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ABSTRACT 

 

Seismic Performance of Eccentrically Braced Frames Designed According to 

Canadian Seismic Provisions 
 

Mona Rais Esmaili 

Eccentrically braced frames (EBFs) are very effective lateral load resisting systems against 

earthquakes because of their hybrid behavior that includes great stiffness corresponding to the 

bracing actions, and considerable ductility owing to the inelastic activity of a small part of the 

floor beam called link. Current capacity design approach of EBFs is to confine the inelastic 

behavior of the frame primarily to the link such that other members remain essentially in elastic 

range. Limited research works are available in the literature studying the behavior of multi-storey 

EBFs designed according to the current Canadian seismic provisions. This thesis was aimed to 

study seismic performance of EBFs through nonlinear time history analysis (NLTHA) of three 4-

, 8- and 14-storey chevron eccentrically braced frames. The selected EBFs were subjected to real 

and artificial ground motion records scaled to match the response spectrum of Vancouver. All 

the EBFs, designed according to current capacity design provisions, exhibited excellent seismic 

performance in terms of stiffness, strength, and ductility. It was observed that the inelastic link 

rotations of all EBFs were lower than the design limit of 0.08 rad, except for the two upper floors 

in 14-storey EBF where the link rotation slightly exceeded the limit. Seismic analysis also 

showed that maximum inelastic link shear forces exceeded the values recommended in design 

for many earthquake records.  
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Although NLTHA can precisely estimate structural seismic responses, it requires high 

computational demands making it impractical for engineering design offices. On the other hand, 

the conventional pushover analysis does not consider contributions of higher modes to the 

structural responses and thus it often does not provide good estimation of seismic responses for 

taller buildings. Capacity-Spectrum Method (CSM) and modal pushover analysis (MPA) are two 

simple nonlinear static methods that have been proposed and recently used for seismic 

performance evaluation of few lateral load-resisting systems. This research further studies the 

application of CSM and MPA as alternatives for rigorous NLTHA to estimate seismic 

performance parameters of EBFs. The three selected EBFs were analyzed using MPA and CSM 

and the results were compared with nonlinear seismic analysis results.  It was observed that both 

CSM and MPA predicted the peak top displacements of EBFs with sufficient accuracy.  
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Chapter 1. Introduction 

1.2. General 

Eccentrically braced frames (EBFs) have been recognized as effective lateral load resisting 

systems providing large ductility comparable to moment resisting frames (MRFs) and excellent 

stiffness similar to concentric braced frames (CBFs).  The high stiffness of EBFs stems from the 

existence of the braces, and their superior ductility is due to the inelastic activity of a section 

called link. The link is a part of the floor beam located between the ends of the braces or between 

the brace end and the column flange. The links are the most important members of EBFs 

dissipating large amount of energy through their plastic behavior, and influencing the strength, 

stiffness and ductility of the frame. Figure 1.1 illustrates some usual configuration of eccentric 

braced frames. Among different configuration of EBFs, the eccentric chevron braced frame is 

preferable since it prevents the link to column connection which is recommended to be avoided 

in the literature (Engelhardt and Popov 1989). 

The underlying concept of EBFs is restricting all inelastic actions into the links so that other 

members act elastically under severe earthquake loadings. Therefore, the link is the key member 

from which the design of eccentrically braced frame initiates; while other members are designed 

to withstand the maximum forces developed by the fully yielded link. The link behavior is 

primarily affected by its length. Short links, also called shear links, mainly yield in shear whereas 

long links yield in flexure. Generally, the short links are recommended for designing EBFs 

(Engelhardt and Popov 1989) because in this case the plastic shear strains are uniformly 

distributed along the web of the links, allowing for large inelastic rotation of the link without any 

 

 



 

 

excessive local strains. For long links high bending moments are required at the end of the link in 

order to produce large inelastic rotations. The high bending moments create high local plastic 

deformations preventing the desired inelastic rotations of the link. The reported maximum link 

rotation by the experimental research is about 0.1 radian for shear links (Whittaker et al. 1987) 

and about which 0.02 radian for long links (Engelhardt and Popov 1989).   

Current Canadian design provisions (CSA 2009, NBCC 2010) require that EBFs be designed 

according to capacity design approach. In this approach, the links are sized for the seismic forces 

specified by NBCC 2010 and other frame members should be designed for the forces developed 

by the fully yielded and strain-hardened link. Limited studies are available in the literature that 

focused seismic performance of EBFs designed according to current Canadian seismic 

provisions. In this research, seismic performances of 4-, 8-, and 14-storey EBFs are studied. A 

detailed finite element model that can accurately simulate monotonic and dynamic behavior of 

EBFs is developed. The finite element model included both material and geometric non-

linearities. The reliability of FE model was first validated by comparing FE results with the 

experimental ones. The FE models were used to study seismic performance of EBFs through 

non-linear dynamic analysis. Although this method is known as the most accurate method in 

determining seismic responses, it is not very useful at the design level due to its high 

computational demands. The precise prediction of strength and deflection is very important at the 

design phase, since it can assure the desired level of performance. 

In recent years, the performance-based seismic design (PBSD) is employed as a more reliable 

method for designing structures using accurate prediction of seismic demands at the design level. 

This demonstrates the need for efficient and precise seismic evaluation tools for every structural 
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system. Pushover analysis has been introduced by current guidelines (FEMA-273 1997, FEMA-

356 2000) as a practical non-linear static procedure to estimate seismic responses. However, 

since this method just considers the effect of the first fundamental mode to the response, it is not 

useful for the structures in which higher mode effects are considerable. To overcome the 

mentioned limitation, modal pushover analysis (MPA) was introduced by Chopra and Goel 

(2001) as an alternative method to improve the pushover procedure by including higher mode 

contributions to seismic demands. The accuracy of this method has previously been studied on 

moment resisting frames (Chintanapakdee and Chopra 2003, Goel and Chopra 2004); however, 

no significant research has been yet conducted on the application of modal pushover on EBFs. 

Another simplified method that has been proposed to estimate seismic performance parameters 

of structure is Capacity-spectrum method (CSM). To date, no research has examined the 

applicability of CSM method for estimating seismic demands of EBFs. This thesis is evaluating 

the accuracy of modal pushover analysis and capacity spectrum methods in estimating seismic 

demands of EBFs by comparing results from MPA and CSM with the accurate results of 

rigorous nonlinear dynamic analysis.  

 

Figure 1.1. a) Eccentric D-braced frame, b) Eccentric chevron-braced frame, c) Eccentric V-braced frame 
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1.3. Objectives and Scope 

The main objectives of this research are as follows:  

1. Develop a detailed finite element model to study the seismic performance of EBFs 

designed according to Canadian design requirements. The finite element model, which 

considers both material and geometric non-linearities, is validated with an available 

experimental study to verify its ability in precise determining the responses of EBFs. 

2. Perform non-linear seismic analyses on eccentrically braced frames, using detailed finite 

element models, to evaluate the important response parameters of EBFs precisely. The 

results of these analyses are employed to investigate differences between the seismic 

responses and the design predictions. 

3.  Investigate the capability of modal pushover method in predicting seismic demands of 

EBFs through comparing different response parameters such as storey displacements, inter-

storey drifts, and base shear obtained from MPA with the accurate results of non-linear 

time history analyses.  

4. Investigate the applicability of capacity-spectrum method for estimating seismic demand 

parameters. Roof displacement and structural ductility demand are estimated as the 

performance parameters. If the applicability of MPA and CSM on EBFs is justified, it can 

be employed as an efficient alternative of rigorous non-linear time history analysis at the 

design phase 
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1.4. Methodology 

To achieve the presented objectives, three eccentrically braced frames with 4, 8 and 14 storeys 

were designed and analyzed for Vancouver representing a high seismic zone in Canada. The 

following methodology was used to fulfill the mentioned objectives: 

Three eccentric braced frames with 4-, 8- and 14-storeys were designed according to current 

Canadian design provisions (NBCC 2010, CSA 2009). The designed EBFs were precisely 

modeled using ABAQUS, powerful finite element software capable of solving problems with 

significant non-linearities. In order to have a reliable FE model, the finite element modeling 

technique was firstly validated by modeling an experimental full-scale EBF and comparing its 

results with the corresponding experimental results.  

A set of eight real and artificial ground motion records were selected and scaled for the 

Vancouver region and employed for non-linear seismic analyses of the three mentioned EBFs to 

obtain and study the important seismic responses of EBF such as storey displacements, inter-

storey drifts, link rotations, and link shear forces. 

The applicability of modal pushover method to estimate EBFs seismic demands was 

investigated. To perform modal pushover procedure, the frequency analyses were conducted on 

the three designed EBFs to find the fundamental mode shapes and periods of each frame. Then a 

series of non-linear pushover analyses were conducted on the designed EBFs subjected to the 

forces related to each mode. The results of these analyses were employed to identify the 

properties of the single degree of freedom system corresponding to each mode leading into 

determination of different response parameters of EBFs such as storey displacements and inter-
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storey drifts.  The steps are explained in detail in chapter 5. These results were compared with 

the results of non-linear seismic analysis. 

In the Capacity spectrum method, the capacities of the designed EBFs were determined from 

pushover analysis and were combined with design response spectrum of Vancouver to estimate 

the peak roof displacement and ductility demand of EBFs. The method is formulated in 

acceleration-displacement format and inelastic spectra, rather than elastic spectra are used. 

1.5. Thesis Outline 

This thesis includes seven chapters. The first chapter presents a brief discussion of the existing 

problems corresponding to seismic performance evaluation of eccentrically braced frames. Then 

the objectives and the methodology used for this study are introduced. The second chapter 

provides a review of some important experimental, analytical and numerical research works 

previously done on eccentrically braced frames. Also, some previous studies on modal pushover 

analysis are discussed. Chapter 3 describes the modeling technique, details and specifications of 

the finite element model developed in ABAQUS to study the performance of EBFs. The 

validation of the finite element model is also provided in this chapter. Besides, the capacity 

design approach suggested by CSA\CAN S16-09 used for designing three 4-, 8- and 14-storey 

EBFs is presented. The created finite element models of the designed frames are also provided in 

this chapter.  Chapter 4 presents the process of selecting ground motion records for non-linear 

time history analysis. Important response parameters of the designed eccentrically braced frames 

subjected to the selected earthquakes are also demonstrated and discussed. Chapter 5 describes 

the modal pushover analysis method to estimate seismic demands and performance of 

eccentrically braced frames. The responses obtained from MPA method are compared with the 

6 

 



 

 

results of non-linear time history analysis. Chapter 6 presents the application of Capacity 

Spectrum method to estimate seismic demands of three selected EBFs. Results from CSM are 

compared with those from nonlinear dynamic analysis. Chapter 7 summarizes the conclusions of 

the studies and also provides the recommendations for future research. 
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Chapter 2. Literature Review 

2.1. General 

With the advent of eccentrically braced frames in the mid-1970s, extensive studies were initiated 

to investigate the behavior of EBFs under cyclic and seismic loadings. This chapter introduces 

the experimental, analytical and finite element studies have been conducted on EBFs; as well as, 

the main findings of these studies. Also, the first proposed capacity design method for EBFs is 

explained in detail. This chapter also describes the background of modal pushover analysis 

which is used for seismic performance evaluation of eccentrically braced frames.  

2.2. Past Studies on EBFs 

A vast number of studies have been conducted on EBFs over the past 40 years. They can be 

classified into three major categories. The first category includes the experimental studies, 

having been performed on full scale models or on isolated members of EBFs. The first 

experimental study on eccentrically braced frames consists of a series of quasi-static tests which 

have been done in 1970s at the University of California, Berkeley (Roder and Popov 1977). In 

the study, firstly the behavior of short links under cyclic loading was studied. The results showed 

that links which yield in shear have the best energy dissipation mechanism due to their great 

stability during large cyclic deflection. They also reported extensive strain hardening, observed 

in the shear links. Considering the results of their experiments, they suggested an analytical 

model based on sandwich beam theory. Two one-third scale three storey EBFs were modeled 

and their results were compared with the responses of analytical model. The results of these 

experiments confirmed high strength, stiffness and energy dissipation of EBFs. 
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The first dynamic experiment on eccentric braced frames was a shaking table study on a one 

third scale five storey EBF with eccentric x-bracing (Yang 1982). The objective of this study was 

to evaluate the seismic resistant efficiency of x-braced EBFs. Based on the dynamic results, it 

was reported that damages were limited to buckling and fracture of the shear link. Also, it was 

demonstrated that weaker links dissipated more energy and produced smaller forces. It was 

concluded that the dynamic response of EBF was governed by strength of shear link. 

 Later, in 1987, an earthquake simulation test was accomplished on a 0.3-scale model of a six-

story chevron braced frame (Whittaker et al. 1987). Also, a seismic testing was performed on a 

full scale 6 storey EBF with eccentric k-braces under 1952 Taft record. In this study, yielding 

and buckling of gusset plates were observed at some levels, leading into reducing the strength 

and energy absorbing capability of the corresponding floors. However, the overall performance 

of EBF was excellent (Roeder et al. 1987).  

Popov et al. (1992) investigated the effect of maintaining uniform link strength factor along the 

height of frame by evaluating previous full scale experiments on EBFs (Roeder et al. 1987), and 

a 13 storey EBF designed by Martini et al. (1990). Neither of cases considered a uniform link 

strength factor during design phase which resulted into soft storey mechanism in the first 

experiment and using vertical ties in the latter one. They concluded that keeping the link strength 

factor uniform along the height of EBF prevents excessive link inelastic rotations in some levels, 

and avoids soft storey mechanism in lower storeys. 

More recent experiments were also carried out on full scale models. These studies include full 

scale testing of one-storey chevron type EBF with replaceable shear link under cyclic loading, 

performed by Mansour (2010). He used two types of replaceable links including W sections with 
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end plate connections and back to back channels with web connections. In the experimental 

work, seven shear links were used in a full scale EBF with 7.5 m wide and 4.5 meter height 

under AISC (2005) loading protocol, to investigate the local response of replaceable links and 

the global behavior of the frame. From his experiments, it was concluded that the removable link 

meets the performance criteria of Canadian standard (CSA 2009) without any failure or sever 

strength degradation. The results of his study showed that EBFs with ductile replaceable links 

provide improved ductility comparing to the conventional EBFs.  

Another full-scale experiment was a pseudo-dynamic test of a dual EBF with removable link 

(Dubina 2014). In the study, he combined eccentrically braced frames with replaceable links to a 

moment resisting frames in order to have a dual structure. A reinforced concrete slab was 

considered at each floor. The aim of this study was to assess the overall seismic performance of 

the dual EBF, and study the link removal technology. He concluded that the structure indicated 

an excellent seismic performance. Permanent drifts were resolved by removing bolted links. He 

suggested unbolting for removing the links with small plastic deformation, for large deformation 

case, flame cutting of the links were suggested.  

