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Abstract

Solutions of the Inverse Frobenius-Perron Problem

Nijun Wei

The Frobenius-Perron operator describes the evolution of density functions in a

dynamical system. Finding the fixed points of this operator is referred to as the

Frobenius-Perron problem. This thesis discusses the inverse Frobenius-Perron prob-

lem (IFPP), which seeks the transformation that generates a prescribed invariant

probability density. In particular, we present in detail five different ways of solving

the IFPP, including approaches using conjugation and differential equation, and two

matrix solutions. We also generalize Pingels method [27] to the case of two-pieces

maps.
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Chapter 1

Introduction

For many dynamical systems, iterating a discrete-time map, for a given initial point

x0, results in a random-like trajectory. However, if we consider the density function

which describes the probability of landing anywhere in the space, one can get a clear

statistical understanding of the long term dynamics of the map. To do this, an

operator that reflects how density functions evolve on iteration, is studied. When an

invariant density is eventually reached, one knows where iterates end up on average.

More specifically, if the initial density function on the space I is f(x), for a map

τ : I → I, the density φ under the action of τ is φ = Pτ (f), where the operator Pτ

is called the Frobenius-Perron operator (FPO), or transfer operator, corresponding

to τ . Representing the statistical distribution of iterates, the invariant density is

a fixed point of Pτ : Pτ (f) = f . The existence of invariant densities for a class of

chaotic point transformations has been proved by Lasota and Yorke [20]. FPO is a

special class of Markov operators [21], and possesses nice properties such as linearity,

positivity, preservation of integrals, etc [4]. The introduction of FPO opened a new

area of study in dynamical systems and chaos research.

The FPO has a nice representation for piecewise monotonic and expanding τ ,

when its derivatives are not singular. In 1960, Ulam [36] conjectured that the FPO

could be approximated by a Markov map defined on a partition of the given interval.

To do this, the interval I is partitioned into m equal subintervals, I1, I2, ..., Im. At

stage n, we define a constant ρi on each subinterval such that the density function is
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a step function fn =
∑m

i=1 ρi · χIi(x). Ulam hypothesized that the FPO of τ can be

approximated by fn+1 = Afn, where A = {aij} is a m × m transition matrix with

each element aij representing the probability of interval Ij being mapped into interval

Ii:

aij =
m[Ii ∩ τ−1(Ij)]

m(Ii)
,

where m(·) denotes Lebesgue measure and τ−1 may have multiple branches. A is

also called the Ulam matrix. This conjecture was proved by Li [22] in 1976, using

bounded variation tools under the conditions that τ is piecewise in C2 and |τ ′ | > 2.

Li showed that as n → ∞, fn+1 converges to the fixed point of Pτ in one-dimension.

In 1991, Boyarsky and Lou [5] generalized the result to Jablonski transformations

in n-dimensions. After the methods of Li, the result was also extended to higher-

dimensional cases by Froyland [15], Ding and Zhou [11], Proppe et al. [28]. These

results are seminal since it allows us to study a chaotic system by investigating the

corresponding linear equation and associated non-negative matrix.

However, in many practical situations only stochastic data is observed, while the

underlying dynamical system remains unknown. Thus, solving the Frobenius-Perron

problem inversely plays an important role in real life. The inverse Frobenius-Perron

problem (IFPP) concerns generating chaotic maps which give rise to a prescribed

invariant density. By solving the IFPP, the interaction between the statistical be-

haviours and the dynamics becomes obvious. The IFPP is an active area of research

and was considered by numerous groups.

An early solution was given by Grossmann and Thomae [17] in 1977. This method

is known as the conjugation transformation approach and was used to construct

symmetric maps with not only observed invariant densities but also their stationary

correlation functions. It revealed the relationship between conjugate maps and their

corresponding invariant densities. Later on, in 1982, Friedman and Boyarsky [14]

offered a different solution with different conditions. They dealt with the situation

that seeks ergodic transformations for classes of densities which are piecewise constant

functions. Graph-theoretic methods were used and the class of density functions were
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required to take on the value zero at all relative minima points. This is restrictive

and not easy to generalize. In 1990, a numerical algorithm was developed by Ershov

and Malinetskii [13]. They provided a way to construct a unimodal transformation τ

whose unique invariant density function is the targeted f . It requires us to compute

the integral φ(x) =
∫ 1

x
f(y)dy. The key to this method is the converting function

R(x), which maps the left preimage to the right one and vice versa. In 1991, Koga

[19] proposed a differential equation approach for two special types of transformations

on the unit interval: τ(1 − x) = τ(x) and τ(x + 1
2
) = τ(x). Assuming the slope of

τ is positive on [0, 1
2
] and τ(0) = 0, Koga derived an ordinary differential equation

associated with τ and f for each type, so that τ could be found by solving the

differential equation.

In order to completely generalize the result of [13], Gora and Boyarsky [16] intro-

duced a special transformation named 3-band transformation in 1993. The 3-band

transformation is a class of P-semi-Markov piecewise linear transformation, where

P denotes a partition of the interval considered. Using matrix analysis, they revealed

the relation between the density function and the 3-band transformation τ . Thirteen

years later, Gora generalized their 3-band matrix approach to the N-band case [1],

and presented an application in finance. In 1999, Pingel, Schmelcher and Diakonos

[27] established a general solution of IFPP for the class of maps that are unimodal,

symmetric and each branch covers the whole interval. Quite similarly to [13], they

approached the problem by considering the converting function hτ (in [13] it is R(x))

and computing the integral µ(x) =
∫ x

0
f(x)dx. Furthermore, they solved the inverse

problem for maps with beta distributions as their invariant densities. The same year,

this group used the parametrization of τ by hτ as a starting point, to develop a

Monte-Carlo optimization method based on the Metropolis algorithm [9], and used a

stochastic method to construct a dynamical system with given time correlation. In

2004, Lozowski, Lysetskiy, and Zurada [23] used an optimization algorithm to deter-

mine each element of the transition matrix. In the same year, Rogers, Shorten and

Heffernan [29] addressed IFPP based on the previously-mentioned Ulam’s conjecture.

They started with a matrix used in synchronised communication networks, which
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is also a column stochastic matrix and can be treated as Ulam’s transition matrix.

The formula for its principle eigenvector is known. Thus, by expressing the given

density in the form of the leading eigenvector, one can determine the Ulam matix

and hence the chaotic map. Later in 2008, based on this method, they studied [30]

properties and the Lyapunov exponent and switching between chaotic maps. A rel-

atively recent solution was given by Nie and Coca [26], assuming τ is an unknown

semi-Markov transformation. By observing the experimental data from some stage,

they first determined the partition R, and assembled two consecutive densities F0

and F1 under one iteration. Then the Frobenius-Perron matrix M of τ satisfies the

equation F1 = F0 ·M . After M is solved, one can translate it back to the piecewise

linear map τ .

Besides solving IFPP directly, a control problem is also considered. In 2000, Bollt

[2, 3] studied dynamical systems with some perturbations. More specifically, to pro-

duce a new dynamical system near a given one (in the sup-norm sense), but with

remarkably different prescribed invariant density. Bollt proceeded by using the Pen-

rose pseudoinverse and an open-loop perturbation approach. As discussed in [3],the

existence of l2 solutions cannot be determined, while in the space l∞, Bollt proved a

sharp theorem on the non-existence.

By the nature of the inverse Frobenius-Perron problem, IFP models can be ap-

plied in various fields. In biological systems [23], the authors constructed models of

olfactory bulbs’ temporal sequences with stationary interspike interval distribution.

This gives a way to generate realizations of neural signals. It is also applied to the

field of signal processing [34] and computer network [25].

The main goal of this thesis is to study the Inverse Frobenius-Perron Problem.

The thesis is organized as follows. In Chapter 2, we introduce some relevant concepts

of dynamical system including necessary theorems from measure theory and ergodic

theory. In Chapter 3 we discuss the inverse Frobenius-Perron problem — its defini-

tion, the existence of the invariant density and some representations. In Chapter 4
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some theoretical solutions in [17], [19] and [27] are presented on the inverse problem.

Chapter 5 provides 3 different matrix approaches based on the work of [16], [29], and

[1]. In Chapter 6 we draw our conclusions.
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Chapter 2

Preliminaries

The results presented in this chapter are derived from the books of Lasota and

Mackey (1994), Gora and Boyarsky (1997), Royden and Fitzpatrick (2010), Brucks

and Bruin(2004).

2.1 Measure space

Let us consider a set X with a metric. It is usually assumed to be a compact metric

space.

Definition 2.1.1. A family B of subsets of a set X is a σ-algebra if:

1. X ∈ B;

2. When B ∈ B then X/B ∈ B;

3. Given a finite or infinite sequence {Bk} of subsets of X, Bk ∈ B, then
⋃

k Bk ∈
B.

A σ-algebra of X is usually denoted as σ(X).

