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ABSTRACT

Mixture Models for Multidimensional Positive Data Clustering with Applications to Image

Categorization and Retrieval

Taoufik Bdiri, Ph.D.

Concordia University, 2015

Model-based approaches have become important tools to model data and infer knowledge.

Such approaches are often used for clustering and object recognition which are crucial steps in

many applications, including but not limited to, recommendation systems, search engines, cy-

ber security, surveillance and object tracking. Many of these applications have the urgent need

to reduce the semantic gap of data representation between the system level and the human be-

ing understandable level. Indeed, the low level features extracted to represent a given object can

be confusing to machines which cannot differentiate between very similar objects trivially distin-

guishable by human beings (e.g. apple vs tomato). Such a semantic gap between the system and

the user perception for data, makes the modeling process hard to be designed basing on the features

space only. Moreover those models should be flexible and updatable when new data are introduced

to the system. Thus, apart from estimating the model parameters, the system should be somehow

informed how new data should be perceived according to some criteria in order to establish model

updates. In this thesis we propose a methodology for data representation using a hierarchical mix-

ture model basing on the inverted Dirichlet and the generalized inverted Dirichlet distributions.

The proposed approach allows to model a given object class by a set of components deduced by

the system and grouped according to labeled training data representing the human level semantic.

We propose an update strategy to the system components that takes into account adjustable metrics

representing users perception. We also consider the "page zero" problem in image retrieval sys-

tems when a given user does not possess adequate tools and semantics to express what he/she is

looking for, while he/she can visually identify it. We propose a statistical framework that enables

users to start a search process and interact with the system in order to find their target "mental

image". Finally we propose to improve our models by using a variational Bayesian inference to

learn generalized inverted Dirichlet mixtures with features selection. The merit of our approaches

is evaluated using extensive simulations and real life applications.
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Chapter 1
Introduction

Data analysis is crucial for any business survival as it represents the basis of data-driven decisions

that improve and maintain the quality of a given provided service or production. Indeed, with

the increase of calculations power, data analysis is now present in many sectors including but not

limited to health care, IT services, drug manufactures and finance. Amongst others, data analysis

is strongly applied in modern applications that cover computer vision and object recognition. As

a matter of fact, data generation has become a daily routine in many industries and entertainment

services, e.g. 300 hours of video are uploaded, every minute, to YouTube that has more than 1

billion users [1]. One challenging crucial aspect in data analysis is clustering, which is defined

as the process of assigning observations sharing similar characteristics to subgroups, such that

their heterogeneity is minimized within a given subgroup and maximized between the subgroups.

Still, data homogeneity is relative as classification processes are context dependent. This fact has

triggered the urgent need to design tools capable of analyzing complex and multidimensional data

ensuring a smooth interaction with users whose intentions are not necessarily well represented in

system-level features’ space. Indeed during such interactions, the system is not always aware of the

users intentions, and in many cases there is a semantic gap between the users high level modeling

of data and the system-level data model. Consider for instance search engines or object recognition

tasks, where a user is looking for a specific element among a huge amount of data. The system is

usually not aware of what the user is looking for, and naturally not aware of the user’s perception

toward the different data elements e.g. if a user’s intention is to classify objects and creatures,

he/she would assign a car to the object class and a lion to the creature class, whereas a different

user may put the car and the lion in the same class having another intention like classifying moving

and motionless elements. Hence we talk about the user ontological model and intention which

differ from one user to another. Many clustering techniques have been explored by researchers

[2] especially model-based clustering that has been extensively adopted in order to perform data
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analysis in many disciplines such as bioinformatics [3–5], computer vision [6–8], recommending

systems [9–11] and social networks [12–14]. Indeed, mixture based approaches are a powerful

tool that serve to infer knowledge and abstract the complexity of a huge amount of information.

They are a well formed mathematical representation that assumes that data are generated by a set

of probabilistic components representing subpopulations and that every observation belongs to one

of them. Such an assumption establishes a clustering process basing on posteriors probabilities.

Yet, the adoption of model based approaches still under extensive research, and the task of their

deployment faces many challenges namely the choice of the appropriate distribution to model data,

how to estimate the parameters of the mixture and how to select the model that is appropriate to

better model data in terms of number of components. In this thesis, we focus on multidimensional

data clustering and classification which are considered as a key component for many real life

applications using mixture models. In the following we introduce some notions that constitute the

basis of the statistical frameworks that we develop throughout this thesis.

1.1 Generative and Discriminative Learning

In machine learning, generative and discriminative learning are the two major approaches to clas-

sify data and establish predictions in terms of assigning it to their appropriate categories or classes.

Generative learning tends to model the data using a joint distribution on inputs and outputs,

whereas discriminative learning tends to establish a sort of mapping from inputs to outputs us-

ing a conditional distribution or a prediction function. Consider for instance a set of observations

with features X that we want to classify into classes labeled by a categorical variable Y . A gener-

ative classifier models the joint probability p(X ,Y ) , factorized in the form of p(X |Y )p(Y ) where

p(X |Y ) is a data generating process. The parameters of the model are learned by the maximization

of the likelihood with respect to p(X |Y )p(Y ). A discriminative classifier, models the conditional

distribution p(Y |X) of the class labels given the features and learn the model by maximizing the

conditional likelihood with respect to p(Y |X). Thus, the generative classifier is termed as sampling

paradigm, and the discriminative classifier is termed as diagnostic paradigm [15].

1.2 Model-based Approach : Finite Mixture Models

Finite mixture models are used in generative learning processes and are often used to model data

sampled from a population that is suspected to be composed of a finite number of homogenous

subpopulations. Each subpopulation is modeled by a probability density, and the whole model is

formed by a weighted sum of those densities [16]. Thus, if we consider a random variable X , a

2



finite mixture model decomposes a probability function p(X) into the sum of M class probability

functions. Let pi(X) denotes the probability representing the ith class probability function. The

finite mixture model can be written as :

p(X |Θ) =
M

∑
i=1

πi pi(X |θi) (1.1)

where Θ represents the set of parameters such that Θ = {π1,θ1,π2,θ2, ...,πM,θM} and πi > 0

such that ∑M
i=1 πi = 1. πi denotes the mixing weight of the ith class and is considered as a prior

probability of observing a sample from the class i. If we consider N samples X = {�X1,�X2, ...,�Xn}
drawn from a probability density function p(X |Θ) parameterized by the elements of the parameters

vector Θ, the joint probability of the finite mixture model is given by :

p(X |Θ) =
N

∏
n=1

M

∑
i=1

πi pi(�Xn|θi) (1.2)

1.3 Parameters Estimation

Most of approaches to estimate parameters of mixture models consider either deterministic or

Bayesian techniques [17]. Deterministic techniques often use the EM algorithm which is a popular

iterative method that tries to maximize the log-likelihood log p(X |Θ) with respect to Θ [18, 19].

On the other hand, the Bayesian techniques [20] have been proposed to mitigate some draw-

backs of the deterministic techniques such as dependency on initialization and the difficulty to deal

with multi-modal distributions. Most of the Bayesian methods that have been proposed consider

Laplace’s approximation [21] or Markov chain Monte Carlo (MCMC) [22]. Still, the Laplace’s

approximation often makes a too strong assumption considering that the likelihood is not multi-

model which is often not the case for finite mixture model, while MCMC is computationally costly.

Another emerging Bayesian technique is variational inference [23] which approximates the model

posterior distribution by minimizing the Kullback-Leibler divergence between the true posterior

and a distribution which represents its lower bound. Variational inference is used in Chapter 5 as

an alternative solution to the EM.

1.4 Disribution Fitting and Model Selection

As a matter of fact, using probability is a form of dealing with uncertainty, and the choice of the

probability density function that serves to model data can have a significant impact on the accu-

racy of the model in terms of clustering and classification. Distribution fitting is the procedure of
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selecting a distribution that better describes a given dataset generated by some random process.

The normal distribution has been extensively adopted for modeling, however in many real-world

applications it is not an adequate choice to model non-Gaussian data. Indeed the normal distribu-

tion is symmetric which makes it inappropriate to be used to model data skewness. It also has a

constant shape that does not depend on the distribution parameters in contrast with heavy-tailed

distributions, and it is defined on the entire real axis which makes other bounded or non negative

distributions fit more when dealing with bounded or positive data. In this thesis we propose to use

the inverted Dirichlet distribution and the generalized inverted Generalized distribution that will

be introduced throughout the thesis. As for the model selection, it consists of selecting a statistical

model from a set of candidate models, given the data. When using mixture models, it is a crucial

issue to choose the optimal number of components that are needed to represent the data. Many

techniques have been proposed to establish a model selection, and most of them are based on the

likelihood function and some information theoretic criteria such as the minimum message length

(MML) [24], Akaike information criterion (AIC) [25], minimum description length (MDL) [26],

mixture MDL (MMDL) [27], and LEC [17].

1.5 Contributions

The aim of this thesis is to propose several approaches to model and cluster multidimensional data

using mixture models, and explore them to establish image categorization and retrieval. The over-

all contributions of this thesis are as follows

� A statistical framework using hierarchical mixture models alterable according to users

context

We show that it is not adequate to represent an object class by a single probability distri-

bution, and we build a hierarchical model where every object class is composed of sub-

mixtures. The proposed approach gives the possibility to redefine the hierarchy without the

need of establishing a new parameters estimation. We develop the statistical model using the

inverted Dirichlet mixture models.

� A new approach for online learning of mixture models using adjustable model selection

criteria

We propose a new methodology to update mixture models with the consideration of users

perceptions basing on probabilistic metrics that inform the system how it should construct

the mixture and establish updates when new data are introduced on line. The proposed
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methodology is implemented using the generalized inverted Dirichlet (GID) distribution.

� A statistical framework for mental targets search using mixture models

We propose a framework using (GID) mixture models and a Bayesian formulation in order to

design a search engine for "Mental Images" targets, with the possibility of searching multi-

targets without having an explicit query and basing on visual search only.

� Variational Bayesian inference for infinite generalized inverted Dirichlet mixtures with

features selection

We improve the modeling of the GID mixture by considering an infinite nonparametric

Bayesian framework namely the Dirichlet process. We use variational Bayesian inference

to estimate the mixture parameters and establish an appropriate model selection. We also

integrate a "features selection" capability in order to improve the clustering accuracy.

1.6 Thesis Overview

The organization of this thesis is as follows:

� Chapter 1, contains an introduction to mixture models and an overview over the thesis.

� In Chapter 2, we introduce a novel hierarchical mixture model where each component is

composed of a set of finite probability densities forming a super class mixture. Our pro-

posed model can be viewed as a mixture of mixtures to support multi-level hierarchies where

the structure of the hierarchy can be altered according to users’ ontological models within

costless computational time. The proposed approach is generalized to adopt any probability

density function and an algorithm to learn the model is proposed. We adopt the inverted

Dirichlet distribution to build the model, and a simulation is performed to validate the pro-

posed approach using synthetic and a real world application namely visual object clustering

and recognition. This work is published in Expert Systems with Applications journal [28].

� In Chapter 3, we propose a new methodology to update a mixture model that takes into

account simultaneously users perception and the dynamic nature of real-world data. We

implement the proposed approach using the GID distribution. Experiments on synthetic data

as well as real data generated from different publicly available image datasets indicates that

the proposed approach has merits and provides promising results. This work is under review

by Engineering Applications of Artificial Intelligence journal [29].
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� In Chapter 4, we propose a statistical framework that enables users to start a search process

and interact with the system in order to find their target “mental image", using visual features

only. Our bayesian formulation provides the possibility of searching multi target classes

within the same search process. Data are modeled by a GID mixture that also serves to

quantify the similarities between images. We run experiments including real users and we

present a case study of a search process that gives promising results in terms of number

of iterations needed to find the mental target classes within a given dataset. This work is

accepted and is to be published in Artificial-Intelligence Applications in Information and

Communication Technologies as a book chapter [30].

� In Chapter 5, we develop a variational Bayesian framework for the infinite GID mixture

models that has proven its capability to model complex multidimensional data. We also

integrate a "features selection" approach to highlight the features that are most informative

in order to construct an appropriate model in terms of clustering accuracy. Experiments

on synthetic data as well as real data generated from visual scenes and handwritten digits

datasets validate the proposed approach. This work is under review by Applied Intelligence

journal [31].

� Chapter 6, summarizes our contributions and present some potential future works.
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Chapter 2
Object Clustering and Recognition Using

Multi-Finite Mixtures for Semantic Classes

and Hierarchy Modeling

2.1 Introduction

In many real-life application, clustering is considered as a form of knowledge extraction from

data [32, 33]. In the previous chapter, we have described one major approach for clustering based

on statistics which is model-based clustering using finite mixture models. As mentioned previ-

ously, finite mixture models can be defined as a weighted sum of probability distributions where

each distribution represents the population of a given subgroup. The authors in [34] traced the use

of finite mixture models back to the 1960s and 1970s, citing amongst others, works in [35, 36].

Although their use backs at least as far as 1963, it is only in the recent decades that mixture models

applications started to cover many fields including, but not limited to, digital image processing and

computer vision [37–39], social networks [40–42], medicine [43–47], and bioinformatics [48–50].

The consideration of mixture models is practical for many applications. In many cases, however,

the complexity of the observed data may render the use of one single distribution to represent

a given class insufficient for inference. Many techniques have been proposed to select the best

number of mixture components that best represents the data. Examples include Bayesian infer-

ence criterion (BIC) [51], minimum description length (MDL) [52] and minimum message length

(MML) [24] criteria. These criteria are mainly used in unsupervised algorithms where the system

handles data modeling without any intervention during the learning process. Still, in many cases,
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the system representation does not necessarily fit with a human comprehensible semantic. Con-

sider for instance an object recognition application where the system has to recognize different

objects according to the user need. In most cases, basing on the features space only, the system

considers classes with important visual similarities (e.g., apple and tomato), as being the classes

that should be represented by a single component in the mixture. This is not always the case in real

applications, where a human being or an application would need to differentiate between different

classes even when they have close visual properties and similarities, thus, we talk here about a

semantic meaning of the mixture components as the gap between the system representation and

the human representation of data is still high. An eventual solution is to form a hierarchical model

based on some ontology as in [53–56] where the data are grouped into clusters and sub clusters (i.e.

tree-structured clustering).Yet, this approach still form the model using the visual similarities and

groups data according to the system choice. Furthermore, since the model is based on estimating

the model’s parameters as the algorithm goes deeper in the hierarchy (the distributions’ parameters

of the children clusters depend on the parameters of the parents clusters), when changing the hier-

archical model, a whole new estimation should take place, which increases the computational cost.

The user intervention to build a hierarchical mixture has been introduced in [57] which developed

the concept of hierarchical visualization where the construction of the hierarchical tree proceeds

top-down, and for each level, the user decides on the suitable number of models to fit at the next

level down. Indeed this interaction, may serve to have an optimal number of clusters for each level

according to the user, but it does not permit the user to define any semantic meaning to the clusters

or group the clusters as he/she needs. Moreover, the user cannot define any ontological model to

the data, and there is a new estimation of the parameters to be calculated at each level when the

model goes deeper in the tree.

In this chapter, we present a novel way to model data and assign a semantic meaning to clusters

according to the user needs which can reduce significantly the gap between the system represen-

tation and the user level representation. We tackle the challenging problem of object clustering,

and recognition of new unseen data in terms of affectation to the appropriate clusters forming the

object class. Naturally, the choice of the distribution forming the mixture model is crucial in terms

of clustering efficiency and accuracy of the classification of unseen data. Indeed, many works have

focused on Gaussian mixture models (GMM) to build their applications such as in [58–61], but

recent researches have shown that it is not appropriate to always assume that data follow a nor-

mal distribution. For instance, the works in [62–65] have considered the Dirichlet and generalized

Dirichlet mixture models, to model proportional data, which have been shown to outperform the

GMM. We have developed in a previous work the inverted Dirichlet (ID) mixture model which has

better capabilities than the GMM when modeling positive data that occur naturally in many real
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Figure 2.1: Two-levels hierarchical model.

applications [66, 67]. Hence, we propose our new methodology using ID mixture models, although

it is noteworthy to bear in mind than any other distribution can be used as the presented framework

is general.

This chapter is organized as follows; in section 2.2 we present our statistical framework by consid-

ering a two-levels hierarchy for ease of representation and understanding of the general method-

ology. In section 2.3, we propose a detailed approach to learn the proposed statistical model. In

section 2.4, we propose a generalization of our modeling framework to cover many hierarchical

levels and finally section 2.5 is devoted to present the experimental results using both synthetic

data and a real-life application concerning object recognition. Finally, section 2.6 gives a brief

summary of the chapter.

2.2 Statistical Framework : The Model

We propose to develop a statistical framework that can model data in a hierarchical fashion. The

attribution of a semantic meaning to the model is discussed in subsection 2.5.2. In this section,

for the easiness of presentation, we consider a two-levels hierarchy where we have a set of super

classes, composed each, of a set of classes. Let us consider a set X of N D-dimensional vectors,

such that X = (�X1,�X2, . . . ,�XN). Let M denote the number of different super classes and Kj the

number of classes forming the super class j. We assume that X is controlled by a mixture of

mixtures, such that each super class j is represented by a mixture of Kj components and the parent

mixture is composed of M mixtures representing the super classes. Thus, we consider two views

or levels for the statistical model. The first view focuses on the super classes and the second one

zooms on the classes (see Figure 2.1). We suppose that the vectors follow a common but unknown

probability density function p(�Xn|Ξ) , where Ξ is the set of its parameters.
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2.2.1 First Level

Let Z = {�Z1,�Z2, . . . ,�ZN} denote the missing group indicator, where �Zn = (zn1,zn2, . . . ,znM) is the

label of �Xn, such that zn j ∈ {0,1}, ∑M
j=1 zn j = 1 and zn j is equal to one if �Xn belongs to super class

j and zero, otherwise. Then, the distribution of �Xn given the super class label �Zn is :

p(�Xn|�Zn,Θ) =
M

∏
j=1

p(�Xn|θ j)
zn j (2.1)

where Θ= {θ1,θ2, . . . ,θM} and θ j is the set of parameters of the super class j. In practice, p(�Xn|Θ)

can be obtained by marginalizing the complete likelihood p(�Xn,�Zn|Θ) over the hidden variables .

We define the prior distribution of �Zn as follows:

p(�Zn|�π) =
M

∏
j=1

πzn j
j (2.2)

where �π = (π1, . . . ,πM), π j > 0 and ∑M
j=1 π j = 1, then we have:

p(�Xn,�Zn|Θ,�π) = p(�Xn|�Zn,Θ)P(�Zn|�π) =
M

∏
j=1

(p(�Xn|θ j)π j)
zn j (2.3)

We proceed by the marginalization of Eq.2.3 over the hidden variable (see Appendix A), so the

first level of our mixture for a given vector �Xn can be written as follows:

p(�Xn|Θ,�π) =
M

∑
j=1

p(�Xn|θ j)π j (2.4)

Thus, the set of parameters Ξ corresponding to the first level is Ξ = (Θ,�π).

2.2.2 Second Level

When we examine the second level which considers the classes, given that �Xn is generated from

the mixture j, we suppose that it is also generated from one of the Kj components of the mixture

j. Thus, let Yj = {�Y1 j,�Y2 j, . . . ,�YN j} denote the missing group indicator where the ith element of
�Yn j, yn ji is equal to one if �Xn belongs to the class i of the super class j and zero, otherwise. Let

{�Yn j} = {�Yn1,�Yn2, ...,�YnM} denote the classes label of �Xn. Then, the distribution of �Xn given the
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super class label �Zn and the classes label {�Yn j} is

p(�Xn|�Zn,{�Yn j},Θ,ϕ) = p(�Xn|�Zn,{�Yn j},ϕ) =
M

∏
j=1

( Kj

∏
i=1

p(�Xn|�ϕ ji)
yn ji

)zn j

(2.5)

where ϕ = {�ϕ ji} with j = 1, . . . ,M and i = 1, . . . ,Kj, is the set of parameters of the components

representing the different classes. It is noteworthy to mention that Kj depends on the number of

classes that the super class j contains. We define the prior distribution of�Yn j and {�Yn j} as follows:

p(�Yn j|�Zn,{w ji},�π) = p(�Yn j|�Zn,{w ji}) =
Kj

∏
i=1

wyn ji
ji (2.6)

p({�Yn j}|�Zn,{w ji},�π) = p({�Yn j}|�Zn,{w ji}) =
M

∏
j=1

( Kj

∏
i=1

wyn ji
ji

)zn j

(2.7)

where w ji > 0, ∑M
j=1 ∑

Kj
i=1 w ji = 1, and {w ji} is the set of the components’ mixing weights with

j = 1...M and i = 1...Kj, then we have :

p(�Xn,�Zn,{�Yn j}|ϕ,{w ji},�π) = p(�Xn|�Zn,{�Yn j},ϕ,{w ji},�π)p({�Yn j}|�Zn,{w ji})p(�Zn|�π)

=
M

∏
j=1

πzn j
j

( Kj

∏
i=1

wyn ji
ji p(�Xn|�ϕ ji)

yn ji

)zn j

(2.8)

We proceed by the marginalization of Eq.2.8 over the hidden variables (see appendix A), so the

second level mixture can be written as :

p(�Xn|ϕ,{w ji},�π) =
M

∑
j=1

π j
( Kj

∑
i=1

p(�Xn|�ϕ ji)w ji
)

(2.9)

Thus, according to the previous equation, the set of parameters Ξ corresponding to the second level

is Ξ = (ϕ,{w ji},�π).
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2.3 Model Learning

2.3.1 Log-Likelihood of the Complete Data

The model for the complete data < X ,Z,{Yj}> is given by :

p(X ,Z|Θ,�π) =
N

∏
n=1

M

∏
j=1

p(�Xn|θ j)
zn jπzn j

j︸ ︷︷ ︸
First level

=
N

∏
n=1

M

∏
j=1

( Kj

∏
i=1

(
p(�Xn|�ϕ ji)w ji

)yn ji∗zn j

)
πzn j

j︸ ︷︷ ︸
Second level

= p(X ,Z,{Yj}|ϕ,{w ji},�π) (2.10)

We maximize the log-likelihood instead of the likelihood. The log-likelihood is given by:

Φc(X ,Z,{Yj}|ϕ,{w ji},�π) = log(p(X ,Z,{Yj}|ϕ,{w ji},�π)

=
N

∑
n=1

M

∑
j=1

Kj

∑
i=1

zn j

(
log(π j)+ yn ji

(
log(w ji)+ log(p(�Xn|�ϕ ji))

))
(2.11)

Let us recall that ϕ = {�ϕ ji} with j = 1, . . . ,M and i= 1, . . . ,Kj, such that �ϕ ji is the set of parameters

of the inverted Dirichlet distribution, for the class i, of the super class j. In order to estimate the

parameters, we use the expectation maximization (EM) algorithm which proceeds iteratively in

two steps; the expectation (E) step and the maximization (M) step. In the E-step, we compute

the conditional expectation of Φc(X ,Z,{Yj}|ϕ,{w ji},�π) which is reduced to the computation of

the posterior probabilities (e.g. the probability that a vector �Xn is assigned to a mixture j, and the

probability that �Xn is assigned to the component i of j) , such that (see Appendix A):

p( j, i|�Xn,ϕ ,{w ji},�π) = w jiπ j p(�Xn|�ϕ ji)

M
∑
j=1

Kj

∑
i=1

w jiπ j p(�Xn|�ϕ ji)

(2.12)

and

p( j|�Xn,Θ,�π) =
π j p(�Xn|θ j)

M
∑
j=1

π j p(�Xn|θ j)

=

π j

Kj

∑
i=1

w ji p(�Xn|�ϕ ji)

M
∑
j=1

π j

Kj

∑
i=1

w ji p(�Xn|�ϕ ji)

= p( j|�Xn,ϕ,{w ji},�π) (2.13)
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Thus, we have :

log p(X |ϕ,{w ji},�π) =
N

∑
n=1

M

∑
j=1

Kj

∑
i=1

p( j|�Xn,ϕ,{w ji},�π)

×
(

log(π j)+ p( j, i|�Xn,ϕ,{w ji},�π)
(

log(w ji)+ log(p(�Xn|�ϕ ji))
))

(2.14)

Then, the conditional expectation of the complete-data log likelihood, using Lagrange multipliers

to introduce the constraints about the mixture proportions {π j} and {wi j}, is given by :

Q(X ,ϕ,{w ji},�π,Λ) = log p(X |ϕ,{w ji},�π)+λ1(1−
M

∑
j=1

π j)+λ2(1−
M

∑
j=1

Kj

∑
i=1

wi j) (2.15)

where Λ = {λ1,λ2} is the Lagrange multiplier.

2.3.2 The Inverted Dirichlet Distribution

Although the framework that we propose is general and can therefore adopt any possible proba-

bility density function, we consider the inverted Dirichlet distribution as the density model, as we

have used positive data. This distribution permits multiple symmetric and asymmetric modes and

it may be skewed to the right, skewed to the left or symmetric, which gives it suitable properties

to model different forms of positive data. Several interesting properties of the inverted Dirichlet

can be found in [68]. If a D-dimensional positive vector �X = (X1,X2, . . . ,XD) follows an inverted

Dirichlet distribution, the joint density function is given by [66–69]:

p(�X |�ϕ) = Γ(|�ϕ|)
∏D+1

d=1 Γ(�ϕ(d))

D

∏
d=1

X�ϕ(d)−1
d (1+

D

∑
d=1

Xd)
−|�ϕ| (2.16)

where Γ(.) is the gamma function, Xd > 0,d = 1,2, . . . ,D, �ϕ =(�ϕ(1), . . . ,�ϕ(D+1)) is the vector of

parameters and |�ϕ|= ∑D+1
d=1 �ϕ(d), �ϕ(d)> 0,d = 1,2, . . . ,D+1. The inverted Dirichlet distribution

was introduced for the first time in [69] where the authors derived it from the Dirichlet distribution.

Another derivation based on the Gamma distribution was proposed also in [70]. The mean and the

variance of the inverted Dirichlet distribution are given by [69]

E(Xd) =
�ϕ(d)

�ϕ(D+1)−1
(2.17)

Var(Xd) =
�ϕ(d)(�ϕ(d)+�ϕ(D+1)−1)

(�ϕ(D+1)−1)2(�ϕ(D+1)−2)
(2.18)
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The parameters of an inverted Dirichlet distribution can be estimated using the method of

moments that relies on low order statistics namely the mean and the variance given by Eqs. 2.17

and 2.18, respectively, from which we can straightforwardly find the following estimates :

�ϕ(D+1) =
E(Xd)

2 +E(Xd)

Var(Xd)
+2 (2.19)

�ϕ(d) = E(Xd)(�ϕ(D+1)−1) d = 1, . . . ,D+1 (2.20)

In [70], a method has been proposed to generate inverted Dirichlet data. Let X1,X2, . . . ,XD+1

be independent variables which follow Gamma distributions having the same scale but with dif-

ferent parameters �ϕ(1),�ϕ(2), . . . ,�ϕ(D+ 1), respectively. Let Yd = Xd
XD+1

, d = 1,2, . . . ,D, then

the vector�Y = (Y1,Y2, . . . ,YD) has a D-variate inverted Dirichlet distribution with parameter vector
�ϕ = (�ϕ(1),�ϕ(2), . . . ,�ϕ(D+1)).