There are also a large number of experiments which studied isolated members, specially the 

links' behavior.  In 1983, cyclic behavior of link beams was investigated by some experimental 

studies. Popov and his colleagues studied the behavior of shear links with w-shape sections, 

being employed in a sub-assemblage, reproducing the link behavior in a real EBF under cyclic 

displacements (Hjelmstad and Popov 1983, Kasai and Popov 1986).  

Engelhardt and Popov (1989) investigated the behavior of long links by a total of 14 tests on 12 

specimens with W sections and A36 steel material. These links were assumed to connect to the 
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columns. The results of their studies showed that short links which yield in shear are more 

efficient in dissipating energy than long links which primarily yield in flexure. Also, they found 

that web buckling which weakens the load carrying and energy dissipation capacity of the link 

can be resolved using evenly spaced web stiffeners. Moreover, because of poor behavior of link 

to column connections, they recommended to avoid this type of EBF. Current Canadian standard 

(CSA 2009) for designing EBFs permits using both short and long links; however, based on the 

aforementioned studies, they also recognized the shear links more preferable in terms of the 

design and behavior. Engelhardt and Popov recommended link overstrength factor of 1.5 which 

represent the maximum force that can be produced by yielded and strain hardened link. 

The mentioned tests used ASTM A36 steel; however, with the spread of ASTM A992 steel in 

constructions, researchers started to investigate its applicability and effect on eccentrically 

braced frames performance. In 2005, a series of 23 cyclic tests were performed to evaluate the 

overstrength factor of w shape links made of A992 (OkazakiArce et al. 2005). The results of 

their study showed that the ASTM A992 w shape links showed the maximum overstrength of 

1.47 for shear links. They concluded that the overstrength factor of 1.5 which is recommended 

by AISC is applicable for new steel under study. Another study was carried out on 37 link 

specimen to extend the results of previous experiment (Okazaki and Engelhardt 2007). In this 

study, the maximum overstrength factor of 1.62 was observed for ASTM A992 steel. They 

explained that sections with high ratios of flange to web area showed lower overstrength factors. 

They concluded that the performance of EBF links made of ASTM A992 was well and it could 

meet the performance criteria suggested by 2005 AISC Seismic Provisions. 

11 

 



 

 

Parallel to the experimental researches, some analytical studies have been also done on EBFs. 

The aim of these studies was proposing models which can predict the inelastic behavior of EBFs. 

One of the early models for link was proposed by Roeder and Popov (1977). In this model, the 

shear forces and moments were assumed to be resisted by web and flanges respectively. The 

model considered combined isotropic and kinematic hardening. This model was designed to 

represent links yielded in shear and with small moments at the ends which is not the case for all 

the links.  

To overcome the shortages of previous model, Ricles and Popov (1987, 1994) developed another 

element which was able to predict the shear and flexural yielding of links successfully. The 

element was modeled as a linear beam element with plastic end hinges, representing all inelastic 

deformation of the link. The elastic beam limited the axial deformations through itself. Shear and 

flexural yielding and combined kinematic and isotropic hardening were considered in this model. 

Based on the approach of Ricles and Popov (1987), another analytical model, aimed to be used in 

computer codes, was developed by Ramadan and Ghobarah (1995). They intention was to 

develop a more simple model comparing to the one suggested by Ricles and Popov, which can 

be easily used in the computer codes. This model was employed in DRAIN-2DX (Parkash et al. 

1992).  

Along with the analytical and experimental studies, the finite element techniques were also 

employed to study the behavior of eccentrically braced frames. For finite element modeling of 

full scale EBFs or link member, some of the analytical models described above were employed 

to investigate their seismic responses. The shear link developed by Ricles and Popov (1987, 

1994) was included in ANSR-1 program (Mondkar and Powell 1975) to study seismic behavior 
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of EBFs and to improve their design approach (Koboevic 2000). ANSR-1 is a finite element 

program for nonlinear time history analysis (NLTHA).  

In 1987, the behavior of EBFs under pseudo dynamic test was investigated by finite element 

analysis (Balendra et al. 1987). In the study, the frame was discretized into five elements 

including brace, which was modeled by truss element; beam and two columns, being modeled by 

beam elements with a bilinear moment curvature relation; and the link, being modeled with the 

shear link element yielding under pure kinematic hardening. Also, a finite element model was 

employed to study the effect of axial forces in the links on EBFs' performance (Ghobarah and 

Ramadan 1990). In modeling of the link, 4 node shell elements, working based on the 

incremental Lagrangian continuum mechanics equation, were used. They considered material 

nonlinearity by taking into account the actual stress-strain relationship. For geometric 

nonlinearity, large displacements and rotations were allowed by updating node coordinates and 

normal vectors. This finite element model was used to study seismic performance of links with 

various lengths. The advantages of the short links in maximum deformation angle and ductility 

were confirmed (Ghobarah and Ramadan 1991). David (2009) used ANSR-1 to perform 

nonlinear time history analysis on high-rise eccentrically braced frames. Nonlinear beam column 

elements were employed to model the outer beam, braces and the columns. The link was 

modeled by the shear link element proposed by Ricles and Popov (1994).  

An extensive finite element study was carried out in the University of California, San Diego to 

study the effect of the loading protocol on short link rotation capacity (Richards 2004). In this 

study, 112 finite element link models ranging from short to long links with different flange to 

thickness ratios were analyzed under cyclic loading. They concluded that the flange width-
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thickness ratio did not influence the plastic link rotation capacity directly. The design rotations 

for intermediate links were not conservative. Also they compared the results of A992 with A36 

steel material. They found that using ASTM A992 steel for wide flange shapes has not 

considerable effect on links overstrength. They also recommended to consider shear forces in the 

flanges of the link for determining ultimate strength of the links. They also developed nine 

models of 3 and 10 storey EBFs with short, intermediate and long links in Ruaumoko, which is a 

finite element application for 2D and 3D nonlinear time history analysis (Karr 2002), to study the 

overall frame behavior and different member forces. In these models panel zones were not 

modeled and their deformations were neglected. Beams, outer beams, braces, and columns were 

modeled as beam-column. Shear  links  were  modeled  using  a  method  similar  to  that  

proposed by Ramadan and Ghobarah (1995) with modifications in elastic stiffness of the links.  

In 2013, European researchers (Della Corte et al. 2013) performed analytical and numerical 

study on shear links made of European shapes HE and IPE, to verify the link plastic overstrength 

factor. They proposed a simple analytical model based on the results of finite element model, 

validated by some experimental tests. The shear links were developed in ABAQUS, using four 

nodes shell elements. Based on their FE model and comparing its results with the available 

experimental data, they concluded that for very short links with compact cross section, the shear 

strength equal to 2 can be achieved. For compact built-up links with very short length even larger 

values of shear strength can be obtained. Also, a finite element study was conducted to optimize 

link member of EBFs for maximum energy dissipation (Ohsaki and Nakajima 2012). The 

objective function was the plastic dissipated energy before failure. Based on the results of their 

study, they concluded that the energy dissipation of the links is greatly affected by optimizing the 

locations and thickness of stiffeners.  
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New Zealand Heavy Engineering Research Association (HERA) carried out an advanced finite 

element analysis on EBF with removable links to verify the performance of EBFs (Mago 2013). 

The FE model was developed in ABAQUS/CAE. The FEA model represents a one storey 

eccentrically braced frame. The results of the FEA showed that in the collector beam, 

insignificant plastic strains were observed, occurring close to the endplate under the highest 

cycles of loading. These plastic strains did not influence the structural performance. It was 

concluded that the welded web stiffener attracts significant local plastic strain.  

Most of the finite element studies on EBFs didn't use detailed FE models which are able to 

capture the local behavior of the structure. To the author's knowledge, there are very limited 

detailed FE models available for multi-storey EBFs. Such a model can predict both local and 

global behavior of EBFs. Also, validated detailed FE models can be a good replacement for 

experimental ones for further investigations. Therefore, providing a full scale model that can 

predict all the behavior of full scale real structure is necessary to avoid the high costs and efforts 

made by real experiments. In this study, detailed continuous finite element models of short, 

medium and high-rise EBFs were created to study the local and global behavior of EBFs in 

response to seismic loading. 

2.3. Capacity design methodology for EBFs 

Some of the early experimental studies (Popov et al. 1987, Popov and Engelhardt 1988) are the 

basis of design recommendations that are currently used in Canadian standard for steel structures 

(CSA 2009). In 1988, based on the results of experimental works on three and six storey EBFs 

and on the links with equal and unequal end moments, Popov and Engelhardt proposed the 

capacity design principles for EBFs. In the capacity design procedure, some elements within the 
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structural system are designed to dissipate energy by their inelastic activity, while limiting the 

behavior of the other members within the elastic range. In EBFs, the links are designed for 

yielding and strain hardening, and the other elements are designed for the forces of fully yielded 

links. This assures that all the members of EBFs except for the links are strong enough to behave 

elastically. They suggested three considerations for designing EBFs. Firstly, the link sections 

should be selected and detailed to provide the required frame strength and ductility. Secondly, 

other members of EBFs should be chosen with stronger sections in order to allow developing the 

strength and ductility of the links. Finally, the ductility demand of the structure and the link 

should be estimated; and the links should be detailed to meet the rotation demand. To follow 

these considerations, the links must be designed for the code seismic forces, and all other 

members of the frame should be designed for the ultimate forces produced by the links. The 

following presents the suggested design guidelines by Popov and Engelhardt (1988) for EBFs.  

 Bracing arrangement 

The first thing that should be decided in design of EBFs is the bracing arrangement to be used. 

To choose the bracing arrangements, they recommended avoiding configurations which requires 

link to column connections. To consider this recommendation, using a chevron EBF is a good 

choice. Moreover, they emphasized that the brace to the beam angle should be chosen more than 

40 degrees in order to avoid high axial forces in the beams and links resulting in strength and 

stability problems.  
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Link length 

Another important decision is choosing the link length at the preliminary stages. They suggested 

using short shear link because of its high energy dissipation capacity and ductility. To assure that 

the selected links is yielding in shear, they recommended using equation 2.1. Based on the 

previous experimental researches, they stated that considerable strain hardening could occur in 

shear links, resulting in ultimate shear forces of p1.4 to 1.5V . For shear links, the link end 

moments are considerably greater than PM , leading into flanges strains. In order to avoid 

excessive strain in flanges, they recommended limiting link end moments to P1.2M . Assuming 

perfect plasticity and no M-V interaction, the link length was recognized to be equal to P p2M / V  . 

Substituting pV by p1.5V and PM with P1.2M , equation 2.1 can be derived.  

 P pe 1.6M / V≤  2.1 

They recommended this equation to guarantee shear yielding of the links. For preliminary 

decision making, using link length on the order of 1 to P p1.3M / V  was found effective.  

Link size 

The first section which should be chosen in EBFs corresponds to the links. The links must be 

sized for seismic level forces considering the free body diagram shown in Figure 2.1.  
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Figure 2.1. Simplified F.B.D of chevron EBF 

The shear force in the link can be found by equation 2.2. 

 ( )link cumV h / L V=  2.2 

cumV is the accumulated storey shear of top floors of EBF to the level under consideration.  The 

selected link section should have a plastic shear resistance at least equal to linkV .  

Selection of other EBF members 

After selecting the link sections, they recommended to calculate the ultimate shear force of the 

link by equation 2.3. Other member should be sized for the forces calculated based on equation 

2.3 for fully yielded links.  

 ult pV 1.5V=  2.3 
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Based on the previous experiments, they explained that sometimes the ultimate shear forces in 

the links were observed higher than p1.5V . Therefore, they suggested to design the braces 

conservatively.  

 For the beam outside the link (outer beam), since it is subjected to a large axial force and larger 

bending moment, they suggested to design it as beam-column. They explained that larger angle 

between brace and beam could reduce the axial forces in the beams. To prevent instability in the 

beams because of the presence of the high axial forces, using lateral bracing was recommended 

by Popov and Engelhardt. Also, Columns should be designed to behave elastically under 

ultimate link forces and gravity load effects.  

Link rotation demand 

After selecting members sections, the rotation of the links should be checked to ensure that the 

frame required ductility is obtained. To determine the rotation of the link, they suggested using 

rigid-plastic mechanism shown in Figure 2.2, resulting in equation 2.4. 

 

Figure 2.2. Rigid-Plastic mechanism of EBF 
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where θ  is ultimate frame drift angle. The elastic drift can be calculated under code level forces 

and then multiplied by a factor to account for ultimate drift.  

Link details 

Accurate detailing of stiffeners and lateral bracing at the link ends lead into obtaining the full 

strength and rotation capacity of the shear links. They recommended using two sided, full depth 

stiffeners at the end of the link and intermediate stiffeners with equal spacing within the links. 

The intermediate stiffeners could be one sided for beams with depth less than 24 inches. These 

stiffeners were intended for strengthening the web and avoiding lateral-torsional buckling and 

flange buckling. Lateral bracing was aimed to prohibit out of plane deformation of the braces 

end, causing twisting of the beams and links. 

 

Figure 2.3. Typical detail for hollow section braces to beam connection (Popov and Engelhardt 1988) 

Brace to link connection should be designed for compression strength of the brace and the 

moment developed in the brace ends. The brace should be positioned such that its centerline 
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meets the beam centerline at the end or inside the link. Stiffening the gusset plate ends close to 

the links are also recommended where the bending moments in the beam causes large stress 

along the edge of gusset plate.  

For EBFs design, the same design philosophy and considerations is currently used in CSA 

(2009) with some modifications in the recommended values and factors for calculating member 

forces, link rotations, etc. The current Canadian standard (CSA 2009) criteria for designing 

eccentrically braced frames are discussed in detail in chapter 4.  

2.4. Performance Evaluation of EBFs 

Seismic performance evaluation of structures is an important part of the performance based 

design process which gives an estimation of the probable responses of the structure to earthquake 

hazards. Performance based design is a new design philosophy in which the design criteria are 

defined based on a specified level of performance under a particular level of seismic hazard. 

Then the performance of the designed structure should be assessed to determine the probable 

responses of the system in the case of extreme loading. If the designed structure doesn't meet the 

performance objective, it should be modified until the objectives are met. On the other hand, the 

typical design process suggested by the building codes is not performance based. In the typical 

design process, the members of the structure should be selected to satisfy some specific criteria 

suggested by the building codes. Some of these criteria were provided to satisfy some level of 

seismic performance; however, the real seismic performance of the structure is not evaluated at 

the design level. Therefore, providing simple methods to assess the performance of the structures 

accurately is advantageous for both performance-based and code-based design procedures. Also, 
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the application of the provided methods in accurate prediction of seismic responses should be 

evaluated for every new system.  

