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Abstract 

 
Two-dimensional Numerical Simulation of Multiphase Flows in MATLAB 

 

Saadi Daftari 

 

A robust and efficient numerical method for the simulation of incompressible, 

immiscible, two-phase flows in two dimensions is presented. Following a comprehensive 

literature review, the one-fluid model is selected to account for the discontinuities in 

material properties across the interface. The model uses the volume-of-fluid (VOF) 

method and the continuum surface force (CSF) model to track the interface and account 

for the surface tension forces, respectively. Integration in time is accomplished explicitly 

through the forward Euler method and the Navier-Stokes equations are discretized in 

space using a second-order upwind biased oscillation free Total Variation Diminishing 

(TVD) method for the convective terms and a second-order central differencing method 

for the viscous terms. The velocity-pressure coupling is done using a two step first-order 

projection method. The interface is reconstructed geometrically using a piecewise linear 

interface calculation (PLIC) method and the VOF advection equation is advanced in time 

using a directional split algorithm. The final numerical algorithm is implemented in 

MATLAB where the Pressure Poisson Equation (PPE) obtained from the projection 
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method is solved efficiently in a cluster environment using a built-in MATLAB solver. 

Various benchmark tests are used to validate the algorithm and a grid refinement test is 

performed to determine its formal order of accuracy. Applicability to practical physical 

and engineering problems is verified over a wide range of test conditions by using the 

numerical method for the simulation of the rise of a bubble in a liquid and the falling 

liquid film flow. For both cases the results compare well with the past experimental and 

numerical results; the model successfully predicts the shape of the rising bubble and 

captures the complex wave dynamics of the falling liquid film. In particular, the results 

are on a par with the numerical results obtained using free-surface flow codes in which 

the dynamics of the gas phase are ignored in favour of robustness and stability. 

Using MATLAB to implement and run the final code proves to be advantageous as the 

native parallel computing capabilities of MATLAB reduces the computational time of the 

simulations significantly while the data presentation and visualization is facilitated using 

the built-in tools that MATLAB provides. The final implementation of the algorithm 

involves less than 200 lines of code which makes it easy for the code to be maintained 

and improved. 
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Chapter 1  
 
Introduction 
 

1.1 Background 

Interfacial multiphase flows involving two or more distinct phases separated with a well 

defined interface occur in a variety of physical and technological processes such as 

condensers, evaporators, chemical reactors, casting processes, mold filling, extrusion 

and spray decomposition (Puckett, Almgren, Bell, Marcus, & Rider, 1996; Kunugi & Kino, 

2005). Natural and biological phenomena such as ocean wave and blood flow are also 

multiphase in nature and highlight the broad spectrum of physical problems where 

these flows are encountered (Yeoh & Tu, 2010).  

Multiphase flows form a rather challenging class of fluid dynamics problems due to the 

moving fluid interfaces within the domain of the flow, discontinuity in material 

properties and a complicated flow field near the interface (Yeoh & Tu, 2010). These 

complexities greatly limit the effectiveness of purely analytical studies and necessitate 

special setup for the experimental studies since many of the techniques developed for 

single-phase flows are inadequate for multiphase flows (Prosperetti & Tryggvason, 

2007). 

Numerical simulation represents an economical and efficient means of investigating 

complex fluid dynamics problems, circumventing the inherent difficulties and limitations 
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associated with experimental studies (Bierbrauer, 2004). It is, therefore, an effective 

alternative to tackle multiphase flow problems and reveal details of flow physics that 

otherwise could not be studied experimentally or analytically (Yeoh & Tu, 2010). The 

flexibility of numerical simulation allows for the study of multiphase flows to be 

extended over a wide range of fundamental physical parameters such as gravity, surface 

tension, density and viscosity ratios (Prosperetti & Tryggvason, 2007). 

1.2 Objectives and Scope 

This work is motivated by the numerous advantages that the numerical simulation of 

multiphase flows offers and aims to provide a robust and efficient method for the 

simulation of a broad range of multiphase flow problems. Successful application to the 

falling thin film flow is of prime interest due to its many industrial applications and the 

challenges associated with its numerical simulation. Also, the numerical scheme is to be 

used as a baseline for future developments and therefore needs to be clear in concept 

and easy to implement and use. Moreover, the final numerical scheme is implemented 

in MATLAB to take advantage of its parallel computing capabilities and simplify the code 

implementation and data post processing by using the large library of built-in functions 

that MATLAB provides to manipulate and solve the large system of equations associated 

with numerical simulations. 

Although the code developed in this thesis can be extended and applied to many 

problems involving multiphase flows, the discussion herein is restricted to the case of 

incompressible, immiscible, two-phase flows in a two-dimensional domain. The code 
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will not include any turbulent modeling or energy equation (only isothermal flows are 

considered). 

1.3 Organization 

Chapter two starts by presenting a detailed discussion on some of the common 

numerical models for multiphase flow problems, their underlying principles and their 

respective governing equations. A review of some of the techniques employed to track 

the location and the shape of the interface in multiphase flows is presented and their 

respective advantages and disadvantages are highlighted. The results of the review are 

then used to select the mathematical model that is most suitable for the purpose of this 

thesis. 

In chapter three a detailed description of the discretization techniques used to 

approximate the governing equations is presented. Justifications are offered for 

selecting MATLAB as the programming environment in regards to the implementation 

and performance of the final code. 

Chapter four starts by performing relevant benchmark tests on individual components 

of the numerical scheme to assess the performance of each scheme and better 

understand their characteristics. This is followed by a grid refinement test in order to 

quantify the accuracy of the overall scheme and identify the areas that need 

improvements. 

In chapter five applications to the rising bubble and the falling thin film flow are 

presented. Comparison to the results of the past experiments and other numerical 
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simulations is used to validate the numerical scheme and measure its capabilities and 

limitation for the simulation of practical multiphase flows. 

Finally, the work is concluded by reiterating the objectives of this thesis followed by an 

assessment of the overall performance of the numerical scheme and the future 

improvements required to better meet the initial objectives.  
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Chapter 2  
 
Review of Mathematical Models for 
Multiphase Flows 
 

2.1 Overview 

Modeling the motion of an interfacial multiphase flow must account not only for the 

usual flow parameters, such as the velocity and pressure, but should also consider the 

discontinuity of the material properties such as density and viscosity across the flow 

interface, the position of the moving and deforming interface between the phases and 

the interfacial phenomena such as surface tension at the phase interface (Yeoh & Tu, 

2010). In most cases, the mathematical models developed for single-phase flows also 

hold for the motion of multiphase flows with additional considerations needed to 

account for the abrupt changes in material property and interfacial effects (Tryggvason, 

Sussman, & Hussaini, 2007).  

The two approaches commonly used for modeling of multiphase flows are the sharp-

interface model and the immersed interface model. In the former approach the 

governing equations are solved for each phase separately and the appropriate 

interfacial boundary conditions are used to couple the fluid phases. Thus the main 

challenge for the sharp interface model is to maintain an explicit definition of the 

interface to which the interfacial boundary conditions are applied. This approach often 

involves meshes that conform to the shape of the interface or use Lagrangian particle 
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methods to maintain a sharp definition of the interface. In the latter approach the entire 

flow domain is considered as a whole with different fluids accounted for by introducing 

variable flow properties across the domain. Here, the interfacial effects are considered 

by adding appropriate terms to the governing equations. The interface in this case could 

be identified as the location of abrupt changes in material properties and as such a 

method to implicitly infer the position and shape of the interface using the distribution 

of the material properties within the flow domain is required. Many such methods have 

been developed in the last three decades with successful applications to many industrial 

and scientific problems. This section aims to offer a detailed review of these 

approaches, their main contributors and their respective advantages and disadvantages. 

The equations developed herein can be regarded as a starting point for the numerical 

prediction of multiphase flows. 

2.2 The Sharp Interface Model 

The sharp-interface model, also referred to as the jump-condition formulation of the 

governing equations, consists of decomposing the problem into any number of bulk-

phase domains and solving a separate set of governing equations for each phase. The 

interface between the fluids is then treated as a boundary to which the appropriate 

interfacial boundary conditions are explicitly applied (Scardovelli & Zaleski, 1999). 

Therefore, considering the incompressible flow of two immiscible fluids and assuming 

constant material properties, the governing equations for each phase of an interfacial 

flow are the conservation of mass or the continuity equation 
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 0,V   (2.1) 

which implies that for an incompressible flow volume is conserved, and the 

conservation of momentum transport  

 
1 1

( ) ,b

V
VV T F

t  


   


 (2.2)   

where  ,  ,V u v , T and bF
 are the fluid density, the flow velocity vector defined in 

the two-dimensional space coordinate, the stress tensor of the phase and a body force, 

usually the gravitational forces, respectively. Here, u  and v  are the velocity vector 

components in the x  and y  coordinates, respectively. The stress tensor may be 

decomposed into a pressure term and a viscous term (Prosperetti & Tryggvason, 2007) 

such that 

 2 ,T pI D    (2.3) 

where p  is the scalar pressure,   is the coefficient of dynamic viscosity and I  is the 

3x3 unit tensor. For a Newtonian fluid the viscous stresses are proportional to the rates 

of deformation, (Versteeg & Malalasekra, 2007) yielding the following stress tensor 

formulation 

     1
.

2

T

D V V     (2.4) 

Combining equations (2.2) to (2.4), results in the familiar form of the incompressible 

Navier-Stokes equation for the momentum transport of a Newtonian flow: 
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     1 1
( ) .

TV
VV p V V g

t


 


         


 (2.5) 

Here, bF
 has been replaced by the gravitational force g , where ( , )x yg g g

 
is the two-

dimensional gravitational vector. Although in their integral form the Navier-Stokes 

equations allow for arbitrary change in material properties of the fluids, in their 

differential form they are only applicable to single-phase flows with no discontinuities 

(Tryggvason et al., 2007). Therefore, for multiphase flows they require the 

accompanying boundary conditions at the phase interface in order to account for 

discontinuities and interfacial effects. 

The boundary conditions to be applied at the interface can be derived by applying the 

conservation laws to the interface where conservation of momentum and mass must 

hold as well (Ferziger & Peric, 2002). Neglecting any mass flux taking place at the 

interface, whereby the immiscibility of the two interfaces is enforced, the conservation 

of mass at the interface yields 

    1 1 2 2
ˆ ˆ 0,I IV V n V V n        (2.6) 

where subscript 1 and 2 refer to phase 1 and phase 2, and 
IV  is the velocity of the 

interface. Known as the kinematic condition at the interface, equation (2.6) states that 

the normal component of the velocity of the fluid phases at the interface are equal to 

the normal component of the velocity of the interface. This implies that mass flux across 
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the interface is zero and that the interface is a sharp boundary separating the two fluids 

(Ferziger & Peric, 2002). 

Conservation of momentum at the interface, or the so-called dynamic condition, 

requires forces at the interface to be at equilibrium (Ferziger & Peric, 2002). That is   

      
1 2
ˆ ˆ ˆ2 2 ,SpI D n pI D n k n            (2.7) 

where n̂  is the unit normal to the interface,   is the surface tension, S
 is the surface 

gradient, and k  is the local mean curvature of the interface defined as 

 ˆ.k n  (2.8) 

It is often more convenient to decompose equation (2.7) into its normal and tangential 

components. The normal component is 

  1 2 1 1 2 2
ˆ ˆ ,p p n D D n k         (2.9) 

while the tangential component is  

  1 1 2 2
ˆ ˆ.S n D D n        (2.10) 

Equation (2.9) implies that the normal force tends to smooth the interface by damping 

regions of high curvature, whereas the tangential forces defined in equation (2.10) tend 

to drive the fluid along the interface to the regions of larger   (Begum & Abdul Basit, 

2008). The latter phenomenon is known as the Marangoni or capillary convection 

(Ferziger & Peric, 2002).  
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For free-surface flows where the interface separates a liquid from a gas or a vapour, the 

dynamic effects of the gas phase can be modeled in terms of pressure alone (Prosperetti 

& Tryggvason, 2007). Thus, neglecting the viscous forces at the interface and assuming σ 

being constant, as is the case when there is no variation in temperature, surface 

cleanliness and chemical composition of the flow, the tangential component of the 

surface tension vanishes and equation (2.7) is reduced to a pressure jump across the 

interface 

 1 2 .sp p p k    (2.11) 

Thus, assuming constant surface tension coefficient and neglecting the dynamics of the 

gas phase, the jump across the free-surface is dictated by the surface curvature 

variation only.  

Equations (2.1) and (2.5), as well as the associated interfacial boundary conditions 

defined by equations (2.6) and (2.7) , constitute the sharp-interface formulation of the 

incompressible multiphase flows. This approach often invokes methods that need to 

track the interface location explicitly and is therefore prone to the difficulties associated 

with these methods. Some of these methods are briefly discussed in the following 

sections. 

2.3 The Immersed Interface Model 

Another approach to account for the discontinuities in material properties and the 

interfacial phenomena is the immersed interface model, or the so called one-fluid 

formulation, in which both phases are treated as a single fluid whose properties vary in 
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space and time (Ferziger & Peric, 2002). In principle, this approach allows for multiphase 

flows to be treated in the same manner as homogeneous flows using the many available 

algorithms available for such flows. 

In the one-fluid model a single set of the governing equations is solved for the whole 

flow domain and the interface is not treated as a boundary and hence does not need 

any boundary conditions to be prescribed on it (Ferziger & Peric, 2002). In this case, the 

interface is identified as the location where the fluid properties change abruptly. This 

requires the fluid density and viscosity in equation (2.1) and (2.5) to be defined as a 

function of material properties, position in space, and time. That is 

  1 2, , , , ,f x y t    (2.12) 

  1 2, , , , .f x y t    (2.13) 

Therefore, the difference between the formulation of the Navier-Stokes equation for a 

single-phase flow and the one-fluid model for multiphase flows lies in the definition of 

the fluid properties,   and  , expressed as a function of space and time for the latter 

and as constants for the former.  

Even though, unlike the jump-condition formulation, the one-fluid model does not 

require any boundary conditions to be imposed on the interface, the interfacial 

phenomena, such as surface tension, need to be accounted for by adding the 

appropriate interface terms to the governing equations. Since such terms are 

concentrated at the interface only, the  -function needs to be employed to represent 
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them (Tryggvason et al., 2007). Therefore, for the one-fluid model the conservation of 

momentum, equation (2.5), can be re-expressed as follows  

       
1 1

ˆ( ) ,
TV

VV p V V g k n n
t


 

  


          


 (2.14) 

where  n
 
is a Dirac delta function acting in the direction normal to the interface. 

With the singular term added to account for surface tension, this equation is valid for 

the whole flow domain, including in regions where discontinuities in flow parameters 

are expected due to the presence of the interface.  

Further discussion on the definition of   and  , as well as the modeling of the surface 

terms in the one-fluid model require the position of the interface to be known and are 

therefore deferred until a method to track the interface is established. 

Equations (2.1) and (2.14) accompanied with the space and time varying material 

properties defined for the whole domain, equations (2.12) and (2.13), constitute the 

one-fluid model for the multiphase flows. As is evident by the last term of equation 

(2.14), to define the curvature of the interface and account for surface tension forces, 

the shape of the interface needs to be known. Thus, similar to the sharp interface 

model, in the one-fluid model one needs to employ a method to track the location and 

the shape of the interface in time. The flow governing equations are coupled with the 

selected interface tracking method through the local curvature of the interface and the 

definition of material properties as a function of interface location. The main advantage 

of the one-fluid model is the fact that it allows for the Eulerian approaches to be applied 
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to the multiphase flows which in general are easy to implement and are quite robust 

compared to Lagrangian methods in dealing with interface topological changes (D. B. 

Kothe, 1999). 

