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ABSTRACT 

Improving Stochastic Simulation-based Optimization for Selecting Construction 

Method of Precast Box Girder Bridges 

 

Mohammed Mawlana, Ph.D.  

Concordia University, 2015 

 

 A large amount of reconstruction work is expected on existing highways due to the fact 

that highway infrastructures in North America are approaching or have surpassed their service 

life. The literature of construction engineering and management suggest that urban highway 

construction projects often overrun in budget and time. Bridges are crucial elements of urban 

highways, therefore, efficient planning of the construction of bridges is deemed necessary. 

Bridge construction operations are characterized as equipment-intensive, repetitive, have cyclic 

nature and involve high uncertainties. Without selecting the best construction method and the 

optimum number of equipment and crews, projects will take longer and cost more than 

necessary. The main objectives of this research are to: (1) develop a quantitative method that is 

capable of obtaining near optimum construction scenarios for bridge construction projects; and 

(2) obtain these optimum scenarios with an accurate estimate of their objective functions, a high 

confidence in their optimality and within a short period of time.  

The ability of stochastic simulation-based optimization to find near optimum solutions is affected 

mainly by: (1) the number of candidate solutions generated by the optimization algorithm; and 

(2) the number of simulation replications required for each candidate solution to achieve a 

desirable statistical estimate. As a result, a compromise between the accuracy of the estimate of 

the performance measure index of a candidate solution and the optimality of that candidate 

solution must be made. Moreover, comparing the performance of different candidate solutions 

based on the mean values is not accurate because the means of the two objectives (i.e., cost and 

time) are not always the means of the joint distribution of the two objectives. Finally, the 

resulting near optimum solutions are not necessarily achievable. 
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In order to achieve the abovementioned objectives, the following research developments were 

made: (1) a stochastic simulation-based multi-objective optimization model; (2) a method for 

incorporating variance reduction techniques into the proposed model; (3) a method to execute the 

proposed model in parallel computing environment on a single multi-core processor; and (4) a 

method to apply joint probability to the outcome of the proposed model.  The proposed methods 

showed an average of 84% reduction in the computation time and an average of 18% 

improvement in the hypervolume indicator over the traditional method when variance reduction 

techniques are used. Combining variance reduction computing with parallel computing resulted 

in a time saving of 90%. The use of the joint probability method showed an improvement over 

the traditional method in the accuracy of selecting the project duration (D) and cost (C) 

combination that satisfies a certain joint probability. For simulation models with high correlation 

between the outputs, ∆D and ∆C are not as large as in simulation models with moderate or low 

correlation, which indicates the existence of a negative relationship between correlation and ∆D 

and ∆C. In addition, the existence of high correlation permits the reduction of the number of 

simulation replications required to get a sound estimation of a project, which also indicates the 

existence of a negative relationship between correlation and the number of replications required. 
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1. CHAPTER 1: INTRODUCTION 

1.1 General Background 

Highway infrastructures in North America are approaching or have surpassed their service life; 

as a result, an intensive amount of reconstruction work is expected on existing highways. Such 

activities affect drivers, highway workers, business and other community functions (Jeannotte 

and Chandra,  2005; Mahoney et al., 2007). Current practices in the construction industry suggest 

that urban highway construction projects often overrun in budget and time due to the high cost of 

equipment and materials, change orders of work, meteorological and environmental factors, 

potential conflicts with stakeholders, economical and social activities, and a large number of 

unpredictable factors (Dawood and Shah, 2007; Hannon, 2007).  

The construction of urban highways differs from other construction projects because of (Saag, 

1999): (1) the huge cost involved in urban highways construction, which requires different and 

innovative financing techniques; (2) the magnitude of the work to be undertaken often requires 

organizational modifications at the transportation agency level; (3) the partial closure or 

disruption of travel on these important traffic routes has a daily effect on drivers and the 

community as a whole;  (4) the need to ensure travel continuity through or around the 

construction zone; (5) the need for communication with, and involvement of, the public spans all 

phases of project development; and (6) the combination of construction under traffic and heavy 

traffic volumes results in situations with the potential for unsafe conditions unless anticipated 

beforehand.  

Urban highways comprise roads, tunnels and bridges. Bridges are crucial elements of urban 

highways because they are used to span over obstacles. Several transportation agencies have 

shifted to Accelerated Bridge Construction (ABC) as an alternative to conventional construction 

methods. This recent shift was driven by the need to minimize traffic impacts caused by 

extended onsite construction activities. ABC refers to reducing the onsite construction time of 

bridges by using innovative planning, design, materials and construction methods (Federal 

Highway Administration, 2013). ABC has proven to have essential benefits over conventional 

construction methods. These benefits can be noticed in the improved safety during construction, 

the higher quality and durability of the bridge, as well as in the reduction of onsite construction 
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time, traffic impacts, social costs and environmental impacts. The use of precast concrete bridges 

is considered one of the popular ABC approaches.  

Bridge construction projects are characterized as equipment-intensive, repetitive, have cyclic 

nature and involve high uncertainties. Consequently, it is essential for the success of these 

projects to select proper equipment for each operation (Lee, 2003). In general, the goals behind 

selecting a fleet of equipment are: increase work safety, minimize cost, reduce equipment idle 

time, and maximize productivity. The fact that operation’s cycles have many components, which 

vary in their values, makes the analysis of productivity very difficult (Wright, 1996; El-

Moslmani, 2002). The uncertainties associated with bridge construction operations are a result 

of: (1) the different job conditions, for example equipment breakdown, and inclement weather, 

under which those operations are performed (Marzouk et al., 2006); (2) the use of a construction 

method for the first time or lack of experience with the used construction method; and (3) the 

spatio-temporal environment that may have potential conflicts.  

1.2 Problem Statement 

The construction method is one of the main factors that impact the cost, productivity, and 

efficiency of construction projects (Thomas et al., 1990). As a result, selecting the appropriate 

construction method is crucial for the success of the project. The selection of the method for 

constructing a bridge is a complex decision-making problem. During the planning phase of a 

precast concrete bridge construction project, planners have to make several decisions related to: 

(1) the construction method; (2) the location and settings of the casting yard; (3) the 

transportation of the precast concrete elements; (4) the number of resources; and (5) the overtime 

policy. Every set of these decisions is referred to as construction scenario. The terms 

construction scenario and candidate solutions are used interchangeable throughout the thesis. 

Each of these decisions impacts substantially the conflicting objectives of construction projects, 

which are minimizing the project’s total duration and minimizing the project’s total cost. In 

addition, evaluating the impact of each construction scenario on meeting the project objectives is 

not a straightforward process. Without selecting the optimum construction scenario, projects will 

take longer and cost more than necessary. Therefore, a new decision-making model is needed to 

support planners in performing this challenging planning task. This model should be capable of: 

(1) selecting the optimum construction scenario that will simultaneously optimize the conflicting 
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objectives of minimizing the project’s total duration and cost; (2) considering the decision 

variables that have an impact on the project objectives such as the construction method, the 

overtime policy, and the settings of the casting yard; and (3) meeting the project constraints such 

as the number of available resources, project deadline or budget. The complexity and the 

uncertainty of construction operations, and the limited knowledge of the behavior of the 

operations under different construction scenarios make it impossible to describe such operations 

using a closed form formula. Therefore, discrete event simulation can be used to model the 

complexity of the construction operations while the uncertainty can be modeled by incorporating 

stochastic durations and costs into the model. In order to find the optimum scenario, an 

enumeration and evaluation of all possible combinations can be carried out, which is not feasible 

for large problems. Therefore, simulation must be integrated with an optimization algorithm in 

order to optimize the construction operations.                                                                                                                                                                          

The efficiency of the stochastic simulation-based optimization is affected mainly by: (1) the 

number of candidate solutions generated by the optimization algorithm; and (2) the number of 

simulation replications required for each candidate solution to achieve a desirable statistical 

estimate. As the search space and/or the number of simulation replications increase, the 

computation requirements increase to a prohibitive level. As a result, a compromise between the 

accuracy of the estimate of a candidate solution and the optimality of that solution must be made 

(Cheng and Lee, 2011). The accuracy of the estimate of a candidate solution refers to how close 

that estimate is to the true mean of a performance measure index. The optimality of a candidate 

solution refers to the quality of the candidate solution (i.e., how close the candidate solution is to 

the optimum solution). Obtaining inaccurate estimates of the means of the performance measure 

indices may lead to a well-known problem called stochastic dominance. State of the art indicates 

that this type of problem occurs when an inferior candidate solution is perceived as an optimum 

solution due to an error in the estimate of the mean of the objective functions. In addition, the 

current state of art does not produce consistent optimum solutions every time the optimization is 

run. It is desirable to obtain an accurate estimate of the mean of the performance measure index 

with the least number of replications possible. By doing so, the problem of stochastic dominance 

will be solved and the computation requirements will be reduced. Several researchers have 

proposed methods, known as Variance Reduction Techniques (VRTs), to reduce the required 

number of simulation replications while maintaining a good estimate of the performance measure 
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index (Kleijnen 1975; Schruben and Margolin 1978; Bratley et al. 1987; L’Ecuyer 1994). 

Reducing the number of simulation replications will significantly reduce the computation time 

and efforts needed to solve the simulation-based optimization problem. To the knowledge of the 

author, however, these techniques have never been used in the context of simulation-based 

optimization. As a result, these techniques are not readily available to be used in this context. In 

addition, the effectiveness of the simulation-based optimization method incorporating VRTs is 

not studied. Therefore, there is a need for a method that will incorporate VRTs into the 

simulation-based optimization model. 

Furthermore, it has been reported repeatedly that the use of metahueristic optimization methods, 

such as Genetic Algorithms, for optimizing large-scale construction projects requires long 

computation time (Feng et al. 2000; Li and Love 1997; Li et al. 1999; Hegazy and Petzold 2003; 

Kandil and El-Rayes 2006). Using stochastic simulation adds another dimension to the 

complexity of the optimization problem, and as a result, it increases the required computation 

time. Several researches have proposed the use of parallel computing in order to reduce the 

required computation time to solve the optimization problem (Kandil and El-Rayes, 2006; 

Kandil et al., 2010; Yang et al., 2012; Salimi et al., 2014). By reducing the time required to 

optimize a problem, a larger area of the search space can be covered within the same period of 

time. As a result, the confidence in the optimality of the optimum solutions will increase.  

While the simulation-based optimization is an effective approach that can be best used at the 

planning phase to determine the optimum construction method and resource configuration, there 

is very little guarantee that the generated plans remain optimal through the execution phase. This 

is due to all the uncertainties that face the project execution. These uncertainties can be due to: 

(1) the conditions under which the project is performed; (2) the scope of the project; or (3) the 

available resources. Therefore, re-planning and re-allocation of resources might be necessary 

when a deviation from the initial plan is detected. Therefore, it is important to obtain the new 

optimum solutions in a timely manner. Although the use of parallel computing reduces the 

required computation time, it requires the use of a cluster of computers, which often comes with 

a high price tag. To overcome this problem, this research takes advantage of the advancement in 

multi-core processors. A method for implementing parallel computing on a single multi-core 

processor is proposed in this research to reduce the computation time. 
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Another problem with simulation-based optimization is that a candidate solution is evaluated in 

terms of the mean value of each objective function separately. The focus is usually on 

quantifying the impact of uncertainty on the project schedule (Lu 2003; Zhang et al. 2008; Al-

Bataineh et al. 2013; Nguyen et al. 2013). This approach provides insight on the probability of 

completing the project within a specific duration. In multi-performance measure indices 

problems (Zhang et al. 2006; Hassan and Gruber 2008; Marzouk et al. 2009; Lee et al. 2010; 

Mawlana and Hammad 2013), the performance measure indices of a model is represented by the 

duration and cost values as a pair. However, these values are found by explicitly averaging the 

durations and costs of simulation replications without regard to their simultaneous occurrence. In 

addition, when comparing the performance measure indices of the model under different 

probabilities of occurrence, each performance measure index is assessed separately. The 

traditional method does not provide any information on the probability of the project cost given a 

specific project duration, and vice versa. Without this information, the decision maker cannot 

quantify the impact of selecting a project duration meeting a probability of occurrence of the 

project cost, and vice versa.  That is, the correlation between the duration and cost is not 

examined and the impact each performance measure index has on the other performance measure 

index is ignored. Due to the fact that there is a correlation between the project duration and cost, 

the analysis of the model performance measure indices must consider the simultaneous 

occurrence of the project duration and cost through the use of joint probability (Feng et al. 2000; 

Yang 2011). The traditional method is valid only if a perfect correlation between the project 

duration and cost exists, and the marginal and joint distributions follow a normal distribution. 

However, this is not always the case for construction projects. In addition, a specific pair of 

performance measure indices selected based on the traditional method is not necessarily 

achievable. The results of simulation replications may not generate a replication that has the 

same pair of performance measure indices. The achievable performance measure indices’ values 

for that model could be higher or lower than the values of the performance measures indices pair. 

Even if a specific performance measures indices pair is generated by the simulation replications, 

there is no method available for tracing this pair in order to generate the schedule of that pair. 

Therefore, there is a need for an analytical method to overcome these shortcomings. 
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1.3 Research Objectives 

The main aim of this research is to develop and integrate new models for planning and 

scheduling of precast box girder bridge construction projects. The objectives of this research 

along with the addressed research questions are:  

Objective 1: 

To develop a stochastic simulation-based multi-objective optimization model for the construction 

of precast concrete box girder bridges that is capable of (1) finding near optimum construction 

scenarios; and (2) simultaneously minimizing the project’s total duration and cost. 

Research Questions: 

(1) What are the decision variables that should be considered? (2) How can the project duration 

and cost be formulated and estimated? (3) How to integrate the optimization algorithm with 

simulation? (4) What precast box girder bridge construction method should be used? (5) What is 

the optimum number of resources to be used? and (6) How this selection is affected by overtime 

policy and the settings of the casting yard? 

Objective 2: 

To develop a new method to: (1) increase the quality of the optimum solutions; (2) increase the 

confidence in the optimality of the optimum solutions; and (3) reduce the computation time 

required for performing a stochastic simulation-based multi-objective optimization by 

incorporating VRTs. 

Research Questions: 

(1) How VRTs can be applied in the context of simulation-based optimization methods? (2) How 

to compare the optimum solutions? (3) How to compare and evaluate different VRTs? (4) What 

is the impact of these techniques on the quality of optimum solutions? (5) What is the impact of 

these techniques on the optimality of the optimum solutions? and (6) What is the time saving that 

can be achieved using these techniques? 
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Objective 3: 

To propose a method to reduce the computation time required for performing a stochastic 

simulation-based multi-objective optimization by performing parallel computing on a single 

multi-core processor.  

Research Questions: 

(1) How parallel computing can be implemented using existing optimization and simulation 

tools? (2) How the simultaneous multithreading technology impacts the computation time? What 

is the time saving that can be achieved by this implementation? (3) What is the optimum number 

of cores to be used? and (4) How does the time saving achieved using the proposed tools 

compare to the use of another tools?  

Objective 4: 

To develop a method to reduce project risk and provide the decision makers with more accurate 

and useful information to plan and manage their projects using the joint probability. 

Research Questions: 

(1) How the joint probability can be applied to the output of the optimization process? (2) How 

to calculate the conditional probability of the project cost given a specific project duration, and 

vice versa? (3) How to find the best project duration and cost that meet a specific joint 

probability? (4) How to estimate the project schedule and cost joint contingency using the joint 

probability? and (5) How to generate a schedule representing a specific joint probability? 

1.4 Research Significance 

The current research aims to support and enhance decision-making in construction projects and 

to aid planners to select a near optimum construction scenario and therefore minimize the project 

total duration and cost. Applying this framework is expected to have a noteworthy impact on: (1) 

selecting the best construction method in terms of duration and cost; (2) selecting the number of 

resources, overtime policy, and casing yard setting to be used to increase productivity and meet 

project objectives; (3) reducing the computation time required to optimize construction 

operations; (4) increasing the confidence in the quality and optimality of the optimum solutions; 

(5) reducing project risk; and (6) providing the decision makers with more accurate and useful 
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information to plan and manage their projects. Thus, this research will provide significant 

benefits to contractors and construction management firms. 

1.5 Thesis Organization 

This research will be presented as follows: 

Chapter 2: Literature Review: This chapter presents a review of the literature on selecting bridge 

construction method, construction simulation, optimization, and stochastic simulation-based 

optimization. In addition, a comprehensive literature review is given about the research related to 

the selection and optimization of bridge construction methods. The aim of this review is to 

identify the research gaps that need to be addressed in this research.  

Chapter 3: Overview of Proposed Methodology: This chapter presents an overview of the 

proposed methodology of a stochastic simulation-based multi-objective optimization model for 

the planning and scheduling of precast box girder bridge construction projects 

Chapter 4: Stochastic Simulation-based Multi-objective Optimization Model: This chapter 

presents a stochastic simulation-based optimization model for planning, scheduling and 

optimizing precast box girder bridge construction operations. The aim of the model is to select a 

near-optimum construction scenario that satisfies predefined objectives.   

Chapter 5: Solving the Problem of Stochastic Dominance And Reducing the Number of 

Simulation Replications Using Variance Reduction Techniques: This chapter presents a method 

to incorporate VRTs into the stochastic simulation-based optimization model.  

Chapter 6: Reducing the Computation Time to Solve the Optimization Problem using Parallel 

Computing on a Single Multi-core Processor: This chapter presents a method for implementing 

the simulation-based optimization model in a parallel computing environment on a single multi-

core processor. 

Chapter 7: Joint Probability for Evaluating the Duration and Cost of Stochastic Simulation 

Models: This chapter presents a new joint probability method that is going to be applied to sub-

populations’ Pareto fronts generated by the stochastic simulation-based optimization model. 
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Chapter 8: Conclusions and Future Work: This chapter summarizes the work and concludes 

with the findings of this thesis. In addition, it highlights the contributions and lists the limitations 

of the developed models. Finally, it suggests some recommendations for future work. 
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2 CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a review of the literature on selecting bridge construction method, 

construction simulation, optimization, stochastic simulation-based optimization. In addition, a 

comprehensive literature review is given about the research related to the selection and 

optimization of bridge construction methods.  The aim of this review is to identify the research 

gaps that need to be addressed in this research. The limitations of the traditional simulation-

based optimization are defined. In addition, it reviews what other researches proposed to 

overcome these limitations. Finally, the topics that are used in this research to overcome these 

limitations are reviewed. 

2.2 Selecting a Bridge Construction Method 

2.2.1 Bridge Construction Methods 

In this research, the focus is on the construction of concrete box girder bridges using the 

following construction methods: (1) precast full-span erection using launching gantry; (3) precast 

segmental span erection using lunching gantry; (4) precast segmental span erection using false-

work; and (4) precast segmental span erection using under-slung girder. Therefore, these 

construction methods are reviewed below.  

Precast Full Span Concrete Box Girder Construction  

This construction method is well suited for bridges that span over obstacles, have minimal 

horizontal radius, and are comprised of similar span lengths. The advantages of this construction 

method are: (1) achieving high quality of concrete spans due to manufacturing in a casting yard; 

(2) reducing construction time and cost (Pan et al., 2008); (3) minimizing disruption to the 

existing traffic network; (4) reducing the need for scaffolding work (Benaim, 2008); (5) 

achieving very high rate of production; and (6) improving safety because of the reduced on site 

activities (VSL International Ltd., 2013). However, this method requires high level of 

technology, has high equipment cost, needs large areas for casting and storing, and is not suitable 

when the access is difficult (Hewson, 2003). This construction method has been applied to 
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several projects around the globe such as Taiwan High Speed Rail, Seven Mile Bridge, 

Singapore MRT (VSL International Ltd., 2013), Saudi Arabia-Bahrain Causeway, and Vasco da 

Gama Bridge (Hewson, 2003).  The span length is typically between 30 m and 55 m and weighs 

between 600 tons and 1500 tons (NRS Bridge Construction Equipment , 2008). However, the 

span length may be over 100 m and weigh thousands of tones. The width of the span ranges from 

5 m to more than 12 m, which makes this construction method applicable for both light-rail 

systems and highway bridges. The bridge can be either constructed as simply supported or as 

continuous spans. The precast full span is placed on the bearings in the case of simply supported. 

On the other hand, in the case of the continuous setting, neighboring spans are joined together 

using tensioning rods and   in-situ concrete stitch (Hewson, 2003).  

The construction of a precast full span concrete box girder bridge is done in two phases: (1) the 

fabrication of a full span length of a concrete box girder at the casting yard; and (2) the erection 

of the full span using various techniques onsite. In the first phase, the process starts by erecting 

the reinforcement and stressing ducts of the bottom slab and the webs. Then an inner mold is 

installed where the top slab reinforcement and stressing ducts erection takes place.  At this stage 

all the reinforcement work is completed and a rebar cage is ready to be casted. The rebar cage is 

then put into an outer mold where the casting takes place. Next, the inner mold is removed when 

the full span reaches a sufficient strength. At this point, the first stage of pre-stressing is 

performed and the full span is transported to the storage area to complete curing and be stored. 

When the full span reaches a sufficient strength, the second stage of pre-stressing takes place 

(VSL International Ltd., 2013). In the second phase, the full span precast box girders are 

transported to the construction site by trailers, trolleys or barges. The selection of the 

transportation method depends on the distance between the casting yard and the construction site, 

the erection equipment used, the size of the span, and the terrain and bridge site access.   

This method is used for bridges comprising single box girder where a launching gantry is used to 

erect the precast full span box girders as shown in Figure  2-1. The girders are loaded to a trolley 

(Figure  2-2) which travels along the completed section of the bridge to reach to the location of 

the span that will be launched as shown in Figure 2-3(a).  Next, the launching gantry picks up the 

precast girder (Figure  2-3(b), Figure  2-4) and places it on the pier cap (Figure  2-5). Finally, the 
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launching gantry repositions to the new launching location as shown in Figure  2-3(c) 

(Rajagopalan, 2006; Benaim, 2008;  Rosignoli, 2010; VSL International Ltd., 2013).  

Precast Segmental Concrete Box Girder Construction 

This construction method has been widely used in the past for the construction of both rail and 

highway bridges. The concept behind this method is that each span is casted in short segments, 

transported into the construction site and finally joining the segments together. In general, the 

construction methods under this category share the following advantages: (1) achieving high 

quality through factory production of the segments; (2) achieving high construction productivity 

rate (Podolny and Muller, 1982); (3) minimizing the disruption to construction site; and (4) being 

suitable for tight curves and complex geometry (Hewson, 2012). However, this method requires 

a high level of technology, has high equipment cost, and needs large areas for casting and storing 

(Hewson, 2003).  The span length is typically between 40 m and 150 m with segment length of 

3.5 m to 8 m and weighing up to 90 tons. The segment length is chosen based on the available 

handling equipment and transportation network.  The width of the span ranges from 6 m to 16 m 

which makes this construction method applicable for both light-rail systems and highway bridges 

(Hewson, 2003). 

As in the case of precast full span box girder bridges, the construction of a precast segmental 

concrete box girder bridge is done in two phases: (1) the casting of the segments of a concrete 

box girder bridge at the casting yard; and (2) the erection of these segments using various 

techniques onsite. There are two main techniques for casting the segments which are the short 

line and the long line methods. These two methods are based on the match-cast principle where 

new segments are cast against the previously cast segment so that the faces of the segments fits 

perfectly (Sauvageot, 1999), i.e., the segments are cast so that their relative erecting position is 

the same as their relative casting position (Barker, 1980).  

Most match-cast segmental bridges use the short line method since it can be used for any shape 

of deck alignment (Benaim, 2008). Therefore, this research will focus on this method. Figure  2-6 

shows a schematic drawing of the short line match casting method. In the short line method, 

segments are cast in the same stationary form and against the previously cast segment. The 

previously cast segment is then moved to the storage and the newly cast segment is cast against.  
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Figure  2-1 Schematic Drawing of Precast Full Span Launching Method (VSL International Ltd., 2013) 

 

 

Support Beam 

Front Mobile Support 

Front Fixed Leg 

Rear Fixed Leg 

Rear Mobile Support 

Direction of Erection 

Front Trailer 

Launching Carrier 

Front Lifting Frame 

Lifting Winches 

Rear Lifting Frame 
Delivery of Precast Span along Completed 

Deck by Launching Carrier 

Rear Trailer 



 

 14  

 

Figure  2-2 Precast Full Span Concrete Box Girder Loaded on a Trolley (Colossal Transport Solutions, 2011) 

 
         P1                  P2                           P3 

 
        P1                  P2                           P3 

 
          P2                  P3                           P4 

(a) Delivery of New Span (b) Gantry Picking New Span (c) Gantry Repositioning 

Figure  2-3 Operation of a Launching Gantry (Benaim, 2008) 

 

Figure  2-4 Launching Gantry Picking-up the Precast Span (Continental Engineering Corporation, 2006) 

 

Figure  2-5 Launching Gantry Places the Precast Span on the Pier Cap (Strukturas DF International, 2011) 



 

15 

 

 

(a) Older Segment is Moved to Storage 

 

(b) New Segment is Moved to Cast Against 

Figure  2-6 Schematic of Short Line Match Casting System (Barker, 1980) 

In the second phase, the segmental precast box girders are transported to the construction site by 

trailers, trolleys or barges. The selection of the transportation method depends on the distance 

between the casting yard and the construction site, the erection equipment used, the size of the 

span, and the terrain and bridge site access. The erection methods of segmental box girder 

bridges can be grouped into four categories: (1) span-by-span construction, (2) balanced 

cantilever construction, (3) progressive placement construction, and (4) incremental launching 

(Podolny and Muller, 1982).  This research focuses on the construction methods that belong to 

the first category where segments are delivered to the construction site and joined together to 

form the bridge spans. There are three basic methods for treating the joints between the 

segments: (1) cast in situ joints, where the segments are joined with reinforced concrete or 

mortar (Mondorf, 2006); (2) glued joints, where the segments are joined together using a 

bonding agent such as epoxy or cementitious product which is applied to the contact areas of the 

segments (Liebenberg, 1992); and (3) dry joints where the segments are joined without the use of 

any bonding material. The last two methods require the use of key-ways which are obtained by 
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match-casting (Mondorf, 2006). This research focuses on the use of glued joints since it can 

accommodate minor damages in the faces of the segments, facilitate connecting the segments, 

and provide a waterproof seal (Benaim, 2008). 

The span-by-span erection method starts at one end and progresses towards the other end. Using 

this method, the segments of each span are positioned, aligned, and post-tensioned to form the 

final span. Three erection techniques are considered for the construction of precast segmental 

concrete box girder bridges in a span-by-span setting using (a) launching gantry, (b) falsework 

support, and (c) under-slung girder. 

(a) Span-by-span precast segmental erection using launching gantry (Figure  2-7(a)) has been 

used extensively in the past on highway and light-rail projects such as Deep Bay link, 

Metro de Santiago, Bandra Worli Bridge, Pusan Bridge, and Penny’s Bay bridge (VSL 

International Ltd., 2013).  Gantries are limited to erecting the deck in a sequential manner 

and are delayed if problems occur at any pier or in any span.  

(b) Span-by-span precast segmental erection using falsework support (Figure  2-7(b)) has 

been used extensively in the past on highway and light-rail projects such as Deep Bay 

Link, Penny’s Bay, West Link, East Rail (VSL International Ltd., 2013). Full height 

falswork support is used in this erection technique; therefore, a conventional scaffold 

support or heavy shoring can be used depending on the effective height of the structure 

and the imposed loading of the falsework system (VSL International Ltd., 2013). In this 

method, segments are delivered one by one by trailers on the ground and placed on the 

falsework using cranes. Once an entire span is erected, the segments are jacked, aligned, 

joined and post-tensioned (Gerwick, 1993). The advantages of using the falsework 

system are: (1) the falsework erection and dismantling do not require higly skilled labor; 

(2) it is adjustable to complex and variable geometry of the superstructure; (3) the 

falswork sections are limited in size and easily transportable (Liebenberg, 1992); (4) the 

construction work can proceed on multiple spans; and (5) the crew size can be fully 

optimized to ensure work continuity (VSL International Ltd., 2013). However, the use of 

this method comes with some disadvantages such as the system is cumbersome and slow; 

strong foundation conditions might be required (Liebenberg, 1992); and good access is 

required for the delivery of the segments and crane manuvering (Hewson, 2012). 
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(c) Span-by-span precast segmental erection using under-slung girder (Figure  2-7(c))  has 

been used extensively in the past on highway and light-rail projects such as West Rail, 

Windsor Flood Plane, Gautrain Viaducts (VSL International Ltd., 2013), Extension, 

Mancunian Way, and Long Key Bridge (Mondorf, 2006). Under-slung girders are usually 

steel structures that have the length of one to two spans. The under-slung girder is 

supported directly on the piers or on pier brackets independent of the conditions of the 

ground below the bridge. This erection technique combines features of the two above-

mentioned techniques. Some under-slung girders can launch themselves automatically to 

the next span after completing the erection of the previous span as in the launching gantry 

technique. In addition, segments are placed on the girder by using cranes as in the 

falsework support technique (Mondorf, 2006). The advantages of this erection technique 

are: (1) the equipment required is not overly heavy; (2) the span length may vary 

stepwise within a certain range (Mondorf, 2006).  
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(a) Using Lunching Gantry 

 

(b) Using False-work 

Figure  2-7 Schematic Drawings of Segmental Span-by-span Construction Method (VSL International Ltd., 2013) 
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(c) Using Under-slung Girder 

Figure 2-7 (continued) Schematic Drawings of Segmental Span-by-span Construction Method (VSL International Ltd., 2013) 
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2.2.2 Method Selection 

The selection of the construction method for constructing a bridge is a complex decision-making 

problem that includes many decisions. In addition, having multiple project objectives to be 

achieved adds to the complexity of the problem.  Few reasearches have worked on the selection 

of the bridge construction method. Murtaza et al. (1993) developed an expert system to analyze 

the use of modular construction for a power plant project. Tabai et al. (1998) developed a 

construction method selection support system for the construction of concrete slabs in building. 

Soetanto et al. (2006) developed a multi-criteria framework for selecting the structural frame. 

Chen et al. (2010) developed a decision support tool that aids planners in selecting the 

construction method of concreting (cast in-situ versus precast) different building elements. For 

bridges and elevated highways construction method selection, only two works have been found 

in the literature and they are presented below. 

Youssef et al. (2005) developed an intelligent decision-support system to evaluate the alternative 

construction methods of concrete bridge superstructures in Egypt. The system is supposed to aid 

professionals during the planning stage of a project. This system compares the following 

construction methods: stationary formwork, advancing shoring system, incremental launching, 

launching girder, and cast in-situ balanced cantilever. The system uses Analytic Hierarchy 

Process (AHP) to evaluate and recommend one of the above construction methods for a given 

situation. The main criteria used to evaluate alternatives are cost, duration, bridge physical 

characteristics, characteristics of the construction method, and the surrounding environment. 