In order to evaluate seismic performance of various types of structures, different analysis 

methods are suggested by the guidelines (FEMA-273 1997, FEMA-356 2000). These analysis 

procedures can be classified as linear analysis methods including response spectrum analysis and 

linear time history analysis; and non-linear analysis procedures consisting of non-linear static 

procedure (NSP) and non-linear time history analysis (NLTHA).  

The response spectrum method is a linear dynamic analysis method which estimates the peak 

modal responses of a structure using the response spectrum of a selected ground motion. The 

peak modal responses should then be combined using a modal combination rule such as 

Complete Quadratic Combination (CQC) or Square Root of Sum of Squares (SRSS) to 

determine total response quantities. Linear time history analysis solves the equation of motion 

corresponding to a structure using an appropriate numerical method to estimate the seismic 

responses at each time step.  However, these methods are limited to the structures in low to 

moderate seismic zones, where the responses of the structure are mainly elastic. For irregular 

structures, or for structures with highly non-linear responses, these procedures may lead into 

wrong results.  

On the other hand, non-linear dynamic procedure can be used for any structure and it can provide 

the most accurate results. However, this method is complicated and it needs high computational 

demands. Therefore non-linear static procedure is suggested as a more simple method to predict 

seismic responses of the structure. Pushover analysis method is a non-linear static procedure 

offered by current guidelines (FEMA-273, FEMA-356) as a practical method to evaluate seismic 
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demands of structures. In this method, a predefined force distribution is applied to a multi-storey 

structure increasingly to reach a target displacement. This method is used to determine the force 

deformation relation of the structure; through which other performance parameters can be 

evaluated. The pushover method is defined based on two assumptions. Firstly, it assumes that the 

mode shape of the structure doesn’t change even after yielding; secondly, it limits the response 

of the structure to its fundamental mode. Although both assumptions influence the results, 

several researches (Saiidi and Sozen 1981, Fajfar and Fischinger 1988, Krawinkler and 

Seneviratna 1998, Skokan and Hart 2000) indicated that the responses of the structure are still 

accurate. Krawinkler and Seneviratna (1998) confined the accuracy of NSP responses to low- to 

medium-rise structures, behavior of which are dominated by the first mode. However, this 

method is not very accurate in prediction of seismic responses of high-rise buildings whose 

responses are contributed by higher modes. 

To overcome the latter limitation of pushover method, Chopra and Goel (2001) proposed an 

improved pushover analysis called modal pushover, in which the contributions of all important 

modes of vibration to the responses were combined. While keeping the simplicity of NSP, modal 

pushover method provides more accurate results through considering higher mode contributions 

to seismic responses of structures. In this method, the lateral distributed forces of each mode 

should be firstly determined. Applying these forces to the multi-storey structure, provides the 

base shear-roof displacement curve; idealizing which, results into the force-deformation relation 

of a single degree of freedom (SDOF) system corresponding to each mode. Solving the equations 

of motion of SDOF systems gives the peak deformation which can be converted to the peak roof 

displacement of MDOF structure. This peak roof displacement can be finally used to determine 

other response parameters of interest using the provided pushover curves of MDOF system. The 
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total responses can be obtained by preferred modal combination rules. The results of proposed 

modal pushover analysis can be improved by including the p-delta effects due to gravity loads in 

all considered modes (Goel and Chopra 2004). The accuracy of MPA were examined by 

applying to the SAC buildings (Goel and Chopra 2004), and to sixty regular and forty eight 

irregular frames, concluding the superior accuracy of MPA Comparing to the conventional 

pushover procedure (Chintanapakdee and Chopra 2003). Although, MPA method was reported 

as a good estimation of seismic demands for studied structures; it still needs to be examined for 

every new system, especially when the nonlinearity matters. Because in this case, there would be 

some errors arising from the underlying assumptions of MPA, including neglecting the coupling 

of modal coordinates nq (t)  for nonlinear systems, and assuming the force deformation relation 

of the SDOF systems as bilinear curves (Chopra and Goel 2001). To the author's knowledge, no 

research has been conducted on the application of modal pushover analysis on EBFs to date. In 

this research, the accuracy of modal pushover analysis method on predicting seismic demand of 

EBFs is evaluated by comparing MPA results with the results of nonlinear time-history analysis 

for short, medium and high-rise EBFs. 
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Chapter 3. Finite Element Modeling of Eccentrically Braced Frames 

3.1. Introduction 

The main objective of this chapter is to develop a reliable finite element model that can simulate 

the behavior of ductile eccentric braced frame. To study the behavior of eccentrically braced 

frame, a 3D nonlinear finite element model was developed in ABAQUS (Hibbitt and Sorensen 

2011). ABAQUS is a general purpose finite element software solving different static, quasi-

static, and dynamic problems. ABAQUS/CAE offers a user-friendly modeling and visualization 

environment with advanced meshing capability. ABAQUS has also extensive element and 

material libraries, making it appropriate to solve problems involving material and geometry non-

linearities. This chapter describes the details of the development of the finite element model. 

Several key features of finite element model, such as selection of analysis procedure, element 

definition, and material properties definitions are discussed first. The validity of the finite 

element model is examined using available experimental results. The validated model is then 

used for FE modeling of three multi-storey EBFs designed based on the capacity design 

approach suggested by CSA S16-09 (CSA 2009). The capacity design procedure for EBFs is also 

explained in detail and the final selected sections are presented. 

3.2. Selection of Finite Element Analysis Procedures 

There are different dynamic analysis options to solve both linear and non-linear problems in 

ABAQUS. For severe nonlinear dynamic problems, ABAQUS suggests direct time integration of 

all degrees of freedom of the FE model. ABAQUS classifies the dynamic integration operators 

into two main categories of implicit and explicit. In the explicit approach, the values of dynamic 
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responses at a time instant ( t t+ ∆ ) can be determined based on the values at the previous instant 

(t). Thus, there is no need to form and invert the global mass and stiffness matrices. This makes 

the solution of each time step inexpensive. However, this approach is conditionally stable, 

meaning that the time increment should be small in compare to the time increment in the 

implicit, to provide a stable and an accurate solution. This smaller time step largely increases the 

computational demands. ABAQUS/Standard employs the Hilber-Hughes-Taylor time integration 

method which is an implicit operator. In the implicit dynamic, the values of responses at time 

t t+ ∆ are determined based on the values at both instants t and t t+ ∆ , so the unknown quantities 

exist in both sides of the equations. Therefore, a set of nonlinear equilibrium equations must be 

solved at each time increment simultaneously. Since this operator is unconditionally stable, the 

size increment can be relatively large. The implicit approach was used for all the analyses in this 

thesis. This method is preferred because it is using relatively large time increment sizes while it 

assures the stability of the system. 

3.3. Finite Element Model Specifications 

3.3.1. Geometry and mesh 

For finite element modeling of EBFs, efforts were made to create a FE model which precisely 

represents the similar experimental models. For all the selected EBFs, the dimensions of the 

frame geometry and the section were accurately extracted from the available data and were used 

for the finite element modeling. The details of the test specimen and designed multi-storey EBFs 

are presented in the sections 3.5 and 3.7 respectively.  
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One of the important factors in finite element modeling is selection of the appropriate mesh size 

for the FE model, because it directly influences the accuracy of the results and the computational 

demands. Using a coarse mesh may result into imprecise solution; on the other hand, employing 

a finer mesh may increase the accuracy of the results; but it also increases the computation time. 

Therefore, it is important to perform the mesh convergence study to find the optimum mesh 

sizes. For the experimental specimen, since it is a one-storey EBF on which the pushover 

analysis was conducted, using a fine mesh was not computationally expensive. However, for the 

designed multi-storey EBFs which should be employed for nonlinear time history analysis, 

finding the optimum mesh size is very important. To investigate the optimal mesh size, four 

different mesh sizes, varied from 4500 to 45000 elements, were selected for the designed 4-

storey EBF. For each selected mesh, the top storey displacement and the maximum von Mises 

stress under equivalent lateral forces were extracted as the convergence criteria. Figure 3.1 

shows the results and their variation with respect to the fine mesh for different mesh sizes. Since 

obtaining the stresses convergence is usually more difficult than the displacements, their results 

variations are also more considerable, with the maximum variation of %15 for the coarser mesh 

and minimum difference of %0.41 for the normal mesh. These variations are less significant for 

the displacement, with the maximum of %3.1 for the coarser mesh and the minimum of 0.2% for 

the normal mesh. As it can be seen from the Figure 3.1, the normal mesh with 13737 elements is 

the optimal mesh size for this structure; because, it not only represents a much higher accuracy 

comparing to the coarser meshes, but also it decreases the computational demands significantly 

comparing to the finer mesh with 45256 elements which raises the precision of the results only 

0.4%. The results of this mesh study were used for judgment of the mesh sizes for the 8 and 14-

storey EBFs. 
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Figure 3.1. Mesh convergence study for 4-storey EBF a) Maximum von Mises stress vs. mesh refinement,  

b) Top storey displacement vs. mesh refinement 

3.3.2. Element Type 

ABAQUS provides an extensive library of different types of elements. In this study, the element 

S4R, a 4 node reduced integration shell element was used for all the EBFs. In general, shell 

elements may be employed when the in-plane dimensions of the elements are much higher than 

its thickness. Shell elements are advantageous because they reduce the computational demands 

significantly. Also they are easy to mesh, and they lead to a robust solution. The element S4R 

has six degrees of freedom at each node, three translations and three rotations defined in a global 

coordinate system. S4R is under the category of general purpose conventional shell element, 

which is able to model either thin or thick shell behavior when the thickness decreases or 

increases.  This element is famous for robust and accurate solution in all loading conditions. It 

may account for transverse shear deformation, becoming very small when the shell thickness 

reduces. This element is appropriate for large-strain analysis because it consider finite membrane 

strains and large rotations. This reduced integration element is suitable for calculating the strains 
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and stresses in the points with optimal accuracy. Also reducing the number of integration points 

leads into reduction of CPU usage and storage space. 

3.3.3. Material Properties 

The comprehensive material library available in ABAQUS offers various material properties to 

be able to represent the real material behavior closely. The material properties can be found from 

the available stress vs. strain data of steel obtained from tension coupon tests. For finite element 

validation, tension coupon test was not provided for the end plate connected link (Figure 3.2) as 

the original researcher reported (Mansour 2010). However, Mansour suggested employing the 

material model calibrated by Korzekwa and Tremblay (2009) for finite element modeling. This 

material model was developed for steel plates made of G40.21-350WT steel with nominal yield 

strength 350 MPa and tensile strength 450 MPa. For seismic analysis, the non-linear material 

behavior was modeled using an elasto-plastic stress-strain curve with the strain hardening of 2% 

of the elastic stiffness, and by considering the kinematic hardening rule and von Mises yield 

criteria. A 5% proportional damping ratio was used in all seismic analyses. For all pushover 

analyses, the non-linear isotropic hardening was employed.  

3.3.4. Boundary Conditions 

In the FE modeling, it was attempted to have similar boundary conditions (BCs) to the 

corresponding experiment. The columns were modeled to have pin support condition at the base. 

Connection between the link and the floor beam was defined by common nodes to be able to 

transfer the forces and moments created by the strain-hardened link. Also the connection 

between the braces and the beam are moment connections. All other connections were 

considered as pin connections. Lateral supports were also provided to restrain the out of plane 
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movement of the EBF. Lateral bracing was employed at the top and bottom flanges of the floor 

beams at two ends of the links. To account for the lateral bracings in FE model, the out of plane 

displacements of the nodes were restrained. The same modeling technique and boundary 

conditions were used for modeling of 4-, 8- and 14-storey chevron braced frames.  

3.4. Types of Analyses 

Three types of analyses were performed on the finite element models presented in this thesis, 

consisting of pushover, frequency and seismic analyses. To perform non-linear pushover analysis 

on the FE model of the selected test specimen, displacement-controlled procedure was employed, 

in which the displacement was applied to the center of the floor beam increasingly, to reach the 

target displacement. The results of this analysis are presented in section 3.6 for validation of the 

FE model. A series of frequency analyses were performed on the designed multi-storey EBFs to 

obtain the fundamental periods and the primary mode shapes of the frames. The results of 

frequency analyses were utilized to calculate the damping coefficients required for the seismic 

analyses. The fundamental periods of EBFs were also used for scaling of the Earthquake records 

used in seismic analysis. The mode shapes were employed for the modal pushover analysis 

explained in chapter 5. Non-linear seismic analyses were also performed on the designed EBFs 

to study the seismic performance of these frames. For seismic analysis, eight ground motions 

were selected and scaled to match the design spectrum of Vancouver. To use these scaled ground 

motions in FE simulations, the support conditions were modified to allow movement in the 

direction of the ground motion. Detailed explanation of seismic analyses and results are 

presented in chapter 4.  
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3.5. Description of Selected Experimental Model 

To study the responses of a structure using finite element modeling, it is reasonable to create a 

FE model based on data of an experimental specimen, and to validate the FE results with the 

experimental responses. The experimental case used in this study is a full scale model of a one-

storey eccentrically braced frame with replaceable shear link, designed and tested by Nabil 

Mansour (2010). Different types of shear links including C sections with bolted or welded web 

connections, and W sections with end plate connections were employed for the experimental 

study. The experiments were conducted on both full scale one-storey EBF and individual links 

under cyclic loading. The results were employed to study the global response; as well as, the 

local behavior of the members and their connections. 

For the validation part of this thesis, the one-storey EBF with link specimen 11A with end plate 

connection was modeled in ABAQUS. The frame was assumed to be representative of the 

second level of a five-storey eccentric braced frame designed based on CAN/CSA S16-09 (CSA 

2009) and NBCC (NBCC 2005) for high seismic zone in British Columbia, Canada. To connect 

the link specimen 11A to the outer beam, Mansour used two end plates, one welded to the end of 

the floor beam and the other welded to the end of the link. The two plates were bolted together to 

attach the link to the outer beam (Figure 3.2). Figure 3.3 presents the overall configuration of the 

experimental model created by Mansour. In the experimental model, the width and height of the 

frame were considered 7.5 and 4.58 meter respectively. The link length was equal to 800 mm.  