2.4 Methods of Tracking the Interface 

As previously stated, in evaluating interfacial multiphase flows, one has to pay special 

attention to the topological changes that occur near the interface between the two 

phases. Detailed knowledge of interface location and shape is essential to accurately 

impose the interfacial boundary conditions in the sharp interface model, and to define 

the material properties and the surface forces as a function of interface location and 

shape in the one-fluid model. In addition, the location and the shape of the interface are 

often amongst the most important pieces of information that one needs to obtain from 

an interfacial multiphase problem solution.  

Classical numerical methods designed for smooth solutions perform poorly or do not 

work at all when employed for the evaluation of multiphase problems with non-smooth 

or discontinuous solutions across the moving boundaries (Loubenets, 2007). This can be 

attributed to the smoothing of all variations in flow quantities and the subsequent 

smearing of discontinuities such as the phase interfaces (Nichols, Hirt, & Hotchkiss, 

1980). As a result, over the years several approaches have been developed to track the 

interface while maintaining its sharp definition within the flow. Without any loss of 

generality, these methods can be categorized as Eulerian or Lagrangian. 

From an interface modeling point of view, multiphase numerical schemes can be 

categorized as either interface tracking or interface capturing. In interface tracking 
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methods the interface is tracked explicitly either by marking it with special particles or 

by attaching it to a mesh surface moving with the interface (Yeoh & Tu, 2010). These 

methods are Lagrangian in nature, whereby the position history of discrete points IX
 

lying on the interface is given by 

 ,I
I

dX
V

dt
  (2.15) 

where IV
 is the velocity at which the interface point Ix

 moves. Surface marker, front 

tracking, moving mesh, and particle schemes are examples of this method. 

Interface capturing methods make use of either particles with negligible mass or a 

marker function to mark the fluids on either side of the interface and “capture” the 

interface implicitly (Yeoh & Tu, 2010). The marker function, or the so-called 

characteristic function C , is a discontinuous Heaviside function in the limit of zero mesh 

spacing which for two-phase flows is defined as 

 
1

2

1 2,

                 in fluid 1

                 in fluid 2

    at the interface,

C

C C

C C




 
 

 (2.16) 

where it is assumed that 2 1C C  (D. B. Kothe, 1999). In practice, C  could have a 

smooth transition zone between one value and the other (Tryggvason et al., 2007). A 

point on the interface maintains its position in time which invokes the following 

Lagrangian invariant statement for the evolution of C  (D. B. Kothe, 1999; Tryggvason et 

al., 2007) 
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   0.I

C
V C

t


  


 (2.17) 

Markers and cell (MAC), volume-of-fluid (VOF), level set, phase field and shock capturing 

methods belong to the interface capturing category. MAC and VOF also belong to a sub-

category of interface capturing methods known as volume tracking methods (Salih & 

Ghosh Moulic, 2009). Some of these methods and their underlying principles, along with 

their main advantages and disadvantages are reviewed in the subsequent sections. 

2.4.1 Eulerian Methods 

In the context of modeling the shape and the movement of the interface, Eulerian 

approaches, in which the grid that is used to solve the Navier-Stokes equation is entirely 

or quasi-entirely fixed (Scardovelli & Zaleski, 1999), can handle topological changes with 

ease and resolve interface merges and fragmentations automatically (Shyy, Francois, & 

Udaykumar, 2001). In order to extract detailed information regarding the interface, 

Eulerian approaches may need elaborate procedures to infer the interface location 

(Shyy et al., 2001). Nonetheless, Eulerian methods have enjoyed immense popularity 

from an academic and industrial point of view, as is evident by the numerous schemes 

available, and have been used to tackle a wide variety of multiphase flow problems. 

2.4.1.1 Surface-Fitted Methods 

The main idea in surface-fitted methods is to attach a mesh surface to the interface at 

all times by maintaining a well-defined mesh, whether body-fitted mesh or unstructured 

mesh, as depicted in Figure 2.1 (Yeoh & Tu, 2010). Each mesh in the respective fluid 

domains is allowed to move with the fluid and conform to the shape and structure of 
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the interface thereby tracking the interface automatically and ensuring an explicit sharp 

interface definition (Yeoh & Tu, 2010). Such a configuration clearly allows the problem 

to be tackled with the sharp interface model approach discussed in section 2.2. Surface-

fitted methods are capable of producing very accurate results for relatively high 

Reynolds numbers but remain limited to cases with moderate interface distortion and 

cannot accommodate interfaces that break apart or intersect (Tryggvason & 

Balachandar, 2007; Yeoh & Tu, 2010). The main difficulty with these methods remains to 

be the grid generation and the required computational power that increases as a 

function of geometric complexity (Balachandar, 2007). 

 

Figure 2.1: Interface representation in the surface fitted method. (Yeoh & Tu, 2010) 

2.4.1.2 Surface Marker Method 

The basic idea behind this method is to explicitly track an interface by marking it with a 

set of particles of negligible mass as depicted in Figure 2.2. Originally proposed by Chen 

et al (1991), Surface Marker (SM) method is essentially a modified version of MAC 

method in which markers are used only on the interface rather than being distributed 

throughout the fluid as done in the MAC formulation (Yeoh & Tu, 2010). Due to the 
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usage of markers only at the interface, this technique is computationally less expensive 

than the original MAC method (S. Chen, Johnson, & Raad, 1991). The method was 

further developed into Surface Marker and Micro Cell (SMMC) (S. Chen, Johnson, Raad, 

& Fadda, 1997) in which smaller (micro) cells are employed near the interface for the 

discrete representation of the interface and the application of pressure boundary 

conditions (Yeoh & Tu, 2010). SM method is extremely accurate and makes information 

such as location, orientation and curvature of the interface explicitly available 

throughout the whole calculation process (Floryan & Rasmussen, 1989). It also allows 

for the interface details to be captured on scales much smaller than the Eulerian mesh 

spacing used (Floryan & Rasmussen, 1989). Similar to MAC method, SM method suffers 

in situation where the interface stretches or shrinks and needs the addition of fresh 

markers during the simulation (van Sint Annaland, Deen, & Kuipers, 2005). The method 

is also sensitive to marker spacing and requires a dynamic redistribution of the surface 

markers throughout the computation (Yeoh & Tu, 2010). Application to three-

dimensional cases is not clear either (Yeoh & Tu, 2010). 

 

Figure 2.2: An example of the use of surface markers on a stationary Eulerian grid. 
(Scardovelli & Zaleski, 1999) 
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2.4.1.3 Front Tracking Method 

Front-tracking is best described as a combination of interface tracking and interface 

capturing where Lagrangian methods are used to treat the interface in an otherwise 

Eulerian mesh (Tryggvason, Bunner, Ebrat, & Tauber, 1998). Its first application to 

immiscible multiphase flows appears to be carried out by Unverdi and Tryggvason 

(1992) and is briefly described herein. As depicted in Figure 2.3, in front tracking method 

a stationary regular grid is used for the fluid flow, but the interface is explicitly tracked 

by a separate grid of lower dimension, called the front (Tryggvason et al., 1998). Similar 

to interface capturing methods, a single set of governing equations is solved on the fixed 

Eulerian grid for all the phases (Tryggvason et al., 1998). To accommodate for 

discontinuities across the interface, the interface is purposefully given a finite thickness 

of the order of mesh size across which fluid properties smoothly transition from one 

phase to the other (Yeoh & Tu, 2010). Thus, to identify where each fluid is, it is 

necessary to construct a marker function from the location of the front and then use 

this marker function to determine the fluid properties near the interface. The calculated 

fluid properties along with other quantities evaluated at the front, such as surface 

tension, are then passed to the fixed Eulerian grid through a smoothing function for the 

calculation of the fluid flow (Tryggvason et al., 2007).  
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Figure 2.3: Explicit tracking of a three-dimensional fluid interface in front tracking. 
(Tryggvason et al., 2007) 

Front-tracking method is considered to be very accurate with no numerical diffusion and 

gives the precise location of the interface throughout the numerical calculation which in 

turn alleviates the evaluation of surface curvature and surface tension forces (Yeoh & 

Tu, 2010). It also allows for the presence of more than one interface in a computational 

cell which could be important in some applications (Loubenets, 2007). Arbitrary 

topological changes are accommodated by adding local topological procedures that 

would allow interfaces reconnect or break (Bierbrauer, 2004). The major disadvantages 

of front-tracking method include relative difficulty in handling three-dimensional 

topological changes and complexity in implementation which mainly arises from the 

interaction between the Lagrangian front and the Eulerian mesh (Loubenets, 2007). 

Moreover, the method requires a remeshing of the interface as it becomes distorted 

and involves solving an elliptical equation for the distribution of the marker function 

(Rudman, 1997).  
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2.4.1.4 Marker-and-Cell Method 

The marker-and-cell (MAC) method is a volume tracking method that was first 

introduced by Harlow and Welch (1965) as a variation of particle-in-cell (PIC) method 

and is considered as the earliest numerical method designed specifically to deal with 

complicated interfacial flows (Johnson, 1996; Rudman, 1997). The technique had many 

novel features at the time of its introduction and was the first successful method for 

incompressible flows (Johnson, 1996). As depicted in Figure 2.4, the MAC method makes 

use of massless Lagrangian particles to locate the material in the mesh and, 

consequently, define the location of the surface (Johnson, 1996). A cell with no markers 

is considered empty while a cell with markers, lying adjacent to an empty cell, is 

identified as a surface cell. Cells that contain more than one fluid at a time are surface 

cells as well (Yeoh & Tu, 2010). The evolution of the surface is achieved by moving the 

markers with the locally interpolated fluid velocity (Salih & Ghosh Moulic, 2009). In MAC 

method, some special treatment is required to define fluid properties in newly filled 

cells while values in cells that are emptied need to be reset (Salih & Ghosh Moulic, 

2009). Additionally, gas pressure needs to be explicitly assigned at the surface cells 

while the incompressibility constraint or the zero-shear stress condition is enforced at 

the interface by extrapolating the velocity components to the cells immediately outside 

the surface (Yeoh & Tu, 2010).  



21 
 

 

Figure 2.4: MAC representation of an interface using massless particles. (Yeoh & Tu, 
2010) 

The MAC method can treat any number of fluids and allows for arbitrary interfacial 

flows subject to large distortions with interacting surfaces (Bierbrauer, 2004). Although 

extension to three-dimensional cases is fairly simple, the large number of markers 

needed considerably increases the computational time (Yeoh & Tu, 2010). Also, 

difficulties arise in the particle representation of the fluids in regions involving 

converging or diverging flows that could lead to unphysical void region inside the 

domain (Yeoh & Tu, 2010). Similar to other volume tracking methods, in the MAC 

method the resolution is limited to the grid size that may result in the smearing of the 

interface (Bierbrauer, 2004). Finally, the MAC method is unable to determine the 

orientation of the surface and suffers from instability at the free-surface due to the 

approximate application of the free-surface boundary conditions (Rudman, 1997). 
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2.4.1.5 Volume-of-Fluid Method 

A popular and successful method to track interfaces in two-phase and free-surface 

flows, the volume-of-fluid (VOF) method is based on a discrete characteristic function F  

which is equal to 1 in one phase and to 0 in the other (Scardovelli & Zaleski, 2003; 

Tryggvason et al., 2007). The discrete characteristic function, also known as the volume 

fraction function, is define for a two-phase flow as the ratio of the volume of one of the 

fluids, say fluid 1, to the total volume of the computational cell. Thus, in reference to 

Figure 2.5, a F  value of 1 corresponds to a cell that is entirely filled with the dark fluid 

while a F value of zero corresponds to a cell that contains no dark fluid and is filled with 

the light fluid. A value that falls between zero and one implies that the cell contains 

both fluids and is therefore an interface cell. (Rider & Kothe, 1998; Scardovelli & Zaleski, 

1999; Scardovelli & Zaleski, 2003). As with other interface capturing methods, in the 

VOF method an exact representation of the interface is not retained and the discrete 

volume fraction field is the only interface information from which the interface 

geometry can be inferred (D. B. Kothe, Mjolsness, & Torrey, 1991; Rider & Kothe, 1998). 
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Figure 2.5: The discrete presentation of a smooth circular arc over a square grid using 
the VOF volume fraction data. (Scardovelli & Zaleski, 1999) 

Generally speaking, the VOF method consists of two parts: an interface reconstruction 

algorithm for determining an approximation to the interface from the volume fraction 

field information and a volume-of-fluid advection algorithm or a transport algorithm for 

determining the motion of the F field in time (Puckett et al., 1997). For incompressible 

fluids volume is conserved and therefore the advection of the interface can be modeled 

by solving a conservation law, such as equation (2.17) re-written for the F  function 

(Scardovelli & Zaleski, 1999).  

In the VOF method the final geometry of the reconstructed interface is not unique for a 

given F  field and depends on the interface reconstruction scheme used (Rider & Kothe, 

1998). Thus interface reconstruction is a key part of any VOF method. These methods 

have evolved significantly during the past a few years and can be categorized as simple 

line interface calculation (SLIC) and piecewise linear interface calculation (PLIC). 

The SLIC method, introduced by Noh and Woodward (1976), approximates the interface 

as piecewise constant, where interface within cells is assumed to be aligned with one of 
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the logical mesh coordinates and the fluid configuration in that call is assumed to be 

different for horizontal and vertical movements (Rider & Kothe, 1998; Yeoh & Tu, 2010). 

SLIC is a direction-split algorithm and only considers neighbouring cells in the flux 

direction. This results in a different interface reconstruction for each sweep direction 

(Figure 2.6b) (Rudman, 1997). Hirt and Nichols (1981) proposed a slightly different 

approach in which the interface orientation remains the same for all sweep directions 

although it was still forced to remain parallel to one of the coordinates (Figure 2.6c). The 

orientation of the interface is determined by the normal to the interface which 

evaluated using the value of the volume fractions in the neighbouring cells (Tryggvason 

et al., 2007). This approach led to no significant improvements over the original SLIC 

method (Rudman, 1997). 

Unfortunately, all piecewise constant volume tracking methods suffer from a common 

effect known as flotsam or jetsam which are isolated, submesh-size material bodies that 

separate from the main material body due to errors introduced by volume tracking 

algorithm (Rider & Kothe, 1998; Rudman, 1997; Scardovelli & Zaleski, 2003).  

A more accurate and popular method for the reconstruction of the interface is the PLIC 

method which gained popularity in the early 1980’s due to the developments done by 

Young (Youngs, 1982). In this method the interface is reconstructed by a straight line 

segment in each cell but no constraint is imposed on the orientation of the line (Figure 

2.6d). In this case the slope of the line is given by the interface normal with the 

intercept determined by invoking volume conservation within the cell (Rider & Kothe, 

1998). Therefore, in PLIC method the accuracy of the interface reconstruction depends 
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on the proper approximation to the interface normal (Tryggvason et al., 2007). Many 

such approximations are discussed and compared in Pilliod and Puckett (2004). An 

implementation of a VOF-PLIC method is discussed in greater detail in chapter 3. 

 

Figure 2.6: The VOF reconstruction of an interface; a) The original interface, b) the SLIC 
reconstruction, c) the Hirt-Nichols reconstruction, d) the PLIC reconstruction. 
(Tryggvason et al., 2007)  

The VOF method has become the preferred choice when dealing with severe topological 

changes of interface since it requires no initial assumptions on the nature of the 

interface and as such no special techniques to accommodate topological evolution of 

the interface (Bierbrauer, 2004; Puckett et al., 1997). Generally, VOF methods, SLIC or 

PLIC, are robust and relatively easy to extend from two to three dimensions, preserve 
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mass inherently and are local in a sense that only volume fraction values in 

neighbouring cells are needed (Pilliod & Puckett, 2004; Scardovelli & Zaleski, 1999). 

Drawbacks of VOF methods include the creation of flotsams in SLIC methods, inability to 

resolve details of interfaces smaller than the mesh, and inability to accurately determine 

viscous stress and surface tension when curvature and orientation cannot be estimated 

accurately (Bierbrauer, 2004).  