These criteria were identified through 13 interviews with industry professionals. Furthermore, 31 

questionnaires were conducted to rank the importance of each criterion. The system proposes the 

applicable construction methods based on the bridge physical characteristics and the surrounding 

environment information provided by the user. A database of rules of thumb, which are used to 

identify the applicable alternatives, was created by conducting five structured interviews with 

industry experts. The user of the system enters the weight of each criterion and sub-criterion.  

Furthermore, the user has to fill the cost information related to each feasible construction 

method. Finally, the relative weights are divided by the cost for each alternative where the 

alternative with the highest resulting value is the best construction method for that project.  
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Pan (2008) proposed a fuzzy AHP model to overcome the incapability of traditional AHP to 

transform an expert preference into an exact number. The proposed method was applied to the 

problem of selecting the suitable bridge superstructure construction method. The important 

criteria and their relationship to the decision problem were developed as per the suggestions of 

bridge professionals. The main criteria used in this model are quality, cost, safety, duration, and 

shape of bridge. Questionnaires were used to obtain a pairwise comparison by using linguistic 

terms for each criterion. Three pre-selected construction methods were used in the comparison:  

precast full span launching method, cast in-situ advancing shoring method, and cast in-situ 

balanced cantilever method. The suitable construction method is cast in-situ advancing shoring 

method according to the study regardless of the characteristics or surrounding of the bridge. In 

addition, the quality and safety of the construction method are found to be the two most 

important criteria, while the bridge shape is found to be the least important criterion. In order to 

use this system, the user should define the hierarchy of the decision problem, and the pairwise 

comparison judgments. Thus, a high level of expertise in bridge construction is required to use 

the proposed system. 

Despite the notable contributions of the abovementioned researches, they have the following 

shortcomings, individually or collectively: (1) they are subjective since they were based on 

qualitative analysis; (2) they are restricted by the region where the surveys used to build those 

models were conducted; (3) they ignore the characteristics and constraints of each bridge 

construction project and each construction method; (4) they require a high level of expertise; (5) 

they do not take the availability of resources into consideration; and (6) they do not optimize the 

selected construction method.  

However, the complexity and the uncertainty of construction operations, and the limited 

knowledge of the behavior of the operations under different combinations of resources make it 

impossible to describe such operations using a closed form formula. Therefore, discrete event 

simulation can be used to model the complexity of the construction operations while the 

uncertainty can be modeled by incorporating stochastic durations and/or costs into a discrete 

event simulation model. 
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2.3 Construction Simulation 

2.3.1 Simulation in Construction 

Simulation is a powerful tool that can be used to mimic the behavior of real-world systems over 

time (Law and Kelton, 1991). Simulation can determine the output of a system based on the 

variations in the input to a system (Halpin and Riggs, 1992). Simulation has been used in many 

fields such as supply chain (He et al. 2014), transportation (Frantzeskakis and Frantzeskakis 

2006), fluid dynamics (Vernay et al. 2014), design optimization (Wang et al. 2014), power 

systems (Degeilh and Gross 2015), and biology (Székely Jr. and Burrage 2014). Construction 

simulation is a well matured research area. Several construction simulation methods and tools 

have been proposed and developed such as CYCLONE (Halpin, 1977), RESQUE (Chang, 1986), 

COOPS (Liu, 1991), CIPROS (Odeh, 1992), STROBOSCOPE (Martínez, 1996), and 

SIMPHONY (Hajjar and AbouRizk, 1999), to name a few.   

The construction processes that have a repetitive and cyclic nature can be planned and analyzed 

using simulation (Touran, 1990). Simulation in construction has been used for planning and 

resource allocation (AbouRizk et al. 1992), comparing the outcome of alternative construction 

methods (Oloufa 1993), analyzing earthmoving operations (McCahill and Bernold 1993; 

Marzouk and Moselhi 2003) and bridge construction operations (Huang et al., 1994; Abraham 

and Halpin, 1998; Reddy et al., 1999; López and Halpin, 2000; Hong and Hastak, 2007; 

Marzouk et al., 2007; Marzouk et al., 2008; Pan et al., 2008; Said et al. 2009; Ailland et al., 

2010; Mawlana et al., 2012; Mawlana and Hammad, 2015).   

This research uses STROBOSCOPE to develop the simulation models. STROBOSCOPE, an 

acronym for STate- and ResOurce-Based Simulation of COnstruction ProcEsses, is a general-

purpose discrete-event simulation system. STROBOSCOPE uses the activity-scanning paradigm 

which is well suited for modeling construction processes that have a cyclic nature. 

STROBOSCOPE is capable of dynamically accessing the state of the simulation and the 

properties of the resources involved in an operation. The number of resources waiting in a queue; 

the total number of instances of each task; and the first time or the last time a particular activity 

started are all examples of the state of the simulation. The properties of resources refer to the 

specific characteristics of each resource such as the cost, capacity, or weight. Moreover, 
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STROBOSCOPE can accommodate deterministic and stochastic modeling of construction 

operations. This allows for extensive sensitivity analysis to be carried out, which in turn reduces 

the risk associated with the project. STROBOSCOPE is used because it: (1) is user friendly; (2)  

has built-in functions and stream management tool that allow for the implementation of any 

variance reduction technique; (3) can be controlled using many programming languages; and (4) 

is well documented. 

Stroboscope models are based on a network of interconnected modeling elements (as shown in 

Table  2-1). In addition, a series of programming statements are used to give the elements a 

unique behavior and to control the simulation. The modeling elements consist of nodes and links. 

Links are used to connect the network nodes and indicate the direction and type of resources that 

flow through them. Every link represents the flow of one type of resources only, which can be a 

single resource (e.g. empty truck) or combined resources (e.g. truck loaded with soil). The node 

at the tail of the link is the predecessor and the node at the head is the successor. There are two 

types of nodes in STROBOSCOPE which are queues and activities. Queues are nodes that hold 

that resources when they are either stored there or waiting to be used. Each queue is associated 

with a particular resource type. On the other hand, activities are nodes that represent tasks in 

which the resources are productive. Resources engaged in an activity stay tied for the duration of 

the activity. There are three types of activities in STROBOSCOPE which are the normal, the 

combi, and the consolidator. The normal and the combi activities differ in two aspects. The first 

is the way the activities may start and the second is the way they acquire the resources they need. 

Combi activities represent tasks that must meet certain conditions in order for them to start. Most 

of the time, these conditions are related to the availability of resources in the queues preceding 

that combi. That is, combi activities withdraw the required resources from the preceding queues. 

Therefore, combi activities can only be preceded by queues because inactive resources reside 

only in queues. Normal activities, on the other hand, represent tasks that start immediately after 

other tasks end. Moreover, they acquire the required resources from the preceding task that has 

just finished. Consolidators are used to accumulate resources or to block resources flow until 

certain conditions are met. After these conditions are met, all resources are released and sent to 

the desired nodes.  
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Table  2-1 STROBOSCOPE Elements Used to Build Up the Simulation Models (Martínez, 1996) 

Symbol Description 

 

 

Queues hold resources that are idle. Each Queue is associated with a particular 

resource type. 

 

 
Combi activities represent tasks that start when certain conditions are met. 

 

 
Normal activities represent tasks that start immediately after other tasks end. 

 

 

Consolidators are activities that start and finish their instances depending 

exclusively on the resources they receive. 

 

 

Links connect network nodes and indicate the direction and type of resources 

that flow through them.  

 

2.3.2 Bridge Construction Methods Simulation 

Simulation has been used to study the performance of bridge construction methods, for example, 

the construction of the deck of a cable-stayed bridge using balanced cantilever method (Huang et 

al., 1994), the construction of concrete box girder bridge deck using cast-in place on false-work 

and stepping formwork (Marzouk et al., 2006), incremental launching method (Marzouk et al., 

2007),  lifting for precast balanced cantilever bridges (Marzouk et al., 2008), cantilever carriage 

for cast in place balanced cantilever bridges (Said et al., 2009), and the construction of precast 

concrete box girder using the full-span launching gantry method (Pan et al., 2008; Mawlana et al., 

2012). However, the previous work did not optimize the construction method of bridges. In 

addition, simulation can only evaluate the performance measure index of an operation for a given 

scenario. In order to find the optimum scenario, an enumeration and evaluation of all possible 

combinations must be carried out, which is not feasible for large problems. Therefore, simulation 

must be integrated with an optimization technique in order to optimize the bridge construction 

methods.  
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2.4 Optimization 

Optimization can be defined as the process of finding one or more solutions that satisfy all 

constraints while minimizing (or maximizing) one or more specified objectives (Branke et al., 

2008). An optimization problem can be expressed as follows: 

Minimize (or Maximize) an objective 

               Subject to a set of constraints 

As shown in Figure  2-8, optimization can be mainly classified based on the number of the 

objective functions, the uncertainty in the decision variables or objective functions’ values, and 

the type of the optimization problem. The optimization problem is called a single optimization 

problem or multi-objective optimization problem if it has a single objective or multiple 

objectives, respectively. The optimization is considered deterministic when the value of the 

objective function for a set of decision variables can be estimated with certainty. On the other 

hand, stochastic optimization occurs when the value of the objective function for a set of 

decision variables cannot be estimated with certainty. 

Optimization

Number of 

objectives
Certainty

Type of 

problem

Single Multiple Deterministic Stochastic Linear DiscreteNonlinear

 

Figure  2-8 Classification of Optimization Problems 

The form of the equations that represent the objective functions and the decision variables 

describes the type of the optimization problem. These equations can be linear, nonlinear, or 

discrete (Diwekar, 2008). Linear optimization (mainly called linear programming) is the 

optimization of the problems that have linear objective functions and constraints, and scalar and 

continuous decision variables. Nonlinear optimization (mainly called nonlinear programming) is 
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the optimization of the problems that have nonlinear objective functions and constraints, or either 

of them. Moreover, these problems must have scalar and continuous decision variables. Discrete 

optimization is the optimization of the problems that have discrete decision variables. Discrete 

optimization can be categorized into integer programming, mixed integer linear programming, 

and mixed integer nonlinear programming problems. The integer programming problem involves 

scalar and integer decision variables. However, the objective functions and constraints can be 

either linear or nonlinear. Mixed integer refers to the combination of integers and continuous 

decision variables.  Mixed integer linear programming problems have linear objective functions 

and constraints while mixed integer nonlinear programming problem have nonlinear objective 

functions and/or constraints.  

2.4.1 Multi-objective Optimization 

The problems that require the consideration of multiple objectives simultaneously are called 

multi-objective optimization problems. Cohon (1978) describes a multi-objective optimization as 

the process of finding a range of efficient solutions or a preferred solution to a problem using a 

set of procedures. Mathematical functions are used to formulate the objective functions and 

constraints as a set of decision variables. Consequently, a general definition of multi-objective 

optimization problem can be formally written as follows (Nakayama et al., 2009).  

Minimize (or Maximize) f(x) = {f1(x), f2(x), ..., fm(x)}      Equation  2-1 

  

Subject to    hi(x) = 0  

                    gj(x) ≥ 0  

  

Where x is the vector of decision variables, f(x) is the set of objectives to be minimized, f1(x) is 

the function of the first objective, g(x) and h(x) are the functions of the sets of inequality and 

equality constraints. 

The objectives in a multi-objective optimization problem can be totally conflicting, non-

conflicting, or partially conflicting (Goh and Tan, 2009). The complexity of multi-objective 

optimization problems rises from the existence of multiple, conflicting objectives with a large, 

complex search space (Jimenez, 2007). Most real-world problems have partially conflicting 

objectives where finding a single optimum solution that satisfies all the objectives is not 

possible. There are two main approaches to solve a multi-objective optimization problem:        
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(1) combining the multiple objective functions into a single objective function; or (2) obtaining a 

set of non-dominated optimum solutions (Jimenez, 2007). Consequently, the preferable outcome 

of a multi-objective optimization problem is a set of non-dominated optimum solutions which 

represent the potential tradeoff among the objectives as shown in Figure  2-9. In other words, 

moving from one solution to another means that an objective is being traded for another. 

Tradeoff refers to the improvement of one objective by worsening the other objective. Each 

solution in this set is called a Pareto solution or non-dominated solution which can be defined as 

a solution that no improvement can be done to one objective without worsening the other 

objective.  The set of optimum solutions is called the Pareto set or the non-dominated set and the 

graphical representation of Pareto set in the objective function space is called the Pareto front as 

shown in Figure  2-9.  The points in the figure represent some of the feasible solutions. 

Points A, B, C, D are example of the non-dominated solutions which form the Pareto front. 

 

Figure  2-9 Pareto Front (Pozo et al., 2012) 

The tradeoff analysis between time and cost is one of the most important aspects of construction 

engineering and management (Feng et al., 2000). In this tradeoff, the decision maker can select 

the solution that has the best compromise in term of time and cost. A tradeoff exists because 

reducing the project duration requires the use of extra resources which in turn will increase the 

project direct cost. Thus, this intricate relation between project duration and cost promotes 

opportunities to find the project setting or resource allocation plan that will optimize the project 

duration and cost.   
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There are two main approaches to solve this tradeoff problem which are mathematical 

programming and metaheuristic search methods.  Mathematical programming methods, such as 

linear programming and integer programming, express the objective functions and constraints of 

an optimization problem using closed form formula. Although these methods have been applied 

to solve the tradeoff problem, they have some limitations such as: (1) formulating the constraints 

and the objective functions is time consuming and prone to errors (Liu et al., 1995); (2) some 

approaches do not provide the optimum solution (Feng et al., 2000); (3) the inability to handle 

more than one objective (Zheng et al., 2005; Reddy and Kumar, 2007); and (4) being inefficient 

for solving large complex problems (Adeli and Karim, 1997; Senouci and El-Rayes, 2009).  

Metahuristic methods can be classified into population-based methods, such as Ant Colony 

Optimization and Genetic Algorithms (GAs), and trajectory methods, such as Simulated 

Annealing and Tabu Search.  Simulated annealing and Tabu search sometimes can be stuck at a 

local optimum solution and requires a large computation time (Jimenez, 2007).  

2.4.2 Genetic Algorithms 

GAs are considered to be one of the standard methods for solving multi-objective optimization 

problems (Liao et al., 2011). They are capable of getting an approximation of the Pareto front in 

a single optimization run (Jimenez, 2007). This is achieved by searching the different parts of the 

solution landscape in a parallel way (Yu and Gen, 2010). GAs guarantee to identify the optimum 

tradeoffs and do not tend to be stuck at a local optimum like other metahuristic methods 

(Abraham et al., 2005).  In addition, GAs are very practical because of the following reasons: (1) 

they can be applied to multi-objective optimization problems regardless of the problem 

representation (Deb, 2001), (2) they are insensitive to the shape of the Pareto-front (Goh and 

Tan, 2009), and (3) they are easy to implement, and could be implemented in a parallel 

environment (Abraham et al., 2005). The simple GA is a set-based stochastic search algorithm 

that was developed by Holland (1975) based on the natural evolution theory. Since the 

development of the simple GA, several researchers have introduced several improvements to it. 

Among these is the fast messy Genetic Algorithm (fmGA) (Goldberg et al., 1993). The fmGA 

has proven to be effective in optimizing decision making in construction operations (Feng and 

Wu, 2006; Cheng and Wu, 2009). This research uses the fmGA to solve the optimization 

problem of selecting the bridge construction scenario. 
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Fast Messy Genetic Algorithm 

The fast messy Genetic Algorithm (fmGA) was developed to overcome some of the problems 

faced while using the simple GA and the messy Genetic Algorithm. The fmGA operates by 

iterating within two loops which are the outer and inner loops. This process is summarized in 

Figure  2-10. The fmGA starts from the outer loop by random initialization of the competitive 

template. Each outer loop, which is called an era, performs an inner loop.  The inner loop 

consists of three phases namely the initialization, the primordial, and the juxtapositional phases. 

The initialization phase starts by generating an initial population of size N using the 

probabilistically complete initialization (PCI) technique. Each generated solution is evaluated to 

measure its fitness. The primordial phase uses thresholding selection and building block filtering 

to increase the proportion of the better solutions by filtering out the worse solutions. All filtered 

solutions are evaluated at this phase. This process is repeated until the primordial termination 

criterion is met. Finally, the juxtapositional phase applies thresholding selection, and two 

operations namely cut and splice, and mutation. All generated solutions are evaluated in this 

phase. This process is repeated until the juxtapositional termination criterion is met.  The 

template of the new era is set to the best solution found at the end of the juxtapositional phase. 

The outer loop stops when the termination criterion is met.  

 

Start

Random initialization of the Competitive 

Template 

Generate an initial population of size N using 

PCI 

Thresholding selection and building block 

filtering

Calculate the fitness of filtered chromosomes
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No

No
End
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Figure  2-10 Flowchart of Fast Messy Genetic Algorithm 
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2.5 Stochastic Simulation-based Optimization 

As mentioned is Section  2.3.2, simulation must be coupled with optimization in order to optimize 

the bridge construction operations. Simulation-based optimization can be defined as the process 

of using a heuristic algorithm to guide the simulation analysis without the need to perform an 

exhaustive analysis of all the possible combinations of input variables (Carson and Maria, 1997). 

The purpose of simulation-based optimization is to find the configuration of decision variables 

that will optimize the objective function of the model. Figure  2-11 shows a schematic of the 

integration of simulation and optimization. The process starts by generating candidate solutions 

by the optimization engine. These solutions are then sent to the simulation engine to be 

evaluated. Finally, the performance measure index of each solution is reported back to the 

optimization engine.  

Simulation Engine
.
.

Solution Performance

X1

X2

X3

Xn

Optimization Engine
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.
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Duration

Cost

 

Figure  2-11 Integration of Optimization Engine and Simulation 

Several optimization approaches (Figure  2-12) have been used in simulation-based optimization 

mainly random search, gradient-based procedures, ranking and selection, metaheuristic 

algorithms, response surface methodology, and stochastic approximation (Carson and Maria, 

1997; Fu et al., 2008; Keskin et al., 2010). Selecting the optimization approach depends on the 

objective functions and the values of the decision variables. Random search and metaheuristic 

algorithms are appropriate for problems with non-differentiable objective functions, decision 

variables with discrete values, and large number of alternatives (Barton and Meckesheimer, 

2006). Combinations of simulation with metaheuristic optimization methods such as Particle 
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Swarm (Zhang et al., 2006; Yang et al., 2012), Genetic Algorithm (Alberto et al., 2002; Hegazy 

and Kassab, 2003; Mawlana and Hammad, 2013; Alanjari et al., 2014), Ant Colony (Marzouk et 

al., 2009), Belief networks (McCabe, 1998), and Tabu Search (Glover et al., 1996) have been 

used to find near-optimum solutions.  
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Figure  2-12 Simulation-based Optimization Methods (Carson and Maria, 1997) 

Simulation-based optimization can be either deterministic or stochastic. Deterministic 

simulation-based optimization refers to the process of finding the configuration of the decision 

variables that optimizes a problem through the use of deterministic simulation to evaluate the 

performance measure index of candidate solutions. On the other hand, stochastic simulation-

based optimization uses stochastic simulation to evaluate the performance measure index of 

candidate solutions. A deterministic simulation returns the same value of performance measure 

index for a specific configuration of decision variables whenever that configuration is evaluated 

as shown in Figure  2-13(a). Whereas a stochastic simulation returns a different value 

performance measure index every time a specific configuration of decision variables is evaluated 

as shown in Figure  2-13(b).  
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Figure  2-13 Deterministic Versus Stochastic Simulation 
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2.5.1 Optimizing Construction Methods 

Optimization of construction operations has been studied in the literature in different application 

areas such as concrete plant operations (Cao et al. 2004), concrete placing (Hegazy and Kassab, 

2003), and earthwork operations (Marzouk and Moselhi, 2004). However, very little research has 

been done with regard to the optimization of construction methods of bridges. 

Marzouk et al. (2009) presented a stochastic simulation-based optimization framework for 

optimizing the operations of constructing bridge decks using the launching girder system. The 

bridge deck construction using launching girder system contains two main processes: (1) beams 

fabrication, and (2) beams erection. The first process includes reinforcement installation, beam 

casting, curing, storing and transporting of the concrete beams to the construction site. On the 

other hand, the second process includes the erection of the concrete beams, the installation of the 

formwork, reinforcement, and casting of the deck of the bridge. This framework consists of three 

modules which interact in a cyclic manner: optimization, simulation, and reporting modules. The 

optimization module uses ant colony optimization and it searches for the near-optimum solution 

by minimizing the time and cost of construction. This framework accounts for seven decision 

variables: location of casting yard, time lag, number of casting forms, number of preparation 

platform, curing method, number of yard reinforcement crews, and number of stressing crews. 

Two multi-objective approaches are used to transform the multiple objectives into a single 

objective: function-transformation and modified distance approaches.  The simulation module is 

used for estimating the total duration and cost of bridge deck construction. STROBOSCOPE was 

used to build the simulation model that represents the two main processes of this system. The 

tasks durations are expressed using probability distributions to take into account any 

uncertainties. The total duration of the construction operation is measured from the start of the 

first beam fabrication to the prestressing of the last span precast beams. This duration is obtained 

directly from running the simulation while the total cost of the operation is calculated based on 

the durations of the casting and erection operations, which are obtained from the simulation. 

Nassar et al. (2011) introduced a simulation-based optimization framework to solve the time-cost 

tradeoff problem of constructing a bridge deck using the advanced shoring method. The main 

concept of this method is that the formwork used for the casting the bridge deck is done on 

stepping erection girders. These girders are supported on the piers and they advance after casting 
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the span to the following span. The in-situ concreteing is carried out in two stages. The first stage 

consists of fixing the steel reinforcement and casting the bottom slab and webs. The second stage 

consists of fixing the steel reinforcement and casting of the top slab. Particle swarm optimization 

was used to solve this multi-objective problem while STROBOSCOPE was used to model the 

construction operations of this construction method. The objective function was defined as the 

product of the cost and the simulation time of the construction operation.  

2.5.2 Limitations of Traditional Simulation-based Optimization  

Despite the advantages that can be achieved by using simulation-based optimization, it still has a 

few limitations. Three limitations are identified, as was explained in Section  1.2, which are: (1) 

the stochasticity of the objective functions could result in an inaccurate estimate of the objective 

functions, which leads to the problem of stochastic dominance; (2) the need to perform N 

replications to obtain an estimate of the objective functions, which is time consuming; and (3) 

the correlation of the objective functions is ignored.  

2.6 Stochastic Dominance 

The use of stochastic simulation to evaluate the candidate solutions may cause an uncertainty in 

the estimate of the objective functions. This uncertainty will impact the performance of the 

optimization algorithm because it can mislead the optimization process by selecting a solution 

that is dominated by another solution. In other words, inferior solutions can be perceived as non-

dominated solutions and vice versa. Consequently, the optimization algorithm may not provide 

the decision makers with the optimum solutions. This problem is known as stochastic dominance 

(Goh and Tan 2009). That is, the dominance relationship between the candidate solutions is not 

fixed.  This problem occurs when the distributions of the candidate solutions overlap.  

One of the basic approaches to overcome this limitation is to use explicit averaging. Explicit 

averaging is done by calculating the average of a number of simulation replications (N) for each 

candidate solution (a configuration of decision variables) using the simulation engine (Feng et 

al., 2000; Cheng and Lee, 2011). The purpose of these replications is to capture the uncertainty 

and to obtain a good confidence level in the estimate of a solution’s performance measure index. 

A stochastic simulation optimization problem can be described as (Cheng and Lee, 2011): 
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    ( )     ( )        Equation  2-2 

  

  ̅  ( )    [  (   )] Equation  2-3 

  

Where    ( ) is the  -th objective function, θ is a vector of all the decision variables, Θ is the 

search space of the problem, ω is a simulation replication with a certain uncertainty,   (   ) is 

the performance measure index of the   -th objective function calculated with uncertainty using 

simulation, E is an expectation of the performance measure index. 

Based on the objective function,   (   ) can represent the cost, the duration, or the cycle time 

of an operation. Since one simulation replication is not representative of a stochastic simulation 

model, several replications must be made to obtain a sound estimate of  [  (   )]. The sample 

mean is the standard approach to estimate  [  (   )] as shown in Equation  2-4 (Cheng and Lee, 

2011). 

  ̅  ( )  
 

 
∑   (    )

 
                                                                          Equation  2-4 

  

where N is the number of replications,   ̅   is the mean value of the   -th objective function,    is 

the   -th simulation replication.  

To overcome this limitation, this research proposes using VRTs. The following sub-section 

describes the most widely used VRTs, which are Common Random Numbers (CRN) and 

Antithetic Variates (AV) (Kleijnen 1975; Schruben and Margolin 1978; Wilson, 1983). 

2.6.1 Variance Reduction Techniques 

VRTs were developed to reduce the variance of a performance measure index of a simulation 

model without increasing the number of simulation replications (James, 1985). Thus, they result 

in reducing the computation efforts needed by reducing the required number of simulation 

replication. This can be done, as explained in the following subsections, by inducing positive 

correlation between the simulation replications or a negative correlation between the simulation 

replications in a pair. In the field of construction engineering and management, there exists few 

works where VRTs were used. CRN was used to compare alternative resource configurations of 

earthmoving operations (AbouRizk et al., 1990) and to compare two construction methods for 

rock tunneling (Ioannou and Martinez, 1995). 
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Common Random Numbers  

CRN is used to compare the performance measure index of a simulation model across different 

candidate solutions. In the context of this research, the different candidate solutions are the 

resource combinations generated by the optimization algorithm. The concept of CRN is that the 

decision maker wants to compare the performance measure index of the different candidate 

solutions under the same uncertainty conditions so that any improvement in the performance 

measure index is solely due to the change in the resource combination. In other words, every 

stochastic task instance’s duration in a candidate solution will have the same probability as its 

counterpart in another candidate solution. For instance, all the candidate solutions will have the 

same duration of the first instance of task A. This is done by controlling the random numbers 

used to generate the random variates (i.e., durations) for each stochastic task and reusing them 

across the different candidate solutions (Kleijnen 1975; Schruben and Margolin 1978; Asmussen 

and Glynn 2007). By doing so, a positive correlation is induced between the different candidate 

solutions. Traditionally, two candidate solutions are compared relatively to each other using 

Equation  2-5 (Kleijnen, 1974). 

 ̅( )   
∑ (        ) 

   

 
 

Equation  2-5 

  

Where  ̅( ) is the average difference between the output of two candidate solutions, N is the 

number of replications performed, and     and     are the performance measure index of the n-

th replication of candidate solutions 1 and 2, respectively. In order to check if the CRN technique 

is actually working, the variance of the difference (  
 ( )) should be less than the summation of 

the variances of candidate solution 1 (  
 ( )) and candidate solution 2 (  

 ( )) over the same 

number of replications as shown in Equation  2-6 (Law 2007). 

  
 ( )    

 ( )    
 ( ) Equation  2-6 

  

In addition, Equation  2-7, which indicates the existence of a positive correlation between the two 

candidate solutions, must hold true.  

 (        )    Equation  2-7 
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Antithetic Variates  

AV is used to obtain the performance measure index of a single candidate solution of the 

simulation model. The concept of AV is that the simulation replications are run in pairs where 

the second replication (antithetic) in a pair uses complementary random numbers to the ones 

used in the first replication (standard). In other words, each replication in a pair has the exact 

opposite probability of the other replication in the same pair. For instance, if the first instance of 

task A in the standard replication of a pair has an optimistic duration, then the first instance of the 

same task in the antithetic replication of the pair will have a pessimistic duration. The reasoning 

behind this concept is that getting a performance measure index estimate on each side of the 

mean will give a closer estimate to the mean than having both performance measure index 

estimates on one side of the mean. AV is realized by controlling the random numbers used to 

generate the random variates for each stochastic task in the standard replication and then 

subtracting the used random numbers from one and using them in the antithetic replication in the 

same order they were used in the standard replication. This technique will induce a negative 

correlation between the replications in a pair (Bratley et al. 1987; L’Ecuyer 1994). The average 

performance measure index of a candidate solution can be found using Equation  2-8 (Emshoff 

and Sisson, 1970). 

 ̅(   )   
∑ (  

     
  )

   
   

 
 

Equation  2-8 

Where  ̅(   ) is the average performance measure index of a simulation model over N/2 pairs, 

N is the number of replications performed, and    
  and   

   are the performance measure index of 

the standard and antithetic replications of the p-th pair, respectively. In order to check if the AV 

technique is actually working, the variance of the average performance measure index obtained 

when pairs are run using AV should be less than the variance of the average performance 

measure index obtained when pairs are run independently. In addition, Equation  2-9 which 

indicates the existence of a negative correlation between the two replications in a pair must hold 

true. 

 (  
    

  )                 Equation  2-9 

  



 

37 

 

2.7 Required Computation Time 

To reduce the required computation time, two approaches have been proposed which are: (1) 

increasing the computation power; and (2) reducing the number of required replications. Several 

researches implemented simulation-based optimization using parallel computing in order to 

reduce the computation time required to solve the optimization problem (Heidelberger, 1988; 

Schruben, 1992; Yucesan et al., 1995; Lagana et al., 2006 to name some). In these 

implementations, the number of simulation replications is fixed for all the candidate solutions. 

Salimi et al. (2015) reported a huge improvement when parallel computing was used to optimize 

a precast full span bridge construction using launching gantry. However, deterministic 

simulation was used which only requires one simulation replication per candidate solution. In 

addition, a cluster of 64 cores was used to solve the optimization problem. This amount of 

computation power comes with a high price tag and it is not always accessible by planners, 

which makes the use of the parallel computing impractical.  

On the other hand, several different approaches to reduce the number of simulation replications 

have been proposed. The main difference is how to allocate the computation efforts among the 

candidate solutions. In these approaches, the number of replications for each solution is not 

fixed. Rinott (1978) proposed a two-stage indifference-zone procedure. Using this procedure, all 

candidate solutions are run for a fixed number of replications in the first stage. In the second 

stage, additional simulation replications are added for each candidate solution based on the 

sample variances obtained in the first stage. Chen et al. (1996) and Chen et al. (1997) applied the 

same concept but the number of additional simulation replications was based on the sample 

means and sample variances of the candidate solutions obtained in the first stage. Despite the fact 

that the proposed approaches do reduce the number of simulation replications, and as a result, the 

total computation time, they still require a large number of replications for some of the candidate 

solutions.  

To overcome this limitation, this research proposes combining VRTs and parallel computing to 

reduce the number of required replications required and the required computation time 

simultaneously. The following section describes briefly the concept of parallel computing.  
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2.7.1 Parallel Computing of Genetic Algorithms 

Parallel computing is all about distributing the amount of work to be done among several 

processors and executing the work simultaneously in order to reduce the computation time 

(Cantú-Paz, 1997). To perform parallel computing, one can use a computer with a multi-core or 

multi-processors or a group of computers connected together (Barney, 2013). However, most 

parallel computing implementations of GAs have been on a cluster of computers (74.6%) or 

Massive Parallel Processors (21.4%) (Munawar et al., 2008).   

Enormous research has been done to execute GAs in parallel environments. The execution of 

GAs in parallel environments can be classified into four categories which are: (1) global single-

population master-slave, (2) multiple-population coarse-grained, (3) single-population fine-

grained, and (4) hierarchical (Munawar et al., 2008). This research focuses on using global 

single-population master-slave paradigm. 

