison with Previous Work . 196

5.3.5 Model Limitations . 198

5.4 Behavioral Service Graphs: Inferring the niche of a Probing Campaign . . . 198

5.4.1 Proposed Approach . 199

5.4.2 Empirical Evaluation . 201

Scenario 1: Enterprise Capability . 201

Building the ground truth . 202

Evaluation . 203

Scenario 2: Global Capability . 207

Evaluation . 207

5.5 Related Work . 209

5.6 Summary . 211

6 Conclusion 213

xi

Bibliography 216

xii

LIST OF FIGURES

2.1 A Categorization of the Cyber Scanning Topic 9

2.2 Remote to Local Probing . 14

2.3 Local to Remote Probing . 15

2.4 Local to Local Probing . 16

2.5 A Classification of Cyber Scanning Techniques 18

2.6 The Open Scan targeting a closed (2.6a) and an open port (2.6b) 19

2.7 The Half-Open Scan targeting a closed (2.7a) and an open port (2.7b) . . . 20

2.8 The Half-Open scan (2.8a) executing prior to the Version Detection Scan

(2.8b) . 21

2.9 The SYN|ACK Scan targeting a closed (2.9a) and an open port (2.9b) . . . 23

2.10 IDLE scan executing process . 24

2.11 The Xmas Scan targeting a closed (2.11a) and an open port (2.11b) 26

2.12 The Ack Scan targeting a non-reachable (2.12a) and a reachable target (2.12b) 27

2.13 The Window Scan targeting a closed (2.13a) and an open port (2.13b) . . . 28

2.14 The ICMP Echo Request targeting a non-active (2.14a) and an active host

(2.14b) . 30

2.15 The ICMP Timestamp scan targeting a non-active (2.15a) and an active

host (2.15b) . 31

2.16 The FTP Bounce scan targeting a closed (2.16a) and an open port(2.16b) . 32

2.17 The UDP scan targeting a closed (2.17a) and an open port (2.17b) 34

2.18 Unavailable (2.18a) Vs. An Available IP Protocol (2.18b) 34

2.19 Executing Distributed Cyber Scanning . 37

2.20 Taxonomy-Distributed Cyber Scanning Detection Techniques 38

2.21 Distributed Architecture of Cooperative Intrusion Detection [1] 38

2.22 IFSM detecting Ports Scans and IP Sweeps [2] 40

2.23 Proposed Collaborative Architecture [3] . 41

2.24 Darkports and Exposure Maps in detecting Scanning [4] 43

xiii

2.25 Architecture of Surveillance Detection [5] 47

2.26 PCAV System’s Design [6] . 48

2.27 A Network Telescope as part of the Internet Space 51

2.28 A Network Telescope capturing Probing Activities 52

2.29 A Network Telescope pinpointing Victims of Denial of Service Attacks . . . 53

2.30 A Network Telescope pinpointing Sources of Reflective DoS Attacks 54

3.1 Application Layer Protocols . 62

3.2 Enterprise Network . 62

3.3 Top 6 Scanned TCP Ports - One Day Sample 64

3.4 The DMZ Network . 65

3.5 Packets’ Distribution generated by the Scanning Techniques 71

3.6 Applying DFA on the Scanning Techniques Traffic Signals 72

3.7 Employed System Process . 75

3.8 Method Validation through Unsupervised Learning 84

3.9 Sessions Distribution . 89

3.10 Probing Techniques Distribution . 91

3.11 Probing Activity Dimensions Analysis . 92

3.12 Approach Evasion Prevention using a Change Point Detection Technique . 95

4.1 The Components of the Proposed Approach 104

4.2 Uniform distribution of malicious packets in all experiments 107

4.3 Model fitting sorted by BIC in all experiments 110

4.4 Empirical Evaluation of [7] against Bro NIDS 114

4.5 A Network Telescope pinpointing Sources of Reflective DoS Attacks 116

4.6 The distribution of darknet sessions . 122

4.7 Types of Probing Activities generated by Malware 124

4.8 Distribution of Probing Malware Types/Families 124

4.9 Inferred Worldwide Infections by Correlating Malware and Probing Activities127

4.10 The Source Port 0 event as observed by DShield/Internet Storm Center . . 131

4.11 Port 0 Event Traffic Clusters . 141

xiv

4.12 A Silhouette Plot of the EM Clusters . 142

4.13 Hosted and blacklisted domains of the probing sources 144

4.14 The nature of the blacklisted domains . 144

4.15 Investigating the aliveness and access count of the malicious domains 145

4.16 Malware and their corresponding number of connections 146

5.1 CSC-Detector: System Architecture . 155

5.2 Packets’ distribution generated by some of the probing techniques using RD 156

5.3 DFA application on the probing techniques using RD 157

5.4 The outcome of the probing behavioral analytics 162

5.5 Probe counts extracted from DShield/ISC data (April 2014) 166

5.6 Probe counts extracted from DShield/ISC data (April 2014) 166

5.7 Probe counts extracted from DShield/ISC data (April 2014) 167

5.8 K-means output . 168

5.9 A holistic view of the proposed approach . 173

5.10 A simplified illustration of orchestrated probing flows 182

5.11 A structure that captures when the orchestrated probing sources are active 183

5.12 An empirical experiment to determine a suitable lower bound for the activ-

ity closeness of the orchestrated probing sources 185

5.13 Summary of the estimates of the probing time series interpolation in the

presence of one missing value . 187

5.14 Summary of the estimates of the probing time series interpolation in the

presence of multiple missing values . 187

5.15 Summary of the prediction estimates of the interpolated probing time series 191

5.16 CDF of Destinations in Cluster 1 . 192

5.17 CDF of Destinations in Cluster 2 . 193

5.18 CDF of Destinations in Cluster 3 . 193

5.19 CDF of Destinations in Cluster 4 . 194

5.20 CDF of Destinations in Cluster 5 . 194

5.21 Distribution of the Types of the Interpolated Values 195

xv

5.22 The Kalman Filter algorithm converging over few iterations 196

5.23 Illustration of Undirected Complete Behavioral Service Graphs 199

5.24 The application of Maximum Spanning Trees on Complete Behavioral Ser-

vice Graphs . 200

5.25 The proposed approach deployed as an enterprise edge engine 202

5.26 The creation of the Enterprise Complete and Sub Graphs 203

5.27 Validating the clustering capability of the complete Behavioral Service Graph206

5.28 The proposed approach revealing the bots of the SQL probing campaign . . 208

xvi

LIST OF TABLES

2.1 Summary of Probing Techniques . 35

3.1 Protocols Distribution . 61

3.2 IP Class Distribution . 61

3.3 ENF Details . 63

3.4 ENF Details . 66

3.5 Summary-Detection Capability . 66

3.6 Selected Cyber Scanning Techniques and Nmap Command Flags 70

3.7 Summary of the DFA Scaling Exponent α 73

3.8 Cyber Scanning Techniques and Corresponding Correlation Statuses 74

3.9 Mathematical Notations and Definitions . 82

3.10 Features Description . 83

4.1 UDP vulnerable services and corresponding ports 117

4.2 A sample of 10 misconfigured sources . 123

4.3 Probing Sources coupled with their probable malware samples 126

4.4 A Sample of Inferred Infections . 127

4.5 Malware samples generating TCP source port 0 traffic 147

5.1 Probing Techniques & DFA output . 158

5.2 Techniques & Correlation Statuses . 159

5.3 Criteria adopted by the Analysis Engine . 160

5.4 The automatically inferred patterns capturing three large-scale orchestrated

probing campaigns . 164

5.5 Verifying the accuracy of the discrete Fourier transform as applied to prob-

ing time series interpolation in the presence of one missing value 188

5.6 Verifying the accuracy of the discrete Fourier transform as applied to prob-

ing time series interpolation in the presence of multiple missing values . . . 189

5.7 Summary of the clustered probing flows . 192

xvii

5.8 Summary of one execution of the kalman filter 195

5.9 Summary of the inferred orchestrated probing campaigns 196

5.10 The automatically inferred patterns capturing three large-scale orchestrated

probing campaigns by employing the approach from Section 5.2 197

xviii

Chapter 1

Introduction

Cyberspace is the electronic world created by interconnected networks of information tech-

nology and the information on those networks. It can be defined as the interdependent

network of information technology infrastructure, including the Internet, telecommuni-

cation networks, computer systems, and embedded industrial processors and controllers.

Cyberspace is a global commons where more than 1.7 billion people are linked together

to exchange ideas and services [8]. Moreover, it underpins almost every facet of a modern

society and provides critical support for the economy, civil infrastructure, public safety,

and national security. Cyberspace is controlled and operated using information and com-

munication technologies. The latter could be considered as the nervous system of our

today’s world, as critical infrastructure such as telecommunication, transportation, finan-

cial services, agriculture, electric grids and public health services profoundly depend on it

for their successful operations.

It is evident that individuals, industry and governments are embracing the many

advantages that cyberspace offers. According to two recent reports [8, 9], 87% of North

American corporations used the cyberspace to conduct business, where the online sales

revenue due to that were estimated at $62.7 billion. Moreover in 2013, 74% of households

had paid Internet service, 59% of personal tax filings were completed electronically and

67% of North Americans had banked online. Furthermore, governments have also become

increasingly dependent on the Internet. The Canadian federal Government alone offers

1

more than 130 commonly used services online, including tax returns, employment insur-

ance forms and student loan applications [10]. Thus nowadays, the success of cyberspace

is an essential asset which demands protection against malicious misuse and other destruc-

tive attacks. This task is indispensable yet very challenging.

Recent events have indeed demonstrated that cyberspace could be subjected, at the

speed of light and in full anonymity, to severe attacks with drastic consequences. One

particular research revealed that 90% of corporations have been the target of a cyber

attack, with 80% suffering a significant financial loss [11]. In addition, the cyber security

report [8] elaborated that in a recent one year period, 86% of large North American

organizations had suffered a cyber attack where the loss of intellectual property as a

result of these attacks doubled between 2011 and 2013. Moreover, the report alarmed

that more than 60% of all the malicious code ever detected, originating from more than

190 countries, was introduced into cyberspace solely in 2013. In general, cyberspace could

facilitate the following cyber attacks:

• Distributed Denial of Service (DDoS) [12]: It is an attempt to make a computer or

network resources unavailable. It consists of attacks that are deployed to temporar-

ily or indefinitely shutdown services. The timing of such attacks can be coordinated

to exploit the availability of critical organization infrastructure by directing enor-

mous flood of Internet traffic towards a small set of targeted Internet Protocol (IP)

addresses. By flooding the available bandwidth with intensive traffic, DDoS can

effectively bring down a service with potential loss of financial revenue.

• Advanced Persistent Threats (APTs) [13]: These cyber attacks employ high stealthy

techniques and are typically target-specific threats. They are advanced since their

operators have a full spectrum of intelligence-gathering techniques at their disposal.

APTs assign priorities to specific tasks rather than opportunistically seek informa-

tion for financial or other gain. The attack is typically conducted through continuous

monitoring and interaction in order to achieve the defined objectives. Further, such

2

attacks are executed by coordinated human actions rather than just relying on au-

tomated pieces of code. Their operators are often very skilled, motivated, organized

and well funded by external organizations.

• Zero-day Attacks [14]: These attacks exploit the observation of newly discovered yet

un-patched vulnerabilities to achieve their malicious tasks. While a number of de-

tection mechanisms have been proposed to protect against these attacks, including,

access control lists on the edge network, port-knocking and application white-listing

[15], these cyber attacks are still very dominant and pose serious issues and chal-

lenges.

• Cyber Terrorism: With the increase of cyber warfare incidents such as Stuxnet [16]

and the Russian-Georgian War [17], cyber attacks can shift from targeting corpo-

rations to targeting governments and military facilities. With the ever escalating

political tension between various world parties, these cyber attacks are becoming a

fourth dimension of warfare [18] and a leading advantage to their operators.

Further, numerous incidents demonstrated that cyberspace has been exposed to am-

plified, debilitating and disrupting cyber attacks leading to drastic impacts on provided

network and Internet services. For instance, Google has recently been targeted by a cyber

attack in which 7 of its services, including, maps, news and translator, were hacked and

defaced [19]. Further, a leading North American university has lately announced that a

critical online database containing students and professors sensitive information, including

social insurance numbers, addresses, and salaries, has been leaked to an anonymous party

[20]. Another academic institute disclosed that several high-ranked employees’ direct-

deposit earnings have been hijacked and redirected to unknown and untraceable bank

accounts [21]. Moreover, the Petroleum Producers’ Associate, an oil and gaz organiza-

tion, suffered from a devastating cyber attack that hit its website and its operations [22].

Another example would be numerous governmental websites of the United States, Russia,

Finland, Pakistan, and Armenia that were also recently deemed as victims of cyber crime

[23, 24, 25]. Indeed, despite efforts to protect the cyberspace, the latest reports from

senior government officials [26] highlighted that only limited progress has been made in

3

improving the cyber security of crucial networks.

1.1 Context and Motivation

Probing, the task of scanning enterprise networks or Internet wide services, searching for

vulnerabilities or ways to infiltrate IT assets, is a significant cyber security concern. The

latter is due to the fact that probing is commonly the primary stage of an intrusion attempt

that enables an attacker to remotely locate, target, and subsequently exploit vulnerable

systems. It is basically a core technique and a facilitating factor of the above mentioned

and others cyber attacks. For instance, hackers have employed probing techniques to iden-

tify numerous misconfigured proxy servers at the New York Times to access a sensitive

database that disclosed more than 3,000 social security numbers [27]. Further, the United

States Computer Emergency Readiness Team (US-CERT) revealed that attackers had

performed coordinated probing activities to fingerprint WordPress sites and consequently

launched their targeted attacks [28]. Moreover, it was disclosed that hackers had lever-

aged sophisticated scanning events to orchestrate multiple breaches of Sony’s PlayStation

Network taking it offline for 24 days and costing the company an estimated $171 million

[29]. More alarming, a recent incident reported that attackers had escalated a series of

“surveillance missions” against cyber-physical infrastructure operating various US energy

firms that permitted the hackers to infiltrate the control-system software and subsequently

manipulate oil and gas pipelines [30]. Thus, it is not surprising that Panjwani et al. [31]

concluded that a momentous 70% of attacks against cyber systems are preceded by some

form of probing activity.

1.2 Objectives and Contributions

The main objective of this thesis is to generate cyber threat intelligence related to the

inference and attribution of probing activities. Indeed, the capability to infer and attribute

probing activities is a very important task to achieve, as this will aid in preventing cyber

attacks from occurring or vulnerabilities from being exploited. Specifically, the mentioned

4

aim could be clarified by the following three complementary objectives:

• Provide inferences and insights to enterprise networks related to their perceived prob-

ing activities in addition to generating global cyber intelligence related to Internet-

wide malicious activities.

• Investigate probing activities in an attempt to attribute such activities to certain

malware infections as well as to certain Internet-scale malicious events.

• Design approaches that can infer and attribute large-scale probing campaigns, which

refer to a very recent phenomenon of such activities.

This thesis attempts to tackle the above mentioned objectives. To this end, our

contributions can be summarized as follows:

• Design and implementation of approaches for inferring probing activities.

• Design and implementation of correlation mechanisms between probing activities,

malware samples and passive dns traffic for attribution purposes.

• Design and implementation of approaches and techniques for inferring and attribut-

ing large-scale probing campaigns.

It is worthy to mention that the outcome of this thesis has been published in [32,

33, 34, 35, 36, 7, 37, 38]. Moreover, other work, which was executed during the course of

the Ph.D. but is not included in the thesis, has appeared in [39, 40, 41, 42, 43].

1.3 Organization

The road-map of this thesis is as follows. In the next Chapter, we provide a survey related

to the probing topic. Further, we provide necessary background information related to

network telescopes and show how it can be exploited to generate various cyber threat

intelligence. In Chapter 3, we elaborate on the work related to the design, implementation

and validation of approaches for inferring enterprise and Internet-scale probing activities.

In Chapter 4, we describe the design and implementation of a correlation mechanism

5

between probing and malware activities for attribution purposes. To this end, we also

report a rare Internet-scale malicious event by executing a multifaceted approach that

correlates three types of real cyber security data. In Chapter 5, we tackle the problem

of inferring and attributing large-scale probing campaigns. In this context, we present,

validate, compare and contrast three devised approaches. Finally, Chapter 6 concludes

this thesis, summarizes its contributions and highlights some research gaps that pave the

way for future work.

6

Chapter 2

Background

In this chapter, we present a comprehensive survey of the entire probing topic. Further,

we disclose necessary background information that aims at facilitating the highlighted

concepts in this thesis.

2.1 Cyber Scanning: A Comprehensive Survey

This section presents a comprehensive survey of the entire probing topic. It categorizes

cyber scanning by elaborating on its nature, strategies and approaches. It as well provides

the reader with a classification and an exhaustive review of its techniques. Moreover,

it taxonomies the current literature by focusing on distributed cyber scanning detection

methods.

2.1.1 Related Surveys

Although probing or cyber scanning has been studied before, especially its detection tech-

niques, the literature still lacks a survey that provides the readers, coming from different

backgrounds, with a comprehensive coverage of the topic. For instance, Barnett et al. [44]

solely focused on scanning techniques by providing a taxonomy. Their taxonomy analyzed

three main scanning techniques, namely, TCP, UDP and ICMP scans. They presented

the techniques using patterns and utilized scanning speed as an additional attribute. In

7

another survey, Bhuyan et al. [45] elaborated on port scans and their detection method-

ologies. This survey highlighted on single-source and distributed detection techniques.

Moreover, it provided some information on available detection data sets and evaluation

metrics. The above two surveys are the closest to the work that we present in this section.

However in this manuscript, we assert that we further contribute in the following points:

1. By primarily providing a categorization of the entire probing topic. We achieve this

by discussing cyber scanning’s nature, approaches and strategies. This offers the

readers a strong, coherent and a clear entry point into the topic.

2. By providing a classification for 19 cyber scanning techniques. We thoroughly fur-

ther discuss this exhaustive and comprehensive list of techniques, and provide their

advantages and disadvantages. We as well present a complete summary of those

techniques.

3. By withdrawing a unique literature taxonomy of distributed cyber scanning detection

methodologies. This as well covers new material after 2010, the year of the latest

related survey [45].

2.1.2 Cyber Scanning: Nature, Strategies & Approaches

In this section, we provide a categorization of the entire cyber scanning topic as depicted

in Figure 2.1. We further present a discussion that elaborates on the nature, strategies

and approaches of cyber scanning.

Nature of Cyber Scanning

The cyber scanning topic can be first classified based on its nature. The nature deals with

whether the scanning or probing is performed actively or passively. In this section, we

present those criteria and consequently discuss their advantages and disadvantages.

Active Scanning: Active scanning is the process of identifying network services by

injecting certain packets known as the probe packets towards network hosts and devices

and subsequently monitoring their responses. Active scanning is typically employed by

8

Cyber Scanning

Nature

Strategy

Approach

Active

Passive

Remote to Local

Local to Remote

Local to Local

Remote to Remote

Aim

Method

Wide Range Target

Target Specific

Single Source

Distributed

Figure 2.1: A Categorization of the Cyber Scanning Topic

malicious adversaries to probe a network for certain vulnerabilities. However, active scan-

ning has a legitimate use as part of a robust network security policy. It allows a network

operator to discover the open services in the network in an attempt to check those for

known vulnerabilities. The probe packets could either be generic, targeting a specific pro-

tocol rather than a certain application, or they can be targeted, focusing on a precise host

application. An instance of a generic probe packet could be the typical TCP handshaking

procedure [46] for establishing a connection. The latter technique could be used to identify

services operating on well-known ports. However, this technique is deficient in two cases.

First, this method will only verify the readiness to open a TCP connection and not what

service is supported by the connection. Thus, it tends to misinterpret services running on

non standard ports. Second, it fails to classify services that have no standard ports, or

those that use dynamic port assignment such as services utilizing the remote procedure

9

call (RPC) protocol [47]. UDP probing is another employed approach for active scanning.

Certain protocols, especially those running on well-known UDP ports, will successfully

respond to a UDP probe packet. Moreover, it can be indirectly inferred the presence of a

UDP service by lack of a negative response; many hosts automatically generate ICMP port

unreachable messages [31] when no process is listening to a given UDP port. Although a

lack of response is not definitive, but it might indicate the presence of a UDP service.

One example of active scanning is known as operating systems fingerprinting [48].

This procedure is rendered by the real-time attempt to remotely determine the operating

system (type and version) of a particular host of interest. The idea is to send packets

to a host so that any responses (or lack of responses) could be analyzed. The responses

to these sequences of packets form a signature or a fingerprint for the remote operating

system that can be compared against a signature database of known operating system

versions. Operating system fingerprinting takes advantage of the observation that each

operating system’s network stack [46] (i.e., software that implements the TCP/IP pro-

tocol) has slight variations in the way it responds to certain packets. These variations

offer the ability to determine the type of the remote host operating system. Another

example of active scanning is application fingerprinting [49]. It is the real-time action of

trying to remotely determine the applications or services running on a particular host of

interest. Servers routinely send information about the applications they are running to

client systems during normal connection activities. The initial text sent by servers during

a connection attempt is known as a banner. The act of harvesting banners during an

active identification of network systems and their applications [50] is an interesting and

a beneficial concept. For instance, banner grabbing would be routinely performed dur-

ing vulnerability testing (i.e., penetration testing) of the network. The software versions

advertised in application banners can identify potential security issues if it is determined

that the software version contains known vulnerabilities.

Passive Scanning: Passive scanning [51] identifies network services by observing

10

traffic generated by servers and clients as it passes an observation point. Specialized hard-

ware or software could be inserted and installed at the monitoring point to successfully

establish passive monitoring. Many routers can ‘mirror’ ports, sending copies of packets

out another interface to a monitoring host. Furthermore, hardware taps such as optical

splitters place no additional burden on the router, but require a brief service interruption

to install. Alternatively, Wireshark [52] is one of the most prominent passive software tools.

Detection of well-known services (both TCP and UDP) with passive monitoring is

fairly straightforward. An exchange of traffic with a given host indicates an operational

service. For TCP, the monitoring host only need to capture TCP connection setup mes-

sages (i.e., the SYN packets [46]); completion of the three way handshake clearly indicates

that a service is available. Under normal operations, the presence of a positive response

to a connection request (SYN/ACK) is a sufficient evidence of a TCP service. UDP ser-

vices can also be identified by observing traffic; however, since UDP is a connectionless

protocol, the concept of ‘server’ and ‘client’ is not sufficiently clear without application

protocol information. In addition, while bi-directional traffic positively indicates a UDP

service, unidirectional traffic may also indicate a service (since UDP does not mandate

a response), but may as well indicate unsolicited probe traffic. As with active probing,

passive scanning can not identify services that do not run on well-known ports.

One example of passive monitoring is Passive Asset Detection System (PADS) [53].

The system is a signature-based software used to passively detect network assets using

application fingerprinting. It attempts to provide an accurate and current listing of the

hosts and services offered on the network. It utilizes the TCP, ARP, and ICMP protocols

[54] to perform its signature matching.

Discussion: Based on the aforementioned active and passive scanning descriptions,

we consequently discuss their advantages and disadvantages.

11

In general, active scanning provides a comprehensive report of all open and unpro-

tected ports at the time of the probing. However, it will not detect ports that are filtered

by firewalls or obscured by mechanisms such as port knocking [55]. Active scanning typi-

cally performs very fast in achieving its task. The main disadvantage of active probing is

that it is very intrusive. Active probes solicit a response that would not have been sent

otherwise. This can be detected and logged by the host or intrusion detection systems,

particularly if one systematically scans all hosts in a region. A second disadvantage of

active scanning is that it does not identify hosts that may be temporarily unavailable

at the time of the scan. This disadvantage can be mitigated with multiple active scans,

although additional scans my draw further attention and hence increase the probability

of being detected.

Passive monitoring has the advantage of being non-intrusive. In fact, it generally

cannot be detected by either communication parties. A second advantage of passive mon-

itoring is that it can better detect active services running on transient hosts. Thus, it

is specifically effective against machines that are frequently powered off such as laptops,

or hosts temporarily disconnected from the network. Third, passive monitoring can de-

tect services that active probing misses because of firewall configurations. Fourth, passive

monitoring can also provide insights into trends and other behaviors which active probing

cannot. While monitoring servers, passive monitoring can also track clients, providing

extra information such as server popularity and server load. Finally, since passive moni-

toring consumes no network resources (other than the monitoring host), it can be run on

a long-term basis as part of normal network operations. The main disadvantage of passive

monitoring is that it only detects services that are active. Therefore, silent servers go un-

monitored, even though they may still pose vulnerabilities. Nevertheless, this disadvantage

can be mitigated by long term monitoring.

Cyber Scanning Strategies

Cyber scanning activity can as well be defined by which strategy it adopts. Mainly, we

can classify those strategies into four classes; remote to local scanning, local to remote

12

scanning, local to local scanning and remote to remote scanning. The first three classes

take into consideration the boundaries of a specific enterprise network and define the direc-

tion of the cyber scanning activity. Such activity can be generated by a diverse numbers

of hosts, targeting any number of hosts, and using various cyber scanning methods and

techniques.

The remote to local scanning refers to a remote host, outside the boundary of a

specific network, performing some sort of cyber scanning on a host inside the enterprise

network. This strategy is the most worrisome for enterprise network administrators as

they attempt to protect their IT infrastructure from unknown external adversaries. Local

to remote cyber scanning occurs when a host, within the administrative control of the

enterprise network, scan systems outside the network boundary. In this context, the scan-

ning host is performing network reconnaissance against external systems. This strategy

may cause serious legal issues against the enterprise network since its infrastructure would

be used for malicious purposes against Internet systems [56]. Moreover, local to local

cyber scanning refers to a host that scans systems within the boundaries of the enterprise

network in which it resides. Topological scanning worms [57] frequently employ this type

of scanning strategy. Local to local scanning activity can occur within or between network

subnets. Figures 2.2, 2.3 and 2.4 summarize the aforementioned discussed three strategies.

On the other hand, remote to remote scanning does not depend on certain bound-

aries. It can be defined as world wide cyber scanning campaigns. Rather than focusing

on a specific enterprise network as a target, this strategy aims at probing and sequentially

exploiting Internet’s wide services. This strategy is often distributed, possesses sophisti-

cated stealth capabilities and is typically highly coordinated. Chapter 5 of this thesis will

tackle the latter problem.

Cyber Scanning Approaches

The third classification of the cyber scanning topic, as shown in Figure 2.1, is based on

its approaches. Such approaches are composed of aims and methods. The aims specify

13

Subnet 1

Subnet 2

Internet

Figure 2.2: Remote to Local Probing

what is being targeted while the methods state how the cyber scanning is performed. The

latter are discussed subsequently.

Wide Range Cyber Scanning: Wide-range reconnaissance can be defined as the

rapid scanning of large blocks of Internet addresses in the search for a specific service or

vulnerability. Typically, there is little human interaction in this type of reconnaissance.

This is characteristic of auto-rooters [58] and worm propagation. Auto-rooters are com-

posite tools that augment basic port scanning functionality by launching an attack as soon

as an open port is located on a target system; they are often used for the rapid enrollment

of vulnerable systems into botnets [59] compromised systems. Simple scanning worms

propagate by indiscriminately probing the Internet as rapidly as possible to locate and

infect vulnerable systems.

Target-Specific Cyber Scanning: In contrast, numerous sophisticated scanning

techniques allow stealthy, focused scanning of a predetermined target host or network.

The following techniques belong to this category:

• Indirect scanning occurs when an attacker uses some systems to scan a target and

14

Subnet 1

Subnet 2

Internet

Figure 2.3: Local to Remote Probing

other systems to attack the same victim. If the scanning activity from the scanning

system is detected, the attacker simply uses another scanning system. A slightly

more sophisticated variation uses throw-away scanning systems; previously compro-

mised systems are disposed by the attacker after executing the malicious tasks. In

this case, any traced back scanning activity will be attributed to the owner of the

compromised system and not to the real attacker.

• Botnet scanning [60] occurs when a collection of compromised systems (bots or

zombies) are used to scan a target. The bots are not necessary on a contiguous set

of IP address but rather could be very dispersed. For instance, consider a botnet

that has an exploit capability against a network service. A botnet of just 254 systems

would be able to scan an entire Class C network for that service by sending a single

packet from each bot (each with a unique IP address). In this example, perhaps

correlating the scanning campaign would be possible, however, it would not reveal

the true adversary (the operator of the command and control center) since the bots

are basically zombie members.

• Low and slow scanning [61] occurs when an attacker slowly scans a target host or

15

Subnet 1

Subnet 2

Internet

Figure 2.4: Local to Local Probing

network (i.e., a single scanning campaign may take days, weeks or months). Slow

scans may blend into the network noise never exceeding detection thresholds or ex-

hausting detection system state.

Single Source Cyber Scanning: A single source cyber scanning activity oper-

ates in a one (source) to many (targets) fashion. Single source cyber scanning could be

classified as belonging to one of four types; vertical, horizontal, strobe and block scans

[62]. A vertical scan consists of a port scan of some or all ports on a single computer.

The other three types of scans are used over multiple IP addresses. A horizontal scan is

a scan of a single port across multiple IP addresses. If the port scan is of multiple ports

across multiple IP addresses, it is called a strobe scan. A block scan is a port scan against

all ports on multiple IP addresses. Note that in general, a vertical scan can be defined as

consisting of six or more ports on a single computer, while a horizontal scan as consisting

of five or more IP addresses within a single subnet.

Distributed Cyber Scanning: Distributed scanning [63] occurs when multiple

systems act in a union strategy to scan a network or host of interest. Typically, one

16

system will act as a central node and collect the scanning results from all participating

systems. Distributing the scanning activity reduces the scanning footprint from any single

system and thus decreasing the likelihood of being detected.

Summary

In this section, we provided a categorization of the cyber scanning topic. Additionally, we

presented a discussion that elaborated on the nature, strategies and approaches of cyber

scanning. From the above, we can extract the following few points:

• Active scanning is efficient but is very intrusive.

• Passive scanning is less intrusive, works well in the presence of firewalls and is opti-

mized to operate effectively with transient hosts.

• Cyber scanning strategies include remote to remote scanning also dubbed as cyber

scanning campaigns. The latter possess sophisticated stealth capabilities and are

typically highly coordinated.

• Botnet scanning is both target-specific and a distributed cyber scanning method.

2.1.3 Cyber Scanning Techniques

In this section, we introduce a classification of probing techniques as shown in Figure 2.5.

We elaborate on this by presenting the techniques and their details in terms of exchanged

messages and their scanning abilities. Moreover, we pinpoint and discuss, when applicable,

their advantages, their disadvantages and the scenarios when the techniques are best used.

Finally, we present a summary of the cyber scanning techniques that includes, but is not

limited to, the transport protocol the technique aims to identify, their exchanged messages,

and whether the technique is immune to firewall detection.

Open Scan

Open scan, also known as the vanilla scan, is the simplest scanning technique. It refers to

the method that follows the same TCP handshake connection that every other TCP-based

17

Cyber Scanning Techniques

Open Scan Half Open Scan Stealth Scans Sweep Scans Miscellaneous Scans

Version
Detection Scan

SYN|ACK Scan

IDLE Scan

FIN, XMAS,
NULL Scans

ACK Scan

Window Scan

TCP
Fragementation

Scan

ICMP Echo
Scan

ICMP
Timestamp &
Address Mask

Scan

TCP SYN Scan

FTP Bounce
Scan

UDP Scan

IP Protocol
Scan

RPC Scan

Figure 2.5: A Classification of Cyber Scanning Techniques

application uses. Hence, this scanning technique is considered ‘Open’ since it reacts as a

normal TCP connection to determine if a port is available. It utilizes the connect() [64]

call functionality that is used by the operating system to initiate a TCP connection to a

remote device. The Open scan is illustrated in Figure 2.6.

This technique utilizes the TCP protocol and the SYN flag to detect TCP ports.

When a closed port is targeted, the victim replies with a RST flag. On the other hand,

when an open port is detected, the victim replies with an ACK flag. It is worthy to

note that this simple technique is easily detected by a firewall. An advantage of this

technique is that it can achieve its scan in a very simplistic way without requiring any

other functionalities or privileges. The latter fact is because this technique utilizes systems’

normal TCP-based methods when connecting to the target. A disadvantage of this scan

is apparent when connection logs are examined. Since the Open scan technique requires

18

RST

(a)

SYN/ACK

(b)

Figure 2.6: The Open Scan targeting a closed (2.6a) and an open port (2.6b)

the completion of a TCP connection, normal application processes immediately follow.

Although these applications are directly met with a RST packet, however, the application

has already provided the appropriate login screen or service page. By the time the RST is

received, the application initiation process is already well underway and additional system

resources are used. Because this scan technique is evident and easily identified when

browsing through applications event logs, it might be considered the TCP scan of last

resort. If privileged access is not available and the determination of open TCP ports is

absolutely necessary, this scan may be the only method that is available and can be used.

Half-Open Scan

The Half-Open scan, commonly dubbed as the TCP SYN scan, is a common method

for port identification that allows the scanner to gather information about open ports

without completing the TCP handshake process. When an open port is identified, the

TCP handshake is reset before it can be completed. Similar to an Open Scan, a Half-

Open scan targeting a closed port will receive a RST packet. However, if the source

receives an acknowledgment to a SYN request, meaning a port is open, then the source

directly sends a RST frame to reset the session, and therefore the handshake is never

19

completed. This technique is shown in Figure 2.7.

RST

(a)

SYN/ACK

(b)

Figure 2.7: The Half-Open Scan targeting a closed (2.7a) and an open port (2.7b)

Since this scan technique never actually creates a TCP session, it is advantageous

in two ways. First, it is not logged by destination applications. This point makes the

Half-Open method somehow more stealthier than the Open-Scan method, as it is less

visible in the destination systems’ application logs. Second, it is less stressful to the

application service because it does not force the application to initialize or for systems

resources to be allocated. On the other hand, this method suffers from one disadvantage.

Since there is a need to create new raw packets that do not completely abide by the TCP

handshake, the half-open connection process requires some elevated systems privilege at

the source to be successful, which is not always feasible. It is significant to mention that

this method can operate on any operating platform and the fact that it only half-opens the

TCP connections, makes it a very efficient and a streamline method. Nevertheless, since

the Half-Open scan technique is structured and uses known TCP flags, it is effortlessly

detected by an edge firewall.

20

Version Detection Scan

Although the Version Detection scan does not aim to detect open ports as the previous

mentioned methods, however, it exploits them by probing the software applications run-

ning on remote devices. This method would typically utilize the Half-Open scan technique

prior to executing its own scan method. If open ports are found, the Version Detection

scan will begin the probing process by directly communicating with the remote applica-

tions on the open ports to uncover as much information as possible. Such information

may include the type, the version and the status of that service, the underlying operating

system and its version and other services that depend on that running service. This infor-

mation can be of benefit to a network manager for proper and effective patching purposes

or it can be analyzed by the scanner or attacker to exploit a certain known vulnerability

of a specific running service. The Version Detection Scan is depicted in Figure 2.8. In

SYN/ACK

(a)

HTTP GET

HTTP DATA

ACK

HTTP DATA

ACK/FIN

ACK

(b)

Figure 2.8: The Half-Open scan (2.8a) executing prior to the Version Detection Scan

(2.8b)

this illustration, the Version Detection Scan technique first executed the TCP SYN scan.

After detecting that port 80 is open, it ran its own scan to probe the service on that

21

port. This method poses two advantages from a network management perspective. Its

aids in network host applications’ version management where hosts showing older software

revisions are identified and further action is taken. Second, it assists in locating software

that is not compliant with organizational standards. This is as well an effective method

of verifying the licenses of application services. Nonetheless, this technique possesses two

disadvantages. First, it requires significant processing power (less significant using today’s

machines but still a point to consider) and elevated networking bandwidth since it needs

to probe all the services and consequently transmit all their information. Second, and

since this technique will open numerous sessions with the remote applications, its activity

is usually written in application logs which makes it a less stealthier technique.

Stealth Scans

The aforementioned cyber scanning techniques only use the typical SYN flag to investigate

open ports. Hence, they are easily detected and logged by intrusion detection systems. In

this section, we present and discuss stealth scans. These techniques try to avoid filtering

devices by employing certain set of flags other than SYN to appear as legitimate traffic.

All these techniques resort to inverse mapping to determine open ports.

SYN|ACK Scan: The SYN|ACK scan is a slight modification of the Half-Open

scan. Instead of just sending a SYN flag, the source sends a SYN in addition to an ACK

flag to the target. For a closed port, the target will reply with a RST flag while a re-

quest to an open port will not generate a response. The latter is due to the fact that

the TCP protocol requires a sole SYN flag to initiate a connection. The SYN|ACK scan

is illustrated in Figure 2.9. This scan technique may generate a notable amount of false

positives. For instance, packets dropped due to filtering devices, network traffic, timeouts,

etc. can provide an incorrect inference of an open port while the port is in fact closed.

However, this is a relatively fast scan method that avoids the three-way handshake and

does not utilize a sole SYN flag.

22

(a)

(b)

Figure 2.9: The SYN|ACK Scan targeting a closed (2.9a) and an open port (2.9b)

IDLE Scan: A more complex stealth technique that utilizes the previous SYN|ACK

scan and the Half-Open scan is known as the IDLE scan. The technique aims at gathering

port information using another station on the network (the zombie) where the scanning

process appears as it has been initiated from the zombie IP address instead of the actual

source station. This scanning method exploits IP fragmentation identification sequences

and implements IP address spoofing. For the scanning process to be executed, the identi-

fied zombie machine should satisfy the following two requirements:

• The zombie host must be idle (hence the name ‘IDLE’ scan). This requirement en-

sures that the IP identification frames will remain consistent throughout the duration

of the scan.

• The zombie host must provide consistent and predictable IP identification (IPID)

values. Most operating systems satisfy this requirement.

This technique is clarified in Figure 2.10.

First, in Figure 2.10a, the source sends a SYN/ACK flags to the zombie host ex-

pecting a RST flag as a response. This RST packet contains the initial IPID. In Figure

2.10b, the source executes a Half-Open scan, using the spoofed IP address of the zom-

bie, targeting the destination host. If that port is open, the destination will reply to the

23

(a)

Zombie

(2)

SYN + Port 80

Using spoofed Zombie’s IP

(b)

Zombie

(3)

(c)

Figure 2.10: IDLE scan executing process

zombie with a SYN/ACK. The zombie, not expecting a SYN/ACK since he never sent a

SYN, will reply by a RST packet. The latter response will indeed increment the zombie’s

IPID. Finally, in Figure 2.10c, the original host resends the initial SYN/ACK probe to the

24

zombie station. If the IPID has been incremented, then the source will infer that the port

that was spoofed in the original SYN frame is open on the destination target. If the IPID

has not been incremented, then the source will conclude that the port is closed. IDLE scan

technique of spoofing IP addresses and checking IPIDs allows the source to find open ports

from a distance, even if packet filters are in place. The source simply requires any open

port to a zombie host to complete the communication process. One of the core advantages

of this technique is its stealth factor. A destination station will never identify the IP

address of the scanning host. On the other hand, the disadvantages of this technique are

three folds. First, there should be a satisfaction of the zombie workstation requirements

prior to commencing the scanning process, especially the idle state requirement. Second,

and although the technique implements source IP address spoofing, however, the source

will still be identified if the technique is used on a local subnet. This last fact is legitimate

since the source MAC address on that subnet is not spoofed and hence with some network

investigation the source would be pinpointed. The third disadvantage is similar to the

disadvantage of the Half-Open scan technique which is rendered by the inability to create

raw packets that do comply completely with the TCP handshake procedure without ele-

vation of privileges, which is not always achievable.

FIN, Xmas Tree, and Null Scans: These three cyber scanning techniques are

grouped together since their individual functionality is very similar. They are members

of the ‘stealth’ scans because they send a single frame to a TCP port without any TCP

handshaking or any additional packet transfers. They operate identically to the SYN|ACK

scan, but they differ by which flags they send. The FIN, the Xmas Tree and the Null scan-

ning techniques respectively send packets with the FIN flag, URG, PUSH, and FIN flags,

and packets with empty flags. In all cases, the closed ports are required to reply to the

probe packet with RST, while open ports must ignore the packet in question [46, 65]. Note

that, the Xmas Tree scan takes its name from the flags related to (00101001), which appear

similar to the lights of a Christmas tree. The latter technique is depicted in Figure 5.2c,

while the FIN and Null scans have similar illustrations as Figure 2.9 but with different flags

as previously mentioned. Since no TCP sessions are created for any of these scans, they

25

RST

(a)

(b)

Figure 2.11: The Xmas Scan targeting a closed (2.11a) and an open port (2.11b)

are remarkably quiet from the perspective of the remote device’s applications. Therefore,

none of these scans should appear in any of the application logs. These scans are as well

some of the most minimal port-level scans that could execute. For a closed port, only two

packets are transferred. On the other hand, only a single frame is necessary to identify an

open port. However, these techniques have two drawbacks. They are ineffective against

Microsoft machines as all ports will appear to be closed regardless of their actual state.

Nonetheless, this provides a backhanded advantage, since any device showing open ports

must not be a Windows-based device. The second drawback is related to generating raw

packets, which as mentioned earlier in this section, requires elevation of systems’ privileges.

ACK Scan: The ACK scan is not intended to identify an open port. This stealth cy-

ber scanning technique will only provide a filtered (non-reachable) or an unfiltered (reach-

able) disposition because it never connects to an application to confirm an ‘open’ state.

At a first glance, this appears to be rather limiting but in reality, the ACK scan can

characterize the ability of a packet to traverse firewalls or packet filtered links. Another

implementation of the ACK scan can take advantage of the IP routing function to deduce

the state of the port from the time to live (TTL) value [66]. An ACK scan operates

26

by sending a TCP ACK frame to a remote port. If there are no responses or an ICMP

destination unreachable message is returned, then the port is considered to be filtered. If

the remote port returns a RST packet, the connection between the source and the remote

target is categorized as unfiltered. Figure 2.12 demonstrates the ACK scan process.

(a)

RST

(b)

Figure 2.12: The Ack Scan targeting a non-reachable (2.12a) and a reachable target (2.12b)

On one hand, and since the ACK scan does not open any application sessions, the

conversation between the source and the remote target is relatively simple. Thus, the scan

of a single port is almost invisible, especially when combined with other network traffic.

On the other hand, the ACK scans simplicity is also its largest disadvantage. Because

it never tries to connect to a remote device, it can never definitively identify an open

port. Although the ACK scan does not identify open ports, it does an impressive job of

identifying ports that are filtered through a firewall. This list of filtered and unfiltered

port numbers is extremely useful as a reconnaissance method for a future more detailed

scan that focuses on specific port numbers and perhaps their vulnerabilities.

Window Scan: The Window scan, dubbed after the TCP sliding window [46], is a

scanning technique used with certain TCP stacks. It is almost identical to the ACK scan,

however, it has been found that certain TCP stacks return a window size number when

27

responding to an ACK packet; a RST frame response from a closed port replies with a

window size of zero and a RST frame response from an open port replies with a non-zero

window size. Figure 3.5i shows the latter process.

RST + WIN=0

(a)

RST + WIN=3456

(b)

Figure 2.13: The Window Scan targeting a closed (2.13a) and an open port (2.13b)

An advantage of the window scan is that it does not open a session, hence there ex-

ist no application log associated with the scanning operation. Unless there are additional

firewalls or network limits at the operating system level, the scan should go unnoticed.

However, the window scan does not operate on all devices, and the number of operating

systems vulnerable to this unintended window size consistency is dwindling as operating

systems are upgraded and patched. In general, the window scan is useful when looking

for open ports while simultaneously maintaining a low level of network traffic. When vul-

nerable operating systems are identified, the window scan provides a low impact method

of locating open ports.

TCP Fragmentation Scan: This stealth scanning technique can be defined as a

process of executing a scan rather than a scanning technique by itself. It employs either

the Half-Open scan or the FIN scan techniques to carry out its scanning methodology.

This technique exploits the idea of decomposing the packet header (the probe packet) into

28

smaller packets in an attempt to evade packet filters. This technique almost always is

effective since packet filters or intrusion detection systems do not buffer the entire set of

packets due to performance issues. Rather, they process the packets individually causing

the bypass of the assembled scanning packet. One possible drawback of this technique

is rendered by the fact that some destinations do not have the ability to correctly merge

the decomposed packets causing dropped probe packets and eventually the failure of this

method.