2.4.1.6 Level-Set Method 

Level-set method, introduced by Osher and Sethian (1988), is another interface 

capturing method designed to reduce the numerical diffusion hampering shock-

capturing methods (van Sint Annaland et al., 2005). The basic idea is to transfer the 

discontinuous C  function in equation (2.16) into another smooth function φ, use 

equation (2.17) to advect it, and transfer φ back to C  (D. B. Kothe, 1999). To do so, the 

interface is represented by the zero contour of a signed distance function, the level-set 

function φ, being positive on one side of the interface and negative on the other side 

(Olsson & Kreiss, 2005). Unlike the VOF method, where the transition from one fluid to 

the next takes place over one grid unit, the scalar level-set function transition smoothly 

across the interface, allowing highly accurate numerical solutions to equations (2.17) 

solved for φ (D. B. Kothe, 1999; Tryggvason et al., 2007). This also leads to convenient 

formulas for the interface normal and curvature (Puckett et al., 1997). Often the level-

set function ceases to be a signed distance function from the interface after it is 

advected in time (Yeoh & Tu, 2010). Thus, the so called reinitialization of the level-set 
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function is devised to maintain it as a distance function at all times (Olsson & Kreiss, 

2005).  

Similar to other interface capturing methods, level-set method can handle topological 

changes automatically, without any special considerations needed (Puckett et al., 1997) 

and its extension to three-dimensional flows is straight forward (Tryggvason et al., 

2007). For simple flows and especially for flows where the interface moves relatively 

parallel to one of the coordinates, level-set method yields very accurate results (van Sint 

Annaland et al., 2005). Unfortunately, in most cases the reinitialization moves the zero 

level set position, thereby violating mass conservation (D. B. Kothe, 1999). As a results, 

in flow fields with sever vorticity or in cases where the interface is significantly 

deformed, level-set method suffers from severe loss of mass and thus loss of accuracy 

(van Sint Annaland et al., 2005).  

2.4.1.7 Phase-Field Method 

The phase-field method, also known as the diffused-interface method, is based on 

modifying the governing equations by incorporating some of the physical effects 

governing the structure of a thin interface (Tryggvason et al., 2007). Like other interface 

capturing methods, the phase-field method models the interfacial forces as continuum 

forces by smoothing discontinuities at the interface over a thin but numerically 

resolvable layer (D. B. Kothe, 1999). It uses a phase function,  , which describes the 

diffused transition between the two fluids (Bierbrauer, 2004). The value of   is 0 in one 

fluid and 1 in the other with the interface indentified as regions where   has a value 

between 0 and 1 (Bierbrauer, 2004). In this method a continuum surface tension model, 
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discussed in the subsequent sections, is used to account for surface forces and the 

phase field is updated by means of a non-linear advection-diffusion formulation known 

as the Cahn-Hilliard equation (Tryggvason et al., 2007). It is similar to the advection 

equation (2.17) used for other interface capturing methods with the right hand side 

being equal to the Laplacian of the chemical potential rather than zero (D. B. Kothe, 

1999). As a result, a regular interface width is maintained which can be diffused or ant-

diffused keeping the interface compact (Bierbrauer, 2004).  

The phase-field model has the advantage of automatically describing topological 

changes and having a composition field that has a physical meaning both in the bulk 

phase and in the interface (Loubenets, 2007). It can also easily accommodate complex 

physics, such as miscible, immiscible and partially miscible phases (Loubenets, 2007). 

Discretization of the Laplacian can be problematic and could lead to the interface 

sticking to the mesh (D. B. Kothe, 1999). 

2.4.1.8 Shock Capturing Method 

In shock capturing method, equation (2.17) is solved directly by applying a continuum 

advection scheme. In principle, equation (2.17) is a simple form of a hyperbolic equation 

and as such it can be approximated using any of the traditional numerical methods 

designed for the solution of such equations (D. B. Kothe, 1999). This approach is quite 

appealing since such schemes are often an integral part of any flow solver; to treat the 

convective part of the Navier-Stokes equation, for example (D. B. Kothe, 1999). In 

principle, continuum advection schemes evaluate the fluxes in equation (2.17) 

algebraically as opposed to in VOF methods where the fluxes are evaluated 
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geometrically (D. B. Kothe, 1999). By doing so, the explicit reconstruction of the 

interface is circumvented which is advantageous in unstructured grids (van Sint 

Annaland et al., 2005). Unfortunately, although high-resolution schemes, a detailed 

discussion of which can be found in (LeVeque, 2002), are quite sophisticated, they work 

less well for discontinuities encountered in multiphase flows and suffer from excess 

numerical diffusion near the discontinuities (D. B. Kothe, 1999; van Sint Annaland et al., 

2005).  

2.4.1.9 Hybrid Methods 

In hybrid methods the best aspects of different techniques are combined in an attempt 

to attain an algorithm that is superior to the individual techniques involved. A number 

of such methods have been developed in the recent years. They include the coupled 

level-set and VOF methods (CLSVOF) and methods combining level-set or VOF method 

with markers.  

In CLSVOF method, proposed by Sussman and Puckett (2000), the tracking of the 

interface is accomplished by using the level-set method in which the continuous level-

set function is used to evaluate the interface normal and curvature and then is 

reinitialized to the piecewise linear interface reconstructed from the mass conserving 

VOF function (Loubenets, 2007; Yeoh & Tu, 2010). This allows for the tracking of the 

interface and the calculation of its normal and curvature, which are typically difficult in 

the VOF method, without any loss in mass due to the level-set reinitialization. 
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In combined marker level-set methods, such as the one proposed by Enright et al. 

(2002), markers are randomly positioned near the interface, defined by the zero level-

set, and are passively advected by the fluid flow. These markers are subsequently 

employed to re-build the level-set function in under-resolved regions, where the level 

set method suffers from excessive regularization, thereby improving its volume 

conservation properties (Yeoh & Tu, 2010). 

likewise, in mixed marker and VOF methods, introduced by Aulisa et al. (2003), surface 

markers are used to define the interface on the grid lines and maintain a smooth 

interface movement typical of all marker methods with VOF markers added on the local 

surface inside each cell to enforce mass conservation (Loubenets, 2007).   

2.4.2 Lagrangian Methods 

Lagrangian approaches in which the coordinate system moves with the fluid provide for 

an easy prescription of the boundary conditions on the interface but suffer from a loss 

of accuracy and numerical instability for flows with large surface deformation as a result 

of a grid that is excessively skewed and unevenly distributed (Shyy et al., 2001). In order 

to overcome the grid distortion problem a re-meshing strategy could be applied in order 

to dynamically adjust the grid to prevent entanglement and maintain accuracy (Floryan 

& Rasmussen, 1989). However, the re-meshing process leads to increased 

computational costs while the numerical inaccuracy might persist (Floryan & 

Rasmussen, 1989) . 
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Since this work is mostly concerned with the Eulerian methods only a brief description 

of these methods is presented herein. Further readings on these methods can be found 

in Floryan and Rasmussen (1989), Johnson (1996) and D. B. Kothe (1999). 

2.4.2.1 Particle Methods 

Particle methods are not strictly developed for multiphase flow applications but present 

an attractive approach for multiphase flow simulations due to their particle treatment 

of the fluids whereby the interface can be defined with little or no extra modeling. In 

many cases, they involve rather novel approaches towards modeling the fluid flows that 

are beyond the scope of this work and are merely reviewed herein to give a better 

overview of the various approaches that one can take to model the motion of 

multiphase flows.  

Particle methods are based on concepts adopted from the molecular dynamics (Floryan 

& Rasmussen, 1989). They are characterized by the use of discrete interacting particles 

to represent microscopic fluid parcels (Floryan & Rasmussen, 1989; D. B. Kothe, 1999). 

The state of the fluid is defined by the attributes of the particles, while the evolution of 

the system is defined by the laws of the interaction of the particles constructed in such a 

way that the fluid molecular forces are simulated (Floryan & Rasmussen, 1989). By 

treating the flow domain in such a manner, the non-linear convection terms in the 

Navier-Stokes equation can simply be modeled as particle motion, rendering the 

numerical diffusion usually associated with the approximation of these terms to virtually 

zero (D. B. Kothe, 1999). Moreover, from an interface modeling point of view, in this 
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approach the particles are specifically associated with a material and thus the interface 

is automatically tracked (Floryan & Rasmussen, 1989; D. B. Kothe, 1999). Examples of 

particle methods include the particle-in-cell (PIC) method, the smoothed particle 

hydrodynamics (SPH) method and the lattice Boltzmann method (LBM). A brief review 

of these methods is presented in the following sections. Further readings on the particle 

methods, their history and recent developments can be found in (S. Li & Liu, 2002), and 

for LBM in particular in (S. Chen, He, & Luo, 2007). 

Particle-in-Cell Method 

The PIC method proposed by Harlow (1955) is the oldest particle based method and has 

been used extensively to model highly distorted interfacial flows and served as the basis 

for the development of the highly popular MAC method. Being a particle-mesh method, 

PIC employs an Eulerian grid to compute field variables such as pressure and velocity, 

and simulates material transport from cell to cell in a Lagrangian fashion (Floryan & 

Rasmussen, 1989). From this perspective PIC can also be categorized as a mixed 

Lagrangian-Eulerian method whereby a partial elimination of the grid is achieved 

(Scardovelli & Zaleski, 1999). Despite the Lagrangian treatment of the materials the PIC 

method suffers from large numerical diffusion due to the transfer of information from 

the particles to the Eulerian grid and vice-versa (Johnson, 1996). The fluid implicit 

particle method (FLIP) reduced this numerical diffusion to very low levels by limiting the 

transfer of information between grid and particles through forcing the particles to carry 

all relevant fluid information (Johnson, 1996; D. B. Kothe, 1999). PIC methods can 

conserve mass exactly, treat interfaces subject to a large distortion and can 
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accommodate flows with interacting interfaces (Bierbrauer, 2004). However, they 

remain to be computationally very expensive and tend to be susceptible to numerical 

instability (D. B. Kothe, 1999). Moreover, similar to Eulerian methods, PIC methods 

suffer from a limited special resolution dictated by the grid size with no additional 

treatment of the interface within the cells (Floryan & Rasmussen, 1989). 

Smoothed Particle Hydrodynamics Methods 

Another class of particle methods includes those that require no accompanying mesh 

where the domain is traversed by particles with or without a direct physical meaning 

(Scardovelli & Zaleski, 1999). SPH, originated from works by Lucy (1977) and Gingold and 

Monaghan (1977), belongs to this class of methods and is best described as a general 

framework for solving differential equations using particles and smoothing kernels that 

define the intensity of interaction between particles, depending on their mutual 

distance (Scardovelli & Zaleski, 1999). Thus, SPH can be considered as a discretization 

tool to solve continuum problems, such as fluid flows governed by the Navier-Stokes 

equation (S. Li & Liu, 2002). The method takes advantage of the fact that high-order 

interpolation schemes used to transfer information between particles can also be used 

to evaluate derivatives and therefore the relevant differential equations (Floryan & 

Rasmussen, 1989). These methods are more suitable for the simulation of compressible 

flows and are readily extended to three dimensions in unstructured meshes (D. B. 

Kothe, 1999). On the other hand, in SPH the treatment of viscous effects is uncertain 

(Floryan & Rasmussen, 1989) and numerical instability remains an issue (D. B. Kothe, 

1999). 
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Lattice Boltzmann Method 

Originally proposed by McNamara and Zanetti (1988) in an effort to reduce the 

statistical noise in lattice gas automaton, LBM has become a popular numerical scheme 

for simulation and modeling of fluid flows. A relatively new particle method, LBM is a 

reduced-order kinetic model conceived to reproduce the Navier-Stokes equation 

hydrodynamics at a macroscopic level (Kim & Pitch, 2009). It is a reduced-order kinetic 

model in the sense that instead of solving complicated kinetic equations such as the full 

Boltzmann equation, LBM deals with the simplified version of this model; i.e. the 

discrete Boltzmann equation (S. Chen et al., 2007). Due to its mesoscopic nature, in 

addition to being used as a discretization tool to solve the continuum problems, as is the 

case with SPH, LBM could also be used to model the underlying physics of the problem 

(S. Chen et al., 2007; S. Li & Liu, 2002). Most LBM methods developed for multiphase 

flows can also be categorized as diffused interface models, in that an interface is 

numerically resolved with a few grid points across it (Kim & Pitch, 2009). Lattice 

Boltzmann methods developed for multiphase flows have been successfully applied to a 

wide range of flows and have been particularly successful in flows involving complex 

geometry and porous media (Kim & Pitch, 2009). Unfortunately, the application of LBM 

to the multiphase flows has been limited due to numerical instability especially in flows 

involving fluids with high density ratios (Kim & Pitch, 2009). Moreover, similar to VOF 

methods, in LBM problems may arise due to interfacial coalescence of the dispersed 

elements (van Sint Annaland et al., 2005). 
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2.5 Interfacial Boundary Conditions Models 

Surface tension is an inherent characteristic of interfacial flows and as such needs to be 

accounted for in an interfacial multiphase flow model. This can be done through the 

proper prescription of the interface boundary conditions, namely the kinematic 

condition and the dynamic condition defined by equations (2.6) and (2.11) for constant 

property incompressible flows. Mass conserving interface tracking methods, such as the 

VOF method, automatically satisfy the kinematic condition at the interface (Gao, 

Morley, & Dhir, 2003) and require no further treatment of the governing equations in 

that respect . The application of the dynamic condition, however, is somewhat more 

challenging due to the dependence of the surface forces on the local mean curvature. 

Early multiphase numerical algorithms (i.e. Nichols and al. (1980), Hirt and Nichols 

(1981)) enforced the dynamic condition directly on the reconstructed interface and as 

such, despite their popularity, suffered from the inaccuracies in estimating the surface 

tension forces induced by their rough estimate of the interface itself (D. B. Kothe et al., 

1991). 

Continuum surface tension (CST) models in which the surface tension is interpreted as a 

continuous, three-dimensional effect across an interface rather than as a boundary 

condition on the interface (Brackbill, Kothe, & Zemach, 1992), attempt to alleviate the 

difficulties associated with the explicit application of the interfacial boundary 

conditions. These methods root back to the work of Peskin (1977) but own their 

popularity to the largely cited work of Brackbill et al. (1992) wherein the so-called 
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continuum surface force (CSF) model was formulated. In the CSF model the surface 

tension is modeled as a body force svF
 satisfying 

    3

0
lim ,sv sa I
h

V A

F X d x F X dA


 

   (2.18) 

where X
 is any point within the flow domain, IX is a point on the interface A , saF

 is 

the surface tension force per unit interfacial area defined as 

      ˆ ,sa I I IF X k X n X  (2.19) 

and h  is a length in the order of mesh spacing dx (D. B. Kothe et al., 1991). The area 

integral is over the portion A  of the interface lying within the small volume of 

integration V . It turns out that in methods where the interface is tracked by means of 

a smooth characteristic function C , such as the one defined for interface capturing 

methods (equation (2.16)), equation (2.19) can be approximated using the distribution 

of C  within the flow domain as follows 

       ,svF X k X C X   (2.20) 

where n̂ is approximated by C . Here, X
 could be any point within the flow domain, 

implying that equation (2.20) is applicable throughout the entire domain but is only 

non-zero near the interface where the gradient of C  is not zero. 
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Therefore, for the one-fluid formulation of the Navier-Stokes equation for the 

multiphase flows, one way to approximate the surface tension is to replace   ˆk n n 
 

in equation (2.14) with the volume force svF  defined by equation (2.20). 