The summary of sections and dimensions used in the experimental study is shown in Table 3.1. 
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Table 3.1 Summary of 1-storey eccentrically braced frame (Mansour 2010) 

Bay width 

(mm) 

Link length 

(mm) 

Intermediate 

stiffeners 

Link Beam Beam outside 

the link 

Brace Column 

L=7500 e=800 3 at 200 mm W360 72×  W530 196×  HSS254 254 13× ×  W360 347×  

 

 

Figure 3.2. Link specimen 11A (Mansour 2010) 

 
 

 

Figure 3.3. One-storey EBF with Link specimen 11A (Mansour 2010) 
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3.6. Validation of Finite Element Model 

The results of the finite element model were validated using the results of the one-storey EBF 

with end plate connected link conducted by Nabil Mansour (2010). Displacement controlled 

analysis was used for validation of the experimental model. Based on the reported results of 

experimental work, the maximum total frame drift was reported equal to 1.7% corresponding to 

the link rotation of γ =0.11 rad. Using equation 3.1, the lateral frame displacement was found 

around 78 mm. This displacement was applied to the center of the floor beam, and the structure 

was pushed increasingly to reach the target displacement obtained from the experimental test.  

 12D
h

θ =
 

3.1 

where θ  is total storey drift, 12D is lateral frame displacement, and h is height of the frame.  

 

Figure 3.4. FE Model of 1-storey specimen tested by Mansour (2010) 
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The experimental curve presented in Figure 3.5 is the envelope of the hysteresis curve presented 

by Mansour (2010) for the one storey EBF with link specimen 11A. As it can be seen from 

Figure 3.5, the finite element results well match the experimental results. A small Error of 3% 

may be due to the difference between the way of applying load in the real experiment and in the 

finite element model and also the limitations of finite element modeling.  

 

Figure 3.5. validation curve of 1-storey specimen by Mansour (2010) 

3.7. Design of Multi-Storey EBFs 

3.7.1. Building Geometry and Loading description 

To  evaluate  the  performance  of  eccentrically  braced  frames,  a set of three office buildings 

with 4, 8 and 14 storeys, were  designed according  to  the  provisions  of  the  national  building  

code  of  Canada  (NBCC, 2010) and  the  limit  states design  of  steel  structures  described  in  

CAN/CSA 16-09  (CSA, 2009).  The office building, located in Vancouver, has a symmetrical 

plan with a total area of 1400 meter square. It is located in the site class C. Two identical 

chevron type EBFs were used symmetrically in N-S and E-W directions to resist lateral forces. 

Thus, each EBF can resist half of the design seismic loads. Since there is no eccentricity in the 
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building, the effect of accidental torsion was only considered in the design. It was calculated 

using equation ( )nx x0.10D F± , where xF  is the lateral load force at each level and nxD is the plan 

dimension of the building at level x perpendicular to the direction of seismic loading (NBCC, 

2010). Based on the calculations, a 5% increase in the lateral loads may account for the 

accidental torsion for the current building.  Notional  lateral  loads equal to 0.5% of the factored 

gravity loads,  were  also  applied  at  each  storey  to consider the initial imperfections and 

partial yielding in the column  (CSA, 2009). The typical floor plan and elevations used for this 

study are shown in Figure 3.6 and Figure 3.7 All the frames have equal bay width and storey 

height of 8 and 3.8 meter respectively. The dead load and live load of the floors were taken 4.2 

kPa and 2.4 kPa. The roof dead load was considered as 1.5kPa and the snow load, calculated 

based on NBCC 2010 was equal to 1.82 kPa. The load combinations 1D+0.5L+E and 

1D+0.25S+E were selected for the floors and the roof in compliance with NBCC 2010. The 

nominal yield strength of 350 MPa and modulus of elasticity of 200,000 MPa were considered 

for all the members. 
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Figure 3.6. Typical floor plan of office building 
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Figure 3.7. EBFs Elevations 
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3.7.2. Design procedure 

The  eccentrically  braced  frame,  presented  in  this  research  were  designed  based  on  the  

capacity design approach for EBFs (CSA, 2009). In the capacity design of EBFs, the link is 

considered as the most ductile component to which all the inelastic behavior should be confined; 

therefore, only the links are sized for the code level seismic forces and all other members are 

sized for the forces generated by the fully yielded and strain hardened link in order to behave 

elastically. However, since the end of the outer beam (immediately after the link end) is under 

high axial force and bending moment, its yielding at the link connection is acceptable provided 

that enough lateral supports are supplied. (Engelhardt and Popov 1989) 

In design of EBFs, the required strength, stiffness and ductility of the frame should be provided. 

This can be achieved by choosing appropriate bracing arrangement, link length and link section. 

The links should be sized and detailed such that they can provide the necessary lateral strength 

and ductility to the frame. The ductility of a link is usually defined as its plastic rotation capacity. 

The ratio of e/L significantly influences on the stiffness and strength of EBFs.  Keeping the 

length of the link short results in higher frame stiffness a as shown in Figure 3.8. 

The bracing arrangement is also important in EBFs configuration. The angle between brace and 

beam should be within 40 to 60 degree to avoid large axial force component in floor beams 

resulting from small angles. Large angles may result into strength and stability problems (Popov 

and Engelhardt, Seismic Eccentrically Braced Frames 1988).  
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Figure 3.8. Variation of elastic lateral stiffness with e/L for EBFs (Popov and Engelhardt 1988) 

 In the preliminary design of EBFs, the sections of the links were selected to resist forces caused 

by the NBCC seismic loads. All other elements were designed for the forces created in yielded 

and strain hardened link. The design procedures can be summarized as follows:  

Step 1. Calculate the design base shear 

 Distribute the design base shear vertically 

Add the effects of notional load, accidental torsion and amplification factor 2U  to obtain the 

final lateral forces per frame 

Step 2. Design the link 

Choose the link length 

Select the link section for the shear forces induced by NBCC seismic loads 

Step 3. Design the outer beam (the beam outside the link) as beam-column for the loads coming 

from the strained-hardened link and the gravity loads 

Step 4. Design the Brace as beam-column for the strained hardened link forces and gravity loads 

Step 5. Design the Columns for the strained hardened link forces and gravity loads 
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Step 6. Calculate the drift and checking the drift requirement 

Step 7. Determine the link rotation and checking link rotation requirement 

Step 8. Modify the sections if required, to satisfy the requirements of step 6, 7 and 9 

In the design process, the storey drift did not govern the design; however, some columns and 

braces sections were modified to control the link rotation to be less than the code limit of 0.08. 

3.7.2.1 Calculate the Design Base Shear: 

In order to find the design base shear, the equivalent static force procedure introduced in NBCC 

2010 was used for 4 and 8 storey EBFs. At first, the fundamental period of the EBFs shall be 

obtained by equation 3.2.  

 
a nT 0.025h=  3.2 

where nh  is the height of the structure in meter.  However, because the actual period of EBFs is 

much larger than the empirical period suggested by NBCC (Koboevic et al. 2012, Mansour 

2010), the maximum allowable period provided by NBCC 2010 which is equal to two times the 

period of the code ( d aT 2T= ) was used. This assumption was checked and proved by the periods 

obtained from frequency analysis, performed on each EBF. Table 3.2 indicates that the periods 

determined by frequency analysis are larger than 2 times the periods suggested by NBCC 2010.  

Table 3.2 comparison between fundamental period obtained from frequency analysis and a2T  

EBFs Design Period a2T  Frequency Analysis Period 

4 Storey EBF 0.76 0.99 

8 Storey EBF 1.52 1.773 

14 Storey EBF 2.66 3.325 
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For 4 and 8 storey frames, the design base shear can be calculated by equation 3.3, while the 

minimum and maximum conditions should be considered. 

 
( ) ( ) ( )v E a v E E

min max
d o d o d o

S 2 M I W S T M I W S 0.2 I W2V V V
R R R R 3 R R

 
= ≤ = ≤ =  

 
 3.3 

Where aT is the empirical period, ( )aS T is the spectral acceleration, vM  is the factor considering 

higher modes effects on increasing base shear, EI is the importance factor, dR is force reduction 

factor for ductility, oR is force reduction factor for overstrength, and W is the total seismic 

weight resisted by the frame.  

According to NBCC 2010, this method is applicable for regular structures less than 60 meter in 

height and with the fundamental period of 2 seconds or less. Since, for 14-storey structure, the 

period is more than 2 seconds; the preliminary sections were selected based on minV

corresponding to the spectral acceleration for the period of 2 seconds. Then, a modal response 

spectrum analysis was implemented to obtain the elastic base shear ( eV ). This value should be 

multiplied by the importance factor EI and divided by d oR R to find the dynamic base shear dV . 

As it can be seen in Table 3.3, the obtained value of dV was compared to 80% of design base 

shear calculated by equivalent static force procedure. Since it was less than 0.8V, final DesignV

was taken as 0.8V for 14-storey EBF as it was suggested by NBCC 2010.  

Table 3.3 14-Storey EBF Design Base Shear 

V 
(kN) 

0.8V  
(kN) 

Spectrum analysis eV  

(kN) 
d e o dV V / R R=  

(kN) 

Final DesignV  

(kN) 

1914.84 1531.87  6497.5 1083 1531.87   
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Distribution of Lateral Forces 

The calculated base shear can be distributed over the height of the structure using equation 3.4.  

 
( )

n

x t x x i i
i 1

F V F W h / W h
=

 = −  
 
∑  3.4 

Where tF  is an additional lateral force concentrated at the top of the structure equal to 

a0.07T V for the structures with the periods larger than 0.7 sec. The value of tF should be less 

than or equal to 0.25V . xh  represents the height of the structure above the level x and xW is 

the portion of the weight of structure at level x.  

According to S16-09, for sizing energy dissipating elements, the effects of notional loads and p-

delta effects should be considered. The notional loads can be calculated by equation 3.5. 

 ( )n DL LL SLF 0.005 1W 0.5W 0.25W= + +  3.5 

The factor 2U is the implication factor should be used to account for the p-delta effects. 

 
f d f

2
s f

C R
U 1 1.4

h V
∆

= + ≤∑
∑

 3.6 

f

f

f

Where : :  is the first order inter-storey displacement at each level
C :  is the sum of the column axial loads acting at the storey that is considered

V :  is the total storey shear

∆

∑
∑

 

The final distributed lateral forces for three EBFs are presented in Table 3.4 to Table 3.6.  

42 

 



 

 

3.7.2.2 Link design 

CSA S16-09 Requirements for links 

There are some requirements for the links in CSA S16-09 clause 27.7. According to these 

requirements, the link sections should be class 1. For shear links, where the link length is smaller 

than p p1.6M / V  , sections with class 2 flanges and class 1 webs may be used. For link with wide 

flange cross sections which were used in this study, pV is equal to y0.55wdF . The shear resistance 

of the link should be considered as the minimum of '
PVϕ , and '

P2 M / eϕ .  

Where 
2

' f
P P P y

y

PV V 1 ,V 0.55wdF
AF

 
= − =  

 
 3.7 

and ' f
P P P p x y

Y

PM 1.18M 1 M ,M Z F
AF

= − ≤ =  3.8 

 

fP is the axial force in the link and A is the gross area of the link. 

For selecting the link length the CSA standard emphasizes that it should be greater than the depth 

of the link beam. It also requires limitation for the link rotation, which is the inelastic component 

of the rotation of the link with respect to the rest of the beam. For shear links the link rotation 

must not exceed 0.08 rad.  

The web of the link should be uniform with no attachments other than the link stiffeners. At the 

end of the links, full depth web stiffeners must be used on either sides of the web. Their 

minimum thickness should be taken as 0.75w and the combined width must be greater than

fb 2w− . For shear links, when the link rotation is equal to 0.08 rad, the intermediate web 
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stiffeners intervals should be less than 30w 0.2d− , and when the rotation angle is 0.02 rad, their 

gap should be smaller than 52w 0.2d− . For other values of link rotation, the interpolation is 

required to find the proper stiffeners intervals.  

Link Length calculation 

For designing the link, firstly the link length was selected based on the following criteria:  

• For shear links P pe 1.6M / V≤  

• For yielding in shear x y' ' ' ' x
P P P P

w y w

2Z F 3.6ZV 2 M / e e 2M / V e e
0.55A F A

ϕ < ϕ ⇒ < ⇒ < ⇒ <  

• The link length shall not be less than the depth of the link beam. e d≥  

Checking these requirements, the link length was selected as e=700 mm. 

Link section selection 

The sections of the links should be chosen to have the shear strength ( pV ) very close to the shear 

forces in the link created by NBCC factored seismic loading. Therefore, the minimum web area 

can be calculated by equation 2.1. 

 ( ) ( )
link

P y
VV 0.9 0.55dwF min dw

0.9 0.55Fy
ϕ = ⇒ =

 
3.9 

where linkV may be obtained by approximating the shear force in the link, using the free body 

diagram for each floor. 

 link link

VhV L. h V . V
2 2 L

= ⇒ = ∑
 

3.10 
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Figure 3.9. Free-Body diagram of EBF 

The other important aspect in shear link design, is the link strength factor P

Link

V 1
V

α = ≥ . (Popov et 

al., Methodology for optimum EBF link design 1992) Maintaining α uniform throughout the 

height of the EBF results in simultaneous yielding of all links against increasing lateral forces 

and avoids from excessive concentration of link deformations in some storeys (Popov, et al., 

1992). For the current designed EBFs, uniform alpha were achieved in all but top storeys where 

shear forces in the links were small, but stronger sections were essential to meet the shear link 

and class 1 requirements. 

After selecting the link sections, all the mentioned provisions of CSA S16-09 for shear links 

were checked. 

3.7.2.3 Designing the outer Beam 

According to CSA S16-09, section of the outer beam should be class 1 or 2. It should be 

designed to resist forces fully yielded and strain hardened links. This force can be calculated as 
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u y pV 1.3R V= where 1.3 is the factor corresponding to the increase above the yield value because 

of strain hardening, and yR accounts for the factor of the probable yield stress. 

In this research, it is considered that the exterior beam and link have the same section, and their 

connection is moment resisting connection. The beam should resist the moments transferred 

from the strain hardened link and the axial forces; therefore, is must be designed as a beam-

column.  

3.7.2.4 Designing the Brace 

CSA S16-09, clause 27.7.10 introduces class 1 or 2 section for the diagonal braces. Each brace 

and its end connection should resist the axial force and moments of the strain hardened link; and 

of the gravity load 1D+0.5L+0.25S. The forces in the link are considered as y1.3R times the 

nominal strength of the link for links with wide-flange cross sections. The intersection of the 

brace and the beam centerlines must be at the end or within the link. Moment resistant 

connections may be used for the braces designed to resist a portion of the link end moment. The 

braces should be configured such that their angles with the floor beam remain between 40 and 60 

degree as mentioned earlier. The resulting forces of strain hardened link in the braces can be 

obtained by equation 3.11 

 u
brace

V LF
(L e)sin

×
=

− α  
3.11 

 

The forces due to the gravity loads were also calculated and considered in the design. Because of 

the presence of the axial forces and bending moments together in the brace, they were also 

considered as the beam-column and were check for the requirements of beam-columns.  
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3.7.2.5 Designing the Column 

According to CSA S16-09, the column section should be class 1 or 2. The columns should be 

designed to resist the cumulative effect of yielding links and gravity loads. The amplification 

factor accounting for strain hardening shall be taken as y1.15 R  for all the floors except for the 

top two storeys where y1.3R must be used. They should meet the requirements of clause 13.8 

considering axial compression and bending together. The additional bending moment due to 

column continuity and relative storey drift should be considered in the interaction equation as 

y0.4ZF for the top two storeys and y0.2ZF  for the other levels. Z is plastic section modulus of 

steel sections. 