2.3.3 Parameters Estimation of the Hierarchical Mixture

The parameters estimation is based on the maximization of the log likelihood (Eq.2.15). The

maximization gives the following for the mixtures weights (see Appendix A):

π j =

N
∑

n=1
p( j|�Xn,ϕ,{w ji},�π)

N
(2.21)

w ji =

N
∑

n=1
p( j, i|�Xn,ϕ,{w ji},�π)

N
(2.22)

Calculating the derivative with respect to �ϕ ji(d) , d = 1, . . . ,D , and using the inverted Dirichlet

distribution, we obtain:

∂Q(X ,ϕ,{w ji},�π,Λ)
∂�ϕ ji(d)

=
N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π)∂ log(p(�Xn|�ϕ ji)

∂�ϕ ji(d)

=
N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π)

× (Ψ(|�ϕ ji|)−Ψ(�ϕ ji(d))+ log(
Xnd

1+∑D
d=1 Xnd

)) (2.23)

where Ψ(.) is the digamma function. The derivative with respect to �ϕ ji(D+1) is given by :
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∂Q(X ,ϕ,{w ji},�π,Λ)
∂�ϕ ji(D+1)

=
N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π)∂ log(p(�Xn|�ϕ ji)

∂�ϕ ji(D+1)

=
N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π)

× (Ψ(|�ϕ ji|)−Ψ(�ϕ ji(D+1))+ log
1

1+∑D
d=1 Xnd

)) (2.24)

Looking at the previous two equations, it is clear that an explicit form of the solution to

estimate �ϕ ji does not exist. Thus, we refer to Newton Raphson method expressed as :

�ϕnew
ji = �ϕold

ji −H−1
ji G ji , j = 1...M, i = 1...Kj (2.25)

where Hji is the Hessian matrix associated with Q(X ,ϕ,{w ji},�π,Λ) and G ji is the first derivatives

vector,

G ji = (
∂Q(X ,ϕ,{w ji},�π,Λ)

∂�ϕ ji(1)
, . . . ,

∂Q(X ,ϕ,{w ji},�π,Λ)
∂�ϕ ji(D+1) )T . To calculate the Hessian of Q(X ,ϕ,{w ji},�π,Λ)

we have to compute the second and mixed derivatives:

∂ 2Q(X ,ϕ,{w ji},�π,Λ)
∂�ϕ ji(d)2 = (Ψ′(|�ϕ ji|)−Ψ′(�ϕ ji(d)))(

N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π))

(2.26)

∂ 2Q(X ,ϕ,{w ji},�π,Λ)
∂�ϕ ji(d1)∂�ϕ ji(d2)

= (Ψ′(|�ϕ ji|))(
N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π)) (2.27)

where Ψ′(.) is the trigamma function.Thus ,

Hji =
N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π)

×

⎛
⎜⎜⎜⎜⎝

Ψ′(|�ϕ ji|)−Ψ′(�ϕ ji(1)) Ψ′(|�ϕ ji|) · · · Ψ′(|�ϕ ji|)
Ψ′(|�ϕ ji|) Ψ′(|�ϕ ji|)−Ψ′(�ϕ ji(2)) · · · Ψ′(|�ϕ ji|)

...
... . . . ...

Ψ′(|�ϕ ji|) · · · Ψ′(|�ϕ ji|)−Ψ′(�ϕ ji(D+1))

⎞
⎟⎟⎟⎟⎠
(2.28)
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we can write :

Hji = D ji +α jiAT
jiA ji (2.29)

where

D ji = diag
[− N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π)Ψ′(�ϕ ji(1)), . . .

. . . , ,−
N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π)Ψ′(�ϕ ji(D+1))
]

(2.30)

D ji is a diagonal matrix, α ji = (
N
∑

n=1
p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π))Ψ′(|�ϕ ji|) and AT

ji =

(a1, ...,aD+1) , ad = 1, d = 1, ...,D+1, then using the Theorem 8.3.3 in [71], the inverse matrix is

given by :

H−1
ji = D−1

ji +α∗
jiA

∗T
ji A∗

ji (2.31)

D−
ji1 can be easily computed as following:

A∗
ji =

1
N
∑

n=1
p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π)

(
1

Ψ′(�ϕ ji(1))
, . . . ,

1
Ψ′(�ϕ ji(D+1))

) (2.32)

and

α∗
ji = [(Ψ′(|�ϕ ji|)

D+1

∑
d=1

1
Ψ′(�ϕ ji(d))

)−1]−1Ψ′(|�ϕ ji|)
N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π)p( j, i|�Xn,ϕ,{w ji},�π)
(2.33)

2.4 Generalization of the Model

2.4.1 A Flexible Hierarchical Model

In the previous sections, two levels of the hierarchy were modeled with prior knowledge about how

to group the classes within the super classes. In many real life applications, however, we do not

have this prior knowledge. Thus, we propose to overcome this problem by generalizing our model

to several hierarchical levels. Indeed, when we change the strategy of how we look at the model,

we can overcome the model selection problem at each super class level (e.g. prior knowledge

about the number of components that each super class must have)1. Indeed, the second level can

1Many applications might find the prior specification of the number of components forming each super class,
useful. In our case we want the system to form the classes and then group them dynamically according to the user’s
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be viewed as a mixture of ∑M
j=1 Kj components with mixture weights w ji such as ∑M

j=1 ∑
Kj
i=1 w ji = 1.

According to Eqs. 2.12 and 2.13, we have :

p( j|�Xn,ϕ,{w ji},�π) =
Kj

∑
i=1

p( j, i|�Xn,ϕ,{w ji},�π) (2.34)

Thus, Eqs.2.21, 2.22 and 2.34 give us:

π j =
Kj

∑
i=1

w ji (2.35)

When considering a hierarchical model with several levels, we propose to estimate the probability

densities parameters and the weight of the bottom level using the algorithm that we proposed

in [66], and then estimate the weight of each upper level by summing the weights of their children.

This approach can be practical in real life applications when we do not have prior knowledge about

the hierarchy as we will show further in the experimental part. For instance, an object class can be

modeled by a Kj-components mixture without having prior knowledge about Kj. To define a super

class of objects classes, we simply sum their corresponding weights and we move to an upper

level in the hierarchy. Thus, we mainly develop two approaches, the first one is when we have

prior knowledge about the number of clusters/classes forming a super class and the second one

when we do not have such knowledge, so we can group the clusters/classes according to a given

hierarchy that can change on the fly, which is the purpose of this work.

2.4.2 Learning Algorithm

To initialize the EM algorithm we use the approach proposed in [66] based on K-Means algorithm

and the method of moments. As we have two approaches for building the hierarchical model, we

present two algorithms. The first one when we have the required prior knowledge about the super

classes and the second one when we do not have such knowledge.

Learning in the Presence of Prior Knowledge

When we know in advance the number of components forming each super class, we have two

ways to initialize the parameters. The first way is to let the system group the clusters basing on

similarities, thus, we use the K-Means algorithm to have M clusters representing the super classes

and then reuse K-Means to determine the appropriate classes Kj of each super class. The second

way is to use K-Means to have ∑M
j=1 Kj clusters and then group them within each super class j.

needs. In this chapter, the two approaches are proposed.
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• Initialization Algorithm

1 – Grouping by the system: Apply the K-Means on the N D-dimensional vectors to

obtain initial M super classes and reapply it on each super class j to obtain Kj

clusters.

– Grouping by the user : Apply the K-means on the N D-dimensional vectors to

obtain initial ∑M
j=1 Kj, and then group the chosen clusters Kj for each super class

j.

2 Weights initialization :

– Calculate w ji =
Number o f elements in cluster ji

N

– Calculate π j =
Number o f elements in super class j

N

3. Apply the moments method for each component ji to obtain a vector of parameters cor-

responding to a given cluster ji.

Then, the estimation algorithm can be summarized as follows

• Estimation Algorithm

1. INPUT: D-dimensional data �Xn, n = 1, . . . ,N, a specified number of super classes M, and

the number of classes, Kj, in each super class j .

2. Initialization algorithm

3. E-Step: Compute the posterior probabilities using Eqs.2.12 and 2.13.

4. M-Step:

– Update �ϕ ji using Eq.2.25, j = 1, . . . ,M , i = 1, . . . ,Kj.

– Update w ji using Eq.2.22, and π j using Eq.2.35, j = 1, . . . ,M , i = 1, . . . ,Kj

5. If the convergence test (Δp(X |ϕ,{w ji},�π)< ε) is passed terminate, else go to 3.

where Δp(X |ϕ,{w ji},�π) is the difference between the likelihoods calculated in two consecutive

iterations.

Dynamical Hierarchical Grouping Without Prior Knowledge About the Super Classes

For many applications, the hierarchical model can be built on the fly according to the user’s need

or depending on some circumstances. Here, we present the algorithm proposed in this case.

• Initialization Algorithm
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1.1 Apply K-Means on the N D-dimensional vectors to obtain initial ∑M
j=1 Kj clusters.

2. Calculate w ji =
Number o f elements in cluster ji

N

3. Apply the moments method for each component ji to obtain the initial parameters corre-

sponding to each cluster.

Then, the estimation algorithm can be summarized as follows

• Estimation Algorithm

1. INPUT: D-dimensional data �Xn, n = 1, . . . ,N and a specified number of total clusters

∑M
j=1 Kj.

2. Initialization algorithm.

3. E-Step: Compute the posterior probabilities for ∑M
j=1 Kj components of an IDMM using

the algorithm in [66].

4. M-Step:

– Update the parameters of the mixture at the lowest level according to [66], consid-

ering a finite mixture of IDMM with ∑M
j=1 Kj components.

– Update wt = w ji using Eq.2.22 when considering the posterior probabilities calcu-

lated in 3, j = 1, . . . ,M , i = 1, . . . ,Kj , t = 1, . . . ,∑M
j=1 Kj.

5. If the convergence test (Δp(X |ϕ,{wt})< ε) is passed go to 6, else go to 3.

p(X |ϕ,wt) is the likelihood of the considered IDMM having ∑M
j=1 Kj-components,

with a set of parameters {ϕ,{wt}}, t = 1, . . . ,∑M
j=1 Kj , j = 1, . . . ,M.

6. For each level of the hierarchy: compute π j = ∑
Kj
i=1 w ji according to a given ontological

model.

Using this algorithm, we do not have to specify Kj for each super class j, but we rather specify

the total number ∑M
j=1 Kj of the modeled classes at the lowest level of the hierarchy. We then

specify Kj for each super class j basing on a given ontological model, and the obtained results.

It is noteworthy to mention that any number of levels in the hierarchy can be built by simply

constructing its weights by summing their respective children weights. In our application and

experiments we use this algorithm.
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2.5 Experimental Results

2.5.1 Synthetic Data

In this section, an evaluation of our proposed algorithm is performed using synthetic data. We

report results on one-dimensional and multi-dimensional synthetic datasets. We also analyze the

performance of our estimation approach in the presence of outliers and finally we analyze the

capabilities of our approach in modeling overlapping classes. It is noteworthy that we suppose

here that we have a certain knowledge about the grouping of the different classes into super classes

based on a given semantic model.

Results

We performed all the following experiments with a Newton Raphson convergence precision equal

to ε = 10−5. We generated artificial histograms from artificial inverted Beta mixture distributions2,

and we estimated their related parameters according to the proposed algorithm. For the first his-

togram we considered two super classes with two classes each, as shown in Figure 2.2 which

displays different representations of the considered model. Figure 2.2a shows the different classes

of the model, whereas Figure 2.2b shows the considered super classes. Note that a different hier-

archy of super classes can be chosen by grouping different classes. Figure 2.2c shows the whole

mixture. The obtained results are reported in Table 2.1 where we show the real and estimated

parameters. The maximum detected percent error of relative change between real and estimated

parameters among all the set of parameters is 1.06% which reflects a good estimation. Thus, the

estimated histogram and the real one are indistinguishable. Our algorithm is shown to perform

well for one dimensional data.

Table 2.1: Real and estimated parameters in the case of a one-dimensional dataset generated from 4-components
mixture model.

j i π j w ji �ϕ ji(1) �ϕ ji(2) π̂ j ŵ ji �̂ϕ ji(1) �̂ϕ ji(2)
1 1 0.5 0.3 50 50 0.4997 0.2993 50.5311 50.4579

2 0.2 3 23 0.2004 2.9847 22.8295
2 1 0.5 0.2 85 30 0.5003 0.2000 85.0137 29.9959

2 0.3 20 50 0.3003 20.0125 49.9427

We also performed a set of experiments on multi-dimensional generated data. We generated

two different 2-dimensional datasets (see Figures 2.3 and 2.4). In the first experiment associated

with Figure 2.3, we generate three super classes, the first one groups two classes, and the others

2The inverted Beta is the one-dimensional special case of the inverted Dirichlet obtained when D = 1.
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Figure 2.2: Different representations of the model in Table 2.1.

Table 2.2: Real and estimated parameters in the case of a two-dimensional dataset generated from 4-components
mixture model.

j i π j w ji �ϕ ji(1) �ϕ ji(2) �ϕ ji(3) π̂ j ŵ ji �̂ϕ ji(1) �̂ϕ ji(2) �̂ϕ ji(3)
1 1 0.4 0.2 5 53 50 0.4000 0.2003 4.9778 52.6717 49.7877

2 0.2 10 30 50 0.1997 9.9563 29.8248 49.7256
2 1 0.3 0.3 32 23 40 0.3000 0.3000 32.2221 23.1393 40.2735
3 1 0.3 0.3 80 10 60 0.3000 0.3000 80.3250 10.0611 60.3193

Table 2.3: Real and estimated parameters in the case of a two-dimensional dataset generated from 6-components
mixture model.

j i π j w ji �ϕ ji(1) �ϕ ji(2) �ϕ ji(3) π̂ j ŵ ji �̂ϕ ji(1) �̂ϕ ji(2) �̂ϕ ji(3)
1 1 0.3 0.15 18 60 60 0.2997 0.1500 18.1848 60.6012 60.6201

2 0.15 18 20 34 0.1497 17.8870 19.9435 33.9275
2 1 0.7 0.10 53 9 39 0.7003 0.1001 52.5474 8.9642 38.6597

2 0.20 50 50 50 0.2007 49.4120 49.4034 49.4537
3 0.20 5 40 23 0.1997 5.0077 40.1441 23.0689
4 0.20 20 8 40 0.1998 20.0005 7.9958 39.9639
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(a) Perspective 1 (b) Perspective 2

(c) Perspective 3 (d) Perspective 4

Figure 2.3: Different perspectives for the representation of the model in Table 2.2.

have one class each. The results are reported in Table 2.2. In the second experiment associated with

Figure 2.4, we generate two super classes where the first one groups two classes and the second

one groups four classes. The results are reported in Table 2.3. The maximum detected percent error

of relative change between real and estimated parameters among all the set of parameters for the

two experiments are respectively 0.69% and 1.19% which reflects a good estimation as well, as we

have considered overlapping densities. Naturally the more the densities get overlapped the harder

it is to have good estimates of their parameters. It is needless to say that the representation of the

estimated probability mixtures and the real probability mixtures are also indistinguishable. Finally,

we considered 6-dimensional data where we generated 2 super classes, one having 2 classes and the

other having one single class. The results are reported in Tables 2.4 and 2.5 where we respectively

report on real and estimated parameters. The maximum detected percent error of relative change

between real and estimated parameters among all the set of parameters is 0.44% which shows again

that our algorithm performs well when dealing with multi-dimensional data.
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(a) Perspective 1 (b) Perspective 2

(c) Perspective 3 (d) Perspective 4

(e) Perspective 5

Figure 2.4: Different perspectives for the representation of the model in Table 2.3.

23



Table 2.4: Real parameters in the case of a 6-dimensional dataset generated from 3-components mixture model.

j i π j w ji �ϕ ji(1) �ϕ ji(2) �ϕ ji(3) �ϕ ji(4) �ϕ ji(5) �ϕ ji(6) �ϕ ji(7)
1 1 0.8 0.4 50 39 34 22 56 3 41

2 0.4 18 19 29 39 49 32 95
2 1 0.2 0.2 43 56 90 93 94 95 32

Table 2.5: Estimated parameters in the case of a 6-dimensional dataset generated from 3-components mixture model.

j i π̂ j ŵ ji �̂ϕ ji(1) �̂ϕ ji(2) �̂ϕ ji(3) �̂ϕ ji(4) �̂ϕ ji(5) �̂ϕ ji(6) �̂ϕ ji(7)
1 1 0.8000 0.4000 49.9276 38.9625 33.9762 21.9628 55.9363 2.9990 40.9625

2 0.4000 18.0368 18.9945 29.0011 39.0077 49.0462 32.0068 95.0483
2 1 0.2000 0.2000 43.1571 56.2434 90.3963 93.2768 94.2857 95.2934 32.1198

The Estimator Robustness

The purpose of this experiment is to empirically evaluate a breakdown point which gives an idea

about the robustness of our estimator and how our algorithm gets affected by outliers, as in the

previous subsections we used perfect data that are generated completely from inverted Dirichlet

distributions. The breakdown point is the smallest fraction of data contamination needed to cause

an arbitrarily large change in the estimate [72, 73]. We propose to generate two super classes one

with two classes and the other with one single class as shown in Table 2.6, then we contaminate

the data with a certain percentage of outliers, that do not follow any of the previous used distribu-

tions. The outliers can be generated from any other distribution (e.g., normal distribution, uniform

distribution, etc.). We model the outliers by a normal distribution with mean μ = 0 and a standard

deviation σ = 4, as the histogram is located between 0 and 4. We substitute the perfect generated

data by the outliers according to the contamination level using a uniform distribution. Naturally the

weight can be significantly affected, but we focus more on the change of the distributions shape.

The obtained results are reported in Figure 2.5 where we plot the different histograms including

Table 2.6: Real parameters in the case of a one-dimensional dataset generated from 3-components mixture model.

j i π j w ji �ϕ ji(1) �ϕ ji(2)
1 1 0.8 0.4 8 10

2 0.4 90 40
2 1 0.2 0.2 10 60

the real one and the estimated histograms of the data contaminated with different percentage of

outliers. As shown in the previous subsections when using perfect data with 0% contamination the

real and estimated histograms are indistinguishable. As we increase the contamination level the

shape of the histograms starts to differ from the real one. The shape does not change significantly
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Figure 2.5: Real and estimated histograms using different data contamination levels (%).

until a certain level of contamination, and then it naturally starts to deviate from the original shape.

The aspect of the histogram with a very high contamination achieving 50% remains acceptable as

we still can distinguish the three clusters with their respective shapes. These results show that our

estimator is robust when affected by outliers. Nevertheless, the choice and nature of outliers them-

selves can affect significantly these results. For instance, if we use outliers whose values overpass

certain boundaries (extreme outliers), these results might be altered. An eventual solution to face

the outliers problem is to model the outliers themselves within a super class grouping eventual

outliers as done, for example, in [74].

Classic Model vs Multi-Clusters Model

When we encounter a clustering problem, one important aspect is to precise the number of classes

representing the data. Nevertheless, in many applications, the number of classes is already known

(e.g. binary classification: an image contains an object or not). The classical approach when we

have a fixed number of classes, is to model the data by a mixture whose number of components is

equal to the number of classes. However, when using the classical approach, the modeling process

can face two major problems. The first problem is that one single density component does not

necessarily fit the data class. Even though we use flexible probability densities in terms of shape

and symmetry or asymmetry, in many cases the data points of certain classes cannot be modeled

by a single mixture component. The second major problem is the overlapping between the classes
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when using a single distribution to model each class. Consider for instance that the class elements

of a given class X are distributed between the class elements of another class Y , an adequate data

modeling would be unlikely well done when using a single density component to represent each

class. In this subsection, we compare the classic data modeling approach with our proposed one

in terms of data fitting and adequate representations. Let us reconsider the model in Table 2.1 dis-

played in Figure 2.2. We generate a set of points according to these distributions, and we propose to

use them to estimate their related distributions’ parameters assuming that they are generated from

inverted Dirichlet distributions. Knowing that we have two super classes, thus two categories, the

classical approach consists of representing every super class, with one single density. The second

approach which is ours, is to represent every super class with a set of classes or clusters. We report

on the resulted histograms in Figures 2.6 and 2.7.

We established several experiments using different numbers of clusters. The exact number of

model clusters which is four, is already experimented and it gives very good results as it gener-

ates histograms that are indistinguishable from the real ones. When using two clusters only, the

results do not reflect the real histograms and the algorithm fails to find the real shape of the mix-

ture, which is expected as we have two super classes whose parts are within each others. So, the

classical approach fails to find out the real shape of the histograms. When using three clusters,

we have better results as we approach the real shape of the super class 2. When using four clus-

ters and more, the algorithm succeeds to find the real shape of the super classes and the mixture.

It is noteworthy that we assume the presence of knowledge about how to group the clusters into

super classes. When using ten clusters, we distinguished the classes in Figure 2.7d (for easiness

of presentation, the classes belonging to the super class 2 were plotted in dash lines). Increasing

the number of classes within a super class does not affect the shape of the super class, as we just

distinguish more between the different classes at a lower level, but this does not affect their mem-

bership to their respective super classes. This observation will be discussed in details in subsection

2.5.2. As for now, It is clear that the classic model gives an inadequate representation, as the two

super classes overlap and the classic approach fails to distinguish them. When considering our al-

gorithm, the results are much closer to reality, since we clearly overcome the overlapping problem.

2.5.2 Real Data

In this section we investigate the performance of our algorithm using real-life data extracted when

tackling the challenging problem of object modeling and recognition. The first goal of this appli-

cation is to analyze the benefits of our approach as compared to the commonly used method where

every object class is represented by one single cluster, thus one single probability density. We also
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(b) 2 super classes formed by 2 classes

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

X

P
(X

)

(c) Mixture formed by 2 classes
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(d) 3 classes labeled in ji
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(e) 2 super classes formed by 3 classes
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(f) Mixture formed by 3 classes
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(g) 5 classes labeled in ji
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(h) 2 super classes formed by 5 classes
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(i) Mixture formed by 5 classes

Figure 2.6: 1. Different generated models and their representations as a function of the number of used classes

discuss how to attribute different semantic meanings to the clusters according to a chosen hierar-

chy during the training phase. It is noteworthy that the proposed hierarchical grouping approach is

simple and do not need extra computational time when changing the hierarchical model. We have

considered the publicly available ETH-80 3 dataset which is composed of 3280 images grouped

into eight object classes having ten unique objects each, as it is shown in Figure 2.8. Each object

has 41 perspectives. Figure 2.9 shows the different perspectives of the object ‘Dog’ located on the

extreme left of the ‘Dog’ class in Figure 2.8. We propose to apply our algorithm on this database

which is interesting in terms of hierarchical classification as the objects classes can be grouped

3http://www.d2.mpi-inf.mpg.de/Datasets/ETH80
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(b) 2 super classes formed by 6 classes
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(d) 10 classes labeled in ji
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classes
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(f) Mixture formed by 10 classes

Figure 2.7: 2. Different generated models and their representations as a function of the number of used classes

into different hierarchical levels. Indeed, different super classes can be considered such as objects

(Car, Cup) vs non objects, or animals vs fruits vs objects or fruits vs non fruits, etc. The features

of each image have been extracted using the local Histogram of Oriented Gradient (HOG) descrip-

tor proposed in [75]. The HOG descriptor is efficient in terms of detecting local characteristics

of images and object detection. It generates descriptors having positive values which justifies the

use of the inverted Dirichlet distribution. In our experiment each image was represented by 81-

dimensional feature vector. We considered a 10-fold cross validation [76] for the evaluation of our

algorithm. The training data are used to learn the mixture model at the bottom level, and to build

the hierarchy according to the model that we shall discuss in the next subsection. The testing data

are used to validate the statistical model and analyze its capability to recognize different testing

objects and affect the unseen data to their related clusters properly. The results are illustrated in

’Results’ subsection.

Clusters Assignment and Semantic Grouping of Data

Our used approach may generate many clusters that need to be assigned to a super class and a

label. In order to attribute well a cluster to a specific object class, we label each cluster according
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Figure 2.8: 10 objects in 8 classes.

to the images that have been grouped into it. Indeed, we attribute each cluster k to the super class

j whose elements are the most present in cluster k such that:

labelclusterk = argmax
j

number o f elements o f super class j in clusterk

number o f elements in clusterk
(2.36)

The training data labels serve to specify the membership of each element present in a given cluster

to the appropriate super class. Hence, the labeled training data can be seen as the user’s semantic

model of object classes serving to reduce the distance between the system representation and the

user comprehension e.g. a user can specify a set of training data labeled as ‘Tomato’ and ‘Apple’

(binary model), then perform a clustering of the data into ∑2
j=1 Kj clusters, say 10 clusters. The

framework would label each cluster model as being a representation of ‘Tomato’ or ‘Apple’ accord-

ing to the training labels and using Eq. 2.36. Indeed, one major aspect of this work is the semantic

grouping of clusters as the proposed approach can fit any hierarchical model using a bottom-top

methodology. The proposed method can change the hierarchy model at anytime with negligible
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Figure 2.9: 41 different views of the object ‘Dog’.

computational costs as it does not need to recompute the different density parameters once we have

them (see subsection 2.4.1). Indeed, the used labeled data represent a key component to setup the

hierarchy, as we can assign a semantic meaning to system level clusters using Eq. 2.36. We adopt

a bottom-top approach, where we estimate the densities parameters and their related weights at the

lowest hierarchy level, then we construct the super classes by grouping these densities into a sort

of sub mixtures representing the object classes or the semantic that we want to consider. In the

following, we discuss three possible hierarchical models for our application using ETH-80 dataset.

It is important to bear in mind that other models may be considered.

• Class to object: As shown in Figure 2.10 the super class is considered to be an object

class e.g. ‘Tomato’, ‘Pear’ ,‘Cow’, etc. Thus, M = 8 and each super class is composed

of Kj clusters that are assigned according to Eq.2.36. When we consider the model from

this perspective, we consider that each object is formed by a set of probability densities or
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Figure 2.10: 8 objects hierarchical model of ETH-80.

a probabilistic mixture. The fact that in ETH-80 every object class is formed by 10 unique

objects, each having 41 views, makes this choice practical as the diversity of visual features

within a given object class is considerable. Semantically we can explain such a choice by

the fact that an object can be formed by different low level features that can describe that

class. e.g. an ‘Apple’ may have different colors, different shapes, different types, etc., so the

diversity might be important in terms of system features, but expresses the same meaning to

a human being.

• Class to fruits vs non fruits: Figure 2.11 considers a model of a higher level in the ontology

where the super classes are the fruits and non fruits. In this case M = 2 and Kj is also

concluded from Eq.2.36. Indeed, we simply change the different clusters grouping, so we

keep the same system clustering at the lowest level but change the user semantic perspective

to the data. We just group the clusters according to the given training labeled vector, which

in this case composed of binary valued elements telling if an image is a fruit or not.

• Class to object to fruits vs non fruit When we merge the model of Figure 2.11 with the

model of Figure 2.10, we can form a model where three levels are considered (see Figure

2.12). The first level is the system level, where the clusters are generated using the system
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Figure 2.11: Fruits vs non fruits hierarchical model of ETH-80.

lowest features that do not necessarily have a comprehensible human semantic. The second

level is a human semantic level where we construct the objects, and the third level is where

we group the objects into a final constructed level which is fruits vs non fruits. It is notewor-

thy that we do not need any extra calculation in order to consider this hierarchy. This is a

very interesting way to construct the model, as we can construct two human comprehensible

semantic levels, and we can easily move from the system representation of the features to

the human representation.

Results

We report on the accuracy of object classes categorization in Figure 2.13, and the classification

of the two super classes fruits and non fruits in Figure 2.14. Recall that we used a bottom-top

methodology to establish the classification using the model in Figure 2.12 mentioned previously.

Both figures show clearly that the best result is obtained when considering 90 clusters. The ob-

jects classification accuracy starts with a very poor performance that equals 44.27% when using a

number of clusters equal to the number of object classes, and ends up to be 71.80% when using 90

clusters. However, the accuracy of the fruits vs non fruits already starts with a respectable value

that equals 87.87% when using a number of clusters equal to the number of objects classes ( 8 clus-

ters) and it ends up to have a close accuracy value equal to 96.19% when using 90 clusters. It is

needless to say that using two clusters only to model fruits vs non fruits gives very bad results (e.g.

the accuracy goes under 40%), so using 8 clusters at the beginning of the experiment is already

considered as a practice to our proposed approach.To better interpret those results and to explain

why the difference of accuracy between the different models is huge for objects but not as much

important when dealing with the fruits vs non fruits model we report on the detailed classification

results using different numbers of total used clusters reported in Tables 2.7, 2.8, 2.9, 2.10, 2.11 and
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Figure 2.12: 3 levels hierarchical model of ETH-80.