Definition 2.1.2. A function λ : B → R
+ is called a measure on B if

1. λ(∅) = 0;
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2. If {Bk} is a finite or infinite sequence of pairwise disjoint sets from B, then

λ
(

⋃

k

Bk

)

=
∑

k

λ(Bk).

Definition 2.1.3. The triplet (X,B, λ) is called a measure space, where B and µ

are defined above. The set B is said to be measurable if B ∈ B. In particular, if

λ(X) = 1, we say it is a normalized measure space, or probability space.

Definition 2.1.4. If there is a sequence {Bk}, Bk ∈ B satisfying

X =
∞
⋃

k=1

Bk and λ(Bk) <∞ for all k,

then the measure space (X,B, λ) is called σ-finite.

Definition 2.1.5. Let O denote a family of open sets of X. Then the σ-algebra

B = σ(O) is called the Borel σ-algebra of X. Its elements are called Borel subsets of

X.

If a property is true except for a subset having measure zero, then we say this

property is true almost everywhere (abbreviated as a.e.). Next we define a relation

between two measures.

Definition 2.1.6. Let µ and λ be two measures on the same measurable space (X,B).

Then µ is said to be absolutely continuous with respect to λ provided the following

holds:

if E ∈ B and λ(E) = 0, then µ(E) = 0.

We write µ << λ.

In this thesis, we focus our attention on Lebesgue measure, which we define as

follows.

Definition 2.1.7. Let I be a nonempty interval on the real line. Denote its length

by l(I). For a set of A ⊂ R, consider a family F of countable coverings of A by open

bounded intervals, i.e., a family of coverages {Ik} for which A ⊆ ⋃∞
k=1 Ik. Then the

Lebesgue outer measure is defined by

λ∗(A) = inf
F

{

∞
∑

k=1

l(Ik)
}

.
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Definition 2.1.8. A set E is said to be measurable if, for any set A,

λ∗(A) = λ∗(A ∩ E) + λ∗(A ∩ EC).

If E is measurable, then the Lebesgue measure of E is defined by its outer measure

m(E) = λ∗(E).

2.2 Lebesgue integration

Based on Lebesgue measure, we introduce a type of integration — the Lebesgue

integral, which is more general than the commonly used Riemann integral. Lebesgue

integral is an essential tool for Frobenius-Perron operator. So now we consider the

real-valued function on the measure space (X,B, λ).

Definition 2.2.1. A function f : X → R is measurable if f−1(∆) is measurable for

any Borel set ∆ ⊂ R, that is, f−1(∆) ∈ B.

In developing the concept of the Lebesgue integral, we will use characteristic

functions and simple functions.

Definition 2.2.2. For any set A, the characteristic function χA is defined by

χA(x) =











1, if x ∈ A

0, if x 6∈ A.

Definition 2.2.3. A real-valued function ψ defined on a measurable set E is called

simple if it is measurable and takes only a finite number of values. That is, there

exists constants ai, i = 1, ..., n such that

ψ(x) =
n
∑

i=1

ai · χEi
(x),

where Ei’s are measurable sets.

We will first define the Lebesgue integral for simple functions, for bounded func-

tions, non-negative functions, and finally define it in general.
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Definition 2.2.4. For a simple function ψ defined on a set E of finite measure, we

define the integral of ψ as

∫

E

ψdλ =
n
∑

i=1

ai · λ(Ei).

Definition 2.2.5. For a bounded real-valued f on a set E of finite measure, the lower

and upper Lebesgue integral is defined respectively as

sup

{∫

E

ϕdλ
∣

∣

∣
ϕ simple and ϕ 6 f on E

}

and

inf

{∫

E

ψdλ
∣

∣

∣
ψ simple and ψ > f on E

}

A function is said to be Lebesgue integrable if the lower and upper Lebesgue integrals

have the same value, and this common value is called its Lebesgue integral denoted by
∫

E
fdλ.

Note that for a bounded function f defined on a closed interval [a, b], if f is

Riemann integrable over [a, b], then it is Lebesgue integrable over [a, b], and the two

integrals share the same value.

Definition 2.2.6. For a nonnegative measurable function f on E, we define the

integral of f over E by

∫

E

fdλ = sup

{∫

E

hdλ
∣

∣

∣
h bounded, measurable, of finite support and 0 6 h 6 f

}

Definition 2.2.7. A nonnegative measurable function over a measurable set E is

integrable if
∫

E

fdλ <∞.

Definition 2.2.8. For an extended real-valued function f , define

f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}

f is integrable if |f | = f+ + f− is integrable, and

∫

E

fdλ =

∫

E

f+dλ−
∫

E

f−dλ.
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For convenience, we introduce the following notation.

Definition 2.2.9. Let 1 6 p < ∞. Then the collection of real-valued measurable

functions (or rather a.e. -equivalence classes of them) f : X → R satisfying

∫

X

|f |pdλ <∞

is called the L p(X,B, λ) space.

Then for Lebesgue measure λ, the space L 1(X,B, λ) contains all Lebesgue inte-

grable functions. It will be denoted by L 1(λ). The L p norm of f is defined by

‖ f ‖p= (

∫

X

|f(x)|pdµ) 1
p .

Definition 2.2.10. Let (X,B, µ) be a normalized measure space. Let

D = D(X,B, µ) = {f ∈ L
1(X,B, µ) : f ≥ 0 and ‖ f ‖1= 1}

denote the space of probability density functions. A function f ∈ D is called a density

function or simply a density.

The Lebesgue integral has some nice properties such as linearity, monotonicity,

additivity, etc. We state the following theorems.

Theorem 2.2.1. [32] If f, g ∈ L 1(X,B, λ), then for any α and β,
∫

(αf + βg)dλ is

integrable and
∫

(αf + βg)dλ = α

∫

fdλ+ β

∫

gdλ.

Furthermore, if f 6 g then
∫

fdλ 6

∫

gdλ.

Theorem 2.2.2. [32] Let f be a integrable function on E and {Ei}∞i=1 be a countable

disjoint measurable subsets of E and E =
⋃∞
i=1Ei, then

∫

E

fdλ =
∞
∑

i=1

∫

Ei

fdλ =
∞
∑

i=1

∫

E

f · χEi
dλ.

Like the Riemann integral, the Lebesgue integral connects to differentiation, and

the variable can be changed. These facilitate greatly our further analysis.
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Theorem 2.2.3. [32] If f is Lebesgue integrable on the closed interval [a, b], then

d

dx

∫ x

a

fdλ = f(x)

for almost all x ∈ (a, b).

If µ << λ, the Radon-Nikodym Theorem allow us to represent µ in terms of λ.

Theorem 2.2.4. [32] Let (X,B) be a measurable space and let µ and λ be two

normalized measures on (X,B). If µ << λ, then there exists a unique element

f ∈ L 1(X,B, λ) such that for every A ∈ B

µ(A) =

∫

A

fdλ.

f is called the Radon-Nikodym derivative and is denoted by dµ

dλ
.

Definition 2.2.11. A measurable transformation S : X → X on a measure space

(X,B, µ) is nonsingular if µ(S−1(B)) = 0 for all B ∈ B such that µ(B) = 0.

By virtue of the Radon-Nikodym theorem, we can state a change of variables

theorem.

Theorem 2.2.5. [21] Let (X,B, λ) be a measure space, S : X → X a non-singular

transformation, and f : X → X a measurable function such that f ◦S ∈ L 1(X,B, λ).

Then for every B ∈ B,
∫

S−1(B)

(f ◦ S)dλ =

∫

B

fd(λS−1) =

∫

B

f · J−1dλ

where λS−1 denotes the measure

λS−1(B) = λ(S−1(B)), for B ∈ B,

and J−1 is the density of λS−1 with respect to λ, that is

λ(S−1(B)) =

∫

B

J−1dλ for B ∈ B.

For differentiable invertible transformations on R
d, J(x) is the determinant of the

Jacobian matrix:

J(x) =

∣

∣

∣

∣

dS(x)

dx

∣

∣

∣

∣

.

Note J−1(x) =

∣

∣

∣

∣

dS−1(x)
dx

∣

∣

∣

∣

.
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2.3 Ergodic Theory

Let (X,B, µ) be a normalized measure space.

Definition 2.3.1. A measurable function τ : X → X is called measure-preserving,

or we say µ is τ -invariant if µ(τ−1(B)) = µ(B) for all B ∈ B.

Now we can present the definition of a dynamical system.

Definition 2.3.2. Let τ preserve µ. The quadruple (X,B, µ, τ) is called a dynamical

system.

Let τ : X → X be a transformation. We denote the nth iterate of τ by τn:

τn(x) = τ ◦ τ ◦ ... ◦ τ(x). In a dynamical system, we are interested in the properties

of the orbit {τn(x)}n≥0. For example, the property that starting in a specific set,

the orbit returns to the set infinitely many times; or that every orbit is eventually

”attracted” by some set. The Poincare Recurrence Theorem gives us a powerful result

on the recurrence:

Theorem 2.3.1. [4] Let τ be a measure-preserving transformation on (X,B, µ). Let

E ∈ B such that µ(E) > 0. Then almost all points in E return infinitely often to E

under iterations of τ , i.e.,

µ({x ∈ E| there exists N such that τn(x) 6∈ E for all n > N}) = 0.

