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Abstract

The compound Poisson distribution with gamma claim sizes is a
very common model for premium estimation in Property and Casualty
insurance. Under this distributional assumption, generalised linear
models (GLMs) are used to estimate the mean claim frequency and
severity, then these estimators are simply multiplied to estimate the
mean aggregate loss.

The Tweedie distribution allows to parametrise the compound
Poisson-gamma (CPG) distribution as a member of the exponential
dispersion family and then fit a GLM with a CPG distribution for the
response. Thus, with the Tweedie distribution it is possible to esti-
mate the mean aggregate loss using GLMs directly, without the need
to previously estimate the mean frequency and severity separately.

The purpose of this educational note is to explore the differences
between these two estimation methods, contrasting the advantages
and disadvantages of each.

1 Introduction

In recent years there have been remarkable developments in insurance mod-
elling with dependence between frequency and severity. There are situations
in which considering them independent is not unreasonable. When this is
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the case, the compound Poisson distribution with gamma claim sizes is a
common model used for the aggregated loss. A common way of fitting the
parameters of this distribution given a sample is using GLMs to estimate
the mean claim frequency and severity separately, then these estimators are
simply multiplied to estimate the mean aggregate loss.

The Tweedie distribution is a re-parametrisation of the compound Poisson-
gamma (CPG) distribution as a member of the exponential dispersion family,
which allows to fit a GLM with a CPG distribution for the response. With
the Tweedie distribution one can hence estimate the mean aggregate loss
using GLMs directly, without the need to previously estimate the mean fre-
quency and mean severity. The main purpose of this article is to explore the
differences between these two estimation methods.

Section 2 gives a review of exponential dispersion families, the basic the-
ory of generalised linear models and Tweedie distributions. Section 3 we
discusses the use of GLMs for pure premium estimation. In this section we
outline the main differences between the separated approach and the Tweedie
GLM. Section 4 discusses the limitations of the Tweedie GLM. We exemplify
this limitations with a simulated dataset. In Section 5 we fit both models to a
publicly available dataset and we compare their results. Section 6 comments
on modifications to the Tweedie GLM that help overcome its limitations.
More advanced models that consider dependence are commented and cited
in this section.

The R code used to generate the simulations, graphs and tables in this ar-
ticle can be found in http://totweedieornot.sourceforge.net, together
with the programs documentation.

2 Generalised Linear Models

2.1 Exponential Dispersion Family

The exponential dispersion family (EDF) is a set of probability distributions
used as the response distribution for GLMs. This section gives a brief intro-
duction to the EDF and some of its main properties; for a more extensive
presentation see Jørgensen [7].

An EDF is a set of distributions with densities of the form

f(x; θ, λ) = c(x, λ) exp(λ {θx− κ(θ)}) , θ ∈ Θ, λ ∈ Λ , (1)
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where Θ, called the canonical space, is an open interval that contains 0,
Λ ⊂ (0,∞) is called the index set, θ and λ are called the canonical and index
parameters, respectively, and κ is a smooth function.

Many well-known discrete and continuous distributions can be parame-
trised in this way. Table 1 shows some popular members of the EDF and gives
its parameters in terms of the usual density/probability function parameters.

Distribution θ λ Θ Λ κ(θ)

Binomial(n, p) ln
(

p
1−p

)
n R N ln

(
1+exp(θ)

2

)
Poisson(µN) ln(µN) −− R −− exp(θ)− 1
Gamma(α, τ) 1− τ α (−∞, 1) R ln

(
1

1−θ

)
N(µ, σ2) µ σ2 R (0,∞) 1

2
θ2

Table 1: EDF parametrisation of some well-known distributions

If X is a random variable with density/probability function as in (1),
then its moment generating function (mgf) is given by

m(t) = exp (λ [κ(θ + t/λ)− κ(θ)]) , t ∈ Θλ,θ (2)

where Θλ,θ := λ(Θ − θ) = {θ∗ : θ∗ = λ(θ0 − θ) for some θo ∈ Θ}. By taking
derivatives of m with respect to t, it is possible to see that

E[X] = κ′(θ) and V[X] =
κ′′(θ)

λ
. (3)

From the relations above we see that the mean and the variance depend on
the derivatives of κ, called the cumulant generator of the family, which is
twice continuously differentiable with κ′′ > 0. Hence the variance of X can
be expressed in terms of its mean through a variance function.

If we denote by µ = E[X] and the function τ = κ′, then the variance
function is defined as

V(µ) = (κ′′ ◦ τ−1)(µ) ,

and from (3) it follows that V[X] = V(µ)
λ

. An important property of the
variance function is that it characterises the EDF; this property is used for
the construction of the Tweedie distribution.
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2.2 Generalised Linear Models (GLMs)

GLMs provide a practical methodology for the segmentation of a portfolio of
policy-holders. Here we review the main concepts and assumptions of GLMs.