Sweep Scans

At the beginning of this section, we have discussed certain cyber scanning techniques

that solely adopt the SYN flag to carry out their procedure. Subsequently, we presented

and elaborated on stealth scanning techniques that utilize a mixture of flags to achieve

their goal. In this section, we highlight on Sweep scans. These techniques do not aim at

identifying active ports but rather at identifying active hosts. They are characterized as

performing sweeps, since their purpose is to identify the status of as many hosts as possi-

ble instead of focusing on an individual host. In fact, they typically utilize the network’s

subnet broadcast address as a destination address to target the majority of the hosts.

They operate by generating any request that would prompt a remote station’s response.

They can be defined as cyber scanning facilitators because they pinpoint active hosts just

before the actual scanning techniques of active hosts take place.

ICMP Echo Request Scan: This technique is one of the simplest and most known

scanning technique to identify active hosts. It is abundantly used on Windows and Linux

machines by invoking the ‘ping’ command. The idea is to send an ICMP echo request

message to the target and wait for a reply. If there is an ICMP Echo Reply message,

this indicates that the target is active. Otherwise, it means either the target is not active

(request timed out reply) or the the original request never reached the target (destination

unreachable reply). Figure 2.14 portrays this technique.

An advantage of the ICMP echo technique is that it does not depend on any par-

ticular application or open port to work. If a remote device communicates via TCP/IP,

29

(a)

(b)

Figure 2.14: The ICMP Echo Request targeting a non-active (2.14a) and an active host

(2.14b)

then it is most often a candidate for the ICMP echo request scan. A disadvantage of this

technique is that ICMP is one of the most filtered protocols in enterprise networks. Since

the ICMP protocol has the ability to redirect traffic, identify available workstations, and

pinpoint closed ports on a target, when a firewall or packet filter is first installed, it is a

common security guideline to restrict ICMP.

ICMP Timestamp & Address Mask Scans: These techniques take advantage of

the seldom used ICMP messages (Timestamp & Address Mask) to determine if a remote

target is active. They function similarly to other ICMP-based scans; the source sends

an ICMP Get Timestamp or Get Address Mask messages and wait for an ICMP Send

Timestamp or ICMP Send Mask responses. ICMP Timestamp scan is shown in Figure

2.15.

Both methods suffer from serious drawbacks. In both techniques, their correspond-

ing probing messages are very rare to occur in a network and thus they can be very easily

detected. Moreover, they both do not achieve promising results when targeting relatively

30

(a)

(b)

Figure 2.15: The ICMP Timestamp scan targeting a non-active (2.15a) and an active host

(2.15b)

updated operating systems or networking hardware.

TCP SYN Scan: This cyber scanning facilitator technique is operationally identi-

cal to the Half-Open scan technique but the goal in this case is different. In this TCP SYN

scan, the source scanner is awaiting a RST packet from a closed port or an ACK packet

from an open port. The interesting and effective point of this technique is that either

result from the scan will provide the source with a proof that an active system resides

at that destination IP address. This technique is advantageous since it accomplishes its

goal in just few packets. Such minimal amount of network traffic appears to be similar to

a typical TCP handshake. As a result, this technique can appear as legitimate network

traffic and would go undetected.

Miscellaneous Scans

This section aims at providing further cyber scanning insights by shedding the light on

scans that deal with various protocols. These include the FTP bounce, UDP, IP protocol

and RPC scans.

31

FTP Server

PORT Command
IP,Port

LIST

Can not Build Connection

SYN + Port 80

RST

(a)

FTP Server

PORT Command
IP,Port

LIST

Transfer Complete

SYN + Port 80

SYN/ACK

ACK

(b)

Figure 2.16: The FTP Bounce scan targeting a closed (2.16a) and an open port(2.16b)

FTP Bounce Scan: Similar to IDLE scan, the FTP bounce attack employs a

third host (the FTP server) to act as a proxy between the source host (scanner) and

the destination target. The FTP bounce attack takes advantage of the passive mode FTP

[67]. This mode completely separate the command connections from the data connections.

This allows the FTP server to be effective in the presence of firewalls since the FTP server

would be responsible for building the outbound data connection with the remote host.

Furthermore, it allows the source to send a PORT command [67] to the proxy FTP server

where the latter would direct the data towards a completely different host (the target).

The FTP Bounce scan is simplified in Figure 2.16. The first step of the FTP Bounce scan

occurs when the source connects to the vulnerable FTP server. Sequentially, the source

transmits a PORT command [67] coupled with the IP and port of the target. The FTP

server forwards that request to the target. If the intended target’s port is closed (Figure

2.16a), the FTP server responds to the source stating the it can not build the connection.

On the other hand, if the port is open (Figure 2.16b), the FTP server responds with a

message stating that a transfer has been successfully completed. Depending on the reply,

32

the source will infer if the port is open or closed. The advantages of this technique are

two folds. First, the technique uses the standard FTP communication to achieve its task.

Since the FTP service is found in the majority of enterprise networks, the technique seems

feasible almost all the time. Second, it possesses stealth features as the source is using a

proxy to direct his scan. Conversely, the disadvantages of the FTP bounce scan comprise

of the following: First, this scan technique is only successful on TCP ports. Since FTP

does not connect to remote devices using UDP, it is not possible to retrieve any feedback

on the availability of UDP ports. Second, the process of bouncing through an FTP server

is slow when compared to other scanning methods. Additionally, the port scanning re-

quests can only check a single port at a time. Third, and since this technique initiates an

application session with the FTP server, the FTP servers will log the connection and all

its commands making this method vulnerable to being detected.

UDP Scan: UDP scan does not require any SYNs, FINs, or any other handshaking

flags. The lack of formal communications process in UDP greatly amplifies the effective-

ness of this scan technique. The UDP scan is demonstrated in Figure 2.17.

A closed port will reply with an ICMP port unreachable message while an open port

responds with some UDP data. A critical advantage of this technique is that it operates

very efficiently on Windows-based devices since they do not usually implement any type

of ICMP rate limiting [68].

IP Protocol Scan: The goal of the IP protocol scan is to inquire about any addi-

tional IP protocols in use by the target station, including ICMP, TCP, and UDP. If a router

would be scanned, additional IP protocols such as EGP or IGP may be identified. Figure

2.18 depicts this technique. An unavailable IP protocol does not respond to the scan while

an available IP protocol provides a response specific to the protocol type. An IP protocol

scan looks fairly obvious if packet traces are investigated; since most networking proto-

cols are based on TCP or UDP, any deviation from those two protocol types is conspicuous.

33

(a)

(b)

Figure 2.17: The UDP scan targeting a closed (2.17a) and an open port (2.17b)

(a)

(b)

Figure 2.18: Unavailable (2.18a) Vs. An Available IP Protocol (2.18b)

RPC Scan: In an attempt to disclose applications’ information that operate using

the remote procedure call (RPC) [47], the RPC scan sends RPC null messages to previously

detected open ports. If any RPC application is running on the target, the reply will include

34

CST EOP ID. T ID. U PR SM RMC RMO IFD

Open scan -
√

- TCP SYN RST ACK -

Half-Open scan
√ √

- TCP SYN RST ACK -

Version Detection scan - - - TCP SYN RST ACK -

SYN|ACK scan
√ √

- TCP SYN/ACK RST -
√

IDLE scan -
√

- TCP SYN/ACK, SYN RST/IPID RST/IPID
√

FIN scan
√ √

- TCP FIN RST -
√

XMAS scan
√ √

- TCP URG, PUSH, FIN RST -
√

NULL scan
√ √

- TCP - RST -
√

ACK scan
√ √

- TCP ACK - RST
√

Window scan
√ √

- TCP ACK RST+WIN RST+WIN
√

TCP Fragm. scan
√ √

- TCP SYN or FIN RST -
√

ICMP Echo scan - - - ICMP ICMP Echo ICMP MSG ICMP Reply -

ICMP Timestamp scan - - - ICMP ICMP Timestamp - Timestamp -

ICMP Sub. Mask scan - - - ICMP ICMP Sub.Mask - Sub. Mask -

TCP SYN scan - - - TCP SYN RST ACK -

FTP Bounce scan -
√

- TCP PORT Error MSG Conn. Est. -

UDP scan - -
√

UDP UDP Pkt ICMP Unreach. UDP Data -

IP Protocol scan - - - IP IP Prot. MSG - Protocols -

RPC scan - - - RPC RPC NULL - RPC App Info -

Table 2.1: Summary of Probing Techniques

information such as the application’s name, version and status. This technique possess the

ability to detect RPC applications running on non-RPC default ports. On the contrary,

and since the technique establishes application sessions, its transaction events will be

written in application logs, and thus the technique is easily detected. Another drawback

of this technique is that it relies on previously detected open ports to operate and does

not detect open ports by itself.

Summary

The previously discussed cyber scanning techniques are summarized in Table 2.1. The

summary includes the cyber scanning technique (CST), whether or not it requires eleva-

tion of systems’s privileges at the source to operate (EOP), whether it identities TCP or

35

UDP ports (ID. T/ ID. U), the protocol it employs (PR), its messages that it sends (SM),

its received messages when the target port is closed or the host is unreachable (RMC), its

received messages when the target port is open or the host is reachable (RMO) and finally

whether the technique is immune to firewall detection (IFD).

From the summary table, we can extract the following few points:

• TCP is the most employed cyber scanning protocol.

• Although stealth scanning techniques are immune to being detected by a firewall,

however, almost all except the IDLE scan necessitate elevation of systems’ privilege

at the source to successfully operate.

• To identity UDP ports, only one cyber scanning technique could be utilized.

• The Half-Open scan technique could be used for port-identification as well as for

detecting active network hosts.

2.1.4 Literature Review - Distributed Detection Techniques

In this section, we present a review of the recent literature on distributed cyber scanning

detection techniques. Distributed cyber scanning, which is illustrated in Figure 2.19, refers

to the task of decomposing and coordinating the scanning using various compromised

systems or bots. Typically, the scanning is controlled by a main attacker dubbed as

the scanning botmaster who operates the command and control center and the entire

network of bots (or botnet) for coordinated communication, propagation, and other attack

activities. Distributed cyber scanning is often thought of as operating in a many (sources)

to one (target) fashion, where the target system is often a single entity or a limited number

of systems. Moreover, this type of scanning possess stealth features and could be performed

during a prolonged period of time (i.e., a slow scan).

The work presented in this section covers the period from 2001 up to November 2012.

The studied literature solely focus on distributed detection techniques (many to one) and

excludes single source detection techniques (one to one and one to many). For the latter,

36

Cyber Attacker/Scanning Botmaster

Bots/Compromised Machines

Target Server

Figure 2.19: Executing Distributed Cyber Scanning

please refer to survey [45]. Many to many detection techniques, as briefly discussed in

Section 2.1.2, are yet to be investigated in the literature. The generated taxonomy on

distributed cyber scanning detection techniques is shown in Figure 2.20. It is based on

the approaches taken by the authors to achieve their detection task. The approaches

are decomposed into four categories, namely, statistical, algorithmic, mathematical and

heuristical.

Statistical Approaches

These distributed cyber scanning detection approaches include techniques such as sta-

tistical characterization (features) of data samples, extrapolation or interpolation of data

based on some best-fit, error estimates of observations, or spectral analysis of a data model.

Zhang et al. [1] proposed a scan detection method based on a distributed coop-

erative model. Their technique is composed of feature-based detection, scenario-based

detection and statistic-based detection. Their proposed architecture, which is depicted in

Figure 2.21, is decomposed into 5 layers; sensors, event generators, event detection agents,

a fusion center, and a control center.

37

Cyber Scanning Detection
Techniques

One to One
Approaches

One to Many
Approaches

Many to One
Approaches

Many to Many
Approaches

Statistical Algorithmic Mathematical Heuristical

Figure 2.20: Taxonomy-Distributed Cyber Scanning Detection Techniques

The authors explained that the sensors collect data and system log information. Event

generators check and filter data based on normal and abnormal information. Event de-

tection agents detect the integrated data so as to decide whether the event is an intrusion

behavior or not. The undetermined data is sequentially sent to a fusion center for further

analysis. The Fusion center analyzes correlations and performs fusion analysis for the

Controlling
Center

Event Detection
Agent

Event
Generator

Sensors

Event
Generator

Sensors

Event Detection
Agent

Event
Generator

Sensors

Event
Generator

Sensors

Event Detection
Agent

Event
Generator

Sensors

Event
Generator

Sensors

Fusion Center Fusion Center

Figure 2.21: Distributed Architecture of Cooperative Intrusion Detection [1]

data submitted by event detection agents in order to increase the decision accuracy. Fi-

nally, the control center monitors, coordinates and adjusts each event detection agent and

38

its corresponding load. The technique’s statistic-based detection is based on predefined

thresholds that allowed the detection of both scan attack and denial of service attacks.

The authors claimed that their method not only can detect those scan attack with obvious

features, but also it can detect the attack with stealth features and variants of the attack.

A positive point of this paper is that the proposed technique is well suited in a

distributed large-scale environment. Moreover, the multi-layer architecture exploits the

advantages of various approaches, including, statistical and scenario-based. However, few

drawbacks could be extracted. First, the paper’s experimental results were based on a

simulated described scenario rather than real world data samples. Second, the authors

did not test the accuracy of their technique against large-scale distributed scans.

In another work [2], Baig et al. proposed a time independent feature set model

(IFSM) for the detection of slow, random and distributed cyber scanning activity. Their

proposed technique is based on the observation that scanners, being unaware of systems

and network topologies, send most of their probes to inactive hosts or closed ports result-

ing in many RST and ICMP packets. They designed a database that records information

about that case and they took into consideration hosts that are behind a network ad-

dress translation (NAT) [69] routers and those who use the dynamic host control protocol

(DHCP) [70] server. The authors developed as well an algorithm that implemented that

technique in addition to a pruning method used when system memory runs low. Finally,

the authors empirically tested their technique using DARPA’s data set [71]. The results

demonstrated that their proposed IFSM performs well for detecting slow and fast scans.

A snapshot of their technique detecting ports scans and IP sweeps is shown if Figure 2.22.

The work in [2] is a successful example of the usage of statistical feature-based

elements in detecting cyber scanning. Nevertheless, this papers suffers from two core dis-

advantages. The technique presented in the paper is solely dependent on RST and ICMP

packets. Thus, the technique can only detect scans that actually use or return those pack-

ets. Although the latter task can be a common behavior, a significant number of network

39

Figure 2.22: IFSM detecting Ports Scans and IP Sweeps [2]

devices do not allow the propagation of those packets back to the source. Second, although

the authors claimed that their technique is effective in detecting slow and distributed cyber

scanning, they did not demonstrate that empirically nor did they provide any scenarios

to achieve that.

Furthermore, Staniford et al. [72] presented a method for the detection of stealth

port scans. Their technique is divided into two layers; the Stealthy Probing and Intru-

sion Correlation Engine (SPICE) and the Statistical Packet Anomaly Detection Engine

(SPADE). Using an entropy-based metric, SPADE determines if a packet is malicious and

sequentially pass to SPICE. The latter engine inserts the packet into a correlation graph,

where the nodes represent packets and the connections between nodes contain weights

indicating the strength of the relationship between the packets. The weights are based

on a combination of four feature characteristics, namely, equality, proximity, separation,

and covariance. In the final graph, all edges with weights less than a certain threshold are

dropped, and the remaining subgraphs represent interesting network events.

The work done by Staniford et al. [72] has the following weaknesses. Firstly, SPICE

was not designed specifically to detect coordinated scanning activity, rather it just forms

clusters based on similar properties using the correlation graph. Secondly, the authors

do not report the true and false negative and positive rates for their approach. Thirdly,

40

although the authors claimed that they detect distributed scanning, they have not provided

sufficient details to replicate or proof their results.

Algorithmic Approaches

These distributed cyber scanning detection approaches employ step-by-step procedures

for calculations, data processing, and formal automated reasoning.

Baldoni et al. [3] proposed a collaborative architecture where each target network

deploys local sensors that send alarms to a collaborative layer. This, in turn, correlates this

data with the aim of (1) identifying coordinated cyber scanning activity while (2) reducing

false positive alarms and (3) correctly separating groups of attackers that act concurrently

on overlapping targets. The proposed architecture is illustrated in Figure 2.23. Locally

Figure 2.23: Proposed Collaborative Architecture [3]

41

deployed sensors adopt graph-based clustering algorithms over non-established TCP con-

nections to generate alarms. The collaborative layer employed a similarity approach to

aggregate alarms and approximated optimization algorithms to separate distinct group of

attackers. The soundness of the proposed approach was tested on real network traces.

The above work however has the following limitations. First, their proposed system

is designed to leverage information coming from various network domains to detect dis-

tributed scanning. Hence, the collaborative layer, in fact, is totally ineffective when the

adversary is acting only against one network domain. Second, their system assumed that

the target set of an attack contains contiguous IP addresses, which is not always true.

Third, if the distributed scanning is being generated by a large number of nodes, where

each node only sends one or few number packets, then the system would consider those as

individual scans rather than correlating them.

In an another research work on distributed cyber scanning detection [73], the author

presented an approach to detecting coordinated attacks that is based on adversary mod-

eling of the desired information gain. In this research paper, a detection algorithm has

as well been developed that is based on solutions to the set covering problem, where the

aim was to recognize coordinated activity by combining events such that a large portion

of the information space is covered with minimal overlap. The author demonstrated the

approach by developing a coordinated scan detector, where the targets of a port scan

are distributed amongst multiple coordinating sources. The author elaborated that in

this case, the adversary wishes to gain information about the active hosts and ports on

a particular network. Moreover, the paper provided an algorithm that is capable of de-

tecting horizontal and strobe scans against contiguous address spaces. Finally, the paper

presented experimental results of the proposed algorithm in a controlled environment,

demonstrating that it has an acceptably low false positive rate.

A core limitation of the work in [73] is that the input for the proposed algorithm

42

Figure 2.24: Darkports and Exposure Maps in detecting Scanning [4]

consists of single-source port scans. Thus, if an attacker can avoid detection by the single-

source scan detector, then he as well would avoid detection by the developed coordinated

scan detector.

In an alternative research article, Whyte et al. [74] discussed the notions of dark-

ports and exposure maps. The former are unused ports on active systems while the latter

is a technique rendered by passively characterizing the connectivity behavior of internal

hosts in a network as they respond to both legitimate connection attempts and scanning

attempts. Their proposed technique differs from other scanning detection techniques as

they rely on identifying the services offered by the network instead of tracking external

connection events. Moreover, the authors demonstrated how they could exploit darkports

for defensive purposes as shown in Figure 2.24. Additionally, they presented some meth-

ods to detect advanced cyber scanning activity such as distributed scanning. Finally, they

evaluated their approach using three different real data sets.

The above work has the following limitations. First, the proposed approach requires

a prolonged training period (initializing time) to build the network map, decreasing its

chances from being operationally feasible. Second, the actual network map populating

process is based on observed TCP SYN ACK. Nowadays, there exist a significant num-

ber of stealth cyber scanning activity that never utilizes the TCP SYN ACK. Third, the

43

authors’ proposed heuristics to detect, attribute and match distributed cyber scanning

is based on source IP grouping. They also considered clusters of three or more remote

hosts that target the same destination ports as a distributed scan. This is ineffective if

the sources are spoofed, change regularly due to DHCP usage, or target different ports.

Furthermore, Yegneswaran et al. [75] presented a broad, empirical analysis of Inter-

net intrusion activity using a large set of NIDS and firewall logs. Their breakdown of scan

types showed not only a large amount of worm activity but also a substantial amount of

scanning activity. To gain insight into the global nature of intrusions, the authors used

their data to project the activity across the global Internet. They also presented a high

level information theoretic evaluation of the potential of using data shared between net-

works as a foundation for a distributed intrusion detection infrastructure. Their analysis

indicated that small collections of logs from smaller networks may not be sufficient to iden-

tify either worst offenders or most popular port targets for attacks. Additionally, their

research claimed to detect distributed scanning activity by defining a distributed scan as

scans from multiple sources (five or more) aimed at a particular port of destinations in

the same /24 subnet within a one hour window.

A main drawback, related to the authors’ definition of coordination or distributed

scans, could be withdrawn from the above work. The definition misses several possible

coordinated/distributed scans, such as scans from fewer than five sources, or scans where

each source scans in a different hour. Additionally, they did not consider the case where

completely unrelated sources might scan the same port on the same /24 subnet within the

same hour. Their technique will neither report nor detect that case as a distributed cyber

scanning activity.

Mathematical Approaches

These distributed cyber scanning detection approaches utilize mathematical models, finite

state machines and other algebraic and geometric techniques to achieve their detection

task.

44

The author, Treurniet J., of [76] presented an approach that is based on the idea

that anomalous scanning activity could be detected using a finite state machine model

that reflects the progression of a TCP connection through a sequence of states via its

control flags. By storing such anomalies and applying correlation mechanisms, the author

claim that she could detect slow and distributed scans. A proof of concept prototype

was implemented which used both DARPA’s data [71] and operational data injected with

crafted anomalies to test the system. The author reported zero false negative and very

few false positives.

The system proposed in this work [76] is evidently advantageous by its space re-

quirements which makes it operationally feasible. On the other hand, this research work

is limited in the following: First, the experimental data was based on filtered data which

can not accurately reflect the system’s performance. Second, the system’s implementa-

tion is based on MATLAB [77] which reduces its operational capabilities from an efficacy

point of view. Third, the distributed correlation engine is based on simplistic criteria and

operates erroneously when the scan is destined to overlapping targets or ports.

In another work by the same author [78], a new system was proposed that is capable

of detecting slow scans and distributed scans. The work was built on previous work [76]

by refining the TCP model and adding support for UDP and ICMP. The proposed method

is composed of two stages. First, sessions are formed from packet data using simple state

machine models of TCP, UDP, and ICMP traffic. Second, common activities are identi-

fied in terms of groups of sessions which are referred to as activity patterns. The author

verified that the system correctly identifies crafted slow scans injected into real traffic and

found that most scans are below current detection thresholds. By combining the detected

scans with the session directionality, the author was able to give context to the scan alerts

and identify the scans that require immediate attention.

45

The research work presented above possess the following advantages. First, it re-

quires no training period and little knowledge of the local network configuration. Second,

it successfully attempts to separate backscatter [79] from inverse mapping traffic. On the

other hand, and although the author claimed the the system is able to detect distributed

scans, the system inaccurately group targeted distributed scans with other similar un-

targeted scans.

Bhuyan et al. [80] presented the adaptive outlier based approach for coordinated

scan detection (AOCD). Their proposed approach is based on two techniques. First, the

principal component analysis based feature reduction technique was adopted to identify

the relevant feature set. These feature sets are used during cluster formation. Second, a

variant of the Fuzzy C-means clustering algorithm [81] was as well employed to cluster

information. Their algorithm also adopts an outlier scoring mechanism for each feature

traffic data object and sequentially report it as malicious or not. The authors tested their

algorithm using different real-life datasets and against other available literature techniques.

The work in [80] has few limitations. Firstly, it requires a training period and

hence 1) its accuracy can be significantly affected when dealing with other new data

and 2) it requires some initialization time which is not always feasible in an operational

environment. Secondly, the empirical results demonstrated in the work were tested with

only four scan types and hence other scan types might either go undetected or have

inaccurate clustering. Thirdly, their proposed approach assumed that the target of the

scanning is a set of contiguous addresses, which is not always correct.

Heursitical Approaches

These distributed cyber scanning detection approaches utilize non-formal expert based

analysis including, but not limited to, visualization techniques, filter-based heuristics,

previous incident analysis, and multidisciplinary techniques.

Robertson et al. [5] introduced the System Detection surveillance techniques for

46

enclave environments (ESD) and peering center environments (PSD). The system em-

ployed a cascading filter design, as depicted in Figure 2.25, which coordinated a series

of specialized heuristics across connection records, individual probes, scans and coordi-

nated scanning groups. Their proposed approach operates as follows. First, approximate

Figure 2.25: Architecture of Surveillance Detection [5]

sessions between source and destination IP pairs are extrapolated in accordance with a

certain model. Second, each extrapolated session that represents a failed connection at-

tempt is assumed to be a probe. Third, each probing IP is given a score based on the

number of unique destination IP/port pairs probed. The IP is in turn considered a scanner

if its score is greater than an empirically derived alert threshold. Their system was tested

using real-time data and has shown to accurately discover great quantities of surveillance

activities, including distributed scans.

The above system is advantageous in being scalable due to data reduction in the

used filters and efficient in high bandwidth environments. However, on the other hand,

their work assumed, with regards to distributed scanning activity, that a scanner is likely

to use several IP addresses on the same subnet to carry on its probing act. This implies

that if a particular IP address scans a network, IP addresses near this IP address, rather

than those far away, are more likely to have also scanned the network. This assumption is

47

not always valid, especially when dealing with botnet scanning. Another limitation is that

their proposed algorithm could be susceptible to decoys intended to cause false positives.

In a different research work, Choi et al. [6] presented the parallel coordinate at-

tack visualization (PCAV) as illustrated in Figure 2.26. PCAV displays network traffic

Figure 2.26: PCAV System’s Design [6]

on the plane of parallel coordinates using the packet flow information such as the source

IP address, destination IP address, destination port and the average packet length in a

flow. The parameters are used to draw each flow as a connected line on the plane, where a

group of polygonal lines form a particular shape in case of an attack. From the observation

that each attack type possesses a unique pattern, the authors developed nine signatures

coupled with their detection mechanisms based on an efficient hashing algorithm. The au-

thors validated their proposed technique on three real network data samples and reported

a very low false positive rate.

Although the authors asserted that their technique is able to detect and visualize

distributed and coordinated scanning, they did not empirically validate that.

Stockinger et al., in their published research [82], presented a multidisciplinary high-

performance query-driven visualization technique for the purpose of anomaly detection.

They combined indexing mechanisms with a new approach to visual analytics to efficiently

48

populate visual histograms. Additionally, the authors applied the histogramming technol-

ogy in conjunction with a specialized visual analytics application for analyzing distributed

scans. They tested their system using network connection data that was collected by Bro

[83] at a governmental location.

The work presented by Stockinger et al. possesses few drawbacks. First, their sys-

tem is passive in the sense that it might be effective in the analysis of distributed scans

but not in real-time detection. Second, since the technique is based on visualization, it

is hard to provide numerical analysis of the technique’s false positive and negative rates.

The authors did not provide any guidelines concerning that fact.

Last but not least, the authors of [84] discussed the application of visualization

techniques to the problem of anomaly fingerprinting. This research work explored the

application of several visualization techniques and their usefulness towards identification

of attack tools and incidents. They used application, network and transport layer infor-

mation to accomplish the visualization. The authors argued that their technique will aid

other detection systems such as those using signature and statistical-based approaches to

detect anomalies. Moreover, the authors briefly discussed the effectiveness of their tech-

nique in detecting distributed cyber scanning activity.

The work in [84] is interesting by allowing the identification of various scanning

tools by visualizing their corresponding traffic. Indeed, this allows the detection of new

attack tools and types without replying on signature based systems that would typically

fail in such scenarios. Nevertheless, the work lacks the following. First, the authors did

not provide any metrics on how their system would perform when operating on real-time

data. Second, it is ambiguous how clusters of distributed scanners are formed using their

technique.

49

Summary

This section presented a literature review by solely focusing on many to one cyber scanning

detection techniques, commonly referred to as distributed approaches. From what has been

previously discussed, we can extract the following few points:

• In general, limited work has been done targeting the problem of detecting distributed

cyber scanning detection.

• Statistical methods are the least exploited to solve that problem.

• Algorithmic approaches, especially those utilizing clustering mechanisms, are the

most effective techniques.

• There exist a lack of effective, accurate and efficient distributed source scanning

clustering techniques.

2.2 Network Telescopes

In this section, we provide brief but relevant background information related to network

telescopes in addition to clarifying how they can be exploited to generate various cyber

threat intelligence.

A network telescope, also commonly referred to as a darknet or an Internet sink,

is a set of routable and allocated yet unused Internet Protocol (IP) addresses [85]. It

represents a partial view of the entire Internet address space. From a design perceptive,

network telescopes are transparent and indistinguishable compared with the rest of the

Internet space. From a deployment perspective, it is rendered by network sensors that are

implemented and dispersed on numerous strategic points throughout the Internet. Such

sensors are often distributed and are typically hosted by various global entities, including

Internet Service Provides (ISPs), academic and research facilities and backbone networks.

Figure 2.27 portrays a simple schema relating the dark space with the Internet space.

50

Internet Space

Telescope Space

Figure 2.27: A Network Telescope as part of the Internet Space

The aim of network telescopes is to provide a lens on Internet-wide malicious traffic;

since telescope IP addresses1 are unused, any traffic targeting them represents a continu-

ous view of anomalous unsolicited traffic. Such traffic, which is often dubbed as Internet

Background Radiation (IBR) [86, 85], could be leveraged to generate various cyber threat

intelligence, related, but not limited to, probing activities, denial of service attacks and

reflective amplification attacks. In the sequel, we briefly clarify how the latter is achieved.

A network telescope is indeed an effective approach to infer various Internet-scale

probing activities [87]. Figure 2.28 illustrates a simplistic example in which a probing

machine is scanning the Internet space. Such machine could have been previously infected

by a worm and is trying to propagate or perhaps is participating in an automated wide

Internet-scale scanning task. Whatever is the reason behind its scanning activities, it can

be seen that some of its network probe packets hit the network telescope and thus are

subsequently captured. Recall, that the probing machine, while spraying its probes across

the Internet space, can not avoid the network telescope as it does have any knowledge

about its existence. Further, it has been shown in [88] that it is extremely rare if not

impossible for a probing source to have any capability dedicated to such avoidance.

A network telescope is as well effective in pinpointing victims of denial of service

(dos) attacks [89]. Figure 2.29 illustrates such scenario. The compromised machines are

1also frequently referred to as dark or darknet IP addresses

51

Internet Space

Telescope Space
Probing Trace

Figure 2.28: A Network Telescope capturing Probing Activities

directed to launch a distributed denial of service attack towards SRV1. To hide their iden-

tities, these machines spoof their addresses and replace them with random IP addresses.

In this specific scenario, they replace their addresses with those of machines M1, M2 and

other IP addresses. Such other addresses happen to be those of the network telescope.

When the attack is launched, the reply packets will be directed towards M1 and M2 as

well as to some dark IP addresses. Traces that hit the telescope are often dubbed as

backscattered packets and could be effectively employed to infer that SRV1 has been the

target of a dos attack.

In this last scenario, a network telescope is leveraged to infer reflective/amplified dos

attacks [90]. Indeed, such attacks are an emerging form of distributed dos attacks that

rely on the use of publicly accessible UDP servers2, known as open resolvers, as well as

2Although TCP resolvers have been also shown to be vulnerable to such abuse [91]

52

Internet Space

Telescope Space

Denial of Service Trace

Backscattered Trace

Compromised Machines

M1 M2

SRV1

Figure 2.29: A Network Telescope pinpointing Victims of Denial of Service Attacks

bandwidth amplification factors to overwhelm a victim with a significant amount of traf-

fic. The idea is to send simple queries to such resolvers in which the replies, that aim at

flooding the victim, are orders of magnitude larger. Such approach is behind the notorious

300 and 400 Gbps attacks that hit the Internet in the last few years [92]. Figure 4.5 de-

picts a specific scenario where the resolvers are open Domain Name System (DNS) servers.

The compromised machines are directed to execute a reflective dos attack against

Org1. To achieve that, they initially spoof their identities by using those of Org1 and

subsequently send simple ANY queries to the DNS open resolvers. The latter DNS query

53

Internet Space

Telescope SpaceAmplified Attack Trace

Request Trace

Compromised Machines

Open DNS Resolver

Organization (Org1)

Open DNS Resolver

Figure 2.30: A Network Telescope pinpointing Sources of Reflective DoS Attacks

intends to pull all the available information from the DNS resolvers related to a requested

domain. The domain in the request trace is often a noteworthy one that possess a sig-

nificant amount of information. Commonly, the compromised machines will spray such

queries on the Internet space in a hope to reach as many open resolvers as possible in

order to increase the overall amplification factor. Intuitively, some of those requests will

hit the network telescope and hence will be captured. Requests that actually reach open

resolvers will be amplified and directed towards Org1.

It might be beneficial to mention at this point of the thesis that, for the past three

54

years, we have been receiving, on a continuous real-time basis, raw darknet/telescope data

from a trusted third party, namely, Farsight Security [93]. Such traffic originates from the

Internet and is destined to numerous /13 network sensors. The data mostly consists of

unsolicited TCP, UDP and ICMP traffic3. In this thesis, we will be leveraging various

portions of such data to validate the numerous proposed models and approaches.

In the next chapter, we will be focusing on the problem of Inferring enterprise as

well as Internet-scale probing activities.

3https://archive.farsightsecurity.com/SIE_Channel_14/

55

https://archive.farsightsecurity.com/SIE_Channel_14/

Chapter 3

Inferring Probing Activities

In this chapter, we elaborate on the design, implementation and validation of approaches

for inferring enterprise and Internet-scale probing activities.

3.1 On the Inference of Enterprise Probing Activities

We present in this section an approach that tackles the issue of detecting corporate cyber

scanning. The employed technique is based on a non-attribution anomaly detection ap-

proach that focuses on what is being scanned rather than who is performing the scanning.

To empirically validate the proposed technique, we utilize and examine two real network

traffic datasets and implement two experimental environments. The results show that for

a class C network with 250 active hosts and 5 monitored servers, the training period of

the proposed detection technique required a stabilization time of less than 1 second and a

state memory of 80 bytes. Moreover, in comparison with Snort’s sfPortscan technique, it

was able to detect 4215 unique scans and yielded zero false negative.

3.1.1 The Non-Attribution Anomaly Detection Technique

In this section, we present the non-attribution anomaly detection technique and provide

a discussion related to its training and detection periods.

56

Idea Rationale

The rationale behind the idea states that the available services that are provided by the

hosts within an enterprise network represent the facade of that network; the offered services

induce the possible leakage of information that could be retrieved by an attacker during a

successful scan. Hence, the idea takes full advantage and solely of the network topology by

constructing what we refer to as ‘local host facade’ (LHF) and ‘enterprise network facade’

(ENF). The former is the accessible services per host while the latter is the combination

of all accessible services of all active hosts within the network.

ENF Management

In the training phase of our technique, we leverage the SNMP [94] to manage the ENF.

SNMP is an Internet-standard protocol for managing devices on IP networks. It consists of

components for network management, including an application layer protocol, a database

schema, and a set of data objects. The protocol’s information exchange is performed be-

tween a management station and an agent (embedded in the managed entity) in the form

of SNMP messages. For an in-depth review of SNMP, including its inner workings, we

refer the readers to [95].

The idea is to exploit specific de-facto SNMP procedures to manage the ENF. The

latter task is divided into constructing the ENF by retrieving the list of listening ports

on each host and maintaining (adding/deleting certain IPs/ports) the list in case of any

change in accordance with a certain predefined update threshold. In the following, we

briefly discuss the employed SNMP procedures and consequently elaborate on their roles

in managing the ENF.

The SNMP Receive-GetRequest procedure [94] is issued by an SNMP management

station in order to read or retrieve an object value from a managed entity. The managed

SNMP entity responds to a GetRequest protocol data unit (PDU) with a GetResponse

PDU. The GetRequest operation is atomic; either all the values are retrieved or none is.

57

If the responding entity is able to provide values for all the variables listed in the incom-

ing VariableBindings list, then the GetResponse PDU includes the VariableBindings

field coupled with a value supplied for each variable. If at least one of the variable values

cannot be supplied, then no values are returned [94].

In this current work, the procedure, namely, SNMP Receive-GetRequest, is used to

construct the ENF by leveraging the following two request methods:

GetRequest(ipRouteDest, tcpNoPorts)

GetRequest(ipRouteDest, udpNoPorts)

On the other hand, the task of maintaining the ENF could be divided into two sub-

tasks. The first is when we need to update the list of active IPs/hosts and the second is

when we need to modify the list of listening TCP and UDP ports for a specific host. To ac-

complish this, another SNMP procedure is presented, namely SNMP Receive-SetRequest

[94] .

The procedure SNMP Receive-SetRequest is issued by an SNMP entity on behalf

of a management station. It has the same PDU exchange pattern and the same format as

the GetRequest PDU. However, the SetRequest is used to write an object value rather

than reading or retrieving one.

In this work, we exploit SNMP Receive-SetRequest to update the ENF; based on

a predefined update threshold, and whenever there is an update in the hosts (changing

status from active to non-active or vice-versa) or their corresponding listening ports, we

issue a SetRequest PDU to reflect the changes. For instance, if we notice that an active

(i.e., connected) host with an IP address of 10.0.0.1 is no longer active (i.e., disconnected),

the following SNMP request [94] is issued to remove that host from the ENF:

SetRequest(ipRouteDest.10.0.0.1 = invalid)

The above two procedures provide methods to construct and maintain what we

have defined as the enterprise network facade. Recall that this characterizes the training

58

period of our proposed non-attribution detection technique. Since the management of the

ENF is dependent solely on the enterprise network services and is totally decoupled from

any external traffic, our approach is advantageous in two core areas. First, it requires

almost negligible time to stabilize which renders its implementation very operationally

feasible. Second, it relies on the observation and manipulation of a protocol (SNMP)

found in every network, where its actual overhead on network bandwidth and hardware is

minimal even in large network environments [96, 97].

Using ENF for Scan Detection

Once the training period has completed and an ENF is constructed, the anomaly detection

phase commences. Scan detection is performed by monitoring external incoming TCP or

UDP connection attempts. The attempts could be destined to the following targets: (1)

an unallocated IP address, (2) an allocated IP address with a port combination not found

in the ENF, (3) an allocated IP address with a port combination found in the ENF and (4)

an allocated or an unallocated IP address outside of the monitored zone. In our approach,

the detection occurs when we notice target 2 occurring, namely, an attempt to an allocated

IP address with a port combination not found in the ENF. If the latter case occurs, we flag

the connection attempt and log its corresponding details such as source and destination

IP and port, protocol, and the timestamp. Target 1 is referred to as dark IPs [43] and

their analysis is outside the scope of this work. Target 3 is as well excluded from the

analysis. The exclusion of this target, at a first glance, seems to carry a limitation of our

work in that scans to valid services (i.e., entries in the ENF) will not be detected. For

instance, a DNS scan towards a naming (DNS) server is considered a valid activity and

thus would not be considered a scan. However, this type of scan would indeed be detected

using our approach as the same scan would almost certainly also occur against other hosts

in the network not offering DNS. The scanning activity would not be detected if it were

directed, although unlikely, solely at the naming server. However, we would consider the

latter activity to be an actual attack (i.e., such as a denial of service attack) rather than

a scan. Finally, target 4 depends on our monitored zone and intuitively we do not detect

scans outside the monitored areas.

59

Discussion

In this part, we provide a discussion that is related to the technique’s training and detec-

tion periods.

The training period is the period during which we first construct the ENF. Hence, as

is the case with any technique that requires a training period, it is possible that malicious

hosts activity may become part of the reference baseline. For example, if a trojan horse

program [98] has been maliciously installed and has been running on one of the corpo-

rates’s network servers, then the program would typically open up listening ports that are

otherwise not supposed to be listening. To avoid this, we can match or verify the LHF

with the enterprise network’s security policy. Any inconsistencies are removed from the

LHF to securely build the ENF.

Moreover, our technique’s training period is efficient as the ENF only needs to record

and maintain the state of the network services. To further improve this, we can manipulate

SNMP to gather and record information only about specific hosts within the enterprise

network. For example, we can build a custom ENF that includes only some of the network

servers and to exclude other servers and workstations (we refer to those selected servers

as belonging to within the boundaries of the monitored zone).

On the other hand, our proposed anomaly scanning detection approach does not

rely on the identification of the scanning source. Therefore, it can detect certain classes of

sophisticated scanning techniques (such as distributed and slow scanning) that make de-

termining the root cause of the scanning activity impractical. Furthermore, the detection

technique requires only a single packet to flag an attempt as a scan event and requires

minimalistic system state storage especially if used with a custom ENF. Additionally, our

approach is transport protocol-independent and hence can detect both TCP and UPD

scans. Recall, that the outcome of this first technique is detected scans with minimal false

positive rate.

60

3.1.2 Evaluation: Datasets, Methodologies and Results

For the purpose of empirically validating our approach, we utilized and examined two real

network traffic datasets and implemented two experimental environments.

We used a dataset that consists of unsolicited one-way telescope/darknet traffic re-

trieved in real-time. The traffic originates from the Internet and is destined to numerous

/24 and /16 network sensors. The data were collected during the period of November

1, 2012 and December 1, 2012. Tables 3.1 and 3.2, and Figure 3.1 show some network,

transport and application level statistical information about the dataset.

TCP UDP ICMP Others

86.3% 11.7% 1.8% 0.2%

Table 3.1: Protocols Distribution

Usage

(%)

Class Source Destination

A 63.3 0.3

B 21.2 9.5

C 15.5 90.2

Table 3.2: IP Class Distribution

We selected part of the traffic that is destined to a /24 network collected at the sen-

sor. We assumed that an operational/corporate network, having the same IP configuration

as the incoming traffic, exists behind the sensors. Consequently, we built the network that

is illustrated in Figure 3.2. The network has a Classless Inter-Domain Routing (CIDR)

address of 192.168.1.0/24 and is composed of 250 active hosts divided into 245 worksta-

tions and 5 servers. We as well took advantage of the SNMP procedures of Section 3.1.1

61

Figure 3.1: Application Layer Protocols

to develop an SNMP tool. The tool is based on the software components provided by

eMarksoft SNMP [99].

Internet Incoming Traffic

245 Workstations 5 Servers

HTTP/TELNET FTP DNS

SSH MS-AD/POP3

Figure 3.2: Enterprise Network

We first used the developed tool to execute the training period of our proposed ap-

proach. The ENF was populated with 5 LHFs (the other workstations are not offering any

services) as illustrated in Table 3.3. The task was completed in 0.32 seconds and required

80 bytes of state memory.

To validate the detection capabilities of our approach, we experimented with a one

day sample traffic captured from our dataset. We also compared our approach with Snort’s

62

Host TCP Ports Description

Server 1 80, 23 HTTP/TELNET

Server 2 21 FTP

Server 3 53 DNS

Server 4 23 SSH

Server 5 445, 110 MS-Active Directory/POP3

Table 3.3: ENF Details

sfPortscan preprocessor using the same day sample. sfPortscan [100], a preprocessor plu-

gin for the open source network intrusion and detection system Snort [101], provides the

capability to detect TCP, UDP, and ICMP scanning. The sfPortscan preprocessor detects

scans by counting RST packets from each perceived target during a predetermined timeout

interval. Before declaring a scan, 5 events (i.e., RST packets) are required from a given

target within a window. The sliding timeout window varies from 60 to 600 seconds by

sensitivity level; at the highest level, an alert will be generated if the 5 events are observed

within 600 seconds. We have chosen to compare our approach with Snort’s sfPortscan pre-

processor since Snort is one of the most broadly deployed intrusion detection/prevention

technology worldwide and has become a de-facto standard.

According to the results, using our approach with this specific data sample, we were

able to detect 4215 unique scans (unique IP/port pairs). Moreover, Figure 3.3 illustrates

the top 6 scanned TCP ports. Scans towards those services could indicate that they are

vulnerable to exploits.

To elaborate on the results, we subsequently present an analytical discussion on our

technique’s false negatives and false positives.

False Negatives: We fed the same dataset as an input to Snort’s sfPortscan. We

63

Figure 3.3: Top 6 Scanned TCP Ports - One Day Sample

relied on the output as a baseline for our comparison. Snort’s sfPortscan technique de-

tected 3690 unique scans. After a semi-automated analysis and comparison that was based

on the logged scanning traffic flows (i.e., source and destination IP and port, protocol, and

timestamp), we identified that all the 4215 scans that our approach detected include sf-

Portscan’s 3690 scans. Therefore, relative to this technique and experimenting with this

specific data set, we confirm that our approach yielded no false negative.

False Positives: Our approach flags an attempt as a scan whenever a connection

is made to a host or service not offered by the network. The following can exist as sources

of false positive: (1) User error and network misconfiguration; the intent was not to per-

form a scan but rather to access a legitimate service that have failed. Since there exists

no scientific way to judge the connection intention, we have to classify those attempts

as scans. (2) Backscattered traffic [102] destined to the corporate network; such traffic

commonly refers to unsolicited traffic that is the result of responses to denial of service

attacks with spoofed source IP addresses. To avoid this false positive, we can investigate

such traffic using the proposed method in [86], which uses flags in packet headers, such as

TCP SYN+ACK, RST, RST+ACK, and ACK, to accomplish the filtering. (3) Attempts

to newly available services that were not part of the training period; to reduce the occur-

rences of this, we can optimize the update threshold of an ENF to include the new services.