In the design process, the column axial forces due to yielded link were calculated by finding 

( )rlink y y PV 1.15or1.3 R F V= , then the forces in the braces were calculated and finally the column 

axial forces were obtained by equation 3.12.  

 i i 1 i 1
Col Col brace BeamF F F sin V+ += + β±  3.12 

 

where i 1
ColF +  and i 1

braceF +  are the axial forces immediately above the column and brace; and BeamV is 

the shear force in the beam. 

The results were combined with the axial forces due to gravity load obtained from load 

combination 1D+0.5L+0.25S. Since the moments are minimal in the columns, the priliminary 

design was done for the calculated axial forces. The selected column sections were checked for 

interaction equation  to ensure the capacity of the columns, considering the additional mentioned 
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bending moments specified in CSA S16-09 combined with the bending moments under gravity 

and lateral loads.  

3.7.2.6 Drift Requirement 

The largest storey drift allowed by the code for eccentrically braced frame is 0.025h where h is 

the storey height of the frame (NBCC, 2010). In the design phase, the lateral displacement can be 

determined from a linear analysis on EBFs subjected to seismic design forces. Clause 4.1.8.13 of 

NBCC 2010 states that the elastic displacement values should be multiplied by d o ER R / I to obtain 

inelastic displacements for the lateral load resisting system.  

 d o
el

E

R R
I

∆ = ∆
 

3.13 

 

3.7.2.7 Link Rotation Requirement 

According to CSA S16-09, the shear link rotation must not be more than 0.08 rad. To calculate 

the inelastic link rotation in the design phase, the elastic drift corresponding to factored seismic 

load should be calculated. Then the inelastic rotation angle can be determined by equation 2.4. 

 el

s

3 L
h e
∆  θ = ⇒ γ = θ 

   
3.14 

 

After selecting all the member sections, the maximum top storey drift and the maximum link 

rotations should be calculated and compared with the code limit, if they don’t meet the 

requirements of the code, the sections should be modified. Table 3.4 to Table 3.6 present the 

summary of selected sections and inelastic link rotations for three EBFs.  
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Table 3.4 Selected Sections for 4-Storey EBF 

Storey Link length 
(mm) 

Design Seismic 
forces Beam Brace Column Link rotation 

(rad) 

4 700 261.88 W200x31 HSS152x152x8 W310x67 0.068 

3 700 366.58 W200x71 HSS178x178x9.5 W310x67 0.067 

2 700 258.03 W360x72 HSS203x203x9.5 W310x107 0.062 

1 700 144.14 W410x67 HSS203x203x13 W310x107 0.056 

 

 

Table 3.5 Selected Sections for 8-Storey EBF 

Storey Link length 
(mm) 

Design Seismic 
forces Beam Brace Column Link rotation 

(rad) 

8 700 240.28 W200x31 HSS178x178x8 W360x162 0.06 

7 700 239.94 W250x58 HSS178x178x13 W360x162 0.06 

6 700 215.04 W250x67 HSS203x203x13 W360x162 0.06 

5 700 187.01 W360x72 HSS254x254x9.5 W360x237 0.06 

4 700 157.39 W410x67 HSS254x254x9.5 W360x237 0.06 

3 700 126.54 W460x68 HSS305x305x9.5 W360x237 0.05 

2 700 94.51 W410x85 HSS305x305x13 W360x463 0.05 

1 700 61.13 W460x89 HSS305x305x13 W360x463 0.04 
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Table 3.6 Selected Sections for 14-Storey EBF 

Storey Link length 
(mm) 

Design Seismic 
forces Beam Brace Column Link rotation 

(rad) 

14 700 251.72 W200x42 HSS178x178x9.5 W360x91 0.080 

13 700 144.50 W200x59 HSS178x178x13 W360x91 0.080 

12 700 142.00 W250x58 HSS203x203x9.5 W360x91 0.079 

11 700 136.47 W310X52 HSS203x203x13 W360x196 0.076 

10 700 129.41 W310x74 HSS254x254x9.5 W360x196 0.073 

9 700 121.45 W360x79 HSS254x254x9.5 W360x196 0.071 

8 700 112.87 W410x74 HSS305x305x9.5 W360x382 0.067 

7 700 103.52 W460x68 HSS305x305x9.5 W360x382 0.064 

6 700 92.51 W460x82 HSS305x305x9.5 W360x382 0.066 

5 700 81.50 W460x89 HSS305x305x13 W360x634 0.063 

4 700 70.49 W460x97 HSS305x305x13 W360x634 0.059 

3 700 59.48 W530x85 HSS305x305x13 W360x634 0.056 

2 700 48.48 W530x92 HSS305x305x13 W360x990 0.052 

1 700 37.47 W530x101 HSS305x305x13 W360x990 0.049 
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3.7.3. Finite Element Modeling of 4-Storey, 8-Storey and 14-Storey EBFs 

The same finite element modeling technique is used to model the three designed 4-, 8- and 14- 

storey EBFs. Figure 3.10 presents FE mesh for 14-storey EBF, where only bottom six storeys are 

shown. Three types of analyses including pushover, frequency and seismic analyses were 

performed in ABAQUS on the created FE models. To perform seismic analysis, a leaning 

column was added to the FE model to account for P-delta effects. The leaning column was 

modeled  by ABAQUS T3D2, two node three dimensional  truss  elements,  connected  to  the  

frame  at  every  floor  using  pin-ended  rigid  links.  It  was designed  to  carry  half  of  the  

floor  masses  and  gravity  loads  which  were  not  taken  by  EBFs  directly, without  adding  

any  lateral  stiffness  to  the  system.  The lumped masses and gravity loads were exerted to the 

column nodes at their corresponding levels. A 5% Rayleigh proportional damping ratio was used 

for the seismic analysis. The supports of all columns including the dummy column are 

considered as pin supported at the base. The yield strength of all the components was considered 

as 350 MPa. The mass of the components were also taken into account by adding the density of 

the steel to the material model.  
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Figure 3.10. Finite element model of 14-storey EBF (only bottom 6-storeys are shown) 
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3.8. Summary 

In this research, non-linear finite element models were used to study the behavior of 

eccentrically braced frames. This chapter explained the details and considerations for developing 

the finite element models for EBFs. In order to have reliable FE models, the first model was built 

using an available test specimen data. The results obtained from finite element simulation were 

compared to the corresponding experimental responses. The validation curve showed a good 

agreement between the FE model and the selected test specimen in terms of the initial stiffness 

and post-yield responses with a small difference of 3%. The validated modeling technique was 

then used to develop finite element models for three designed EBFs with 4, 8 and 14 storeys to 

study the seismic performance of the eccentric braced frames. These three EBFs were designed 

based on the capacity design approach presented by CAN/CSA S16-09. The design procedure for 

designing EBFs was also explained in detail in this chapter. 
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Chapter 4. Seismic Performance of Eccentric Braced Frames 

4.1. Introduction 

In this chapter, the three designed 4-, 8- and 14-storey EBFs, explained in the chapter 3, were 

employed to study the seismic performance of eccentrically braced frames using nonlinear 

dynamic analysis. For seismic analysis, the FE models of the designed EBFs were subjected to 

eight selected ground motion records. The response spectra of the selected ground motions were 

scaled to match the design spectra of Vancouver. The criteria for selecting the ground motion 

records are explained in this chapter. Then, non-linear dynamic analyses results are compared 

against the criteria suggested by NBCC (2010) and CAN/CSA S16-09 (2009).  

4.2. Nonlinear Dynamic Analysis of EBFs 

4.2.1. Frequency Analysis 

Prior to the seismic analysis, frequency analyses were performed on EBF models to determine 

the fundamental periods and mode shapes corresponding to each eccentrically braced frame. The 

finite element model used for frequency analysis consists of the gravity column. Finding the 

fundamental period is useful for scaling the ground motion records to make it suitable for 

seismic analysis of the designed EBFs. Also, the material model which was used for seismic 

analysis required the Raleigh proportional damping coefficients α  and β . Knowing the 

fundamental frequencies of EBFs, these damping coefficients can be calculated using equation 

4.1. The Raleigh proportional damping ratio (ξ ) was considered as 5%.  
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i j i j

2 2ωω
α = ξ β = ξ

ω +ω ω +ω  
4.1 

where iω and jω are the circular frequencies corresponding to ith and jth fundamental periods. 

The fundamental periods and mode shapes were also used for modal pushover analysis which is 

discussed in chapter 5. Comparing the fundamental period determined from frequency analyses 

with the period that suggested by NBCC 2010 for EBFs shows that the code estimation of the 

periods of EBFs is very conservative.   

4.2.2. Ground Motion Records 

According to NBCC 2010, the ground motion histories used in the dynamic analysis should be 

spectrum compatible. The uniform hazard spectrum for each region is provided by NBCC 2010. 

For this study, the design spectrum of Vancouver was used as it is the location of the office 

buildings considered in this research. As per ASCE7-10, when peak maximum responses are 

considered to investigate seismic response of structure, at least three ground motions must be 

utilized; and when the median value of maximum responses are used, a minimum of seven 

earthquakes are required.  

For this research, eight earthquake records were employed, five of which were selected from the 

strong ground motion database of Pacific Earthquake Engineering Research Center (PEER 

2010), and the other three records were chosen from Engineering Seismology toolbox website 

(Atkinson et al. 2009). All the records, including five real ground motion and three synthesized 

are presented in Table 4.1 and Table 4.2. 
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Since the magnitudes of most recorded seismic activities in British Columbia were measured 

between 6 and 7, for a range of 400 years (Lamontagne et al. 2008), the real earthquake records 

were selected to have a magnitude in this range. The simulated ground motions were chosen for 

site class C with the magnitude of 6.5 and 7.5, including both near fault and far fault records. To 

select the real ground motion records, the ratio of the peak acceleration (PGA) to the peak 

velocity (PGV) was taken into account. This ratio should be close to 1 for Vancouver (between 

0.8 and 1.2) (Naumoski et al. 2004) 

The response spectrum of unscaled ground motions and the design spectrum of Vancouver; 

corresponding to 5% of critically damped SDOF system in soil class C, were employed for 

scaling the earthquake records, using the partial area method of scaling. In this method, the area 

under the response spectrum of the selected ground motion must be determined for a range 

between 10.2T  and 11.5T , where 1T is the fundamental period of the structure. The area under the 

design spectrum of Vancouver must be also obtained for the same range of period. The ratio of 

the first and second areas gives the scaling factor, using which the accelerograms were scaled to 

have the same area under the design and earthquake response spectrum within the specified 

period range. The lower bound 10.2T  was selected to account for the effects of higher modes on 

seismic response; the upper bound 11.5T was chosen to consider the increase of fundamental 

period of structure in the plastic range. Figure 4.1, Figure 4.2, and Figure 4.3 present acceleration 

spectra for selected ground motions and Vancouver design spectra for 4-, 8-, and 14 storey EBFs 

respectively. The scaled accelerograms are also presented in Figure 4.4 to Figure 4.6.  
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Table 4.1 Real Ground Motion Records 

Event Magnitude 
PGA 
(g) 

PGV 
(m/s) 

A/V 
Scaling 
factor 

4-storey 

Scaling 
factor 

8-storey 

Scaling 
factor 

14-storey 

San Fernando, 
1972 6.6 0.188 0.179 1.05 1.52 1.67 1.45 

Kobe, 1995 6.9 0.143 0.147 0.973 1.65 1.7 2.2 

Loma Prieta 6.93 0.233 0.221 1.05 1.35 1.46 1.97 

Imperial Valley 2 6.53 0.525 0.502 1.04 0.98 1.01 0.827 

Northridge 6.69 0.51 0.483 1.055 0.61 0.66 0.83 

 

 

 

 

Table 4.2 Simulated Ground Motion Records 

Event Magnitude 
Distance 

(km) 
Scaling factor 

4-storey 
Scaling factor 

8-storey 
Scaling factor 

14-storey 

6C1 6.5 8.4 0.758 0.84 1.05 

6C2 6.5 13.2 1.147 1.268 1.49 

7C2 7.5 45.7 1.494 1.373 1.335 
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Figure 4.1. Acceleration spectra for selected ground motions and Vancouver design spectra for 4-storey 

 

Figure 4.2. Acceleration spectra for selected ground motions and Vancouver design spectra for 8-storey 
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Figure 4.3. Acceleration spectra for selected ground motions and Vancouver design spectra for 14-storey 
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Figure 4.4. Scaled Earthquake records for 4-storey EBF 
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Figure 4.5. Scaled Earthquake records for 8-storey EBF 
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Figure 4.6. Scaled Earthquake records for 14-storey EBF 
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4.3. EBF Seismic Response 

Nonlinear dynamic analyses were performed on 4-, 8- and 14-storey EBFs using the ground 

motions introduced in the previous section. Since the link is the most important element in EBFs, 

the responses of the link are the main concentration of this study. The critical response 

parameters for the links are the inelastic link rotations and the maximum normalized shear forces 

in the link. The maximum inelastic link rotations extracted from ABAQUS were compared with 

the code limit of 0.08 rad. To normalize the shear forces in the link, the obtained values from 

ABAQUS were divided by the probable shear resistance y PR V and were checked with 1.3, the 

amplification factor provided by S16-09 (CSA 2009). The inter-storey drifts were also 

determined and evaluated with 2.5% of the storey height. The results provided in this research 

are the peak values of responses obtained for each earthquake. Then, the average was taken 

between the peak responses of 8 earthquake records to present the EBF seismic behavior. 

According to ASCE7-10, taking average of the maximum responses is allowed if at least seven 

earthquake records are used for time history analyses.     

4.3.1. Link Responses 

Link Rotation 

The results of maximum link rotations and its median values between 8 earthquakes are 

presented in Figure 4.7, Figure 4.9, and Figure 4.11 for three EBFs under study.  

For 4-storey EBF, for all the records, the link rotations were less than the limit of 0.08 specified 

in CSA S16-09. For most records, the largest deformation occurred at the first and third stories, 
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the same level as the highest link shear forces were observed. Figure 4.7 shows that the average 

values of link rotations are about 0.05 rad.  