A standard assumption in insurance practice is that there is a set of ob-
servable and quantifiable risk characteristics (for example: policy-holder age,
neighbourhood, smoker) that allow to segment the population into groups of
homogeneous risks. In a GLM context, these characteristics are represented
by a vector X = (X1, X2, . . . , Xk). These X1, . . . , Xk are called covariates or
explanatory variables. As with classical regression models, the Xi’s can be
categorical or continuous.

Another element present in GLMs is a weight that is given to each obser-
vation. We explain its role with an example; suppose that we are interested
in modelling the annual aggregate loss for a portfolio of insurance policies
that is already divided into homogeneous groups. Now consider an individual
who cancels his/her policy 6 months after the beginning of the contract. It
is reasonable to believe that his/her aggregate loss does not follow the same
distribution as that of a policy-holder exposed to risk the whole year. In this
case we assign this observation a weight of 0.5 years. We denote such weights
W .

Finally, the variable to be forecasted, e.g. frequency, severity, or pure
premium, is denoted Y and called the response variable.

As usual we use x, w and y to denote observations from X, W and Y ,
respectively.

We have the following distributional assumptions for GLMs:

1. Given X = x and W = w, the distribution of Y belongs to some fixed
EDF, i.e.

fY |X,W (y|x, w) = c(y, λ) exp(λ {θy − κ(θ)}) . (4)

2. There exists φ such that for every x and w, the index parameter is
given by

λ =
w

φ
.

This implies that λ varies only with the value of W . Here φ is called
the dispersion parameter.

3. Let µx =: E [Y |X = x,W = 1] be the expected response for explana-
tory variables X = x and weight W = 1. There exists a fixed vector
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β = (β1, ..., βk) ∈ Rk and a one-to-one differentiable function h such
that

µx = h(xTβ).

If g denotes the inverse of h, then writing the last equation in terms of
g gives

g(µx) = xTβ ,

where g is called the link function, it relates the linear explanatory
term xTβ to the expected response µx.

In practice, both the response distribution and the link function need to
be chosen. There is substantial flexibility for the choice of g since it can
be any one-to-one function. Nevertheless, in insurance practice a log-link
function g = ln is usually used, since it results in a multiplicative rating
structure (see Ohlsson and Johansson [10, Section 1.3] ).

The parameters β and φ of the GLM are estimated from sample values.
Their maximum likelihood estimators (MLEs) are found using numerical
methods. Popular software, like R or SAS, have pre-programmed packages
for this.

2.3 The Tweedie Families of Distributions

The Tweedie families are EDFs that are defined through the variance func-
tion. An EDF is called a Tweedie Family if the domain of its variance function
V is (0,∞) with

V(µ) = µp,

for some p ∈ R.
The Tweedie families contain many distributions, characterised by the

value of p. Table 2 presents the well known distributions that can be seen as
a Tweedie family for different values of p.

In addition, it is known that for p < 0 the Tweedie families characterise
distributions that are supported on R, while for p > 1 it characterises dis-
tributions that are supported on (0,∞). For p ∈ (0, 1) it is know that there
is no EDF with such variance function power. Here we focus on the case
p ∈ (1, 2).

An EDF can be parametrised also in terms of its mean instead of its
canonical parameter. Using this parametrisation, we denote by Tw(p, µ, λ)
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Value of p Distribution
p = 0 normal
p = 1 Poisson

p ∈ (1, 2) compound Poisson - gamma
p = 2 gamma
p = 3 inverse Gaussian

Table 2: Tweedie distributions for different values of p

a Tweedie distribution with variance function exponent p, mean µ and index
parameter λ. We will denote by CPG(µN , α, τ) a compound Poisson dis-
tribution with Poisson rate µN and jump size distribution gamma(α, τ), i.e
CPG(µN , α, τ) represents the distribution of a random variable S with

S =
N∑
i=0

Yi ,

where Y0 = 0, N follows a Poisson(µN) distribution, Y1, Y2, . . . is a iid
gamma(α,τ) sequence independent from N . The form of the gamma density
used here is

f(x) =
τα

Γ(α)
xα−1 exp(−τx) , x > 0 ,

where α > 0 is called the shape parameter and τ > 0 the rate parameter.
To see that for p ∈ (1, 2) the Tweedie family corresponds to a compound

Poisson-gamma simply compare the moment generating functions of both
distributions (for details see Jørgensen [7]). This way it is also possible to
express one parametrisation in terms of the other. In fact, if p ∈ (1, 2), µ > 0
and λ > 0, then

Tw(p, µ, λ) = CPG

(
λµ2−p

2− p
,−p− 2

p− 1
,
λµ1−p

p− 1

)
. (5)

Similarly, for m,α, τ > 0,

CPG(µN , α, τ) = Tw

(
α + 2

α + 1
,
µNα

τ
,
(µNα)

α+2
α+1
−1τ 2−

α+2
α+1

α + 1

)
. (6)
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3 Modelling P/C Premiums Using GLMs

This section starts with a review of some basic risk theory definitions.
The duration of a policy is the amount of time a policy is in force. It is

usually measured in years.
Following the terminology in Ohlsson and Johansson [10], we define the

following three key ratios:

• The claim frequency is the number of claims divided by the duration,
i.e. the average number of claims per unit time.