64

Moreover, our approach can detect certain types of scans that were not included

at the time of the experiment, and by default, in Snort’s sfPortscan definitions. These

include scans from a single host to a single port on a single host, slow scans and a specific

host scanning multiple ports on multiple hosts. In general, we claim that a certain limited,

acceptable and a manageable number of false positives will occur. Although future manual

packet inspection needs to be performed to get the exact number of false positives, we

need as well to consider Snort’s sfPortscan false negatives and the different types of scans

that our approach was able to detect.

To further evaluate the proposed non-attribution anomaly detection approach that

was presented in Section 3.1.1, we consider another network scenario. We selected part of

the traffic that is destined to a /24 network collected at the sensor. We assumed that a

De-Militarized Zone (DMZ) perimeter network, having the same IP configuration as the

incoming traffic, exists behind the sensors. A DMZ network typically refers to a logical sub-

network that contains and exposes an organization’s external-facing (i.e., public) services

to a larger untrusted network, such as the Internet. Consequently, we built the network

that is illustrated in Figure 3.4.

Internet Incoming Traffic

DNS

HTTPS FTPS

Figure 3.4: The DMZ Network

The DMZ network consists of three public servers. The corresponding ENF is sum-

marized in Table 3.4. The procedure to build the ENF executed in 0.23 seconds and

65

required 54 bytes of state memory.

Host TCP Ports Description

Server 1 443 HTTPS

Server 2 989, 990 FTPS

Server 3 53 DNS

Table 3.4: ENF Details

To validate the detection capability of our approach, we experimented with a one

day sample traffic captured from our dataset. We also compared our approach with Snort’s

sfPortscan preprocessor using the same data sample. Table 3.5 summarizes the findings.

After a semi-automated analysis and comparison that was based on the logged scanning

traffic flows (i.e., source and destination IP and port, protocol, and timestamp), we iden-

tified that all the 3421 scans that our approach detected include sfPortscan’s 3112 scans.

Therefore, relative to this technique and experimenting with this specific data set, we

confirm, once again, that our approach yielded no false negative.

Detected Scans-Proposed Approach Detected Scans-Snort’s sfPortscan

3421 3112

Table 3.5: Summary-Detection Capability

3.2 On Fingerprinting Internet-scale Probing Activities

Motivated by recent cyber attacks that were facilitated through probing, limited cyber

security intelligence and the lack of accuracy that is provided by scanning detection sys-

tems, this section presents a new approach to fingerprint Internet-scale probing activities.

It investigates whether the perceived traffic refers to probing activities and which exact

66

scanning technique is being employed to perform the probing. Further, this work strives

to examine probing traffic dimensions to infer the ‘machinery’ of the scan; whether the

probing is random or follows a certain predefined pattern; which probing strategy is being

employed; and whether the probing activity is generated from a software tool or from a

worm/bot. The approach leverages a number of statistical techniques, probabilistic dis-

tribution methods and observations in an attempt to understand and analyze probing

activities. To prevent evasion, the approach formulates this matter as a change point

detection problem that yielded motivating results. Evaluations performed using 55 GB

of real darknet traffic shows that the extracted inferences exhibit promising accuracy and

can generate significant insights that could be used for mitigation purposes.

3.2.1 Proposed Approach

Internet security operators on the global scale are interested in generating insights and

inferences concerning any probing activities that they might perceive. It is significant for

them to have the capability to fingerprint probing events. Thus, they would benefit from

knowing if the perceived traffic is related to scanning or not and if it is, exactly which

scanning technique has been employed. This section aims at tackling these two issues.

The rationale of the proposed method states that regardless of the source, strategy

and aim of the probing, the reconnaissance activity should have been generated using a

certain literature-known scanning technique (i.e., TCP SYN, UDP, ACK, etc. [45]). We

observe that a number of those probing techniques demonstrate a similar temporal corre-

lation and similarity when generating their corresponding probing traffic. In other words,

the observation states that we can cluster the scanning techniques based on their traffic

correlation statuses. Subsequently, we can differentiate between probing and other mali-

cious traffic (i.e., Denial of Service (DoS)) based on the possessed traffic correlation status.

We can as well attribute the probing traffic to a certain cluster of scanning techniques (i.e.,

the probing activity, after confirmed as probing, can be identified as being generated by

a certain cluster of techniques that possess similar traffic correlation status). To identify

67

exactly which scanning technique has been employed in the probing, we statistically esti-

mate the relative closeness of the probing traffic in comparison with the techniques found

in that cluster.

To enable the capturing of traffic signals correlation statuses, the proposed method

employs the Detrended Fluctuation Analysis (DFA) technique. DFA was first proposed

in [103] and has since been used in many research areas to study signals correlation. Very

limited work in the areas of cyber security and malicious traffic detection has utilized DFA

[104, 105], and to the best of our knowledge, no work has leveraged the DFA technique to

tackle the problem of fingerprinting probing traffic.

The DFA method of characterizing a non-stationary time series is based on the root

mean square analysis of a random walk. DFA is advantageous in comparison with other

methods such as spectral analysis [106] and Hurst analysis [107] since it permits the de-

tection of long range correlations embedded in a seemingly non-stationary time series.

It avoids as well the spurious detection of apparent long-range correlations that are an

artifact of non-stationarity. Another advantage of DFA is that it produces results that are

independent of the effect of the trend [108].

Given a traffic time series, the following steps need to be applied to implement DFA:

• Integrate the time series; The time series of length N is integrated by applying

y(k) =

k∑
i=1

[B(i)−Bave] (3.1)

where B(i) is the ith interval and Bave is the average interval.

• Divide the time series into “boxes” (i.e., bin size) of length n.

• In each box, perform a least-squares polynomial fit of order p. The y coordinate of

the straight line segments is denoted by yn(k).

68

• In each box, detrend the integrated time series, y(k), by subtracting the local trend,

yn(k). The root-mean-square fluctuation of this integrated and detrended time series

is calculated by

F (n) =

√√√√ 1

N

N∑
k=1

[y(k)− yn(k)]2 (3.2)

• Repeat this procedure for different box sizes (i.e., time scales) n

The output of the DFA procedure is a relationship F (n), the average fluctuation as a

function of box size, and the box size n. Typically, F (n) will increase with box size

n. A linear relationship on a log-log graph indicates the presence of scaling; statistical

self-affinity expressed as F (n) ∼ nα. Under such conditions, the fluctuations can be

characterized by a scaling exponent α, which is the slope of the line relating logF (n) to

log(n). The scaling exponent α can take the following values, disclosing the correlation

status of the traffic time series.

• α < 0.5: anti-correlated.

• α ≈ 0.5: uncorrelated or white noise.

• α > 0.5: correlated.

• α ≈ 1: 1/f -noise or pink noise.

• α > 1: non-stationary, random walk like, unbounded

• α ≈ 1.5: Brownian noise.

We proceed by fingerprinting the scanning techniques. For the scope of the current work,

we have selected 10 cyber scanning techniques. To accomplish the task, we created an

experimental environment that includes two virtual machines, a scanning and a target

machine. Note that the virtual environment was hosted by VMware software while the

machines were running Ubuntu Linux 10 with 2GB of RAM and 2.1GHz dual core CPUs.

The machines are isolated from any external networks to prevent any noise in the gener-

ated signal. The target machine does not operate any special service. We have also setup

69

Cyber Scanning Technique Nmap Command Flags

TCP SYN Scan -sS

TCP connect() Scan -sT

FIN Scan -sF

Xmas Scan -sX

Null Scan -sN

UDP Scan -sU

IP Protocol Scan -sO

ACK Scan -sA

Window Scan -sW

RPC Scan -sR

Table 3.6: Selected Cyber Scanning Techniques and Nmap Command Flags

a TCPDUMP [109] sink on the target to collect the network traffic data originating from

the scanning machine. It is worthy to note that we do not record the traffic response from

the target as our intention is to capture the scanning techniques’ traffic regardless of the

offered services by the probed machine. To execute the scanning activity, we have utilized

Nmap [110], an open source utility for network scanning and discovery. We ran Nmap 10

times, once for each scanning technique, and collected the generated traffic in 10 packet

capture (pcap) [109] traffic files. The selected scanning techniques and the correspond-

ing required Nmap command flags to execute each of the techniques are summarized in

Table 3.6. For detailed information about the concerned scanning techniques, we refer

the reader to [45, 110]. The generated packets’ distribution of the 10 scanning techniques

is illustrated in Figure 3.5. Subsequently, we applied the DFA technique on each of the

scanning techniques’ traffic signals. To achieve that, we have utilized the DFA MATLAB

code found in [111] and used 1ms as the bin size for all the 10 scanning techniques. The

outcome of applying the DFA on the previous scanning traffic time series distributions is

shown in Figure 3.6 and the output of the scaling exponents α is summarized in Table 3.7.

From Table 3.7 and the information relating the scaling exponent α to the correlation

70

0

5

10

15

20

25

0

0
.0

0
6

0
.0

1
2

0
.0

1
8

0
.0

2
4

0
.0

3

0
.0

3
6

0
.0

4
2

0
.0

4
8

0
.0

5
4

0
.0

6

0
.0

6
6

0
.0

7
2

0
.0

7
8

0
.0

8
4

0
.0

9

0
.0

9
6

0
.1

0
2

0
.1

0
8

0
.1

1
4

0
.1

2

0
.1

2
6

0
.1

3
2

0
.1

3
8

0
.1

4
4

0
.1

5

0
.1

5
6

0
.1

6
2

N
b

r
 o

f
 P

a
c
k

e
ts

Time(1ms interval)

TCP SYN Scan Packets Distribution

(a) TCP SYN Scan

0

2

4

6

8

10

12

14

0

5
.6

1
1
.1

2
1
.6

3
2
.1

4
2
.6

4
9
.1

5
4
.2

5
9
.6

6
4
.7

7
0
.1

7
5
.2

8
0
.6

8
6
.2

9
6
.7

1
0
6
.7

1
1
7
.2

1
2
7
.7

1
3
8
.2

1
4
7
.7

1
5
5
.8

1
6
5
.4

1
7
0
.8

1
7
5
.9

1
8
1
.3

1
8
6
.8

1
9
6
.4

2
0
6
.9

2
1
4
.5

2
2

5

N
b

r
o

f
P

a
c
k

e
ts

Time(0.1s interval)

TCP Connect() Scan Packets

Distribution

(b) TCP connect() Scan

0

2

4

6

8

10

12

14

16

18

N
b

r
o

f
P

a
c
k

e
ts

Time(1ms interval)

FIN Scan Packets Distribution

(c) FIN Scan

0

5

10

15

20

25

30

N
b
r
 o

f
P

a
c
k
e
ts

Time(1ms interval)

XMAS Scan Packets Distribution

(d) Xmas Scan

0

5

10

15

20

25

N
b

r
 o

f
 P

a
c
k

e
ts

Time(1ms interval)

NULL Scan Packets Distribution

(e) Null Scan

0

5

10

15

20

25

0

1
2

2
4

3
5

4
6

5
7

6
8

7
9

9
0

1
0
1

1
1
2

1
2
3

1
3
4

1
4
5

1
5
6

1
6
7

1
7
8

1
8
9

2
0
0

2
1
1

2
2
2

2
3
3

2
4
4

3
7
3

4
8
7

6
1
6

7
4
6

8
7
5

9
2
8

1
0
5
7

N
b
r

o
f

P
a
c
k
e
ts

Time(1s interval)

UDP Scan Packets Distribution

(f) UDP Scan

0

5

10

15

20

25

30

0
6
.4

8
.7

1
0

.1
1
1
.5

1
2
.9

1
4

.3
1

5
.7

1
7
.1

1
8
.5

1
9

.9
2

1
.3

2
3
.7

3
0
.9

3
9

.9
4

8
.9

5
7
.9

7
1
.2

8
5

.2
9

9
.2

1
1
3
.2

1
2
7
.3

1
4

1
.3

1
5

6
.3

1
7
0
.3

1
8
4
.4

1
9

8
.4

2
1

2
.4

2
2
6
.4

2
4
0
.4

2
5

4
.5

N
b
r
 o

f
 P

a
c
k
e
ts

Time(0.01s interval)

IP Protocol Scan Packets Distribution

(g) IP Protocol Scan

0

5

10

15

20

25

30

0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1

0
.0

1
2

0
.0

1
4

0
.0

1
6

0
.0

1
8

0
.0

2

0
.0

2
2

0
.0

2
4

0
.0

2
6

0
.0

2
8

0
.0

3

0
.0

3
2

0
.0

3
4

0
.0

3
6

0
.0

3
8

0
.0

4

0
.0

4
2

0
.0

4
4

0
.0

4
6

0
.0

4
8

0
.0

5

N
b

r
 o

f
 P

a
c
k

e
ts

Time(1ms interval)

ACK Scan Packets Distribution

(h) ACK Scan

0

2

4

6

8

10

12

14

16

18

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

0
.2

0
.2

2

0
.2

4

0
.2

6

0
.2

8

0
.3

0
.3

2

0
.3

4

0
.3

6

0
.3

8

0
.4

0
.4

2

0
.4

4

0
.4

6

N
b

r
 o

f
 P

a
c
k

e
ts

Time(0.01s interval)

Window Scan Packets Distribution

(i) Window Scan

0

5

10

15

20

25

30

N
b

r
o

f
P

a
c
k

e
ts

Time(1ms interval)

RPC Scan Packets Distribution

(j) RPC Scan

Figure 3.5: Packets’ Distribution generated by the Scanning Techniques
71

-0.5

0

0.5

1

1.5

2

0.6 1.0 1.2 1.5 1.8 2.1 2.4 2.7

L
o

g
1

0
(F

(n
))

Log10(n)

Detrended Fluctuation Analysis

TCP SYN Scan

TCP Connect() Scan

UDP Scan

(a)

-0.5

0

0.5

1

1.5

2

0.6 1.0 1.2 1.5 1.8 2.1 2.4 2.7 3.0

L
o
g

1
0

(F
(n

))

Log10(n)

Detrended Fluctuation Analysis

FIN Scan

XMAS Scan

NULL Scan

ACK Scan

(b)

-1

-0.5

0

0.5

1

1.5

2

2.5

0.6 1.0 1.2 1.5 1.8 2.1 2.4 2.7

L
o
g

1
0

(F
(n

))

Log10(n)

Detrended Fluctuation Analysis

Window Scan

IP Protocol Scan

RPC Scan

(c)

Figure 3.6: Applying DFA on the Scanning Techniques Traffic Signals

72

Cyber Scanning Technique Scaling Exponent

TCP SYN Scan 0.57

TCP connect() Scan 0.87

FIN Scan 0.31

Xmas Scan 0.30

Null Scan 0.37

UDP Scan 0.66

IP Protocol Scan 1.13

ACK Scan 0.44

Window Scan 1.24

RPC Scan 1.31

Table 3.7: Summary of the DFA Scaling Exponent α

status, we can produce Table 3.8 that discloses that a number of scanning techniques

in fact demonstrated a similar temporal correlation and similarity when generating their

corresponding probing traffic.

It is significant to pinpoint that such results are independent from the used scan-

ning tool. In this work, we have used Nmap since it is the most widely adopted and

well established scanning tool. Moreover, it provided a simple mechanism to generate the

scanning traffic. We argue that same scanning techniques will generate a somehow similar

traffic distribution regardless of the tool used and hence will output similar DFA results.

To support this statement, we executed an experiment using Fing [112], another network

scanning and discovery tool. We also selected the TCP SYN Scan since it is the most

popular scanning technique [72]. We repeated the same experimentation as we did with

the other scanning techniques. The output of the DFA scaling exponent α was = 0.55.

Therefore, the correlation status was shown to be ‘correlated’ which is coherent with the

DFA results that we have previously obtained with the TCP SYN Scan when we used

Nmap. We can generalize such result to other techniques as well; since DFA operates on

73

Correlation Status Cyber Scanning Techniques

Anti-Correlated

FIN Scan

Xmas Scan

Null Scan

ACK Scan

Correlated

TCP SYN Scan

TCP connect() Scan

UDP Scan

Non-Stationary

IP Protocol Scan

Window Scan

RPC Scan

Table 3.8: Cyber Scanning Techniques and Corresponding Correlation Statuses

packets distribution in a time series, where similar scanning techniques, when following

the protocol and technique standards, will possess similar distributions when probing their

target, then we can expect similar DFA results regardless of the tool used.

It is also noteworthy to mention that attackers/scanners will not be able to avoid

detection by modifying the correlation status of a probing signal because of two reasons.

First, since they are going to employ one of the techniques of Table 3.7, which presents a

comprehensive list of scanning techniques, regardless of whether they use a tool or any-

thing else, they will indeed generate a probing signal that will be fingerprinted by the

proposed approach. Second, the fact the we aim to leverage a darknet space to perform

the inference in which the scanners have no knowledge about its existence, will cause the

scanners to be detected. We argue that scanners will not go into the trouble of developing

entirely new probing techniques that do not rely on the techniques of Table 3.6 and at

the same time possess the capability to detect darknets, where both tasks are known to

be hard [113], if not impossible, and impractical from a scanner perspective.

74

Start

Traffic

Time

Series St

Algorithm 1

Probing

Distributions

Starting

Location

DFA

Does St refer

to probing
No

Algorithm 2

Inferred

Probing

Time Series

Yes

Inferred

Probing

Technique

Figure 3.7: Employed System Process

We proceed by presenting Figure 3.7, which depicts the system process that is

adopted by the proposed approach to permit the inference of the probing activities as

well as the employed probing techniques. One of the issues that arises is where to apply

DFA given a traffic time series that needs to be tested; this problem could be re-stated as

follows: given a traffic time series St, find a starting position X and an ending position

X + σ in St where we can apply DFA on. Assuming a ‘random’ or a ‘predefined’ window

location in the time series St to apply DFA on will be erroneous as this will result in

wrong inferences. For example, if the traffic time series that needs to be tested is of length

5 minutes, applying DFA on the entire distribution could indicate a result (suppose it

was inferred that it is not scanning) while the actual scanning starts on the 3rd minute;

the entire distribution’s correlation status appears to be close to noise (i.e., α value ≈ 1

and hence not scanning) while from the 3rd minute up to the 5th the signal is correlated

(i.e., scanning). To tackle this, we present Algorithm 1 which discloses an approach to

approximate when to apply DFA, to correctly infer whether or not the traffic refers to

75

probing activities.

Algorithm 1: Approximating the starting location on where to apply DFA

in St
input : A time series St of the distribution under testing; the set of time

series Scp of the distributions of the scanning techniques.

output: X, reflecting the starting location on where to apply DFA in St

1 m=length(St);

2 for every Scp do

3 n=length(Scp);

4 for i=1 → (m− n) do

5 s[i]=compare[St(1 + i, · · ·, n+ i), Scp(1, · · ·, n)];

6 S[p]=min(s[]);

7 end

8 X=min(S[]);

9 return (X);

10

11 compare(A, B)

12 for i=1 → n do

13 K[i]= ‖E‖ = d(A(i), B(i));

14 sum+=K[i];

15 return (sum);

As shown in Figure 3.7, Algorithm 1 takes as input the time series St of the dis-

tribution under testing and all the other distributions of the scanning techniques Scp of

Figure 3.5. For every distribution related to the scanning techniques, it calculates the eu-

clidean distance E between the points in Scp and St. Subsequently, the scanning technique

distribution is moved one point in a sliding window fashion against St. For each sliding

window, it records the distance between Scp and St. After finishing all the sliding window

procedures, the algorithm stores the minimum distance between both sliding windows in

76

all the iterations. The algorithm finally selects X as the minimum of all the distances in

all sliding windows after all the techniques Scp have passed on St. This will approximate

the starting position on where to apply DFA in St. Note that, σ in the ending position

X + σ, that was previously mentioned, is the length of the scanning technique Scp where

X was derived from. It is significant to note that we use the scanning techniques Scp

of Figure 3.5 as a way to infer, in an apriori fashion, where to start applying DFA and

hence where we estimate that the scanning is initiated; we are not completely matching

the techniques with the input time series St. In fact this is not the intention of Algorithm

1 and hence we do not expect the techniques to completely overlap the input time series

St. Thus, any variation of scanning techniques’ distributions is tolerated and manageable,

as long their correlation status, as we expect and observe, are kept stable.

After applying DFA, given the output information of Algorithm 1, we end up with

a certain correlation status. We expect that the correlation status indicates a probing

activity (recall Table 3.8). However, we may encounter the case where the correlation

status does not indicate probing (i.e., uncorrelated, 1/f -noise or Brownian noise). If the

activity refers to probing, then the output correlation status will lead us to a certain

cluster of scanning techniques (of Table 3.8) that this probing activity has been generated

from. To exactly identify which scanning technique has been used to probe, we present

Algorithm 2, which discloses an approach to achieve that.

As depicted in Figure 3.7, Algorithm 2 takes as input a time series Sb of the probing

distribution that DFA was previously applied on; Sb refers to the time series extracted from

X to X + σ. For each of the scanning techniques Scbi in the cluster Scb that is related to

the previous output correlation status, we statistically measure the relative closeness of Sb

to each scanning technique in that cluster using Bhattacharyya distance [114], Bha. The

latter statistic test is an established and an effective metric to determine the overlap of two

sample distributions [114]. Intuitively, the algorithm selects the technique’s distribution

that is closer to Sb, Scbi. Scbi will be identified as the scanning technique that Sb was

employing.

77

Algorithm 2: Identifying the scanning technique

input : A time series Sb of the probing distribution that DFA was

previously applied on; a cluster of time series Scb of the

distributions of the scanning techniques related to the correlation

status.

output: Scbi, reflecting one scanning technique that is estimated to be

generating the probing activity found in Sb.

1 for every Scbi do

2 Bhabi = ‖Bha‖ = d(Scbi,Sb);

3 end

4 di = Min(Bhabi);

5 return (Scbi|i of di);

3.2.2 Observation Validation

From what has been presented in Table 3.8, we deduced that the techniques could be

clustered into 3 groups based on their probing traffic correlation statuses. Thus, the null

hypothesis states that the scanning techniques’ traffic originates from 3 independent clus-

ters. However, by default, the DFA approach, especially in the context of probing activity,

is not an established method to identify clusters. We now aim to validate the proposed

method by comparing it with the well established machine learning clustering approaches,

namely, the K-means and the Expectation Maximization (EM) techniques. These tech-

niques and the validation results are consequently discussed.

The EM algorithm is an effective and popular technique for estimating the mixture

model parameters [115]. Note that, the K-means algorithm operates by minimizing the

sum of squared Euclidean distances between data records in a cluster and the clusters mean

vector. This assignment criterion implicitly assumes that the clusters are represented by

Gaussian distributions located at the k cluster means. Moreover, since the K-means al-

gorithm utilizes the Euclidean metric, it does not generalize to the problem of clustering

78

discrete or categorical data. Furthermore, the K-means algorithm employs a membership

function which assigns each data record to exactly one cluster. This harsh criteria does not

allow for uncertainty in the membership of a data record within a cluster. On the other

hand, the mixture model framework adopted by the EM relaxes these assumptions. Due

to the probabilistic nature of the mixture model, clusters can be effectively represented

by a suitable component density functions (i.e., Poission, non-spherical Gaussians, etc.).

Additionally, categorical or discrete data is similarly handled by associating discrete data

distribution over these attributes (i.e., Multinational, Binomial, etc.). In this work, we

adopt both the K-means and the EM algorithm to validate the DFA approach that was

previously proposed. The EM algorithm is thoroughly discussed next.

The mixture model approximates the data distribution by fitting k component den-

sity functions fh, h = 1, . . . , k, to a database D having m records and d attributes. In

our work, the attributes represent packet features extracted from the scanning machines,

the records represent the data instances related to those features and the database D is

the complete set of data instances. Let x be a record from D, then the mixture model

probability density function evaluated at x is given by:

p(x) =

k∑
h=1

wh · fh(x|Φh) (3.3)

The weights wh represent the fraction of database records belonging to cluster h and

sum to one;
k∑

h=1

wh = 1, wh ≥ 0

The functions fh(x|Φh) h = 1, . . . , k are the clusters or component density functions

modeling the records of the hth cluster, and Φh represents the specific parameters used to

compute the value of fh (i.e., for a Gaussian component density function, Φh is the mean

and the covariance matrix).

The mixture model also allows for overlapping clusters; data records may belong to

all k clusters with different probabilities of membership. The probability of membership

(i.e., weight) of data record x in cluster h is:

79

wh(x) =
wh · fh(x|Φh)∑
i
wi · fi(x|Φi)

(3.4)

By making the assumption that the attributes of the database are independent over

records within a given cluster, the component density functions can be decomposed as a

product of density functions over each attribute j = 1, . . . , d:

fh(x|Φh) =
d∏
j=1

fh,j(xj |Φh) (3.5)

Although the framework we present in this work is general enough to address mix-

ture model estimation having both continuous and discrete attributes, we focus on its

application to continuous-valued data, modeled by multivariate Gaussians. In our current

work, this choice of Gaussians for continuous-valued data is motivated by a result from

density estimation theory stating that any distribution can be effectively approximated

by a mixture of Gaussians [116].

Each population (i.e., cluster) is modeled by a d-dimensional Gaussian probability

distribution. The multivariate Gaussian distribution for cluster h = 1, . . . , k is parametrized

by the d-dimensional mean vector µh and d× d covariance matrix Σh:

fh(x|µh,Σh) =
1√

(2Π)d|Σh|
exp {℘} (3.6)

where

℘ = −1

2
(x− µh)T (Σh)−1(x− µh),

x and µh are column vectors, the superscript T indicates the transpose to a row vector, |Σh|

is the determinant of Σh and (Σh)−1 is its matrix inverse. The Gaussian mixture model

parameters consist of the means and covariance matrices for each cluster h = 1, . . . , k along

with the weights wh associated with each cluster. Let Φ = {(wh, µh,Σh), h = 1, . . . , k} be

the collection of mixture model parameters. The quality of a given set of parameters Φ is

a measure of how well the corresponding mixture model fits the data. This is quantified

by the log-likelihood of the data given the mixture model:

L(Φ) =
∑
x∈D

log

{
k∑

h=1

wh · fh(x|µh,Σh)

}
(3.7)

80

The EM algorithm begins with an initial estimation of Φ and iteratively updates it.

The sequence of Φ-values is such that L(Φ) is non-decreasing at each iteration. We next

outline the operation of the EM algorithm.

Given a database D with m records with d continuous-valued attributes, a stopping

tolerance ε > 0 and a mixture model parameters Φj at iteration j, compute Φj+1 at

iteration j + 1 as follows:

1. For each database record x ∈ D, compute the membership probability of x in each

cluster h = 1, . . . , k:

wjh(x) =
wjh · fh(x|µjh,Σ

j
h)∑

i
wji · fi(x|µ

j
i ,Σ

j
i)

2. Update the mixture model parameters:

wj+1
h =

∑
x∈D

wjh(x),

µj+1
h =

∑
x∈D

wjh(x) · x∑
x∈D

wjh(x)
Σj+1
h

=

∑
x∈D

wjh(x)(x− µj+1
h)(x− µj+1

h)T∑
x∈D

wjh(x)

stopping criteria: if |L(Φj)−L(Φj+1)| ≤ ε, stop. Else set j ← j+ 1 and go to 3.3. L(Φ)

is given in

3.7.

Note that, steps 1 and 2 are respectively referred to as the estimation and maximiza-

tion steps. Moreover, a full data scan is required at each iteration of the EM algorithm

to compute the membership probability for each data record in each cluster. The number

of iterations required before the stopping criteria is satisfied is dependent upon the initial

parameter values and the actual data distribution. In general the number of iterations is

81

arbitrary but the procedure is guaranteed to converge. Note that, all the mathematical

notations that were presented in this section coupled with their corresponding definitions

are summarized in Table 3.9.

Mathematical Notation Definition

p(x) Probability density function evaluated at a data record x

wh The probability of a data record belonging to a cluster h

fh(x|Φh) Component density functions

Φh The parameters of the component density function∏d
j=1 fh,j(xj |Φh) The product of density functions over the attributes

µh Mean vector

Σh Covariance matrix

L(Φ) The mixture model

Table 3.9: Mathematical Notations and Definitions

Recall that the aim is to validate the soundness of our proposed method by com-

paring it with the discussed machine learning clustering approaches. We proceed by going

back to our scanning traffic pcap files that we have previously collected. Subsequently, we

extracted from them a total of 29 data link, network and transport layer packet features

as summarized in Table 3.10. This feature extraction procedure was achieved using the

open source jNetPcap API [117]. We consequently compiled the extracted features into a

unified data file of 7138 data instances. To apply the K-means and the EM algorithm on

our data file, we have respectively used MATLAB’s default clustering functionality and

the WEKA data mining tool [118]. The output of those procedures is depicted in Figure

3.8.

Figure 3.8 clearly shows the formation of 3 clusters. This result provides evidence

that the traffic originates from 3 different classes. To further test the validity of this

result, we produced a silhouette graph of the K-means clusters as shown in Figure 5.23b.

82

Features

Data Link Features

1 Delta time with previous cap-

ture packet

2 Packet Length

3 Frame Length

4 Capture Length

5 The flag ‘frame’ is marked

Network Layer Features

6 IP Header length

7 IP Flags.

8 IP Flags: reversed bit

9 IP Flags: do not fragment bit

10 IP Flags: more fragments bit

11 IP Fragment offset

12 IP Time to live

13 IP Protocol

Transport Layer Features

14 TCP Segment length

15 TCP Sequence number

16 TCP Next sequence number

17 TCP Acknowledgement num-

ber

18 TCP Header length

19 TCP Flags

20 TCP Flags: congestion window

reduced

21 TCP Flags: ECN-Echo

22 TCP Flags: Urgent

23 TCP Flags: Acknowledgement

24 TCP Flags: Push

25 TCP Flags: Reset

26 TCP Flags: Syn

27 TCP Flags: Fin

28 TCP Window size

29 UDP Length

Table 3.10: Features Description

83

(a) K-means Clusters

(b) K-means Silhouette

(c) EM Clusters

Figure 3.8: Method Validation through Unsupervised Learning

84

Typically, a silhouette plot displays a measure of how close each point in one cluster is to

points in the neighboring clusters. A value of 1 indicates that the points are very distant

from neighboring clusters, a value of 0 informs that the points are not distant from other

clusters while a negative value indicates that the points are erroneously placed in that

cluster. From Figure 5.23b, it is shown that a significant amount of points in all the 3

classes have a large silhouette value, greater than 0.6 [119], indicating that the clusters

are separated from neighboring clusters. This provides incentives to validate the quality

of the formed K-means clusters. Further, the output of the EM clustering procedure on

the same data file is shown in Figure 3.8c. Similar to the K-means results, we can notice

the formation of 3 distinct classes. These results relatively validate the proposed method

by revealing that the scanning traffic originates from 3 distinct classes; we accept the null

hypothesis that stated that the scanning techniques’ traffic originates from 3 independent

clusters.

Is the probing random?

When probing activities occur, it would be interesting to possess insights related to how

it is being generated; does the scanning occur in a random manner or does it follow a

certain predefined pattern. Patterns existence provide cyber security intelligence about

bots orchestration behavior. The latter is specifically important when trying to obtain in-

ferences related to cyber scanning campaigns, such as the one reported in [120]. To answer

this question, we proceed as follows. For each distinct pair of hosts retrieved from the

probing traffic, we test for randomness in the generated traffic using the Wald-Wolfowitz

(also known as the runs) statistic test [121]. If the result is positive, we record it for

that specific session and apply the test on the remaining probing traffic. If the outcome

is negative, we infer that the generated traffic follows a certain pattern. To capture the

specific employed pattern, in this work, we model the probing traffic as a Poisson process1

and retrieve the maximum likelihood estimate intervals (at a 95% confidence level) for the

Poisson parameter λ that corresponds to that traffic. The choice to model the traffic as a

1The modeling approach is not very significant but rather the consistency of adopting one approach on

all the probing sources.

85

Poisson distribution is motivated by [122], where the authors observed that probe arrivals

is coherent with that distribution.

How are the targets being scanned?

As revealed in [120, 123], coordinated probing bots employ various strategies when prob-

ing their targets. These strategies could include IP-sequential [124], reverse IP-sequential

[125], uniform permutation [126] or other types of permutations. In an attempt to capture

the probing strategies, we execute the following. For each probing source in the probing

traffic, we extract its corresponding distribution of target IPs. To differentiate between

sequential and permutation probing, we apply the Mann-Kendall statistic test [127], a non-

parametric hypothesis testing approach, to check for monotonicity in those distributions.

The rational behind the monotonicity test is that sequential probing will indeed induce a

monotonic signal in the distribution of target IPs while permutation probing will not. Fur-

ther, in this work, we set the significance level to 0.5% since a higher value could introduce

false positives. To differentiate between (forward) IP-sequential and reverse IP-sequential,

for those distributions that tested positive for monotonicity, we also record the slope of the

distribution; a positive slope defines a forward IP-sequential strategy while a negative one

implies a reverse IP-sequential strategy. For those distributions that tested negative for

monotonicity (i.e., not a sequential strategy), we leverage the chi-square goodness-of-fit

statistic test. The latter insight will inform us whether or not the employed strategy is

a uniform permutation; if the test fails, then the employed strategy will be deemed as a

permutation; uniform permutation otherwise.

Who is generating the probing activity?

When an enterprise fingerprint probing (i.e., detect activity and identify the technique), it

is of value as well to infer about the ‘machinery’ behind the source of the probing. Specif-

ically, it would be significant to pinpoint whether the scanning is generated by a scanning

tool or a worm/botnet. One use case for this, is for instance, when an Internet Service

86

Provider (ISP) notices that one of its customers is generating probing where that probing

is generated by a worm/botnet. Keeping in mind that most probing activity is generated

from non-spoofed Internet Protocol (IP) addresses (so the actual attacker/scanner can

essentially get back the probing results), then the ISP can react on that and provide the

suitable anti-malware solution to that specific customer.

From the two previous questions, we can infer those probing events that are ran-

dom and monotonic. It is known that monotonic probing is a behavior of probing tools

in which the latter sequentially scan their targets (IPs and ports) [128]. Furthermore,

for random events, the monotonic trend checking can help filter out traffic caused by the

non-bot scanners [129]. Thus, we deem a probing source as leveraging a probing tool if

their traffic is randomly generated and if they adopt a sequential probing strategy (i.e.,

including reverse IP-sequential); a worm/bot otherwise. Although in the current work

we do not directly differentiate between scanning generated by worms or bots, however,

future work would couple such information with real malware data (that we possess as

well) to provide more accurate inferences, including the type of malware or the botnet

orchestration pattern.

Note that the ‘machinery’ of the scan aim to provide inferences and insights related

to probing activities targeting a certain organization. Although the latter could be inter-

esting to the organizations being scanned, we envision in future work that such proposed

approach could be leveraged to automatically infer large-scale probing campaigns, such

as the one analyzed in [120]. More specifically, we intend to employ that latter coupled

with other inferences that we are currently developing to cluster the probing sources that

possess similar probing behaviors.

3.2.3 Empirical Evaluation

We possess real darknet data that we are receiving on a daily basis from a trusted third

party. Such traffic originates from the Internet and is destined to numerous /13 network

87

sensors. The darknet sensors cover more than 12 countries and monitor around half a

million dark IPs. The data mostly consists of unsolicited TCP, UDP and ICMP traffic. It

might contain as well some DNS traffic. In a nutshell, darknet traffic is Internet traffic des-

tined to routable but unused Internet addresses (i.e., dark sensors). Since these addresses

are unallocated, any traffic targeting them is suspicious. Darknet analysis has shown to

be an effective method to generate cyber threat intelligence [130, 131]. We use one week

of data (55GB), extracted from multiple /24 networks, that was collected during the dura-

tion of February 24th to March 3rd 2013, to empirically evaluate our approach. Darknet

traffic is typically composed of three types of traffic, namely, scanning, backscattered and

misconfiguration [132]. Scanning arises from bots and worms while backscattered traffic

commonly refers to unsolicited traffic that is the result of responses to denial of service

attacks with spoofed source IP addresses. On the other hand, misconfiguration traffic is

due to network/routing or hardware/software faults causing such traffic to be sent to the

darknet sensors.

The first aim is to filter out misconfiguration data. We use a simple metric that

records the average number of sources per destination darknet address. This metric should

be significantly larger for misconfiguration than scanning traffic. However, although it dif-

ferentiates misconfiguration from scanning traffic, it could include as well backscattered

traffic as they also can possess a large average number of sources per destination (i.e, in

case of a DoS). To cope with this issue, we observe, per the technique in [132], flags in

packet headers, such as TCP SYN+ACK, RST, RST+ACK, ACK, etc., that resemble

backscattered traffic [132]. Subsequently, we filter out flows that lack that observation,

deeming them as misconfiguration.

Second, we aggregate the connections into sessions using an approach similar to the

first step algorithm by Kannan et al. [133]. We consider all those connections within

Taggreg of each other as part of the same session for a given pair of hosts. We used the

same threshold, Taggreg = 100 seconds, and found that this seems to correctly group the

majority of connections between any given pair of hosts. For each day in our data set, we

88

87%

13%

Probing Activity DoS related Activity

Figure 3.9: Sessions Distribution

extracted 100 sessions for a total of 700 sessions.

We setup an experimental environment using Java and implemented Algorithms 1

and 2. For all the statistical test techniques, including DFA, Bhattacharyya distance,

Mann-Kendall and Wald-Wolfowitz, we employed their MATLAB implementations [111,

134, 135, 136].

We first applied the approach to attempt to differentiate between scanning and

backscattered traffic (i.e., DoS related activity). Recall, that we have identified scanning

as having the correlation statuses of Table 5.2. Figure 4.7 represents how the 700 sessions

were distributed and fingerprinted. It is shown that probing activity corresponds to 87%

(612) of all the sessions. This scanning to backscattered traffic ratio is somehow coherent

with other darknet studies [132]. Note that in Figure 4.7, DoS related activity was fin-

gerprinted as such since it was shown from its DFA results that 13% (88) of the sessions

possessed correlation statuses corresponding to either uncorrelated, 1/f -noise or Brownian

noise. The fact that DoS related traffic demonstrated noise or Brownian noise is compliant

with what was found in [104] when the authors performed DFA analysis on DoS traffic.

To further validate such inference, we implemented the DoS detection algorithm by Moore

et al. [137] and applied it on the 88 sessions. 77 sessions out of the 88 were detected as

DoS related. Thus, with our approach, we have erroneously fingerprinted 11 sessions as

89

DoS related (assuming the mentioned DoS detection algorithm did not produce any false

positive). To understand why that occurred, we inspected the 11 sessions. 7 sessions out

of the 11 possessed a DFA scaling exponent α ranging from 1.51 to 1.59, and accordingly

were fingerprinted as Brownian noise (i.e., DoS related). However, after inspecting their

traffic packets, they were shown to be a rare type of RPC scanning traffic. This suggests

that one should not consider large α values as valid results or at least keep those incidents

in a ‘quarantine’ for further automated post-processing. The remaining 4 sessions that

were also erroneously fingerprinted seem to be misconfiguration that apparently, were not

previously filtered as expected.

To evaluate the scanning fingerprinting capabilities of our approach, we experi-

mented with Snort’s sfPortscan preprocessor using the same 612 sessions that were previ-

ously fingerprinted as probing. sfPortscan [100], a preprocessor plugin for the open source

network intrusion and detection system Snort [101], provides the capability to detect

TCP, UDP, and ICMP scanning. The sfPortscan preprocessor detects scans by counting

RST packets from each perceived target during a predetermined timeout interval. Before

declaring a scan, 5 events (i.e., RST packets) are required from a given target within a

window. The sliding timeout window varies from 60 to 600 seconds by sensitivity level;

at the highest level, an alert will be generated if the 5 events are observed within 600

seconds. We have chosen to compare our approach with Snort’s sfPortscan preprocessor

since Snort is one of the most broadly deployed intrusion detection/prevention technology

worldwide and has become a de-facto standard.

We relied on sfPortscan’s output as a baseline for our comparison. Snort’s sfPortscan

detected 590 scans. After a semi-automated analysis and comparison that was based on

the logged scanning traffic flows (i.e., source and destination IP and port, protocol, and

timestamp), we identified that all the 612 scans that our approach fingerprinted as probing

activity include sfPortscan’s 590 scans. Therefore, relative to this technique and experi-

menting with this specific data set, we confirm that our approach yielded no false negative.

Moreover, according to the results, our proposed approach generated 22 sessions that are

90

35%

13%
15%

2%

6%

4%

12%

5%
3%

5%

TCP SYN TCP Connect() UDP FIN

XMAS Null Ack IP Protocol

Window RPC

Figure 3.10: Probing Techniques Distribution

considered as false positive. It is worthy to pinpoint that our approach can detect certain

types of scans that were not included at the time of the experiment, and by default, in

Snort’s sfPortscan definitions. These include scans from a single host to a single port on

a single host, slow scans and a specific host scanning multiple ports on multiple hosts. In

general, we claim that a certain limited, acceptable and a manageable number of false pos-

itives might occur (taking into consideration the system that we compare our approach

with). We need as well to consider Snort’s sfPortscan false negatives and the different

types of probing that our approach is able to fingerprint.

We next applied the proposed approach to identify which techniques were leveraged

in the previous fingerprinted probing activity. Figure 4.8 reveals that TCP SYN scanning

leads with 35% (212) of all the sessions, followed by UDP, TCP connect() and ACK

scanning. FIN, Xmas Tree, and Null scanning are typically considered as members of

the ‘stealth’ scans because they send a single frame to a TCP port without any TCP

handshaking or any additional packet transfers. They are relatively effective in evading

firewall detection and they are often employed. The fact that the latter techniques were

found to be among the least leveraged in the previous fingerprinted probing activity in

our data set is quite puzzling.

We proceed by attempting to answer the questions that were raised in Sections 3.2.2,

91

Probing Activity

Probing Tools Worms/Bots

Random

Pattern

612 sessions

114 sessions 498 sessions

169 sessions

329 sessions

Sequential Permutation

UnifromForwardReverse Other

284 sessions214 sessions

215 sessions 69 sessions201 sessions13 sessions

Figure 3.11: Probing Activity Dimensions Analysis

3.2.2 and 3.2.2. We applied the proposed approach which yielded the output of Figure

3.11. The results disclose that around 81% of the probing activity is being generated

by worms or bots. Only 21% are being generated by probing tools. These percentages

infer that leveraging real malware data, in a future study, could reveal substantial cyber

security insights. The results also elaborate on the manner in which worms/bots generate

their probing traffic. It is demonstrated that 66% of that probing traffic follows a random

approach, while the remaining 34% follow a certain pattern when scanning their targets.

Concerning the employed probing strategy, it is shown that 57% of the probing sources

leveraged a permutation while the remaining adopted a sequential strategy when probing

their targets. Of those that employed a permutation, 76% used a uniform permutation

while 24% adopted other types of permutations. The majority (≈ 95%) of those that

employed a sequential strategy were found to adopt a forward IP-sequential strategy while

only 5% adopted a reverse IP-sequential strategy. The latter insights allows us to 1) track

92

the probing activity that possess similar scanning patterns and strategies and perhaps

attribute it to the same campaign, 2) apply similar mitigation steps to probing activity

with similar patterns and techniques and 3) provide inferences, although not decisive,

that the probing is being generated by an orchestrated botnet. Note that we also generate

supplementary material related to the above mentioned probing activity (i.e., worm, bots,

probing patterns) including geo-location information per real source, organization, ISP,

city, region and country. However, we refrain from publishing those due to sensitivity/legal

issues.

3.2.4 Evasion Prevention

To fingerprint probing activity (i.e., detect activity and identify the technique), our ap-

proach, as stated in Section 3.2.1, leverages the DFA time series technique and operates

on traffic distributions. However, it is realistic to pinpoint that the approach could be

evaded in two ways. First, by a malicious attacker who deliberately injects a number of

packets while performing his probing activity. Second, due to network fluctuations (i.e.,

delay), the distribution could be distorted. In both cases, our approach might erroneously

miss the probing, attribute the probing to the wrong technique cluster or fail to identify

the exact technique. We project that by formulating this problem as a time series change

point detection problem, we can detect if and where the distribution has been susceptible

to any sudden modifications. The time series change point detection problem has been

excessively reviewed in the literature [138, 139]. For the sake of this work, as a proof of

concept, we selected the work from Adams et al. [139] to experiment the effectiveness

of such approach. We decided to leverage this specific work since it adopts a statistical

approach which is coherent with the theme of our approach, is highly respected in its

domain, and is directly applicable to our work that is related to time series distributions.

