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Montréal, Québec, Canada

July 2015

c© Jennifer Date, 2015

Department or School Web Site URL Here (include http://)


CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that this thesis is prepared

By: Jennifer Date

Entitled: A Study of Impact of Thermal Model Resolution and
Zone Set Point Profiles on Peak Heating Load and its
Calculation

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Building Engineering)

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Dr. B. Lee Chair

Dr. M. Paraschivoiu Examiner

Dr. L. Wang Examiner

Dr. A. Athienitis Supervisor

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty

Date



Abstract

A Study of Impact of Thermal Model Resolution and Zone Set Point

Profiles on Peak Heating Load and its Calculation

Jennifer Date

This thesis presents an experimental and theoretical study of the dynamic

response of convectively heated buildings and their respective space heating peak

demands for different room temperature set point profiles and thermal mass levels,

with a focus on the impact of thermal model resolution on the peak demand

calculation.

Experiments were conducted at two identical and highly instrumented houses.

One house is modified with different floor coverings, while the other is kept un-

changed and used for reference. Through experimentation and simulation, peak

power (due to space heating) reduction strategies are investigated.

Twelve equivalent RC thermal network models of varying model resolution

are developed for a north zone of the houses. Modelling approximations including

linearization of the heat transfer, spatial and/or temporal discretization and ap-

proximations for reduction in model complexity are implemented into the models

and their effects are investigated. The focus is on simple and physically meaningful

building thermal models suited for model-based control.

The models are used to study the impact of set point ramping lengths and

“near-optimal” transition curves between two temperatures on peak demand re-

ductions for a very cold day. Alterations to walls and ceilings in the models

were done to hypothetically modify their properties in the zone and the effects

in combination with ramping profiles were analyzed. This work can inform the

development of new building materials.
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A commercial building is also considered and two low order RC thermal net-

work are compared. The first model excludes the mass of the interior partitions,

while the second model incorporates them. An advantage of the model with inte-

rior partitions is it can be used for retrofit studies.
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NSERC/Hydro-Québec Industrial Research Chair and the Faculty of Engineering

and Computer Science of Concordia University. The use of the Hydro-Québec Ex-
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Chapter 1

Introduction

1.1 Background and Motivation

In the province of Québec, 94% of generated electricity comes from hydroelectric

plants (Le Bel & Gelinas, 2012). Due to its cold winter weather, Québec has a

high space heating demand. In 2011, the province of Québec’s primary electricity

generation was 170,260 GWh (Statistics Canada, 2011b), while household energy

use of electricity was 56,272 GWh, 33% of total electricity generation. Figure

1.1 shows that 82% of Québec’s households reported electricity as their main

heating fuel (Statistics Canada, 2011a) and 63% of total household energy use was

electricity. Figure 1.2 shows 66% of houses in Québec reported using baseboards

as the main heating equipment and 9% electric radiant heating. The shape of

the region’s demand profile is strongly coincident with the demand profile from

these customers. For the commercial and institutional sector (CI), electricity is

the main source of energy for space heating for 60% of the utility’s customers, of

which 75% have baseboards and room thermostats similar to the equipment used

in the residential sector.
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In the winter, the electricity grid peak demand in Québec occurs on weekday

mornings between 6am and 9am and evenings between 4pm and 8pm. During

winter peak periods, space heating represents up to 80% of the total demand of

the households (Le Bel & Handfield, 2008). It is expected that the installation

of electric space heating in Québec will increase over the coming years due to

their low initial and operating cost. Electric space heating of residential homes

is therefore a relevant load for demand response (DR) in the winter in heating

dominated climates such as Québec. In January 2013 there was a peak demand

of 39.1 GW reported by Hydro-Québec (Hydro-Québec, 2013). Finding ways to

reduce the peak demand and energy consumption of buildings, and consideration

of energy efficiency measures in buildings is a necessity.

Figure 1.1: Main heating fuel
used, 2011 Québec

Figure 1.2: Main heating equip-
ment used, 2011 Québec

Control in buildings is usually done by establishing a schedule of set-points

for room temperatures and other variables (e.g., humidity, state of charge of a

thermal energy storage device). Conventional approaches include maintaining a

fixed set-point, or using a different night-time set point. An estimation of future

loads could be useful in planning the collection, storage and delivery of energy,

as well as in demand response strategies. One way to accomplish this is to use

model-based control to investigate control actions that will optimize an objective

function (such as energy consumption, peak demand or cost).
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Anticipatory or predictive control strategies for buildings, based on weather

and load forecasting, have been proposed and studied as a suitable alternative to

conventional building control for many decades (Candanedo et al. (2010), Henze

et al. (1997, 2005a), Kintner-Meyer & a.F. Emery (1995), Kummert et al. (2006),

Winn & Wins (1985)). The availability of accurate live weather forecasts has

opened up new possibilities for the use of model based and predictive control

strategies in buildings. With accurate forecasts of future conditions, building

models can be used to calculate building energy needs over a prediction horizon (of

up to a few days) (Candanedo et al., 2013) and this knowledge can then be used to

decide on the optimal distribution of resources over time. Model-based predictive

control (MPC) is a control approach using optimization algorithms to choose an

optimal operation sequence based on a system model and forecast data (Camacho

& Bordons, 2004). Despite much research on the application of MPC and other

advanced control techniques in buildings, there is still a large gap between the

potential of these techniques and current control practices (Cigler et al., 2013).

This gap is due to multiple factors: the lack of tools to easily incorporate weather

forecasts into building automation systems; the scarcity of user-friendly software

to test and develop control strategies in buildings; and the limited familiarity of

building professionals with control engineering methods (Candanedo & Athienitis,

2010).

Models with fewer parameters facilitate setting-up initial states, which is a

key consideration in controls (Candanedo et al., 2013). A control-oriented model is

intended to predict the system response over a short period (e.g., hours), therefore

knowing the ”starting point” or initial states is important. Sensor measurements

such as room air temperature can be used to set the initial conditions of a simplified

model. Simpler models also reduce the number of calculations required by the

optimization algorithm.

The main motivation of this thesis is to evaluate the benefits of different levels
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of modelling resolution for understanding building thermal behavior of buildings

and energy management in buildings. The effect of employing different control

strategies on building performance can be investigated by using energy models

developed for the buildings. Also, well calibrated low-order models are well-suited

for the application of model based control in which models can be implemented

into the building automation system. Using the developed models, peak demand

response strategies are investigated further. The level of thermal mass in a zone

and its effect on peak demand reduction strategies is also discussed. MPC gives

context to the work to be presented in this thesis, however, implementation of

MPC using the developed models is beyond the scope of this work but is a logical

next step for future work.

1.2 Research Objectives

The main research objectives of this thesis are:

1. Better understand heat transfer and system dynamics of different types of

zones in conventional Québec buildings heated by convection, under Québec

winter climatic conditions.

2. Better understand level of modelling detail required to sufficiently capture

system phenomena.

• Adjust model order (using finite difference method)

• Constant vs. temperature dependent heat transfer coefficients

3. Develop calibrated models that sufficiently represent building thermal re-

sponse for different types of zones.

4. Explore peak heating demand reduction strategies and impact on model

accuracy.
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• Temperature set point adjustments

• Varying thermal mass properties

1.3 Scope and Outline of the Thesis

This thesis covers experimental results from experiments conducted at a built

environment research facility, which were used to validate thermal models. The

theoretical background for the finite difference thermal modelling approach is in-

troduced, and the accuracy achieved for the different levels of resolution of thermal

modelling are presented. Results of implementable peak heating power demand

reduction strategies are also presented. An occupied small commercial building

case study is also presented.

The following list summarizes the content of each chapter in this thesis:

Chapter 1: Introduction. Presents the motivation and objectives of the work

done as well as the thesis outline.

Chapter 2: Literature Review. Presents a review of related literature and

previous works in the field of energy modelling, demand response and residential

thermostat use.

Chapter 3: Methodology. Presents the methodology and steps used for the

experimental study and modelling analysis.

Chapter 4: Experimental Description and Results. Describes the experimental

procedure and presents the results of the experiments conducted at the Experi-

mental Houses for Building Energetics (EHBE) in Shawinigan, Québec.

Chapter 5: Thermal Modelling Description and Results. Presents the mod-

els developed and compares their accuracy to experimental data using statistical
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indices and visual inspection. Also, Chapter 5 presents results of peak power re-

duction strategy simulations by means of thermostat set point modulation and

thermal mass alterations. A commercial building case study is also presented.

Chapter 6: Conclusions. Includes conclusions, a summary of main contribu-

tions and the recommendations for future work.

6



Chapter 2

Literature Review

Creating good models is fundamental to engineering research. Models are key tools

for engineers as they aid in acquiring a better understanding of the system under

investigation. In building engineering, models are used for many things such as:

design decision making, reducing operation costs, improving mechanical system

performance, reducing the consumption of energy or power demand, or improving

building occupant comfort.

This chapter reviews literature related to building thermal modelling and

discusses the significance of appropriate modelling resolution. This review will

also provide an overview of the research published on the topic of peak power

demand response, with specific attention to demand response strategies for the

heating season in cold climates. Another topic presented in this review is the

effect of thermostat use has on the energy consumption and thermal comfort of

dwellings, as a topic to keep in mind for the level of impact controls have on

comfort and energy consumption.

Section 2.1 presents the review of buildings thermal modelling approaches.

Section 2.2 discusses residential thermostat use and heating control strategies.
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Section 2.3 discusses peak demand and demand response strategies.

2.1 Building Thermal Modelling

Building thermal modelling is most commonly used to study the energy consump-

tion of buildings and different design options. Buildings contribute to roughly

40% of western countries energy consumption (Pérez-Lombard et al., 2008), thus

buildings pose as an interesting sector to study the reduction of their energy con-

sumption and their related carbon footprint. To slow energy demand growth and

reduce the amount of energy used within buildings, it is important to under-

stand the energy distribution throughout a building, and how building parameters

contribute to energy consumption and demand (Langner et al., 2012). Energy

consumption analysis of buildings can be a difficult task as it requires detailed

knowledge of interactions among the building, the HVAC system and the sur-

roundings or external factors such as weather, as well as obtaining mathematical

and physical models that effectively characterize each of those items. The dynamic

behaviour of weather conditions, building operation and occupant behaviour, and

the presence of multiple variables, requires the use of computer aid in the design

and operation of high energy performance buildings. The research field related

to building modelling and energy performance prediction is very productive, in-

volving various research domains (Foucquier et al., 2013). Among them one can

distinguish physics-related fields, focusing on the resolution of equations simulat-

ing building thermal behaviour and mathematical-related ones, consisting in the

implementation of prediction model with the use of machine learning techniques.

There is a third area where physics based and mathematical based techniques are

combined together, commonly referred to as grey-box models.
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2.1.1 Physics Based Models

The physical based techniques of building thermal modelling are based on solv-

ing of equations describing the physical behaviour of heat transfer. The principal

in-coming and out-coming fluxes taking place in the heat transfer are conduction

through the walls, convection, long wave and short wave radiation and the venti-

lation. The corresponding heat exchanges on a wall are shown in Figures 2.1 and

2.2. Three main building models are currently used: CFD (Computational Fluid

Dynamics), zonal and lumped parameter thermal network based methods. Each

method has its own application and the choice of the physical method depends

highly on the problem.

Figure 2.1: Outside Heat Bal-
ance Control Volume Diagram

(DOE, 2013)

Figure 2.2: Inside Heat Balance
Control Volume Diagram (DOE,

2013)

Computation Fluid Dynamics Method

The most detailed approach in thermal building simulation is the CFD (Compu-

tational Fluid Dynamics) method. This is a microscopic approach of the thermal

transfer modelling allowing to detail the flow field three dimensionally. It generally

focuses on heat transfer through convection. It is based on the decomposition of

each building zone in a large number of control volumes with a homogeneous or
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heterogeneous global mesh. Software using the CFD model are based on the res-

olution of the Navier–Stokes equation. A number of CFD software are available

such as FLUENT (FLUENT, 2015), COMSOL Multiphysics (COMSOL, 2015),

etc. Their application fields are large and not always specific to building sim-

ulation. The CFD method is mainly used for its ability to produce a detailed

description of the different flows inside buildings (airflow, pollutant flow, etc.).

The main disadvantage of the CFD approach is its huge computation time (Tan &

Glicksman, 2005), due to the fact that a complete detailed 3D-description of the

building with a very fine mesh is required. Therefore, though CFD is well adapted

to describe flow fields in buildings, the large computation time makes difficult the

generalization to all building applications.

Zonal Method

It is not always necessary to give a very fine description and a way to overcome the

difficulties of CFD is to model the building behaviour in a simpler form by giving

a less detailed description of the interested zone (Abadie et al., 2012). The first

simplification of CFD is the zonal technique. It has been introduced by Bouia &

Dalicieux (1991) and Wurtz (1995) in the beginning of 1990s. It is a way to obtain

a simpler model while maintaining the complexity in 2D. This approach is a fast

way to detail the indoor environment and to estimate zone thermal comfort. The

zonal approach consists of dividing each building zone into several cells. Each cell

corresponds to a small part of a room, making it a two- dimensional approach.

This technique requires previous knowledge on the flow profiles, thus the study of

pollutant transport remains limited. Wurtz et al. (2006) showed that the zonal

simulation is a suitable method for an accurate estimation of the temperature

field in a room and of the indoor thermal comfort. Such a detailed behaviour

description is once again not always required and although it has been hugely
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enhanced with the zonal approach, the computation time can again be reduced by

decreasing the complexity of the model.

Lumped Parameter and Thermal Network Based Methods

The simplest and last approach is called the lumped parameter and thermal net-

work based method. It considers the following assumption: each building zone

is a homogeneous value characterised by uniform state variables. In the method,

one zone is approximated to a node that is described by a unique temperature,

pressure, etc. A node generally represents a room, a wall or the exterior of the

building and can also represent more specific loads such as internal gains from

occupants or equipment. The thermal transfer equations are solved for each node

of the system. TRNSYS (TRNSYS, 2015), EnergyPlus (EnergyPlus, 2015), IDA-

ICE (IDA, 2015), ESP-r (ESP-r, 2015), Clim2000 (Bonneau et al., 1993), BSim

(Rode & Grau, 2011) and BUILDOPT-VIE (BuildOpt-VIE, 2015) are the most

popular software using this approach employed for building simulations. The fi-

nite difference method is notably employed using a description of the heat transfers

from an electrical analogy. It is very useful since it simplifies the physical problem

through a linearization of the equations and thus reduces the computation time.

The principle of the electrical analogy is to associate a thermal resistance R and

a thermal capacity C to a wall. The analogy gives the following equivalence with

Ohm’s law:

U1 − U2 = RI ⇔ θ1 − θ2 =
e

λS
ΦL (2.1)

The temperature θ is equivalent to voltage U, the heat flux ΦL to current I

and the thermal resistance e/λS (L/kA) to electrical resistance R.
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The great advantage of this technique is its ability to describe the behaviour

of a multiple zone building on a large scale with a small computation time. It

is well suited for the estimation of the energy consumption and the evolution of

the space-averaged temperature in a room. One disadvantage is it difficult to

study thermal comfort and air quality inside, due to simplifications used in the

technique.

The following three types of approximations are commonly introduced in

mathematical models to facilitate representation of the building thermal behaviour

(Athienitis & O’Brien, 2015):

1. Linearization of heat transfer : Convective and radiative heat transfer are

nonlinear processes and the respective heat transfer coefficients are usually

linearized so that the system energy balance equations can be solved by di-

rect linear algebra techniques and, if desired, represented by a linear thermal

network. Linearization generally introduces less error for long-wave radiant

exchanges between surfaces than convection between surfaces and room air.

In some cases heat flow reversal can occur such as between a cold floor and

warm air when the convective heat transfer coefficient can be of the order of

1 W/m2K versus 3 W/m2K for a heated floor and cold air. A linear lumped

parameter system can be represented by a set of ordinary differential equa-

tions and thermal networks. An important subset of linear systems are those

with time varying coefficients – an important case in building energy anal-

ysis, where we can often represent thermal conductances such as a known

variable level of natural ventilation or time-varying infiltration.

2. Spatial and/or temporal discretization: Transient heat conduction is de-

scribed by a parabolic, diffusion type partial differential equation. Thus,

when using finite difference methods, a conducting medium with significant

thermal capacity such as concrete or brick must be discretized into a num-

ber of regions, commonly known as control volumes, which may be modelled
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by lumped network elements (thermal resistances and capacitances). Also,

time domain discretization is required in which an appropriate time step is

employed. It should be noted that when thermal storage undergoes phase

change (e.g. phase change materials – PCM) a linear approximation may

not be possible in some cases and specialized modelling will be required.

3. Approximations for reduction in model complexity - (establishing appropriate

model resolution): These approximations are employed in order to reduce the

number of simultaneous equations to be solved and the required data input

or to enable the derivation of closed form analytical solutions. They are

the most important approximations (Athienitis & O’Brien, 2015). Examples

include combining radiative and convective heat transfer coefficients, assum-

ing that surfaces are at the same temperature, or considering certain heat

exchanges as negligible. These approximations must be carefully selected

and applied by considering the expected temperature variations (spatial and

temporal) in a zone. As an example, a zone with large windows or floor

heating may exhibit large spatial temperature variations, in which case the

use of combined film coefficients would results in high errors in room opera-

tive temperature or floor heating rate calculations.

Goyal & Barooah (2012) used the electrical analogy to implement a lumped

thermal simulation model. It is able to predict the temperature and the humidity

in multi-zone buildings from outside temperature and humidity, heat gains from

occupants and solar radiation, supply air flow rates and supply air temperatures.

Their objective was to decrease the order of this model by testing several reduction

methods. Such scientific fields are useful considering some applications such as

HVAC control or monitoring. Hazyuk et al. (2012) developed an in-house multi-

zone model from the electrical analogy. They proposed a description of the walls

and the floor by two identical resistances and one capacity. The thermal mass is

characterized by a single capacity and windows by single resistances. Athienitis
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et al. (1985) used the nodal approach to model multi-zone passive solar buildings.

Fraisse et al. (2002) suggests that a 3 resistance, 4 capacitance model is sufficient

to model the conductive transfers within a wall if the temperature distribution

within the wall is not necessary.

Frequency Domain Technique

An alternative approach in dynamic thermal modelling involves using frequency

domain techniques. Frequency domain approach has been shown to be efficient

in building energy analysis in conjunction with network theory (Athienitis et al.,

1990). This method can facilitate the integration of design and control (Chen

et al., 2013). Shou (1991) stated some potential advantages of frequency domain

techniques over time domain techniques:

• More efficient and less expensive solutions than time domain due to the fact

that there is no time step involved in calculations in the frequency domain.

• No discretization of elements with thermal mass is needed. Instead, the exact

solution obtained from solving the 1-D conduction heat transfer in Laplace

domain is used.

The main disadvantage of frequency domain modelling is the difficulty of

accommodating non-linearities, such as temperature dependent heat transfer co-

efficients. However, in practice, linearization of heat transfer phenomena is often

an acceptable compromise (Shou, 1991). Athienitis et al. (1986) presented an an-

alytical method to determine room temperature swings in direct gain rooms. Also

Athienitis et al. (1987) used discrete frequency domain methodology to determine

auxiliary energy load in buildings. Haghighat & Athienitis (1988) compared two

computer programs; one in a frequency domain and the other in time domain, and

compared their result with the experimental data.
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Generally, a main disadvantage of the physical formulation is the fact that it

suggests a detailed description of the physical behaviour. Therefore, it requires

extensive knowledge on the physical system, especially on the mechanisms occur-

ring inside and outside the building geometry. Unfortunately, this information is

not always available. In contrast, the statistical tools (black-box models) have the

ability to produce models only from measures using techniques such as machine

learning or system identification.

2.1.2 Inverse Models

Inverse models are those for which the identification problem must be solved with-

out any insight into the physical properties or prior knowledge of the process under

study. They are data-driven models that mathematically connect the system in-

put(s) to its output(s) without including any physical meaning in the equation

parameters. Inverse models are built using data gathered from the system re-

sponses to disturbances and/or controlled inputs.

System Identification Technique

The Swedish professor Lienard Ljung, a pioneer in the field of system identification

(SI) research describes SI as: “[...] the art and science of building mathematical

models of dynamic systems from observed input-output data. It can be seen as

the interface between the real world of applications and the mathematical world of

control theory and model abstractions.” (Ljung, 2010). Åström & Eykhoff (1971),

in their early review of system identification developments, identified one root of

the human interest for this field of research as the “Definite needs by engineers [. . . ]

to obtain a better knowledge about their plants for improved control”. Because

computational capacities have increased, the possibilities for system identification

have grown steadily since the early surveys of Åström & Eykhoff (1971) and Bekey
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(1970). Improving controls, design or thermal comfort drive building engineers to

make use of, study, and assess system identification techniques.

Artificial Intelligence Building Models

The artificial neural network (ANN) is a non-linear statistical technique principally

used for prediction. This artificial intelligence method was inspired by the central

nervous system with their neurons, dendrites, axons and synapses. It was first

introduced in its mathematical form by McCulloch and Pitts in 1943, with their

first works being published in 1959 (Lettvin et al., 1959). An advantage of ANN is

its ability to deduce from data the relationships between different variables without

any assumptions of a model. It also overcomes the discretization problem and is

able to manage data unreliability (Foucquier et al., 2013).

ANNs are limited in that they require a relevant database. It is mandatory to

train an ANN with an extensive learning basis with representative and complete

samples (for example, samples in different seasons or moments of the day or during

weekends and holidays).