• The claim severity is the total claims divided by the number of claims,
i.e. the average size per claim.

• The pure premium is the total claims divided by the duration, i.e. the
average claim amount paid per unit time.

GLMs can be used to estimate the three quantities above. Notice that
all three are divided by a volume measure. This volume measure, called the
exposure, is used as a weight in the GLM. Insurance is justified by the strong
law of large numbers. For this reason it is desirable to have many observations
in each class (a class is defined by one of the possible combinations of values
of the explanatory variables). Thus it is customary to use only categorical
variables as covariates and discretise continuous covariates. We follow this
practice in this article.

Here we focus on the case where the pure premium is modelled by a
compound Poisson-gamma distribution. This is equivalent to assuming that
the claim frequency follows a Poisson distribution, that the claim severity
follows a gamma distribution and that frequency is independent from severity.

Denote by N the number of claims within a year, by Yi the amount of
the i-th claim in the year and by S the aggregate claims:

S =
N∑
i=1

Yi .

Here E[N ], E[Y1] and E[S] correspond to the claim frequency, claim sever-
ity and pure premium respectively. Under the independence assumption it
follows that E[S] = E[N ]E[Y1].

Now, if GLMs are to be used to estimate E[S] under these assumptions,
we propose to consider also the use of a Tweedie distribution with p ∈ (1, 2)
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for the response variable. In order to do this, p has to be estimated. A
numerical method for the maximum likelihood estimator of p is given in
Gilchrist and Drinkwater [5]. This method has now been implemented in R
within the Tweedie package (see Dunn [4]).

Nevertheless, the common practice currently in the insurance industry
is to fit a Poisson response GLM for the claim frequency, then a separate
gamma response GLM for the claim severity and to multiply the means of
the two GLMs to obtain an estimation for the pure premium. We will refer to
this method of estimation as the separate Poisson-gamma approach (SPGA).
Let us analyse the differences between this method and a Tweedie GLM.

3.1 Separate Poisson-gamma Approach (SPGA)

First consider the SPGA, starting with the fit of the frequency model. As-
sume that after the analysis of residuals and deviance we end up with kN
covariates. Let βN denote the vector of corresponding regression coefficients.
Similarly, let us assume that kY covariates are retained for the severity model
and let βY be its vector of coefficients.

Since we might have used different covariates for each model, we need
to unify the portfolio classification of these two models so we can multiply
the frequency and severity estimators for each class. This can be done in
the following way: Assume that the frequency and severity GLMs have k
covariates in common. Define a common design matrix X∗ in which the first
k columns correspond to the common covariates, the next kN − k columns
correspond to the covariates that are used only in the frequency model and
the last kY − k columns correspond to the covariates that are only used in
the severity model. Then define an adjusted frequency vector of parameters
βN∗ := (βN1 ,β

N
2 ,0), where βN1 is a vector of dimension k with the values of

the coefficients from βN that correspond to the common covariates. βN2 is
a vector of dimension kN − k with the values of βN that correspond to the
covariates that appear only in the frequency model and 0 is a vector of zeros
with dimension kY − k.

Similarly, define an adjusted severity vector of coefficients βY∗ := (βY1 ,0,β
Y
2 )

where βY1 has dimension k, 0 has dimension kN − k and βY2 has dimension
kY −k. Then, denoting by S∗i the response variable of the i-th class and with
X∗i the i-th row of X∗, we have for a log-link function that

E(S∗i ) := µ∗i = exp
{
X∗i (βN∗ + βY∗ )

}
.
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Here, S∗i ∼ CPG(N∗i , α, τi), where

E(N) := µN∗
i

= exp
(
X∗i β

N
∗
)

is the mean of the frequency for the i-th class, and

E(Yi) := µY ∗
i

=
α

τi
= exp(X∗i β

Y
∗ ) ,

is the mean of the severity for the i-th class, with α and τi being the (constant)
shape parameter and rate parameter, respectively, of the gamma distribution.
By (6) this implies that the distribution of the i-th class is a Tw(p∗, µ∗i , λ

∗
i ),

where

p∗ =
α + 2

α + 1
, µ∗i =

µN∗
i
α

τi
and λ∗i =

(
µN∗

i
α

τi

)α+2
α+1
−1
τi

α + 1
. (7)

3.2 Tweedie GLM

In turn, now consider the Tweedie GLM. Assume that for this model we have
kS covariates, let βS be the vector of coefficients with X and Si being the
corresponding design matrix and response variable for the i-th class. In this
model Si follows a Tw(p, µi, λ) distribution, where p ∈ (1, 2) and λ > 0 are
fixed for all the classes and

E(Si) := µi = exp
(
Xiβ

S
)
.

