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ABSTRACT

Noise Estimation, Noise Reduction and Intensity Inhomogeneity Correction in MRI Images of the

Brain

Michael Eziashi Osadebey, Ph.D.

Concordia University, 2015

Rician noise and intensity inhomogeneity are two common types of image degradation that

manifest in the acquisition of magnetic resonance imaging (MRI) system images of the brain.

Many noise reduction and intensity inhomogeneity correction algorithms are based on strong para-

metric assumptions. These parametric assumptions are generic and do not account for salient

features that are unique to specific classes and different levels of degradation in natural images.

This thesis proposes the 4-neighborhood clique system in a layer-structured Markov random

field (MRF) model for noise estimation and noise reduction. When the test image is the only

physical system under consideration, it is regarded as a single layer Markov random field (SLMRF)

model, and as a double layer MRF model when the test images and classical priors are considered.

A scientific principle states that segmentation trivializes the task of bias field correction.

Another principle states that the bias field distorts the intensity but not the spatial attribute of an

image. This thesis exploits these two widely acknowledged scientific principles in order to propose

a new model for correction of intensity inhomogeneity.

The noise estimation algorithm is invariant to the presence or absence of background features

in an image and more accurate in the estimation of noise levels because it is potentially immune

to the modeling errors inherent in some current state-of-the-art algorithms. The noise reduction

algorithm derived from the SLMRF model does not incorporate a regularization parameter. Fur-

thermore, it preserves edges, and its output is devoid of the blurring and ringing artifacts associated

with Gaussian and wavelet based algorithms. The procedure for correction of intensity inhomo-

geneity does not require the computationally intensive task of estimation of the bias field map.

Furthermore, there is no requirement for a digital brain atlas which will incorporate additional

image processing tasks such as image registration.
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NeuroRx Research (http://www.neurorx.com/en/home.htm) is dedicated to work-

ing with the pharmaceutical industry to facilitate clinical trials of new drugs for multiple sclero-

sis (MS) and other neurological diseases. NeuroRx provides the professional management of all

MRI-related study activities and promptly delivers precise MRI outcome measurements that are

performed in a regulatory compliant environment. The organization specializes in logistics of scan

handling and tracking and can provide this service exclusively, if needed. NeuroRx uses advanced

image analysis techniques to provide precise outcome data that can maximize study power. Images

are corrected for inhomogeneity and co-registered for perfect re-alignment and increased precision.

Analysis is conducted in 3D, rather than on slices, so that information can be properly related to

structures that span multiple slices. Customized automatic segmentation techniques are combined

with expert supervision to maximize the precision of outcome measures related to both lesional

and non-lesional pathology as well as brain volume changes.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (adni.loni.usc.edu) was

launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical

Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private phar-

maceutical companies and non-profit organizations as a $60 million, 5-year public-private part-

nership. The primary goal of ADNI has been to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsy-

chological assessments can be combined to measure the progression of mild cognitive impairment

(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers of

very early AD progression is intended to aid researchers and clinicians to develop new treatments

and monitor their effectiveness as well as lessen the time and cost of clinical trials.
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The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center

and University of California, San Francisco. ADNI is the result of efforts of many co-investigators

from a broad range of academic institutions and private corporations, and subjects have been re-

cruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800

subjects, but ADNI has been followed by ADNI-GO and ADNI-2. To date, these three protocols

have recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting of cog-

nitively normal older individuals, people with early or late MCI, and people with early AD. The

follow-up duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO.

Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2.

For up-to-date information, see www.adni-info.org.
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Chapter 1
Introduction

1.1 Background

1.1.1 Characteristics of MRI Images

The magnetic resonance imaging (MRI) system acquires images in diffferent levels of axial, sagit-

tal and coronal imaging planes. A MRI image at a specific level of an imaging plane is known as

slice. A MRI slice potentially has a high spatial and contrast resolution that efficiently discrim-

inates different anatomical structures within a physiological system. These features make MRI

system a popular imaging modality for diagnostic procedures and clinical research in the field of

medicine. MRI slice image in its original form of acquisition is a complex valued Gaussian dis-

tributed data having both real and imaginary components. A combination of the real and imaginary

components that produce magnitude MRI nonlinearly transforms Gaussian distribution of pixels

in each complex plane into Rician distribution [1].

1.1.2 Characteristics of Brain MRI Images

MRI images of human brains will exhibit unique characteristics. They are generally piecewise

smooth and statistically simple [2]. Three structures: white matter, grey matter and cerebro-spinal

fluids dominate intra-subject MRI slices. There is inter-subject tissue geometric similarity across

age, gender and race [3]. Corresponding inter-subject MRI slices reveal strong spatial, structural

and voxel statistical similarities. These similarity features are exploited in the design of MRI-based

brain atlases, which are widely acknowledged powerful tools in the analysis of brain images [4],

[5], [6].
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1.1.3 Brain MRI Images in Clinical Trials

MRI images are an important component of clinical trials of drugs for the treatment of multiple

sclerosis, Alzheimer’s and other neurodegenerative diseases [7], [8], [9]. Daily, several thousands

of brain MRI slice images are delivered from clinical trial sites around the globe to clinical research

organizations that manage clinical trials of new drugs for pharmaceutical organizations. Efficient

management of this large amount of data demands a high level of automation from image pro-

cessing and image analysis software at study management centers. The Performance of an image

analysis system is strongly dependent on the quality of the MRI image. The acquisition of high

quality MRI images are dependent on the optimal performance of MRI device components and

optimal selection of MRI system operating parameters. In routine acquisitions these conditions

are often not met and will result in degraded MRI images. Noise and intensity inhomogeneity,

otherwise known as the bias field are two common types of degradation suffered by MRI images.

1.1.4 Noise

Noise is the random variations in voxel intensity levels where there should be none. Noise changes

pixel configurations, weakens and can even obliterate what is supposed to be sharp edges, and

can cause low spatial resolution as well as low contrast within and between anatomical structures.

These negative features reduce the medical utility of an image because of a difficulty in the study

of brain anatomy and the detection of disease signatures. A perfectly acquired image as viewed

by the human eye contains some amount of noise. Noise becomes a nuisance when its presence

attracts any level of poor visual quality. Noise is unavoidably present in images because of the

imperfections of device components and trade-offs in the operating parameters of imaging systems:

signal-to-noise ratio (SNR), resolution and length of scan time [10]. A MRI image with very high

SNR can be acquired by increasing acquisition time. In practice, acquisition time is compromised

for patient comfort, particularly for very young and elderly subjects [11].

1.1.5 Intensity Inhomogeneity

Bias field is the characterization of a specific tissue class or homogeneous anatomical structure by

non-uniform voxel intensities instead of uniform voxel intensities. The utility of a MRI image for

manual and automated diagnosis can be significantly reduced by the presence of bias field. Visual

inspection of a MRI scan degraded by the bias field is more challenging to a physician. It re-

quires more time to discern between the presence of an abnormal anatomical structure and artifact.

State-of-the-art image analysis algorithms, which are based on voxel intensities, perform poorly

by misclassifying tissue classes because different intensity levels are assigned to the same tissue

2



class. Several factors are responsible for the bias field. They include the non-uniform sensitivity

of radiofrequency coils, non-uniformity of static field, improper acquisition parameter settings,

gradient induced eddy currents and magnetization properties of an anatomic structure under inves-

tigation [12], [13], [14].

1.1.6 Bias Field Compared to Rician Noise

Bias field and Rician noise have different spatial variations within an MRI image. At different lev-

els of severity, Rician noise is the uniform distribution of a single random variable, but the bias field

is the random distribution of at least one uniformly distributed random variable. The distribution

and severity of the bias field varies with MRI system magnetic field strength, optimality of selected

acquisition parameters, individual patient anatomy and each MRI slice within the volume data. As

the magnetic field strength of a MRI system increases, the spatial variation of a bias field changes

from locally smooth inhomogeneity to globally non-smooth inhomogeneity [15], [16], [17].

1.2 Problem Statement

The quality of a MRI image for analysis reflects the performance of noise reduction and bias field

correction units within an image processing system. It is therefore necessary to carry out noise

reduction and intensity inhomogeneity correction before manual or automatic image analysis. The

noise reduction unit preserves sharp edges that define boundaries of anatomical structures and

disease signatures. A bias field correction unit assigns similar intensity levels to the same tissue

class.

Noise estimate is required as an input parameter for algorithms developed for the task of

noise removal [18], [19], [20], segmentation [2], [21], registration [22], quality assessment of func-

tional magnetic resonance images [23], overall quality assessment of magnetic resonance imaging

systems [24], [25] and the performance evaluation of noise removal algorithms [26].

In the field of medical imaging and computer vision, noise reduction is at a crossroad be-

tween image processing and image analysis. Its invasive nature makes it the most delicate fun-

damental problem because there is a high risk of introducing extraneous features that can further

degrade image quality and reverse gains derived from previous image processing tasks. Noise

reduction algorithms are expected not only to reverse the effect of noise but also to optimize the

performance of image analysis systems by preserving edges and other features that determine the

level of clinical utility of the image.

In the past thirty years researchers made several contributions on the correction of the bias
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field in medical images. Despite the significant contributions, correction of intensity inhomogene-

ity is still an active research area because of increasing clinical interest on brain MRI images and

the development of high field MRI systems that produce more complex characteristics of the bias

field [27], [28]. None of the current algorithms address the problem of correcting the different

characteristics of intensity inhomogeneity across different levels of magnetic field strength [29].

Many noise estimation, noise reduction and intensity inhomogeneity correction algorithms

are based on strong parametric assumptions. They adopt generic models that do not account for

class-specific salient features in natural images and different characteristics of a particular image

degradation. Thus, it is not unexpected that there is yet no algorithms that exhibit optimal perfor-

mance for different characteristics of a particular image degradation, different imaging modalities

and for all classes of natural images. Their limitations manifest as high computational cost and

difficulty in the estimation of model parameters that encourage heuristics and manual tuning in es-

timation of model parameters. The limitations also include an inaccurate estimate of noise levels,

introduction of extraneous artifarts such as blurring, staircasing and spurious edges into restored

images

1.3 Contributions

This thesis focuses on optimizing the quality of a particular class of natural images such as the

magnetic resonance images of the brain, for efficient image analysis. It exploit simplicity and

similarity of statistics of human anatomy for different subjects in a random experiment to propose a

two-in-one algorithm that adopts Markov random field energy as metric for the estimation of noise

variance in brain MRI. The first approach casts MRF energy as a variable in a random experiment.

The second formulates the MRF energy-noise level relationship as a mathematical model. Both

approaches are fast, accurate and efficient in the estimation of noise variance. It is invariant to

presence or absence of background features in an image and is potentially immune to modeling

errors inherent in current state-of-the-art algorithms.

The concept of Variational-Bayesian (VB) cycle was introduced to propose a new com-

putationally efficient approach for the selection of a regularization parameter in a TV denoising

algorithm. The thesis also propose a new general framework, built from the 4-neighborhood clique

system, for denoising MRI images of the brain. The kernel quantifies the smoothness energy of

spatially continuous anatomical structures. Scalar and vector valued quantification of smoothness

energy configures images for Bayesian and variational denoising modes, respectively. Within vari-

ational mode, the choice of norm adapts images for either total variation or Tikhonov technique.

The proposal integrates Bayesian and variational techniques into a two layer-structured denoising
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system for optimal performance in specific applications. The first layer of the new denoising sys-

tem is a hitherto unknown form of Markov random field model. This new model is referred to

as single layer Markov random field (SLMRF) model because it denoises images by minimizing

energy but without reference to a classical prior image model. The new algorithm is simple and

computationally efficient as it does not incorporate a regularization parameter.