In building simulation, artificial neural networks are usually used for the pre-

diction of the energy consumption or the forecasting of energy use as the cooling

or heating demand without knowing the geometry or the thermal properties of

the building. Different kinds of databases can be considered depending on the

time scale as the hour, the month or the year and the nature of the data (real or

simulated and instantaneous or time/ space-averaged data). The completeness of

the learning data is the one main condition that is absolutely essential for applying

the artificial neural network technique.
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2.1.3 Grey-box (Hybrid) Models

The complexity of computer aided building modelling tools using complex RC-

network models (e.g., EnergyPlus (2015) and TRNSYS (2015)) grows exponen-

tially as the number of building zones increases. A large amount of measurement

data is required to identify the parameters used for these complex models, which

usually causes data over-fitting problems and high modelling uncertainties (En-

ergyPlus, 2015). Thus it is necessary to consider reduced models with a simpler

structure and fewer parameters for the ease of parameter estimation and data fit-

ting. Second, the model complexity is a major issue for implementing the on-line

optimization-based control schemes, e.g. MPC, particularly if the optimization

is to be performed with a day-long prediction horizon to take advantage of slow

thermal responses of buildings as well as daily variations in environment and en-

ergy prices It is essential to develop reduced models to achieve a trade-off between

prediction accuracy and model complexity. In practice, one can make a trade-off

between the simulation accuracy and computational complexity of the reduced-

order model by choosing an appropriate order of reduction.

The principle of grey-box (or hybrid) models is based on the coupling of statis-

tical and physical models. Grey-box modelling is well proven as a comprehensive

and accurate method to model dynamical systems and obtain knowledge of the

thermal properties of a building (Bacher & Madsen, 2011). One strategy consists

of using statistical methods in fields where physical models are not effective or ac-

curate enough. Another application would be to determine the heat behaviour in

multiple zone buildings where the thermal properties of some zones are unknown.

Some zones would be physically studied while others would need to be described

statistically via measurements collected in these zones.

This approach has been introduced at the beginning of the 1990s for a specific

application which was the automatic control system. For example, Teeter & Chow
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(1998) combined an artificial neural network with a single-zone thermal model

to improve the efficiency of the HVAC control by performing HVAC parameters

identification. Other more recent examples are the works of Paris et al. (2010) and

Paris et al. (2011) who combined the fuzzy logic, a PID controller and a dynamic

model describing the thermal behaviour of the building for implementing several

heating control schemes.

Bacher & Madsen (2011) developed a procedure for identification of suitable

grey-box models for the heat dynamics of a building. Their procedure for identifi-

cation of the most suitable models for the heat dynamics of a building is based on

likelihood-ratio testing combined with forward selection strategy. The proposed

models are grey-box models, where a combination of prior physical knowledge and

data-driven modelling is utilized. Bacher & Madsen (2011) state a suitable model

is a sufficient model which is the smallest model that describes all information

embedded in the data.

Applications of this type of grey-box model selection procedure include:

1. Accurate description of energy performance of the building

2. Forecasting of energy consumption for heating

3. Indoor climate control

For grey-box model selection, often a purely algorithmic and exhaustive selec-

tion procedure is seldom feasible, hence iterative methods, in which the modeller

is partly involved in the selection, are commonly applied.

Deng et al. (2014) proposes an aggregation-based model reduction method

for non-linear models of multi-zone building thermal dynamics. The focus is on

model reduction of multi-zone building thermal dynamics. An advantage of the

proposed method, apart from being applicable to the non-linear thermal models,

is that the reduced model obtained has the same structure and physical intuition
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as the original model. A recently developed aggregation-based method of Markov

chains is employed to aggregate the large state space of the full-order model into a

smaller one. Utilization of physical models in supervisory-level control can largely

minimize building-wide energy consumption and properly satisfy thermal comfort

requirements.

Kummert et al. (2006) also states that parameter identification on a detailed

building is a complex problem due to the large number of parameters and to the

possibility of achieving the same result through different actions (e.g., increasing

the infiltration rate or increasing the thermal conductivity of a low-mass wall or

window) . The very large number of parameters in the building model makes

parameter identification a complex problem, and the desired level of accuracy is

very high—performance differences of less than 10% must be reproduced. They use

a simpler model combined with on-line parameter identification for comparisons,

combining simulation with experimental results for studying the performance of

different controllers in passive solar buildings. Considerable care must be taken

when defining the structure of the building model (e.g., include a model of the

occupants’ reaction rather than its effects) and identifying the parameters to avoid

the risk of over fitting. Their study, however, has shown that it can be easier to

reach a high level of accuracy with simple models that allow a greater flexibility

in parameter identification. Detailed building models that are commonly used

to optimize building designs require thousands of parameters, which makes them

unsuitable for classical parameter identification techniques.

Models with fewer parameters facilitate setting-up initial states, which is a

key consideration in controls (Candanedo et al., 2013). In design simulations, a

long ”warming up period” is usually applied; and when the main goal is deter-

mining the annual energy consumption, initial states are not as important. A

control-oriented model is, however, intended to predict the system response over
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a short period (e.g., hours), therefore knowing the ”starting point” or initial con-

ditions is important. In real control installation, sensor measurements such as air

temperature can be used to set the initial conditions of a simplified model. Sim-

pler models also reduce the number of calculations required by the optimization

algorithm. Simplified models have been applied to the study of advanced building

controls, but a systematic methodology to generate simplified models for control

applications is still needed.

2.1.4 Model Calibration

Calibrating a model or simulation is the process of obtaining outputs that are

very close to selected measured data, such as energy usage or room temperature

for building simulations. Calibration can be done by varying some inputs and

observing the changes to the outputs. This method identifies which parameters

have a significant impact on the output results and is a way to reduce the difference

between measurements and simulation results. Calibration of an energy model

implies changing the inputs in a reasonable range to make the simulation results

more accurate. For a building model to be accurate, it is important not only to

closely match the predicted total energy use to the real energy use, but also to

account for all sources and uses of energy.

Generally, calibrating a model implies comparing the simulation results to

utility data, but there is no specific method to do so. The most common graphical

approaches that have been used in the past are: 1) monthly percent time-series

graph, 2) bar charts, and 3) monthly x-y scatter plots. Measurement technology

has become increasingly inexpensive and therefore accessible, which allows for

measurements of energy usage and environmental data over long periods of time

and at sub-hourly intervals. It has become common in the engineering community

to compare hourly simulation results to hourly measured data. Newer advanced
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methods for comparing the two sets of data include: weather day-type analysis,

carpet plots, and comparative 3D time series plots.

The results of the building energy model depend considerably on a number

of factors: i) the user’s experience with the simulation program, ii) the time allo-

cated for the calibration procedure, iii) the modeling capabilities of the selected

software, iv) the user’s knowledge of design and operation of the building and

HVAC systems.

Many techniques have been explored over the years to calibrate building en-

ergy models. Trial and error is a very popular method, but it is time consuming

and not always reliable. According to Troncoso (1997), a major problem is that

in order to perform model calibration, the analyst has to adjust the input data

without sufficient evidence on which data should be modified or to what extent.

In general, an energy simulation program will have outputs such as electrical de-

mand and consumption data, which has to be compared to monitored data. If the

simulation results and measured data are very different, then the user must ad-

just inputs and parameters on a trial-and-error basis, until the percent difference

is satisfactory. The fact that these parameters are being continuously changed

during the model tuning process reduces the liability of the calibrating process.

Gathering information about the building can be a tedious and long process, and

it is common that the building information is too complex for the model input;

therefore the analyst is forced to base himself on his engineering knowledge and

experience which leads to user-specific results. Troncoso (1997) presented some

steps to perform calibration of building simulation that are based on the definition

of the parameters that most affect the main electric end-uses of a building. Cal-

ibration methodology is composed of six stages: definition of power and schedule

of constant loads, simulation of design days for thermal loads analysis, sensitivity

analysis over input parameters related to significant gain/loss, adjustment of input
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values of high level of influence and uncertainty, whole year simulation and final

results.

The ASHRAE Guideline 14 (Gillespie et al., 2002) contains a methodology for

performing calibrated simulation. The following steps are proposed: 1) produce a

calibrated simulation plan, 2) collect data, 3) input data into simulation software

and run the model, 4) compare simulation results to measured data, 5) refine model

until an acceptable calibration is achieved, 6) produce baseline and post-retrofit

models, 7) estimate savings, and 8) report on observations and savings.

Reddy (2006) categorized the sources of error or uncertainties into four cat-

egories: 1) improper input parameters due to user related lack of experience and

improper specification of material properties and system structures, 2) improper

model assumptions and simplifications due to usage of semi-empirical models or

even perhaps weaknesses in the physical model, 3) inaccurate numerical algo-

rithms, and 4) errors in simulation code.

ASHRAE Guideline 14 (Gillespie et al., 2002) provides methods for analyzing

energy and demand savings from retrofits, as well as instructions on how to use

calibrated simulation, but does not give a detailed description on a calibration

methodology. It proposes steps for calibration but does not give explanations on

how to achieve each step. The most common method of assessing the calibration

agreement is to compare the monthly energy values to the corresponding utility

bills. The issue with this approach is that the positive and negative differences,

regardless of magnitude, could cancel out, giving the impression that there is no

difference between the simulated and measured values. Therefore, it is not recom-

mended to express the results only in terms of a mean and a percent difference.

The AHSRAE Guideline 14 (ASHRAE (2002)) requires the use of two different sta-

tistical indices: the CV-RMSE and NMBE. The root mean squared error (RMSE)
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is used to estimate the magnitude of the error of the model, or how much spread

exists in the difference between measured and predicted values (Reddy, 2006):

RMSE =

√∑
(M − P )2

n− 1
(2.2)

where:

RSME = root mean squared error;

P = Predicted value;

M = Measured value;

n = number of values.

Another way to represent the measured squared errors between measured and

predicted values is by using a dimensionless quantity called the coefficient of vari-

ation of the root mean squared error (CV-RMSE). This coefficient quantifies the

relative error as well, but is a normalized measure, which is often more appropriate

for model evaluation as suggested by Reddy (2011):

CV −RMSE =
RMSE

µ
× 100% (2.3)

where:

µ = Mean measured value.

The mean biased error (MBE) represents the difference between the measured

values and predicted values (Reddy (2011)):

NMBE =

∑
(M − P )

(n− 1)× µ
× 100% (2.4)
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ASHRAE Guideline 14 (Gillespie et al., 2002) suggests that CV-RMSE be

a maximum of 15% and NMBE of maximum 5% on a monthly basis, or 30%

and 10%, respectively, on an hourly basis should guarantee a calibrated model

when the whole building energy use is compared. It is uncertain whether these

values are based on experimental work or some statistical analysis. The same

values for CV-RMSE and NMBE are found in the Federal Energy Management

Program (FEMP) (Webster & Bradford, 2008). The International Performance

Measurement & Verification Protocol (IPMVP-Committee, 2002) suggested a CV-

RMSE of maximum 5% on a monthly basis or 20% on hourly basis for whole

building energy use.

Differences between the predicted and measured values are mostly due to un-

certainty in inputs (program defaults or user assumptions), experimental error,

mathematical model limitations, and user knowledge of HVAC systems and ex-

perience with the software. Users are often forced to assume or predict certain

input parameters (such as air infiltration), but a small variation could lead to

considerable change in simulated energy consumption.

2.2 Residential Thermostat Use and Heating Con-

trol Strategies

The settings of a heating system and the occupant control of the temperature

set point have a great effect on energy consumption in buildings. It has been

shown that, when compared to a constant temperature set point, that night time

set backs reduce overall yearly consumption (Ingersoll & Huang (1985), Manning

et al. (2007), Moon & Han (2011a,b), Tariku et al. (2008)). Ingersoll & Huang

(1985) found that this night time set back strategy is most effective in loose houses,

while the benefits from thermostat setbacks are smaller for tighter houses, and may
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actually be counter-productive owing to subsequent effects such as increased peak

loads and degradation of system efficiency over time.

In the 2005 RECS, 14% of U.S. households reported having no thermostat,

30% (34.6% of thermostat owners) had a programmable thermostat, and 56% had

a manual thermostat (EIA, 2005). In the 2005 heating season, about 60% of

U.S. households with programmable thermostats reported using them to reduce

temperature at night. Only 45% reduced the temperature during the day; the

same survey indicated that approximately 51% of homes have someone home all

day, which may explain why fewer household reduce temperature during the day

than during the night (Peffer et al., 2011).

A cross cultural study of energy behaviour in Norway and Japan, Wilhite

et al. (1996) reveals that less than 50% of Oslo’s household’s setback temperature

at night and 28% did not lower thermostat settings during weekends or vacations.

Another northern European survey of 600 homes, Lindén et al. (2006) showed

that only 38% of the houses with thermostats lowered their temperature during

the night. Of the 35,471 thermostats monitored overall, only 47% were in program

mode, in which the thermostat used the schedule previously input by the occupant

to control temperature set points.

Meier et al. (2011) performed five investigations related to the usability of

residential thermostats. Interviews with occupants revealed widespread misun-

derstanding of thermostat operation. It was found that most thermostats were

selected by previous residents, landlords or other agents. The majority of occu-

pants operated their thermostats manually (rather than using the programmable

features available) and almost 90% of respondents reported that they seldom or

never adjusted to a weekend or weekday program. It was also found (through

photographic evidence) that 45% of low-income families surveyed had their ther-

mostat in hold (constant value), even though 85% claimed to use the programming
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features, further showing user misunderstanding with regards to thermostat use.

The accuracy of whole-house building simulations often depends on the ac-

curacy of the input values and how well they reflect “actual values.” Whether an

input is a defaulted value or measured, discrepancies between the actual value

and input value can occur and propagate throughout the simulation, creating er-

rors in the output (Polly et al., 2011). Among the most influential inputs for

software-based energy analysis are the thermostat set points and associated in-

door air temperatures that drive heat loss calculations. NREL (2013) presents the

measured variability in indoor space temperatures in a set of 60 homes located in

Florida, New York, Oregon, and Washington. Living room temperatures for the

New York area were on average 18.3◦C in the heating season, which is lower than

many standards (House Simulation Protocols (Hendron & Engebrecht, 2010), (In-

ternational Code Council, 2009), (RESNET, 2006), Home Energy Rating System

(HERS)) heating set point assumptions.

Gunay et al. (2014) studied the user behaviour between those who are per-

sonally responsible for their heating bill and those who have their heating bill

included in the rent. It was found that those who had personally responsibility for

their monthly heating bill were more diligent and active in controlling their indoor

temperatures in different zones of the dwelling. On the contrary, those who were

not responsible for their energy bills rarely adjusted their thermostat setting or

setback their temperature during night or unoccupied times. Also, those not re-

sponsible for their energy bill maintained their apartments on average 2◦C higher

than those responsible for their energy bill.

The World Business Council for Sustainable Development recognized the im-

portance of the occupants’ behaviour in reducing energy consumption in its 2007

Report that stated the behaviour of occupants in a building can have as much
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impact on energy consumption as the efficiency of equipment (World Business

Council for Sustainable Development, 2007).

Huebner et al. (2013) states that ‘Smart thermostats’ are characterized gener-

ally by their communicating capabilities, including web and mobile user interface

options, as well as networked control that allows for instantaneous management

of multiple thermostats in a facility. Smart thermostats may include occupancy

responsive control, adaptive or learning functionality, demand response capability,

fault detection and diagnostics, and runtime optimization features. This promises

general improvement to programmed set point scheduling, as well as automated

schedule and set point optimization.

Kummert et al. (2001) studied the performance of a smart heater control on

a passive solar commercial building. It anticipates the building behaviour using

a model and a forecasting of the disturbances in order to compute the control

sequence that minimizes a given cost function (e.g., thermal comfort, energy con-

sumption, peak load etc.) over the optimization horizon. Simulation-based and

experimental results show that it can lead to significant energy savings (9%) while

maintaining or improving the comfort level.

Goyal et al. (2013) compared three control algorithms, one that uses feedback

from occupancy and temperature sensors, while the other two computes optimal

control actions based on predictions of a dynamic model to reduce energy use.

Both the optimal-control based schemes use a model predictive control (MPC)

methodology; the difference between the two is that one is allowed occupancy

measurements while the other is allowed long term occupancy prediction. Simula-

tion results show that each of the proposed controllers lead to significant amount of

energy savings over a baseline conventional controller without sacrificing occupant

health and comfort.
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2.3 Peak Demand and Demand Response

Demand response is regarded as a solution to the issues of uncertain and fluctuat-

ing power supply. A key advantage of demand response is the lack of major tech-

nological impediments, as much of the required communications and monitoring

technology has been developed, with the roll out of advanced metering infrastruc-

ture already under-way in a number of regions (Callaway & Hiskens (2011), ICER

(2012)).

Demand response is not a new phenomenon and has been employed in various

forms across the globe for decades. The most obvious form of demand response is

systematic load shedding, a way to avoid system blackout; however more sophis-

ticated approaches have been implemented in a number of power systems.

Time of use (TOU) rates where consumers are subject to expensive tariffs

during fixed peak hours, or cheaper rates during night hours, have traditionally

been used to incentivise reduced peak consumption, and so-called “night-valley

filling” behaviour (Keane & Goett, 1988). Critical peak pricing (CPP) is an event-

based tariff scheme employed for larger commercial and industrial consumers with

the objective of decreasing peak loads. Under this scheme, higher electricity rates

are applied during peak demand events. This approach has been adopted by

the Californian independent system operator, and is most commonly employed to

reduce loads during hot summer days from noon to 6p.m. when the load from air

conditioning units is excessive (Jazayeri et al., 2005).

Many studies involving the residential sector have been done over the years.

Studies include California’s vast Statewide Pricing Pilot (SPP) (CRA, 2005) and

Oregon’s Olympic Peninsula (PNNL, 2007). From the detailed analysis of the SPP

data (Herter et al., 2007), it was found that automation had a great effect on load

reduction, greater than price signal alone.
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In the past few years, many studies have been done to evaluate the effect of

controlling cooling equipment on the building’s total peak load. Most of the work

found in literature has been focusing on commercial and institutional buildings.

Studies have been done on the reduction of the cooling load using night cooling and

on the effect of thermal mass and thermal storage devices (Braun (1990), LBNL

(2006), Yin et al. (2010)). Others have focused on optimal control of set points

and storage (Henze et al. (2005b), Lee & Braun (2008)). Katipamula & Lu (2006)

and Reddy et al. (1991) have studied control strategies for HVAC equipment in

residential buildings.

Braun (1990) studied dynamic optimization techniques to computer simula-

tions of buildings and their associated cooling systems for a range of conditions

in order to determine the maximum possible savings. Results indicate that both

energy costs and peak electrical use can be significantly reduced through opti-

mal control of the intrinsic thermal storage within building structures. However,

the cost savings depend strongly on several factors including 1) utility rate struc-

ture, 2) part-load characteristics of the cooling plant and air handling system, 3)

weather, 4) the occupancy schedule, and 5) building thermal capacitance.

Braun & Lee (2006) developed and evaluated a simple control strategy for

limiting demand in two types of small commercial buildings using the building

thermal mass. The strategy would be used on days that would be expected to

establish the peak demand for the billing-period. The results of the simulations

show 30% to 100% reduction in the baseline peak air-conditioning power, depend-

ing mostly on climate.

Pietila et al. (2012) studied the viability of achieving a zero peak house (ZPH)

in Toronto, Ontario, Canada - a house that draws no electricity from the grid

during system-wide peak periods. It was found that 41%- 51% of the goal of

eliminating electricity consumption during the summer Ontario on-peak period
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(11am to 5pm during weekdays from May 1 through October 31) could be achieved

through a combination of architectural, control, efficiency, and occupant behaviour

measures.

Research focused on winter peak reduction in cold climates is a continually

growing field. Persson et al. (2005) have explored space heating peak load reduc-

tion but their solutions involved the use of substitution fuel. Lu & Katipamula

(2005) focused on the global effect of controlling thermostatically controlled appli-

ances on the electric grid but not on the effect of this control on occupant thermal

comfort. Oregon’s Portland General Electric Co. had a pilot project in 2004 on di-

rect load control for electric space heating which showed that residential customers

could reduce their peak load by 0.48 to 0.73 kW by reducing their space heating

set point by 2-3◦C for 2 to 3 hours (PGE, 2004). The Olympic Peninsula pilot

project included the control of resistive heating equipment for homes controlled

by one or at most two thermostats. The results of this pilot study showed that

a significant part of the overall load reduction due to price increase came from a

decrease or shift in space heating load (PNNL, 2007).

Leduc et al. (2011) studied space heating strategies for load reduction during

critical periods on the grid while also taking into consideration the occupant ther-

mal comfort. They studied three types of strategies: lowering the thermostat set

point, storing heat in the building mass during off-peak hours and lowering the set

point during critical periods, and limiting the power to the baseboards. Results

showed promising reductions of up to 7kW (or 90% of the reference heating load

of the average residents).

Reynders et al. (2013) studied the impact of the insulation level and embed-

ded thermal mass of a near net zero house on the ability of its photovoltaic system

to cover the power demand of an air-to-water heat pump during grid peak periods.

Results show that although the influence on the cover factors is limited, the use of
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the structural storage capacity for demand-side management shows strong poten-

tial to shift the peak electricity use for heating to off-peak hours. Furthermore, it

is shown that not only the availability of the thermal mass, but also the interaction

between the heating system and the thermal mass is of significant importance.

Lavigne et al. (2014) studied winter demand response for a commercial build-

ing and showed, through using an optimized demand response strategy that the

use of DR strategies can lead to significant reductions in the building’s total power

demand during peak periods while maintaining an acceptable comfort level for the

building’s occupants.

Ali et al. (2014) optimized the demand response control of partial storage

electric space heating, by combining the control of direct electric space heating

and partial thermal energy storage in order to minimize the total energy cost of

customers without sacrificing user comfort. Ali et al. (2014) concluded that the

optimal control model can be easily integrated at the household level.

Fournier & Leduc (2014) used building simulation to study the impact of

multiple set point modulation strategies on the demand of a baseboard heater

house during winter grid peak periods. This study aimed at evaluating the impact

of several set point modulation strategies when applied to selected rooms. Re-

sults show that the demand reduction potential, for a specific building and given

weather conditions, will depend on both the technology available to materialize

the set point modulation strategies and the acceptable disruption from the normal

comfort level. While these are common limits associated with DR strategies based

only on control modifications, they determined that significant load reduction can

be achieved without any added heat storage equipment or building construction

modifications.