3.3 Comparing the Models

Considering these above definitions, we can now enumerate the following
important differences between these two models.

3.3.1 Number of Parameters

The SPGA has kN + kY + 1 parameters: kN betas for the Poisson GLM, kY
betas for the gamma GLM plus one for its dispersion parameter. On the
other hand the Tweedie GLM has kS + 1: the kS betas and the dispersion
parameter. Usually the SPGA will use the most parameters: for example if
for the Tweedie GLM we use the same explanatory variables as in the SPGA
(i.e. all the explanatory variables from the frequency and severity models),
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then kS = kN + kY − k + 1, so in this case we have k parameters more than
the Tweedie GLM. Thus, in general, from the point of view of number of
parameters the Tweedie GLM is a simpler model.

3.3.2 Variability of the Dispersion Parameter

From the discussion above we see that the index parameter λi of the SPGA
varies along the different classes while the one in the Tweedie GLM remains
constant. The main issue with having a constant index parameter is that
according to the model, for any class, the larger the mean the larger the

variance. This is because the variance of the i-th class is given by
E[S∗

i ]
p

λ
.

Thus, the distributional assumptions of the model will not be satisfied in
portfolios where this is not the case. On the other hand, denoting by µ∗i , µY ∗

i

and µN∗
i

the means for the i-th class given by the SPGA for the aggregated
loss, severity and frequency, respectively, we have that the variance of the
i-th class is given by any of the following expressions:

α + 1

α
µY ∗

i
µ∗i =

α + 1

α
µN∗

i
µ2
Y ∗
i

=
α + 1

α

(µ∗i )
2

µN∗
i

,

which is not strictly monotone with respect to µ∗i . There is a way to cope with
this limitation of the Tweedie GLM which consists in assigning covariates to
the dispersion parameter. Such models are called double generalised linear
models and are defined in Smyth and Verbyla [12].

3.3.3 Non-optimallity of the SPGA Parameters

As mentioned above, the i-th class follows a Tw(p∗, µ∗i , λ
∗
i ) distribution. Now

putting µ∗i and λ∗i in terms of the regression coefficients we have that

µ∗i = exp
{
X∗i (βN∗ + βY∗ )

}
,

λ∗i =
α

α + 1
.

When we fit the model we estimate βN and βY by maximising the likelihood
equation for the frequency and severity GLMs respectively. These estima-
tions do not correspond to the MLE of βN and βY that we would find if we
wrote the likelihood function of the joint analysis.
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3.3.4 Loss of Information with the Tweedie GLM Estimation

In order to fit the Tweedie GLM, only the accumulated loss is used without
using the number of claims. Thus, some information provided by the sample
is lost. This issue can be solved by maximising the joint likelihood of (S,N)
(aggregated loss and number of claims), instead of the likelihood of S. This
is detailed in Jørgensen and de Souza [8].

3.4 Graphical and Empirical Comparisons; the Lift Chart

Given a sample from a specific portfolio, how can one chose the “best” model?
Let us first fit both models and analyse them individually. For the

Tweedie GLM the usual methods for GLMs can be used (e.g. analysis of
deviance and residual plots). For the SPGA the analyses are carried out
separately for the frequency and severity GLMs.

If the individual analyses are not conclusive, it is important to note that
it is not possible to write the Tweedie model as a special case of the SPGA.
This is because the dispersion parameter λi of the SPGA varies with the
different linear predictors in different classes, both for the frequency and
severity GLMs. Thus a likelihood ratio test is not possible. One measure that
can help in opting for a specific model is Akaike’s information criterion (AIC)
or the corrected AIC. The problem with this approach is that it requires the
MLEs for both models.

Empirical graphical comparisons are also used to assess and compare
the goodness of fit of these two models, like PP-plots and QQ-plots of the
predicted values against the observed values.

Another graph that is useful in model testing is the lift chart. It comes
in different versions, all essentially based on the same underlying idea. We
outline here the lift chart version used in this article for goodness of fit
comparisons. It is similar, to that given in Briere-Giroux et al. [2].

Suppose that a model is used to describe or predict a certain phenomenon
and that observations of this phenomenon are available. The following steps
are used in order to create a lift chart:

1. Using the model generate predictions for the observations.

2. Order the observations increasingly with respect to the predictions.

3. Divide the ordered data in groups with equal number of observations.
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4. Plot the mean observation and mean prediction for each group.

When this chart is produced for a GLM, it is common to add bars that
correspond to the exposure in each group. In these graphs, the scale of the
vertical axis on the left corresponds to the mean computed for each group
and the scale of the vertical axis on the right corresponds to the exposure.