In the global single population master-slave paradigm, one core, which is called the master, 

generates the initial population and subsequent populations by performing the GA operations at 

the end of each generation. Each population is then subdivided and distributed to the other 

processors, which are called slaves. Once each slave evaluates their portion of the population, 

their performance measure index values are reported back to the master. This process is repeated 

until the termination criterion is met (Cantú-Paz, 1997). This paradigm is illustrated in 

Figure  2-14.  

Worker Processor NWorker Processor 3Worker Processor 2Worker Processor 1

Manager Processor

 

Figure  2-14 Master-slave Parallel GA Framework (Kandil & El-Rayes, 2006) 
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In the field of the construction engineering and management, a couple of works can be found 

related to the use of parallel computing for simulation-based optimization model. Yang et al. 

(2012) proposed integrating Particle Swarm optimization algorithm with Monte-Carlo simulation 

to plan bridge maintenance. The model was implemented in a parallel computing framework on 

a cluster of computers. Salimi (2014) proposed using Non-dominated Sorting Genetic Algorithm 

with discrete event simulation to optimize bridge construction operations. The model was 

implemented in a parallel computing framework on a server and a cluster of computers.   

2.8 Correlation of Objective Functions 

Due to the fact that there is a correlation between the project duration and cost, the analysis of 

the model performance measure indices must consider the simultaneous occurrence of the project 

duration and cost through the use of the joint probability (Feng et al. 2000; Yang 2011). The 

joint probability has been used in several applications such as integrated cost-schedule risk 

analysis (Hulett 2011a; Hulett 2011b; Covert 2013), flood frequency analysis (Kao and Chang 

2012), system reliability analysis of flexible pavements (Dilip et al. 2013), estimating extreme 

sea levels (Liu et al. 2010), and failure analysis of a series structural system (Zhao et al. 2007). 

Examining the literature, one can notice that no research has focused on the correlation of the 

objective functions in simulation-based optimization. To overcome this limitation, this research 

proposes applying the joint probability to the objective functions obtained from stochastic 

simulation. The next sub-section explains briefly the theory of joint probability of bivariate 

discrete random numbers.  

2.8.1 Joint Probability of Bivariate Discrete Random Variables 

When a stochastic experiment is performed, the outcomes of this experiment are: (1) the solution 

space which represents all the possible outcomes of the experiment; and (2) the probability 

assigned to each outcome of that experiment. Each outcome can have one or more performance 

measure indices values. The stochastic experiment outcome is called univariate random variable, 

bivariate random variables, or multivariate random variables, which reflects a single 

performance measure index value, two performance measure indices values, or more than two 

performance measure indices values, respectively. For example, the duration and cost of a 

project alternative are considered bivariate random variables in a time-cost tradeoff problem.  
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There are two main types of random variables: discrete random variables and continuous random 

variables. A discrete random variable is the variable that can take a finite or a countable number 

of values, while a continuous random variable can take any value in an interval (Anderson et al., 

2012). The method of calculating the probability of an outcome of an experiment depends on the 

number of random variables. For the purpose of this research, finding the joint probability of 

bivariate discrete random variables is the main interest. However, the concept can be extended to 

include multivariate random variables.  

The probability of more than one random variable to occur simultaneously is called joint 

probability. The joint range is the set of all pairs of (real number) values that the bivariate (X, Y) 

can take and is represented by      (Forbes et al. 2011). In this research, however, random 

variables that assume natural number values      are of interest because: (1) it is more practical 

to have the duration of a project rounded to the nearest day and the cost of a project rounded to 

the nearest round number; (2) it reduces the computation time required to perform the joint 

probability calculations; and (3) it improves the performance and the outcome of an optimization 

algorithm, when integrated with simulation, by ignoring the small improvements of the 

objectives’ values. Mathematically speaking, if X and Y are discrete random variates, then the 

joint probability mass function of X and Y is (Evans and Rosenthal 2010): 

 (   )   (       )     (   )                    Equation  2-10 

  

The joint probability statement (Equation  2-11) represents the probability that the value of the 

univariate X is less than or equal to x and the value of the univariate Y is less than or equal to y, 

simultaneously.  

 (   )   [       ]              Equation  2-11 

  

The domain of the joint probability is the set of all probability values (α) that a probability 

statement can take and is denoted by     
  where   [   ]. The joint cumulative distribution 

function, Equation  2-12, maps the values of the random variates (X, Y) from the joint range      

into the joint probability domain     
 . This function is equal to one when x and y reach their 

maximum values. 

 (   )   [       ]        (   )               
              Equation  2-12 
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Marginal distributions represent the probabilities of the values of one variable in the bivariate 

regardless of the value of the other variable in the bivariate. The marginal probability function 

for discrete variate of  X is calculated for each x value by adding the joint probability function 

associated with the bivariate values (   )        having fixed x as shown in Equation  2-13. The 

marginal probability function of Y is given by Equation  2-14 (Forbes et al. 2011): 

  ( )   ∑   (   )

 

      

 
Equation  2-13 

  

  ( )   ∑   (   )

 

      

 
Equation  2-14 

  

Conditional distributions are used to calculate the probability of the value of one element in the 

bivariate given the value of the other variate. The conditional probability function of X given that 

Y = y is calculated by dividing the joint probability function by the marginal probability function 

of Y for fixed Y = y for all (   )        as shown in Equation  2-15. The conditional probability 

function of Y given that X = x is given by Equation  2-16 (Forbes et al. 2011): 

 ( | )  
 [       ]

 [   ]
  

 (   )

 ( )
 

Equation  2-15 

  

 ( | )  
 [       ]

 [   ]
  

 (   )

 ( )
 

Equation  2-16 

  

2.9 Summary 

This chapter presented a review of the literature on selecting bridge construction method, 

construction simulation, optimization, and stochastic simulation-based optimization. In addition, 

a comprehensive literature review is given about the research related to the selection and 

optimization of bridge construction methods. This review highlighted the gaps and shortcomings 

of the existing research in the field of bridge construction planning and scheduling and the 

related methods for overcoming these shortcomings.  
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3 CHAPTER 3: OVERVIEW OF PROPOSED METHODOLOGY 

3.1 Introduction 

This chapter presents an overview of the proposed methodology of a stochastic simulation-based 

multi-objective optimization model for the planning and scheduling of precast box girder bridge 

construction projects. Figure  3-1 shows the overview of the proposed methodology. The core of 

this methodology consists of a stochastic simulation-based multi-objective optimization model 

that is used to find the near-optimum construction scenario. This research consists of four main 

components that are necessary to realize the proposed methodology: (1) developing a stochastic 

simulation-based multi-objective optimization model; (2) solving the problem of stochastic 

dominance and reducing the number of simulation replications using variance reduction 

techniques; (3) reducing the computation time to solve the optimization problem using parallel 

computing on a single multi-core processor; and (4) applying joint probability for evaluating the 

duration and cost of stochastic simulation models.   

3.2 Developing Stochastic Simulation-based Multi-objective Optimization Model 

The objectives of this component are to develop a stochastic simulation-based multi-objective 

optimization model for the construction of precast concrete box girder bridges that is capable of 

(1) finding near optimum construction scenarios; and (2) simultaneously minimizing the 

project’s total duration and cost. This component is presented in Chapter  4 and is subdivided into 

the following tasks: 

(a) Describing the proposed model.  

(b) Identifying and modeling the decision variables related for each construction method. 

(c) Formulating the objective functions that are used to estimate construction cost and duration.  

(d) Defining the optimization constraints. 

(e) Developing the simulation models of the selected construction methods. 

(f) Designing the integration between the optimization algorithm and the simulation models.  

(g) Implementing the proposed model. 

(h) Demonstrating the effectiveness of the proposed model. 
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Figure  3-1 Overview of the Proposed Methodology
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3.3 Solving the problem of stochastic dominance and reducing the number of 

simulation replications Using Variance Reduction Techniques 

The objectives of this component are to develop a new method to: (1) increase the quality of the 

optimum solutions; (2) increase the confidence in the optimality of the optimum solutions; and 

(3) reduce the computation time required for performing a stochastic simulation-based multi-

objective optimization by incorporating VRTs. This component is presented in Chapter  5  and is 

subdivided into the following tasks: 

(a) Identifying and modeling the required synchronization.  

(b) Formulating a method to compare the performance measure indices of the candidate 

solutions. 

(c) Developing a method to compare and select the best VRT. 

(d) Implementing the proposed method.  

(e) Demonstrating the effectiveness of the proposed method. 

3.4 Reducing the Computation Time to Solve the Optimization Problem Using 

Parallel Computing on a Single Multi-core Processor 

The objective of this component is to propose a method to reduce the computation time required 

for performing a stochastic simulation-based multi-objective optimization by performing parallel 

computing on a single multi-core processor. This component is presented in Chapter  6  and is 

subdivided into the following tasks: 

(a) Describing the proposed method. 

(b) Implementing the method. 

(c) Demonstrating the effectiveness of the proposed method 

3.5 Applying Joint Probability for Evaluating the Duration and Cost of Stochastic 

Simulation Models 

The objective of this component is to develop a method to reduce project risk and provide the 

decision makers with more accurate and useful information to plan and manage their projects 
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using joint probability. This component is presented in Chapter  7 and is subdivided into the 

following tasks: 

(a) Describing the proposed method. 

(b) Introducing a method to apply joint probability to Pareto solutions. 

(c) Proposing the concept of joint probabilistic Pareto fronts. 

(d) Developing a method to analyze the selected solution. 

(e) Implementing the proposed method. 

(f) Demonstrating the effectiveness of the proposed method. 

3.6 Summary 

This chapter presented an overview of the proposed methodology of a stochastic simulation-

based multi-objective optimization model for the planning and scheduling of precast box girder 

bridge construction projects. This research consists of four main components that are necessary 

to realize the proposed methodology: (1) developing a stochastic simulation-based multi-

objective optimization model; (2) solving the problem of stochastic dominance and reducing the 

number of simulation replications using variance reduction techniques; (3) reducing the 

computation time to solve the optimization problem using parallel computing on a single multi-

core processor; and (4) applying joint probability for evaluating the duration and cost of 

stochastic simulation models. The steps needed to achieve each component were presented.  



 

46 

 

4 CHAPTER 4: STOCHASTIC SIMULATION-BASED MULTI-OBJECTIVE 

OPTIMIZATION MODEL 

4.1 Introduction 

This chapter presents a stochastic simulation-based multi-objective optimization model for 

planning, scheduling, and optimizing precast box girder bridge construction projects. This model 

can be used by contractors to enhance and improve the current practice of decision making in 

bridge construction projects. The aim of the model is to select a near-optimum construction 

scenario that simultaneously minimizes the project duration and cost. The construction scenario 

in this context consists of two main elements. The first element is the construction method that is 

used to construct a bridge. The second element is the decision variables that have an impact on 

the duration and cost of the project. In this research four construction methods are considered 

which are: (1) precast full-span erection using launching gantry; (2) precast segmental span 

erection using lunching gantry; (3) precast segmental span erection using false-work; and (4) 

precast segmental span erection using under-slung girder. It is assumed that the decision-maker 

will shortlist the feasible construction methods for the project. It should be noted that this model 

can be extended to include other bridge construction methods. The rest of this chapter: (1) 

describes the proposed model; (2) identifies and models the decision variables related for each 

construction method; (3) formulates the objective functions that are used to estimate construction 

cost and duration; (4) defines the optimization constraints; (5) develops the simulation models of 

the selected construction methods; (6) design the integration between the optimization algorithm 

and simulation; (7) implements the model; and (8) demonstrates the effectiveness of the 

proposed model. 

4.2 Proposed Model 

The proposed stochastic simulation-based optimization model is presented in Figure  4-1. The 

main objective of the model is to select a set of near-optimum construction scenarios that 

minimizes the total project duration and total project cost. This model is used to select the near-

optimum construction scenarios based on quantitative analysis rather than qualitative analysis as 

mentioned earlier in Section  2.2.2.  FmGA is used to search the space of the decision variables 
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and generate the candidate solutions based on the combinations of the decision variables (e.g., 

number of stressing crews, number of equipment, etc.). Discrete event simulation is used to 

estimate the values of the objective functions (i.e., duration and cost) for each candidate solution 

which are then used by fmGA to guide its search for near-optimum solutions. The output of the 

proposed model is a set of Pareto fronts, which is the preferable outcome of a multi-objective 

optimization problem. These Pareto solutions are non-dominated optimum solutions which 

represent the potential tradeoff among the project objectives for each construction method. 
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Figure  4-1 Stochastic Simulation-based Multi-objective Model 

4.3 Modeling the Decision Variables 

As explained earlier, a construction scenario consists of the construction method that is used to 

construct a bridge and the decision variables that have an impact on the duration and cost of the 

project. In order to select the optimum bridge construction scenario, several decision variables 

that have an impact on the project duration and/or cost are identified. These decision variables 

can be classified into qualitative and quantitative variables.  

Qualitative variables are the ones that represent a choice of carrying out a task such as the 

construction method, the curing method, and the overtime policy. Each of abovementioned 

construction methods uses a different set of equipment which has an impact on the mobilization 

cost and direct cost of equipment. In addition, these methods have different production rates that 

impact the project’s total duration, and as a result, the indirect cost of the project.  Two curing 

methods are considered, namely, regular curing and accelerated curing. Both of these curing 
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methods have an impact on the duration of the project. Moreover, the accelerated curing method 

has an impact on the project’s total cost.  Finally, 15 overtime policies are used in this research 

as shown in Table  4-1. Each policy has a different number of working hours per day and 

different number of working days per week. The impact of working overtime on productivity is 

based on the average loss of productivity over a four week period (RSMeans Engineering 

Department, 2011). The cost adjustment factor represents the increase in cost due to working 

overtime based on doubling the regular wage (RSMeans Engineering Department, 2011). These 

adjustments are used to calculate the tasks’ durations and costs based on the selected overtime 

policy. 

Table  4-1 Overtime Policies Used in this Research 

Policy 
Working Hours per 

Day 

Working Days per 

Week 

Productivity 

Adjustment Factor 

(%) 

Cost Adjustment 

Factor (%) 

1 8 5 100.00 100.00 

2 9 5 103.90 111.10 

3 10 5 109.60 120.00 

4 11 5 123.10 127.30 

5 12 5 131.10 133.30 

6 8 6 103.90 116.70 

7 9 6 108.10 125.90 

8 10 6 114.30 133.30 

9 11 6 126.90 139.40 

10 12 6 135.60 144.40 

11 8 7 112.70 128.60 

12 9 7 119.40 136.50 

13 10 7 127.00 142.90 

14 11 7 137.90 148.10 

15 12 7 145.50 152.40 

                                                                                                                               

On the other hand, quantitative variables are the ones that can be given a numerical value. The 

quantitative decision variables are: (1) the number of delivery trucks, (2) the distance from the 

casting yard to the construction site, (3) the number of rebar cage molds, (4) the number of 

casting molds, (5) the number of different types of crews, (6) the number of equipment, (7) the 

yard storage capacity, and (8) the storage time of the precast element. Each of these variables has 

a direct impact on the project’s total duration and/or total cost. Each set of the qualitative and 

quantitative decision variables represents a candidate solution to the optimization problem. 
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4.4 Optimization Objectives 

This model aims to support decision makers in searching and finding near-optimum precast box 

girder bridge construction scenarios that (1) minimize the project’s total duration; and/or (2) 

minimize the project’s total cost. Therefore, the objective function of this model can be single 

objective (i.e. duration or cost), or multi-objective (i.e. duration and cost). The following 

subsections further discuss these two objectives. 

4.4.1 Minimizing the Project’s Total Duration 

The total duration of the bridge construction operations is estimated by the discrete event 

simulation models. The total project duration is equal to the total time needed to perform the 

construction operations from the casting operation to the erection operation. The project’s 

duration in working days can be calculated by dividing the total simulation time (expressed in 

hours) by the number of working hours per day as shown in Equation  4-1.   

      
    

         
 Equation  4-1 

  

where,  

PDWD = project’s duration in working days 

  

TST = total simulation time in minutes 

  

WHD = working hours per day 

  

The above equation calculates the total number of days required to finish the project. However, it 

is more beneficial to calculate the project’s duration in calendar days as shown in Equation  4-2. 

           ⌊
     

   
⌋  (       ) Equation  4-2 

  

where, 

PDCD = project’s duration in calendar days  

  

WDW = working days per week 

  

⌊⌋  represents the floor of a real number 
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4.4.2 Minimizing the Project’s Total Cost 

The total cost of the project consists of two main elements as shown in Equation  4-3. Those 

elements are the indirect and direct costs.  

            Equation  4-3 

  

where, 

PTC  = project’s total cost 

  

PIC = project’s indirect cost 

  

PDC = project’s direct cost 

  

The indirect cost of the project is a function of the project’s total duration and is calculated by 

multiplying the duration of the project by the contractor’s daily indirect cost in addition to the 

mobilization cost as shown in Equation  4-4. 

    (         )      Equation  4-4 

  

where, 

DIC = contractor’s daily indirect cost 

  

PMC = project’s mobilization and demobilization costs 

  

The mobilization cost includes the equipment and crew mobilization costs. The equipment 

mobilization cost includes the mobilization cost of each equipment from the contractor’s storage 

to the construction site and the demobilization cost of that equipment from the construction site 

to the contractor’s storage as shown in Equation  4-5. It is assumed that the mobilization total cost 

is the same as the demobilization total cost; therefore, a factor of 2 is used in Equation  4-5 and 

Equation  4-6. 

         ∑                 

 

   

 Equation  4-5 

  

where,  

PEMC = project’s equipment mobilization and demobilization costs 

  

A = number of equipment types utilized in the project 



 

51 

 

  

       = number of equipment of type (a) utilized in the project 

  

    = = mobilization cost of an equipment of type (a) 

  

Similarly, the crew mobilization cost is calculated using Equation  4-6.  

          ∑                

 

   

 Equation  4-6 

  

where,  

PCMC = project’s crew mobilization and demobilization costs 

  

B = number of crew types utilized in the project 

  

      = number of crews of type (b) utilized in the project 

  

      = mobilization cost of a crew of type (b) 

  

The project’s direct cost includes the direct cost of equipment, crews, casting yard land, and the 

curing of concrete segments as shown in  Equation  4-7. 

                       Equation  4-7 

  

where,  

DCE = direct cost of equipment 

  

DCC = direct cost of crews  

  

DCCY = direct cost of the land used to set up the casting yard 

  

DCU = direct cost of curing of concrete segments 

  

The direct cost of equipment is the summation of the cost of all the equipment assigned to the 

project as shown in Equation  4-8. The cost for each equipment type is calculated by multiplying 

the hourly cost of the equipment by the number of equipment used by the total number of hours 

that equipment type is assigned to the project.                          

     ∑                          

 

   

 Equation  4-8 

  

where, 
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     = hourly cost of an equipment of type (a) 

  

     = total number of hours equipment of type (a) is assigned to the project 

  

The direct cost of crews is calculated in a similar manner to that of the equipment as shown in 

Equation  4-9. However, the direct cost of crews is adjusted by a factor based on the overtime 

policy used in the project.   

       ∑                        

 

   

 Equation  4-9 

  

where, 

     = hourly cost of a crew of type (b) 

  

     = total number of hours crew of type (b) is assigned to the project 

  

CAF = cost adjustment factor 

  

The direct cost of the land used to set up the casting yard is calculated by multiplying the 

capacity of the casting yard by the cost per space per day of usage as shown in Equation  4-10. 

                      Equation  4-10 

  

where, 

PYS  = precast yard storage capacity 

  

CCD = storage capacity cost per hour 

  

STH = storage total time used in hours 

  

Finally, the direct cost of curing is calculated by multiplying the number of precast segments by 

the cost of the selected curing method as shown in Equation  4-11.  

                Equation  4-11 

  

where, 

NPS  = number of precast segments 

  

CMC = curing method cost 

  



 

53 

 

4.5 Optimization Constraints 

The optimization model takes into consideration two types of constraints when generating and 

evaluating the candidate solutions: (1) decision variables constraints; and (2) objective functions 

constraints. The decision variables constrains specify the maximum available or allowable value 

for each of the quantitative decision variables mentioned above. The objective functions 

constraints can be specified to ensure that the project’s total duration of any construction 

scenario does not exceed a certain deadline and/or the project’s total cost of any construction 

scenario does not exceed a certain budget as shown in Equation  4-11 and Equation  4-12, 

respectively. 

                          Equation  4-12 

  

                        Equation  4-13 

  

where, 

      = project’s total duration in calendar days of construction scenario e 

  

        = maximum allowable project’s total duration in calendar days  

  

     = project’s total cost of construction scenario e 

  

       = maximum allowable project’s total cost 

  

4.6 Simulation Models of the Construction Methods 

Discrete event simulation is used to develop the simulation models for the casting and erecting 

operations of the bridges. Each simulation model will represent a template for a single 

construction method. The purpose of using simulation is to find the project’s total duration and 

total cost based on the set of the qualitative and quantitative decision variables (e.g., construction 

method, number of crews, number of equipment, etc.). Therefore, the simulation templates are 

modeled in a generic format to allow for an automated interaction between the optimization 

algorithm and the simulation as will be explained in detail in Section  4.7.   

The rest of this section presents the following simulation models and explains their flow of work: 

(1) precast full-span erection using launching gantry; (2) precast segmental span erection using 
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launching gantry; (3) precast segmental span erection using false-work; and (4) precast 

segmental span erection using under-slung girder. The developed simulation models focus on the 

construction of the superstructure element of the bridge and it is assumed that the spans are 

simply supported. The bridge construction operations considered in this research can be 

classified into: (1) casting of segments/spans; (2) transportation of segments/spans to the 

construction site; and (3) erection of the precast segments/spans. The modeling elements used in 

developing the models are described in Table  2-1. Verification and validation of the simulation 

models are done by tracing the different entities in the simulation model to assure that the logic 

of the models are correct and they are running as expected (Sargent 2010). 

4.6.1 Span-by-span Precast Full Span Erection Using Launching Gantry 

The quantitative decisions that are specific to this construction method (in addition to those 

explained in Section  4.3) are: the number of inner molds, the number of outer molds, and the 

number of stressing crews. The developed simulation model of bridge construction using precast 

full span launching method is shown in Figure  4-2. The simulation starts by initializing the 

queues that hold the resources needed for the construction operations. The steel crew starts 

placing the steel reinforcement and the tendons’ ducts for the bottom slab and the webs of the 

full precast span using a rebar mold. Then, an inner mold is loaded to the finished rebar cage. 

Afterwards, the steel crew places the steel reinforcement for the top slab. Next, the finished rebar 

cage is placed in an outer mold. Then, the casting crew casts the span. At this point, the cast span 

undergoes the curing process. Afterwards, the inner mold is removed and the first stage of post-

tensioning is performed by the pre-stressing crew. The span is then moved to the storage area 

where the second post-tensioning stage takes place. Next, a trailer is loaded with a precast 

concrete box girder span. Then, the trailer travels to the access point of the bridge construction 

site. When the launching gantry is ready, the onsite crane will unload the precast span and load it 

to a trolley. After being unloaded, the trailer returns to the precast yard to be loaded again. The 

trolley travels to the point where the span will be launched. When the trolley reaches the desired 

location, the launching gantry repositions to the new span’s location. Then, the launching gantry 

picks up the span from the trolley. Afterwards, the trolley returns to be loaded again. At the same 

time, the launching gantry erects the new span at its location. Then, the permanent bearings are 

grouted. Finally, the load of the span is transferred from the temporary bearings to the permanent 
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bearings. The resources used in grouting the permanent bearings and transferring the loads from 

the temporary bearings to the permanent bearings are modeled implicitly. 

4.6.2 Span-by-span Precast Segmental Erection Using Launching Gantry 

The developed simulation model of bridge construction using precast segmental erection using 

launching gantry method is shown in Figure  4-3. The simulation starts by initializing the queues 

that hold the resources needed for the construction operations. The steel crew places the steel 

reinforcement and the tendons’ ducts for the segment using a rebar mold. Next, the finished rebar 

cage is placed in a casting mold. Then, the casting crew casts the segment. At this point, the 

casted segment undergoes the curing process. Afterwards, the mold is removed and the segment 

is then moved to the storage area. Next, a trailer is loaded with a precast concrete box girder 

segment. Then, the trailer travels to the bridge construction site. When the launching gantry is 

ready, it picks up the segment from the trailer and places it at its final location. After being 

unloaded, the trailer returns to the precast yard to be loaded again.  

The launching gantry will keep placing segments until it acquires all the segments required to 

form one span. Then, these segments are aligned and glued. Next, the external post-tensioning 

rods are installed and stressed.  Finally, the launching gantry repositions to a new span’s location 

and repeats the process. The resources used in aligning, gluing, and stressing the segments are 

modeled implicitly. 

4.6.3 Span-by-span Precast Segmental Erection Using Falsework Support 

The developed simulation model of bridge construction using precast segmental erection using 

launching gantry method is shown in Figure  4-4. The casting and transportation operations of 

this construction method follow the same steps as explained in Section  4.6.2. Once the trailer 

reaches the construction site and the site crane is ready, the crane picks up the segment from the 

trailer and places it at its final location on the falsework. After being unloaded, the trailer returns 

to the precast yard to be loaded again. The site crane will keep placing segments until it acquires 

all the segments required to form one span. Then, these segments are aligned and glued. Next, 

the external post-tensioning rods are installed and stressed. Afterwards, the load of the span is 

transferred to the permanent bearings. Finally, the site crane repositions the falsewok to the new 
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span’s location and repeats the process. As in the previous model, the resources used in aligning, 

gluing, and stressing the segments are modeled implicitly. 

4.6.4   Span-by-span Precast Segmental Erection Using Under-Slung Girder  

The developed simulation model of bridge construction using precast segmental erection using 

under-slung girder method is shown in Figure  4-5. The casting, transportation, and erection 

operations of this construction method follow the same steps as explained in Section  4.6.2. The 

only difference is that the trailer will travel over the completed spans of the bridge to deliver the 

segments. Therefore, only one trailer is allowed to travel over the bridge. This is controlled by 

the queue Space_Available as shown in Figure  4-5. 
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Figure  4-2 Simulation Model of Full Span Bridge Construction Using Launching Gantry
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Figure  4-3 Simulation Model of Span-by-span Segmental Bridge Construction Using Launching Gantry
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Figure  4-4 Simulation Model of Span-by-span Segmental Bridge Construction Using Falsework Support 
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Figure  4-5 Simulation Model of Span-by-span Segmental Bridge Construction Using Under-slung Girder 
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4.7 Integration of Simulation and Optimization 

The simulation is integrated with the optimization algorithm to evaluate the generated candidate 

solutions as shown in Figure  4-6. Two cycles were added to the fmGA which are: (1) the sub-

population cycle were each sub-population represents a specific construction method; and (2) the 

simulation cycles were the values of the objective functions of candidate solutions are calculated. 

The fmGA (explained in Section  2.4.2) starts by generating F sub-populations where each sub-

population (f) represents a specific construction method. Therefore, the number of sub-

populations is equal to the number of applicable construction methods. Each sub-population goes 

through the steps of the fmGA as shown in Figure  4-6. Each sub-population consists of number 

of eras (G) where each era (g) consists of the three phases of the Inner Loop of the fmGA. At the 

beginning of the first era (g = 1), a competitive template is randomly initialized. Afterwards, an 

initial population of size E using the PCI technique is generated in the initialization phase. The 

fitness evaluation of the candidate solutions using simulation is referred to as the simulation 

cycle in Figure  4-6. Each candidate solution (e) encapsulates the decision variables of the 

construction scenario. The process of the simulation cycle starts by selecting the simulation 

template corresponding to the construction method f. Then the simulation template is modified 

based on the value of the decision variables of each candidate solution. The values of the 

objective functions of each candidate solution are reported back to fmGA. After all the solutions 

have been evaluated, thresholding selection and building block filtering in the primordial phase 

take place. All filtered solutions go through the simulation cycle to be evaluated. After the 

termination of this phase, thresholding selection, cut and splice, and mutation are applied in the 

juxtapositional phase. The template of the new era is set to the best candidate solution found at 

the end of the juxtapositional phase. The sub-population is terminated when the maximum 

number of eras is reached. This process is repeated for all the other sub-populations.  

The optimization process will terminate once the maximum number of sub-populations is 

reached. The set of optimum solutions that were accepted by fmGA for each sub-population is 

presented as Pareto fronts. Figure  4-7 shows the algorithm for performing non-dominated sorting 

for the set of Pareto fronts. Every construction scenario in the set is compared to all others. A 

construction scenario is considered non-dominated when there exist no other construction 

scenario that can improve one objective function without worsening the other objective function.  
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Figure  4-6 Integration between Discrete Event Simulation and Fast Messy Genetic Algorithm 
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Since scenarios are represented by combinations of the project’s total duration and total cost, the 

combination (          ) is considered a dominated scenario if: (1) it has an equal or higher 

duration and higher cost of all the other combinations(          ); or (2) it has a higher 

duration and an equal or higher cost of all the other combinations. Otherwise, the combination 

(          )  is a non-dominated construction scenario. These Pareto fronts are further 

analyzed as will be described in Chapter  7. All non-dominated construction scenarios present the 

final Pareto front.  

𝑭𝑶𝑹 𝑬𝑨𝑪𝑯 (          )    𝑡    

    ∅      Set of non-dominated construction scenarios  

(          )      

𝑭𝑶𝑹 𝑬𝑨𝑪𝑯 𝑜𝑡ℎ   (          )    𝑡  

   𝑰𝑭 (            𝑎 𝑑           ) 𝑜  (            𝑎 𝑑      

    ) 𝑻𝑯𝑬𝑵 

 Remove (          )  from            

Figure  4-7 Algorithm for Non-dominated Sorting of Pareto Fronts 

4.8 Model Implementation 

The simulation models of the construction methods are implemented in STROBOSCOPE. On 

the other hand, Darwin optimization framework (Wu, et al., 2012), which utilizes an fmGA, is 

used to solve the optimization problem. The implementation of the integration between these two 

tools (Figure  4-8) was done in Microsoft Visual C# (Microsoft Corporation, 2015a).  

STROBOSCOPE was embedded in Darwin optimization framework to evaluate each candidate 

solution generated by the optimization through simulation. The process starts by determining the 

minimum, maximum, and increment values for each decision variables. The values of the 

decision variables are represented by variables (e.g. x1, x2, etc.) in the source code of the 

simulation model. Next, the optimization tool generates the candidate solutions. The developed 

code extracts the values of the decision variables, opens the simulation source code, and replaces 

the variables (x1, x2, etc.) with the extracted values. Then, it starts the simulation tool and 

creates a new model with the modified source code. Next, it runs the simulation for N 
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replications and extracts the average project duration and cost at the end of the simulation. 

Finally, the code exports the project duration and cost to the optimization tool and ends the 

simulation model. The process is repeated for all the candidate solutions generated by the 

optimization tool.   