Most recently, Candanedo et al. (2015) studied the implementation of “near-

optimal” trajectory between temperature set points and found a peak reduction
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of 8% when compared to a linear ramp profile.

2.4 Conclusion

A great deal of effort has been made to develop suitable energy modelling ap-

proaches for buildings and study their thermal response by means of difference

mathematical and experimental techniques. Model resolution has an effect on

computation time and model accuracy. Model-based thermal control studies have

shown that control-oriented modelling is highly beneficial in evaluating different

control algorithms and energy efficiency measures. Low-order models using the ex-

plicit finite difference method that are well-calibrated are beneficial in control stud-

ies and they are appropriate to be implemented into building automation system

(BAS) to apply the designed control strategies, though great care must be taken

when choosing the approximations used in a mathematical model (Linearization

of heat transfer, model complexity reduction and spatial/temporal discretization)

depending on the building and system types.

From the above literature, it is evident that advancing controls in buildings

offers a way to reduce consumption and peak loads. Settings of a heating system

and occupant control of temperature set points have a great effect on energy

consumption in buildings, as well as building peak demand. Many residents still

do not have programmable thermostats, or if they do, they are not using the

programmable features, suggesting lack of care or user knowledge of thermostat

operation. Thermostat set point schedules are difficult to predict as an input

into building simulations and the results from building simulation studies depend

greatly on the input values for temperature set point schedules. If simulation

defaults or user inputs do not reflect actual conditions in homes, errors in results

can occur. A thermostat user’s schedule, personal preferences, their thermostat

operation knowledge, and their relationship with their heating bill all affect how
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they use their thermostat. All of these variables within the domain of residential

heating control suggest simple strategies, and possibly further public education,

are necessary for widespread peak load demand response to be implemented.
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Chapter 3

Methodology

In this thesis, different levels of thermal modelling detail are studied using data

from a real building and benefits of the different models for the application of

control strategies in buildings are discussed. This study focuses on the lumped

parameter explicit finite difference method as it is appropriate to be implemented

into building automation system (BAS) to apply advanced control strategies. Peak

power reduction strategies implementing temperature set point adjustments and

varying of thermal mass are investigated and evaluated using demand response

indicators (describe in Section 3.4). This thesis focuses on simple and physically

meaningful models and the investigation of modelling resolution, based off of the

guiding principles proposed by Candanedo et al. (2013). Desirable features of

appropriate and physically meaningful models for model based control in buildings

is considered.

3.1 Experiment Objectives

Full scale experiments are a valuable tool to study system behaviour. The objec-

tives of the experiments at Experimental Houses for Building Energetics (EHBE)
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(Fournier & Leduc (2014), Le Bel & Gelinas (2012)) are to obtain a better under-

standing of the transient thermal behaviour and response of the building due to a

set of inputs such as environmental conditions and heating power.

Using the results from full scale building experiments, model resolution and

accuracy are evaluated on how well they are able to predict experiment results.

3.1.1 Choice of EHBE

For 74% of those residential customers, electricity is the main energy source for

space heating (Le Bel & Gelinas, 2012). Approximately 60% of the commercial

& institutional customers (CI market) also use electricity as their main source of

energy for space heating. This wide-spread use of electricity for space heating

combined with Québec’s weather make it a winter-peaking area (its peak demand

was approximately 38 800 MW in 2012). Among the residential customers using

electricity for space heating, 81% have houses equipped with an electric baseboard

and a line-voltage thermostat in each room. On average, their space heating

load typically represents 50% of their total annual electricity bill, while during

peak periods, the space heating load represents up to 80% of the total load of a

residence.

The test bench consists of two 2-storey detached homes with excavated base-

ments, each with a 60m2 footprint, excluding the single detached garage. The

reason to build two identical houses side by side is to have one of them as the test

house while the other is the reference; it allows to determine precisely the impact

of a technology or a strategy in reference to a base case subjected to the exact

same environmental conditions. Further details of EHBE are given in Chapter 4.
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3.2 Data Acquisition

There are approximately 500 sensors in each house with recordings every 15 min-

utes. The thermocouples instrumented in the homes are special T type and the

data acquisition equipment and computers are located in the garage of each house.

The sensors measure the following:

• Weather (temperature, solar etc.)

• Room by room electric baseboard heating (in Wh)

• Plug and lighting loads

• Air temperature, relative humidity, air velocity, globe temperature (Figure

4.5)

• Surface temperatures of structure (walls, floors, ceiling layers etc.)

• Temperatures and water content of surrounding soils in several locations

For this study, weather conditions, room temperatures and heating data were

required for the evaluation of the thermal models. Surface temperature are also

used for thermal comfort analysis.

3.3 Building Thermal Modelling

Simulation and analysis of the thermal and energy fluxes in a building facilitates

the choice of the materials, subsystems and control strategies for the local climatic

characteristics and building function (Athienitis & O’Brien, 2015). Many thermal

processes are relevant in the assessment of building thermal behaviour, such as:

• Heat conduction through exterior walls, roofs, ceilings, floors and interior

partitions;

• Solar radiation through transparent surfaces;
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• Latent and sensible heat generated in the space by occupants, lights, and

appliances;

• Heat transfer through ventilation and infiltration of outdoor air and other

miscellaneous heat gains

One of the most important items in the above process is the thermal conduc-

tion through a multi-layered wall that is calculated in several ways such as:

• Finite difference methods

• Finite element methods

• Transform methods (frequency domain and time domain), including time

series methods

There are two main steps in creating a suitable mathematical model that de-

scribes the energy transfer processes in a building. First, the thermal exchanges

must be modeled as accurately as is necessary. While an acceptable level of pre-

cision is desired, too much complexity or detail can limit the model usefulness in

analysis and design. Second, an appropriate method must be chosen to determine

the room temperature and auxiliary energy loads.

Modelling the long-wave radiant heat exchanges of the zone interior is more

important with direct gain than with indirect gain systems and generally requires

more modelling detail, particularly if a floor heating system is integrated (Athieni-

tis & O’Brien, 2015). As for this study, direct gains and floor heating systems are

not main factors in the zones, therefore a simplified modelling approach for long-

wave radiant heat exchanges is employed and explained in a later section.

The following three types of approximations are commonly introduced in

mathematical models to facilitate representation of the building thermal behaviour

(Athienitis & O’Brien, 2015):
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1. Linearization of heat transfer : Convective and radiative heat transfer are

nonlinear processes and the respective heat transfer coefficients are usually

linearized so that the system energy balance equations can be solved by di-

rect linear algebra techniques and, if desired, represented by a linear thermal

network. Linearization generally introduces less error for long-wave radiant

exchanges between surfaces than convection between surfaces and room air.

In some cases heat flow reversal can occur such as between a cold floor and

warm air when the convective heat transfer coefficient can be of the order of

1 W/m2K versus 3 W/m2K for a heated floor and cold air. A linear lumped

parameter system can be represented by a set of ordinary differential equa-

tions and thermal networks. An important subset of linear systems are those

with time varying coefficients – an important case in building energy anal-

ysis, where we can often represent thermal conductances such as a known

variable level of natural ventilation or time-varying infiltration. It should be

noted that when thermal storage undergoes phase change (e.g. phase change

materials – PCM) a linear approximation may not be possible in some cases

and specialized modelling will be required.

2. Spatial and/or temporal discretization: Transient heat conduction is de-

scribed by a parabolic, diffusion type partial differential equation. Thus,

when using finite difference methods, a conducting medium with significant

thermal capacity such as concrete or brick must be discretized into a num-

ber of regions, commonly known as control volumes, which may be modelled

by lumped network elements (thermal resistances and capacitances). Also,

time domain discretization is required in which an appropriate time step is

employed.

3. Approximations for reduction in model complexity - (establishing appropriate

model resolution): These approximations are employed in order to reduce the

number of simultaneous equations to be solved and the required data input
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or to enable the derivation of closed form analytical solutions. They are

the most important approximations (Athienitis & O’Brien, 2015). Examples

include combining radiative and convective heat transfer coefficients, assum-

ing that surfaces are at the same temperature, or considering certain heat

exchanges as negligible. These approximations must be carefully selected

and applied by considering the expected temperature variations (spatial and

temporal) in a zone. As an example, a zone with large windows or floor

heating may exhibit large spatial temperature variations, in which case the

use of combined film coefficients would results in high errors in room opera-

tive temperature or floor heating rate calculations.

3.3.1 Lumped Parameter Finite Difference Method

This approach is based on a space discretization of the material into control vol-

umes, each one of which describes a layer. A node is located at the centroid of the

control volume. The heat flux between adjacent nodes is described by using re-

sistance analogies: the flux is calculated as proportional to the difference between

the temperatures of the two nodes. Between control volumes, the conductance is

calculated as kA/L, where k is the thermal conductivity of the material, A the

area of the surface of contact, and L the distance between adjacent nodes. If the

node has considerable thermal mass, a node may be assigned a capacitance, which

represents the heat storage capacity of the control volume. By performing a heat

balance on the control volume, the differential equation of a node can then be

written as (Athienitis et al., 1990, Athienitis & Santamouris, 2002):

Ci
dTi
dt

= qi +
∑
j

U(i, j) (T (j, n)− T (i, n)) (3.1)
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Where qi represents the heat generated at a node or received directly by it

from a source, Ui,j represents the thermal conductance (inverse of resistance), T

is the temperature, and C is the thermal capacitance of each node. A strategy

commonly implemented to determine the transient solution is the application of

time discretization (Athienitis & Santamouris, 2002). The fully explicit approach

assumes that the current temperature of a given node depends only on its tem-

perature and the temperature of the surrounding nodes at a previous time step

(Athienitis, 1994). The term having the time derivative can then be discretized as

follows (Athienitis, 1994):

Ci
dTi
dt
≈ Ci

∆Ti
∆t

= Ci

(
T (i, n+ 1)− T (i, n)

∆t

)
(3.2)

By solving for the temperature at the next time step (Athienitis, 1994):

T (i, n+ 1) =

(
∆t

Ci

)
·

(
qi +

∑
j

T (j, n)− T (i, n)

R(i, j)

)
+ T (i, n) (3.3)

Heat conduction calculations based on this method are applied in building

simulation tools such as ESP-r and EnergyPlus. The calculation of conduction

through massive building envelope components become a part of a larger thermal

network representing the zone being analyzed (often linked to other zones).

Figure 3.1 shows a schematic of a simple one-zone thermal network with

combined radiative and convective heat transfer coefficients. The air node (node

1) is linked to the internal surfaces by combined interior convective film coefficients

and radiative heat transfer coefficients. It is also linked to the outdoor temperature

directly by a resistance representing infiltration and conduction through elements

of negligible thermal mass (windows and doors). The air node also receives a

heat contribution qaux from the heating system . By representing radiation and
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convection with linear approximations, methods from circuit analysis can be used

to study the building.

Figure 3.1: Finite Difference Thermal Network of a zone

Kummert et al. (2006) states that parameter identification on a detailed build-

ing model is a complex problem due to the large number of parameters and to the

possibility of achieving the same result through different actions (e.g., increasing

the infiltration rate or increasing the thermal conductivity of a low-mass wall or

window).

The large number of parameters in the building model makes parameter iden-

tification a complex problem, and the desired level of accuracy is very high - per-

formance differences of less than 10% must be reproduced. For those reasons,

among others, a simpler model may be an attractive alternative to complex build-

ing simulation tools.

Using the explicit finite difference method, several thermal network models

of varying resolution (based off of the network in Figure 3.1) were created and

compared to experimental data. The purpose is to study the level of modelling

detail adequate to represent a zone heated convectively and with minimal solar

gains.
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3.4 Demand Response Strategies

Demand reduction indicators can be computed to quantitatively compare the re-

sulting demand profiles over peak periods with the reference scenario. Depending

on the demand strategy implemented, the possible rebound of demand after the

typical peak hours could also create new peaks, . The demand impact of the hours

following the peak period is therefore also of interest.

Table 3.1 lists the most important power demand indicators used to evaluate

the efficiency of the DR strategies (Fournier & Leduc, 2014). Every indicator can

be expressed in terms of the daily power demand profile vector components:

−→
Qx = [qx,0.25, qx,0.5, qx,0.75, . . . , qx,24] (3.4)

Table 3.1: Power demand reduction indicators

Indicator Definition

AM

qmax
am maximum power demand from 6:00-9:00

qam mean power demand from 6:00-9:00

reboundam maximum power demand from 9:00-11:00

PM qmax
pm maximum power demand from 16:00-20:00

qpm mean power demand from 16:00-20:00

reboundpm maximum power demand from 20:00-22:00

3.5 Summary

Full scale experiments are a valuable tool to study system behaviour. The objec-

tives of the experiments at Experimental Houses for Building Energetics (EHBE)
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are to obtain a better understanding of the transient thermal behaviour and re-

sponse of the building due to a set of inputs such as environmental conditions and

heating power. Using the results from full scale building experiments, model reso-

lution and accuracy are evaluated on how well they are able to predict experiment

results. Using the explicit finite difference method, several thermal network mod-

els of varying resolution (based off of the network in Figure 3.1) were created and

compared to experimental data. The purpose is to study the level of modelling

detail adequate to represent a zone heated convectively and with minimal solar

gains.

Adding simulation results to the experimental comparison allows the re-

searcher to estimate yearly savings and to study the behaviour of different DR

strategies, therefore adding useful information to the study.

Kummert et al. (2006) showed that it can be easier to reach a high level of

accuracy with simple models that allow a greater flexibility in parameter identi-

fication. Detailed building models that are commonly used to optimize building

designs require thousands of parameters. While a purely experimental compari-

son based on two identical buildings is probably still preferable it the resources

are available, the hybrid comparison combining experiments and simulation allows

one to infer useful information.
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Experimental Description and

Results

Experiments were conducted at Hydro-Québec’s LTE (Laboratoire des technolo-

gies de l’énergie), in Shawinigan, Québec, where two identical homes are located

and are commonly called the “twin homes”, shown in Figure 4.1. The objective of

the first experiments was to study the dynamic response of a room in the homes

to a temperature step change with different floor coverings. The objective of the

second set of experiments was to implement peak power (due to space heating

loads) reduction control strategies using advanced communicating thermostats,

and observe the building thermal behaviour.

4.1 Experimental Houses for Building Energet-

ics

The homes used for the experiments are the Experimental Houses for Building

Energetics (EHBE) (Fournier & Leduc (2014), Le Bel & Gelinas (2012)). The

test bench consists of two 2-storey detached homes with excavated basements,
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each with a 60m2 footprint, excluding the single detached garage. Floor plans are

shown in Figures 4.2, 4.3 and 4.4. The houses are 25 ft x 26 ft, three bedrooms,

one and a half bathroom cottages with a full basement and a 15 ft x 24 ft attached

garage. The wall assemblies of the building were chosen to represent a typical

light-weight wood framed house in Québec. The total fenestration area is 19m2,

consisting of vinyl framed windows with double glass and air gap. They were

completed in February 2011.

The homes are located in Shawinigan, Québec (46◦34’N 72◦45’W) and are

oriented 35◦ west of south. The homes are heated with baseboard space heating

in each room with individual electronic room thermostats. There is also electric

radiant floor heating in the kitchen and bathroom.

Figure 4.1: Twin houses
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Figure 4.2: Main level of twin houses Figure 4.3: Basement of
twin houses

Figure 4.4: 2nd storey of twin houses

The homes are of normal construction for Québec with a building envelope

consisting of (from exterior to interior) vinyl cladding or brick, air-space, air bar-

rier, fibreboard, R-20 glass-fiber, Enermax, air-space, drywall and R-30 insulation

47



Chapter 4. Experimental Description and Results

in the roof instead of R-20. The windows are of double clear glass with an air

gap and no coatings, with a total window area of 208 square feet for each house.

The interior of the houses is finished with drywall and wood floors except for the

kitchen and bathrooms which have ceramic tile floor.

The baseboard heater in each room is controlled by a line-voltage (204 V)

electronic thermostat with pulse width modulation at 15 second cycles. The heat-

ing capacity in the basement is 4000 W, 4750 W each for the main and second

floor, and 2000 W in the garage. The bedrooms each have a rated capacity of

1250 watts. The houses have been fitted with all the air ducts necessary for a cen-

tral heating/cooling system, though the system is not yet installed. In addition,

the kitchen and second storey bathroom are equipped with electric radiant floor

heating.

There are approximately 500 sensors in each house with recordings every 15

minutes. The thermocouples instrumented in the homes are special T type and

the data acquisition equipment and computers are located in the garage of each

house. The sensors measure the following:

• Weather (temperature, solar etc.)

• Room by room electric baseboard heating (in Wh)

• Plug and lighting loads

• Air temperature, relative humidity, air velocity, globe temperature (Figure

4.5)

• Surface temperatures of structure (walls, floors, ceiling layers etc.)

• Temperatures and water content of surrounding soils in several locations
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Figure 4.5: Globe thermometer

4.2 Experiment 1 Description - Room Dynamics

Experiments were conducted at Hydro Québec’s LTE (Energy technology labora-

tory). The objective of the experiment 1 was to study the dynamic response of

a room in the homes to a temperature step change with different floor coverings.

Experiment 1 occurred between October 23rd and November 4th, 2013 following

the experiment schedule shown in Table 4.1.

The following are the conditions of the homes during the experiments:

• Night time set back at 7pm = 21◦C

• Day time step up at 7am = 26◦C

• Three floor coverings tested: plywood, carpet, tile

49



Chapter 4. Experimental Description and Results

• Experiments with interior doors open and closed

• South windows covered by interior foil

• All windows covered by interior blinds

• Garage and basement kept at constant 21◦C & doors closed

Figure 4.6 shows the temperature set point profile used for the duration of

the experiment and material properties of the floor coverings are shown in Table

4.2.

Table 4.1: Experiment 1 schedule

House 1 House 2 - Reference

Interior Doors Flooring Interior Doors Flooring

Test 1 Open Carpet Open Plywood

Test 2 Closed Carpet Closed Pywood

Test 3 Open Tile Open Plywood

Test 4 Closed Tile Closed Plywood

Figure 4.6: Experiment 1 set point profile
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Table 4.2: Material properties of floor coverings

Density Specific Heat Conductivity Thickness Thermal Capacitance

ρ Cp k L C = Cp × ρ× L× Afloor

(kg/m3) (J/kgK) (W/mK) (mm) (J/K)

Wood 650 2,200 0.12 34.5 6.88× 105

Tile 1,600 1,000 0.195 9.5 1.03× 106

Carpet 200 1,300 – 9.5 –

The indoor set point temperatures were higher than normal during the ex-

periments as a way to increase the temperature difference between indoor and

outdoor environments. Because the experiments were conducted in the fall, the

outdoor temperature was mild and performing energy consumption (due to heat-

ing) analysis at these mild conditions could be difficult.

4.2.1 Experiment 1 Results

Figures 4.7 and Figure 4.8 show air temperature results for all tests of experiment

1 for bedroom 1. The first part of the graph are tests with interior doors open

while the second part is the tests with doors closed. A repeated air temperature

profile can be seen through the days.
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Figure 4.7: Interior temperature - tests 1 & 2

Figure 4.8: Interior temperature - tests 3 & 4

Figures 4.7 and Figure 4.8 shows room air temperature for the tests, while

Figures 4.9 & 4.10 display the weather conditions during the experiments. outdoor

air temperature.
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Figure 4.9: Weather - tests 1 & 2

Figure 4.10: Weather - tests 3 & 4

Figures 4.11 and 4.12 shows room air temperature and heating power for the

tests. The higher energy consumption comes at a time with lower air temperature,

even though at that time, solar radiation is high. This can also be seen in Figure

4.13, where low whole building energy consumption correlates well with a higher

outdoor temperature.
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Figure 4.11: Air temperature and heating power - tests 1 & 2

Figure 4.12: Air temperature and heating power - tests 3 & 4
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Figure 4.13: Whole house energy use

4.2.2 Thermal Comfort Considerations

Thermal comfort refers to ”that condition of mind that express satisfaction with

the thermal environment” [ASHRAE standard 55; as cited in (ASHRAE, 2005)].

ASHRAE Standard 55-2004, “Thermal Environmental Conditions for Human Oc-

cupancy,” specifies conditions in which a specified fraction of the occupants will

find the environment thermally acceptable. Thermal comfort occurs in narrow

temperature ranges, at low skin moisture levels and with minimal physiological

effort of regulation. It is strongly dependent on the levels of activity, physiological

and psychological state, nature of clothing as well as the surrounding environment.

Mean Radiant Temperature

Mean Radiant Temperature (MRT) was calculated with the simplified area weighted

equation as follows:

Tmr = T1A1 + T2A2 + · · ·+ TNAN/(A1 + A2 + · · ·+ AN) (4.1)
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where:

Tmr = mean radiant temperature

TN = surface temperature of surface N (calculated or measured)

AN = area of surface N

This is the simplest and least accurate way to calculate MRT, it is a homo-

geneous steady state area weighted average of the uncontrolled or unconditioned

surface temperatures. This method does not reflect the geometric position, pos-

ture and facing orientation of the occupant, nor the ceiling height, nor the thermal

comfort influence of extraordinary items such as cooled and heated surfaces. Fig-

ure 4.14 shows MRT results using Equation 4.1.