Further, concerning its performance, in the worst-case, it is linear in space and time com-

plexity according to the number of data points observed before the sudden fluctuation,

which renders it practically viable. We employed the authors’ MATLAB implementation,

experimented with three different types of scanning traffic, namely, TCP SYN, UDP and

ACK, and emulated a malicious attacker by injecting packets in the probing distributions

93

using ‘packit’ [140], a packet analysis and injection tool.

Figure 3.12 shows how the TCP SYN, UDP and ACK scan distributions is being

generated with a low frequency distribution. Suddenly, the malicious attacker injects

random packets. The marked ‘X’s on the Figure demonstrate how the change point de-

tection technique was successfully able to detect the change. In the context of our work,

to prevent distribution modifications, we can simply remove the distributions between the

first marked ‘X’ and the second marked ‘X’ to retrieve the original distributions, namely

the probing distributions. Although we admit that further experimentation should be

undertaken to thoroughly authenticate the effectiveness of such change point detection

techniques in providing evasion prevention to our approach, the obtained preliminary re-

sults seem to be promising and thus motivating.

3.2.5 Approach Limitations

We acknowledge a number of limitations in our proposed approach. First, although in

this work, the approach exhibited promising accuracy when evaluated using darknet (i.e,

malicious) data, we have not tested the approach using normal two way traffic. Normal

network traffic (i.e., benign http and ftp traffic for example) is known to be self-similar

(i.e., possesses long traffic correlations). This directly affects the accuracy of our approach.

We believe this point is manageable by applying pre-processing filtering mechanisms to

filter out the benign traffic before applying our proposed approach. The payload analysis

techniques in [141] seem viable to accomplish that. To verify this, we have executed the

following experiment. We obtained a mixture of normal/malicious traffic data set from

DARPA2. Subsequently, we executed the approach on that dataset after employing the

payload filtering technique [141]. The approach’s accuracy scored around 83% in compari-

son with DARPA’s ground truth information. We believe that such percentage of accuracy

is motivating, keeping in mind that our approach is primarily targeted towards darknet

analysis. Second, in its current state, our approach does not fingerprint ICMP scanning.

The latter constitutes a significant portion of today’s probing activity. We can overcome

2http://tinyurl.com/lzbdd7h

94

(a) TCP SYN

(b) UDP

(c) ACK

Figure 3.12: Approach Evasion Prevention using a Change Point Detection Technique

95

this limitation by analyzing/fingerprinting the distributions related to such traffic and

performing experimentation validation as we did to other scanning techniques. Third, the

approach does not differentiate between worms and bots probing. If accomplished, it will

yield significant cyber security intelligence for attribution and mitigation purposes. This

task is currently work in progress. Finally, bots probing orchestration is not yet confirmed.

Coupled with probing patterns that we have generated in this work, it could be used for

tracking cyber scanning campaigns and for effective mitigation.

3.3 Related Work

In this section, we discuss cyber scanning related detection and clustering techniques and

subsequently pinpoint the drawbacks of attribution-based approaches. Further, we pin-

point few works related to probing detection/analysis using statistical approaches.

Zhang et al. [1] proposed a scan detection method based on a distributed coop-

erative model. Their technique is composed of feature-based detection, scenario-based

detection and statistic-based detection. Their proposed architecture is decomposed into

5 layers (sensors, event generators, event detection agents, a fusion center and a control

center) that collaborate to achieve the intended task. The technique’s statistic-based de-

tection employs predefined thresholds that allows the detection of both scan and denial

of service attacks. A positive aspect of this work is that the proposed technique is well

suited to distributed large-scale environments. However, the presented work was based

on an illustrated described scenario and the authors did not discuss its applicability on

real data samples. In [80], Bhuyan et al. presented the adaptive outlier based approach

for coordinated scan detection (AOCD). First, the authors used the principal component

analysis feature reduction technique to identify the relevant feature set. Second, they

employed a variant of the fuzzy c-means clustering algorithm to cluster information. The

authors tested their algorithm using different real-life datasets and compared the results

against other available literature techniques. Their approach assumes that the target of

the scanning is a set of contiguous addresses, which is not always the case. In another

96

work, Baldoni et al. [3] proposed a collaborative architecture where each target network

deploys local sensors that send alarms to a collaborative layer. This, in turn, correlates

this data with the aim of (1) identifying coordinated cyber scanning activity while (2)

reducing false positive alarms and (3) correctly separating groups of attackers that act

concurrently on overlapping targets. The soundness of the proposed approach was tested

on real network traces. Their proposed system is designed to leverage information coming

from various network domains to detect distributed scanning. Hence, the collaborative

layer appears to be ineffective when the adversary is acting only against one network

domain. In a more general work, Dainotti et al. [120] presented the measurement and

analysis of a 12-day world-wide cyber scanning campaign targeting VoIP (SIP) servers.

The authors used darknet/telescope data collected at the UCSD network telescope to ex-

clusively focus on the analysis and reporting of that SIP scanning incident.

Most of the aforementioned detection and clustering techniques and other litera-

ture work [84, 78, 72] could be noted as being attribution-based; they detect and cluster

distributed scanning based on the last perceived scanning source. Hence, they might

encounter one of the following issues:

• Determining attribution is not always possible, which might decrease the effective-

ness of such techniques.

• The scans may either be so slow or so broadly distributed that they exhaust the finite

computational state of scanning detection systems or fail to exceed some predefined

alert threshold.

• A significant amount of system state (i.e., memory, network topology information,

storage) needs to be maintained by the monitoring system in order to perform effec-

tively (reducing the detection time window to accommodate network traffic fluctu-

ations might cause excessive false negatives and false positives).

Further, our work that is related to Internet-scale probing inference is different

from the above related work as it does not rely on identifying the scanning source and

97

is independent from the scanning strategy. Moreover, the proposed approach does not

rely on a certain predefined alert threshold, the transport protocol used or the number of

probed destinations and ports. Additionally, we attempted to go further than detection

by analyzing probing traffic dimensions, namely, employed technique, monotonicity and

randomness.

3.4 Summary

This chapter proposed a non-attribution anomaly detection technique. Motivated by the

shortcomings of attribution-based approaches to cyber scan detection, this technique pre-

sented an alternative view of the problem/solution. The idea is to focus on what is being

offered by the network and hence on what is being scanned rather than who is performing

the scanning. To characterize this, we introduced and elaborated on the notion of enter-

prise net- work facade. To construct and maintain the ENF, we leveraged the SNMP by

presenting certain management procedures. The approach’s training period is decoupled

from any external traffic which makes its implementation very operationally feasible, in

addition to having fast stabilization time yet requiring minimalistic system state storage.

The technique’s detection period is attribution-independent, which allows the detection

of sophisticated reconnaissance activity, requires only a single packet to detect a scan

and allows the detection of both TCP and UDP scans. To evaluate our technique, we

experimented using a real network traffic dataset and implemented a proof-of-concept en-

vironment. The results demonstrated that for a class C network with 250 active hosts

and 5 monitored servers, the proposed technique’s training period required a stabilization

time of less than 1 second and a state memory of 80 bytes. Moreover, in comparison with

Snort’s sfPortscan technique, it was able to detect 4215 unique scans and yielded zero false

negative.

This chapter also presented a new method to fingerprint Internet-scale probing ac-

tivity. It aims at detecting the cyber scanning activity and identifying the exact technique

that was employed in the activity. Further, it analyzes certain probing traffic dimensions

98

such as monotonicity and randomness to generate inferences related to the ‘machinery’ of

the scan (i.e, probing tools Vs worms/bots), the approach of the scanning (i.e., randomness

Vs. probing patterns) and the employed probing strategy (i.e., sequential Vs. permuta-

tion). The approach leverages and employs several statistical techniques to achieve the

required tasks. Empirical evaluations performed using real darknet traffic showed that the

extracted inferences exhibit promising accuracy.

In the next chapter, we attempt to tackle the problem of attributing the inferred

probing activities to certain malware for attribution purposes.

99

Chapter 4

Probing and Event Attribution

In this chapter, we describe the design and implementation of a correlation mechanism

between probing and malware activities for attribution purposes. To this end, we also

report on an Internet-scale malicious probing event by executing a multifaceted approach

that correlates three types of real cyber security data.

4.1 Inferring Internet-scale Infections by Correlating Mal-

ware and Probing Activities

This section presents a new approach to infer worldwide malware-infected machines by

solely analyzing their generated probing activities. In contrary to other adopted methods,

the proposed approach does not rely on symptoms of infection to detect compromised

machines. This allows the inference of malware infection at very early stages of contami-

nation. The approach aims at detecting whether the machines are infected or not as well

as pinpointing the exact malware type/family. The latter insights allow network secu-

rity operators of diverse organizations, Internet service providers and backbone networks

to promptly detect their clients’ compromised machines in addition to effectively provid-

ing them with tailored anti-malware/patch solutions. To achieve the intended goals, the

proposed approach exploits the darknet Internet space and initially filters out misconfigu-

ration traffic targeting such space using a probabilistic model. Subsequently, the approach

employs statistical methods to infer large-scale probing activities as perceived by the dark

100

space. Consequently, such activities are correlated with malware samples by leveraging

fuzzy hashing and entropy based techniques. The proposed approach is empirically eval-

uated using a recent 60 GB of real darknet traffic and 65 thousand real malware samples.

The results concur that the rationale of exploiting probing activities for worldwide early

malware infection detection is indeed very promising. Further, the results, which were

validated using publically available data resources, demonstrate that the extracted infer-

ences exhibit noteworthy accuracy and can generate significant cyber security insights that

could be used for effective mitigation.

4.1.1 Motivation and Contributions

Today, the safety and security of our society is significantly dependent on having a secure

infrastructure. This infrastructure is largely controlled and operated using cyberspace.

Although tremendous efforts have been carried out to protect the cyberspace from diverse

debilitating, intimidating and disrupting cyber threats, such space continues to host highly

sophisticated malicious entities. The latter could be ominously leveraged to cause drastic

Internet-wide and enterprise impacts by means of large-scale probing campaigns [120],

distributed denial of service attacks [142], advanced persistent threats [143] and spam-

ming botnets [144]. According to Panda Security, a staggering 33% of worldwide Internet

machines are infected by malware [145]. Moreover, McAfee records over 100 thousand

new malware samples every day; a momentous 69 threats every minute or around one new

threat every second [146].

Network security operators of private and governmental organizations, Internet Ser-

vice Provides (ISPs) and content delivery networks as well as backbone networks face,

on a daily basis, the crucial challenge of dealing with their clients’ malware-infected ma-

chines. The latter not only hinders the clients’ overall experience and productivity but

also jeopardizes the entire cyber security of the provider (i.e., causing vulnerabilities or

opening backdoors in the internal network). Further, it significantly degrades the provided

quality of service since the compromised machines will most often cause excessive increase

in bandwidth that could be rendered by extreme Peer to Peer (P2P) usage, spamming,

101

command-and-control communications and malicious Internet downloads. Additionally, if

providers’ networks were used to trigger, for instance, a malware-orchestrated spamming

campaign, then such providers could as well encounter serious legal issues for misusing

their infrastructure (i.e., for example, under the Canadian House Government Bill C-28

Act [147]). Consequently, this will immensely adversely affect the operators’ business,

reliability and reputation.

Thus, network security operators are interested in possessing a cyber security ca-

pability that generates inferences and insights related to their clients’ malware-infected

machines. It is significant for them to be able to pinpoint such machines in addition to

extract intelligence related to the exact malware type/family. The latter will facilitate the

distribution of suitable and tailored anti-malware solutions to those compromised clients.

Indeed, this cyber security capability should possess the following requirements.

First, it should be prompt; it must possess the ability to detect the infection as early as

possible in an attempt to thwart the creation of botnets and to limit the sustained possi-

ble collateral damage and any symptoms of infection. Second, it should be cost-effective;

the approach should not overburden the provider with implementation scenarios and their

corresponding supplementary costs. In fact, this last point is extremely imperative and

decisive; ISPs are frequently accused of ignoring their clients’ malware infections because

the task to detect and disinfect them is tedious, prolonged and undoubtedly expensive

[148, 149]. This section elaborates on such a cyber security capability that satisfies the

mentioned requirements. Specifically, we frame the contributions as follows:

• Proposing a new probabilistic model to preprocess telescope/darknet data to pre-

pare it for effective use. The aim is to fingerprint darknet misconfiguration traffic

and subsequently filter it out. The model is advantageous as it does not rely on ar-

bitrary cut-off thresholds, provide separate likelihood models to distinguish between

misconfiguration and other malicious darknet traffic and is independent from the

nature of the source of the traffic.

102

• Proposing a new approach to infer Internet-scale malware-compromised machines.

The approach aims at detecting such machines as well as identifying their exact

infection type. The approach achieves its aims without recording or analyzing the

symptoms of infection (i.e., spamming, excessive bandwidth usage, etc.), which ren-

ders it efficient from both space and processing perspectives. Further, it exploits

probing activities to attain early detection of contamination incidents in addition to

requiring no implementation at the providers’ premises, eliminating the cost burden.

• Leveraging the darknet Internet space, around half a million routable but unallocated

IP addresses, which permits the observation and identification of worldwide probing

activities and thus malware-infected machines, without requiring any providers’ aid

or information.

• Correlating malware and probing network activities to achieve the intended goals by

employing numerous statistical, fuzzy hashing and entropy based techniques.

• Evaluating the proposed approach using a recent 60 GB of real darknet traffic and

65 thousand real malware samples.

4.1.2 Proposed Approach

In this section, we elaborate on the proposed approach as depicted in Figure 4.1. Specif-

ically, we discuss its rationale, describe its components and present its employed mecha-

nism, methods and techniques.

The rationale behind the proposed approach stems from the need to detect the in-

fection at early stages of contamination. In this context, probing or scanning activities are

known to be the very first symptoms of infection [35, 7]. On the other hand, the Internet

dark space (i.e., dark sensors) has shown to be an effective method to generate Internet-

scale cyber threat intelligence [130, 43]. In brief, darknet traffic is Internet traffic destined

to routable but unused Internet addresses. Since these addresses are unallocated, any

traffic targeting them is deemed as suspicious. Thus, in a nutshell, the proposed approach

aims at extracting probing activities as received by a darknet and subsequently correlating

103

Darknet Traffic

Misconfiguration
Filtering

Probing
Engine

Probing
SessionsSessions

Malware
Executables

Dynamic
Malware
Analysis

Malware
Sessions

IDS
Probing

Malware
Sessions

Correlation
Engine

Fuzzy Hashing

Relative
Entropy

Bhattacharyya
Distance

Kolmogorov–
Smirnov

Test

Inferred
Malware

Infection and
Types

Malware Invocation

Probing Extraction

Correlation Execution

Figure 4.1: The Components of the Proposed Approach

them with malware samples. By leveraging geo-location information, the approach strives

to generate insights related to worldwide compromised machines in addition to identifying

their exact infected malware type/family. The approach is envisioned to be operated by a

central authority, for example, an incident response center, where the latter will distribute,

in real-time, the extracted inferences to concerned parties. In the sequel, we elaborate on

each component of the proposed approach in accordance with Figure 4.1.

Misconfiguration Filtering

As mentioned, Internet traffic destined to routable yet unallocated IP addresses is com-

monly referred to as telescope or darknet data. Such malicious traffic is frequently, abun-

dantly and effectively exploited to generate various cyber threat intelligence related but

not limited to, scanning activities, distributed denial of service attacks and malware iden-

tification. However, such data typically contains a significant amount of misconfiguration

traffic caused by network/routing or hardware/software faults. The latter immensely af-

fects the purity of darknet data, which hinders the accuracy of detection algorithms that

operate on such data in addition to wasting valuable storage resources. This section pro-

poses a probabilistic model to preprocess telescope data to prepare it for effective use. The

aim is to fingerprint darknet misconfiguration traffic and subsequently filter it out. The

model is advantageous as it does not rely on arbitrary cut-off thresholds, provide separate

likelihood models to distinguish between misconfiguration and other darknet traffic and

104

is independent from the nature of the source of the traffic. To the best of our knowledge,

the proposed model renders a first attempt ever to tackle the problem of preprocessing

darknet traffic.

In a nutshell, the model aims at computing an access probability distribution for

each darket IP address, derived across all remote sources that target those dark IPs. Thus,

the model initially estimates the degree to which access to a given dark IP address is un-

usual. The model further considers the number of distinct dark IP addresses that a given

remote source has accessed. Subsequently, the joint probability is formulated, computed

and compared. If the probability of the source generating a misconfiguration is higher

than that of the source being malicious (i.e., scanning or backscattered), then the source

is deemed as misconfigured, subsequently flagged, and its corresponding generated darknet

flows are filtered out.

Let D = {d1, d2, d3, · · ·} represent the set of darknet IP addresses and Di a sub-

set of those accessed by source si. First, the model captures how unusual the accessed

destinations are. The idea behind this metric stems from the fact that misconfigured

sources access destinations that have been accessed by few other sources. Thus, the model

estimates the distribution of a darknet IP di being accessed by such a source as

Pmisc(di) =
ns(di)∑

∀dj∈D
ns(dj)

(4.1)

where ns(di) is the number of sources that have accessed di. In contrary, a malicious

darknet source will access a destination at random. Typically, defining a suitable probabil-

ity distribution to model the randomness of a malicious source targeting a specific darknet

destination is quite tedious and unsystematic; often a simplistic assumption is applied to

solve this issue. In this context, a very recent work by Durumeric et al. [87] assumed

that darknet sources will probe their targets following a random uniform distribution. By

adopting that assumption, one can model the probability of a darknet destination accessed

105

by a malicious source as

Pmal(di) =
1

|D|
(4.2)

However, in this work, we thought it would be beneficial and more precise to ver-

ify the soundness of that assumption before completing the description of the proposed

model. To successfully achieve the latter, we perform three experiments using simulation,

emulation and real malicious darknet traffic. The first experiment is rendered by a sim-

ulation executed using Opnet Modeler1. The simulation is comprised of a probing source

and 100 probing destinations/targets. The source and the destinations are represented

using commodity machines. The probing source is instructed to generate three types of

probing towards the targets, namely, TCP SYN, UDP and ACK scanning, for a duration

of 15 minutes. The latter are typically common types of probing activities [35]. Fig-

ure 4.2a represents the outcome of this experiment. According to the assumption given

by the uniform distribution, each target should theoretically receive around 100 packets.

On average, the goodness-of-fit was around 76%, significantly below the acceptable 95%

threshold [150]. To further assess the accuracy of the uniform distribution in modeling the

target access distribution, we executed a second experiment. In this experiment, we em-

ployed Nmap, an open source scanning tool, to emulate the probing traffic. The emulation

environment included a probing machine running the tool in addition to 5 target Virtual

Machines (VMs). The probing machine repetitively executed Null, FIN and Xmas scan-

ning towards the virtual machines for a duration of 10 minutes. The depiction of Figure

4.2b clearly demonstrates that the uniform distribution does not appear to be a good fit

for such traffic. Although the latter simulation and emulation experiments demonstrated

that the assumption of modeling malicious packets using the random uniform distribution

is not quite accurate, we thought it would be interesting and more realistic to utilize real

darknet traffic to assess that hypothesis. Subsequently, we extract one day of darknet

data (≈ 8GB) from April, 2014, divide it into slots of 4 hours and monitor the number

of probing packets targeting 20 darknet destinations over the 6 slots. Figure 4.2c illus-

trates the outcome of this experiment. According to the uniform distribution, each target

1http://tinyurl.com/nclm3gp

106

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70 80 90 100

Nu
m

be
r o

f P
ro

bi
ng

 P
ac

ke
ts

Number of Probed Destinations

Simulation Theoratical

(a) Simulation Experiment

240

245

250

255

260

265

270

275

1 2 3 4 5

N
um

be
r o

f P
ro

bi
ng

 P
ac

ke
ts

Number of Probed Destinations

Emulation Theoratical

(b) Emulation Experiment

100

105

110

115

120

125

130

135

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f P
ro

bi
ng

 P
ac

ke
ts

Number of Probed Darknet Destinations

Real Darknet Traffic Theoratical

(c) Real Traffic Experiment

Figure 4.2: Uniform distribution of malicious packets in all experiments

107

should theoretically receive around 120 probing packets. On average, the goodness-of-fit

was less than 78%. Such results from all the above experiments concur that the assump-

tion of modeling darknet malicious packets towards darknet destinations by adopting the

uniform distribution is not accurate; there indeed exists an imperative requirement to

determine the most appropriate probability distribution model that best fits malicious

darknet packets.

Recall, that the latter requirement needs to be fulfilled to accurately model darknet

destinations targeted by a malicious source in order to continue the elaboration of the

proposed model. To achieve that, we proceed by performing another set of experiments.

Such experiments also rely on simulation, emulation and the utilization of real darknet

traffic, and their corresponding setup environments is quite similar to those of the previous

experiments. One difference is that we execute the experiments for 10 times and average

the outcome. Another difference is related to the number of targeted destinations, in

which we increase the latter number, for accuracy purposes, from 100 to 500 targeted

destinations, 5 to 12 VMs and 20 to 110 monitored darknet destination, in the simulation,

emulation and real traffic experiments, respectively. To determine the best fit model,

we utilized a generic Matlab parametric probability distributions’ fitting function and

calculated the Bayesian Information Criterion (BIC) [151] for each of the models in relation

to our data. The latter metric is an established criterion for model selection among a finite

set of models. Typically, the lower the BIC is, the better is the fit. Figures 4.3a to 4.3c

demonstrate the outcome probability density estimations in the three experiments. In the

simulation experiment, it is evident that the Gaussian or the Normal distribution provides

the best fit for modeling malicious darknet packets. In the second experiment, namely, the

emulation experiment, it is revealed that the Pareto distribution provides the best fit; this

is quite interesting as such distribution is often employed in modeling normal (i.e., benign)

network traffic. Figure 4.3b further demonstrates that the inverse Gaussian distribution,

which is analogous to the Normal distribution, also shows a positive BIC, resembling a good

fit. Finally, the third experiment that employs real darknet traffic undoubtedly validates

that the Gaussian distribution provides the best fit to model malicious packets targeting

108

darknet destinations. It is worthy to note that neither of the three experiments portray

the uniform distribution between the top 6 models providing a best fit. Such results concur

that it is relatively accurate and practical to adopt the Gaussian distribution instead of

the uniform distribution to model targeted darknet destinations.

Thus, at this point, equation (4.2) could be adjusted to match the probability density

function of a Normal distribution. Consequently, we can now model the probability of a

darknet destination accessed by a malicious source as

Pmal(di) =
1

σ
√

2π
e−(x−µ)

2/2σ2
(4.3)

where σ is the standard deviation, µ is the mean, σ2 is the variance and x is the

location of the darknet destination following the distribution. Recall that equations (4.1)

and (4.3) allows the model to initially capture how unusual the accessed destinations are.

However further, the model considers how many darknet destinations have been accessed

by a given source. The latter will be subsequently described.

Given a set of Di, darknet destinations accessed by a specific source si, the model

eventually aims at measuring two probability distributions, namely, Pmisc(Di) and Pmal(Di).

The former being the probability that Di has been generated by a misconfigured source

while the latter is the probability thatDi has been generated by a malicious darknet source.

Let D1 = {di1, di2, di3} be those darknet addresses accessed by s1. The model

captures the probability P (D1) of the source generating {di1, di2, di3} as the probability

of s1 accessing this specific combination of destinations knowing that it targeted three

destinations multiplied by the probability of s1 accessing any three destinations. The

latter could be formalized as

P (Di) = P (Di = {di1, di2, · · · , din} | |Di|= n)× P (|Di|= n) (4.4)

For both, a misconfigured and a malicious source, the first term of equation (4.4)

109

6 7 8 9 10 11 12 13 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Probing Packets

Pr
ob

ab
ilit

y D
en

sit
y

Probability Density Function

Empirical
Gaussian
Rician
Tlocationscale
Generalized extreme value

(a) Simulation Experiment

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Number of Probing Packets

Pr
ob

ab
ilit

y D
en

sit
y

Probability Density Function

Empirical
Generalized pareto
Generalized extreme value
Inversegaussian
Birnbaumsaunders

(b) Emulation Experiment

14 16 18 20 22 24 26 28
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Probing Packets

Pr
ob

ab
ility

 D
en

sit
y

Probability Density Function

Empirical
Gaussian
Loglogistic
Nakagami
Gamma

(c) Real Traffic Experiment

Figure 4.3: Model fitting sorted by BIC in all experiments

110

could be modeled as

Pmisc(Di = {di1, di2, · · ·} | |Di|) =
1

K

∏
∀dj∈Di

Pmisc(di) (4.5)

Pmal(Di = {di1, di2, · · ·} | |Di|) =
1

K

∏
∀dj∈Di

Pmal(di) (4.6)

where K, a normalization constant which is solely employed to allow the probabilities

to sum to 1, could be defined as

K =
|D|!

n! (|D|−n)!
× 1

|D|n
(4.7)

The likelihood that a source will target a certain number of darknet destinations

(i.e., the second term of equation (4.4)) depends on whether the source is malicious or

misconfigured. Characteristically, misconfigured sources access one or few destinations

while malicious sources access a larger pool of destinations. We have modeled such distri-

butions as

Pmisc(|Di|) =
1

(e− 1)|Di|!
(4.8)

Pmal(|Di|) =
1

|D|
(4.9)

where the term (e − 1) in equation (4.8) guarantees that the distribution will sum

to 1. It is noteworthy to mention that equation (4.8) ensures that the probability will sig-

nificantly decrease as the number of targeted destinations increases. In contrast, equation

(4.9) captures a malicious darknet source accessing a random number of darknet addresses.

By combining the above equations, we can model the probability of a source being

a misconfigured or malicious, given a set of darknet destination addresses,

Pmisc(Di) =
1

K(e− 1)|Di|!
∏
∀dj∈Di

Pmisc(di) (4.10)

111

Pmal(Di) =
1

K|D|
∏
∀dj∈Di

Pmal(di) (4.11)

Algorithm 3: Inferring misconfiguration flows using the probabilistic model

Data: Darknet Flows, DarkF lows

Result: Flag, MiscF lag, indicating that the DarkF low is originating from a

misconfigured source

1 for DarkF lows do

2 MiscF lag=0

3 i=DarkF lows.getUniqueSources()

4 Amalgamate DarkF lowsi originating from a specific source si

5 Update si(Di)

6 Compute Pmisc(Di), Pmal(Di)

7 if Pmisc(Di)>Pmal(Di) then

8 MiscF lag=1

9 end

10 end

Indeed, Algorithm 3 provides a simplistic mechanism to infer misconfigured sources

by employing the proposed darknet preprocessing model. It is worthy to note that step 6

of the algorithm (i.e., the computation of Pmisc(Di) and Pmal(Di)) is easily accomplished

in practice by computing the negative log-likelihoods,

Lmisc(Di) = −lnPmisc(Di)

Lmal(Di) = −lnPmal(Di)
(4.12)

Thus, Algorithm 3 deems a source and its corresponding flows as misconfiguration

if Lmal(Di) − Lmisc(Di) > 0.

112

Probing Extraction

In accordance with Figure 4.1, another component of the proposed approach is probing

extraction. In Section 3.2 of Chapter 3, we have proposed a new approach to fingerprint

Internet-scale probing activities. The approach aimed at detecting the probing activity

and identifying the exact technique that was employed in the activity. Recall that the

approach is advantageous in comparison with other methods [78, 72, 1, 3, 84] as it does

not rely on identifying the scanning source and is independent from the scanning strategy

(remote to local, local to remote, local to local), the scanning aim (wide range or target

specific) and the scanning method (single source or distributed). Further, the proposed

method does not depend (for detection) on a certain predefined alert threshold, the trans-

port protocol used (TCP or UDP) or the number of probed destinations and ports. When

empirically evaluated using a significant amount of real darknet data, the approach yielded

0 false negative and 2% false positive [7] in comparison with the leading Network Intrusion

Detection System (NIDS), Snort2. In this work, and to successfully extract probing activ-

ities from darknet traffic, we adopt and leverage an enhanced version of that previously

proposed approach. In what follows, we 1) perform another empirical evaluational of that

approach in comparison with the Bro NIDS3 for validation purposes and 2) describe the

enhancements of the previously proposed approach (of Section 3.2) that are employed in

this work.

1) Although the previously proposed approach was empirically evaluated and vali-

dated against Snort NIDS [7], we thought it would be also interesting in this section to

further evaluate it against another NIDS, namely, Bro [152]. This procedure aims at pro-

viding more confidence in the approach in addition to significantly motivating its use as

one of the initial components in Figure 4.1.

To achieve this procedure, we experimented with Bro NIDS. Paxson’s Bro [152]

identifies sources as scanners if they execute N failed connection attempts to a configurable

2http://www.snort.org/
3http://www.bro.org/

113

http://www.snort.org/
http://www.bro.org/

list of services. A connection is considered to have failed if it is unanswered or if it generates

a TCP reset in response. For other services, Bro records information for all connection

attempts. If the number of connection attempts for these services exceed N , this source

is also identified as a scanner. The list of services and N are configured in various policy

scripts implemented by Bro. For the sake of this work, we deployed Bro 2.3 with default

configuration and employed the provided scanning script4. We use one week of darknet

data (52 GB) that was collected during the duration of March 1st to March 7th 2014, to

empirically evaluate the approach in [7] against Bro. Figure 4.4 demonstrates the outcome

of this experiment.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7

N
u

m
b

e
r

o
f

Sc
a

n
n

e
rs

Number of Days

[7] Bro NIDS

Figure 4.4: Empirical Evaluation of [7] against Bro NIDS

By investigating the sources of the scanners, it was disclosed that the approach in [7],

similar to the outcome when previously compared with Snort NIDS, yielded 0 false nega-

tive; all the scanners detected by Bro were also detected by the fingerprinting approach.

Further, it could be noted that the approach generated an average of 8% false positive. It

is worthy to pinpoint that the approach, contrary to Bro NIDS, can detect various types

of scans, which could include scans from a single host to a single port on a single host,

slow scans and a specific host scanning multiple ports on multiple hosts. Nevertheless, in

4https://github.com/bro/bro-scripts/blob/master/scan.bro

114

an attempt to reduce the number of false positives, we enhance the approach as explained

in the following.

2) We perform a crucial enhancement to the previously proposed approach of Sec-

tion 3.2 of Chapter 3 that we employ in this work. The modification is rendered by UDP

investigation. One of the issues related to the previously proposed approach is that it

does not differentiate between UDP probing and UDP packets arising from distributed

reflective denial of service attacks [153]; this can explain the relatively high percentage of

false positives. Indeed, such attacks are an emerging form of distributed denial of service

attacks that rely on the use of publicly accessible UDP servers as well as bandwidth am-

plification factors to overwhelm a victim with UDP traffic [41]. The idea is to send simple

queries to such resolvers in which the replies, that aim at flooding the victim, are orders of

magnitude larger. Such approach is behind the notorious 300 and 400 Gbps attacks that

hit the Internet in the last few years [92]. Figure 4.5 depicts a specific scenario where the

resolvers are open Domain Name System (DNS) servers.

The compromised machines are directed to execute a reflective dos attack against

Org1. To achieve that, they initially spoof their identities by using those of Org1 and

subsequently send simple ANY queries to the DNS open resolvers. The latter DNS query

intends to pull all the available information from the DNS resolvers related to a requested

domain. The domain in the request trace is often a noteworthy one that possess a signifi-

cant amount of information. Commonly, the compromised machines will spay such queries

on the Internet space in a hope to reach as many open resolvers as possible in order to

increase the overall amplification factor. Intuitively, some of those requests will hit the

network telescope/dark space and hence will be captured. Requests that actually reach

open resolvers will be amplified and directed towards Org1.

Typically, the UDP services that could be leveraged for UDP amplification attacks

are summarized in Table 4.1. To deal with this issue, we extend the previously proposed

approach of Section 3.2 of Chapter 3 by employing the post-processing Algorithm 4.

115

Internet Space

Telescope SpaceAmplified Attack Trace

Request Trace

Compromised Machines

Open DNS Resolver

Organization (Org1)

Open DNS Resolver

Figure 4.5: A Network Telescope pinpointing Sources of Reflective DoS Attacks

The algorithm aims at validating whether the inferred UDP probing flow or ses-

sion from the outcome of [7] is indeed a probing activity or it is actually a false positive

related to UDP packets originating from distributed reflective denial of service attacks.

The algorithm achieves this by initially assuming that the flow is indeed a probing flow.

Subsequently, it attempts to negate the latter assumption by relying on two observations.

First, it monitors if the UDP flow in question is targeting one of those services of Table 4.1;

a positive result, at this stage, suggests that the UDP flow is either probing that service or

it is attempting to amplify a denial of service attack. If a positive result is recorded from

116

UDP Service Port Number

DNS 53

NTP 123

SNMPV2 161

NetBIOS 137

SSDP 1900

CharGEN 19

QOTD 17

Quake Network Protocol 26000

Table 4.1: UDP vulnerable services and corresponding ports

the latter, the algorithm then verifies whether the source is spoofed or not. The rational

behind that verification is based on the fact that probing packets are not spoofed (so the

scanner/attacker can actually retrieve back the result of the scan) while those of a denial

of service attack are indeed spoofed for identity anonymization purposes. The algorithm

accomplishes this by leveraging the work of Templeton et al. [154] that maintains a track

of the Time-To-Live (TTL) value of the packets generated by the same source. The core

idea behind that approach is rendered by the fact that packets’ TTL values fluctuate with

source IP addresses; that is, given a non-spoofed IP address, its packets’ TTL should re-

main constant (or within 10% change) throughout its communication period. It is worthy

to mention that in terms of complexity, the algorithm possesses O(PF) space complexity

and O(N) time complexity where PF is the number of probing flows and N is the number

of UDP flows. By implementing the proposed Algorithm 4, we recorded a decrease of

3.5% in false positives when we re-executed the empirical evaluation (against Bro NIDS).

Such result demonstrates that 1) the algorithm is effective in distinguishing between UDP

probing and UDP packets originating from amplified denial of service attacks and 2) that

the majority of the false positives were indeed caused by this issue.

Please recall that the outcome of this procedure (i.e., probing extraction in Figure

117

Algorithm 4: Verifying if the UDP flow is a probing activity or related to UDP

distributed reflective denial of service attack
Data: Probing Flows, ProbingF lows;

List of Vulnerable UDP Services, UDPV ulList

Result: Flag, ProbF lag, indicating whether the UDP flow, UDPFlow, is a

true probing or not

1 for UDPFlow in ProbingF lows do

2 ProbF lag=0;

3 if UDPFlow.getTarget().getPort() in UDPV ulList then

4 TTL=UDPFlow.getTTL();

5 for UDPFlow in ProbingF lows do

6 if UDPFlow.getTTL()!=TTL then

7 ProbF lag=1;

8 end

9 end

10 end

11 end

4.1) are accurate and validated probing sessions in packet capture format (i.e., pcaps).

Malware Invocation

In accordance with Figure 4.1, another component of the proposed approach is malware

invocation. We operate a dynamic malware analysis module that is based on ThreatTrack

Security sandbox environment5 (i.e., controlled environment). After receiving daily mal-

ware samples from ThreatTrack feeds, they are interactively sent to the sandbox, where

they are executed by client machines. The clients could be virtual or real and possess the

capability to run Windows or Unix, depending on the malware type under execution. The

behavior of each malware is monitored and all its corresponding activities (i.e., created

files, processes, network traffic, etc.) are recorded. For the sake of this work, we extract

5http://www.threattracksecurity.com/

118

http://www.threattracksecurity.com/

the network traffic generated by approximately 65 thousand unique and recent malware

samples as pcaps. The pcaps contain communication traffic generated from the malware to

other internal or external hosts. Those malware samples belong to diverse malware types

including, Trojan, Virus, Worm, Backdoor, and AdWare coupled with their corresponding

families and variants. We rely on Kaspersky for a uniform malware naming convention6.

Correlation Execution

Consistent with Figure 4.1, the correlation engine formulates the problem of correlating

probing and malware sessions as follows. Given a probing session that is extracted from

darknet traffic, 1) investigate whether or not the session originates from a malware and 2)

identify the exact or probable malware type/family that is generating such probing, if it

was shown that the session is malware-related. In an attempt to address this problem, we

perform the following. We leverage Snort’s probing engine, the sfPortscan pre-processor,

to detect which malware pcaps possess any signs of probing activity. We omit those mal-

ware pcaps that demonstrate a negative output. To attribute a specific malware to a

probing session, we adopt a two-step procedure. First, we apply the notion of fuzzy hash-

ing [155] between the probing session and the remaining malware pcaps. Fuzzy hashing is

advantageous in comparison with typical hashing as it can provide a percentage of simi-

larity between two samples rather than producing a null value if the samples are different.

This popular technique is derived from the digital forensics research field and is typically

applied on files or images [155, 156]; to the best of our knowledge, our approach is among

the first to explore the capabilities of this technique on cyber security data. Readers that

are more interested in the advatanges of fuzzy hashing and its applicability to malware

research are kindly referred to [157, 158]. We further apply an information theoretical

metric, relative entropy, as proposed by Lee and Xiang [159], between the given probing

session and the malware pcaps. Relative entropy, which is defined by

d =
∑
k

pk log
pk
qk

6http://securelist.com/en/threats/detect?chapter=136

119

http://securelist.com/en/threats/detect?chapter=136

is a measure of the distance of the regularities between two datasets, pk and qk. If

the relative entropy is = 0, this indicates that the two datasets have the same regularity.

At this point, we 1) omit the probing sessions that demonstrate less than 5% similarity

using both tests7 and 2) select the top 10% malware pcaps that were found to minimize

the entropy and maximize the fuzzy hashing percentage. The rational behind the latter

approach stems from the need to filter out the malware pcaps that do not possess probing

signs similar to the probing session. Second, using the remaining 10% malware pcaps,

we extract their probing sessions as pinpointed by sfPortscan. For each of the malware

probing sessions, we apply the Bhattacharyya distance [160] between those and the given

probing session. The latter statistic test, which is defined by

d(p, p′) =
√

1− L(p, p′)

where

L(p, p′) =
N∑
i=1

√
p(i)p′(i),

is an established and an effective metric to determine the overlap of two sample

distributions, p and p′. The Bhattacharyya distance is often employed to measure the

disjunction of classes in a typical classification problem and it is considered to be more

reliable than other metrics, including for instance, the Mahalanobis distance [161]; when

the two classes have similar means but different standard deviations, the Mahalanobis dis-

tance would tend to zero, while the Bhattacharyya distance would grow and yield better

results depending on the difference between the standard deviations. By selecting 1% of

malware pcaps that were shown to reduce the Bhattacharyya distance, we further signifi-

cantly reduce the possible malware pcaps that the given probing session could be similar

to. Finally, to exactly attribute the given probing session to a specific malware, we employ

the two sample Kolmogorov-Smirnov statistic test [162] between the remaining malware

probing sessions and the given probing session. The test will output 0 if a positive match

occur; 1 otherwise. If a positive match occurs, this indicates that the probing session has

7These sessions indicate that they do not possess any malware-related behavior.

120

been generated from the inferred exact malware. Otherwise, we refer back to the output

of the Bhattacharyya distance and select a set of probable malware pcaps that were shown

to be relatively close to the given probing session.

It is worthy to mention that from a processing overhead perspective, the proposed

approach is able to process and correlate one day of darknet data (≈ 8 GB) with 65 thou-

sands malware samples in less than 20 minutes. The latter information strongly advocate

that the approach is practically viable in a real-world environment and that it can be eas-

ily rendered as an operational cyber security capability providing prompt near real-time

inferences related to worldwide-compromised machines.

4.1.3 Empirical Evaluation

As previously mentioned in this thesis, we possess real darknet data that we are receiving

on a daily basis from a trusted third party, namely, Farsight Security. Such traffic orig-

inates from the Internet and is destined to numerous /13 network sensors. The darknet

sensors cover more than 12 countries and monitor around half a million dark IPs. Recall

that darknet traffic is Internet traffic destined to routable but unused Internet addresses.

Since these addresses are unallocated, any traffic targeting them is deemed as suspicious.

The data mostly consists of unsolicited TCP, UDP and ICMP traffic. It might contain as

well some DNS traffic. We use one week of data (60 GB) that was collected during the

duration of April 1st to April 7th 2014, to empirically evaluate our approach.

Darknet traffic is typically composed of three types of traffic, namely, scanning,

backscattered and misconfiguration [132]. Scanning arises from bots and worms while

backscattered traffic commonly refers to unsolicited traffic that is the result of responses

to denial of service attacks with spoofed source IP addresses. On the other hand, misconfig-

uration traffic, as tackled in Section 4.1.2, is due to network/routing or hardware/software

faults causing such traffic to be sent to the darknet sensors.

121

We first aggregate the darknet traffic connections into sessions using an approach

similar to the first step algorithm by Kannan et al. [133]. We consider all those connections

within Taggreg of each other as part of the same session for a given pair of hosts. We used

the same proposed threshold as in [133], Taggreg = 100 seconds, and found that this

seems to correctly group the majority of connections between any given pair of hosts. To

filter out misconfiguration data, we employ the proposed probabilistic model of Section

4.1.2 coupled with Algorithm 3. Figure 4.6 depicts the distribution of darknet sessions

between misconfiguration and malicious sessions while Table 4.2 presents a sample of 10

misconfigured sources as inferred by the algorithm.

76%

24%

Malicious Activity Misconfiguration Activity

Figure 4.6: The distribution of darknet sessions

It is revealed that close to 25% of the sessions are indeed related to misconfigura-

tion. This is relatively consistent with a previous study that we have performed in 2012

[41], which was solely based on manual verification. By further manually investigating the

inferred misconfiguration sessions, it was shown that all the sessions are single flows that

targeted the dark space only once in which 87% of them are malformed packets.

We further execute the enhanced probing fingerprinting approach that was high-

lighted in Section 10 to extract 400 probing sessions. It is noteworthy to mention, that

each of those probing sessions is being generated by a unique source. Keeping in mind that

most probing activity is generated from non-spoofed IP addresses (so the actual scanner

122

Source Lmal − Lmisc

1 99

2 132

3 113

4 14

5 146

6 106

7 39

8 97

9 2

10 133

Table 4.2: A sample of 10 misconfigured sources

can essentially receive back the probing results), the extracted probing sessions indeed

resemble real machines.

We proceed by investigating any signs of probing activities within the 65 thousand

malware pcaps. The output disclosed that 13,105 malware pcaps possessed such activities.

The latter corroborates that a significant amount of malware samples in fact generate

probing activities; leveraging such activities for early infection detection might be a viable

and a promising approach. The distribution of the types of those probing activities within

the identified malware pcaps is depicted in Figure 4.7. It is disclosed that UDP probing is

the most employed probing technique; such result is consistent with other malware studies

[163], where the authors revealed that UDP is the most used transport-layer protocol

for malicious command-and-control communications. Further, Figure 4.8 illustrates the

top 10 malware types that were found to trigger such probing activities. One interesting

observation that could be extracted from such result is related to ‘Virus.Win32.Sality.bh’;

Dainotti et al. [120] have recently documented a large-scale probing campaign that was

able to probe VoIP (SIP) servers of the entire IPv4 address space in 12 days. The authors

123

67%

20%

7%
3%

UDP Portsweep

UDP Distributed Portscan

UDP Portscan

TCP Portsweep

UDP Decoy Portscan

TCP Portsweep

TCP Distributed Portscan

UDP Portsweep

UDP Distributed Portscan

TCP Portscan

ICMP Sweep

Figure 4.7: Types of Probing Activities generated by Malware

pinpointed that the malware responsible for such campaign was in fact the Sality malware;

the same malware that we found, using our data set, to be generating the majority of the

probing activities.

0 50000 100000 150000 200000 250000 300000

Trojan.Win32.Llac.bdm

Trojan-FakeAV.Win32.SmartFortress2012.jt

Trojan-Dropper.Win32.Injector.dffx

Trojan-FakeAV.Win32.SmartFortress2012.v

Packed.Win32.Black.a

Worm.Win32.VBNA.b

Downloader.Win32.SwiftCleaner.ay

Trojan.Win32.Jorik.ZAccess.fht

Virus.Win32.Sality.bh

Trojan-FakeAV.Win32.Agent.cwa

Frequency

Figure 4.8: Distribution of Probing Malware Types/Families

We proceed in an attempt to reduce the number of malware pcaps that could be

eventually attributed to the darknet probing sessions. In accordance with Section 11, we

executed the fuzzy hashing and relative entropy approach. To accomplish the former, we

124

leveraged deeptoad8, a fuzzy hashing implementation, while we employed matlab9 to ac-

complish the latter. Subsequently, we select the top 10% (1,310) malware pcaps that were

found to minimize the entropy and maximize the fuzzy hashing percentage, in comparison

with the darknet probing sessions. At this point, 212 probing sessions were filtered out,

indicating that they do not possess any malware-related behavior.