2.12. For the easiness of lecture, we wiped all the misclassified percentage values that are under

10%, we considered two decimal points for the percentages, and colored the good classified cells

on the confusion matrices diagonals with a blue color. When we look at the object classification

accuracy we notice that using a number of clusters equal to the number of object classes gives

poor results as we have 44.27% accuracy. The corresponding confusion matrix in Table 2.7 clearly

shows that 8 clusters are unable to adequately model the data as the results are confusing and the

model cannot differentiate between different objects whose features are certainly overlapping in

the features space when considering that few number of clusters. A small increase in the number of

the used clusters to 15 gives better results achieving 55.39 %. The corresponding confusing matrix

in Table 2.8 informs us that some objects starts to be distinguished from the other objects and form
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Figure 2.13: Classification Accuracy of objects classes in % as a function of the total used number of clusters.

their own clusters like the ‘Cow’ class .We notice that the objects that share some common visual

characteristics are grouped together. For instance, we notice that most of the ‘Cow’ class images

goes whether to the ‘Dog’ class or the ‘Horse’ class. The same behavior happens for the ‘Tomato’

and ‘Apple’ classes. This explains why the accuracy of the fruits vs non fruits model is high at

the beginning when we use 8 clusters. Indeed, if a ‘Tomato’ object is considered as an ‘Apple’, it

remains within the fruits true positives and is not considered as a wrong classification for the super

class fruits. A high increase in the number of clusters at the end does not have much effect on the

classification results as the used features are not discriminative anymore. Hence, the difference in

accuracy when using 20 clusters and when considering 60 clusters is almost 8% and the difference

between using 80 clusters and 90 clusters is almost 1.5% only. This is expected as the algorithm

starts to deal with hard cases where the dissimilarities are not detected anymore between objects

and it fails to construct more distinguishable clusters. Nevertheless, looking at the confusion ma-

trix in Table 2.12 where we considered 90 clusters, shows clearly that the algorithm distinguishes

well between animals, objects and fruits, and considerably outperforms the classical model.

2.5.3 Discussion

It is clear that the obtained results when using multi clusters to represent an object class outper-

forms the results when modeling each object class by one single cluster. The more we have in-

creased the number of clusters the more we have obtained better results as the overlapping features
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Figure 2.14: Classification accuracy of Fruits vs Non Fruits classes in % as a function of the total used number of
clusters.

Table 2.7: 8 clusters confusion matrix.

Apple Tomato Pear Cow Dog Horse Car Cup
Apple 49.51% 20.24% - - - - - 13.90%

Tomato 42.19% 33.41% - - 11.21% - - -
Pear 16.34% 11.95% 30.97% - 12.68% 27.80% - -
Cow - - - 0% 50% 37.56% 11.46% -
Dog - - - - 61.70% 31.46% - -

Horse - - - - 40.48% 49.75% - -
Car - - - - 10.73% - 78.04% -
Cup 10.97% - - - - - 30.48% 50.73%

Table 2.8: 15 clusters confusion matrix.

Apple Tomato Pear Cow Dog Horse Car Cup
Apple 57.07% 35.36% - - - - - -
Tomato 10.73% 81.95% - - - - - -

Pear - 10% 64.87% - 11.46% - - -
Cow - - - 8.29% 36.58% 30.48% 19.02% -
Dog - - - - 57.07% 21.70% - -

Horse - - - 10.24% 37.07% 36.09% - -
Car - - - - - - 85.85% -
Cup 13.17% - - - - - 26.09% 51.95%
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Table 2.9: 20 clusters confusion matrix.

Apple Tomato Pear Cow Dog Horse Car Cup
Apple 67.80% 25.36% - - - - - -

Tomato 10.73% 86.34% - - - - - -
Pear - - 70% - 10.97% - - -
Cow - - - 23.65% 34.14% 31.21% - -
Dog - - - 16.34% 51.70% 25.60% - -

Horse - - - 13.90% 35.12% 38.29% - -
Car - - - - - - 78.78% -
Cup - - - - - - 16.82% 66.82%

Table 2.10: 60 clusters confusion matrix.

Apple Tomato Pear Cow Dog Horse Car Cup
Apple 77.56% 19.02% - - - - - -

Tomato 11.70% 83.17% - - - - - -
Pear - - 86.34% - - - - -
Cow - - - 44.39% 26.09% 19.02% - -
Dog - - - 24.63% 47.80% 18.04% - -

Horse - - - 27.31% 28.29% 35.60% - -
Car - - - - - - 87.56% -
Cup - - - - - - - 85.36%

Table 2.11: 80 clusters confusion matrix.

Apple Tomato Pear Cow Dog Horse Car Cup
Apple 74.63% 20.73% - - - - - -

Tomato - 87.31% - - - - - -
Pear - - 84.87% - - - - -
Cow - - - 41.95% 25.85% 24.87% - -
Dog - - - 22.68% 49.51% 21.95% - -

Horse - - - 27.31% 25.60% 41.46% - -
Car - - - - - - 92.68% -
Cup - - - - - - - 91.46%
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Table 2.12: 90 clusters confusion matrix.

Apple Tomato Pear Cow Dog Horse Car Cup
Apple 78.53% 18.53% - - - - - -

Tomato - 85.36% - - - - - -
Pear - - 84.87% - - - - -
Cow - - - 43.90% 24.39% 27.56% - -
Dog - - - 24.63% 48.04% 22.92% - -

Horse - - - 25.60% 24.14% 46.58% - -
Car - - - - - - 93.41% -
Cup - - - - - - - 93.65%

vectors start to be assigned to different clusters and the visually similar objects are more distin-

guished. We notice that at the beginning, when increasing the number of modeled clusters, the

classification accuracy is improved tremendously and then it starts to stabilize when the maximum

possible number of modeled clusters is achieved as the algorithm finds more difficulties to distin-

guish the features differentiating certain images, and it ends up by achieving a maximum possible

number of clusters that can represent the data. One possible way to improve these results is to per-

form a feature selection algorithm so it can discard the visual similarities between different objects

and focus on the discriminating features at the lowest level of the hierarchy. Still, our proposed

approach outperforms the classic one. One interesting point as well is that the hierarchical model

can be changed easily once we have the clusters representing the lowest level of the hierarchy.

This is useful when we have a dynamic hierarchy based on the user desire. Consider for example

search engines, or recommendation systems that have to represent a given hierarchy according to

the user’s needs who might change his/her mind during time. Also one single computation of the

bottom representation of the data can serve many users according to their request in a hierarchical

fashion. The user can build up on the fly any model that is computed in a costless effort in terms

of resources and time. Note that for any hierarchy we just estimate the parameters of ∑M
j=1 Kj

densities and it is only the weights of the higher levels that change according to the ontology or

hierarchical model. This is very practical as this approach helps to reduce the distance between

the systems level features and the human semantic and understanding. The system level features

similarities are not necessarily the same of what a user might have in mind or comprehend. Thus,

the first generation of the model at its bottom level can be made off line, and then the representation

of the data is done according the users needs with costless computational time.
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2.6 Summary

We proposed a flexible hierarchical model that can be altered on the fly according to a given

ontology. We have used the inverted Dirichlet distribution to develop the model, still, it remains

general enough to integrate any chosen probability density function. The merit of the approach that

we have proposed is shown through the application of our algorithm on synthetic and real data. In

the next chapter, we will introduce a building methodology to the mixture model and propose a

model update strategy when new data are introduced to the system on line.
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Chapter 3
A Statistical Framework for Online Learning

Using Adjustable Model Selection Criteria

3.1 Introduction

One of the most important success keys to design a system that is dedicated to serve human beings,

is to ensure that the system’s responses are approaching the satisfaction of the real needs and in-

tentions of its users. Designing such systems is a challenging task especially when their responses

should change according to the users interactions that differ from one user to another, which dis-

cards the option of designing predefined/deterministic systems’ behaviors [77]. A typical example

of those systems are the search engines and object recognition applications where a user is looking

for an object of interest among a huge amount of data [78]. Naturally a given property of data/ob-

ject can be perceived by a user as being “interesting" while it could be “meaningless" for another

user, also, an object of interest can be a target for two different users who have different behavior

patterns, which should lead the system to close results using different interactions patterns. During

the recent years, and with the tremendous evolution of multimedia devices, these users interaction-

s/behaviors can generate a huge amount of data e.g. via internet through recommendation systems

and users feedbacks [79, 80]. Many researchers considered model-based approaches to analyze

users-systems interactions, such as in [80, 81]. Indeed, this family of approaches has been used

extensively in classification and users feedbacks modeling, in order to feed inference engines that

are capable of generating knowledge which enables a given system to learn and model the users’

needs. Still, a semantic gap between the system representation of data, and the user mental rep-

resentation of the same data, is considerably affecting the quality of the responses of the systems

that are not usually aware of the users intentions when representing the data in the features’ space.

Adopting a model-based approach to solve this problem, we have concluded in chapter 2 that the
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system should not represent a given class via a single mixture mode but rather model it using

different components in a flexible hierarchical way. In this chapter we treat the problem of new

coming data and how it should be perceived by the system in order to be able to satisfy the users

needs. This issue is crucial as discussed in different research works (see, for example, [82, 83]).

Consider, for instance, that the system receives new coming data online that should update the

model at the system level without loosing the flexibility and the degree of dissimilarity/similarity

perceived by the users. Thus, the system should take an important decision whether new classes

should be created to represent the new coming data or not. In unsupervised learning, many model

selection criteria have been developed such as the minimum description length (MDL) [52] and

minimum message length (MML) [24] criteria. Also, the model selection problem was treated

through a nonparametric Bayesian technique namely the Dirichlet Process (DP) by assuming that

there is an infinite number of mixture components such as in [84]. Yet, the current use of these

approaches does not incorporate a semantic meaning to the mixture components in the selected

model that does not necessarily fit with a human comprehensible semantic or intentions. We pro-

pose in this chapter to develop an approach that integrates a perception parameter that helps the

system to take appropriate decisions to model data as intended. Indeed, the system should learn

how to model data according to a certain degree of similarity/dissimilarity tolerance. For example,

consider that we have a class representing red apples, and the new coming data are representing

tomatoes, should the system consider the red apples and tomatoes as being one single class, or

differ between them by creating a new class for the tomatoes. Naturally the decision (creating a

new class or not) depends on the application itself and the purposes of the users. In this chapter,

we propose a new methodology that can control how the system should perceive new coming data

over time. We propose a statistical framework based on the generalized inverted Dirichlet (GID)

distribution [85] which is the generalization of the inverted Dirichlet (ID) distribution that we have

considered in chapter 2. It is noteworthy to mention that the proposed framework can consider any

other distribution. However, we consider the GID distribution because of an interesting property

that enables the transformation of its representation into a space where the features are indepen-

dent and follow each an inverted Beta distribution. We propose in this chapter an algorithm to

learn a mixture of GID, update it and create new components depending on the users perception.

We perform different simulations on synthetic and real data in order to validate our methodology.

The rest of this chapter is organized as follows; in section 3.2 we introduce the GID mixture model.

Then, we propose an estimation algorithm for its parameters by considering both batch and online

settings in section 3.3. In section 3.4 we define some model selection criteria for choosing the ad-

equate number of components of a GID mixture using an unsupervised approach. Then, in section

3.5 we introduce a new updating scheme for a growing mixture whose number of components can
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increase according to users perceptions, we define some dissimilarity/similarity metrics, and we

introduce the complete algorithm. We introduce our experimental results on synthetic and real data

in section 3.6, and we conclude this chapter in section 3.7.

3.2 Finite Generalized Inverted Dirichlet Mixture Model

Let us consider a set Y of N D-dimensional vectors, such that Y = (�Y1,�Y2, . . . ,�YN). Let M denote

the number of different components forming a flat mixture model [17, 86] at the system level.

We assume that Y is controlled by a mixture of GID distributions such that the vectors follow

a common probability density function p(�Yi|Θ) , where Θ is the set of its parameters. Let Z =

{�Z1,�Z2, . . . ,�ZN} denote the missing group indicator, where �Zi = (zi1,zi2, . . . ,ziM) is the label of
�Yi , such that zi j ∈ {0,1} , ∑M

j=1 zi j = 1 and zi j is equal to one if �Yi belongs to class j and zero,

otherwise. Then, the distribution of�Yi given the class label �Zi is :

p(�Yi|�Zi,Θ) =
M

∏
j=1

p(�Yi|θ j)
zi j (3.1)

with Θ = {θ1,θ2, . . . ,θM} and θ j is the set of parameters of the class j. In practice, we define

p(�Yi|Θ) which can be obtained by marginalizing the complete likelihood p(�Yi,�Zi|Θ) over the hid-

den variables. We define the prior distribution of �Zi as follows :

p(�Zi|�π) =
M

∏
j=1

πzi j
j (3.2)

where �π = (π1, . . . ,πM), π j > 0 and ∑M
j=1 π j = 1, then we have:

p(�Yi,�Zi|Θ,�π) = p(�Yi|�Zi,Θ)P(�Zi|�π) =
M

∏
j=1

(p(�Yi|θ j)π j)
zi j (3.3)

We proceed by the marginalization of Eq. 3.3 over the hidden variables, which gives us the mixture

for a given vector�Yi:

p(�Yi|Θ,�π) =
M

∑
j=1

p(�Yi|θ j)π j (3.4)

The GID was introduced by Lingappaiah [87] as follows:

p(�Yi|θ j) =
D

∏
l=1

Γ(α jl +β jl)

Γ(α jl)Γ(β jl)

Y
α jl−1
il

(1+∑l
k=1Yik)

γ jl
(3.5)
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By substituting Eq. 3.5 in Eq. 3.4, we obtain :

p(Y |Θ,�π) =
N

∏
i=1

( M

∑
j=1

π j

D

∏
l=1

Γ(α jl +β jl)

Γ(α jl)Γ(β jl)

Y
α jl−1
il

(1+∑l
k=1Yik)

γ jl

)
(3.6)

where Θ = (θ1,θ2, ...,θM), with θ j = {θ j1,θ j2, ...,θ jD}, where θ jl = (α jl,β jl), j = 1, ...,M,

l = 1, ...,D. We define γ jl such that γ jl = β jl +α jl −β j(l+1) for l = 1, . . . ,D with β j(D+1) = 0.

The purpose of this chapter is to establish a way to 1) estimate the GID mixture’s parameters,

2) update these parameters when new data are introduced, 3) select the optimal number of classes

to consider when new data are introduced, 4) consider an infinite possible number of classes when

we have a stream of new data that can form new classes that were not considered at the beginning.

These new classes can be set up by the user or the system.

3.3 Parameters Estimation

The posterior probabilities are a key factor to cluster data and classify it in mixture model-based

representations of data. Indeed maximizing the posterior probabilities is considered an intuitive

rule to assign data to its appropriate clusters. The GID has an interesting property enabling the

factorization of its posterior probability such that : (See Appendix B.1)

p( j|�Yi,Θ,�π) ∝ p j

D

∏
l=1

piBeta(Xil|θ jl) (3.7)

where we have set Xi1 = Yi1 and Xil =
Yil

1+∑l−1
k=1 Yik

for l > 1. piBeta(Xil|θ jl) is an inverted Beta

distribution with parameters θ jl = (α jl,β jl), l = 1, . . . ,D, such that :

piBeta(Xil|θ jl) =
Γ(α jl +β jl)

Γ(α jl)Γ(β jl)
X

α jl−1
il (1+Xil)

−(α jl+β jl) (3.8)

Thus, the clustering structure underlying Y is the same as the one underlying X = {�X1,�X2, ...

...,�Xi}, where �Xi = {Xi1,Xi2, ...,XiD} , i = 1, ...,N, governed by the following mixture model with

conditionally independent features

p(X |Θ,�π) =
N

∏
i=1

( M

∑
j=1

π j

D

∏
l=1

piBeta(Xil|θ jl)
)

(3.9)

The estimation of the parameters in Eq. 3.6 is then equivalent to the estimation of the param-

eters in Eq. 3.9.
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3.3.1 Log-Likelihood of the Complete Data

The model for the complete data < X ,Z > is given by :

pc(X ,Z, |Θ,�π) =
N

∏
i=1

M

∏
j=1

πzi j
j

D

∏
l=1

piBeta(Xil|θ jl)
zi j (3.10)

We maximize the log-likelihood instead of the likelihood. The log-likelihood is given by :

Φc(X ,Z|Θ,�π) = log(p(X ,Z|Θ,�π) =
N

∑
i=1

M

∑
j=1

D

∑
l=1

zi j(log(π j)+ log piBeta(�Xi|θ jl)) (3.11)

We define θ j as being the set of parameters describing the component j, such that θ j = {θ j1,θ j2, ...

...,θ jD}, θ jl = (α jl,β jl), j = 1, . . . ,M and l = 1, . . . ,D. In order to estimate the parameters we use

the EM algorithm [19] which proceeds iteratively in two steps; the expectation (E) step and the

maximization (M) step. In the E-step, we compute the conditional expectation of Φc(X ,Z, |Θ,�π)
which is reduced to the computation of the posterior probabilities (i.e. the probability that a vector
�Xi is assigned to a cluster j) :

p( j|�Xi,Θ,�π) =
π j p(�Xi|θ j)

M
∑
j=1

π j p(�Xi|θ j)

=
π j ∏D

l=1 piBeta(Xil|θ jl)
M
∑
j=1

π j ∏D
l=1 piBeta(Xil|θ jl)

(3.12)

Thus, we have :

log p(X |Θ,�π) =
N

∑
i=1

M

∑
j=1

D

∑
l=1

p( j|�Xi,Θ,�π)
(

log(π j)+ log piBeta(�Xi|θ jl)

)
(3.13)

Then, the conditional expectation of the complete-data log likelihood is given by :

Q(X ,Θ,�π,Λ) = log p(X |Θ,�π)+λ (1−
M

∑
j=1

π j) (3.14)

where λ is the Lagrange multiplier.
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3.3.2 The EM Algorithm

As we are trying to maximize Eq. 3.14, we proceed by finding the roots of its derivations with

respect to our parameters. The mixtures weights can be estimated straightforwardly as follows :

π j =
∑N

i=1 p( j|�Xi,Θ,�π)
N

(3.15)

Calculating the derivative with respect to α jl and β jl , j = 1, . . . ,M, l = 1, . . . ,D , we obtain :

∂Q(X ,Θ,�π,Λ)
∂α jl

=
N

∑
i=1

p( j|�Xi,Θ,�π)
∂ log piBeta(�Xi|θ jl)

∂α ji

=
N

∑
i=1

p( j|�Xi,Θ,�π)
(

Ψ(α jl +β jl)−Ψ(α jl)+ log(
Xil

1+Xil
)

)
(3.16)

∂Q(X ,Θ,�π,Λ)
∂β jl

=
N

∑
i=1

p( j|�Xi,Θ,�π)
∂ log piBeta(�Xi|θ jl)

∂β jl

=
N

∑
i=1

p( j|�Xi,Θ,�π)
(

Ψ(α jl +β jl)−Ψ(β jl)+ log(
1

1+Xil
)

)
(3.17)

where Ψ(.) is the digamma function. Looking at the previous two equations, it is clear that an

explicit form of the solution to estimate θ jl does not exist. Thus, we refer to Newton Raphson

method expressed as:

θ new
jl = θ old

jl −H−1
jl G jl , j = 1, . . . ,M, l = 1, . . . ,D (3.18)

where Hjl is the Hessian matrix associated with Q(X ,Θ,�π,Λ):

Hjl =

⎛
⎜⎝

∂ 2Q(X ,Θ,�π,Λ)
∂α2

jl

∂ 2Q(X ,Θ,�π,Λ)
∂α jl∂β jl

∂ 2Q(X ,Θ,�π,Λ)
∂α jl∂β jl

∂ 2Q(X ,Θ,�π,Λ)
∂β 2

jl

⎞
⎟⎠ (3.19)

and G ji is the first derivatives vector:

G jl = (
∂Q(X ,Θ,�π,Λ)

∂α jl
,
∂Q(X ,Θ,�π,Λ)

∂β jl
) (3.20)
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To calculate the Hessian of Q(X ,Θ,�π,Λ) we have to compute the second and mixed derivatives:

∂ 2Q(X ,Θ,�π,Λ)
∂α2

jl
=

N

∑
i=1

p( j|�Xi,Θ,�π)
(

Ψ′(α jl +β jl)−Ψ′(α jl)

)
(3.21)

∂ 2Q(X ,Θ,�π,Λ)
∂β 2

jl
=

N

∑
i=1

p( j|�Xi,Θ,�π)
(

Ψ′(α jl +β jl)−Ψ′(β jl)

)
(3.22)

∂ 2Q(X ,Θ,�π,Λ)
∂α jl∂β jl

=
N

∑
i=1

p( j|�Xi,Θ,�π)
(

Ψ′(α jl +β jl)

)
(3.23)

where Ψ′(.) is the trigamma function.

3.3.3 Online Estimation

Establishing an algorithm for online learning is important in many real life applications [88, 89].

For learning online we consider a factorized GID mixture, as expressed in Eq. 3.24. We assume

in this section that the number of components M composing the mixture remains the same during

time, which means that the coming vectors cannot form new classes and should be affected to the

classes already modeled. Naturally the parameters of those classes should be updated accordingly.

We assume that at a given time t we have a set a dataset X = {�X1,�X2, . . . ,�XN} of N feature vectors

which is represented by M-components mixture of GID distributions:

p(X |Θ(t)
N(t) ,�π

(t)
N(t)) =

N

∏
i=1

( M

∑
j=1

π(t)

N(t)
j

D

∏
l=1

piBeta(Xil|θ (t)

N(t)
jl

)
)

(3.24)

with Θ(t)
N(t) = {θ (t)

N(t)
1
, . . . ,θ (t)

N(t)M
}, is the set of parameters such that θ (t)

N(t) j
= {θ (t)

N(t)
j1
, . . . ,θ (t)

N(t)
jl
} ,

j = 1...M , l = 1, . . . ,D. At time t + 1, a new data vector is introduced, and the model should be

updated accordingly. For the ease of notification, we let Θ(t) =Θ(t)
N(t) , θ (t)

1 = θ (t)
N(t)

1
and π(t)

j = π(t)
N(t) j

.

Naturally we have to keep the constraints 0 < π(t)
j ≤ 1 and ∑M

j=1 π(t)
j = 1. Considering this fact, we

propose to update the parameters as follows [88, 90]

π(t+1)
j =

exp(w( j)(t+1))

1+∑M−1
j=1 exp(w( j)(t+1))

, j = 1, . . . ,M−1

π(t+1)
M = 1−

M−1

∑
j=1

π(t+1)
j (3.25)
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such that,

w( j)(t+1) = w( j)(t) + γN(ẐN+1 j −π(t)
j ) (3.26)

w( j) is considered to ensure the unity of mixing proportion π j by introducing the logit transform

w( j) = log( π j
πM

). ẐN+1 j is the posterior probability of the new coming vector �XN+1 given the set of

parameters Θ(t):

ẐN+1 j =
π(t)

j p(�XN+1|θ (t)
j )

∑M
j=1 π(t)

j p(�XN+1|θ (t)
j )

(3.27)

γN is a sequence of positive number that decreases to zero such that ∑ |γn|=∞ and ∑ |γn|2 <∞ [90].

In our case, we have chosen γN = 1
N+1 and the parameters {θ jl} are updated as follows :

θ (t+1)
jl = θ (t)

jl +
ẐN+1 j

N +1
∂ log piBeta(�XN+1,�ZN+1|θ jl)

∂θ jl
(3.28)

which gives us :

(
α(t+1)

jl

β (t+1)
jl

)
=

(
α(t)

jl

β (t)
jl

)
+

ẐN+1 j

N +1

⎛
⎝Ψ(α jl +β jl)−Ψ(α jl)+ log(

X(N+1)l
1+X(N+1)l

)

Ψ(α jl +β jl)−Ψ(β jl)+ log( 1
1+X(N+1)l

)

⎞
⎠ (3.29)

3.4 Model Selection

When modeling data using a finite mixture, the model selection process is considered as a crucial

phase to select the adequate number of components forming the mixture in terms of best represen-

tation for data. Model selection in the case of mixtures is mainly based on the evaluation of some

criteria that would specify the“best" model that should be selected. As we have discussed before,

we aim at integrating a perception parameter that helps the system to better represent the data in

terms of reducing the gap between the human being understandable level and the data represen-

tation at the system level. To do so, we propose to use system level criteria and users perception

criteria ( that we shall develop in the next sections), in the same model. As for the system crit-

era, we consider five criteria namely minimum message length (MML) [24], Akaike information

criterion (AIC) [25], minimum description length (MDL) [26], mixture MDL (MMDL) [27], and

LEC [17]. The "best" model that should be selected would be the model minimizing those criteria.

The message length is given by [24] :

MML(X ,Θ,M) =− log(h(Θ))+
1
2

log(|F(Θ)|)+ Np

2
(1+ log(

1
12

))− log(p(X |Θ,�π)) (3.30)
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where h(Θ) is the prior probability, p(X |Θ) is the likelihood, F(Θ) is the expected Fisher infor-

mation matrix which is approximated by the complete-data Fisher information matrix, |F(Θ)| is

its determinant, and Np is the number of the estimated parameters which is equal to M(2D+1)−1

in the case of the GID mixture model. The LEC is given by [17]:

LEC(X ,Θ,M) =− log(h(Θ))+
1
2

log(|F(Θ)|)− Np

2
log(2π)− log(p(X |Θ,�π)) (3.31)

The MMDL is given by [27]:

MMDL(X ,Θ,M) =− log(p(X |Θ,�π))+
Np

2
log(N)+

c
2

M

∑
j=1

log((π j)) (3.32)

where c = 2D+ 1 is the number of parameters describing each component. The MDL is given

by [26]:

MDL(X ,Θ,M) =− log(p(X |Θ,�π))+
Np

2
log(N) (3.33)

The AIC is given by [25]:

AIC(X ,Θ,M) =− log(p(X |Θ,�π))+
Np

2
(3.34)

To find the explicit expression of the MML and LEC criteria in the case of the GID mixture model,

we use the same approach as in [91], so we can show that :

log(h(Θ)) =
M−1

∑
j=1

log( j)−10MD−2MD log(2D)+M
2D

∑
j=1

log( j) (3.35)

and

log(F |Θ|) = (M−1) log(N)−
M

∑
j=1

log(π j)+2D
M

∑
j=1

log(n j)

+
M

∑
j=1

D

∑
l=1

log
(∣∣∣∣Ψ′(α jl)Ψ′(β jl)−Ψ′(α jl +β jl)

(
Ψ′(α jl)+Ψ′(β jl)

)∣∣∣∣
)

(3.36)

3.5 A Novel Online Learning Approach for Growing Mixture

Models

In this section we present a novel method to learn a GID mixture whose number of components

can increase over time. We propose to build our framework using the EM algorithm, a selection
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criterion namely the MML [24], and probabilistic metrics such as the symmetric Kullback-Leibler

divergence distance [92–94]. We consider that at time t we have a GID mixture model, and at time

t+1 a set of new data arrives at once leading to the update of the model accordingly. In this section

we consider that we have a set of arriving data and we propose to update the model using the whole

set, as it has been shown in [95, 96] that it is better to consider multiple observations per update

in order to reduce noise and have better parameters estimates that reflect a good representation

of the data. Mathematically speaking, if we suppose that at time t we have a dataset X
(t)
N(t) =

{�X1,�X2, . . . ,�XN(t)} following a GID mixture model, with parameters (Θ(t)
N(t) ,�π

(t)
N(t)). At time (t+1) a

new dataset X
(t+1)

L(t+1) = {�XN(t)+1,
�XN(t)+2, . . . ,

�XN(t)+L(t+1)} arrives and the system should update the

parameters Θ(t)
N(t) accordingly. The whole dataset at time (t +1) becomes :

X
(t+1)

N(t+1) = X
(t+1)

N(t)+L(t+1) = X
(t)

N(t) ∪X
(t+1)

L(t+1) (3.37)

Here we assume three scenarios when a new set of data arrives:

• The new coming data is totally formed by the already modeled classes, so the problem is

reduced to an update problem as discussed in the previous section.

• The new coming data is composed from ancient classes and new non modeled ones, so the

parameters should be updated accordingly by updating the ancient classes and forming the

new classes.

• The new coming data is totally composed from new classes, so the model should add the

new classes to the ancient ones and update the model accordingly.

When designing our framework we should consider and handle these three cases. So, if we recon-

sider our mathematical model, we suppose that at time t we have a dataset X
(t)

N(t) composed of N(t)

vectors that follow the factorized distribution of a GID mixture composed of M(t)
N(t) components

such that:

p(X (t)
N(t) |Θ(t)

N(t) ,�π
(t)
N(t)) =

N(t)

∏
i=1

(M(t)

N(t)

∑
j=1

π(t)
N(t) j

D

∏
l=1

piBeta(Xil|θ (t)
N(t)

jl
)

)
(3.38)

At time (t + 1) a new dataset X
(t+1)
L(t+1) composed of L(t+1) vectors is introduced to the system.

Note that L(t+1) can change over time. The new size of the whole data is N(t+1) = N(t) +L(t+1).