2.6 Mathematical Model 

The multiphase numerical scheme selected for the purpose of this work needs to be 

easy to implement, as generally applicable as possible and capable of accommodating 

higher order approximations in the future. Moreover, it should be capable of handling 

topological changes on relatively coarse grids thus insuring a relatively low 

computational cost. Conservation of mass and momentum is essential. The scheme 

must also be relatively easy to be extended to three dimensions in the future and 

relatively decoupled from evaluation of other flow field variables such that the 

manipulation of the interface capturing/tracking portion of the code would require the 

least amount of change in the rest of the code and vice-versa. Finally, the method of 

choice is to be used as the basis for future developments and therefore needs to be 

clear in concept and implementation with an extensive academic background. 

Considering these requirements and the results of literature survey presented 

previously the mathematical model that is most suited for the purpose of this thesis can 

now be formulated. First, the one-fluid formulation is selected to model the multiphase 

flows due to its Eulerian nature and ease of implementation. Second, as a result of its 

integration with the Eulerian approaches, inherent robustness and high accuracy the 

VOF method is used to track the interface. Finally, to include the interfacial effects the 
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CSF method is employed due to its simplicity and tight integration with interface 

capturing methods such as VOF. 

Therefore, the motion of the incompressible multiphase flow, with the interfacial effects 

taken into account via the CSF model can be expressed as 

     1 1 1
( ) ,

TV
VV p V V g k F

t
 

  


           


 (2.21) 

 0,V   (2.22) 

with the VOF representation of the interface defined as 

   0.
F

V F
t


  


 (2.23) 

Here, in reference to equation (2.21), the interfacial jump condition,   ˆk n n  , is 

replaced by its CSF equivalent defined by equation (2.20), where C  has been replaced 

by the VOF characteristic function, F , and X  omitted for simplicity. The divergence 

term on the left hand side is referred to as the convective term while the term involving 

  on the right hand side is known as the viscous term. Equation (2.23), also known as 

the VOF advection equation, is the VOF representation of equation (2.17), where IV
 is 

replaced by V  to enforce the kinematic condition at the interface. 

As previously stated, the one-fluid formulation requires the fluid density and viscosity to 

be defined as a function of material properties, space and time (equations (2.12) and 

(2.13)). The choice of the VOF method to track the interface allows for the 
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discontinuous material properties across the flow domain to be expressed as a function 

of ( , )F x t , giving rise to the following expressions 

 1 2(1 ) ,F F      (2.24) 

 1 2

1 2

,
(1 )F F

 


 


 
 (2.25) 

where F is assumed to be equal to 1 in fluid 1 and 0 in fluid 2. Equation (2.25) satisfies 

the conservation of momentum at the interface better than a simple volume average 

formulation for the viscosity and is obtained by working with the inverse of viscosity 

(Tryggvason et al., 1998). Equation (2.21) to (2.25) can be considered as the governing 

equations for the motion of an incompressible, interfacial multiphase and need no 

boundary conditions to be prescribed on the fluid interfaces. 

2.7 Summary 

Review of some of the most common mathematical models for multiphase flows and 

various approaches for tracking the fluid interface were presented along with their 

advantages and disadvantages. The one-fluid model and the VOF method were selected 

as the methods of choice due to their robustness, efficiency, simplicity and the vast 

spectrum of multiphase problems they are applicable to, including the falling thin film 

flow. CSF model was selected to include the surface tension effects as a body force in 

the momentum transport, eliminating the need for an explicit treatment of the 

interfacial boundary conditions. The final mathematical model is relatively simple and 
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quite similar to the models used for single-fluid flows therefore making the vast 

collection of literature available for the approximation of these flows applicable. 
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Chapter 3  
 
Solution Method and Numerical 
Approximation 
 

3.1 Overview 

In this chapter, an approximate solution to the governing equations outlined in the 

previous chapter for the multiphase flow problems is presented. An approximate 

solution is needed since an analytical solution to Navier-Stokes equations can be 

obtained only in a small number of cases since these equations are non-linear and 

coupled (Ferziger & Peric, 2002). Also, there exists no explicit governing equation for the 

pressure field and as such it is necessary to find such an equation for pressure as part of 

the solution process (Tryggvason & Balachandar, 2007). Thus, any numerical method for 

the multiphase flow problems must be able to deal with the traditional challenges posed 

by the solution of the Navier-Stokes and continuity equations in addition to the 

difficulties associated with numerical approximation of the multiphase flows, i.e. 

discontinuous fluid properties and the interface shape and location. 

The equation set to be solved consists of equations (2.21), (2.22) and (2.23). The 

numerical scheme presented herein for a solution to these equations involves two 

coupled tasks. In the first step the flow field velocity and pressure are resolved through 

a solution to the Navier-Stokes and continuity equation. Here, the fluid properties are 

computed based on the initial distribution of the VOF function using equations (2.24) 
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and (2.25). Integration in time is accomplished through a first-order explicit method 

with the velocity-pressure coupling established by means of a so-called projection 

method where the pressure field is adjusted so that a divergence free velocity field is 

obtained (Tryggvason & Balachandar, 2007). Spatial discretization of the convective 

terms is accomplished by employing an upwind biased total variation diminishing (TVD) 

scheme to obtain stability near discontinuities. The viscous terms are discretized using 

the central differencing scheme while a finite difference method is used to approximate 

the surface tension forces. In the second step, geometric reconstruction of the interface 

is performed using a PLIC method to determine the amount of fluid fluxed out of each 

computational cell. Subsequently, given the updated velocity field, the VOF function 

distribution is advanced in time using a directional split algorithm for the VOF advection 

equation. These steps are discussed in great details in the ensuing sections. 

3.2 Numerical Approximation of the Navier-Stokes Equation 

This section aims to present a detailed discussion on the numerical methods used to 

approximate the solution of the Navier-Stokes equation derived for the one-fluid model. 

At this stage, it is assumed that the location of the interface is known and that the fluid 

properties can readily be calculated across the computational domain based on the 

known volume fraction field. Velocity and pressure are advanced in time upon the 

completion of this stage. 
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3.2.1 Integration in Time 

The standard way to integrate the Navier-Stokes equation in time is through the so-

called projection method whereby the pressure field is implicitly constrained by the 

continuity equation (Tryggvason & Balachandar, 2007). In this case the pressure takes 

on whatever value is needed to enforce a divergence-free velocity field. 

The projection method consists of two main steps. First, an intermediate velocity field is 

found without accounting for pressure. Second, the pressure necessary to make the 

velocity field divergence-free is solved for and is used to correct the intermediate 

velocity field by adding the pressure gradient (Tryggvason & Balachandar, 2007).  

Using a simple forward Euler method to integrate equations (2.21) and (2.22) in time 

one obtains 

 
1 1

,
n n

n

h h

V V
p

t 

 
   


 (3.1) 

 1 0,n

h V     (3.2) 

where n  refers to the time level, 
1n nt t t    is the time step value and h

 denotes 

any numerical approximation for the divergence or the gradient operator. h
 is the 

numerical approximation for all the remaining terms in equation (2.21) and are 

discussed in detail in the forthcoming sections. 

 In the first step of the projection method, known as the predictor step, an intermediate 

velocity field, denoted by *V  , is obtained by marching explicitly in time. That is 
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with all the calculations performed with the nth time level values. The intermediate 

velocity field obtained in this step does not necessarily satisfy the continuity equation. 

In the second step, known as the projection step, the intermediate velocity field is 

corrected to yield a divergence-free velocity field by adding the pressure gradient: 
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Applying h
 to both sides of the above equation yields 

 1 *1 1
,n

h h hn
p V

t

 
      

 
 (3.5) 

where equation (3.2) is used to enforce continuity and eliminate 1nV  . Equation (3.5) is 

known as the Pressure Poisson Equation (PPE) and requires a system of equations to be 

solved for a solution to the pressure field. Once the pressure has been found, the 

advance time level velocity 1nV   can be determined via equation (3.4). It is important to 

note that   in equation (3.5) is kept inside the divergence operator since for 

multiphase flows density is not a constant. In fact, the variation of   in space results in 

a term proportional to density gradient, which contributes to the pressure within the 

free-surface transition region (D. B. Kothe et al., 1991).  
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3.2.2 Spatial Discretization 

For the purpose of this section, it is convenient to expand equation (2.21) and re-write it 

for each space coordinate: 

 
   
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where xx , yy , xy and yx
 
are the strain rate tensor terms defined as 

 2 ,      2 ,      .xx yy xy yx

u v u v

x y y x
   

   
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 (3.8) 

Likewise, the continuity equation can be written as 

 0.
u v

x y

 
 

 
 (3.9) 

Here, svxF
 and svyF

 
are the x and y components of the surface tension force.  

Spatial discretization of the Navier-Stokes equations is completed through a finite-

volume (FV) method for the convective terms and a finite-difference (FD) method for 

the viscous and surface tension terms. In FV method the governing equations are 

integrated over a control volume (CV) and are converted into surface integrals, or edge 

fluxes, employing the divergence theorem (Tryggvason & Balachandar, 2007). FV 

method can accommodate complex geometries and is conservative locally and globally 
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(Versteeg & Malalasekra, 2007). In FD method the differential form of the conservation 

equations are used to approximate the spatial derivatives in terms of their nodal values 

in each cell (Ferziger & Peric, 2002). FD method is easy to implement and can be used to 

obtain high-order schemes on regular structured grids (Ferziger & Peric, 2002).  

Only the spatial discretization of equation (3.6) is discussed in the following sections. 

Discretization of equation (3.7) can be formulated analogously. 

3.2.2.1 Computational Mesh 

Spatial approximation of the governing equations starts by defining a mesh covering the 

entire computational domain over which the partial derivatives are approximated for 

each computational cell. Here for simplicity only a two-dimensional rectangular domain 

is considered with a computational mesh consisting of a fixed, two-dimensional, 

Eulerian, fully scattered, orthogonal grid with constant size rectangular cells as 

illustrated in Figure 3.1. Cell dimensions are x  in the x direction and y  in the y 

direction. Scalar quantities such as pressure and volume fraction are stored at the 

center of each computational cell and vector quantities such as velocity components are 

stored at cell edges. Indices i  and j  correspond to the column and row numbers, 

respectively, and are used to specify the location of the cell centered parameters. 

Likewise, 1/ 2i   and 1/ 2j   are used to identify the location of the cell edge 

parameters. This type of grid arrangement, known as staggered grid, makes it possible 

for several quantities to be readily approximated using appropriate difference methods 

without any need for interpolation (Ferziger & Peric, 2002; Versteeg & Malalasekra, 
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2007). The arrangement also provides a strong coupling between the velocity and the 

pressure which in turn helps to avoid some types of convergence problems and 

oscillation in pressure and velocity fields (Ferziger & Peric, 2002). The grid also includes 

a layer of fictitious cells around the entire mesh in which the boundary conditions are 

stored. Calculation of velocity components is defined over their respective control 

volumes, defined in Figure 3.1. Numerical approximation of scalar quantities such as 

pressure is performed over the CV defined by the cell boundaries. 
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i-1,j i+1,j
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v velocity CV

u velocity CV

 

Figure 3.1: Staggered grid arrangement and the location of u and v -velocity CV’s. 
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3.2.2.2 Convective Terms 

The FV method employed here for the spatial discretization of the convective terms 

belongs to the total variation diminishing (TVD) class of schemes. A characteristic of TVD 

schemes that is particularly suitable for numerical simulation of multiphase flows is their 

ability to maintain high accuracy in smooth regions of the flow while being able to 

capture sharp non-oscillatory transitions at discontinuities (Yeoh & Tu, 2010). In other 

words TVD schemes are monotonicity preserving which implies that they do not create 

new undershoots and overshoots in the solution or accentuate exciting extremes 

(Versteeg & Malalasekra, 2007). The total variation of a grid function 1/2,i j   
is defined 

by 

   3/2, 1/2, ,i j i j
j i

TV        (3.10) 

and the scheme is said to be TVD if  

    1 ,n nTV TV    (3.11) 

where n  refers to the time level (Zijlema & Wesseling, 1995). 1/2,i j   
is considered to be 

monotone for all i’s if 

    1/2, 3/2, 1/2, 1/2, 3/2,min , max , .i j i j i j i j i j           (3.12) 

In reference to Figure 3.1, the general form of an upwind-biased discretization scheme 

written for a field parameter  that is stored at the center of u -velocity CV and is to be 
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transported by the edge velocity , 0i ju   can be written as the sum of a diffusive first-

order upwind term and an anti-diffusive one as follows 

   
, ,1 2, 1 2, 1 2,
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2i j i ji j i j i jr     

      (3.13) 
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For , 0i ju 
 
the above equations can be written as 
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2i j i ji j i j i jr     

      (3.15) 

where 

 
,

3 2, 1 2,

1 2, 1 2,

.
i j

i j i j

i j i j

r
 

 

 

 

 
  
  

 (3.16) 

Here, the nature of the scheme depends on the value of  r
 which is known as the 

limiter function. For   0r   the first-order upwind differencing scheme is obtained 

while for   1r   the second-order central differencing scheme is recovered. For a 

scheme to be TVD,  r  must satisfy the TVD constraint defined by equation (3.11). In 

terms of r   relationship, If 0 1r   a TVD scheme satisfies   2r r  . If 1r   the 

TVD constraint becomes   2r  . This can be better understood using the r   
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diagram shown in Figure 3.2 with the corresponding r   relationships for some of the 

most commonly used TVD limiter functions listed in Table 3-1. For a limiter function to 

be second-order accurate the scheme should pass through the point (1,1) in the r   

diagram (Sweby, 1984) . A more complete discussion on TVD methods and other limiter 

functions can be found in Zijlema (1995) and Sweby (1984).  

Table 3-1: Limiter functions and their definition. 

Name Limiter function definition ( )r  

Van Leer  
1

r r
r

r






 

QUICK     max 0,min 2 , 3 / 4,2r r r      

UMIST       max 0,min 2 , 1 3 / 4, 3 / 4,2r r r r       

SUPERBEE      max 0,min 2 ,1 ,min ,2r r r      

 

 

Figure 3.2: Limiter functions in r   diagram. Shaded area corresponds to second-

order TVD region. 
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The transporting velocity or the so-called flux velocity, ,i ju , corresponding to the 

quantity defined by equation (3.13) can calculated at the CV cell edge via a simple linear 

interpolation 

 1 2, 1 2,

, .
2

i j i j

i j

u u
u

 
  (3.17) 

Thus the first convective term in equation (3.6) written in its conservative form can be 

approximated using an upwind TVD method as follows 

 
  , , 1, 1,

1 2,

,
i j i j i j i j

i j

u u u uuu

x x

 



 
 

  
 (3.18) 

where ,i ju  is calculated by substituting   with u  in equation (3.13). The remaining 

terms located at the 1i   edge of the CV are calculated similarly. The second convective 

term can be approximated by considering interpolated v  velocities on the top and on 

the bottom edges of the u -velocity CV as the flux velocities and calculating u using 

equation (3.13) acting along the y direction. Here, the conservative form of the 

governing equations is maintained as it produces more accurate results compared to the 

non-conservative form (D. B. Kothe et al., 1991). The TVD scheme described herein is 

second-order accurate away from discontinuities and reduces to first-order accurate 

near discontinuities where oscillations are to be avoided. 
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Figure 3.3: One-dimensional advection test ut+ cux = 0. Original wave profile (dashed 
line) is u(x,0) = (sin(πx))100 , advection speed c = 0.5 and grid spacing is 350/5. Advected 
wave profile (solid line) after t = 1 for a) first-order upwind scheme, b) QUICK scheme 
with no limiter, c) QUICK scheme with TVD limiter, are shown 

Figure 3.3 compares the performance various schemes for the one-dimensional 

advection of a wave profile. As expected, in the first-order upwind differencing scheme 

the solution is deteriorated over time due to false diffusion while high-order upwind 

schemes with no limiter produce oscillations near discontinuities. Clearly, the TVD 

scheme offers a compromise in terms of stability and accuracy. 