At the end each sub-population, a text file with the Pareto solutions is created. Microsoft Excel 

(Microsoft Corporation 2015b) is used to extract the project’s total duration and cost of Pareto 

solutions via Visual Basic for Applications (VBA) (Microsoft Corporation 2015c). Finally, the 

developed code performs non-dominated sorting across all the sub-populations and presents the 

final Pareto front.   

 

Figure  4-8 Implementation of Stochastic Simulation-based Optimization Model 

4.9 Case Study 

A case study is presented here to demonstrate the effectiveness of the developed stochastic 

simulation-based multi-objective model. The model is used to search for a near-optimum 

construction scenario that minimizes project total cost and duration without any constraints 

regarding the deadline or the budget. The case study consists of constructing a precast full span 
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box girder bridge using launching gantry method. The bridge consists of 35 spans with identical 

spans of length 25 m.  

Table  4-2 shows the durations of the tasks used in this simulation model for this case study. The 

durations of the casting operation tasks were adapted from (Marzouk et al., 2007), and it is 

assumed that the tasks’ durations are linearly related to the length of the span. The durations of 

the launching process tasks are adapted from (VSL International Ltd., 2013) by adding a range of 

± 50 % in order to have a distribuation for the durations. Most of the tasks’ durations are 

represented by a distribution to model the uncertainty associated with this construction method. 

In this case study, it is assumed that there are two curing methods namely regular and 

accelerated. The Span_Curing task has a duration of 600 or 1200 minutes for accelerated and 

regular curing method, respectively. Traveling tasks, such as Trailer Haul, are represented as 

functions of distance and speed as shown in Equation  4-14. The cost data used in the simulation 

model is presented in Appendix B. 

    
   

   [         ] 
    Equation  4-14 

  

where, 

TD = transportation duration in hours 

  

DIS = distance from the casting yard to the construction site or from the access of   

    the construction site to the launching location in km 

HRSL = haul or return speed limit in km/hr 

  

LEMS = loaded or empty max speed in km/hr 

  

DF = delay function expressed as a uniform distribution 

  

This case study was run twice to compare the consistency of the optimum solutions. Table  4-3 

summarizes the quantitative decision variables considered in this example along with their 

minimum, maximum, and increment values. Table  4-4 shows the suggested range for each 

parameter of the fmGA provided by the tool.  In addition, it shows the configuration used in this 

example. This optimization is run for 100,000 candidate solutions through two eras where each 

era consists of 500 generations and each generation has a population of 100. The mean values of 

the objective functions of each solution were found after 100 simulation replications. 
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Table  4-2 Durations of the Tasks Used in the Simulation Model 

Task Duration  (minutes) Task Duration  (minutes) 

BottomSlab_Web Triangular [640, 961, 1280] * Trailer_Haul F (Distance, Speed) 

Inner_Mold Triangular [120, 300, 480] * Trolley_Loading Triangular[30, 60, 90] ** 

TopSlab Triangular [660, 984, 1300] * Trailer_Return F (Distance, Speed) 

LiftToMold Triangular[23, 45, 68] Trolley_Travel F (Distance, Speed) 

Cast_Span Triangular [520, 771, 1020] * Reposition Triangular[120, 240, 360] ** 

Span_Curing (600 or 1200) * Pickup_Span Triangular[30, 60, 90]** 

RemoveInnerMol Triangular [90, 255, 420] * Trolley_Return F (Distance, Speed) 

Posttension_1
st
 Triangular [120, 300, 480] * Erect_Span Triangular[120, 240, 360] **  

LiftToStorage Triangular [30, 60, 90] ** Trolley_Return F (Distance, Speed) 

Posttension_2
nd

 Triangular [120, 300, 480] * Prepare_Bearing Triangular[120, 240, 360] ** 

Trailer_Loading Triangular[30, 60, 90] ** Load_Transfer Triangular[30, 60, 90] ** 

*  Adapted from (Marzouk et al., 2007) 

** Adapted from (VSL International Ltd., 2013) 

 

This example was run on an Intel Core i7, Quad-core processor, 3.4 GHz computer with 16 GB 

Random Access Memory (RAM) running 64-bit Windows 7 operating system and it took almost 

7 hours to reach the specified number of trials. The computation time was for only one 

construction method and a small fraction of the search space. The computation time will increase 

rapidly if more than one construction method is used or a larger area of the search space is 

considered. 

Table  4-3 Quantitative Decisions Variables Used in the Optimization 

Decision Variable Minimum Maximum Increment 

Number of delivery trucks (NDT) 1 20 1 

Precast yard distance (km) (PYD) 10 100 10 

Number of rebar cage molds (NRC) 1 20 1 

Number of inner molds (NIM) 1 20 1 

Number of outer molds (NOM) 1 20 1 

Number of preparation crews (NPC) 1 20 1 

Number of stressing crews (NSC1) 1 20 1 

Number of steel crews (NSC2) 1 20 1 

Number of casting crews (NCC) 1 20 1 

Precast yard storage capacity (PYS) 1 50 5 

Storage time (hr) (ST) 1 84 1 
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Table  4-4 fmGA Configuration Used in the Case Study 

Parameter  Suggested Range Used Value 

Cut rate 0.01 to 0.05 0.017 

Splice rate  0.8 to 1.0 0.6 

Mutation rate  0.001 to 0.03 0.015 

Population size  50 to 100 100 

Generations per era  500 to 1,000 500 

Number of eras  2 

Maximum trials  10,000 to Huge 100,000 

Size of search space  6.4512 × 10
15

 

 

Figure  4-9 shows all the generated candidate solutions for the first run. Figure  4-10 shows the 

improvement of the Pareto solutions over several generations. The model was able to generate a 

set of solutions where each solution represents a construction scenario. Table  4-5 presents the 

values of the decision variables and the objective functions for the first run of the Pareto front. 

The Pareto front solutions provide non-dominated tradeoff between minimizing the project 

duration and minimizing the construction cost.  A tradeoff exists because reducing the project 

duration requires the use of extra resources, which in turn will increase the project cost. The 

solution representation shows the values of the decision variables. Each decision variable has an 

abbreviation as shown in Table  4-3. For example, PYD represents the distance from the precast 

yard to the access point of the construction site. In Solution 4, for example, the distance is 100 

km and this solution requires the use of accelerated curing method and overtime policy 13 which 

is 10 hours per day and 7 days per week as shown in Table  4-5. Solution 1 requires 72 calendar 

days and $3.17 million to finish the construction compared to 107 calendar days and $1.57 

million as required by Solution 13. Solution 1 reduces the project duration by more than 32% 

compared to Solution 13 but it will cost almost 2 times more. Solution 1 represents the shortest 

project duration and the most expensive project alternative. It also represents the highest 

transportation agency expenditure and the shortest duration of public inconvenience or traffic 

interruption. On the other extreme, Solution 13 represents the longest project duration and the 

cheapest alternative. Between these two extremes, there are other feasible solutions from which 

the decision maker can select the construction scenario. For example, Solution 7 requires 83 days 

and $2.05 million to finish the project. 
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Figure  4-9 All the Generated Candidate Solutions in the First Run 

 

Figure  4-10 Improvement of Pareto Solutions over the Generations
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Table  4-5 Details of the Pareto Set of Solutions for the First Run 

Sol NDT PYD NRC NIM NOM NPC NSC1 NSC2 NCC 
Curing 

Method 
Overtime 

Policy 
PYS 

ST 
(hours) 

Duration 
(days) 

Cost 
($10,000) 

   1 3   40 16 20 18 6 4 15 6 Accelerated 15 35   1   72 317 

  2 1   60 13 20 20 3 3 11 5 Accelerated 15 40   3   73 277 

  3 2   20 14 20 20 4 2   9 5 Accelerated 14 50   4   76 266 

  4 1 100 20 20 18 5 7 12 6 Accelerated 13 50   6   77 247 

  5 1 100 14 20 19 3 4 11 9 Accelerated   8 40   1   80 214 

  6 1 100 17 20 19 3 3 10 5 Accelerated 12 45   6   81 207 

  7 1   90 13 20 20 4 2 11 5 Accelerated   8 50   3   83 205 

  8 2   50 13 20 20 4 3 11 7 Accelerated   7 50   1   84 197 

  9 1   10 16 16 20 6 2   9 5 Accelerated   7 40 28   89 195 

10 1 100 13 20 20 3 3 10 6 Accelerated   6 50   3   92 169 

11 1 100 13 16 20 4 10 11 5 Accelerated   6 40   3   92 193 

12 1   90   9 20 19 2 3   7 4 Accelerated   2 50   3   98 167 

13 1 100 18 20 20 7 4 12 5 Accelerated   1 50   6 107 157 
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However, as shown in Table  4-5, Solutions 10 and 11 have the same project duration but 

different project cost. Based on these values, Solution 10 dominates Solution 11 since it has a 

lower costly construction. However, since stochastic simulation is used, the values of the 

objective functions, which are represented by the mean, can change every time that same 

candidate solution is evaluated. By examining the log of the optimization, it has been found that 

the Solutions 10 and 11 have other pair values of (92, 170) and (91, 192), respectively for the 

duration and cost of the project. Based on these values, the two solutions are non-dominated. 

This problem impacts the quality of the optimum solutions generated by the optimization 

algorithm. This problem occurs when the distribution of the project’s total duration or cost for a 

candidate solution overlap with another candidate solution. Figure  4-11 shows the scatter plot of 

project duration and cost combinations for Solutions 10 and 11 after 1,000 simulation 

replications. It can be noticed that Solutions 10 and 11 have almost the same project’s duration 

for many of the replications. This is also evident in Figure  4-12 and Figure  4-13 which show the 

project’s total duration and total cost distributions for the two solutions, respectively. Another 

shortcoming of the traditional stochastic simulation-based multi-objective optimization is that the 

optimum solutions generated at the end of the optimization process will differ every time the 

optimization is performed. Table  4-6 shows the optimum solutions in the second run for the same 

example above with the same exact settings. It can be noticed from the two tables that none of 

the solutions are repeated in the two runs. Figure  4-14 shows the two Pareto fronts from the two 

runs.  
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Figure  4-11Scatter Plot of the Project Duration and Cost Combinations for Solutions 10 and 11 

 

 

Figure  4-12 Project Duration Distribution of Solutions 10 and 11 
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Figure  4-13 Project Cost Distribution of Solutions 10 and 11 

 

 

Figure  4-14 Pareto Fronts Generated in the First and Second Run 
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Table  4-6 Details of the Pareto Set of Solutions for the Second Run 

Sol NDT PYD NRC NIM NOM NPC NSC1 NSC2 NCC 
Curing 

Method 
Overtime 

Policy 
PYS 

ST 
(hours) 

Duration 
(days) 

Cost 
($10,000) 

  1 1   30 14 15 20 3 2   9 5 Accelerated 15 40   1   73 273 

  2 2   90 13 15 20 6 4 15 5 Accelerated 15 40   1   73 334 

  3 1 100 14 20 20 5 4 11 5 Accelerated 14 40   1   75 266 

  4 2 100 13 16 19 5 4 11 5 Accelerated 13 40   1   76 252 

  5 1   10 15 16 20 6 3 11 5 Accelerated 13 40   3   77 246 

  6 1 100 14 20 20 3 2   9 5 Accelerated 12 35   1   80 208 

  7 1 100 13 16 20 4 3   9 6 Accelerated   8 50   9   81 205 

  8 1   30 16 20 20 4 3 10 4 Accelerated   8 50   24   83 200 

  9 1 100 13 20 20 4 4 10 5 Accelerated   7 40   7   85 186 

10 1 100 20 20 20 3 4   9 5 Accelerated   7 40   1   86 182 

11 2   40 13 20 20 3 4 11 5 Accelerated   6 50   1   92 176 

12 1 100 20 20 17 2 3 10 4 Regular   6 50   8   95 174 

13 1 100 10 20 17 2 3 10 3 Accelerated   2 45   2   99 169 

14 1 100 18 20 17 5 3 17 4 Accelerated   1 50   8 106 166 

15 1   20 20 20 20 3 4   9 5 Accelerated   1 40   2 108 148 
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4.10 Summary and Conclusions 

This chapter presented the proposed stochastic simulation-based multi-objective optimization 

model dedicated for planning bridge construction operations. The aim of the model is to select a 

near-optimum construction scenario that satisfies predefined objectives. This model is used to 

select the near-optimum construction scenarios based on quantitative analysis rather than 

qualitative analysis. The construction scenario in this context consists of two main elements. The 

first element is the construction method that is used to construct a bridge. The second element is 

the decision variables decision variables that have an impact on the duration and cost of the 

project. Two cycles were added to the fmGA which are: (1) the sub-population cycle were each 

sub-population represents a specific construction method; and (2) the simulation cycles were the 

values of the objective functions of candidate solutions are calculated. This chapter: (1) 

identified and modeled the decision variables related for each construction method; (2) 

formulated the objective functions that are used to estimate construction cost and duration; (3) 

defined the optimization constraints; (4) developed the simulation models of the selected 

construction methods; (5) designed the integration between the optimization algorithm and 

simulation; (6) implemented the model; (7) demonstrated the effectiveness of the proposed 

model. 

As demonstrated in the case study, the proposed model was able to generate a set of solutions 

where each solution represents a construction scenario.  However, it has been demonstrated that 

applying methods that exist in the current state of the art is inefficient in dealing with the 

problem of stochastic dominance. As a result, inferior candidate solutions may be presented 

among the optimum solutions. In addition, the traditional method does not produce consistent 

optimum solutions every time the optimization is run. Moreover, the traditional method required 

almost 7 hours to evaluate 100,000 candidate solutions for a single construction method. As a 

result, the computation time required will increase as the number construction methods 

considered increases. To overcome these problems, VRTs are incorporated in the proposed 

stochastic simulation-based multi-objective model to examine their efficiency as will be 

explained in Chapter  5. 
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5 CHAPTER 5: SOLVING THE PROBLEM OF STOCHASTIC DOMINANCE AND 

REDUCING THE NUMBER OF SIMULATION REPLICATIONS USING VARIANCE 

REDUCTION TECHNIQUES 

5.1 Introduction 

This chapter presents a method to incorporate VRTs into the stochastic simulation-based 

optimization model presented in Chapter ‎3. The main objectives of using VRTs within the 

proposed model are: (1) increasing the quality of the optimum solutions; (2) increasing the 

confidence in the optimality of the optimum solutions; and (3) reducing the computation time 

required for performing the stochastic simulation-based multi-objective optimization. Applying 

this new method would solve the problem of stochastic dominance as discussed in Sections ‎2.6 

and ‎4.9 and as a result, the quality of the optimum solutions is increased. In addition, this new 

method would allow project planners to optimize construction operations faster by reducing the 

number of simulation replications required to obtain a good estimate of the candidate solutions, 

which will make the use of stochastic simulation-based optimization more appealing. The saved 

time can be used to cover a larger area of the search space, which results in increasing the 

confidence in the optimality of the optimum solutions. Although VRTs have been used in 

simulation studies in the past, they are used here in a novel way to improve the performance of 

the optimization process.  

Three VRTs are studied in this research, which are CRN, AV, and a hybrid method that 

combines CRN and AV, which is referred to as the Combined Method (CM) in the rest of the 

thesis. The idea of using more than one VRT simultaneously is not new. However, very few 

researches studied the CM technique (Kleijnen, 1975; Schruben and Margolin 1978; Tew and 

Wilson, 1994). As mentioned in Section  2.6.1, CRN is used to compare several candidate 

solutions while AV is used for a single candidate solution. It is appealing to combine these two 

techniques in simulation-based optimization where CRN will be used to compare the different 

candidate solutions generated by the optimization algorithm while AV will be used in estimating 

the performance measure indices of each candidate solution. In this case, the average difference 

between two candidate solutions can be estimated using Equation  5-1. 
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It is important to mention that the statistical results obtained using VRTs cannot be used to 

derive any statistical information of the optimum candidate solution. Therefore, a number of 

replications must be performed for the near optimum solutions at the end of the optimization 

process in order obtain sound statistical information of these solutions. The incorporation of 

VRTs in simulation-based multi-objective optimization model is done in three steps: 

synchronization of random numbers, comparing the candidate solutions, and comparing and 

selecting the best VRT. Consequently, the rest of this chapter aims to: (1) identify and model the 

required synchronization; (2) formulate a method to compare the performance measure indices of 

the candidate solutions; (3) develop a method to compare and select the best VRT; (4) implement 

the proposed method; and (5) demonstrate the effectiveness of the proposed method. 

5.2 Synchronization of Random Numbers 

An important criterion for the success of the incorporation of VRTs is the synchronization of the 

random numbers. The synchronization is done up to four levels depending on the type of the 

VRT used as shown in Table  5-1. CRN has three levels of synchronization, which are between 

the stochastic tasks, between the replications, and between the candidate solutions. AV has also 

three levels of synchronization, which are between the stochastic tasks, between the replications 

in a pair, and between the pairs. On the other hand, the CM has four levels of synchronization, 

which are between the stochastic tasks, between the replications in a pair, between the pairs, and 

between the candidate solutions.  

Table  5-1 Types of Synchronization Required for Different VRTs 

Synchronization Between CRN AV CM 

Tasks x x x 

Replications/Pairs x x x 

Replications in a pair 
 

x x 

Candidate solutions x 
 

x 

 

Random numbers for each task in each replication can be generated from the same streams used 

in the previous replication or from new streams. To differentiate between the two approaches, the 
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first approach is referred to by the name of the technique (i.e., CRN, AV, and CM) while the 

second approach is referred to by “ns” subscripted next to the name of the technique (i.e., CRNns, 

AVns, and CMns). The first and the second approaches are described in detail in Sections  5.2.1 

and  5.2.2, respectively. 

Figure  5-1 and Figure  5-2 show the algorithms for incorporating the VRTs into simulation-based 

optimization. The process starts by generating (L) generations where each generation has a 

population of size (E) by the optimization algorithm. Each candidate solution (e) is then 

evaluated using simulation where it will be run for several replications. In each replication, at 

least one instance of each task (o) is created. Finally, the performance  measure indices of each 

candidate solution is returned back to the optimization algorithm. However, for the clarity of the 

explanation, the synchronization process will be explained in the following sections starting from 

the tasks, then the replications, and finally the candidate solutions.  

1 // Repeat for all generations   1 // Repeat for all generations  

2 FOR l = 1 TO L  2 FOR l = 1 TO L 

3 // Repeat for all solutions in the population  3 // Repeat for all solutions in the population 

4    FOR e = 1 TO E  4    FOR e = 1 TO E 

5       ARN = Constant  5       ARN = Constant 

6 // Repeat for all replications  6 // Repeat for all replications 

7       FOR n = 1 TO N  7       FOR n = 1 TO N 

8          IF n = 1  8          IF n = 1 

9             Space streams using ARN  and  RRNmax     9             Space streams using ARN  and RRNmax 

10          ELSE  10          ELSE 

11 // Repeat for all tasks  11             Space streams using RN  and RRNmax 

12             FOR o  = 1 TO O  12          END IF 

13                Continue from last SoRN  13          Simulate the model  

14             END FOR  14          Collect     and     

15          END IF  15          Assign RN =  S[(n × O) + 1]RN1 

16          Simulate the model  16       END FOR 

17          Collect     and      17       Calculate   
̅̅ ̅ and   

̅̅ ̅ 

18       END FOR  18    END FOR 

19       Calculate    
̅̅ ̅ and   

̅̅ ̅  19    Sort candidate solutions  

20    END FOR  20 END FOR  

21    Sort candidate solutions     

22 END FOR    

 (a) Using same streams (b) Using new streams 
                          

Figure  5-1 Algorithm for Incorporating CRN and CRNns Techniques 
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1 // Repeat for all generations   1 // Repeat for all generations  

2 FOR l = 1 TO L  2 FOR l = 1 TO L 

3 // Repeat for all solutions in the population  3 // Repeat for all solutions in the population 

4    FOR e = 1 TO E  4    FOR e = 1 TO E 

5       ARN = Variable *  5       ARN = Variable * 

6 // Repeat for all pairs  6 // Repeat for all pairs 

7       FOR p = 1 TO N /2  7       FOR p = 1 TO N /2 

8 // Standard replication  8 // Standard replication 

9          IF p = 1  9          IF p = 1 

10             Space streams using ARN  and RRNmax  10             Space streams using ARN  and RRNmax 

11          ELSE  11          ELSE 

12 // Repeat for all tasks  12             Space streams using RN  and RRNmax 

13             FOR o  = 1 TO O  13          END IF 

14                Use saved SoRN  14          Simulate the model  

15             END FOR  15          Collect    
 and    

  

16          END IF  16 // Antithetic replication 

17          Simulate the model   17          IF p = 1 

18          Collect    
 and    

   18             Space streams using ARN  and RRNmax 

19 // Antithetic replication  19          ELSE 

20          IF p = 1  20             Space streams using RN  and RRNmax 

21             Space streams using ARN    21          END IF 

22          ELSE  22          Simulate the model  

23 // Repeat for all tasks  23          Collect    
  and    

   

24             FOR o  = 1 TO O  24       Calculate     
̅̅ ̅̅ ̅ and    

̅̅ ̅̅  

25                Use saved SoRN  25          Assign RN =  S[(n × O) + 1]RN1 

26             END FOR  26       END FOR 

27          END IF  27       Calculate   
̅̅ ̅ and   

̅̅ ̅ 

28          Simulate the model using  28    END FOR 

29          Collect    
  and    

    29    Sort candidate solutions  

30          Calculate     
̅̅ ̅̅ ̅ and    

̅̅ ̅̅     30 END FOR   

31 // Repeat for all tasks  
  

32          FOR o = 1 TO O  
  

33             Save last SoRN  used  
  

34          END FOR     

35       END FOR    

36       Calculate   
̅̅ ̅ and   

̅̅ ̅    

37    END FOR    

38    Sort candidate solutions     

39 END FOR    

 * For the CM technique,  ARN = Constant  * For the CM technique,  ARN = Constant 

 (a) Using same streams  (b) Using new streams 

Figure  5-2 Algorithm for Incorporating (a) AV and CM, and (b) AVns and CMns Techniques 
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5.2.1 Synchronization of CRN Technique Using Same Streams 

5.2.1.1 Synchronization Between Stochastic Tasks 

In this research, VRTs are applied for every stochastic task in the simulation model. In order to 

ensure proper synchronization between the stochastic tasks, each stochastic task is assigned an 

independent stream from which random numbers can be generated. The length of a stream for a 

certain task should be enough to generate the required number of random numbers without 

overlapping with other streams. This is necessary to keep the statistical independence of the 

stochastic tasks in the simulation model. The random numbers used for each task cannot be used 

for another task. Using the same random numbers for more than one task will create a 

dependency between these tasks that must be avoided.  

In a simulation model, the lengths of streams can be of equal size or variable sizes. In most 

cases, equal size streams are sufficient and they are always faster than variable size streams. For 

the purpose of this research, streams with equal lengths are used. Regardless of the approach 

used, it is crucial to determine the number of required random numbers (RRN) for each task in 

order to determine the minimum required length of the streams. The task with the maximum 

RRN is used as the basis for determining the length of the streams. Equation  5-2 can be used to 

determine the maximum RNN for a VRT using the same streams approach.  

𝑎    𝑎           𝑡                   𝑜                   Equation  5-2 

  

where, 

     = required random numbers for the stochastic task o 

  

   𝑡  = total number of instances that will be created of task o in a replication 

  

     = number of random numbers used to produce a random variate for task o 

  

RNU depends on the type of the distribution function used to model the uncertainty of the task. 

Martinez (1996) lists the RNU for different distribution functions. For example, assuming a 

simulation model has two tasks, A and B, that are modeled using triangular distribution (RNU = 

1) and is replicated four times, and assuming that task A has two instances and task B has one 

instance, this will result in RRN equal to eight and four for tasks A and B, respectively. The 

streams are then spaced based on the maximum RRN starting from an Arbitrary Random Number 
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(ARN). The ARN, which is generated randomly by the optimization algorithm, is used as the 

starting value for the first stream.  

Table  5-2(a) shows examples of synchronization of CRN for the two tasks A and B. The term 

S1RN1, for example, reads as random number 1 (RN1) generated from stream 1 (S1). By 

examining columns (3) and (4) of this table, it can be noticed that all the random numbers for 

tasks A and B in the first replication (n =1) are generated from S1 and S2, respectively. In 

addition, it can be noticed that none of the RNs are used more than once in the same replication.  

5.2.1.2 Synchronization Between Replications 

As explained above, for the independence of stochastic tasks, the synchronization between the 

replications is necessary to keep the independence between the different replications. The 

random numbers used for each task in a replication cannot be used in another replication to avoid 

creating a dependency between these replications. Figure  5-3(a) shows the schematic of stream 

spacing for the CRN technique. S1 and S2 have a stream of length eight (i.e., a maximum of eight 

RNs can be generated from each stream). In this approach, random numbers for each task, in the 

subsequent replication, are generated from the same stream assigned to that task. Therefore, the 

random numbers generated for the subsequent replication must start from the next random 

number after the last random number generated in the previous replication. Columns (3) and (4) 

of Table  5-2(a) demonstrate this approach where the second replication starts from S1RN3 and 

S2RN2 for tasks A and B, respectively.  S1RN3 and S2RN2 are the next random numbers after the 

last random numbers used for task A (S1RN2) and task B (S2RN1) in the first replication.  

Figure  5-1(a) shows the algorithm for incorporating the CRN technique. The synchronization 

between the replications is represented in lines 7 to 18. The first replication uses the ARN and the 

maximum RRN to assign a stream for each stochastic task. The simulation is performed by 

generating random numbers for each task o from the assigned stream (SoRN).  For subsequent 

replications, each task will continue from the last SoRN used. 
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Table  5-2 Synchronization of Different VRTs for Tasks A and B Using the Same Streams Approach 

 

(a) CRN 

 

 
CRN 

Solution 1 Solution 2 

(1) (2) (3) (4) (5) (6) 

n Inst Task A Task B Task A Task B 

1 
1 S1RN1 S2RN1 S1RN1 S2RN1 

2 S1RN2  S1RN2  

2 
1 S1RN3 S2RN2 S1RN3 S2RN2 

2 S1RN4  S1RN4  

3 
1 S1RN5 S2RN3 S1RN5 S2RN3 

2 S1RN6  S1RN6  

4 1 S1RN7 S2RN4 S1RN7 S2RN4 

 
2 S1RN8  S1RN8  

 

(b) AV and CM 

 

 AV CM 

 Solution 1 Solution 2 Solution 1 Solution 2 

(1)  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

p n Inst Task A Task B Task A Task B Task A Task B Task A Task B 

1 

1 
1 S1RN1 S2RN1 S1RN1` S2RN1` S1RN1 S2RN1 S1RN1 S2RN1 

2 S1RN2  S1RN2`  S1RN2  S1RN2  

2 
1 1 – S1RN1 1 – S2RN1 1 – S1RN1` 1 – S2RN1` 1 – S1RN1 1 – S2RN1 1 – S1RN1 1 – S2RN1 

2 1 – S1RN2  1 – S1RN2`  1 – S1RN2  1 – S1RN2  

2 

3 
1 S1RN3 S2RN2 S1RN3` S2RN2` S1RN3 S2RN2 S1RN3 S2RN2 

2 S1RN4  S1RN4`  S1RN4  S1RN4  

4 
1 1 – S1RN3 1 – S2RN2 1 – S1RN3` 1 – S2RN2` 1 – S1RN3 1 – S2RN2 1 – S1RN3 1 – S2RN2 

2 1 – S1RN4  1 – S1RN4`  1 – S1RN4  1 – S1RN4  
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RN1 RN2 RN3 RN4 RN5 RN6 RN7 RN8 RN1 RN2 RN3 RN4

S1 S2

Task A Task B

{ { { { { { { {

n = 1 n= 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4
 

(a) Using same streams 

RN1 RN2 RN1 RN1

S1 S2 S3

Task A Task B Unused

RN1 RN2 RN1 RN1

S3 S4 S5

Task A Task B Unused

RN1 RN2 RN1 RN1

S5 S6 S7

Task A Task B Unused

RN1 RN2 RN1 RN1

S7 S8 S9

Task A Task B Unused

n = 1

n = 2

n = 3

n = 4

 

(b) Using new streams 

Figure  5-3 Schematic of Stream Spacing for CRN Technique 

5.2.1.3 Synchronization Between Candidate Solutions 

To ensure proper synchronization and dependency between the candidate solutions, the ARN 

must be controlled by using the same ARN for all the candidate solutions. As mentioned earlier, 

ARN is used to space the streams from which the random numbers are generated. This 

synchronization is represented in line 5 in Figure  5-1(a). For each candidate solution (e) in a 

population of size (E) of generation (l) generated by the optimization algorithm, the same ARN is 

used (i.e., ARN = constant). This synchronization can be seen in columns (3) to (6) of 

Table  5-2(a). It can be noticed that the two candidate solutions use the same streams and random 

numbers of tasks A and B for all the instances and replications when CRN technique is used. 
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5.2.2 Synchronization of CRN Technique Using New Streams 

5.2.2.1 Synchronization Between Stochastic Tasks 

This synchronization is done in a similar manner as explained in Section  5.2.1.1 with the only 

difference in the maximum RRN. If random numbers are generated from a new stream in each 

replication, then Equation  5-3 can be used to determine the maximum RNN for a VRT. 

𝑎    𝑎           𝑡                 𝑜                   Equation  5-3 

  

Using this approach, the RRN values for tasks A and B are two and one, respectively. 

5.2.2.2 Synchronization Between Replications 

As explained earlier, the new streams approach generates random numbers in the subsequent 

replication for each task from a new stream. That is, tasks are assigned new streams by spacing 

the streams in the subsequent replications based on the first random number generated from an 

additional stream that will be created in advance but will not be used by any task in the current 

replication.  

Figure  5-3(b) shows the schematic of stream spacing for the CRNns technique. For example, in 

the first replication, three streams of length 2 (the maximum RRN) are being spaced. S1 and S2 

will be used by tasks A and B, respectively. On the other hand, S3 has not being used by any task 

and S3RN1 is is the first random number in S3. In the second replication, S3RN1 will be used to 

space three new streams and so forth.  

Table  5-3(a) shows similar examples to those shown in Table  5-2(a) when CRNns is used. As can 

be seen in columns (3) and (4), the random numbers for tasks A and B are generated from a 

different stream in each replication (i.e., S1, S3, S5, and S7 for task A) and (i.e., S2, S4, S6, and S8 

for task B). It can be noticed that no one stream has been used for both tasks, which is necessary 

to maintain the independency between tasks as mentioned earlier. 

Figure  5-1(b) shows the algorithm for incorporating the CRNns technique. This synchronization 

is represented in lines 7 to 16 of Figure  5-1(b). The first replication uses the generated ARN and 

the maximum RRN to assign a stream for each stochastic task. The simulation is performed by 

generating random numbers for each task o from the assigned stream S[o + O × (n – 1)]. At the end of 
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each replication, RN will be assigned RN1 from the unused stream (S[(n × O) + 1]) generated at the 

beginning of the replication. 