For 8-storey structure, as shown in Figure 4.9, most ground motions indicated the maximum link 

rotation at first and sixth level, where the maximum link shear forces were also developed. The 

link rotations varied from 0.02 to 0.05, which were lower than the limit.  

For 14-storey structure, as shown in Figure 4.11, the average link rotations were between 0.02 

and 0.06 for all the floors, except for the eleven and twelve levels where link rotations exceeded 

the 0.08 limit. These values were 0.085 and 0.09 for 11th and 12th floor respectively. A 

concentration of link rotation was also observed at the first floor; however, the median value for 

the first floor was well below the limit. 

Link Normalized Shear Force 

The results of normalized shear forces in the links are illustrated in Figure 4.7, Figure 4.9, and 

Figure 4.11. The limit of strain hardening factor suggested by CSA S16-09 is 1.3. As the results 

show this limit was exceeded for all EBFs; however, these values are still within the range of 

experimental results which showed the average overstrength factor of 1.5 for the short links 

(OkazakiArce et al. 2005) (Arce 2002). Past tests also showed the link overstrength factor of 

more than 1.5 (Hjelmstad and Popov 1983, Engelhardt and Popov, behavior of long links in 

eccentrically braced frames 1989). There are also some recent tests that reported the overstrength 

factor close to 2 for built-up shear links used in bridge (McDaniel et al. 2002). The limit of 1.3 

presented by CSA S16-09 accounts for strain hardening developed in the links; however, the 

reported experimental results and also the observations made in this study showed that the link 
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overstrength factor can also be due to the participation of the flanges in resisting shears. Based 

on these observations, the suggested overstrength factor of the link provided by current Canadian 

seismic provision may be un-conservative. 

For 4-storey EBF, all the floors; except for the 4th level, slightly exceeded (maximum of 7%) the 

code limit of 1.3. For 8-storey structure, the second, third and the last floors exhibited 

overstrength values lower than 1.3. All other floors went beyond the code bound. For 14-storey 

EBF, the links over-strength was below 1.3 for most floors. Only the first and top floors (11-13th) 

showed higher magnitudes. The maximum strain hardening factor of 1.48 occurred at 11th floor 

which was 14% higher than CSA S16-09 requirement.  

4.3.2. Other Responses 

Inter-Storey Drift 

Figure 4.8, Figure 4.10, and Figure 4.12 present the inter-storey drifts for the three designed 

EBFs. As shown in Figure 4.8, the inter-storey drifts for 4-storey EBF vary between 0.68 to 

0.79%. Comparing the obtained values from ABAQUS with NBCC 2010 drift limit, it was 

observed that inelastic inter-storey drifts in all the floors were within the NBCC drift limit.  

Similar findings were also observed for 8-storey EBF, where the magnitudes of inter-storey drifts 

were reported between 0.4 to 0.8% of the storey height, which are 67% to 80% lower than the 

s0.025h  limit suggested by NBCC 2010.  
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For 14-storey EBF, as shown in Figure 4.12, the values were between 0.6% and 1.29% which 

were higher than the other two EBFs. However, they were still 50% lower than the limit. In all 

EBFs, the results trend for the inter-storey drift was the same as the link rotations.  

Base Shear 

Table 4.3 and Figure 4.13 present the base shear forces obtained from nonlinear dynamic 

analyses on each EBF.  As it can be seen, Imperial Valley earthquake imposes the maximum 

shear at the base for all the EBFs. The average values of all records for each EBF were also 

compared to the design value. As it can be seen in the Table 4.3, the average base shear obtained 

from non-linear dynamic analysis is higher than the design base shear. This is due to the 

overstrength of the selected members. In the current design of EBFs suggested by CSA S16-09, 

the link and the outer beam have the same section. The link should be designed to yield, while 

the outer beam with the same section should resist forces by the strain-hardened link. Meeting 

these two requirements is an iterative procedure which may lead into over-sizing link element, 

and consequently over-sizing all other members of the frame which should be designed for the 

capacity of the link. This also results in larger force demands in EBF members.  

Table 4.3 Non-Linear Dynamic Base Shear (kN) 

EBF SF KOBE LP IV Northridge 6C1 6C2 7C2 Average Design 

4 2342 2020 2238 2502 2337 2265 2236 2192 2304 1030.63 

8 2695 2744 2783 3332 3283 2967 2439 3035 2910 1321.84 

14 3485 4104 3876 4358 4219 4255 3926 3945 4145 1531.87 
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Yielding Pattern 

To study the yielding pattern of 4-, 8- and 14 storey EBFs, the results obtained for the Imperial 

Valley were utilized. This earthquake was chosen because it had the maximum PGA and also the 

maximum base shear was found for this earthquake record.  

For 4-storey EBF, the first yielding was observed at the link web of the first floor, then it 

continued to the second to forth floor. The simultaneous yielding of all links was observed 

during the ground motion. At the time that maximum base shear occurred, the links of all storeys 

were yielded. Some minor yielding was also observed at the end of some outer beams where tehy 

connected to the links. This yielding took place because of high axial forces in the beam and high 

moments at the end of the link which transferred to the beam. It is acceptable provided that 

enough lateral supports are supplied (Engelhardt and Popov, behavior of long links in 

eccentrically braced frames 1989). All other members behaved elastically during the analysis. 

For 8-storey frame, the initial yielding was reported at the first to sixth floor, then it continued to 

the 7th and 8th floor. The simultaneous yielding of the links of all the floors was observed at the 

time 7.7 sec where the peak acceleration occurs. At the instance of maximum base shear, only 

the links at first to fourth floors were yielded. In all cases no inelastic activity was reported by 

the other members except for at the outer beam immediately after link ends.  

For 14-storey EBF, the first yielding occurred at the link web of 11th to 13th storeys. Then it 

continued to the first floor, middle floors 5 and 6 and upper floors 12 and 13. Although the links 

at all floors were yielded, but their yielding did not happen at the same time in spite of selecting 
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the links of all floor to have the same link strength factor α  at design phase. The most 

simultaneous yielding was observed when 2-7 and 10-14 floors were yielded at the same time.  

For all frames, all the links were fully yielded. Also some yielding was observed at the flanges of 

the outer beam where it was connected to the link. No yielding was detected in other members 

meaning that they remained elastic during nonlinear dynamic analyses. Figure 4.14 to Figure 

4.16 present yielding pattern for 4-, 8- and 14-storey EBFs when maximum simultaneous 

yielding happened.  
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Figure 4.7. Normalized Maximum Link Shear Forces and Link Rotations for 4-storey EBF 
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Figure 4.8. Inter-storey Drift and Floor Displacement for 4-storey EBF 
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Figure 4.9. Normalized Maximum Link Shear Forces and Link Rotations for 8-storey EBF 
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Figure 4.10. Inter-storey Drift and Floor Displacement for 8-storey EBF 
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Figure 4.11. Normalized Maximum Link Shear Forces and Link Rotations for 14-storey EBF 
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Figure 4.12. Inter-storey Drift and Floor Displacement for 14-storey EBF 
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Figure 4.13. Dynamic Base shear forces for 8 Earthquake records 

  

Figure 4.14. a) Yield pattern for 4-storey at the time most links are yielded, b) Yield pattern for 14-storey 

at the time maximum base shear occurred 
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Figure 4.15. a) Yield pattern for 8-storey at the time most links are yielded, b) Yield pattern for 14-storey 

at the time maximum base shear occurred 
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Figure 4.16. a) Yield pattern for 14-storey at the time most links are yielded, b) Yield pattern for 14-

storey at the time maximum base shear occurred  
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4.4. Summary 

In this chapter, the results of nonlinear dynamic analyses of three EBFs with 4-, 8- and 14 

storeys modeled in ABAQUS were presented. The seismic responses were demonstrated in terms 

of link rotations, shear link overstrength and the inter-storey drifts. Also, the yielding sequence 

of three designed EBFs was studied. It showed that the EBFs didn't lose their load carrying 

capacity when all the links were yielded. After yielding of all the links, the outer beam 

participated in carrying the load as it was considered in the design. In general, the EBF behavior 

was found satisfactory. All the links showed the inelastic behavior and other member remained 

in their elastic state as it was assumed in the design.  

For the maximum link rotation, 4 and 8 storey EBFs showed the average rotations under the code 

limit of 0.08 rad. However, for 14 storey structure, in the levels 11 and 12, the magnitude of 

median link rotations went beyond the code limit. Also a concentration of link rotation was 

observed at the first floor of 8 and 14 storeys but they are under the limit. For all EBFs, ratios of 

shear forces in the links to probable shear strength were higher than the limit of 1.3 in some 

floors, which is still under the values presented by some experimental studies. The limit of 1.3 

presented by CSA S16-09 accounts for strain hardening developed in the links. The experimental 

results showed that the link overstrength is mainly due to strain hardening; however, the shear 

resistance of the flanges may also increase the link overstrength. The inter-storey drift results 

show the values 50 to 70% lower than the limit of 0.025 sh  presented by NBCC 2010. It was 

observed that all the designed EBFs met the code inter-storey drift limit.  

For all EBFs, maximum base reactions obtained from non-linear dynamic analysis were higher 

than the design base shear. This primarily stems from the overstrength of the selected members 

78 

 



 

 

due to design considerations. The yielding pattern of EBFs under the Imperial Valley ground 

motion, which has the maximum peak acceleration and induces the largest shear force at the base 

of all frames, were also described. It showed most inelastic activities of the EBFS were confined 

to the shear link while the other members behaved elastically. Some minor yielding was also 

observed in the outer beam close to its connection to the link. 
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Chapter 5. Evaluation of Modal Pushover Method for Eccentrically Braced Frames 

5.1. Introduction 

The modal pushover analysis (MPA) is a pushover analysis procedure based on structural 

dynamics theory and consistent with the response spectrum analysis (RSA).  In this chapter, first 

the structural dynamics theory underlying the modal pushover analysis is briefly discussed. 

Then, the steps for implementing the modal pushover method are explained in detail. Finally, the 

application of modal pushover analysis on EBFs is investigated by applying MPA on three 

selected EBFs (low, medium and high-rise) through comparing the different response quantities 

of MPA with the results of nonlinear time history analysis (NLTHA).  

5.2. Modal Pushover Analysis 

The governing equation of motion of a multi-storey structure subjected to horizontal ground 

motion ( )gu t can be expressed by equation 5.1. 

 ( ) ( )g effmu cu ku m u t P t+ + = − ι =    5.1 

Where the vector u  represents n lateral floor displacements relative to ground, the matrices m , c

, k are the mass, damping and lateral stiffness matrices of the system, the vector ι  represents the 

displacements of masses resulting from static application of a unit ground displacement, ( )effP t

is the effective lateral earthquake force. The spatial distribution of ( )effP t over the height of the 

building is defined by the vector s m= ι  which can be expanded as a summation of modal inertia 

force distribution ns . 
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 N N

n n n
n 1 n 1

m s m
= =

ι = = Γ φ∑ ∑
 

5.2 

where nφ is the nth natural vibration mode of the structure and nΓ is modal participation factor 

which can be calculated using equations below: 

 n
n

n

L
M

Γ = ,   T
n nL m= φ ι ,   T

n n nM m= φ φ ;       5.3 

The free vibration of an undamped system in one of its natural vibration mode (rth mode) can be 

expressed as: 

 r r ru (t) q (t)= φ     5.4 

Considering equation 5.4 and5.2, equation 5.1 can be written for the rth mode as: 

 ( )r r r r r r r r gm q (t) c q (t) k q (t) m u tφ + φ + φ = −Γ φ   5.5 

Using the orthogonality of the modes presented in equation 5.6, it can be shown that only the nth 

mode contributes to the response. 

 T T T
n r n r n rm 0, k 0, c 0φ φ = φ φ = φ φ =  

 

T T T
n n n n n n n n nm M , k K , c Cφ φ = φ φ = φ φ =  

5.6 

To show this, both sides of the equation 5.5 are multiplied by T
nφ , resulting in the equation 5.7 in 

which just the nth mode gives the non-zero terms.  

 ( )n n n n n n n n gM q (t) C q (t) K q (t) M u t+ + = − Γ    5.7 

Dividing both sides by nM gives:  
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 ( )2
n n n n n n n gq (t) 2 q (t) q (t) u t+ ξ ω +ω = −Γ    5.8 

where nω is the natural vibration frequency and nξ is the damping of nth mode. 

The equation of motion of the nth-mode elastic SDOF system is: 

 
2

n n n n n n gD 2 D D u (t)+ ξ ω +ω = − 



 5.9 

Therefore, nq (t) can be formulated by comparing equations 5.8 and 5.9.  

 ( ) ( )n n nq t D t= Γ  5.10 

Utilizing equation 5.10, equation 5.4 can be rewritten for the nth mode as:  

 ( ) ( )n n n nu t D t= Γ φ  5.11 

For an inelastic multi-storey structure, the relations between lateral forces sf and lateral 

displacements u depend on the history of the displacement. Thus, the equation of motion 5.1 

changes into equation 5.12 for inelastic systems. 

 s g effmu cu f (u,signu) m u (t) P (t)+ + = ι =   

 5.12 

Employing the modal orthogonality, equation 5.12 changes into equation 5.13. 

 ( )sn
n n n n n g

n

Fq (t) 2 q (t) u t
M

+ ξ ω + = −Γ  

 
5.13 

Also, the equation of motion of the nth-mode inelastic SDOF system is:  
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sn

n n n n g
n

FD 2 D u (t)
L

+ ξ ω + = − 



 
5.14 

Solving equation 5.14 gives the deformation of the inelastic SDOF system corresponding to the 

nth mode. Using the peak value of ( )nD t , the maximum roof displacement ( rnou ) of MDOF 

system related to the nth mode can be found by equation 5.11 . To implement a pushover analysis 

consistent with the response spectrum analysis, the structure is pushed under the lateral forces *
nS  

to reach rnou . All response parameters of interest can be found using rnou for each mode and they 

can be combined with any desired modal combination rule to give the total responses. 

 *
n nS m= φ  5.15 

The equations explained above are the underlying equations forming MPA procedure to find the 

responses of MDOF system from the equivalent SDOF systems using the following steps 

(Chopra and Goel 2001):    

1. Determine the natural frequencies, and the modal vectors. 

2. Perform pushover analysis on the multistory structure subjected to the force distribution 

*
n nS m= φ and idealize the obtained pushover curves.  