3.2.2.3 Viscous Terms 

The finite difference approximation of the derivatives involved in the calculation of the 

viscous terms is obtained using the standard central-differencing method. The strain 

rate tensor terms involved in equation (3.6), xx
 and xy , can be discretized for the u -

velocity CV defined in Figure 3.1 as  

 
 3 2, 1 2,

 1,

2
,

i j i j

xx i j

u u

x


 







 (3.19) 

on the right edge  1,i j , and as 
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, 1 , 1, 1/2 , 1/2

 1/2, 1/2 ,
i j i j i j i j

xy i j

u u v v

x y


   

 

 
 

 
 (3.20) 

on the top edge  1/ 2, 1 / 2i j 
 of the CV. Other edge values are calculated similarly.  

Thus, the finite difference approximation of the viscous terms included in equation (3.6) 

can be presented as follows 

    
       

1, , 1/2, 1/2 1/2, 1/2

1/2,

,
xy xyxx xxi j i j i j i j

xx xy

i j
x y x y

  
 

    



  
   

    

 (3.21) 

where   is to be interpolated to the appropriate CV edges and corners. 

3.2.2.4 Surface Tension Term 

Contrary to other momentum transport terms, surface tension forces are evaluated at 

the scalar CV centers and are subsequently interpolated to the appropriate CV edges via 

cell-centered value of the two neighbouring cells. This approach is found to yield more 

accurate results especially when dealing with coarser grids (D. B. Kothe et al., 1991). The 

definition of the CSF surface tension volume force was presented in section 2.5 and is 

repeated here with more details. 

The surface tension force for cell ,i j  is given as 

 
 , , , ,sv i j i j i jF k n  (3.22) 
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where, ˆ ˆ
x yn n i n j   is the inward normal vector pointing towards the 1F   field and is 

defined as 

 .n F  (3.23) 

The cell centred n  can be expressed as the average of the corresponding vertex values 

(see Figure 3.4) calculated as follows for the top right corner of cell ,i j  

 
    

    

1/2, 1/2 1, 1 , 1 1, ,

1, 1 1, , 1 ,

1 ˆ
2

1 ˆ.
2

i j i j i j i j i j

i j i j i j i j

n F F F F i

F F F F j

     

   

   

   

 (3.24) 

Other vertex values can be calculated similarly. Thus, ,i jn
 
is given by 

  , 1/2, 1/2 1/2, 1/2 1/2, 1/2 1/2, 1/2

1
.

4
i j i j i j i j i jn n n n n            (3.25) 

The local mean curvature k  is also evaluated at the cell centers and can be expressed in 

terms of the unit normal vector ˆ /n n n
 
as per the following expression 

       
1

ˆ ˆ ,k n n n n
n

       (3.26) 

where n
 
is the magnitude of n . To avoid finite differencing the square root associated 

with the calculation of n , the spatial derivatives of n  can be evaluated analytically 

(D. B. Kothe et al., 1991), leading to the following expression for k  
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22

, 2 2 2

, ,

1
.

x y y y y yx x x x
i j

i j i j

n n n n n nn n n n
k

n x y x y x yn n n

      
                

 (3.27) 

The derivatives of n  can easily be calculated from knowledge of n  at cell vertices. For 

instance applying standard central-differencing yields 

  1/2, 1/2  1/2, 1/2  1/2, 1/2  1/2, 1/2

,

.
2

x i j x i j x i j x i jx

i j i

n n n nn

x x

          
 

  
 (3.28) 

Therefore, for ˆ ˆ
sv svx svyF F i F j 

 
the face-centered values can be calculated by 

interpolating from the two nearest cell-centered values, giving 

  i,  i 1,

 i 1/2,  ,
2

svx j svx j

svx j

F F
F






  (3.29) 

for the x-momentum. The y-momentum value svyF
 
is calculated similarly. 
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Figure 3.4: Approximation of the cell centered normal based on the cell vertex normal 
values. 

A major difficulty associated with the presentation of the surface tension forces in the 

CSF model is the presence of the so-called spurious or parasite currents (Scardovelli & 

Zaleski, 1999). These currents are vortices appearing near the interface despite the 

absence of any external forces (Scardovelli & Zaleski, 1999). They arise from the abrupt 

transition of the F  field across the interface leading to the inaccurate discrete 

approximations to the interface normal and curvature and do not disappear with mesh 

refinement (Renardy, Renardy, & Cristini, 2002). 

One way to suppress spurious currents is to replace the volume fraction field used for 

the calculation of the surface tension forces with a smoothed volume fraction function 

which varies from 0 to 1 over a distance of the order of the mesh (Renardy et al., 2002). 
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The smoothing is performed in two dimensions by applying the following finite Laplacian 

filter (Lafaurie, Nardone, Scardovelli, Zaleski, & Zanetti, 1994): 

    , , 1 , 1 1, 1,,

1 1
( ) .

2 8
i j i j i j i j i ji j

F F F F F F       F  (3.30) 

The action of this filter may be repeated fm
 
times to obtain the desired degree of 

smoothing with the optimal number of filter application being fm  1 or 2 (Lafaurie et 

al., 1994). Thus, the smoothed volume fraction F  is defined as 

 ( ).fm
F FF  (3.31) 

Smoothing the volume fraction effectively redistributes the surface tension forces over 

a thicker region near the interface and thus needs to be applied with care in order to 

prevent unphysical effects appearing in the simulation (D. B. Kothe et al., 1991). 

3.2.2.5 Pressure Poisson Equation 

The PPE equation obtained in the projection method (equation (3.5)) can be discretized 

in space using standard central-differencing. This gives, 

 

   

   

 1/2  1/2

y j 1/2 y j-1/2

1 1 1 1 1

1 12

,

1 1 1 1

1 12

1 1 1 1

1 1 1
,

x i x i

n n n n n

h h i i i in n n

i j

n n n n

j j j jn n

p p p p p
x

p p p p
y

  

 

 



    

 

   

 

   
               

 
    
 
 

(3.32) 

for the left hand side, and  
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* * * *

1/2, 1/2, , 1/2 , 1/2*

,

1 1
,

i j i j i j i j

h

i j

u u v v
V

t t x y

   
   

             
 (3.33) 

for the right hand side. Cell face values of density x  and y  
are interpolated from the 

neighbouring cells in the x and y direction, respectively. For instance 

   1/2 1

1
.

2
x i i i      (3.34) 

Implicit treatment of pressure in equation (3.5) results in a linear system of equations 

with a pentadiagonal sparse variable coefficient matrix that needs to be solved to 

complete the projection step. The system of equations to be solved can be written as 

 
1 ,nAp b   (3.35) 

where the coefficient matrix A  is obtained by applying equation (3.32) to all the cells 

and treating pressure 
1np 

 as the unknown, and the right hand side matrix b  is given by 

equation (3.33) applied over the entire domain.  

3.3 Numerical Implementation of the VOF Method 

Once the velocity and pressure fields are updated one can proceed with updating the 

location of the interface according to the new flow field values. In the present work, this 

task is accomplished using the PLIC-VOF method discussed in section 2.4.1.5.  

Briefly, in the VOF method each computational cell is associated with the volume 

fraction of dark fluid within that cell that is bounded by  



59 
 

 ,0 1i jF   (3.36) 

and is defined as 

 
,

1,

0, 1,

            for cells filled with dark fluid

 for interface cells 

0,            for cells filled with light fluid.
i jF




  



 (3.37) 

Two main steps were identified for completing the PLIC-VOF method: the interface 

reconstruction step where an approximation to the interface shape and location is 

inferred from the volume fraction field, and the VOF advection step wherein the 

interface is advanced in time using the VOF advection equation. These steps are 

elaborated in the following sections.  

3.3.1 Interface Reconstruction Algorithm 

The interface reconstruction method presented herein belongs to the PLIC family of 

reconstruction methods and is based on the algorithm outlined in Rudman (1997) which 

is an implementation of Youngs`s PLIC method. Except for the calculation of the 

interface normals, the PLIC algorithm is entirely local to each individual cell and as such 

references to cell indices are omitted in this subsection for simplicity. 

As stated previously, in the PLIC method the interface is reconstructed as a series of 

straight line segments within each computational cell. Each line segment is defined by a 

slope and two intercepts with the local cell edges. The slope of the line is given by the 

interface normal and the intercepts follow from invoking volume conservation (Rider & 

Kothe, 1998). The algorithm used to determine the interface normal within each cell for 
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the PLIC method is identical to the method described in section 3.2.2.4 for the 

calculation of the interface curvature. However, unlike the curvature calculation, the un-

soothed volume fraction function F  is used at all times for the interface reconstruction 

to maintain the sharp interface presentation.  

Following the calculation of the interface normal the interface is rotated such that the 

portion of the cell containing dark fluid is positioned on the bottom right of each cell. 

This is equivalent to flipping the interface in such way that xn
 becomes positive and yn

 

becomes negative (Figure 3.5). It is important to keep track of the rotation for each cell 

to assign the correct outward fluxes in the advection step. Rotating the interface allows 

for the number of possible interface configurations within a cell to be reduced to four 

cases as depicted in Figure 3.6. 

Flip 

along 

x-axis

Flip 

along 

y-axis

-nx

ny
ny

-ny

-nx

vb

nx

vt

ul ur ur ul

vt

vb

ur ul

vt

vb

Figure 3.5: Rotating the interface within the cell. Notice that the location of the edge 
velocities change as the interface rotates. 
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Case I Case II

Case III Case IV

Δy

Δx

 

Figure 3.6: The four possible interface reconstruction cases after interface rotation. 

The line cutting the cell can be presented by the equation: 

 x yn x n y d   (3.38) 

where d is a constant. The angle the interface makes with the positive x-axis is 

 1tan ,
x

y

n

n
 

 
 
 
 

 (3.39) 

where the absolute values of the normal components are used. Here, 0 / 2    due 

to the reorientation of the interface done previously. Conservation of volume requires 

the interface within the cell to be positioned such that the dark area under the interface 

becomes 

 .A F x y    (3.40) 
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This is the constraint that needs to be enforced in order to determine the reconstruction 

case for an interface with a given  .  

β

Limit line

Case I 

interface 

line
Case II 

interface 

line
β

 

Figure 3.7: Reconstruction case selection for case I and II with / 4  . 

Consider the case depicted in Figure 3.7, where for a given value of   the solid line 

cutting the cell from the bottom left corner is the limiting case separating case I and II. 

The area of the dark fluid under the limit line is 

 2

lim

1
tan .

2
A x    (3.41) 

Normalizing by the total area of the cell one obtains the corresponding volume fraction, 

 lim

1
tan .

2

x
F

y






 (3.42) 

Defining the angle   to be 

 1tan tan ,
x

y
   
  

 
 (3.43) 

equation (3.42) can be written as 
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lim

1
tan .

2
F   (3.44) 

It can be shown that the dashed line cutting the cell diagonally in half corresponds to

/ 4half  . Thus for the case under consideration with half  , if limF F
 the 

interface must lie below the limit line which corresponds to the reconstruction case I. 

On the other hand, if lim1F F 
 the interface lies above the limit line invoking the 

reconstruction case II. Other cases can be analysed analogously. The logic used to 

determine each case is summarized in Table 3-2. 
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Table 3-2: Reconstruction case selection based on the  - F values. 

 / 4   / 4   

Case I 
1

tan
2

F   
1

cot
2

F   

Case II 
1

1 tan
2

F    - 

Case III - 
1

1 cot
2

F    

Case IV otherwise otherwise 

 

sbΔx

Δx

Δy srΔy

β

 

Figure 3.8: Reconstructed interface and its relevant parameters. 

Once the case has been determined the reconstruction of the interface can be 

completed by calculating the side fractions. These are the fraction of the top, right, 

bottom and left edges of the cell that lie within the fluid and are denoted by st , sr , sb

and sl , respectively. In the case depicted in Figure 3.8, sr and sb  are related to   by 

the following equation: 

 tan .
sr y

sb x






 (3.45) 

Recalling equation (3.43), this yields 
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 tan .
sr

sb
   (3.46) 

Once again, conservation of volume gives 

 2 .srsb F  (3.47) 

Thus, solving for sb  in equation (3.46) and inserting the results into equation (3.47) one 

obtains 

  
1/2

2 tan .sr F   (3.48) 

Similarly sb  can be calculated as 

 
1/2

2
.

tan

F
sb



 
  
 

 (3.49) 

Calculation of side fractions for other cases follows analogously. The intercepts can be 

calculated by multiplying each side fraction with its corresponding cell edge dimension. 

Table 3-3 summarizes the definition of the volume fraction for each reconstruction case. 

Table 3-3: Side fraction calculation for each reconstruction case. 

 Case I Case II Case III Case IV 

st  0 0 
1

cot
2

F    
1/2

1 2(1 )cotF    

sr   
1/2

2 tanF   
1

tan
2

F   1 1 

sb   
1/2

2 cotF   1 
1

cot
2

F   1 

sl  0 
1

tan
2

F   0  
1/2

1 2(1 ) tanF    
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3.3.2 The VOF Advection Algorithm 

The VOF advection is governed by equation (2.23), which for a divergence free velocity 

field can be written as  

   0.
F

VF
t


 


 (3.50) 

This can be discretized in time and space using FV principles as 

    1

, , 1/2, 1/2, , 1/2 , 1/2 ,n n

i j i j i j i j i j i j

t t
F F f f f f

x y



   

 
    

 
 (3.51) 

where, for instance,  1/2, 1/2,i j i j
f Fu 


 
denotes the flux of F  across the left edge of the 

cell  ,i j . 

The simplest form of the advection algorithm is obtained when equations (3.51) is 

advanced in time using a fractional step or operate split method (Puckett et al., 1997). 

This results in the following form of the advection equation: 

  *

, 1/2, 1/2, ,n

i j i j i j

t
F F f f

x
 


  


 (3.52) 

  
, 1/2 , 1/2

1 * * *

, , ,
i j i j

n

i j i j

t
F F f f

y  

 
  


 (3.53) 

where *F  is the intermediate volume fraction field obtained after sweeping in the x-

direction and 
*f  denotes the edge fluxes calculated based on the *F  field values. The 

general idea here is to reconstruct the interface using the nF  field data, calculate the 
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fluxes across cell edges and advect the nF  field in the x-direction using equation (3.52) 

to obtain the intermediate volume fraction field *F . In the next step, the *F  field data 

is used to reconstruct the interface and calculate the fluxes while equation (3.53) is used 

to advect the *F  field in the y-direction and obtain the advanced time level volume 

fraction field 1nF  . Defining the advection equation in such a manner allows for the PLIC 

reconstruction algorithm and the advection algorithm to be implemented only in one 

dimension which greatly simplifies the task in hand from a programming perspective. 

Equations (3.52) and (3.53) are exact for a divergence free velocity field. In practice, 

however, the velocity field used to calculate the fluxes has a none zero divergence due 

to the divergence criterion of the PPE solution (D. B. Kothe et al., 1991). Therefore, to 

maintain conservation of F  a divergence correction term is added to the advection 

algorithm. This yields 

    *

, 1/2, 1/2, 1/2, 1/2,1 ,n

i j i j i j i j i j

t t
F F f f u u

x x
   

    
       

    
 (3.54) 

for an implicit differencing of the x-sweep, and 

    
, 1/2 , 1/2

1 * * *

, , , 1/2 , 1/2 ,
i j i j

n

i j i j i j i j

t t
F F v v f f

y y  



 

 
    

 
 (3.55) 

for an explicit differencing of the y-sweep (Puckett et al., 1997). Second-order time 

accuracy can be obtained for this procedure simply by alternating the sweep direction at 

each time step, taking care that the first sweep is differenced implicitly while the second 

one is differenced explicitly (Puckett et al., 1997). 
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The fluxes appearing in equations (3.54) and (3.55) can be calculated geometrically 

using the reconstructed interface data and the size of the time step. For instance, 

consider the reconstructed interface depicted in Figure 3.9, subject to a positive 

outward velocity on its right edge. It is trivial to show that the amount of dark fluid that 

crosses the right cell boundary during time t t   is equal to the amount of the dark 

fluid contained in the rectangle confined by ru t
 and y . Thus, denoting this area by rA

, the fraction of the dark fluid advected across the right cell boundary is given by 

 .r r
r r

r

A A
f u

u t y t y

 
  

    
 (3.56) 

sb

Δx

Δy
sr

β

ur

urΔt

 

Figure 3.9: The fraction of the dark fluid to the right of the dotted line is advected into 
the neighbouring cell on the right. 