One important assumption in our work is that we suppose that the new data X
(t+1)

L(t+1) will contain

at minimum one single class, and at maximum (M(t+1)
L(t+1))max classes. (M(t+1)

L(t+1))max can be defined

according to the size of the new dataset L(t+1), and the membership frequency of the coming data.
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Thus we have,

p(X (t+1)
L(t+1) |Θ(t+1)

L(t+1) ,�π
(t+1)
L(t+1) ) =

N(t)+L(t+1)

∏
n=N(t)+1

(M(t+1)

L(t+1)

∑
j=1

(π(t+1)
L(t+1) )

j

D

∏
l=1

piBeta(Xil|θ (t+1)
L(t+1)

jl
)

)
(3.39)

such that :

(Θ(t+1)
L(t+1) ,M

(t+1)
L(t+1)) ∈

{(
(Θ(t+1)

L(t+1))
1
,1
)
, . . . ,

(
(Θ(t+1)

L(t+1))
(M(t+1)

L(t+1) )max
,(M(t+1)

L(t+1))max
)}

(3.40)

It is noteworthy to mention that the notation we use enables the model to consider different sce-

narios and makes it considerably flexible. For instance the maximum number of components

(M(t+1)
L(t+1))max that can represent a given dataset can change over time for the same size L. This

enables our model to be parametrized according to the factors we want to consider (e.g. frequency

of arrival of data, learning strategy, previous modeling experience, etc). As we suppose that the

new coming data can be composed of a number of classes ranging from 1 to (M(t+1)
L(t+1))max, we run

the algorithm (M(t+1)
L(t+1))max times, incrementing the number of components at each time, and we

end up by having (M(t+1)
L(t+1))max models for the new data. In order to consider the three cases that we

mentioned previously, we set a rule that determines how the system should perceive the similari-

ty/dissimilarity between the obtained M(t+1)
L(t+1) components of the new data and the M(t)

N(t) components

representing the old data. Let d denote a metric in the distributions space measuring the dissimi-

larity. If we denote S
(
(θ (t+1)

L(t+1) )i,(θ
(t)
N(t)) j

)
the degree of similarity between the component i of the

new data and the component j of the old data, it can be expressed as follows:

S
(
(θ (t+1)

L(t+1) )i,(θ
(t)
N(t)) j

)
=

Φs

(
d
(
(θ (t+1)

L(t+1) )i,(θ
(t)
N(t)) j

))

∑
M(t)

N(t)

j=1 Φs

(
d
(
(θ (t+1)

L(t+1) )i,(θ
(t)
N(t)) j

)) (3.41)

where Φs is the perceived similarity between two different components that should be inversely

proportional to their distance considering the metric d which means that Φs is monotonically de-

creasing in d.

We consider that when two sets of vectors are represented by “similar" distributions, they can

be considered to be generated from the same distribution. The decision that the system takes to

consider that two distributions are similar defines the way how the data are perceived. As we men-

tioned before, the purpose / nature / context of the application may have an important impact on

the system responses. Leaning on the feature space only to take decision about objects may lead
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to inappropriate responses that do not satisfy the user needs. In some applications, the differenti-

ation between very similar objects should take place, even if they are classified in the same class

in the feature space, and in some other applications, very dissimilar objects should be considered

as belonging to the same class of objects for a user. For each component modeled by (θ (t)
N(t)) j

we consider a saturation threshold (T (t)
N(t)) j

beyond which the similarity is not significant anymore.

(T (t)
N(t)) j

can be viewed as the maximum distance beyond which we discard the probability that a

given component can be similar to the component modeled by (θ (t)
N(t)) j. We propose to consider the

following estimation of T (t)
Nj

at a given time t :

(T (t)
N(t)) j

= d
((

(θ (t)
N(t)) j +σ (t)(θ (t)

N(t)) j
)
,(θ (t)

N(t)) j

)
; (3.42)

σ (t) can be seen as the parameter controlling how the system perceives the data. If σ (t) leads to

a high dissimilarity, the system will tend to perceive the new data as being similar to the old one.

On the other hand if σ (t) leads to a low dissimilarity, the system will consider the new data as a

candidate to form new classes. We propose to use the following function for Φs

Φs

(
d
(
(θ (t+1)

L(t+1) )i,(θ
(t)
N(t)) j

))
=

⎧⎪⎪⎨
⎪⎪⎩ e

−d

(
(θ (t+1)

L(t+1) )i,(θ
(t)

N(t) ) j

)
if d

(
(θ (t+1)

L(t+1) )i,(θ
(t)
N(t)) j

)
< (T (t)

N(t)) j

0 else.
(3.43)

and we define S as follows

S
(
(θ (t+1)

L(t+1) )i,(θ
(t)
N(t)) j

)
=

⎧⎨
⎩ Eq.3.41 if

{
∃ j|1 ≤ j ≤ M(t)

N(t) ,Φs

(
d
(
(θ (t+1)

L(t+1) )i,(θ
(t)
N(t)) j

))
	= 0

}
0, ∀ j else.

(3.44)

To decide which of the components forming the new data are already representing the old data by

the set of parameters (θ (t)
N(t)) j we use the following rule :

R(θ (t+1)
L(t+1) )i =

{
j|1 ≤ j ≤ M(t)

N(t) ,S
(
(θ (t+1)

L(t+1) )i,(θ
(t)
N(t)) j

)
> 0,argmax

j
S
(
(θ (t+1)

L(t+1) )i,(θ
(t)
N(t)) j

)}
(3.45)

If R(θ (t+1)
L(t+1) )i 	= { /0}, this means that the component i representing the new data already exists,

otherwise it is considered as a new component. For instance, if R(θ (t+1)
L(t+1) )i = { j} we update the

parameters of the component j of the old data as it shall be detailed in the following subsection.
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3.5.1 Update the θ (t+1)
jl

A recursive method has been proposed in [90] to update a mixture model using EM. Using the

same approach we propose to update the parameters as follows :

Θ(t+1)
N(t+1) = Θ(t)

N(t) + γN(t+1)

log(p(X (t+1)
L(t+1) |Θ(t)

N(t))

∂Θ
(3.46)

γN(t+1) is a sequence of positive number that decreases to zero. We choose γN(t+1) = 1
N(t)+L(t+1) ,

which gives us :

(
(α(t+1)

N(t+1)) jl

(β (t+1)
N(t+1)) jl

)
=

(
(α(t)

N(t)) jl

(β (t)
N(t)) jl

)

+
∑L(t+1)

n=1 Ẑ(N(t)+n) j

N(t) +L(t+1)

⎛
⎜⎝Ψ((α(t)

N(t)) jl +(β (t)
N(t)) jl)−Ψ((α(t)

N(t)) jl)+ log(
X
(N(t)+n)l

1+X
(N(t)+n)l

)

Ψ((α(t)
N(t)) jl +(β (t)

N(t)) jl)−Ψ((β (t)
N(t)) jl)+ log( 1

1+X
(N(t)+n)l

)

⎞
⎟⎠

(3.47)

where Ẑ(N(t)+n) j
is the posterior probability of the new coming vector �XN(t)+n given the set of

parameters (Θ(t+1)
L(t+1)) and considering that R(θ (t+1)

L(t+1) )i = { j} , which means that the component i

of the new coming data is equivalent to the component j of the old data. As we suppose that

X
(t+1)

L(t+1) should only be represented by M(t+1)
L(t+1) components, we also assume that the membership

probability for of the new coming vector �XN(t)+n remains the same for the component i of the new

data, and the component j of the old data. Thus, we have :

Ẑ(N(t)+n) j
=

(π(t+1)
L(t+1) )

i
p(�XN(t)+n|(θ (t+1)

L(t+1) )i)

∑
M(t+1)

L(t+1)
i=1 (π(t+1)

L(t+1) )
i
p(�XN(t)+n|(θ (t+1)

L(t+1) )i)

(3.48)

Note that when R(θ (t+1)
L(t+1) )i = { /0} , we create the new class i with parameters (θ (t+1)

L(t+1) )i), and we add

it to the set of parameters Θ(t+1)
N(t+1) .

3.5.2 Update the Mixing Weights

We update the mixing weights as follows :

π(t+1)
N(t+1) j

=
N(t)π(t)

N(t) j
+L(t+1)π(t+1)

L(t+1)i

N(t) +L(t+1)
(3.49)
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Note that Eq.3.49 can be used for j = 1, . . . ,M(t+1)
N(t+1) , we consider that π(t)

N(t) j
= 0 for j > M(t)

N(t) , and

π(t+1)
L(t+1)i

= 0 when j ≤ M(t)
N(t) and the new data are not represented by the class j.

3.5.3 Considered Metrics

In this section we develop a set of metrics d for the GID distribution. The calculation details can

be found in Appendix B.2. The first distance is the symmetric Kullback-Leibler (SKL) divergence

between two GID distributions with parameters θ j and θi :

SKL
(
(p(X |θ j), p(X |θi)

)
=

D

∑
l=1

[
(α jl −αil)

(
Ψ(α jl)− (Ψ(αil)−Ψ(α jl +β jl)+Ψ(αil +βil)

)

+(β jl −βil)

(
Ψ(β jl)− (Ψ(βil)−Ψ(α jl +β jl)+Ψ(αil +βil)

)]
(3.50)

The second developed distance is the symmetric Renyi divergence proposed in [97]. We calculate

it for GID distribution as follows :

Ra

(
p(�X |θi), p(�X |θ j)

)
=

D

∑
l=1

[
1

a−1
log

(∫ +∞

0
p(Xi|θil)

a p(Xi|θ jl)
1−adX

)

+
1

a−1
log

(∫ +∞

0
p(Xi|θ jl)

a p(Xi|θil)
1−adX

)]
(3.51)

such that

∫ +∞

0
p(Xi|θil)

a p(Xi|θ jl)
1−a =

[
Γ(αil +βil)

Γ(αil)Γ(βil)

]a

×
[

Γ(α jl +β jl)

Γ(α jl)Γ(β jl)

]1−a

× Γ(aαil +α jl −aα jl)Γ(aβil +β jl −aβ jl)

Γ
(
(aαil +α jl −aα jl)+(aβil +β jl −aβ jl)

) (3.52)

The third one is the Bhattacharyya distance which measures the similarity between two probability

densities. We calculate it for the GID distributions as follows :

B 1
2

(
p(�X |θi), p(�X |θ j)

)
=

D

∏
l=1

[Γ
(

1
2(α jl +αil)

)
Γ
(

1
2(β jl +βil)

)√
Γ(α jl +β jl)Γ(αil +βil)

Γ
(

1
2(α jl +β jl +αil +βil)

)√
Γ(α jl)Γ(β jl)Γ(αil)Γ(βil)

]

(3.53)

in this case we consider d = 1−B 1
2
.
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3.5.4 Detailed Algorithm

Algorithm 1 details how our framework processes the update of the old model when we have new

data arriving at the system level. The main idea is to consider that we have an old data model that

is already represented by a finite GID mixture, and when the new data come, we also model it by

a GID finite mixture whose number of components varies from 1 to a fixed maximum number of

allowed components. Then, we measure the distances between the components of the new data,

and the components of the old data. If the measured distance between two given components is

under the threshold, they are considered as being the same component, so the ancient component

gets updated and then substituted in the models of the old and new data. If the new components

are considered as being totally dissimilar with the old ones, the updated model of the whole data

will consider them as new components that should be created and add them to the model. In each

iteration, we calculate the model selection criterion for the new data and the whole data considering

the new parameters in order to select the best model at the end. In Algorithm 1 we use the MML

as a model selection criterion.

Algorithm 1 GID online learning using EM-MML and probabilistic distance

1: At t, Input : D-dimensional dataset X
(t)

N(t) = {�X1, . . . ,�XN(t)}, Θ(t)
N(t) ,

2: At t +1 Input : X
(t+1)

L(t+1) = {�XN(t)+1,�XN(t)+2, . . . ,�XN(t)+L(t+1)}, (M(t+1)
L(t+1) )max , σ (t) , d: SKL, B, R.

3: for all 1 ≤ k ≤ (M(t+1)
L(t+1) )max do

4: Model X
(t+1)

L(t+1) by a finite GID mixture composed of k-components using EM on Eq.3.39 using the
same approach in chapter 2.

5: for all 1 ≤ i ≤ k
6: Calculate R(θ (t+1)

L(t+1) )i using Eq.3.45 considering one of the developed metrics in Eqs. 3.50, 3.51,
and 3.53.

7: if R(θ (t+1)
L(t+1) )i 	= { /0}

8: Update (θ (t)
N(t) )R(θ (t+1)

L(t+1) )i
using Eq.3.47

9: (θ (t+1)
L(t+1) )i = (θ (t)

N(t) )R(θ (t+1)

L(t+1) )i

10: end if

11: end for

12: Calculate (�π(t+1)
N(t+1) )k using equation Eq.3.49

13: Calculate (M(t+1)
N(t+1) )k, (Θ(t+1)

N(t+1) )k

14: Calculate MMLnewData
k (X

(t+1)
L(t+1) ,(Θ

(t+1)
L(t+1) )k

,k) using Eq.3.30

15: Calculate MMLwholeData
k (X

(t+1)
N(t+1) ,(Θ

(t+1)
N(t+1) )k

,(M(t+1)
N(t+1) )k) using Eq.3.30

16: end for

17: Decide on the model basing on the MML and the chosen distance d, return : (M(t+1)
N(t+1) ), (Θ

(t+1)
N(t+1) ), (�π

(t+1)
N(t+1) )
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3.6 Experimental Results

3.6.1 Synthetic Data

We propose to validate our framework using synthetic data. First we build X
(t)

N(t) , then we estimate

its model parameters, and validate the model selection criteria that we have considered. Then we

build X
(t+1)

L(t+1) , and we propose to update the model accordingly using Algorithm 1.

Parameters Estimation

To construct X
(t)

N(t) , we generate a dataset in the transformed space from different inverted Beta

distributions. We mainly consider three classes composed of four-dimensional vectors, following

the parameters in Table 3.1. Thus, X
(t)

N(t) is modeled by a 4-dimensional mixture model composed

of 3 components. The histograms of the inverted Beta distributions forming each dimension are

illustrated in Figure 3.1. Note that the different distributions are overlapping which makes the

estimation harder. We estimate the parameters of the mixture using the EM algorithm, and report

on the results in Table 3.1, where we show the real and estimated parameters. The maximum

detected percent error of relative change between real and estimated parameters among all the set

of parameters is 3.89% which reflects a good estimation. Thus, the estimated histogram and the

real one are indistinguishable, and our algorithm performs well when estimating the parameters

using EM.

Table 3.1: Real and estimated parameters in the case of a 4-dimensional dataset generated from 3-components mixture
model.

j l π j α ji β jl π̂ j α̂ jl β̂ jl
1 1 0.3 50 3 0.3 51.8900 3.1216

2 23 34 23.7812 35.0890
3 15 29 14.7051 28.3307
4 20 49 20.5157 50.2743

2 1 0.4 20 5 0.4 19.8558 4.8733
2 3 40 3.1068 41.2450
3 50 50 50.1681 50.1832
4 34 18 34.5822 18.1180

3 1 0.3 30 50 0.3 29.8472 49.6698
2 30 30 29.8738 29.8352
3 2 10 2.0625 10.3134
4 19 23 19.1818 23.2054
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Figure 3.1: Different generated inverted Beta distributions representing dimensions 1, 2 , 3 and 4 of the model in
Table 3.1.

Model Selection

In this subsection we propose to perform the model selection algorithm on X
(t)

N(t) , using the MML,

AIC, LEC, MDL, and MMDL criteria. The results are reported in Table 3.2. The algorithm

succeeds to find the appropriate number of classes which is equal to three using MML, MDL, LEC

and MMDL, whereas it fails to find the exact number of classes using AIC. As the MML criterion

takes into consideration a prior information about the parameters, we will mainly consider it for

the rest of simulations to illustrate the results.
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Table 3.2: Selection Criteria Values of the mixture 4-dimensional dataset generated from 3-components mixture model

M MML AIC LEC MDL MMDL
1 51885 51810 51883 51847 51847
2 37525 37365 37522 37439 37432
3 19844 19597 19840 19707 19692
4 19922 19596 19916 19744 19717
5 20002 19597 19994 19781 19744
6 20077 19596 20068 19818 19766
7 20153 19598 20142 19857 19788
8 20221 19599 20208 19895 19800
9 20297 19600 20282 19932 19822

10 20378 19604 20362 19973 19851

Static Online Learning

During this experiment, we aim at validating the updating approach developed in Section 3.3.3.

We suppose that the data are received over time, and does not affect the number of classes as the

vectors are supposed to belong to the existing classes, but rather affect the parameters and weight

of each class. At a given time t0, we assume that we have the estimated parameters in Table 3.1.

Also, we assume that we know that the first and third classes have 3000 vectors, each, and the

second class has 4000 vectors. Now we suppose that we are receiving new vectors over time and

at each time t one single vector is received and used to update the model as explained in section

3.3.3. We set our experiment in such a way that the model receives 49000 vectors from class 1,

also 49000 from class 3, and 22000 vectors from class 2. We randomly permute all the vectors,

so the system receives a vector with a random class membership at each time t. At the end of

the experiment, we know that we will have 52000 vectors from classes 1 and 3, each, and 26000

vectors from class 2. We report on the changes of the mixture weights during time, in Fig. 3.2. As

we can see the evolution of the weight π2 of class 2 in time, goes from 0.400 to reach 0.2213, and

the weights π1 and π3 of the classes 1 and 3 change respectively from 0.3 and 0.3, to 0.4431 and

0.3356. Naturally when updating the parameters online, we are not expecting to exactly find the

weights of classes 1, 2 and 3 to be equal to 0.4, 0.2 and 0.4, respectively, but we expect that their

estimation will tend to those values. Indeed, the membership’s frequency of the arriving vectors

have an influence on the weights updating. Suppose for instance, that at the beginning we receive

49000 vectors only from the first class, sequentially over time, the probability of receiving a vector

whose membership belongs to class 1, will increase significantly, which means that the weight π1

will increase. If we stop the experiment at this point, our algorithm would give a high weight to the

first class which is expected. π1 will start to decrease when receiving vectors that belong to classes

2 or 3. During our experiment, we tried to randomize the membership of the arriving vectors, but

still, we did not make it uniform, therefore we obtained the reported results. The evolutions of the
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Figure 3.2: Evolution of the parameters π1, π2 and π3 in time.

parameters representing the classes 1, 2, and 3 are respectively reported in Figs. 3.3, 3.4, and 3.5.

According to the different graphs, we can conclude that our updating model for the finite mixture

gives very acceptable estimated values, and behaves as expected.

Dynamic Online Learning

During this experiment, we generate a new dataset X
(t+1)

L(t+1) in such a way that the whole model

should be updated according to the parameters in Table 3.12. Figure 3.6 illustrates the histograms

of the inverted Beta distributions forming each dimension when considering the whole data X
(t+1)

N(t+1) .

These distributions are overlapping in the features space which makes the experiment a good case

to validate the performance of our algorithm. X
(t+1)

L(t+1) is mainly composed of four datasets. The

first and second datasets are generated respectively from the third and first components in Ta-

ble 3.1, whereas the third and fourth datasets are generated respectively from the fourth and fifth

components in Table 3.12. Thus, we consider the case where the new dataset is composed of new

and old classes. We fix the maximum number of classes (M(t+1)
L(t+1))max that can represent X

(t+1)
L(t+1) to

be 10. Apart from the choice of the distance d , the choice of σ (t) in Eq. 3.42 controls how the data

should be perceived by the system. We propose to adopt the following choice for σ (t) :

σ (t) = |scale(t)×N (0,1)| (3.54)

where N (0,1) is the standard normal distribution. We propose to study the effect of scale(t) on

the behavior/perception of the system toward the new data. In the following we will consider

three cases, the first one when scale(t) is equal to 50%, then 10000% and finally 1%. scale(t) can
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Figure 3.3: Evolution of the parameters of class 1 in time t.

be considered as the percentage of tolerated dissimilarity that we want to consider. During each

experiment, we build a “mapping vector" for the different components of the model representing

X
(t+1)

L(t+1) , telling whether the component is considered as new, or as an already represented one,

using the set R(θ (t+1)
L(t+1) )i. For easiness of presentation, we report on the selected class only.

Tolerance of 50%:

In this experiment we run the algorithm using scale(t) = 0.5. We consider that 50% of tolerated

dissimilarity should lead to find the exact model that considers that X
(t+1)

L(t+1) is composed of two

old components, and two new ones. We report on the results in Tables 3.3 and 3.4. We note that

all the selected metrics in the features probabilistic space lead to the same results reflecting the

targeted model. Table 3.3 informs us that the algorithm is capable to find that M(t+1)
L(t+1) = 4 classes

is the best model for X
(t+1)

L(t+1) using 50% of tolerated dissimilarity. Table 3.4 also shows that the
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Figure 3.4: Evolution of the parameters of class 2 in function in time t.

algorithm ends up by selecting the model composed of M(t+1)
N(t+1) = 5 classes, which is the intended

model to select when considering scale(t) = 0.5. The mapping vector in Table 3.5 shows that the

components are successfully substituted as we generated the data such that the first and second new

components are substituted by the third and first ancient classes respectively, whereas the third and

fourth new components are considered as the components that should be constructed and added to

the ancient model. Thus, the algorithm succeeds to model the data as expected.

Tolerance of 10000%:

In this subsection we take scale(t) = 100. We run our algorithm, and we report on the results on

Tables 3.6 and 3.7. We notice that the choice of the distance when considering a high value of

dissimilarity rate influences the model selection of the new coming data in terms of the choice of

M(t+1)
L(t+1) , but the three metrics lead to the selection of the same number M(t+1)

N(t+1) = 3 of classes that

finally represent the whole data X
(t+1)

N(t+1) . According to the generated mapping vectors shown in
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Figure 3.5: Evolution of the parameters of class 3 in time t.

Table 3.8 when using the Kullback-Leibler divergence, the algorithm tends to represent the whole

new data by one single class that can be substituted by the third component of ancient model. Ac-

cording to our approach, only the third component of the already built model is updated. The Renyi

divergence leads to the representation of the new data by three classes that are all substituted by the

third, second, and first components of the ancient model which get updated accordingly. Finally,

the use of the Bhattacharyya similarity leads to the selection of four classes for the new data, that

are substituted by the first and second classes of the ancient model. We consider that the fact of

representing the whole data by three classes, as being a success, as we expected the algorithm not

to create new classes when we consider a high rate of dissimilarity.

Tolerance of 1%:

In this experiment, we want to make our system sensitive to the dissimilarity and considers any

new data that are not represented by components that are considerably close to the old ones, as
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Table 3.3: Message length values as a function of the number of clusters for the new coming data X
(t+1)

L(t+1) when
considering 0.5.

1 2 3 4 5 6 7 8 9 10
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

4

Number of Clusters

M
M

L

M(t+1)
L MML
1 67144
2 64312
3 40647
4 25144
5 25223
6 25301
7 25379
8 25458
9 25536
10 25613

Table 3.4: Message length values as a function of the number of clusters for the whole X
(t+1)

N(t+1) when considering 0.5.

4 5 6 7 8 9
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5
x 10

4

Number of Clusters

M
M

L

M(t+1)
L(t+1) M(t+1)

N(t+1) MML
1 4 90564
2 4 89730
3 5 65760
4 5 54193
5 6 54272
6 6 55014
7 7 55092
8 8 55164
9 8 55656

10 9 55734

Table 3.5: Mapping vector for Table 3.4.

X
(t+1)

L(t+1) component i 1 2 3 4

R(θ (t+1)
L(t+1) )i 3 1 /0 /0

being a data that should serve to the construction of new classes for the whole data. We report

on the results in Tables 3.9 and 3.10. All the considered metrics lead to the same results when

considering a very low dissimilarity tolerance. The algorithm succeeds to select the appropriate

model that represents the new data by four classes, and none of these classes is substituted with the
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Table 3.6: Message length values as a function of the number of clusters for the coming data X
(t+1)

L(t+1) when considering
100.

M(t+1)
L(t+1) MMLSKL MMLR MMLB
1 586000 586000 1022300
2 587600 424100 453900
3 592700 387100 454500
4 593300 394000 435700
5 596000 394100 436100
6 596100 394300 436200
7 598200 394400 445000
8 598800 394500 445200
9 598900 394500 445300

10 599500 390000 441800

Table 3.7: Message length values as a function of the number of clusters for the whole data X
(t+1)

N(t+1) when considering
100.

M(t+1)
L(t+1) M(t+1)

N(t+1) MMLSKL MMLR MMLB
1 3 405920 405920 411940
2 3 415510 403730 409590
3 3 411910 402850 410990
4 3 409650 409550 400510
5 3 415430 409550 402680
6 3 416630 411560 415180
7 3 412640 412590 414220
8 3 414050 412710 414340
9 3 416160 413430 415680

10 3 415360 414280 409230

Table 3.8: Mapping vectors for Table 3.7.

X
(t+1)

L(t+1) mode i 1

R(θ (t+1)
L(t+1) )i 3

X
(t+1)

L(t+1) mode i 1 2 3

R(θ (t+1)
L(t+1) )i 3 2 1

Symmetric Kullback-Leibler Renyi

X
(t+1)

L(t+1) component i 1 2 3 4

R(θ (t+1)
L(t+1) )i 1 2 1 2

Bhattacharyya

already created components of the old data as reported in the mapping vector in Table 3.11. Thus,

the system behaves as expected, which validates our algorithm.

Estimates of Parameters for the Real Model:

As we mentioned above, we could find the generated model when we used scale(t) = 0.5, that is a
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Table 3.9: Message length values as a function of the number of clusters for the new coming data X
(t+1)

L(t+1) when
considering 0.01.

1 2 3 4 5 6 7 8 9 10
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

4

Number of Clusters

M
M

L

M(t+1)
L MML
1 67066
2 64230
3 35093
4 24916
5 24997
6 25078
7 25158
8 25242
9 25316
10 25389

Table 3.10: Message length values as a function of the number of clusters for the whole X
(t+1)

N(t+1) when considering
0.01.

4 5 6 7 8 9 10 11 12 13
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5
x 10

4

Number of Clusters

M
M

L

M(t+1)
L(t+1) M(t+1)

N(t+1) MML
1 4 90460
2 5 89698
3 6 60920
4 7 54137
5 8 54219
6 9 54300
7 10 54380
8 11 54464
9 12 54540

10 13 54619

Table 3.11: Mapping Vector for Table 3.10.

X
(t+1)

L(t+1) component i 1 2 3 4

R(θ (t+1)
L(t+1) )i /0 /0 /0 /0

rate of dissimilarity equal to 50% basing on our definition. In this subsection, we report on the real

and estimated parameters shown in Table 3.12 of the selected model. The maximum detected per-

cent error of relative change between real and estimated parameters among all the set of parameters

is 3.86%, which reflects a good result.
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(b) dimension 2
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(c) dimension 3
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Figure 3.6: Different generated inverted Beta distributions representing dimensions 1, 2, 3 and 4 of the model in
Table 3.12.

Discussion

The model we have built shows that it is capable to change how the systems perceives the new

coming data over time. This means that we can build customizable system behaviors depending on

the application, and the degree of dissimilarity that we want to establish between different compo-

nents. The distance metrics that we have used lead to the same results when we tolerate a moderate

or low level of dissimilarity. When we tolerate a considerable rate of dissimilarity, depending on

the distance metric, the system selects different models to represent the coming data, but still de-

cide not to create new classes for the whole data. Thus, we consider that the distances that we

have adopted in order to measure the similarity/dissimilarity between different modes have given

good results with the adopted forms of the tolerance thresholds. It is noteworthy to mention that

the model can be more flexible by making σ (t) and scale(t) depend on a given component such that

they become σ (t)
j and scale(t)j , so we can select similarity/dissimilarity tolerance by component.