Proof: Let B ⊂ E be the set of points that never return to E. Since

B = E ∩ τ−1(X \ E) ∩ τ−2(X \ E) ∩ ...,

B is measurable. Suppose µ(B) > 0. If x ∈ B, then τ(x), τ 2(x), ..., τn(x) do not

inside B. Therefore B is disjoint from τ−n(B) for all positive n. Moreover, they are

all pairwise disjoint since

τ−i(B) ∩ τ−(i+j)(B) = τ−i(B ∩ τ−j(B)),

Since τ is measure preserving, µ(B) = µ(τ−1(B)) = ... = µ(τ−n(B)) > 0, and thus

µ(
⋃∞
n=0 τ

−n(B)) = ∞. This contradicts the fact that µ(X) = 1. Therefore µ(B) = 0.

One can obtain the same result for τ i, because τ is measure preserving.

14



Let F1 ⊂ E denote the set of points that eventually return to E under some

iteration of τ . Clearly F1 = E \ B and µ(F1) = µ(E). Similarly, let Fn ⊂ E

denote the set of points that eventually return to E under some iteration of τn,

then µ(Fn) = µ(E) for all positive n. Denote F =
⋂∞
n=1 Fn. F consists of all

points of E that return infinitely often to E. Since F1 ⊃ F2 ⊃ F3 ⊃ ... we have

µ(F ) = µ(
⋂∞
n=1 Fn) = limn→∞ µ(Fn) = µ(E). �

Definition 2.3.3. A measure-preserving transformation τ is ergodic if for any B ∈
B, such that τ−1(B) = B, µ(B) = 0 or µ(X \B) = 0.

Next we state the Birkhoff Ergodic Theorem, a fundamental theorem in ergodic

theory.

Definition 2.3.4. Suppose τ : (X,B, µ) → (X,B, µ) is measure-preserving, where

(X,B, µ) is σ-finite, and f ∈ L 1(µ). Then there exists a function f ∗ ∈ L 1(µ) such

that
1

n

n−1
∑

k=0

f(τ k(x)) → f ∗, µ− a.e.

Furthermore, f ∗ ◦ τ = f ∗, µ− a.e. and if µ(X) <∞, then
∫

X
f ∗dµ =

∫

X
fdµ.
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Chapter 3

The Inverse Frobenius-Perron

Problem

Studying a dynamical system by analysing time-dependent orbits is usually difficult,

since the tiny difference of the initial status can result in dramatically different tra-

jectory. Hence, instead of focusing on each single orbit, we see the system from a

macroscopic perspective — consider the probability of points locating in a interval

after nth iterates. This give rise to the study of Frobenius-Perron operator.

3.1 Definition

The inverse Frobenius-Perron Problem is associated with the Frobenius-Perron oper-

ator.

Assume the space under consideration is the interval I = [a, b] and points are

distributed by a probability density function f ∈ L 1. That is, the probability of the

initial point being in any measurable set A ⊂ I is

Prob{x ∈ A} =

∫

A

fdλ,

where λ is the normalized Lebesgue measure on I. Let points being transformed by a

map τ . After the transformation, the distribution over I would be different. Assume
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the new density is φ, then the probability function becomes

∫

A

φdλ = Prob{τ(x) ∈ A} = Prob{x ∈ τ−1(A)} =

∫

τ−1(A)

fdλ.

The existence of φ is given by the Radon-Nikodym Theorem (see Theorem 2.2.4).

It is easy to see that φ is determined by τ and f . We let Pτf denote φ. Then

∫

A

Pτfdλ =

∫

τ−1(A)

fdλ. (3.1)

Definition 3.1.1. Let (X,B, λ) be a measure space. If τ : X → X is a non-singular

transformation, the unique operator Pτ : L 1 → L 1 defined by equation (3.1) is called

the Frobenius-Perron operator corresponding to τ .

The Frobenius-Perron operator describes the evolution of density functions.

Let A = [a, x], then
∫ x

a

Pτfdλ =

∫

τ−1([a,x])

fdλ.

Differentiating both sides, we obtain, by Theorem 2.2.3,

Pτf(x) =
d

dx

∫

τ−1([a,x])

fdλ a.e.

Next we will state some useful properties for Frobenius-Perron operator in general.

Proposition 3.1.1. The Frobenius-Perron operator has the following properties:

1. Pτ is a linear operator:

Pτ (αf1 + βf2) = α · Pτf1 + β · Pτf2 (3.2)

for α, β ∈ R and f1, f2 ∈ L 1;

2. Let f ∈ L 1 and assume f ≥ 0. Then Pτf ≥ 0;

3. Suppose I is the space. Pτ preserves the integral:

∫

I

Pτfdλ =

∫

I

fdλ

4. For non-singular transformations τ : I → I and σ : I → I, Pτ◦σf = Pτ ◦ Pσf.
In particular, Pτnf = P n

τ f .
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Proof:

1)Linearity:

∫

A

Pτ (αf1 + βf2)dλ =

∫

τ−1A

(αf1 + βf2)dλ

= α

∫

τ−1A

f1dλ+ β

∫

τ−1A

f2dλ

= α

∫

A

Pτf1dλ+ β

∫

A

Pτf2dλ

=

∫

A

(α · Pτf1 + β · Pτf2)dλ

Since A is arbitrary, Equation (3.2) is true.

2)Positivity: If f ≥ 0, then for any measurable set the integral is nonnegative.

Therefore,
∫

A

Pτfdλ =

∫

τ−1A

fdλ ≥ 0

for arbitrary mearable set A. So Pτf ≥ 0.

3)Preservation of integrals: Note that τ−1I = I. So

∫

I

Pτfdλ =

∫

τ−1I

fdλ =

∫

I

fdλ

4)Composition property: For any measurable set A, since

∫

A

Pτ◦σfdλ =

∫

σ−1◦τ−1A

fdλ

=

∫

τ−1A

Pσfdλ

=

∫

A

Pτ ◦ Pσfdλ

the result follows. If σ = τ , then Pτ2f = P 2
τ f . By mathematical induction,

Pτnf = P n
τ f. �

The Frobenius-Perron problem is to find a fixed point of Pτ , i.e., Pτf = f . Such

f is also called the invarant density. If we are given a density function f , the inverse

Frobenius-Perron problem involves in determining a point transformation τ such that

the dynamical system xi+1 = τ(xi) has f as its unique invariant probability density

function.
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3.2 The existence of the invariant density

In this section we show the existence of the invariant density.

Definition 3.2.1. The function τ is said to be of class Cr if the derivatives τ
′

, τ
′′

, ..., τ (r)

exist and are continuous.

Definition 3.2.2. Let f : [a, b] → R and let P = P{x0, x1, ..., xn} be a partition of

[a, b]. If there exist a positive number M such that

n
∑

k=1

|f(xk)− f(xk−1)| ≤M

for all partitions P, then f is said to be of bounded variation on [a, b].

The symbol
∨b

a f denote the variation of f over the closed interval [a, b].

The first existence theorem is given by Lasota and Yorke in 1973.

Theorem 3.2.1. Let τ : [0, 1] → [0, 1] be a piecewise C2 function such that inf|τ ′ | > 1.

Then for any f ∈ L the sequence

1

n

n−1
∑

k=0

P k
τ f

is convergent in norm to a function f ∗ ∈ L 1. The limit function has the following

properties:

1. f ≥ 0 ⇒ f ∗ ≥ 0.

2.
∫ 1

0
f ∗dm =

∫ 1

0
fdm.

3. Pτf
∗ = f ∗ and consequently the measure dµ∗ = f ∗dm is invariant under τ .

4. Then function f ∗ is of bounded variation; moreover, there exists a constant c

independent of the choice of initial f such that the variation of the limiting f ∗

satisfies the inequality
1
∨

0

f ∗ ≤ c ‖ f ‖ .
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Before we state the next existence theorem, we illustrate the relation between the

invariant measure and the fixed point.

Proposition 3.2.1. Let τ : I → I be non-singular. Then Pτf
∗ = f ∗ if and only if

the measure µ(A) =
∫

A
f ∗dλ is τ -invariant, where f ∗ ∈ D and f ∗ ≥ 0.

Proof:

If Pτf
∗ = f ∗, then for any measurable set A,

µ(A) =

∫

A

f ∗dλ =

∫

A

Pτf
∗dλ =

∫

τ−1A

f ∗dλ = µ(τ−1A)

Thus µ is τ -invariant.

If µ(A) = µ(τ−1A), then
∫

A

f ∗dλ =

∫

τ−1A

f ∗dλ =

∫

A

Pτf
∗dλ.

Since A is arbitrary, we have Pτf
∗ = f ∗. �

So the existence of invariant density is equivalent to the existence of invariant

measure. Straube (1981) proved the following theorem.