The calculation of area rA
 is carried on geometrically using the values of the side 

fractions and the slope angle  . For instance, for the case under consideration it can be 

shown that 



69 
 

   2
0.5 tan .r r rA u t sr y u t        (3.57) 

Obviously, if ru t sb x    then rA F x y   . Table 3-4 contains the calculation 

algorithm used to determine the areas involved in the x-sweep for all the interface 

reconstruction cases. Areas corresponding to the y-sweep can be calculated by 

interchanging the roll of x and u  with y and v , respectively. In such a case,   measures 

the angle the interface makes with the positive y-axis. Due to the operator split 

advection algorithm, only the fluxes in the direction of the sweep need to be calculated, 

i.e. top and bottom fluxes are not considered for the x-sweep. Also, it is important to 

point out that the above mentioned procedure for calculating the fluxes is only 

applicable to the outward-pointing velocities, i.e. positive velocities for the right edge 

and negative velocities for the left edge of a given cell. This implies that the amount of 

flux through a cell boundary is determined using the volume fractions immediately 

upstream of the edge velocity.  

Finally, numerical overshoot and undershoot may lead to some volume fractions that 

violate the range limits defined by equation (3.36). This can be rectified by truncating 

the values of volume fractions at the end of each sweep such that  

   , ,min 1,max ,0 .i j i jF F  (3.58) 

These adjustments render the F  field slightly non-conservative but are typically a small 

percentage of the total volume and were found to have little effect on the final results. 
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Table 3-4: Flux area calculation. Outward-pointing velocities are defined as being 
positive and flux area calculation is not done for inward-pointing velocities. 

 0lu   0ru   

Case I 

 

  
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    0
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3.4 Boundary Condition Implementation 

As previously stated, boundary conditions are enforced using a layer of fictitious cells 

around the entire mesh in which the boundary conditions are stored. The values for 

dependent variables in the fictitious cells are set such that the desired boundary 

conditions are met at the boundaries. Boundary conditions for velocity, pressure and 

volume fraction are discussed herein.  
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3.4.1 Velocity Boundary Conditions 

The appropriate velocity boundary conditions for solid walls is the no-slip condition (

0u v  ) (Versteeg & Malalasekra, 2007). For staggered grids, the location of the 

normal velocities coincides with the domain boundaries. As a result, normal velocities 

that coincide with solid walls are simply set to zero. On the other hand, prescription of 

tangential wall velocities cannot be accomplished explicitly since the location of 

tangential velocities is half grid space away from the boundary. Instead, fictitious cell 

velocities are set in such a way that linear interpolation would yield the desired wall 

tangential velocity boundary condition. Thus, for the example illustrated in Figure 3.10, 

the south wall velocity boundary condition is determined by 

 ,1 1/2 0,iv    (3.59) 

for the normal velocities, and 

 1/2,2 1/2,1

1/2,3/2 ,
2

i i

i s

u u
u u

 




   (3.60) 

for the tangential velocities, which for 0su 
 gives 

 1/2,1 1/2,2.i iu u    (3.61) 

If the fluid immediately adjacent to the walls is assumed to travel at the same tangential 

velocity as the rest of the fluid the so-called free-slip condition is obtained. For the case 

depicted in Figure 3.10 this gives 

 1/2,1 1/2,2.s i iu u u    (3.62) 
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Velocity boundary condition at other walls can be implemented similarly. 

In staggered grids, inflow velocity boundary condition can also be easily implemented by 

setting the tangential velocities at the inflow boundary to zero (similar to equation  

(3.61)) and assigning the desired inflow value to the corresponding normal velocities 

that reside on the inflow boundary.  

Outflow velocity boundary condition, however, is more complicated to implement. 

Typically, it should be located far away from geometric disturbances where the flow is 

considered fully developed with a known flow direction (Versteeg & Malalasekra, 2007). 

Thus, a successful implementation of an outflow velocity boundary condition should 

disturb the upstream flow as little as possible and exit the domain gently. (Tryggvason & 

Balachandar, 2007). One way to accomplish this is by setting the normal gradient of the 

velocity at the outlet to zero. That is, 

 0,

outlet

V

n

 
 

 
 (3.63) 

where n  is the direction normal to the outlet, i.e. x for an outflow boundary condition 

located at the east side of the grid. 
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Figure 3.10: Example of velocity boundary condition implementation at the bottom left 
hand corner of a grid surrounded by solid walls. No-slip velocity boundary condition is 
enforced on the south wall while free-slip velocity boundary condition is enforced on 
the west wall. Normal velocities in both cases are explicitly set to zero while tangential 
velocities are set in such way that the desired tangential wall boundary values are 
obtained. 

3.4.2 Pressure Boundary Conditions 

When the mass flux through a boundary is prescribed, as is the case in this work, the 

mass flux correction in the PPE (equation (3.5)) is also zero there (Ferziger & Peric, 

2002). This corresponds to a zero Neumann boundary condition for pressure at all mesh 

boundaries with a specified velocity boundary condition. Thus, denoting the mesh 

boundaries by  , the pressure boundary condition used in the PPE is given by 

 
1

0.

n
p

n





 
 

 
 (3.64) 
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Finally, it can be shown that the velocity boundary conditions used for the intermediate 

velocity field calculation are equal to the time advance velocity field boundary 

conditions (Ferziger & Peric, 2002). That is, 

 * 1.nV V 

   (3.65) 

3.4.3 Volume Fraction Boundary Conditions 

Calculation of the interface normal for the surface tension approximation and the 

interface reconstruction step requires the volume fraction field to be extrapolated to 

the fictitious cells to allow for the interface normals to be found at cells bordering the 

mesh boundaries. Thus, for instance, the boundary conditions for F  at the west side of 

the mesh is given by 

 1, .w jF F  (3.66) 

Other mesh boundaries are treated similarly. Also, all other cell centered quantities such 

as   and   are extended to the fictitious cells in a similar manner if needed. 

3.5 Numerical Stability 

 A numerical solution is said to be stable if it does not magnify the errors that appear in 

the course of the numerical solution (Ferziger & Peric, 2002). Generally speaking, one 

often desires to employ the largest possible mesh and time increments in order to 

maximize the computational efficiency and time for a given computational domain. On 

the other hand, the mesh and time increments must be small enough to resolve 

expected spatial variations in all dependent variables and to ensure numerical stability, 
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respectively (Nichols et al., 1980). Thus, for a given mesh size the time step is to be 

selected such that numerical stability is guaranteed throughout the calculation process. 

The algorithms described above for the approximation of the Navier-Stokes equation is 

explicit in nature and as such is subject to its respective time step constraints. Linear 

stability analysis as performed in Ferziger (2002) for the discretization of the convective 

and diffusive terms results in the following time step constraint: 

 

1

max max max max

2 2

4 4
,CD

u v
t

x y x y

 


 
          

 (3.67) 

where /    is the coefficient of the kinematic viscosity. Time constraint analysis 

associated with the CSF model is derived in Brackbill (1992) and is formulated as 

 
 

1/2
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1 20.5
.

2
CSF

x
t

 



  
   

 
 (3.68) 

Also, fluid particles cannot move more than one cell in a single time step (Ferziger & 

Peric, 2002) which results in the so-called CFL condition defined as 

 
max max

min , ,CFL CFL

x y
t C

u v

  
   

 
 

 (3.69) 

where CFLC
 is known as the Courant number and should be less than 1 in theory. The 

CFL condition also applies to the VOF advection equation requiring CFLC
 to be less than 

0.5 in order to avoid calculating overlapping fluxes out of a cell. 
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Therefore, to ensure the numerical stability of the numerical scheme described in the 

previous sections, the maximum time step size used to advance the governing equations 

in time for a given computational cycle must be selected such that 

  min , , .CD CSF CFLt t t t      (3.70) 

3.6 Programming Environment and the Numerical Method 

Implementation 

Although the selection of the programming environment, to a large extend, is a matter 

of personal preferences of the implementer, the following discussion is presented to 

specify some of the observations made by the author that influenced the selection of 

the programming environment. 

Very often the numerical study of a physical phenomenon is overshadowed by the 

difficulties associated with implementation of the selected numerical scheme. Although 

historically programming languages such as C, C++ and FORTRAN have been used to 

develop scientific codes, a big portion of these codes are dedicated to the development 

of tools and functions that would allow for the visualization of the generated data in the 

form of charts, graphs, velocity or pressure fields, etc. Therefore, much effort needs to 

be put into programming tools that have no significance for the actual study and in 

many cases require programming skills that surpass those needed for the proper 

implementation of the numerical scheme only. Codes created in such environments also 

need to be manipulated to incorporated new features whenever additional data analysis 

features are required. In such cases the programming skills of the developers largely 
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determine the proper presentation of the results and hence to a certain degree the 

study itself. 

In addition, in recent years, progress in parallel computing has allowed for complex 

physical phenomena to be simulated efficiently using more accurate and sophisticated 

numerical schemes. However, coding in parallel computing environments often require 

special knowledge of the implementation platform and ultimately involves significant 

code manipulation.  

It is, therefore, advantageous for the numerical study to be performed in a 

programming environment that could provide built-in libraries for data processing, data 

visualization, mathematics, etc, and can be integrated in a parallel computing 

environment with no or little code manipulation. This could eventually help minimize 

the difficulties associated with raw programming and would allow for the numerical 

scheme and the physical phenomenon to become the prime focus of the study. 

MATLAB is one such programming environment that has become the platform of choice 

for many academic and industrial studies in the recent years. It provides built-in 

functions that can easily manipulate and solve the large matrices and system of 

equations that often appear in engineering applications and continues to benefit from 

the growing number data analysis tools provided to it. It also supports parallel 

computing which allows users to take advantage of multiprocessor environments with 

little or no code changes (Built-in parallel computing support in MathWorks products.).  
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For instance, the discrete field quantities defined for the two-dimensional rectangular 

computational domain of this work can easily be presented in MATLAB with a series of 

matrices (Table 3-5). Boundary conditions can also be implemented by adding the 

appropriate rows and columns to the corresponding matrices. This becomes a trivial 

task in MATLAB since all the data is treated as matrices with many commands available 

to manipulate them. Finally, the solution to equation (3.35) obtained from the 

application of the PPE can easily be solved in MATLAB using many available solvers for 

linear systems. For example, the backslash operator (\) can efficiently accomplish this 

task by taking advantage of all the available processors. This is a significant advantage 

since finding the solution to equation (3.35) represents the most computationally 

expensive step of the simulation.  

Table 3-5: Data structure for a 
x y

m m
 
mesh resolution. 

Variable name Interior resolution Resolution with boundary 
conditions 

p and F  x ym m  ( 2) ( 2)x ym m    

u -velocity ( 1)x ym m   ( 1) ( 2)x ym m    

v -velocity ( 1)x ym m   ( 2) ( 1)x ym m    

 

Each major part of the numerical scheme is coded in a separate function allowing it to 

be treated as an individual program module that can be modified without affecting the 

other parts of the program. The calling order of each module is determined by a main 

function that defines and initializes the simulation case and advances the solution in 
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time. Figure 3.11 illustrates the computational flow of the numerical scheme described 

in this section for one computational cycle.  

The final code was written and run in MATLAB R2009.a on the HPC cluster at Concordia 

University which is built using the HP XC framework, running the 64-bit Linux operating 

system. Unfortunately, due to the limited access to the cluster environment and the 

automatic handling of parallel jobs by MATLAB a precise assessment of the performance 

of the code could not be made. However, it can be confirmed that the fully vectorized 

code was able to take advantage of a maximum of 7 processors for the falling liquid film 

simulation which resulted in a significant reduction in computational time compared to 

a single-processor run (at least by a factor of 6).  
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Figure 3.11: Numerical scheme implementation flowchart. 
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3.7 Summary 

A detailed description of the numerical methods used to approximate the governing 

equations was presented. The multiphase Navier-Stokes equation was integrated in 

time using an explicit forward Euler method while a two step projection method was 

used to enforce continuity and advance the velocity field in time. TVD schemes were 

shown to yield better results for the spatial discretization of the convective terms 

compared to simple upwind or high-resolution schemes with no limiters. The diffusive 

terms were discretized using standard second-order central differencing and the surface 

tension term was approximated by calculating the interface normals at cell vertices. Cell 

centered interface curvature and surface tension forces were found using the averaged 

value of these cell vertex normals. The VOF advection equation was discretized using an 

operator split scheme with the volume fraction fluxes calculated using the geometrically 

reconstructed interface within each computational cell. Subsequently, implementation 

of the boundary conditions was discussed for solid wall, inflow and outflow boundaries. 

Numerical stability of the scheme was discussed and the time step constraints were 

presented. Finally, justifications were put forward for selecting MATLAB as the 

implementation environment and the post processing tool. 
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Chapter 4  
 
Code Validation 
 

4.1 Overview 

In this chapter two benchmark tests are performed to validate the implementation of 

the PLIC-VOF method and the CSF model. This is followed by the simulation of Rayleigh-

Taylor instability and a quantitative assessment of the overall accuracy of the algorithm 

through a grid refinement test. 

4.2 Benchmark Tests 

4.2.1 Standard VOF Advection Test 

Following the discussion in Rudman (1997), an advection method is best evaluated in a 

shearing velocity field where stretching, shearing, fluid merging and breakup are 

possible. The following velocity field is selected: 

            , cos sin , , sin cos ,          u x y x y v x y x y    (4.1) 

with , [0, ]x y  . The mesh size is 100 x 100. A circle with a radius of / 5  is placed at 

the bottom of the enclosed domain as shown in Figure 4.1. 
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Figure 4.1: Initial F field configuration with the shearing flow velocity vectors. Velocity 
field is not shown at the grid resolution for clarity. 

Selecting a Courant number of 0.25, the simulation is integrated forward in time for N 

steps before reversing the sign of the velocity field and integrating for an additional N 

steps. At the end of this procedure, a perfect advection scheme would return the initial 

F  field. The simulation results after N=1000 and N=2000 steps are shown in Figure 4.2. 

Also, errors associated with different number of backward steps are presented in Table 

4-1 for N=250, 500, 1000 and 2000. The error is evaluated as per the following equation: 

 , 1

, 1

,

mesh

mesh

N

exact estimatedi j

N

exacti j

F F
E

F










 (4.2) 

where the sum is over the entire computational mesh, exactF
 is the initial F  field, estimatedF

 

is the simulated field and meshN
 is the number of mesh cells (Rudman, 1997). 
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Figure 4.2: Contours of F = 1/2 for the results of the shearing field: a) after 1000 steps 
forward, b) after 1000 steps forward followed by 1000 steps backward, c) after 2000 
steps forward, d) after 2000 steps forward followed by 2000 steps backward. 

Clearly, as N increases the accuracy of the solution decreases due to the accumulation 

of the numerical error. For N=2000, the simulation starts to break down due to the 

stretching of the circle by the shearing flow that results in thin filaments only one or two 

cells wide which cannot be accurately represented with the current mesh resolution. As 

demonstrated in the forthcoming sections the amount of error is expected to decrease 

as the mesh resolution is increased. Compared to the Y-VOF simulation results in 

Rudman (1997) for the same advection test, the PLIC-VOF method implemented in this 

work is less accurate despite the fact that both works use the same reconstruction 
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algorithm. The discrepancy lies in the different advection algorithms used; an operator 

split method in this work and an un-split method in Rudman’s work. As mentioned 

previously, split methods are much easier to implement but are less accurate than the 

un-split methods. This is confirmed by the simulation results presented herein and is 

consistent with other studies, i.e. Puckett and al (1995).  