3. Transform the idealized pushover curve of the MDOF system to the sn n nF /L -D curve of the 

nth mode SDOF system. 

 sny bny rny
ny*

n n n rn
* T
n n n n n n n n

F V u
, D

L M
M L ,  L m ,  L / M

= =
Γ φ

= ×Γ = ϕ ι Γ =

 5.16 

4.  The elastic vibration period is 

83 

 



 

 

 1/ 2

n ny
n

sny

L D
T 2

F
 

= π  
   

5.17 

5. Determine the maximum deformation nD of the SDOF system. 

Knowing the period of the SDOF system and the damping ratio nξ , the equation of motion 

5.18 can be solved with any applicable numerical method to find the peak deformation of 

SDOF system.   

 
( )sn

n n n n g
n

FD 2 D u t
L

+ ξ ω + = − 



 
5.18 

 

where sn nF / L relation is defined in Figure 4.13.  

As indicated in Figure 4.13-right, the initial slope of the idealized curve is n
2ω , and second 

slope is equal to n
2

nα ω , where nα  can be found from equation 5.22.  

  

Figure 5.1. Idealized pushover curve of MDOF, and properties of nth-mode inelastic SDOF system 

6. Obtain the peak roof displacement rnou corresponding to Peak deformation nD  

 rno n rn nu D= Γ φ  5.19 

7. Find other responses of interest from pushover curve using the maximum displacement of 

the roof obtained in step 5.  
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8. Estimate total responses by a preferred combination rule. SRSS rule was used in this paper.  

 N N
2 2

rno rno o no
n 1 n 1

u u , r r
= =

= =∑ ∑
 

5.20 

5.3. Application of Modal Pushover Analysis for EBFs 

In order to evaluate the capability of MPA procedure on predicting seismic demands of EBFs, 

the procedure discussed above was implemented on the three designed EBFs with 4, 8 and 14 

storeys. From the eight scaled ground motions employed for non-linear time history analyses in 

the chapter 4, four earthquake records, consisting of two real and two simulated, were selected 

arbitrarily for implementing the MPA analysis. The earthquake records include Imperial Valley, 

Loma Prieta, 6C1 and 6C2.  The results were compared with the average responses of interest 

obtained from non-linear time history analyses under the same four earthquakes.  In the 

following, performing the MPA procedure on the three designed EBFs is explained in detail.  

The MPA procedure starts with finding the natural frequencies and the modal vectors of the 

system. Thus, the frequency analyses were conducted for the three selected EBFs in ABAQUS, 

through which the modal properties (Table 3.3) and the mode shapes (Figure 5.2) were 

recognized for the three frames. The number of modes was determined based on the summation 

of their participating masses which must be larger than 90% of the total effective mass of the 

building. Based on that the first 3 fundamental modes were found sufficient to be used in MPA. 

Table 5.1 Modal periods of three EBFs 

Frames 4-Storey EBF 8-Storey EBF 14-Storey EBF 

Modes Mod
e 1 

Mod
e 2 

Mode 3 Mode 1 Mode 2 Mode 3 Mode 
1 

Mode 
2 

Mode 3 

Period (sec) 0.98 0.431 0.31 1.80 0.66 0.40 3.33 1.15 0.64 
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Figure 5.2. Mode shapes of 4, 8, and 14 Storey EBF 

 

   

 

Figure 5.3. 4- Storey Force Distribution *
n nS m= φ  

 

 

   

 

Figure 5.4. 8-Storey Force Distribution *
n nS m= φ  
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Figure 5.5. 14-Storey Force Distribution *
n nS m= φ  

The EBFs were pushed by the force distribution *
nS to obtain the pushover curves corresponding 

to each mode. Multiplying the modal vectors of each mode (Figure 5.2) by the mass of each floor 

gives the force distribution *
nS  (Figure 5.3-Figure 5.5), which was applied increasingly to each 

structure to provide the pushover curves bn rnV U− of each mode. The gravity loads were 

considered in the pushover analyses.  The resulting pushover curves were idealized to present a 

bilinear curve using the following procedure (FEMA-273) using determined target roof 

displacement rnoU and the corresponding base shear bnoV  . 

1. The yield base shear bnyV  was selected based on judging the actual pushover curve. Then it 

was changed iteratively to make the area under idealized and actual curve equal.  

2. The slope of the elastic part of the curve was obtained by calculating slope of a line 

between the origin and a point on the actual pushover curve with the base shear equal to

bny0.6*V .  
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3. Knowing the initial slope and the yield base shear, the yield displacement can be 

calculated. 

 
bny

rny
n

V
u

K
=

 
5.21 

4. The area under the actual pushover curve was calculated by trapezoidal rule. The area 

under the idealized bilinear curve was also calculated. The iterative procedure was repeated 

to make the difference between two areas as small as possible.  

5. The strain-hardening ratio was determined by  

 
bno rno

n
bny bny

V u1 / 1
V u

      
α = − −                    

5.22 

 

The actual and idealized pushover curves for three modes of the three EBFs are presented in 

Figure 5.12 to Figure 5.8. 

 

 

Figure 5.6. 4-Storey Mode 1, Actual, Idealized ( b1 r1V U− ) and SDOF ( s1 1 1F / L D− ) Pushover Curves 
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Figure 5.7. 4-Storey Mode 2, Actual, Idealized ( b2 r2V U− ) and SDOF ( s2 2 2F / L D− ) Pushover Curves 

 

 

Figure 5.8. 4-Storey Mode 3, Actual, Idealized ( b3 r3V U− ) and SDOF ( s3 3 3F / L D− ) Pushover Curves 
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Figure 5.9. 8-Storey Mode 1, Actual, Idealized ( b1 r1V U− ) and SDOF ( s1 1 1F / L D− ) Pushover Curves 

 

 

Figure 5.10. 8-Storey Mode 2, Actual, Idealized ( b2 r2V U− ) and SDOF ( s2 2 2F / L D− ) Pushover Curves 
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Figure 5.11. 8-Storey Mode 3, Actual, Idealized ( b3 r3V U− ) and SDOF ( s3 3 3F / L D− ) Pushover Curves 

 

 

 

Figure 5.12. 14-Storey Mode 1, Actual, Idealized ( b1 r1V U− ) and SDOF ( s1 1 1F / L D− ) Pushover Curves 
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Figure 5.13. 14-Storey Mode 2, Actual, Idealized ( b2 r2V U− ) and SDOF ( s2 2 2F / L D− ) Pushover Curves 

 

 

 

Figure 5.14. 14-Storey Mode 3, Actual, Idealized ( b3 r3V U− ) and SDOF ( s3 3 3F / L D− ) Pushover Curves 
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The idealized pushover curves of the MDOF systems were used to find the relation between 

force snF and deformation nD . To do this the points sny
ny

n

F
D ,

L
 
 
 

 and sno
no

n

FD ,
L

 
 
 

 were 

determined using equation 5.16. The elastic vibration period was obtained by equation 5.17. The 

properties of SDOF systems corresponding to each EBF are presented in Table 5.2. 

Table 5.2 Structural Properties of Equivalent SDOF System 

Frames Mode nL  
(kg) 

nΓ  
 

*
nM  

(kg) 

sny nF / L  
(m/s2) 

nyD  
(mm) 

sno nF / L  
(m/s2) 

noD  
(mm) 

nT  
(sec) 

4 
Storey EBF 

1 578134.8 1.46 843359.71 1.77 26.81 2.13 105.49 0.77 

2 -20824.6 -0.68 149787.31 6.46 16.27 8.23 180.14 0.32 

3 158640.8 0.22 35701.49 20.195 19.02 24.88 367.19 0.19 

8 
Storey EBF 

1 1213613.1 1.44 1746314.9 1.092 55.40 1.42 260.09 1.42 

2 -408681.7 -0.68 276649.9 5.476 40.89 8.41 554.56 0.543 

3 358373.14 0.54 193474.63 9.536 28.14 12.97 242.29 0.341 

14 
Storey EBF 

1 1810436.8 1.54 2783860.2 0.782 135.48 0.98 487.79 2.62 

2 987363.77 -0.80 797724.26 3.491 76.339 4.93 796.19 0.93 

3 503985.4 0.427 215241.40 8.595 35.71 11.65 306.28 0.405 

 

Knowing sn nF / L - nD relation, the equation of motion of the nth-mode inelastic SDOF system 

(equation 5.18) can be solved by any numerical method to determine the peak elastic response. 

Then, the peak roof displacement of each EBF was calculated using equation 5.19. Applying 

SRSS rule, the peak modal responses were combined to obtain the total response of interests 

using equation 5.20. In this research, the displacement at each floor and the inter-storey drifts 

were obtained and compared with the results of NLTHA. 
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5.4. Evaluation of MPA procedure  

The applicability of MPA procedure on EBFs was evaluated by comparing the floor 

displacements and inter-storey drifts and the base shear obtained from MPA and NLTHA 

procedures performed on 4, 8, and 14-storey EBFs. Table 5.3 to Table 5.8 present the average 

peak floor displacements and inter-storey drifts for four selected earthquake records for modal 

pushover method. The corresponding responses obtained by NLTHA procedure are also 

presented for comparison. These results are also illustrated in Figure 5.15 to Figure 5.20. 

As it can be observed in the Figure 5.15, for 4-storey EBF, the fourth floor displacement was 

predicted well with the MPA procedure with just a few percent errors with respect to the 

displacement obtained from non-linear seismic analysis. However, higher differences were 

detected at the intermediate floors. Figure 5.18 shows the inter-storey drift of 4-storey EBF. The 

results showed that, the inter-storey drift of the third floor was well predicted with considering 

the first mode response with just 1 percent error from NLTHA. The inter-storey drift of other 

floors showed higher differences with respect to NLTHA results. The results of both 

displacements and inter-storey drifts showed that considering the first mode is enough in 

predicting seismic responses of low-rise (4-storey) EBF; and adding the higher modes did not 

increase the accuracy of the results considerably.  

For 8-storey EBF, Figure 5.16 indicates that the first mode predicted the displacements of the 

lower floors very well, adding the second mode increased the accuracy of the displacement 

responses at the top stories from 5% error to 1% error. However, including the third mode raised 

the differences at first and second floors by 6 to 7%, while decreased the errors in the other 

floors. For inter-storey drift, the positive effect of adding the responses of the second mode is 
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more apparent as it is shown in Figure 5.19. Including the inter-storey drift related to the second 

mode could improve the accuracy of the results by a maximum of 20% for the top floor. No 

considerable improvement was observed by including the third mode responses.  

For 14-storey EBF, as it can be seen in the Figure 5.17, the highest differences from NLTHA 

displacements were found at the intermediate floors, and the top two floors. These differences 

were reduced by about five times by considering the second mode responses. Including the third 

mode improved the results by just a few percent. For inter-story drift, the difference between 

MPA and NLTHA results are more significant in 14-storey EBF as it is shown in Figure 5.20. 

Adding the inter-storey drifts corresponding to the second mode improved the modal pushover 

results greatly. 

 

Table 5.3 Comparison of MPA and NLTHA peak values of floor displacements for 4-Storey EBF 

Floor 
Modal Response Modal Combination 

NLTHA 
Percentage Error (%) 

Mode 
1 

Mode 
2 

Mode 
3 

1 
Mode 

2 
Modes 

3 
Modes 

1 
Mode 

2 
Modes 

3 
Modes 

1 18.783 -5.888 1.515 18.783 19.684 19.743 24.170 -22.29 -18.56 -18.32 

2 39.596 -7.141 0.475 39.596 40.235 40.238 49.361 -19.78 -18.49 -18.48 

3 63.216 -1.217 -1.876 63.216 63.228 63.255 72.717 -13.07 -13.05 -13.01 

4 83.117 11.852 1.790 83.117 83.957 83.976 86.560 -3.98 -3.01 -2.99 
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Table 5.4 Comparison of MPA and NLTHA peak values of floor displacements for 8-Storey EBF 

Floor 
Modal Response Modal Combination 

NLTHA 
Percentage Error (%) 

Mode 
1 

Mode 
2 

Mode 
3 

1 
Mode 

2 
Modes 

3 
Modes 

1 
Mode 

2 
Modes 

3 
Modes 

1 16.00 -10.05 6.00 16.00 18.90 19.83 17.841 -10.29 5.94 11.16 

2 30.86 -16.48 7.76 30.86 34.98 35.83 32.467 -4.95 7.75 10.37 

3 48.58 -19.89 4.66 48.58 52.49 52.70 48.959 -0.78 7.22 7.64 

4 69.54 -22.27 -0.02 69.54 73.02 73.02 69.521 0.03 5.04 5.04 

5 88.49 -13.37 -4.87 88.49 89.49 89.62 90.718 -2.46 -1.35 -1.21 

6 106.74 1.50 -5.89 106.74 106.75 106.92 112.110 -4.79 -4.78 -4.63 

7 122.31 18.46 -0.32 122.31 123.70 123.70 128.634 -4.91 -3.84 -3.84 

8 134.68 33.96 10.05 134.68 138.90 139.26 140.464 -4.11 -1.11 -0.85 
 

Table 5.5 Comparison of MPA and NLTHA peak values of floor displacements for 14-Storey EBF 

Floor 
Modal Response Modal Combination 

NLTHA 
Percentage Error (%) 

Mode 
1 

Mode 
2 

Mode 
3 

1 
Mode 

2 
Modes 

3 
Modes 

1 
Mode 

2 
Modes 

3 
Modes 

1 10.46 -16.17 5.29 10.46 19.25 19.97 22.020 -52.51 -12.56 -9.31 

2 21.54 -30.70 9.45 21.54 37.50 38.67 43.591 -50.58 -13.97 -11.28 

3 34.31 -44.13 12.13 34.31 55.90 57.20 63.431 -45.91 -11.87 -9.82 

4 48.86 -54.96 12.52 48.86 73.54 74.59 78.745 -37.96 -6.61 -5.27 

5 65.48 -63.20 10.68 65.48 91.00 91.63 92.505 -29.22 -1.63 -0.95 

6 84.66 -67.86 6.21 84.66 108.50 108.68 106.819 -20.74 1.57 1.74 

7 106.13 -66.68 -0.20 106.13 125.34 125.34 123.342 -13.96 1.62 1.62 

8 128.55 -59.25 -6.83 128.55 141.55 141.71 140.991 -8.82 0.40 0.51 

9 152.58 -44.71 -12.29 152.58 159.00 159.47 162.514 -6.11 -2.16 -1.87 

10 177.88 -22.30 -13.88 177.88 179.28 179.81 187.319 -5.04 -4.29 -4.01 

11 203.91 6.74 -10.26 203.91 204.02 204.28 215.044 -5.18 -5.13 -5.01 

12 229.40 40.11 -0.67 229.40 232.88 232.88 244.337 -6.11 -4.69 -4.69 

13 252.21 70.27 10.19 252.21 261.81 262.01 271.413 -7.08 -3.54 -3.46 

14 272.00 93.87 18.39 272.00 287.74 288.33 291.667 -6.74 -1.35 -1.14 
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Table 5.6 Comparison of MPA and NLTHA Inter-Storey Drift (% of floor height) for 4-Storey EBF 