Theorem 3.2.2. Let (Ω,B, λ) be a measure space with normalized measure λ, f a

nonsingular transformation of Ω into itself. Then

1. there exists an f -invariant normalized measure which is absolutely continuous

with respect to λ

if and only if

2. there exist δ > 0, and α, 0 < α < 1, such that

λ(E) < δ ⇒ sup
k∈N

λ(f−k(E)) < α, ∀E ∈ B.

3.3 Representations of the Frobenius-Perron op-

erator

3.3.1 For piecewise monotonic and expanding map

For a special class of piecewise monotonic transformations, the Frobenius-Perron op-

erator has a convenient representation, which will be of great use in the sequel.
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Definition 3.3.1. Let I = [a, b]. The transformation τ : I → I is called piecewise

monotonic if there exists a partition of I, a = a0 < a1 < ... < an = b, and a number

r ≥ 1 such that

(1) τ is a Cr function on (ai−1, ai), i = 1, ..., n, which can be extended to a Cr function

on [ai−1, ai], i = 1, ..., n and

(2) |τ ′(x)| > 0 on (ai−1, ai), i = 1, ..., n.

If the condition (2) is replaced by |τ ′(x)| ≥ α > 1, then τ is called piecewise

monotonic and expanding.

Let the transformation τ be piecewise monotonic on the partition P = {a0, a1, ..., an}.
Denote τ|[ai−1,ai] by τi, and Bi = τ([ai−1, ai]), i = 1, ..., n. Then, for any measurable

set A ⊂ I:

τ−1(A) =
n
⋃

i=1

τ−1
i (A ∩Bi).

It is obvious that sets {τ−1
i (A∩Bi)}ni=1 are mutually disjoint. By Theorem 2.2.2 and

Theorem 2.2.5, we can separate the integral and change the variable:
∫

A

Pτf(x)dλ =

∫

τ−1(A)

f(x)dλ

=
n
∑

i=1

∫

τ−1
i (A∩Bi)

f(x)dλ

=
n
∑

i=1

∫

A∩Bi

f(τ−1
i (x))|(τ−1

i (x))′|dλ

=
n
∑

i=1

∫

A

f(τ−1
i (x))|(τ−1

i (x))′| · χBi
(x)dλ

=

∫

A

n
∑

i=1

f(τ−1
i (x))

|τ ′(τ−1
i (x))| · χBi

(x)dλ

Since A is arbitrary, we can write

Pτf(x) =
n
∑

i=1

f(τ−1
i (x))

|τ ′(τ−1
i (x))| · χτ([ai−1,ai])(x) (3.3)

Example 2.4.1 Let τ be the tent map as shown in Figure 3.1:

τ is a piecewise function on [0, 1]:

τ(x) =











2x, 0 ≤ x < 1
2

−2x+ 2, 1
2
≤ x ≤ 1.
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Figure 3.1: Tent map

We denote the left branch as τ1 and τ2 for the right one. Then

τ ′1(x) = 2, τ ′2(x) = −2

τ−1
1 (x) =

1

2
x, τ−1

2 (x) = −1

2
(x− 2).

So

Pτf =
1

2
f
(x

2

)

+
1

2
f
(

1− x

2

)

We can see that ρ(x) = 1 is the invariant density for the tent map since Pτρ = ρ.

3.3.2 Delta function representation

For the sake of future discussion, we introduce another form of the Frobenius-Perron

operator.

Definition 3.3.2. Let (X,A ) be any measurable space and let x ∈ X be some point.

Then δx : A → {0, 1}, defined for A ∈ A by

δx(A) :=











0, x 6∈ A,

1, x ∈ A,

is called Dirac delta measure at point x.
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This is a measure intepretation of Dirac delta function. In late 1920’s, P. A. M.

Dirac derived the equation

d

dx
ln(x) =

1

x
− iπδ(x)

where δ satisfies the following properties:

1. δ(x) = 0 for x 6= 0.

2.
∫ +∞
−∞ δ(x)dx = 1.

3. For any function defined on R, f(y) =
∫ +∞
−∞ δ(x− y)f(x)dx. We call this sifting

property.

This δ is now known as Dirac delta function. It has another property named com-

positon property, which we shall use later:

∫ +∞

−∞
f(x)δ(g(x))dx =

∑

i

f(xi)

|g′(xi)|
,

where the sum extends over all roots of g(x).

The delta function representation for the Frobenius-Perron operator is shown in

the following theorem.

Theorem 3.3.1. [7] For the piecewise differential and bijective map τ , Equation 3.3

and

Pτf(x) =

∫ 1

0

δ(x− τ(y))f(y)dy

are equivalent.

Proof:
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If τ is piecewise monotonic on partition {a0, a1, ..., an}, then
∫ 1

0

δ(x− τ(y))f(y)dy

=
n
∑

i=1

∫ ai

ai−1

δ(x− τi(y))f(y)dy

=
n
∑

i=1

∫ 1

0

δ(x− z)f(τ−1
i (z))|(τ−1

i (z))′|dz

=
n
∑

i=1

f(τ−1
i (x))|(τ−1

i (x))′|

=Pτf(x).

�

3.3.3 Matrix Representation

In this section we focus on some definitions and theorems on matrices, which will be

used in Chapter 5.

Definition 3.3.3. A real n × n matrix A = {aij} is called a right stochastic matrix

if aij ≥ 0 and each row sums to 1. It is called a left stochastic matrix is each column

sums to 1.

Theorem 3.3.2. The largest eigenvalue of a stochastic matrix is 1.

Proof:

Let A = {aij} be a n × n stochastic matrix. We can just prove this for a right

stochastic matrix since the transpose matrix has the same eigenvalues:

det(AT − λI) = det[(A− λI)T ] = det(A− λI).

Since each row of A sums to 1, A1 = 1, where 1 is the unit matrix. This shows

that 1 is an eigenvalue of A. Suppose there exists λ > 1 and a vector x such that

Ax = λx. Let x0 denote the largest entry of x, then
∑n

j=1 aijxj ≤
∑n

j=1 aijx0 = x0

for 1 ≤ i ≤ n. Thus elements in λx should not be larger than x0. However, since
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λ > 1, λx0 > x0, so we have a contradiction. �

Let P = {P1, ..., PN} be a partition of I = [a, b].

Definition 3.3.4. A transformation τ : I → I is called P-Markov if τ |Pi
is mono-

tonic and τ(Pi) is a union of intervals of P.

The following theorem was proved by Boyarsky and Haddad [1981].

Theorem 3.3.3. [16] If a transformation τ is P-Markov and piecewise linear and

expanding, then any τ -invariant density is constant on intervals of P.

Definition 3.3.5. A transformation τ : I → I is called P-semi-Markov if there exist

disjoint intervals Q
(i)
j such that for any i = 1, ..., N we have Pi =

⋃k(i)
j=1Q

(i)
j , τ |

Q
(i)
j

is

monotonic, and τ(Q
(i)
j ) ∈ P.

(a) P-Markov (b) P-semi-Markov

Figure 3.2: Examples

Figure 3.2 gives us an example of a Markov map and a semi-Markov map. Note

that every P-Markov map is P-semi-Markov, but the reverse is not necessary true.

Theorem 3.3.3 can be generalized to the semi-Markov case.

Theorem 3.3.4. [16] Let τ be a P-semi-Markov transformation, and τ |
Q

(i)
j

is linear

with slope greater than 1 for j = 1, ..., k(i), i = 1, ..., N . Then any τ -invariant density

is constant on intervals of P.
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Proof:

Let Q = {Q(i)
j , j = 1, ..., k(i), i = 1, ..., N} be a partition on interval I, then τ

is Q-Markov. Let f be a τ -invariant density. By Theorem 3.3.3, f is constant on

interval Q
(i)
j . Denote the value of f on Q

(i)
j by f

(i)
j . Fix 1 ≤ i0 ≤ N , and choose j1, j2

such that 1 ≤ j1, j2 ≤ k(i0). The Frobenius-Perron equation for τ -invariant density

gives us

f
(i0)
j1

=
∑

(i,j)

|(τ (i)j )′|−1f
(i)
j ,

and

f
(i0)
j2

=
∑

(i,j)

|(τ (i)j )′|−1f
(i)
j .

where τ
(i)
j = τ |

Q
(i)
j

, and the sums extend over all pairs of (i, j) such that τ(Q
(i)
j ) = Pi0 .

The right hand sides of both equations are equal, so f
(i0)
j1

= f
(i0)
j2

and therefore f is

constant on intervals of P. �

Next we introduce an important definition since it allows us to interpret an semi-

Markov operator as a matrix.

Definition 3.3.6. Let τ be a P-semi-Markov piecewise linear transformation. The

Frobenius-Perron matrix is Mτ = (aij)1≤i,j≤N , where

aij =















∑

k

|(τ (i)k )′|−1
if τ(Q

(i)
k ) = Pj,

0 otherwise .