Also this model can be interpreted as an infinite mixture, as it is not limited by a fixed number of

new classes when we have an unlimited/huge number of coming data.
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Table 3.12: Real and estimated parameters in the case of a 4-dimensional dataset generated from 3-components mixture
model when considering scale(t) = 0.5 and the selected model.

j l π j α ji β jl π̂ j α̂ jl β̂ jl
1 1 0.2 50 3 0.2 51.8901 3.1205

2 23 34 23.7813 35.0890
3 15 29 14.7049 28.3308
4 20 49 20.5156 50.2744

2 1 0.2 20 5 0.2 19.8558 4.8733
2 3 40 3.1068 41.2450
3 50 50 50.1681 50.1832
4 34 18 34.5822 18.1180

3 1 0.2 30 50 0.2 29.8472 49.6698
2 30 30 29.8739 29.8351
3 2 10 2.0611 10.3133
4 19 23 19.1814 23.2057

4 1 0.2 3 30 0.2 2.9950 29.7101
2 12 65 12.0874 65.3781
3 19 10 18.7560 9.9524
4 23 30 22.2941 29.0916

5 1 0.2 80 23 0.2 78.5230 22.4339
2 56 45 57.3767 46.0903
3 87 65 88.1882 65.7813
4 33 3 32.9821 3.0035

3.6.2 Real Application

Figure 3.7: Inria Horses dataset : sample images.

In this section, we validate our algorithm using real computer vision datasets for object

recognition. We mainly investigate the performance of our algorithm within two applications, the

first one is recognizing objects through a binary classification (i.e. tell wether an object exists in

an image or not), and the second one is to build a hierarchical model according to a given ontology

representing users intentions as discussed in chapter 2. For the first application, we propose to

compare our algorithm with recent developed mixture models in the literature in terms of objects

recognition, specifically those reported in [85]. The results reported in [85] have been obtained
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Figure 3.8: Classification accuracies of the Inria Horses dataset.

Figure 3.9: WS Horses dataset : sample images.
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Figure 3.10: Classification accuracies of the WS Horses dataset.
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Figure 3.11: ETHZ dataset : sample images
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Figure 3.12: Classification accuracies of the Apple Logo dataset.

using different mixture models, namely the GID mixture learned in a fully Bayesian way, (B-

GIDM), the GID mixture learned using maximum likelihood (ML-GIDM), the inverted Dirichlet

mixture learned via Bayesian inference (B-IDM), and the Bayesian Gaussian mixture (B-GM).

We name our algorithm the flexible online generalized inverted Dirichlet mixture (FO-GIDM),

where we mainly use the MML as a selection criterion, and the Kullback-Leibler distance for the

similarity perception in the proposed algorithm. During our experiment we empirically adopt a

tolerance threshold of similarity equal to 20%. The main goal of this experiment is to detect the

presence of specific objects in a given image, which can be reduced to the binary classification

of images telling the presence or the absence of a specific object. We use three datasets which
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Figure 3.13: Classification accuracies of the Bottles dataset.
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Figure 3.14: Classification accuracies of the Giraffes dataset.

are the “Inria Horses" [98, 99] , “Wiseman Horses" [100, 101] and “ETHZ" [98]. The features of

each image have been extracted using the local Histogram of Oriented Gradient (HOG) descriptor

proposed in [75]. The HOG algorithm is efficient in terms of detecting local characteristics of

images and object detection and during our experiments each image was represented by a 81-

dimensional feature vector, as used in [85]. The experiment consists of a training phase and a

testing phase. The training phase is the phase during which we build the mixture model that

represents the data, and the testing phase is a classification process where we assign each given
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test image to a specific class according to the Baye’s rule.

During the training phase we proceed as follows; if we have N classes, we suppose that they

come sequentially at time t. At t = 1 we inject the training images of the first class, and build the

model according to our algorithm, using the MML to estimate the adequate number of classes. At

time t = 2 we inject the second class vectors and we update the model according to our proposed

algorithm. One can argue that the use of MML is not always adequate to represent a given data

especially when a class is composed of different sub classes that might be overlapping in the

features space as shown in chapter 2, but in this case of supervised experiment, we assume that

the elementary class we want to model is known in advance, which means that we do not need to

zoom into a given class to know its subclasses at a further stage. In other words if the purpose

is to detect a horse in a given image, the type of the horse is not needed to be known, so if the

MML tells that the class should be represented by three components for example, while we have

five types of horses, that would not cause a problem, as the final goal is to tell whether an image

contains a horse or not and not to distinguish the horse type into some sub classes. Building the

model incrementally using the approach that we mentioned, enables us to model well separated

components representing specifically the given classes. The “Inria Horses" dataset is composed of

170 images containing horses (positive images ) and 170 images composed of diverse animals and

visual scenes without horses (negative images). Figure 3.7 illustrates some examples of the positive

and negative images. As in [85], we use 100 training images, 50 positive images and 50 negative

images. We compare the performance in terms of accuracy and we report on the results in Fig. 3.8

that shows that we obtain an accuracy of 79.17% which outperforms the reported accuracies of

the other algorithms. The learning phase was established by injecting the 50 positive images, and

then building the model incrementally by injecting the 50 negative images. The used similarity

tolerance threshold ensures that the modes of different classes are well separated.

The second dataset is the “Weizmann-Shotton Horses" dataset which is composed of 327 positive

images with horses and 327 negative images without horses. Following the experiment in [85], we

consider 50 positive images and 50 negative images for the training phase and the rest of images are

used for testing. As we did for the “Inria Horses" dataset, we build the model by considering that

we have at the beginning 50 positive images, and then we inject the 50 negative images. Figure 3.9

shows a sample of images of the considered dataset. The obtained results in terms of accuracy are

reported in Fig. 3.10. Our algorithm clearly outperforms the other algorithms reaching an accuracy

of 91.19%. The third dataset “ETHZ shape classes" is composed of five objects classes (bottles,

swans, mugs, giraffes, and apple logos) with a total of 255 images collected from the Web. As

illustrated in the dataset sample in Fig. 3.11, this dataset is particularly challenging as the objects

are placed in different parts of the images, with different shapes and scales. Following [85, 98], we
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build a model for each object separately as a binary classification.The whole dataset is composed

of 255 images (40 apple logos, 48 bottles, 87 giraffes, 48 mugs, and 32 swans). For each object,

we use the half of positive images as positive training images, and we construct a set of training

negative images from the other objects in such a way that the images of every other remaining

object constitute 1
4 of the negative training images.The rest of all the dataset is used as a testing

set. For instance, when building the model for bottles, we consider 24 images from the bottles

images set, and 6 images from each of the other classes in order to build the set of training images.

The obtained results for each class are shown in Figs. 3.12, 3.13, 3.14, 3.15, and 3.16. For each

object class, the FO-GIDM significantly outperforms the reported results of the other models.

It’s noteworthy that our algorithm combines the positive and negative images in the same model,

instead of building separately two models for the positive and negative images and maximizing the

likelihood in order to attribute a testing image to its specific class.
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Figure 3.15: Classification accuracies of the Mugs dataset.

Table 3.13: Classification accuracies of the Hierarchical Model in %

FO-GIDM FO-IDM

Artificial - Natural 90.22 83.70
Electronic - Furniture - Insect 86.41 77.72
Camera - Cellphone - Chair - Chandelier - Butterfly 86.41 74.46

The last goal is to compare the performance of the generalized inverted Dirichlet distribution (GID)

with the inverted Dirichlet distribution (ID) within the same proposed framework (i.e. comparing

70



FO−GIDM B−GIDM ML−GIDM B−IDM B−GM
0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
%

95.28

83.06 82.12 81.40 79.95

Figure 3.16: Classification accuracies of the Swans dataset.

Figure 3.17: Butterfly, Camera, Cellphone, Chair, Chandelier : sample images.

FO-GIDM and FO-IDM). We also integrate the whole framework within the hierarchical model

that we have proposed in chapter 2. We consider a subset of the Calltech 101 dataset, which is

composed of 5 objects that are Camera, Butterfly, Cellphone, Chair, Chandelier. As we did for

the previous experiment, we propose to use the half of images for training, and the other half for

testing. We propose to model the hierarchy illustrated by the model shown in Fig. 3.18. We train

our model by constructing it online, starting by injecting different classes at each time t. During our

experiment, we started by modeling the Camera class, then we sequentially injected the Butterfly,
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Figure 3.18: Butterfly, Camera, Cellphone, Chair, Chandelier : proposed hierarchical model.

Cellphone, Chair and Chandelier classes. For the different levels of the hierarchy, we report on the

accuracy in Table 3.13. We show that the model performs better when using the GID distribution.

This can be explained by the fact the GID has a more flexible covariance structure, and that the

inverted Dirichlet is a specific case of the GID which makes the latter more flexible in terms of

modeling different data shapes in the feature space. Naturally the distance threshold that we use

can significantly affect the results especially when dealing with unsupervised clustering, where we

do not have an idea about the nature of the coming data. In this experiment we assume that we

already have a training phase where we perfectly know the labels of the images. Therefore, we

can systematically built our model by considering that the coming data are totally generated by

new components. The obtained results are reported in Table 3.13, we notice that the GID mixture

outperforms the ID mixture with 86.41% accuracy at the first level against 74.46%, and 86.41% at

the second level against 77.72% and finally 90.22% against 83.70% at the third level. This clearly

shows that the GID hierarchical mixture outperforms the inverted Dirichlet hierarchical mixture

model in the proposed framework. Notice that the accuracy does not change from the first level

to the second level when using the FO-GID. This indicates that at the first level there was not any

Camera that was misclassified as a Cellphone or vis-versa. Also there was not any Chandelier that

was misclassified as a Chair or vis-versa. That is why the accuracy remains the same at the first and

second level. The idea behind this work is to form a mental model capable of representing a specific

hierarchy proposed by a user via his/her interaction with the system. Suppose for instance that a

user interaction with the system records that he/she has chosen some images to be in different

72



super classes at a specific level of the hierarchy. The labeled training images simulate the user

feedback to the system that uses that information to rank non classified images that are represented

by the testing images. The system shall propose some images according to the users target classes.

Modeling the user interaction using our algorithm, can enable the system to propose some images

according to the users needs using, for instance, the ranking of their posteriors.

3.7 Summary

Apart from developing an algorithm to estimate the parameters of a finite GID mixture model

and establish a model selection at the system level. We have proposed a novel update strategy

for mixture models where a perception parameter is introduced to help the system decide weather

it should create new components or update the already existing components when new data are

introduced on line. The strategy is based on some probabilistic metrics that we have developed

specifically for the GID distribution. The merit of our approach is validated through synthetic data

and real-world applications on images datasets. In the next Chapter, we will develop a statistical

framework to which we integrate the algorithms that we have designed, and which consists of a

search engine for images without an explicit query from the users but rather based on a search

process using visual features only.
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Chapter 4
A Statistical Framework for Mental Targets

Search Using Mixture Models

4.1 Introduction

New technological achievements during the recent years caused the appearance of large data col-

lections that are complex to represent, analyze and search. The amount of information that could

be derived from such collections can vary depending on the purpose, context and intention of the

users dealing with them. Therefore, many systems adopt query-based structures in order to sat-

isfy context-aware needs from a given data collection [102]. In many real life situations, a search

problem occurs naturally when a human being is interested in one or several concepts that exist

within a certain amount of data. Such concepts could be visual, textual, or within any other in-

formation container that is usually represented by the system in a well defined feature space. A

common application of such search processes comes with the recommendation frameworks where

the system uses different feed backs from users in order to suggest them what could be categorized

as “interesting items" [103, 104]. Some other systems collect data about the users behaviors, then

search and suggest advertising items for commercial purposes [105, 106]. In many cases, a user is

intentionally searching an item but has no clue about the features that a system is using to repre-

sent a concept, or lacks the needed tools and semantics to describe his/her needs and express them.

Thus, he/she cannot provide a precise query to the system in order to tune the search process. We

refer to this problem as the semantic gap between the user and the system. In order to solve such

a problem, some works have proposed a mental matching which consists of a search process dur-

ing which the system tries to identify the mental target of a given user without having an explicit

query. An overview about mental matching can be found in [107] where the authors track the early

works on this field and propose a new bayesian framework to search an image category based on
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a mental image. They mainly design a system where several images are displayed to a user, and

he/she has to select the image that appears to be the closest to the image he/she has in mind, until

the system shows a target image. In this chapter, we propose to extend the work of [107] which

has the advantage of being query-free, in order to 1) cover multi targets category search, 2) include

the possibility of a multiple images selection and a no preference choice when looking for a target

category during the search process, and 3) use a new model that serves to model the data and to

measure similarities between different images using the GID distribution.

This chapter is structured as follows. In section 4.2 we present the problem and the techniques

that have been proposed to solve it, as well as the main contributions of this work. The proposed

framework is introduced in section 4.3. In sections 4.4, 4.5, 4.6 and 4.7, we detail the Data Model,

Update Model, Answer Model and Display Model, respectively. We present our experimental

results in section 4.8. In section 4.9 we interpret the results and we conclude in section 4.10.

4.2 Related Work

When they first appeared, images databases were carefully annotated with keywords by experts,

in order to easily browse them and retrieve images by query. With the tremendous increase of the

volume of available images that are published on a daily bases by millions of internet users, manual

annotation turns to be impossible to realize. To solve this issue, researchers started by proposing an

automated tagging based on annotation propagation such as in [108, 109]. Although those methods

were successful, it is not always possible to formulate an explicit query in order to retrieve images.

Many users lack the necessary vocabulary and are not able to formulate a system understandable

query that could lead them to their target images. Thus, many researchers based their work on the

query by image content (QBIC) framework that was initially published in [110], where a query is

an image that can serve to find similar images within a database. Still, the QBIC system needs

example images to serve as a graphical query. Those example images that serve to start the search

process are not always available which represents a problem known as the page zero problem. On

the other hand, to help the system making suggestion that may interest users, many researchers

have proposed the relevance feedback such as in [111–113]. Relevance feedback uses high level

information provided by the user about a given concept, using an iterative fashion, in order to adjust

the data representation and converge toward the discovery of new elements that represent a value

to that user. In order to construct a solid model founded on a strong mathematical background,

many model-based framework have been developed for content-based images retrieval. The work

in [114] proposes to minimize the probability of retrieval error by combining feature selection
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and similarity measures into a Bayesian formulation, while the work in [79] uses the context-

aware formulation to identify several cases where the context serves to generate more accurate

recommendations. Some other works propose hybrid models that combine both generative and

discriminative learning, such as in [53] where the authors propose a hybrid model-based framework

for efficient image retrieval . While those works were not dedicated to the page zero problem, they

prove that statistical frameworks can give accurate results. The first model-based work that was

trying to solve the page zero problem is the mental matching which tries to find a “mental image"

that resides in the mind of a user without having an explicit query. It was first pioneered by the work

in [115]. The search process was done iteratively, and at every round the user was asked to choose

the closest image to the target image that resides in his/her mind, among two displayed images by

the search engine. The work in [115] served as a basis for the framework proposed by [107] which

extended their work to cover semantic target category search using a bayesian model that includes

a pair of positive and negative answer models. The statistical framework proposed in [107] has

been adopted and extended for large-scale image collections of millions of images in the HEAT

retrieval system proposed in [116] , and extended in [117]. Still, the framework proposed by [107]

is limited to one single target category within the same search process. The user has to repeat

the process N times if he/she is targeting N categories. Also, a user is always forced to choose

an image that is closest to the image in his/her mind even if there is not anyone displayed that

matches the targeted mental images. Moreover, a user is allowed to have one single selection,

while he/she could be interested in several images that could lead to the target category. In this

chapter we extend the work proposed in [107], to cover many target images search within a single

mental search process, including the non selection and multi selection preferences. We also use a

new data model constructed by the generalized inverted Dirichlet (GID) mixture that has proven

its capability to robustly model and cluster multi-dimensional data [85, 118]. This work focuses

on visual concepts and mainly deals with images but it is noteworthy to mention that a concept can

be any other information representation that a user can use to interact with the system.

4.3 The Framework Structure

Let Ω = {X1,X2, ...,XN} be a set of N images. The main purpose of this work is to determine a

subset S ⊂ Ω that represents a set of target images that matches the visual interests in the mind of

a given user. S could be formed by diverse images’ categories {S j} that do not necessarily have

visual similarities at the system level, or have different semantic meanings for the user. Thus, S
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can be written under the following form :

S =
M⋃

j=1

S j (4.1)

where S j ⊂Ω, j = 1, ...,M, are the different target classes forming S and M represents their number.

We assume that the user knows exactly how many classes M he/she is targeting. We also assume

that if an image that belongs to a target class is displayed, the user will be able to identify it. If the

user is not interested anymore in a given target class Sk the search problem is reduced to find :

S =
M⋃

j=1
j 	=k

S j (4.2)

The mental search consists of several iterations during which a set of different images D ⊂ Ω is

displayed to the user. If D∩ S j = /0 the user specifies the set of images {Xi} j ⊂ D that are the

closest to what he/she might have in mind in order to approach S j. We associate a random variable

YXk with each image Xk ∈ Ω such that YXk = j if Xk ∈ S j and YXk = 0 if Xk /∈ S. In other terms we

have :
S = {Xk ∈ Ω / YXk 	= 0}
S j = {Xk ∈ Ω / YXk = j} (4.3)

During the search process YXk is updated according to the user responses to the different displays

{Dt}. Let Bt denote the responses of the user for the first t displays. The distribution of YXk = j

knowing Bt is represented by :

pt(Xk) j = P(YXk = j|Bt), j = 1, ...,M (4.4)

As S is seen by the system as a random subset, we have no prior knowledge about it. Therefore we

initialize the values of p0(Xk) j as follows :

P0(Xk) j =
1

M+1
, j = 1, ...,M, k = 1...N (4.5)

which is a uniform distribution over all the M+1 classes, the (M+1)th component is an eventual

additional class which represents the negative set of images that represent no interest to the user.

Note that if we consider the specific case M = 1 we find the same framework structure proposed

in [107]. Our work treats a generalized case where a user can choose not to select any image, or

to select multiple images. We also suggest a different model describing the data that is discussed

in section 4.4. The framework we propose is as follows : we design a graphical interface through
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which the user will interact with the system in order to identify his/her target classes within a

dataset using the visual features only. This interaction is realized through different iterations,

during which the system would display at iteration t a set of images Dt such that :

|Dt |= Nt

Nt =
M
∑
j=1

Nt( j)
(4.6)

Nt is the total number of displayed images at time t, and Nt( j) is the number of images proposed

for a specific target class S j, j = 1, ...,M. The user would select the images that he/she might find

interesting and specify their corresponding classes among the M available classes defined at the

beginning. e.g. say we have a scrolling list that can be used for each displayed image in order

to specify its class j (see Fig.4.1). The user responses enable the system to update its parameters

and come up with a new display Dt+1. The user repeats the same selection process until he/she

is satisfied of the search process concerning a target class S j. In order to develop a such search

Figure 4.1: Example of the first display of 8 images

process, we mainly design four models :

• Data Model: This component covers the images representation at the system level, and how

the system perceives the data. It can be constructed in a supervised or unsupervised way.

• Update Model: This component computes for each image category, pt+1(Xk) j in terms of

pt(Xk) j and the user’s answers at step t.

• Answer Model: This component specifies for each image Xk ∈ Ω the probability that a user

chooses an image Xi ∈ D given YXk = j.
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• Display Model: This component specifies which images to display at step t, basing on the

search history.

In the following we develop each of these components.

4.4 Data Model

We propose to model the data using the statistical framework developed in the previous chapter

using the GID mixture model. We use the local Histogram of Oriented Gradient (HOG) descrip-

tor [75], in order to extract the images features. The GID mixture model supposes that the data are

positive, which makes the HOG suitable for consideration as it generates descriptors having posi-

tive values. In our experiment each image was represented by a feature vector whose dimension is

D = 81. Let us consider a set ϒ of N D-dimensional vectors, that represents the features extracted

from the set of images Ω = {X1,X2, ...,XN}, such that ϒ = {�F1,�F2, ...,�FN}, where �Fn is the feature

vector of the image Xn. Let C denotes the number of different components forming a flat mixture

model at the system level. We assume that ϒ is controlled by a mixture of GID distributions such

that the vectors follow a common probability density function p(�Fn|Θ), where Θ is the set of its

parameters such that :

p(ϒ|Θ,�π) =
N

∏
i=1

( C

∑
j=1

π j

D

∏
l=1

Γ(α jl +β jl)

Γ(α jl)Γ(β jl)

F
α jl−1
il

(1+∑l
k=1 Fnl)

γ jl

)
(4.7)

where Θ = {�θ1,�θ2, ...,�θC}, with �θ j = (α j1,β j1, ...,α jD,β jD), γ jl = β jl + α jl − β j{l+1} for d =

1, ...,D with β j{D+1} = 0. �π is the vector of mixing weights such that �π = (π1, . . . ,πC), π j > 0 and

∑C
j=1 π j = 1.

We use the same methodology used in chapter 3 in order to cluster the data into classes at

the system level.

4.5 Update Model

The update model updates the posterior probabilities pt(Xk) j according to the responses of the

users. Let us denote XDt the user response to the display Dt , then we have :

XDt = {XDt 0 , ...,XDt M} (4.8)

XDt is the whole user response set for a display Dt , and XDt j is the user selection for a specific class

j at time t for the same display Dt . As we consider (M+1) selection sets in Eq.(4.8), we consider
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the non selected images as a “user selection" for the negative images class, so when a user decides

not to select specific images, this is considered as being a choice for the class containing the “not

interesting" images set. Naturally, the system has no prior knowledge about the user mental targets,

therefore, in order to constitute D1, the most trivial method is to select a number N1 of images with

a selection probability equal to 1
|Ω| . A more adequate method is to use our data model in order to

suggest the initial display. Recall that we have a mixture model composed of C clusters that group

similar images together. We propose to randomly select M clusters with the probability 1
C , and then

select from each selected cluster j, N1( j) images to display in D1, with the probability 1
| j| , with | j|

the cardinal of the cluster j and j = 1...M. Thus, we can construct D1, composed of N1 images

such that N1 =
M
∑
j=1

N1( j), with N1( j) ≥ 0, j = 1...M. At time t, the search history is expressed as

follows :

Bt = {XD1 ,XD2 , ...,XDt} (4.9)

we construct Bt+1 such that

Bt+1 = Bt ∪{XDt+1} (4.10)

Note that our proposed model is not limited to a binary model for each target class, where we

have a positive and a negative model as proposed in [107]. We rather have M+1 classes, with the

(M + 1)th representing the negative class. The consideration of M binary models, where we have

for each class a positive and negative model, increases the complexity and time cost when targeting

many classes. Moreover when considering M+1 classes, we take into consideration that when an

image Xk ∈ Ω does not belong to a target class S j, it should not be systemically considered as a

negative image, as it could belong to another target class Sk, with k 	= j. The selection probability

of a displayed image XD when D = Dt+1 and given YXk = j, in order to approach the target class

S j, can be written under the form:

p(XD = i|YXk = j,Dt+1 = D) = p+(i,Xk,D) j (4.11)

We consider Eq.(4.11) as being the “positive answer model" for the class j, and basing on the work

of [107], we update the distribution of YXk = j knowing Bt+1 as follows :

pt+1(Xk) j = p(YXk = j|Bt+1)

=
p(XD = i|YXk = j,Dt+1 = D)pt(Xk) j

Ct+1
(4.12)
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=
p+(i|Xk,D) j pt(Xk) j

Ct+1

where Ct+1 is a normalizing factor such that :

Ct+1 =
M

∑
j=0

p+(i|Xk,D) j pt(Xk) j (4.13)

note that we have :
M

∑
j=0

pt(Xk) j = 1, ∀t, ∀Xk ∈ Ω (4.14)

4.6 Answer Model

The answer model is based on the data model. The assumption that the user is not satisfied yet by

the displayed images still hold. When considering the mixture model, we assume that the more

an image is close to a mental target image belonging to a class j, the more likely their posterior

probabilities will be close to each others. Let (Xi) j be the image selected by the user to be the

closest image to the class j and let (Xk) j ∈ S j. We define the pseudo metric d((Xi) j,(Xk) j) that we

denote d j(Xi,Xk), between a selected image (Xi) j and a target image (Xk) j, where Y(Xk) j
= j, as

follows :

d j(Xi,Xk) =
C

∑
c=1

(
p(c|�Fi,Θ,�π)− p(c|�Fk,Θ,�π)

)2 (4.15)

Notice that d j(Xi,Xk) can be turned into a full metric distance, if we consider an equivalence classes

such that : if d j(Xi,Xk) = 0 it implies that Xi ∼ Xk. We adopt the answer model form proposed

by [107] for each target class S j such that :

p+(i|Xk,D) j =
φ+(d j(Xi,Xk))

∑
Xd∈D

φ+(d j(Xd,Xk))
(4.16)

where φ+(x) is a monotonically decreasing function, such that if Xi,Xj ∈ D and d j(Xi,Xk) <

d j(Xj,Xk) we expect p+(i|Xk,D) j > p+( j|Xk,D) j. We propose to consider φ+(x) as a Gaussian

distribution with mean μ = 0 and standard deviation σ . Thus, we have :

p+(i|Xk,D) j =
e−

1
2 (

d j(Xi,Xk)
σ )

2

∑
Xd∈D

e−
1
2 (

d j(Xd ,Xk)
σ )

2 (4.17)

σ can be seen as a precision parameter, to specify how the distance metric should be perceived.
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4.6.1 The No Preference Selection Case

As we mentioned before, the user has the choice not to select any image, therefore, all the images

that are not selected, are considered to be part of the “not interesting" class. When a user does

not select any image that might be semantically and visually close to what he/she has in mind

concerning a target class j, we propose to base the next suggestions on the last selection belonging

to that class and reestablish all the display process basing on it such that :

XDt j = XDt−1 j
(4.18)

The special case of not having a previous selection comes to surface when a user decides that the

earliest displays are not interesting and considers that there is not any interesting image targeting

the class j during all the previous iterations such that :

XDi j = /0, i = 1...t (4.19)

In that case we use the negative answer to have an implicit selection of the target class j in order to

be able to update our model. We assume that in terms of the distance metric, the further an image

is from the images of the negative class, the more probable it will belong to a target class. Thus, we

consider a set {Xh} that represents those furthest images from the selected images of the negative

class and consider it as a selection for the target class j. This assumption enables the model to

conserve its integrity in the early displays when no selection of target classes takes place. In this

case we consider that D implicitly contains {Xh} and the equations using D are used with a new

D = Dimplicit such that :

Dimplicit = D∪{Xh} (4.20)

still, when a target class has no selections, the system will not consider the implicit selections as a

real user selection and will display a random selection from different non-displayed clusters when

it suggests images for that class, as described in section 4.5.

4.6.2 The Multi-Selection Case

The multi selection case takes places when a user wants to select more than one single image in

order to approach a target class j. We assume that the user selections are independent, so if we

consider that the user selects J images to target the class j, we calculate the probability of the multi
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selection as follows :

p+(i1, ...., iJ|Xk,D) j =
J

∏
l=1

p+(il|Xk,D) j , J ≤ |D| (4.21)

Figure 4.2: CalTech 101: two randomly chosen samples for each category
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4.7 Display Model

According to our framework, at time t, we should display Nt images including Nt( j) suggestions

for the target class j. Naturally, an image should not be displayed twice, and should not have been

already displayed in the past. In order to suggest images for a target class j, we rank the images,

according to their pt(Xk) j and we pick up the first Nt( j) images. We define Dt+1 as follows :

Dt+1 =
M⋃

j=1

Dt+1 j (4.22)

where

Dt+1 j = argmax
Dj⊂{Ω\Bt}
|Dj|=Nt+1(j)
D j∩{Di}= /0

Nt+1( j)

∑
Xk∈D j

pt(Xk) j (4.23)

where {Di} in Eq.4.23 is the set of the already picked images to be displayed in the display Dt+1

for any other target classes k, such that k 	= j. We also propose, at first, to rank only the images

that belong to the same cluster of the images selected by the user, that is defined by the mixture

model, which leads to suggest images that are semantically alike. If a cluster does not have enough

images to display, we extend the application of Eq.4.23 on the whole set of images Ω. If the user

selects images from different clusters we have two choices, either we select a defined number from

each cluster to form the display of the target class j, or we build a hierarchical model forming a

parent cluster containing the sub clusters (such as in chapter 2) and then we select the images from

it using Eq.4.23.

4.8 Experimental Results

Figure 4.3: Target images from “buddha" and “sunflower" classes
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Figure 4.4: Display 18

In order to test our framework we consider the publically avaiable Caltech101 dataset [119].