Figure 4.14: Mean radiant temperature experiment 1

Mean radiant temperature can also be measured using a black-globe ther-

mometer, which can be seen in Figure 4.5. The black-globe thermometer consists

of a black globe in the centre of which is placed a temperature sensor. The globe

can in theory have any diameter, though a diameter of 0.15m is generally recom-

mended to use for calculating mean radiant temperature.
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Using the globe to measure the globe temperature (GT), mean radiant tem-

perature (MRT) can be determined using the following equations:

MRT =

[
(GT + 273)4 +

1.1× 108 · v0.6a

ε ·D0.4
(GT − Ta)

]1/4
− 273 (4.2)

And for standard globe (D = 0.15m, ε = 0.95):

MRT =
[
(GT + 273)4 + 2.5× 108 · v0.6a · (GT − Ta)

]1/4 − 273 (4.3)

where:

MRT = mean radiant temperature, ◦C

GT = globe temperature, ◦C

va = air velocity at the level of the globe, m/s

ε = emissivity of the globe

D = diameter of the globe, m

Ta = air temperature, ◦C

The globes in the bedrooms are home-made and are of an ellipsoid shape, thus

further analysis should be done on how to properly calculate MRT with this shape

of globe. At this time, the calculations of MRT in this analysis assumed diameter

of 0.15m for the globes. Results of MRT using the black-globe thermometer are

seen in Figure 4.15.
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Figure 4.15: Mean radiant temperature experiment 1 (from globe tempera-
ture)

Operative Temperature

The operative temperate (To) is what humans experience thermally in a space. It

is the combined effects of the mean radiant temperature and air temperature. To

can be mathematically expressed as:

To = (hrTmr + hcTdb)/(hr + hc) (4.4)

where:

hc = convective heat transfer coefficient, W/(m2K)

hr = linear radiative heat transfer coefficient, W/(m2K)

Tdb = air (dry bulb) temperature, ◦C

Tmr = mean radiant temperature, ◦C

The linear radiative heat transfer coefficient can be calculated as:
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hr = 4σfeff

[
273 +

(tr + ta)

2

]3
(4.5)

where:

hr = linear radiative heat transfer coefficient, W/(m2K)

feff = ratio of radiating surface of the human body to its total DuBois surface

area AD = 0.71

σ = Stefan-Boltzmann constant = 5.67× 10−8W/(m2K4)

The convective heat transfer coefficient for an occupant depends on the rela-

tive velocity between the occupant and the surrounding air, as well as the occu-

pant’s activity. For this study it was assumed a sedentary occupant with moving

air less than 0.23 m/s (typical value measured in the homes), therefore, hc = 3.1

W/(m2K). Operative temperature results are shown in Figure 4.16.

Figure 4.16: Operative temperature experiment 1
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Radiant Temperature Asymmetry

The thermal radiation field about the body may be non-uniform due to hot and

cold surfaces and direct sunlight. This asymmetry may cause local discomfort and

reduce the thermal acceptability of the space. In general, people are more sensitive

to asymmetric radiation caused by a warm ceiling than that caused by hot and

cold vertical surfaces. Radiant asymmetry is the difference between the plane radi-

ant temperatures in opposite directions. The plane radiant temperature is defined

similarly to mean radiant temperature except that it is with respect to a small pla-

nar surface element exposed to the thermal radiation from surfaces from one side

of that plane. The vertical radiant asymmetry is with plane radiant temperatures

in the upward and downward direction. The horizontal radiant asymmetry is the

maximum difference between opposite plane radiant temperatures for all horizon-

tal directions. The radiant asymmetry is determined at waist level (0.6m or 24

in.) for a seated person and 1.1m (43in) for a standing occupant. The maximum

vertical asymmetry of 3.8◦C occurred for a seated person in a carpeted bedroom.

This value is nearing the maximum allowable value of 5◦C for a scenario of a warm

ceiling. Figure 4.17 shows values of plane radiant asymmetry calculated for the

duration of all experiments, and Table 4.3 shows maximum values for all scenarios

tested.

Table 4.3: Radiant asymmetry measured extremes experiment 1

Carpet Floor Tile Floor Wood Floor

Seated Standing Seated Standing Seated Standing

Max Vertical Asymmetry (◦C) 3.8 2.5 2.3 1.3 2.2 2.0

Max Horizontal Asymmetry (◦C) 1.3 1.4 1.5 1.7 1.7 1.9

60



Chapter 4. Experimental Description and Results

Figure 4.17: Bedroom 1 vertical radiant temperature asymmetry (seated per-
son)

Air Temperature Vertical Stratification

Thermal stratification that results in the air temperature at the head level being

warmer than at the angle level may cause thermal discomfort. The allowable

vertical air temperature difference between head and ankles is less than 3◦C.
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Figure 4.18: Delta air temperature between ceiling and floor

In experiment 1 an air temperature difference in the vertical direction of 5◦C

was observed, therefore there could be issues with occupant satisfaction, especially

in the morning when daytime temperature step up begins. Figure 4.18 shows

vertical air gradient during the experiments and Table 4.4 displays the maximum

gradients for the three floor covering cases. At ∆ T = 5◦C, 30% of occupants are

dissatisfied with indoor environment conditions.

Table 4.4: Room air temperature properties experiment 1

Carpet Tile Wood

Delta T Max - Vertical (◦C) 4.5 4.3 4.9

Peak Air Temp at ankle (◦C) 25.3 25.1 25.3

Peak Air Temp at head (◦C) 27.1 27.1 27.7
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Floor Surface Temperature

Occupants may feel uncomfortable due to contact with floor surfaces that are too

warm or too cool. The temperature of the floor, rather than the material of the

floor covering, is the most important factor for foot thermal comfort for people

wearing shoes. The acceptable range of floor temperature is 19-29◦C. From the

Figure 4.19 it can be seen that for all three types of floor covering the surface

temperature is always in the acceptable range for the days during the experiment.

Figure 4.19: Bedroom 1 floor covering surface temperature

4.3 Experiment 2 Description - Ramping Pro-

files

Between experiments 1 and 2, the thermostats in the twin homes were switched

from Ouellet standard programmable thermostats (www.ouellet.com) to Sinopé

communicating thermostats (www.sinopetech.com). The Sinopé thermostats were
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altered to have minimum increments at 1 minute intervals and resolution of 0.1◦C.

Standard Sinopé communicating thermostats have resolution of 0.5◦C and allow six

temperature set point changes per day. Experiment 2 lasted a total of seven days

from Nov. 12 to 18, 2014. The objectives of experiment 2 were to implement ramp-

ing profiles in a real building to validate developed models. One house had wood

flooring and the other house had carpet flooring, tile was not used in experiment

2. Figure 4.20 shows the temperature profile for the seven days of experiments.

The first two days were kept at a constant temperature of 21◦C. Starting on the

third day, two temperature changes using different ramping lengths between 21◦C

and 26◦C were implemented. Ramping profiles provide a simple yet effective way

to reduce the peak load when compared to a temperature step change. Ramping

lengths of 1, 2 and 3 hours were implemented in the experiments to determine

their impact on peak demand reduction due to space heating.

Figure 4.20: Experiment 2 temperature profile

4.3.1 Experiment 2 Results

Figure 4.21 displays the heating power and air temperature of bedroom 1 with

wood floors. We see clearly the peak power is reduced with ramping profiles when

compare to the step changes. Table 4.5 shows the corresponding peak values for

each step or ramp temperature change during the experiment.
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Figure 4.21: Experiment 2 results - bedroom 1 wood floors

Table 4.5: Experiment 2 peak power values - bedroom 1 wood floors

Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Peak 1 [W] (Reduction) — 1172 (1%) 1156 (2%) 980 (17%) 848 (28%) 796 (33%)

Peak 2 [W] (Reduction) — 1164 (1%) 944 (20%) 1160 (2%) 1184 (0%) 792 (33%)

Weather conditions for the duration of the experiment 2 are shown in Figure

4.22. As seen, outdoor air temperature was relatively mild, therefore exaggerated

set point values were used to obtain a larger temperature difference between indoor

and outdoor environments.

Figure 4.22: Experiment 2 weather
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Figure 4.23 shows the air temperatures of bedroom one for each house (carpet

floor vs. wood floor). We see that the air temperature in the carpeted room is

slighting higher (possibly due to uncalibrated thermocouples) but tends to decay

faster when there is set point temperature step down.

Figure 4.23: Experiment 2 air temperature

Focusing on day 6 of experiment 2, shown in Figure 29, the measured air

temperature in bedroom 1 with wood floors compared the Temperature set point

profile. The air temperature always heats up higher to the set point when there

is an increase in the set point values (from 21◦C to 26◦C). This phenomena is

difficult to capture in a model since the reason for this could simply be how the

thermostat is designed. The sensor used to measure air temperature is located

next to the thermostat, typically located at the entrance of each room.

66



Chapter 4. Experimental Description and Results

Figure 4.24: Experiment 2 air temperature - wood floors

Figure 4.25: Experiment 2 peak power reduction

Figure 4.25 shows that on day 6 the peak heating for the three hour ramp is

29% less than the peak for a temperature step change of 21◦C to 26◦C. This is

a significant reduction of peak heating power from easily implemented and only

slightly more advanced temperature set point profile. Climate conditions were
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fairly constant during day 6 of the experiments and was slightly colder during the

3 hour ramping period despite the fact that in the afternoon solar radiation is

higher too.
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Thermal Modelling Description

and Results

The one dimensional heat transfer process for a wall is governed by the following

parabolic, diffusion-type partial differential equation:

∂T

∂t
= α

∂2T

∂x2
(5.1)

where thermal diffusivity α = k/(ρc), k is thermal conductivity, ρ is the

density and c is the thermal capacitance.

In explicit finite difference schemes, the temperature at time n+1 depends

explicitly on the temperature at time n. The explicit finite difference discretization

of equation 5.1 is:

T n+1
i − T n

i

∆t
= α

T n
i+1 − 2T n

i + T n
i−1

∆x2
(5.2)

This assumes α and ∆x2 are the same on all sides of node i.
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This can be rearranged in the following manner (with all quantities at time

n+1 on the left-hand-side and quantities at time n on the right-hand-side):

T n+1
i = T n

i + α∆t
T n
i+1 − 2T n

i + T n
i−1

∆x2
(5.3)

Since we know T n
i+1 , T n

i and T n
i−1 , we can compute T n+1

i . This is schematically

shown on Figure 5.1. The main advantage of explicit finite difference methods

is that they are relatively simple and computationally fast. However, the main

drawback is that stable solutions are obtained only when:

0 <
α∆t

∆x2
< 0.5 (5.4)

If this condition is not satisfied, the solution becomes unstable and starts to

wildly oscillate.

Figure 5.1: Explicit finite difference discretization

The boundary conditions of a wall shown in Figure 5.2 will include convective

heat transfer, absorbed solar radiation (heat source) and long-wave radiations

exchange with other surfaces. Boundary conditions (x = 0 corresponds to exterior

surface) are:
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(i) At x = 0

q = −k∂T
∂x

= G+ ho (To − T1) = ho (Teo − T1) (5.5)

where sol-air temperature is:

Teo = To + αsG/ho (5.6)

(ii) At x = L (thickness of wall)

q = hi (T2 − Tr) (5.7)

where thermal diffusivity α = k/(ρc), k is thermal conductivity, αs is solar

absorptance of the wall, q is the heat flux, h is the heat transfer coefficient and G

is solar radiation.

Figure 5.2: Heat exchange mechanisms for a layer of thermal mass (Athienitis
& Santamouris, 2002)

One dimensional conduction through the walls is generally assumed, as well as

uniform irradiation of their surfaces by solar radiation (Athienitis and Santmouris

2002). However, when thermal bridges are present, such as at corners in rooms
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and for heat loss through the floor, two-dimensional or three-dimensional analysis

is required.

Transient thermal analysis of walls or rooms may be performed with the

following objectives:

1. Peak heating or cooling load calculations

2. Calculation of dynamic temperature variation within walls, including solar

effects, room temperatures swings, and condensation on wall interior surfaces.

For a multi-layered wall, an energy balance is applied at each node at regular

time intervals to obtain the temperature of the nodes as a function of time. These

equations may be solved with the implicit method as a set of simultaneous equa-

tions or with the explicit method in which we march forward in time from a set of

initial conditions.

Wall transient thermal response analysis with finite difference techniques may

generally provide a more accurate estimation of temperatures and heat flows owing

to the capability to model non-linear effects such as convection and radiation.

One disadvantage is that the initial conditions are usually unknown, thus, the

simulation must be repeated until a steady periodic response is obtained.

The explicit finite difference method is particularly suitable for modelling of

non-linear heat diffusion problems such as heat transfer through a wall. It can

easily accommodate non-linear heat transfer coefficients and control actions.

In the transient one-dimensional finite difference thermal network method,

each wall layer is represented by one or more sub-layers. Each sub-layer is repre-

sented by a node with a thermal capacitance C connected to two thermal resis-

tances, R, each equal to half the R-Value of the layer, forming a T-section. For

a multi-layered wall, an energy balance is applied at each node at regular time

intervals to obtain the temperature of the nodes as a function of time. These
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equations may be solved with implicit method as a set of simultaneous equations

or with the explicit method which we march forward in time from a set of initial

conditions.

The general form of the explicit finite difference formulation corresponding to

node i and time interval n is:

T (i, n+ 1) =

(
∆t

Ci

)
·

(
qi +

∑
j

T (j, n)− T (i, n)

R(i, j)

)
+ T (i, n) (5.8)

Where n + 1 indicates the next time step, j is all nodes connected to i and

q is a heat sources at node i. When the thermal capacitance C can be negligible

the equation is as follows:

T (i, n+ 1) =
qi +

∑
j
T (j,n)−T (i,n)

R(i,j)∑
j

1
R(i,j)

(5.9)

In this investigation, heating control was approximated with proportional-

integral control. In proportional-integral (PI) control, which is most common

in building control, the auxiliary heating is equal to the error between the set

point temperature and the actual room temperature multiplied by a proportional

constant plus the magnitude of the error and the duration of the error multiplied

by an integral constant. The relationship can be expressed as:

qauxn = Kpen +Ki

p∑
n=1

(en ·∆t) (5.10)

where:

Kp = proportional control constant

Ki = integral control constant

∆t = time step
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and

en = (Tsp)n − (Tair)n (5.11)

where:

Tsp = air temperature set point

Tair = actual measured air temperature

5.1 Thermal Modelling of EHBE North Zone

5.1.1 Model Resolution

Using the explicit finite difference method, several thermal models of varying res-

olution were created for a north zone in the house to study a simple modelling

approach. Resistance-capacitance (RC) circuit thermal models of varying levels of

resolution were developed for a zone and compared to the physical measurements

in order to study how model resolution has an effect on model accuracy. The model

detail is different in modelling of heat conduction, but for radiation and convection

the models are the same. Radiative and convective heat transfer coefficients have

been combined for this study. Simple models are not just an oversimplification of

a system: they are an acutely understood selection of relevant system information.

The development and application of simple models require a good understanding of

all phenomena involved, a coherent choice of significant parameters and variables,

and much care and thinking when analyzing and interpreting the data (B. Lachal,

1992).

For a vertical surface, the correlation for the convective heat transfer coeffi-

cient is as follows (McAdams, 1959):
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hc = 1.13 · |Tsurface − Tair|1/3 (5.12)

For a hot ceiling, the correlation for convective heat transfer is:

hc = 0.59 ·
(
|Tceiling − Tair|

x

)0.25

(5.13)

where x is the characteristic dimension.

For a cold floor, the correlation for convective heat transfer is:

hc = 1.52 · |Tfloor − Tair|1/3 (5.14)

While the correlation for radiative heat transfer is:

hr = ε · σ · 4
(
Tsurface + 273 + Tair + 273

2

)3

(5.15)

where:

ε = emissivity of walls

σ = Stefan-Boltzman constant (5.6703× 10−8Wm−2K−4 )

and

Tm =

(
Tsurface + 273 + Tair + 273

2

)
(5.16)

where 4Tm3 is a linearization factor for radiation heat transfer.
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Comparisons were done between models with calculated heat transfer coef-

ficients at each time step from the above equations and models with averaged

constant values and results are shown and discussed later in this chapter.

Three Capacitance Model

The simplest model created for a zone is shown in Figure 5.3 and consists of three

capacitances. There is one capacitance for the effective interior capacitance, one

for the interior partitions and floor, while the third capacitance is for the walls

and roof exposed to the exterior environment. Table 5.2 displays the capacitance

and resistance values for the third order RC circuit.

Figure 5.3: Third order equivalent RC network - combined surfaces
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Table 5.1: Node descriptions:
third order model - combined sur-

faces

Node Description

1 air node

2 interior walls node

3 exterior walls node

4 interior surfaces node

5 exterior surfaces node

Table 5.2: Parameter values:
third order model - combined sur-

faces

Capacitances Resistances

(J/K) (K/W)

C1= 159,667 R1,4 = 0.0045

C2= 862,235 R1,5 = 0.0050

C3= 287,847 R1,ext = 0.2200

R2,4 = 0.0018

R2,int = 0.0280

R3,5 = 0.0013

R3,ext = 0.1453

Five Capacitance Model

The next thermal model is a five capacitance RC circuit and is shown in Figure

5.4. The walls, ceiling, and floor capacitances have been discretized into two

capacitances with circuit parameter values shown in Table 5.4.

Figure 5.4: Fifth order equivalent RC network - combined surfaces
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Table 5.3: Node descriptions: fifth
order model - combined surfaces

Node Description

1 air node

2,4 interior walls nodes

3,5 exterior walls nodes

6 interior surfaces node

7 exterior surfaces node

Table 5.4: Parameter values: fifth
order model - combined surfaces

Capacitances Resistances

(J/K) (K/W)

C1= 159,667 R1,6= 0.0052

C2= 433,178 R1,7= 0.0053

C3= 433,178 R1,ext= 0.2202

C4= 147,323 R2,3= 0.0012

C5= 147,323 R2,6= 0.0012

R3,int= 0.0257

R4,5= 8.7947 x 10−4

R4,7= 8.7947 x 10−4

R5,ext= 0.1444

Nine Capacitance Model

The nine capacitance RC circuit model is shown in Figure 5.5. The surface capaci-

tances of the three capacitance model have been discretized into four capacitances

each and the circuit parameter values are shown in Table 5.6. As capacitance

values of a wall layer are increasingly discretized, the model theoretically becomes

closer to physical reality, with the assumption of good model calibration

Figure 5.5: Ninth order equivalent RC network - combined surfaces
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Table 5.5: Node descriptions:
ninth order model - combined sur-

faces

Node Description

1 air node

2,3,4,5 interior walls nodes

6,7,8,9 exterior walls nodes

10 interior surfaces node

11 exterior surfaces node

Table 5.6: Parameter values:
ninth order model - combined sur-

faces

Capacitances Resistances

(J/K) (K/W)

C1 = 119,750 R1,10= 0.0051

C2 = 216,589 R1,11= 0.0050

C3 = 216,589 R1,ext= 0.2202

C4 = 216,589 R2,3= 7.2024 x 10−4

C5 = 216,589 R2,10= 7.2024 x 10−4

C6 = 73,661 R3,4= 7.2024 x 10−4

C7 = 73,661 R4,5= 7.2024 x 10−4

C8 = 73,661 R5,int= 0.0249

C9 = 73,661 R6,7= 5.277 x 10−4

R6,11= 5.277 x 10−4

R7,8= 5.277 x 10−4

R8,9= 5.277 x 10−4

R9,ext= 0.1437

Seven Capacitance Models

There are two models consisting of seven capacitances. The first seven capacitance

model shown in Figure 5.6 is similar to the five capacitance model except now the

floor has been separated on to its own. Interior partitions are represented as two

capacitances, the outer walls and ceiling are represented as two capacitances and

the floor connected to the lower level is represented as two capacitances. Table

5.8 displays the parameter values of the RC circuit.
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Figure 5.6: Seventh order equivalent RC network - separated floor

Table 5.7: Node descriptions: sev-
enth order model - separated floor

Node Description

1 air node

2,3 interior walls nodes

4,5 exterior walls nodes

6,7 floor nodes

8 interior surfaces node

9 exterior surfaces node

10 floor surface node

Table 5.8: Parameter values: sev-
enth order model - separated floor

Capacitances Resistances

(J/K) (K/W)

C1= 279,417 R1,8= 0.0091

C2= 89,305 R1,9= 0.0053

C3= 89,305 R1,10= 0.0129

C4= 147,323 R1,ext= 0.2202

C5= 147,323 R2,3= 0.0022

C6= 343,873 R2,8= 0.0011

C7= 343,873 R3,int= 0.0382

R4,5= 0.0013

R4,9= 6.5960 x 10−4

R5,ext= 0.1442

R6,7= 0.0104

R6,10= 0.0052

R7,int= 0.0778

The second of the seven capacitance models is one where all four walls, floor,
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and ceiling are each represented by their own capacitance and the seventh capaci-

tance is the effective interior air capacitance. The RC network is shown in Figure

5.7 and parameter values are shown in Table 5.10.

Figure 5.7: Seventh order equivalent RC network - separated surfaces
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Table 5.9: Node descriptions: sev-
enth order model - separated sur-

faces

Node Description

1 air node

2,3,4 interior walls nodes

5,6,7 exterior walls nodes

8,9,10 interior surfaces node

11,12,13 exterior surfaces node

Table 5.10: Parameter values:
seventh order model - separated

surfaces

Capacitances Resistances

(J/K) (K/W)

C1= 279,417 R1,8= 0.0210

C2= 76,775 R1,9= 0.0154

C3= 97,713 R1,10= 0.0116

C4= 687,747 R1,11= 0.0241

C5= 60,582 R1,12= 0.0149

C6= 97,713 R1,13= 0.0109

C7= 129,552 R1,ext= 0.2463

R2,8= 0.0048

R2,int= y0.1010

R3,9= 0.0038

R3,int= 0.0793

R4,10= 0.0104

R4,int= 0.0798

R5,11= 0.0061

R5,ext= 0.6651

R6,12= 0.0038

R6,ext= 0.4123

R7,13= 0.0029

R7,ext= 0.3623

Thirteen Capacitance Model

Lastly, the most detailed thermal network is shown in Figure 5.8 and consists of

13 capacitances. Each surface is represented with two capacitances and the 13th
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capacitance is the effective interior air capacitance. Table 5.8 shows parameter

values for the 13 capacitance RC thermal network. The thirteen capacitance model

was chosen as the most detailed for a few reasons. First, geometrically the walls,

ceiling, floor and windows are individually representated in the model. Second,

due relatively to low thermal inertia of the zone, two capacitances were chosen for

each surface. Lastly, since the zone is heated by convection and the windows are

covered, radiative exchanges are assumed not significant factors and therefore the

heat transfer coefficients were combined to effective values.