Let f be piecewise constant f = {f1, f2, ..., fN}, then f is τ -invariant if and only

if f = fMτ , since we know, from Equation (3.3), that f is a fixed point of τ iff, for

all j,
n
∑

i=1

∑

k

f(τ
(i)
k (x)−1)

|τ ′(τ (i)k (x)−1)|
· χτ(Qi

k
)(x) = fj, (3.4)

where the second summation runs over all subintervals of Pi such that τ(Q
(i)
k ) = Pj.

This equation can be simplified by noticing that f(τ
(i)
k (x)−1) = fi, so

n
∑

i=1

∑

k

fi

|τ (i)′k |
= fj,
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n
∑

i=1

(

∑

k

1

|τ (i)′k |

)

· fi = fj,

n
∑

i=1

aij · fi = fj.

Hence Equation (3.4) is equivalent to f = fMτ .
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Chapter 4

Three solutions of IFPP

In this chapter, we will provide three solutions that solve the IFPP. They are devised

by Grossman and Thomae (1977), Koga (1991), and Pingel, Schmelsher, Diakonos

(1999). We will make a generalization for the third method.

4.1 Conjugation approach

This method was developed by Grossman and Thomae (1977), Mori (1981), Gyorgyi

and Szepfalusy(1983), etc. As the name suggests, a conjugation transformation is

used to construct symmetric maps with prescribed invariant density.

4.1.1 Symmetric density

Definition 4.1.1. Two transformations τ : I → I and σ : J → J on intervals

I and J are called conjugate if there exists a one-to-one map (usually continuous)

u : I
onto−−→ J such that

τ(x) = u−1(σ[u(x)]).

The map u is called the conjugation transformation.

Theorem 4.1.1. Let σ and τ be conjugate: τ(x) = u−1 ◦ σ ◦ u(x), where u is a

diffeomorphism. If Pσg = g then Pτf = f , where

f = (g ◦ u) · |u′|.
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Proof:

The fact that u is a diffeomorphism implies u is monotonic. By Equation (3.3),

Pu−1g =
n
∑

i=1

(g ◦ ui)|u′i|χ[ai−1,ai] = (g ◦ u) · |u′| = f.

Using the relation Pφ◦ψf = Pφ ◦ Pψf , we obtain

Pτ (f) = Pτ (Pu−1g) = Pu−1◦σ◦u(Pu−1g)

= Pu−1 ◦ Pσ ◦ Pu(Pu−1g)

= Pu−1 ◦ Pσ(g)

= Pu−1(g) = f. �

Let I = [0, 1] be the underlying space. To generate a symmetric map, we choose

the tent map t(x) = 1−|2x− 1| in Example 2.4.1 as the map going to be conjugated.

Let u(x) be the conjugation transformation with u(0) = 0, u(1) = 1, u′(x) > 0 and

apply it to t(x):

τ(x) = u−1 ◦ t ◦ u(x).

Recall that the invariant density of t(x) is ρ(x) = 1. By Theorem 4.1.1, the invariant

density of the transformed map τ(x) is

f(x) = (ρ ◦ u) · |u′(x)| = u′(x).

This relation gives us a way to derive u(x) from the density function f(x).

If the given f is symmetric, then u(x) =
∫ x

0
f(t)dt has the property that u(x) =

1− u(1− x), since

u(x) =

∫ x

0

f(t)dt = 1−
∫ 1

x

f(t)dt

= 1 +

∫ 0

1−x
f(1− z)dz

= 1 +

∫ 0

1−x
f(z)dz

= 1−
∫ 1−x

0

f(z)dz

= 1− u(1− x)
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This guarantees the symmetry of τ :

τ(1− x) = u−1 ◦ t ◦ u(1− x)

= u−1(1− |2[u(1− x)]− 1|)

= u−1(1− |2[1− u(x)]− 1|)

= u−1(1− |2u(x)− 1|)

= τ(x)

In this way we are able to generate a symmetric map with symmetric invariant density.

Example 3.1.1 Let f(x) = 2− |2− 4x| be the prescribed invariant density. We

seek a symmetric transformation τ that generates f(x).

Observe that f is symmetric with respect to x = 1
2
, and it is piecewise linear:

f(x) =











4x, 0 ≤ x < 1
2

−4x+ 4, 1
2
≤ x ≤ 1.

Calculating u(x) =
∫ x

0
f(t)dt for each piece, we obtain

u(x) =











2x2, 0 ≤ x < 1
2

−2x2 + 4x− 1, 1
2
≤ x ≤ 1,

One can easily check that u(x) satisfies u(0) = 0, u(1) = 1 and u(x) = 1− u(1− x).

(a) f(x) (b) u(x)

Figure 4.1: The invariant density and the conjugation map
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Now applying the conjugation process, τ(x) = u−1 ◦ t ◦ u(x), we get

τ(x) =







































√
2x, 0 ≤ x < 1√

8

1−
√

1
2
− 2x2, 1√

8
≤ x ≤ 1

2
,

1−
√

1
2
− 2(1− x)2, 1

2
< x < 1− 1√

8
,

√
2(1− x), 1− 1√

8
≤ x ≤ 1

The graph of τ(x) is shown in Figure 4.2.

Figure 4.2: τ(x)

4.1.2 Non-symmetric density

The above conjugation is appropriate for doubly symmetric maps — symmetric dy-

namical laws and symmetric invariant densities. To generate a symmetric map with

non-symmetric density f(x), we shall use the transformation

τ(x) = U−1 ◦ t ◦ u(x) (4.1)

where U(x) = u(x) + v(x), and u(x) = 1− u(1− x), v(x) = v(1− x), v(0) = 0.

Claim: The invariant density f is U ′(x).

Proof: Let F (x) =
∫ x

0
f(x)dx. Recall that for piecewise monotonic τ , the

Frobenius-Perron equation is

f(y) =
∑

xi=τ−1(y)

f(xi)

|τ ′(xi)|
.
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Expressing |τ ′

(xi)| as | dydxi |, we can write :

f(y)|dy| =
∑

xi∈τ−1(y)

f(xi)|dxi| (4.2)

In the case of a two-branch τ , integrating both sides of Equation (4.2) allows us to

rewrite the Frobenius-Perron equation as

F (x) = F (τ−1
l (x)) + 1− F (τ−1

u (x)),

where τ−1
l and τ−1

u denote the lower and upper branches of the inverse function τ−1.

If U(x) satisfies

U(x) = U(τ−1
l (x)) + 1− U(τ−1

u (x)), (4.3)

then f(x) = U ′(x). Since τ−1 = u−1 ◦ t−1 ◦ U(x), and

t−1(x) =











x
2
, 0 ≤ t−1(x) < 1

2

1− x
2
, 1

2
≤ t−1(x) ≤ 1,

we have

τ−1
l = u−1

(

U

2

)

and

τ−1
u = u−1

(

1− U

2

)

.

In the following, we show that τ−1
u = 1− τ−1

l . Let z = u−1(1− U
2
), then

u(z) = 1− U

2

=⇒ 1− u(1− z) = 1− U

2

=⇒ u(1− z) =
U

2

=⇒ 1− z = u−1

(

U

2

)

=⇒ z = 1− u−1

(

U

2

)
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The right hand side of Equation (4.3) becomes:

U

(

u−1

(

U(x)

2

))

+ 1− U

(

1− u−1

(

U(x)

2

))

=(u+ v)

(

u−1

(

U(x)

2

))

+ 1− (u+ v)

(

1− u−1

(

U(x)

2

))

=U(x)

The last equality uses the properties u(x) = 1− u(1− x) and v(x) = v(1− x). This

proves that U(x) =
∫ x

0
f(t)dt. �

Let us now define

U+(x) =
1

2

∫ x

0

[f(t)− f(1− t)]dt (4.4)

U−(x) =
1

2

∫ x

0

[f(t) + f(1− t)]dt. (4.5)

Notice that u(x) = U−(x), v(x) = U+(x) is a decomposition for U , that is, u(x) =

1− u(1− x), v(x) = v(1− x). Since

U−(x) =
1

2
(

∫ x

0

f(t)dt+

∫ x

0

f(1− t)dt)

=
1

2
(U(x) +

∫ 1

0

f(z)dz −
∫ 1−x

0

f(z)d(z))

=
1

2
(U(x) + 1− U(1− x)),

we obtain the formula for the map

τ(x) = U−1[1− |U(x)− U(1− x)|]. (4.6)

Example 3.1.2 Suppose that f(x) = 2x is the given invariant density. By sub-

stituting f into Equation (4.4) and (4.5), we get u(x) = x, v(x) = x2 − x, and thus

U(x) = u(x)+v(x) = x2. Therefore τ(x) =
√

1− |2x− 1|. As shown in Figure (4.3),

τ is a symmetric function.
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Figure 4.3: τ(x) =
√

1− |2x− 1|

4.2 Differential Equation approach

In 1991, Koga solved the Frobenius-Perron equation inversely for two kinds of maps

by using differential equations on I = [0, 1]. The two types considered are

τ(1− x) = τ(x), (case 1)

τ(x+
1

2
) = τ(x). (case 2)

The former represents the map symmetric about x = 1
2
, and the latter is the trans-

lationally symmetric map. Further, assume that the slope of τ(x) is positive in the

interval [0, 1
2
] and τ(0) = 0.