Another proposal is a new and novel approach to correct intensity inhomogeneity in brain

MRI. An anatomic structural map regarded as a pseudo digital brain atlas, generated directly from

the test image, guides the algorithm for automatic operation. Accurate information from the struc-

tural map is combined with the distorted intensity level attributes of the test image to detect outliers

in regions of interest (ROI) generated by k-means clustering. The number of ROI is cleverly cho-

sen to equal the number of tissue classes in k-means clustering. Outliers in each ROI are merged

with voxels in the appropriate tissue class. Intensity levels of the new set of voxels in each tissue

class are rescaled to conform to intensity levels of uncorrupted voxels. Performance evaluation

demonstrates the efficiency of this proposal for different characteristics of the bias field.

1.4 Outline of Thesis

This thesis is organized as follows: Previous contributions on noise estimation, noise reduction

and intensity inhomogeneity correction are reviewed in chapter 2. Chapter 3 describes the theory

behind this research, followed by the SLMRF model for noise estimation in chapter 4. Chapter 5 is

on the SLMRF model for image denoising. A general framework for image denoising is presented

in chapter 6. Intensity inhomogeneity correction is presented in chapter 7. Chapter 8 contains the

conclusion.
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Chapter 2
Literature Review

2.1 Noise Estimation

Eight contributions on the estimation of noise levels in brain MRI are considered and classified in

chronological order as earlier and later contributions.

2.1.1 Earlier Contributions

The earliest, referred to as double acquisition method [30], acquires the same image twice, align

and subtract. Noise level is estimated from the standard deviation of subtracted image. Other early

contributions [31], [32], [33] estimate noise from the background region where noise is described

by Rayleigh distribution.

2.1.2 Later Contributions

The first of later contributions [34] estimates noise level automatically from the maximum like-

lihood estimate of the partial histogram of a noise signal in the background region. Second in

same category [35] estimates noise from local statistics in the foreground where voxel intensi-

ties contaminated by noise are described by Gaussian distribution at a high signal-to-noise-ratio

and Rician at low signal-to-noise ratio. The third [36] adopts the maximum likelihood estimation

principle to estimate the noise level from local variance and local skewness of voxels. The last con-

tribution [37] transforms the image into the frequency domain and estimates noise using median

absolute deviation (MAD) in sub-band where image structures are considered suppressed.
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2.1.3 Limitations of Current Noise Estimation Algorithms

Double Acquisition

The required correct alignment of images in the earliest contribution is not easily realized. Also, the

technique cannot be adopted in a clinical diagnosis requiring a single MRI acquisition experiment

such as when contrast material-enhancement is injected into a patient and in functional studies [38].

Wavelets

Wavelet methods overestimate noise at low levels because they revolve around the original thresh-

olding method postulated in [39], [40]. The authors in [37] attempt to address this problem through

an application of correction factor proposed in [41] to noise described by Rician distribution.

Earlier and Later Contributions

Modern MRI machines are designed with chambers filled with perfluorinated fluids to stabilize

unwanted movements of patients and to eliminate artifacts. Their images have a signal-free back-

ground. Expectedly, techniques in both classes [31], [32], [33], [34], [35] that exploit the presence

of background information will be obsolete as they will be useless in applications where back-

ground signals are absent. They are prone to significant error where background information is

limited or corrupted by artifacts [36].

2.2 Noise Reduction

The contributions from each author on image denoising presented as a unique technique can be

contained in several volumes of literature articles. Careful review reveals that sophisticated and

state-of-the-art techniques can be classified into two major classes: global and specific schemes.

Global schemes are a general framework for specific schemes, and their formulation generally re-

sults in a new specific scheme. A geometrical framework proposed by Sochen et al. [42] combines

linear heat flow, anisotropic diffusion and mean curvature flow techniques into a single scheme.

The deformation by curvature technique proposed by Kimla and Siddiqi [43] unifies geometric

heat equation and anisotropic diffusion. Hamza et al. [44] propose the unification of probabilis-

tic and variational techniques, and Auclair-Fortier and Ziou [45] propose the global approach for

solving the heat equation. The detailed review of image denoising methods can be found in [46].

For this review only six techniques were considered.
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2.2.1 Gaussian Filters

Earliest and classical technique is the use of linear and non-linear filters [47], [48], [49]. They are

designed based on the Gaussian assumption of noise distribution and cast on a moving window

over the noisy image in a convolution process. In the classical Gaussian filtering, a single two-

dimensional Gaussian kernel Kσ :

Kσ (x,y) =
1

2πσ 2
exp−

( |x|2 + |y|2
2σ2

)
(2.1)

of standard deviation σ is cast on a window moving in two orthogonal directions u, v, over the

noisy image Id(x,y) of size MXN, in a convolution process:

Kσ (x,y)∗ Id(x,y) =
M−1

∑
u=0

N−1

∑
v=0

Id(x−u,y− v)Kσ (u,v) (2.2)

2.2.2 Anisotropic Diffusion

The convolution process stated in Eq. 2.2 is the solution of the two dimensional diffusion equation

of a physical system [50], [51], [52]:

∂
∂ t

Id(x,y, t) = ∇.(D(x,y, t)∇Id(x,y, t)) (2.3)

where the physical system under consideration is an image Id(x,y, t) over time t with diffusion

tensor D and initial condition Id(x,y,0) = Id(x,y). In the operation of classical Gaussian filter,

the diffusion tensor is a constant value, D = 1, independent of x, y or t, and the physical system

is said to exhibit homogeneous diffusivity, resulting in equal smoothing and hence blurring in all

directions. To reduce blurring, the diffusion tensor is configured as a symmetric positive-definite

diffusion tensor:

D =
[
V1 V2

][λ1 0

0 λ2

][
V T

1

V T
2

]
(2.4)

The eigenvectors V1, V2 and eigenvalues λ1, λ2 are chosen in such a way as to encourage smoothing

in homogeneous regions and discourage smoothing in the direction of edges. This is the basis of

the anisotropic diffusion method pioneered by Perona and Malik [53].

2.2.3 Non-Local Means

An alternative to the Perona and Malik method is to determine a denoised voxel I(i) at position i in

a neighborhood Ωi of an image from the Gaussian weighted linear combination of all neighborhood
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Ω j of voxels j outside Ωi:

I(i) =
1

C ∑
j∈Ω

w(i, j)I( j) (2.5)

where C and w(i, j) are normalization constants and similarity weights, respectively.

C = ∑
j∈Ω

w(i, j) (2.6)

The similarity features are proportional to measures by a Gaussian kernel of standard deviation a

in a square neighborhood G:

w(i, j) ∝ exp

(
−‖Gi −G j‖2

2,a

h2

)
(2.7)

The degree of filtering by the Gaussian kernel is controlled by h. This is the idea behind the

non-local means algorithm introduced by Buades and his collaborators [46], [54].

2.2.4 Wavelets

Wavelet approach [39], [10] is a multiresolution analysis. Wavelet function is the family of

wavelets generated by scalings a and translations b of a mother wavelet Ψ(t) [55]:

Ψa,b(t) =
1√|a|Ψ

(
t −b

a

)
, a,b ∈ R, a �= 0 (2.8)

In an image processing task such as denoising, a family of wavelet is convolved with a degraded

image Id to generate wavelet coefficients ca,b. The image is represented as a linear combination of

wavelets coefficients

I(t) =
∞

∑
a=−∞

∞

∑
b=−∞

ca,bΨa,b(t) (2.9)

As in Fourier transform, the image is reconstructed from wavelet coefficients. In the transformed

domain image signals are sparse, wavelet coefficients are assumed to be Gaussian distributed, and

noise signal is spread out equally along all coefficients. These properties are exploited to remove

noise by reconstructing the image from coefficients by retaining and eliminating the coefficients

of image that are stronger and insignificant respectively relative to energy γ of the Gaussian noise.
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This technique is known as wavelet soft T S and hard T H thresholding method:

T S(ca,b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if |ca,b| ≤ γ

ca,b − γ if ca,b > γ

ca,b + γ if ca,b <−γ

(2.10)

T H(ca,b) =

⎧⎨⎩0 if |ca,b| ≤ γ

ca,b if |ca,b|> γ
(2.11)

The method was pioneered by Donoho and Johnstone [39]. The threshold is a function of noise

level σ and number of voxels N in the image:

γ = σ
√

2logN (2.12)

Noise level is determined by the median absolute deviation of wavelet coefficients at the finest

resolution level. Other thresholding methods have been formulated by manipulating parameters

in Eq. 2.10, Eq. 2.11 and Eq. 2.12. They include VISU shrink [56], SURE shrink [57], [58] and

Bayes shrink [59].

2.2.5 Markov Random Fields

In 1984, Donald Geman and Stuart Geman introduced Markov random field (MRF) theory [60]

to the computer vision community. They proposed the MRF model, within the Bayesian frame-

work, for image restoration. The underlying image is assumed to exhibit spatial coherence and

is hence modeled as a Markov random field with a known probability distribution. The observed

image, referred to as likelihood, given any realization of an underlying image, is assumed to fol-

low a Gaussian probability distribution. These probabilities are cast into the Bayesian framework

followed by the optimization of the posterior probability distribution [61]. A denoised image is

an image that maximizes the posterior probability referred to as MAP. Alternatively, the denoising

process can be cast as a constrained optimization of the energy functional.

2.2.6 Total Variation

Total variation technique [62], [63], exploits the knowledge that noise introduces spurious details

into clean images resulting in a high absolute gradient. The denoising process is a constrained

minimization in which the absolute gradient is minimized subject to a similarity with an underlying

prior image model.
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2.2.7 Limitations of Current Noise Reduction Algorithms

Gaussian Filters

At low noise levels, when image structures dominate over noise signals, Gaussian filters in a single

operation are excellent noise filters on images with voxels that are Gaussian distributed. At a

significant level of noise, when image structures compete for visibility alongside noise signals and

multiple operations of denoising process are required, its rotationally invariant property results

in smoothing both edges and homogeneous regions [64]. This reduces the utility of the image

in medical diagnosis. It is from this characteristic that the filter earns the name of smoothing

kernel [65].

Total Variation

In the image processing community, total variation (TV) is widely acknowledged as a popular

and state-of-the-art technique for noise reduction because of its edge-preserving property. This

attractive feature of TV is dependent on the optimal selection of a regularization parameter. Con-

tributions in literature on TV focus on applications, properties and different numerical solution

methods. The few contributions [66], [67] that address the problem of regularization parameter

selection are based on regression methods which pre-exist the introduction of TV. This parameter

is easily achieved by manual tuning for a single image. In MRI-based clinical trials management

centers, where the daily routine includes the processing and analysis of several thousands of brain

MRI images, current TV regularization parameter selection techniques will be computationally

inefficient [68].

In specific applications, the need to understand the application environment for optimal

performance calls for the manual tuning of a parameter until the best peak signal-to-noise ratio

(PSNR) of the image is attained [69], [70], [71]. The design and operation of different regular-

ization parameter algorithms incorporate heuristics. For example in generalized cross validation

(GCV), minimum number of observations required for optimal performance has to be heuristically

determined from the experiment by the user. Noise will prevail in the regularized solution if a

reasonable number of data points are not chosen as input into the algorithm. Moreover, GCV does

not have a universal application as there are reports of failure in some model parameter selection

problems [72]. Performance of the discrepancy principle, the unbiased predictive risk estimator

(UPRE) and Stein’s unbiased risk estimator (SURE) relies on the good estimate of an error level,

otherwise there is risk of over-smoothing or retaining noise [73].
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Anisotropic Diffussion

Experimental results have shown that overcoming blurring in the anisotropic diffusion technique

is an ideal expectation because the regularization approach to achieving well-posedness of the

diffusion model introduces blurring into the denoised image [74], [50]. Though a suitable diffusion

coefficient may be chosen to serve the purpose of edge preservation for a particular image, the

choice may not be optimal when a large number of images are processed. Also, the iterative nature

of the process often introduces blurring in flat regions of the image.