Table 4-1: Errors associated with the VOF advection test for shearing flow for different 
number of backward steps and the un-split and the split methods. 

N 
Split method 

 (present work) 
Un-split method 
 (Rudman 1997) 

250 4.20 x 10-3 2.61 x 10-3 

500 8.20 x 10-3 5.12 x 10-3 
1000 1.76 x 10-2 8.60 x 10-3 
2000 1.02 x 10-1 3.85 x 10-2 

 

4.2.2 CSF Model Tests 

A common benchmark test used to validate the implementation of the CSF model is the 

liquid drop simulation. In the absence of viscous, gravitational, or other external forces 

surface tension causes a static liquid drop to become spherical (Brackbill et al., 1992). A 

correct implementation of the CSF model maintains the spherical shape of the drop over 

time. For a drop surrounded by a background fluid at zero pressure, the internal drop 

pressure, dropp , can be evaluated by Laplace’s formula, 

 
dropp k

R


   (4.3) 
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where R  is the drop radius (Brackbill et al., 1992). Also, as previously stated, an 

undesirable characteristic of the CSF method is the presence of the so-called spurious 

currents which can be reduced by employing a smoothed F  field to perform the 

relevant calculations. The amplitude of these spurious currents is proportional to / l   

which is equivalent to having an approximately constant value of the capillary number 

/
s s lCa V  

 (Popinet & Zaleski, 1999). Thus, the magnitude of the spurious currents in 

a simulation can be approximated as 

 ,s s

l

V C



  (4.4) 

with sC = 0 being the optimum value (Popinet & Zaleski, 1999; Scardovelli & Zaleski, 

1999). For this simulation, the computational domain is 0.075 m in the x and y direction 

with a 30 x 30 grid resolution. A circular drop with 0.075 / 4R   m is centered at the 

point (0.375 m, 0.375 m). The fluid properties are   = 797.88 kg/m3 and  = 1.2x10-3 

N.s/m2 for the ethanol drop and   = 1.1768 kg/m3 and 
 
= 1.0x10-5 N.s/m2 for the 

surrounding gas. The surface tension coefficient is   = 0.02361 N/m. Free-slip velocity 

boundary conditions are applied at all walls with the Van Leer limiter selected for the 

velocity advection scheme. For this configuration, equation (4.3) yields a pressure jump 

value of 1.26 N/m2. The simulation is advanced in time for one second and was 

performed with the unsmoothed and the smoothed F  field with ten filter passes 

applied. The results are shown in Figure 4.3 for both cases where s
C

 was found to be 

6.69x10-5 and 2.55x10-4 for the unsmoothed and smoothed cases, respectively. As 
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expected, smoothing the F  field reduces the amplitude of the spurious currents. 

Comparison between the theoretical pressure jump value and the estimated value for 

each case are presented in Figure 4.4. It is obvious that the solution of the smoothed 

field yields a more accurate approximation of the pressure jump than the unsmoothed 

field. It is important to note that the number of filter passes in this simulation is not 

necessarily the optimum number and is arbitrary selected only to demonstrate its effect 

on the accuracy of the simulation. 
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Figure 4.3: Spurious currents in a 30 x 30 grid shown for the simulation of a static liquid 
drop in zero gravity, a) with no filtering, and b) with ten filter passes applied. The 
interface is presented by the contours of 1/ 2F  . 
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Figure 4.4: Simulation results for pressure estimation within the drop in a 30 x 30 mesh 
for a) unsmoothed F field, b) smoothed F field with ten filter passes. The analytical 
pressure is 1.25 (N/m2). 

A more realistic test case for the CSF model is one that takes into account other fluid 

forces such as viscous forces with the full Navier-Stokes equation being considered. To 

this end, the circular drop of the previous simulation is replaced by a rectangular drop as 

shown in Figure 4.5a. In such a case, capillary waves are induced that cause the drop 

surface to oscillate about its equilibrium shape, i.e. a circle (Brackbill et al., 1992). The 

results are shown in Figure 4.5 for simulation times, t = 0, 0.05, 0.1, 0.2, 1.0 and 2.0 

seconds. As indicated by the large velocity vectors, the initial square shape of the drop 

results in very strong surface forces at the high-curvature corners, setting the drop into 

oscillation. As the solution is advanced in time, oscillations are eventually damped and 

the drop approaches its circular equilibrium shape. It is easy to verify that the 0.40 

second oscillation period reported in Brackbill et al. (1992) is recovered in this 

simulation. 
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Figure 4.5: Simulation results for initially-square ethanol drop oscillation in zero gravity. 
The velocity field and the interface, defined by contours of 1/ 2F  , are shown at times 
of a) 0.0, b) 0.05, c) 0.1, d) 0.2, e) 1.0, f) 2.0 seconds. 
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4.3 Rayleigh-Taylor Instability 

Rayleigh-Taylor instability is a common test problem for methods intended to simulate 

multiphase flows and is relatively easy to set up. It consists of a heavy fluid that is 

supported against gravity by a lighter fluid and is then given a small perturbation at the 

interface boundary. The perturbation grows exponentially in time with the heavy fluid 

falling down in a relatively narrow spike while the lighter fluid rises upward as a large 

bubble (Brackbill et al., 1992; Tryggvason et al., 1998). 

The case studied here is similar to the setup suggested in Puckett et al. (1997); the 

air/helium Rayleigh-Taylor instability is considered in a 0.01m x 0.04m domain with a 64 

x 256 mesh resolution. The top fluid is air with   = 1.255 kg/m3 and   = 1.77625x10-5 

N.s/m2 and the lower fluid is helium with   = 0.1694 kg/m3 and   = 1.941x10-5 N.s/m2. 

The surface tension coefficient is 0.0 N/m. Velocity boundary conditions are no-slip at 

the top and bottom wall and free-slip at the left and right wall. The Van Leer limiter is 

selected for the velocity advection scheme. The interface is initially a sine wave with 

amplitude 0.05 m. Figure 4.6 compares the simulation results of the present work and 

the results obtained in Puckett et al. (1996) for different flow times. The predicted 

interface shape is essentially identical for both tests. 
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Puckett et al. (1996)

a) b) c) d) e)

Present work

 

 

Figure 4.6: Comparison of the simulation results of the Rayleigh-Taylor instability for air-
helium in a 64 x 256 mesh at times, a) 0.0, b) 0.047, c) 0.66, d) 0.88 and e) 0.118 
seconds.  
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4.4 Grid Refinement Test 

In order to demonstrate the convergence properties of the spatial discretization of the 

numerical scheme a grid refinement test is performed on the Rayleigh-Taylor instability 

test as outlined in Puckett et al. (1996). However, to allow for all the Navier-Stokes 

equation terms to contribute to the motion of the fluid, the setup suggested in 

Tryggvason (1998) is used instead. Here, the lower fluid properties are   = 1 kg/m3 and 

 = 0.01 N.s/m2, the top fluid properties are   = 5 kg/m3 and  = 0.1 N.s/m2 and the 

surface tension coefficient is 0.015 N/m. The computational domain stretches 1 m in the 

x direction and 3 m in the y direction. Again, velocity boundary conditions are no-slip at 

the top and bottom wall and free-slip at the left and right wall with the Van Leer limiter 

selected for the velocity advection scheme. The instability is initiated with a 

perturbation of the form 0.05cos(2 )y x  applied at the interface. The results are 

computed to time 0.120 seconds. The solution is computed for three different mesh 

resolutions, 8x24, 32x96 and 128x384. Subsequently, solutions on meshes of adjacent 

resolution are compared by averaging the fine solution onto the coarse one and 

approximating the error on the coarser mesh as follows: 

 
, 1

,

meshN

i j

mesh

S S
E

N







 (4.5) 

where S  is the solution of the coarser mesh and S  is the solution of the finer mesh 

averaged onto the coarser mesh (Ferziger & Peric, 2002). Finally, for constant ratio mesh 

refinements the observed order of the truncation rate decay can be calculated as 
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  32

21

ln ln ,
E

p rr
E

 
  

 
 (4.6) 

where 32
E

 is the error associated with the medium mesh compared to the fine mesh,

21
E

 is the error associated with the coarse mesh compared to the medium mesh and rr  

is the refinement ratio which is 4 in this case (Versteeg & Malalasekra, 2007). For this 

problem, p  was found to be 0.9455 for the volume fraction field and 0.5 for the 

velocity field. This indicates that the VOF advection scheme performs near its formal 

first to second-order accuracy while the momentum transport scheme performs at an 

order half of its formal convergence rate expected for a discontinuous velocity field. The 

above test was repeated by setting the surface tension coefficient to zero and equating 

the viscosity of both fluids (  = 0.1 N.s/m2). Doing so effectively makes the velocity field 

continuously differentiable across the entire domain. For this configuration, p  was 

found to be 1.05 for the volume fraction field and 0.94 for the velocity field. These 

results are consistent with the trends obtained in Puckett et al. (1996) for continuous 

and discontinuous velocity fields where the nearly second-order convergence rates 

obtained for the continuous test were reduced to convergence rates below 1 for the 

discontinuous test. The inability of the method to perform beyond first-order for the 

velocity field could be attributed to the first-order approximation of the volume fraction 

field that is in turn used to calculate the fluid properties appearing in the momentum 

transport equation. This implies that the overall accuracy of the method cannot exceed 

that of the volume fraction field. Grid refinement test results are shown in Figure 4.6 
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and Figure 4.7 for the discontinuous velocity field and the continuous velocity field, 

respectively. Even for the relatively coarse mesh development of the expected 

mushroom cap can be observed in both cases. 

 

Figure 4.7: Grid refinement test results for the discontinuous velocity field shown at 
time, t = 1 for different mesh resolutions, a) 8x24, b) 32x96, and c) 128x384. 
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Figure 4.8: Grid refinement test results for the continuous velocity field shown at time,   
t = 1 for different mesh resolutions, a) 8x24, b) 32x96, and c) 128x384. 

4.5 Summary 

Standard benchmark tests were performed on the implementation of the VOF and the 

CSF surface tension model. The ability of the VOF method in handling fluid merging and 

breakup and the affects of smoothing on the accuracy of the CSF model were 

highlighted. This was followed by the simulation of Rayleigh-Taylor instability to validate 

the overall numerical scheme. It was verified that the simulation results compared well 

with the expected results found in the literature. Finally, a grid refinement test was 

performed to obtain a quantitative assessment of the order of accuracy of the numerical 

scheme; it was found that the overall accuracy of the algorithm cannot exceed that of 

the first-order accurate VOF model as a result of the coupling between the VOF 

advection scheme and the material properties that appear in the momentum transport.  
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Chapter 5  
 
Applications 
 

5.1 Overview 

In this chapter two practical cases are considered for the comparison of numerical 

predictions against the experimental data or other numerical results found in the 

literature. In the first test, the numerical simulation of a bubble rising and deforming in 

quiescent viscous liquid is performed to measure the performance of the algorithm for 

the computation of low Reynolds number flows ( 20Re  ). In the second test, a more 

challenging case involving the flow of a falling liquid film exposed to a forced 

disturbance is simulated to measure the ability of the numerical scheme in capturing the 

physics of small scale fluid mechanics problems for moderate Reynolds number flows 

(Re<200). Both cases involve very large ratios of fluid properties across the thin 

interface which can complicate the numerical simulation due to instabilities and low 

accuracy near the interface. Although these cases are not particularly difficult to set up 

for a numerical simulation, they could reveal useful information on the scope of the 

physical problems that a numerical method can be used for. 



97 
 

5.1.1 Application 1: Bubble Rising in a Viscous Liquid 

5.1.1.1 Introduction 

A fundamental understanding of the behaviour of a bubble rising and deforming in a 

quiescent viscous liquid is crucial in various applications of multiphase flows ranging 

from the rise of steam in boiler tubes to gas bubbles in oil wells (C. Li, Garimella, Reizes, 

& Leonardi, 1999). Thanks to the large body of numerical and experimental data that 

exist in the literature, the rise of a bubble can also serve as an ideal validation test for 

numerical schemes. Bhaga and Weber (1981) analysed a large body of experimental 

data on shape and rise velocities of bubbles in quiescent viscous liquids and presented 

their findings in a diagram similar to the one depicted in Figure 5.1.  van Sint Annaland 

et al. (2005) and Li et al. (1999) used the VOF method and Hua et al. (2008) used the 

front-tracking method to obtained numerical approximations for the rise of a bubble. 
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Figure 5.1: Regime map of experimentally observed rising bubble shape as reported by 
Bhaga and Weber (1981). Bubble shape regions are identified as spherical (S), oblate 
ellipsoid (OE), oblate ellipsoid wobbling disk (OED), oblate ellipsoidal cap (OEC), 
spherical cap with close steady wake (SCC), spherical cap with open unsteady wake 
(SCO), skirted with smooth, steady skirt (SKS) and skirted with wavy, unsteady skirt 
(SKW). (Yeoh & Tu, 2010) 

5.1.1.2 Governing Equations 

The problem of a bubble rising in a liquid studied herein is considered to be a multi-

fluid, laminar, isothermal flow with incompressible and immiscible Newtonian fluids. 

The governing equations are the Navier-Stokes and continuity equations (equation 2.21 

and 2.22) that can be non-dimensionalized by introducing the following dimensionless 

characteristic variables: 
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L L L

gV p g
V , t, , p , ,k dk ,g ,

d g d gg d

 
  

  
        (5.1) 

where d  is the characteristic length of the problem and is selected to be the diameter 

of the initial bubble, g  is the magnitude of g  and subscript L  specifies the liquid 

phase properties (Hua, Stene, & Lin, 2008). Thus, omitting the superscript ~ for 

convenience, the non-dimentionilized Navier-Stokes and continuity equations for the 

motion of a bubble rising in a liquid can be re-expressed as  

    1 1 1 1 1
( ) ,

TV
VV p V V g k F

t Ar Bo
 

  


           


 (5.2) 

 0V .   (5.3) 

The relevant non-dimensional numbers are the Archimedes number defined as 

 
1/2 3/2

,L

L

g d
Ar




  (5.4) 

the Bond or Eotvos number defined as 

 
2

.L gd
Bo




  (5.5) 

In experimental work the Reynolds number is often used to describe the flow regime in 

conjunction with the Bond and Morton number. Denoting the measured bubble 

terminal rising velocity by U , the Reynolds number is defined as 
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L

dU
Re ,




  (5.6) 

and the Morton number is defined as 

 
4

3
.L

L

g
M



 
  (5.7)  

5.1.1.3 Simulation Setup 

For the purpose of this work, 3 test cases are selected as defined in Table 5-1. Following 

the discussion presented in sin Von Annaland et al. (2005) and Hua et al. (2008) 

regarding the wall effects on the terminal rising velocity of the bubble the width of the 

computation domain in the x direction is selected such that it is at least 4 times the 

initial diameter of the bubble. The computational domain is therefore, 4d  and 6d  in 

the x and y direction, respectively. An 80 x 120 mesh was selected to carry out the 

simulation such that the initial bubble is presented by 20 cells in each direction. 

Increasing the grid resolution beyond this did not affect the simulation results. The 

liquid to gas density and viscosity ratio in all the test cases are fixed to 1000 and 100, 

respectively, in order to mimic gas-liquid flows usually involved in these flows. Free-slip 

velocity boundary conditions are applied to all the confining walls to allow for an easy 

cycle of the fluid near the lateral boundaries. The bubble is initially centered at point 

(x,y) = (2,1.5). Simulations were terminated before the bubble approaches the top wall 

at time  = 4. 
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Table 5-1: Physical parameters related to the test cases simulated in this work. 