Recall that Theorem 3.3.1 allows us to write the Frobenius-Perron equation as

Pτf(x) =

∫ 1

0

δ(x− τ(y))f(y)dy

where δ is the Dirac delta function. f is the preassigned invariant density, so

f(x) =

∫ 1

0

δ(x− τ(y))f(y)dy. (4.7)

Now our task is to solve for τ from the above equation.

Substituting τ(x) into Equation (4.7), we obtain

f(τ(x)) =

∫ 1

0

δ(τ(x)− τ(y))f(y)dy. (4.8)
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Recall that the Dirac delta function has the composition property, and it can be

written as

δ(g(x)) =
∑

i

δ(x− xi)

|g′(xi)|
, (4.9)

where xi’s are roots of g(x). Let g(y) = τ(x)− τ(y). For case 1, the roots of g(y) are

y = x and y = 1 − x. Also |g′(x)| = |τ ′(x)| = |τ ′(1 − x)| = |g′(1 − x)|. Substituting
this into Equation (4.9) yields:

δ(τ(x)− τ(y)) = δ(g(y))

=
δ(y − x)

|g′(x)| +
δ(y − (1− x))

|g′(1− x)|

=
δ(x− y) + δ(1− x− y)

|dτ(x)
dx

|
(4.10)

Similarly, for case 2 we have

δ(τ(x)− τ(y)) =
δ(x− y) + δ(x+ 1

2
− y)

|dτ(x)
dx

|
(4.11)

Substitute Equation (4.10) into (4.8) and by the sifting property of delta function,

we get

f(τ(x)) =

∫ 1

0

δ(x− y) + δ(1− x− y)

|dτ(x)
dx

|
f(y)dy

= |τ ′(x)|−1

(∫ 1

0

δ(x− y)f(y)dy +

∫ 1

0

δ(1− x− y)f(y)dy

)

= |τ ′(x)|−1(f(x) + f(1− x))

Our assumption for x ∈ [0, 1
2
] is τ ′(x) > 0. So for case 1,

dτ(x)

dx
=
f(x) + f(1− x)

f(τ(x))
(4.12)

In case 2,
dτ(x)

dx
=
f(x) + f(x+ 1

2
)

f(τ(x))
(4.13)

This is an ordinary differential equations for τ(x). To solve Equation (4.12), one can

try to integrate both sides:

f(τ(x))dτ(x) = (f(x) + f(1− x))dx

35



∫ τ(x)

0

f(z)dz =

∫ x

0

(f(z) + f(1− z))dz (4.14)

For Equation (4.13):

∫ τ(x)

0

f(z)dz =

∫ x

0

(f(z) + f(z +
1

2
))dz (4.15)

Note here x ∈ (0, 1
2
). The behaviour on (1

2
, 1) can be determined by symmetry.

Example 3.2.1 Consider f(x) = 2x. To generate τ in case 1, substitute f(x)

into Equation (4.14):

∫ τ(x)

0

2zdz =

∫ x

0

(2z + 2(1− z))dz

=⇒τ(x)2 = 2x

=⇒τ(x) =
√
2x.

This is the left branch of τ . The right branch can be obtained by symmetry with

respect to x = 1
2
. Figure 4.3 shows the graph.

To generate type 2, we use Equation (4.15) and yield the left branch of τ(x) as
√
2x2 + x. We plot τ in Figure 4.4.

Figure 4.4: Case 2
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4.3 Pingel’s approach

4.3.1 Generating unimodal maps

In this section we introduce the approach devised by Pingel, Schmelsher and Diakonos

(1999). They focused on constructing a map τ with one maximum, and each branch

of τ covering the whole interval. Later we will see that this is a generalization of the

previous two methods.

Let F (x) =
∫ x

0
f(x)dx. Recall from Section 3.1 that the Frobenius-Perron equation

can be written as

f(y)|dy| =
∑

xi=τ−1(y)

f(xi)|dxi| (4.16)

For unimodal τ , we label the preimages of y which are located in the left branch as

xL, and in the right as xR (see Figure 4.5). Then Equation (4.16) becomes

Figure 4.5: xL and xR

f(y)|dy| = f(xL)|dxL|+ f(xR)|dxR| (4.17)

Define a function hτ (x) which maps the left preimage to the right one:

hτ : [0, xmax] → [xmax, 1]

xR = hτ (xL), (4.18)

37



where xmax is the position whose value of τ reaches the maximum. Note that hτ is

decreasing and differentiable except for a finite number of points, that is,

h′τ (x) < 0, x ∈ [0, xmax],

hτ (0) = 1,

hτ (xmax) = xmax.

Since xR is a function of xL, substituting hτ in Equation 4.17, we obtain:

f(y)dy = f(xL)dxL − f(hτ (xL))h
′
τ (xL)dxL (4.19)

Let τL(x) denote the left part of τ . Integrating Equation 4.19 for x ∈ [0, xmax] yields

∫ τL(x)

0

f(t)dt =

∫ x

0

[f(t)− f(hτ (t))h
′
τ (t)]dt.

Then

F (τL(x)) =

∫ x

0

f(t)dt−
∫ hτ (x)

hτ (0)

f(t)dt,

F (τL(x)) = F (x)− F (0)− F (hτ (x)) + F (hτ (0)).

Since hτ (0) = 1, F (0) = 0, F (1) = 1, we have

F (τL(x)) = F (x)− F (hτ (x)) + 1, (4.20)

τL(x) = F−1[F (x)− F (hτ (x)) + 1] (4.21)

By substituting h−1
τ (x) for x, one can obtain the right part τR(x). Thus

τ(x) =











F−1[F (x)− F (hτ (x)) + 1] if 0 6 x < xmax

F−1[F (h−1
τ (x))− F (x) + 1] if xmax 6 x 6 1

(4.22)

= F−1(1− |F (x)− F (Hτ (x))|), (4.23)

where Hτ (x) is given by

Hτ (x) =











hτ (x), 0 6 x < xmax

h−1
τ (x), xmax 6 x 6 1.
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Comparing (4.6) and (4.14) with (4.22), we see that they are compatible in the

case hτ (x) = 1− x.

Example 3.3.1 Again f(x) = 2x, we use Pingel’s method to generate a unimodal

map τ on [0, 1] that preserves f . We calculate F (x)

F (x) =

∫ x

0

f(t)dt = x2

and set hτ (x) = 1− x, so xmax =
1
2
. By Equation (4.22), we have

τ(x) =











√
2x, if 0 6 x < 1

2

√
2− 2x, if 1

2
6 x 6 1

Since hτ is symmetric, we obtain a symmetric τ(see Figure (4.6a)). Note that the

result is the same as Example 3.1.2.

If we choose hτ (x) = 1− x
2
and xmax =

2
3
, we get

τ(x) =











√

3
4
x2 + x, if 0 6 x < 2

3

√
3x2 − 8x+ 5, if 2

3
6 x 6 1.

Its graph is shown in Figure (4.6b).

(a) τ with hτ (x) = 1− x (b) τ with hτ (x) = 1− x
2

Figure 4.6: Example 3.3.1
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4.3.2 Generating two-pieces maps

We can generalize Pingel’s method to construct piecewise increasing maps with two

pieces and each branch covering the whole interval. An example is shown in Fig-

ure (4.7).

Figure 4.7: piecewise increasing τ

The only difference between our construction and Pingel’s original one is in the

function h : [0, xmax] → [xmax, 1] defined by Equation (4.18). It can be easily seen

that

h′(x) > 0,

h(0) = xmax,

h(xmax) = 1

in our case. Therefore, Equation (4.19) becomes

f(y)dy = f(xL)dxL + f(hτ (xL))h
′
τ (xL)dxL,

and we obtain
∫ τL(x)

0

f(t)dt =

∫ x

0

[f(t) + f(hτ (t))h
′
τ (t)]dt,

F (τL(x)) =

∫ x

0

f(t)dt+

∫ hτ (x)

hτ (0)

f(t)dt,

F (τL(x)) = F (x) + F (hτ (x))− F (xmax).
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So

τL(x) = F−1[F (x) + F (hτ (x))− F (xmax)]

Notice here F (xmax) is a determined number as long as xmax is fixed. Hence we get

a general form of τ :

τ(x) =











F−1[F (x) + F (hτ (x))− F (xmax)], if 0 6 x < xmax

F−1[F (h−1
τ (x)) + F (x)− F (xmax)], if xmax 6 x 6 1

(4.24)

Again, we see that this is compatible with Koga’s solution of case 2, provided that

hτ (x) = x+ 1
2
.