Lift charts give information about two aspects of the model. On the
one hand, by examining the trend on the curve for the observed means it is
possible to see if the model identifies reasonably the groups that are more
costly. On the other hand, the vertical distances between the predicted mean
and the observed mean give an idea of how close the model predictions are
to the observed data.
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Figure 1: Example of lift chart for a good fit

Figure 1(a) is an example of a lift chart for a model that provides a very
good fit. This graph was generated by simulating a gamma GLM with many
observations. Then a GLM with gamma responses and a log-link function was
fitted to this simulated data. The predictions from this fitted GLM and the
simulated responses were then used to produce the lift chart. The illustrated
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fit is very good since not only the observed values plot is increasing but also
because the predictions are very close to the observed values. Figure 1(b) is
a QQ-plot of the predictions against the simulated values that confirms the
good fit.

Figure 2(a) illustrates a lift chart for a poorly fitting model. This graph
was generated by simulating a GLM with inverse Gaussian responses and
log-link, but then fitting a GLM with normal responses and a log-link to
the simulated values. The graph shows that the fit is inadequate because
the observed values plot is not increasing and also because many of the
predictions are far from the observed values. A QQ-plot of this same data is
given in Figure 2(b), which confirms the bad fit seen in the lift chart.
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Figure 2: Example of lift chart for a poor fit

4 Limitations of the Tweedie GLM

As mentioned above, one limitation of the Tweedie is that its mean increases
with its variance. Besides, some recommend the SPGA over the Tweedie for
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other reasons. For instance we quote the arguments presented in Ohlsson
and Johansson [10]:

1. Claim frequency is usually much more stable than claim
severity and often much of the power of rating factors is
related to claim frequency: these factors can then be esti-
mated with greater accuracy.

2. A separate analysis gives more insight into how a rating
factor affects the pure premium.

(Note that above rating factor is a synonym of explanatory variable).
These arguments are questionable: using (5), given a Tweedie GLM for

the aggregate claims, we can not only obtain predictions for the claim fre-
quency and severity, but it also induces a GLM structure for each of them
(i.e., a linear predictor with a link function for the mean). Thus potentially,
the same insight gained with the separated approach can also be obtained
with the Tweedie GLM. More specifically, assume that a Tweedie GLM is
fitted to model the pure premium of a portfolio. Now consider one policy-
holder with a model prediction for the pure premium of µ. Also, let µP

and µG denote, respectively, the means of the Poisson frequency and gamma
severity induced by the Tweedie GLM. Assuming a log-link function, we have
that

ln(µ) = β0 +
k∑
i=1

xiβi ,

where β0, . . . , βk are the fitted coefficients, and x1, . . . , xk the values of the
covariates for this policy-holder. By (5), we then have that

µP =
λµ2−p

2− p
=

λ

2− p

[
exp(β0)

k∏
i+1

exp(βixi)

]2−p
,

which implies that

ln(µP ) = β0(2− p) + ln

(
λ

2− p

)
+

k∑
i=1

xiβi(2− p) .

Denoting by βP0 = β0(2 − p) + ln
(

λ
2−p

)
and βPi = βi(2 − p), for 1 ≤ i ≤ k,

we get a GLM structure for the expected frequency, µP , with coefficients
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βP0 , . . . , β
P
k . In a similar way, for the severity we have that

ln(µG) = βG0 +
k∑
i=1

xiβ
G
i ,

where βG0 = 2−p
λ

+ β0(p − 1) and βGi = βi(p − 1). Thus, the Tweedie GLM
for the pure premium induces GLMs for the frequency and the severity that
use the same covariates.
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Figure 3: Example of induced frequency and severity models from the
Tweedie GLM

For this argument to be of practical use, the adequacy of these induced
models should be comparable to that of the separate GLMs for frequency
and severity. Now, these induced models have an important limitation, that
makes this unlikely: under the Tweedie GLM, a larger pure premium implies
both, a larger claim frequency and claim severity. To see why this is the case,
let µi be the mean of the i-th class of a Tweedie GLM, that means

µi = exp
(
Xiβ

S
)
.
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By (6), this corresponds to a CPG(
λµ2−pi

2−p ,−
p−2
p−1 ,

λµ1−pi

p−1 ). Hence the means

for the claim frequency and claim severity are given by
λµ2−pi

2−p and
(2−p)µp−1

i

λ
,

respectively. Which shows that both increase or decrease with µi.
A simulated illustration exemplifies dramatically this limitation of the

Tweedie. We simulated separate Poisson and gamma distributed datasets in
such a way that for the classes with higher pure premium, there is also a
higher claim frequency but a smaller claim severity. A Tweedie GLM is then
fitted for the pure premium and, using (6), the induced predicted means for
the claim frequency and severity are obtained. The lift charts that correspond
to these predictions against the simulated values are given in Figure 3. We see
that for the frequency the predictions are far from the simulated values, but
at least the model is capable of explaining what classes are more expensive
than others (this is because the observed values graph is increasing). On
the other hand, for the severity graph, we see that it detects cheaper classes
as more expensive. This shows that the Tweedie is not adequate for this
simulated data.