Wavelets

Finding an optimal threshold in wavelet technique is a challenging task as reflected by volumes of

articles devoted to thresholding methods. Local structures of the image and wavelet coefficients

at each scale cannot be well described by Gaussian distribution. The result is blurring and ringing

artifacts [75], [76].

Non-Local Means

The non-local means technique is widely considered as a modern, effective and popular denoising

technique because it does not introduce artifacts as in wavelets, but it is known to be computa-

tionally inefficient and reduces the sharpness of edges as is found with filters. Computational

inefficiency is the result of calculating similarity weights in the full-space of neighborhood [77].

Reduction of sharp edges is the effect of calculating similarity weights in the presence of noise [78].

Its performance is dependent on the accurate estimate of noise level in the image. Interestingly,

several contributions in literature that highlight these limitations made proposals to address the

problems [79], [80], [77], [78].

Markov Random Field

At inception, MRF technique was regarded as a revolutionary technique in image denoising. A

serious setback is the difficulty in estimating model parameters of the probability distribution.

This encourages a significant manual effort in the denoising process [81]. Another setback is the

computational inefficiency of algorithms for the computation of MAP, such as iterative conditional

modes [82], simulated annealing [83] and loopy belief propagation [84]. Though graph cuts [85]

was introduced as a much faster and efficient algorithm, the level of improvement does not make it

a popular choice for denoising large volumes of data commonly found in clinical trials management

centers.
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2.3 Intensity Inhomogeneity Correction

2.3.1 Design Techniques of Current Algorithms

Current bias field correction schemes are based on a common mathematical model. They can be

classified into two classes, prospective and retrospective, according to the object of interest for the

source of information in the elimination of the bias field.

2.3.2 Mathematical Models of the Bias Field

The mathematical model that explains the bias field in MRI system is derived from the generally

accepted mathematical model describing imaging process in different imaging modalities [86],

[13]. At location index l within an image consisting of L number of voxels, a voxel with observed

intensity value Il and the underlying uncorrupted signal xl are related according to:

Il = blxl + ε (2.13)

where bl and ε are a spatially varying function of the image coordinate denoting the bias field

and uniformly distributed random noise due to the imaging device. To account for signal variation

within a specific tissue class j the general model in Eq. 2.13 is reformulated as:

Il = bl(u j + ε j)+ ε (2.14)

The expression in Eq. 2.14 shows that the signal emitted by an anatomical structure belonging

to a specific tissue class is a random variable corrupted with noise ε j and distributed around a

mean value u j. The biological noise ε j arising from a specific anatomical structure and noise

ε due to the MRI device makes the determination of the bias field in Eq. 2.14 nontrivial. The

model yields equations with intractable solutions when different anatomical structures are under

consideration [87]. To simplify the model, the following two assumptions are made on the bias

field and the imaged object [88], [89].

(a) The bias field is a slowly varying variable that can be approximated by a constant within

a clearly defined neighborhood.

(b) The image is piecewise constant and can be approximated as the sum of all disjoint

regions.

For computational convenience, the intra-tissue variability represented by the term (u j + ε j)
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is neglected so that the general model is rephrased [90], [86]:

Il = blu j + ε (2.15)

Another mode to computational convenience is to account for the intra-tissue signal variation and

assume that the bias field is independent of image noise, so Eq. 2.14 becomes:

Il = bl(u j + ε j) (2.16)

The computational complexity of Eq. 2.16 is further reduced through a logarithm transformation,

which turns the multiplicative bias field b into an additive bias field [91], [92]:

log Il = logbl + logu j + loge j (2.17)

Correction of intensity inhomogeneity, preceded by noise removal, is a two-step process. First is

the estimation of intensity inhomogeneity in the image domain followed by division in Eq. 2.13,

Eq. 2.14, Eq. 2.15 and Eq. 2.16 or subtraction in the log domain in Eq. 2.17.

Prospective Method

In prospective methods the imaging device is the object of interest because it is regarded as the

source of intensity inhomogeneity. The bias field is corrected by adopting correct acquisition

parameters and acquisition protocols. This can be achieved by calibrating the MRI system with

phantoms, special imaging sequences and the combination of two different radio frequency coils

[93], [94].

Images of objects with uniform physical properties such as oil and water are used as phan-

toms. Intensity inhomogeneity of the image is estimated from the filtered and smoothed MRI

image of the phantom [94]. The combination of surface and volume coils allows each individual

coil to compensate for the deficiency of the other coil. A surface coil characterized by good signal-

to-noise-ratio (SNR) but vulnerable to intensity inhomogeneity is compensated for with presence

of a volume coil which has poor SNR but is resistant to intensity inhomogeneity [95].

Retrospective Method

Retrospective methods have the acquired image as an object of interest and correct the bias field

using a prior knowledge and properties measured from an acquired image. There are several

categories of retrospective method. In this thesis we review only four popular categories. They are

low frequency filtering, surface fitting, segmentation and histogram:
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1. Low Frequency Filtering: The low-pass filtering technique exploits the slowly varying prop-

erty of the bias field. The bias field and image details are assumed to be localized in the

lower and upper range of frequency domain, respectively. This property enables the extrac-

tion of the bias field from a corrupt image. Homomorphic filtering, popular for nonuniform

illumination correction, is in this category. This filtering method follows the mathematical

model in Eq. 2.17 by computing the bias corrected image as the difference between the log

transformation of a degraded image and the log transformation of a low frequency filtered

image [96]. A similar algorithm, homomorphic unmask filtering corrects the bias field ac-

cording to the mathematical model in Eq. 2.16 [94].

Wavelet decomposition is another low pass filtering approach to correct intensity inhomo-

geneity. The degraded image is decomposed into approximate space and residual space. An

approximate template in approximate space is regarded as consisting of multi-scale sensi-

tivity profiles of a surface coil of the MRI system. The sensitivity profile that gives optimal

output from a suitably chosen filter reflects the sensitivity profile of the surface coil. Bias

field correction is achieved using the optimal sensitivity profile [97], [98].

2. Surface Fitting: A surface fitting method fits parametric smooth functions such as polynomi-

als and splines to image features that characterize slowly varying intensity inhomogeneity.

Image features may be intensities [99] or local gradients of intensities [100], [101]. A popu-

lar surface fitting method is Parametric Bias field Correction referred to as PABIC. It is based

on a parametric model of tissue statistics and a polynomial model of intensity inhomogeneity

field. The estimation of the bias field is formulated as non-linear energy minimization [90].

3. Segmentation: Segmentation method is based on the principle that accurate segmentation

trivializes intensity inhomogeneity correction. It is widely acknowledged that alternating

segmentation and intensity inhomogeneity steps will optimize output of an image analysis

task. Examples of segmentation methods include fuzzy c-means (FCM) [91], mixture mod-

els [102], [103] and level set [88].

4. Histogram: Histogram methods manipulate the intensity histogram of the image for the

correction of the bias field. There are three popular techniques under histogram based bias

field correction methods.

The nonparametric nonuniformity normalization (N3) is in this category. Design of N3 is

based on a multiplicative mathematical model and assumes that the histogram of an image

represents the probability distribution of a given signal. It corrects the bias field by seeking

a bias field that maximizes the frequency content of the histogram of an image [104].
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Another approach in this category considers that intensity inhomogeneity increases the in-

formation content of an image. Entropy, a measure of information content, is extracted from

the image intensity histogram and cast in the information minimization framework to correct

the bias field [105].

Yet another approach seeks to manipulate histogram information in a local neighborhood of

image where intensity inhomogeneity is assumed to be constant. Local neighborhoods of im-

age are obtained by dividing the image into subvolumes. The intensity inhomogeneity map

is estimated by comparing the histogram in each locality of the test image to a corresponding

locality in a histogram model [106].

2.3.3 Importance of Current Algorithms

The several volumes of research articles on the correction of the bias field reflect the importance

of brain MRI in the study and examination of neurodegenerative diseases. The old and popular

homomorphic filtering approach is very simple to implement and can operate in real-time. The

design of FCM makes it robust to the partial volume effect. Iteration between segmentation and

bias field correction in segmentation based techniques improves the accuracy of the corrected bias

field. Histogram based methods are suitable for automated operations because prior knowledge of

image and initialization is not required as in segmentation based methods. The detailed specific

contributions of different algorithms for correction of intensity inhomogeneity is in [13].

2.3.4 Limitations of Current Algorithms

Limitations of current algorithms are inherent in their design formulation or derived from adopted

mathematical models. These limitations are categorized as algorithm and model limitations.

Algorithm Limitations

Phantom based methods cannot correct for patient induced inhomogeneities. Both phantom based

methods and combination of surface and volume coils for bias correction require more acquisition

time, which is often impracticable in large scale studies such as clinical trials [16], [13]. Frequency

spectrums of homogeneous regions that describe specific anatomical structures are in the same low

range as bias fields. There is a high risk of eroding relevant anatomical structure when the filtering

method of intensity homogeneity correction is applied [107]. The blind extrapolation of intensity

inhomogeneity from a major tissue to the entire image in an intensity based surface fitting method

limits the accuracy of bias field correction. Gradient based methods in the same class as a surface
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fitting method can give an erroneous bias field estimate if the homogeneous image regions are not

large enough or are dominated by abnormal tissue such as the presence of a tumor [13]. There is a

risk of introducing extraneous artifacts or eroding anatomical structures because many current bias

field correction techniques are not robust to images corrupted by little or no bias field [29].

Model Limitations

Since 1971, when the MRI system was invented, increased clinical interest in brain MRI encour-

aged the development of high magnetic field strength MRI systems. Operating magnetic field

strength increased from 1.5T to 7T for humans and as much as 9.4T and 14.1T for animals. The

use of a higher magnetic field improves the signal-to-noise ratio and acquisition time, but the

bias field, if present, can be significant, severe and complex [27]. The common assumption of a

smoothly varying multiplicative bias field adopted by most current algorithms is only an ideal ex-

pectation to make the problem of bias field correction tractable. Experience has shown that, even

with this assumption, the bias fields computed by most of these algorithms such as [14] and [104]

are in general not smooth. Extra resources and sometimes heuristics approach is adopted to main-

tain smoothness [15]. In the past, some researchers had cast doubt on the reliability of adopting a

smooth multiplicative intensity inhomogeneity field as a model of the bias field [108]. The doubt

was made strong when the contribution of [109] demonstrates that intensity inhomogeneity field is

not necessarily globally smooth. The field may be locally smooth but not globally smooth. In such

situations most of the current algorithms will fail to correct the bias field.
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Chapter 3
Theoretical Background

The theory behind this doctoral research and thesis is anchored on three concepts: the 4-neighborhood

clique kernel, layer-structured Markov random field (MRF) model and set theory. The 4-neighborhood

clique system, which has its origin in graphical models [110], defines the relationship between the

intensity of a pixel and that of its neighbors within an image. Layer-structured MRF model is

rooted in the Markov random field model [111]. In layer-structured MRF model, images under

consideration are regarded as layers. When the test image is the only physical system under con-

sideration, the MRF model is regarded as single layer. It is regarded as double layer when the test

image and a classical prior image are considered.