Example 3.3.2 Given f(x) = 2x, we want to construct a piecewise increasing

map. In Example 3.3.1, we calculated that F (x) = x2. Set xmax =
1
3
and hτ = 2x+ 1

3
.

We see that hτ (0) =
1
3
, hτ (

1
3
) = 1. Therefore by Equation (4.24),

τ(x) =











√

5x2 + 4
3
x if 0 6 x < 1

3
√

5
4
x2 − 1

6
x− 1

12
if 1

3
6 x 6 1

The graph of τ is shown in Figure (4.8).

Figure 4.8: τ with hτ (x) = 2x+ 1
3
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Chapter 5

Matrices-based Approach

Solving IFPP by matrix method has also been developed by various groups. In

this chapter we will present two different matrix solutions from Rogers, Shorten,

Heffernan[2004], Gora and Boyarsky[1993, 2007]. They all considered the case that

the preassigned invariant density is piecewise constant. Basic concepts can be found

in Section 3.3.3.

Beforehand, one shall see the relation between τ and its Frobenius-Perron ma-

trix. Interpreting a P-semi-Markov piecewise linear τ as a matrix was shown in

Definition 3.3.6. The converse problem requires that we can construct τ . To do this,

partition the unit interval into N equal subintervals {I1, I2, ..., IN}. Let entry aij of

the Frobenius-Perron matrix A denote the fraction of interval Ii being mapped into

interval Ij. Then in the square Ii × Ij, the slope of τ is ± 1
aij

. For example, the

map in Figure 5.1 is one possible interpretation of the transition matrix A. The first

row of A corresponds to boxes B1, B2, B3. More specifically, a12 =
1
2
means that the

probability of the transition from I1 to I2 is 1
2
. Setting the slope of τ equals to 2 (or

-2) in box B2 can satisfy this condition.

Generally we will start at the origin and draw the line segment end to end to yield

a piecewise continuous map.
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A =















1
4

1
2

1
4

1
3

1
3

1
3

0 2
5

3
5















Figure 5.1: One possible τ for A

Therefore, to find a P-semi-Markov piecewise linear solution of IFPP, we only

need to construct its Frobenius-Perron matrix.

5.1 A solution based on stochastic matrices

In this section, the synthesis method developed by the group of Roger is discussed.

This method is based on the theory of stochastic matrices, and the matrix used in the

analysis of synchronised communication networks. The idea is to treat the prescribed

piecewise constant density function as the eigenvector of a column stochastic matrix

with eigenvalue 1, then the generated stochastic matrix represents a class of desired

dynamic laws.

Consider the matrix A shown below. It originates in the work of synchronised
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communication networks:

A =

















β1 0 . . . 0

0 β2 0 0
... 0

. . . 0

0 0 . . . βn

















+
1

Q

















α1

α2

...

αn

















(

1− β1 1− β2 . . . 1− βn

)

where Q =
∑n

i=1 αi. More compactly,

A =





















β1 +
α1(1−β1)

Q

α1(1−β2)
Q

. . . α1(1−βn)
Q

α2(1−β1)
Q

β2 +
α2(1−β2)

Q
. . . α2(1−βn)

Q

...
...

. . .
...

αn(1−β1)
Q

αn(1−β2)
Q

. . . βn +
αn(1−βn)

Q





















Each column of A sums to 1, and every entry is positive when αi ≥ 0 and 0 < βi <

1, ∀i ∈ {1, ..., n}, therefore A is a left stochastic matrix. By Theorem 3.3.2, A has a

leading eigenvalue 1, and the corresponding eigenvector xp is known as:

xp =





















α1

1−β1

α2

1−β2
...

αn

1−βn





















,

which we call the Perron eigenvector. One can easily check that Axp = xp.

So, if xp is the prescribed density f = xp, then f is τ -invariant, where τ is a

piecewise function determined by matrix A. To find the desired A for a given density

xp, one simple way, for example, is to set all of the βi = 0.1, and then αi can be

determined. Once A is fully determined, it can be translated into a map, since we

can treat A as the transpose of a Frobenius-Perron matrix.
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Example 4.1.1 Given density function f and make it equal to xp

f =
4

15























2

3

1

6

3























=



























α1

1−β1

α2

1−β2

α3

1−β3
α4

1−β4
α5

1−β5



























= xp

Let βi = 0.1, i = 1, 2, 3, 4, 5. We set the above two vectors equal, then solve for α:

α1 = 0.48; α2 = 0.72; α3 = 0.24; α4 = 1.44; α5 = 0.72.

Then
∑4

i=1 αi = 3.6. Substituting in A, we get:

A =























0.22 0.12 0.12 0.12 0.12

0.18 0.28 0.18 0.18 0.18

0.06 0.06 0.16 0.06 0.06

0.36 0.36 0.36 0.46 0.36

0.18 0.18 0.18 0.18 0.28























A possible chaotic map corresponding to A is shown in Figure 5.2.

Figure 5.2: A possible map for A
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5.2 The 3-band Matrix

Gora and Boyarsky devised this special matrix solution in 1993. They introduced

the semi-Markov process, which we have presented in Section 3.3.3, and created a

new class of matrix — 3-band matrix. They offered two simple ways to construct

3-band matrix for given piecewise constant density, and further proved the existence

of semi-Markov transformation.

Definition 5.2.1. An R-semi-Markov piecewise linear transformation is called a

3-band transformation if its Perron-Frobenius matrix Mτ = (pij) satisfies: for any

1 ≤ i ≤ n, pij = 0 if |i− j| > 1. That is:

Mτ =



































p11 p12 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

p21 p22 p23 0 . . . . . . . . . . . . . . . . . 0

0 p32 p33 p34 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 pn−2,n−3 pn−2,n−2 pn−2,n−1 0

0 . . . . . . . . 0 pn−1,n−2 pn−1,n−1 pn−1,n

0 . . . . . . . . . . . . . . . . . 0 pn,n−1 pn,n



































The following theorem shows a simple relation between a 3-band transformation

τ and its invariant density.

Theorem 5.2.1. Let τ be a 3-band transformation with Perron-Frobenius matrix

Mτ = (pij), and f be any τ -invariant density. Let fi be the value of f on interval Ri,

i = 1, ..., n. Then for any 2 ≤ i ≤ n we have

pi,i−1 · fi = pi−1,i · fi−1 (5.1)

Proof:

We will prove (5.1) by induction. Let f = {f1, f2, ..., fn}. f is τ -invariant so

f = f ·Mτ . The first equation is

f1 · p1,1 + f2 · p2,1 = f1
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Note that Mτ is a right stochastic matrix, so p1,1 = 1− p1,2. Therefore,

p2,1 · f2 = p1,2 · f1.

Equation 5.1 is true for the case i = 2. Assume it is true for 2 ≤ i < n. Then the ith

equation of the system is

fi−1 · pi−1,i + fi · pi,i + fi+1 · pi+1,i = fi (5.2)

Substituting our induction hypothesis pi−1,i · fi−1 = fi · pi,i−1 into Equation 5.2 yields

fi · pi,i−1 + fi · pi,i + fi+1 · pi+1,i = fi

fi+1 · pi+1,i = fi · (1− pi,i−1 − pi,i)

fi+1 · pi+1,i = fi · pi,i+1

This proves the theorem. �

To prove the reverse: if we have the pi,i−1 and pi−1,i that make the Equation (5.1)

true, then ensuring the matrix is row stochastic by choosing each pi,i, we get a 3-band

map that preserve the given invariant density.

Example 4.2.1 Let f = 4
15
(2, 3, 1, 6, 3), then

p21 · f2 = p12 · f1 ⇒
12

15
p21 =

8

15
p12 ⇔ 3p21 = 2p12;

p32 · f3 = p23 · f2 ⇒
4

15
p32 =

12

15
p23 ⇔ 1p32 = 3p23;

p43 · f4 = p34 · f3 ⇒
24

15
p43 =

4

15
p34 ⇔ 6p43 = 1p34;

p54 · f5 = p45 · f4 ⇒
12

15
p54 =

24

15
p45 ⇔ 2p54 = 1p45;

As an example, let p21 = 0.2 ⇒ p12 = 0.3, p32 = 0.3 ⇒ p23 = 0.1, p43 = 0.1 ⇒
p34 = 0.6, p54 = 0.1 ⇒ p45 = 0.2. To ensure the matrix is stochastic, we determine
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p11 = 0.7, p22 = 0.7, p33 = 0.1, p44 = 0.7, p55 = 0.9. Thus, we get one desired

τ with its Frobenius-Perron matrix:

Mτ =























0.7 0.3 0 0 0

0.2 0.7 0.1 0 0

0 0.3 0.1 0.6 0

0 0 0.1 0.7 0.2

0 0 0 0.1 0.9























.

The graph of τ is shown in Figure 5.3.

Figure 5.3: τ

A formal proof of the existence of 3-band τ is presented below.