5 Example: Canadian Automobile Insurance

Claims for 1957-1958

Here we fit both models to a publicly available dataset and compare their
results. The data was originally used in Bailey and Simon [1], but it is now
available in complete form at http://www.statsci.org/data/general/carinsca.
html, where the following description of the data is also available:

The data give the Canadian automobile insurance experience for policy

years 1956 and 1957 as of June 30, 1959. It includes virtually

every insurance company operating in Canada and was collated by the

Statistical Agency (Canadian Underwriters’ Association - Statistical

Department) acting under instructions from the Superintendent of

Insurance. The data given here is for private passenger automobile

liability for non-farmers for all of Canada, excluding Saskatchewan.

The variable Merit measures the number of years since the last claim

on the policy. The variable Class is a collation of age, sex, use and
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Variable Description

Merit Merit Rating:
3 - licensed and accident free 3 or more years
2 - licensed and accident free 2 years
1 - licensed and accident free 1 year
0 - all others

Class 1 - pleasure, no male operator under 25
2 - pleasure, non-principal male operator under 25
3 - business use
4 - unmarried owner or principal operator under 25
5 - married owner or principal operator under 25

Insured Earned car years
Premium Earned premium in 1000’s

(adjusted to what the premium would have been
had all cars been written at 01 rates)

Claims Number of claims
Cost Total cost of the claim in 1000’s of dollars

Table 3: Variables for Canadian Automobile Insurance Dataset

marital status. The variables Insured and Premium are two measures of

the risk exposure of the insurance companies

Table 4 reports the data, to which we added the column group, corre-
sponding to what we called class in previous sections, i.e. a possible combi-
nation of values of the covariates. It cannot be called class here to avoid any
confusion with the explanatory variable Class in the dataset. All the models
in this section were fitted with R (which is available at the webpage)

5.1 Frequency Model

First compare the frequency models. A Poisson model was fitted. After some
analysis of the variables, 4 interactions terms were added to the regression
model:

• Class 1 with Merit 3

• Class 3 with Merit 3

• Class 4 with Merit 3

17



Group Merit Class Insured Premium Claims Cost
1 3 1 2757520 159108 217151 63191
2 3 2 130535 7175 14506 4598
3 3 3 247424 15663 31964 9589
4 3 4 156871 7694 22884 7964
5 3 5 64130 3241 6560 1752
6 2 1 130706 7910 13792 4055
7 2 2 7233 431 1001 380
8 2 3 15868 1080 2695 701
9 2 4 17707 888 3054 983
10 2 5 4039 209 487 114
11 1 1 163544 9862 19346 5552
12 1 2 9726 572 1430 439
13 1 3 20369 1382 3546 1011
14 1 4 21089 1052 3618 1281
15 1 5 4869 250 613 178
16 0 1 273944 17226 37730 11809
17 0 2 21504 1207 3421 1088
18 0 3 37666 2502 7565 2383
19 0 4 56730 2756 11345 3971
20 0 5 8601 461 1291 382

Table 4: Data for Canadian Automobile Insurance Claims for 1957-1958

• Class 1 with Merit 2

In what follows we label these interactions as C1M3, C3M3, C4M3 and
C1M2 respectively. The summary of the R output for this regression is given
in Table 5.

The last column in the table shows that all the variables are significant. In
the Poisson GLM, the dispersion parameter is equal to 1, it is not estimated.
In this dataset the weight (the Insured variable) is high for all classes. This
implies that we can use a χ2 distribution with 8 degrees of freedom as an
approximation for the deviance (see section 3.6 in Jørgensen [6]).

This distribution is commonly used for goodness of fit tests. Here the
null hypothesis is that the data follows the fitted GLM. Thus, rejecting this
test implies that our model might not be adequate for the data. Otherwise
the deviance does not give evidence of lack of fit. The p-value of this test is
P(χ2

8 ≥ 7.3344) = 0.501, thus the deviance does not present evidence of lack
of fit.
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Estimate Std. Error z value P(> |z|)
(Intercept) -1.9839 0.0048 -409.39 0.0000***

Merit1 -0.1478 0.0072 -20.57 0.0000***
Merit2 -0.1610 0.0132 -12.24 0.0000***
Merit3 -0.3746 0.0134 -28.00 0.0000***
Class2 0.1627 0.0126 12.94 0.0000***
Class3 0.3786 0.0098 38.54 0.0000***
Class4 0.3755 0.0088 42.47 0.0000***
Class5 0.0758 0.0150 5.05 0.0000***

C1M3TRUE -0.1830 0.0140 -13.05 0.0000***
C3M3TRUE -0.0666 0.0165 -4.04 0.0001***
C4M3TRUE 0.0580 0.0164 3.54 0.0004***
C1M2TRUE -0.1039 0.0161 -6.46 0.0000***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Null deviance: 33854.1582 on 19 degrees of freedom

Residual deviance: 7.3344 on 8 degrees of freedom

Table 5: Summary table for Poisson GLM

The deviance residuals plot of this model is shown in Figure 4. The points
that are labeled with a number correspond to the residuals that are more
than 1.5 standard deviations away from the residuals mean. The number
corresponds to the corresponding group of the residual. The dashed line
corresponds to x = 0, and the lower and upper dashed lines correspond to
the mean residuals, plus or minus 1.5 standard deviations, respectively.