Figure 5.8: Thirteenth order equivalent RC network - separated surfaces

Table 5.11: Node descriptions: Thirteenth order equivalent RC network -
separated surfaces

Node Description

1 air node

2,3,4,5,6,7 interior walls nodes

8,9,10,11,12,13 exterior walls nodes

14,15,16 interior surfaces node

17,18,19 exterior surfaces node
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Table 5.12: Parameter values: thirteenth order equivalent RC network - sep-
arated surfaces

Capacitances Resistances Resistances

(J/K) (K/W) (K/W)

C1= 279,417 R1,14= 0.0206 R6,7= 0.0070

C2= 38,387 R1,15= 0.0154 R6,16= 0.0070

C3= 38,387 R1,16= 0.0116 R7,int= 0.0763

C4= 48,856 R1,17= 0.0241 R8,9= 0.0041

C5= 48,856 R1,18= 0.0149 R8,17= 0.0041

C6= 343,873 R1,19= 0.0109 R9,ext= 0.6630

C7= 343,873 R1,ext= 0.2463 R10,11= 0.0025

C8= 30,291 R2,3= 0.0032 R10,18= 0.0025

C9= 30,291 R2,14= 0.0032 R11,ext= 0.4111

C10= 48,856 R3,int= 0.0993 R12,13= 0.0019

C11= 48,856 R4,5= 0.0025 R12,19= 0.0019

C12= 64,776 R4,15= 0.0025 R13,ext= 0.3614

C13= 64,776 R5,int= 0.0781

5.1.2 Thermal Model Verification

The statistical indices of coefficient of variation of the root-mean-square error

(CV-RSME) and normalized mean bias error (NMBE) were used for the model

verification process. ASHRAE Guideline 14 (Gillespie et al., 2002) suggests that

a maximum CV-RMSE of 15% and NMBE of 5% on a monthly basis, or 30% and

10%, respectively on an hourly basis ensures a calibrated model when the whole

building energy use is compared. There are no known guidelines for sub-hourly or

sub-whole building energy use, thus for this study, hourly guidelines were followed.
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Figure 5.9: Calibration methodology
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Tables 5.13 and 5.14 displays the statistical indices generated from comparing

measurement data from experiment 1 to model results of the six models created.

Table 5.13 compares against models with average constant heat transfer coeffi-

cients, while Table 5.14 compares against those models with temperature depen-

dent heat transfer coefficients calculated at each time step. From these values of

statistical indices, we can say that the model is validated to simulate the condi-

tions with which the house was under (closed interior doors, no solar radiation,

temperature step change etc.), and that a more detailed model does not necessar-

ily result in higher model accuracy. A manually iterative calibration process was

used, shown in Figure 5.9. As a model becomes more detailed, the number of pa-

rameters that can be adjusted increases, which can result in a complex calibration

problem (Kummert et al., 2006).

Table 5.13: Power model calibration - constant heat transfer coefficients (ex-
periment 1)

Model Order
Wood Tile Carpet

CVRSME NMBE CVRSME NMBE CVRSME NMBE

3 13.07% -1.15% 10.87% -6.72% 14.00% -1.49%

5 12.94% -1.16% 6.55% 1.2% 15.49% -1.38%

7(a) 13.25% -1.12% 11.10% 3.51% 14.27% -5.38%

7(c) 15.43% -5.34% 11.13% -3.68% 14.15% -2.02%

9 14.23% -1.55% 6.05% 1.19% 14.78% -1.38%

13 12.19% -1.77% 11.20% -3.83% 16.51% 1.60%

Guideline 14-2002 30% 10% 30% 10% 30% 10%
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Table 5.14: Power model calibration - temperature dependent heat transfer
coefficients (experiment 1)

Model Order
Wood Tile Carpet

CVRSME NMBE CVRSME NMBE CVRSME NMBE

3 13.05% 0.37% 6.88% 0.94% 14.23% 0.03%

5 13.57% -1.52% 6.01% 1.01% 15.74% -1.50%

7(a) 13.33% -1.16% 11.85% 4.37% 15.63% -7.62%

7(c) 15.67% -5.48% 11.00% -3.70% 13.85% -1.95%

9 17.70% -7.04% 6.55% 0.91% 15.48% -1.37%

13 13.90% -5.25% 11.14% -3.88% 16.00% -1.82%

Guideline 14-2002 30% 10% 30% 10% 30% 10%

Figure 5.10: Results from 3 capacitance model with constant heat transfer
coefficients (Exp 1)

Figure 5.10 shows results for one day of the 3 capacitance model with constant

heat transfer coefficients (the simplest model of the 12 models investigated). Good

correlation of heating power and air temperature can be seen. Figure 5.11 shows

the results of the 13 capacitance model with constant heat transfer coefficients.

When comparing, visually, the results from the 3 capacitance model and the 13
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capacitance model, we can see that both models accurately predict heating power

and air temperature for the experimental conditions.

Figure 5.11: Results from 13 capacitance model with constant heat transfer
coefficients (Exp 1)

Next, the models were compared to 7 days from experiment 2 data. Table 5.15

shows statistical indices for models with constant heat transfer coefficients, while

Table 5.16 shows results for models with temperature dependent heat transfer

coefficients. Again, all models meet ASHRAE limits for statistical indices values.

The simple and detailed models for the zone with wood flooring in Figure 5.13 show

good accuracy and adequate statistical indices, with small differences between the

simple and more detailed models. The discrepancy in power calculation at the

beginning of the simulation (Figures 5.13 and 5.14) is due to the assumed initial

states. When using the explicit finite difference method, one must assume all

initial states as inputs to the model. It was assumed that the room temperature

was initially equal to the set point temperature. The heating calculation depends

on the error between air temperature and set point temperature, so if they are

equal to each other, the power will be calculated as zero since the error is zero.
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Table 5.15: Power model calibration - constant heat transfer coefficients (ex-
periment 2)

Model Order
Wood Carpet

CVRSME NMBE CVRSME NMBE

3 17.57% 0.98% 19.76% 4.43%

5 17.72% -0.26% 19.33% -0.65%

7(a) 19.35% -0.20% 17.83% 3.30%

7(c) 17.37% 2.05% 18.01% 1.73%

9 19.11% 1.00% 19.89% -0.50%

13 17.47% -3.39% 22.22% 2.87%

Guideline 14-2002 30% 10% 30% 10%

Table 5.16: Power model calibration - temperature dependent heat transfer
coefficients (experiment 2)

Model Order
Wood Carpet

CVRSME NMBE CVRSME NMBE

3 17.90% 2.27% 20.17% 5.69%

5 18.28% 2.30% 19.51% -0.84%

7(a) 19.11% 0.80% 19.10% -3.40%

7(c) 17.56% 3.23% 18.12% 2.20%

9 18.74% 1.13% 19.80% -0.64%

13 17.18% 3.38% 20.56% 2.43%

Guideline 14-2002 30% 10% 30% 10%
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Figure 5.12: Results from 3 capacitance model with temperature dependent
heat transfer coefficients

Figure 5.13: Heating power, experimental, simple model, and detailed model
results – Bedroom 1 wood floors
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Figure 5.14: Heating power, experimental, simple model, and detailed model
results – Bedroom 1 carpet floors

The models of the carpet floored room are not as accurate, especially at the

peaks during ramping profiles, as seem in Figure 5.14, yet the statistical indices

are within the reasonable limits (CV-RMSE below 30% and NMBE below 10%).

Therefore, it is important to use visual comparison techniques as well as statis-

tical comparison techniques when the load profile at sub hourly intervals if of

importance.

Figure 5.15: Day 6 power demand model predictions - wood floors

91



Chapter 5. Thermal Modelling Description and Results

Figure 5.16: Day 6 power demand model predictions - carpet floors

5.2 Thermostat Set Point Strategies for Peak

Power Reduction

Realistic behaviour concerning temperature set point adjustments is notoriously

less regular than a fixed schedule (Urban & Gomez, 2013). It is however difficult to

obtain realistic user behaviour profiles, especially during extreme weather condi-

tions which cause DR events. While fixed schedules allowed comparing strategies,

the resulting reduction potential values should only be considered as an approxi-

mation.

In winter, the electricity grid peak demand in Québec occurs on weekdays

between 6am and 9am and between 4pm and 8pm. There are many strategies

that could be effective for peak heating reduction, but here have been narrowed

to the effect of different ramp lengths and “near optimal” trajectories introduced

in (Candanedo et al., 2015). The reference profile is the step change from 18◦C

to 21◦C, as a night time temperature setback is common practice for reducing

energy consumption (Manning et al., 2007). The temperatures set points are
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within acceptable comfort conditions. Using the procedure in (Candanedo et al.,

2015), “near optimal” transition curves were determined for transition times of 1,

2, and 3 hours. Their effectiveness will be compared to the simpler ramp profiles.

The different strategies were simulated using the simplest model and most detailed

model with an outdoor air temperature profile of the winter peak day shown in

Figure 5.17.

Figure 5.17: Peak winter day outdoor air temperature

Acceptable Daytime Comfort Temperature Set Point Pro-

files

Figure 5.18 shows the reference step temperature profile (A0) and the three ramp

profiles with acceptable daytime comfort (A1-A3). Figure 15 shows the three

optimal transition curves (A4-A6) for transition times of 1, 2 and 3 hours.
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Figure 5.18: Ramping strategies - acceptable daytime comfort

Figure 5.19: Optimal transition curves - acceptable daytime comfort

Below are results for aforementioned temperature set point profiles for the

objective of peak heating demand reduction. Figure 5.20 shows the results using

the 3 capacitance model for acceptable daytime comfort ramping profiles. Figure

14 shows the results using the detailed 13 capacitance model with temperature

dependent heat transfer coefficients. Significant peak reductions can be observed

when a step change is replaced by simple 1, 2, or 3 hour ramps.
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Figure 5.20: Ramping strategies power results - acceptable daytime comfort
- 3 capacitance model

Figure 5.21: Ramping strategies power results - acceptable daytime comfort
- 13 capacitance model with temperature dependent HT coefficients

On the peak day with very cold outdoor temperature, the low order model,

when compared to the detailed model, underestimates the impact of the ramping

profiles on peak reduction. For a two hour ramp, the less detailed model predicts

a reduction of 24%, while the more detailed model predicts 30%, and for the three

hour ramp, 32% versus 37%, respectively. On the experiment days, the simple

model and detailed model both calculate the same reductions of 21% for a 2 hour

ramp and 31% for a three hour ramp. This difference could be due to the fact that

cold outdoor air on the peak day has greater effect, and the temperature step up

95



Chapter 5. Thermal Modelling Description and Results

was 5◦C in the experiments rather than 3◦C on the peak day simulations. Table

1 shows the demand response indicators for strategies with acceptable daytime

comfort for a transition time of 3 hours. Peak power results for the optimal

transition curve profiles can be seen in Figure 16.

Table 5.17: Demand response indicators for strategies with acceptable daytime
comfort (3 capacitance model)

[A0] Reference [A3] 3 Hr Ramp [A6] 3 Hr Transition

[W] Demand [W] Impact [%] Demand [W] Impact [%]

Zone peak 1184 806 -32% 790 -33%

AM

qmax
am 1184 770 -35% 690 -42%

qam 770 595 -23% 566 -26%

reboundam 490 470 -4% 469 -4%

PM

qmax
pm 436 433 -1% 441 1%

qpm 413 412 0% 413 0%

reboundpm 16 16 0% 16 -3%

Zone daily consumption [kWh] 10.67 10.73 1% 10.75 1%

Figure 5.22: Optimal transition curves - acceptable daytime comfort - 3 ca-
pacitance model

Temperature Set Point Profiles without Acceptable Day-

time Comfort

Figure 17 shows the reference step temperature profile (B0) and the three ramp

profiles without acceptable daytime comfort (B1-B3). Figure 19 shows the three
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optimal transition curves (B4-B6) for transition times of 1, 2 and 3 hours.

Figure 5.23: Ramping strategies - without acceptable daytime comfort

Figure 5.24: Optimal transition curves - without acceptable daytime comfort

Seen in Figure 18 are results for ramping strategies with a night time set

back as well as a day time set back (profile without acceptable daytime comfort).

This is a suitable profile for dwellings with no one at home during the weekday, as

this reduces the overall energy consumption from 9.81 kWh to 9.38 kWh for the

reference step profile (B0 compared to A0) on the winter peak day. This profile

also shows good results in peak reduction as well as having no peak during the

rebound period.
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Figure 5.25: Ramping strategies power results - without acceptable daytime
comfort - 3 capacitance model

Table 5.18: Demand response indicators for strategies without acceptable
daytime comfort (3 capacitance model)

[B0] Reference [B3] 3 Hr Ramp [B6] 3 Hr Transition

[W] Demand [W] Impact [%] Demand [W] Impact [%]

Zone peak 1184 806 -32% 791 -33%

AM

qmax
am 1184 770 -35% 690 -42%

qam 742 570 -23% 542 -27%

reboundam 96 77 -19% 75 -22%

PM

qmax
pm 1181 687 -42% 596 -50%

qpm 567 465 -18% 449 -21%

reboundpm 19 18 -6% 17 -10%

Zone daily consumption [kWh] 10.44 10.55 1% 10.58 1%

Figure 20 shows the power profiles for the corresponding optimal transition

curves without acceptable daytime comfort. Detailed demand response indicators

for profiles without acceptable daytime comfort are found in Table 3 for 3 hour

ramps and optimal curves. Optimal transition curve profiles again give slightly

better results than the ramp profiles.
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Figure 5.26: Optimal transition curves power results - without acceptable
daytime comfort - 3 capacitance model

Temperature Set Point Profiles with Pre Heating and Ac-

ceptable Daytime Comfort

Figure 21 shows ramp profiles with preheating for one hour prior to peak times and

acceptable daytime comfort (C1-C3). Figure 23 shows the three optimal transition

curves (C4-C6) for transition times of 1, 2 and 3 hours.

Figure 5.27: Ramping strategies - preheating with acceptable daytime comfort
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Figure 5.28: Optimal transition curves - preheating with acceptable daytime
comfort

Next, preheating before peak hours were tested with ramp profiles. The

zone was preheated for one hour at one degree higher than the normal comfort

temperature at 22◦C. During the peak hours the set point was readjusted to the

setback temperature of 18◦C and then at the end of the peak hours the temperature

is returned to 21◦C.

Figure 5.29: Ramping strategies power results - preheating with acceptable
daytime comfort
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Table 5.19: Demand response indicators for strategies with preheating and
acceptable daytime comfort (3 capacitance model)

[A0] Reference [C3] 3 Hr Ramp [C6] 3 Hr Transition

[W] Demand [W] Impact [%] Demand [W] Impact [%]

Zone peak 1184 1184 0% 1184 0%

AM

qmax
am 1184 752 -36% 745 -37%

qam 770 195 -75% 181 -76%

reboundam 490 783 60% 779 59%

PM

qmax
pm 436 1147 163% 1147 163%

qpm 413 341 -18% 341 -18%

reboundpm 16 57 248% 57 248%

Zone daily consumption [kWh] 10.67 10.57 -1% 10.57 -1%

As seen in Figure 22, results for ramping profiles with preheating and ac-

ceptable daytime comfort are not so favourable. Although the morning peak load

during peak hours is significantly reduced, there is an undesirable by-product of

a very large rebound load after the peak hours, shown in Table 5. Since this is

an investigation of implementing relatively simple profiles, it is probable that any

more modifications to this style of profile to reduce unfavourable results will just

result in a too complicated temperature set point profile.

Figure 5.30: Optimal transition curves power results - preheating with ac-
ceptable daytime comfort
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Temperature Set Point Profiles with Pre Heating and with-

out Acceptable Daytime Comfort

Figure 25 shows ramp profiles with preheating for one hour prior to peak times and

without acceptable daytime comfort (D1-D3). Figure 27 shows the three optimal

transition curves (D4-D6) for transition times of 1, 2 and 3 hours.

Figure 5.31: Ramping strategies - preheating without acceptable daytime
comfort

Figure 5.32: Optimal transition curves - preheating without acceptable day-
time comfort

The last style of temperature set point profiles studied for the zone on a

winter peak consist of one hour of preheating and without acceptable daytime
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comfort, shown in Figures 25 and Figure 27. For the demand response indicators

shown in Table 7, these ramps and transition curve profiles were compared against

the simple step change without acceptable daytime comfort profile B0, shown in

Figure 17, to give a better understanding of the impact of ramping or transition

curves with preheating on the a typical step profile. The main observation is the

morning rebound load is increased, though it is still a low value, otherwise the

preheating without acceptable daytime comfort profiles seem to have good peak

load reduction capabilities.

Figure 5.33: Ramping power results - preheating without acceptable daytime
comfort

Table 5.20: Demand response indicators for strategies without preheating and
acceptable daytime comfort (3 capacitance model)

[B0] Reference [D3] 3 Hr Ramp [D6] 3 Hr Tranisiton

[W] Demand [W] Impact [%] Demand [W] Impact [%]

Zone peak 1184 907 -23% 881 -26%

AM

qmax
am 1184 363 -69% 335 -70%

qam 742 163 -78% 150 -80%

reboundam 96 391 310% 387 305%

PM

qmax
pm 1181 417 -65% 420 -64%

qpm 567 390 -31% 381 -33%

reboundpm 19 18 -6% 18 -4%

Zone daily consumption [kWh] 10.44 10.57 1% 10.61 2%
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Figure 5.34: Optimal transition curves power results - preheating without
acceptable daytime comfort

5.2.1 Final Remarks

Several temperature set point strategies have been suggested and investigated for

their effectiveness in peak load reduction due to heating for a residential build-

ing. The aim was to suggest simple profiles which could be easily implemented

by homeowners in advanced communicating thermostats. Ramping profiles with

or without acceptable daytime comfort temperature set points seem to result in

a good compromise between peak load reduction and simplicity, as there is more

steps required in order to obtain optimal transitions curves for a given zone de-

pending on the zone time constant. Optimal transition curves are better suited for

peak reduction in building with higher thermal mass levels. Preheating of one hour

at one degree Celsius higher did not produce effective results, therefore a longer

preheating time should be used. However, a longer preheating period could lead

to occupant thermal discomfort as well as increased energy consumption. This

is not an exhaustive investigation of temperature set point modulation strategies,

as there are an infinite amount of strategies that could potentially be effective in
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peak load reduction while maintaining occupant thermal comfort. The next po-

tential step to further study this topic is to implement an optimization procedure

to identify suitable set point strategies.

Based on simulation results using the experiment weather conditions, the

3 capacitance low order model will give sufficient prediction for the zone. The

number of nodes in an RC model and their arrangement may vary depending on

the requirements of the control strategy or other factors (e.g. time scale, energy

storage device). If the purpose of the simulation is to select a ramp duration

or predict future thermal behaviour of a low mass zone such as the one studied

here, both models could be used, however, the low order model is better suited to

be implemented in the context of model-based control due to faster computation

time, simplicity of the model and the fact that, if anything, it will underestimate

rather than overestimate the peak reduction from a given strategy.

5.3 Zone Thermal Mass Alterations

Using the model, alterations to the walls and ceilings were done in order to different

thermal capacity and conductivity levels in the zone. The effects of ramping on

the different zones were then analyzed. The materials are shown in Table 5.21.

Hypothetical materials that are based on increasing the thickness of the gypsum

board (by a factor of two) and increasing its conductivity between 1-4 times are

considered. This type of analysis can inform development of new materials.
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Table 5.21: Material property alterations of walls and ceiling

Gypsum Density Specific Heat Conductivity Thickness Thermal Capacitance Thermal

Board ρ Cp k L C = Cp × ρ× L× Afloor Resistance

(kg/m3) (J/kgK) (W/mK) (mm) (J/K) (m2K/W )

1× L, 1× k 640 1,150 0.16 13 4.62× 105 0.08

2× L, 1× k 640 1,150 0.16 26 9.25× 105 0.16

1× L, 2× k 640 1,150 0.32 13 4.62× 105 0.04

2× L, 2× k 640 1,150 0.32 26 9.25× 105 0.08

1× L, 3× k 640 1,150 0.48 13 4.62× 105 0.03

2× L, 3× k 640 1,150 0.48 26 9.25× 105 0.05

1× L, 4× k 640 1,150 0.64 13 4.62× 105 0.02

2× L, 4× k 640 1,150 0.64 26 9.25× 105 0.04

Figures 5.35 displays, for a wood floored room, the reduction in peak load

due to ramping profiles of 1, 2 or 3 hours, for zones with mass properties found in

Table 5.21. It can be seen that thickness and the conductivity play an important

role in the room thermal dynamics and behaviour.

Figure 5.35: Thermal Mass Alterations - Ceiling & Walls - Wood Floors

Figures 5.36 and 5.37 show peak power profiles for a 3 hour ramping profile

with acceptable daytime comfort and 3 hour optimal transition curve, respectively.