5.2.2.3 Synchronization Between Candidate Solutions 

This synchronization is done in a similar manner as explained in Section  5.2.1.3. This 

synchronization is represented in line 5 in Figure  5-1(b) and can be seen in columns (3) to (6) of 

Table  5-3(a). 

5.2.3 Synchronization of AV Technique and CM Using Same streams and New Streams 

5.2.3.1 Synchronization Between Stochastic Tasks 

When AV or CM is used, the term N in Equation  5-2 represents the number of pairs instead on 

the number of replications. The number of pairs will equal N/2 since each pair has two 

replications. The synchronization between stochastic tasks is done in a similar manner for the 

same streams and the new streams approaches as explained in Sections  5.2.1.1 and  5.2.2.1. This 

synchronization is can be seen in columns (4) and (5), and (8) and (9) of Table  5-2(b) for AV and 

CM, respectively; and in columns (4) and (5), and (8) and (9) of Table  5-3(b) for AVns and CMns, 

respectively. 

5.2.3.2 Synchronization Between Pairs 

The synchronization between pairs is done in a similar manner for the same streams and the new 

streams approaches as explained in Sections   5.2.1.2 and  5.2.2.2. As explained above for the 

independence of replications, the synchronization between the pairs is necessary to keep the 

independence between the different pairs. Figure  5-2(a) shows the algorithm for incorporating 

the AV and the CM. Random numbers for subsequent pairs, in the same streams approach, are 

generated from the same stream assigned to each task as represented in lines 7 to 35 of 

Figure  5-2(a). This synchronization is can be seen in columns (4), (5), (8) and (9) of Table  5-2(b) 

where the second pair starts from S1RN3 and S2RN2 for tasks A and B, respectively. 

Figure  5-2(b) shows the algorithm for incorporating the AVns and the CMns.  In this case, random 

numbers for subsequent pairs are generated from the new streams as represented in lines 7 to 26 

of Figure  5-2(b). The first pair uses the generated ARN and the maximum RRN to assign a stream 
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for each stochastic task. The simulation is performed by generating random numbers for each 

task o from the assigned stream S[o + O × (p – 1)]. At the end of each pair, RN will be assigned RN1 

from the unused stream (S[(p × O) + 1]) generated at the beginning of the pair. This synchronization 

is can be seen in columns (4), (5), (8) and (9) of Table  5-3(b) where the second pair starts from 

S3RN1 and S4RN1 for tasks A and B, respectively. It can be noticed from Table  5-2(b) and  

Table  5-3(b) that there is no one random number from any stream that has been used more than 

once, which is necessary to maintain the independency between the pairs as mentioned earlier. 

5.2.3.3 Synchronization Between Replications in a Pair  

This synchronization is necessary when AV and the CM techniques are used. To synchronize the 

two replications in a pair, they must use complementary RN. This synchronization is exhibited in 

columns (4) to (11) of Table  5-2(b) and Table  5-3(b). For example in column (4), the first 

instance of task A in the standard replication of the first pair uses the random number S1RN1 and 

the same instance of the same task uses the random number 1 – S1RN1 in the antithetic 

replication of the first pair. In order to synchronize the replications in a pair, the complementary 

random number used for the standard replication must be used in the antithetic replication of the 

same pair as shown in lines 9 to 16 and 20 to 27 in Figure  5-2(a) and lines 9 to 13 and 17 to 21 in 

Figure  5-2(b).  

5.2.3.4 Synchronization Between Candidate Solutions 

A key difference between CM and AV is that there exists no synchronization between the 

different candidate solutions when AV is used. In other words, each solution experience different 

uncertainty conditions under AV. This synchronization is represented in line 5 in Figure  5-2(a) 

and (b), and can be seen in columns (4) to (11) of Table  5-2(b) and Table  5-3(b). It can be 

noticed that the two candidate solutions use the same streams and random numbers of tasks A 

and B for all the instances, replications, and pairs when CM technique is used. It can be noticed 

that ARN is fixed when synchronization is required between the candidate solutions and variable 

otherwise.
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Table  5-3 Synchronization of Different VRTs for Tasks A and B Using the New Streams Approach 

(a) CRN 

 

 
CRN 

Solution 1 Solution 2 

(1) (2) (3) (4) (5) (6) 

n Inst Task A Task B Task A Task B 

1 
1 S1RN1 S2RN1 S1RN1 S2RN1 

2 S1RN2  S1RN2  

2 
1 S3RN1 S4RN1 S3RN1 S4RN1 

2 S3RN2  S3RN2  

3 
1 S5RN1 S6RN1 S5RN1 S6RN1 

2 S5RN2  S5RN2  

4 1 S7RN1 S8RN1 S7RN1 S8RN1 

 
2 S7RN2  S7RN2  

 

(b) AV and CM 

 

 AV CM 

 Solution 1 Solution 2 Solution 1 Solution 2 

(1)  (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

p n Inst Task A Task B Task A Task B Task A Task B Task A Task B 

1 

1 
1 S1RN1 S2RN1 S1RN1` S2RN1` S1RN1 S2RN1 S1RN1 S2RN1 

2 S1RN2  S1RN2`  S1RN2  S1RN2  

2 
1 1 – S1RN1 1 – S2RN1 1 – S1RN1` 1 – S2RN1` 1 – S1RN1 1 – S2RN1 1 – S1RN1 1 – S2RN1 

2 1 – S1RN2  1 – S1RN2`  1 – S1RN2  1 – S1RN2  

2 

3 
1 S3RN1 S4RN1 S3RN1` S4RN1` S3RN1 S4RN1 S3RN1 S4RN1 

2 S3RN2  S3RN2`  S3RN2  S3RN2  

4 
1 1 – S3RN1 1 – S4RN1 1 – S3RN1` 1 – S4RN1` 1 – S3RN1 1 – S4RN1 1 – S3RN1 1 – S4RN1 

2 1 – S3RN2  1 – S3RN2`  1 – S3RN2  1 – S3RN2  
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5.3 Comparing the Candidate Solutions 

In order to use CRN in simulation-based optimization, the performance measure indices of each 

candidate solution should be compared pairwise. Knowing that the optimization would run for a 

large number of candidate solutions, performing pairwise comparison would dramatically 

increase the number of trails. For example, if the optimization is run for 1,000 candidate 

solutions, the total number of pairwise comparisons would be 499,500, which can be found using 

the pairwise comparisons formula (  (   )  ) where q is the number of candidate solutions 

(Bible et al., 2011). Using pairwise comparisons in the optimization will defeat one of the 

purposes of using CRN (i.e., reduce the computation time). Therefore, the pairwise comparisons 

shown in Equation  2-5 should be rewritten as the following for the project duration:  

 ̅( )   
∑ (        ) 

   

 
  

∑    
 
   

 
 

∑     
 
   

 
 Equation  5-4 

  

In order to choose between the two candidate solutions, the sign of  ̅( ) should be examined. If 

 ̅( ) is negative, then the average duration of candidate solution 2 is greater than the average 

duration of candidate solution 1, and therefore, candidate solution 1 is better than candidate 

solution 2, and vice versa. This is equivalent to saying that    
̅̅ ̅      

̅̅ ̅ which is more practical 

when comparing a large number of candidate solutions as in the case of simulation-based 

optimization problems.  

In multi-objective optimization problems, the performance of a simulation model consists of two 

or more measure indices, e.g., the total project duration and cost. Traditionally, CRN is used to 

compare two candidate solutions based on a single performance measure index. To compare 

more than one performance measure index, the notation of solution domination is used. A 

candidate solution is considered non-dominant when there is no other candidate solution that can 

improve one performance measure index without worsening the other performance measure 

index. Candidate solutions are represented by combinations of average duration and average cost 

(  
̅̅ ̅   

̅̅ ̅)  that are calculated as represented in lines 19, 17, 36, and 27 in Figure  5-1(a), 

Figure  5-1(b), Figure  5-2(a), and Figure  5-2(b), respectively. One candidate solution is better 

than another if Equation  5-5 holds true. 

(  
̅̅ ̅      

̅̅ ̅̅ ̅̅ ̅ 𝑎 𝑑   
̅̅ ̅      

̅̅ ̅̅ ̅̅ ̅) 𝑜  (  
̅̅ ̅      

̅̅ ̅̅ ̅̅ ̅ 𝑎 𝑑   
̅̅ ̅      

̅̅ ̅̅ ̅̅ ̅)                     Equation  5-5 
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That is, candidate solution e has an equal or lower duration and lower cost than candidate 

solution m or candidate solution e has a lower duration and an equal or lower cost than candidate 

solution m. 

5.4 Comparing and Selecting the Best VRT 

The procedure used to compare and select the best VRT is presented in Figure  5-4. VRTs may 

not necessarily reduce the variance of the simulation model under study, and therefore, a pilot 

study should be done in order to measure the improvements that can be achieved using these 

techniques (Law, 2007). In order to select the best technique, performance metrics should be 

clearly identified. The main purpose of using VRT is to reduce the variance of a performance 

measure index obtained as an output from a simulation model. Therefore, the variance of the 

performance measure indices is the first metric to be used to compare the VRTs. This metric has 

been used in previous research to compare the performance of the VRTs (Kleijnen, 1975; 

Schruben and Margolin 1978). Equation  5-6, Equation  5-7, and Equation  5-8 are used to 

calculate the variance of the CRN technique, the AV technique and the CM technique, 

respectively.  

Apply Pilot Study for All VRTs

Calculate S2, ME(α), ρ  

Compare the Performance of the VRTs

Sort the VRTs Based on Performance

Select the Best Two VRTs

Apply Optimization

Calculate Ts and HV

 

Figure  5-4 Procedure for Comparing and Selecting the Best VRT 
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 ( )   

∑ [    ̅( )]   
   

   
 Equation  5-6 

  

where, 

                                       

  
 (  ⁄ )  

∑ [    ̅(   )] 
   
   

 
   

 Equation  5-7 

  

where, 

    
  

      
  

 
 

  
 (  ⁄ )  

∑ [    ̅(   )] 
   
   

 
   

 Equation  5-8 

  

 where, 

   
   

     
  

 
 

   
      

  

 
 

Another performance metric that is considered is the margin of error (ME(α)), also known as 

half-length of confidence interval, of the performance measure index of the simulation model. 

This can be calculated for each technique using Equation  5-9 (Mendenhall et al, 2008). 

  ( )   √
  

 ( )

 
 Equation  5-9 

  

where, 

  = critical z score of the normal distribution representing   confidence level 

  

The correlation is calculated to examine the impact of the applied VRT. The correlation between 

the different candidate solutions, between the pairs within each candidate solution, and between 

the pairs across different candidate solutions can be calculated using Equation  5-10, 

Equation  5-11, and Equation  5-12, respectively.  
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  (       )   
∑ [     ̅ ( )][     ̅ ( )] 

   

(   )√  
 ( )  

 ( )
 Equation  5-10 

  

  (  
    

  )   
∑ [  

   ̅ (   )][  
    ̅  (   )]

   
   

(     )√   (   )    (   )
 Equation  5-11 

  

  (       )   
∑ [     ̅ (   )][     ̅ (   )]

   
   

(     )√  
 (   )  

 (   )
 Equation  5-12 

  

ME(α) can also be used to approximately estimate the required number of replications (NME) 

using the traditional method to achieve similar margin of error as shown in Equation  5-13 (Law, 

2007). 

    
  ( )  

  
 ( )

 Equation  5-13 

  

To measure the improvements in the performance of proposed stochastic simulation-based multi-

objective optimization methods, two metrics are identified, which are the time saving and the 

hypervolume indicator. The time saving measures the reduction in the computing time of the 

optimization process that was achieved by the proposed method and can be calculated using 

Equation  5-14. 

   
        

  
     Equation  5-14 

  

where, 

   = time savings 

  

   = time required to solve the optimization problem using the traditional method 

  

     = time required to solve the optimization problem using VRT 

  

The hypervolume indicator is the most common measure used to compare the performance of 

multi-objective evolutionary algorithms (Zitzler et al., 2007). This indicator measures the area of 

the search space that is dominated by the Pareto front obtained using evolutionary algorithms 

(Zitzler et al., 2003). The Pareto front with the largest hypervolume indicator is better than the 

other Pareto fronts since it takes into account the optimumity and the diversity of the front 
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(Bradstreet, 2011). After estimating the hypervolume indicator, the percentage difference 

between the traditional method and the proposed method is calculated using Equation  5-15. 

    
        

   
     Equation  5-15 

  

Where, 

    = percentage difference in hypervolume indicator 

  

    = hypervolume indicator using the traditional method 

  

    = hypervolume indicator VRT 

  

5.5 Method Implementation 

The algorithms in Figure  5-1 and Figure  5-2 are implemented in STROBOSCOPE. 

STROBOSCOPE is used because it has built-in functions and stream management tool that 

allow for the implementation of any VRT. Assigning different streams for each stochastic task 

can be done by using the built-in distribution functions, such as sTriangular and sNormal, which 

allows the modeller to specify the stream from which to retrieve the random numbers. Spacing 

the streams can be done by using the built-in SEEDALL statement: 

SEEDALL IntFrom1to2147483646 [SeparationInHundredThousands] 

Where IntFrom1to2147483646 is an arbitrary integer seed number set by the user between 1 and 

21,474,483,646. SeparationInHundredThousands represents the separation between streams in 

hundred thousands. For example, if SeparationInHundredThousands is set to 1, then 100,000 

random numbers can be used from each stream before it overlaps with the next stream. The 

SeparationInHundredThousands can be calculated by taking the ceiling of the maximum 

required random numbers (as calculated by Equation  5-2 or Equation  5-3) of all the stochastic 

tasks in a model divided by 100,000 as shown in Equation  5-16. 

   𝑎 𝑎𝑡 𝑜      𝑑  𝑑 ℎ𝑜  𝑎 𝑑   ⌈
 𝑎         

       
⌉ Equation  5-16 
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To find the last used seed number in a stream, the built-in sSeed[Stream] function is used where 

Stream is the stream assigned to a task. This seed number is used later on to point the stream to 

that specific random number in the subsequent replications using the built-in SEEDN statement: 

SEEDN Stream IntFrom1to2147483646 

5.6 Case Studies 

Two case studies are used to demonstrate the effectiveness of the proposed method. Case Study 

A is about the construction of a precast full span box girder bridge using launching method. Case 

Study B is about the construction of a precast segmental box girder bridge using launching 

gantry method. The bridge, for both case studies, consists of 35 spans with identical spans of 

length 25 m. For Case Study B, each span consists of 9 segments. Table  4-2 shows the tasks 

durations used in Case Study A, while Table A-1 shows the tasks durations used for Case Study 

B. The cost data used in the simulation models of both case studies are presented in Appendix B. 

5.6.1 Case Study A 

5.6.1.1  Pilot Study to Compare VRTs 

To select the best VRT, a pilot study was made to compare the performance of the three 

techniques and their new streams versions. The comparison was done over Solutions 9, 10, and 

11 from Table  4-5. The purpose of choosing these three solutions is to show how the problem of 

stochastic dominance, which was demonstrated in Section  4.9, can be dealt with. Nine different 

configurations, which are CRN, AV, CM, CRNns, AVns, CMns, and their corresponding 

traditional method, are compared across these solutions. The statistical results of traditional 

method, CRN, and CRNns for 10 replications are presented in Table  5-4. It can be noticed that 

using the CRN and the CRNns has reduced the variance on average by 79% and 67%, 

respectively, compared with the traditional method. In addition, the margin of error is reduced on 

average by 57% and 43%, respectively compared with the traditional method. The average 

induced correlations across the three solutions are 0.88 and 0.72, respectively.  

Figure  5-5 shows the correlation between the pilot study solutions using CRN, CRNns and 

traditional method. It can be noticed from Figures  5-5(a), (b), (c), and (d) that the outcome of 

each replication for the three solutions moves in the same direction (i.e. synchronized) which 
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results in high positive correlation. On the other hand, the traditional method does not have this 

synchronization as shown in Figure  5-5(e) and (f).  To achieve similar margins of error to CRN 

and CRNns, the traditional method should perform on average 76 and 66 replications, 

respectively. From these results, it can be concluded that the use of CRN and CRNns achieved the 

desirable variance reduction.   

Table  5-5 presents the statistical results of using traditional method, AV, and AVns for 5 pairs of 

the three solutions (i.e., 10 replications). From these results, it can be noticed that using the AV 

failed to reduce the variance for Solution 11. On the other hand, AVns failed in inducing a 

negative correlation between the replications in the pairs for Solution 9.  

Figure  5-6 shows the correlation between the solutions using AV, AVns, and traditional method. 

The ideal condition for the AV technique to work effectively would be when the replications in a 

pair are at an equal distance from the mean in opposite directions. This can be noticed in 

Figure  5-6 (c) and (d) for Solution 10 and that is why this solution has a high negative correlation 

(i.e., -0.92 for project duration and -0.83 for project cost).   

The statistical results of using the traditional method, CM, and CMns for 5 pairs are presented in 

Table  5-6. Using the CM and the CMns techniques has reduced the variance on average by 92% 

and 89%, respectively compared with the traditional method. In addition, the margin of error is 

reduced by 72% and 68%, respectively compared with the traditional method. The average 

induced correlation across the three solutions is 0.29 and 0.37, respectively.  Figure  5-7 shows 

the correlation between the solutions using CM, CMns, and the traditional method. It can be 

noticed from Figure  5-7(a), (b), (c), and (d) that the outcome of each replication for the three 

solutions does not move in the same direction (i.e. synchronized) in all the pairs which results in 

low positive correlation. On the other hand, the traditional method does not have this 

synchronization as shown in Figure  5-7(e) and (f). To achieve similar margins of error to CM 

and CMns, the traditional method should perform on average 78 and 57 replications, respectively. 

From these results, it can be concluded that the CM and CMns achieved the desirable variance 

reduction.  



 

94 

 

 

 

 

 

 

Table  5-4 Case Study A: Pilot Study Statistical Results of Using Traditional Method, and CRN and CRNns Techniques 

 
Traditional CRN  CRNns   

 
Sol 9-10 Sol 9-11 Sol 10-11 Sol 9-10 Sol 9-11 Sol 10-11 Avg. Sol 9-10 Sol 9-11 Sol 10-11 Avg. 

 
Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

 Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

 

  
 (  ) 4.32 10.84 6.10 6.32 2.44 4.68 0.40 2.04 0.71 1.16 0.18 2.84  0.93 5.21 1.57 1.88 0.10 3.33  

∆  
 (  )  

     
91% 81% 88% 82% 93% 39% 79% 78% 52% 74% 70% 96% 29% 67% 

ME(90%) 1.08 1.71 1.28 1.31 0.81 1.12 0.33 0.74 0.44 0.56 0.22 0.88  0.50 1.19 0.65 0.71 0.16 0.95  

∆ME  
     

70% 57% 66% 57% 73% 22% 57% 54% 31% 49% 46% 80% 16% 46% 

  (       ) 0.20 -0.39 0.15 0.08 0.64 0.42 0.93 0.84 0.87 0.91 0.96 0.78 0.88 0.88 0.31 0.78 0.78 0.98 0.62 0.72 

    
      

108 53 86 55 138 16 76 46 21 39 34 244 14 66 
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(a) Project Duration Using CRN  (b) Project Cost Using CRN 

  
(c) Project Duration Using CRNns (d) Project Cost Using CRNns 

  
(e) Project Duration Using Traditional Method (f) Project Cost Using Traditional Method 

 

Figure  5-5 Case Study A: Correlation between Pilot Study Solutions (Project Duration and cost) 

Using CRN and CRNns Techniques, and Traditional Method
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The problem of stochastic dominance, which was highlighted in Section  4.9, can be better 

understood and visualized by examining Solution 10 and 11 in Figure  5-5(a), (b), (e), and (f). In 

Figure  5-5(b) and (f), Solution 10 has a lower cost than Solution 11 for all the replications. In 

other words, Solution 10 always dominates Solution 11. On the other hand, in Figure  5-5(a) and 

(e), the two solutions overlap at different replications. From Figure  5-5(e), Solution 10 has lower 

duration than Solution 11 in 4 replications out of 10. In other words, there is a 40% probability of 

eliminating Solution 11 from the set of optimum solutions because in 40% of the replication it is 

dominated by Solution 10. The same conclusion can be found by comparing Figure  5-7(a), (b), 

(e), and (f). By using CRN/CRNns and the CM/CMns, this probability is reduced to 0%. That is, 

Solution 10 will not dominate Solution 11 as a result to an error in estimating the solution mean 

duration which is caused by stochastic simulation.  

CRN/CRNns and the CM/CMns techniques have increased the efficiency of the simulation by 

reducing the variance of the total project duration and cost of the three solutions. To this end, any 

of the four configurations (CRN, CRNns, CM, CMns) can be selected to be used in the 

optimization process. For the purpose of this example, the four configurations are used in the 

optimization to study their impact on the optimality of the optimum solutions.  

5.6.1.2 Using the Selected VRTs in Simulation-based Optimization 

The proposed method was used to optimize the bridge construction example presented in 

Section  4.9. Using the VRTs permitted the reduction of the number of simulation replications 

from 100 to 10 replications. At the end of the optimization each Pareto solution was run for 100 

simulation replication to obtain accurate statistical information as mention in Section  5.1. 

Figure  5-8 shows the Pareto fronts of CRN/CRNns, CM/CMns, and the traditional method 

generated after evaluating 100,000 candidate solutions. Examining the Pareto fronts, it can be 

noticed that the four techniques and the traditional method were able to generate close Pareto 

fronts. Table  5-7 summarizes the results of this study. The first experiment, which was run for 

100,000 candidate solutions, shows that the four techniques have higher hypervolume indicator 

than the traditional method with an average 18% improvement. This experiment was run on the 

same machine used in Section  4.9. It took 6.93 hours to finish the optimization using the 

traditional method as shown in Table  5-7. On the other hand, it took about 1 hour using the 

VRTs, which results in an average time saving of 81% over the traditional method.  
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Table  5-5 Case Study A: Pilot Study Statistical Results of Using Traditional Method, and AV and AVns Techniques 

 
Traditional AV AVns 

 
Sol 9 Sol 10 Sol 11 Sol 9 Sol 10 Sol 13 Avg. Sol 9 Sol 10 Sol 11 Avg. 

 
Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

 Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

 

  
 ( ) 2.33 2.08 1.55 3.50 1.93 1.45 0.38 0.38 0.05 0.33 0.05 1.93  0.80 1.08 0.08 0.58 0.20 0.93  

∆  
 ( )  

     
84% 82% 97% 91% 97% -33% 70% 66% 48% 95% 84% 90% 36% 70% 

ME(90%) 1.12 1.06 0.92 1.38 1.02 0.89 0.45 0.45 0.16 0.42 0.16 1.02  0.66 0.76 0.20 0.56 0.33 0.71  

∆ME  
     

60% 57% 82% 70% 84% -15% 56% 41% 28% 78% 59% 68% 20% 49% 

  (       ) 0.38 0.11 0.50 0.81 0.17 0.11 -0.86 -0.93 -1.00 -0.93 -0.96 -0.86 -0.92 -0.38 0.13 -0.93 -0.94 -0.95 -0.70 -0.63 

    
      

31 28 155 54 193 4 77 15 10 103 30 48 8 36 

 

 



 

98 

 

 

  
(a) Project Duration Using AV (b) Project Cost Using AV 

  
(c) Project Duration Using AVns (d) Project Cost Using AVns 

  
(e) Project Duration Using Traditional Method (f) Project Cost Using Traditional Method 

 

Figure  5-6 Case Study A: Correlation between Pilot Study Solutions (Project Duration and cost) 

Using AV and AVns Techniques, and Traditional Approach 
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Table  5-6 Case Study A: Pilot Study Statistical Results of Using Traditional Method, and CM and CMns Techniques 

 
Traditional CM CMns 

 
Sol 9-10 Sol 9-11 Sol 10-11 Sol 9-10 Sol 9-11 Sol 10-11 Avg. Sol 9-10 Sol 9-11 Sol 10-11 Avg. 

 
Dur. 

(days) 
Cost 

($104) 
Dur. 

(days) 
Cost 

($104) 
Dur. 

(days) 
Cost 

($104) 
Dur. 

(days) 
Cost 

($104) 
Dur. 

(days) 
Cost 

($104) 
Dur. 

(days) 
Cost 

($104) 

 Dur. 
(days) 

Cost 
($104) 

Dur. 
(days) 

Cost 
($104) 

Dur. 
(days) 

Cost 
($104) 

 

  
 ( ) 2.80 6.95 2.93 4.18 1.88 2.83 0.20 0.25 0.30 0.55 0.08 0.30  0.32 0.58 0.50 0.57 0.08 0.30  

∆  
 ( )  

     
93% 96% 90% 87% 96% 89% 92% 88% 92% 83% 86% 96% 89% 89% 

ME(90%) 1.23 1.94 1.26 1.50 1.01 1.24 0.33 0.37 0.40 0.55 0.20 0.40  0.42 0.56 0.52 0.56 0.20 0.40  

∆ME  
     

73% 81% 68% 64% 80% 67% 72% 66% 71% 59% 63% 80% 67% 68% 

  (       ) 0.28 -0.26 0.31 -0.19 0.46 0.47 0.00 0.75 -0.79 0.58 0.41 0.80 0.29 0.31 0.55 -0.32 0.55 0.65 0.46 0.37 

    
      

70 139 49 38 125 47 78 43 60 29 36 125 47 57 
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(a) Project Duration Using CM (b) Project Cost Using CM 

  
(c) Project Duration Using CMns (d) Project Cost Using CMns 

  
(e) Project Duration Using Traditional Method (f) Project Cost Using Traditional Method 

 

Figure  5-7 Case Study A: Correlation between Pilot Study Solutions (Project Duration and cost) 

Using CM and CMns Techniques, and Traditional Method 
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Table  5-7 Case Study A: Results of the Simulation-based Optimization Experiments 

 Method N p NOCS HV ΔHV CT (hours) Ts 

1
st
 E

x
p

er
im

en
t 

Traditional 100 N/A 100,000 7,597 N/A 6.93 N/A 

CRN  10 N/A 100,000 7,838 16% 1.37 80% 

CRNns 10 N/A 100,000 8,038 18% 1.27 82% 

CM N/A 5 100,000 8,162 20% 1.33 81% 

CMns N/A 5 100,000 7,943 17% 1.28 82% 

2
n

d
 E

x
p

er
im

en
t 

CRN 10 N/A 484,210 8,022 18% 6.93 0% 

CRNns 10 N/A 515,871 8,051 19% 6.93 0% 

CM N/A 5 505,471 8,155 20% 6.93 0% 

CMns N/A 5 531,571 8,037 18% 6.93 0% 

NOCS = Number of optimization candidate solutions; HV = Hypervolume indicator;  CT = 

Computation time; N/A = Not applicable 
 

 

Figure  5-8 Case Study A: Pareto Fronts Generated After Evaluating 100,000 Candidate Solutions 
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Figure  5-9 shows the Pareto fronts of CRN/CRNns, CM/CMns, and the traditional method 

generated after 6.93 hours. The second experiment, which was run for the same duration it took 

the traditional method in the first experiment (i.e., 6.93 hours), shows that the four techniques 

evaluated four times more candidate solutions than the traditional method.  In addition, the 

second experiment resulted in an average of 19% improvement in the hypervolume indicator 

over the traditional method. 

 

Figure  5-9 Case Study A: Pareto Fronts Generated after 6.93 Hours 

5.6.2 Case Study B 

5.6.2.1  Pilot Study to Compare VRTs 

Similar to Case Study A above, the comparison was done over three candidate solutions with 

nine different configurations. The statistical results of traditional method, and CRN and CRNns 

techniques for 10 replications are presented in Table  5-8. It can be noticed that using the CRN 

and the CRNns has reduced the variance on average by 92% and 89%, respectively, compared 

with the traditional method. In addition, the margin of error is reduced on average by 73% and 
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70%, respectively, compared with the traditional method. The average induced correlations 

across the three candidate solutions are 0.97 and 0.98, respectively.  

Figure  5-10 shows the correlation between the pilot study solutions using CRN, CRNns and 

traditional method. It can be noticed from Figure  5-10(a), (b), (c), and (d) that the outcome of 

each replication for the three solutions moves in the same direction (i.e. synchronized) which 

results in high positive correlation. On the other hand, the traditional method does not have this 

synchronization as shown in Figure  5-10(e) and (f). To achieve similar margins of error to CRN 

and CRNns, the traditional method should perform on average 220 and 202 replications, 

respectively. From these results, it can be concluded that the use of CRN and CRNns achieved the 

desirable variance reduction.   

Table  5-9 presents the statistical results of using traditional method, and AV and AVns 

techniques for 5 pairs of the candidate solutions (i.e., 10 replications). From these results, it can 

be noticed that using the AV and the AVns failed in inducing a negative correlation between the 

replications in a pair for the candidate solutions 1 and 2. Figure  5-11 shows the correlation 

between the solutions using AV and AVns, and the traditional method. The ideal condition for the 

AV technique to work effectively would be when the replications in a pair are at an equal 

distance from the mean in opposite directions. This can be noticed in Figure  5-11(c) and (d) for 

solution 2 and that is why this solution has a high negative correlation (i.e., -0.92 for project 

duration and -0.83 for project cost).   

The statistical results of using the traditional method, and CM and CMns techniques for 5 pairs 

are presented in Table  5-10. Using the CM and the CMns techniques has reduced the variance on 

average by 92% and 93%, respectively compared with the traditional method. In addition, the 

margin of error is reduced by 74% and 77%, respectively compared with the traditional method.  

The average induced correlation across the three candidate solutions is 0.97 and 0.98, 

respectively.  Figure  5-12 shows the correlation between the solutions using CM, CMns, and the 

traditional method.  
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Table  5-8 Case Study B: Pilot Study Statistical Results of Using Traditional Method, and CRN and CRNns Techniques 

 
Traditional CRN  CRNns   

 
Sol 1-2 Sol 1-3 Sol 2-3 Sol 1-2 Sol 1-3 Sol 2-3 Avg. Sol 1-2 Sol 1-3 Sol 2-3 Avg. 

 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

 Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

 

  
 (  ) 294 1929 505 4662 347 4588 17 253 34 809 5 238  30 416 55 729 6 130  

∆  
 (  )  

     
94% 87% 93% 83% 99% 95% 92% 90% 78% 89% 84% 98% 97% 89% 

E(90%) 8.9 22.9 11.7 35.5 9.7 35.2 2.2 8.3 3.1 14.8 1.18 8.0  2.9 10.6 3.9 14.1 1.3 5.9  

∆E  
     

76% 64% 74% 58% 88% 77% 73% 68% 54% 67% 60% 87% 83% 70% 

  (       ) 0.06 0.09 -0.77 -0.71 -0.20 -0.14 0.99 0.97 0.95 0.94 0.98 0.97 0.97 0.99 0.99 0.97 0.96 0.99 0.98 0.98 

   
      

167 76 146 58 678 193 220 97 46 91 64 562 351 202 

 



 

105 

 

  
(a) Project Duration Using CRN  (b) Project Cost Using CRN 

  
(c) Project Duration Using CRNns (d) Project Cost Using CRNns 

  
        (e) Project Duration Using Traditional Method               (f) Project Cost Using Traditional Method 

 

Figure  5-10 Case Study B: Correlation between Pilot Study Solutions (Project Duration 

and cost) Using CRN and CRNns Techniques, and Traditional Method 
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Table  5-9 Case Study B: Pilot Study Statistical Results of Using Traditional Method, and AV and AVns Techniques 

 
Traditional AV AVns 

 
Sol 1 Sol 2 Sol 3 Sol 1 Sol 2 Sol 3 Avg. Sol 1 Sol 2 Sol 3 Avg. 