Parameter Test case 1 (T1) Test case 2 (T2) Test case 3 (T3) 

Bo 17.7 243 339 
M 711 266 43.1 
Re 0.232 7.77 18.3 

 

5.1.1.4 Simulation Results and Discussions 

The final bubble shapes are shown in Figure 5.2 for each test case and compare well 

with the simulation results of Hua et al. (2008) and the experimental results of Bhaga 

and Weber (1981). Despite the two-dimensional setup of the simulation, the method 

seems to be capable of capturing the main physical characteristics of each test case such 

as the spherical bubble shape in test case 1, the oblate ellipsoidal cap in test case 2 and 

the steady wakes in test case 3. Also, as expected the bubble deforms more as the 

Bonds number increases.  

Instantaneous bubble rising velocities were measures for each case and are presented in 

Figure 5.3 as a function of  . For all the cases the bubble reaches its terminal velocity 

after 3  .This allows for the simulation Reynolds number to be calculated for each 

test case as per equation (5.6). The experimental bubble Reynolds number can be 

determined for each test case from Figure 5.1 where test cases 1 to 3 are identified as 

T1, T2 and T3, respectively. The simulation results are summarized in 

Table 5-2 and are compared to the experimental values. It can be seen that the results 

compare less favourably with the experimental values as the Reynolds number 
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increases. This could be attributed to the lack of three-dimensional flow dynamics in a 

two-dimensional simulation. 

Bhaga and Weber (1981) 

Present work 

Hua et al. (2008)

 

Figure 5.2: Comparison of the final bubble shapes with other numerical and 
experimental results for different test cases.  Contours of 0.5F   are shown for the 
results of the present work. 
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Figure 5.3: Instantaneous bubble rising velocity normalized for 
c

U g d , as predicted 

numerically for different test cases. 

 

Table 5-2: Comparison of the terminal velocities found experimentally by Bhaga and 
Weber (1981) and numerically by Hua et al. (2008) to the predicted results of the 
present work. 

Test 
Case 

Re %Deviation 
from 

experiment Experimental 
(Bhaga and Weber (1981)) 

3D Numerical 
(Hua et al. (2008)) 

2D Numerical  
(Present work) 

T1 0.232 0.182 0.244 5.17 

T2 7.77 7.605 7.000 9.90 

T3 18.30 17.758 15.220 16.83 
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5.1.2 Application 2: Falling Liquid Film 

5.1.2.1 Introduction 

Liquid film falling down an inclined plane is observed in a wide variety of naturally 

occurring phenomena and is also used in many industrial processes and engineering 

devices such as condensers, evaporators and chemical reactors (Kunugi & Kino, 2005). 

This kind of flow exhibits a rich variety of surface wave dynamics and therefore has been 

the subject of many theoretical, experimental and numerical studies. Past studies have 

determined that the instability of thin film flow is dominated by gravity, viscous forces 

and surface tension effects (Gao et al., 2003) which amount for an ideal test case to 

validate a multiphase flow numerical method and assess its performance. Compared to 

the rising bubble test, simulation results for this problem are more difficult to obtain 

and are a better indication of the true abilities and limitations of the algorithm since the 

small scales of the problem make all the terms of the Navier-Stokes equation equally 

important to the motion of the thin film. Results obtained by previous numerical 

simulations (Gao et al. (2003) and Kunugi and Kino (2005)) as well as experimental data 

and observations (Kapitza and Kapitza  (1964) and Nosoko et al. (1995)) can be used to 

evaluate the integrity and precision of the numerical algorithm.  

5.1.2.2 Governing Equations 

The flow of the falling liquid film studied in this work is considered to be a multiphase, 

laminar, isothermal flow with incompressible and immiscible Newtonian fluids. The 

governing equations are the Navier-Stokes and continuity equations presented in 
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chapter 2 (equations (2.21) and (2.22)). These equations can be non-dimensionalized by 

introducing the following characteristic dimensionless parameters: 

 
2

c c L L c L

V t p
V ,t , , p , ,

u t u

 
 

  
      (5.8) 

where cu
 is the characteristic velocity of the problem and is set to the average velocity 

of the fully developed flow defined as (Gao et al. (2003)) 

 
2

3

L c
c

L

gh sin
u ,

 


  (5.9) 

ch
 is the characteristic length of the problem and is selected to be the initial flat film 

thickness, ct  is the characteristic time in second defined as c ch u ,   is the inclination 

angle of the plate and subscript L  refers to the fluid properties. 

Therefore, omitting the superscript ~ for convenience, the non-dimensional Navier-

Stokes and continuity equations can be re-expressed as 

     2
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t Re Fr We
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
 (5.10) 

 0V ,   (5.11) 

where  ê sin ,cos   is the unit gravity vector. 

The relevant dimensionless numbers are the Reynolds number 
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the Weber number 

 
2

L c c

We ,
u h




  (5.13) 

and the Froude number 

 
2

c

c

u
Fr .

gh
  (5.14) 

Normalization by ch
 allows for the Froude number to be expressed as 

 3Fr Re/ .  (5.15) 

Finally, it can be shown that the velocity profile of the fully developed flow normalized 

for ch  and cu  can be expressed as  

  23
2

2
fdu Y Y ,   (5.16) 

where cY y / h (Gao et al. (2003)).  

5.1.2.3 Simulation Setup 

One of the main difficulties associated with numerical and experimental study of falling 

liquid film flows is the typical length scale that is required to allow for the surface waves 

to evolve into steady-state periodic waves. Past experiments, such as Nosoko et al. 
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(1995), have shown that in case of a vertical falling film, with an inclination angle of 90°, 

the running length can be minimized to 10 to 13 centimetre as opposed to 150 

centimetres needed for an inclination angle of 4° to 10° reported in Liu and Gollub 

(1994). Moreover, despite the fact that the experimental evidence indicates that two-

dimensional regular wave pattern can result from natural disturbances, obtaining 

regular wavy surface has proven to be difficult without a periodic forcing at the inlet 

(Gao et al., 2003). Thus, a feasible numerical simulation of a falling film flow requires an 

inclination angle of 90   with a periodic flow rate perturbation at the inlet as 

depicted in Figure 5.4. 

 

Figure 5.4: Numerical configuration of the vertical falling film flow. (Kunugi and Kino, 
2005) 

The simulation configuration described herein is similar to the ones conducted in Gao et 

al. (2003). To set up the simulation of the falling film flow, a computational domain 
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stretching 600 ch
 or 500 ch

 in the x direction and 20 ch
 in the y direction is defined with 

the xy axis located at the intersection of the plate and the left hand wall and gravity 

acting along the positive x direction (Figure 5.4). The velocity boundary conditions are 

no-slip at the top and bottom walls and inflow and outflow at the left and right 

boundaries, respectively. The entire computational domain is initialized to the fully 

developed flow velocity profile given by equation (5.16). This of course is the same 

velocity profile that one expects to obtain if the computation domain was initially void 

of any fluid and the steady inflow was set to let the liquid flow over the plate until a 

steady state is reached. However, that would require extra computational time as well 

as an extended computational domain to allow for the flow to become fully developed. 

The same inflow velocity profile is fixed over the flat film thickness throughout the 

entire simulation with a time dependant perturbation applied as follows 

  23
2 ,

2
in pu Y Y u   (5.17) 

where 𝑢𝑝 introduces the desired level of monochromatic time varying perturbation 

according to the following relation 

  1 sin 2 .p pu f t    (5.18) 

Here pf
 

is the forcing frequency in Hertz, t  is time in seconds and   is the 

dimensionless disturbance magnitude. 
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Two test cases are defined for the simulation of the vertical falling liquid film with water 

as the working fluid surrounded by air. The values of the relevant dimensionless 

parameters for each test case are defined in Table 5-3. Material properties and other 

parameters used for this simulation are listed in Table 5-4. As was the case in Gao et al. 

(2003), the optimum mesh resolution for the first test case was determined to be 1500 

in the x direction and 20 in the y direction. However, for the second test case with the 

higher Reynolds number, a 800 x 20 mesh resolution was found to yield the best results 

even compared to finer mesh resolution. Also, two passes of the filter defined in 

equation (3.30) was applied to for the simulation of the second test case. Simulations 

were advanced in time for ct / t = 450.  

Table 5-3: Relevant dimensionless parameters used for the falling liquid film simulation. 

Test case Re  We  pf (Hz)   

TF1 20.1 33.5 27 0.05 
TF2 69 4.2 30 0.05 

 

Table 5-4: Material properties and other test parameters used in the falling liquid film 
simulation. 

L (kg/m3) g (kg/m3) 
L (N.s/m2) g  (N.s/m2)  (N/m) g (m/s2) 

998.2 1.225 9.87419 x 10-4 1.8615 x 10-5 0.0722 9.81 

 

5.1.2.4 Simulation Results and Discussion  

The predicted instantaneous film thicknesses obtained from the simulations are shown 

in Figure 5.5 and Figure 5.6 for test case TF1 and TF2, respectively. It can be seen that 
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for both cases the small disturbances introduced at the inlet propagate into the domain 

to form finite-amplitude nearly stationary periodic waves at the end of the simulation. 

The stationary wave shape obtained in both tests are comparable to the wave shapes 

obtained in Gao et al. (2003) for the same tests although for case TF1 the waves 

obtained in this work seem to penetrate deeper into the fluid side resulting in slightly 

taller waves. Nonetheless, as illustrated in Figure 5.7, the wave shapes obtained in this 

work compare well with the experimental results reported by Kapitza and Kapitza (1964) 

and the simulation results of Gao et al. (2003). For test case TF2 the wave shapes 

obtained match closely to those obtained in Gao et al. (2003) although the finer mesh 

used in Gao et al. (2003) seems to better resolve the capillary waves leading the solitary 

waves. 

It should be noted that, contrary to the simulations performed in this work, the 

algorithm used in Gao et al. (2003) ignores the dynamics of the gas phase and treats it 

as a “void”. This in practice, leads to a more stable algorithm for the simulation of free-

surface flows but requires complex velocity and volume fraction boundary conditions to 

be imposed on the interface and limits the code to the simulation of free-surface flows 

only. 

To better assess the accuracy of the simulation results, the simulation wave velocities, 

wu , were calculated for each test case by measuring the distance traveled by a wave 

over a given time interval as shown in Figure 5.8 and Figure 5.9 for test case TF1 and 

TF2, respectively. The corresponding wavelengths,  , were also determined form the 
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same figures. These values were then compared to the values obtained using the 

following equation derived by Nosoko et al. (1995) from the experimental data analysis: 

 0 06 0 293 0 311 87 . . .

wu . We Re .   (5.19) 

The results are summarized in  

Table 5-5 and confirm the reasonable accuracy of the simulation results obtained in this 

work. 

Table 5-5: Comparison of the simulation wave velocities with the experimental data.   

Test case 

Numerical 
(Present work) 

Experimental 
(Nosoko et al. (1995))  

%Deviation 
From 

experiment   wu  wu  

TF1 50 2.24 2.11 5.9 
TF2 58.5 1.87 1.75 6.8 
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Figure 5.5: Instantaneous film thickness for test case TF1. Contours of 0.5F   are 
shown. 
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Figure 5.6: Instantaneous film thickness for test case TF2. Contours of 0.5F   are 
shown. 
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b)

a)

c)

 

Figure 5.7: Comparison of wave shapes taken from a) Gao et al. (2003), b) Kapitza and 
Kapitza (1964) shadowgraph, and c) the present work, for test case TF1. 

 

Figure 5.8: Two trains of stationary waves used to determine   and wu
 for test case 

TF1. 

 

Figure 5.9: Two trains of stationary waves used to determine   and wu
 for test case 

TF2. 
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5.2 Summary 

Applicability to practical physical and engineering problems was verified over a wide 

range of test conditions by using the numerical method for the simulation of the rise of 

a bubble in a liquid and the falling liquid film flow. The simulation results for both cases 

compared well with the past experimental and numerical results. For the rising bubble 

case the model successfully predicted the shape and the terminal rise velocity of the 

bubble but appeared to suffer from the lack of three-dimensional flow dynamics at 

higher Reynolds numbers. The simulation of the falling liquid film proved to be more 

challenging especially for the higher Reynolds number case where accurate results could 

only be obtained for a narrow range of mesh resolutions. However, once properly 

configured, the algorithm was capable of capturing the complex wave dynamics of the 

falling liquid film with a reasonable accuracy. 
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Chapter 6  
 
Conclusion 
 

6.1 Summary and Contributions 

Following a review of the available methods for modeling the interfacial multiphase 

flows, a robust and efficient, yet simple numerical method for the simulation of these 

flows was presented. The one-fluid model and the VOF method were selected as the 

methods of choice due to their efficiency and simplicity, coupled with their applicability 

to a vast spectrum of multiphase problems. CSF model was selected to include the 

surface tension effects as a body force in the momentum transport, eliminating the 

need for an explicit treatment of the interfacial boundary conditions. The corresponding 

governing equations and their numerical approximation were presented in detail 

followed by a brief discussion on the merits of MATLAB as a favourable programming 

environment especially due to its built-in parallel computing capabilities. The final code 

was validated through various benchmark tests through which implementation of the 

VOF method and the CSF model was verified. Grid refinement tests revealed that for 

continuous velocity fields the model performs near its formal first-order accuracy while 

for discontinuous velocity fields the order of accuracy was reduced by nearly 1/3. This 

also verified that the overall order of accuracy of the numerical model cannot exceed 

the first-order accuracy of the VOF advection and the CSF model. Applicability to real 

fluid mechanics problems was studied for two test cases where capturing the true 
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physical phenomena, rather than the order of accuracy, was of prime interest. 

Application to the rise of a bubble in quiescent fluid was relatively straight forward and 

yielded reasonably accurate results when compared to the experimental data. The 

simulation seemed to suffer from the lack of three-dimensional flow effects at higher 

Reynolds numbers. Numerical study of the vertical falling liquid film proved to be more 

challenging as the high Reynolds number case needed a careful selection of the mesh 

resolution in order to yield physically meaningful simulation results. The final results, 

however, compared well with the results of the experimental and numerical studies 

found in the literature.  

The relatively simple setup required to simulate a versatile array of physical problems 

with the same code underlined the simplicity and robustness of the selected numerical 

method. The results obtained, especially for the falling liquid film problem, were on a 

par with the other numerical results that used more complicated algorithms that are 

more suitable for the simulation of free-surface flows but are less flexible for general 

multiphase flow simulations where the dynamics of both fluids need to be studied. 

Implementation in MATLAB proved to be quite advantageous for the simulation of the 

falling liquid film flow where the parallel computing capabilities of MATLAB reduced the 

simulation times significantly. No extra code was needed for post processing since the 

built-in tools available in MATLAB were used to present the data and visualize the 

findings. Debugging, testing and optimizing the code was also facilitated using many of 

the great tools that MATLAB provides. The complete algorithm was implemented in 
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MATLAB in less than 200 lines compared to the 2000+ lines needed for the FORTRAN 

implementation of the SOLA-VOF (Nichols et al. (1980)) that has no parallel computing 

capabilities and uses the simpler VOF-SLIC algorithm. This makes the final code more 

accessible and easier to maintain and improve in the future. 

6.2 Future Directions 

Given the adequate performance of the numerical scheme selected in this work and the 

benefits of the parallel computing capabilities offered by MATLAB, the numerical 

method presented herein can be used as a baseline for future studies and 

developments. Extension to three dimensions seems to be the logical step forward as all 

the numerical schemes selected have already been applied in three dimensions and 

benefit from a vast collection of literature dedicated to this subject. In the context of the 

two-dimensional simulations, the accuracy of the final results can be improved by 

employing higher order VOF and CSF schemes since the overall accuracy of the model 

was found to be limited by their order of accuracy. Finally, due to its finite-volume 

nature, the code can be used as a starting point for developing more advanced codes 

that are capable of simulating flows in complex geometries, although that might require 

a purely algebraic approach to the VOF method as opposed to the geometric method 

used in this work. 
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