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Abstract

On the Evolution of Flows in Straight Circular Pipes subject to a Localized
Transverse Impulsive Body Force

Giuseppe D1 Labbio

In blunt traumatic aortic injury, it is highly debated whether an abrupt deceleration alone is
sufficient to cause aortic rupture. Motivated by this debate, this fundamental study investigates
the effects of a localized transverse impulsive body force acting on a straight circular pipe
through numerical simulation for both constant and pulsatile inlet velocity profiles. Application
of this impulsive force results in a transverse pressure gradient which skews counterclockwise
with flow acceleration. This pressure gradient induces two counter-rotating streamwise vortices
at the boundaries of the forced section with secondary flows developing in conjunction which act
to restore the unforced velocity profile. The development of the secondary flow was observed to
occur later for an accelerating flow and earlier for a decelerating flow. A dimensionless parameter,
¥, was developed to characterize flows based on the ratio of transverse to streamwise pressure
gradients. Lower Reynolds number flows (higher ¥), were observed to be most readily affected
by the body force. Maximum skewing of the velocity profile occurred during the impact rather
than at the end except for a decelerating flow, with larger skewing occurring for higher ¥. The
temporal decay of kinetic energy was observed to be faster for larger Reynolds numbers and is
governed by a power law decay. An alternating exchange in energy between the axial and

secondary flows was also observed.
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Chapter 1: Introduction

1.1 Overview
Motivation

Blunt traumatic aortic injury (BTAI) refers to injury of the aorta in the form of a tear or
rupture brought on by blunt trauma, typically to the chest (Chapman et al. 2001); see figure 1
from Chiesa et al. (2003). It is in fact the second leading cause of death in car accidents in North
America, responsible for 7,000 to 8,000 casualties per year (Pezzella & Polimenakos 2008) with
70 to 90% of patients dying on site (Chiesa et al. 2003). Despite its somewhat common
occurrence, the mechanism of aortic injury in BTAI is merely postulated and it 1s still highly
debated whether an abrupt deceleration alone is sufficient to cause aortic rupture or whether
physical chest trauma is required (Chapman et al. 2001). It i1s this question of how fluid flows
react to externally imposed accelerations which inspired this fundamental study in fluid

mechanics.

¥

o~

Figure 1 - Illustration of blunt traumatic aortic injury (in this case aortic dissection) occurring in
a car accident (Chiesa et al. 2003).

Purpose of this Study

It 1s interesting to note that although circular pipe flow has long been studied, especially in



the area of transition to turbulence (Eckhardt et al. 2007), very little attention has been given to
how externally imposed accelerations, or body forces, affect the flow. In the sense implied by
this thesis, these body forces arise in two characteristic ways, namely by geometry and by
external excitation. The former includes implicit body forces arising from pipe curvature or other
geometrical factors. The latter includes explicit body forces imparted onto the flow and may
result from fields, such as gravitational and electromagnetic forces, from inertia arising from
vessel acceleration (as in BTAI or in a centrifuge), or from other external means. In particular, it
will be interesting to investigate flow behavior when subject to an impulsive body force since
this will not only allow for the study of the effects of the force itself but also how the flow
returns to its steady, equilibrium configuration. The purpose of this thesis therefore, is to
investigate, through numerical simulation, the behavior of circular pipe flows when subjected to
a localized transverse impulsive body force and to study how the flow reattains equilibrium
conditions when the force ceases.
Organization of this Thesis

Since curved pipe flows and magnetohydrodynamic flows have been extensively studied
over the past century, this thesis will begin by conducting a brief literature review of these topics,
in sections 1.2 and 1.3 respectively, to develop some insight as to what might be expected in this
study and to draw useful quantities for analysis. The question of a suitable manner of solving the
governing equations then arises, and in section 1.4, a short discussion of available numerical
techniques 1s offered, which will prove useful when discussing the methods used for solution in
chapter 2. The problem is then precisely defined in section 2.1 followed by a discussion of the
numerical methods in section 2.2 and of the accuracy of the results in section 2.3. Chapters 3 and

4 present the results of the study in two categories of flows, namely flows with a constant and



pulsatile inlet velocity profile respectively. Finally, in chapter 5, a summary of the main results of

the study is provided and the limitations and possible future directions are discussed.

1.2 Curved Pipe Flow
Constant Curvature

Flow through curved circular pipes is perhaps the most classic problem dealing with a
geometrically-induced body force on pipe flow. The first observations of the effects of curvature
on fluid flow were in Thomson (1876). His observations were for the flow of a river through a
bend, where he explained how the outer bank of a river washes away and the inner bank collects
sediment. He also stated that the centrifugal force induces a pressure gradient in the radial
direction, with the pressure increasing from the inner bend to the outer bend. At the end of his
paper, he poses the question as to how pipe curvature results in losses. Eustice (1910) performed
experiments on the losses exhibited in flows through curved pipes and Eustice (1911)
subsequently observed the apparition of secondary fluid motion by injecting colored dye into the
flow. The first theoretical analysis of steady flow through curved pipes however was conducted
by Dean (1927) and further improved by Dean (1928). He obtained a series solution of the
governing equations for the cross-sectional streamfunction and axial velocity in powers of the
Dean number (De = §'°Re), which essentially plays the role of the Reynolds number (Re) for
curved pipes as it takes into account the curvature ratio (6 = D/2R; where D is the pipe diameter
and R the radius of curvature). From his solution, he showed that a secondary flow develops in a
plane perpendicular to the mean flow; these secondary flow structures are now commonly known
as Dean vortices. Figure 2, from McConalogue & Srivastava (1968), shows isolines of the axial
velocity (solid lines) and of the cross-sectional streamfunction (dashed lines) which describes the

secondary flow for low (left) and moderate (right) Dean numbers. The figure shows that the



maximum axial velocity 1s skewed toward the outer wall of the bend (the top of the cross-section
in the figure). The larger the Dean number, the more the axial velocity is skewed toward the
outer wall and the further apart the Dean vortices become. As is well described by Siggers &
Waters (2005), past a series of critical Dean numbers, multiple vortex solutions exist for the
secondary flow arising initially from a bifurcation from the steady two-vortex solution. A more

detailed review of the development of the theory of curved pipe flow can be found in Berger et al.

(1983) and more recently in Verkaik (2008).

Typical
De =96 De =605.72 Axial Velocity Profile

Figure 2 - Axial velocity (solid lines) and in-plane streamfunction (dashed lines) for low (left)
and moderate (right) Dean numbers (McConalogue & Srivastava 1968). The outer bend of the
curved pipe 1s located at the top of the cross-sections. A typical axial velocity profile is shown on
the right, corresponding approximately to that of the De = 605.72 image.