Caltech101 is composed of 8676 images of different objects representing 101 categories. These

objects have different shapes and colors as shown in Fig.4.2 which illustrates two randomly chosen

samples from each category of the dataset. In our experiment we used all the 101 categories, and

we have considered two target classes such that M = 2. The construction of the data model was

established using the GID mixture model basing on the construction strategy that is proposed

in chapter 3, and using the HOG features. The modeling process resulted 124 components that

compose the GID mixture. Those components can be considered as the system perception for the

data in the HOG feature space. In order to estimate the number of representing classes of the

data, we used the MML criteria, the GID Kullback-Leibler distance and a perception tolerance rate

equal to 20% to measure the similarity between the different components as it has been proposed

in chapter 3. We designed a Graphical User Interface (GUI) that displays eight images at each

iteration and we fixed the display number for each category such that N1(1) = N1(2) = 4, which

means that the system should suggest four images from each target class. We also considered a

precision parameter σ = 1 for the Eq.4.17 to have the standard normal distribution.

The system starts by displaying eight images randomly, such that an image from each con-

structed component of the mixture is selected as explained in section 4.5. Fig.4.1 shows a screen-

shot of the developed GUI that shows a first display D1. The user selection is set, by default, to

’not interesting’. If some interesting images are displayed, the user selects them by specifying their

corresponding classes. Basing on those selection, the system tries to find images that could belong

to the mental target classes of the user. Using a normal PC, the suggestion of a new display takes

an average of 1 second. The performance analysis of such systems remains hard to interpret as it

is related to the satisfaction of users, and it involves human psychology and decision making. As a

first approach, we have tried to measure users satisfaction by asking 20 users that are not familiar

85



3720 3730 3740 3750 3760 3770 3780 3790 3800 3810
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) Iteration 1
3720 3730 3740 3750 3760 3770 3780 3790 3800 3810
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Iteration 9

3720 3730 3740 3750 3760 3770 3780 3790 3800 3810
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Iteration 11
3720 3730 3740 3750 3760 3770 3780 3790 3800 3810
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Iteration 13

Figure 4.5: Class “buddha" : pt(Xk) j evolution during different iterations : 1,9,11,13

with the system to use the search interface in order to target some images from a target class. We

asked them to give a satisfaction grade that goes from 1 to 10, one being the worse grade and 10

represents the full satisfaction grade. We obtained an overage equal to 7.95/10. We noticed that

the dissatisfaction usually occurs with users who have missed an image from their category class,

or mislead the system toward other categories. Indeed, it takes 16 iterations, for the system to

show at least one image from each component of the mixture, considering 124 components with

a screen size of 8 images to display. For those who miss an image that would lead them to the

component containing their target class, they may spend a longer time to find their target images

which lower their satisfaction of the system. In order to quantify the displaying results, we propose

to illustrate how the posterior pt(Xk) j changes over time. We choose two target classes that are

constructed from the categories “sunflower" and “buddah". Our main purpose during the search
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(d) Iteration 17

Figure 4.6: Class “buddha" : pt(Xk) j evolution during different iterations : 14-17

process is to find eight specific images from each class. For the “sunflower", we propose to find

the target class that represent the sunflowers with a tall stem, and for the “buddah" we propose to

pick up the buddah that are constructed of gold. Fig.4.3 shows the 16 targeted images.

We report on the results after 23 displays, in Figs.4.8 and 4.12, where we illustrate the

posterior probability of the “buddha" class and the “sunflower" class, respectively. The X axis

represents the image index, and the Y axis represents the posterior probability. The blue stars

shows the already displayed images that do not make part of the target images set, while the green

ones represent the target images that are already displayed. The lines with red stars show the

probabilities of target images. At the first display all the images have the same probability as

the system has no input from the user. The first appearance of an image of buddha takes place

in iteration 9 as shown in Fig.4.5b, and the first appearance of a sun flower image takes place in
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Figure 4.7: Class “buddha" : pt(Xk) j evolution during different iterations : 18-21
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Figure 4.8: Class “buddha" : pt(Xk) j evolution during different iterations : 22-23
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(d) Iteration 13

Figure 4.9: Class “sunflowers" : pt(Xk) j evolution during different iterations : 1,9,11,13

Iteration 14 as shown in Fig.4.10a. As the images of buddha appear before the appearance of the

“sunflower" images, it is expected that the system displays a target image from the buddha set

before showing a target image from the “sunflower" set. The first target image of buddha appears

in iteration 11 as shows in Fig.4.5c, and the first appearance of a target image of a “sunflower"

appears in iteration 15 as shown in Fig.4.10b. Fig.4.4 shows the display at Iteration 18, note that

some target images have been already displayed at that stage. After 23 displays, the system was

able to suggest 5 target images of “sunflower" and 7 target images of “buddha", which makes a

total of 12 images out of 16.
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Figure 4.10: Class “sunflowers" : pt(Xk) j evolution during different iterations : 14-17

4.9 Discussion

The system was able to converge toward the specified needs of the user, nevertheless it is notewor-

thy to mention that the framework is still very sensitive to the used features in order to measure the

similarity between different concepts. The distance metric that we have used combines the HOG

features and the probabilistic data model that we have constructed, further improvement may be

done by using new features in order to compare the similarity between images, and new metrics

approaches such as in [120]. Also it is clear that the better the clustering of the data, the better are

the suggestions of the system. The construction of the model is semi supervised in terms of the

class injections, but unsupervised in terms of the representation of each class by a certain number

of components basing on the MML criterion. Such framework may be built using a totally un-

supervised data model using any clustering technique including the mixture models. The search
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Figure 4.11: Class “sunflowers" : pt(Xk) j evolution during different iterations : 18-21
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Figure 4.12: Class “sunflowers" : pt(Xk) j evolution during different iterations : 22-23
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process can be longer when a component contains a large subset of images, another perspective of

research can be dedicated to find more appropriate techniques to discard “not interesting" images

within a component. The strategy followed by [107] to discard clusters that are not interesting

to the user is not appropriate, as a parent cluster that is discarded could contain sub clusters that

are interesting to the user. When compared with the work in [107], we introduced the possibility

of having multiple selections, and also the no preference option. In many cases the user decides

that many images are close to his/her target image and selects them all. Also, having a no pref-

erence selection enables the user not to mislead the system which may happen in the framework

proposed by [107]. We have introduced the possibility of having many target classes within the

same search process. Indeed, in many cases, the target class is composed of many sub classes that

can be mapped to several target classes, and the user does not have to redo the search process in

order to find them. For example, in the framework proposed by [107], it is not possible for the user

to have a suggested display that contains a mix of pictures including “buddha" and “sunflower", as

the system would only suggest one target class. The framework we have proposed is rather a gen-

eralization to what has been proposed to cover multiple target classes within a single framework.

We also do not discard any cluster, but we rather zoom on a cluster to select images from it, and

other clusters can reappear according to the choices of the user.

4.10 Summary

We have proposed a statistical framework where a search process without an explicit query but

rather basing on the interaction of users with system and using visual features only. We have

developed a bayesian formulation that provides the possibility of searching multi target classes

within the same search process. The similarity between images is quantified using a GID mixture

that also serves to model data. The merit of the model is shown through experiments including

real users and we present a case study of a search process that gives promising results in terms of

number of iterations needed to find the mental target classes within a given dataset. In the next

Chapter we propose to improve the data model that is based on the approache developed in chapter

3. It is clear that a better data clustering leads to a better performance, therefore we will propose a

new model to estimate the parameters of GID mixtures basing on variational Bayesian inference,

and include a features selection strategy in order to better distinguish objects classes.
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Chapter 5
Variational Bayesian Inference for Infinite

Generalized Inverted Dirichlet Mixtures with

Features Selection

5.1 Introduction

In chapter 3, we have proposed a new methodology in order to update a given model when new

data arrive on line. The approach proposes to establish a first model of the arriving data, then

compare its components with the existing components in the model, and decide wether 1) to create

new components in the final model, or 2) update the existing components of the old model, or 3)

do both. We have also introduced a user perception parameter that can help the system to have

a data representation, that we can use to form a hierarchical model which groups sub-clusters in

order to form a parent cluster that does not necessarily have similar data in the system feature

space but have the same meaning in the users semantic as shown in chapter 2. Still the challenging

point in the proposed model is to create the new arriving data model. Previously, in chapter 3,

we have considered five criteria in order to establish model selection, namely the minimum mes-

sage length (MML) [24], Akaike information criterion (AIC) [25], minimum description length

(MDL) [26], mixture MDL (MMDL) [27], and LEC [17]. Yet, these approaches are demanding

in terms of computional cost as we have to establish N complete estimations in order to select a

model among N models. Also the use of Newton-Raphson technique within the expectation max-

imization (EM) framework [19] is not always performant, as 1) it is not guaranteed to converge

in general, 2) is prone to finding poor solutions in the case of multi-modal distributions [121] and

3) is dependent on initialization [17, 122]. In order to mitigate these problems many researches
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considered pure Bayesian approaches, where the parameters are considered to be random vari-

ables and then follow probability distributions called priors that describe our knowledge before

using data [123], e.g. Bayesian frameworks using Markov chain Monte Carlo (MCMC) have been

proposed in [124, 125], and a non parametric Bayesian approach based on Dirichlet processes is

proposed in [126]. The main concern about fully Bayesian approaches is that they are computa-

tionally costly and their convergence is difficult to assess [127, 128]. In order to overcome those

problems, several variational Bayesian techniques has been proposed [129–132]. Indeed, the vari-

ational Bayesian inference consists of estimating a lower bound for the likelihood of observed data

with a marginalization performed over unobserved variables and it constitutes a better alternative

to MCMC. The other interesting aspect when performing clustering is to establish features selec-

tion. Indeed, it has been shown that not all the features have the same contribution in the clustering

process such as in [62] where the generalized Dirichlet (GD) mixture has been used and factorized

into a set of Beta distributions giving good results for proportional data clustering. Still, the Beta

distribution support is defined in [0 1], so it is not always an appropriate choice to represent positive

data. The GID mixture that can be factorized into a set of Beta prime (inverted Beta) distributions

whose support is ]0 ∞[, is still a more adequate choice to represent positive data [133]. We propose

in this chapter to build a variational Bayesian framework of GID mixture with features selection,

and investigate its modeling capabilities using synthetic and real data.

The rest of this chapter is organized as follows; in section 5.2 we introduce the statistical model that

is based on an infinite GID mixture model with features selection.Then, we propose a variational

Bayesian inference that estimates the parameters of the proposed model in section 5.3. In section

5.4 we investigate the performance of our algorithm on synthetic and real data and we conclude in

section 5.5.

5.2 The Statistical Model

5.2.1 Finite Generalized Inverted Dirichlet Mixture Model

In this subsection we recall the definition of the finite GID mixture model. Let us consider a set Y

of N D-dimensional vectors, such that Y = (�Y1,�Y2, . . . ,�YN). Let M denote the number of different

components forming a flat mixture model at the system level. We assume that Y is controlled

by a mixture of GID distributions and the vectors follow a common probability density function

p(�Yn|�π,�α,�β ) such that

p(�Yn|�π,�α,�β ) =
M

∑
j=1

π j

D

∏
d=1

Γ(α jd +β jd)

Γ(αd)Γ(βd)

Y αd−1
nd

(1+∑d
l=1Ynl)γd

(5.1)
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The GID posterior probability can be factorized such that (See Appendix B.1)

p( j|�Xi,�π,�α,�β ) ∝ π j

D

∏
l=1

pIBeta(Xil|α jl,β jl) (5.2)

where we have set Xi1 = Yi1 and Xil =
Yil

1+∑l−1
k=1 Yik

for l > 1. pIBeta(Xil|α jl,β jl) is an inverted Beta

distribution with parameters α jl and β jl

pIBeta(Xil|α j,β j) =
Γ(α jl +β jl)

Γ(α jl)Γ(β jl)
X

α jl−1
il (1+Xil)

−(α jl+β jl) (5.3)

The estimation of the parameters in Eq.5.1 is then equivalent to the estimation of the parameters

of the following mixture

p(X |�π,�α,�β )) =
N

∏
n=1

( M

∑
j=1

π j

D

∏
l=1

pIBeta(Xil|α jl,β jl)

)
(5.4)

5.2.2 Infinite Generalized Inverted Dirichlet Mixture Model

We construct an infinite GID model using a Dirichlet Process with a stick-breaking representation

[134] such that

p(Xi|�π,�α,�β )) =
∞

∑
j=1

π j

D

∏
l=1

pIBeta(Xil|α jl,β jl) (5.5)

with π j = λ j ∏ j−1
s=1(1−λs) and λ j ∼Beta(1,ψ) where ψ is a real number. Let Z = {�Z1,�Z2, ...

...,�ZN} denote the missing group indicator, where �Zn = (zn1,zn2, ...) is the label of �Xn , such that

zn j ∈ {0,1} , ∑∞
j=1 zn j = 1 and zn j is equal to one if �Xn belongs to class j and zero, otherwise. Then,

the distribution of X given the class label Z is

p(X |Z,�α,�β ) =
N

∏
i=1

∞

∏
j=1

( D

∏
l=1

pIBeta(Xil|α jl,β jl)
)zi j

(5.6)

5.2.3 Infinite Generalized Inverted Dirichlet Mixture Model With Features

Selection

Features selection is a fundamental aspect of machine learning especially with the growth of data

dimensionality [135]. Indeed, when data are multidimensional some of the features could be noisy

to the clustering process and deteriorate its performance. A feature is irrelevant when it does not

have a discriminatory effect on the clusters. Mathematically speaking, if we consider M clusters,
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and ∀n,m ∈ {1, ...,M}, KL
(

pIBeta(.|αnl,βnl), pIBeta(.|αml,βml)
)
� 0 where KL is the Kullback-

Leibler divergence, then {α jl,β jl}= {σl,τl}, ∀ j, such that {σl,τl} are the parameters of a common

inverted Beta distribution independent from the class labels. The works in [119, 136] have consid-

ered a common univariate distribution to model the irrelevant features, while the works in [62]

and [137] have respectively considered finite and infinite mixtures of overlapped distributions to

be common to all clusters than a single univariate distribution. We adopt the infinite mixture model

to represent the irrelevant features therefore we approximate each features as follows

p(Xil)�
(

iBeta(Xil|α jl,β jl)
)φil

( ∞

∏
k=1

(
iBeta(Xil|σkl,τkl)

)Wikl
)1−φil

(5.7)

where Wikl ∈ {1,0} such that Wikl is equal to one if Xil is generated from the kth components

of the infinite Beta mixture representing the irrelevant features. φil ∈ {0,1} and is equal to one

when l is a relevant feature and follows an inverted Beta distribution iBeta(Xil|α jl,β jl), otherwise

the feature l follows an infinite mixture of inverted Beta distributions such that

p(Xil) =
∞

∑
k=1

ηkiBeta(Xil|σkl,τkl) (5.8)

where ηk is the mixing probability, and {σkl,τkl} are the parameters of the inverted Beta

representing the kth components of the irrelevant feature. The likelihood of X that follows an

infinite GID mixture model with features selection can be written under the form

p(X |Z ,W ,�φ ,�α,�β ,�σ ,�τ) =
N

∏
i=1

∞

∏
j=1

[
D

∏
l=1

(
iBeta(Xil|α jl,β jl)

)φil
( ∞

∏
k=1

(
iBeta(Xil|σkl,τkl)

)Wikl
)1−φil

]Zi j

(5.9)

5.2.4 Prior Distributions for the Infinite GID Mixture With Features Selec-

tion

The variational Bayesian approach needs the definition of priors for Z ,W ,�φ ,�α,�β ,�σ and �τ . We

consider priors that can give us tractable solutions for updating the variational factors. The priors

of Z and W given the mixing coefficients �π and �η can be set as

p(Z |�π) =
N

∏
i=1

∞

∏
j=1

πZi j
j p(W |�η) =

N

∏
i=1

∞

∏
k=1

D

∏
l=1

ηWikl
k (5.10)

π j and ηk can be written according the stick-breaking approach under the following form
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π j = λ j

j−1

∏
s=1

(1−λs) ηk = γk

k−1

∏
s=1

(1− γs) (5.11)

Using Eqs.5.10 and 5.11, we can have the following distribution for Z and W

p(Z |�λ ) =
N

∏
i=1

∞

∏
j=1

[
λ j

j−1

∏
s=1

(1−λs)
]Zi j

p(W |�γ) =
N

∏
i=1

∞

∏
k=1

D

∏
l=1

[
γk

k−1

∏
s=1

(1− γs)
]Wikl

(5.12)

The prior distributions of�λ and�γ are given by the stick-breaking approach as follows

p(�λ |�ψ) =
∞

∏
j=1

Beta(1,ψ j) =
∞

∏
j=1

ψ j(1−λ j)
ψ j−1 p(�γ|�φ) =

∞

∏
k=1

Beta(1,φk) =
∞

∏
j=1

ψk(1−γk)
φk−1

(5.13)

where �ψ and �φ are the hyperparameters to which we can attribute conjugate Gamma priors

[138] as follows

p(�ψ) = G (�ψ|�a,�b) =
∞

∏
j=1

ba j
j

Γ(a j)
ψa j−1e−b jψ j p(�(φ)) = G (�φ |�c, �d) =

∞

∏
k=1

dck
k

Γ(ck)
ϕck−1e−dkϕk

(5.14)

The elements of hyperparameters vectors �a,�b,�c and �d are strictly positive. The prior distri-

bution of the feature indicator variable �φ is defined as

p(�φ |�ε) =
N

∏
i=1

D

∏
l=1

εφil
l1 ε1−φil

l2 (5.15)

where�ε = (�ε1, ..,�εD) is the features saliencies such that�εl = (εl1,εl2) and εl1 + εl2 = 1. �ε
can be seen as a proportional data so it can be modeled by a Dirichlet distribution such that

p(�ε) =
D

∏
l=1

Dir(�εl|�ξ ) =
D

∏
l=1

Γ(ξ1 +ξ2)

Γ(ξ1)Γ(ξ2)
εξ1−1

l1
εξ2−1

l2
(5.16)

with the hyperparameters �ξ = (εl1,εl2) that are strictly positive. As for the parameters
�α,�β ,�σ and�τ we consider the Gamma distribution as a prior distribution for them such that

p(�α) = G (�α|�u,�v) =
∞
∏
j=1

D
∏

l=1

v
u jl
jl

Γ(u jl)
αu jl−1

jl e−v jlα jl
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p(�β ) = G (�β |�p,�q) =
∞
∏
j=1

D
∏

l=1

q
p jl
jl

Γ(p jl)
β p jl−1

jl e−q jlβ jl

p(�σ) = G (�σ |�g,�h) =
∞
∏

k=1

D
∏

l=1

h
gkl
kl

Γ(gkl)
σgkl−1

kl e−hklσkl

p(�τ) = G (�σ |�s,�t) =
∞
∏

k=1

D
∏

l=1

t
skl
kl

Γ(skl)
τskl−1

kl e−tklτkl (5.17)

where all the elements of hyperparameters vectors �u,�v,�q,�g,�h,�t, and �s are strictly positive.

To summarize, the set of parameters of unknown variables is Θ = {Z ,W ,�α,�β ,�σ ,�τ,�λ , �ψ,�γ,�ϕ,�ε},

and the joint distribution of all the random variables is given by

p(X ,Θ) = p(X |Z ,W ,�α,�β ,�σ ,�τ,�λ , �ψ,�γ,�ϕ,�ε)

= p(X |Z ,W ,Φ,�α,�β ,�σ ,�τ)p(Z |�λ )p(�λ |�Ψ)p(�Ψ)p(W |�γ)p(�γ|�ϕ)p(�ϕ)p(�φ |�ε)p(�ε)p(�α)p(�β )p(�σ)p(�τ)

=
N

∏
i=1

∞

∏
j=1

⎧⎨
⎩

D

∏
l=1

[
Γ(α jl +β jl)

Γ(α jl)Γ(β jl)

Xα jl−1
il

(1+Xil)
(α jl+β jl)

]φil
[

∞

∏
k=1

(
Γ(σkd + τkd)

Γ(σkl)Γ(τkl)

Xσkl−1
il

(1+Xil)(σkl+τkl)

)wikl
]1−φil

⎫⎬
⎭

Zi j

×
N

∏
i=1

∞

∏
j=1

[
λ j

j−1

∏
s=1

(1−λs)

]Zi j

×
∞

∏
j=1

ψ j(1−λ j)
ψ j−1 ×

∞

∏
j=1

ba j
j

Γ(a j)
ψa j−1e−b jψ j

×
N

∏
i=1

∞

∏
k=1

D

∏
l=1

[
γk

k−1

∏
s=1

(1− γs)

]Wikl

×
∞

∏
k=1

ϕk(1− γk)
ϕk−1 ×

∞

∏
k=1

dck
k

Γ(ck)
ϕck−1e−dkϕk

×
N

∏
i=1

D

∏
l=1

εφli
l1 ε1−φli

l2 ×
D

∏
l=1

Γ(ξ1 +ξ2)

Γ(ξ1)Γ(ξ2)
εξ1−1

l1 εξ2−1
l2 ×

∞

∏
j=1

D

∏
l=1

[
vu jl

jl

Γ(u jl)
αu jl−1

jl e−v jlα jl
qp jl

jl

Γ(p jl)
β p jl−1

jl e−q jlβ jl

]

×
∞

∏
k=1

D

∏
l=1

[
hgkl

kl
Γ(gkl)

σgkl−1
kl e−hklσkl

tskl
kl

Γ(skl)
τskl−1

kl e−tklτkl

]
(5.18)

Fig.5.1 illustrates the dependencies between all the variables via a graphical model.

5.3 Variational Inference

In this section we develop a variational inference framework for the parameters estimation of the

infinite GID mixture with features selection. The aim of variational inference is to determine a

distribution Q(Θ) that approximates the true posterior distribution p(Θ|X ). The Kullback-Leibler

(KL) divergence between Q(Θ) and p(Θ|X ) is given by
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Figure 5.1: Graphical model representation of the infinite GID mixture model with features selection. The random
variables are in circles, and the model parameters in squares. The number mentioned in the right upper corner of
the plates indicates the number of repetition of the contained random variables. The arcs describe the conditional
dependencies between variables.

KL(Q||P) = −
∫

Q(Θ) ln
(

p(Θ|X )

Q(Θ)

)
dΘ = ln p(X )−L (Q) (5.19)

with

L (Q) =
∫

Q(Θ) ln
(

p(Θ,X )

Q(Θ)

)
dΘ (5.20)

since KL(Q||P)≥ 0 and equal to zero when Q(Θ) = p(Θ|X ), we can conclude from Eq.5.19

that L (Q) ≤ ln p(X ), which means that L (Q) can be considered as a lower bound to ln p(X ).

However in practice, the true posterior distribution is computationally intractable and cannot be

directly used for variational inference. Thus, we have to consider a restricted family of Q(Θ) that

can be computed [139]. Indeed we factorize Q(Θ) into disjoint tractable distributions such that

Q(Θ) = ∏i Qi(Θi), which is known as the mean field theory [140]. The maximization of L (Q)

is established through a variational optimization with respect to each of the factor distributions

Qi(Θi). If we consider a specific Qs,the variational approximation consists of keeping {Θi}i	=s

fixed and maximize L (Q) with respect to all possible forms for the distribution Qs(Θs). The

optimal solution for Qs(Θs) is given by [23]

lnQs(Θs) = 〈ln p(X ,Θ)〉 j 	=s + const (5.21)

where 〈.〉 j 	=s denotes and expectation with respect to all the distributions Qi(Θi) except for
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i = s, such that

〈ln p(X ,Θ)〉 j 	=s =
∫

ln p(X ,Θ)∏
i	=s

Qi(Θi)dΘi (5.22)

and the normalized solution is given by

Qs(Θs) =
exp〈ln p(X ,Θ)〉 j 	=s

exp
∫ 〈ln p(X ,Θ)〉 j 	=sdΘ

(5.23)

As proposed by [23], we initialize Qs(Θs) appropriately, and then we cycle through the factors

and replace each in turn with a revised estimate given by Eq.5.21 and evaluated using the current

estimates for all the other factors. A convergence is guaranteed because the bound is convex with

respect to each of the factors Qi(Θi) [23, 141]. In order to exploit the bound, we should consider

the truncation of the stick-breaking representation as proposed by [138] to establish a variational

inference for DP mixtures. The truncation of the stick-breaking representation was also proposed

by [142] in the context of sampling-based inference for an approximation to the DP mixture model.

This is done by fixing a value M, such that λM = 1, and π j = 0 when j > M, which leads to

∑M
j=1 π j = 1. We apply a similar truncation to the infinite inverted Beta mixture representing the

irrelevant features by fixing a value K, such that γK = 1, and ηk = 0 when k > K, which leads

to ∑K
k=1 ηk = 1. Note that the model still a full Dirichlet process and is not truncated, only the

variational distribution is truncated. The truncation levels M and K are variational parameters that

can be freely set, and they are not a part of the prior model specification [23]. Thus M and K

can be optimized during the learning process. The factorization of Q(Θ) can be written under the

following form

Q(Θ) =

[ N

∏
i=1

M

∏
j=1

Q(Zi j)

][ M

∏
j=1

Q(λ j)Q(Ψ j)

][ N

∏
i=1

K

∏
k=1

D

∏
l=1

Q(Wikl)

][ K

∏
k=1

Q(γk)Q(ϕk)

]

×
[ N

∏
i=1

D

∏
l=1

Q(φil)

][ D

∏
l=1

Q(�εl)

][ M

∏
j=1

D

∏
l=1

Q(α jl)Q(β jl)

][ K

∏
k=1

D

∏
l=1

Q(σkl)Q(τkl)

]
(5.24)

The optimal solutions are the following, (details in C.1)

Q(Z) = ∏N
i=1 ∏M

j=1 rZi j
i j Q(�λ ) =

M

∏
j=1

Beta(λ j|θ j,v j)

Q(�ψ) = ∏M
j=1 G (ψ j|a∗j ,b∗j) Q(�α) =

M

∏
j=1

D

∏
l=1

G (α jl|u∗jl,v∗jl)
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Q(�β ) = ∏M
j=1 ∏D

l=1 G (β jl|p∗jl,q∗jl) Q(W ) =
N

∏
i=1

K

∏
k=1

D

∏
l=1

mWikl
ikl

Q(�γ) = ∏K
k=1 Beta(γk|ρk,ϖk) Q(�ϕ) =

K

∏
k=1

G (ϕk|c∗k ,d∗
k )

Q(�φ) = ∏N
i=1 ∏D

l=1 f φil
il (1− fil)

(1−φil) Q(�ε) =
D

∏
l=1

Dir(εl|�ξ ∗)

Q(�σ) = ∏K
k=1 ∏D

l=1 G (σkl|g∗kl,h
∗
kl) Q(�τ) =

K

∏
k=1

D

∏
l=1

G (τkl|s∗kl, t
∗
kl)

(5.25)

with

ri j =
r̃i j

∑M
j=1 r̃i j

, mikl =
m̃ikl

∑K
k=1 m̃ikl

, fil =
f (φil)
il

f (φil)
il + f (1−φil)

il

(5.26)

r̃i j = exp

{
D

∑
l=1

(
〈φil〉

[
R̃ jl +(ᾱ jl −1) lnXil − (ᾱ jl + β̄ jl) ln(1+Xil)

]

+ 〈1−φil〉
K

∑
k=1

〈wikl〉
[
F̃kl +(σ̄kl −1) lnXil − (σ̄kl + τ̄kl) ln(1+Xil)

])

+ 〈lnλ j〉+
j−1

∑
s=1

〈ln(1−λs)〉
}

(5.27)

m̃ikl = exp

{
〈1−φil〉

(
Fkl +(σ̄kl −1) lnXil − (σ̄kl + τ̄kl) ln(1+Xil)

)
+ 〈lnγk〉+

k−1

∑
s=1

〈ln(1− γs)〉
}

(5.28)

f (φil)
il = exp

{
〈lnεl1〉+

M

∑
j=1

〈Zi j〉
[
R jl +(ᾱ jl −1) lnXil − (ᾱ jl + β̄ jl) ln(1+Xil)

]}
(5.29)
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f (1−φil)
il = exp

{
〈lnεl2〉+

{ K

∑
k=1

〈Wikl〉
[
Fkl +(σ̄kl −1) lnXil − (σ̄kl + τ̄kl) ln(1+Xil)

]}}
(5.30)

R̃ = ln
Γ(ᾱ + β̄ )
Γ(ᾱ)Γ(β̄ )

+ ᾱ[ψ(ᾱ + β̄ )−ψ(ᾱ)](〈lnα〉− ln ᾱ)+ β̄ [ψ(β̄ + ᾱ)−ψ(β̄ )](〈lnβ 〉− ln β̄ )

+ 0.5ᾱ2[ψ ′(ᾱ + β̄ )−ψ ′(ᾱ)]〈(lnα − ln ᾱ)2〉+0.5β̄ 2[ψ ′(β̄ + ᾱ)−ψ ′(β̄ )]〈(lnβ − ln β̄ )2〉
+ ᾱβ̄ψ ′(ᾱ + β̄ )(〈lnα〉− ln ᾱ)(〈lnβ 〉− ln β̄ ) (5.31)

F̃ = ln
Γ(σ̄ + τ̄)
Γ(σ̄)Γ(τ̄)

+ σ̄ [ψ(σ̄ + τ̄)−ψ(σ̄)](〈lnσ〉− ln σ̄)+ τ̄[ψ(τ̄ + σ̄)−ψ(τ̄)](〈lnτ〉− ln τ̄)

+ 0.5σ̄2[ψ ′(σ̄ + τ̄)−ψ ′(σ̄)]〈(lnσ − ln σ̄)2〉+0.5τ̄2[ψ ′(τ̄ + σ̄)−ψ ′(τ̄)]〈(lnτ − ln τ̄)2〉
+ σ̄ τ̄ψ ′(σ̄ + τ̄)(〈lnσ〉− ln σ̄)(〈lnτ〉− ln τ̄) (5.32)

where ψ(.) is the digamma function that is defined as ψ(α) = d lnΓ(α)
dα .