We see no apparent trend, but residuals that correspond to groups 10,
12 and 17 are significantly further from 0 than the rest. In order to improve
the fit we tried adding interactions between other variables in the data, in
all cases the residuals of these three observations were still the largest (in
absolute value).

An analysis of deviance helps to determine if some variables should be
taken out. Let D1, k1 be the deviance and number of parameters of our
current model and D2, k2 the deviance and number of parameters of the
same model without some variable. Then as the number of observations or
the smallest weight increases, we approximately have D2 −D1 ∼ χ2

(k1−k2) to
test for inclusion of this variable Using the function drop1 in R it is possible
to obtain the p-value of this test for all the variables in the model; Table 8
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Figure 4: Residuals plot for the frequency model

shows the results.

Df Deviance p-value

<none> 7.33
Merit 3 1052.56 0.0000
Class 4 2544.10 0.0000
C1M3 1 180.81 0.0000
C3M3 1 23.66 0.0001
C4M3 1 19.84 0.0004
C1M2 1 48.71 0.0000

Table 6: p-values for testing the fit of reduced models, without one variable

We see that the p-values are very small for all variables. Hence, we reject
the null hypothesis for the reduced models, and therefore keep the full model.

5.2 Severity Model

For the severity model we used a gamma GLM with a log-link function. After
analysis, no interaction terms were added. Table 7 gives a summary of the
R output for this regression.
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Estimate Std. Error t value P(> |t|)
(Intercept) -1.1746 0.0155 -75.58 0.0000 ***

Merit1 -0.0687 0.0261 -2.63 0.0220 *
Merit2 -0.0702 0.0291 -2.41 0.0327 *
Merit3 -0.0567 0.0163 -3.48 0.0046 **
Class2 0.0827 0.0264 3.13 0.0087 **
Class3 0.0158 0.0183 0.86 0.4048
Class4 0.1598 0.0194 8.23 0.0000 ***
Class5 -0.0814 0.0391 -2.08 0.0593 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gamma family taken to be 13.25825)

Null deviance: 1556.0 on 19 degrees of freedom
Residual deviance: 156.9 on 12 degrees of freedom

Table 7: Summary for the gamma GLM fit

To test the goodness of fit we assume that the weights in the model (the
Claims variable) are sufficiently large (the smallest one is 487) to assume that
the residual deviance divided by the estimated dispersion parameter follows
a χ2 distribution with 12 degrees of freedom. The null hypothesis yields a
p-value of 0.46, hence we cannot reject the model.

Figure 5 gives the deviance residuals plot for the gamma GLM model.
The dashed lines have the same meaning as in the Poisson GLM residual
plot. Finally, the analysis of deviance in Table 8 obtained using the drop1

function in R again shows that the p-value is significant for both variables,
indicating the use of the full model.

Df Deviance P(> F )

<none> 156.90
Merit 3 342.54 0.0211
Class 4 1262.71 0.0000

Table 8: p-values for testing the fit of reduced severity models, without one
variable
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Figure 5: Residuals plot for the severity model

5.3 The Tweedie Model

After analysing the model two interaction terms were added to the Tweedie
GLM: C1M3 and C4M3. These variables have the same meaning as in the
frequency model. The summary R output for this model is given in Table 9.

The goodness of fit test for this model gives a p-value of 0.489, thus there
is no evidence of lack of fit. The deviance residuals plot for this model is
given in Figure 6, which does not show any clear pattern.

The test in Table 10 suggests to reject any reduced model and keep the
full model.