This chapter begins with the description of a 4-neighborhood kernel. Next is the descrip-

tion of a single layer Markov random field (SLMRF) model and how the assignment of different

smoothness costs to a 4-neighborhood kernel determines scalar or vector valued total clique po-

tential of an MRI slice image. The Rudin, Osher and Fatemi (ROF) total variation technique [62],

Tikhonov regularization technique [112] and the classical Markov random field model [111] are

classified as double layer Markov random field models. At end of the chapter there is explanation

on how to apply set theory [113] as an important step in the algorithm for the correction of intensity

inhomogeneity.

3.1 The 4-Neighborhood Clique System

Given a 2D image I of size m×m and M = m×m, a four neighborhood clique system N having a

clique size of two is the set consisting of four pixels that are closest in distance to any pixel located

at (x,y):

N = {N1 = (x,y+h),N2 = (x+h,y),N3 = (x,y−h),N4 = (x−h,y)} (3.1)
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where x and y are indices of rows and columns within the image, N1, N2, N3 and N4 are labels

identifying each neighbor, and h is an interval between each grid. The structure of the system is

displayed in Fig. 3.1a. The red colored pixel is the reference pixel and the four neighbors are the

black colored pixels. The intensity levels of pixels that constitute the image belongs to a family of

random variables F = {F1, . . . ,FM} defined on the set of pixel locations S called sites [111]:

S = {(x,y)|1 ≤ x,y ≤ m} (3.2)

The assignment of intensity levels, as in a grey level image, from set L = {0,1, . . . ,255} to each

site S is an event called configuration f = { f1, . . . , fM} . In the clique system the reference pixel

located at (x,y) is denoted i and any of its neighbors N1, N2, N3 and N4 as expressed in Eq. 3.1 is

denoted i
′
and assigned configurations fi and fi′ , respectively [111].

3.2 4-Neighborhood Kernel and Gibbs Energy

Configurations assigned to a reference pixel and its neighbors are adopted as indices to compute

Gibbs energy. Gibbs energy U( f ) of an image with pixel configuration f ∈ F is the sum of single

site V1 and pair-site V2 cliques [111]:

U( f ) = ∑
i∈S

α1V1( fi)+∑
i∈S

∑
i′∈N

α2V2( fi, fi′ )≡ Ed +Es (3.3)

where the first and second terms are data Ed and spatially varying smoothness Es terms, respec-

tively, and α1 and α2 are interaction coefficients. At each local clique N, where reference pixel is

i ∈ S, contribution of each neighboring pixel i
′ ∈ N to local smoothness energy is determined as:

V2( fi, fi′ ) =

⎧⎨⎩ξr if fi = fi′

ξp otherwise
(3.4)

where ξr is reward and ξp penalty for conformity fi = fi′ and violations fi �= fi′ of smoothness con-

straints, respectively. Henceforth, the three terms: Gibbs energy, Markov random field energy and

smoothness energy are considered equivalent, have the same meaning for a given image and will

be used interchangeably. The matrix formulation of a kernel for computing local clique potential

energy is:

H =

⎡⎢⎣ 0 ξr,p 0

ξr,p 0 ξr,p

0 ξr,p 0

⎤⎥⎦ (3.5)
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(a) (b)

(c) (d)

Figure 3.1: (a) Structural description of the 4-neighborhood clique system. The four nearest neighbor of a pixel(in red

color) located at (x,y) are the black colored pixels labeled N1, N2, N3 and N4. (b) The general form of the kernel

for the 4-neighborhood clique system. (c) Kernel for configuring an image for the Bayesian mode of operation. (d)

Kernel for configuring an image for the variational mode of operation.

where ξr,p denotes the assignment of either reward ξr if fi = fi′ or penalty ξp if fi �= fi′ . The

physical structure of the kernel corresponding to this matrix is displayed in Fig. 3.1b.

The assignment of scalar values γ1 and γ2 to ξr and ξp, respectively, in Eq. 3.4 results in a
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scalar valued smoothness cost at each local clique:

V2( fi, fi′ ) =

⎧⎨⎩ξr = γ1 if fi = fi′

ξp = γ2 otherwise
(3.6)

and H in Eq. 3.5 becomes:

Hs =

⎡⎢⎣ 0 γ1,2 0

γ1,2 0 γ1,2

0 γ1,2 0

⎤⎥⎦ (3.7)

where γ1,2 denotes the assignment of either reward γ1 if fi = fi′ or penalty γ2 if fi �= fi′ . In Eq. 3.4,

the assignment of vector values of ξr j and ξrk to ξr, and ξp j and ξpk to ξp in orthogonal directions,

j and k results in a vector valued smoothness cost expressed as:

V2( fi, fi′ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξr j = ξrk = 0 if fi = fi′

ξp j otherwise, j direction

ξpk otherwise, k direction

(3.8)

Penalties ξp j and ξpk can be expressed using standard image location notation:

ξp j =
I( j+h,k)− I( j−h,k)

2h

ξpk =
I( j,k+h)− I( j,k−h)

2h

(3.9)

In this case H in Eq. 3.5 becomes:

Hv =

⎡⎢⎣ 0 −1
2 0

−1
2 0 1

2

0 1
2 0

⎤⎥⎦ (3.10)

The physical structure of the kernels corresponding to Hs and Hv are displayed in Fig. 3.1c and

Fig. 3.1d, respectively.

3.3 Single Layer Markov Random Field

In the single-layer Markov random field, unlike classical Markov random field theory, the observed

image is the only physical system under consideration, and there is no reference to a prior model.
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Pixel locations are quantized into 4-neigbourhood clique system that describes spatial coherence or

clusters of similar pixels. The single layer Markov random field energy is the sum of local clique

potentials Vc:

U( f ) = ∑
c∈C

Vc( f ) (3.11)

Gibbs energy U is dependent on pixel configuration f and is computed from the sum of potential

function contributions from a single site and pair-site cliques expressed in Eq. 3.3.

Noise changes the pattern of arrangement of pixels in the image as demonstrated in Fig. 3.2.

There is a gradual change in pixel configurations for noise levels increasing from σ = 0 in Fig. 3.2a

to σ = 30, σ = 60 and σ = 90 in Fig. 3.2b, Fig. 3.2c and Fig. 3.2d, respectively. Different noise

levels result in a change in strength of clusters within the image. Thus, different noise levels σ
give rise to different pixel configurations and their corresponding levels of energy Ûσ ( f ). The data

term is set to zero because it is a constant for different levels of noise. Thus, the smoothness energy

can be regarded as the total clique potential per pixel U :

U( f ) =
Û
D

= ∑
i∈S

∑
i′∈N

V2( fi, fi′ ) (3.12)

normalized by D, the product of row and column dimensions of image.

In the degradation process, different image pixel configurations f ∈ F can be realized from

an observed image Iσn( f ) degraded by noise σn of level n. The convolution of Iσn( f ) with Hs is

the scalar valued total smoothness energy U( f ) computed from the sum of local clique potentials.

We denote the scalar value as γ and express it as a function of image pixel configuration γ( f ):

U( f ) = Hs ∗ Iσn( f ) = γ( f ) (3.13)

On the other hand, convolution with Hv results in total smoothness energy U( f ) that is vector

valued and is expressed as a function of image gradient ∇I( f ):

U( f ) = Hv ∗ Iσn( f ) = ∇I( f ) (3.14)

The magnitude of vector valued total energy can be measured either in Lq norm:

Lq = (‖∇I‖q) (3.15)

where q = 1,2 is choice of norm.
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NOISE LEVEL =0

(a)

NOISE LEVEL =30

(b)

NOISE LEVEL =60

(c)

NOISE LEVEL =90

(d)

Figure 3.2: (a) An MRI slice image at various levels of degradation by Rician noise. Observe the different image pixel

configurations associated with noise levels of σ = 0, σ = 30, σ = 60 and σ = 90.

3.4 Double Layer Markov Randon Field: ROF Total Variation
and Tikhonov Techniques

The Rudin, Osher and Fatemi total variation technique [62] follows the same theoretical formula-

tion as the single layer Markov random field explained in the previous section, but there is another
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physical system under consideration. It is an underlying clean image modeled as piecewise smooth

and referred to as prior model Ic. The estimate of the true image Îc is derived by the minimization

of a functional subject to the observed image Id being closely matched to the prior:

Îc = min
Iσn( f )

∑
x

∑
y
‖(∇Iσn( f ))x,y‖+ 1

2λ
‖Iσn( f )− Ic‖2 (3.16)

where λ is the regularization parameter. If the L1 norm of vector valued smoothness constraint in

Eq. 3.16 is changed to the L2 norm, Rudin, Osher and Fatemi total variation technique changes to

the Tikhonov or Sobolev regularization technique [112]:

Îc = min
Iσn( f )

∑
x

∑
y
‖(∇Iσn( f ))x,y‖2 +

1

2λ
‖Iσn( f )− Ic‖2 (3.17)

Parameter [λ : 0 ≤ λ < ∞} is a positive constant referred to as the regularization parameter. This

parameter is a weight that balances the level of piecewise smooth property of a prior image that

is impacted to the denoised image and level of noise removal. The parameter is also a measure of

fidelity (Iσn( f )− Ic) to the prior image Ic. The selection of λ in three different ranges of values

results in denoised images with three different properties:

λ ⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Too High Îc ⇒ denoised & oversmooth

Too Low Îc ⇒ noisy & piecewise smooth

= 0 Îc = Id denoised image same as observation

(3.18)

If the value of λ tends to be too high, the algorithm is constrained to place more emphasis on noise

removal, but the denoised image is oversmooth because there is less emphasis on the impacting

piecewise smooth property of the prior image on a denoised image. On the other hand, the value of

λ that tends to be too low results in a denoised image that possesses the piecewise smooth property

of a prior image but retains noise. A special case is when λ = 0 in which a denoised image is the

same as a noisy image. Thus, the optimal performance of both ROF and Tikhonov techniques is

strongly dependent on the optimal selection of λ [73].

3.5 Classical Double Layer Markov Random Field Model

The seminal report in [60] can be divided into four successive steps. In the first step, the pixel con-

figuration f of underlying image Ic is assumed to exhibit spatial coherence and is hence modeled

as a Markov random field. Markov-Gibbs energy equivalence is invoked so that the probability
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of occurrence of a particular configuration P( f ) of an underlying image obeys the Gibbs distribu-

tion [111]:

P( f ) = P(Ic( f )) ∝ exp−(U( f )) (3.19)

where U( f ), energy function, is the sum of clique potentials Vc( f ) over all possible cliques C as

expressed in Eq. 3.11. The probability distribution of each realization of the observed image Id

from prior Ic is assumed to follow a Gaussian distribution:

P(Id( f )|Ic) ∝ exp−
(
(Id( f )− Ic)

2

2σ2

)
(3.20)

In the second step each possible image pixel configuration of prior and likelihood are as-

sumed to be independent and identically distributed. Thus, probabilities P(Ic) and P(Id|Ic) of prior

and likelihood are expressed as:

P(Ic) ∝ ∏
f∈F

exp−(U( f )) (3.21)

P(Id|Ic) ∝ ∏
f∈F

exp−
(
(Id( f )− Ic)

2

2σ2

)
(3.22)

In the third step probabilities in Eq. 3.22 and Eq. 3.23 are inserted into Bayes posterior

probability P(Ic|Id) formula [114], [111]:

P(Ic|Id) ∝ P(Id|Ic)P(Ic) (3.23)

The fourth step is the optimization of the posterior probability distribution:

Îc = argmax
Id

P(Ic|Id) = argmax
Id

[P(Id|Ic)P(Ic)]

= argmax
Id

{[
∏
f∈F

exp−
(
(Id( f )− Ic)

2

2σ2

)][
∏
f∈F

exp−(U( f ))

]}
(3.24)

This formulation estimates the denoised image Îc from the image configuration that maximizes

P(Ic|Id), referred to as maximum a posteriori probability (MAP).