Time-Varying Curvature

Although much attention has been given to the study of curved pipe flows, very few studies
consider flows with time-varying curvature. An interesting example, with application to blood
flow in coronary arteries, is the experimental work of Schilt et al. (1996) where a sudden
variation in the radms of curvature of a U-shaped circular pipe was investigated. Aside from

observing that the axial velocity profile skews toward the outer bend, it was observed that the

maximum skewing occurred during the transition between minimum and maximum radii of



curvature rather than at the end states. In fact, they found that it was the dynamics of the
curvature change that determined the change in skewing rather than the instantaneous radius of
curvature itself. The description of the skewness of the axial velocity profile provided by Schilt
et al. (1996) however is somewhat qualitative, relying on percent differences between two states.
Griffith et al. (2013), although for a different cardiovascular flow application, offer a better
manner of characterizing how an axial velocity profile is distorted in the direction of imposed
skewing. They define the skewness in the direction z (x-) at a cross-section of pipe with diameter
D (and area 4) as a dimensionless quantity using the normalized first moment of the axial

velocity u (with U denoting the cross-sectionally averaged axial velocity):
y7a =2DU __ here U:%Iudfl (1)

With the definition above, an axial velocity profile symmetric about the plane z = 0 will have
a skewness identically equal to zero. Furthermore, an axial velocity profile which is perfectly
antisymmetric about the z = 0 plane (i.e. u(-z) = -u(z)) will have a skewness of +oo.
1.3 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study of electromagnetic effects in conducting fluids
(Tillack & Morley 1998). It 1s well known from elementary physics that a point charge (g)
moving through an electromagnetic field will experience the force F = g(E + VxB), where E and
B denote the electric and magnetic fields respectively and V the velocity field. By extension, this
force, known as the Lorentz force, would be experienced by each particle of a conducting fluid in
the presence of an electromagnetic field. In MHD, therefore, the equations of electromagnetism

are coupled with the Navier-Stokes equations by means of a body force (Tillack & Morley 1998):



P(%JF(V-V)V):_VPJJXBJF!NZV where j=o(E+VxB) -

Where p denotes the fluid density, P the pressure, j the current density, ¢ the dynamic
viscosity of the fluid, and o the electrical conductivity. Of course there are other equations
governing MHD flows, namely arising from Maxwell’s equations, however it is not necessary to
describe them here.

Characterization of MHD Flows

As the Dean number is used to characterize curved pipe flows, it i1s common in MHD to

characterize a flow using its Hartmann number (Ha), which is a ratio of magnetic to viscous

forces, and its interaction parameter or Stuart number (N), a ratio of magnetic to inertial forces

Ha=B,D \/% 3)

)

(Tillack & Morley 1998).

With By and Up representing some characteristic magnetic field and velocity in the flow
respectively.
Generalizing the Interaction Parameter

The interaction parameter is particularly interesting to this study as it describes the
interaction between a body force per unit volume (f) and the flow’s inertia. The interaction
parameter can be generalized to arbitrary body forces acting on any flow through the use of
common analogies between electromagnetism and fluid mechanics, such as charge representing
volume and current representing volume flow rate (Ottesen et al. 2004). It can be shown that the
magnetic field is analogous to a body force per unit volume per unit velocity (#/Up; 1.e. from F =

g(E + VxB)) and the electrical conductivity is analogous to the inverse (Up/f). The electrical



conductivity can be thought of as the amount of current a material can draw per unit area in an
electric field of unit strength (£ ~ £, 1.e. from F = g(E + V'xB)), or by analogy, the volume flow
rate that can be drawn per unit area (i.e. the average velocity) in the presence of a force per unit
volume of unit strength. With these analogies, the quantity ¥, which will be referred to as the
degree of influence, is derived by direct substitution of the analogous terms in equation 4 and
describes the relative strength of the body force compared with the flow inertia. The same result

could easily be obtained from Buckingham’s 7 theorem with the appropriate choice of variables.

‘F:}ﬁg ®)

The previous two sections focused on discussing literature similar to the problem under
study to gain some physical insight as to what may be expected. Since the governing equations of
fluid motion, namely the continuity and Navier-Stokes equations, have not been solved for the
general case, the question then arises as to how to treat the problem of this study. Some key
numerical methods presently available in computational fluid dynamics (CFD) are therefore

offered in the following section.

1.4 Numerical Techniques
Nature of a Turbulent Flow

It 1s well-known that the laminar velocity profile for circular pipe flow is linearly stable for
all Reynolds numbers (Salwen et al. 1980, Eckhardt et al. 2007). This implies that laminar flow
in a circular pipe will only experience transition to turbulence if a perturbation to the flow is
strong enough for a given Reynolds number. Kerswell (2005) notes that the lowest critical
Reynolds number for which transition could occur in pipe flow is quoted in the literature to range
from 1,760 to 2,300. Furthermore, a continuous perturbing mechanism (such as wall roughness

for a large enough flow rate) is required in order to sustain a turbulent flow (Wilcox 1994),



otherwise any excess energy will be dissipated by the energy cascade and the flow will return to
its stable laminar state.
Direct Numerical Simulation

The inlet Reynolds numbers considered in this study range from 0 to 6,358 and due to the
magnitude and nature of the body force, transition to turbulence is likely to occur. The problem
therefore encompasses the laminar, transitional, and turbulent regimes. Ultimately, the best way
to treat such a problem would be through direct numerical simulation (DNS). In DNS, no a
priori assumptions are made regarding the nature of the flow and the Navier-Stokes equations are
solved exactly (Versteeg & Malalasekera 2007). Unfortunately, DNS requires a grid and time
resolution fine enough to capture the characteristic length and time scales of the smallest eddies
in a turbulent flow (the Kolmogorov scales). This limits the use of DNS to low Reynolds number
flows with a sufficiently small domain size. Due to its limitations, including the computational
resources and time required to perform such simulations, a turbulence modeling approach is
often used. The most noteworthy turbulence models that have the capability of dealing with
flows encompassing the three flow regimes are the 4~ SST model and the transition SST model
(with SST meaning shear stress transport).
Turbulence Models for Low Reynolds Number Flows

What is known today as the standard k- model was developed by Wilcox (1988); here &
denotes the turbulent kinetic energy, @ = ¢/k the specific turbulent kinetic energy dissipation rate,
and ¢ the turbulent kinetic energy dissipation rate. This model has the benefit of accurately
describing the boundary layer down to the viscous sublayer, which was quite appealing since the
standard k-¢ model, devised by Launder & Sharma (1974), cannot accurately handle wall

bounded flows without the use of wall functions or modifications introduced in later years.