 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

 Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

 

  
 ( ) 39 121 101 1307 53 1222 141 258 13 348 104 2432  60 250 7 226 47 1271  

∆  
 ( )  

     
-259% -113% 87% 73% -96% -99% -68% -53% -106% 93% 83% 12% -4% 4% 

E(90%) 4.6 8.1 7.4 26.6 5.3 25.7 8.7 11.8 2.7 13.7 7.5 36.3  5.7 11.6 2.0 11.1 5.0 26.2  

∆E  
     

-89% -46% 64% 48% -40% -41% -17% -24% -44% 73% 58% 6% -2% 11% 

  (       ) -0.12 -0.18 0.33 0.31 0.08 0.01 -0.03 -0.32 -0.88 -0.77 0.54 0.66 -0.13 -0.36 0.47 -0.92 -0.83 0.01 0.20 -0.24 

   
      

1 2 38 19 3 3 11 3 2 70 29 6 5 19 
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(a) Project Duration Using AV (b) Project Cost Using AV 

  
(c) Project Duration Using AVns (d) Project Cost Using AVns 

  
    (e) Project Duration Using Traditional Method          (f) Project Cost Using Traditional Method 

 

Figure  5-11 Case Study B: Correlation between Pilot Study Solutions (Project Duration 

and cost) Using AV and AVns Techniques, and Traditional Method
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Table  5-10 Case Study B: Pilot Study Statistical Results of Using Traditional Method, and CM and CMns Techniques 

 
Traditional CM CMns 

 
Sol 1-2 Sol 1-3 Sol 2-3 Sol 1-2 Sol 1-3 Sol 2-3 Avg. Sol 1-2 Sol 1-3 Sol 2-3 Avg. 

 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

 Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

Dur. 

(days) 

Cost 

($104) 

 

  
 ( ) 204 1965 130 1603 124 2342 7 83 13 346 2 129  13 86 22 153 2 23  

∆  
 ( )  

     
96% 96% 90% 78% 98% 94% 92% 94% 96% 83% 90% 98% 99% 93% 

E(90%) 10.5 32.6 8.4 29.5 8.2 35.6 2.0 6.7 2.7 13.7 1.1 8.3  2.6 6.8 3.4 9.1 1.1 3.5  

∆E  
     

81% 80% 68% 54% 86% 77% 74% 75% 79% 59% 69% 87% 90% 77% 

  (       ) -0.51 -0.68 -0.41 -0.34 0.20 0.07 0.99 0.99 0.94 0.94 0.98 0.96 0.97 0.99 0.98 0.96 0.96 0.98 0.99 0.98 

   
      

141 119 48 23 256 91 113 79 115 30 52 299 516 182 
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(a) Project Duration Using CM (b) Project Cost Using CM 

  
(c) Project Duration Using CMns (d) Project Cost Using CMns 

  
(e) Project Duration Using Traditional Method (f) Project Cost Using Traditional Method 

 

Figure  5-12 Case Study B: Correlation between Pilot Study Solutions (Project Duration and cost) 

Using CM and CMns Techniques, and Traditional Method 
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It can be noticed from Figure  5-12(a), (b), (c), and (d) that the outcome of each replication for 

the three solutions moves in the same direction (i.e. synchronized) which results in high positive 

correlation. On the other hand, the traditional method does not have this synchronization as 

shown in Figure  5-12(e) and (f). To achieve similar margins of error to CM and CMns, the 

traditional method should perform on average 113 and 182 replications, respectively. From these 

results, it can be concluded that the CM and CMns achieved the desirable variance reduction.  

CRN/CRNns and the CM/CMns techniques have increased the efficiency of the simulation by 

reducing the variance of the total project duration and cost of the three candidate solutions. To 

this end, any of the four configurations (CRN, CRNns, CM, CMns) can be selected to be used in 

the optimization process. For the purpose of this paper, the four configurations are used in the 

optimization to study their impact on the quality of the optimum solutions. 

5.6.2.2 Using the Selected VRTs in Simulation-based Optimization 

The proposed method was used to optimize the bridge construction and was able to generate a set 

of optimal solutions where each solution represents a project setting. As in Case Study A, using 

the VRTs permitted the reduction of the number of the simulation replications from 100 to 10 

replications per candidate solution. At the end of the optimization each Pareto solution was run 

for 100 simulation replication to obtain accurate statistical information as mention in Section  5.1. 

Figure  5-13 shows the Pareto front solutions that provided non-dominated tradeoff between 

minimizing the project duration and minimizing the project cost. Examining the Pareto fronts, it 

can be noticed that the four techniques and the traditional method were able to generate very 

close Pareto fronts. Table  5-11 summarizes the results of this study. The first experiment, which 

was run for 50,000 candidate solutions, shows that the four techniques have almost similar 

hypervolume indicator as the traditional method. This experiment was run on the same machine 

used in Section  4.9. It took 8.38 hours to finish the optimization using the traditional method as 

shown in Table  5-11. On the other hand, it took about 1 hour using the VRTs, which results in an 

average time saving of 87%. Figure  5-14 shows the Pareto fronts of CRN/CRNns, CM/CMns, and 

the traditional method generated after 8.38 hours. The second experiment, which was run for the 

same duration it took the traditional method in the first experiment (i.e., 8.38 hours), shows that 

the four  techniques resulted in an average of 6% improvement in the hypervolume indicator 

over the traditional method. 
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Figure  5-13 Case Study B: Pareto Fronts with the Tradeoff between Project Duration and Cost 

Table  5-11 Case Study B: Results of the Simulation-based Optimization Experiments 

 Method N p NOCS HV ΔHV CT (hours) Ts 

1
st
 E

x
p

er
im

en
t 

Traditional 100 N/A 50,000 55,031 N/A 8.38 N/A 

CRN 10 N/A 50,000 54,737 -1% 1.05 87% 

CRNns 10 N/A 50,000 54,764 -1% 1.07 87% 

CM N/A 5 50,000 53,417 -3% 1.10 87% 

CMns N/A 5 50,000 54,986 0% 1.04 87% 

2
n

d
 E

x
p

er
im

en
t CRN 10 N/A 352,057 57,929 5% 8.38 0% 

CRNns 10 N/A 358,008 58,407 6% 8.38 0% 

CM N/A 5 364,108 58,095 5% 8.38 0% 

CMns N/A 5 369,608 58,425 6% 8.38 0% 

NOCS = Number of optimization candidate solutions; HV = Hypervolume indicator;  CT = 

Computation time; N/A = Not applicable 
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Figure  5-14 Case Study B: Pareto Fronts Generated after 8.38 Hours 

5.7 Summary and Conclusions 

This chapter presented a new method that incorporates VRTs into stochastic simulation-based 

multi-objective optimization. Although VRTs have been used in simulation studies in the past, 

they are used here in a novel way to improve the performance of the optimization process. The 

proposed method considered three VRTs, which are CRN, AV and the CM techniques. For each 

VRT, two approaches for managing the streams were explained, namely, the same streams and 

the new streams. This chapter: (1) identified and modeled the required synchronization; (2) 

formulated a method to compare the performance measure indices of the candidate solutions; (3) 

developed a method to compare and select the best VRT; (4) implemented the proposed method; 

and (5) demonstrated the effectiveness of the proposed method. 

Using explicit averaging (traditional method) may not always solve the problem of stochastic 

dominance. As a result, inferior candidate solutions may be presented among the optimum 

solutions. In addition, the traditional method does not produce consistent optimum solutions 
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every time the optimization is run. Moreover, the traditional method requires a large computation 

effort to optimize multiple construction methods. To overcome these problems, VRTs are 

incorporated in the proposed stochastic simulation-based multi-objective model to examine their 

efficiency. 

The proposed method allowed reducing the number of the simulation replications from 100 to 10 

replications per candidate solution. At the end of the optimization each Pareto solution was run 

for 100 simulation replication to obtain accurate statistical information as mention in Section  5.1. 

The proposed method showed an average of 81% reduction in the computation time and an 

average of 18% improvement in the hypervolume indicator over the traditional method in Case 

Study A. On the other hand, in Case Study B, the method showed an 87% reduction in the 

computation time compared with the traditional method while maintaining a high quality of the 

optimal solutions. Using the time saved in Case Study B, an average of 6% improvement in the 

hypervolume indicator over the traditional method can be achieved. In both case studies, the 

CRN, CRNns, CM, and CMns techniques were founded to be effective in reducing the variance of 

the project duration and cost. Although AV did not show good results in the pilot studies, this 

should not necessarily be the case for other simulation models. In addition, AV would have 

similar time savings if it succeeds in inducing negative correlation between the replications in 

pairs. One limitation of the use of VRTs is that a pilot study is always required since there is no 

one VRT that is guaranteed to work for all simulation models. 
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6 CHAPTER 6: REDUCING THE COMPUTATION TIME TO SOLVE THE 

OPTIMIZATION PROBLEM USING PARALLEL COMPUTING ON A SINGLE 

MULTI-CORE PROCESSOR 

6.1 Introduction 

This chapter presents a method for implementing the simulation-based optimization model in a 

parallel computing environment on a single multi-core processor. The use of parallel computing 

is not new in simulation or optimization; however, it is interesting to study the behavior of 

running simulation-based optimization on a single system with multicore architecture. In 

addition, it is of interest to examine the impact of multithreading on the performance of 

simulation-based optimization. The use of stochastic discrete event simulation to evaluate the 

objective functions adds another dimension to the complexity of the optimization problem, and 

as a result, it increases the required computation time. The computation time, for a simple 

simulation mode, will increase almost in a linearly manner as the number of replications 

performed is increased as shown in Figure  6-1. Although the time is very small per solution, 

evaluating 100,000 solutions, which is usually a small fraction of the search space of an 

optimization problem, will take around 7 hours as was mentioned in Section  4.9. The main 

objective of this method is to reduce the computation time required by traditional simulation-

based optimization models using the manager/worker paradigm, which was described in 

Section  2.7.1. The time saving achieved by this method can be used to increase the confidence in 

the optimality of the optimum solutions. This increase can be achieved by increasing the number 

of evaluated candidate solutions which results in covering a larger portion of the search space of 

the optimization problem. In addition, this is the first time, to the best knowledge of the author, 

that stochastic discrete event simulation-based optimization has been proposed using parallel 

computing on a single multi-core processor. The rest of this chapter: (1) describes the proposed 

method; (2) implements the method and demonstrates its effectiveness. 
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Figure  6-1 Simulation Execution Time Versus the Number of Replications 

6.2 Proposed Method 

The proposed parallel simulation-based optimization method (Figure  6-2) can be used by 

decision makers to improve the efficiency of the current practice of decision-making in 

construction projects. The process starts by generating an initial population of size E by the 

master core (core 1) as shown in line 2 in Figure  6-3. Then, the master core subdivides the 

population among the number of slave cores assigned to the optimization process as shown in 

lines 4 to 18 in Figure  6-3. Core 1 acts as a master during the generation and the fitness 

evaluation of the population. During the evaluation process, the master core could become a 

slave core if the optimization algorithm is set to perform the execution on: (1) one core, or (2) a 

number of cores that is larger than the total number of available cores. For example, in a 

computer with four cores, the master core will become a slave core if the optimization is set to 

perform the execution on 5 cores or higher. Each slave core, thereafter, evaluates the 

performance measure indices of the assigned candidate solutions using discrete event simulation. 

Once all the slaves evaluate all the generated candidate solutions, the master core evaluates the 

fitness of the population. If the termination criterion is met, the optimization process ends and 

the Pareto solutions are presented. Otherwise, the master core will sort the current population and 

generate a new population by performing cut-splice and mutation. The new population will go 

through the same steps again.  
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Two metrics are used to measure the performance of parallel computing. The speedup measures 

the amount of time saved by executing the program in parallel (Cantú-Paz 2000).  It is calculated 

by dividing the required time to solve the optimization problem using sequential computing 

(traditional method) by the required time to solve the optimization problem using parallel 

computing as shown in Equation  6-1. The required time is measured from the beginning of the 

simulation-based optimization to its termination. 

    
    

    
 

Equation  6-1 

  

where, 

   = achieved speedup 

  

     = required time sequential computing 

  

     = required time using parallel computing 

  

The second metric considered is the efficiency of executing the program in parallel. In other 

words, it measures the portion of the processor power used to solve the optimization problem. 

The other portion of the processor power is typically consumed by synchronization and 

communication overhead (Fox et al. 1988). This metric is calculated by dividing the achieved 

speedup by the number of cores used as shown in Equation  6-2. 

    
  

  
 

Equation  6-2 

  

Where, 

   = efficiency of executing the program in parallel 

  

NC = number of cores used 
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Figure  6-2 Parallel Simulation-based Optimization Method 
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1 // Repeat for all generations  

2 FOR l = 1 TO L 

3 // Repeat for all solutions in the population 

4    FOR e = 1 TO E 

5       IF rank = 1 

6          Evaluate e using Core 1 

7          RETURN   
̅̅ ̅ and   

̅̅ ̅ 

8       ELSE IF rank = 2 

9          Evaluate e using Core 2 

10          RETURN   
̅̅ ̅ and   

̅̅ ̅ 

11       ELSE IF rank = 3 

12          Evaluate e using Core 3 

13          RETURN   
̅̅ ̅ and   

̅̅ ̅ 

14       ELSE IF rank = 4 

15          Evaluate e using Core 4 

16          RETURN   
̅̅ ̅ and   

̅̅ ̅ 

17       END IF 

18    END FOR 

19 END FOR 

 

Figure  6-3 Algorithm for Distributing the Population Among the Cores 

6.3 Method Implementation 

Darwin optimization framework, which is equipped with parallel computing capabilities, is used 

to implement the parallel computing of the proposed method. In order to enable the integration 

between the optimization framework and STROBOSCOPE, the latter is defined as an object as 

shown in Figure  6-4. In other words, STROBOSCOPE was embedded in Darwin optimization 

framework to evaluate each candidate solution generated by the optimization through simulation. 

The first two lines define STROBOSCOPE as an object called StropApp. The third line 

represents the name of the function which will be called to start STROBOSCOPE. Lines 4 and 6 

to 8 will try to create an instance of STROBOSCOPE if it is not created yet. Since 

STROBOSCOPE was not designed to be executed in parallel on a multi-core single processor, 

several problems were encountered during the implementation. When the optimization 

framework is run in parallel, it creates multiple instances of the user defined objective function. 

The number of instances is equal to the number of cores. Since the objective functions defined in 

this research utilizes STROBOSCOPE, multiple instances of STROBSCOPE are created at the 
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same time. Doing so will force STROBSCOPE to crash. In order to overcome this problem, two 

steps are necessary. 

The first step is defining an object for each STROBOSCOPE’s instance. For example if the 

number of the cores is four, four objects of STROBOSCOPE must be defined as shown in 

Figure  6-4. Each STROBOSCOPE instance has a unique object name.  The second step is 

inserting a delay function between the creations of the instances. This is shown in line 5 of 

Figure  6-4. The gap between the creations is set to 3,500 milliseconds. This delay period was 

chosen by trial and error and it is the shortest possible delay period to avoid crashing.  

1 public static object StroboApp; 

2 public static System.Type objDocType; 

3 static object GetStrobo() { 

4    Try  {if (StroboApp == null) { 

5       Thread.Sleep(3500); 

6       objDocType = System.Type.GetTypeFromProgID("Stroboscope.Document"); 

7       StroboApp = System.Activator.CreateInstance(objDocType);} } 

8    catch (Exception ex) { MessageBox.Show("Program error: " + ex.Message, "Error1"); 

9       StroboApp = null;} 

10 return StroboAp }; 

Figure  6-4 Defining STROBOSCOPE as an Object 

To this point, the optimization framework will be able to create multiple instances of 

STROBOSCOPE without any problem. However, the candidate solutions will only be sent to the 

first instance since the optimization framework is unaware of other objects. Therefore, the 

second problem is the synchronization between the optimization framework and STROBSCOPE. 

This synchronization is necessary to subdivide and distribute the population to the correct core. 

In order to overcome this problem, the candidate solutions must be directed to the correct core 

based on its rank as early described in Figure  6-3. This implementation is shown in Figure  6-5.  

Similar IF functions are defined for every STROBOSCOPE instance.  Line 1 checks the rank of 

the candidate solution. For example, if the rank is equal to 1, then the optimization framework 

will call the STROBOSCOPE instance assigned to core 1. Line 2 will pass the decision variables 

to STROBOSCOPE and return the values of the objective functions.  

So far, the parallel computing implementation works without any errors. For each candidate 

solution, a new STROBOSCOPE instance will be created and the simulation model will run for 
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that candidate solution. At end of end of the simulation, that STROBOSCOPE instance will be 

terminated. The process of creating and terminating each STROBOSCOPE instance takes around 

4 seconds. By doing so, the simulation-based optimization would take 111 hours just to create 

and terminate a STROBOSCOPE instance for each of the 100,000 candidate solutions that were 

evaluated in Section  4.9. STROBOSCOPE allows running multiple simulation models in each 

instance. By taking advantage of that, there is no need to create STROBOSCOPE instance for 

each candidate solution.  A number of STROBOSCOPE instances equal to the number of cores 

used for the parallel computing are created at the beginning of the optimization process. Each 

STROBOSCOPE instance is only created once and all the corresponding candidate solutions are 

evaluated in those instances. This is done by creating a new simulation model for each candidate 

solution within a STROBOSCOPE instance. Running too many models in one instance will slow 

down the speed of the simulation and will leads to it crash. STROBOSCOPE will crash 

approximately after running 1,600 simulation models. In addition, the simulation will start to 

slow down dramatically after running 200 simulation models. To overcome this problem, each 

STROBOSCOPE instance will close all the simulation models when they reach 200 models. This 

implementation is shown in lines 3 to 7 in Figure  6-5. In addition, a delay function of 900 

milliseconds is inserted before closing the models to prevent STROBOSCOPE from crashing. 

1 if (rank == 1) { 

2    total = temp.testStroboRun(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13); 

3    i = i + 1; 

4    if (i == 200) { 

5       Thread.Sleep(900); 

6       strob.objDocType.InvokeMember("CloseAllOutputs"); 

7       i = 0;}} 

Figure  6-5 Directing the Candidate Solutions Towards their Corresponding Core 

 

6.4 Case Studies 

To demonstrate the effectiveness of the proposed method, three case studies are considered. Case 

Study A compares the performance metrics of executing the simulation-based optimization 

model across three desktop computers. Case Study B compares the performance metrics of 

executing the model using CRN technique and the traditional method. Case Study C compares 
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the performance metrics of the used tools with another tool across a desktop computer, a server, 

and a cluster.  

6.4.1 Case Study A 

In this case study, the performance metrics of the simulation-based optimization using stochastic 

simulation is compared across three different desktop computers. The three computers are 

equipped with Intel Core i7, 3.4 GHz Quad-core processor. Each of these computers is equipped 

with different RAM size. Computers 1, 2, and 3 have a RAM of 8 GB, 12GB, and 16GB, 

respectively. The architecture of this processor is shown in Figure  6-6. The processor has four 

physical cores where each physical core has two hardware threads. These hardware threads are 

also called logical cores. Each physical core can run execute two threads at the same time, which 

is known as simultaneous multithreading (Hillar, 2010).   

 

Figure  6-6 Architecture of Intel i7 Quad-core Processor (Hillar, 2010) 

The case study consists of constructing a precast full span box girder bridge using launching 

gantry method. The bridge consists of 35 spans with identical spans of length 25 m. Table  4-2 

shows the durations of the tasks used in this simulation model for this case study. The cost data 

used in the simulation model is presented in Appendix B. 
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The stochastic simulation-based multi-objective model was run for two eras, where each era has 

500 generations and each generation has a population size of 100. The model was set to be 

executed with the number of cores from 1 to 9 cores (including the master). In the case of 9 

cores, one of the cores will be used both as a master and a slave as explained in Section  6.2. This 

is done to study the impact of the simultaneous multithreading on the performance metrics of the 

proposed method. Figure  6-7 shows the required time to solve the optimization problem for this 

case study. Table  6-1 shows the achieved speedup, efficiency, and the time saving between the 

three computers. All the computers achieved the highest speedup when 4 cores are used. It can 

be noticed that the efficiency of the three computers are decreasing as the number of cores is 

increased. Among the three computers, Computer 3 has the highest speedup and the shortest time 

required. Using Computer 3 resulted in an average time saving of 24% and 22% over Computers 

1 and 2, respectively. On the other hand, Computer 2 achieved an average saving of 3% over 

Computer 1. 

 

Figure  6-7 Required Time to Solve the Optimization Problem for Case Study A
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Table  6-1 Achieved Speedup, Efficiency, and Time Saving for Case Study A 

Core T1 (h) T2  (h) T3  (h) SU1 SU2 SU3 EF1 EF2 EF3 T1-2 (%) T1-3 (%) T2-3 (%) 

1 8.95 8.75 7.2 1.00 1.00 1.00 1.00 1.00 1.00 2.23 19.55 17.71 

2 8.67 8.47 7.27 1.03 1.03 0.99 0.52 0.52 0.50 2.31 16.15 14.17 

3 6.17 6.08 4.98 1.45 1.44 1.45 0.48 0.48 0.48 1.46 19.29 18.09 

4 5.68 5.5 4.43 1.58 1.59 1.63 0.39 0.40 0.41 3.17 22.01 19.45 

5 6.03 5.76 4.52 1.48 1.52 1.59 0.30 0.30 0.32 4.48 25.04 21.53 

6 6.45 6.18 4.78 1.39 1.42 1.51 0.23 0.24 0.25 4.19 25.89 22.65 

7 6.81 6.68 4.87 1.31 1.31 1.48 0.19 0.19 0.21 1.91 28.49 27.10 

8 7.05 6.9 4.9 1.27 1.27 1.47 0.16 0.16 0.18 2.13 30.50 28.99 

9 7.19 6.98 5.12 1.24 1.25 1.41 0.14 0.14 0.16 2.92 28.79 26.65 
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6.4.2 Case Study B 

In this case study, the performances metrics of the stochastic simulation-based optimization 

using CRN and the traditional method are compared. The case study consists of constructing a 

precast full span box girder bridge using launching gantry method. The bridge consists of 35 

spans with identical spans of length 25 m. Table  4-2 shows the durations of the tasks used in this 

simulation model for this case study. The cost data used in the simulation model is presented in 

Appendix B. The traditional method consists of 100 replications while the CRN technique 

consists of 10 replications. Similar to Case Study A, The model was set to be executed from 1 to 

9 cores and was executed on Computer 3. The stochastic simulation-based multi-objective model 

was run for two eras, where each era has 500 generations and each generation has a population 

size of 100. 

Figure  6-8 shows the required time to solve the optimization problem for this case study. 

Table  6-2 shows the achieved speedup, efficiency, and the time saving between the two 

techniques. Based on these results, the proposed method achieved a maximum speedup of 2 and 

efficiency of 0.33 when using 6 logical cores for the CRN technique.  On the other hand, it 

achieves a maximum speedup of 1.56 and efficiency of 0.39 when 4 logical cores are used for 

the traditional method. In addition, the proposed method combined with CRN achieved an 

average time saving of 83% over the traditional method combined with the proposed method.  

Moreover, the proposed method combined with CRN (when 6 cores are used) was able to 

achieve a time saving of  90% over the traditional method (when 1 core is used). 

 
Figure  6-8 Required Time to Solve the Optimization Problem for Case Study B. 
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Table  6-2 Achieved Speedup, Efficiency, and Time Saving for Case Study B 

Core TCRN  (h) TT  (h) SUCRN EFCRN SUT EFT Ts (%) 

1 1.37 7.2 1.00 1.00 1.00 1.00 81.02% 

2 1.38 7.27 0.99 0.49 0.95 0.48 80.97 

3 0.88 4.98 1.55 0.52 1.39 0.46 82.26 

4 0.70 4.43 1.95 0.49 1.56 0.39 84.20 

5 0.72 4.52 1.91 0.38 1.53 0.31 84.14 

6 0.68 4.78 2.00 0.33 1.45 0.24 85.70 

7 0.70 4.87 1.95 0.28 1.42 0.20 85.63 

8 0.73 4.9 1.86 0.23 1.41 0.18 85.03 

9 1.00 5.12 1.37 0.15 1.35 0.15 80.47 

 

6.4.3 Case Study C 

In this case study, the performance metrics of the tools (i.e., STROBOSCOPE and fmGA) used 

in this thesis to implement the simulation-based optimization model is compared with another 

tools that was used in another study to implement the same simulation-based optimization model. 

The other study done by Salimi (2014) used SimEvents (Mathworks Inc., 2013) module of 

MATLAB (Mathworks Inc., 2014). Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

(Deb et al., 2002), which is part of the optimization toolbox within Matlab, was used to solve the 

optimization problem. Matlab allows a seamless integration between SimEvents and the 

optimization toolbox. In Salimi’s study, the simulation-based optimization model was executed 

on a server and a cluster.   

The server consists of Intel Xeon E5540, 2.53 GHz triple-based processor with 48 GB RAM. 

Each processor has four physical cores and they support simultaneous multithreading. On the 

other hand, the cluster consists of Dual Intel Westmere EP Xeon X5650, 2.66 GHz processor. 

The cluster consists of 64 physical cores and it supports simultaneous multithreading. The details 

of the server and cluster study are available in the work of Salimi (2014). The server and cluster 

were run for 500 generations where each generation has a population of 200. 

The simulation-based multi-objective model in this thesis was run for two eras, where each era 

has 500 generations and each generation has a population of the 100 using Computer 3. Both 

studies consist of constructing a precast full span box girder bridge using launching gantry 

method. The bridge consists of 500 spans with identical spans of length 25 m. Table A-1 shows 
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the durations of the tasks used in this simulation model for this case study. The cost data used in 

the simulation model is presented in Appendix B. 

Table  6-3 shows the achieved speedup and efficiency of Computer 3 when deterministic 

simulation is used. The highest speedup of 2.29 is achieved when 6 and 7 cores are used. 

However, using 6 cores result in a higher efficiency than 7 cores. The server took 3.33 hours to 

complete the optimization while the cluster took 0.5 hour. The cluster was successful to reduce 

the computation time significantly; however, it required the use of 64 cores. The tools used in 

this thesis were able to outperform Matlab when run on a server and a cluster with a fraction of 

the number of cores. This is due to the fact that SimEvents reuiqures much more time to perform 

the simulation than STROBOSCOPE. 

Table  6-3 Achieved Speedup and Efficiency for Case Study C 

  
Number of Cores 

1 2 3 4 5 6 7 8 9 

Time 

(h) 
0.65 0.67 0.40 0.37 0.30 0.28 0.28 0.32 0.32 

SU 1.00 0.98 1.63 1.77 2.17 2.29 2.29 2.05 2.05 

EF 1.00 0.49 0.54 0.44 0.43 0.38 0.33 0.26 0.23 

 

6.5 Summary and Conclusions 

This chapter presented a method for implementing the simulation-based optimization model in a 

parallel computing environment on a single multi-core processor. The method was implemented 

using the master/slave paradigm. This chapter: (1) described the proposed method; (2) 

implemented the method and demonstrated the effectiveness. 

As demonstrated by the case studies in this chapter, the proposed method was able to achieve 

substantial time savings. When the proposed method is used by itself, it was able to save 38% of 

the time required to solve the optimization problem according to Case Study A. In addition, as 

demonstrated in Case Study B, combining the proposed method with CRN resulted in a time 

saving of 90%. Finally, Case Study C showed the benefit of using the tools proposed in this 

thesis over using MATLAB, which is a commercial and popular tool. 
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7 CHAPTER 7: JOINT PROBABILITY FOR EVALUATING THE DURATION AND 

COST OF STOCHASTIC SIMULATION MODELS 

7.1 Introduction 

This chapter presents a new joint probability method that is applied to sub-populations’ Pareto 

fronts generated by the stochastic simulation-based multi-objective model presented in 

Chapter  3. The main objectives of this method are: (1) to reduce project risk; and (2) to provide 

the decision makers with more accurate and useful information to plan and manage their projects 

using joint probability. This method is capable of: (1) calculating the joint probability of the 

Pareto solutions; and (2) generating Pareto fronts representing a specific joint probability; (3) 

estimating the duration and cost joint contingency; and (4) generating a schedule to meet a 

specific joint probability. Applying this method is expected to have a noteworthy impact on 

reducing project risk and providing the decision makers with more accurate and useful 

information to plan and manage their projects. The rest of this chapter will: (1) describe the 

proposed method; (2) introduce a method to apply joint probability to Pareto solutions; (3) 

propose the concept of joint probabilistic Pareto fronts; (4) develop a method to analyze the 

selected solution; (5) implement the proposed method and demonstrate it effectiveness. 

7.2 Proposed Method 

Figure  7-1 shows the proposed method which consists of three main phases. The first phase 

applies the joint probability to the Pareto solutions obtained through the optimization. The 

second phase generates the probabilistic Pareto fronts. Finally, the third phase analyzes the 

solution selected by the decision maker. The proposed method is based on the frequency of an 

event happening after performing several repetitions of an experiment which is known as the 

relative frequency. The two most common outputs of the simulation in the field of construction 

management are the project duration and cost (Zhang et al. 2006; Hassan and Gruber 2008; 

Marzouk et al. 2009; Lee et al. 2010; Mawlana and Hammad 2013). Therefore, the rest of this 

chapter is focused on the project duration and cost. 
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Figure  7-1 Proposed Method of Joint Probability 
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The advantages of using the proposed method are: (1) it gives a more accurate estimate and more 

detailed information of the project duration and cost representing a certain confidence level than 

the current state of art; (2) it is distribution-free because the outputs of the simulation replications 

are not fitted into a specific statistical distribution; (3) it estimates the project duration and cost 

joint contingency considering their correlation and impact on each other; and (4) it provides a 

method to trace the seed numbers resulting in the same project duration and cost.  

Using the proposed method, one can answer the following questions: (1) What is the probability 

of having a project with a duration less than or equal to x and a cost less than or equal to y? (2) 

What is the probability of having a project with duration of x or a cost of y? (3) What are the 

possible project costs if the project duration is equal to x and vice versa? (4) What are the values 

the Pareto solutions representing a specified joint probability? (5) What are the time and cost 

contingencies representing a specific joint confidence level? and (6) What are the durations of 

the tasks representing a specified joint probability? 