θ j = 1+
N

∑
i=1

〈Zi j〉 , ϑ j = 〈Ψ j〉+
N

∑
1

M

∑
s= j+1

〈Zis〉 (5.33)

a∗j = a j +1 , b∗j = b j −〈ln(1−λ j)〉 (5.34)

ρk = 1+
N

∑
i=1

D

∑
l=1

〈Wikl〉 , ϖk = 〈ϕk〉+
N

∑
i=1

K

∑
s=k+1

D

∑
l=1

〈Wisl〉 (5.35)

c∗k = ck +1 , d∗
k = dk −〈ln(1− γk)〉 (5.36)

ξ ∗
1 = ξ1 +

N

∑
i=1

〈φil〉 , ξ ∗
2 = ξ2 +

N

∑
i=1

〈1−φil〉 (5.37)

u∗jl = u jl +
N

∑
i=1

〈Zi j〉〈φil〉
[
ψ(ᾱ jl + β̄ jl)−ψ(ᾱ jl)+ β̄ jlψ ′(ᾱ jl + β̄ jl))(〈lnβ jl〉− ln β̄ jl)

]
ᾱ jl (5.38)
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v∗jl = v jl −
N

∑
i=1

〈Zi j〉〈φil〉 ln
Xil

1+Xil
(5.39)

p∗jl = p jl +
N

∑
i=1

〈Zi j〉〈φil〉
[
ψ(β̄ jl + ᾱ jl)−ψ(β̄ jl)+ ᾱ jlψ ′(β̄ jl + ᾱ jl))(〈lnα jl〉− ln ᾱ jl)

]
β̄ jl (5.40)

q∗jl = q jl −
N

∑
i=1

〈Zi j〉〈φil〉 ln
1

1+Xil
(5.41)

g∗kl = gkl +
N

∑
i=1

〈1−φil〉〈Wikl〉
[
ψ(σ̄kl + τ̄kl)−ψ(σ̄kl)+ τ̄klψ ′(σ̄kl + τ̄kl))(〈lnτkl〉− ln τ̄kl)

]
σ̄kl (5.42)

h∗kl = hkl −
N

∑
i=1

〈1−φil〉〈Wjkl〉 ln
Xil

1+Xil
(5.43)

s∗kl = skl +
N

∑
i=1

〈1−φil〉〈Wikl〉
[
ψ(τ̄kl + σ̄kl)−ψ(τ̄kl)+ σ̄klψ ′(τ̄kl + σ̄kl))(〈lnσkl〉− ln σ̄kl)

]
τ̄kl (5.44)

t∗kl = tkl −
N

∑
i=1

〈1−φil〉〈Wjkl〉 ln
1

1+Xil
(5.45)

The expected values are given by

ᾱ jl =
u∗jl
v∗jl

, β̄ jl =
p∗jl
q∗jl

, σ̄kl =
g∗kl
h∗jl

, τ̄kl =
s∗kl
t∗kl

(5.46)

〈ψ j〉=
a∗j
b∗j

, 〈ϕk〉=
c∗k
d∗

k
, 〈Zi j〉= ri j, 〈Wikl〉= mikl (5.47)

〈φil〉= fil, 〈1−φil〉= 1− fil, 〈lnα〉= ψ(u∗)− lnv∗, 〈lnβ 〉= ψ(p∗)− lnq∗ (5.48)

〈lnσ〉= ψ(g∗)− lnh∗, 〈lnτ〉= ψ(s∗)− ln t∗ (5.49)
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〈lnλ j〉= ψ(θ)−ψ(θ +ϑ), 〈ln(1−λ j)〉= ψ(ϑ)−ψ(θ +ϑ) (5.50)

〈lnγk〉= ψ(ρ)−ψ(ρ +ϖ), 〈ln(1− γk)〉= ψ(ϖ)−ψ(ρ +ϖ), (5.51)

〈lnεl1〉= ψ(ξ ∗
1 )−ψ(ξ ∗

1 +ξ ∗
2 ), 〈lnεl2〉= ψ(ξ ∗

2 )−ψ(ξ ∗
1 +ξ ∗

2 ) (5.52)

〈(lnα − ln ᾱ)2〉= [ψ(u∗)− lnu∗]2 +ψ ′(u∗) (5.53)

〈(lnβ − ln β̄ )2〉= [ψ(p∗)− ln p∗]2 +ψ ′(p∗) (5.54)

〈(lnσ − ln σ̄)2〉= [ψ(g∗)− lng∗]2 +ψ ′(g∗) (5.55)

〈(lnτ − ln τ̄)2〉= [ψ(s∗)− lns∗]2 +ψ ′(s∗) (5.56)

In order to initialize M and K, we adopt the same strategy adopted by [62, 143, 144] which

consists of over-initializing the number of clusters M and K to be much larger than the true model,

and then infer the structure of the mixture by discarding the components whose mixing probabili-

ties are close to zero. The learning process is summarized in Algorithm.2.

Algorithm 2 Infinite GID learning using variational inference with features selection
1: Choose truncations levels M and K
2: Initialize the values for hyperparameters u ji,v ji, p ji,q ji,gkl,hkl,skl, tkl,a j,b j,ck,dk,ξ1, and ξ2.
3: Initialize the values of ri j and mikl using the K-means algorithm.
4: Estimate the expected value using Eqs.5.46-5.56.
5: Update the variational solutions of each factor using Eqs.5.25.
6: If converge criteria is reached go to 7. else go to 4.
7: Compute the expected value of λ j as 〈λ j〉= θ j

θ j+ϑ j
and substitute it into Eq.5.11 in order to compute the

estimated mixing probabilities π j

8: Compute the expected value of γk as 〈γk〉= ρk
ρk+ϖk

and substitute it into Eq.5.11 in order to compute the
estimated mixing probabilities ηk

9: Calculate the expected values of the features saliencies 〈εl〉= ξ ∗
1

ξ ∗
1 +ξ ∗

2
10: Set the optimal number of components M and K by discarding the components whose mixing probabil-

ities are close to 0.
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5.4 Experimental Results

In this section, an evaluation of our proposed algorithm is performed using synthetic and real

computer vision datasets. The values of hyper parameters are empirically initialized basing on

several runs. u, p,h, t,g and s are set to 1, and v,q are set to 0.05. The hyper parameters a,b,c

and d are set to 1, and ξ1,ξ2 are set to 0.01. The choice of these parameters have supported our

experiments. The hyper parameters can be randomly set, but a good initialization is still crucial

because the Kullback-Leibler divergence to the true posterior may contain many local minima

[145]. Several methods have been proposed to estimate an initial value for the hyperparameters

in [145, 146] that are beyond the scope of this work.

0 1 2 3 4 5 6
0

0.5

1

1.5

x

P
(x

)

 

 
11
21
Estimated 11
Estimated 21

(a) relevant dimension 1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

P
(x

)

 

 
12
22
Estimated 12
Estimated 22

(b) relevant dimension 2

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

x

P
(x

)

 

 
13
23
Estimated 13
Estimated 23

(c) relevant dimension 3

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

P
(x

)

 

 
Irrelevant 1
Irrelevant 2
Irrelevant 3
Estimated

(d) irrelevant dimensions 4-5-6-7-8-9-10-11

Figure 5.2: Different generated inverted Beta distributions labeled in ji representing the 11 dimensions of the model
in Table 5.1.
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Table 5.1: Real and estimated parameters of relevant components in the case of a 11-dimensional dataset generated
from 2-components mixture model.

j l n j π j α ji β jl π̂ j α̂ jl β̂ jl
1 1 600 0.5 20 10 0.5077 19.76 10.11

2 16 12 14.53 11.24
3 13 14 13.48 14.50

2 1 600 0.5 28 26 0.4923 27.55 26.09
2 35 35 35.60 34.97
3 16 34 14.29 30.71

5.4.1 Synthetic Data

At a first stage we evaluate the performance of our algorithm using synthetic data. We propose

to use 11-dimensional datasets, whose first three dimensions are relevant and the remaining eight

dimensions are irrelevant. Depending on the dataset, the relevant features are generated using at

least 2 distinguishable inverted beta distributions, while the irrelevant features are generated by a

mixture whose inverted beta distributions are all overlapping (IBeta(2,3), IBeta(1,4), IBeta(8,5)).

For all our experiments on synthetic data we use an initial value of M = 15 and K = 10. The

first dataset is constituted of two components, composed of 600 samples each. Fig.5.2 represents

the real and estimated histograms, where Fig.5.2a, Fig.5.2b, and Fig.5.2c represent the different

inverted beta distributions for the first three relevant dimensions while Fig.5.2d represents the

distributions of the 8 irrelevant features. The continuous lines represent the real histograms while

the dashed ones represent the estimated histograms. The obtained results are reported in Table.5.1

where we show the real and estimated parameters. For the easiness of presentation we do not

illustrate the values of the estimated parameters of the irrelevant features, but as it can be shown

in Fig.5.2d, the estimated histograms reflect a good estimation. The algorithm was capable to find

the correct number of classes M = 2 and the correct number of distributions forming the irrelevant

features which is K = 3. The feature saliency was also correctly estimated, as εl1 = 1 for the first

three features and zero for the rest. The maximum detected error is 10.69%, which remains a

good estimate with the presence of irrelevant features and the fact that we have considered slightly

overlapping relevant features.

The second dataset is constructed by adding a third component to the first dataset, as shown

in Fig.5.3, where we plot the estimated and real histograms of the different dimensions, as for

the first dataset in Fig.5.2. The variational inference algorithm was capable to find the correct

number of classes M = 3 and K = 3. We report on the estimated parameters in Table.5.2, where

the maximum detected relative error is equal to 12.13%. Still the estimated histograms are almost

indistinguishable from the real ones, which means that the estimated parameters leads to the same
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Figure 5.3: Different generated inverted Beta distributions labeled in ji representing the 11 dimensions of the model
in Table 5.2.

performance of clustering using the real parameters.

The third dataset that we have used in constructed by adding a fourth component to the third

dataset as illustrated in Fig.5.4. The algorithm was capable to find the correct number of relevant

components M = 4 , and the number of components composing the mixture of irrelevant features

K = 3. We report on the estimated parameters of the relevant features in Table.5.3 where the

maximum detected relative error is equal to 13.70%. It is noteworthy that the synthetic dataset

that we are considering are difficult to estimate even with the absence of irrelevant features as

the relevant features are still overlapping. The obtained results show that our algorithm performs

well for synthetic data, as it was capable to optimally select M and K , and generate estimated

histograms that are almost indistinguishable from the real ones, leading to the same clustering
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Table 5.2: Real and estimated parameters of relevant components in the case of a 11-dimensional dataset generated
from 3-components mixture model.

j l n j π j α ji β jl π̂ j α̂ jl β̂ jl
1 1 600 0.4 20 10 0.3988 21.61 10.81

2 16 12 17.94 13.19
3 13 14 12.34 12.88

2 1 600 0.4 28 26 0.4084 28.22 26.10
2 35 35 32.68 33.11
3 16 34 14.92 31.34

3 1 300 0.2 33 16 0.1928 36.89 17.56
2 22 35 22.99 37.02
3 24 54 22.64 51.48

Table 5.3: Real and estimated parameters of relevant components in the case of a 11-dimensional dataset generated
from 4-components mixture model.

j l n j π j α ji β jl π̂ j α̂ jl β̂ jl
1 1 600 0.30 20 10 0.3053 22.53 11.09

2 16 12 14.78 11.00
3 13 14 12.29 13.45

2 1 600 0.30 28 26 0.2991 27.45 25.34
2 35 35 38.99 38.92
3 16 34 15.02 32.16

3 1 300 0.15 33 16 0.1447 33.66 16.28
2 22 35 20.44 33.51
3 24 54 25.20 57.62

4 1 500 0.25 44 42 0.2509 41.42 39.44
2 50 23 43.15 20.26
3 35 22 35.52 23.16

results.

5.4.2 Visual Scenes Categorization

In this section we investigate the performance of our algorithm using real-life data. We consider the

publicly available visual scenes dataset that was proposed in [147]. We mainly used four categories

which are Highway (260 images), InsideCity (308 images), TallBuilding (356 images), and Forest

(328 images). Fig.5.5 illustrates samples of the considered dataset. The images within a given

category are diverse and the visual scenes have different objects, colors and shapes. The features of

each image have been extracted using the local Histogram of Oriented Gradient (HOG) descriptor

proposed in [75]. The HOG algorithm is efficient in terms of detecting local characteristics of
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Figure 5.4: Different generated inverted Beta distributions labeled in ji representing the 11 dimensions of the model
in Table 5.3.

images and object recognition. During our experiments each image was represented by a 81-

dimensional feature vector.

The experiments consists of establishing a clustering of the data basing on the hierarchal

construction strategy that has been proposed in chapter 2, where a parent cluster is composed of

sub children clusters. As proposed in chapter 2, we label each cluster according to the images that

have been grouped into it. Indeed, we attribute each cluster k to the super class j whose elements

are the most present in cluster k such that

labelclusterk = argmax
j

elements o f superclass j in clusterk

elements in clusterk
(5.57)

We consider that we have four super classes that are Highway, InsideCity, TallBuiling and Forest.
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Figure 5.5: Visual Scenes Dataset : Forest, InsideCity, Highway, TallBuilding.

Indeed, we have shown in in chapter 2 that it is more appropriate to represent a given object class

by a mixture than one single distribution, which is convenient with variational inference that is able

to set the optimal number of components to model a given dataset without the need of forcing the

number of components to be equal to the number of object classes. Thus, the optimal number of

components can be largely higher than the number of object classes. The work in [129] particularly

shows that the appropriate number of components for the mixture can be determined in a single

training run without recourse to cross-validation using variational inference. In this experiment

we consider to compare mixture models that mainly use the inverted Dirichlet distributions and

the generalized inverted Dirichlet distributions that involve inverted Beta distributions for each

dimension. It as been shown in chapter 3 that these mixture models outperform the GMM in

terms of clustering accuracy. We propose to consider the variational infinite GID mixture with

features selection (Var-InfGID-FS), the variational infinite GID mixture without considering the

features selection (Var-InfGID), the GID mixture using EM and MML (MML-EM-GID), and the

ID mixture using EM and MML (MML-EM-ID). For the Var-InfGID-FS we set the initial values

of M = 25 and K = 30, following the strategy proposed by [62, 143, 144] which consists of setting

a larger number of clusters than four in our case. For the Var-InfGID we set the initial values

of M = 25, and as for the MML-EM-GID and MML-EM-GID, we consider 25 models going

from 1 component to 25 components, and then we use the MML as defined in chapter 3 to select

the optimal model. Tables.5.4, 5.5, 5.6 and 5.7 show the confusion matrices of the clustering

results using Var-InfGID-FS , Var-InfGID, MML-EM-GID and MML-EM-ID, respectively. Using

those confusion matrices we calculate the clustering accuracies reported in Table.5.8, with the

relevant number of clusters that constitute the model. The obtained results show that the Var-

InfGID-FS outperforms the other algorithms with an accuracy equal to 83.39%, followed by the
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Table 5.4: Visual Scenes Var-InfGID-FS confusion matrix.

Forest Highway InsideCity TallBuilding
Forest 324 0 0 4

Highway 11 238 9 2
InsideCity 22 9 192 85

TallBuilding 28 13 25 290

Table 5.5: Visual Scenes Var-InfGID confusion matrix.

Forest Highway InsideCity TallBuilding
Forest 322 0 2 4

Highway 1 194 64 1
InsideCity 0 9 184 115

TallBuilding 1 5 46 304

Table 5.6: Visual Scenes MML-EM-GID confusion matrix.

Forest Highway InsideCity TallBuilding
Forest 319 0 2 7

Highway 0 188 70 2
InsideCity 0 5 246 57

TallBuilding 1 3 116 236

Table 5.7: Visual Scenes MML-EM-ID confusion matrix.

Forest Highway InsideCity TallBuilding
Forest 320 0 2 6

Highway 1 185 74 0
InsideCity 0 5 281 22

TallBuilding 1 4 152 199

Var-InfGID with accuracy equal to 80.19% which shows the merit of variational inference and

features selection.

Table 5.8: Obtained Accuracies and corresponding of clusters for each model : Visual Scenes Dataset

GID VAR FS GID VAR GID EM MML ID EM MML
Accuracy 83.39% 80.19% 78.99% 78.67%

Number of Clusters 7 5 6 8
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Figure 5.6: Digits dataset : sample images.

5.4.3 Digits Categorization

For the second application on a real computer vision dataset, we consider the public available

MNIST digits database which is a large database of handwritten digits [148]. Each MNIST image

is a digitized picture of a single handwritten digit character. Each image is 28 x 28 pixels in

size. Each pixel value is between 0, which represents white, and 255, which represents black.

Intermediate pixel values represent shades of gray. Fig.5.6 shows samples from 1 to 9 of the

handwritten digits. The digits recognition may be easy for a human being in most of cases, but it

still a challenging application for machine learning approaches. We also consider the HOG features

that we extract from 60000 digits images that are distributed as follows ; Zero (5923 images), One

(6742 images), Two (5958 images), Three ( 6131 images), Four (5842 images), Five (5421 images),

Six (5918 images), Seven (6265 images), Eight (5851 images), Nine (5949 images). Bear in mind

that our experiment consists of clustering without any training phase as data is injected to the

algorithm without any prior knowledge about the observations labels. As illustrated in Fig.5.6, the

optical digits for a given number take different shapes and orientations, therefore we expect them

to form a considerable number of clusters for one single number. We set an initial value of M = 500

for the Var-InfGID-FS and Var-InfGID. We set K = 100 for the Var-InfGID-FS. The use of MML

is not practical in this case, especially when the number of classes increases significantly and we

have to go through 500 models that are computationally costly in order to select the best model, in

contrast with the variational inference that needs a single run in order to select the optimal value

of M. Therefore this experiment is restricted on the Var-InfGID-FS and Var-InfGID, in order to

show the merit of features selection on the clustering accuracy. Tables. 5.9 and 5.10 respectively
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show the confusion matrices obtained using the Var-InfGID-FS and Var-InfGID. We report on the

accuracy of clustering in Table.5.11.

Table 5.9: Digits Var-InfGID-FS confusion matrix.

Zero One Two Three Four Five Six Seven Eight Nine
Zero 5716 39 22 4 2 18 23 11 67 21
One 0 6522 64 1 6 0 4 16 28 101
Two 12 14 5502 198 15 13 4 83 96 21

Three 16 12 436 5036 6 229 2 125 202 67
Four 1 45 23 2 5320 5 88 26 46 286
Five 31 26 20 209 7 4712 65 32 238 81
Six 31 57 9 1 23 40 5655 0 100 2

Seven 6 23 96 48 2 4 0 5753 43 290
Eight 38 59 61 70 18 192 97 43 5128 145
Nine 63 29 24 49 62 27 11 229 103 5352

Table 5.10: Digits Var-InfGID confusion matrix.

Zero One Two Three Four Five Six Seven Eight Nine
Zero 5601 47 18 128 0 26 36 13 46 8
One 0 6595 92 10 5 1 3 32 0 4
Two 6 15 5413 374 2 8 7 67 49 17

Three 9 3 373 5431 3 130 4 61 72 45
Four 0 51 25 21 5396 11 121 32 25 160
Five 13 4 24 545 2 4553 76 12 159 33
Six 34 59 12 25 16 25 5678 1 66 2

Seven 0 9 101 151 20 22 1 5868 14 79
Eight 49 59 48 497 29 191 147 44 4640 147
Nine 53 43 20 318 127 16 11 355 64 4942

Table 5.11: Obtained Accuracies and corresponding of clusters for each model : Digits Dataset

GID VAR FS GID VAR
Accuracy 91.16% 90.20 %

Number of Clusters 240 179

We notice that the accuracy is improved by 0.96% when using the features selection, which

concern 576 images out of 60000. Naturally the impact of this accuracy improvement increases

when the number of clustered data is considerable.
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Figure 5.7: Features saliency of different datasets.

5.4.4 Discussion

The model we have built shows the merit of the variational inference over the EM learning using

MML. Using the Var-InfGID-FS improved the clustering accuracy by 4.72% (using MML-EM-

ID), 4.40% (using MML-EM-GID), and 3.20% (using Var-InfGID), when applied on the visual

scenes dataset. Also, using the Var-InfGID-FS improved the accuracy of clustering by 0.96%

(using Var-InfGID) when applied on the 60000 digits dataset, which shows the merit of features

selection. Fig.5.7 show the features saliency of the two datasets when using the Var-InfGID-FS.

We notice that the algorithm was capable to assign different weights to features as some features

are insignificant in the clustering process, and some others have a high discriminative effect. When

we compare the number of clusters obtained when using the Var-InfGID-FS with the one obtained

when using Var-InfGID, we notice that usually the number of clusters resulted by the Var-InfGID-

FS is higher. This is due to the fact that the features selection leads to a denoising process that

discard the features that do not have a discriminative effect and focus on the features that contribute

the most to construct clusters with a higher cohesion which may lead to an increase of the number

of clusters.

5.5 Summary

We have developed a variational Bayesian learning framework for the infinite generalized Dirichlet

mixture model that has proven its capability to model multidimensional data. We also integrate a
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“features selection" approach to highlight the features that are most informative in order to con-

struct an appropriate model in terms of clustering accuracy. Experiments on synthetic data as well

as real data generated from visual scenes and handwritten digits datasets illustrate and validate

the proposed approach that can be used as complementary alternative to the Markov chain Monte

Carlo for inference in large statistical models. The variational Bayesian learning is shown to be

more effective than the EM algorithm and MML used in chapter 3.
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Chapter 6
Conclusions

In this thesis we have developed several techniques basing on mixture-models in order to find new

approaches to model data and improve clustering accuracy that is dependent on the application

context and users perceptions. We have mainly developed our approaches using two distributions,

namely the inverted Dirichlet (ID) and the generalized inverted Dirichlet (GID) distributions. The

latter is shown to give better results in terms of data modeling capabilities and clustering accuracy.

Apart from Chapter 5 which is specifically dedicated to the GID mixture model, the developed

techniques in Chapter 2, Chapter 3, and Chapter 4 have enough generalization to integrate any

other distribution. The choice of the of the ID and GID distributions is driven by their capabilities

to model positive data that naturally occur in real life applications.

In Chapter 2, we have developed a methodology to model data in a flexible hierarchical way

that can be altered on the fly according to a given ontology. The proposed model reduces the

gap between the system representation of data in terms of clustering, and the human comprehen-

sion level that groups these clusters to form semantically understandable object representations.

The work addresses the parameter estimation of different inverted Dirichlet distributions within a

hierarchical model using a bottom-top strategy. The proposed methodology has been shown to out-

perform the classical approach where each class is represented by a single mixture component in

the training phase. We also proposed a voting strategy to assign semantic meanings to the system

level clusters in order to represent a given object.

Chapter 3 was devoted to develop a methodology that enables a learning system to handle

new coming data, learn it and update the data model according to it. The proposed approach

enables users to control how the data should be perceived by the system. The work addresses the

parameter estimation of GID mixtures, the update of their parameters and creation of new classes

when needed. Several probabilistic metrics has been developed for the GID distribution such as

Kullback-Leibler divergence. We performed a simulation on synthetic data which has shown the
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capability of the framework to model the data as intended. We also validated this model using

real-life data for the problem of clustering and classification, including the hierarchical model that

we proposed before. We have also shown that our model outperforms in terms of classification

accuracy several other model-based approaches. The application of our approach can reach several

research and industrial domains especially when a system needs a sort of semantic understanding

when processing the data which is introduced by the perception parameter that we integrated in

our model.

In Chapter 4 we have proposed a statistical framework whose purpose is to help a user find

target concepts within a set of data, without expressing specific query to the system but rather bas-

ing on a mental process. The system tries to distinguish the user needs basing on his/her selections.

Such search processes are justified by the fact that, in many cases, users cannot express what they

have in mind, or lack the needed vocabulary to describe a concept. We have mainly included the

multi target classes search within one single search process, and also included the multi selection

and no preference options compared to some previous research work that tried to solve the "Zero

Page" problem. We have also proposed a new data model basing on the GID mixture. A such

model, can be used to construct different models of the data according to the needs of the system

designer, and basing on the hierarchical model proposed in Chapter 2 and Chapter 3.

Last and not least, we have proposed in Chapter 5 an approach to model and cluster data

using an infinite GID mixture with features selection. The model integrates a set of inverted Beta

distributions that represent two majors aspects ; relevant features and irrelevant features. The

variational Bayesian inference has been used to estimate the parameters of our model, and the

obtained results when applied on real data show its merit over the conventional EM algorithm. We

also show that the use of features selection leads to better results in terms of clustering accuracy.

The proposed model can be used for any positive data and has promising applications in different

areas that have huge amount of data to be clustered and analyzed statistically. The developed

model represents an alternative choice to the model developed in Chapter 3 for the arriving data

that uses MML and EM to estimate the parameters and select the model that serves to establish

updates basing on developed metrics.

The application of our approaches can reach several research and industrial domains, and can

help to reduce the semantic gap between system levels and human beings understandable level. Fu-

ture works could be devoted to the learning of the proposed models in the presence of constraints

(e.g. two objects should be assigned the same label) (see, for instance, [149]), and the investiga-

tion of its performance within the statistical mental frameworks proposed in Chapter 4. Further

research perspectives could also cover the construction of a link between two target classes like

for example finding an image of buddha with a sunflower. Also research can be conducted to find
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suitable ways to update mixtures while performing features selection. Indeed the new coming data

could have other relevant features than the ones of the already existing data constructing the same

object class. Therefore, hierarchical feature selection could be considered as well. Another inter-

esting point to conduct research on is the features role in the hierarchy. Indeed, the adoption of a

bottom-top strategy to form the hierarchy enables the system to have very discriminative features

on the lowest level of the hierarchy that become less and less selective when we move to the upper

levels. For instance, consider a feature which is discriminative for ‘Tomato’ and ‘Pear’. When we

move to the super class fruits, that feature is not discriminative anymore as the super class fruits

contains both ‘Tomato’ and ‘Pear’. On the other hand when we move from an upper level to the

bottom in the hierarchy, one feature might be discriminative between fruits and non fruits, but loses

its importance, when we want to distinguish between ‘Tomato’, and ‘Apple’ once we zoom on the

fruits. Thus, furture research can be conducted on hierarchical features importance/contribution

models for the classification that defines for each level what are the features that are the most dis-

criminative. This can improve the results of classification when we are interested in one specific

level or a specific super class. Also, future research can be devoted to investigate automatic learn-

ing of the perception parameter introduced in Chapter 3 instead of fixing it by the user basing on

the structure of the training datasets. Last and not least, expectation propagation algorithms can

be investigated as a possible alternative to the variational Bayesian inference that we have used in

Chapter 5, in order to have better data models.
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Appendix A
A.1 The Marginalization

Let the notation �Zn = zn j denotes that �Zn( j) = zn j = 1, and all the other elements of �Zn are equal

to zero. Let also the notation {�Yn j}= yn ji denotes that all the elements of {�Yn j} are equal to zero,

except the element yn ji = 1.