Despite the standard k- model’s accuracy in the boundary layer, the model is sensitive to
freestream values of w, usually resulting in over-prediction of turbulence levels in the freestream.
It was Menter (1993) who appealed to this deficiency (and others) with the development of the
k-0 SST model (later improved by Menter et al. 2003a and Menter et al. 2003b). The model
blends the standard 4-@ model in the boundary layer with the standard A-¢ model in the
freestream, essentially using the strengths of the two models to develop one that is more accurate,
stable, and robust. Further, Menter et al. (2006) developed the transition SST model, which
couples the k-« SST model with two additional correlation-based transport equations; one for the
transition onset Reynolds number and one for the intermittency (which is essentially a trigger for
the transition process and is analogous to an induction variable for chemical reactions). Although
the model is known to do better in predicting transition, it requires a fine mesh resolution close to
the wall (Menter et al. 2006) and the additional two equations combined with the continuity and
Navier-Stokes equations result in a total of eight differential equations to be solved and would
therefore require significantly more computational resources than the 4~ SST model alone.
Adequacy of the k- SST Model

Nonetheless, the &~ SST model has often been shown to give adequate results. The model
has a considerably reduced sensitivity to y* values of the first gridpoints away from the wall,
owing to Menter et al. (2003b) who developed a set of “automatic” wall functions in the sense
that they are incorporated in the model constants; y* is the dimensionless wall distance and is

given by puy/u (Where p is the fluid density, y,. the distance from the wall, x the fluid’s dynamic

viscosity, and u. the friction velocity given by ,/7, /p with 7, being the wall shear stress. They

also demonstrated excellent agreement with experimental data for three test cases with first

gridpoints ranging from y* = 0.1 to as far out as y* = 100. In particular, studies of cardiovascular



flows, exhibiting a similar range of Reynolds numbers as considered in this study, such as
Ghalichi et al. (1998), Ryval et al. (2004), Keshavarz-Motamed & Kadem (2011), and
Keshavarz-Motamed et al. (2013) used the k- SST model and reported good agreement of their

results with experimental data for a variety of flow conditions.
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Chapter 2: Methodology

2.1 Problem Definition
Geometrical and Fluid Parameters

As this study was motivated by BTAI, some parameters used for numerical simulation will
be modeled according to those commonly seen in such cases. This study consists of a straight,
rigid, impermeable pipe of circular cross-section with diameter D = 0.022 m, which is typical of
a human aorta (Boiron et al. 2007, Keshavarz-Motamed & Kadem 2011). The working fluid was
modeled as incompressible and Newtonian with the density (p) and dynamic viscosity (u)
corresponding to those of blood, namely 1050 kg/m? and 0.0035 Pa-s respectively (Morris et al.
2005).
Application of the Body Force

Two different categories of flows are considered, namely flows with a constant inlet velocity
and flows with a pulsatile inlet velocity. In either case, the inlet velocity profile is spatially
uniform and the body force is applied for a short duration on a localized volume of fluid where
the flow has fully developed. The body force magnitude and duration were selected to be within
the range typically experienced in BTAIL namely 15-150pg of force per unit volume acting for
50-100 ms (Chapman et al. 2001, Lee 2008). The body force per unit volume (f) was therefore
selected as a rectangular impulse in time and space with a magnitude of 500,000 N/m>. For the
uniform flow case, three inlet Reynolds numbers are simulated, namely 1500, 3000, and 5500
with an impact occurring at 7 = 0.100 s for a duration (47) of 95 ms. For the pulsatile flow case, a
physiological pulsatile velocity profile simulating the contraction period of the heart (systole) is
used (Remna = 6358 and Reqne = 4291 over 0 s < ¢t < 0.300 s). Impacts are tested during the

accelerating, peak, and decelerating phases of the profile with impact durations of 95 ms (0.040 s

11



t0 0.135 s5), 90 ms (0.135 s to 0.225 s), and 95 ms (0.190 s to 0.285 s) respectively.
Boundary and Initial Conditions

The uniform flow cases were initialized from the steady unforced solution (i.e.
Hagen-Poiseuille flow) and the pulsatile cases were initialized from rest. In all cases, the no-slip
and no-penetration conditions are in effect at the pipe walls. A Neumann boundary condition is
also used at the outlet, implying that gradients of fluid variables in the direction normal to the

outlet plane vanish. See figure 3 below for a schematic of the problem under study.

4
—>
—> entrance volume outflow volume
_b x
—
-
T T T T T Neumann B.C.
body force per unit volume
. . f=500,000 N/m’
constant inlet velocity f
~ : L
& UlRe = 1500, 3000, 5500 v
% i } i At=95ms
O 0 200 400 600 800 i
t (ms)
pulsatile inlet velocity
N g 1.0
n £ 3
g = 0-5V\ 5 L/min M\Al 95 ms W\At 90 ms |:/H At =95 ms
&) 0 200 400 600 800

t (ms) Accelerating Phase Peak Phase Decelerating Phase

Figure 3 - Schematic of the problem under study. Three Reynolds numbers are tested for a
constant inlet velocity profile and three different impact locations are tested for a pulsatile inlet
velocity profile.

Coordinate System and Domain Length
For convenience, a dimensionless coordinate system is developed here to avoid discussing
the different starting positions and impact durations used throughout the study. The

dimensionless time coordinate is defined as 1* = r./4¢, with 7, being the time elapsed since the

moment of impact. With this definition, the moment of impact is given by #* = 0 and the end of
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impact by #* = 1. Similarly, the dimensionless spatial coordinates can be obtained through
normalization with the diameter, 1.e. x* = x/D, y* = y/D, and z* = z/D. The forced and outflow
volumes were each selected to have a length of 0.3 m. The outflow length was selected by
starting with a long outflow length to ensure the Neumann boundary condition applied (1.5 m).
The length was gradually reduced until a difference of up to 0.5% was observed in the velocity
field with the original long length. The significant reduction in outflow length owes to the nature
of the boundary condition which only requires that gradients normal to the outlet plane vanish
and not gradients within the outlet plane. With the location of the origin shown in figure 3, the
forced volume is bounded by -13.63 < x™ < 0 and the outflow volume by 0 < x* < 13.63. A long
enough entrance length is provided for fully developed flow to exist where the body force is
applied. According to classical fluid mechanics texts, laminar and turbulent pipe flows require
entrance lengths of L, = 0.06DRe and L. = 4.4DRe’” respectively to fully develop (Munson et al.
2013); since these are empirical relations, an additional 50% of the computed entrance lengths
were added in what follows. For the constant inlet velocity profile with Re = 1500, a laminar
model is used since turbulence has not been observed for Re < 1760 in pipe flow and the
entrance length was selected as 3.0 m (136.4D). For all other cases, a turbulence model is used,
and since the maximum inlet Re simulated is 6358 for the peak of the pulsatile inlet velocity
profile, the entrance length was selected as 0.6 m (27.3D). With #* and x* defined, the body force
per unit volume acting in the positive z direction (figure 3) may be expressed mathematically:

500,000N/m® -13.63<x*<0 and 0<t*<l
= ©)

B ON/m’ otherwise

The governing equations in this study are the continuity and Navier-Stokes equations. Using
the dimensionless parameters previously defined, these conservation equations can be

nondimensionalized as:
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2.2 Numerical Method

The governing equations were solved numerically using the commercial computational fluid
dynamics software ANSYS FLUENT 12.1.4, which uses a finite volume approach. A laminar
model was used for the uniform inlet velocity profile with Re = 1500 and the k- SST model was
used for all other cases owing to the discussion in section 1.4. The time step was selected as 0.01
s before the impact and reduced to 0.005 s during and after the impact. The choice of the time
step 1s described further in section 2.3. A segregated (or decoupled) pressure-based solver was
used as opposed to a density-based solver since this study is for an incompressible flow and
variations in density are negligible. Pressure and velocity are coupled using the PISO scheme.
This scheme has the added benefit of satisfying the continuity and momentum equations more
closely (making use of what is known as the neighbor or momentum correction) and is widely
suggested in the literature for transient problems as it has high accuracy and reduces the number
of iterations required for convergence at each time step (Versteeg & Malalasekera 2007). The
PISO scheme also incorporates a pressure correction near skewed cells (though, as shown in
section 2.3, this 1s not necessary for the mesh used). Gradients of fluid variables at the faces of
cells were computed using a least-squares cell-based approximation, which assumes that the
variation of the solution between cell centers is linear. The momentum, turbulent kinetic energy,
and specific dissipation rate equations were spatially discretized using second-order upwind
schemes. Time was discretized using a first-order implicit scheme which is stable for any choice

of time step (hence no CFL condition must be satisfied) and does not exhibit numerical diffusion
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as for explicit first-order schemes (LeVeque 2002, Celik 2008). The body force was applied
using a user-defined function (UDF); refer to the appendix. As the body force is rather large in
this study, a body-force-weighted pressure interpolation scheme was used to compute pressure at
the faces of cells. The scheme treats the body force as part of the pressure gradient term in the
Navier-Stokes equations and works best when the body force is know a priori (ANSYS Inc.
2009). This approach has been used with successful experimental validation in convective heat
transfer problems involving substantial body forces (such as buoyancy for large temperature
gradients) by Chandratilleke & Nadim (2012) and Rout et al. (2012). The convergence criterion
was based on whether the absolute residuals for the continuity, momentum, turbulent kinetic
energy, and specific dissipation rate equations all fell below 10-. A lower residual tolerance (10%)
was tested with no significant difference in the results observed (up to 0.002% difference in the
velocity field).
Additional Boundary Conditions

The cases using the k@ SST model require specification of two additional boundary
conditions since two additional transport equations are introduced. FLUENT allows specification
of the turbulence intensity (/) and hydraulic diameter (Dz) as the boundary conditions at the inlet
(suggested for internal flows by ANSYS Inc. 2009). From these values, the turbulent kinetic

energy can be estimated from:

3
B
QZW where f_=0.09 (10)
@ H

For this study, the hydraulic diameter is simply equal to the diameter of the pipe (0.022 m)
and a low turbulence intensity of 1% was selected since one would not expect the flow to exhibit

much turbulent fluctuations at the inlet prior to the impact.
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2.3 Meshing Procedure and Independence Study
Near-Wall Meshing

With the physical and computational models devised, a suitable mesh is needed to attain
adequate accuracy for a reasonable computation time. A completely polar mesh is not suitable as
a face mesh due to the high skewness of the cells at the center of the cross-section. Instead, a
polar mesh is only used close to the boundary layer and a near-uniform mesh is used toward the
center of the cross-section. A smoothed coupling between the two meshes is achieved using
GAMBIT’s tri-primitive meshing algorithm. As explained in section 1.4, the k- SST model has
significantly less restriction on the y* of the first gridpoints, however it is best to have the first
gridpoint within the viscous sublayer (y* < 5) especially in cases with adverse pressure gradients
since the flow in this layer i1s most readily affected (Menter et al. 2003b, Versteeg &
Malalasekera 2007, Menter 2009). An estimation for the first layer thickness can be obtained
from the definition of y* (i.e. yo = uy*/pu:), making use of the Blasius formula for the coefficient
of friction for a turbulent internal flow (Cr = 0.079Re%?°), where wall shear stress is given by 7,
= 1/CpU? (equations from Munson et al. 2013). The equations of course do not consider the
body force which will certainly increase the wall shear stress observed (and hence reduce the
first layer thickness required), therefore in order to obtain y* < 5, an undershoot is used; y* = 1
for instance results in a first layer thickness of approximately 5-10° m. Using a first layer
thickness of 5-10” m ultimately resulted in a maximum observed y* value for the first gridpoint
of 2.8 after all simulations.
Final Mesh

The final mesh, after the grid-convergence study (described below), consisted of 163,200

hexahedral elements (see figure 4). The mesh configuration was similar to that used by Lee
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(2008), which was validated against experimental data for Hagen-Poiseuille and Womersley
flows in an elastic pipe. A growing boundary layer mesh was used with a growth rate of 1.3 (30%)
with 32 angular divisions. It can be noted from figure 4 that the aspect ratio in the first layer is
quite large (4R = 43), however the grid-convergence study demonstrates that this does not harm
the accuracy of the simulations since changes in the radial direction are most important and
resolved whereas changes in the azimuthal direction are small in the boundary layer. It can also
be noted that the cells have small skewness which results in an efficient mesh; cell skewness is
defined with regard to asymmetries in cell angles and can lead to difficulties in convergence
(ANSYS Inc. 2009). With regard to the flow direction, the entrance length was divided using 6
mm per division. The forced and outflow volumes were meshed twice as fine, since these are the

regions of interest, with 3 mm per division.