For the purpose of attributing the remaining probing sessions to a manageable and a

probable set of malware pcaps, in coherence with the proposed approach of Section 11, we

proceed by executing the Bhattacharyya distance and selecting the 1% of malware pcaps

(13 pcaps) that are shown to be statistically close to each of the probing sessions. Table

4.3 provides a specimen that couples 5 probing sources with few of their corresponding

possible set of malware infections. Intuitively, we record the complete malware outcome

for all the probing sources.

Note that ‘Trojan-Downloader.Win32.KiayksayRen.b’, that frequently appears in

Table 4.3, has been confirmed by numerous anti-malware engines and services to be a

significant sign of machine exploitation10, particularly those running the Windows oper-

ating system. Thus, the proposed approach seems accurate and practical in pinpointing

compromised machines in addition to disclosing the probable malware types that caused

their contamination.

To exactly identify which malware sample is responsible for the darknet extracted

probings sessions, we proceed by employing the Kolmogorov-Smirnov statistic test, as in-

structed in Section 11. Table 4.4 shows the extracted insights for a sample of 10 probing

sessions while Figure 4.9 visualizes the worldwide map of the fingerprinted infections.

8https://code.google.com/p/deeptoad/
9http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox/

content/relativeEntropy.m
10http://tinyurl.com/ktlqp4r

125

https://code.google.com/p/deeptoad/
http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox/content/relativeEntropy.m
http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox/content/relativeEntropy.m
http://tinyurl.com/ktlqp4r

Probing Source 1

Trojan-Downloader.Win32.KiayksayRen.b

Trojan-FakeAV.Win32.SmartFortress2012.il

Trojan.Win32.VBKrypt.hadj

Trojan-Dropper.Win32.Agent.dtki

Probing Source 2

Trojan-Downloader.Win32.KiayksayRen.b

Trojan-Dropper.Win32.Dapato.aflm

Trojan-Dropper.Win32.Injector.dknf

Trojan.Win32.Jorik.Shakblades.foc

Probing Source 3

Trojan-Downloader.Win32.KiayksayRen.b

Worm.Win32.AutoIt.xl

Trojan.Win32.Scar.furz

Packed.Win32.PolyCrypt.d

Probing Source 4

DTrojan-Downloader.Win32.KiayksayRen.b

Trojan-Downloader.Win32.Dapato.gje

Trojan.Win32.Agent.btmu

Virus.Win32.Sality.bh

Trojan-FakeAV.Win32.SmartFortress2012.v

Probing Source 5

Trojan-Downloader.Win32.KiayksayRen.b

Trojan-Spy.Win32.SpyEyes.acxb

Trojan.Win32.FakeAV.lete

Packed.Win32.PolyCrypt.d

Table 4.3: Probing Sources coupled with their probable malware samples

Note that we also generate supplementary material related to the infections includ-

ing geo-location information per real source (i.e., hostname), organization, ISP, city, region

and country. Although, we refrain from publishing those due to sensitivity/legal issues,

we can note that the infections originate from 67 diverse operational providers, 67 distinct

ISPs and 38 different countries. Such results, which we postulate to be communicated to

concerned providers, concur that the proposed approach possesses the capability to infer

compromised machines in addition to pinpointing the exact malware type/family that was

responsible for their contamination.

Although we are unable to validate the existence of every single obtained inference

126

Figure 4.9: Inferred Worldwide Infections by Correlating Malware and Probing Activities

Probing Source a Trojan-Spy.Win32.VB.gt

Probing Source b Virus.Win32.Sality.s

Probing Source c Trojan-FakeAV.Win32.SmartFortress2012.jv

Probing Source d Trojan-Dropper.Win32.Injector.dpdj

Probing Source e Backdoor.Win32.Bifrose.fur

Probing Source f Virus.Win32.Cabanas.MsgBox

Probing Source g Trojan.Win32.Jorik.Downloader.akr

Probing Source h Trojan-FakeAV.Win32.Agent.cwa

Probing Source i Trojan.Win32.Swisyn.bahq

Probing Source j Worm.Win32.Juched.djh

Table 4.4: A Sample of Inferred Infections

related to the extracted worldwide infections due to legal and logistic constraints, we per-

form two activities that advocate the accuracy and completeness of the proposed approach.

First, we have observed, from the obtained results, a number of events that support

the proposed approach. (1) We inferred that the majority of the infections that are re-

lated to the previously mentioned ‘Virus-Win32.Sality.bh’ are originating from Thailand;

in [120], the authors disclosed that the bots that contributed to the large-scale VoIP prob-

ing campaign that were found to be infected by the same Sality malware, were in fact

127

attributed to Thailand. (2) We noticed that Chinese ISPs lead in the number of gener-

ated infections. According to our results, one of the top extracted malware infections that

is generated from those ISPs is the ‘Trojan-Banker.Win32.Banker.adx’. This malware is

a data stealing program that captures banking credentials such as account numbers and

passwords from infected users. The latter insights were confirmed by McAfee in which

they further concurred that China is in fact responsible from more than 45% of such con-

tamination11. (3) From our results, we deduced that the malware

‘Backdoor:Win32/Bifrose’ was originating from a specific middle-Eastern country. The

latter malware allows an external attacker to access the compromised machine to perform

various malicious actions. McAfee also confirmed our findings by revealing that the same

country is indeed the most contributor to such an infection12.

Second, we relied on third party publically available data sources provided by the

online services, ThreatStop13, MxLookup14, brightcloud15 and ReputationAuthority16 to

validate the obtained contamination incidents. The latter cyber security data repositories

provide information on Internet-scale contamination incidents per IP address. We compare

the extracted malware IP addresses that were inferred by the proposed approach against

those repositories. The outcome discloses that around 91% of the extracted malware

IP addresses from the proposed approach were indeed found as malware-related from

those repositories. The outcome also pinpointed that 57% of those overlapping confirmed

incidents are still active on operational machines. Such results demonstrate that the

extracted inferences from the proposed approach exhibit noteworthy accuracy and can

generate significant cyber security insights that could be used for prompt mitigation.

11http://www.mcafee.com/threat-intelligence/malware/default.aspx?id=853515
12http://www.mcafee.com/threat-intelligence/malware/default.aspx?id=1594628
13http://www.threatstop.com/
14http://mxtoolbox.com/
15http://www.brightcloud.com/
16http://www.reputationauthority.org/

128

4.1.4 Approach Limitations

It is realistic to acknowledge a number of limitations in the proposed approach. First,

the approach leverages the dark space to infer Internet-scale probing activities. Although

the monitored space is relatively large (i.e., /13), we are unable to monitor events that

do not target such space. Subsequently, the approach will be unable to correlate those

“unseen” activities with malware samples, and thus will fail to detect and identify their

corresponding malware infections. Second, the approach relies on malware samples that

actually execute probing activities. Although, from our experiments, the number of those

malware seems to be significant, the approach will not be able to detect malware that

do not probe. In this case, our correlation engine could be used in conjunction with

already deployed approaches, similar to those that rely on honeypots to accomplish the

detection. Third, in relation to the misconfiguration darknet preprocessing model, there

is a need to design and implement confidence levels to assess whether the difference of the

two probability estimates is large enough to safely choose one model over the other. This

point is left for future work.

4.2 Multidimensional Investigation of Source Port 0 Prob-

ing

During November 2013, the operational cyber/network security community reported an

unprecedented increase of traffic originating from source port 0. This event was deemed as

malicious although its core aim and mechanism were obscured. This section investigates

that event using a multifaceted approach that leverages three real network security feeds

that we receive on a daily basis, namely, darknet, passive DNS and malware data. The

goal is to analyze such event from the perspectives of those feeds in order to generate sig-

nificant insights and inferences that could contribute to disclosing the inner details of that

incident. The approach extracts and subsequently fingerprints such malicious traffic from

the received darknet data. By executing unsupervised machine learning techniques on the

extracted traffic, we disclose clusters of activities that share similar machinery. Further,

by employing a set of statistical-based behavioral analytics, we capture the mechanisms

129

of those clusters, including their strategies, techniques and nature. We consequently cor-

relate the sources with passive DNS in order to investigate their maliciousness. Moreover,

to examine if the sources are malware contaminated, we execute a correlation mecha-

nism between the darknet data and the malware feeds. The outcome reveals that such

traffic indeed is reconnaissance/probing activities originating from three different hori-

zontal scans utilizing packets with a TCP header length of 0 or packets with odd flag

combinations. The results as well demonstrate that 28% of the scanning sources host ma-

licious/blacklisted domains as they are often used for spamming, phishing and other fraud

activities. Additionally, the outcome portrays that the bot probing sources are infected

by ‘Virus.Win32.Sality’. By correlating various evidence, we confirm that such malware

specimen is in fact responsible for part of the source port 0 probing event. We concur that

this work is a first attempt ever to comprehend the machinery of such unique event and

we hope that the community could consider it as a building block for auxiliary analysis

and investigation.

4.2.1 Background

On November 2nd, 2013, security researchers at Cisco Systems reported that their world-

wide deployed sensors have detected a massive increase in TCP source port 0 traffic17.

They further elaborated that the magnitude observed by the sensors was elevated by 20

times than typical traffic originating from the same port and transport protocol on other

days. According to the researchers, such event renders the largest spike in network traffic

originating from TCP source port 0 in the last decade. In a follow-up discussion18, the

researchers noted that such port, according to its RFC, is engineered to be reserved, and

that such traffic could be used to fingerprint various operating systems. Additionally, the

security researchers speculated about the aim, mechanism and source of that traffic by

stating that such rare event could be some sort of a research project, a malware infected

probing botnet, a targeted reconnaissance event aiming to launch an immediate or a pro-

longed malicious task, or even a broken embedded device or a new piece of malware with

17http://tinyurl.com/pds443n
18http://tinyurl.com/n8j58hs

130

a bug in its scanning code.

The event was interestingly also observed by DShield/Internet Storm Center (ISC)19.

ISC data comprises of millions of intrusion detection log entries gathered daily from sensors

covering more than 500 thousand Internet Protocol (IP) addresses in over 50 countries.

As shown in Fig. 4.10, the event was apparent on four days, namely, November 2nd20,

November 21st, November 24th and November 25th, 2013. The latter fact is particularly

demonstrated by the peaks of the TCP ratio of port 0 on those specific days.

Figure 4.10: The Source Port 0 event as observed by DShield/Internet Storm Center

4.2.2 Contributions

Motivated by the requirement to shed the light on that incident in order to generate

inferences and insights that could contribute in disclosing the inner details of such an

unprecedented event, this section contributes by:

• Proposing a multifaceted approach that leverages three real network security feeds.

The approach exploits darknet data (i.e., Internet traffic destined to half a mil-

lion routable yet unallocated IP addresses) to extract, analyze and uncover the

machinery of such traffic. Further, the approach employs correlation between the

19http://www.dshield.org/port.html
20coinciding with Cisco reports although not quite as significant

131

latter and passive DNS (i.e., Internet-wide authoritative DNS responses) to study

the maliciousness of the such traffic. Moreover, the proposed approach correlates

darknet-extracted traffic with malware feeds to answer questions related to contam-

ination and attribution. To the best of our knowledge, 1) the proposed approach

that correlates those three feeds in an effort to understand a cyber event has never

been attempted before and 2) the yielded outcome from adopting such an approach

related to this specific event is unique in the literature.

• Employing 1) machine learning data clustering techniques to partition the port 0

traffic according to similar machinery and 2) a set of novel behavioral analytics that

scrutinize such traffic to capture the behavior of the sources.

• Evaluating the proposed approach using 30 GB of real darknet traffic, 1.4 billion

DNS records and 30 million malware analysis reports.

4.2.3 Proposed Approach

In this section, we present the proposed approach that is composed of three mechanisms,

namely, darknet analysis, passive DNS correlation and malware correlation.

Darknet Analysis

As previously mentioned, we possess real darknet data that we are receiving on a daily

basis since three years from a trusted third party. Although the monitored darknet space

is relatively large (i.e., /13), we were unable to notice the existence of the source port 0

event on November 2nd or November 21st. However, we were able to retrieve around 30

GB of darknet data that encompasses the event from November 24th and 25th. We base

our darknet analysis approach on such data.

132

Traffic Extraction

In order to retrieve the packets of the source port 0 event, we created a simplistic TCPdump

filter21 that captures any darknet traffic that is utilizing TCP as the transport protocol

and 0 as the source port. We applied the filter upon the 30 GB darknet data. We

further refined the output by filtering out any darknet misconfiguration that could exist.

To accomplish this, we adopt a metric that records the average number of sources per

destination darknet address. This metric should be significantly larger for misconfiguration

than probing traffic. However, although it differentiates misconfiguration from scanning, it

could include as well backscattered traffic as they also can possess a large average number

of sources per destination (i.e, in case of a DoS). To cope with this issue, we observe, per the

technique in [132], flags in packet headers, such as TCP SYN+ACK, RST, RST+ACK,

ACK, etc., that resemble backscattered traffic [132]. Subsequently, we filter out flows

that lack that observation, deeming them as misconfiguration. The remaining output is

rendered as the generated traffic from the source port 0 event, which is saved in a packet

capture (i.e., pcap) format for further analysis.

Traffic Fingerprinting

To identify the nature of the source port 0 event, we implemented the technique from Bou-

Harb et al. [33]. The latter approach specifically operates on darknet data and possesses

the capability to distinguish between probing and DoS sessions. To accomplish this, the

technique leverages the detrended fluctuation analysis statistical method and assigns a

certain unique correlation value depending on the nature of each session. Readers who are

interested in the inner details of such technique are kindly referred to [33]. By subjecting

the source port 0 event traffic to the technique, the outcome revealed that 97% of the

sessions are related to probing activities. We manually inspected the remaining 3%, which

demonstrated that they are misconfiguration traffic that apparently, were not previously

filtered as expected. We also confirmed such probing results by exposing the source port

21http://www.danielmiessler.com/study/tcpdump/

133

0 event traffic to Snort’s22 probing engine, the sfPortscan pre-processor23, which yielded

a similar result.

Traffic Clustering

For the purpose of disclosing the inner mechanisms of the source port 0 event, we refer

to machine learning techniques. Such techniques allows us to efficiently, effectively and

automatically uncover clusters of activities sharing similar machinery within the global

event, without relying on strenuous manual analysis.

When the data observations are not pre-labeled into defined numerical or categorical

classes, as in our case, two standard widely deployed algorithms for data clustering using

unsupervised learning could be employed. These are the k-means [164] and the EM [165]

algorithms. We proceed by going back to the source port 0 event traffic pcap file that we

have previously isolated. Subsequently, we extracted from it a total of 29 data link, network

and transport layer packet features as summarized in Table 3.10. The latter features have

been shown to produce distinguishing characteristics when applied on network data [166].

This feature extraction procedure was achieved using the open source jNetPcap API24.

We consequently compiled the extracted features into a unified data file and applied the

k-means and the EM algorithms, leveraging MATLAB’s default clustering functionality

and the WEKA data mining tool25, respectively.

Behavioral Analytics

In an attempt to capture the machinery of the probing sources/clusters, we present the

following set of novel behavioral analytics. Such proposed approach takes as input the

previously extracted probing sessions (recall Section 4.2.3) and outputs a series of be-

havioral characteristics related to the probing sources. In what follows, we pinpoint the

concerned questions and subsequently present the undertaken approach in an attempt to

answer those.

22http://www.snort.org/
23http://manual.snort.org/node78.html
24http://jnetpcap.com/
25http://www.cs.waikato.ac.nz/ml/weka/

134

Is the probing traffic random or does it follow a certain pattern? When

sources generate their probing traffic, it is significant to capture the fashion in which they

accomplish that. To achieve this task, we proceed as follows. For each distinct pair of

hosts retrieved from the probing sessions (probing source to target), we test for random-

ness in the generated traffic using the non-parametric Wald-Wolfowitz statistic test. If

the result is positive, we record it for that specific probing source and apply the test for

the remaining probing sessions. If the outcome is negative, we infer that the generated

traffic follows a certain pattern. To capture the specific employed pattern, we model the

probing traffic as a Poisson process and retrieve the maximum likelihood estimate intervals

(at a 95% confidence level) for the Poisson parameter λ that corresponds to that traffic.

The choice to model the traffic as a Poisson distribution is motivated by [129], where the

authors observed that probe arrivals is coherent with that distribution. After the test has

executed for all the probing sources, we apply the CLUstEring based on local Shrinking

(CLUES) algorithm on the generated patterns. CLUES allows non-parametric clustering

without having to select an initial number of clusters. The outcome of that operation is a

set of specific λ intervals. The aim of this is to map each probing source that was shown

to employ a pattern to a certain λ interval by removing overlapping values that could have

existed within the initially generated λ intervals.

How are the targets being probed? As revealed in [120], coordinated prob-

ing sources employ various strategies when probing their targets. These strategies could

include IP-sequential, reverse IP-sequential, uniform permutation or other types of per-

mutations. In an attempt to capture the probing strategies, we execute the following. For

each probing source, we extract its corresponding distribution of target IPs. To differen-

tiate between sequential and permutation probing, we apply the Mann-Kendall statistic

test, a non-parametric hypothesis testing approach, to check for monotonicity in those

distributions. The rational behind the monotonicity test is that sequential probing will

indeed induce a monotonic signal in the distribution of target IPs while permutation prob-

ing will not. Further, in this work, we set the significance level to 0.5% since a higher

135

value could introduce false positives. To differentiate between (forward) IP-sequential and

reverse IP-sequential, for those distributions that tested positive for monotonicity, we also

record the slope of the distribution; a positive slope defines a forward IP-sequential strat-

egy while a negative one renders a reverse IP-sequential strategy. For those distributions

that tested negative for monotonicity (i.e., not a sequential strategy), we leverage the chi-

square goodness-of-fit statistic test. The latter insight will inform us whether or not the

employed strategy is a uniform permutation; if the test fails, then the employed strategy

will be deemed as a permutation; uniform permutation otherwise.

What is the nature of the probing source? It is significant as well to infer the

nature of the probing source; is it a probing tool or a probing bot. From the two previous

questions, we can infer those probing events that are random and monotonic. It is known

that monotonic probing is a behavior of probing tools in which the latter sequentially

scan their targets (IPs and ports). Furthermore, for random events, the monotonic trend

checking can help filter out traffic caused by the non-bot scanners [129]. Thus, we deem a

probing source as leveraging a probing tool if their traffic is randomly generated and if they

adopt a sequential probing strategy (i.e., including reverse IP-sequential); a bot otherwise.

Is the probing targeted or dispersed? When sources probe their targets, it

would be interesting to infer whether their probing traffic is targeted towards a small

set of IPs or dispersed. To answer this, for each probing source b, we denote GF(b) as

the collection of flows generated by that specific source that target the dark space. The

destination target IPs used by the flows in GF(b) induce an empirical distribution. Subse-

quently, we borrow the concept of relative uncertainty, an information theoretical metric

and apply it on those distributions. The latter index is a decisive metric of variety, ran-

domness or uniformity in a distribution, regardless of the sample size. An outcome that is

close to 0 defines that the probing source is using a targeted approach while an outcome

value close to 1 means that its corresponding probing traffic is dispersed.

136

It is evident that the latter set of behavioral analytics significantly depend on nu-

merous statistical tests and methods to capture the behavior of the probing sources. We

assert that such approach is arguably more sound than heuristics or randomly set thresh-

olds. It is also worthy to mention that all the employed statistical tests assume that the

data is drawn from the same distribution. Since the approach operates on one type of

data, namely, darknet data, we can safely presume that the values follow and are in fact

drawn from the same distribution.

Passive DNS Correlation

We are also receiving on a daily basis around 1.3 million Domain Name System (DNS)

messages. Such data is collected by observing DNS traffic between recursive DNS resolvers

on the Internet. The latter is often dubbed as passive DNS data, which constitutes the

successful translations and associations between domains and IP addresses. Passive DNS

analysis has shown to be an effective approach to generate cyber threat intelligence [167].

We amalgamate a database that contains the last three-year period of such traffic (≈ 1.4

billion records) in order to investigate the source port 0 probing event.

The rationale of employing passive DNS correlation is rendered by the requirement

to contribute in investigating and perhaps attributing the probing sources of such an

unprecedented event to certain malicious entities (i.e., malicious domains, for instance).

Particularly, we aim to extract the following information about the suspicious IP addresses

(previously retrieved from darknet analysis) that have participated in the probing event.

• Hosting capability: Malicious entities typically host a significant number of services

and malicious domains on a limited number of IP addresses for cost-effectiveness

reasons. Thus, by inferring domains that are resolved to a specific IP address, we

can pinpoint and analyze these hosted domains to reveal the level of maliciousness

of that IP address.

• Intensity: By computing the number of DNS messages that utilize a certain IP

address, we can deduce the levels of accessibility and involvement of that IP address

137

in malicious activities.

• Aliveness: By recording the first and last timestamp that a specific IP address has

been observed in DNS traffic (i.e., resolved to certain domain(s)), we can infer the

participation period and aim of that IP address. Further, we can refine the analyzed

passive DNS interval for the purpose of investigating and attributing that IP address

with a certain cyber event.

Malware Correlation

We possess as well dynamic malware analysis reports (i.e., XML reports) of malware bi-

naries for the last four years. We are receiving such feed on a daily basis with an average

of 30 thousand XML malware reports from ThreatTrack Security26. Up to the event date

in November 2013, we have accumulated more than 30 million malware analysis reports

since January 2010. The XML reports are produced by analyzing the malware binaries

in a controlled environment. Each XML report corresponds to only one malware sample.

It is worthy to mention that these reports contain the executed activities by the malware

samples at the network and system levels. On one hand, the network level activities refer

to the connections and the exchanged packets, including IP addresses, port numbers, urls,

visited domains and the actual payload data that has been sent. On the other hand,

the system level activities constitute the list of Dynamic-link Library (DLL) files that are

utilized by the malware, the key registry changes, and the memory usage.

We leverage such XML reports to investigate the source port 0 probing event. Specifi-

cally, we attempt to answer the following two questions by presenting their corresponding

approaches:

Which malware has infected the probing machines before or during the

occurrence of the event? In order to infer which malware has infected the probing

machines, we present Algorithm 5. Simplistically, the Algorithm parses the XML reports

mining for those malware that utilize the probing machine IP addresses (previously re-

trieved from darknet analysis) as per the destination IP address criterion. The Algorithm

26http://www.threattracksecurity.com/

138

Algorithm 5: Extracting malware samples that have infected the probing ma-

chines

1 Input: Dynamic malware analysis reports: XMLs;

2 List of the scanning source IPs: ProbingIPs;

3 Output: List of malware samples that infected the probing machines: MalwareList

4 for xml in XMLs do

5 if xml.getMalware().getdestIP() in ProbingIPs then

6 if xml.getMalware().getTime()==Nov, 2013 then

7 MalwareList.add(xml.getMalware().getName());

8 end

9 end

10 end

further refines the output by only considering those malware that connect to the probing

IPs in November, 2013.

Which malware generated the probing traffic? In an attempt to attribute

the probing machines to a certain malware, we perform the following. We filter the entire

set of malware XML reports by focusing on those samples that execute traffic from TCP

source port 0. We subsequently match the outcome from the latter procedure with the

list of malware that infected the probing machines that was derived from Algorithm 5.

The rational behind this approach states that if a certain machine has been infected by

a specific malware sample, in which it was derived that such machine is generating TCP

source port 0 traffic, then it is highly probable that this specific malware is causing such

traffic.

4.2.4 Empirical Evaluation

This section abides by the proposed approach that was previously discussed to disclose

various inferences from the perspective of the three data feeds.

139

Darknet Inferences

The source port 0 event traffic was rendered by more than 1 million probing packets origi-

nating from TCP source port 0 destined to the monitored darknet space. It is significant to

note that we typically observe, on other days, less than 1000 packets per darknet day orig-

inating from TCP source port 0. The traffic originates from 27 unique hosts, 17 distinct

countries, 24 diverse Internet Service Providers (ISPs) and from within 25 operational

organizations. We refrain from publishing statistics and rigorous information related to

the latter due to sensitivity and legal issues. We next investigated some characteristics

related to those packets. We noticed that the Time to Live (TTL) values of the packets

change with the source IP addresses. This advocates that IP spoofing is less likely or non-

existent [154]. The fact that the source IP addresses are not spoofed corroborates that

such packets are indeed related to scanning/probing activities (so the actual scanner can

essentially receive back the probing results), as it was inferred in Section 4.2.3. We also

noticed that the packets arrival rate is slow, averaging around 3 packets per second. This

is compliant with slow scanning activities, which are known to be difficult to be detected

[168]. Upon a closer investigation of the packet headers, we observed that the majority of

the packets either include a TCP header length of 0 or are malformed. Further, almost all

the packets contain odd flag combinations (i.e., FIN, SYN, RST, PSH, ACK, FIN, URG,

PSH, Reserved). Typically, probing by employing the latter flags is considered as perform-

ing ‘stealthy’ scanning activities as they are engineered to evade firewall detection by only

sending a single frame to a TCP port without any TCP handshaking or any additional

packet transfers [35].

We proceed by executing the clustering approach in coherence with Section 4.2.3.

Recall, that the aim is to disclose traffic clusters that share similar machinery. The output

of the EM algorithm is depicted in Fig. 4.11; we omit the output of the k-means since it

revealed a similar result. Such outcome provides evidence that the traffic originates from 4

different classes. To further test the validity of this result, we produced a silhouette graph

of the EM clusters as shown in Fig. 4.12. Commonly, a silhouette plot displays a measure

of how close each point in one cluster is to points in the neighboring clusters. A value of 1

140

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

Figure 4.11: Port 0 Event Traffic Clusters

indicates that the points are very distant from neighboring clusters, a value of 0 informs

that the points are not distant from other clusters while a negative value indicates that the

points are erroneously placed in that cluster. From Fig. 4.12, it is shown that a significant

amount of points in all the 4 classes have a large silhouette value, greater than 0.6, indi-

cating that the clusters are separated from neighboring clusters. This provides incentives

to validate the quality of the formed EM clusters. By closely investigating each cluster,

we determined that the first cluster represents a horizontal scan focused on destination

port 0 from a single IP address located in Germany targeting around 800 thousand unique

destination addresses. The use of destination port 0 is a frequently employed technique by

scanners to fingerprint the operating systems of the targeted destinations in order to tailor

future attacks based on that retrieved information. Further, the second cluster discloses

a probing campaign targeting more than 60 thousand destination ports and originating

from a single Dutch IP address. The latter insight was also observed and confirmed by

Cisco27. The third cluster renders another horizontal scan that specifically targeted three

destination ports, namely, TCP ports 445, 22 and 3389, which respectively represent the

Microsoft directory, the secure shell (i.e., ssh) and the remote desktop protocol services.

27http://tinyurl.com/kndnj82

141

Figure 4.12: A Silhouette Plot of the EM Clusters

The latter are known to suffer from various vulnerabilities and are often exploited28. It is

worthy to mention that this horizontal scan targeted 9 thousand destinations on port 445,

7 thousand destinations on port 22 and around 5.5 thousand destinations on port 3389.

Recall, that all the probing activities in the three previous clusters originate from TCP

source port 0. The last minor cluster captured darknet misconfiguration traffic advocating

the obtained result of Section 4.2.3.

To further investigate the mechanisms of the probing sources, we invoked the be-

havioral analytics that were presented in Section 4.2.3. It was revealed that 62% of the

probing sources used certain patterns when generating their probing traffic. Concerning

the employed probing strategy, it is shown that 57% of the probing sources leveraged a

permutation while the remaining adopted a sequential strategy when probing their tar-

gets. Of those that employed a permutation, 76% used a uniform permutation while 24%

adopted other types of permutations. The majority (≈ 98%) of those that employed a

sequential strategy were found to adopt a forward IP-sequential strategy while only 2%

adopted a reverse IP-sequential strategy. It is noteworthy to mention that in [169], the

researchers dismissed the possible use of this strategy since, as they noted, the strategy

28http://tinyurl.com/kkfs6pq,http://tinyurl.com/m5684jo

142

is difficult to be used to extrapolate certain metrics from especially when dealing with

partial probes. Further, the analytics disclosed that ≈ 55% of the sources were probes

from bots while the remaining were generated from probing tools. Moreover, it was in-

ferred that all the probing sources were generating probing that is dispersed as opposed

to targeting a small set of IPs. To the best of our knowledge, the previously generated

inferences represent the first comprehensive empirical results of probing behaviors. In the

context of the probing clusters that were disclosed in the previous section, it was shown

that clusters one and two were generating random probing traffic as opposed to using a

certain pattern, employed a sequential strategy when probing their targets and were found

to be leveraging a probing tool. The latter insight proposes that such probing activities

have been executed by the same ‘initiator/author’ since they are adopting the same mech-

anism and probing characteristics, which could reveal that they both intended to achieve

the same desired goal. Conversely, in the third cluster, the majority (≈ 92%) were found

to adopt certain patterns when generating their probing traffic, employed a permutation

when probing their targets and were inferred to be bots. This suggests that such prob-

ing activities could be malware-orchestrated [120] and thus there is a momentous need to

explore and investigate their malevolence.

Passive DNS Inferences

We employ the approach of Section 4.2.3 to investigate the maliciousness of all the probing

sources. Fig. 4.13 reveals the top 10 probing IP addresses that were shown to host (i.e.,

resolve to) the most domains. It could be inferred that the most significant number of

resolved domains ranges from around 13 thousand domains to peaking at around 110

thousand domains per the probing IPs. We also investigated a subset of those domains

that are related to malicious activities. To achieve this task, we correlated the extracted

domains with publically available datasets and resources, namely, the Malware Domain

List29, Zeus Tracker30 and McAfee’s siteAdvisor31. The outcome is also depicted in Fig.

4.13, which reveals the number of blacklisted domains. The fact that 28% of the probing

29http://www.malwaredomainlist.com/
30https://zeustracker.abuse.ch/
31http://www.siteadvisor.ca/

143

110405 107946

74712

53263

12978

2143 1012 687 609 5131676 44 1 274 1379 38 2 12 66

1 2 3 4 5 6 7 8 9 10

N
u
m

b
e
r

o
f
d
o
m

a
in

s

IP addresses

Hosted Domains Blacklisted Domains

Figure 4.13: Hosted and blacklisted domains of the probing sources

IP addresses were shown to host numerous blacklisted/malicious domains provides an

alarming signal that the source port 0 probing traffic could be originating from a malicious

entity with malevolent goals. To identify the nature of those blacklisted domains, we

leveraged the Web of Trust reputation system32. The outcome from such a procedure

is depicted in Fig. 4.14. The results demonstrate that more than half of the malicious

Malware
52%

Phishing
5%

Privacy
6%

Scam
10%

Spam
19%

Suspicious
8%

Figure 4.14: The nature of the blacklisted domains

domains could be attributed to malware; this advocates our decision to leverage malware

32https://www.mywot.com/

144

data to investigate the event in question. It was also shown that those malicious domains

are blacklisted as they are often used for spamming, phishing and other fraud activities.

We further investigated those malicious domains by analyzing their aliveness and intensity

as discussed in Section 4.2.3 and exposed in Fig. 4.15. One can notice, on one hand, that

some IPs with their corresponding blacklisted resolved domains retain less active days but

possess high accessibility, which render them extremely effective in their maliciousness.

On the other hand, some domains have a prolonged online presence yet possess low access

counts. We envision that such malicious domains are intentionally not intended to be

accessed but are rather playing a hosting or a supporting (i.e., back-end) role for other

malicious tasks and services.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10
Ac

ce
ss

 c
ou

nt

N
um

be
r o

f a
ct

iv
e

da
ys

IP addresses

Aliveness Intensity

Figure 4.15: Investigating the aliveness and access count of the malicious domains

Malware Inferences

Motivated by the fact that the sources of the 3rd probing cluster, as revealed in Section

4.2.4, were inferred to be bots coupled with the conclusion that more than half of the

probing sources resolve to malware-infected domains as demonstrated in Fig. 4.14, in this

section, we investigate the source port 0 probing event from the malware feed perspective,

in accordance with the proposed approach of Section 4.2.3.

145

Fig. 4.16 depicts the malware samples and their corresponding number of connec-

tions to the probing machines. It could be noted that the malware specimens, namely,

Sality and Ngrbot, indeed refer to bot families33. Further, Table 4.5 reveals the malware

samples that generated TCP source port 0 traffic.

0 5 10 15 20 25 30

Worm.Win32.Ngrbot

Backdoor.Win32.Azbreg

Virus.Win32.Sality

Backdoor.Win32.Ruskill

HEUR:Backdoor.Win32

Net-Worm.Win32.Kolab

Trojan.Win32.Agent

Trojan.Win32.Badur

Trojan-Down.Win32.Genome

Figure 4.16: Malware and their corresponding number of connections

By correlating Fig. 4.16 and Table 4.5, we can notice that ‘Virus.Win32.Sality’ is

the common factor. In other words, such malware sample has infected some of the probing

machines and is simultaneously generating TCP source port 0 traffic. It is noteworthy to

mention that such sample has been previously attributed to malicious activities; Dain-

otti et al. [120] had documented a large-scale probing campaign that was able to probe

the entire IPv4 address space in 12 days. Interestingly, the authors pinpointed that the

malware responsible for such campaign was in fact the Sality malware. Thus, from all

the extracted insights and by leveraging the three data feeds, we strongly postulate that

‘Virus.Win32.Sality’ is responsible for part of the TCP source port 0 event.

33http://www.symantec.com/connect/blogs/all-one-malware-overview-sality

146

Email-Worm.Win32.Mydoom

Worm.Win32.AutoRun

Virus.Win32.Sality

Virus.Win32.Expiro

Backdoor.Win32.Xtoober

Trojan-Downloader.Win32.Agent

Trojan-Dropper.Win32.Small

Trojan.Win32.Pincav

Trojan.Win32.Jorik

Trojan-Downloader.Win32.Delf

Trojan-Downloader.Win32.Genome

Backdoor.Win32.Gbot

Backdoor.Win32.Popwin

Email-Worm.Win32.Rays

Email-Worm.Win32.Runouce

Packed.JS.Agent

Trojan-Banker.Win32.Banker

Trojan-Downloader.Win32.FlyStudio

Backdoor.Win32.Banito

Backdoor.Win32.VB

HackTool.Win32.Injecter

Table 4.5: Malware samples generating TCP source port 0 traffic

4.3 Related Work

In this section, we review some literature work related to malware and probing correlation

analysis. Further, we briefly highlight two approaches that are adopted in the industry

for the purpose of detecting malware-infected machines. Additionally, we pinpoint several

proposed methods for inferring worm infections.

Nakao et al. [170] were among the first to exploit the idea of correlating malware

and probing activities to detect zero-day attacks. The authors leveraged the nicter frame-

work [171] to study the inter-relations between those two activities. They developed scan

147

profiles by observing the dark space and correlated them with malware profiles that had

been generated in a controlled environment. Their work seems limited in a number of

points. First, the authors did not validate the accuracy of the extracted probing activities

from the dark space. Second, the extracted profiles were based on few textual network

and transport-layer features, where the actual correlation engine’s mechanism was ob-

scured. Third, their experiments were based on only one malware sample. In contrary,

in this work, we first apply a validated statistical approach to accurately extract probing

activities from darknet traffic. Second, in a first attempt ever, we correlate probing and

malware activities by applying fuzzy hashing and information theoretical based techniques

on the entire network traffic that was generated by those activities. Third, our experi-

ments involve around 65 thousand malware samples. Fourth, the aim of this work differs

as it is rendered by the capability to provide network security operators, worldwide, with

the ability to rapidly and cost-effectively detect their clients’ infections, without requiring

the providers to maintain an implementation nor provide any aid or disclose any sensitive

network related information. In an another closely related work, Song et al. [172] car-

ried out correlation analysis between 10 spamming botnets and malware-infected hosts as

observed by honeypots. They disclosed that the majority of the spamming botnets have

been infected by at least four different malware. The authors as well developed methods to

identify which exact malware type/family has been the cause of contamination. Our work

differs from this work as we are correlating probing activities rather than spamming for

early infection detection. Further, we are leveraging the darknet space instead of honey-

pots to extract Internet-scale cyber security intelligence. In a slightly different work, Eto

et el. [173] proposed a malware distinction method based on scan patterns by employing

spectrum analysis. The authors stated that by observing certain probing patterns, one

can recognize the similarities and dissimilarities between different types of malware. The

authors noted that the latter could be used as a fingerprint to effectively infer infection.

The authors however, did not perform any correlation but rather limited their work to

observation and analysis.

148

The industry has also developed approaches to identify malware compromised ma-

chines. For instance, True Internet, one of Thailand’s largest ISPs, had adopted a be-

havioral approach to infer its clients infected machines. Their approach monitors the

symptoms of infection, including but not limited to, spamming, excessive P2P usage and

Denial of Service (DoS) attempts, and subsequently triggers an alert towards a controller,

which then automatically quarantine the client. Although such approaches might be effec-

tive, they are typically late in detection, which might cause serious vulnerabilities within

the provider. Moreover, they are usually not cost-effective as the provider ought to pur-

chase and maintain other detection systems. Another example would be NetCologne, an

ISP and cable provider in Germany, that took a different approach to automate how it

deals with subscribers that are infected with malware. NetCologne setup and maintained a

honeypot; infected machines often attempt to attack other computers on the same network

and hence the honeypot is an accessible target that allows the identification of compro-

mised machines. While this approach seems practical in detecting infected machines, it

is neither cost-effective since the provider needs to implement and maintain the honey-

pot nor it is able to identify the exact malware type/family that had contaminated those

machines. Moreover, honeypot evasion approaches are known to be effective [88] and are

often adopted by sophisticated malware.

In the context of inferring worm infections, Gu et al. [174] presented the design and

implementation of BotHunter, a perimeter monitoring system for real-time detection of

Internet malware infections. The core of BotHunter is rendered by a correlation engine

that performs alert consolidation and evidence trail gathering for investigating numerous

infections. In a slightly different work, Whyte et al. [175] correlated Domain Name System

(DNS) queries with outgoing connections from an enterprise network to detect worms

propagation attempts. Through empirical evaluations, their proposed approach yielded

efficient and accurate results and enabled automatic containment of worm propagation

at the network egress points. In an alternative work, schechter et al. [176] presented a

hybrid approach to detect scanning worms. Their approach, which is based on sequential

hypothesis testing and rate limiting algorithms, demonstrated low false positive rates when

149

evaluated in a real operational network environment. A possible drawback of the previous

approaches is that they require to be deployed and maintained at the perimeter of the

enterprise network to be effective.

4.4 Summary

On one hand, this chapter presented a new approach to infer malware-infected machines.

The approach aims at providing network operators with a cyber security capability to de-

tect their clients’ compromised machines in addition to pinpointing the exact malware type

that caused their contamination. The approach is efficient as it does not record or analyze

the symptoms of infection. Further, it is prompt as it exploits probing activities, which

are the very first indications of contamination. Moreover, the proposed approach is cost-

effective as it does not require any implementation or maintenance costs at the providers’

sides. To accomplish its goals, the proposed approach exploits the dark space to infer and

validate Internet-scale probing activities after filtering out misconfiguration traffic using

a newly proposed probabilistic model. Consequently, it correlates probing activities with

malware samples by uniquely employing various statistical, fuzzy hashing and information

theoretical metrics. The approach was empirically evaluated using a significant amount of

real darknet and malware samples. The extracted inferences and insights revealed promis-

ing accuracy in addition to concurring that the rationale of exploiting probing activities

for worldwide early malware infection detection is indeed practically viable.

On the other hand, this chapter also investigated a rare cyber event that was ren-

dered by excessive traffic originating from source port 0. The goal was to shed the light

on the inner details of that event to uncover its mechanism and nature of its sources. To

achieve those goals, we proposed a multifaceted approach that exploited and correlated

a significant amount of real network security data, including, darknet, passive DNS and

malware information. The outcome revealed three probing clusters, in which one of them

was shown to be originating from infected bots. By analyzing the maliciousness of the

150

probing sources, the approach uncovered that 28% of those are related to malicious do-

mains. Further, by correlating darknet and malware data, the approach was capable of

attributing part of the event to the Sality malware. We envision that such approach could

be applicable to analyze other cyber events with similar nature.

In the next chapter, we attempt to tackle the problem of inferring and attributing

large-scale probing campaigns by solely observing network telescopes.

151

Chapter 5

Inferring and Attributing Probing

Campaigns

In this chapter, we focus on the problem of identifying and attributing large-scale probing

campaigns, which render a new era of probing events.

5.1 Background

Lately, there has been a noteworthy shift towards a new phenomenon of probing events

which, throughout this section, is referred to as Cyber Scanning Campaign(s) (CSC(s)).

These are distinguished from previous probing incidents as (1) the population of the par-

ticipating bots is several orders of magnitude larger, (2) the target scope is generally the

entire Internet Protocol (IP) address space, and (3) the bots adopt well-orchestrated, of-

ten botmaster-coordinated, stealth scan strategies that maximize targets’ coverage while

minimizing redundancy and overlap. Very recently, Dainotti et al. [177] from the Coopera-

tive Association for Internet Data Analysis (CAIDA) presented a pioneering measurement

and analysis study of a 12-day Internet-wide CSC targeting VoIP (SIP) servers. In an-

other work [178], the same authors admitted that they have detected the reported SIP

CSC including the malware responsible for its actions (i.e., Sality malware) “serendipi-

tously” (i.e., luckily and accidentally) while analyzing a totally unrelated phenomenon.

They also stated that since currently there exist no cyber security capability to discover

152

such large-scale probing campaigns, other similar events targeting diverse Internet and

organizational infrastructure are going undetected. In another inquisitive, well executed

work, an “anonymous” presented and published online [123] what they dubbed as the

“Carna Botnet”. The author exploited poorly protected Internet devices, developed and

distributed a custom binary, to generate one of the largest and most comprehensive IPv4

census ever.

The aforementioned two CSC studies differ on various key observations. The work

by Dainotti et al. disclosed that the bots were recruited into the probing botnet by means

of a new-generation malware while the Carna Botnet was augmented using a custom code

binary. Moreover, Dainotti et al. discovered that the bots were coordinated by a bot-

master in a Command-and-Control (C&C) infrastructure where the bots used a reverse

IP-sequential strategy to perform their probing, while the Carna Botnet was C&C-less and

its bots used an interleaving permutation method to scan its targets. Further, the work by

Dainotti et al. documented a horizontal scan that targeted world-wide SIP servers, while

the Carna Botnet did not focus on one specific service but rather attempted to retrieve any

available information that was associated with any host and/or service. Readers that are

interested in more details related to the discussed CSCs are kindly referred to [177, 123].

We project that current undetected and unreported CSCs as well as future occurrences

could be ominously leveraged to cause drastic Internet-wide and enterprise impacts as pre-

cursors of various amplified, debilitating and disrupting cyber attacks including, but not

limited to, distributed and reflective denial of service attacks, advanced persistent threats

and spamming campaigns.

5.2 CSC-Detector: A System to Infer Large-Scale Probing

Campaigns

As previously mentioned in this thesis, we have been receiving, for the past three years,

data that amount for a daily total of 12 GB of malicious real darknet traffic from more

153

than 12 countries. This section leverages a portion of such large cyber security data to pro-

pose a novel system, CSC-Detector, that aims at identifying Cyber Scanning Campaigns.

Recall that the latter define a new phenomenon of probing events that are distinguished by

their orchestration (i.e., coordination) patterns. To achieve its aim, CSC-Detector adopts

three engines. Its fingerprinting engine exploits a unique observation to extract probing

activities from darknet traffic. The system’s inference engine employs a set of behavioral

analytics to generate numerous significant insights related to the machinery of the probing

sources while its analysis engine fine-grains the previously obtained inferences to automat-

ically infer the campaigns. CSC-Detector is empirically evaluated and validated using 240

GB of real darknet data. The outcome discloses 3 recent, previously obscured and unre-

ported large-scale probing campaigns targeting diverse Internet services. Further, one of

those inferred campaigns revealed that the sipscan campaign that was initially analyzed

by CAIDA is arguably still active, yet operating in a stealthy, very low rate mode. We en-

vision that the proposed system that is tailored towards darknet data, which is frequently,

abundantly and effectively used to generate cyber threat intelligence, could be used by

network security analysts, emergency response teams and/or observers of cyber events to

infer large-scale orchestrated probing campaigns. This would be utilized for early cyber

attack warning and notification as well as for simplified analysis and tracking of such

events.