3.6 Set Theory Description of MRI Slice Image Quality

The MRI image is a signal Y defined in an image domain Ω. The signal represents M types of

anatomical structures and has three attributes, namely intensity I, spatial location R and entropy S.
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Entropy is derived from R. These attributes are in Ω, ΩI ∈ Ω, ΩS ∈ Ω and ΩR ∈ Ω. There are M

disjoint regions in the domain of each attribute:

ΩI = {ΩI,1, .,ΩI,M} (3.25)

ΩR = {ΩR,1, .,ΩR,M} (3.26)

ΩS = {ΩS,1, .,ΩS,M} (3.27)

For each attribute, the regions representing each of the M anatomical structures can be seg-

mented by a suitable image processing technique. Intensity levels attributes is segmented by, for

example, the k-means clustering algorithm [115]. Entropy attribute is segmented by combining

entropy filtering with thresholding. Spatial location attributes can be segmented by computing the

region property across the image.

3.7 An Ideal MRI Image

The following holds true for an ideal MRI image acquired using correct acquisition parameters and

acquisition protocol:

Ω = ΩI ∪ΩR ∪ΩS (3.28)

/0 = ∩M
j=1ΩI, j (3.29)

/0 = ∩M
j=1ΩR, j (3.30)

/0 = ∩M
j=1ΩS, j (3.31)

/0 = ΩI, j ∩ΩR,k, j �= k (3.32)

/0 = ΩI, j ∩ΩS,k, j �= k (3.33)

3.8 A MRI Image Corrupted by the Bias Field

We make the following eight statements regarding a MRI image corrupted by a bias field:

(1) The MRI signal has been processed and is without noise.

(2) The bias field signal, unlike the noise signal, is not uniformly distributed throughout the

image.

(3) Like residual noise signals, there does exist residual bias field signals. They are insignif-

icant and can be neglected since they do not adversely affect image quality and image analysis.
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(4) Henceforth, intensity levels not significantly affected by bias fields will be termed clean

signals; otherwise they are termed corrupt signals.

(5) The domain defined by the intensity attributes of each tissue class is the union of the set

of clean voxels {I j} and the set of corrupt voxels {Ik}:

ΩI, j = {I j}∪{Ik}, j �= k, k = 1, ,M (3.34)

The expression in Eq. 3.34 implies that voxels associated with a bias field in a particular tissue

class belong to a different anatomical structure.

(6) The corrupt voxels are in the image locations termed outliers G. Outliers are voxel

locations that are members of the set that violates expressions in Eq. 3.29, Eq. 3.30, Eq. 3.31,

Eq. 3.32 and Eq. 3.33:

ΩI, j ∩ΩR,k = GR,k, j �= k (3.35)

ΩI, j ∩ΩS,k = GS,k, j �= k (3.36)

(7) Both corrupt and clean signals in each tissue class are described by a normal distribution.

(8) The intensity level attribute of an image have a tissue-specific numeric meaning [116]

that potentially trivializes the manual and automated analysis of a MRI scan. The presence of a

bias field distorts intensity levels and makes vague their meaning with respect to a tissue class.

Nevertheless, the spatial attributes of anatomical structures under investigation are not distorted.
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Chapter 4
Single Layer Markov Random Field Model for

Noise Estimation

This chapter describes a new algorithm for the estimation of noise levels in the magnetic resonance

images of the human brain [117]. Estimation of noise level is modeled as a random experiment.

Objects of the random experiment are original 3 mm T2-weighted axial brain MRI images from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The images had undergone

post-acquisition processing and are assumed to be noise-free. We chose as many as 422 subjects

to satisfy the requirements of the central limit theorem [118], [119], [120] and to optimally extract

inter-subject similarities in voxel statistics. The range, mean and standard deviation of the subjects’

ages are (71-87), 75 and 10, respectively.

In the experiment, for each MRI slice, variations in total clique potential (TCP) with noise

level is computed. The TCP are indexed by their corresponding level of Rician noise and stored

in a database referred to as the TCP-noise level database. Each outcome in the sample space

of the experiment is the total clique potentials and corresponding noise level for each MRI slice

in the database. The random variable is the index of the total clique potential in each outcome

of sample space that is closest in value to the total clique potential measured from a test MRI

image. The total clique potential of a test MRI image is measured, normalized and matched with

each element of sample space. An estimate of noise level is derived from the mean and standard

deviation of probability distribution generated from the matching process. A schematic diagram of

the algorithm is displayed in Fig. 4.1.
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Figure 4.1: The four steps in the estimation of noise level in 2D brain MRI. In step 1, TCP-noise level data of the test

image is generated. The data is normalized in step 2 and the first element (TCP zero variance energy) of the normalized

data is extracted in step 3. In the estimation of the noise (step 4), the TCP zero variance energy is separately matched

to each of the 1D and 2D sample spaces, S1 and S2, respectively.

4.1 Sample Space

Let W = 422 be the number of noise-free 3D brain MRI data from subjects across age, gender

and race. From the MRI data of each subject, G = 21 useful slices are extracted to obtain a total

of Z = GW slice images where each MRI slice image is indexed by z ∈ [1,Z]. Each MRI slice

image indexed by z is replicated L number of times, and each replica is further indexed by a replica

number l ∈ [1,L]. Thus, each MRI slice image Iz,l is indexed by its MRI slice number z in the

database and its replica number l as defined by the set {(z, l) : 1 ≤ z ≤ Z,1 ≤ l ≤ L}.
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Starting from zero noise level, σ = 0, each copy of a MRI slice image is corrupted by

the increasing level of Rician noise {σl : σ1,σ2,σ3, . . . ,σL} weighted by the replica index. For

each noise level of a replica image, the total clique potential energy (with and without background

pixels) Uz,l is computed from the sum of local clique potentials according to Eq. 3.3 to form a 1×L

TCP energy-noise level data {Uz,l :Uz,1,Uz,2,Uz,3, . . . ,Uz,L}. Each element of the TCP energy-noise

level data is normalized by dividing it with the maximum value of the total clique potential in the

TCP energy-noise level data so that (−∞ ≤ Uz,l ≤ 1). For the entire MRI slices in the database,

we obtain a two dimensional sample space Ω of the normalized variations of TCP energy Uz,l with

noise level σl having dimensions Z ×L:

Ω(ω) =

⎛⎜⎜⎜⎜⎜⎜⎝
U1,1,U1,2, . . . ,U1,L

U2,1,U2,2, . . . ,U2,L

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

UZ,1,UZ,2, . . . ,UZ,L

⎞⎟⎟⎟⎟⎟⎟⎠ (4.1)

where each outcome ω of the sample space is each row of the matrix defined by ωz = {Uz,l :

Uz,1,Uz,2,Uz,3, . . . ,Uz,L}. For notational convenience we adopt the same notations for normalized

and unnormalized TCP data.

A second sample space κ having one dimension of size 1×L is derived from the two dimen-

sional sample space by computing the mean of Eq. 4.1 along its column:

κ(l) =
1

Z

Z

∑
z=1

Uz,l ∀ l (4.2)

Using the regression analysis we describe κ by a power model:

E = aσ̂b + c (4.3)

ab =−1.67,a f =−0.6863 (4.4)

bb =−0.6764,b f =−0.3663 (4.5)

cb = 1.053,c f = 1.105 (4.6)

where ab,a f ,bb,b f ,cb,c f are model parameters for foreground ( f ) and background (b) modes,

respectively. Plots of the power models are shown in Fig. 4.2a for foreground and Fig. 4.2b for

background modes.
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Figure 4.2: The plots of the proposed generalized mathematical models for describing the relationship between TCP

energy and noise level in the (a) foreground and (b) background modes.

4.2 Random Variable

A random variable X is defined as a function that assigns a real number X(ω), ω ∈ Ω, to each

outcome ω in the sample space Ω of a random experiment [118]. Different random variables
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can be defined based on this random experiment. For example, there are a total of T = ZL MRF

energies indexed by {L : L < Z} levels of noise. If Z is large enough, such that Z � L, then T

MRF energies will be randomly distributed into each noise level. Thus, the set of all possible

MRF energies {Û1,l,Û2,l,Û3,l, · · · ,ÛZ,l}, consisting of Z number of elements that are indexed by

a particular noise level l is a random variable. The random variable of interest to this proposal is

defined as the set containing the indices Xz(ω) = {l1, l2, l3, · · · , lZ}, l ∈ [1,L] of TCP energy Uz,l in

each outcome ωz = {Uz,l : 1 ≤ z ≤ Z,1 ≤ l ≤ L} of the sample space that is closest in value to the

TCP energy measured from a test image:

{Xz(ω)}Xz∈[1,L] = arg min
l∈[1,L]

: {l | ∀z : ‖Et −{Uz,l}‖} (4.7)

4.3 Estimation of Noise Level

The test image for evaluation was provided by NeuroRx Research Inc. It was corrupted with an

increasing level {l : 0 ≤ l ≤ 200} of Rician noise, starting from the first noise level, σ = 0. For

each noise level, the TCP energy Et.l is computed according to Eq. 3.3 to obtain a 1× 200 TCP

energy-noise level data. The data is normalized by dividing each element with the maximum TCP

energy. The normalized TCP energy Êt,1 measured from the test image is the first element l = 1 of

the normalized TCP energy-noise level data.

The normalized TCP energy measured from the test data is matched separately to each TCP

energy-noise level data of an MRI slice in the 1D and 2D sample spaces. In both cases we find in-

dices of TCP energy in each TCP energy-noise level data that are closest in value to the normalized

TCP energy measured from the test data.

First matching generates a random variable consisting of a sequence of indices Xz(ω) =

{l1, l2, l3, · · · , lZ} of the same number of elements Z as MRI slice images in the sample space giving

a total of Z number of Q unique discrete indices θz ∈ [0,L] each with frequency of occurrence λq.

Estimated level of noise ENV 1 is the mean of probability distribution:

ENV 1 = θ1(
λ1

Z
)+θ2(

λ2

Z
)+θ3(

λ3

Z
) . . .+θZ(

λQ

D
)−1 (4.8)

Second matching generates only a single and unique index number ENV 2 because matching

is with a single MRI energy-noise level data:

ENV 2 = min
l∈[1,L]

‖Êt,1 −κl‖−1 (4.9)

Subtraction of unity in both Eq. 4.8 and Eq. 4.9 is the rescaling of indices to account for the index
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of noise level associated with Rician noise of zero variance.

4.4 Comparative Performance Evaluation Results

The two methods of estimating noise in the proposed algorithm are denoted ENV1 and ENV2.

They were compared, based on mean square error and absolute mean square error, alongside five

current algorithms, namely [31] which we denote BRU, [32] denoted CHA, [34] denoted SJI, [35]

denoted AJA and [36] denoted RAJ. Each slice in the real MRI data was modified to follow Rician

noise distribution ranging from (0 ≤ σ ≤ 40). For each original noise level σ the estimated level

of noise σ̂ from an algorithm is determined from the mean value of the noise level estimated for

all the individual slices in the volume data.

4.4.1 Mean Square Error

The second proposal for estimation of noise level ENV2 demonstrates superior performance in

terms of mean absolute error (≈ 0.08) on T2 (Fig. 4.3a) and FLAIR (Fig. 4.3d) MRI images. In

the same evaluation parameter, AJA was the best algorithm with (≈ 0.07) for T1 (Fig. 4.3b) and

PD (Fig. 4.3c) images. It is closely followed by RAJ and the proposed ENV2.