Figure 4 - Face mesh used for all simulations. Mesh consists of 163,200 hexahedral elements
after the grid convergence study.
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Grid and Time Convergence Studies

The grid convergence study was performed for a constant inlet velocity profile with Re =
5500. Using a constant inlet flow is expected to exhibit more difficulty in convergence than using
a pulsatile inlet flow since the background velocity field does not decay and the body force
should therefore have a more substantial effect. In order to ensure the results were
grid-converged, three successively fine meshes were constructed with a refinement ratio of
approximately 1.4 (Celik et al. 2008 suggests 1.3 or higher) and with the total number of
elements amounting to 163,200, 547,200, and 1,522,800. A fine time step (0.001 s) was used for
each simulation. The evolution of cross-sectionally averaged kinetic energy and axial skewness
are of particular interest in this study, and are used as criteria to judge grid convergence. The
error in these quantities are observed to be less than 6% between the coarsest and finest meshes
on average, with errors in the velocity field being as much as 3%. Figure 5 shows the section
with the largest error (x* = 0.90) in the cross-sectionally averaged kinetic energy and axial
skewness. The peak error in kinetic energy of 10.5% occurs near the end of the impact (+* =
0.84). One must keep in mind that these quantities are cross-sectional averages and therefore
pose a very strict convergence criterion. In particular, the cross-sectionally averaged kinetic
energy contains the sum of the squared errors of the three velocity components which is summed
over each gridpoint in the cross-section. The axial velocity profile at r* = 0.84 1s also plotted at
x*=0.90 in figure 5 with a corresponding maximum error of 4.7%. The accuracy of the mesh
with 163,200 elements was therefore judged sufficient and was ultimately selected. With the
mesh selected, time steps of 0.001 s, 0.005 s, and 0.01 s were tested. Before the body force was
applied, less than 0.03% error was observed in the velocity field between the coarsest and finest

time steps. During and after application of the body force, less than 0.18% error was observed
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between the time steps of 0.001 s and 0.005 s. In light of these results, a time step of 0.01 s was
used prior to application of the body force and the time step was reduced to 0.005 s during and

after the impact to acquire more data for analysis.

Evolution of Normalized Average KE at x* = 0.90 with Time Evolution of Axial Skewness at x* = 0.90 with Time
7 T T T T - 0.6, - : : :
—1,522,800 —1,522,800
=6 —547,200 1 0.5t —547,200
= —163,200 —163,200
S5t 2 045
. g
2 4 é 0.3}
-] 7]
"5 3t = 0.2r
= -
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Figure 5 - Cross-sectionally averaged kinetic energy and axial skewness at x*=0.90 for a
constant uniform inlet velocity profile with Re = 5500. The largest errors observed occur near the
end of the impact at * = 0.84 and are 10.5% for the normalized average kinetic energy, 6% for
the axial skewness, and 4.7% for the axial velocity.
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Chapter 3 : Constant Inlet Velocity

Prior to application of the body force, the fluid has attained steady-state conditions. At the
moment the impulsive body force is applied, a transverse pressure gradient develops in the
forced volume, acting in the opposite direction of the force and equal in magnitude. For a
pressure gradient of 500,000 N/m? acting across the pipe diameter of 0.022 m, a pressure
difference of 11 kPa 1s seen between the top and bottom of the forced volume (compared to 0.23
kPa for gravity acting alone). The induced high pressure at the top of the pipe (positive z*)
generates a pressure gradient between the forced and unforced pipe sections, resulting in the fluid
being pushed out of the forced volume (see figure 6). The inverse effect, flow entering the forced

volume, can be noticed at the bottom of the pipe (negative = *).

adverse pressure gradient

! ] )

i . adverse pressure gradient
body force per unit volume (f)

Figure 6 - Schematic of the transverse pressure gradient induced by the action of the body force
causing fluid to flow out of the forced volume at the top of the pipe and inward at the bottom.

3.1 Velocity Field

From the two sites of adverse pressure gradient at the boundaries of the forced volume (x* =
-13.63 and 0), two streamwise counter-rotating vortices develop and gradually move toward the
pipe centerline as they grow. In fact, the effect of the body force is seen to be localized around
the boundaries of the forced volume, and the flow in the center of the forced volume remains
unperturbed for much of the impact duration. Figure 7 shows the two vortices for the Re = 5500

case at approximately mid-impact (£* = 0.53).
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Pressure Contours (t* = 0):

_ ——

Figure 7 - Pressure contours at the moment of impact (#* = 0) and velocity field near mid-impact
(r*=0.53) showing the two counter-rotating streamwise vortices for the Re = 5500 case. Notice
the “wave-like” propagation and spatial decay of the high axial velocity flow issuing from the
streamwise vortices.

The streamwise vortices for all three cases (Re = 1500, 3000, and 5500) are depicted in
figure 8 along with the secondary flow. It can be seen from the figure that the body force has a
more substantial effect on the Re = 1500 case; stronger streamwise vortices develop at the
boundaries of the forced volume compared to the higher Re cases. This can be explained by
higher values of the parameter ¥ = fD/pU,’. The parameter ¥ can be thought of as a ratio of the
transverse pressure gradient to the streamwise pressure gradient. The larger the value of ¥, the
more the transverse pressure gradient dominates the streamwise pressure gradient.

As the streamwise vortices develop, secondary flows develop in the same regions
simultaneously. Figure 8 also shows the secondary flow with normalized axial velocity contours
of two selected sections (x* =-12.72 and 0.90) at three selected times (* = 0.53, 1.05, and 1.26)

for each case. For ease of viewing, the secondary flow vectors were normalized with respect to

the maximum magnitude of the secondary flow for each given cross-section at each instant.
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For the upstream section (x* = -12.72), high axial velocity occurs at the bottom of the pipe,
where the low pressure draws the fluid inward, whereas it occurs at the top of the pipe at the
downstream section (x* = 0.90), where the high pressure forces the flow outward. During the
impact (0 < ¢* < 1), the secondary flows are Dean-like vortices which carry the fluid from the
high axial velocity regions to the near-wall region, effectively slowing it down in an attempt to
attain equilibrium conditions. The Re = 5500 case is seen to attain steady conditions more rapidly
than the lower Re cases as the secondary structures are quickly carried downstream and dissipate
their energy. For Re = 1500, the Dean-like vortices tend to persist for a longer duration. Most
interesting 1s the Re = 3000 case, where more intricate structures are seen (6 weak secondary
vortices can be seen for x* = 0.90 at r* = 1.26 as opposed to 1 vortex at x* =-12.72 at the same
instant), however they are short-lived.

3.2 Axial Skewness

The impulsive body force perturbs the velocity profile spatially and temporally. The
skewness of the three-dimensional axial velocity profile for a given cross-section can be
quantified as done by Griffith et al. (2013) in their investigation of the effects of stenotic flows
with eccentric stenosis (see equation 1). Figure 9 shows contours of axial skewness (u:) as a
function of time and space as well as the evolution of axial skewness at six selected upstream
sections (x* = -13.63, -13.18, -12.72, -11.81, -10.90, and -10.45) and six selected downstream
sections (x* =0, 0.45, 0.90, 1.81, 2.72, and 3.18) for each case. From the contours, it can be seen
that the effects of the body force are localized around the boundaries of the forced volume with
skewness peaks occurring near these boundaries. The lower the Reynolds number, the more

localized the effects are and the larger the peaks in skewness.