5.2.1 Proposed System

This section introduces CSC-Detector as significantly simplified in Figure 5.1. In a nut-

shell, the system takes as input darknet traffic and outputs detected well-defined CSCs.

We refer to the inferred CSCs as being “well-defined” since the probing sources of those

CSCs will be identified and correlated through patterns that are automatically generated

by the analysis engine in which each of those patterns is defined by specific, clearly iden-

tifiable, similar probing behavioral characteristics. This section elaborates on the goals,

approaches, and methods that are adopted by each of CSC-Detector’s three engines that

permits the system to achieve its aim.

154

Malware Traffic

Probing
Fingerprinting

Probing Technique
Attribution

Fingerprinting Engine

Behavioral
Analytics

Probing-Malware Correlation
& Attribution

Inference Engine

FP-Tree Clustering FP-Tree Parsing Anaylsis Engine
Well-defined CSC

Darknet Traffic

Figure 5.1: CSC-Detector: System Architecture

The Fingerprinting Engine

In Section 3.2 of Chapter 3, we have proposed a new approach to fingerprint Internet-scale

probing activities. CSC-Detector leverages this approach to extract probing activities from

darknet data. Hence, the outcome of the fingerprinting engine are probing activities (i.e.,

probing sessions) coupled with their inferred probing techniques.

In addition to the validation of the observation of that approach that was performed

in Section 3.2 of Chapter 3, we further validate the observation of the approach as follows.

We executed 5 experiments using real and synthetic probing traffic. The Real prob-

ing traffic Data set (RD) was retrieved from the probes of the Carna Botnet [123] while the

remaining four Synthetic Data sets (SD) were respectively generated using four probing

tools, namely, Nmap, Unicornscan, AATools Port Scanner and Superscan, in a lab envi-

ronment. For RD, the various probing technique sessions were automatically extracted

by leveraging Snort’s probing engine [100] and confirmed by manual inspection. For SD,

the tools were invoked 100 times to generate their supported probing techniques in which

155

a tcpdump sink was used to collect the traffic. Figure 5.2 illustrates the generated dis-

tribution of some of the probing techniques using RD. Note that, the signals refer to the

0

50

100

0

0
.0

0
4

0
.0

0
9

0
.0

1
2

0
.0

1
5

0
.0

1
8

0
.0

2
1

0
.0

2
4

4
.2

0
3

4
.4

1
2

N
b

r
 o

f
P

a
c
k

e
ts

Time (ms)

(a) TCP SYN Scan

0

10

20

30

0

2
0
.8 2
4

2
8

3
2

3
4
.6

3
8
.1

4
1
.7

4
5
.2

4
9
.2

5
3
.2

N
b

r
 o

f
P

a
c
k

e
ts

Time (ms)

(b) TCP connect() Scan

0

20

40

60

0

2
.1

1

2
.1

1
6

2
.1

2
2

2
.1

3

2
.1

3
5

2
.1

4

2
.1

4
6

2
.1

5

2
.1

5
6

7
.1

0
7

N
b

r
 o

f
P

a
c
k

e
ts

Time (ms)

(c) Xmas Scan

0
5

10
15
20

0
.1 5

9
.9

1
4
.8

1
9
.7

2
4
.6

2
9
.5

3
4
.4

3
9
.3

4
4
.2

N
b

r
 o

f
P

a
c
k

e
ts

Time (ms)

(d) UDP Scan

0

1

2

3

4

5

0

1
.9

3
.8

5
.7

7
.6

9
.5

1
1
.4

1
3
.3

1
5
.2

1
7
.1 1
9

2
0
.9

N
b

r
 o

f
P

a
c
k

e
ts

Time (ms)

(e) ICMP Scan

Figure 5.2: Packets’ distribution generated by some of the probing techniques using RD

time series distributions (i.e., time in ms Vs number of packets) for each of the probing

techniques. Subsequently, DFA was applied on each of the distributions by leveraging the

technique in [111] and using 1ms as the bin size. The outcome for RD is shown in Figure

5.3 while the complete set of experiments are summarized in Table 5.1, where the results

of SD represent the average of all the executions. It is worthy to mention that such list of

probing techniques is comprehensive [35]; any probing traffic in any environment should

have been generated by one of the techniques on the list.

From Table 5.1 and the information relating the scaling exponent α to the corre-

lation status, we can produce Table 5.2 that validates the observation that is exploited

by CSC-Detector’s fingerprinting engine; a number of probing techniques indeed demon-

strate a similar and a distinct temporal correlation and similarity when generating their

156

-0.5

0

0.5

1

1.5

2

0.6 1.2 1.8 2.4

TCP SYN

TCP

Connect()

UDP

(a)

-1

-0.5

0

0.5

1

1.5

2

0.6 1.2 1.8 2.4 3.0

FIN Scan

XMAS Scan

NULL Scan

ACK Scan

ICMP Echo

(b)

-1

0

1

2

3

0.6 1.2 1.8 2.4

Window

Scan

IP Protocol

Scan

RPC Scan

(c)

Figure 5.3: DFA application on the probing techniques using RD

corresponding probing traffic. Using RD, for the TCP Connect() probing technique, the

observation was confirmed with 92% confidence while for the RPC probing technique, in

the same experiment, it was established for 95%. On average, for all the probing tech-

niques, the observation was respectively validated by 97% and 93% for the RD and SD

experiments.

The Inference Engine

CSC-Detector’s inference engine leverages (1) the behavioral analytics that were previously

proposed in Section 4.2.3 of Chapter 4 to capture the machinery of the probing sources

and (2) the malware correlation approach of Section 4.1 for attribution purposes.

The Analysis Engine

Previous works [179] suggested that coordinated bots within a botnet campaign probe

their targets in a similar fashion. CSC-Detector’s analysis engine exploits this idea by

157

Probing Technique RD: α SD: α

TCP SYN 0.57 0.74

TCP Connect() 0.87 0.69

FIN 0.31 0.24

Xmas 0.30 0.27

Null 0.37 0.41

UDP 0.66 0.58

IP Protocol 1.13 1.22

ACK 0.44 0.29

ICMP 0.25 0.29

Window 1.24 1.18

RPC 1.31 1.29

Table 5.1: Probing Techniques & DFA output

automatically building patterns that consist of similar probing behavioral characteristics.

The latter aims at identifying and correlating the probing sources into well-defined cam-

paigns. The engine considers the criteria (i.e., features) that are summarized in Table 5.3.

Inferred from the fingerprinting engine, the employed probing technique is a significant

behavior; [177] demonstrated that all the CSC bots used UDP scanning. Further, the anal-

ysis engine consumes all the previously inferred probing machinery that is derived from

the inference engine. It considers the fashion of the generated probing traffic; whether

random or not, and which specific pattern has been adopted if not random; which prob-

ing strategy has been employed; whether the probing source is a probing tool or a bot;

whether the probing is targeted or dispersed; whether or not the probing sources demon-

strate any signs of malware infection and which specific malware type/family/variant if

they do. Additionally, bots/sources in a CSC are postulated to possess similar probing

rates and ratios of destination overlaps; we consider a 90% confidence interval as being

similar. Finally, the analysis engine considers the target port as a significant criterion;

[177] disclosed that all the CSC bots used port 5060.

158

Correlation Status Probing Techniques

Anti-Correlated

FIN Probing

Xmas Probing

Null Probing

ACK Probing

ICMP Echo Probing

Correlated

TCP SYN Probing

TCP Connect() Probing

UDP Probing

Non-Stationary

IP Protocol Probing

Window Probing

RPC Probing

Table 5.2: Techniques & Correlation Statuses

To automatically infer orchestrated probing campaigns, the analysis engine leverages all

the previously extracted inferences and insights related to the probing sessions/sources

to build and parse a Frequent Pattern (FP) tree [180]. In such a tree, each node after

the root represents a feature extracted from the probing sessions, which is shared by the

sub-trees beneath. Each path in the tree represents sets of features that co-occur in the

sessions, in non-increasing order of frequency of occurrences. Thus, two sessions that have

several frequent features in common and are different just on infrequent features will share

a common path on the tree. The analysis engine also employs the FP tree based min-

ing method, FP-growth [180], for mining the complete set of generated frequent patterns.

As an outcome, the generated patterns represent frequent and similar probing behavioral

characteristics that correlate the probing sources into well-defined campaigns.

We should emphasize that such an approach that is employed by CSC-Detector’s

analysis engine possess the following advantages. First, the generated patterns are not de-

fined apriori; they are naturally and automatically detected. This permits CSC-Detector

159

Employed probing technique

Probing traffic (Random Vs Patterns)

Employed pattern

Adopted probing strategy

Nature of probing source

Type of probing (Targeted Vs Dispersed)

Signs of malware infection

Exact malware type/variant

Probing rate

Ratio of destination overlaps

Target port

Table 5.3: Criteria adopted by the Analysis Engine

to infer novel probing campaigns, without requiring previous knowledge about their spec-

ifications. The latter is a crucial feature, especially with the continuous evolution of

probing campaigns and their employed strategies. Second, the FP-Tree not only provides

the capability for the system to correlate the probing sources into campaigns, but also

semantically describes how the probing sessions have been constructed. Third, by engi-

neering parsing algorithms that traverse the FP-Tree in various ways, the system can infer

horizontal probing campaigns, similar to the CSC in [177], as well as campaigns that do

not focus on one port but rather probe multiple targets on various ports, similar to the

CSC in [123]. Fourth, from a performance perceptive, the employed approach is scalable

since probing sessions are not compared pairwise, which could lead to a quadratic com-

plexity [180]. In fact, the cost of the algorithm is the cost of inserting probing session

features in the FP-Tree, which is linear.

160

5.2.2 System Evaluation

5.2.3 Implementation

We implemented the proposed CSC-Detector as a prototype in Java. We utilized the jNet-

Pcap SDK for packets/sessions processing. For all the statistical distances and tests as

well as entropy and Poisson fitting, we employed their MATLAB implementations and in-

cluded them in Java using the MATLAB Builder JA. We also used ssdeep, a fuzzy hashing

implementation written in C, and wrapped it unto java using SWIG. We as well leveraged

a python implementation of the FP-growth algorithm. We adopted a MongoDB database

to save the instances of the probing sessions coupled with their generated inferences.

Performance Evaluation

We setup CSC-Detector on a lab machine equipped with an Intel Core i7 CPU with eight

cores and 12GB of RAM. We profiled CSC-Detector’s performance in terms of execu-

tion/processing time, CPU utilization and memory consumption using 7 days of logged

darknet data. Using this hardware setup, on average, CSC-Detector was able to process

one day of darknet data (≈ 12 GB) in about 3.5 hours. The latter task is from the time

the system first receives the darknet pcap file to the time all the probing sessions and

their inferences are stored in the database. During these 3.5 hours, throughout the 7 days,

CSC-Detector’s CPU utilization recorded an average of 70.4%, a minimum of 45% and a

maximum of 96%. Further, its memory consumption measured an average of 975 MB, a

minimum of 700 MB and a maximum of 1.15 GB. The fluctuations in both metrics can be

attributed to the varying system’s idle state and the variable size of the processed logged

darknet pcap file. Since the system allows an arbitrary number of worker CPUs, we noticed

that the primary bottleneck was reading and writing to disc. Further, the fingerprinting

and inference engines highly depend on numerous statistical tests and techniques that are

currently implemented in MATLAB; a native fast programming language implementation

of the latter can be expected to boost the processing performance. Concerning the anal-

ysis engine, it required around 12 seconds to automatically build the FP-tree using 240

thousand probing instances. The latter information strongly advocate that CSC-Detector

161

Probing Activities

PatternsRandom

Permutation

Sequential

Non Malware-

Related

Malware-Related

DispersedTargeted BotsProbing Tool

15066 sessions (62%)

Other

Uniform

Reverse

Forward

13850 sessions (57%)

18225 sessions (75%)21870 sessions (90%)

10692 sessions (44%)

10526 sessions (76%)

9234 sessions (38%)

10450 sessions (43%)

3324 sessions (24%)

10241 sessions (98%)

209 sessions (2%)

6075 sessions (25%)2430 sessions (10%)

13608 sessions (66%)

Figure 5.4: The outcome of the probing behavioral analytics

is practically viable in a real-world environment.

Empirical Evaluation

We evaluate CSC-Detector using one month of darknet data (240 GB) that was collected

during the recent duration of April 1st to April 30th, 2014. For each day in the dataset,

we extracted 1,000 sessions for a total of 30,000 sessions to experiment with. Note that,

the 30,000 sessions are selected to be generated from unique sources.

Evaluating the inference engine

We proceed by invoking the behavioral analytics that are employed by CSC-Detector’s

inference engine on the 24,300 probing sessions1. The outcome is summarized in Figure

5.4. It is revealed that 62% of the probing sources used certain patterns when gener-

ating their probing traffic. Applying the CLUES clustering algorithm on the generated

patterns resulted in 12 specific non-overlapping Poisson λ intervals. We associate the

probing sources to those intervals. Concerning the employed probing strategy, it is shown

that 57% of the probing sources leveraged a permutation while the remaining adopted a

sequential strategy when probing their targets. Of those that employed a permutation,

76% used a uniform permutation while 24% adopted other types of permutations. The

majority (≈ 98%) of those that employed a sequential strategy were found to adopt a

1As extracted from the fingerprinting engine

162

forward IP-sequential strategy while only 2% adopted a reverse IP-sequential strategy. It

is noteworthy to mention that Dainotti et al. [177] reported that the SIP CSC indeed used

a reverse IP-sequential strategy; the authors deemed that as rare and novel. Other studies

such as [169] dismissed the possible use of this strategy since, as they noted, the strategy is

difficult to be used to extrapolate certain metrics from especially when dealing with partial

probes. Further, the inference engine disclosed that ≈ 75% of the sources were probes from

bots while only 15% were generated from probing tools. Moreover, it was inferred that

90% of the sources were generating probing that is dispersed while only 10% of the sources

were generating probing targeted towards a small set of IPs; the average relative uncer-

tainty of 21,870 probing sources was shown to be > 0.72. Last but not least, the inference

engine employed the approach of Section 11 to investigate any signs of malware infec-

tion in the probing sessions. The output demonstrated that 44% of the probing sessions

exhibited such signs. The top 5 malware contamination that caused the probing were at-

tributed to the following: Trojan-FakeAV.Win32.Agent.cwa, Virus-Win32.Sality.s,

Trojan-Win32.Jorik.Shakblades.foc, Trojan-Downloader.Win32.KiayksayRen.b and

Worm-Win32.VBNA.b. It is noteworthy to pinpoint that the latter inference that aims at

coupling probing and malware by only analyzing their generated traffic has never been at-

tempted before. The obtained results also expressed that the average rate of all the probing

sources was around 80 packets/sec, the Domain Name System (DNS) on port 53 and the

Session Initiation Protocol (SIP) on port 5060 were the most probed UDP services, while

TCP ports 80 and 1433 that respectively represent the HTTP and Microsoft (MS)-SQL

services were the most targeted TCP services. To the best of our knowledge, the above

generated inferences represent the first comprehensive empirical results of probing behav-

iors and characteristics. Although we are unable to validate every single inference due to

the lack of its ground truth, the 3 CSCs that will be uncovered by the analysis engine

(that consumes these generated inferences) will be validated using a publically available

data source, namely, DShield data, advocating the relative accuracy of such insights.

163

CSC1 CSC2 CSC3

Employed probing technique: UDP TCP SYN ACK

Probing traffic: Random Random Pattern

Employed pattern: Null Null [19.17-21.23]

Adopted probing strategy: Reverse IP-sequential Uniform Permutation Forward IP-Sequential

Nature of probing source: Bot Bot Tool

Type of probing: Dispersed Dispersed Targeted

Signs of malware infection: Yes Yes No

Exact malware type/variant: Virus.Win32.Sality.bh Trojan.Win32.Jorik Null

Probing rate (in pps): 12 118 77

Target port: 5060 80 1433

Number of Probing Bots/Sources: 846 817 438

Table 5.4: The automatically inferred patterns capturing three large-scale orchestrated

probing campaigns

Evaluating the analysis engine

We proceed by invoking the analysis engine. Recall that this engine consumes the gener-

ated insights from the fingerprinting and inference engines to automatically build patterns

that consist of similar probing sources behavioral characteristics. For the sake of this work,

we have devised a simplistic parsing algorithm which automatically builds patterns from

the FP-tree that aims at capturing orchestrated probing events that probe horizontally;

probe all IPs by focusing on specific ports.

Inferred Campaigns: CSC-Detector automatically inferred the patterns that are

summarized in Table 5.4, which respectively captured three different CSCs. The first

pattern permitted the detection, identification and correlation of 846 unique probing bots

into a well-defined orchestrated probing event that targeted the VoIP (SIP) service. It is

shown that this event, that was initiated on the 17th of April, 2014, adopted UDP scan-

ning, probed around 65% of the monitored dark space (i.e., 300,000 dark IPs) where all its

bots did not follow a certain pattern when generating their probing traffic. Further, the

results demonstrate that the bots employed a reverse IP-sequential probing strategy when

164

probing their targets. Moreover, the malware responsible for this event was shown to be

attributed to the Sality malware. The second pattern successfully captured and correlated

817 unique probing bots to form a campaign that targeted the HTTP (Web) service. This

campaign, that first occurred on April 3rd, leveraged the TCP SYN scanning technique

and did not adopt a pattern when generating its probing traffic. Moreover, all its bots

were found to uniformly permute the dark IP space. Additionally, the malware responsible

for this event was shown to be attributed to the Jorik trojan. The third campaign that

was identified by the third pattern on April 16th was unique by targeting the MS-SQL

service, leveraging ACK scanning, employing a clearly identifiable pattern, focused on a

small set of targeted probing IPs, where its 438 probing sources leveraged a scanning tool

and a forward IP-sequential strategy. Note that we also generate supplementary material

related to the above inferred CSCs including geo-location information per real sources,

organizations, Internet Service Providers (ISPs), cities, regions and countries. However,

we refrain from publishing those due to sensitivity/legal issues.

Validation: Since currently there exist no cyber security capability to discover such

large-scale orchestrated probing campaigns [178], we are unable to directly compare the

inferred CSCs with other systems or approaches. However, in an attempt to validate our

results, we resort to publicly accessible data that is provided by DShield/Internet Storm

Center (ISC). ISC data comprises of millions of intrusion detection log entries gathered

daily from sensors covering more than 500 thousand IP addresses in over 50 countries.

From such data, we extract Figures 5.5, 5.6 and 5.7 which respectively depict probe

counts generating probing activities towards UDP port 5060 and TCP ports 80 and 1433

during the month of April, 2014. Figure 5.5 indeed reveals a significant peak on the 17th

of April consisting of an increasing number of probe counts targeting the SIP service;

this is the same day where the first orchestrated probing campaign, that was previously

inferred by CSC-Detector, was detected to be targeting the SIP service. Further, Fig-

ure 5.6, according to DShield’s data, shows a significant number of probes targeting the

Web service on April 3rd; this is as well coherent with the second CSC that was inferred

by CSC-Detector, that targeted the same service on the same day. Similarly, Figure 5.7

165

0

20000

40000

60000

80000

100000

120000

140000

4/
1/
20
14

4/
3/
20
14

4/
5/
20
14

4/
7/
20
14

4/
9/
20
14

4/
11

/2
01
4

4/
13

/2
01
4

4/
15

/2
01
4

4/
17

/2
01
4

4/
19

/2
01
4

4/
21

/2
01
4

4/
23

/2
01
4

4/
25

/2
01
4

4/
27

/2
01
4

4/
29

/2
01
4

Figure 5.5: Probe counts extracted from DShield/ISC data (April 2014)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

4/
1/
20
14

4/
3/
20
14

4/
5/
20
14

4/
7/
20
14

4/
9/
20
14

4/
11

/2
01
4

4/
13

/2
01
4

4/
15

/2
01
4

4/
17

/2
01
4

4/
19

/2
01
4

4/
21

/2
01
4

4/
23

/2
01
4

4/
25

/2
01
4

4/
27

/2
01
4

4/
29

/2
01
4

Figure 5.6: Probe counts extracted from DShield/ISC data (April 2014)

demonstrates a peak of probing packets targeting the MS-SQL service on the same day

(i.e., April 16th) when the third CSC was detected to be launching its probing activities

towards the MS-SQL service. Additionally, the target scope of those CSCs, also retrieved

from DShield’s data on those particular days, recorded an unprecedented numbers reach-

ing millions of targets (compared with hundreds on other days). The latter information

strongly advocate that the proposed system was indeed accurately successful in inferring

those unusual large-scale events. Note that, those inferred probing campaigns went unde-

tected and unreported in the cyber security community until now.

Moreover, in an attempt to further validate our results, we have performed two ad-

ditional experiments.

166

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

4/
1/
20
14

4/
3/
20
14

4/
5/
20
14

4/
7/
20
14

4/
9/
20
14

4/
11
/2
01
4

4/
13
/2
01
4

4/
15
/2
01
4

4/
17
/2
01
4

4/
19
/2
01
4

4/
21
/2
01
4

4/
23
/2
01
4

4/
25
/2
01
4

4/
27
/2
01
4

4/
29
/2
01
4

Figure 5.7: Probe counts extracted from DShield/ISC data (April 2014)

First experiment: We extracted all the 2101 source IP addresses that were pin-

pointed to be part of the three inferred large-scale probing campaigns. We fed those IP

addresses to third party publically available data sources provided by the online services,

ThreatStop2, MxLookup3, brightcloud4 and ReputationAuthority5. The latter cyber se-

curity data repositories provide information on Internet-scale incidents (i.e., scanning,

malware, spamming, etc.) per IP address. In particular, ThreatStop indexes full, present

and historical dshield data. Since the three probing campaigns were inferred in April 2014,

we verified the existence of the inferred source IP addresses that belong to the campaigns

against those reported in the online services in that specific time frame. The outcome of

such experiment, from all the four sources, demonstrated that (1) 98% of the IP addresses

of the campaigns were indeed found and flagged as malicious in those repositories and (2)

around 91% of those IP addresses were specifically flagged as being involved in scanning

activities.

Second experiment: In an attempt to further validate the phenomenon by cor-

relating activities of source IPs, we extracted the packet features6 generated by the IP

2http://www.threatstop.com/
3http://mxtoolbox.com/
4http://www.brightcloud.com/
5http://www.reputationauthority.org/
6Adopted from [166], where they have been shown to produce distinguishing characteristics when applied

167

addresses for each of those three campaigns. Subsequently, the k-means data clustering

technique was applied on such features. The outcome is illustrated in Figure 5.8. The

figure advocates the creation of three unique clusters, representing the three inferred cam-

paigns.

−2 0 2 4 6 8 10 12

0

2

4

6

8

10

Component 1

C
om

po
ne

nt
 2

Traffic from CSC1
Traffic from CSC2
Traffic from CSC3

Figure 5.8: K-means output

Thus, on one hand, the first experiment validates that the source IP addresses of

the inferred campaigns are indeed malicious where the majority of them were found to be

involved in probing activities in April 2014. On the other hand, the second experiment

demonstrates that the inferred campaigns are indeed well constructed where their IP ad-

dresses coupled with their generated probing traffic are strongly correlated as revealed by

the formed independent clusters.

Discussion: The aforementioned inferred CSC1 is indeed interesting; as elaborated

at the beginning of this section, in [177], CAIDA presented an analysis study of an or-

chestrated probing campaign that targeted VoIP (SIP) servers. According to CAIDA, the

event occurred from January 31st, 2011 till February 12th, 2012. CSC1 that the proposed

system was able to automatically infer possesses the exact characteristics of that CAIDA

on network data

168

event. They both were attributed to the Sality malware, generated UDP scanning, tar-

geted SIP servers on port 5060, and used a reverse IP-sequential probing strategy. The

latter behavior is predominantly stimulating because, as previously mentioned, that strat-

egy is known to be extremely under-employed [169]. However, one distinguishing feature

between those two events is that the probing bots of the campaign that the proposed sys-

tem was able to infer has considerably lower probing rate than those of CAIDA’s event;

on average, the bots of the inferred campaign recorded 12 packets per second (pps) while

those of CAIDA measured around 60 pps. Such information (1) arguably proves that

CAIDA’s event is indeed still active, yet operating in a stealthy, very low rate mode in an

attempt to achieve its reconnaissance task without being detected or (2) a new instance

of the same orchestrated event commanded by the same C&C took place in April, 2014

without any cyber security body reporting it. In either cases, we find the latter informa-

tion motivating and to a certain degree bewildering. Thus, we aim in the near future work

to track that event to verify and elaborate on its inner details. It is worthy to mention

that in the month of April 2014, DShield, the media or other sources did not announce a

campaign that CSC-Detector was not able to infer. Moreover, although we did not have

the opportunity to operate and experiment with CSC-Detector for a long period of time,

however, we were able to extract some points that we recently have had the chance to

observe:

• We are often faced with the case in which the probing bot sends two probing packets

to the same destination but with two different destination port numbers. For ex-

ample, if the intention of the scanner/campaign is to probe for the SIP service, the

scanner might send two probing packets towards ports 80 and 5060. This was also

observed and concurred in [177]. CSC-Detector is frequently identifying those bots

as belonging to two different CSCs. One solution to compensate this issue would be

to permit multiple port number assignments in the target IP criteria through the

analysis engine.

• Most of the probing bots that the system is identifying as belonging to the same

CSC are often very geographically dispersed. This suggests that it is very hard if

169

not impossible to mitigate their probes or their possible subsequent cyber attacks by

blocking them based on their location, ISP or Autonomous System Number (ASN).

• Typically, we would expect that probing bots within the same correlated CSC to

possess similar probing rates, as they are coordinated by the same botmaster in a

C&C infrastructure that characteristically adopt a unified probing strategy. For the

three CSCs that the system was able to infer, the latter was found to be false (using

a 90% confidence interval); perhaps this implies that the same botmaster is requiring

different bot groups within the same campaign to adopt different probing strategies

in an attempt to avoid being attributed to the same campaign. In general, we deem

this behavior as stimulating, uncommon and somehow confusing to understand and

interpret.

5.3 Time Series Interpolation and Prediction For Inferring

Orchestrated Probing Campaigns

This section also aims at inferring probing campaigns by investigating traffic destined to-

wards network telescopes. The objective is to provide a more systematic methodology to

infer, in a prompt manner, whether or not the perceived probing packets belong to an

orchestrated campaign. Additionally, the methodology could be easily leveraged to gen-

erate network traffic signatures to facilitate capturing incoming packets as belonging to

the same inferred campaign. Indeed, this would be utilized for early cyber attack warning

and notification as well as for simplified analysis and tracking of such events. To realize

such goals, the proposed approach models such challenging task as a problem of interpo-

lating and predicting time series with missing values. By initially employing trigonometric

interpolation and subsequently executing state space modeling in conjunction with a time-

varying window algorithm, the proposed approach is able to pinpoint orchestrated probing

campaigns by only monitoring few orchestrated flows. After verifying the accuracy of the

individually-employed theoretical based methods using simulated data, we consequently

empirically evaluate the effectiveness of the complete proposed model using 330 GB of real

170

telescope data. By comparing the outcome with a previously validated work, the results

indeed demonstrate the promptness and accuracy of the proposed model.

Thus, motivated by the imperative requirement to infer such probing campaigns, we

frame this section’s contribution as follows:

• Proposing an approach that models the complex problem of inferring probing cam-

paigns as the task of interpolating and predicting time series in the presence of

missing values. The model allows the pinpointing of orchestrated campaigns by ob-

serving just few probing packets, rendering it very prompt. Further, by only keeping

a record of the probing time series, the model is efficient and lightweight in terms of

memory and processing requirements, which makes it applicable to be implemented

in real-time on operational data streams. It is also noteworthy to mention that the

model could be easily invoked to capture newly incoming packets that belong to

the same inferred campaign by generating simple yet effective network traffic sig-

natures. To the best of our knowledge, this is the first systematic model that is

specifically tailored towards the goal of inferring probing campaigns by observing

network telescopes.

• Employing time series interpolation and prediction approaches based on trigonomet-

ric and state space modeling techniques, namely, the discrete Fourier transform and

kalman filter, and evaluating their accuracy against other approaches using simu-

lated data. The latter aims at authenticating the choice of those techniques as core

components of the proposed model.

• Evaluating the promptness and accuracy of the proposed model using 330 GB of

real telescope data in addition to validating the models’ outcome and advantages by

comparing it with a previous work.

5.3.1 Proposed Model

In this section, we formulate the problem, present the proposed approach and evaluate

the employed theoretical-based techniques.

171

Problem Formulation

By observing a set of network telescopes {nt1, nt2, · · · , ntn}, one can infer unidirectional

probing flows {pf1, pf2, · · · , pfn} as previously illustrated in Figure 2.28. A probing flow

refers to a series of scanning packets, generated by employing a specific probing technique

[35], r = {s, d,∆t}, that is originating from a single Internet source s and targeting one

particular darknet IP address d within a duration ∆t. From a telescope perspective, such

flows seem to appear autonomous and totally independent from other probing flows. How-

ever, as stated in Section 5.1, there exists evidence of the emergence of probing campaigns

that aim at executing coordinated scanning activities.

Thus, the problem in-hand could be clarified using the following questions:

1. By solely observing unidirectional probes pfn arriving at the network telescope ntn,

how can we infer orchestrated probing flows ϕ(pfn)?

2. How can we distinguish orchestrated probing flows ϕ(pfn) from other flows that are

also targeting the telescope? More specifically, given a possible set of ϕ(pfn), how

can we achieve ϕ(pfn)− ε, where ε could refer to noise (i.e., independent flows pfn),

to produce confirmed ϕ(pfn).

3. How can we design an approach that achieves the above but at the same time is

efficient (i.e., demands little processing and memory requirements) and prompt.

The latter feature is crucial as we would like to possess the capability to flag an

orchestrated campaign by observing as few coordinated probing flows as possible.

Indeed, this would be utilized for early cyber attack warning, notification and thus

mitigation as well as for simplified analysis and tracking of such events, by monitoring

and capturing signatures of those campaigns in newly incoming flows.

In what follows, we elaborate on the proposed approach, as holistically illustrated

in Figure 5.9, that aims at answering the above questions.

172

Start

Telescope

Data

Fingerprint Probing

Activities

Cluster the Flows based on

Packet Features

Generate Probing

Time Series

Interpolate Time Series

using discrete Fourier

transform

Predict Time Series

using Kalman Filter

Algorithm 1

Assert Orchestration End

 Reduces

Prediction

Error?

Possible

Orchestrated

Flows

Yes

Inferred

Orchestrated

Campaigns

Discard Independent

Flows (i.e., Noise)

No

Figure 5.9: A holistic view of the proposed approach

Proposed Approach

In this work, we uniquely model the task of inferring orchestrated probing campaigns as the

problem of interpolating and predicting time series in the presence of missing values. The

core rationale behind that approach stems from the idea that if the probing flow time series

demonstrates positive predictability features, thus identifying certain probing patterns,

then it might be part of an orchestrated event. To realize such rationale, the proposed

approach (1) fingerprints independent probing flows as perceived by the telescope, (2)

clusters and builds the probing flow time series, (3) interpolates the time series for data

completion purposes, (4) predicts the time series in order to infer orchestrated flows and

eliminate independent (i.e., non-orchestrated) ones and (5) confirms orchestrated flows by

capturing and verifying the logic of the usage of the probing sources. In the sequel, we

elaborate on the latter five steps.

173

Fingerprinting Independent Flows

In Section 3.2 of Chapter 3, we have proposed a new approach to fingerprint Internet-scale

probing activities. In this work, and to successfully extract independent probing flows

as perceived by the network telescope, we adopt and leverage the previously proposed

approach.

Flow Clustering & Time Series Generation

Probing flow packets targeting the telescope have the following 8-tuple form

〈t, srcip, dstip, srcp, dstp, prot, ttl, f lags〉

representing the timestamp, the source and destination IP addresses and ports, the

transport protocol used, the time-to-live (ttl) value and the packet flags. From recent

probing campaign incidents [177, 123], it was observed that orchestrated probes possess

similar values for dst p, prot and flags. Thus, we first amalgamate all the probing flows

into different clusters sharing similar values for those packet features. Additionally, based

on those reported events, it was demonstrated that a particular campaign has been gen-

erated by the same type of operating system; in [177], it was inferred that 97% of the

orchestrated probing flows were originating from windows machines while in [123], it was

revealed that all the flows were generated from Unix environments. Thus, it is desirable

that we further cluster the previous groups by the same originating operating system. To

achieve this, we investigate the ttl value of the probing packets as perceived by the network

telescope. According to [181], most modern operating systems use only a few selected ini-

tial ttl values, particularly, 30, 64, 128, and 255. It is evident that most of these initial ttl

values are far apart. Moreover, since Internet traces have shown that few Internet hosts

are apart by more than 30 hops [182, 183], which is also confirmed by our own recent

observations, one can determine the initial ttl value of a probing packet that is received at

the telescope by selecting the smallest initial value in the set that is larger than its final

ttl. For example, if the observed final ttl value is 112, the initial ttl value would be 128.

Thus, based on this heuristical approach, we further refine the clusters by subdividing the

174

probing flows according to similar ttl values. Recall that the latter aims at further clus-

tering the groups based on similar originating operating system. It is important to note

that probing sources/attackers can use, in theory, certain tools that can explicitly modify

the ttl value in an attempt to evade being correctly clustered. For example, traceroute7

is a common application which can set the IP ttl to any random number, independent of

the operating systems’ kernel’s default. However, a probing source who overrides IP ttl to

avoid detection should enforce a stable mapping of IP source to IP ttl, in order to prevent

us from seeing a noisy IP TTL originating from its IP address, and thus subsequently

flagging his IP source as ttl-spoofing. In practice, in our experiments, we did not notice

any ttl-spoofing, where all the inferred ttl values were from those 4 default categories.

Please recall, in a nutshell, that the output of the above are independent probing flows

clustered based on similar dst p, prot, flags and ttl values.

For each of the above independent probing flows within those clusters, we generate

their corresponding time series of the form

〈t, dstip〉

Note that due to the simplicity of such time series, the approach is able to generate

around 200 thousand of those in under 5 seconds. Further, since the time series is com-

posed of just two packet features, namely, the timestamp and the destination telescope

IP address, the storage requirements are minimal; less than 300 MB to save those 200

thousand time series. It is also noteworthy to mention that such storage requirement will

not augment by time, since the approach discards the previously extracted time series

after processing.

Time Series Interpolation

The above time series could be referred to as a time series with missing values in which

some of its rows are not captured. This is because (1) the network telescope only covers

a portion of the Internet space and thus is not able to perceive all the probes at all times

7http://linux.die.net/man/8/traceroute

175

and (2) some probing packets arriving at the telescope could be distorted and thus are

filtered out before the generation of the time series. Indeed, without a complete view of

the probing time series, it is very difficult, if not impossible, to devise approaches to infer

orchestration. To deal with this issue, we resort to time series interpolation. This refers to

numerical analysis techniques that aim at constructing new data points from and within

a range of a discrete set of known data points. Although there exists several interpolation

techniques in the literature [184], in this work, we employ and tailor, for accuracy8 and ef-

ficiency reasons, trigonometric interpolation, namely, the discrete Fourier transform (dFt)

[185, 186]. In the sequel, we detail the latter and demonstrate how it is used for effective

interpolation.

Fourier analysis is the theory about representing general functions by means of

trigonometric functions [185]. This decomposition procedure is called Fourier transform

[186].

Defined on a discrete function of infinite length xn, the discrete-time Fourier trans-

form (DTFT) reads

X(
∼
w) =

∞∑
n=−∞

xn · e−i
∼
wn (5.1)

with
∼
w ∈ [−π, π) since DTFT is 2π-periodic [187]. Operating on xn defined over all

integers n ∈ Z, the frequency
∼
w of the DTFT is always continuous. In other words, DTFT

maps an infinite series of complex numbers into a finite interval. From an engineering

perspective, the function values xn can be called samples as well. We also notice the

inversion

xn =
1

2π

∫ π

−π
X(
∼
w) · ei

∼
wn d

∼
w . (5.2)

For a sequence xn, n = 0 · · ·N − 1, that is of a finite length, the discrete Fourier

8See Section 5.3.2

176

transform (DFT) is defined as

X(k) =

N−1∑
n=0

xn · e
−2πikn
N . (5.3)

The inverse Fourier transform (IFT) is given by

x(t) =
1

2π

∫ ∞
−∞

X(w) · eiwt dw (5.4)

and the inverse discrete Fourier transform (IDFT) is

xn =
1

N

N−1∑
k=0

X(k) · e
2πikn
N . (5.5)

By (5.2) and (5.4), we can see that DTFT provides an approximation for the FT

defined in continuous time.

Furthermore, by Eulers notation [188]

eπi = cosπ + isinπ = −1

and further defining

wN = e
πi
N , (5.6)

we may rewrite DFT and IDFT as

X(k) =

N−1∑
n=0

xn · w−2knN (5.7)

xn =
1

N

N−1∑
k=0

X(k) · w2kn
N (5.8)

Going back to our interpolation problem, given a set of (n + 1) data points in the

probing time series, dFt provides an interpolating function that is composed of finite

sum of cosines and sine that connects all (n + 1) data points, including any missing

values in between. However, for the previous function to be directly applicable to the

extracted probing time series, we modify the dstip packet feature in the time series from

177

the typical IPv4 CIDR notation [189] (i.e., w.x.y.z/13) to a discrete numeric by using a

simple developed mechanism.

Time Series Prediction

After interpolating the probing time series within the clusters, the next step would be to

verify if such series indicate any signs of predictability. If confirmed, this would provide

evidence that the probing flows indeed possess some orchestration logic. To achieve that

task, we tailor and employ a recursive optimal stochastic estimator, namely, the kalman

filter [190]. Although we have selected to leverage this specific theoretical-based technique

because of various reasons, including, (1) its superior results in practice due to optimal-

ity and structure [191, 192, 193], (2) its convenient form that permits online real-time

processing [194, 195], (3) its ease to formulate and implement and (4) its efficiency when

calculating the measurement equations and the error covariances [196], the main reason,

however, would be due to its significant applicability to the problem in-hand; the kalman

filter infers parameters of interest from indirect, inaccurate and uncertain observations.

This is coherent with our problem since the time series under predictability verification

has been interpolated and thus might contain some uncertain records. The inner workings

of the kalman filter are highlighted next.

The kalman filter could be simplified by

Xk = Kk · Zk + (1−Kk) ·Xk−1 (5.9)

where Xk is the current state, Kk is the kalman gain, Zk is the current measured

value and Xk−1 is the previous estimation. Note that Zk refers to an observed or inter-

polated record in the probing time series. Informally, we can say that the kalman filter

identifies the most optimum averaging factor for each consequent state. Additionally, it

remembers some information related to the past states.

The first step of the kalman filter is rendered by evaluating the probing time series

178

signal by using two linear stochastic equations, namely,

xk = xk−1 + wk (5.10)

and

zk = xk + vk (5.11)

where wk and vk are measurement noises.9

The second step of the kalman filter is composed of establishing and subsequently

iterating through the prediction (i.e., time update) and correction (i.e., measurement

update) equations. On one side, the time update formulation is given by

x
−
k= xk−1 (5.12)

and

P
−
k= Pk−1 (5.13)

where (5.12) projects the state ahead while (5.13) projects the error covariance

ahead. On the other hand, the measurement update formulation is given by

Kk =
P
−
k

P
−
k +R

, (5.14)

xk = x
−
k +Kk(zk − x

−
k) (5.15)

and

Pk = (1−Kk) · P
−
k (5.16)

9For simplicity, these values are extracted from a Gaussian distribution fitted into the received darknet

data. Note that this assumption is not problematic since the kalman filtering algorithm will converge into

correct estimations, even if the Gaussian noise parameters are roughly estimated [192, 197].

179

where (5.14) computes the kalman gain, (5.15) updates the estimate via zk and

(5.16) updates the error covariance.

Going back to our probing time series, recall that the aim is to infer whether or

not the probes demonstrate any signs of predictability and thus orchestration. We exploit

the kalman filtering error covariance, Pk, as previously computed, in conjunction with a

time-varying window algorithm to achieve the latter. The pseudocode of the algorithm is

presented next.

Algorithm 6 operates on the basis of two time windows. The first is used to load

the probing time series within each cluster into volatile memory for processing while the

second is used to compare the probing time series. The comparison is based on kalman’s

error covariance; the algorithm flags those flows that increase the error as demonstrating

non-predictability while inferring orchestrated ones by monitoring a decrease in the error

metric. From a complexity perceptive, the algorithm requires O(m) space complexity

where m is the size of the probing time series within each cluster and O(m + n + p)

time complexity where n is the size of the probing time series related to the comparison

window and p is the required time for the kalman filter to process the time series within

q fixed iterations. It is noteworthy to mention that in this work, we have chosen a q

value of 10 iterations for the kalman filter in order to measure and compare the error

covariance. Note that the choice of the value per say is not an issue; rather, its systematic

application for all the probing time series for effective and accurate comparison. Further,

as mentioned in Section 5.3.1, recall that since the probing time series is very simple, there

is no compelling reason (i.e., from a memory or processing requirements) to optimize the

values of the window sizes. In practice, the algorithm can process and decide upon a time

series with 1 thousand records in less than 10 seconds and require, on average, around 10

MB in volatile storage.

180

Algorithm 6: A time-varying window algorithm to distinguish between orches-

trated and independent probing flows by leveraging kalman’s error covariance

Data: Probing Clusters, PC,

Probing Time Series, PTS

Result: List of Orchestrated Flows, OF

1 for PTS in PC do

2 ProcessingWindow, PW=5;

3 ComparisonWindow, CW=1;

4 while PTS in PW do

5 while PTS in CW do

6 v1=kalman.execute(PTS);

7 CW++;

8 v2=kalman.execute(PTS);

9 if v1 > v2 then

10 flag((CW - -).FirstElement();

11 OF .add(CW - -).OtherElements();

12 end

13 if v1 < v2 then

14 flag(CW).LastElement());

15 OF .add(CW).OtherElements();

16 end

17 CW++;

18 end

19 end

20 PW+=5;

21 end

Orchestration Confirmation

The previous sections elaborated an approach that aims at inferring orchestrated probing

flows as perceived by the network telescope. Specifically, the outcome of the previous

181

section could be simplified by Figure 5.10. In this Figure, assume that the probing sources

Internet Space

Telescope Space

Probing Master

Control Channels

Orchestrated
Probing Sources

Probing Traces

Figure 5.10: A simplified illustration of orchestrated probing flows

were inferred to be orchestrated by employing the proposed approach. Recall, that the

approach only analyzed the probing traces which targeted the telescope to conclude that

inference. However, to further assert such orchestration, we extend the approach by ex-

ploiting the logic of distribution or usage of the probing sources as instructed by the

probing master. The latter aims at providing fortified evidence of the coordination of the

probing sources. Note that, we use the generic name ‘probing master’ to either refer to

a probing botmaster where the probing sources are deemed to be infected by a malware

and thus are referred to as bots similar to the analyzed probing event in [177] or to a

more relaxed naming convention which is rendered by any ‘malicious manager’ that is co-

ordinating the probing activities in some matter as was illustrated in [123]. Typically, to

infer the logic of the usage of the probing sources, one need access to the control channels

182

(see Figure 5.10). However, recall that we only have access to the network telescope in-

formation. Although we could leverage the observation that coordinated bots in a unified

botnet will relatively generate the same amount of traffic as was noted in [198], we argue

that this approach is not quite accurate and does not apply in our case. First, since our

work exploits network telescopes to infer probes orchestration, it is highly probable that

we might not observe all the probes from the probing sources. Thus, even though the or-

chestrated probing sources might send the same amount of probes, the network telescope

will not perceive such equal amount. Second, the probing master could attempt to hide

the orchestration behavior by purposely instructing the probing sources to probe with very

different number of probes. In either cases, that observation that relies on the generated

load by the coordinated sources will fail to assert orchestration. Therefore, in this work,

we rely on another behavior that is easily and more accurately captured by a network

telescope to achieve that goal. From [177, 123], it was demonstrated that the probing

master instructed its sources to initiate the orchestrated probing activities in a constant

manner. In other words, given a queue of targets, the coordinated probing sources would,

in a constant repetitive manner, select a subset of the destinations and pledge their probes

towards them during a dispersed period of time. We leverage such information and devise

a simple mechanism to capture the activity closeness of the orchestrated sources. This

step could be considered as a post-processing step that is performed on the output of the

previous section. Within a given ProcessingWindow, PW (recall Algorithm 6), we record

all the orchestrated probing sources as inferred by the proposed approach. For each of

such probing sources, we build a simplistic data structure that holds the indices in which

that specific probing source was active within PW . Figure 5.11 illustrates such structure

where K ∈ {0,1}.