7.3 Applying Joint Probability to Pareto Solutions 

The first phase starts by obtaining the set of Pareto solutions that are found using the simulation-

based optimization model as described in Chapter  3. The information of interest at this phase is 

the values of the decision variables, which represent the construction scenario, for each Pareto 

solution. These decision variables are used to select the appropriate simulation template and 

modify the project settings. For each Pareto solution, a joint probability mass function, marginal 

cumulative probability function, and conditional cumulative probability function are constructed 

as explained in the sub-sections below.   

7.3.1 Constructing Joint Probability Mass Function 

Performing N replications of a stochastic simulation model results in N observed project 

durations and costs of the model. Each replication represents one potential outcome for the 

project duration and cost. These observations are the basis for constructing the joint probability 

mass function. A joint probability mass function associates a joint probability with each of the 

combinations of duration and cost along the duration and cost axes. This mass function can be 

represented as a joint frequency histogram or as a contingency table. Both representations follow 

the same steps to be constructed and they result in the same joint probability mass function. The 
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joint frequency histogram representation provides a better visualization of the mass function than 

the contingency table. On the other hand, the contingency table representation provides a faster 

and easier way to calculate the joint probability than the joint frequency histogram.  

Figure  7-2 shows the flowchart of constructing the joint probability mass function. First, the 

observed project’s duration and cost should be organized in class intervals. One way to think of 

class intervals is as the desired resolution of the joint probability distribution. For example, the 

project duration can be either expressed in days, weeks, months, or even years. That is, the width 

of the class interval of the project duration can be 1, 7, 30, or 365 days. On the other hand, the 

project cost can be expressed in hundreds, thousands, or millions of dollars. Different class 

intervals will result in different joint frequencies and different joint probabilities. Therefore, 

decision makers have to be very cautious when selecting the class intervals.  Based on the 

selected resolution (width of class interval), Equation  7-1, Equation  7-2, and Equation  7-3 are 

used to calculate the lowest joint interval, the highest joint interval, and the number of intervals 

required to contain the observed project’s duration and cost, respectively.   

 𝑜   𝑡   𝑡   𝑎  (   𝑎𝑡 𝑜   𝑜 𝑡)  (⌊
    

    
⌋  ⌊
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Equation  7-1 

  

   ℎ  𝑡   𝑡   𝑎  (   𝑎𝑡 𝑜   𝑜 𝑡)  (⌈
    

    
⌉  ⌈
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Equation  7-2 

  

       𝑜    𝑡   𝑎   (   𝑎𝑡 𝑜   𝑜 𝑡)  (                   ) Equation  7-3 

  

where, 

 Dmin = minimum observed project duration 

Dmax = maximum observed project duration 

Cmin = minimum observed project cost 

Cmax = maximum observed project cost 

Dres = selected resolution for the project duration 

Cres = selected resolution for the project cost 

DHC = highest duration interval 

DLC = lowest duration interval 

CHC = highest cost interval 
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CLC = lowest cost interval 

 

For example, if there are 500 observed project’s duration and cost from the simulation model 

with Dmin = 65 days, Dmax = 79 days, Cmin = $38,000, Cmax = $46,000, Dres = 1 day and Cres = 

$1000, then the Lowest Interval = (65, 38), the Highest Interval = (79, 46), and the Number of 

Intervals = (15, 9). Having this information, the headers of the contingency table are created. The 

intersection of each cost column and duration row represents one possible duration and cost 

combination. The maximum number of possible duration and cost combinations is simply the 

multiplication of the duration Number of Intervals (I) by the cost Number of Intervals (J). The 

number of observations reflects the frequency of each duration and cost combination. From the N 

observed project’s durations and costs of the simulation model, the frequency of each 

combination is calculated using the Frequency Function in Figure  7-3. This figure shows the 

algorithms developed for applying the joint probability related functions and which will be 

explained throughout the rest of this section.   

The calculated frequencies are arranged into the class intervals (di, cj) in Table  7-1 using the 

Contingency Table Function in Figure  7-3. For example, the combination (71, 41) has a 

frequency of 60. The joint probability of having a project with duration equal to di and cost equal 

to cj can be calculated using the intersection of two random variables as given by Equation  7-4.  
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For instance, P (71, 41) = 0.12 or 12%. The joint probability for each combination is presented in 

Table  7-1 between parentheses resulting in the joint probability mass function. 



 

132 

 

Start

Select Duration and Cost Resolution

i = 1

Calculate Joint Probability P(D = di ∩C = cj ) 

Calculate Lowest, Highest, and Number of Cells

Calculate Cumulative Joint Probability                     

P(D ≤ di ∩ C ≤ cj ) 

Calculate Frequency and Create Contingency 

Table

Calculate Duration Marginal Cumulative     

Probability P(D ≤  di ) 

i ≤ I ?

i = i + 1

Yes

No

Calculate Cost Marginal Cumulative            

Probability  P(C ≤  cj  ) 

End

j = 1

Yes

Calculate Conditional Cumulative Probability of 

Duration P(D ≤ di │C = cj ) 

j ≤ J ?

j = j + 1

Calculate Conditional Cumulative Probability of 

Cost P(C ≤ cj │D = di  )        

No

i=1?

Yes

No

 

Figure  7-2 Flowchart of Constructing the Joint, Marginal, and Conditional Probability Functions 
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FUNCTION Main 

 CALL Frequency 

 CALL Contingency Table 

 CALL Joint Probability 

 CALL Duration Marginal Cumulative 

 CALL Cost Marginal Cumulative 

 CALL Duration Conditional Cumulative 

 CALL Cost Conditional Cumulative 

 CALL Find Best Combination 

End 

PN is an array of the simulation outputs 

PM is a copy of PN 

TI is the duration headers in the contingency 

table 

TJ is the cost headers in the contingency 

table 

PU is an array that contains unique records of 

PN 

 

FUNCTION Frequency  

 FOR each (dn, cn)  in PN   

  Frequencyn = 0 

  FOR each (dm, cm)   in PM  

   IF dn = dm AND cn = cm THEN 

    Frequencyn = Frequencyn + 1 

RETURN Frequencyn 

FUNCTION Contingency Table 

 FOR each (du, cu)  in PU   

  FOR each duration interval in TI       

   IF du = di THEN 

    FOR each cost interval in TJ   

     IF cu = cj THEN 

      Frequency(i, j) = Frequencyu 

RETURN Frequency(i, j) 

FUNCTION Joint Probability 

 FOR each duration interval in TI 

  FOR each cost interval in TJ 

   JointProb(i, j) = Frequency(i, j) /N        

   IF i = 1 AND j =1 THEN 

    JointCumProb(i, j) = JointProb(i, j)  

   ELSEIF i = 1 AND j >1 THEN 

    JointCum(i, j) = JointCum (i, j-1) + 

    Joint (i, j)   

   ELSEIF i > 1 AND j =1 THEN 

    JointCum(i, j) = JointCum(i-1, j)  +     

   JointProb(i, j)  

   ELSEIF i > 1 AND j >1 THEN 

    JointCum(i, j) = JointCum(i-1, j) +  

   JointCum(i, j-1)  - JointCum(i-1, j-1) +  

   JointProb(i, j) 

RETURN JointProb(i, j) and  

JointCumProb(i, j) 

FUNCTION Duration Marginal Cumulative 

 FOR each duration interval in TI 

  FOR each cost interval in TJ 

   DurMargi = DurMargi   + JointProb(i, j)  

   FOR each duration interval in TI 

    IF i = 1 THEN 

     DurMargCumi = DurMargi   

      ELSEIF i > 1 THEN 

     DurMargCumi = DurMargCumi-1 +  

     DurMargi   

RETURN DurMargCumi 

 

Figure  7-3 Algorithms for Applying Joint Probability 
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FUNCTION Cost Marginal Cumulative 

 FOR each cost interval in TJ 

  FOR each duration interval in TI 

   CostMargj = CostMargj + JointProb(i, j)  

   FOR each cost interval in TJ 

    IF j =1 THEN 

     CostMargCumj = CostMargj   

    ELSEIF j >1 THEN 

     CostMargCumj = CostMargCumj-1 +  

     CostMargj   

RETURN CostMargCumj 

FUNCTION Duration Conditional 

Cumulative 

 FOR each cost interval in TJ 

  FOR each duration interval in TI 

   DurCondi│j = JointProb(i, j) / CostMargj 

   IF i = 1 THEN 

    DurCondCumi│j = DurCondi│j  

   ELSEIF i > 1 THEN 

    DurCondCumi│j = DurCondCumi-1│j +  

    DurCondi│j  

RETURN DurCondCumi│j 

FUNCTION Cost Conditional Cumulative 

 FOR each duration interval in TI 

  FOR each cost interval in TJ 

   CostCondj│i = JointProb(i, j) / DurMargi 

   IF j =1 THEN 

    CostCondCumj│i = CostCondj│i 

   ELSEIF j > 1 THEN 

   CostCondCumj│i = CostCondCumj-1│i +  

   CostCondj│i 

RETURN CostCondCumj│i 

Function Find Best Combination 

 FOR each duration interval in TI 

  FOR each cost interval in TJ 

   If DurCondCumi│j ≥ 0.5 AND 

   CostCondCumj│i ≥ 0.5 THEN 

    Difference(i, j) = Abs(JointCumProb(i, j)  

    – z) 

RETURN Difference(i, j) 

 

Figure 7-3 (continued) Algorithms for Applying Joint Probability 

Figure  7-4(a) shows the joint frequency histogram of the same data of Table  7-1. The sum of the 

joint probabilities of all the combinations is always equal to 1. The axes of the histogram 

represent the project duration in days, the project cost in thousands of dollars, and the frequency 

of each class interval, respectively. The frequency of each combination occurring is represented 

by the height of the histogram segment that has the duration and cost combination as its base. For 

example, the base (71, 41) has a height of 60 which indicates that the number of times an 

observation occurred with the duration of 71 days and cost of $41,000. This joint probability can 

be used to select the combination that is more probable if two or more combinations have very 

close joint cumulative probabilities. 
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Table  7-1 Example of Contingency Table 

P(di , cj ) 

Cost ($1,000) 

PD(di ) P(D‎≤‎di ) j = 1 2 3 4 5 6 7 8 J = 9 

38 39 40 41 42 43 44 45 46 

D
u

ra
ti

o
n

 (
D

a
y

s)
 

i = 1 65 
2 

(0.004)         
0.004 0.004 

2 66 
3 

(0.006)         
0.006 0.010 

3 67 
2 

(0.004) 
12 

(0.024)        
0.028 0.038 

4 68 
 

25 
(0.050)        

0.050 0.088 

5 69 
 

7 
(0.014) 

47 
(0.940)       

0.108 0.196 

6 70 
  

61 
(0.122) 

12 
(0.024)      

0.146 0.342 

7 71 
  

2 
(0.004) 

60 
(0.120)      

0.124 0.466 

8 72 
   

59 
(0.118) 

22 
(0.044)     

0.162 0.628 

9 73 
   

1 
(0.002) 

64 
(0.128)     

0.130 0.758 

10 74 
    

30 
(0.060) 

25 
(0.050)    

0.11 0.868 

11 75 
     

22 
(0.044) 

2 
(0.004)   

0.048 0.916 

12 76 
     

4 
(0.008) 

15 
(0.040)   

0.038 0.954 

13 77 
      

13        
(0.026) 

5 
(0.010)  

0.036 0.990 

14 78 
       

3 
(0.006)  

0.006 0.996 

I = 15 79 
       

1 
(0.002) 

1 
(0.002) 

0.004 1 

PC (cj ) 0.014 0.088 0.220 0.264 0.232 0.102 0.060 0.018 0.002 1  

P(C‎≤‎cj ) 0.014 0.102 0.322 0.586 0.818 0.920 0.980 0.998 1 
 

 

In real life projects, however, decision makers are seldom interested in finding the joint 

probability of a project duration and cost combination. A more meaningful information is the 

joint cumulative probability of a project duration and cost combination because it gives an 

insight on the probability of finishing the project within a specific duration and cost. 

The joint cumulative distribution function describes the probability that a project duration and 

cost combination with a given joint probability mass function has a duration less than or equal to 

di and a cost less than or equal to cj. The joint cumulative distribution function can be 

represented by a joint cumulative frequency histogram (Figure  7-4(b)) or a cumulative 

contingency table that sums the number of observations in all of the cells up to the specified 

cell. The probability of having a project with a duration less than or equal to di and a cost less 
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than or equal to cj is calculated using Equation  7-5. The joint probability and joint cumulative 

probability are calculated for each combination using the Joint Probability Function in 

Figure  7-3 

 

(a) Joint Frequency Histogram 

 

(b) Joint Cumulative Frequency Histogram 

Figure  7-4 Examples of Joint Probability Mass Functions 
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𝑡𝑜𝑡𝑎         𝑜        𝑎𝑡 𝑜  
 Equation  7-5 
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The probability of the project taking longer than a duration di and more than a cost cj can be 

calculated using Equation  7-6. 

 (  𝑑      )  

  

     (  𝑑      )   (  𝑑      )   (  𝑑      ) Equation  7-6 

  

For instance, P(D ≤ 71 ∩ C ≤ 41) = 233/500 = 46.6 % and P(D>71 ∩ C>41) = 1 – 0.414 – 0 – 

0.012  = 53.4%.  

On the other hand, the possible duration and cost combination (di, cj) that has joint cumulative 

probability of z can be found by calculating the absolute difference between z and the joint 

cumulative probability of all the combinations as shown in Equation  7-7. 

𝑎     
   

ℎ (𝑑  )  | (  𝑑      )   |            (𝑑  )       Equation  7-7 

  

Decision makers may want to find the probability of completing the project within a specific 

duration or a specific cost. The probability of having a project with duration less than or equal to 

di or cost less than or equal to cj can be calculated using Equation  7-8. 

 (  𝑑      )   (  𝑑 )   (    )   (  𝑑      )  

  

 
𝑡𝑜𝑡𝑎         𝑜        𝑎𝑡 𝑜    ℎ      𝑑 

𝑡𝑜𝑡𝑎         𝑜        𝑎𝑡 𝑜  
 

 

  

  
𝑡𝑜𝑡𝑎         𝑜        𝑎𝑡 𝑜    ℎ         

𝑡𝑜𝑡𝑎         𝑜        𝑎𝑡 𝑜  
 Equation  7-8 

  

 
𝑡𝑜𝑡𝑎         𝑜        𝑎𝑡 𝑜    ℎ       𝑑  𝑎 𝑑     

𝑡𝑜𝑡𝑎         𝑜        𝑎𝑡 𝑜  
 

 

  

In the field of construction management, the probability of a single performance index is usually 

used.  This probability is called the marginal probability of that performance index when it is the 

context of joint probability distribution as explained in Section  7.3.2.   
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7.3.2 Constructing Marginal and Conditional Cumulative Probability Functions 

The probability of a project duration assuming a value of di or less, without regard to the 

associated project cost, is referred to as the marginal cumulative probability of di and is 

calculated using Equation  7-9. This probability is calculated for each project duration using the 

Duration Marginal Cumulative Function in Figure  7-3. 

 (  𝑑 )   ∑ ∑   (𝑑    )
 
     

                                        

                            

 
                            Equation  7-9 

  

The marginal cumulative probability of the project taking longer than di can be found by 

Equation  7-10. 

 (  𝑑 )      (  𝑑 ) Equation  7-10 

  

Similar equations to Equation  7-9 and Equation  7-10 and the Cost Marginal Cumulative 

Function (Figure  7-3) are used to find the marginal cumulative probability of the project cost. 

The marginal probability can be used to analyze each objective separately using the marginal 

cumulative distribution. The marginal probabilities of project duration and cost are available in 

the penultimate column and the penultimate row in Table  7-1, respectively. On the other hand, 

the marginal cumulative probabilities of project duration and project cost are available in the last 

column and the last row in Table  7-1, respectively. Figure  7-5(a) shows the marginal probability 

and the marginal cumulative probability of the project duration while Figure  7-5(b) shows the 

marginal probability and the marginal cumulative probability of the project cost. For instance, 

P(D ≤ 71) = 233/500 = 46.6 %, P(D >71) = 1 – 0.466 = 53.4%, P(C≤ 41) = 293/500 = 58.6 %, 

and P(C>41) = 1 – 0.586 = 41.4%. 

The possible project costs along with their probabilities if the project duration is equal to di can 

be found by filtering out all the joint outcomes of D = di and then calculating the conditional 

probability for every possible cost outcome using Equation  7-11. 

 (    |  𝑑 )   
 [  𝑑      ]

 [  𝑑 ]
 

 

  

  
𝑡𝑜𝑡𝑎         𝑜        𝑎𝑡 𝑜    ℎ       𝑑  𝑎 𝑑     

𝑡𝑜𝑡𝑎         𝑜        𝑎𝑡 𝑜    ℎ       𝑑 
 Equation  7-11 
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(a) Marginal Duration Frequency Histogram 

 

(b) Marginal Cost Frequency Histogram 

Figure  7-5 Examples of Marginal Frequency Histograms 

The conditional cumulative probability can be used to calculate the probability of having the cost 

less than or equal to cj if the project duration is equal to di as given by Equation  7-12. The Cost 

Conditional Cumulative Function in Figure  7-3 is used to calculate the conditional probability 

and conditional cumulative probability for each combination. 
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 (    |  𝑑 )   
 [  𝑑      ]

 [  𝑑 ]
 

Equation  7-12 

  

  
𝑡𝑜𝑡𝑎         𝑜        𝑎𝑡 𝑜    ℎ       𝑑  𝑎 𝑑     

𝑡𝑜𝑡𝑎         𝑜        𝑎𝑡 𝑜    ℎ       𝑑 
 

 

  

Similar equations to Equation  7-11 and Equation  7-12 and the Duration Conditional Cumulative 

Function (Figure  7-3) are used to calculate the possible project durations along with their 

probabilities if the project cost is equal to cj. For instance, P(C≤ 43│D = 75) = 47/51 = 92.15%, 

P(D≤ 75│C = 43) = 22/24 =91.67%. This means that there is 92.15% chance that the project cost 

will be less than or equal to $43,000 if the project duration is 75 days. On the other hand, if the 

project cost is $43,000, then there is 91.67% chance the project duration will be 75 days. Having 

a conditional cumulative probability higher than 50% is preferable as shown in Section  7.4. 

The conditional cumulative probability can be used to analyze the variation of a project cost with 

respect to a fixed value of the project duration. In addition, it indicates how probable a 

combination is. Figure  7-2 shows the flowchart of calculating the marginal and conditional 

cumulative probabilities. 

7.4 Generating Joint Probabilistic Pareto Fronts 

To generate the joint probabilistic Pareto fronts, a combination of duration and cost is chosen to 

represent each Pareto solution. The combinations of all Pareto solution are then compared to 

each other to determine the set of non-dominated combinations as explained in Figure  4-7. The 

rest of this section describes the developed method for finding the best combination that 

represents the desired joint probability. 

Equation  7-7 describes how to find the duration and cost combination (di, cj) that has the absolute 

closest joint cumulative probability to the desired z. However, this equation does not give the 

best combination that represents the desired confidence level. This is due to the fact that 

Equation  7-7 does not take the conditional cumulative probability of each combination into 

consideration. For example, by using Equation  7-7 and a desired confidence level of 60%, the 

equation gives the duration and cost combination (73, 41). Using the joint cumulative probability 
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by itself can be deceiving. By examining the joint cumulative probability of the combinations, it 

is found that there are four combinations that have joint cumulative probability close to 60%. 

Table  7-2 shows the joint cumulative probabilities, marginal cumulative probabilities, and 

conditional cumulative probabilities of the four combinations (72, 41), (73, 41), (72, 42), and 

(73, 42).  

Table  7-2 Probability Information of the Four Combinations 

Combinat

-ion 

Joint 

Cumulative 

Probability 

(%) 

Joint 

Probability – 

z (%) 

Duration 

Marginal 

Cumulative 

(%) 

Cost 

Marginal 

Cumulative 

(%) 

Duration 

Conditional 

Cumulative 

(%) 

Cost 

Conditional 

Cumulative 

(%) 

(72, 41) 58.40  -1.60 62.80 58.60  99.24   72.84 

(73, 41) 58.60  -1.40 75.80 58.60 100.00    1.54 

(72, 42) 62.80   2.80 62.80 81.80  18.97 100.00 

(73, 42) 75.80 15.80 75.80 81.80  74.14 100.00 

 

The selected combination by Equation  7-7 (i.e. (73, 41)) has a cost conditional cumulative 

probability of 1.54% which is a very low probability. This probability means that given the 

project duration of 73 days, the likelihood of finishing the project with a cost of $41,000 is 

1.54%. In order to select a most likely schedule, the decision maker should consider the 

combinations with conditional cumulative probability of at least 50% since it represents the most 

likely output as shown in Equation  7-13.  

𝑎     
   

ℎ (𝑑  )  | (  𝑑      )   |            (𝑑  )       Equation  7-13 

  

      𝑡 𝑡𝑜            (    |  𝑑 )       

  

                             (  𝑑 |    )        

  

There are two combinations that meet this criterion in Table  7-2 which are (72, 41) and (73, 42). 

Therefore, the combination that should be selected is (72, 41) since it has the smallest difference 

between z and the joint cumulative probability. 

Figure  7-6 shows the flowchart for finding the best combination that represents the desired 

confidence level. The process starts by determining the desired confidence level. The desired 

confidence level is defined by the decision maker and it represents the probability at which the 
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project will be baselined and budgeted. The combination with the smallest absolute difference 

between z and the joint cumulative probability and which has conditional cumulative 

probabilities larger than or equal to 50% is selected. The Find Best Combination Function in 

Figure  7-3 is used for this purpose.  

7.5 Analyzing the Selected Solution 

7.5.1 Estimating Duration and Cost Joint Contingency 

Traditionally, contingencies are estimated for either project cost or project duration without 

considering the correlation between them, or the impact they have on each other. This is usually 

done by subtracting the median point from the desired confidence level point (Moselhi, 1997; 

Fenton et al., 1999). Therefore, there is a need for a method to estimate the joint contingency 

considering the correlation between the project duration and cost and the impact they have on 

each other. The correlation can be accounted for by using the joint probability while the impact 

can be considered in the conditional cumulative probability. Figure  7-7 shows the flowchart for 

estimating duration and cost joint contingency. Similar to the method explained in Section  7.4 

(Figure  7-6), the process starts by selecting the desired confidence level (z) of the project. Then 

the best combinations representing 50% joint cumulative probability and z as explained in 

Section  7.4 are selected. The joint contingency is estimated by subtracting the project duration 

and cost corresponding to the desired confidence level from the project duration and cost with 

50% joint cumulative probability as shown in Equation  7-14. 

 (𝑑  )  ℎ (𝑑  )  ℎ   (𝑑  ) Equation  7-14 

  

Where ℎ (𝑑  ) and ℎ   (𝑑  )  are calculated using Equation  7-14. For example, the best 

combination that represents 50% is (71, 41) with a joint cumulative probability of 46%. 

Assuming that the decision maker wants a confidence level of 80% which is best represented by 

the combination (74, 42) with a joint cumulative probability of 82%. Then the project duration 

and cost joint contingency is three days and $1,000, respectively.  
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No

 

Figure  7-6 Flowchart for Finding the Best Combination
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Figure  7-7 Flowchart for Estimating Duration and Cost Joint Contingency
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7.5.2 Generating a Schedule to Meet a Specific Probability 

The project schedule is essential for resource scheduling, cost estimating, and project control. 

However, when using discrete event simulation or Monte Carlo simulation, the most common 

final output is the distributions of total project duration and total project cost. This output does 

not provide a schedule since it does not assign a duration for each activity or task to meet the 

mean or any probability of the total project duration or cost. This part of the proposed method 

describes how a schedule that meets a desired confidence level can be generated as shown in 

Figure  7-8.  

At the start of each simulation replication, a seed number is generated randomly in order to 

generate independent simulation replications. All the randomly generated seed numbers are 

saved in order to regenerate the exact simulation replication that resulted in the project duration 

and cost combination that met the desired confidence level. The simulation is run for a single 

replication using the seed number and the durations of all the instances of each activity or task 

are extracted. In some cases, there could be more than one replication that resulted in the same 

project duration and cost combination, and thus, there could be a number of seed numbers (S) 

that should be applied. Using the seed number of any of those replications will result in the same 

project duration and cost combination. However, these seeds will generate different duration and 

cost for each activity. In order to assist the decision maker in selecting the best seed number for 

generating the schedule, a method for ranking the seed numbers is proposed. Each activity a of a 

total of A activities is assigned a value based on the distance between the activity duration and 

cost generated by the seed number s and the mean activity duration and cost calculated from the 

N replications. The distance is calculated using Equation  7-15.  

   𝑡𝑎    
  √(

𝑎   
    𝑎   ̅̅ ̅̅ ̅̅

𝑎   ̅̅ ̅̅ ̅̅
)

 

  (
𝑎    

    𝑎    ̅̅ ̅̅ ̅̅ ̅ 

𝑎    ̅̅ ̅̅ ̅̅
)

 

 

Equation  7-15 

  

Where 𝑎   
 

 is the duration of activity a using seed number s, 𝑎   ̅̅ ̅̅ ̅̅  is the mean duration of 

activity a, 𝑎    
 

 is the cost of activity a, 𝑎    ̅̅ ̅̅ ̅̅  is the mean cost of activity a. In order to obtain a 

dimensionless distance, the differences of durations and costs are divided by the mean value of 

each of these variables (i.e., 𝑎   ̅̅ ̅̅ ̅̅   and 𝑎    ̅̅ ̅̅ ̅̅ ). The mean of the distances of each seed number s is 

calculated using Equation  7-16. 
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Figure  7-8 Flowchart for Selecting Best Seed Number
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  ∑

   𝑡𝑎    
 

 

 

    

 

Equation  7-16 

  

7.6 Method Implementation 

Two main implementations were developed in order to realize the proposed method as 

summarized in Figure  7-9. The first implementation is for applying the joint probability to the 

output of stochastic simulation models, and calculating duration and cost joint contingency. The 

second implementation is for generating a schedule with a specified probability. These two 

implementations are described in detail in the following sections.  

7.6.1 Applying the Joint Probability 

Microsoft Excel is integrated with STROBOSCOPE via VBA in order to obtain the output of the 

stochastic simulation models of the sub-population Pareto fronts generated by the stochastic 

simulation-based multi-objective optimization model presented in Chapter  3 as shown in 

Figure  7-10.  

The process starts by running the simulation N replications for each Pareto solution where each 

replication represents one potential outcome for the project’s duration and cost. The project 

duration, cost, and seed number are then obtained from each simulation replication. This 

information is extracted and stored in an array of size N x 3 during the simulation. At the end of 

the simulation, this array is imported to Microsoft Excel to perform the joint probability 

calculations. This array is then sorted by duration in an ascending order. If two replications have 

the same project duration, the information is then sorted by cost in an ascending order. The 

purpose of this sorting is to reduce the computation time needed to calculate the frequency of 

each project duration and cost combination. 
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Figure  7-9 Implementation Summary of Proposed Methodology 
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Figure  7-10 Flowchart of Joint Probability Implementation 

These frequencies are the basis required to calculate the joint probability of a combination. 

Afterwards, a unique sorted record of each combination and its frequency’s value is created. This 

is done to eliminate any unnecessary repeated information, to reduce the computation time 

needed to create the contingency table, and to calculate probabilities of each combination. 

Finally, the best combination representing a desired confidence level is selected and non-

dominated sorting is performed. 
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7.6.2 Generating a Schedule with a Specified Probability 

Generating a schedule representing a specific probability consists of two main steps. The first 

step is finding the best seed number of the combination representing that probability. The second 

step is generating the schedule of the best seed number. Figure  7-11 shows the flowchart for 

schedule generation. The process starts by running the simulation with the seed numbers of the 

selected combination. The duration and cost of each activity is extracted and imported to 

Microsoft Excel to find the best seed number. Then, a new project is created in Microsoft Project 

(Microsoft Corporation 2015d) with a predefined project start date and working calendar. 

Microsoft Project was integrated with STROBOSCOPE via VBA in order to obtain the duration 

of each activity using the best seed number. Then, the activities’ names and durations are 

extracted from the simulation and imported to Microsoft Project. Finally, the activities in 

Microsoft Project are linked together and the schedule is generated.  

7.7 Case Studies 

Given that construction projects can be categorized under the three main types of cyclic (Halpin 

and Riggs 1992), repetitive, and non-repetitive projects (El-Rayes, 2001), three case studies are 

used to evaluate the effectiveness of the proposed method and to quantify the impact of 

considering the correlation between time and cost in different types of construction projects. A 

fourth case study is used to demonstrate the concept of joint probabilistic Pareto front. 

Evaluation of these simulation models is done in two steps which are: (1) verification and 

validation (Law and Kelton 1991, Sargent 2010); and (2) uncertainty analysis (Kleijen, 1996). 

Verification and validation of the implementations of the VRTs in the simulation models are 

done by tracing the different entities in the simulation models to assure that the logic of the 

models are correct and they are running as expected (Sargent 2010). Uncertainty analysis, which 

is the main focus of this chapter, is done by considering the stochastic durations of the tasks in 

the simulation models. Two parameters are studied in the case studies: (1) the impact of the level 

of correlation between time and cost on the effectiveness of the proposed method, and (2) the 

number of replications required to effectively capture the stochasticity in different project types. 

Given that time and cost are the most common outputs of construction simulation, these two 
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performance metrics are used in this case studies as the basis for the comparison of the proposed 

and traditional methods.  

Start

Run the Simulation Using the Best Seed 

Number 

Extract Actitivities’ Durations 
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Working Calendar

Import Activitiess’ Names and Durations 

to Microsoft Project

End

Define the Relationships Between 

Activities

Find the Best Seed Number

Run the Simulation Using the Seed 

Numbers of the Selected Combination

 

Figure  7-11 Flowchart of Generating Schedule 

Case study A is about the construction of a precast full span box girder bridge using launching 

method which is cyclic in nature. This case study is modeled using discrete event simulation and 

is used to demonstrate the application of the joint probability and joint contingency methods. 

Case study B is about a non-repetitive project which is depicted in a schedule network that uses 

Monte Carlo simulation. This case study is used to demonstrate the application of the joint 

probability and schedule generating methods. Case study C is about a repetitive project which 
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can be represented using a repetitive network or Line of Balance combined with Monte Carlo 

simulation. This case study is used to demonstrate the application of the joint probability method. 

Table  7-3 summarizes the results of the performance metrics for the three case studies. 

Table  7-3 Summary of Performance Metrics for Case studies A, B, and C 

Case study Type of 

Project 

Type of 

Simulation 
Demonstrated Application Correlation ∆D (%) ∆C (%) N 

A Cyclic Discrete Event 
Joint Probability and Joint 

Contingency 
0.94 (-1, 1) (-2, 1) 100 

B Non-repetitive Monte Carlo 
Joint Probability and 

Schedule Generation 
0.45 (1, 6) (2, 8) 5,000 

C Repetitive Monte Carlo Joint Probability 0.21 (0, 8) (0, 5) 5,000 

 

7.7.1 Case study A: Cyclic Project 

This case study consists simulates the same case study used in Section  4.9. The developed 

simulation model is shown in Figure  4-2 which shows the cyclic nature of the operation. The 

selected resolution for the project duration is one day while the selected resolution for the project 

cost is $10,000. Figure  7-12 shows the scatter plot of the project duration and cost after 5,000 

simulation replications. The correlation between the project duration and project cost is 0.94 

which indicates a very strong linear dependency between the project duration and cost. The gaps 

in Figure  7-12 are because the project duration is calculated in calendar days with five working 

days per week.  