23



Axial Skewness in the Force Direction Koot et ATl Sk M TE

3 D“
E : Y

£ 0.5 \/ —X*=-13.63
§ —X*=-13.1%
< . —X*=-1272
—X*=-1181
—X*=-10.90
-1.5] =X = -10.45
-1 2 3 E)

*
Evolution of Dewnstream Axial Skewness with Time

b X = 0.00]
—X* =45

—X* = 0,90
—X*=1.81
—X*=272
—X* =318

Axial Skewness
=
i

/\

-1 ] 3 4
™
Evolution of Upstream Axial Skewness with Time

=0.5]

—X* =-13.63
—X*=-13.18
—X*=-12.72
—X*=-1181
—X* =-10.90
—X* =-10.45

3 4

with Time

=X* = (.00
—X* =145
—=X* = (.9
—X* =181
—X*=2172
—X*=3.18

§
E 0.2
F —X*=-13.63
= —K
Z.04 X = -13.18
- —X*=-12.72
—X*=-11.81
0.6 —X* =-10.90
—X*=-10.45
-1 1 2 3 4
=
Evolution of Downstream Axial Skewness with Time
0.7 —x* = ),00]
—X* =45
08 —X* =090
2 0.5l —X* =181
g —X* =272
5 A4} —X*=11H
:E 0.3
« 1.2
(18]
a i\:/
-1 2 3 4
ti

Figure 9 - Contours of axial skewness for Re = 1500, 3000, and 5500 and plots at different
sections along the pipe. The effects of the body force are localized at the boundaries of the forced
volume and the further a section from the boundaries, the lesser the skewness it experiences. The

skewness decays as it propagates downstream at a speed proportional to Re.
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The maximum skewness for sections near the boundaries of the forced volume occurs during
the impact (not at the end of the impact). This is similar to the experimental observation of Schilt
et al. (1996), namely that for flow in a U-shaped tube with time-varying curvature, the maximum
skewness occurred during the curvature change rather than at the final states. The development
of the two streamwise counter-rotating vortices and the secondary flow at these locations is the
main contribution to the skewing. The propagation of these features downstream corresponds to
propagation of the skewness downstream. When the body force ceases, the skewness continues
to propagate downstream and decays with time, just as the streamwise vortices and secondary
flows do. This is also seen in the form of a decaying wave from the velocity field in figures 7 and
8. The three contour plots have identically scaled axes and as such the speed of propagation of
the skewness can clearly be seen to be larger with larger Reynolds numbers. It can also be seen
that sections further away from the boundaries of the forced volume experience changes in
skewness at later times and the further the section from the boundaries of the forced volume, the
lesser the skewness it experiences. In fact, sections far enough downstream from the boundaries
of the forced volume only experience changes in skewness after the impact. In order of
increasing Re, 62%, 42%, and 37% of the forced volume and sections with x* > 5.23, 5.68, and
7.05 experienced changes in skewness after the impact (i.e. after +* = 1). The sign of the
skewness is positive for sections near the downstream boundary since high axial velocity exists
at the top of the pipe (positive z*), and negative near the upstream boundary due to the high axial
velocity being at the bottom of the pipe (negative = *).

3.3 Kinetic Energy
In figure 10, contour plots of normalized cross-sectionally averaged kinetic energy (KEug)

and its evolution at three selected upstream (x* =-13.63, -12.72, and -10.45) and three selected
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downstream (x* = 0, 0.90, and 3.18) sections are shown for the three cases. The kinetic energy is
normalized with respect to the cross-sectionally averaged kinetic energy of the respective steady

unforced case. A value of KE,,, = 1 therefore corresponds to the kinetic energy of the base flow.
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Figure 10 - Contours of normalized average kinetic energy for Re = 1500, 3000, and 5500 and
plots at different sections along the pipe. The body force has the greatest effect for Re = 1500,
with the cross-sectionally averaged kinetic energy rising 90 times its steady-state value in
comparison to 10 times for Re = 5500. The temporal decay of kinetic energy is quicker for larger
Re whereas the spatial decay is quicker for lower Re.
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Figure 11 - Comparison of the decay of the normalized average kinetic energy at x*= 0 and 0.45

with the power law fit for the three cases (Re = 1500, 3000, and 5500).

The Re = 1500 case experiences the largest growth in kinetic energy in comparison to its

respective unforced case. For larger Reynolds numbers (lower ¥), the growth is less since the

flow has more inertia and therefore its motion is less affected by the impulsive body force. The

temporal decay of kinetic energy is observed to be quicker for larger Reynolds numbers, for

instance the time (4¢*) required for the KE,, at x* = 0.90 to fall to 5% of its value from * =1

was found to be 0.91, 0.66, and 0.46 in order of increasing Re. The temporal decay (from 7* = 1

onward) appears to follow a power law (KEag ~ (1*)9). To illustrate this point, figure 11 shows

the agreement of the power law decay with the data for two sections downstream of the boundary
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of the forced volume (x* = 0 and x™ = 0.45). The exponent governing the rate of decay (a)
increases for increasing Re (again indicating faster temporal decay for larger Re). In order of
increasing Re, for x* = 0 the exponents have values of 8.4, 8.9, and 13.1 whereas for x* = 0.45
they have values of 6.3, 7.5, and 10.1. The spatial decay generally is quicker for lower Reynolds
numbers. The distance (4x*) required for the KE,,, at r* = 0.53 to fall to 5% of its value from x*
=0.90 was 1.54, 1.95, and 2.32 again in order of increasing Re.

Figure 12 contains plots of normalized cross-sectionally averaged axial (KE. = 0.5U7) and
in-plane (KE,- = 0.577 + 0.5W7?) kinetic energy at three selected sections (x* = 1.81, 3.63, and
4.54) downstream of the forced volume. The kinetic energies were normalized with respect to the
cross-sectionally averaged axial kinetic energy of the respective steady unforced case. The KE.
was subtracted by 1 to have the plots on the same scale. It can be seen that the peaks and troughs
of the axial and in-plane kinetic energies often coincide, indicating a transfer of energy. In some
instances, the secondary flow extracts kinetic energy from the mean flow however the reverse is
seen to be more common. For example, in figure 12, for the section x* = 3.63 of the Re = 3000
case, beginning at the end of the impact (#* = 1), the KE. increases while the KE,. decreases by a
similar magnitude. This is an indication that the secondary flow is dissipating energy into the

mean flow.
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Figure 12 - Plots of axial and in-plane normalized average kinetic energies for Re = 1500, 3000,
and 5500 at x*=1.81, 3.63, and 4.54. An alternating exchange in kinetic energy is observed
between the axial and in-plane flows. This energy exchange corresponds to locations where a
peak of one energy coincides with a trough of the other; for example, for Re = 3000 at x* = 3.63
and 7* = 1, the secondary flow is dissipating energy into the mean flow.
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Chapter 4 : Pulsatile Inlet Velocity

The impact was applied at three different instances during the pulsatile velocity profile,
namely during the acceleration phase, the peak phase, and the deceleration phase. For an
accelerating flow, there is a favorable streamwise pressure gradient. This pressure gradient adds
to the transverse pressure gradient induced by the body force, resulting in a pressure gradient
which is skewed counterclockwise in comparison with that in figure 6 (see figure 13). The
opposite effect (the pressure gradient skewing in the clockwise direction with reference to figure

6) occurs when the body force is applied during the deceleration phase of the pulsatile profile.

high pressure

. ’._‘_ .|
acceleration

22
g

oW pressure

R

body force per unit volume (f)

Figure 13 - Schematic of the skewed transverse pressure gradient induced by the action of the
body force with the effects of fluid acceleration.