 K1 K2 Kn

Probing Sourcen

Figure 5.11: A structure that captures when the orchestrated probing sources are active

Such binary structure indeed captures when the orchestrated probing sources were

183

active during PW , where the indices reflect a specific time metric (i.e., ms or sec). Thus,

the problem in-hand is now reformulated as a pattern matching task executed on binary

structures. Indeed, the aim is to utilize the assembled binary structures to infer close-

ness of activity between the orchestrated sources. To achieve the latter, we implement

a highly efficient pattern matching algorithm that is specifically tailored to operate on

binary strings. The code is based on that of [199]. The latter algorithm was found to be

extremely efficient, when compared with other literature techniques, even when the binary

structures are large [199] as it might occur in our case. To determine a suitable percentage

of activity closeness that we can use to assert the orchestration of the probing sources,

we perform the following empirical experiment. We extract 200 unique and orchestrated

probing sources coupled with their real traffic flows from the Carna Botnet [123]. For

all the probing sources, we generate their corresponding structure as previously described

in this section and illustrated in Figure 5.11. For any two of those orchestrated sources,

we execute the binary matching algorithm and record the percentage of similarity. The

outcome is illustrated in Figure 5.12.

The result indicates that between any two orchestrated flows, the average of their

activity closeness, using the proposed approach in this section, is around 57.4%. In this

work, we employ the minimum value derived from this experiment, which is equal to 39%,

as a relaxed lower bound to assert the orchestration of the probing sources. Moreover, only

for labeling purposes, we assert that a cluster of inferred and confirmed orchestrated sources

will indeed define a campaign when the number of such sources reaches a minimum of 100

unique machines; on one hand, the probing campaigns in [177, 123] demonstrated a large

number of involved orchestrated sources reaching thousands and millions, while, on the

other hand, other probing studies [200] revealed a more focused coordinated probing events

involving just few hundreds of orchestrated sources. Thus, we deem the 100 machines

threshold as a suitable parameter to flag a group of orchestrated sources as a campaign.

Note that, this relatively low threshold will permit the model, at very early stages, to

pinpoint orchestrated campaigns by observing just 100 coordinated and confirmed probing

flows. Indeed, this would be utilized for early cyber attack warning and notification as

184

0

10

20

30

40

50

60

70

80

90

2 8

1
4

2
0

2
6

3
2

3
8

4
4

5
0

5
6

6
2

6
8

7
4

8
0

8
6

9
2

9
8

1
0

4

1
1

0

1
1

6

1
2

2

1
2

8

1
3

4

1
4

0

1
4

6

1
5

2

1
5

8

1
6

4

1
7

0

1
7

6

1
8

2

1
8

8

1
9

4

2
0

0

P
ER

C
EN

TA
G

E
O

F
A

C
TI

V
IT

Y
C

LO
SE

N
ES

S

NUMBER OF ORCHESTRATED PROBING FLOWS

Figure 5.12: An empirical experiment to determine a suitable lower bound for the activity

closeness of the orchestrated probing sources

well as for simplified and prompt analysis and tracking of such events.

5.3.2 Evaluation of Techniques

To interpolate and predict the probing time series, we have initially employed and tailored

trigonometric interpolation based on discrete Fourier transform and subsequently executed

state space modeling related to kalman filtering. This section compares the accuracy of

those two approaches with other common approaches. This aims at verifying the choice

of those two theoretical-based techniques as core components of the proposed model in

solving the specific problem in-hand. To archive that, we resort to a simulation experiment.

The experiment is rendered by a simulation executed using Opnet Modeler10. The

simulation is comprised of a probing source and 100 probing destinations/targets. The

source and the destinations are represented using commodity machines. The probing

source is instructed to generate three types of probing towards the targets, namely, TCP

10http://tinyurl.com/nclm3gp

185

SYN, UDP and ACK scanning, for a duration of 10 minutes. The latter ones are typically

common types of probing activities [35].

We generate the probing time series targeting 20 destinations in coherence with Sec-

tion 5.3.1. In case of interpolation, the aim is to verify the accuracy of the discrete Fourier

transform (dFt) in two cases, namely, when the series is missing only one value and in the

case where it is missing multiple values. In both cases, we compare the dFT in relation to

the Least Squares Approximation (LSA) method and the Cubic Spline (CS) method. The

latter are classical and thus significantly used approaches in the field of time series inter-

polation [201, 202, 203]. On one hand, the LSA approach attempts to minimize the sum

of the squares of the errors for a polynomial of a given degree by applying the least-square

principle. Such approach is coherent with the maximum-likelihood principle of statistics

[204]; if the measurement errors are normally distributed and if the standard deviation

is constant for all the data, the line determined by minimizing the sum of squares can

be shown to have values of slope and intercept which have maximum likelihood of occur-

rence. On the other hand, the CS method fits a smooth curve to the known data, using

cross-validation [205] between each pair of adjacent points, to initially set the degree of

smoothing and subsequently estimate the missing observation by the value of the spline.

Note that to implement the LSA and CS techniques, we employed two open source Java

libraries11 while we experimented with a slightly modified version of the FFTW12 library

to implement the dFT approach.

Table 5.5 and Figure 5.13 summarize the interpolated time series in the case of one

missing value where t is in ms and x(t) is the targeted destination. In all the three miss-

ing value cases, we can note that the dFt approach provided the closest estimates to the

actual value while the polynomial LSA approach was the least accurate. In the second

and third missing value cases, the CS approach performed almost as accurate as the dfT

method with the LSA approach showing much improvement. From this experiment, we

11http://tinyurl.com/mptwqg4, http://tinyurl.com/k59sbrm
12http://www.fftw.org/

186

can conclude that the dFT, overall, outperformed the other methods in terms of accuracy,

especially when the number of values preceding the missing interpolated value is limited;

this is crucial feature that is much needed when working with darknet probing flows.

3232235750

3232235755

3232235760

3232235765

3232235770

3232235775

3232235780

3232235785

3232235790

3232235795

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
R

O
B

ED
 D

ES
TI

N
A

TI
O

N

TIME

Actual Value LSA CS dFt

Figure 5.13: Summary of the estimates of the probing time series interpolation in the

presence of one missing value

3232235750

3232235760

3232235770

3232235780

3232235790

3232235800

3232235810

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
R

O
B

ED
 D

ES
TI

N
A

TI
O

N

TIME

Actual Value LSA CS dFt

Figure 5.14: Summary of the estimates of the probing time series interpolation in the

presence of multiple missing values

187

Time t x(t) Actual Value x(t) x(t) using LSA x(t) using CS x(t) using dFT

1 3232235777 3232235777 3232235777 3232235777 3232235777

2 3232235796 3232235796 3232235796 3232235796 3232235796

3 3232235781 3232235781 3232235781 3232235781 3232235781

4 3232235779 MISSING 3232235754 3232235762 3232235784

5 3232235783 3232235783 3232235783 3232235783 3232235783

6 3232235792 3232235792 3232235792 3232235792 3232235792

7 3232235788 3232235788 3232235788 3232235788 3232235788

8 3232235789 3232235789 3232235789 3232235789 3232235789

9 3232235778 3232235778 3232235778 3232235778 3232235778

10 3232235785 3232235785 3232235785 3232235785 3232235785

11 3232235795 3232235795 3232235795 3232235795 3232235795

12 3232235782 MISSING 3232235771 3232235778 3232235783

13 3232235793 3232235793 3232235793 3232235793 3232235793

14 3232235786 3232235786 3232235786 3232235786 3232235786

15 3232235791 3232235791 3232235791 3232235791 3232235791

16 3232235787 3232235787 3232235787 3232235787 3232235787

17 3232235784 3232235784 3232235784 3232235784 3232235784

18 3232235790 MISSING 3232235784 3232235793 3232235788

19 3232235780 3232235780 3232235780 3232235780 3232235780

20 3232235794 3232235794 3232235794 3232235794 3232235794

Table 5.5: Verifying the accuracy of the discrete Fourier transform as applied to probing

time series interpolation in the presence of one missing value

188

Time t x(t) Actual Value x(t) x(t) using LSA x(t) using CS x(t) using dFT

1 3232235777 3232235777 3232235777 3232235777 3232235777

2 3232235796 3232235796 3232235796 3232235796 3232235796

3 3232235781 3232235781 3232235781 3232235781 3232235781

4 3232235779 3232235779 3232235779 3232235779 3232235779

5 3232235783 MISSING 3232235761 3232235768 3232235778

6 3232235792 MISSING 3232235763 3232235772 3232235784

7 3232235788 MISSING 3232235754 3232235765 3232235779

8 3232235789 MISSING 3232235752 3232235763 3232235778

9 3232235778 3232235778 3232235778 3232235778 3232235778

10 3232235785 3232235785 3232235785 3232235785 3232235785

11 3232235795 3232235795 3232235795 3232235795 3232235795

12 3232235782 3232235782 3232235782 3232235782 3232235782

13 3232235793 3232235793 3232235793 3232235793 3232235793

14 3232235786 3232235786 3232235786 3232235786 3232235786

15 3232235791 3232235791 3232235791 3232235791 3232235791

16 3232235787 3232235787 3232235787 3232235787 3232235787

17 3232235784 3232235784 3232235784 3232235784 3232235784

18 3232235790 MISSING 3232235798 3232235788 3232235792

19 3232235780 MISSING 3232235771 3232235786 3232235777

20 3232235794 MISSING 3232235807 3232235784 3232235797

Table 5.6: Verifying the accuracy of the discrete Fourier transform as applied to probing

time series interpolation in the presence of multiple missing values

189

To further assess how the employed dFt approach will perform, we used the same

simulation setup to execute another experiment which is rendered by the presence of mul-

tiple missing values. Table 5.6 and Figure 5.14 summarize the output of such experiment.

The results pinpoint another imperative advantage of the dFt technique; while the accu-

racy of the other approaches very rapidly degrade when faced with multiple subsequent

missing values (i.e., especially at the last position in the missing value series), the dFt

approach still maintains an acceptable accuracy. It can also be noted that, similar to

the previous experiment, the dFt approach outperformed the other techniques in all the

individual missing value cases.

We proceed by investigating the accuracy of the kalman filter as modeled and applied

to the previously interpolated probing time series. Recall, as per Section 5.3.1, we have

leveraged this iterative optimal stochastic estimator coupled with a time-varying window

algorithm to infer and distinguish between orchestrated and independent probing flows

as perceived by the network telescope. To assess its accuracy, we compared it with typi-

cal time series prediction techniques, including the Exponential Smoothing (ES) and the

Moving Average (MA) [206]. We further computed the mean squared error [207], a metric

which is commonly exploited to measure and compare the forecast error when dealing with

time series prediction. The latter is defined by

1

n

n∑
i=1

(
−
Yi −Yi)2 (5.17)

where
−
Yi is a vector of n predictions and Yi is a vector of n true values.

Figure 5.15 illustrates the output of the experiment. By computing the mean squared

error for the three approaches, it was revealed that, on average, the ES technique suffered

from a 6.8% error rate, the MA technique recorded a 4% error rate while the kalman filter

agonized only 1.52% error rate. The latter indeed demonstrate the accuracy of the kalman

filter. Note that such a low error rate could be further enhanced by permitting the filter

to further iterate to allow it to generate close to fully optimized estimates.

190

3.232E+09

3.232E+09

3.232E+09

3.232E+09

3.232E+09

3.232E+09

3.232E+09

3.232E+09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P
ro

b
ed

 D
es

ti
n

at
io

n

Time

Actual ES MA Kalman

Figure 5.15: Summary of the prediction estimates of the interpolated probing time series

In a nutshell, the above three experiments clearly reveal that the dFt approach

is more accurate than the LSA and CS techniques when interpolating time series with

missing values. Further, the experiments strongly demonstrate that the kalman filter can

generate high accurate prediction estimates in few iterations in comparison with other

common forecasting techniques. This relatively authenticates the choice of both of these

theoretical-based modeling techniques as core components of the proposed model.

5.3.3 Empirical Evaluation

In this section, we leverage 330 GB of darknet data extracted from the month of April

2014 to validate the promptness and accuracy of the proposed model.

Consistent with Section 5.3.1, we infer 30 thousand unique independent probing

flows. Further, coherent with Section 5.3.1, around 35% of the latter were successfully

clustered into 5 groups. The details of those clusters are summarized in Table 5.7.

It can be noted that the majority of the probing flows have been generated by Windows

191

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Probed Destination Port 5060 23 80 1433 443

Transport Protocol UDP TCP TCP TCP TCP

Probing Flags UDP TCP SYN TCP SYN TCP ACK TCP FIN

TTL 128 128 64 64 128

Number of Probing Flows 2698 3067 913 2983 939

Table 5.7: Summary of the clustered probing flows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Destinations

Figure 5.16: CDF of Destinations in Cluster 1

machines (i.e., TTL = 12813). For each probing flow within each of the 5 clusters, we

generate their probing time series in accordance with Section 5.3.1. Figures 5.16 to 5.20

show the CDF of the probed destinations within each of those clusters.

From the Figures, we can infer that cluster 2 is the most dispersed; 50% of the

sources probed more than 1300 destinations. Further, we can extract that clusters 3 and 5

are more focused in which most of the their sources probed a small number of destinations.

We proceed by executing the discrete-time Fourier transform interpolation approach

on the time series within each of the 5 clusters as indicated in Section 5.3.1. Figure 5.21

13http://tinyurl.com/9u9rugw

192

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 400 600 800 1000 1200 1400 1600 1800 2000

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Destinations

Figure 5.17: CDF of Destinations in Cluster 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400 450 500

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Destinations

Figure 5.18: CDF of Destinations in Cluster 3

corroborates the fact that the probing flows of cluster 2 are indeed dispersed; not only

they target a significant amount of destinations as was inferred from Figure 5.17, but also

most of them were not captured by our leveraged /13 darkspace, which is indicated by

the large percentage of interpolated multiple missing value time series.

Subsequently, consistent with Section 5.3.1, we invoke the kalman filter coupled with

Algorithm 6 to distinguish between orchestrated and non-orchestrated flows. Table 5.8

summarizes one execution of the filter while Figure 5.22 represents the convergence of the

kalman filter algorithm in that execution. One can pinpoint that with just 10 iterations,

the filter is successfully able to converge; this advocates our chosen value q of 10 iterations

193

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

120 220 320 420 520 620 720 820 920 1020

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Destinations

Figure 5.19: CDF of Destinations in Cluster 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60 120 180 220 280 334 388 442 496 550

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

Number of Destinations

Figure 5.20: CDF of Destinations in Cluster 5

for the kalman filter related to Algorithm 6 in order to measure and compare the error

covariance for the purpose of distinguishing between orchestrated and non-orchestrated

probing flows (recall Section 5.3.1).

By initially executing Algorithm 6 and subsequently enforcing the orchestration con-

firmation technique from Section 21, the first four clusters of Table 5.7 demonstrated pos-

itive orchestration behavior and passed the 100 coordinated machines threshold. Cluster

5 was eliminated as it revealed negative coordinated behavior as enforced by the orches-

tration confirmation technique and employed thresholds (recall Section 21). By employing

194

0%

20%

40%

60%

80%

100%

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

P
e

rc
e

n
ta

ge
 o

f
In

te
rp

o
la

ti
o

n

Single Value Interpolation Multiple Value Interpolation

Figure 5.21: Distribution of the Types of the Interpolated Values

k 1 2 3 4 5 6 7 8 9 10

zk 0.390 0.500 0.480 0.290 0.250 0.320 0.340 0.480 0.410 0.450

xk−1 0 0.355 0.424 0.442 0.405 0.375 0.365 0.362 0.377 0.380

P
−
k 1 0.091 0.048 0.032 0.024 0.020 0.016 0.014 0.012 0.011

xk 0.355 0.424 0.442 0.405 0.375 0.365 0.362 0.377 0.380 0.387

Pk 0.091 0.048 0.032 0.024 0.020 0.016 0.014 0.012 0.011 0.010

Table 5.8: Summary of one execution of the kalman filter

simple tcpdump14 signatures on the data derived from the features (i.e., destination port,

protocol, flags, ttl) of the first four clusters, Table 5.7 could be re-represented as orches-

trated flow clusters as summarized in Table 5.9.

By comparing Tables 5.7 and 5.9, one can note the drop between clustered inde-

pendent flows (Table 5.7) and orchestrated flows (Table 5.9) as achieved by Algorithm

6.

14http://tinyurl.com/pd2exca

195

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

V
a

lu
e

Number of Iterations

Figure 5.22: The Kalman Filter algorithm converging over few iterations

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Probed Destination Port 5060 23 80 1433

Transport Protocol UDP TCP TCP TCP

Probing Flags UDP TCP SYN TCP SYN TCP ACK

TTL 128 128 64 64

Number of Orchestrated Probing Flows 1567 1863 858 587

Table 5.9: Summary of the inferred orchestrated probing campaigns

5.3.4 Comparison with Previous Work

Our first attempt to tackle the problem of inferring large-scale probing campaigns by

observing network telescopes was rendered in [38]. In that work, as was demonstrated in

Section 5.2, we proposed a set of data behavioral analytics to scrutinize probes as received

by the darkspace. Please recall that the analytics were based on statistical, heuristical and

fuzzy hashing approaches that aim at generating feature vectors for each of the perceived

probing flows.

To compare and contrast the advantages of the presently proposed work, in this

section, we compare its outcome with our previous work. To achieve that, we execute the

196

C1 C2 C3

Employed probing technique: UDP TCP SYN ACK

Probing traffic: Random Random Pattern

Employed pattern: Null Null [19.17-21.23]

Adopted probing strategy: Reverse IP-sequential Uniform Permutation Forward IP-Sequential

Nature of probing source: Bot Bot Tool

Type of probing: Dispersed Dispersed Targeted

Signs of malware infection: Yes Yes No

Exact malware type/variant: Virus.Win32.Sality.bh Trojan.Win32.Jorik Null

Probing rate (in pps): 12 118 77

Target port: 5060 80 1433

Number of Probing Bots/Sources: 846 817 438

Table 5.10: The automatically inferred patterns capturing three large-scale orchestrated

probing campaigns by employing the approach from Section 5.2

previously proposed approach from Section 5.2 on the same dataset of this work. The out-

come is illustrated in Table 5.10. By comparing Tables 5.9 and 5.10, we can pinpoint that

both approaches were able to infer orchestrated clusters 1, 3 and 4 of Table 5.9. One differ-

ence that is related to those campaigns is concerning the number of identified orchestrated

flows; the number of inferred orchestrated probing sources using the proposed approach

exceeded those inferred using the approach from Section 5.2. We manually investigated

the additional flows as identified using the proposed approach, and we confirmed that they

are indeed part of the campaign. Hence, we assert that the previously proposed approach

missed some flows as belonging to the same campaign. Further, the previously proposed

approach completely missed a fourth campaign, which was pinpointed by the proposed

approach as cluster 2 of Table 5.9. Additionally, the proposed approach is not only more

accurate but is also more prompt than the previous approach; the proposed approach can

flag a campaign by observing only few orchestrated flows while the previous approach

requires the creation of the complete feature pattern (i.e., processing of all the perceived

data) to cluster the sources into well-defined campaigns. Moreover, the proposed approach

is more efficient as it only records and process lightweight time series (recall Section 5.3.1)

while the previous approach needs to maintain, in memory, the entire darknet data flows.

197

Last but not least, the presently proposed approach is more systematic and formal com-

pared with the previously proposed approach as it deals with time series, trigonometric

interpolation and state space modeling as apposed to relying on the output of statistical

tests and heuristics. Since the previously proposed approach attributes the campaign to

a certain malware family using correlation techniques between probing and malware sam-

ples (recall Section 5.2), we may port this capability to the presently proposed approach,

which currently lacks that feature.

5.3.5 Model Limitations

It is realistic to pinpoint two limitations of the proposed approach. First, as previously

described in this section, the model flags a campaign when the number of orchestrated

flows within the campaign reach a hard threshold of 100 coordinated sources. Although the

latter is not problematic, we would like to avoid hard thresholds, possibly by assigning a

probability function to the campaign. In this matter, the model would be able to pinpoint

a campaign when the probability reaches a certain confidence level. This interesting

aim is left for future work. Second, it is evident that the model leverages the telescope

space to infer orchestrated probing campaigns. Although the monitored space is relatively

large (i.e., /13), the model is unable to monitor events that do not target such space.

Subsequently, the approach will be unable to correlate those “unseen” activities and thus

will fail to detect and identify all coordinating probing flows. However, we deem the

latter as a generic limitation with any work the leverages the dark space and not a model

limitation per say.

5.4 Behavioral Service Graphs: Inferring the niche of a

Probing Campaign

In this section, we present an approach, by leveraging graph theoretic notions, that aim at

inferring the niche of the detected probing campaigns. It is worthy to note that the niche

of the campaign are rendered by the infected bots (i.e., machines) that are causing the

probing botnet to expand by infecting other nodes. Such capability is highly imperative,

198

as it will allows the prompt containment of such nodes to subsequently force the campaign

to diminish.

5.4.1 Proposed Approach

We model the probing machines that show signs of infection coupled with their feature

vectors using what we refer to as Behavioral Service Graphs. Please note that the probing

machines are inferred as such by leveraging the approach from Section 3.2 of Chapter 3.

Further, the feature vectors of each of such machines are generated by using the behav-

ioral analytics from Section 4.2.3 of Chapter 4. Behavioral Service graphs are of the form

G = (N,E) where N represents the set of infected probing sources/machines (i.e., nodes)

and E characterizes the edges between such nodes. It is worthy to mention that G is an

undirected complete graph [208], with weights on the edges representing the probability

of behavioral similarity (Pbs) computed by piecewise comparisons between the previously

inferred feature vectors of each of the nodes. Examples of G corresponding to 8 and 20

nodes is shown in Figure 5.23. Another feature of such graphs is that they are designed to

(a) K8 Complete Graph (b) K20 Complete Graph

Figure 5.23: Illustration of Undirected Complete Behavioral Service Graphs

provide additional forensic evidence related to what service is being probed. The service

is rendered by the destination port number inferred from the detected probing packets.

Hence, the word ‘Service’ in Behavioral Service Graphs. Therefore, in essence, each con-

structed graph is actually modeling infected machines, their behavioral similarity and what

specific network service is being probed.

199

The proposed approach further executes two steps to retrieve the niche number of

infected machines for a given probing campaign.

First, given a complete Behavioral Service Graph G = (N,E), the approach extracts

a subgraph G′ = (N ′, E′) where N ′ = N and E′ ⊆ E. This aims at reducing the number

of edges while maximizing the behavior probability between the infected machines (i.e.,

nodes). To achieve this task, we employ the graph theoretical concept of a maximum

spanning tree [209] by implementing a slightly modified version of Kruskal’s algorithm

[210]. Although there exists a plethora of approaches for the creation of maximum span-

ning trees, the latter algorithm was the basis of many and is abundantly available in

numerous tool sets. For illustration purposes, if we apply the algorithm on the K8 and

K20 complete graphs of Figure 5.23, the outcome could be represented as in Figure 5.24.

Second, to understand the structure of the subgraph formed by members of a campaign

(a) K8 SubGraph (b) K20 SubGraph

Figure 5.24: The application of Maximum Spanning Trees on Complete Behavioral Service

Graphs

on a Behavioral Service Graph, suppose that there are m bots (i.e., infected machines)

in the network, and therefore there are m corresponding nodes on the graph. Let the set

X = {X1, X2, · · · , Xm} denote these nodes and Pe denote the probability of having an

edge between any given Xi and Xj , for i 6= j where 1 ≤ i ≤ m and 1 ≤ j ≤ m . Since

Pe would exist with an equal and a random probability given any pair of Xi and Xj , the

subgraph formed by the nodes X1, X2, · · ·, Xm on a Behavioral Service Graph is indeed

an Erdős-Rényi random graph [211, 212], where each possible edge in the graph possesses

200

an equal probability of being created.

One interesting property shown by Erdős and Rényi is that, Erdős-Rényi graphs

have a sharp threshold of edge probability for graph connectivity [212]. Simplified, if the

edge-probability is greater than such threshold, then all of the nodes produced by such a

model will be strongly connected. Erdős and Rényi have shown that the sharp connec-

tivity threshold is ths = lnθ
θ , where θ is the number of nodes in the graph. The proposed

approach exploits this neat graph theoretic property; given the previously extracted max-

imum spanning tree subgraph, the approach eliminates all nodes/edges whose bot-edge

probability (i.e., behavioral similarity Pbs) is less than ths, deeming the rest of the nodes,

given such formal forensic evidence, as the minimum number of infected machines (i.e.,

the niche) forming a campaign.

In conclusion, according to the random peer selection model, the niche members

of the same infected campaign are expected to be closely connected to each other on a

subgraph extracted from Behavioral Service Graphs.

5.4.2 Empirical Evaluation

We evaluate the proposed approach in two different deployment scenarios using two real

datasets. This aims at validating the accuracy, effectiveness and simplicity of the generated

network-based evidence as well as demonstrating the portability of the proposed approach.

Scenario 1: Enterprise Capability

In this first scenario, Behavioral Service Graphs are employed to infer infected machines

within an enterprise network. Although the notion of an enterprise network could extend

to an Internet service provider or even a backbone network, in this scenario, for simplicity

purposes, we depict a small department within an organization having a deployment set-

ting similar to what is illustrated in Figure 5.25. Such department includes 26 machines

that are connected to the Internet via an enterprise commodity edge server. The proposed

approach is deployed on that server.

201

Deployed Approach

Internet

Figure 5.25: The proposed approach deployed as an enterprise edge engine

Building the ground truth

In order to systematically assess the accuracy of the proposed scheme, one needs to know

the IP addresses/hosts of the members of the malicious campaign in a given network.

Otherwise, nothing can be said about the true positive or false alarm rate.

In order to establish the ground truth for our experiment, we obtained 10 GB of real

probing traffic dataset retrieved from the Carna botnet15. The latter orchestrated cam-

paign is rendered as one of the largest and most comprehensive IPv4 probing census ever.

Subsequently, we presumed, as shown in Figure 5.25, that 10 out of the 24 machines are

infected and thus are generating their malicious probing traffic towards the Web service

using TCP as the transport protocol and 80 as the destination port number. We success-

fully achieved this by substituting the IP addresses of the assumed infected departmental

machines with 10 IP addresses belonging to 10 unique sources of the Carna botnet that

are probing that service. To provide a realistic evaluation scenario, we now assume that

15http://internetcensus2012.bitbucket.org/download.html

202

we have no knowledge about the infected departmental machines. Subsequently, we gen-

erated a legitimate background traffic dataset by leveraging the Security Experimentation

EnviRonment (SEER) tool set16 and randomly merged it17 with the malicious probing

traffic dataset. The newly created merged dataset could be thought of as the network

data generated by the departmental machines and received by the edge server, where the

proposed approach has been deployed for inference and analysis.

Evaluation

By invoking the proposed approach on the merged dataset, the Behavioral Service Graph

and its corresponding maximum spanning tree were inferred as depicted in Figure 5.26.

(a) Enterprise Complete Graph (b) Enterprise SubGraph

Figure 5.26: The creation of the Enterprise Complete and Sub Graphs

A number of observations could be extracted from the complete graph. First, the

number of assembled Behavioral Service Graphs is accurate; the approach generated one

complete graph which is correct as the infected machines in the illustrated scenario are

probing only one service, namely, the Web service. Second, the number of nodes in this

Behavioral Service Graph is also precise; the approach inferred and correlated 10 infected

machines which is consistent with the number of infected departmental machines. Third,

after a semi-automated analysis and comparison that was based on the logged probing

IP traffic flows, we identified that all the 10 machines that the proposed approach has

identified are indeed the same IP addresses of the infected departmental machines (i.e.,

16http://seer.deterlab.net/trac
17using tcpslice available at http://sourceforge.net/projects/tcpslice/

203

the IP addresses of the Carna botnet). Therefore, based on the latter three observations,

we can claim that the proposed approach yielded no false negative or false positive.

However, to further fortify the latter claim in an attempt to generalize it as it ap-

plies to various network scenarios, we performed several other experiments. Specifically,

we were interested in evaluating the accuracy of the proposed approach as (1) the number

of probed services increase in diversity and (2) as the number of infected machines scale

up in the given network. Thus, we first augmented the number of probed services, one

at a time, up to 10 various probed TCP and UDP services. The results disclosed that

the number of generated Behavioral Service Graphs remained accurately reflecting the

number of probed services. Moreover, to verify the scalability of the proposed approach,

we increased the number of ground truth infected machines, by slots of 100, up to 1000

machines. The outcome disclosed around 82% accuracy in terms of constructed number of

nodes and 100% accuracy in terms of the positive infection state of such nodes. Such ex-

periments validate the accuracy of the proposed scheme, yet revealing that such approach

might not be very scalable.

We were further concerned about the quality of the formed cluster provided by the

complete Behavioral Service Graph. Since such graph is supposed to correlate the nodes

based on their infection state as well as their behaviors, we thought it would be signif-

icantly beneficial to assert such grouping of nodes by employing another approach. To

achieve this, we relied on an unsupervised, machine learning data clustering technique,

namely, the k-means algorithm [213]. Typically, the standard k-means algorithm requires,

as apriori knowledge, the number of clusters k. However, since our aim is to provide a

robust evaluation methodology, we relied on an approach to automatically determine the

optimal number of clusters. In particular, we leveraged the Calinski-Harabasz criterion

[214] that operates by systematically verifying various number of clusters and subsequently

recording the variances between and within the formed clusters. To determine the optimal

number of clusters, the metric should be maximized with respect to k; the optimal number

204

of clusters is the solution with the highest Calinski-Harabasz index value. To apply the k-

means on the infected 10 nodes as previously inferred by the complete Behavioral Service

Graph, we (1) retrieved their probing traffic from the merged dataset using a simplistic

tcpdump18 filter, (2) extracted their packet features [215] using the open source jNetPcap

API19 and (3) compiled the extracted features into a unified data file and then applied

the k-means algorithm in conjunction with the Calinsk-Harabasz metric on such file. The

outcome of the k-means execution is illustrated in Figure 5.27.

Motivated by [216] that asserted 1) that the relaxed solution of the k-means cluster-

ing, specified by the cluster indicators, could be given by the principal components from

the Principal Component Analysis (PCA) technique [217] and 2) that the PCA subspace

spanned by the principal directions is identical to the cluster centroid subspace, Figure

5.27 reveals the formed cluster on the first two principal axes of the PCA. One can no-

tice the formation of one, and only one, relatively strongly correlated cluster. This result

strongly advocates that the nodes possess strong similarity characteristics. In summary,

such outcome that was generated by approaching the clustering problem from another

perceptive, indeed validates the grouping capability of the infected machines (i.e., nodes)

that is provided by the constructed complete Behavioral Service Graph.

Thus, up to this stage, an enterprise forensic investigator can leverage such precise

and actionable evidence for prompt detection, containment and mitigation of such infected

machines from the concerned network. Intuitively, an investigator can as well isolate such

machines to collect additional evidence by monitoring their network and system activities

for auxiliary data analysis or extraction of digital artifacts. The latter evidence could be

exploited to generate signatures of attacks or for thoroughly analyzing a specific security

phenomenon of interest.

Extracted from the Behavioral Service Graph, the enterprise subgraph that is de-

picted in Figure 5.26b also provides noteworthy inferences. First, it was able to generate

18http://www.tcpdump.org/
19http://jnetpcap.com/

205

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

Component 1

C
om

po
ne

nt
 2

Probing Packets of Infected Machines in the
 Behavioral Service Graph

Figure 5.27: Validating the clustering capability of the complete Behavioral Service Graph

formal forensic evidence that clustered the machines into a well-defined orchestrated in-

fected campaign. Recall, that the formality arises from the fusion of the bots behavioral

similarly as previously extracted by the behavioral analytics of Section 4.2.3 coupled with

the graph theoretical notion of a maximum spanning tree. Second, and more importantly

in our opinion, the approach was able, by leveraging Erdős-Rényi random graphs, to infer

the niche members of that infected campaign. From Figure 5.26, one can notice that 2

out of the 10 nodes are colored differently than red (i.e., in blue and green). In fact, the

proposed approach revealed that these two nodes render the creation of the campaign.

Thus, in theory, these nodes should have caused the creation of the campaign in the first

place. To validate this, we manually investigated those IP addresses by going back to the

Carna botnet dataset. Our investigation showed that these two IP addresses are used as

root nodes in the botnet to infect other machines for propagation purposes. The latter fact

was further validated as these two nodes were among the top 3 nodes to generate most of

the probing traffic in the dataset. The latter formal forensic evidence could be promptly

206

exploited by investigators to prioritize the eradication of those two nodes in order to seize

the expansion of the campaign on their networks. This would indeed significantly limit

any present or future possible sustained collateral damage and any symptoms of infection

that could be caused by the infected bots.

Scenario 2: Global Capability

In the previous scenario, we have demonstrated how the proposed scheme can be ex-

ploited to operate within the context of an enterprise network. In this section, we port

the approach to a global scale and elaborate on how it can be employed to monitor, infer

and distribute Internet-scale forensic intelligence. Thus, in this scenario, the approach is

envisioned to operate in a model similar to what is dubbed as a global Security Opera-

tion Center (SOC). Typically, such operational centers have access to significant various

real-time and raw data streams from around the globe. They often exploit such data for

analysis, correlation and generation of intelligence that would be distributed to concerned

parties for alert and mitigation purposes. Such centers were initially formed as global

independent entities to combat an increasing trend of external (in contrary to internal)

threats and attacks.

Thus, in this second scenario, Behavioral Service Graphs are postulated to be de-

ployed as an additional forensic capability in one of those SOC centers. In this context,

we operate the scheme by investigating darknet data.

Evaluation

From our darknet data repository, we extract one week of data (≈ 80 GB) retaining to

the period of October 4th to October 11th, 2012. The aim is to employ the proposed

approach on such data to evaluate the scheme’s capability and effectiveness in disclosing

insights related to that reported campaign.

By executing the proposed approach on the extracted probing traffic from our dark-

net dataset, the outcome demonstrated that one of the Behavioral Service Graphs was

207

Figure 5.28: The proposed approach revealing the bots of the SQL probing campaign

indeed able to infer and correlate around 800 unique sources20 targeting the SQL service.

Further, the behavioral analytics (1) showed strong behavioral similarity between those

sources and (2) inferred that those sources were indeed bots, thus providing strong evi-

dence that such campaign was triggered from Internet-wide infected machines. The latter

inferred bots could be visualized as in Figure 5.28. Additionally, it might be interesting

to mention that the proposed approach deemed 84 bots as the niche of the campaign.

Thus, provided with such forensic evidence, SOC analysts can demand an immediate

take-down of those 84 bots to limit the expansion of such campaign on the global Inter-

net. Supplementary, they can promptly notify concerned parties to employ mitigation

approaches against the abuse of SQL servers.

20Since the monitored darknet space is a /13, we are only able to see a portion of the campaign using

that dataset

208

5.5 Related Work

In this section, we review the related work on various concerned topics.

Extracting Probing Events: Li et al. [129] considered large spikes of unique

source counts as probing events. The authors extracted those events from darknet traf-

fic using time series analysis; they first automatically identified and extracted the rough

boundaries of events and then manually refined the event starting and ending times. At

this point, they used manual analysis and visualization techniques to extract the event.

In an alternate work, Jin et al. [218] considered any incoming flow that touches any

temporary dark (grey) IP address as potentially suspicious. The authors narrowed down

the flows with sustained suspicious activities and investigated whether certain source or

destination ports are repeatedly used in those activities. Using these ports, the authors

separated the probing activities of an external host from other traffic that is generated

from the same host. In contrast, in this work, we propose a method that exploits a unique

observation related to the signal correlation status of probing events. By leveraging this,

CSC-Detector’s fingerprinting engine is able to differentiate between probing and other

events and subsequently extract the former from incoming darknet traffic.

Analyzing Probing Events: The authors of [218, 219] studied probing activities

towards a large campus network using netflow data. Their goal was to infer the probing

strategies of scanners and thereby assess the harmfulness of their actions. They introduced

the notion of gray IP space, developed techniques to identify potential scanners, and sub-

sequently studied their scanning behaviors. In another work, the authors of [129, 220, 221]

presented an analysis that drew upon extensive honeynet data to explore the prevalence of

different types of scanning. Additionally, they designed mathematical and observational

schemes to extrapolate the global properties of scanning events including total population

and target scope. In contrary, we aim at inferring large-scale probing campaigns rather

than focusing on analyzing probing events. To achieve that, CSC-Detector’s inference and

analysis engines collaborate to scrutinize the behavior of probing events as perceived by a

209

darknet and subsequently automatically build patterns that aim at correlating the probing

sources into well-defined campaigns.

Probing Measurement Studies: In addition to [177, 123], Benoit et al. [222]

presented the world’s first Web census while Heidemann et al. [223] were among the first

to survey edge hosts in the visible Internet. Further, Pryadkin et al. [224] offered an em-

pirical evaluation of IP address space occupancy whereas Cui and Stolfo [225] presented

a quantitative analysis of the insecurity of embedded network devices obtained from a

wide-area scan. In a slightly different work, Leonary and Loguinov [169] demonstrated

IRLscanner, a tool which aimed at maximizing politeness yet provided scanning rates that

achieved coverage of the Internet in minutes. In this work, as previously mentioned, we

strive to infer large-scale probing campaigns rather than solely providing measurements

of particular probing events.

Botnet Detection Frameworks: A number of botnet detection systems have been

proposed in the literature [226, 227, 228, 229]. Some investigates specific channels, others

might require deep packet inspection or training periods, while the majority depends on

malware infections and/or attack life-cycles. To the best of our knowledge, none of the

proposals is dedicated to tackle the problem of inferring large-scale probing campaigns.

Further, in this work, we aim to achieve that task by analyzing the dark IP space and by

focusing on the machinery of the probing sources, without requiring content analysis or

training periods.

Indeed, as stated by CAIDA in [178], the capability to infer large-scale orchestrated

probing campaigns does not exist, rendering the proposed approaches in this section as

novel contributions.

210

5.6 Summary

First, this chapter presented CSC-Detector, a systematic effort towards the challenging

goal of detecting and identifying large-scale orchestrated probing campaigns specifically

tailored towards the dark IP space. The system was primarily motivated by the prompt

need for such a cyber security capability as stated by CAIDA [177, 178]. The system’s fin-

gerprinting engine exploits a unique observation to extract probing activities from darknet

traffic. Consequently, CSC-Detector’s inference engine employs a set of behavioral ana-

lytics to generate insights that capture numerous characteristics of the probing sources.

Last but not least, the system’s analysis engine leverages several criteria, methods and

approaches to automatically identify and correlate the probing sources into well-defined

campaigns. CSC-Detector was empirically evaluated using significant amount of real dark-

net data. The recently inferred CSCs, which were validated using DShield data, indeed

demonstrates that the system exhibits promising accuracy and can generate substantial

evidence to infer diverse large-scale probing campaigns.

Second, this chapter also approached the problem of inferring orchestrated probing

campaigns but from a time series perspective. The motivation behind that was two-

folds. First, from an efficiency perspective, we thought it would be desirable to work

with the artifact of the data rather than the data itself. Second, scientifically, it is typi-

cally more sound to generate inferences and insights using formal methods and approaches

rather than depending on statistical inferences or heuristics. Thus, also in this section,

we uniquely modeled the challenging task of inferring probing campaigns as a problem of

interpolating and predicting time series in the presence of missing values. Initially, the

model extracts independent probing flows as perceived by the telescope. Subsequently,

the model builds numerous time series clusters sharing similar traffic features. For data

completion purposes, the model employs trigonometric interpolation on such probing time

series. To infer possible orchestration behavior, the model executes state space modeling

in conjunction with a time-varying window algorithm. Finally, to assert orchestration, the

model exploits the usage of the coordinated sources by leveraging a similarity of closeness

211

technique. Simulation analysis have authenticated the choice of the employed theoretical-

based techniques as core components of the proposed model, while empirical evaluations

indeed demonstrated the promptness and accuracy of the proposed model in comparison

with a previous work.

Third, this chapter had devised Behavioral Service Graphs, an approach that is able

to effectively process, analyze and correlate large volumes of network traffic to generate, in

a very prompt manner, formal, highly-accurate and actionable network forensic evidence

that could be leveraged by investigators to infer the niche of the the probing botnets.

Rigorous empirical evaluations with real data under two different deployment scenarios

indeed verified the accuracy and effectiveness of the approach.

212

Chapter 6

Conclusion

The ever increasing population and adoption of cyberspace has been a great asset both

socially and economically. The complete embracing of cyberspace technologies allowed

the creation and implementation of new ideas that tremendously facilitate everyday tasks.

Critical infrastructure heavily depend on information and communication technologies to

operate successfully. However, recent events demonstrated that cyberspace could be sub-

jected to amplified, debilitating and disrupting attacks that might lead to severe security

issues with drastic consequences.

This thesis was dedicated to tackle the ever increasing cyber security concern ren-

dered by probing activities, which are a core facilitator of numerous cyber security inci-

dents. We successfully achieved the latter by employing passive monitoring of the Internet

IP space, also known as network telescopes.

In particular, in this thesis, we primarily reviewed the literature in terms of probing

approaches, probing techniques as well as distributed probing detection methods. Conse-

quently, we concentrated our research work towards the problem of inferring enterprise and

Internet-scale probing activities. After inferring such malicious activities, we attempted

to correlate the latter with malware samples for attribution and containment purposes.

The last problem that we tackled in this thesis was rendered by inferring and attributing

large-scale probing campaigns, which define a new era of of such malevolent events.

213

From the conducted research, we can extract the following points/research gaps:

• Inferring and attributing botnets or malicious campaigns by solely monitoring the

dark IP space is very challenging due to the passive nature of such IP space. There-

fore, other interactive techniques such as honeypots could be used in conjunction

with darknet analysis to enhance botnet investigation.

• Differentiating between scan-based amplification attacks and probing activities is

still partially in the gray area. More robust and practical approaches are required

to investigate the latter.

• Packet analysis is the only technique employed on darknet data to investigate spoof-

ing activities. This method is rendered by inspecting ICMP packets and TTL values.

Minimal research has been executed to study spoofing events through darknet anal-

ysis. Therefore, spoofing is still a noteworthy malicious activity that needs more

attention from the security research community.

• Filtering darknet misconfiguration is still not thoroughly investigated in the litera-

ture and hence requires more attention from the research community.

• Mobile darknet is a new research trend that has a promising future in the area of

passive monitoring. Future deployment could include mobile-based VoIP darknets.

• Despite the existence of few collaborative darknet projects, more darknet resources

and information sharing efforts should emerge to infer and attribute large-scale cy-

ber activities. Indeed, establishing a worldwide darknet information exchange is a

capability that requires collaboration and trust; however, this collaboration necessi-

tates the implementation of numerous global policies and undoubtedly would raise

serious privacy concerns.

As for future work, we aim at tackling the following research and development topics:

• The design and implementation of cyber threat intelligence approaches for critical

infrastructure protection by leveraging big data analytics.

214

• The analysis of the implications of IPv6 assignment on Internet passive monitoring.

• The design and implementation of robust non-heuristical correlation mechanisms

between various cyber security data feeds.

215

Bibliography

[1] W. Zhang, S. Teng, and X. Fu. Scan attack detection based on distributed cooper-

ative model. In Computer Supported Cooperative Work in Design, 2008. CSCWD

2008. 12th International Conference on, pages 743–748. IEEE, 2008.

[2] H.U. Baig and F. Kamran. Detection of port and network scan using time indepen-

dent feature set. In Intelligence and Security Informatics, 2007 IEEE, pages 180

–184, may 2007.

[3] R. Baldoni, G. Di Luna, and L. Querzoni. Collaborative Detection of Coordinated

Port Scans. Technical report, 2012. http://www.dis.uniroma1.it/~midlab.

[4] D. Whyte, P.C. Oorschot, and E. Kranakis. Tracking darkports for network defense.

In Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third

Annual, pages 161–171. IEEE, 2007.

[5] S. Robertson, E.V. Siegel, M. Miller, and S.J. Stolfo. Surveillance detection in

high bandwidth environments. In DARPA Information Survivability Conference

and Exposition, 2003. Proceedings, volume 1, pages 130–138. IEEE, 2003.

[6] H. Choi, H. Lee, and H. Kim. Fast detection and visualization of network attacks

on parallel coordinates. computers & security, 28(5):276–288, 2009.