The results are for various zones with the mass properties found in Table 5.21.
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Figure 5.36: 3 hour ramp with acceptable daytime comfort power results- 13
capacitance model with temperature dependent HT coefficients

Figure 5.37: 3 hour transition curve with acceptable daytime comfort power
results - 13 capacitance model with temperature dependent HT coefficients
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Table 5.22: Response due to 3 hour ramp and mass alterations - wood floors

3 Hour Ramp

1*L, 1k 1L, 2*k 1*L, 4*k 2*L, 1*k 2*L, 2*k 2*L, 4*k

C (J/K) 4.62× 105 4.62× 105 4.62× 105 9.25× 105 9.25× 105 9.25× 105

R (m2K/W ) 0.08 0.04 0.02 0.16 0.08 0.04

Impact [%] Impact [%] Impact [%] Impact [%] Impact [%] Impact [%]

qmax
am -41% -40% -39% -34% -33% -32%

Consumption [kWh] 1% 1% 3% 0% 2% 3%

Temperature Decay

Time [Hours]
2 2.25 2.25 3 3 3

Table 5.23: Response due to 3 hour transition curve and mass alterations -
wood floors

3 Hour Transition Curve

1*L, 1k 1L, 2*k 1*L, 4*k 2*L, 1*k 2*L, 2*k 2*L, 4*k

C (J/K) 4.62× 105 4.62× 105 4.62× 105 9.25× 105 9.25× 105 9.25× 105

R (m2K/W ) 0.08 0.04 0.02 0.16 0.08 0.04

Impact [%] Impact [%] Impact [%] Impact [%] Impact [%] Impact [%]

qmax
am -47% -46% -46% -42% -41% -40%

Consumption [kWh] 1% 2% 3% 0% 2% 3%

Temperature Decay

Time [Hours]
2 2.25 2.25 3 3 3

Figure 5.38: 3 hour ramp with acceptable daytime comfort air temperature
results - 13 capacitance model with temperature dependent HT coefficients
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Figure 5.39: 3 hour transition curve with acceptable daytime comfort air
temperature results - 13 capacitance model with temperature dependent HT

coefficients

When comparing zones with different levels of thermal mass, thickness and

conductivity plan an important role in the room thermal dynamics and behavior.

As thickness and conductivity increase, the peak reduction is reduced, however,

the temperature decay time is increased. From the study it can be generally

concluded that increasing the thickness, while maintaining the conductivity level

gives the best compromise between peak reduction and temperature decay time.

A longer temperature decay time means that there is a delay in when the heater

will turn on again to maintain the night time set back temperature set point.

5.4 Case Study: Commercial Bank Building

Commercial and institutional buildings using electricity as their only energy source

are common in Québec and they contribute to a significant portion of the winter

grid peak. This section presents an alternative method of building simulation

to a detailed simulation software. A simple explicit finite difference model of a
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building used as a bank was created and compared to a calibrated EnergyPlus

model (Lavigne et al., 2014). Using the previously determined demand response

strategy optimized through ”NSGA-II” (Deb et al., 2002), a multi-objective genetic

algorithm, the two models were compared.

Commercial buildings in Quebec often have a total building peak power cap,

and if this is exceeded, higher charges may be applied by the utility company to

the customer for this increased peak demand. As an example, if the customer has a

minimum billing demand under 65kW, they are charged at Rate G (Hydro-Québec,

2015a). Rate G has the following energy costs: $9.65/kWh for the first 15,090 kWh

and $6.13/kWh for the remaining consumption. The price of power above 50kW

for rate G is $17.19/kW. Therefore, even though peak demand for a customer may

only occur for 15 minutes (as an example), they can still face significant charges

for this peak demand above 50kW. In order to avoid these additional fees caused

by peak power demands, demand response strategies become attractive solutions

for commercial customers.

5.4.1 Building Description

The building used to create an explicit finite difference model is a 427 square meter

(4,600sqft) single storey commercial building used as a bank. A 3D rendering of

the building can be seen in Figure 5.40. A model in energy plus was created of the

building with 21 thermal zones, shown in Figure 5.41. The location of the building

is in Trois Riviere, Québec. The wall insulation is 3 RSI, while the roof insulation

is 3.45 RSI. The windows are assumed as double glazing low-e type with 12.7mm

air gap.

110



Chapter 5. Thermal Modelling Description and Results

Figure 5.40: Rendering of the building showing thermal zones (Lavigne et al.,
2014)

Figure 5.41: Thermal zones of the building (Lavigne et al., 2014)

5.4.2 EnergyPlus Model

In order to analyze and predict the impact of different DR strategies applied to

the building, a detailed calibrated model was needed developed (Lavigne et al.,

2014). The model had to be able to capture the daily power profile behavior
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during peak days. The total electric power demand on 15-minute intervals metered

between 2011 and 2013 was provided, but no sub-metering or operation data from

the BAS were available. It was decided to use data of one summer week, one

winter week and one shoulder season week for the calibration process. Measured

profiles during these weeks should follow a predictable pattern and cover different

weather conditions. The selection of relatively short calibrating periods also has

the advantage of reducing running time and the amount of data generated when

launching parametric runs.

An ”Initial” EnergyPlus model was created for the building and a manually

adjusted model was created from this initial model to better match the measured

electricity data. Figure 5.42 shows the results for three days in winter (Sunday,

Monday and Tuesday). The load shown is for the entire building, including heat-

ing, cooling, plug loads, lighting etc. The days are Sunday January 23 to Tuesday

January 25 in the year 2011. The first (“Initial”) building simulation model was

completed in the SIMEB (Hydro-Québec, 2015b) software to which the geometry

was imported. SIMEB is a user interface for the building simulation softwares

DOE and EnergyPlus. The mechanical and electrical drawings provided com-

prehensive imformationinformation about light density, maximum and minimum

airflow rates, terminal reheat and baseboard rated capacities. SIMEB default val-

ues were used for plug loads and infiltration rates. Those values are based on the

default assumptions in the performance compliance method of MNECB (1997).

The SIMEB simulation results were compared with 15-min. interval metered data

from January 1st, 2011 to October 10th, 2013. Some of the differences observed

can be attributed to limitations of the SIMEB interface. For example, the SIMEB

schedules are built on a one-hour timestep basis, smaller time increments cannot

be implemented. In addition, all zones served by the same HVAC system must

have the same zone heating equipment, etc. These differences were correctedly

manually in the EnergyPlus input file (.idf). The Initial EnergyPlus model of the
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building underestimates the building demand, therefore an optimization model

was necessary. First, the assisted calibration module in the SIMEB software aided

in identifying influential parameters. The module has a pre-calibration routine

that identifies potential problematic parameters based on monthly bill differences.

Combining this information with the level of uncertainty on certain simulation pa-

rameters, the following parameters were identified for calibration: minimum out-

side air of two rooftop units, static pressure rise of two rooftop units, infiltration

airflow of perimeter zones, plug load density of three major zones and insulation

thickness of exterior walls and roof. After parametric runs were performed to

evaluate the influence of these parameters, it was found that the minimum out-

side air had the most important impact on the results during the heated occupied

periods. However, each of the parameters had a different impact on the results

depending on weather conditions and occupancy periods. An optimized “cali-

brated” EnergyPlus model was then created using the optimization tool GenOpt

(Wetter, 2010)an optimization package developed by the LBNL DOE laboratory.

The objective function to be minimized was defined as the coefficient of variation

of the root mean square error (CV-RMSE) between the 15-minute time interval

metered data and the model results for the whole year of 2011. Since all parame-

ters were influential at one point, they were selected for the optimization processes

and constrained with physically feasible minimum and maximum values. Two dif-

ferent algorithms were used, a genetic algorithm and generalized pattern search

and gave relatively the same results for each parameter value. Figure 5.43 shows

results of the calibrated model. Further information regarding the building, the

Energy Plus model and optimization procedure refer to (Lavigne et al., 2014).
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Figure 5.42: Measured data and adjusted energy plus model

Figure 5.43: Measured data vs. adjusted and calibrated energy plus model

The model was calibrated with the measurement of total power consumption

of the building at 15 minute intervals for the year 2011. The normal error (NMBE)

and the regression coefficient of the squared error (CVRMSE) of the calibrated
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model are below the limits specified by the ASHRAE 14-2002 guideline for a time

interval, as shown in Table 5.24.

Table 5.24: Statistical indices of the calibrated model

CV-RSME NMBE

Initial E+ Model 34.6% -7.6%

Adjusted E+ Model 30.9% -11.1%

Calibrated E+ Model 17.3% -1%

Guideline 14-2002 Limit 30% 10%

5.4.3 Thermal Network of Building for Finite Difference

Model

Figure 5.44 shows the thermal network used for an explicit finite difference analysis

of the building. The building consists of four exterior walls, a roof and a slab on

grade flooring, as well as many interior wall partitions creating 21 zones within the

building. For the explicit finite difference model, the building is initially modelled

as a single zone with four capacitances (one for the air, one for the exterior walls

and roof and two for the concrete floor slab). The effect of solar radiation on the

behaviour of the building was also incorporated into the model and it is assumed

that 50% of solar radiation transmitted through the windows hits the floor while

the other 50% hit the other 5 interior surfaces. It is also assumed there is a carpet

over the concrete floor slab.
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Figure 5.44: Thermal network of the building

Table 5.25 shows the building properties and Table 5.26 depicts model param-

eters, which can be adjusted for further calibration. Table 5.27 shows the building

operating schedules provided by the building owner as a reference for the heating

schedule for the building.

Table 5.25: Building component R-values

Building Component
R-value

(m2K/watt)

Area

(m2)

Walls 3.0 231.5

Roof 3.45 425.5

Floor 0.59 425.5

Windows 0.33 21.6
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Table 5.26: Initial model parameters

Parameter Value

Ground temperature 13◦C

infiltration 0.35 ach

C air 62,293,200 J/K (40x)

C9 (walls & roof) 6,286,376 J/K

C11 (concrete floor) 74,888,000 J/K

C12 (concrete floor) 74,888,000 J/K

qaux 50 kW

Kp 25,000 W/K

Time step 15 sec

Table 5.27: Typical building operating schedules

Day Occupancy HVAC operation Lighting operation

Mon-Tue 8:30 to 17:00 7:00 to 17:30 8:00 to 17:30

Wed-Thur 8:30 to 20:00 7:00 to 20:30 8:00 to 20:30

Friday 8:30 to 16:00 7:00 to 20:30 8:00 to 16:30

Saturday 8:30 to 15:00 7:00 to 15:30 8:00 to 15:30

Sunday Unoccupied Off Off

Results of Initial Finite Difference Model

Simulations with the explicit finite difference method were done for 14 days starting

on January 23, 2011. The set point during occupied times was set at 23◦C and

unoccupied times it was set at 18◦C. Figure 5.45 shows four days (one unoccupied

Sunday and three weekdays) from January 23 to 26, 2011. The model shows

some correlation between the model and measured data during unoccupied times

(Sunday and nights), but the daytime demand from the finite difference model

117



Chapter 5. Thermal Modelling Description and Results

does not match the measured data. One possible reason for this discrepancy is

assuming a constant value for air infiltration from outside. In the next step a

variable infiltration will be implemented with different values for occupied and

unoccupied times.

Figure 5.45: January 23-26, 2011 - whole building consumption initial results

Results of Model with Variable Infiltration

A second model was created that has different values of infiltration for occupied

and unoccupied times, shown in Table 5.28. The model parameters suggest that

there is more infiltration during occupied times compared to unoccupied times.

Possible reasons for higher infiltration values during occupied times are that the

entrance doors are being opened and closed more often, fresh air intake to maintain

proper CO2 levels, or more infiltration through the heating system ducting in order

to maintain the higher set point.
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Table 5.28: Variable model parameters

Winter Season Occupied Unoccupied

Parameter Value Value

Temperature set point 23◦C 18◦C

Ground temperature 20◦C 20◦C

infiltration 1.5 ach 0.4 ach

C air 10,901,000 J/K (7x) 10,901,000 J/K (7x)

C9 (walls and roof) 6,286,376 J/K 6,286,376 J/K

C11 (concrete floor) 74,888,000 J/K 74,888,000 J/K

C12 (concrete floor) 74,888,000 J/K 74,888,000 J/K

qaux 50 kW 50 kW

Kp 50,000 W/K 50,000 W/K

Time step 15 seconds 15 seconds

Figure 5.46 shows the results of the finite difference model with variable in-

filtration. There are still some areas to improve, such as when the temperature

set point drops from 23◦C to 18◦C at the end of the day. However, when looking

at the NMBE and the CVRMSE of the finite difference model, in Table 5.29, the

results satisfy the ASHRAE 14-2002 guideline for the one week winter period.
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Figure 5.46: Variable finite difference model results

Table 5.29: Statistical indices of variable finite difference model - W-06 only
(winter week)

CV-RSME NMBE

Adjusted E+ Model 30.5% -26.6%

FD Variable Infiltration 13.3% -2.9%

Calibrated E+ Model 13.6% -1.2%

Guideline 14-2002 Limit 30% 10%
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Table 5.30: Thermal network parameters

Parameter Value

R78 0.000174 ◦C/W

R89 0.0000618 ◦C/W

R9o 0.0047 ◦C/W

R7o 0.0042 / 0.0014 ◦C/W

R710 0.0010 ◦C/W

R1011 0.0000618 ◦C/W

R1112 0.000124 ◦C/W

R12g 0.0000618 ◦C/W

C air 10,901,000 J/K (7x)

C9 6,286,376 J/K

C11 78,888,000 J/K

C12 78,888,000 J/K

qaux 50 kW

Kp 25 kW/K

As can be seen, the variable finite difference model performed for the two

weeks of January 23 to February 6, 2011 satisfies the ASHRAE 14-2002 calibration

guideline. The values of the thermal network parameters are shown in Table 5.30.

Further improvements can be done by optimizing the thermal network parameters,

improving the accuracy of the heater control etc, but this demonstrates well that

a simple RC thermal network model can adequately predict thermal behaviour for

this type of building in these weather conditions.
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5.4.4 Finite Difference Model with Variable Infiltration

and Interior Partitions Included

The finite difference model presented in section 5.4.3 neglected to incorporate

the thermal mass present in the interior partition walls, in the form of gypsum

board, making an assumption that these partitions do will not significantly affect

the model behaviour and accuracy. There is a significant area of interior walls

(360 m2), so it was decided to create another model incorporating this mass for

comparison. Figure 5.47 depicts the adjusted thermal network to include the

interior walls and Table 5.31 lists the thermal network parameter values.

Figure 5.47: Thermal network representing the bank building incorporating
interior partitions
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Table 5.31: Revised thermal network parameters

Parameter Value

R78 0.000174 ◦C/W

R89 0.0000618 ◦C/W

R9o 0.0047 ◦C/W

R7o 0.0042 / 0.0014 ◦C/W

R710 0.0010 ◦C/W

R1011 0.0000618 ◦C/W

R1112 0.000124 ◦C/W

R12g 0.0000618 ◦C/W

C air 10,901,000 J/K (7x)

C9 6,286,376 J/K

C11 78,888,000 J/K

C12 78,888,000 J/K

qaux 50 kW

Kp 25 kW/K

Cint 0.000135 J/K

R713 0.000135 ◦C/W

Figure 5.48 shows one day results for the two finite difference models. As is

expected, the model with interior partitions has a lag as it takes longer to reach the

set point when there is more thermal mass in a zone. Figure 5.49 shows several

days of model results, and again, this model also satisfies ASHREA Guideline

14-2002, as seen in Table 5.32.

Now that a model exists with the interior partitions included, retrofit feasibil-

ity studies can be done (such as incorporating phase change materials as thermal

mass into the walls).
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Figure 5.48: Comparison of model without interior partitions to model incor-
porating interior partitions

Figure 5.49: model with interior partitions and measured data

Table 5.32: Statistical indices of model with interior partitions

CV-RSME NMBE

FD Variable Infiltration

with Interior Partitions
14.1% -2.8%

FD Variable Infiltration 13.3% -2.9%

Calibrated E+ Model 13.6 -1.2%

Guideline 14-2002 Limit 30% 10%
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5.4.5 Demand Response: Ramping Set Point Strategies

Preliminary “demand response” strategies have been investigated and results are

shown in this section. The strategies studied are applying different types of tem-

perature set point schedules to the building, with the purpose of reducing energy

consumption and electrical peaks during peak hours, and at the same time main-

taining adequate thermal comfort conditions for the building occupants. Peak

hours happen in the weekday mornings between 6-9am and at night between 4-

8pm. The day of January 24, 2011 was taken for the analysis as outdoor temper-

atures reached below -25◦C, shown in Figure 5.50 (Lavigne et al., 2014). Figure

5.51 shows the standard set point schedule along with the optimized temperature

set point previously determined in (Lavigne et al., 2014). The strategy is similar

to the one implemented by Hydro Québec which was found using multi objective

function optimization. In the previous, more detailed DR investigation using the

EnergyPlus model, (Lavigne et al., 2014), along with global temperature adjust-

ment, modifications were also done to the performance of the rooftop units and the

fresh air intake. Due to the simple nature of the finite difference model presented

here, only global temperature adjustment strategies have been looked into at this

time.

Demand Reduction Indicators

Demand reduction indicators were computed to quantitatively compare the result-

ing demand profiles over peak periods with the reference scenario. The possible

demand rebound at the end of the set point strategies could also create new peaks,

but at a different time. The demand impact of the few hours following the peak

period was thus of interest. Results were first averaged of 15 minute interval, the

timebase used for demand metering.
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Figure 5.50: January 24, 2011 environmental conditions

Figure 5.51: Thermostat ramp set point strategy

Figure 5.52 shows the daily power demand profile for the demand response

strategy using the two finite difference models presented in sections 5.4.3 and 5.4.4.

As can be seen, the strategy is successful in reducing the morning peak by up to

28%. The rebound time after the peak hours is also not negatively affected.
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Figure 5.52: Power demand of the DR ramping strategies

Table 5.33 lists the demand reduction impacts of strategy 1 when compared

to the standard operating temperature set point schedule. By implementing an

alternative temperature profile over the 24 hour period, the building electricity

peak was reduced by 14%, while overall consumption was reduced by 3%, morning

peak was reduced by 28% and the afternoon peak was reduced by 20%. Rebound

times were also not greatly affected. This shows that a simple strategy can have

positive results for demand response on extreme climatic winter days.

Table 5.33: Impact of ramping strategies on power demand

Model without interior walls Model with interior walls

Baseline Strategy 1 Baseline Strategy 1

[W] Demand [W] Impact [%] [W] Demand [W] Impact [%]

Building peak 49,500 40,925 -17% 49,500 42,550 -14%

AM

qmax
am 49,500 35,925 -27% 49,500 35,530 -28%

qam 42,190 26,586 -37% 42,868 25,357 -41%

reboundam 38,123 35,805 -6% 38,508 36,450 -5%

PM

qmax
pm 37,207 30,117 -19% 37,141 29,870 -20%

qpm 42,190 26,586 -37% 18,166 18,534 2%

reboundpm 14,301 14,541 2% 14,177 14,531 2%

Building daily consumption [kWh] 599 583 -3% 599 584 -2%

127





Chapter 6

Conclusions

In this thesis, modelling resolution for the purpose of space heating load predictions

in a residential and commercial building has been investigated. There was a focus

on simple and physically meaningful building thermal models. Experiments were

conducted at two highly instrumented houses and equivalent RC network thermal

models for the purpose of model based control were developed for a north zone in

the houses. Through experimentation and simulation, peak power (due to space

heating) reduction strategies were investigated. Conclusions are that the simple

three capacitance model is effective in capturing the heat transfer phenomena in

the low mass zone, while the detailed 13 capacitance model shows slightly better

results, making the three capacitance model suitable for use in model based control.

For the different set point profiles incorporating ramping strategies, it was

found that the relative impact is that doubling the ramp duration from 1 to 2

hours approximately doubles the peak reduction. Optimal transition curves do

not significantly out perform ramps due to the low mass of the zone. Optimal

transition curves are better suited for higher mass buildings.

When comparing zones with different levels of thermal mass, thickness and

conductivity plan an important role in the room thermal dynamics and behavior.
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As thickness and conductivity increase, the peak reduction is reduced, however,

the temperature decay time is increased. From the study it can be generally

concluded that increasing the thickness, while maintaining the conductivity level

gives the best compromise between peak reduction and temperature decay time.

A longer temperature decay time means that there is a delay in when the heater

will turn on again to maintain the night time set back temperature set point.

A low order model was then used on a case study of a small commercial

building and the model was able to meet calibration standards for the current

operating conditions of the building. The current model may not be suitable if

changes occurred to the amount and schedule of fresh air intake. Two low order

RC thermal network configurations were compared when modelling an occupied

commercial building used as a bank. The first model did not include the mass of

the interior partitions, making an assumption that the interior partitions do not

significantly affect the results of the model. The second model incorporated the

interior partitions and it was seen that both the models sufficiently capture the

thermal behaviour of the building and meet calibration standards. An advantage of

the model with interior partitions is that it can be used in future retrofit feasibility

studies (such as incorporating phase change material as thermal mass into the

interior partitions).

6.1 Summary of Contributions

1. Several RC thermal network models of varying detail have been created for

a zone in the EHBE facility. Low order thermal network models developed

are shown to be suitable for control-oriented modelling.

2. Investigation of simple peak power reduction strategies that could be imple-

mented into real residential buildings or other convectively heated buildings.
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3. Investigation of a commercial building and viability of using simplified RC

thermal network models.

6.2 Recommendations for Future Work

1. Create further models of the EHBE, including a whole building model, a

south zone and a basement zone, to be used in further studies.

2. Continue studies on simplified models for building control applications. De-

velop adequate MPC models for buildings to optimize energy efficiency, ther-

mal comfort, demand reduction etc.

3. Further experimental research using real life scenario of winter peak environ-

mental conditions and realistic thermostat set points using different building

types.

4. Continue modelling studies using different heating sources such as forced air,

radiant floor heating etc., and also for cooling season. Continue modelling

studies for zones of different levels of thermal mass (low mass, medium mass

and heavy mass).

5. Study the integration and control of active solar energy systems in buildings

by using model based control. Optimized operation of active solar systems

and low energy buildings can be highly beneficial in reducing energy con-

sumption, peak loads and increasing thermal comfort for the occupants.

6. Statistical analysis of large scale databases of building simulation models

may allow the identification of archetypal thermal networks, and determine

correlations between the building geometry and material properties and the

corresponding RC parameters.
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7. A systematic approach should be developed for the identification of sim-

plified building models, possibly in conjunction with a frequency domain

approach. The frequency domain approach may help to systematically se-

lect model resolution and also possibly the ramping rates for a given building

construction.