4.1 Velocity Field

At first glance, the axial and secondary flows exhibit similar features as for the uniform flow
cases, particularly for an impact occurring during the peak phase (see figures 8 and 14). The
induced pressure gradient results in the development of two streamwise vortices, in the same
manner as discussed in section 3.1, which in turn results in secondary flows attempting to restore
the equilibrium velocity profile. The axial velocity however, appears to respond more
dramatically to the accelerating flow than the decelerating flow. This occurs due to the skewed
pressure gradient, which is more pronounced for the impact occurring during the accelerating
phase and less fluid is accelerated at the bottom of the pipe (the low pressure region is thinner at

the upstream boundary of the forced volume). The development of the secondary flow also
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appears to be slowest for an impact occurring during the accelerating phase and quickest for one
occurring during the decelerating phase. These observations are in accordance with a study of
ramp-type pipe flows by He & Jackson (2000). In their experimental work, a linearly increasing
(and decreasing) flow rate is supplied through a circular pipe. They observed that the delay in
radial turbulence propagation is larger for an accelerating flow than for a decelerating one. Since
turbulent propagation occurs mainly by the diffusion of turbulent eddies, it is natural to expect a

similar result for the secondary flows observed in this study.

Peak Phase Decelerating Phase

x*=-12.72 x*=0.90

Accelerating Phase
x*=_]2.72 x*=0.90
t*=0.53

il

Contours of Normalized Axial Velocity

- -
06 -04 02 0 02 04 06 08

Figure 14 - Secondary flows and contours of normalized axial velocity at £*=0.53, 1.05, and
1.26 for the accelerating and decelerating phases and r* = 0.50, 1.06, and 1.28 for the peak phase.
Similar features as for the uniform flow cases are observed, however the time for the secondary
flow to develop is longer from left to right (refer to the #* = 0.5 sections).

4.2 Axial Skewness

Contours of axial skewness in the direction of the body force are plotted in figure 15. The
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skewness is seen to be identically zero prior to the body force in all cases due to the symmetry of
the axial velocity profile with respect to the z = 0 plane. When the body force 1s applied during
the accelerating or peak phases of the pulsatile velocity profile, the skewness still attains a peak
prior to the end of the impact. The degree of influence of the body force decreases for the
accelerating flow whereas it is more or less constant for the impact occurring at the peak, which
1s why the peak skewness occurs earlier for the accelerating flow (at #* = 0.26 for the
accelerating phase compared to #* = 0.39 for the peak phase). On the contrary, when the body
force 1s applied during the decelerating phase, the peak skewness occurs precisely at the end of
the impact (#* = 1). This occurs because the degree of influence of the body force increases for a
decelerating flow. In accordance with the degree of influence of the body force, the skewness
peaks are 1.00, 0.63, and 1.38 for impacts occurring during the accelerating, peak, and
decelerating phases respectively (all occurring at x* = (0.23). At the top of the contour plots, the
skewness is seen to grow after substantial decay, at least when the body force is applied during
the accelerating and peak phases. This phenomenon occurs due to the presence of streamwise
vortices in the flow which have not dissipated as quickly as the inlet velocity profile decayed to
zero. These vortices result in some antisymmetry of the axial velocity profile with respect to the =
= 0 plane and therefore, due to the definition of the axial skewness (equation 1), when the inlet

velocity decays to zero the skewness may tend to a large number (which is seen to occur).

32



Axial Skewness in the Forced Direction Axial Skewness in the Forced Direction

e

-15 -10 -5 0 5

Axial Skewness in the Forced Direction

_— [ ]

1.5
0.5 1
0.5
x 0
0.5
0.5
-1
1.5

-15 -10 =5 0 5

Figure 15 - Contours of axial skewness for an impact occurring during the accelerating, peak,
and decelerating phases. The maximum skewness is largest for the decelerating phase and occurs
at the end of the impact, whereas it occurs before the end of the impact for the accelerating and
peak phases.

4.3 Kinetic Energy

Rather than investigating the ratio of the cross-sectionally averaged kinetic energy of the
forced case with respect to the unforced case as in section 3.3, the difference per unit mass
(dkeag) between the two was plotted in figure 16 (in order to avoid division by zero due to the
base flow decaying to zero), which represents the increase in kinetic energy with reference to the
base flow. The maximum observed kinetic energy increase for the three cases exhibit similar

magnitudes. For instance, at the upstream boundary of the forced volume, the maximum Akeang1s

3.30 m?/s? (at r*=0.37 and x*=-13.41), 3.28 m?/s? (at t* = 0.44 and x* = -13.41), and 3.30 m?/s?
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(at t* = 0.47 and x* = -13.63) for an impact occurring during the accelerating, peak, and
decelerating phases respectively. At the downstream boundary, the maximum Akes 1is,
respectively, 3.12 m?/s? (at t* = 0.32 and x* = 0.23), 3.28 m?/s? (at t* = 0.39 and x* = 0.23), and
3.32 m?%s? (at t* = 0.37 and x* = 0). Interestingly, at the upstream boundary, the maximum Akeq,
occurs at successively later times between each case, again in accordance with the concept of the
degree of influence. At the downstream boundary however, this is not the case. More
interestingly, for the accelerating phase, the peak Akeq., downstream occurs at a later time than
the peak in skewness (#* = 0.32 compared to r* = 0.26). The reverse occurs for the decelerating
flow, however this i1s expected since the flow itself decays to zero and the Ake,,, must, of course,
attain a maximum before then. The effects of the body force are still seen to be localized at the
boundaries of the forced volume for all cases, however the evolution of kinetic energy is clearly
different depending on the nature of the flow. For the accelerating flow, the Aken, contours
appear more localized spatially and elongated temporally. The opposite i1s seen for the
decelerating flow, where the contours are wider spatially and more localized temporally. For the
impact occurring during the peak phase, the inlet velocity 1s more or less constant and the result
appears similar to the normalized average kinetic energy for the Re = 5500 case in figure 8.
Figure 16 also shows the evolution of the Ake,, from the upstream boundary of the forced
volume (for x*=-13.63, -13.18, -12.72, -12.27, -11.81, -11.36, and -6.81) to illustrate the spatial
and temporal decay just discussed. Note that for x* = -6.81 (the middle of the forced volume),

Akegvg ~ 0
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Figure 16 - Contours of average kinetic energy difference for an impact occurring during the
accelerating, peak, and decelerating phases and plots at different upstream sections along the
pipe. The kinetic energy is more localized spatially and elongated temporally for the accelerating
flow whereas the opposite is seen for the decelerating flow.