5.4 SPGA vs Tweedie

The predictions of the SPGA model are obtained by multiplying the separate
mean frequency and severity predictions for each class. For these separate
predictions an exposure of 1 is used, and is then adjusted for the empirical
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Estimate Std. Error t value P(> |t|)
(Intercept) -3.1549 0.0181 -174.54 0.0000 ***

Class2 0.2747 0.0377 7.28 0.0000 ***
Class3 0.3731 0.0335 11.15 0.0000 ***
Class4 0.5266 0.0353 14.91 0.0000 ***
Class5 0.0209 0.0464 0.45 0.6621
Merit1 -0.2201 0.0273 -8.05 0.0000 ***
Merit2 -0.3045 0.0296 -10.30 0.0000 ***
Merit3 -0.4675 0.0340 -13.76 0.0000 ***

C1M3TRUE -0.1535 0.0356 -4.32 0.0015 **
C4M3TRUE 0.1153 0.0524 2.20 0.0525 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Tweedie family taken to be 76.59105)

Null deviance: 301049.59 on 19 degrees of freedom
Residual deviance: 724.36 on 10 degrees of freedom

Table 9: Summary table for Tweedie GLM

Df Deviance F value Pr(>F)

<none> 724.36
Class 4 28613.75 96.26 0.0000 ***
Merit 3 20240.32 89.81 0.0000 ***
C1M3 1 2132.19 19.44 0.0013 **
C4M3 1 1094.56 5.11 0.0473 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 10: p-values for testing the fit of the tweedie model without each
variable

values in the dataset; the exposure for the aggregated model is the variable
Insured.

Table 11 shows the predicted means for both models as well as the ob-
served mean. The latter is obtained by dividing Cost by Insured for each
class. Note that the values are in thousands of dollars. We can see that
the predictions from both models are close to each other, as well as to the
observed means.

The lift curves for both models are given in Figure 7. We see that both
distinguish reasonably well the classes that are more expensive, and that
overall, the predicted and observed values are close to each other.
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Figure 6: Residuals plot for the Tweedie model

In this example both models seem to explain the data equally well. The
SPGA has 21 parameters while the Tweedie GLM only has 11. Thus the
Tweedie GLM offers a more parsimonious option and is therefore preferred
in this example.

It is important to mention that this preference for the Tweedie GLM
is only as a pure premium model. We do not recommend its use here to
draw conclusions about the frequency and severity since the Tweedie induced
separate predicted means do not give a good fit.

6 Notes on Recent Developments

Modifications to the Tweedie GLM have been proposed to help overcome
some of its limitations. We have already mentioned Jørgensen and de Souza
[8] for the use of a joint likelihood and the double generalised linear models
of Smyth and Verbyla [12].

More precisely, the joint likelihood approach includes the frequency so
that the information given by the number of claims is not lost. Jørgensen
and de Souza [8] gives an algorithm to find the MLE for the joint likelihood.

In double generalised linear models Smyth and Verbyla [12] also use ex-
planatory variables to let the dispersion parameter vary with the class. This
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Group SPGA Tweedie Observed Group SPGA Tweedie Observed
mean mean mean mean mean mean

1 0.022988 0.022916 0.022916 11 0.034220 0.034220 0.033948
2 0.035282 0.035165 0.035224 12 0.043738 0.045038 0.045137
3 0.038314 0.038802 0.038755 13 0.050769 0.049695 0.049634
4 0.049964 0.050768 0.050768 14 0.058447 0.057938 0.060743
5 0.027449 0.027283 0.027320 15 0.034028 0.034942 0.036558
6 0.030389 0.031449 0.031024 16 0.042489 0.042643 0.043107
7 0.043095 0.041391 0.052537 17 0.054308 0.056124 0.050595
8 0.050022 0.045672 0.044177 18 0.063038 0.061928 0.063267
9 0.057588 0.053247 0.055515 19 0.072572 0.072200 0.069998
10 0.033527 0.032113 0.028225 20 0.042251 0.043543 0.044413

Table 11: Comparison of the SPGA and Tweedie predicted means vs the
observed means

solves the problem of monotonicity between the mean and variance of the
Tweedie GLM. Smyth and Jørgensen [11] apply double generalised linear
models with a Tweedie response to an auto insurance dataset.

The SPGA and Tweedie GLMs reviewed here assume independence be-
tween the frequency and severity components. Relaxing this independence
assumption has led recently to important results. Song [13] uses Gaussian
copulas to construct multivariate GLMs with dependence in the joint distri-
bution with different marginals. This construction also works for the case
where some of the variables are discreet and other are continuous. This
method is used in Czado et al. [3] to construct a bivariate Poisson-gamma
GLM with dependence. Krämer et al. [9] extends this work by allowing gen-
eral copulas. It also proposes a method to choose an optimal copula family.

7 Summary and Conclusions

The SPGA and Tweedie GLMs are two alternative ways of modelling the pure
premium when a compound Poisson-gamma (CPG) distribution is assumed
for the aggregate loss.

The Tweedie GLM is a simpler model. By the parsimony principle the
Tweedie GLM should be preferred whenever both models explain the data
similarly well.

The separate frequency and severity GLMs induced by the Tweedie GLM
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Figure 7: Lift charts for both models

are only useful under very restrictive conditions. This makes them unreliable
for gaining insight beyond the pure premium.

In conclusion, with regards to the pure premium, one should Tweedie
rather than not, whenever the parsimony principle applies. By contrast,
other models should, in general, be used in order to draw conclusions about
the claim frequency and severity.
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