4.4.2 Root Mean Square Error

In the plot for the root mean square error displayed in Fig. 4.4, the proposed ENV2 stands out

clearly as best for T1 (Fig. 4.4b), (≈ 0.02) and T2 (Fig. 4.4a), (≈ 0.2) images. Closely behind is

the proposed ENV1, AJA and RAJ. The algorithm AJA is best for PD images (Fig. 4.4c), (≈ 0.2)

closely followed by the two proposed noise estimation algorithm, ENV1 and ENV2 and RAJ. As

can be seen in (Fig. 4.4d) for FLAIR images, the first approach in the proposal ENV1 and AJA
show the same level of best performance (≈ 0.2) and is closely followed by the second proposal

and RAJ.
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Figure 4.3: Comparative performance evaluation. The plots of the mean absolute error for four different MRI acquisi-

tions - (a) T2, (b) T1, (c) PD and (d) FLAIR.
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Figure 4.4: Comparative performance evaluation. The plots of the root mean square error for four different MRI

acquisitions - (a) T2, (b) T1, (c) PD and (d) FLAIR.
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Chapter 5
Single Layer Markov Random Field Model for

Denoising

This chapter presents a method of reducing noise using the single layer Markov random field

model [121]. In the single layer Markov random field model for reducing noise, the observed

image belongs to a specific class of natural images such as a brain MRI slice image Iσn( f ) having

pixel configuration f degraded by noise σn of level n. The observed image is the only physical

system under consideration, and there is no reference to a classical prior image model. The chapter

begins with explanation on the relationship between total variation, smoothness energy and noise

level of an image and how these variables are cast in Euler-Lagrange (E-L) differential equation

framework. The solution to the E-L equation is stated followed by determination of the denoised

image using gradient minimization scheme. A comparative performance evaluation is at the end

of the chapter.

5.1 Total Variation, Smoothness Energy and Noise Level

The image is assumed to be initially clean and without noise σ0 = 0 as shown in Fig. 3.2a. The

energy at the noise-free state is regarded as the equilibrium energy state. The observed noisy or

higher energy state σn is attained in a step-wise incremental Δσ degradation by noise. Different

levels of noise σ30 = 30, σ60 = 60 and σ90 = 90 results in different pattern of arrangement of pixels,

different spatial coherence and hence different image energy as shown in Fig. 3.2b, Fig. 3.2c and

Fig. 3.2d. Different levels of noise σn result in different pixel configurations Iσn( f ), different

image gradients ∇I(σn( f )) and hence different levels of energy Un(σn( f )). Thus, the smoothness

energy U of image I is a functional U(σn, Iσn( f ),∇I(σ( f ))) having three variables namely image

variance σn, image pixel configurations Iσn( f ) and image gradient ∇I(σ( f )) measured in L1 norm.
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Noting that smoothness energy is equivalent of total variation or the integral of absolute gradient

(∑x ∑y(‖(∇Iσn( f ))x,y‖)) of the image, the smoothness energy can be expressed as:

U(σn, Iσn( f ),∇I(σ( f ))) = ∑
x

∑
y
(‖(∇Iσn( f ))x,y‖) (5.1)

The task of noise reduction is to return the image from higher energy state σn to the equilibrium

energy state σ0.

5.2 Euler-Lagrange Differential Equation

The Euler-Lagrange partial differential equation [122], [123] corresponding to Eq. 5.1 is :

∂U
∂ I

− ∂U
∂σ

∂U
∂ (‖∇I‖) = 0 (5.2)

The classical method to derive the solution of Euler-Lagrange equation is by adopting the finite

difference method of approximating partial derivatives [124]. To make the expression in Eq. 5.2

well-posed the variable ‖∇I‖ is perturbed by an amount {β : 0 < β ≤ 1} and expressed as:

‖∇I‖=
√
‖∇I‖2 +β (5.3)

so that solution of the perturbed problem will converge to a solution of the original expression as

β → 0 [125]. After perturbation the solution Iσσ becomes:

Iσσ =
(Ix(x,y)2 +β )Iyy(x,y)−2Ix(x,y)Iy(x,y)Ixy(x,y)

(Ix(x,y)2 + Iy(x,y)2 +β )3/2
+

Ixx(x,y)(Iy(x,y)+β )2

(Ix(x,y)2 + Iy(x,y)2 +β )3/2

(5.4)

5.3 Gradient Descent Minimization

Based on the theoretical formulation of the proposed algorithm, the variance step was fixed at 0.1

in the gradient descent minimization scheme:

Iσ+1 = Iσ −ησ ∇(Iσ ) (5.5)
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The notations Iσ+1, Iσ , ησ and ∇(Iσ ) = Iσσ are the currently observed image, initial image, vari-

ance step and gradient of the initial image. Minimization of image gradient is subject to a math-

ematical model describing relationship between Markov random field energy and noise level. At

each iteration Markov random field energy expressed by total clique potential is computed accord-

ing to the formulation in [117]. The stopping criterion Es is fixed at Es = KbgUbg and Es = Kf gUf g

for background and foreground modes respectively, where Kbg and Kf g are arbitrary constants.

These constants are multiplication factors, derived from experimental observations and determines

number of iterations before energy Es is attained in the minimization process. The images for the

experiments were with background and Kbg was set at 2.5.

5.4 Comparative Performance Evaluation

The proposed algorithm was compared alongside three state-of-the-art algorithms. On the eval-

uation figure the proposed approach is denoted CPFM. The state-of-the-art algorithms are the

nonlocal means algorithm proposed in [46], denoted NLOC, anisotropic diffusion approach devel-

oped in [126], denoted DIFF and implemented by D. S Lopes in (http://web.ist.utl.pt/

daniel.s.lopes/software) and the wavelet technique as detailed in [10], denoted WALT.

The comparative performance evaluation experiment was biased in favor of NLOC because noise

level, an input parameter for its optimal performance was assumed to be accurately estimated.

Evaluation was based on the following five criteria: visual quality, signal-to-noise-ratio, structural

similarity index, mean square error and root mean square error.

Visual Quality

Images in Fig. 5.1a and Fig. 5.2a are clean MRI slice images from NeuroRx and ADNI, respec-

tively. The degraded version of the image at noise levels of σ = 30 is displayed in Fig. 5.1b and

Fig. 5.2b. Visual quality of the denoised version from the proposed algorithm and other algorithms

can be said to be comparable to each other. Based on visual cues it can be said that the proposed

algorithm and nonlocal means NLOC are competing for superiority. At first glance, NLOC can

be said to be the best based on global view of the images. There is no doubt that NLOC performed

excellently in removing noise from the background pixels, but the background region of the im-

ages are useless in medical diagnostics. A cursory examination of foreground regions in all the

images shows that the proposed algorithm CPFM was the best in preserving original structures

of the images. The white and grey matter structures in the MRI images denoised by the proposed

algorithm are superior in visual quality because they are much more similar to the original images

than images denoised by NLOC which exhibit some degree of blurring.
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Signal-to-Noise Ratio

The proposed algorithm is comparable to other algorithms in terms of signal-to-noise ratio as

shown in Fig. 5.3a and Fig. 5.4a. In both cases the plot identifying the proposed algorithm is

raised above other algorithms but trailing behind NLOC. As shown in the figure, for noise level in

the range (0 ≤ σ ≤ 75), nonlocal means technique can be distinguished as a superior algorithm.

Structural Similarity Index

For evaluation based on the structural similarity index (Fig. 5.3b) and (Fig. 5.4b) all the algorithms

are comparable. However, the best performance indicators of 0.57 and 0.55 were recorded by

NLOC. The proposed algorithm was trailing behind NLOC with 0.47 and 0.51 and ahead of other

state-of-the-art algorithms DIFF and WALT.

Mean Square Error

The plots in Fig. 5.3c and Fig. 5.4c on mean square error show that the plot identifying the proposed

algorithm is lower than other algorithms but higher than NLOC, an indication that the proposal

has the second best performance indicator after NLOC for noise level in the range 0 ≤ σ ≤ 75.

Root Mean Square Error

In Fig. 5.3d and Fig. 5.4d the proposal recorded root mean square error of 120 in both cases, and

was trailing behind nonlocal means which recorded the best performance indicator of 50 and 60,

respectively.
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NOISE−FREE IMAGE

(a)

NOISY IMAGE =30

(b)

DENOISED IMAGE (CPFM) =30

(c)

DENOISED IMAGE (NLOC) =30

(d)

DENOISED IMAGE (DIFF) =30

(e)

DENOISED IMAGE (WALT)=30

(f)

Figure 5.1: Comparative performance evaluation using MRI slice image from NeuroRx Research Inc. (a) The original

and clean MRI (b) The clean image degraded by noise level of σ = 30 (c) Denoised version of (b) by CPFM (d)

Denoised version of (b) by NLOC (e) Denoised version of (b) by DIFF (f) Denoised version of (b) by WALT.
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NOISE−FREE IMAGE

(a)

NOISY IMAGE =30

(b)

DENOISED IMAGE (CPFM) =30

(c)

DENOISED IMAGE (NLOC) =30

(d)

DENOISED IMAGE (DIFF) =30

(e)

DENOISED IMAGE (WALT) =30

(f)

Figure 5.2: Comparative performance evaluation using MRI slice image from Alzheimer’s Disease Neuroimaging

Initiative. (b) The clean image degraded by noise level of σ = 30 (c) Denoised version of (b) by CPFM (d) Denoised

version of (b) by NLOC (e) Denoised version of (b) by DIFF (f) Denoised version of (b) by WALT.
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Figure 5.3: Comparative performance evaluation over the range of noise levels 0 ≤ σ ≤ 75 using MRI slice image

from NeuroRx Research Inc. (a) Signal-to-noise-ratio (b) Structural similarity index (c) Mean square error (d) Root

mean square error.
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Figure 5.4: Comparative performance evaluation over the range of noise levels (0 ≤ σ ≤ 75) using MRI slice image

from Alzheimer’s Disease Neuroimaging Initiative. (a) Signal-to-noise-ratio (b) Structural similarity index (c) Mean

square error (d) Root mean square error.
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Chapter 6
A General Framework for Denoising

This chapter proposes two approaches to generalize the application of Markov random field model

to noise reduction in images [121]. A first approach is the concept of the Variational-Bayesian

cycle. It is a theoretical formulation on how to ’navigate’ from ROF total variation to a classical

Markov random field model and vice-versa. Based on the concept of the VB cycle, it is shown that

the variational and Bayesian techniques are equivalent and noise variance is the optimal regulariza-

tion parameter in TV denoising of MRI images of the brain [127]. The second approach describes

the design of an algorithm which can be configured for Bayesian and variational denoising modes

by assigning scalar and vector values to the smoothness energy, respectively. Within the variational

mode, the choice of norm adapts images for either the total variation or the Tikhonov technique.

6.1 The Variational-Bayesian Cycle

The focus of researchers on the computational speed of TV in different applications has led to

generalizations and variations of the original TV denoising problem formulated by ROF [62]. In

this paper the original TV problem formulation expressed as a convex functional in [122] was

adopted for the proposed method:

Îc = min
Id

M

∑
i=1

N

∑
j=1

‖(∇Id)(i, j)‖+
1

2λ
‖Ic − Id‖2 (6.1)

The observed image Id is of size MXN and the other notations have same meaning as in Eq. 3.16.