 

Figure  7-12 Scatter Plot of Project Duration and Cost Combinations for Case Study A 
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In order to show the shortcomings of using the marginal cumulative probability alone, the project 

duration and cost corresponding to the cumulative probabilities of 25%, 50%, 75%, 80%, 90% 

and 95% using the marginal probability and joint probability are calculated and presented in 

Table  7-4.  

Table  7-4 Project Duration and Cost of Different Cumulative Probabilities for Case Study A 

Desired  

Probability 

(%) 

Marginal 

Duration 

(days) 

Marginal 

Cost 

($10,000) 

Joint  

Cumulative 

Probability 

(%) 

Joint 

Duration 

(days) 

Joint 

Cost 

($10,000) 

Joint 

Cumulative 

Probability 

(%) 

∆D 

(%) 

∆C 

(%) 

25 127 183 25 127 180 23  0 -2 

50 132 194 DNE 133 196 50  1   1 

75 136 205 69 136 208 73  0   1 

80 138 208 DNE 137 211 79 -1   1 

90 141 215 88 141 217 90  0   1 

95 143 221 96 142 222 95 -1   0 

 

The marginal project duration and cost are calculated using the mean value, standard deviation, 

and the desired probability. In addition, the joint probability of the marginal project duration and 

marginal project cost is calculated. The joint combinations presented in Table  7-4 represent the 

best possible combination meeting the desired probability and found using Equation  7-13. From 

the results in Table  7-4, it can be noticed that the project duration and cost combination (132, 

194) corresponding to 50% marginal cumulative probability does not exist (DNE). In other 

words, none of the 5,000 simulation replications resulted in that combination. The difference 

between the project duration (∆D) and cost (∆C) under the two methods is calculated using 

Equation  7-17 and Equation  7-18, respectively. 

   
 𝑜  𝑡    𝑎𝑡 𝑜   𝑎    𝑎     𝑎𝑡 𝑜 

 𝑎    𝑎     𝑎𝑡 𝑜 
      

Equation  7-17 

  

   
 𝑜  𝑡  𝑜 𝑡   𝑎    𝑎   𝑜 𝑡

 𝑎    𝑎   𝑜 𝑡
      

Equation  7-18 

  

These equations represent two of the performance metrics of the proposed method. It can be 

noticed that the difference of the two methods ranges between -1% and 1% in project duration, 

and between -2% and 1% in project cost. This is due to the fact that the project duration and the 

project cost have a very strong correlation. However, this is not always the case as can be seen in 
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the following case studies. The duration and cost joint contingency is estimated, using 

Equation  7-13 and Equation  7-14, for confidence level of 80%. From Table  7-4, the best 

combinations to meet 50% and 80% are (133, 196) and (137, 211), respectively. Based on the 

difference of these two combinations, the joint contingency is 4 days and $150,000.  

To find the minimum number of simulation replications required to obtain sound expected joint 

value of the project duration and cost, the simulation was run for 100, 200, 500, 1000, 2000 and 

5000 replications as shown in Table  7-5. The combinations presented in this table represent the 

best possible combination meeting 50% joint cumulative probability and found using 

Equation  7-13. The marginal probability of the project duration is calculated using Equation  7-9. 

The conditional cumulative probability of the project cost given the project duration is calculated 

using Equation  7-12. This analysis examines the impact of the number of replications on the 

improvement of the joint cumulative probability. It can be noticed from Table  7-5 that the 

difference in the expected joint value between 100 and 5000 replications is insignificant. This 

can be also as a result of the existence of a strong correlation between the project duration and 

the project cost. 

Table  7-5 Different Number of Simulation Replications for Case Study A 

Replications 
Duration 

(days) 

Cost 

($10,000) 

Joint 

Cumulative 

Probability 

(%) 

Duration 

Marginal 

Cumulative 

(%) 

Cost 

Marginal 

Cumulative 

(%) 

Duration 

Conditional 

Cumulative 

(%) 

Cost 

Conditional 

Cumulative 

(%) 

   100 133 197 50 54 58 100 67 

   200 133 198 50 54 53   50 63 

   500 133 195 50 56 56   75 58 

1,000 133 196 50 55 55   58 54 

2,000 133 195 49 55 53   62 53 

5,000 133 196 50 53 55   58 65 

 

7.7.2 Case Study B: Non-repetitive Project 

This case study is for a simple project that consists of seven activities (Figure  7-13). The 

durations, costs, and the logical relationships of the activities are presented in Table  7-6. The 

durations are modeled using triangular distribution which is defined by the lower limit, the 

higher limit and the mode. Monte Carlo simulation is used to find the possible outcomes of this 

project. The selected resolution for the project duration is one day while the selected resolution 
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for the project cost is $1,000.  Figure  7-14 shows the scatter plot of the project duration and cost 

after 5,000 simulation replications. The correlation between the project duration and project cost 

is 0.45 which indicates the existence of a moderate linear dependency between the project 

duration and the project cost.  

A1

(22)

A2

(33)

A3

(24)

A4

(16)

A5

(28)

A6

(23)

A7

(20)

 

Figure  7-13 Schedule Network for Case Study B 

Table  7-6 Project Information for Case Study B 

Activity Predecessor 
Duration (Days) 

Cost ($/day) 
Low Mode High 

A1 - 12 20 32 1,500 

A2 A1 12 30 69    200 

A3 A1 10 22 41    300 

A4 A1 10 16 25 3,500 

A5 A2, A3 16 28 38 1,000 

A6 A4 12 18 30 2,000 

A7 A5, A6   7 15 23 1,500 

 

The project duration and cost corresponding to several cumulative probabilities are presented in 

Table  7-7. The difference between the two methods ranges between 1% and 6% in project 

duration, and between 2% and 8% in project cost. Table  7-8 shows the results of different 

number of simulation replications. The difference in the expected joint value between 100 and 

5000 replications can be significant. This can be also as a result of the existence of a moderate 

correlation between the project duration and the project cost. Therefore, decision makers should 

run the simulation for the largest possible number of replications. However, applying a large 
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number of replications (up to 500,000) resulted in almost the same combination of duration and 

cost as in the case of 5,000 replications. The small variations in the results for large number of 

replications (i.e., more than 5,000) can be explained by the interactions between the different 

variables in the model, and can be neglected.  

 

Figure  7-14 Scatter Plot of Project Duration and Cost Combinations for Case Study B 

Table  7-7 Project Duration and Cost of Different Cumulative Probabilities of Case Study B 

Desired  

Probability 

(%) 

Marginal 

Duration 

(days) 

Marginal 

Cost 

($1,000) 

Joint  

Cumulative 

Probability 

(%) 

Joint 

Duration 

(days) 

Joint 

Cost 

($1,000) 

Joint 

Cumulative 

Probability 

(%) 

∆D 

(%) 

∆C 

(%) 

25   93 185 13   99 194 28 6 5 

50 102 196 36 103 207 50 1 6 

75 111 207 63 117 211 75 5 2 

80 113 210 69 114 223 80 1 6 

90 119 217 DNE 121 228 90 2 5 

95 124 223 91 125 241 95 1 8 

 

The numbers between parentheses in Figure  7-13 represents the duration of each activity that 

will result in a project duration and cost combination (103, 207) which represents 50% joint 

cumulative probability. These durations were found using the method described in Section  7.5.2. 

There are four seed numbers that result in this combination. Table  7-9 shows the durations of the 

activities resulting from each seed number along with the average duration of each activity. The 

135

155

175

195

215

235

255

60 80 100 120 140

C
o

st
 (

$
1

,0
0

0
) 

Durations (days) 



 

157 

 

distance between each activity and the activity average is calculated using Equation  7-15. 

Finally, the mean of each seed number is calculated using Equation  7-16.  

Table  7-8 Different Number of Simulation Replications for Case Study B 

Replications 
Duration 

(days) 

Cost 

($1,000) 

Joint 

Cumulative 

Probability 

(%) 

Duration 

Marginal 

Cumulative 

(%) 

Cost 

Marginal 

Cumulative 

(%) 

Duration 

Conditional 

Cumulative 

(%) 

Cost 

Conditional 

Cumulative 

(%) 

   100 108 194 48 79 54   50 50 

   200 119 195 50 93 51 100  50 

   500 110 201 50 77 62   64 54 

1,000 113 199 50 83 58   84 55 

2,000 114 197 50 86 55   83 51 

5,000 103 207 50 58 76   53 78 

 

7.7.3 Case study C: Repetitive project 

This case study is for a project were the network of activities of Case study B is repeated five 

times in a sequence. The durations, costs, and the logical relationships of the activities are the 

same of Case study B. Monte Carlo simulation is used to find the possible outcomes of this 

project. The selected resolution for the project duration is one day while the selected resolution 

for the project cost is $1,000. Figure  7-15 shows the scatter plot of the project duration and cost 

combinations after 5,000 simulation replications. The correlation between the project duration 

and project cost is 0.21 which indicates the existence of a weak linear dependency between the 

project duration and the project cost 
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Figure  7-15 Scatter Plot of Project Duration and Cost Combinations for Case Study C 

The project duration and cost corresponding to several cumulative probabilities are presented in 

Table  7-10. The difference between the two methods ranges between 0% and 8% in project 

duration, and between 0% and 5% in project cost. Table  7-11 shows the results of different 

number of simulation replications. The difference in the expected joint value between 100 and 

5000 replications can be significant. This can be as a result of the existence of a weak correlation 

between the project duration and the project cost. Therefore, decision makers should run the 

simulation for the largest possible number of replications.  

7.7.4 Cast Study D: Joint Probabilistic Pareto Front 

This case study compares the Pareto fronts of two bridge construction methods obtained using 

the stochastic simulation-based optimization model presented in Chapter  3. These methods are 

precast segmental bridge construction using a launching gantry and using under-slung girder. 

These two methods are described in Section  2.2.1 0 and their simulation models are shown in 

Figure  4-3 and Figure  4-5, respectively. Table A-2 and Table A-4 show the tasks durations used 

for launching gantry and using under-slung girder, respectively. The cost data used for both 

simulation models is presented in Appendix B. 

Figure  7-16 shows the Pareto fronts generated for the two construction methods and their 

combined Pareto for 50% cumulative probability. It can be noticed that the under-slung girder 
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method has only two solutions in the combined Pareto. These Pareto solutions were generated 

using disjoint probability. To demonstrate the shortcomings of the traditional method, these 

Pareto solutions were generated using the joint cumulative probability as described in 

Section  7.4. Figure  7-17 shows the three Pareto for 50% joint cumulative probability. It can be 

noticed that the under-slung girder method has six solutions in the combined Pareto. Figure  7-18 

and Figure  7-19 show the same concept for joint cumulative probability of 75% and 95%, 

respectively. It can be noticed that the combined Pareto fronts for the different joint cumulative 

probabilities do not contain the same optimum solutions. In other words, the dominance of the 

optimum solutions changes with the desired joint cumulative probability. Figure  7-20 shows 

probabilistic Pareto fronts for 50%, 75%, and 95% joint cumulative probability.   

7.8 Summary and Conclusions 

This chapter presented a new joint probability method that can be used to evaluate the 

probabilities of the project duration and cost obtained from stochastic simulation models. This 

method was applied to the sub-populations Pareto fronts obtained from the stochastic simulation-

based multi-objective optimization. This chapter: (1) introduced a method to apply joint 

probability to Pareto solutions; (2) proposed the concept of joint probabilistic Pareto fronts; (3) 

developed a method to analyze the selected solution; (4) implemented the proposed method; and 

(5) demonstrated the effectiveness of the proposed method. 
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Table  7-9 Analysis of Schedule Generation for Case Study B 

Activity 

Average Seed Number 1 Seed Number 2 Seed Number 3 Seed Number 4 

Dur. 

(days) 

Cost 

($1,000) 

Dur. 

(days) 

Cost 

($1,000) 
Distance 

Dur. 

(days) 

Cost 

($1,000) 
Distance 

Dur. 

(days) 

Cost 

($1,000) 
Distance 

Dur. 

(days) 

Cost 

($1,000) 
Distance 

A1 21 31.5 23   34.5 0.135 22 33.0 0.067 22 33.0 0.067 23 34.5 0.135 

A2 36   7.2 28     5.6 0.314 32   6.4 0.157 33   6.6 0.118 51 10.2 0.589 

A3 24  7.2 11     3.3 0.766 29   8.7 0.295 24   7.2 0.000 31   9.3 0.412 

A4 17 59.5 18   63.0 0.083 17 59.5 0.000 16 56.0 0.083 18 63.0 0.083 

A5 27 27.0 31   31.0 0.210 32 32.0 0.262 28 28.0 0.052 20 20.0 0.367 

A6 20 40.0 19   38.0 0.071 21 42.0 0.071 23 46.0 0.212 28 56.0 0.566 

A7 15 22.5 21   31.5 0.566 17 25.5 0.189 20 30.0 0.471   9 13.5 0.566 

Mean     0.306   0.149   0.143   0.388 



 

161 

 

Table  7-10 Project Duration and Cost of Different Cumulative Probabilities of Case Study C 

Desired  

Probability 

(%) 

Marginal 

Duration 

(days) 

Marginal 

Cost 

($1,000) 

Joint  

Cumulative 

Probability 

(%) 

Joint 

Duration 

(days) 

Joint 

Cost 

($1,000) 

Joint 

Cumulative 

Probability 

(%) 

∆D 

(%) 

∆C 

(%) 

25 235 956 DNE 244 981 25 4 3 

50 252 980 30 260 1,004 50 3 2 

75 269 1,005 59 279 1,020 75 4 1 

80 273 1,011 66 274 1,057 80 0 5 

90 284 1,027 DNE 300 1,033 90 6 1 

95 293 1,040 DNE 317 1,043 95 8 0 

Table  7-11 Different Number of Simulation Replications for Case Study C 

Replications 
Duration 

(days) 

Cost 

($1,000) 

Joint 

Cumulative 

Probability 

(%) 

Duration 

Marginal 

Cumulative 

(%) 

Cost 

Marginal 

Cumulative 

(%) 

Duration 

Conditional 

Cumulative 

(%) 

Cost 

Conditional 

Cumulative 

(%) 

100 269 996 50 75 64 100 100 

200 250 1,052 50 51 98 100 100 

500 253 1,020 50 55 88   80 100 

1,000 258 1,003 50 63 73   80   86 

2,000 262 998 50 68 70   72   66 

5,000 260 1,004 50 64 75   50   64 

 

 
Figure  7-16 Pareto Fronts Generated Using Traditional Method 
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Figure  7-17 Pareto Fronts Generated Using 50% Joint Cumulative Probability 

 

Figure  7-18 Pareto Fronts Generated Using 75% Joint Cumulative Probability 
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Figure  7-19 Pareto Fronts Generated Using 95% Joint Cumulative Probability 

 

Figure  7-20 Probabilistic Pareto Fronts for 50%, 75%, and 95% Joint Cumulative Probability 
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The advantages that decision makers can obtain from understanding and analyzing the 

knowledge considering the joint probability in stochastic simulation models were presented. The 

limitation of the traditional method of calculating the probability of the performance measure 

indices of stochastic simulation models and the shortcomings of the traditional method were 

discussed. To overcome these shortcomings, a new method that uses the joint probability to 

calculate the probability of occurrence of the outputs of stochastic simulation models was 

presented. The proposed method considers the simultaneous occurrence of the project duration 

and cost through the use of joint probability. Moreover, the new concept of joint probabilistic 

Pareto fronts is described. In addition, a method for calculating the project duration and cost joint 

contingency is presented. Furthermore, the best schedule representing a specific probability can 

be generated using the proposed method. The use of the proposed method makes sure that the 

selected combination has a better chance of occurring, and provides the decision maker with 

more detailed and accurate information about the project. This is achieved by considering the 

correlation between the duration and cost, and the impact they have on each other. 

Based on the results of the first three case studies, the proposed method shows an improvement 

over the traditional method as summarized in Table  7-3. For simulation models with high 

correlation between the outputs, ∆D and ∆C are not as large as in the case of simulation models 

with moderate or low correlation, which indicates the existence of a negative relationship 

between correlation and ∆D and ∆C. In addition, the existence of high correlation permits the 

reduction of the number of simulation replications required to get a sound estimation of a project 

which also indicates the existence of negative relationship between correlation and the number of 

replications required. Case Study D showed the shortcomings of the traditional method when 

generating the Pareto fronts using the disjoint cumulative probability. Using the joint 

probabilistic front method, a more accurate Pareto fronts can be generated.  
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8 CHAPTER 8: CONCLUSIONS AND FUTURE WORK  

8.1 Summary and Conclusions of the Research Work 

The main aim of this research is to select the best construction scenario of precast box girder 

bridges in terms of duration and cost. In order to achieve that, the following research 

developments were made: (1) a stochastic simulation-based multi-objective optimization model; 

(2) a method for incorporating variance reduction techniques into the proposed model; (3) a 

method to execute the proposed model in parallel computing environment on a single multi-core 

processor; and (4) a method to apply joint probability to the outcome of the proposed model.   

Chapter  4 presented the proposed the stochastic simulation-based multi-objective optimization 

model dedicated to bridge construction operations. The aim of the model is to select a near-

optimum construction scenario that satisfies predefined objectives. This model is used to select 

the near-optimum construction scenarios based on quantitative analysis rather than qualitative 

analysis. The construction scenario in this context consists of two main elements. The first 

element is the construction method that is used to construct a bridge. The second element is the 

decision variables related to that construction method. This chapter: (1) identified and modeled 

the decision variables related for each construction method; (2) formulated the objective 

functions that are used to estimate construction cost and duration; (3) defined the optimization 

constraints; (4) developed the simulation models of the selected construction methods; (5) 

designed the integration between the optimization algorithm and simulation; (6) implemented the 

model and demonstrated its effectiveness.  

Chapter ‎5 presented a new method that incorporates VRTs into stochastic simulation-based 

multi-objective optimization. Although VRTs have been used in simulation studies in the past, 

they are used here in a novel way to improve the performance of the optimization process. The 

proposed method considered three VRTs, which are CRN, AV and the CM techniques. For each 

VRT, two approaches for managing the streams were explained, namely, the same streams and 

the new streams. This chapter: (1) identified and models the required synchronization; (2) 

formulated a method to compare the performance measure indices of the candidate solutions; (3) 
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developed a method to compare and select the best VRT; (4) implemented the proposed method 

and demonstrated its effectiveness.  

This method showed an average of 81% reduction in the computation time and an average of 

18% improvement in the hypervolume indicator over the traditional method in Case Study A. On 

the other hand, in Case Study B, the method showed an 87% reduction in the computation time 

compared with the traditional method while maintaining a high quality of the optimal solutions.  

In both case studies, the CRN, CRNns, CM, and CMns techniques were founded to be effective in 

reducing the variance of the project duration and cost. Although AV did not show good results in 

the pilot studies, this should not necessarily be the case for other simulation models. In addition, 

AV would have similar time savings if it succeeds in inducing negative correlation between the 

replications in pairs. One limitation of the use of VRTs is that a pilot study is always required 

since there is no one VRT that is guaranteed to work for all simulation models. 

Chapter  6 presented method for implementing the simulation-based optimization model in a 

parallel computing environment on a single multi-core processor. The behavior of running 

simulation-based optimization on a single system with multicore architecture is studied. In 

addition, the impact of multithreading on the performance of simulation-based optimization is 

examined. The method was implemented using the master/slave paradigm. This chapter: (1) 

described the proposed method; (2) implemented the method and demonstrated its effectiveness.  

As demonstrated by the case studies in this chapter, this method was able to achieve substantial 

time savings. When the proposed method is used by itself, it was able to save 38% of the time 

required to solve the optimization problem according to Case Study A. In addition, as 

demonstrated in Case Study B, combining the proposed method with CRN resulted in a time 

saving of 90%. Finally, Case Study C showed the benefit of the proposed method when 

compared with another study that used a server computer and a cluster. 

Chapter  7 presented a new joint probability method that can be used to evaluate the probabilities 

of the project duration and cost obtained from stochastic simulation models. This method was 

applied to the sub-populations Pareto fronts obtained from the stochastic simulation-based multi-

objective optimization. This chapter: (1) introduced a method to apply joint probability to Pareto 

solutions; (2) proposed the concept of joint probabilistic Pareto fronts; (3) developed a method to 
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analyze the selected solution; (4) implemented the proposed method and demonstrated its 

effectiveness.  

Based on the results of the first three case studies presented in this chapter, this method shows an 

improvement over the traditional method. For simulation models with high correlation between 

the outputs, ∆D and ∆C are not as large as in the case of simulation models with moderate or low 

correlation, which indicates the existence of a negative relationship between correlation and ∆D 

and ∆C. In addition, the existence of high correlation permits the reduction of the number of 

simulation replications required to get a sound estimation of a project, which also indicates the 

existence of a negative relationship between correlation and the number of replications required. 

Case Study D showed the shortcomings of the traditional method when generating the Pareto 

fronts using the disjoint cumulative probability. Using the joint probabilistic front method, a 

more accurate Pareto fronts can be generated. 

8.2 Research Contributions 

The contributions of this research include: 

(1) Proposing a stochastic simulation-based multi-objective optimization model (quantitative 

analysis) for the selection of the construction method for precast concrete box girder bridges 

that is capable of (a) finding near optimum construction scenarios; and (b) simultaneously 

minimizing the project’s total duration and cost. 

 

(2) Introducing a method for incorporating variance reduction techniques into the proposed 

model. The proposed method is capable of: (a) increasing the quality of the optimum 

solutions; (b) increasing the confidence in the optimality of the optimum solutions; and (c) 

reducing the computation time required for performing a stochastic simulation-based multi-

objective optimization. In addition, the method is able to compare and select the best VRT 

and to compare the resulting candidate solutions. 

 

(3) Developing a method to execute the proposed model in parallel computing environment on a 

single multi-core processor. This method is capable of reducing the computation time 

required by traditional simulation-based optimization models. The time saving achieved by 

this method can be used to increase the confidence in the optimality of the optimum 
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solutions. This increase can be achieved by increasing the number of evaluated candidate 

solutions, which results in covering a larger portion of the search space of the optimization 

problem. 

 

(4) Proposing a method to apply joint probability to the outcomes of the proposed model. This 

method is capable of: (a) generating joint probability distributions of correlated simulation 

outputs and calculate their probabilities; (b) generating joint probabilistic Pareto fronts; (c) 

estimate the duration and cost joint contingency; and (d) generating a construction schedule 

that meets a specific probability.  

 

(5) The integration of the above methods within the stochastic simulation-based multi-objective 

optimization model. 

8.3 Limitations and Recommendations for Future Work 

A new model and several methods for planning and optimizing the construction of precast box 

girder bridges were presented in this research. These contributions improve the decision-making 

process in the planning phase of the project and aid planners in planning the construction 

operations. However, there some limitations that can be identified which are: 

(1) Sensitivity analysis is required to evaluate the performance of the proposed methods.  

(2) The simulation models presented in this thesis were based on the publically available 

information which could make these models simplified versions of the real systems.  

(3) The user has to select the applicable construction methods in order to generate the near 

optimum construction scenarios.  

(4) Only four construction methods are considered in this research, however, in real life more 

construction methods could be applicable for constructing a specific bridge.  

(5) The developed implementation at this stage is not user friendly.  

Several future research areas can be identified in order to enhance the research done in this study 

and expand it to include other applications. These areas include: 

(1) Evaluating the applicability of the proposed methods in real projects. 
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(2) Investigating the impact of using of other metahuristic algorithms on the computation time of 

the proposed methods.  

(3) Assessing performance measurement of using VRTs and parallel computing by setting up a 

proper experiment with benchmarks and appropriate parameters to vary and study.  

(4) Integrating the proposed methodology with a knowledge-based system to select the 

applicable construction methods to the bridge under study.   

(5) Investigating the time savings that can be achieved using high-level architecture (HLA) 

(Dahmann, 1997) to evaluate the candidate solutions within the proposed methodology.  

(6) Expanding the optimization problem to generate phasing plans of multiple nearby bridge 

construction projects that involve multiple contractors. This new optimization problem 

should consider the spatio-temporal relationship between the projects.   

(7) Visualization using Building Information Modeling (BIM) (Eastman et al., 2011) and Bridge 

Information Modeling (BrIM) (Bentley Systems Incorporated, 2015) became a very poplar 

approach in the industry as well as in academia in the recent years. There are several areas 

where contributions to the body of knowledge can be added. 3D/4D Visualization of the 

construction methods and equipment can be used to: (1) determine the constructability of the 

construction method and equipment used; (2) study the maneuvering space needed by the 

used equipment; and (3) analyze and improve safety on construction sites.  

(8) Using BIM/BrIM, the 3D model of the bridge can be integrated with the proposed model to 

extract the quantities of work to be performed and the type of materials to be used. This 

information can be used for estimating the cost of the materials used in the project and the 

durations of the project tasks. Moreover, the number of segments/spans can be extracted 

from the 3D model to be used as input to the simulation models.   

(9) Integrating the proposed model with the near real-time project progress and resource tracking 

data to apply the necessary re-planning, re-scheduling and re-allocation of the resources 

when a deviation from the initial plan is detected.   
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9  APPENDIX A: TASKS DURATIONS USED IN THE SIMULATION MODELS 

Table A-1 Deterministic Tasks Durations for Precast Full Span Erection Using Launching 

Gantry 

Task Duration  (minutes) Task Duration  (minutes) 

BottomSlab_Web 1673 * Trailer_Loading 60 ** 

Inner_Mold 300 * Trailer Haul F (Distance, Speed) 

TopSlab 1979 * Trolley_Loading 60 ** 

LiftToMold 45 Trailer_Return F (Distance, Speed) 

Cast_Span 1544* Trolley_Travel F (Distance, Speed) 

Span_Curing (600 or 1200) * Reposition 240 ** 

RemoveInnerMol 255 * Erection_Span 240 **  

Posttension_1st 240 * Trolley_Return F (Distance, Speed) 

LiftToStorage 60 ** Prepare_Bearing 240 ** 

Posttension_2nd 240 * Load_Transfer 60 ** 

*  Adapted from (Marzouk, El-Dein, & El-Said, 2007) 

** Adapted from (VSL International Ltd, 2013) 

 

 

Table A-2 Tasks Durations for Precast Segmental Erection Using Launching Gantry 

Task Duration  (minutes) Task Duration  (minutes) 

Steel_Cage Triangular [90, 180, 270] * Trailer_Haul F (Distance, Speed) 

Insert_Mold Triangular[15, 30, 45] * Trailer_Return F (Distance, Speed) 

Cast_Segment Triangular [90, 180, 270] * Reposition Triangular[120, 240, 360]**  

Segment_Curing (600,1200) * Place_Segment Triangular[27, 54, 81]** 

RemoveMold Triangular[15, 30, 45] * Align_Glue Triangular[240, 480, 720]** 

Move_Storage Triangular[30, 60, 90]  Install_ExtPT Triangular[240, 480, 720]** 

Trailer_Loading Triangular[30, 60, 90]  Stressing_ExtPT Triangular[120, 240, 360]** 

* Adapted from (Marzouk et al., 2007) 

** Adapted from (VSL International Ltd., 2013) 
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Table A-3 Tasks Durations for Precast Segmental Erection Using Falsework Support 

Task Duration  (minutes) Task Duration  (minutes) 

Steel_Cage Triangular [90, 180, 270] * Trailer_Haul F (Distance, Speed) 

Insert_Mold Triangular[15, 30, 45] * Trailer_Return F (Distance, Speed) 

Cast_Segment Triangular [90, 180, 270] * Reposition Triangular[240, 480, 720]**  

Segment_Curing (600,1200) * Place_Segment Triangular[27, 54, 81]** 

RemoveMold Triangular[15, 30, 45] * Align_Glue Triangular[240, 480, 720]** 

Move_Storage Triangular[30, 60, 90]  Posttension Triangular[120, 240, 360]** 

Trailer_Loading Triangular[30, 60, 90]  Load_Transfer Triangular[120, 240, 360]** 

* Adapted from (Marzouk et al., 2007) 

** Adapted from (VSL International Ltd., 2013) 

 

 

Table A-4 Tasks Durations for Precast Segmental Erection Using Under-slung Girder 

Task Duration  (minutes) Task Duration  (minutes) 

Steel_Cage Triangular [90, 180, 270] * Trailer_Haul F (Distance, Speed) 

Insert_Mold Triangular[15, 30, 45] * Trailer_Return F (Distance, Speed) 

Cast_Segment Triangular [90, 180, 270] * Reposition Triangular[120, 240, 360]**  

Segment_Curing (600,1200) * Place_Segment Triangular[27, 54, 81]** 

RemoveMold Triangular[15, 30, 45] * Align_Glue Triangular[240, 480, 720]** 

Move_Storage Triangular[30, 60, 90]  Install_ExtPT Triangular[240, 480, 720]** 

Trailer_Loading Triangular[30, 60, 90]  Stressing_ExtPT Triangular[120, 240, 360]** 

* Adapted from (Marzouk et al., 2007) 

** Adapted from (VSL International Ltd., 2013) 



 

189 

 

10 APPENDIX B: COST DATA USED IN THE SIMULATION MODELS 

Resource Cost Unit 

Indirect cost 500 ($/day) 

Delivery truck 50 ($/hr) 

Truck driver 50 ($/hr) 

Yard crane  50 ($/hr) 

Yard crane driver 100 ($/hr) 

Onsite crane mobilization 900 ($) 

Onsite Crane 150 ($/hr) 

Onsite crane driver 100 ($/hr) 

Gantry mobilization 9,000 ($) 

Gantry 500 ($/hr) 

Gantry driver 200 ($/hr) 

Under-slung girder mobilization 5,000 ($) 

Under-slung girder 100 ($/hr) 

Under-slung girder driver 200 ($/hr) 

Trolley mobilization 900 ($) 

Trolley 150 ($/hr) 

Trolley driver 100 ($/hr) 

Preparation crew mobilization 200 ($) 

Preparation crew 200 ($/hr) 

Stressing crew mobilization 200 ($) 

Stressing crew 200 ($/hr) 

Steel crew mobilization 200 ($) 

Steel crew 200 ($/hr) 

Casting crew mobilization 200 ($) 

Casting crew  200 ($/hr) 

Rebar cage fabrication 500 ($) 

Rebar cage 10 ($/hr) 

Inner mold fabrication 1,000 ($) 

Inner mold 10 ($/hr) 

Outer mold fabrication 1,000 ($) 

Outer mold 10 ($/hr) 

Storage 10 ($/hr) 

 

 