The temporal decay of the kinetic energy also follows a power law (dkeng ~ (#*)%) for the
pulsatile cases as for the uniform flow cases. Figure 17 shows the agreement of the power law fit
with the decay only for the accelerating and peak phases for two sections upstream (x* = -13.63
and -12.27) since the kinetic energy did not completely decay for the decelerating phase by the
end of the simulation. For x* = -13.63 and -12.27, the decay rates (a) are respectively 10.8 and
5.0 for the accelerating phase and 12.3 and 5.6 for the peak phase. From the decay rate, it can be
seen that the temporal decay is longest for the accelerating phase. From figure 16, it appears as
though the temporal decay would be shortest for the decelerating phase, however further study
would be required. It is interesting to note that such a power law decay has been experimentally
observed for the turbulent kinetic energy for decaying homogeneous and isotropic turbulence
(Townsend 1976, Wilcox 1994). It would be expected therefore, that such a decay may be a
feature of using a turbulence model, since the decay of the kinetic energy of the mean flow and
the decay of the turbulent kinetic energy are correlated (i.e. as the mean flow decays, so should
the turbulent fluctuations since there will not be enough energy to sustain them). The fact that the
Re = 1500 case (see figure 11) also decays as a power law suggests that this result is not an

artifact of the turbulence model.
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Figure 17 - Comparison of the decay of the average kinetic energy difference at x*=-13.63 and
-12.72 with the power law fit for an impact occurring during the accelerating and peak phases.
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Chapter S: Conclusions & Recommendations

5.1 Summary

In this fundamental study, the effects of a localized transverse impulsive body force on
circular pipe flow was investigated for two flow conditions through numerical simulation. A
parameter, ¥, was also devised that quantifies the degree of influence of the body force by
measuring the ratio of the induced transverse pressure gradient to the streamwise pressure
gradient.

For the first flow condition, three different constant inlet velocities were tested, namely with
Reynolds numbers of 1500, 3000, and 5500. At the moment the body force was applied, a
transverse pressure gradient equal in magnitude and opposite in direction of the body force
develops in the forced section of the pipe. This pressure gradient results in two zones of adverse
pressure gradient from which two counter-rotating streamwise vortices develop. Secondary flows
develop in conjunction with these streamwise vortices, acting in a manner so as to restore the
equilibrium velocity profile by carrying fluid from high axial velocity regions, through the
boundary layer, and back to the mean flow. The effects of the body force are localized at the
boundaries of the forced volume and the lower the Reynolds number, the more localized the
effects are and the more the velocity field is skewed. Maximum skewing of the velocity profile
occurred during the impact rather than at the end, with larger skewing occurring for higher ¥-
The temporal decay of kinetic energy was observed to be faster for larger Reynolds numbers and
1s governed by a power law decay, whereas the spatial decay was faster for lower Reynolds
numbers (since the effects propagate downstream at a slower speed). An alternating exchange in
energy between the axial and secondary flows was also observed.

For the second flow condition, a pulsatile inlet velocity was used corresponding to the

;. i)



systolic duration of the cardiac cycle. The effects of the impulsive body force was investigated
by applying the force at three different instances of the pulsatile profile, namely during the
accelerating, peak, and decelerating phases. Application of the force during the accelerating
phase resulted in a pressure gradient skewed counterclockwise with regard to the constant inlet
velocity cases. The opposite effect occurred when the force was applied during the decelerating
phase. The streamwise vortices and secondary flows develop and act, generally, in the same
manner as for the constant inlet velocity cases. It was observed, however, that the development
of the secondary flow occurs later for the accelerating flow case and fastest for the decelerating
flow. The maximum skewing of the axial velocity profile was largest for the decelerating phase
occurring at the end of the impact, whereas it occurred before the end of the impact for the
accelerating and peak phases. The maximum skewing occurred at successively later times for the
accelerating, peak, and decelerating phases respectively. This can be understood in terms of the
degree of influence which decreases for an accelerating flow and increases for a decelerating
flow. The kinetic energy exhibited a shorter spatial decay for the accelerating phase than for the
decelerating phase (the longest spatial decay actually occurs for the peak phase). The temporal
decay of kinetic energy also appears to follow a power law decay and was observed be longer for

the accelerating phase than for the peak phase.

5.2 Limitations and Future Directions

The main limitation of this study was the choice of using a turbulence model. An improved
study would require the use of direct numerical simulation (DNS) as no assumptions are made
regarding the nature of the flow and the governing equations are solved exactly. Another
limitation of the study is that the results should be compared with some experimental data.

Notably, from the problem definition, it is not trivial to perform an experiment for this study,
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however there are ways in which it can be achieved. Using a magnetorheological fluid,
application of a strong impulsive transverse magnetic field on a localized section of a long
circular pipe may be a sufficient experimental apparatus, however it may be difficult to measure
the velocity field in this case.

As a future direction for study, a numerical simulation of such an impulsive body force
acting on a realistic model of an aorta should be conducted, and the concepts observed here may
be used to understand the more complex flow. It would also be interesting to investigate the
effects of the body force on pure ramp-type inlet flows in a circular pipe to gain a deeper
understanding of the observed phenomena in the pulsatile cases by varying the ramp rate and the
start and end velocities (as done be He & Jackson 2000). Also, rather than only investigating
different inlet flows, it would also be interesting to study the effects of the magnitude and

duration of the body force as well as different types of forcing functions.
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Appendix

User-Defined Function for Body Force
The following code 1s written in the programming language C. The times #; and 1> were

changed for each case according to that defined in the problem definition (section 2.1).

#include "udf.h"

#define fmax 500000.0
#define tl1 0.1
#define t2 0.2

/* sterm: The name of this UDF. */

/* €z The icelly &y

/* T: The thread. */

/* dS: The derivative of the source term with respect to the wvariable egn. */

/* Note: For momentum source terms, eqn refers to the velocity component in the
direction specified in FLUENT. */

DEFINE SOURCE (sterm, C, T, dS, egn)
{
real f;

real t = CURRENT TIME;

if (t >= tl && t <= t2)
{

f = fmax;
}
else

e = e
dS[egn] = 0.0;

return £f;
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