8. Further Bank Building studies including summer peak demand reduction

and load shifting.
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Appendix A: Monitored Data

from Twin Houses

Experiment 1

Figure 1: Indoor Temperature Decay Time vs. Average Outdoor Air Temper-
ature
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Appendix A. Monitored Data from Twin Houses

Figure 2: Decay Time vs. Average Outdoor Air Temperature - Wood Floor

Figure 3: Decay Time vs. Average Outdoor Air Temperature - Carpet Floor
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Appendix A. Monitored Data from Twin Houses

Figure 4: Decay Time vs. Average Outdoor Air Temperature - Tile Floor

Figure 5: House Heating Demand by Level – Week 1
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Appendix A. Monitored Data from Twin Houses

Figure 6: Whole House Heating by Level - Open vs. Closed Door Day Week 1

Figure 7: Heating Demand by House Level Comparison - Carpet Floor Week
1
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Appendix A. Monitored Data from Twin Houses

Figure 8: House Heating Demand by Level - Week 2

Figure 9: Whole House Heating by Level - Open vs. Closed Door Day Week 2
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Appendix A. Monitored Data from Twin Houses

Figure 10: Heating Demand by House Level Comparison - Tile Floor Week 2

Figure 11: Bedroom 1 Air Temperature Stratification Wood Floor
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Appendix A. Monitored Data from Twin Houses

Figure 12: Bedroom 1 Air Temperature Stratification Tile Floor

Figure 13: Bedroom 1 Air Temperature Stratification Carpet Floor
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Appendix B: MATLAB Code -

Sample of Detailed Model
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a=1; 

  

% a=1; 

L=1; 

k=1; 

cap=1; 

% for L=1:2; 

%     for k = 1:4; 

%         for cap = 1:2;        

                     

    clearvars -except k L a cap 

     

    %Height of room 

  

deltaT=15; %seconds 

  

T_low=18; %step down night time temperature USER INPUT 

T_high=21; %step up day time temperature USER INPUT 

T_out=-23; 

  

ramp_start = 3; % am hour start of ramp USER INPUT 

ramp = 3; %ramp length in hours USER INPUT 

  

ramp_start2 = 13; % pm hour start of ramp USER INPUT 

  

o=(ramp*3600/deltaT)+2; % For ramp function 

x=T_high-T_low; % For ramp function 

y=x/o; % For ramp function 

  

%Number of days 

No=1; 

NT=No*86400/deltaT; %number of time steps in a day 

p=1:1:NT; 

t=p.*deltaT; 

%qmax in watts of baseboard heater.  Heater is pulse width 

modulated with 15 

%second cyles 

% qmax=1240; %watt 

% qmax=1190; 

if cap == 1 

    qmax=1184; 

elseif cap == 2 

    qmax = 1184*0.75; 

else 

    qmax=1180*4.5; 

end 

%proportional control constand of baseboard heater 



Kp=2000; %watt/degC 

Ki=0.1; 

i=1; 

%create step change for thermostat setpoint 

  

% TO HAVE 2 STEP CHANGE 

% %BEFORE FIRST RAMP 

while i < (ramp_start)*3601/deltaT 

    Tsp1(i)=T_low; %degC 

    i=i+1; 

end 

%FIRST RAMP 

while i < (ramp_start+ramp)*3601/deltaT 

    Tsp1(i)=Tsp1(i-1)+y; % Create Ramp function 

    i=i+1; 

end 

%BETWEEN RAMPS = Stay at T_high for X hours 

while i<=(ramp_start+3+ramp)*3601/deltaT 

    Tsp1(i)=T_high; %degC 

    i=i+1; 

end 

% BETWEEN RAMPS = Go back to T_low (OR NOT) 

while i<=(ramp_start2)*3601/deltaT 

    Tsp1(i)=T_low; %degC 

    i=i+1; 

end 

%SECOND RAMP 

while i<=(ramp_start2+ramp)*3601/deltaT 

    Tsp1(i)=Tsp1(i-1)+y; % Create Ramp function 

    %Tsp1(i)=T_high; 

    i=i+1; 

end 

%AFTER SECOND RAMP 

while i<=(ramp_start2+6+ramp)*3601/deltaT 

    Tsp1(i)=T_high; %degC 

    i=i+1; 

end 

% AFTER SECOND RAMP 

while i<=NT; 

    Tsp1(i)=T_low; %degC 

    i=i+1; 

end 

  

 

% WHOLE YEAR SIMULATION 

load=importdata('Tyear.mat'); 

Tyear=load; 



t_new=linspace(1,numel(Tyear),240*numel(Tyear)); 

Tyear_15sec = interp1(Tyear, t_new); 

days=365; 

Tsp=repmat(Tsp1,1,days); 

To=Tyear_15sec; 

  

%Import "near-optimal" temperature profile OR RAMP 

load2=importdata('Ramp3hOCTD5.mat'); 

t_new2=linspace(1,numel(load2),240/4*numel(load2)); 

Tsp2=interp1(load2, t_new2); 

Tsp=repmat(Tsp2,1,days); 

  

%    [ ]            [ ]                [ ]                 [X] 

%------------ %------------ % --------------------% ------------

--------% 

% One comfort % Two Comfort % Preheating with day % Preheating 

withOUT day 

% time [OCT]  % times [TCT] % time comfort [POCT] % time comfort 

[PTCT] 

%------------ %------------ % --------------------% ------------

--------% 

% StepOCT     % StepTCT     % StepPOCT            % StepPTCT 

% Ramp1hOCT   % Ramp1hTCT   % Ramp1hPOCT          % Ramp1hPTCT  

% Ramp2hOCT   % Ramp2hTCT   % Ramp2hPOCT          % Ramp2hPTCT  

% Ramp3hOCT   % Ramp3hTCT   % Ramp3hPOCT          % Ramp3hPTCT 

% Trans1hOCT  % Trans1hTCT  % Trans1hPOCT         % Trans1hPTCT 

% Trans2hOCT  % Trans2hTCT  % Trans2hPOCT         % Trans2hPTCT 

% Trans3hOCT  % Trans3hTCT  % Trans3hPOCT         % Trans3hPTCT 

  

%SPECIFIC DAYS SIMULATION IE NOT WHOLE YEAR 

% load=importdata('To2014-2.mat'); %12 days experiment 2 

%  

% % % load=importdata('Tout_3.mat'); 

%  

% Tout_data=load; 

% t_new=linspace(1,numel(Tout_data),240/4*numel(Tout_data)); 

% Tout_15sec = interp1(Tout_data, t_new); 

% To=Tout_15sec; 

% days=12; 

% %days=numel(Tout_data)/96; 

% load2=importdata('Tsp2014-2.mat'); 

% Tsp1=interp1(load2,t_new); 

% Tsp=repmat(Tsp1,1,days); 

% %  

% qload=importdata('P2014.mat'); 

% qaux_mes = interp1(qload, t_new); 

  



%  

% %Load Solar Radiation 

% load2=importdata('SR_greendays.mat'); 

% % load2=importdata('SR_3.mat'); 

% SR_data=load2; 

% t_new=linspace(1,numel(SR_data),240/4*numel(SR_data)); 

% SR_15sec = interp1(SR_data, t_new); 

% SR=SR_15sec; 

  

  

Nfinal=NT*58; %second 

dT=1; %second 

u=0; 

j=1; 

qaux=zeros(Nfinal,1); 

T7=zeros(Nfinal,1); 

T8=zeros(Nfinal,1); 

T9=zeros(Nfinal,1); 

T10=zeros(Nfinal,1); 

T11=zeros(Nfinal,1); 

T12=zeros(Nfinal,1); 

T13=zeros(Nfinal,1); 

T14=zeros(Nfinal,1); 

T15=zeros(Nfinal,1); 

T16=zeros(Nfinal,1); 

T17=zeros(Nfinal,1); 

T18=zeros(Nfinal,1); 

T19=zeros(Nfinal,1); 

T20=zeros(Nfinal,1); 

T21=zeros(Nfinal,1); 

T22=zeros(Nfinal,1); 

T23=zeros(Nfinal,1); 

T24=zeros(Nfinal,1); 

T25=zeros(Nfinal,1); 

qaux(1)=0.5*qmax; %watt 

T7(1)=T_low; %degC 

T8(1)=T_low; %degC 

T9(1)=T_low; %degC 

T10(1)=T_low; %degC 

T11(1)=T_low; %degC 

T12(1)=T_low; %degC 

T13(1)=T_low; %degC 

T14(1)=T_low; %degC 

T15(1)=T_low; %degC 

T16(1)=T_low; %degC 

T17(1)=T_low; %degC 

T18(1)=T_low; %degC 



T19(1)=T_low; %degC 

T20(1)=T_low; %degC 

T21(1)=T_low; %degC 

T22(1)=T_low; %degC 

T23(1)=T_low; %degC 

T24(1)=T_low; %degC 

T25(1)=T_low; %degC 

  

%Height of room 

Hh=2.489; %m 

%Length of room (South/North Wall) 

Lh=3.3; %m 

%Width of room (West/East Wall) 

Wh=4.2; %m 

%Exterior Surfaces: 

    %Surface 1 = South Wall (Interior) 

    %Surface 2 = East Wall (Exterior) 

    %Surface 3 = North Wall (Exterior) 

    %Surface 4 = West Wall (Interior) 

    %Surface 5 = Ceiling (Exterior) 

    %Surface 6 = Floor (Interior) 

%Internal Height 

Hi=2.4; %m 

%Window Areas 

Aw=[0;0;1.7324;0]; %m^2 

%Net Wall areas 

A=[Lh*Hh-Aw(1); Wh*Hh-Aw(2); Lh*Hh-Aw(3); Wh*Hh-Aw(4); Wh*Lh; 

Wh*Lh]; %m^2 

%room volume 

Vol=A(5)*Hi; %m^3 

%Window Resistance (U=3) 

Rw=0.5; %m^2*degC/watt 

%interior film coefficient of surfaces walls 

h=6; %watt/(m^2*degC) 

%interior film coeffients 

hc=[h; h; h; h; 6; 6];%watt/(m^2*degC) 

  

hc1 = zeros(Nfinal,1); %Surface 1 = South Wall (Interior) 

hc2 = zeros(Nfinal,1); %Surface 2 = East Wall (Exterior) 

hc3 = zeros(Nfinal,1); %Surface 3 = North Wall (Exterior) 

hc4 = zeros(Nfinal,1); %Surface 4 = West Wall (Interior) 

hc5 = zeros(Nfinal,1); %Surface 5 = Ceiling (Exterior) 

hc6 = zeros(Nfinal,1); %Surface 6 = Floor (Interior) 

  

hc1(1) = 1.31*(abs((T10(1)-T7(1)))^(1/3)); %Vertical Surface 

hc2(1) = 1.31*(abs((T8(1)-T7(1)))^(1/3)); %Vertical Surface 

hc3(1) = 1.31*(abs((T8(1)-T7(1)))^(1/3)); %Vertical Surface 



hc4(1) = 1.31*(abs((T10(1)-T7(1)))^(1/3)); %Vertical Surface 

hc5(1) = 0.59*(abs(((T8(1)-T7(1)))/2)^0.25); %Ceiling Surface 

hc6(1) = 1.52*(abs(((T10(1)-T7(1)))/2)^(1/3)); %Floor Surface 

  

hr1 = zeros(Nfinal,1); 

hr2 = zeros(Nfinal,1); 

hr3 = zeros(Nfinal,1); 

hr4 = zeros(Nfinal,1); 

hr5 = zeros(Nfinal,1); 

hr6 = zeros(Nfinal,1); 

  

eps = 0.9; %emmisivity of walls 

sig = 5.6703*(10^-8); %stefan boltzman constant 

  

hr1(1)= eps*sig*4*(((T10(1)+273+T7(1)+273)/2)^3); 

hr2(1)= eps*sig*4*(((T8(1)+273+T7(1)+273)/2)^3); 

hr3(1)= eps*sig*4*(((T8(1)+273+T7(1)+273)/2)^3); 

hr4(1)= eps*sig*4*(((T10(1)+273+T7(1)+273)/2)^3); 

hr5(1)= eps*sig*4*(((T8(1)+273+T7(1)+273)/2)^3); 

hr6(1)= eps*sig*4*(((T10(1)+273+T7(1)+273)/2)^3); 

  

h1 = zeros(Nfinal,1); 

h2 = zeros(Nfinal,1); 

h3 = zeros(Nfinal,1); 

h4 = zeros(Nfinal,1); 

h5 = zeros(Nfinal,1); 

h6 = zeros(Nfinal,1); 

  

h1(1) = hc1(1) + hr1(1); 

h2(1) = hc2(1) + hr2(1); 

h3(1) = hc3(1) + hr3(1); 

h4(1) = hc4(1) + hr4(1); 

h5(1) = hc5(1) + hr5(1); 

h6(1) = hc6(1) + hr6(1); 

  

% air change per hour for infiltration/exfiltration 

ach=0.019; 

achi=18; 

%ach=0.019; %air changes per hour 

%specific heat of air 

cp=1000; %joule/(kg*degC) 

%density of air 

rho=1.2; %kg/m^3 

  

% For air flow calculation 

beta_air = 0.00343; % coefficient of thermal expansion 1/K 

mu_air = 0.00001827; % dynamic viscosity kg/m s 



Pr_air = 0.71; %Prandtl number 

k_air = 0.0251; %conductivity of air kW/m K 

g = 9.807; %acceleration due to gravity m/s2 

  

%U of infiltration exterior 

Uinf=ach*Vol*cp*rho/3600; %watt/degC 

%U of infilation interior 

Uinfi=achi*Vol*cp*rho/3600;  %watt/degC 

%Wall azimuth 

%azimuth=[35; -55; 215; 125]; %degree 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%THERMAL RESISTANCES OF WALLS (incl air films) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%Vertical Exterior Walls 

%Gypsum board layer 

Lgyp=0.0127*L; %m 

rhogyp=640; %kg/m^3 

kgyp=0.16*k; %watt/(m*degC) 

cgyp=1150; %joule/(kg*degC) 

%Airgap and enermax 

Rener=0.708; %(m^2*degC)/watt 

%Insulation layer 

Rins=3.89; %(m^2*degC)/watt 

%Air gap, Fiberboard, plywood, vinyl 

Rsid=0.48; %(m^2*degC)/watt 

%Exterior film 

ho=20; %watt/(m^2*degC) 

%15% framing area 

ff=0.25; %percentage 

%Wood stud 

Rf=1.1667; %(m^2*degC)/watt 

  

R1 = zeros(Nfinal,1); 

R2 = zeros(Nfinal,1); 

R3 = zeros(Nfinal,1); 

R4 = zeros(Nfinal,1); 

R5 = zeros(Nfinal,1); 

R6 = zeros(Nfinal,1); 

Rc = zeros(Nfinal,1); 

  

%Exterior wall resistance 

R2(1)=1/(((1-

ff)/((Lgyp/kgyp)+Rener+Rins+Rsid+(1/ho)+(1/h2(1))))+(((ff)/((Lgy

p/kgyp)+Rener+Rf+Rsid+(1/ho)+(1/h2(1)))))); %(m^2*degC)/watt 

R3(1)=R2(1); %(m^2*degC)/watt 



  

%Vertical Interior Walls resistance 

Rair=0.18; 

R1(1)=1/(((1-

ff)/((2*Lgyp/kgyp)+Rair+(2/h1(1))))+(((ff)/((2*Lgyp/kgyp)+Rf+(2/

h1(1))))));%(m^2*degC)/watt 

R4(1)=R1(1);%(m^2*degC)/watt 

%R(1)=R(2); 

%R(4)=R(2); 

  

%Ceiling 

Rinsc=5.28;%(m^2*degC)/watt 

%attic air film 

ha=12; %watt/(m^2*degC) 

%Ceiling resistance 

Rc(1)=1/(((1-

ff)/((Lgyp/kgyp)+Rener+Rinsc+(1/ha)+(1/h5(1))))+(((ff)/((Lgyp/kg

yp)+Rener+Rf+(1/ha)+(1/h5(1))))));%(m^2*degC)/watt 

  

%Roof 

%shingle backer board 

Rb=0.14;%(m^2*degC)/watt 

%Wood shingles 

Rsh=0.078;%(m^2*degC)/watt 

%Roof resistance 

Rr=1/(((1-

ff)/(Rb+Rsh+(1/ho)+(1/ha)))+(((ff)/(Rb+Rf+Rsh+(1/ha)+(1/ho)))));

%(m^2*degC)/watt 

  

%Assume 30 degree roof slope, calculate ceiling-roff combined 

resistance 

%per unit ceiling area (Assuming no attic ventilation) 

  

Ar=A(5)/cos(30*3.14/180); %m^2 

%Combined Celining-roof resistance 

R5(1)=((Rc(1)/A(5))+(Rr/Ar))*A(5); %(m^2*degC)/watt 

  

%Floor 

%insulation and plywood and truss 

rhoply=650; 

cply=2200; 

Lply=0.0347; 

Rfl=0.34;%(m^2*degC)/watt 

Rjoi=2.5; 

kply=0.12; 

%============= 

% rhoply=450; 



% cply=1880; 

% Lply=0.0347; 

% Rfl=0.34;%(m^2*degC)/watt 

% Rjoi=2.5; 

% kply=0.12; 

%Floor resistance 

R6(1)=1/(((1-

ff)/((Lply/kply)+Rair+(1/h6(1))+(1/h5(1))))+(((ff)/((Lply/kply)+

Rjoi+(1/h6(1))+(1/h5(1))))));%(m^2*degC) 

  

%WALL CAPACITANCES 

c=rhogyp*cgyp*Lgyp; %Joule/m^2 GYPSUM 

cply=cply*rhoply*Lply; 

C=[c*A(1); c*A(2); c*A(3); c*A(4); c*A(5); cply*A(6)]; %Joule 

Cair=8*cp*rho*Vol; %Joule 

  

  

  

%Thermal Network - 13 capacitance 

  

    %Surface 1 = South Wall  (Interior) 

    %Surface 2 = East Wall   (Exterior) 

    %Surface 3 = North Wall  (Exterior) 

    %Surface 4 = West Wall   (Interior) 

    %Surface 5 = Ceiling     (Exterior) 

    %Surface 6 = Floor       (Interior) 

  

%thermal capacitance of interior layer of the exterior walls 

  

C9  = C(2)/2; 

C20 = C9; 

C13 = C(3)/2; 

C22 = C13; 

C11 = C(4)/2; 

C21 = C11; 

C15 = C(1)/2; 

C23 = C15; 

C19 = C(6)/2; 

C25 = C19; 

C17 = C(5)/2; 

C24 = C17; 

  

R78 = zeros(Nfinal,1); 

R710 = zeros(Nfinal,1); 

R712 = zeros(Nfinal,1); 

R716 = zeros(Nfinal,1); 

R714 = zeros(Nfinal,1); 



R718 = zeros(Nfinal,1); 

R23i = zeros(Nfinal,1); 

R21i = zeros(Nfinal,1); 

R25i = zeros(Nfinal,1); 

R22o = zeros(Nfinal,1); 

R20o = zeros(Nfinal,1); 

R24o = zeros(Nfinal,1); 

  

% C9=C(2)+C(3)+C(5); %C9 in Mathcad %Joule/degC 

% C11=C(1)+C(4)+C(6); %C11 in Mathcad %Joule 

%Convective thermal resistance form air node to exterior wall 

surfaces 

R78(1)  = 1/((A(2)*h2(1))); %Surface 2 = East Wall %degC/watt  

R712(1) = 1/((A(3)*h3(1))); %Surface 3 = North Wall 

R716(1) = 1/((A(5)*h5(1))); %Surface 5 = Ceiling 

%Convectiv thermal resistance from air node to ineterior wall 

surfaces 

R710(1) = 1/((A(4)*h4(1))); %Surface 4 = West Wall %degC/watt 

R714(1) = 1/((A(1)*h1(1))); %Surface 1 = South Wall %degC/watt 

R718(1) = 1/((A(6)*h6(1))); %Surface 6 = Floor %degC/watt 

%Infiltration and window thermal resistance 

R7o=1/(Uinf+(Aw(3)/Rw));%degC/watt 

%Infiltration from interior 

R7i=1/(Uinfi); 

%SPLIT GYPSUM BOARD INTO 3 LAYERS WITH 2 CAPACITANCES 

R89= 1/((kgyp*A(2)*3/Lgyp));%degC/watt 

R920 = R89; 

R1213 = 1/((kgyp*A(3)*3/Lgyp));%degC/watt 

R1322 = R1213; 

R1617 = 1/((kgyp*A(5)*3/Lgyp));%degC/watt 

R1724 = R1617; 

  

R20o(1) = R89+(1/((A(2)/R2(1))));%degC/watt 

R22o(1) = R1213+(1/((A(3)/R3(1))));%degC/watt 

R24o(1) = R1617+(1/((A(5)/R5(1))));%degC/watt 

  

R1011 = 1/((kgyp*A(4)*3/Lgyp));%degC/watt 

R1121 = R1011; 

R1415 = 1/((kgyp*A(1)*3/Lgyp));%degC/watt 

R1523 = R1415; 

R1819 = 1/((kply*A(6)*3/Lply));%degC/watt 

R1925 = R1819; 

  

R21i(1) = R1011+(1/((A(4)/R4(1))));%degC/watt 

R23i(1) = R1415+(1/((A(1)/R1(1))));%degC/watt 

R25i(1) = R1819+(1/((A(6)/R6(1))));%degC/watt 

  



% TS=[(C9/((1/R89)+(1/R9o))); (C11/((1/R1011)+(1/R11i)))]; 

%seconds 

% detlaTcrit=min(TS); %seconds 

  

%grashof number 

Gr=zeros(Nfinal,1); 

Gr(1)=g*beta_air*0.5*(Hi^3)/(mu_air^2); 

%inter-zonal convection 

Uzn=zeros(Nfinal,1); 

Uzn(1)=0.3*(Gr(1)^0.5)*Pr_air*k_air*2/Hi; 

  

%Controller parameters 

Prop=zeros(Nfinal,1); 

Int=zeros(Nfinal,1); 

I=zeros(Nfinal,1); 

PID=zeros(Nfinal,1); 

Error=zeros(Nfinal,1); 

Tsperr=zeros(Nfinal,1); 

  

u=0; 

%while dT>0.1 

   dd=1; 

   ddd=1; 