Natural logarithmic transformation on Eq. 6.1 maintains the equality of the right hand side (RHS)
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and left hand side (LHS) terms of the equation and also retains the convexity of the functional:

ln
[
exp−(Îc)

]
= min

Id
ln

[
exp−

(
M

∑
i=1

N

∑
j=1

‖(∇Id)(i, j)‖+
1

2λ
(Ic − Id)

2

)]
(6.2)

Now to separate the variables on RHS of Eq. 6.2 into product of two exponential functions:

ln
[
exp−(Îc)

]
= min

Id
ln

[
exp−

(
M

∑
i=1

N

∑
j=1

‖(∇Id)(i, j)‖
)

exp−
(

1

2λ
(Ic − Id)

2

)]
(6.3)

With reference to previous work [117] the first term on the RHS of Eq. 6.3 is the single layer

Markov random field energy U( f ) expressed as a function of the image pixel configuration f :

U( f ) =
M

∑
i=1

N

∑
j=1

(‖(∇Id( f ))(i, j)‖) (6.4)

Insert this term into Eq. 6.3:

ln
[
exp−(Îc)

]
= min

Id
ln

[
exp−(U( f ))exp−

(
1

2λ
(Ic − Id)

2

)]
(6.5)

Expressing RHS and LHS terms of Eq. 6.5 as strictly exponential functions maintains equality

of both sides of the equation but the functional changes from a convex functional to a concave

functional. Thus the optimization criteria of the functional changes from minimization to maxi-

mization: [
exp−(Îc)

]
= max

Id

[
exp−(U( f ))exp−

(
1

2λ
(Ic − Id)

2

)]
(6.6)

In the classical Markov random field model [111] the Gibbs distribution P( f ), the probability

distribution of each possible configuration of the prior Ic is proportional to the first exponential

term on the RHS of Eq. 6.6:

P( f ) = P(Ic) ∝ [exp−(U( f ))] (6.7)

The Gaussian distribution PN , the probability distribution assumed for the observed image Id given

any realization of Ic is proportional to the second exponential term on the RHS of Eq. 6.6:

PN = P(Id|Ic) ∝
[

exp−
(
(Ic − Id( f ))2

2λ

)]
(6.8)

Thus:

exp−
[
(Ic − Id( f ))2

2λ

]
≡ exp−

[
(μ −X)2

2σ2

]
(6.9)
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where the mean μ of the Gaussian distribution is the underlying image Ic, the observed image Id

is the variable X of the Gaussian distribution. Thus, the regularization parameter λ is equal to the

noise variance σ2 of the image:

λ = σ2 (6.10)

Insert the probability notations on the RHS of Eq. 6.7 and Eq. 6.8 into RHS of Eq. 6.6 This gives

the Bayes posterior probability P(Ic|Id) formula [114]:

P(Ic|Id) ∝ [P(Id|Ic)P(Ic)] (6.11)

Each possible configuration f ∈ F , where F is a discrete set of random variables, is independent

and identically distributed. Thus Eq. 6.11 can be expressed as

P(Ic|Id) ∝

{[
∏
f∈F

exp−(U( f ))

][
∏
f∈F

exp−
(

1

2σ2
(Ic − Id( f ))2

)]}
(6.12)

and arrive at the Bayesian formulation of the classical Markov random field model for image

restoration introduced by Geman and Geman [60]:

Îc = argmax
Id

P(Ic|Id)

= argmax
Id

[P(Id|Ic)P(Ic)]

= argmax
Id

{[
∏
f∈F

exp−(U( f ))

][
∏
f∈F

exp−
(

1

2σ2
(Ic − Id( f ))2

)]} (6.13)

This formulation estimates the denoised image Îc from the image configuration which maximizes

P(Ic|Id) in what is referred to as maximum a posteriori probability (MAP). The probability distri-

butions are functions of the image pixel configurations. The configurations are determined by the

level of noise and the level of noise is a function of the Markov random field energy.

MAP can be reformulated by adopting a two-step process. The first step is to regard MAP as

minimization of the negative exponential terms in Eq. 6.13. The second step is natural logarithm

transformation of the resulting exponential function:

Îc = argmin
Id

{
U( f )+

(Ic − Id( f ))2

2σ2

}
(6.14)

Replacing the image energy in the first term of Eq. 6.14 with the term on the RHS of Eq. 6.4 and
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substituting the expression for σ in Eq. 6.10 into the second term of Eq. 6.14:

Îc = argmin
Id

[
∑

i
∑

j
‖(∇Id( f ))(i, j)‖+

1

2λ
‖Ic − Id( f )‖2

]
(6.15)

which is a return back to variational mode of denoising expressed in Eq. 6.1, thus completing a full

circular path to confirm the equivalence of variational and Bayesian frameworks. The circular path

is referred to as the Variational-Bayesian cycle. Graphical expression of the VB cycle is shown in

Fig. 6.1.

Figure 6.1: The Variational-Bayesian (VB) cycle. Logarithmic transformation of the variational problem formulation

is followed by the separation of exponential variables, and this results in Bayesian problem formulation. A return to the

variational problem formulation is by minimization of the exponential variables in the Bayesian problem formulation

followed by a logarithmic transformation.

6.2 Optimal Selection of Regularization Parameter

This section demonstrates that the noise variance derived in Eq. 6.10 is the optimal regularization

parameter for a given image. Given a brain MRI image, its Markov random field energy, ex-

pressed by total clique potential energy, is computed. The value of this energy is used to estimate

the variance of the image from the mathematical model that describes the relationship between

Markov random field energy and noise variance for brain MRI images [117]. The variance of the
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image is further used to estimate, at no computational cost, the regularization parameter before

commencement of the TV denoising process. The estimated regularization parameter is scaled to

seven different values from 0.1λ to 1.9λ in steps of 0.3 and the denoised images associated with

the different values are recorded.

Fig. 6.2 displays images of a T2-weighted MRI slice from NeuroRx. The slice is indexed as

slice number 32 in a single subject MRI data consisting of 45 slices. The original, degraded and

denoised images are in Fig. 6.2a, Fig. 6.2b, and Fig. 6.2c, respectively. Optimality of the different

scales of the computed regularization parameter in terms of mean square error (MSE) convergence

is shown in Fig. 6.3

In Fig. 6.4 are images of a T2-weighted MRI slice from ADNI. The slice is indexed as

slice number 28 in a single subject MRI data consisting of 42 slices. The original, degraded and

denoised images are in Fig. 6.4a, Fig. 6.4b and Fig. 6.4c, respectively. Optimality of the different

scaled values of the computed regularization parameter in terms of MSE convergence is shown in

Fig. 6.5.

6.2.1 Optimality Test

Optimality test, in terms of MSE using regularization parameters generated from the set {0.1λOp :

0.3 : 2λOp}, are the plots shown in Fig. 6.3 and Fig. 6.5. A cursory look at the plot indicates

that three regularization parameter values 0.7λOp (blue colored solid line), λOp (red colored solid

line with circle) and 1.3λOp (black colored dash line) are candidates for the optimal value. The

plots identifying 1.3λOp in Fig. 6.3 and Fig. 6.5 shows a 23 percent and a 27 percent decrease,

respectively, in MSE after about 10 iterations but lost its steam afterwards by reversing its earlier

gains to 20 percent and 25 percent, respectively, after 100 iterations. The plots identifying the

parameter 0.7λOp recorded a 25 percent (see Fig. 6.3) and a 30 percent (see Fig. 6.5) decrease in

MSE after 40 iterations. The plot identifying λOp reduced the MSE of the degraded image by 25

percent (see Fig. 6.3) and by about 30 percent (see Fig. 6.5) in 20 iterations and it maintained this

same level of performance for up to 100 iterations. 20 iterations is half the number of iterations it

takes the parameter 0.7λOp to attain same level of performance. Thus, it is reasonable to conclude

that the plot identifying λOp is the optimal value of λ .
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ORIGINAL IMAGE

(a)

NOISY IMAGE: RICIAN

(b)

DENOISED IMAGE:RICIAN

(c)

Figure 6.2: (a) A T2-weighted MRI slice image from NeuroRx Research in its (a) original state of acquisition (b)

degraded state by noise level of σ = 25 (c) denoised version using the TV algorithm with λ = 25.
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Figure 6.3: Test of optimality of computed regularization parameter. The MRI slice image from NeuroRx shown in

Fig.6.2b was denoised using TV algorithm with the computed optimal regularization parameter scaled from 0.1 to 2

at interval of 0.3.
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ORIGINAL IMAGE

(a)

NOISY IMAGE: RICIAN

(b)

DENOISED IMAGE:RICIAN

(c)

Figure 6.4: (a) A T2-weighted MRI slice image from ADNI in its (a) original state of acquisition (b) degraded state

by noise level of σ = 25 (c) denoised version using TV algorithm with λ = 25.
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Figure 6.5: Test of optimality of computed regularization parameter. The MRI slice image from ADNI shown in

Fig.6.4b was denoised using TV algorithm with the computed optimal regularization parameter scaled from 0.1 to 2

at interval of 0.3.
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6.3 Algorithm Design

The design of the proposed general framework is illustrated by the flow chart in Fig. 6.6. The

system has three input parameters. The first is the number of layers (SL,DL) representing the

number of images under consideration. The second is the type of value (V,S) assigned to ξr and

ξp for conformity and violations of the smoothness constraints. The third parameter is the choice

of norm (q=1,2) for computing magnitude of the image gradient. For a user’s selection of single

layer SL, the denoising system does not make reference to a prior image model Ic but a vector

valued kernel of Eq. 3.10 is used for computing the gradient of the observed image Id according

to Eq. 3.14. For specific data such as the brain MRI having pixels in the background, the energy

minimization is controlled by the mathematical model stated in Eq. 4.3. At each iteration the

Markov random field energy is computed and the stopping criterion is fixed at (Es = KbUb =−1.5)

based on knowledge of mathematical function describing relationship between MRF energy and

noise level [117].

The choice of double layer DL introduces a prior image as the reference and requires the

user to make an additional choice of either scalar or vector valued smoothness constraint. With the

choice of scalar value S the classical Markov random field algorithm is deployed by the system

to operate on the image and the energy of the image is computed according to Eq. 3.13. For the

choice of vector valued smoothness V the system prompts the user to a choice of either L1 or L2

according to the selection of q = 1 or q = 2, respectively. Either choice deploys the total variation

or Tikhonov technique to operate on the image and the energy of the image is computed according

to Eq. 3.14.
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Figure 6.6: From the user choice of single layer (SL) there are two paths from the proposed single layer Markov

random field (SLMRF) model having only the observed image (red color) to double layer (DL) Markov random

field model having both observed and prior model images (black color). Scalar (S)and vector (V) values assigned

for reward and penalty for conformity and violations of the smoothness constraints configures the image for double

layer probabilistic and variational approaches respectively. Choice of L1 and L2 norm for the image gradient leads to

Tikhonov regularization and Rudin, Osher and Fatemi (ROF) total variation techniques, respectively.
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Chapter 7
Intensity Inhomogeneity Correction

A bias field correction algorithm is proposed in this chapter [128]. It is a new model which is a

true reflection of the presence of a bias field in MRI imaging process. The new model does not

require an estimation of a bias field before determination of the restored or corrected image. The

proposal is a three-step bias field correction strategy:

(1) Create regions of interest (ROI) by clustering. Number of ROI should be cleverly chosen

to equal number of anatomical structures under investigation.

(2) Compensate for vagueness of intensity level attributes by seeking extra information from

an anatomical structural map.

(3) Detect voxel locations where the bias field is considered significant using an anatomic

structural map.