A.1.1 First Level

The first level of the mixture can be deducted by the marginalization of Eq.2.3 over the hidden

variables:

p(�Xn|Θ,�π) =
M

∑
j=1

p(�Xn,�Zn = zn j|Θ,�π) =
M

∑
j=1

p(�Xn|�Zn = zn j,Θ,�π)p(�Zn = zn j|�π) (A.1)

from Eq.2.2 we have :

p(�Zn = zn j|�π) = p(zn j = 1|�π) = π0
1 ...π

0
j−1π1

j π0
j+1 . . .π

0
M = π j (A.2)

and from Eq.2.1, we have :

p(�Xn|�Zn = zn j,Θ,�π) = p(�Xn|�Zn = zn j,Θ)

= p(�Xn|zn j = 1,Θ)

= p(�Xn|θ1)
0...p(�Xn|θ j−1)

0 p(�Xn|θ j)
1 p(�Xn|θ j+1)

0...p(�Xn|θM)0

= p(�Xn|θ j) (A.3)
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By substituting Eqs.A.2 and A.3 into Eq.A.1, the first level of the mixture for a given vector �Xn can

be obtained:

p(�Xn|Θ,�π) =
M

∑
j=1

p(�Xn|θ j)π j (A.4)

A.1.2 Second Level

We proceed by the marginalization over the hidden variables, so the first level of our mixture can

be deducted by the marginalization of Eq. 2.8:

p(�Xn|ϕ,{w ji},�π) =
M

∑
j=1

Kj

∑
i=1

P(�Xn,�Zn = zn j,{�Yn j}= yn ji|ϕ,{w ji},�π)

=
M

∑
j=1

Kj

∑
i=1

p(�Xn|�Zn = zn j,{�Yn j}= yn ji,ϕ)p({�Yn j}= yn ji|�Zn = zn j,{w ji},�π)p(�Zn = zn j|�π) (A.5)

Eq.2.7 gives us

P({�Yn j}= yn ji|�Zn = zn j,{w ji},�π) = P(yn ji = 1|zn j = 1,{w ji})
= w0

j1...w
0
j(i−1)w

1
jiw

0
j(i+1)...w

0
jKj

= w ji (A.6)

and we can obtain the following from Eq. 2.5

p(�Xn|�Zn = zn j,{�Yn j}= yn ji,ϕ) = p(�Xn|zn j = 1,yn ji = 1,ϕ)

= (p(�Xn|�ϕ11)
0...(p(�Xn|�ϕ1K1)

0) . . .((p(�Xn|�ϕ( j−1)1)
0 . . .(p(�Xn|�ϕ( j−1)Kj−1)

0))

...((p(�Xn|�ϕ( j)1)
0...(p(�Xn|�ϕ( j)(i−1))

0)(p(�Xn|�ϕ ji))
1)(p(�Xn|�ϕ j(i+1))

0)(p(�Xn|�ϕ( j)Kj)
0))

. . .((p(�Xn|�ϕ( j+1)1)
0...(p(�Xn|�ϕ( j+1)Kj+1)

0)) . . .((p(�Xn|�ϕM1)
0 . . .(p(�Xn|�ϕMKM)

0)) = p(�Xn|�ϕ ji)

(A.7)

By substituting Eqs.A.2, A.6 and A.7 into Eq.A.5, the second level mixture can be written as

p(�Xn|ϕ ,{w ji},�π) =
M

∑
j=1

Kj

∑
i=1

p(�Xn|�ϕ ji)w jiπ j =
M

∑
j=1

π j(
Kj

∑
i=1

p(�Xn|�ϕ ji)w ji) (A.8)

134



A.2 wi j and π j estimation

A.2.1 Estimation of w ji

we have :

∂Q(X ,ϕ,{w ji},�π,Λ)
∂w ji

=
∂

∂w ji
(log p(X |ϕ,{w ji},�π)+λ1(1−

M

∑
j=1

π j)+λ2(1−
M

∑
j=1

Kj

∑
i=1

wi j))

=
∂ log p(X |ϕ,{w ji},�π)

∂w ji
−λ2 (A.9)

using Eq. 2.9 :

∂ log p(X |ϕ,{w ji},�π)
∂w ji

=
N

∑
i=1

∂
∂w ji

log(
M

∑
j=1

π j(
Kj

∑
i=1

p(�Xn|�ϕ ji)w ji))

=
N

∑
n=1

π j p(�Xn|�ϕ ji)

M
∑
j=1

π j(
Kj

∑
i=1

p(�Xn|�ϕ ji)w ji)

//we multiply by
w ji

w ji

=
N

∑
n=1

w jiπ j p(�Xn|�ϕ ji)

w ji
M
∑
j=1

Kj

∑
i=1

w jiπ j p(�Xn|�ϕ ji)

(A.10)

The posterior probability p( j, i|�Xn,ϕ,{w ji},�π) is given by :

p( j, i|�Xn,ϕ,{w ji},�π) = w jiπ j p(�Xn|�ϕ ji)

M
∑
j=1

Kj

∑
i=1

w jiπ j p(�Xn|�ϕ ji)

(A.11)

Then, Eq. A.10 becomes :

∂ log p(X |ϕ,{w ji},�π)
∂w ji

=
∑N

n=1 p( j, i|�Xn,ϕ,{w ji},�π)
w ji

(A.12)

So we have,

∂Q(X ,ϕ,{w ji},�π,Λ)
∂w ji

=
∑N

n=1 p( j, i|�Xn,ϕ,{w ji},�π)
w ji

−λ2 = 0 (A.13)
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now we derive with respect to λ2. We find :

∂Q(X ,ϕ,{w ji},�π,Λ)
∂λ2

= 1−
M

∑
j=1

Kj

∑
i=1

wi j = 0 (A.14)

we have :

w ji =
1
λ2

N

∑
n=1

p( j, i|�Xn,ϕ,{w ji},�π) (A.15)

M

∑
j=1

Kj

∑
i=1

w ji =
1
λ2

M

∑
j=1

Kj

∑
i=1

N

∑
n=1

p( j, i|�Xn,ϕ,{w ji},�π) = 1 (A.16)

since,
M

∑
j=1

Kj

∑
i=1

p( j, i|�Xn,ϕ,{w ji},�π) = 1 (A.17)

Thus,
M

∑
j=1

Kj

∑
i=1

N

∑
n=1

p( j, i|�Xn,ϕ,{w ji},�π) = N (A.18)

So,

λ2 = N (A.19)

w ji =

N
∑

n=1
p( j, i|�Xn,ϕ,{w ji},�π)

N
(A.20)

A.2.2 Estimation of π j

we have :

∂Q(X ,ϕ,{w ji},�π,Λ)
∂π j

=
∂

∂π j
(log p(X |ϕ,{w ji},�π)+λ1(1−

M

∑
j=1

π j)+λ2(1−
M

∑
j=1

Kj

∑
i=1

wi j))

=
∂ log p(X |ϕ,{w ji},�π)

∂π j
−λ1

using Eq.2.9 :

∂ log p(X |ϕ,{w ji},�π)
∂π j

=
N

∑
i=1

∂
∂π j

log(
M

∑
j=1

π j(
Kj

∑
i=1

p(�Xn|�ϕ ji)w ji))
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=
N

∑
n=1

Kj

∑
i=1

p(�Xn|�ϕ ji)w ji

M
∑
j=1

π j(
Kj

∑
i=1

p(�Xn|�ϕ ji)w ji)

//we multiply by
π j

π j

=
N

∑
n=1

π j

Kj

∑
i=1

p(�Xn|�ϕ ji)w ji

π j
M
∑
j=1

π j(
Kj

∑
i=1

p(�Xn|�ϕ ji)w ji)

(A.21)

The posterior probability p( j|�Xn,ϕ,{w ji},�π) is given by :

p( j|�Xn,ϕ,{w ji},�π) =
π j

Kj

∑
i=1

p(�Xn|�ϕ ji)w ji

M
∑
j=1

π j(
Kj

∑
i=1

p(�Xn|�ϕ ji)w ji)

(A.22)

Then Eq.A.21 becomes :

∂ log p(X |ϕ,{w ji},�π)
∂π j

=
∑N

n=1 p( j|�Xn,ϕ,{w ji},�π)
π j

(A.23)

So we have
∂Q(X ,ϕ,{w ji},�π,Λ)

∂π j
=

∑N
n=1 p( j|�Xn,ϕ,{w ji},�π)

π j
−λ1 = 0 (A.24)

Thus,

π j =
1
λ1

N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π) (A.25)

We have
M

∑
j=1

π j =
1
λ1

M

∑
j=1

N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π) = 1 (A.26)

since,

M

∑
j=1

p( j|�Xn,ϕ,{w ji},�π) = 1 (A.27)

then,

M

∑
j=1

N

∑
n=1

p( j|�Xn,ϕ,{w ji},�π) = N (A.28)
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so we have :

λ1 = N (A.29)

so we have,

π j =

N
∑

n=1
p( j|�Xn,ϕ,{w ji},�π)

N
(A.30)
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Appendix B
B.1 Conditional Independence in the Transformed Space

We know that the posterior probability is p( j|�Yi,Θ,�π) ∝ π j p(�Yi|θ j), so every vector �Yi is assigned

to its cluster j such as j = arg max
j

p( j|�Yi,Θ,�π) = arg max
j

π j p(�Yi|θ j). For the GID, it is possible to

compute the posterior probability by examining the form of the product in Eq.3.5 and considering

every feature separately, so if we want to consider the feature D, Eq.3.5 becomes for a specific

vector�Yi = (Yi1,Yi2, ...,YiD) :

1
B(α jD,β jD)

Y α jD−1
iD (1+

D

∑
l=1

Yil)
−β jD−α jD+β j(D+1)

×
D−1

∏
l=1

1
B(α jl,β jl)

Y
α jl−1
iD (1+

l

∑
k=1

Yik)
−β jl−α jl+β j(l+1) (B.1)

where B(α jl,β jl) is the beta function such that B(α jl,β jl) =
Γ(α jl)Γ(α jl)

Γ(α jl+β jl)
. As β j(D+1) = 0 , Eq.B.1

becomes :

1
B(α jD,β jD)

Y α jD−1
iD (1+

D

∑
l=1

Yil)
−β jD−α jD

D−1

∏
l=1

1
B(α jl,β jl)

Y
α jl−1
iD (1+

l

∑
k=1

Yik)
−β jl−α jl+β j(l+1) (B.2)

by multiplying Eq.B.2 by the constant (1+∑D−1
l=1 Yil)

β jD+α jD−α jD+1 = (1+∑D−1
l=1 Yil)

β jD+1,

Eq.B.2 becomes proportional to :

1
B(α jD,β jD)

(
YiD

1+∑D−1
l=1 Yil

)α jD−1(1+
YiD

1+∑D−1
l=1 Yil

)−β jD−α jD
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×
D−1

∏
l=1

1
B(α jl,β jl)

Y
α jl−1
iD (1+

l

∑
k=1

Yik)
−β jl−α jl+β j(l+1) (B.3)

We know that :

1
B(α jD,β jD)

(
YiD

1+∑D−1
l=1 Yil

)α jD−1(1+
YiD

1+∑D−1
l=1 Yil

)−β jD−α jD =

piBeta(
YiD

1+∑D−1
l=1 Yil

|α jD,β jD) (B.4)

so Eq.B.2 becomes :

piBeta(
YiD

1+∑D−1
l=1 Yil

|α jD,β jD)
D−1

∏
l=1

1
B(α jl,β jl)

Y
α jl−1
iD (1+

l

∑
k=1

Yik)
−β jl−α jl+β j(l+1) (B.5)

For every remaining feature l in the product from 1 to D− 1 we mutiply Eq.B.5 by the

constant (1+∑l−1
k=1Yik)

β jl+α jl−α jl+1(1+∑l
k=1Yik)

−β j(l+1) = (1+∑l−1
k=1Yik)

β jl+1(1+∑l
k=1Yik)

−β j(l+1)

so Eq.B.5 will be proportional to :

D

∏
l=1

piBeta(
Yil

1+∑l−1
k=1Yik

|α jl,β jl) =
D

∏
l=1

piBeta(
Yil

1+∑l−1
k=1Yik

|θ jl) (B.6)

the first term of the product in Eq.B.6 is : piBeta(Yi1|θ jl)

so we finally have :

p( j|�Yi) ∝ π j p(�Yi|θ j) ∝ π j piBeta(Yi1|θ j1)
D

∏
l=2

piBeta(
Yil

1+∑l−1
k=1Yik

|θ jl) (B.7)

B.2 Calculation of Distances

B.2.1 Rényi divergence

The Rényi divergence is defined as follows [97]

Ra

(
p(Xl|θil), p(Xl|θ jl)

)
=

1
a−1

log
(∫ +∞

0
p(Xl|θil)

a p(Xl|θ jl)
1−a

)

+
1

a−1
log

(∫ +∞

0
p(Xl|θ jl)

a p(Xl|θil)
1−a

)
(B.8)
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In the case of independent probability densities and using postulate 9 in [97] we have :

Ra

(
p(�X |θi), p(�X |θ j)

)
= Ra

( D

∏
l=1

p(Xl|θil),
D

∏
l=1

p(Xl|θ jl)

)
=

D

∑
l=1

Ra

(
p(Xl|θil), p(Xl|θ jl)

)
(B.9)

We can find an explicit form to the integrals, and we have :

∫ +∞

0
p(Xl|θil)

a p(Xl|θ jl)
1−a =

[
Γ(αil +βil)

Γ(αil)Γ(βil)

]a

×
[

Γ(α jl +β jl)

Γ(α jl)Γ(β jl)

]1−a

×
∫ +∞

0

[
Xαil−1

l (1+Xl)
−(αil+βil)

]a

dX ×
∫ +∞

0

[
X

α jl−1
l (1+Xl)

−(α jl+β jl)

]1−a

dX

=

[
Γ(αil +βil)

Γ(αil)Γ(βil)

]a

×
[

Γ(α jl +β jl)

Γ(α jl)Γ(β jl)

]1−a

×
∫ +∞

0

[
X

aαil+α jl−aα jl−1
l (1+Xl)

−
(
(aαil+α jl−aα jl)+(aβil+β jl−aβ jl)

)]
dX (B.10)

Let α = aαil +α jl −aα jl and β = aβil +β jl −aβ jl . We have the PDF of an inverted beta distribu-

tion that integrates to one:

∫ +∞

0

Γ(α +β )
Γ(α)Γ(β )

Xα−1
l (1+Xl)

−(α+β )dX = 1; (B.11)

which gives us: ∫ +∞

0
Xα−1

l (1+Xl)
−(α+β )dX =

Γ(α)Γ(β )
Γ(α +β )

(B.12)

We substitute Eq. B.12 into Eq. B.10, then:

∫ +∞

0
p(Xl|θil)

a p(Xl|θ jl)
1−a =[

Γ(αil +βil)

Γ(αil)Γ(βil)

]a

×
[

Γ(α jl +β jl)

Γ(α jl)Γ(β jl)

]1−a

× Γ(aαil +α jl −aα jl)Γ(aβil +β jl −aβ jl)

Γ
(
(aαil +α jl −aα jl)+(aβil +β jl −aβ jl)

) (B.13)

To calculate the Rény divergence we use Eq.B.10, in Eq.B.8, and then we calculate Eq.B.9.

B.2.2 Symmetric Kullback-Leibler Distance (SKL)

The GID belongs to the exponential family so we can write it under the following form [150, 151]:

p(�X |θ j) = H(�X)exp(
s

∑
l=1

Gl(θ j)Tl(�X)+Φ(θ j)) (B.14)
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We have,

p(�X |θ j) =
D

∏
l=1

Γ(α jl +β jl)

Γ(α jl)Γ(β jl)

X
α jl−1
l

(1+Xl)
α jl+β jl

= exp[
D

∑
l=1

logΓ(α jl +β jl)− logΓ(α jl)− logΓ(β jl)+(α jl −1) log(Xl)− (α jl +β jl) log(1+Xl)]

(B.15)

We set S=2D

Tl(�X) =
log(Xl)

log(1+Xl)
l = 1..D (B.16)

TD+l(�X) =
1

log(1+Xl)
(B.17)

Gl(θ j) = α jl l = 1..D (B.18)

GD+l(θ j) = β jl l = 1..D (B.19)

H(�X) = exp(−
D

∑
l=1

log(Xd)) (B.20)

Φ(θ j) =
D

∑
l=1

logΓ(α jl +β jl)− logΓ(α jl)− logΓ(β jl) (B.21)

The KL divergence can be defined as [152] :

KL
(

p(X |θ j), p(X |θi)

)
= Φ(θ j)−Φ(θi)+(G(θ j)−G(θi))Eθ j [T (X)] (B.22)

we have :

Eθ j [
log(Xl)

log(1+Xl)
] =−∂Φ(θ j)

α jl
= Ψ(α jl)−Ψ(α jl +β jl) l = 1...D (B.23)

Eθ j [
1

log(1+Xl)
] =−∂Φ(θ j)

β jl
= Ψ(β jl)−Ψ(α jl +β jl) l = 1...D (B.24)

The KL divergence can be computed as follows

KL
(

p(X |θ j), p(X |θi)

)
=
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D

∑
l=1

logΓ(α jl +β jl)− logΓ(α jl)− logΓ(β jl)− logΓ(αil +βil)+ logΓ(αil)+ logΓ(βil)

+
D

∑
l=1

(α jl −αil)

(
Ψ(α jl)−Ψ(α jl +β jl)

)
+(β jl −βil)

(
Ψ(β jl)−Ψ(α jl +β jl)

)

= log
[ D

∏
l=1

Γ(α jl +β jl))Γ(αil)Γ(βil)

Γ(αil +βil)Γ(α jl)Γ(β jl)

]

+
D

∑
l=1

(α jl −αil)

(
Ψ(α jl)−Ψ(α jl +β jl)

)
+(β jl −βil)

(
Ψ(β jl)−Ψ(α jl +β jl)

)
(B.25)

so the symmetric Kullback-Leibler distance is given by

KLS

(
(p(X |θ j), p(X |θi)

)
= KL

(
(p(X |θ j), p(X |θi)

)
+KL

(
(p(X |θi), p(X |θ j)

)

=
D

∑
l=1

(α jl −αil)

(
Ψ(α jl)− (Ψ(αil)−Ψ(α jl +β jl)+Ψ(αil +βil)

)

+(β jl −βil)

(
Ψ(β jl)− (Ψ(βil)−Ψ(α jl +β jl)+Ψ(αil +βil)

)
(B.26)

B.2.3 Bhattacharyya

The Bhattacharrya distance is defined as follows:

B 1
2

(
p(X |θ j), p(X |θi)

)
=
∫ +∞

0

√
p(X |θ j)p(X |θi))dX (B.27)

It is possible to compute the Bhattacharyya kernel in a closed form for densities that belong

to the exponential family of distributions, that is, densities that can be written in the form given by

Eq.B.14

B 1
2

(
p(X |θ j), p(X |θi)

)
= exp

[
1
2

Φ(θ j)+
1
2

Φ(θi)−Φ
(

1
2

θ j +
1
2

θi

)]
(B.28)

B 1
2

(
p(X |θ j), p(X |θi)

)

= exp
[
−

D

∑
l=1

logΓ
(

1
2
(α jl +β jl +αil +βil)

)
− logΓ

(
1
2
(α jl +αil)

)
− logΓ

(
1
2
(β jl +βil)

)

+
1
2

D

∑
l=1

(
logΓ(α jl +β jl)− logΓ(α jl)− logΓ(β jl)

)
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+
1
2

D

∑
l=1

(
logΓ(αil +βil)− logΓ(αil)− logΓ(βil)

)]

=
D

∏
l=1

[Γ
(

1
2(α jl +αil)

)
Γ
(

1
2(β jl +βil)

)√
Γ(α jl +β jl)Γ(αil +βil)

Γ
(

1
2(α jl +β jl +αil +βil)

)√
Γ(α jl)Γ(β jl)Γ(αil)Γ(βil)

]
(B.29)
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Appendix C
C.1 Proof of equations

Eq.5.21 shows that the terms that are independent of Qs(Θs) are absorbed into an additive constant.

In order to make use of Eq.5.21 we need to calculate the logarithm of Eq.5.18 with the truncation

of number of components of the GID mixture M, and the number of components of the irrelevant

features to K. We also know that
{

∑M
j=1〈Zi j〉

}
= 1, so this term will be discarded when it is

factorized in the variational factors.

C.1.1 Variational solution to Q(�φ)

We compute the logarithm of the variational factor Q(φil) as

lnQ(φil) = φil

{
〈lnεl1〉+∑M

j=1〈Zi j〉
[
R jl +(ᾱ jl −1) lnXil − (ᾱ jl + β̄ jl) ln(1+Xil)

]}
(C.1)

+(1−φil)

{
〈lnεl2〉+

{
∑K

k=1〈Wikl〉
[
Fkl +(σ̄kl −1) lnXil − (σ̄kl + τ̄kl) ln(1+Xil)

]}}
+ const

where

ᾱ = 〈α〉, β̄ = 〈β 〉, τ̄ = 〈τ〉 (C.2)

and

R jl = 〈ln Γ(α jl +β jl)

Γ(α jl)Γ(β jl)
〉, Fkl = 〈ln Γ(σkl + τkl)

Γ(σkl)Γ(τkl)
〉 (C.3)

The expectations in Eq.C.3 are analytically intractable, thus, we apply the second-order Tay-

lor series expansion in order to obtain a closed-form expression such as in [132]. The approxima-

tion of R jl and Fkl are given by R̃ jl (Eq.5.31) and F̃kl (Eq.5.32), respectively. We substitute the
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lower bound of Eqs. 5.31 and 5.32 in Eq.C.1 we obtain

lnQ(φil) = φil

{
〈lnεl1〉+∑M

j=1〈Zi j〉
[
R̃ jl +(ᾱ jl −1) lnXil − (ᾱ jl + β̄ jl) ln(1+Xil)

]}
(C.4)

+(1−φil)

{
〈lnεl2〉+

{
∑K

k=1〈Wikl〉
[
F̃kl +(σ̄kl −1) lnXil − (σ̄kl + τ̄kl) ln(1+Xil)

]}}
+ const

From Eq.C.4 we can deduce the variational solution of Q(�φ) as a Bernoulli distribution such

that

Q(�φ) =
N

∏
i=1

D

∏
l=1

f φil
il (1− fil)

(1−φil) (C.5)

where fil is defined in Eq.5.26, and from the Bernoulli distribution it is straightforward to

have

〈φi j〉= fi j, 〈1−φi j〉= 1− fi j (C.6)

C.1.2 Variational solution to Q(Z)

The logarithm of the variational factor of Q(Zi j) is calculated as

lnQ(Zi j) = Zi j

{
D

∑
l=1

(
〈φil〉

[
R̃ jl +(ᾱ jl −1) lnXil − (ᾱ jl + β̄ jl) ln(1+Xil)

]
(C.7)

+ 〈1−φil〉
K

∑
k=1

〈wikl〉
[
F̃kl +(σ̄kl −1) lnXil − (σ̄kl + τ̄kl) ln(1+Xil)

])

+ 〈lnλ j〉+
j−1

∑
s=1

〈ln(1−λs)〉
}
+ const

By analyzing the form of Eq.C.7 we can write lnQ(Z) as

lnQ(Z) =
N

∑
i=1

M

∑
j=1

Zi j ln r̃i j + const (C.8)

where r̃i j is defined in Eq.5.27. Thus we have

Q(Z) ∝
N

∏
i=1

M

∏
j=1

r̃Zi j
i j (C.9)
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We know that Zi j are binary and we have ∑M
j=1 Zi j = 1, so we can normalize Eq.C.10 such

that

Q(Z) =
N

∏
i=1

M

∏
j=1

rZi j
i j (C.10)

where ri j is defined in Eq.5.26. We can obtain 〈Zi j〉 from the multinomial distribution of

Q(Z) such that

〈Zi j〉= ri j (C.11)

C.1.3 Variational solution to Q(�λ )

The logarithm for of the variational factor Q(�λ ) is given by

lnQ(λ j) = lnλ j

N

∑
i=1

〈Zi j〉+ ln(1−λ j)

( N

∑
1

M

∑
s= j+1

〈Zis〉+ 〈Ψ j〉−1
)
+ const (C.12)

Eq.C.12 has the logarithm form of the Beta distribution, by taking the exponential we obtain

Q(�λ ) =
M

∏
j=1

Beta(λ j|θ j,ϑ j) (C.13)

where θ j and ϑ j are defined in Eq.5.33. As �γ has the Beta prior distribution, Q(�γ) can be

derived in a similar way as for Q(�λ ). Following the same steps we define ρk and ϖk in Eq.5.35

C.1.4 Variational solution to Q(�ψ)

The logarithm form of Q(�ψ) is given by

lnQ(ψ j) = lnψ ja j +ψ j(〈ln(1−λ j)〉−b j)+ const (C.14)

by taking the exponential in Eq.C.1.4 we obtain

Q(�ψ) =
M

∏
j=1

G (ψ j|a∗j ,b∗j) (C.15)

where a∗j and b∗j are defined in Eq.5.34. As �ϕ has the Gamma prior distribution, Q(�ϕ) can

be derived in a similar way as for Q(�ψ). Following the same steps we define c∗k and d∗
k in Eq.5.36.
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C.1.5 Variational solution to Q(W )

The logarithm of the variational factor Q(Wikl) is given by

lnQ(Wikl) = Wikl

{
〈1−φil〉

(
F̃kl +(σ̄kl −1) lnXil − (σ̄kl + τ̄kl) ln(1+Xil)

)
(C.16)

+ 〈lnγk〉+
k−1

∑
s=1

〈ln(1− γs)〉
}
+ const

By taking the exponential in Eq.C.16 we obtain

Q(W ) =
N

∏
i=1

K

∏
k=1

D

∏
l=1

mWikl
ikl (C.17)

where mikl is given by Eq.5.26.

C.1.6 Variational solution to Q(�ε)

The logarithm of the variational factor Q(�εl) is given by

lnQ(�εl) = lnεl1

( N

∑
i=1

〈φil〉+ξ1 −1
)
+ lnεl2

( N

∑
i=1

〈1−φil〉+ξ2 −1
)
+ const (C.18)

Eq.C.18 has a logarithmic form similar to the logarithm form of a Dirichlet distribution. The

variational solution to Q(�εl) can be obtained by

Q(�εl) =
D

∏
l=1

Dir(�εl|�ξ ∗) (C.19)

where �ξ ∗ = (ξ ∗
1 ,ξ

∗
2 ) in Eq.5.37.

C.1.7 Variational solution to Q(�α), Q(�β ), Q(�σ), and Q(�τ)

The logarithm of the variational factor Q(α jl) can be calculated as

lnQ(α jl) = 〈ln p(X ,Θ)〉Θ	=α jl
(C.20)

=
N

∑
i=1

〈Zi j〉〈φil〉
[
D(α jl)+α jl ln

Xil

1+Xil

]
+(u jl −1) lnα jl − v jlα jl + const
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where

D = 〈ln Γ(α jl +β jl)

Γ(α jl)Γ(β jl)
〉β jl

(C.21)

using a non-linear approximation as proposed in [132] we have

D(α)≥ lnα
{

ψ(ᾱ + β̄ )−ψ(ᾱ)+ β̄ψ ′(ᾱ + β̄ ))(〈lnβ 〉− ln β̄ )
}

ᾱ (C.22)

We substitute the lower bound in Eq.C.22 into the Eq.C.20 we have

lnQ(α jl) = lnα jl

{ N

∑
i=1

〈Zi j〉〈φil〉
[
ψ(ᾱ jl + β̄ jl)−ψ(ᾱ jl)

+ β̄ jlψ ′(ᾱ jl + β̄ jl))(〈lnβ jl〉− ln β̄ jl)
]
ᾱ jl +u jl −1

}

+ α jl

{ N

∑
i=1

〈Zi j〉〈φil〉 ln
Xil

1+Xil
− v jl

}
+ const (C.23)

Eq.C.23 has the form of a Gamma distribution. By taking it to the exponential we obtain

Q(�α) =
M

∏
j=1

D

∏
l=1

G (α jl|u∗jl,v∗jl) (C.24)

The hyperparameters u∗jl and v∗jl can be estimated by Eq.5.38 and Eq.5.39, respectively.

Since �β , �σ and �τ have the Gamma prior, we obtain the variational solutions to Q(�β ), Q(�σ), and

Q(�τ) in the same way as for Q(�α).
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