   Int=zeros(Nfinal,1); 

   I=zeros(Nfinal,1); 

   for j=1:Nfinal-1 

       if j>1 

           if Tsp(j)==26 

               Tsp(j)=26; 

           end 

           if Tsp(j)==21; 

               Tsp(j)=21; 

           else 

               Tsp(j)=Tsp(j); 

           end 

           if abs(Tsp(j)- Tsp(j-1)) > 0.01 %if setpoint is 

changed - reset the integral portion of controller 

               Tsperr(j) = abs(Tsp(j)- Tsp(j-1)); %check to see 

when setpoint is changed 

               Int=zeros(Nfinal,1); 

               I=zeros(Nfinal,1); 

               ddd=ddd+1; 

           else 

               dd=dd+1; 

           end 

       end 

       if Tsp(j)>T7(j) 



           Error(j+1)=Tsp(j)-T7(j); % set Error parameter to 

temperature error 

       else 

           Error(j+1)=0; 

       end 

       Prop(j+1)=Error(j+1); % set Prop parameter to Error 

       %if Error(j+1) > 0 %if temperature error is greater than 

zero (elimenates any Error when air is higher than setpoint 

value) 

           Int(j+1)=(Error(j+1)+Error(j))*deltaT/2; %set Int 

parameter to average error multiplied by time step 

       %else 

       %    Int(j+1)=0; % if no Error - Int is set to zero 

       %end 

       I(j+1)=sum(Int);   % sum of Int terms 

       PID(j+1)=Kp*Prop(j)+Ki*I(j+1); %value of actuator 

(auxiliary heater) 

       if PID(j+1)>qmax && Error(j+1)>0.1 %threshold of 0.01 

degree C 

           qaux(j+1)=qmax;%watt 

       elseif Error(j+1)>0.1 

           qaux(j+1)=PID(j+1);%watt 

       else 

           qaux(j+1)=0;%watt 

       end 

       T7(j+1)  = (deltaT/(Cair))*(qaux(j)+((((T8(j)-

T7(j))/R78(j))+((T18(j)-T7(j))/R718(j))+((T14(j)-

T7(j))/R714(j))+((T16(j)-T7(j))/R716(j))+((T12(j)-

T7(j))/R712(j))+((To(j)-T7(j))/R7o)+((T10(j)-

T7(j))/R710(j)))))+T7(j); 

       T8(j+1)  = 

((T7(j)/R78(j))+(T9(j)/R89))/((1/R78(j))+(1/R89));%degC 

       T10(j+1) = 

((T7(j)/R710(j))+(T11(j)/R1011))/((1/R710(j))+(1/R1011));%degC 

       T9(j+1)  = (deltaT/C9)*(((T8(j)-T9(j))/R89)+((T20(j)-

T9(j))/R920))+T9(j);%degC 

       T11(j+1) = (deltaT/C11)*(((T21(j)-

T11(j))/R1121)+((T10(j)-T11(j))/R1011))+T11(j);%degC 

       T12(j+1) = 

((T7(j)/R712(j))+(T13(j)/R1213))/((1/R712(j))+(1/R1213));%degC 

       T13(j+1) = (deltaT/C13)*(((T12(j)-

T13(j))/R1213)+((T22(j)-T13(j))/R1322))+T13(j);%degC 

       T14(j+1) = 

((T7(j)/R714(j))+(T15(j)/R1415))/((1/R714(j))+(1/R1415));%degC 

       T15(j+1) = (deltaT/C15)*(((T23(j)-

T15(j))/R1523)+((T14(j)-T15(j))/R1415))+T15(j);%degC 



       T16(j+1) = 

((T7(j)/R716(j))+(T17(j)/R1617))/((1/R716(j))+(1/R1617));%degC 

       T17(j+1) = (deltaT/C17)*(((T16(j)-

T17(j))/R1617)+((T24(j)-T17(j))/R1724))+T17(j);%degC 

       T18(j+1) = 

((T7(j)/R718(j))+(T19(j)/R1819))/((1/R718(j))+(1/R1819));%degC 

       T19(j+1) = (deltaT/C19)*(((T25(j)-

T19(j))/R1925)+((T18(j)-T19(j))/R1819))+T19(j);%degC 

       T20(j+1) = (deltaT/C20)*(((To(j)-

T20(j))/R20o(j))+((T9(j)-T20(j))/R920))+T20(j);%degC 

       T21(j+1) = (deltaT/C21)*(((T11(j)-T21(j))/R1121)+((21-

T21(j))/R21i(j)))+T21(j);%degC 

       T22(j+1) = (deltaT/C22)*(((To(j)-

T22(j))/R22o(j))+((T13(j)-T22(j))/R1322))+T22(j);%degC 

       T23(j+1) = (deltaT/C23)*(((T15(j)-

T23(j))/R1523)+((T7(j+1)-T23(j))/R23i(j)))+T23(j);%degC 

       T24(j+1) = (deltaT/C24)*(((To(j)-

T24(j))/R24o(j))+((T17(j)-T24(j))/R1724))+T24(j);%degC 

       T25(j+1) = (deltaT/C25)*(((T19(j)-

T25(j))/R1925)+((T7(j+1)-T25(j))/R25i(j)))+T25(j);%degC 

       q12(j+1) = (T12(j)-To(j))/(R3(j)/A(3)); 

       q8(j+1)  = (T8(j)-To(j))/(R3(j)/A(2)); 

       q16(j+1) = (T16(j)-To(j))/(R5(j)/A(5)); 

       q14(j+1) = (T14(j)- T7(j))/(R1(j)/A(1)); 

       q10(j+1) = (T10(j)-T7(j))/(R4(j)/A(4)); 

       q18(j+1) = (T18(j)-T7(j))/(R6(j)/A(6)); 

       Gr(j+1)=g*beta_air*1*(Hi^3)/(mu_air^2); 

       Uzn(j+1)=0.4*(Gr(j+1)^0.5)*Pr_air*k_air*1/Hi; 

       hc1(j+1) = 1.26*(abs(T14(j+1)-T7(j+1))^(1/3)); %Vertical 

Surface 

       hc2(j+1) = 1.26*(abs(T8(j+1)-T7(j+1))^(1/3)); %Vertical 

Surface 

       hc3(j+1) = 1.26*(abs(T12(j+1)-T7(j+1))^(1/3)); %Vertical 

Surface 

       hc4(j+1) = 1.26*(abs(T10(j+1)-T7(j+1))^(1/3)); %Vertical 

Surface 

       if T16(j+1) > T7(j+1) 

           hc5(j+1) = 0.59*(abs((T16(j+1)-T7(j+1))/0.9)^0.25); 

       else 

           hc5(j+1) = 1.52*(abs(T16(j+1)-T7(j+1))^(1/3)); 

       end 

       %hc5(j+1) = 0.59*(abs((T16(j+1)-T7(j+1))/2)^0.25); 

%Ceiling Surface 

       if T18(j+1) > T7(j+1) 

           hc6(j+1) = 1.52*(abs(T18(j+1)-T7(j+1))^(1/3)); 

       else 



           hc6(j+1) = 0.59*(abs((T18(j+1)-T7(j+1))/0.9)^0.25);  

%Floor Surface 

       end        

       hc62(j+1) = 0.59*(abs((T18(j+1)-T7(j+1))/2)^0.25)'; 

       hr1(j+1)= eps*sig*4*(((T14(j+1)+273+T7(j+1)+273)/2)^3); 

       hr2(j+1)= eps*sig*4*(((T8(j+1)+273+T7(j+1)+273)/2)^3); 

       hr3(j+1)= eps*sig*4*(((T12(j+1)+273+T7(j+1)+273)/2)^3); 

       hr4(j+1)= eps*sig*4*(((T10(j+1)+273+T7(j+1)+273)/2)^3); 

       hr5(j+1)= eps*sig*4*(((T16(j+1)+273+T7(j+1)+273)/2)^3); 

       hr6(j+1)= eps*sig*4*(((T18(j+1)+273+T7(j+1)+273)/2)^3); 

       h1(j+1) = hc1(j+1) + hr1(j+1); 

       h2(j+1) = hc2(j+1) + hr2(j+1); 

       h3(j+1) = hc3(j+1) + hr3(j+1); 

       h4(j+1) = hc4(j+1) + hr4(j+1); 

       h5(j+1) = hc5(j+1) + hr5(j+1); 

       h6(j+1) = hc6(j+1) + hr6(j+1); 

       R1(j+1)=1/(((1-

ff)/((2*Lgyp/kgyp)+Rair+(2/h1(j+1))))+(((ff)/((2*Lgyp/kgyp)+Rf+(

2/h1(j+1))))));%(m^2*degC)/watt 

       R2(j+1)=1/(((1-

ff)/((Lgyp/kgyp)+Rener+Rins+Rsid+(1/ho)+(1/h2(j+1))))+(((ff)/((L

gyp/kgyp)+Rener+Rf+Rsid+(1/ho)+(1/h2(j+1)))))); %(m^2*degC)/watt 

       R3(j+1)=R2(j+1); %(m^2*degC)/watt 

       R4(j+1)=R1(j+1);%(m^2*degC)/watt 

       Rc(j+1)=1/(((1-

ff)/((Lgyp/kgyp)+Rener+Rinsc+(1/ha)+(1/h5(j+1))))+(((ff)/((Lgyp/

kgyp)+Rener+Rf+(1/ha)+(1/h5(j+1))))));%(m^2*degC)/watt 

       R5(j+1)=((Rc(j+1)/A(5))+(Rr/Ar))*A(5); %(m^2*degC)/watt 

       R6(j+1)=1/(((1-

ff)/((Lply/kply)+Rair+(1/h6(j+1))+(1/h5(j+1))))+(((ff)/((Lply/kp

ly)+Rjoi+(1/h6(j+1))+(1/h5(j+1))))));%(m^2*degC) 

       R78(j+1)  = 1/((A(2)*h2(j+1))); %Surface 2 = East Wall 

%degC/watt  

       R712(j+1) = 1/((A(3)*h3(j+1))); %Surface 3 = North Wall 

       R716(j+1) = 1/((A(5)*h5(j+1))); %Surface 5 = Ceiling 

       R710(j+1) = 1/((A(4)*h4(j+1))); %Surface 4 = West Wall 

%degC/watt 

       R714(j+1) = 1/((A(1)*h1(j+1))); %Surface 1 = South Wall 

%degC/watt 

       R718(j+1) = 1/((A(6)*h6(j+1))); %Surface 6 = Floor 

%degC/watt 

       R20o(j+1) = R89+(1/((A(2)/R2(j+1))));%degC/watt 

       R22o(j+1) = R1213+(1/((A(3)/R3(j+1))));%degC/watt 

       R24o(j+1) = R1617+(1/((A(5)/R5(j+1))));%degC/watt 

       R21i(j+1) = R1011+(1/((A(4)/R4(j+1))));%degC/watt 

       R23i(j+1) = R1415+(1/((A(1)/R1(j+1))));%degC/watt 

       R25i(j+1) = R1819+(1/((A(6)/R6(j+1))));%degC/watt 



       j=j+1; 

    end 

    dT=abs(T7(Nfinal)-T7(1)); 

    T7(1)=T7(Nfinal);%degC 

    u=u+1; 

%end 

xx=reshape(T7,60,[]); 

%Averages every 60 values to get 15 minute average value 

TT7=sum(xx,1)./size(xx,1); %watt 

xx=reshape(qaux,60,[]); 

%Averages every 60 values to get 15 minute average value 

qqaux=sum(xx,1)./size(xx,1); %watt 

Q=qqaux*0.25; %Watthour 

%Set point temperature 

xx=reshape(Tsp,60,[]); 

Tssp=sum(xx,1)./size(xx,1); 

%outdoor temperature 

xx=reshape(To,60,[]); 

Too=sum(xx,1)./size(xx,1); 

  

xx=reshape(Tsp1,60,[]); 

Tsp11=sum(xx,1)./size(xx,1); 

  

  

Tair=transpose(TT7); %degC 

Energy=transpose(Q); %Wh 

Power=transpose(qqaux); %W 

intPower=int64(Power); % Power values rounded to whole numbers 

T_P=[TT7;qqaux]; 

TT_PP=transpose(T_P); 

  

peak = max(Power); 

peak_red= (qmax-peak)/qmax*100; 

TotalE = sum(Energy); % Wh 

 



Appendix C: Temperature Set

Point Strategy Results

Figure 14: Ramping strategies power results - daytime comfort - 13 capaci-
tance model with temperature dependent HT coefficients

Table 1: Demand response indicators for daytime comfort ramping strategies
(13 capacitance model)

[A0] Step Reference [A1] 1 Hr Ramp [A2] 2 Hr Ramp [A3] 3 Hr Ramp

[W] Demand [W] Impact [%] Demand [W] Impact [%] Demand [W] Impact [%]

Building peak 1184 988 -17% 825 -30% 742 -37%

AM

qmax
am 1184 906 -23% 773 -35% 702 -41%

qam 709 607 -14% 572 -19% 551 -22%

reboundam 470 462 -2% 458 -2% 454 -3%

PM

qmax
pm 418 424 2% 411 -1% 407 -3%

qpm 390 389 0% 389 0% 389 0%

reboundpm 3 2 -16% 2 -17% 3 17%

Building daily consumption [kWh] 9.81 9.86 0% 9.83 0% 9.91 1%
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Appendix C. Temperature Set Point Strategy Results

Figure 15: Optimal transition
curves - daytime comfort

Figure 16: Optimal transition
curves - daytime comfort - 13 ca-
pacitance model with temperature

dependent HT coefficients

Table 2: Demand response indicators for daytime comfort transition curve
strategies (13 capacitance model)

[A0] Step Reference [A4] 1 Hr Transition [A5] 2 Hr Transition [A6] 3 Hr Transition

[W] Demand [W] Impact [%] Demand [W] Impact [%] Demand [W] Impact [%]

Building peak 1184 932 -21% 789 -33% 711 -40%

AM

qmax
am 1184 831 -30% 693 -41% 626 -47%

qam 709 598 -16% 553 -22% 531 -25%

reboundam 470 462 -2% 457 -3% 451 -4%

PM

qmax
pm 418 415 -1% 407 -2% 424 2%

qpm 390 389 0% 389 0% 389 0%

reboundpm 3 3 2% 3 -1% 2 -16%

Building daily consumption [kWh] 9.81 9.85 0% 9.84 0% 9.94

Figure 17: Ramping strategies -
without daytime comfort

Figure 18: Ramping strategies
power results - without daytime
comfort - 13 capacitance model
with temperature dependent HT

coefficients
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Table 3: Demand response indicators for ramping strategies without daytime
comfort (13 Capacitance Model)

[B0] Step Reference [B1] 1 Hr Ramp [B2] 2 Hr Ramp [B3] 3 Hr Ramp

[W] Demand [W] Impact [%] Demand [W] Impact [%] Demand [W] Impact [%]

Building peak 1184 990 -16% 826 -30% 743 -37%

AM

qmax
am 1184 907 -23% 774 -35% 702 -41%

qam 683 581 -15% 547 -20% 528 -23%

reboundam 81 73 -10% 69 -15% 64 -21%

PM

qmax
pm 1184 878 -26% 716 -40% 630 -47%

qpm 533 474 -11% 453 -15% 439 -18%

reboundpm 10 8 -22% 7 -31% 6 -40%

Building daily consumption [kWh] 9.38 9.46 1% 9.46 1% 9.58 2%

Figure 19: Optimal transition
curves - without daytime comfort

Figure 20: Optimal transition
curves power results - without
daytime comfort - 13 capacitance
model with temperature depen-

dent HT coefficients

Table 4: Demand response indicators for transition curve strategies without
daytime comfort (13 capacitance model)

[B0] Step Reference [B4] 1 Hr Transition [B5] 2 Hr Transition [B6] 3 Hr Transition

[W] Demand [W] Impact [%] Demand [W] Impact [%] Demand [W] Impact [%]

Building peak 1184 934 -21% 791 -33% 713 -40%

AM

qmax
am 1184 832 -30% 694 -41% 627 -47%

qam 683 573 -16% 528 -23% 506 -26%

reboundam 81 73 -10% 67 -18% 62 -23%

PM

qmax
pm 1184 788 -33% 619 -48% 527 -56%

qpm 533 468 -12% 440 -17% 425 -20%

reboundpm 10 8 -18% 7 -31% 6 -40%

Building daily consumption [kWh] 9.38 9.46 1% 9.49 1% 9.64 3%
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Figure 21: Ramping strategies -
preheating with daytime comfort

Figure 22: Ramping strategies
power results - preheating with

daytime comfort

Table 5: Demand response indicators for ramping strategies with preheating
and daytime comfort (13 capacitance model)

[A0] Step Reference [C1] 1 Hr Ramp [C2] 2 Hr Ramp [C3] 3 Hr Ramp

[W] Demand [W] Impact [%] Demand [W] Impact [%] Demand [W] Impact [%]

Building peak 1184 1184 0% 1184 0% 1184 0%

AM

qmax
am 1184 762 -36% 754 -36% 750 -37%

qam 709 211 -70% 188 -73% 178 -75%

reboundam 470 735 56% 727 55% 722 54%

PM

qmax
pm 418 1165 179% 1165 179% 1165 179%

qpm 390 303 -22% 303 -22% 302 -23%

reboundpm 3 28 1002% 28 1013% 28 1014%

Building daily consumption [kWh] 9.81 9.55 -3% 9.54 -3% 9.65 -2%

Figure 23: Optimal transition
curves - preheating with daytime

comfort

Figure 24: Optimal transition
curves power results - preheating

with daytime comfort
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Table 6: Demand response indicators for transition curves with preheating and
daytime comfort (13 capacitance model)

[A0] Step Reference [C4] 1 Hr Transition [C5] 2 Hr Transition [C6] 3 Hr Transition

[W] Demand [W] Impact [%] Demand [W] Impact [%] Demand [W] Impact [%]

Building peak 1184 1184 0% 1184 0% 1184 0%

AM

qmax
am 1184 760 -36% 753 -36% 746 -37%

qam 709 206 -70% 185 -73% 169 -75%

reboundam 470 733 56% 725 55% 718 54%

PM

qmax
pm 418 1165 179% 1165 179% 1165 179%

qpm 390 303 -22% 302 -22% 302 -23%

reboundpm 3 28 1002% 28 1013% 28 1014%

Building daily consumption [kWh] 9.81 9.56 -3% 9.55 -3% 9.68 -2%

Figure 25: Ramping strategies -
preheating without daytime com-

fort

Figure 26: Ramping power re-
sults - preheating without daytime

comfort

Table 7: Demand response indicators for ramping strategies without preheat-
ing and daytime comfort (13 capacitance model)

[B0] Step Reference [D1] 1 Hr Ramp [D2] 2 Hr Ramp [D3] 3 Hr Ramp

[W] Demand [W] Impact [%] Demand [W] Impact [%] Demand [W] Impact [%]

Building peak 1184 1152 -3% 950 -20% 843 -29%

AM

qmax
am 1184 345 -71% 331 -72% 323 -73%

qam 683 175 -74% 151 -78% 140 -79%

reboundam 81 343 323 336 314% 330 307%

PM

qmax
pm 1184 432 -64% 419 -65% 412 -65%

qpm 533 399 -25% 384 -28% 378 -29%

reboundpm 10 6 -36% 5 -48% 5 -48%

Building daily consumption [kWh] 9.38 9.45 1% 9.49 1% 9.63
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Appendix C. Temperature Set Point Strategy Results

Figure 27: Optimal transition
curves - preheating without day-

time comfort

Figure 28: Optimal transition
curves power results - preheating

without daytime comfort

Table 8: Demand response indicators for transition curves without preheating
and daytime comfort (13 capacitance model)

[B0] Step Reference [D4] 1 Hr Transition [D5] 2 Hr Transition [D6] 3 Hr Transition

[W] Demand [W] Impact [%] Demand [W] Impact [%] Demand [W] Impact [%]

Building peak 1184 1087 -8% 897 -24% 802 -32%

AM

qmax
am 1184 342 -71% 328 -72% 316 -73%

qam 683 169 -75% 148 -78% 131 -81%

reboundam 81 342 322% 334 312% 327 303%

PM

qmax
pm 1184 429 -64% 416 -65% 405 -66%

qpm 533 396 -26% 382 -28% 371 -30%

reboundpm 10 6 -40% 5 -48% 4 -58%

Building daily consumption [kWh] 9.38 9.47 1% 9.52 2% 9.71 4%
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Appendix D: Thermal Network

with Second Air Node Near

Temperature Sensor

In the experiment at each temperature change increase, the air temperature read-

ing would also measure higher than the actual set point. This could be due to

the sensor being close to the point where the heat is released. There may be a

sudden temperature rise in the vicinity of that point. A few minutes later, the

heat starts to dissipate to the surrounding areas (remaining air in the room) until

the temperature in the room evens out to a value closer to the set point. Table 29

displays this.
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Appendix D. Thermal Network with Second Air Node Near Temperature Sensor

Figure 29: Experiment 2 air temperature - wood floors

Another approach to thermal network modelling is to model a small node with

a capacitance to area in the vicinity of the temperature sensor, and connected with

a resistance to the original air node in the network. This new small node becomes

the air node (the temperature read by the sensor). This could help to capture the

faster dynamics with a small capacitance, while still capturing the longer delays.

Figures 30 and 31 have this new air node added are three capacitance and thirteen

capacitance thermal networks, respectively.
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Appendix D. Thermal Network with Second Air Node Near Temperature Sensor

Figure 30: Fourth Order Equivalent RC Network

Figure 31: Fourteenth Order Equivalent RC Network, Separated Surfaces

Figure 32 shows the result of air temperature using the 14 capacitance ther-

mal network. Further work should be done on better understanding and better
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Appendix D. Thermal Network with Second Air Node Near Temperature Sensor

calibrating the values of the capacitance of the new air node, the resistance be-

tween the new and old air node, and how much heat is being directly supplied to

each air node.

Figure 32: Modelling results of 14 capacitance thermal network
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