[7] E. Bou-Harb, M. Debbabi, and C. Assi. A statistical approach for fingerprinting

probing activities. In Availability, Reliability and Security (ARES), 2013 Eighth

International Conference on, pages 21–30, Sept 2013.

216

http://www.dis.uniroma1.it/~midlab

[8] Government of Canada. Canada’s Cyber Security Strategy Report, 2010. http:

//www.capb.ca/uploads/files/documents/Cyber_Security_Strategy.pdf.

[9] The Whitehouse. CyberSpace Policy Review, 2013. http://www.whitehouse.gov/

assets/documents/Cyberspace_Policy_Review_final.pdf.

[10] Government of Canada. Service Canada, 2012. http://www.servicecanada.gc.

ca/eng/home.shtml.

[11] Stephen Hinde. The law, cybercrime, risk assessment and cyber protection. Com-

puters & Security, pages 90–95, 2003.

[12] Yoo Chung. Distributed denial of service is a scalability problem. SIGCOMM

Comput. Commun. Rev., 42(1):69–71, January 2012.

[13] M.K. Daly. Advanced persistent threat. Usenix, Nov, 4, 2009.

[14] Leyla Bilge and Tudor Dumitras. Before we knew it: an empirical study of zero-day

attacks in the real world. In Proceedings of the 2012 ACM conference on Computer

and communications security, CCS ’12, pages 833–844, New York, NY, USA, 2012.

ACM.

[15] Chenfeng Vincent Zhou, Christopher Leckie, and Shanika Karunasekera. A survey

of coordinated attacks and collaborative intrusion detection. Computers & Security,

29(1):124 – 140, 2010.

[16] Symantec. W32.Stuxnet Dossier, 2012. http://tinyurl.com/36y7jzb.

[17] DefenseTech. Cyber War 2.0, Russia v. Georgia, 2012. http://tinyurl.com/

8l7cvm8.

[18] GovCon Technology. Cyber Attacks Fifth Dimension of Warfare, Says NATO Offi-

cial, 2012. http://tinyurl.com/yad4z49.

[19] Softpedia. Google Bolivia Domains Defaced by

Turkish Hacker. http://news.softpedia.com/news/

Google-Bolivia-Domains-Defaced-by-Turkish-Hacker-396405.shtml.

217

 http://www.capb.ca/uploads/files/documents/Cyber_Security_Strategy.pdf
 http://www.capb.ca/uploads/files/documents/Cyber_Security_Strategy.pdf
http://www.whitehouse.gov/assets/documents/Cyberspace_Policy_Review_final.pdf
http://www.whitehouse.gov/assets/documents/Cyberspace_Policy_Review_final.pdf
http://www.servicecanada.gc.ca/eng/home.shtml
http://www.servicecanada.gc.ca/eng/home.shtml
http://tinyurl.com/36y7jzb
http://tinyurl.com/8l7cvm8
http://tinyurl.com/8l7cvm8
http://tinyurl.com/yad4z49
http://news.softpedia.com/news/Google-Bolivia-Domains-Defaced-by-Turkish-Hacker-396405.shtml
http://news.softpedia.com/news/Google-Bolivia-Domains-Defaced-by-Turkish-Hacker-396405.shtml

[20] Hackmageddon.com. Brandon University Cyber Attack. http://hackmageddon.

com/tag/brandon-university/.

[21] Hackmageddon.com. October 2013 Cyber Attacks Timeline. http://

hackmageddon.com.

[22] HackRead. African Petroleum Producers Association Web-

site Hacked by Fallaga Team Tunisia. http://hackread.com/

fallaga-team-tunisia-hacks-african-petroleum-site/.

[23] Reuters. U.S. looking into cybersecurity incidents targeting Oba-

macare website. http://www.reuters.com/article/2013/11/13/

us-usa-healthcare-security-idUSBRE9AC16M20131113.

[24] Chicago Tribune. Hackers plan attack on Russian govern-

ment sites. http://articles.chicagotribune.com/2012-05-04/

business/sns-rt-russia-hackersanonymousl5e8g45ui-20120504_1_

cyber-attack-government-websites-pro-kremlin.

[25] Yerkir Media. Azerbaijan hired hackers to attack Armenian websites and had certain

success. http://www.yerkirmedia.am/?act=news&lan=en&id=9438.

[26] Action Plan 2010-2015 for Canada’s Cyber Security Strategy. http://tinyurl.

com/plxmua8.

[27] New York Times Internal Network Hacked. http://tinyurl.com/cvnrsac.

[28] WordPress sites targeted by mass brute-force attack. http://tinyurl.com/

cxmgjax.

[29] PlayStation Network Outage Caused By ‘External Intrusion’. http://tinyurl.

com/6cbcldv.

[30] Iran hacks energy firms. http://tinyurl.com/opjw79c.

218

http://hackmageddon.com/tag/brandon-university/
http://hackmageddon.com/tag/brandon-university/
http://hackmageddon.com
http://hackmageddon.com
http://hackread.com/fallaga-team-tunisia-hacks-african-petroleum-site/
http://hackread.com/fallaga-team-tunisia-hacks-african-petroleum-site/
http://www.reuters.com/article/2013/11/13/us-usa-healthcare-security-idUSBRE9AC16M20131113
http://www.reuters.com/article/2013/11/13/us-usa-healthcare-security-idUSBRE9AC16M20131113
http://articles.chicagotribune.com/2012-05-04/business/sns-rt-russia-hackersanonymousl5e8g45ui-20120504_1_cyber-attack-government-websites-pro-kremlin
http://articles.chicagotribune.com/2012-05-04/business/sns-rt-russia-hackersanonymousl5e8g45ui-20120504_1_cyber-attack-government-websites-pro-kremlin
http://articles.chicagotribune.com/2012-05-04/business/sns-rt-russia-hackersanonymousl5e8g45ui-20120504_1_cyber-attack-government-websites-pro-kremlin
http://www.yerkirmedia.am/?act=news&lan=en&id=9438
http://tinyurl.com/plxmua8
http://tinyurl.com/plxmua8
http://tinyurl.com/cvnrsac
http://tinyurl.com/cxmgjax
http://tinyurl.com/cxmgjax
http://tinyurl.com/6cbcldv
http://tinyurl.com/6cbcldv
http://tinyurl.com/opjw79c

[31] S. Panjwani, S. Tan, K.M. Jarrin, and Michel Cukier. An experimental evaluation

to determine if port scans are precursors to an attack. In Proceedings of the Interna-

tional Conference on Dependable Systems and Networks. DSN 2005, pages 602–611,

2005.

[32] Elias Bou-Harb, Nour-Eddine Lakhdari, Hamad Binsalleeh, and Mourad Debbabi.

Multidimensional investigation of source port 0 probing. Digital Investigation, 11,

Supplement 2(0):S114 – S123, 2014. Fourteenth Annual {DFRWS} Conference.

[33] Elias Bou-Harb, Mourad Debbabi, and Chadi Assi. On fingerprinting probing ac-

tivities. Computers & Security, 43(0):35 – 48, 2014.

[34] Elias Bou-Harb, Mourad Debbabi, and Chadi Assi. A systematic approach for de-

tecting and clustering distributed cyber scanning. Computer Networks, 57(18):3826

– 3839, 2013.

[35] Elias Bou-Harb, Mourad Debbabi, and Chadi Assi. Cyber scanning: A compre-

hensive survey. Communications Surveys Tutorials, IEEE, 16(3):1496–1519, Third

2014.

[36] Elias Bou-Harb, Claude Fachkha, Mourad Debbabi, and Chadi Assi. Inferring

internet-scale infections by correlating malware and probing activities. In Com-

munications (ICC), 2014 IEEE International Conference on, pages 640–646, June

2014.

[37] E. Bou-Harb, M. Debbabi, and C. Assi. On detecting and clustering distributed

cyber scanning. In Wireless Communications and Mobile Computing Conference

(IWCMC), 2013 9th International, pages 926–933, July 2013.

[38] E. Bou-Harb, M. Debbabi, and C. Assi. Behavioral analytics for inferring large-scale

orchestrated probing events. In Computer Communications Workshops (INFOCOM

WKSHPS), 2014 IEEE Conference on, pages 506–511, April 2014.

219

[39] E. Bou-Harb, C. Fachkha, M. Pourzandi, M. Debbabi, and C. Assi. Communication

security for smart grid distribution networks. Communications Magazine, IEEE,

51(1):42–49, January 2013.

[40] Claude Fachkha, Elias Bou-Harb, and Mourad Debbabi. On the inference and pre-

diction of ddos campaigns. Wireless Communications and Mobile Computing, 2014.

[41] C. Fachkha, E. Bou-Harb, and M. Debbabi. Fingerprinting internet dns amplifica-

tion ddos activities. In New Technologies, Mobility and Security (NTMS), 2014 6th

International Conference on, pages 1–5, March 2014.

[42] C. Fachkha, E. Bou-Harb, and M. Debbabi. Towards a forecasting model for dis-

tributed denial of service activities. In Network Computing and Applications (NCA),

2013 12th IEEE International Symposium on, pages 110–117, Aug 2013.

[43] C. Fachkha, E. Bou-Harb, A Boukhtouta, S. Dinh, F. Iqbal, and M. Debbabi. In-

vestigating the dark cyberspace: Profiling, threat-based analysis and correlation. In

Risk and Security of Internet and Systems (CRiSIS), 2012 7th International Con-

ference on, pages 1–8, Oct 2012.

[44] Richard J Barnett and Barry Irwin. Towards a taxonomy of network scanning tech-

niques. In Proceedings of the 2008 annual research conference of the South African

Institute of Computer Scientists and Information Technologists on IT research in

developing countries: riding the wave of technology, SAICSIT ’08, pages 1–7, New

York, NY, USA, 2008. ACM.

[45] M.H. Bhuyan, DK Bhattacharyya, and JK Kalita. Surveying port scans and their

detection methodologies. The Computer Journal, 54(10):1565–1581, 2010.

[46] W.R. Stevens and G.R. Wright. TCP/IP Illustrated: the protocols, volume 1.

Addison-Wesley Professional, 1994.

[47] R. Thurlow. Rpc: Remote procedure call protocol specification version 2. 2009.

220

[48] J. Medeiros, A. Brito, and P. Pires. A data mining based analysis of nmap operating

system fingerprint database. Computational Intelligence in Security for Information

Systems, pages 1–8, 2009.

[49] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli. Tunnel hunter: Detect-

ing application-layer tunnels with statistical fingerprinting. Computer Networks,

53(1):81–97, 2009.

[50] D. Stuttard and M. Pinto. The Web Application Hacker’s Handbook: Finding and

Exploiting Security Flaws. Wiley, 2011.

[51] Xianghua Xu, Jian Wan, Wei Zhang, Chao Tong, and Changhua Wu. Pmsw: a

passive monitoring system in wireless sensor networks. International Journal of

Network Management, 21(4):300–325, 2011.

[52] G. Combs. Wireshark network analyzer-user’s guide. 2008.

[53] M. Shelton. Passive Asset Detection System, 2008. http://passive.sourceforge.

net/about.php.

[54] T. Socolofsky and C. Kale. Tcp/ip tutorial. Technical report, RFC 1180, Spider

Systems Ltd, 1991.

[55] H. Al-Bahadili and A.H. Hadi. Network security using hybrid port knocking. IJC-

SNS, 10(8):8, 2010.

[56] Elias Bou-Harb, Makan Pourzandi, Mourad Debbabi, and Chadi Assi. A secure,

efficient, and cost-effective distributed architecture for spam mitigation on lte 4g

mobile networks. Security and Communication Networks, 2012.

[57] P. Li, M. Salour, and X. Su. A survey of internet worm detection and containment.

Communications Surveys & Tutorials, IEEE, 10(1):20–35, 2008.

[58] A. Boulanger. Unauthorized intrusions and denial of service. Cybercrimes: A Mul-

tidisciplinary Analysis, pages 27–44, 2010.

221

http://passive.sourceforge.net/about.php
http://passive.sourceforge.net/about.php

[59] N. Hachem, Y. Ben Mustapha, G.G. Granadillo, and H. Debar. Botnets: lifecycle

and taxonomy. In Network and Information Systems Security (SAR-SSI), 2011

Conference on, pages 1–8. IEEE, 2011.

[60] Zhichun Li, Anup Goyal, Yan Chen, and Vern Paxson. Automating analysis of large-

scale botnet probing events. In Proceedings of the 4th International Symposium on

Information, Computer, and Communications Security, ASIACCS ’09, pages 11–22,

New York, NY, USA, 2009. ACM.

[61] K. Ko, H. Jang, B. Park, and Y. Eom. Analysis of the propagation pattern of a

worm with random scanning strategy based on usage rate of network bandwidth.

Information, Security and Cryptology–ICISC 2009, pages 374–385, 2010.

[62] C. Gates. Coordinated scan detection. In Proceedings of the 16th Annual Network

and Distributed System Security Symposium (NDSS 09), 2009.

[63] L. Aniello, G. Di Luna, G. Lodi, and R. Baldoni. A collaborative event processing

system for protection of critical infrastructures from cyber attacks. Computer Safety,

Reliability, and Security, pages 310–323, 2011.

[64] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan. Tcp fast open. In

Proceedings of the Seventh COnference on emerging Networking EXperiments and

Technologies, page 21. ACM, 2011.

[65] W. John, S. Tafvelin, and T. Olovsson. Trends and differences in connection-behavior

within classes of internet backbone traffic. Passive and Active Network Measurement,

pages 192–201, 2008.

[66] J. Gadge and A.A. Patil. Port scan detection. In Networks, 2008. ICON 2008. 16th

IEEE International Conference on, pages 1–6. IEEE, 2008.

[67] I. Van Beijnum. An ftp application layer gateway (alg) for ipv6-to-ipv4 translation.

2011.

[68] G. Gont, C. Pignataro, and F. Gont. Recommendations for filtering icmp messages.

2012.

222

[69] K. Egevang and P. Francis. The ip network address translator (nat). Technical

report, RFC 1631, may, 1994.

[70] R. Droms. Automated configuration of tcp/ip with dhcp. Internet Computing,

IEEE, 3(4):45–53, 1999.

[71] MIT. 1999 DARPA Intrusion Detection Evaluation Data Set. http://www.ll.mit.

edu/mission/communications/ist/corpora/ideval/data/1999data.html.

[72] S. Staniford, J.A. Hoagland, and J.M. McAlerney. Practical automated detection of

stealthy portscans. Journal of Computer Security, 10(1/2):105–136, 2002.

[73] C. Gates. Coordinated scan detection. In Proceedings of the 16th Annual Network

and Distributed System Security Symposium (NDSS 09), 2009.

[74] D. Whyte, P.C. Oorschot, and E. Kranakis. Tracking darkports for network defense.

In Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third

Annual, pages 161–171. IEEE, 2007.

[75] V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions: Global charac-

teristics and prevalence. In ACM SIGMETRICS Performance Evaluation Review,

volume 31, pages 138–147. ACM, 2003.

[76] J. Treurniet. Detecting low-profile scans in tcp anomaly event data. In Proceedings

of the 2006 International Conference on Privacy, Security and Trust: Bridge the

Gap Between PST Technologies and Business Services, page 17. ACM, 2006.

[77] D. Hanselman and B.C. Littlefield. Mastering MATLAB 5: A comprehensive tutorial

and reference. Prentice Hall PTR, 1997.

[78] J. Treurniet. A network activity classification schema and its application to scan

detection. Networking, IEEE/ACM Transactions on, 19(5):1396–1404, 2011.

[79] A. Dainotti, R. Amman, E. Aben, and K.C. Claffy. Extracting benefit from harm:

using malware pollution to analyze the impact of political and geophysical events

223

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1999data.html
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1999data.html

on the internet. ACM SIGCOMM Computer Communication Review, 42(1):31–39,

2012.

[80] M.H. Bhuyan, D.K. Bhattacharyya, and J.K. Kalita. Aocd: An adaptive outlier

based coordinated scan detection approach. International Journal of Network Secu-

rity, 14(6):339–351, 2012.

[81] J.C. Bezdek, R. Ehrlich, and W. Full. Fcm: The fuzzy c-means clustering algorithm.

Computers & Geosciences, 10(2):191–203, 1984.

[82] K. Stockinger, E. Bethel, S. Campbell, E. Dart, and K. Wu. Detecting distributed

scans using high-performance query-driven visualization. In Proceedings of the 2006

ACM/IEEE conference on Supercomputing, page 82. ACM, 2006.

[83] V. Paxson. Bro: a system for detecting network intruders in real-time. Computer

networks, 31(23):2435–2463, 1999.

[84] G. Conti and K. Abdullah. Passive visual fingerprinting of network attack tools.

In Proceedings of the 2004 ACM workshop on Visualization and data mining for

computer security, pages 45–54. ACM, 2004.

[85] David Moore, Colleen Shannon, Geoffrey M Voelker, and Stefan Savage. Network

telescopes: Technical report. Department of Computer Science and Engineering,

University of California, San Diego, 2004.

[86] Eric Wustrow, Manish Karir, Michael Bailey, Farnam Jahanian, and Geoff Huston.

Internet background radiation revisited. In Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement, pages 62–74. ACM, 2010.

[87] Zakir Durumeric, Michael Bailey, and J Alex Halderman. An internet-wide view of

internet-wide scanning. In USENIX Security Symposium, 2014.

[88] Evan Cooke, Michael Bailey, Farnam Jahanian, and Richard Mortier. The dark

oracle: Perspective-aware unused and unreachable address discovery. In NSDI, vol-

ume 6, 2006.

224

[89] Michael Bailey, Evan Cooke, Farnam Jahanian, Andrew Myrick, and Sushant Sinha.

Practical darknet measurement. In Information Sciences and Systems, 2006 40th

Annual Conference on, pages 1496–1501. IEEE, 2006.

[90] Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz. Exit from

hell? reducing the impact of amplification ddos attacks. In USENIX Security Sym-

posium, 2014.

[91] Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz. Hell of

a handshake: abusing tcp for reflective amplification ddos attacks. In USENIX

Workshop on Offensive Technologies (WOOT), 2014.

[92] Largest ever ddos attack peaks at 400 gbps. Info Securityl. http://tinyurl.com/

nljf3ct.

[93] Security Information Exchange (SIE), Farsight Security Inc. https://www.

farsightsecurity.com.

[94] Internet Engineering Task Force (IETF). A Simple Network Management Protocol

(SNMP), 1990. http://www.ietf.org/rfc/rfc1157.txt.

[95] William Stallings. SNMP,SNMPV2,Snmpv3,and RMON 1 and 2. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1998.

[96] Internet Engineering Task Force (IETF). SNMP Overhead and Performance Impact,

2003. http://tools.ietf.org/html/draft-breit-snmp-overhead-00.

[97] L. Andrey, O. Festor, A. Lahmadi, A. Pras, and J. Schönwälder. Survey of

snmp performance analysis studies. International Journal of Network Management,

19(6):527–548, 2009.

[98] Symantec. Trojan Horse. http://www.symantec.com/security_response/

writeup.jsp?docid=2004-021914-2822-99.

[99] eMarkSof Inc. eMarksoft SNMP Component, 2002-2012. http://www.emarksoft.

com/mib-snmp-component.htm.

225

http://tinyurl.com/nljf3ct
http://tinyurl.com/nljf3ct
https://www.farsightsecurity.com
https://www.farsightsecurity.com
 http://www.ietf.org/rfc/rfc1157.txt
 http://tools.ietf.org/html/draft-breit-snmp-overhead-00
 http://www.symantec.com/security_response/writeup.jsp?docid=2004-021914-2822-99
 http://www.symantec.com/security_response/writeup.jsp?docid=2004-021914-2822-99
 http://www.emarksoft.com/mib-snmp-component.htm
 http://www.emarksoft.com/mib-snmp-component.htm

[100] Daniel Roelker, Marc Norton and Jeremy Hewlett. sfportscan, 2004. http:

//projects.cs.luc.edu/comp412/dredd/docs/software/readmes/sfportscan.

[101] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA,

volume 99, pages 229–238, 1999.

[102] D. Moore, G.M. Voelker, and S. Savage. Inferring internet denial-of-service activity.

Technical report, DTIC Document, 2001.

[103] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Gold-

berger. Mosaic organization of dna nucleotides. Phys. Rev. E, 49:1685–1689, Feb

1994.

[104] U. Harder, M.W. Johnson, J.T. Bradley, and W.J. Knottenbelt. Observing inter-

net worm and virus attacks with a small network telescope. Electronic Notes in

Theoretical Computer Science, 151(3):47–59, 2006.

[105] K. Fukuda, T. Hirotsu, O. Akashi, and T. Sugawara. Correlation among piecewise

unwanted traffic time series. In Global Telecommunications Conference, 2008. IEEE

GLOBECOM 2008., pages 1–5, 2008.

[106] M.B. Priestley. Spectral analysis and time series. 1981.

[107] J.A.O. Matos, S. Gama, H.J. Ruskin, A.A. Sharkasi, and M. Crane. Time and scale

hurst exponent analysis for financial markets. Physica A: Statistical Mechanics and

its Applications, 387(15):3910–3915, 2008.

[108] K. Hu, P.C. Ivanov, Z. Chen, P. Carpena, and H.E. Stanley. Effect of trends on

detrended fluctuation analysis. Physical Review E, 64(1):011114, 2001.

[109] V. Jacobson, C. Leres, and S. McCanne. The tcpdump manual page. Lawrence

Berkeley Laboratory, Berkeley, CA, 1989.

[110] G.F. Lyon. Nmap network scanning: The official nmap project guide to network

discovery and security scanning author: Gordon fyodor l. 2009.

226

 http://projects.cs.luc.edu/comp412/dredd/docs/software/readmes/sfportscan
 http://projects.cs.luc.edu/comp412/dredd/docs/software/readmes/sfportscan

[111] M. Little, P. McSharry, I. Moroz, and S. Roberts. Nonlinear, biophysically-informed

speech pathology detection. In Acoustics, Speech and Signal Processing, 2006.

ICASSP 2006 Proceedings., volume 2, page II.

[112] Fing, the ultimate network toolkit. http://www.overlooksoft.com/fing.

[113] Simon Woodhead. Monitoring bad traffic with darknets. Network Security,

2012(1):10 – 14, 2012.

[114] Thomas Kailath. The divergence and bhattacharyya distance measures in signal

selection. IEEE Transactions on Communication Technology,, 15(1):52–60, 1967.

[115] R.M. Neal and G.E. Hinton. A view of the em algorithm that justifies incremental,

sparse, and other variants. NATO ASI SERIES D BEHAVIOURAL AND SOCIAL

SCIENCES, 89:355–370, 1998.

[116] D.W. Scott. Multivariate density estimation. Multivariate Density Estimation, Wi-

ley, New York, 1992, 1, 1992.

[117] jNetPcap. Sli Technologies. http://jnetpcap.com/userguide.

[118] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The

weka data mining software: an update. ACM SIGKDD Explorations Newsletter,

11(1):10–18, 2009.

[119] k-Means Clustering. http://www.mathworks.com/help/stats/

k-means-clustering.html.

[120] A. Dainotti, A. King, K. Claffy, F. Papale, and A. Pescap. Analysis of a ”/0” Stealth

Scan from a Botnet. In Internet Measurement Conference (IMC), Nov 2012.

[121] Jerome H Friedman and Lawrence C Rafsky. Multivariate generalizations of the

wald-wolfowitz and smirnov two-sample tests. The Annals of Statistics, pages 697–

717, 1979.

[122] Zhichun Li, Anup Goyal, and Yan Chen. Honeynet-based botnet scan traffic analysis.

In Botnet Detection, pages 25–44. Springer, 2008.

227

http://www.overlooksoft.com/fing
http://jnetpcap.com/userguide
http://www.mathworks.com/help/stats/k-means-clustering.html
http://www.mathworks.com/help/stats/k-means-clustering.html

[123] Internet Census 2012-Port scanning /0 using insecure embedded devices. http:

//tinyurl.com/c8af8lt.

[124] Genevieve Bartlett, John Heidemann, and Christos Papadopoulos. Understanding

passive and active service discovery. In Proceedings of the 7th ACM SIGCOMM

conference on Internet measurement, pages 57–70. ACM, 2007.

[125] John Heidemann, Yuri Pradkin, Ramesh Govindan, Christos Papadopoulos,

Genevieve Bartlett, and Joseph Bannister. Census and survey of the visible inter-

net. In Proceedings of the 8th ACM SIGCOMM conference on Internet measurement,

pages 169–182. ACM, 2008.

[126] Stuart Staniford, Vern Paxson, Nicholas Weaver, et al. How to own the internet in

your spare time. In Proceedings of the 11th USENIX security symposium, volume 8,

pages 149–167, 2002.

[127] Maurice George Kendall. Rank correlation methods. 1948.

[128] Sushil Jajodia. Cyber Situational Awareness: Issues and Research. 2012.

[129] Zhichun Li, Anup Goyal, Yan Chen, and Vern Paxson. Towards situational awareness

of large-scale botnet probing events. IEEE Transactions on Information Forensics

and Security, 6(1):175–188, 2011.

[130] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, D. Watson, et al. The internet motion

sensor: A distributed blackhole monitoring system. In Proceedings of the 12th ISOC

Symposium on Network and Distributed Systems Security (SNDSS), pages 167–179,

2005.

[131] Yegneswaran, Vinod et al. On the design and use of internet sinks for network abuse

monitoring. In Recent Advances in Intrusion Detection. 2004.

[132] Eric Wustrow, Manish Karir, Michael Bailey, Farnam Jahanian, and Geoff Huston.

Internet background radiation revisited. In Proceedings of the 10th annual conference

on Internet measurement, pages 62–74. ACM, 2010.

228

http://tinyurl.com/c8af8lt
http://tinyurl.com/c8af8lt

[133] Jayanthkumar Kannan, Jaeyeon Jung, Vern Paxson, and Can Emre Koksal. Semi-

automated discovery of application session structure. In Proceedings of the 6th ACM

SIGCOMM conference on Internet measurement, pages 119–132. ACM, 2006.

[134] Yi Cao. Bhattacharyya Distance Measure for Pattern Recognition. http://

tinyurl.com/bveualz.

[135] Simone Fatichi. Mann-Kendall Test. http://tinyurl.com/cstvpwa.

[136] MathWorks. Run test for randomness. http://tinyurl.com/d6gtykz.

[137] David Moore, Colleen Shannon, Douglas J Brown, Geoffrey M Voelker, and Stefan

Savage. Inferring internet denial-of-service activity. ACM Transactions on Computer

Systems (TOCS), 24(2):115–139, 2006.

[138] Valery Guralnik and Jaideep Srivastava. Event detection from time series data.

In Proceedings of the fifth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 33–42. ACM, 1999.

[139] Ryan Prescott Adams and David J.C. MacKay. Bayesian online changepoint detec-

tion. Cambridge, UK, 2007.

[140] Darren Bounds. Packit - Packet analysis and injection tool. http://linux.die.

net/man/8/packit.

[141] Vinod Yegneswaran, Paul Barford, and Vern Paxson. Using honeynets for internet

situational awareness. In Proceedings of the Fourth Workshop on Hot Topics in

Networks (HotNets IV), pages 17–22, 2005.

[142] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos defense

mechanisms. ACM SIGCOMM Computer Communication Review, 34(2):39–53,

2004.

[143] M Daly. Advanced persistent threat. Usenix, Nov, 4, 2009.

229

http://tinyurl.com/bveualz
http://tinyurl.com/bveualz
http://tinyurl.com/cstvpwa
http://tinyurl.com/d6gtykz
http://linux.die.net/man/8/packit
http://linux.die.net/man/8/packit

[144] Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigrahy, Geoff Hulten, and Ivan

Osipkov. Spamming botnets: signatures and characteristics. In ACM SIGCOMM

Computer Communication Review, volume 38, pages 171–182. ACM, 2008.

[145] Panda Security. Worldwide infected machines. http://tinyurl.com/o24ky8t.

[146] ScMagazine-McAfee. The state of malware in 2013. http://tinyurl.com/ohjprsc.

[147] Parliament of Canada. BILL C-28. http://tinyurl.com/avh9vzv.

[148] Shuaibu Hassan Usman. A review of responsibilities of internet service providers

toward their customers’ network security. Journal of Theoretical and Applied Infor-

mation Technology, 49(1), 2013.

[149] ZDNet. ISPs accused of ignoring botnet invasion. http://tinyurl.com/lt48jzl.

[150] Kevin Dowd, Andrew JG Cairns, David Blake, Guy D Coughlan, David Epstein, and

Marwa Khalaf-Allah. Evaluating the goodness of fit of stochastic mortality models.

Insurance: Mathematics and Economics, 47(3):255–265, 2010.

[151] Yosiyuki Sakamoto, Makio Ishiguro, and Genshiro Kitagawa. Akaike information

criterion statistics. Dordrecht, The Netherlands: D. Reidel, 1986.

[152] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer

networks, 31(23):2435–2463, 1999.

[153] Christian Rossow. Amplification Hell: Revisiting Network Protocols for DDoS

Abuse. In Proceedings of the 2014 Network and Distributed System Security (NDSS)

Symposium, February 2014.

[154] Steven J Templeton and Karl E Levitt. Detecting spoofed packets. In DARPA

Information Survivability Conference and Exposition, 2003. Proceedings, volume 1,

pages 164–175. IEEE, 2003.

[155] Jesse Kornblum. Identifying almost identical files using context triggered piecewise

hashing. Digital Investigation, 3, Supplement(0):91 – 97, 2006. The Proceedings of

the 6th Annual Digital Forensic Research Workshop (DFRWS ’06).

230

http://tinyurl.com/o24ky8t
http://tinyurl.com/ohjprsc
http://tinyurl.com/avh9vzv
http://tinyurl.com/lt48jzl

[156] Yo-Ping Huang, Tsun-Wei Chang, and F.-E. Sandnes. An efficient fuzzy hashing

model for image retrieval. In Fuzzy Information Processing Society, 2006. NAFIPS

2006. Annual meeting of the North American, pages 223–228, 2006.

[157] Jesse Kornblum. Fuzzy Hashing. http://jessekornblum.com/presentations/

cdfsl07.pdf.

[158] Jesse Kornblum.]A Fuzzy Future in Malware Research. http://tinyurl.com/

obdkyg5.

[159] Wenke Lee and Dong Xiang. Information-theoretic measures for anomaly detection.

In Security and Privacy, 2001. S P 2001. Proceedings. 2001 IEEE Symposium on,

pages 130–143, 2001.

[160] T. Kailath. The divergence and bhattacharyya distance measures in signal selection.

IEEE Transactions on Communication Technology,, 15(1):52–60, 1967.

[161] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart. The ma-

halanobis distance. Chemometrics and intelligent laboratory systems, 50(1):1–18,

2000.

[162] Hubert W Lilliefors. On the kolmogorov-smirnov test for normality with mean and

variance unknown. Journal of the American Statistical Association, 62(318):399–402,

1967.

[163] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and Kc claffy. Transport

layer identification of p2p traffic. In Proceedings of the 4th ACM SIGCOMM con-

ference on Internet measurement, IMC ’04, pages 121–134, New York, NY, USA,

2004. ACM.

[164] J. MacQueen et al. Some methods for classification and analysis of multivariate ob-

servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability, volume 1, page 14. California, USA, 1967.

231

http://jessekornblum.com/presentations/cdfsl07.pdf
http://jessekornblum.com/presentations/cdfsl07.pdf
http://tinyurl.com/obdkyg5
http://tinyurl.com/obdkyg5

[165] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-

plete data via the em algorithm. Journal of the Royal Statistical Society. Series B

(Methodological), pages 1–38, 1977.

[166] Riyad Alshammari and A. Nur Zincir-Heywood. Can encrypted traffic be identified

without port numbers, ip addresses and payload inspection? Computer Networks,

2011.

[167] Leyla Bilge et al. Exposure: Finding malicious domains using passive dns analysis.

In NDSS 2011.

[168] Jung Jaeyeon et al. Fast portscan detection using sequential hypothesis testing. In

2004 IEEE S&P.

[169] Derek Leonard and Dmitri Loguinov. Demystifying service discovery: implementing

an internet-wide scanner. In The 10th ACM SIGCOMM conference on Internet

measurement, New York, NY, USA, 2010. ACM.

[170] Koji NAKAO, Daisuke INOUE, Masashi ETO, and Katsunari YOSHIOKA. Practi-

cal correlation analysis between scan and malware profiles against zero-day attacks

based on darknet monitoring. IEICE Transactions on Information and Systems,

92(5):787–798, may 2009.

[171] D. Inoue, M. Eto, K. Yoshioka, S. Baba, K. Suzuki, J. Nakazato, K. Ohtaka, and

K. Nakao. nicter: An incident analysis system toward binding network monitoring

with malware analysis. In Information Security Threats Data Collection and Sharing,

2008. WISTDCS ’08., pages 58–66, 2008.

[172] Jungsuk Song, Jumpei Shimamura, Masashi Eto, Daisuke Inoue, and Koji Nakao.

Correlation analysis between spamming botnets and malware infected hosts. 2012

IEEE/IPSJ 12th International Symposium on Applications and the Internet, 0:372–

375, 2011.

[173] Masashi Eto, Kotaro Sonoda, Daisuke Inoue, Katsunari Yoshioka, and Koji Nakao.

A proposal of malware distinction method based on scan patterns using spectrum

232

analysis. In ChiSing Leung, Minho Lee, and JonathanH. Chan, editors, Neural

Information Processing, volume 5864 of Lecture Notes in Computer Science, pages

565–572. Springer Berlin Heidelberg, 2009.

[174] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke Lee.

Bothunter: Detecting malware infection through ids-driven dialog correlation. In

USENIX Security, volume 7, pages 1–16, 2007.

[175] David Whyte, Evangelos Kranakis, and Paul C van Oorschot. Dns-based detection

of scanning worms in an enterprise network. In NDSS, 2005.

[176] Stuart E Schechter, Jaeyeon Jung, and Arthur W Berger. Fast detection of scanning

worm infections. In Recent Advances in Intrusion Detection, pages 59–81. Springer,

2004.

[177] A. Dainotti, A. King, K. Claffy, F. Papale, and A. Pescap. Analysis of a ”/0” Stealth

Scan from a Botnet. IEEE/ACM Transactions on Networking, 2014.

[178] Alberto Dainotti, Alistair King, and Kimberly Claffy. Analysis of internet-wide

probing using darknets. In Proceedings of the 2012 ACM Workshop on Building

analysis datasets and gathering experience returns for security, BADGERS ’12, pages

13–14, New York, NY, USA, 2012. ACM.

[179] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A multi-

faceted approach to understanding the botnet phenomenon. In Proceedings of the

6th ACM SIGCOMM conference on Internet measurement, IMC ’06, pages 41–52,

New York, NY, USA, 2006. ACM.

[180] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. In Proceedings of the 2000 ACM SIGMOD international conference on

Management of data, SIGMOD ’00, pages 1–12, New York, NY, USA, 2000. ACM.

[181] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. Bgp routing stability of

popular destinations. In Proceedings of the 2nd ACM SIGCOMM Workshop on

Internet measurment, pages 197–202. ACM, 2002.

233

[182] Bill Cheswick, Hal Burch, and Steve Branigan. Mapping and visualizing the internet.

In USENIX Annual Technical Conference, General Track, pages 1–12. Citeseer, 2000.

[183] K Claffy, Tracie E Monk, and Daniel McRobb. Internet tomography. Nature, 7(11),

1999.

[184] Thomas Martin Lehmann, Claudia Gonner, and Klaus Spitzer. Survey: Interpola-

tion methods in medical image processing. Medical Imaging, IEEE Transactions on,

18(11):1049–1075, 1999.

[185] Antoni Zygmund. Trigonometric series, volume 1. Cambridge university press, 2002.

[186] Ronald Newbold Bracewell and RN Bracewell. The Fourier transform and its ap-

plications, volume 31999. McGraw-Hill New York, 1986.

[187] Apurba Das. Discrete time transformations: Dtfs and dtft. In Signal Conditioning,

pages 147–158. Springer, 2012.

[188] C Edward Sandifer. The early mathematics of leonhard euler. Washington, DC,

2007.

[189] Vince Fuller and Tony Li. Classless inter-domain routing (cidr): The internet address

assignment and aggregation plan. 2006.

[190] Greg Welch and Gary Bishop. An introduction to the kalman filter, 1995.

[191] SY Chen. Kalman filter for robot vision: a survey. Industrial Electronics, IEEE

Transactions on, 59(11):4409–4420, 2012.

[192] Dan Simon. Kalman filtering with state constraints: a survey of linear and nonlinear

algorithms. IET Control Theory & Applications, 4(8):1303–1318, 2010.

[193] G Wayne Morrison and David H Pike. Kalman filtering applied to statistical fore-

casting. Management Science, 23(7):768–774, 1977.

[194] Kristof Van Beeck, Toon Goedemé, and Tinne Tuytelaars. Towards an automatic

blind spot camera: robust real-time pedestrian tracking from a moving camera. In

234

Proceedings of the twelfth IAPR Conference on Machine Vision Applications, pages

528–531, 2011.

[195] Chris A Lightcap and Scott A Banks. An extended kalman filter for real-time

estimation and control of a rigid-link flexible-joint manipulator. Control Systems

Technology, IEEE Transactions on, 18(1):91–103, 2010.

[196] David N DeJong, Roman Liesenfeld, Guilherme V Moura, Jean-François Richard,

and Hariharan Dharmarajan. Efficient likelihood evaluation of state-space represen-

tations. The Review of Economic Studies, 80(2):538–567, 2013.

[197] Mohinder S Grewal and Angus P Andrews. Kalman filtering: theory and practice

using MATLAB. John Wiley & Sons, 2011.

[198] Zhichun Li, Anup Goyal, and Yan Chen. Honeynet-based botnet scan traffic analysis.

In Botnet Detection, pages 25–44. Springer, 2008.

[199] Simone Faro and Thierry Lecroq. An efficient matching algorithm for encoded dna

sequences and binary strings. In Combinatorial Pattern Matching, pages 106–115.

Springer, 2009.

[200] Zhichun Li, Anup Goyal, Yan Chen, and Vern Paxson. Towards situational awareness

of large-scale botnet probing events. Information Forensics and Security, IEEE

Transactions on, 6(1):175–188, 2011.

[201] Gregory C Chow and An-loh Lin. Best linear unbiased interpolation, distribution,

and extrapolation of time series by related series. The review of Economics and

Statistics, pages 372–375, 1971.

[202] Roque B Fernandez. A methodological note on the estimation of time series. The

Review of Economics and Statistics, pages 471–476, 1981.

[203] Milton Friedman. The interpolation of time series by related series. Journal of the

American Statistical Association, 57(300):729–757, 1962.

235

[204] Catherine Forbes, Merran Evans, Nicholas Hastings, and Brian Peacock. Statistical

distributions. John Wiley & Sons, 2011.

[205] Sylvain Arlot, Alain Celisse, et al. A survey of cross-validation procedures for model

selection. Statistics surveys, 4:40–79, 2010.

[206] George EP Box, Gwilym M Jenkins, and Gregory C Reinsel. Time series analysis:

forecasting and control. John Wiley & Sons, 2013.

[207] Zhou Wang and Alan C Bovik. Mean squared error: love it or leave it? a new look

at signal fidelity measures. Signal Processing Magazine, IEEE, 26(1):98–117, 2009.

[208] Josep Dı́az, Jordi Petit, and Maria Serna. A survey of graph layout problems. ACM

Computing Surveys (CSUR), 34(3):313–356, 2002.

[209] Kenta Ozeki and Tomoki Yamashita. Spanning trees: A survey. Graphs and Com-

binatorics, 27(1):1–26, 2011.

[210] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical society, 7(1):48–50,

1956.

[211] Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Mathematicae

Debrecen, 6:290–297, 1959.

[212] Paul Erd6s and A Rényi. On the evolution of random graphs. Publ. Math. Inst.

Hungar. Acad. Sci, 5:17–61, 1960.

[213] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering

algorithm. Applied statistics, pages 100–108, 1979.

[214] Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster analysis. Com-

munications in Statistics-theory and Methods, 3(1):1–27, 1974.

[215] Riyad Alshammari and A Nur Zincir-Heywood. Can encrypted traffic be identified

without port numbers, ip addresses and payload inspection? Computer networks,

55(6):1326–1350, 2011.

236

[216] Chris Ding and Xiaofeng He. K-means clustering via principal component analy-

sis. In Proceedings of the twenty-first international conference on Machine learning,

page 29. ACM, 2004.

[217] Jonathon Shlens. A tutorial on principal component analysis. arXiv preprint

arXiv:1404.1100, 2014.

[218] Yu Jin, György Simon, Kuai Xu, Zhi-Li Zhang, and Vipin Kumar. Grays anatomy:

Dissecting scanning activities using ip gray space analysis. Usenix SysML07, 2007.

[219] Yu Jin, Zhi-Li Zhang, Kuai Xu, Feng Cao, and Sambit Sahu. Identifying and tracking

suspicious activities through ip gray space analysis. In Proceedings of the 3rd annual

ACM workshop on Mining network data, MineNet ’07, pages 7–12, New York, NY,

USA, 2007. ACM.

[220] Zhichun Li, Anup Goyal, Yan Chen, and Vern Paxson. Automating analysis of large-

scale botnet probing events. In Proceedings of the 4th International Symposium on

Information, Computer, and Communications Security, ASIACCS ’09, pages 11–22,

New York, NY, USA, 2009. ACM.

[221] Vinod Yegneswaran, Paul Barford, and Vern Paxson. Using honeynets for internet

situational awareness. In Proc. of ACM Hotnets IV, 2005.

[222] Darcy Benoit and André Trudel. World’s first web census. International Journal of

Web Information Systems, 3(4):378, 2007.

[223] John Heidemann, Yuri Pradkin, Ramesh Govindan, Christos Papadopoulos,

Genevieve Bartlett, and Joseph Bannister. Census and survey of the visible inter-

net. In Proceedings of the 8th ACM SIGCOMM conference on Internet measurement,

IMC ’08, pages 169–182, New York, NY, USA, 2008. ACM.

[224] Y Pryadkin, R Lindell, J Bannister, and R Govindan. An empirical evaluation of ip

address space occupancy. USC/ISI Technical Report ISI-TR, 598, 2004.

[225] Ang Cui and Salvatore J. Stolfo. A quantitative analysis of the insecurity of embed-

ded network devices: results of a wide-area scan. In Proceedings of the 26th Annual

237

Computer Security Applications Conference, ACSAC ’10, pages 97–106, New York,

NY, USA, 2010. ACM.

[226] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee. Both-

unter: detecting malware infection through ids-driven dialog correlation. In Proceed-

ings of 16th USENIX Security Symposium on USENIX Security Symposium, SS’07,

pages 12:1–12:16, Berkeley, CA, USA, 2007. USENIX Association.

[227] Jan Goebel and Thorsten Holz. Rishi: Identify bot contaminated hosts by irc nick-

name evaluation. In Proceedings of the first conference on First Workshop on Hot

Topics in Understanding Botnets (USENIX HotBots), pages 8–8. Cambridge, MA,

2007.

[228] Peter Wurzinger, Leyla Bilge, Thorsten Holz, Jan Goebel, Christopher Kruegel, and

Engin Kirda. Automatically generating models for botnet detection. In Michael

Backes and Peng Ning, editors, Computer Security ESORICS 2009, volume 5789

of Lecture Notes in Computer Science, pages 232–249. Springer Berlin Heidelberg,

2009.

[229] Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and Christopher Kruegel. Botfinder:

finding bots in network traffic without deep packet inspection. In Proceedings of the

8th international conference on Emerging networking experiments and technologies,

CoNEXT ’12, pages 349–360, New York, NY, USA, 2012. ACM.

238

	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Context and Motivation
	Objectives and Contributions
	Organization

	Background
	Cyber Scanning: A Comprehensive Survey
	Network Telescopes

	Inferring Probing Activities
	On the Inference of Enterprise Probing Activities
	On Fingerprinting Internet-scale Probing Activities
	Related Work
	Summary

	Probing and Event Attribution
	Inferring Internet-scale Infections by Correlating Malware and Probing Activities
	Multidimensional Investigation of Source Port 0 Probing
	Related Work
	Summary

	Inferring and Attributing Probing Campaigns
	Background
	CSC-Detector: A System to Infer Large-Scale Probing Campaigns
	Time Series Interpolation and Prediction For Inferring Orchestrated Probing Campaigns
	Behavioral Service Graphs: Inferring the niche of a Probing Campaign
	Related Work
	Summary

	Conclusion
	Bibliography