Theorem 5.2.2. Let f = (f1, ..., fn) be a piecewise constant density on a partition

R of I = [a, b] into n equal intervals. Then there exists a 3-band piecewise expanding

transformation τ such that f is τ -invariant.

Proof:

To construct such a τ , we can make g = [2 ·max(fi : i = 1, ..., n)]−1 · f . Define a
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Perron-Frobenius matrix Mτ of some 3-band transformation τ as follows:























1 1− g2, g2
. . .

i gi−1, 1− gi−1 − gi+1, gi+1

. . .

n gn−1, 1− gn−1























Check that Mτ satisfies g = gMτ , since for the i-th column, the right-hand side

gives:

gi−1 · gi + gi · (1− gi−1 − gi+1) + gi+1 · gi = gi.

Therefore, f = fMτ . Each term of Mτ is less than 1, so τ is piecewise expanding.

Thus g and f is τ -invariant. �

In fact the above proof gives us another way to construct the desired 3-band

matrix. Note that the matrices generated by Theorem (5.2.1) and (5.2.2) may be

different. In general, for each density function f , there exist infinitely many 3-band

piecewise expanding transformations that preserve it. If the intervals for piecewise

constant f is not equal, then we shall use the following theorem.

Theorem 5.2.3. Let P = {P1, ..., Pn} be a partition of I = [a, b] into intervals

and let the density f = (f1, ..., fn) be constant on intervals of P. Then there exists

a P-semi Markov piecewise linear and expanding transformation τ such that g is

τ -invariant.

Proof. Define h : I → I as follows:

h|Pi
(x) = e

(i)
0 +

b− a

n ·m(Pi)
(x− l(Pi)),

where e
(i)
0 = a + (i − 1)(b − a)/n, m(Pi) denote the length of Pi and l(Pi) is the

left-hand side endpoint of Pi, i = 1, ..., n. Figure (5.4) presents an example of h when

n = 4. The function h is a piecewise linear homeomorphism and its Frobenius-Perron
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Figure 5.4: One example of h(x)

matrix we can calculate using the general definition, so we get a diagonal matrix

H = {[n ·m(Pi)]/(b− a)}ni=1. Let R be the partition of I into n equal intervals, and

g a piecewise constant function on R:

g = (g1, ..., gn) = fH−1 =

(

fi(b− a)

n ·m(Pi)

)n

i=1

.

By Theorem (5.2.2), there exist a 3-band piecewise expanding map τ0 such that

g = gMτ0 . Let τ = h−1 ◦ τ0 ◦ h. See that τ is P-semi-Markov, piecewise linear and

expanding. Its Perron-Frobenius matrix Mτ = Mh−1Mτ0Mh = H−1
Mτ0H, so

fMτ = fH−1
Mτ0H = gMτ0H = gH = f,

and therefore f is τ -invariant. �

5.3 The N -band Matrix

The 3-band matrix method is useful and has many good features, however, it has

its limitations. When it comes to an invariant density on the partition with a huge

number of subintervals, the 3 ”bands” are so unremarkable. For exmaple, in a 1000×
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1000 matrix, each row and column can just have at most 3 non-zero elements, and

this reduces the usability of the matrix to some extent. Therefore it is natural to seek

a generalized method to tackle this problem. In 2006, Gora managed to generalize

the 3-band matrix into an N-band version. It is shown in the rest of this section.

Definition 5.3.1. An N -semi-Markov piecewise linear transformation is said to be

an N -band transformation, N = 2s+ 1, s ≤ N − 1, if its Frobenius-Perron matrix

Mτ = (pij), 1 ≤ i, j ≤ N , satisfies the condition: pij = 0 if |i− j| > s.

Note that the number N of the ”band” can only be odd. Similar to Theorem 5.2.1,

the N -band matrix satisfies the following theorem.

Theorem 5.3.1. Let T be a N -band transformation on an N-element uniform parti-

tion R, N = 2s+1, with Frobenius-Perron matirxMτ = (pij). Let f = (f1, f2, ..., fN)

be any probabilistic density with fi > 0, i = 1, ..., N . If

fi · pi,j = fj · pj,i (5.3)

for any 1 ≤ i, j ≤ N , then f is T-invariant.

A method for constructing an N -band matrix with given invariant density is

presented below.

Let N = 2s + 1, s ≤ N − 1. Fix s non-negative constant c1, c2, ..., cs with c1 +

c2 + ...+ cs ≤ 1 and other s constants d1, d2, ..., ds such that 0 < di < 1, 1 ≤ i ≤ s.

Firstly we construct the first row and the first column.

• For the first row, we set p1,1+i, 1 ≤ i ≤ s as follows:

ci <
f1+i

f1
ci ≥ f1+i

f1

p1,1+i ci di · f1+i

f1

Note that p1,1+i ≤ ci.

• For the first column, define p1,1 = 1−(p1,2+ ...+p1,1+s) and p1+i,1 = p1,1+i(
f1
f1+i

).

Note that 0 ≤ p1+i,1 ≤ 1, i = 0, ..., s.

51



• Set p1,j = 0 and pj,1 = 0 for j > 1 + s.

Now we construct the second row and the second column.

• The element p2,1 has been defined.

• For the rest of the second row p2,2+i, i = 1, 2, ..., s− 1, we define it as follows:

ci(1− p2,1) < (1− p2+i,1)
f2+i

f2
ci(1− p2,1) ≥ (1− p2+i,1)

f2+i

f2

p2,2+i ci(1− p2,1) di(1− p2+i,1) · f2+i

f2

For p2,2+s:

cs(1− p2,1) <
f2+s

f2
cs(1− p2,1) ≥ f2+s

f2

p2,2+s cs(1− p2,1) ds
f2+s

f2

Note that p2,2+i ≤ ci(1− p2,1), i = 1, ..., s.

• Now we can define the second column as p2,2 = 1− (p2,1+ p2,3+ ...+ p2,2+s) and

p2+i,2 = p2,2+i · f2
f2+i

, i = 1, ..., s. Note that 0 ≤ p2+i,2 ≤ 1, i = 0, ..., s.

Assume that the rows and columns with indices less than k − 1 have been defined.

Next we should construct the kth row and the kth column.

• The elements pk,j has been defined for j < k.

• Define elements pk,k+i, i = 1, ..., s:

ci(1−
∑k−1

j=1 pk,j) < (1−∑k−1
j=1 pk+i,j)

fk+i

fk
else

pk,k+i ci(1−
∑k−1

j=1 pk,j) di(1−
∑k−1

j=1 pk+i,j)
fk+i

fk

Note that pk,k+i ≤ ci(1−
∑k−1

j=1 pk,j) for i = 1, 2, ..., s.

• Define pk,k = 1 −
k+s
∑

j 6=k
j=1

pk,j and pk+i,k = pk,k+i · fk
fk+i

, i = 1, ..., s. Note that

0 ≤ pk+i,k ≤ 1, i = 0, ..., s.

• Set pk,j = 0 and pj,k = 0 for j > k + s.
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The matrix generated from the above construction satisfies Equation (5.3.1).

Therefore it preserves the given density f .

Example 4.3.1 Let f = 4
15
(2, 3, 1, 6, 3), so N = 5. To build a 5-band matrix,

choose s = 2. Following the above steps, fix c1 = 0.3, c2 = 0.7, d1 = 0.5, d2 = 0.8. So

• c1 = 0.3 < 3
2
= f2

f1
=⇒ p1,2 = c1 = 0.3;

• c2 = 0.7 > 1
2
= f3

f1
=⇒ p1,3 = d2 · f3f1 = 0.4;

• p1,1 = 1− p1,2 − p1,3 = 0.3;

• p2,1 = p1,2 · f1f2 = 0.2;

• p3,1 = p1,3 · f1f3 = 0.8;

Similarly we can determine the rest of rows and columns and finally obtain a 5-band

matrix:






















3
10

3
10

2
5

0 0

1
5

31
150

1
30

14
25

0

4
5

1
10

0 3
100

7
100

0 7
25

1
200

1001
2000

429
2000

0 0 7
300

429
1000

1643
3000























,
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Chapter 6

Conclusion

In this thesis we presented the inverse Frobenius-Perron problem and explained its

solutions devised in different ways. The conjugation approach allows us to construct

doubly symmetric maps and symmetric maps with non-symmetric densities. The

differential equation approach considers even and translationally symmetric maps.

Pingel’s group gives us a more general way to generate a unimodal, while not nec-

essarily symmetric, map. Another contribution of this thesis is generalizing Pingel’s

method to piecewise increasing maps. By comparing the above methods we found

that results are compatible in some circumstance. The inverse problem can also be

solved by matrix method. Each row of the matrix generated by Roger’s method (Sec-

tion 5.1) is either ”full” or of only one element in diagonal, while the 3-band matrix or

N -band matrix can never be ”full”. So the their intersection contains only the unit

matrix. The above methods tackle the inverse Frobenius-Perron Problem in different

situations, and they have their own features. It is not easy to say any one of them

is the best solution. The question of choosing which method depends on the kind of

map we need.
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