The proposed algorithm was tested on only real MRI images. Image simulators were not

considered as test data to validate the proposed algorithm because they lack the natural anatomical

variability and image acquisition artifacts of real images [13]. Fifteen T1-weighted brain MRI

images with different severity levels of bias fields were sourced from NeuroRx Research Inc.

The design of the algorithm is described in next section, followed by display of the experi-

mental results. The performance of the algorithm was evaluated qualitatively using visual inspec-

tion of corrected images. Visual quality assessment, though subjective, was preferred because it is

the only performance evaluation criterion that validates all objective performance criteria. Quan-

titative comparative performance evaluation was avoided because of lack of publicly available

ground truth data. Moreover, credible implementation methods and optimal operating parameters

of other algorithms is challenging because it requires interaction with the original authors [13].

The chapter ends with a discussion of experimental results
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7.1 Algorithm Design

Implementation of the proposal is explained by the flow chart in Fig. 7.1. The test image is at top

of the figure. Red-colored numbers in the figure depict each step for the implementation of the

algorithm. The first step thresholds the test image using the Otsu method [129]. The Otsu method

finds the threshold that minimizes intra-class variations within the image. The Otsu method is

preferred for thresholding because in many applications, Otsu method has proved to be simple and

effective [130]. Noise and voxels corrupted by a bias field are eliminated. Only very strong edges

representing image details are retained. Output of the Otsu method is one of two components

needed to create a template of the image. The second step extracts foreground voxels of the test

image. In the third step the test image is fed to a multi-scale canny edge detector. The canny

edge detector [131] is the preferred edge detector because of its optimal performance in terms of

robustness to noise, minimal response and good location of edges [132]. The multi-scale edge

detector outputs two images. The first image is an edge image at the minimum edge scale. The

other is an edge image at the maximum edge scale. In fourth step, the edge image at maximum

scale is combined with the Otsu image to produce an anatomical structural map of the test image.

In the fifth step, regions of interest (ROI) in the image are generated by the k-means algorithm. The

number of regions of interest is chosen to equal the number of tissue classes under investigation.

The choice of k-means instead of a more robust algorithm was motivated by its simplicity, an

important requirement at the preliminary steps of the proposed algorithm. The sixth step tests

each region of interest for outliers using entropy and spatial information from the structural map

according to Eq. 3.35 and Eq. 3.36. Outliers are assigned to their appropriate tissue class j in

the seventh step to produce new sets of voxels for each tissue class. The new sets of voxels x j ∈
[p1 j p2 j] are rescaled by mapping to x

′
j ∈ [s1 j s2 j] [133].

x
′
j = s1 j +

(
x j − p1 j

p2 j − p1 j

)
(s2 j − s1 j) (7.1)

where p1 j and p2 j are minimum and maximum values of re-classified voxels, respectively, and

s1 j and s2 j are minimum and maximum values of the initial set of clean voxels, respectively. The

statistics of the initial set of clean voxels can be substituted with the statistics of a model for the

tissue class, if available.

7.2 Experimental Results

The result of applying the proposed algorithm to different levels of severity and complexity of bias

fields in brain MRI images are displayed in seven different figures, Fig. 7.2, Fig. 7.3, Fig. 7.4,
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Figure 7.1: Flow chart of the bias field correction algorithm.

Fig. 7.5, Fig. 7.6, Fig. 7.7 and Fig. 7.8.

7.3 Discussion

The discussion is outlined according to the figure number of the experimental results. Discussion

based on Fig. 7.2 is detailed because it explains each step in the implementation of the proposed

algorithm.
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7.3.1 Figure 7.2

The test image corrupted by a bias field is in Fig. 7.2a. Test image voxel values, originally ac-

quired as int32, are converted to double precision grey level. After conversion, four duplicates of

the image are made. The first duplicate, after the Otsu method of thresholding, is in Fig. 7.2b. Fore-

ground voxels extracted from the second duplicate is in Fig. 7.2c. The third duplicate is fed to a

multi-scale edge detector which outputs the edge images at minimum scale of 0.1σ and maximum

scale of 0.7σ in steps of 0.1. Local entropy of both edge images are displayed in Fig. 7.2d and

Fig. 7.2e. The entropy image at maximum scale in Fig. 7.2e is combined with the output of Otsu

thresholding to obtain an anatomical structural map of the MRI slice. The structural map displayed

in Fig. 7.2f contains accurate tissue-specific spatial and entropy information. Voxel locations with

low entropy, in dark color, represent homogeneous regions of specific anatomical structures. Voxel

locations with high entropy, in white color, are image details that separate homogeneous regions

within and between tissue classes. Regions of interest (ROI) detected in the fourth duplicate of

the test image are in Fig. 7.2g. Corrupt voxel intensity levels, known as outliers, are identified

by entropy information in the tissue structural map shown in Fig. 7.2h. Outliers GS,k are voxel

locations in one of tissue classes j in the structural map that are members of the set determined by

setting entropy threshold sth = 0.3:

GS,k = {ΩI, j ∩ΩS,k}∩{S : s < sth} (7.2)

High image contrast generates an edge effect [134]. In this proposal the edge effect is revealed as

high entropy values recorded by the entropy filter in small homogeneous regions around edges that

demarcate grey matter and white matter tissues. This problem was addressed by the area threshold

Ath = 100. Area thresholding is also applied in identification of white matter regions to eliminate

homogeneous regions within edges that characterize grey matter regions. The outliers are assigned

to their appropriate tissue classes, rescaled to produce the restored image shown in Fig. 7.2i. Visual

quality of the restored image is very high compared to the degraded image.

7.3.2 Figure 7.3

The test image in Fig. 7.3a has the same anatomical structures (except ventricles) as test image in

Fig. 7.2a. The tissue structural map is shown in Fig. 7.3b. The ROI image in Fig. 7.3c shows that

white matter tissues around the midline of the axial slice were misclassified as grey matter by the

clustering algorithm. The restored image in Fig. 7.3d is of much higher quality than the degraded

image.
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Figure 7.2: (a) Test image (b) Otsu threshold of test image (c) Foreground image (d) Entropy image at minimum scale

(e) Entropy image at maximum scale (f) Anatomical structural map (g) Region of interest (h) Outliers (i) Restored

image.

7.3.3 Figure 7.4

The test image in Fig. 7.4a is a typical example of a locally smooth but globally non-smooth

bias field. The tissue structural map is in Fig. 7.4b. The ROI clustering algorithm correctly labeled

white matter in Fig. 7.4c, though intensity levels are different within the same anatomical structure.

This accurate labeling may not hold for the clustering algorithm which is more robust than the

k-means algorithm. Intensity level variation was corrected by invoking the intensity rescaling

function incorporated in the proposed system. The restored image is shown in Fig. 7.4d.
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Figure 7.3: (a) Test image (b) Anatomical structural map (c) Region of interest (d) Restored image.

7.3.4 Figure 7.5

The test image in Fig. 7.5a has the same level of severity as the test image in Fig. 7.2a. The

structural map in Fig. 7.5b, ROI in Fig. 7.5c and the restored image in Fig. 7.5d indicates that the

proposed algorithm demonstrates the same level of performance for same level of severity of bias

field.

7.3.5 Figure 7.6

The structural map in Fig. 7.6b was generated from the test image in Fig. 7.6a. Entropy and spatial

information from the structural map were combined with the ROI in Fig. 7.6c to restore the image.

Visual assessment of the restored image in Fig. 7.6d shows that there are much more uniform

intensity levels within tissue classes than the test image.
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Figure 7.4: (a) Test image (b) Anatomical structural map (c) Region of interest (d) Restored image.

7.3.6 Figure 7.7

The test image in Fig. 7.7a is in same category of severity as test image in Fig. 7.4. Unlike Fig. 7.4,

the ROI clustering unit in the proposed system detected the presence of a bias field. The structural

map and the clustered ROI are Fig. 7.7b and Fig. 7.7c, respectively. Intensity inhomogeneity is

significantly reduced in the restored image of Fig. 7.7d.

7.3.7 Figure 7.8

The test image in Fig. 7.8a is yet another example of a locally smooth but globally non-smooth

bias field. The intensity level of white matter voxels towards the frontal lobe is obviously different

from voxels of same anatomical structure in other regions of the MRI slice image. As depicted

in Fig. 7.8c, white matter voxels towards frontal lobe were mislabeled as grey matter due to the

presence of a bias field. Information from the structural map in Fig. 7.8b was combined with the
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Figure 7.5: (a) Test image (b) Anatomical structural map (c) Region of interest (d) Restored image.

ROI in Fig. 7.8c to restore the image. The restored image shown in Fig. 7.8d is superior in visual

quality compared to the test image.
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Figure 7.6: (a) Test image (b) Anatomical structural map (c) Region of interest (d) Restored image.
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Figure 7.7: (a) Test image (b) Anatomical structural map (c) Region of interest (d) Restored image.
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Figure 7.8: (a) Test image (b) Anatomical structural map (c) Region of interest (d) Restored image.
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Chapter 8
Conclusion

This doctoral research and thesis proposes four different image processing techniques with ap-

plication to brain MRI images. The first is for estimation of noise [117], the second for optimal

selection of the regularization parameter [127], the third for reduction of noise [121] and the fourth

is for correction of intensity inhomogeneity [128]. These proposals have several contributions.

The first layer of the MRF model is a hitherto unknown form of the Markov random field

model referred to as the single layer Markov random field (SLMRF) model because there is no ref-

erence to a classical prior image model. The SLMRF extends the application of the MRF model,

for the first time, to estimation of the noise level in images. The SLMRF adopts Gibbs energy,

computed from a 4-neighborhood kernel, as a metric for the estimation of noise variance in brain

MRI images. Comparative performance evaluation shows that the noise estimation algorithm is

computationally efficient, more accurate, invariant to the presence or absence of background fea-

tures in an image and is potentially immune to modeling errors inherent in current state-of-the-art

algorithms. The 4-neighborhood clique kernel is a basic filter in same class as the Gaussian and

wavelet filter from which state-of-the-art algorithms are derived.

There is a general framework that describes and reveals the interconnections between differ-

ent algorithms that are regarded as variations of the MRF model. There is proof that confirms a

long held notion that Bayesian and variational techniques are equivalent. The SLMRF was applied

to develop a noise reduction algorithm that is optimal in performance on a specific type of natural

images such as brain MRI images. A new approach for correction of bias fields in brain MRI

images is proposed. It is based on a problem formulation which is a true reflection of presence of

bias field in MRI imaging process. The proposal demonstrated excellent performance on different

levels of severity of brain MRI images that were degraded by a bias field. Furthermore, this thesis

pioneers the automatic generation of an anatomical structural map directly from the degraded MRI

brain image.
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The proposed noise estimation algorithm will improve both the process for quality assess-

ment of images acquired from MRI machines and the performance of segmentation and denoising

algorithms which requires accurate estimate of noise levels in MRI images. The proposed optimal

selection of a regularization parameter in TV denoising and the SLMRF denoising method will find

useful applications in MRI-based clinical trial management centers. The daily routine at the clini-

cal trial management centers demands a high level of automation and efficiency in the processing

of several thousands of MRI slice images of patients undergoing clinical trial drug treatment.

This thesis offers insight into two potential research directions. The first is the development

of an integrated denoisng system which is optimal for the different classes of natural images. The

second is how to develop an anatomical structural map of a single patient into subject-specific

digital brain atlas. Hitherto current template-based bias field correction algorithms are guided to

automatic operation by a digital brain atlas derived externally from multiple subject’s MRI images.

Integration of an externally derived digital brain atlas into bias field correction scheme requires the

additional task of image registration.
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