Floor 
Modal Response Modal Combination 

NLTHA 
Mode 1 Mode 2 Mode 3 1 Mode 2 Modes 3 Modes 

1 0.494 -0.155 0.040 0.494 0.518 0.520 0.636 

2 0.548 -0.033 -0.027 0.548 0.549 0.549 0.663 

3 0.622 0.156 -0.062 0.622 0.641 0.644 0.615 

4 0.524 0.344 0.096 0.524 0.627 0.634 0.364 

 

 

Table 5.7 Comparison of MPA and NLTHA Inter-Storey Drift (% of floor height) for 8-Storey EBF 

Floor 
Modal Response Modal Combination 

NLTHA 
Mode 1 Mode 2 Mode 3 1 Mode 2 Modes 3 Modes 

1 0.421 -0.265 0.158 0.421 0.497 0.522 0.708 

2 0.391 -0.169 0.046 0.391 0.426 0.428 0.505 

3 0.466 -0.090 -0.082 0.466 0.475 0.482 0.536 

4 0.552 -0.063 -0.123 0.552 0.555 0.569 0.589 

5 0.499 0.234 -0.127 0.499 0.551 0.565 0.610 

6 0.480 0.391 -0.027 0.480 0.620 0.620 0.721 

7 0.410 0.446 0.146 0.410 0.606 0.623 0.615 

8 0.326 0.408 0.273 0.326 0.522 0.589 0.469 
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Table 5.8 Comparison of MPA and NLTHA Inter-Storey Drift (% of floor height) for 14-Storey EBF 

Floor 
Modal Response Modal Combination 

NLTHA 
Mode 1 Mode 2 Mode 3 1 Mode 2 Modes 3 Modes 

1 0.275 -0.425 0.139 0.275 0.507 0.526 0.974 

2 0.292 -0.382 0.109 0.292 0.481 0.493 0.806 

3 0.336 -0.354 0.070 0.336 0.488 0.493 0.725 

4 0.383 -0.285 0.010 0.383 0.477 0.477 0.599 

5 0.437 -0.217 -0.048 0.437 0.488 0.491 0.545 

6 0.505 -0.123 -0.118 0.505 0.520 0.533 0.504 

7 0.565 0.031 -0.169 0.565 0.566 0.590 0.558 

8 0.590 0.195 -0.174 0.590 0.622 0.646 0.616 

9 0.632 0.383 -0.144 0.632 0.739 0.753 0.745 

10 0.666 0.590 -0.042 0.666 0.889 0.890 0.964 

11 0.685 0.764 0.095 0.685 1.026 1.031 1.189 

12 0.671 0.878 0.252 0.671 1.105 1.134 1.245 

13 0.600 0.794 0.286 0.600 0.995 1.035 1.003 

14 0.521 0.621 0.216 0.521 0.811 0.839 0.704 

The base shear related to the average of peak top floor displacements of each mode were 

extracted from the corresponding pushover curves and were combined to estimate the base shear 

of each EBF subjected to earthquake ground motions. As shown in Table 5.9, MPA method 

could reasonably predict the base shear of three selected EBFs with a few percentage of error 

comparing to the results of NLTHA.  

Table 5.9 Comparison of the base shear obtained from MPA and NLTHA  

EBFs 
Base shear  Combination Base 

Shear 
NLTHA 

Percentage Error 
(%) Mode 1 Mode 2 Mode 3 3 Modes 

4-storey EBF 1623.81 877.28 339.32 1876.57 2304 -18.55 

8-Storey EBF 2020.89 1355.48 1219.18 2721.71 2910 -6.47 

14-Storey EBF 2216.26 2278.32 1674.20 3592.42 4145 -13.33 
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Figure 5.15.  4-Storey EBF Floor Displacements (MPA and NLTHA) 

 

 

Figure 5.16. 8-Storey EBF Floor Displacements (MPA and NLTHA) 
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Figure 5.17. 14-Storey EBF Floor Displacements (MPA and NLTHA) 

 

 

Figure 5.18. 4-Storey EBF Inter-Storey Drift (MPA and NLTHA) 
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Figure 5.19. 8-Storey EBF Inter-Storey Drift (MPA and NLTHA) 

 

Figure 5.20. 14-Storey EBF Inter-Storey Drift (MPA and NLTHA) 
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5.5. Summary 

This chapter evaluated the accuracy of modal pushover analysis in predicting seismic demands 

for eccentrically braced frames. The results of modal pushover analysis were compared with the 

results of non-linear time history analysis for 4-, 8- and 14-storey EBFs for four selected 

earthquake records. The major findings of this study are summarized as follows:  

For 4-storey EBF, which is representing low-rise EBFs, the roof displacement was well predicted 

by considering the first mode. Adding the higher mode effects did not improve the displacement 

and inter-storey drift responses considerably.  

For 8-storey EBF, which is considered as a medium-rise EBF, the first mode was able to predict 

the displacements of lower floors accurately; however, adding the contribution of the 2nd mode 

improved the displacements of upper floors. The contribution of the 2nd mode in the inter-storey 

drift was found more significant. Thus, for this EBF, including the effect of second mode was 

found helpful in improving MPA responses. The effect of the 3rd mode was not considerable.  

For 14-storey EBF, which represents a high-rise EBF, considering just the first mode could not 

lead to very accurate displacement and inter-storey drift responses. Adding the 2nd mode had 

more considerable influence on the improvement of both responses comparing to the 8-storey 

EBF. The third mode could also improve the responses by a few percent but that improvement 

was not found significant. For the three EBFs, the displacements of the roof were precisely 

predicted by MPA.  
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The base shear related to the average of peak top floor displacements of each mode were 

obtained from the associated pushover curve and were combined and compared with the non-

linear dynamic base shear.  The results showed that MPA method could reasonably predict the 

base shear of three selected EBFs. In conclusion, based on the study on 4-, 8- and 14-storey 

EBFs, adding the higher mode effects in MPA method was found un-required for low-rise, 

helpful for medium-rise and necessary for high-rise EBFs. 
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Chapter 6. Evaluation of Capacity Spectrum Method for Eccentrically Braced 

Frames 

6.1. Introduction 

The Capacity Spectrum Method (CSM) is a nonlinear static analysis procedure which can be 

used to estimate seismic demands of buildings. The capacity curve is described by roof 

displacement and base shear. The demand curve is obtained from the selected design response 

spectrum. The initial stiffness, yield strength and ductility demands of structures are calculated 

from the superposition of the capacity curves and demand curves. To account for inelastic 

behavior of the buildings, CSM uses inelastic response spectra or equivalent damped spectra. 

Appropriateness of both response spectra have been evaluated for framed structures in previous 

studies (Chopra and Goel 1999). Fajfar (1999) introduced a relatively simple and easy to use 

CSM procedure with a constant ductility demand spectra developed by Vidic et al. (1994). This 

capacity spectrum method is known as N2 method (P. Fajfar 1999) and has been implemented in 

Eurocode 8. This chapter evaluates the capacity spectrum method proposed by Fajfar (1999) for 

EBFs. Critical seismic response parameters roof displacement, ductility demand of 4-, 8- and 14-

storey EBFs are estimated by CSM. Design acceleration response spectrum of Vancouver has 

been transformed into the constant ductility demand spectra. The pushover (base shear versus 

roof displacement) curves of the EBFs are converted into the capacity spectrum of the equivalent 

single-degree-of-freedom (equivalent SDOF) systems. Finally, the applicability of CSM in 

estimating seismic demands of low-rise, medium-rise and high-rise EBF is investigated by 

comparing the results from CSM with the results from more accurate non-linear seismic analysis. 
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6.2. Capacity Spectrum Method by Fajfar (1999) 

The steps of capacity spectrum method proposed by Fajfar (1999) are as follows: 

Development of Seismic Demand Curve:  

Seismic demand is usually defined as the elastic (pseudo)-acceleration spectrum where spectral 

accelerations ( aeS ) are given as a function of the natural period of the structure T. Site specific 

design spectrum can be used to develop of a seismic demand curve. The first step for developing 

a seismic demand curve is to convert a traditional response spectrum in acceleration- 

displacement format. 

Step 1. Seismic Demand in Acceleration Displacement Response Spectrum format (ADRS): 

Acceleration response spectrum can be converted in to acceleration-displacement response 

spectrum (ADRS) by utilizing following relation between Pseudo-acceleration and displacement 

for the Single-Degree-of-Freedom (SDOF) system, 

 2

de ae2
TS S
4

=
π  

6.1 

   

where deS and aeS  are the spectral displacement and pseudo acceleration of elastic response 

spectrum respectively corresponding to the period T and a fixed viscous damping ratio.   

Inelastic ADRS can be obtained indirectly from elastic ADRS. The acceleration spectra aS and 

displacement spectra dS  for an inelastic SDOF system can be obtained by using strength 

reduction factor Rµ  proposed by Vidic et al. (1994). As given in equation 6.2, force reduction 

factor is the ratio of elastic strength demand to inelastic strength demand of an SDOF system for 
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a specified ductility ratio. Reduction factor ( Rµ ) mainly depends on the ductility and on the 

period of the system.  

 
ae

a
SS
Rµ

=  6.2 

From Equation 5.2and 6.2  

 
d a2

TS S
4

= µ
π

 6.3 

  

where µ  is the ductility factor defined as the ratio between the maximum displacement and the 

yield displacement. 

Several studies (Miranda and Bertero 1994, Vidic et al. 1994) have been done to determine force 

reduction factor.  In this research, the formulae proposed by Vidic et al. (1994) in slightly 

modified form will be used.  

 
( ) o

o

TR 1 1   when T T
Tµ = µ − + ≤  6.4 

 oR    when T Tµ = µ ≥  6.5 

 0.3
o c cT 0.65 T T= µ ≤  6.6 

 

where  cT  is the characteristics period which refers the transition period where constant 

acceleration region intersect the constant velocity region and this is the period when largest 

forces are applied to the structure; oT  is the transition period which depends on structural 

ductility and it should not be greater than cT . 
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The values of characteristics period and the transition period can be considered equal. Thus, in 

the simple version of the capacity spectrum method Fajfar (1999) considered   

 o cT T=  6.7 

Once the ductility and force reduction factors are known constant ductility seismic demand 

spectrum can be obtained for different ductility. Figure 6.1 presents schematic figure of such 

seismic demand spectrum.  

 

Figure 6.1. Schematic figure of an seismic demand spectrum (constant ductility response spectrum in 

ADRS format) by Fajfar (1999) 

 

Developement of Capacity Curve of Equivalent Single Degree of Freedom system: 

Step 1. Pushover curve of MDOF system: Estimate the first natural frequency of vibration nω , 

and associated normalized elastic vibration mode shape, φ  of a multi-storey building (MDOF). 

Base shear-roof-displacement relation (pushover curve) for MDOF system is developed by 
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pushing the structure with lateral force proportional to the assumed displacement shape ( iφ ) 

multiplied by storey mass, im . 

 
i i ip m= φ  6.8 

 

where, ip  is the lateral force at any storey i. 

Step 2. Determination of Capacity Spectrum for equivalent SDOF system: First, the MDOF 

system is transformed into equivalent SDOF system Top displacement ( tD ) and base shear ( bV ) 

of MDOF system are transformed into force ( *F ) displacement ( *
tD ) relationship of equivalent 

SDOF system by following relationship.  

 * *
b t tF V                D D= Γ = Γ  6.9 

 

where Γ is called modal participation factor and is given by:  

 *

2
i i

m
m

Γ =
φ∑

 6.10 

 

where *m is the mass of equivalent single degree of freedom system (SDOF) for the fundamental 

mode.  

 *
n i im L m= = φ∑  6.11 

 

Step 3. Idealize the pushover curve of equivalent SDOF into an elastic-perfectly plastic form: At 

this step the force ( *F ) - displacement ( *
tD ) relation of equivalent SDOF system is idealized 

based on some engineering judgment. This can be done by the guidelines provided in FEMA-

273. Finally, bilinear idealized force ( *F ) - displacement ( *
tD ) curve are transferred into 
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capacity curve by representing spectral acceleration to spectral displacement curve of equivalent 

SDOF system. Spectral acceleration at the yielding point is 
*
y

ay *

F
S

m
= . Elastic period of the 

idealized bilinear system *F can be determined by: 

 * *
y*

*
y

m D
T 2

F
= π  6.12 

 

where *
yD  and *

yF  are the yield displacement and yield strength of the equivalent SDOF system. 

Schematic figure of the development of capacity curve from pushover curve of MDOF to force-

displacement curve for equivalent SDOF system is presented in Figure 6.2. In this figure, the 

bilinear force-displacement curve is the capacity curve for equivalent SDOF system. 

 

Figure 6.2. Development of the capacity spectrum of an equivalent SDOF system by Fajfar (1999) 
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Determination of Seismic Demand and Performance of Equivalent SDOF system:  

Once the demand spectra and capacity spectra for equivalent SDOF system are established, they 

are superimposed in the same plot. Intersection point of the redial line of the capacity curve 

corresponding to the elastic stiffness of the equivalent SDOF system and the elastic demand 

spectrum, gives the strength demand ( aeS ) if the structure remains elastic. The yield spectral 

acceleration ayS  for the equivalent SDOF system refers to the acceleration where the inelastic 

behavior begins. Ratio of the elastic acceleration demand and yield spectral acceleration is the 

reduction factor Rµ . After that, ductility demand can be calculated from equations 6.4 and 6.5. 

Equations 6.4 and 6.5 suggest that, in the medium- and long-period ranges, the equal 

displacement rule applies. This means that the displacement of the inelastic system is equal to the 

displacement of the corresponding elastic system with the same period.   Finally, the 

displacement demand for the structure is determined from the intersection point of the capacity 

curve and the demand curve corresponding to the ductility demand. 

6.3. Application of Capacity Spectrum Method (CSM) for EBFs 

The three selected eccentrically braced frames (4-, 8- and 14-storey EBFs) designed according to 

capacity design approach of CAN/CSA S16-09 and presented in Chapter 3 are considered in this  

chapter to evaluate the applicability of capacity spectrum method for EBFs. 

Capacity curves for EBFs: 

Frequency analysis was performed for the selected EBFs to estimate fundamental periods and 

associated mode shapes of the EBFs. With the load pattern associated with the fundamental 

mode shapes, as given by equation 6.8, the EBFs were pushed and pushover curves (Base shear -
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roof displacement) were estimated. ABAQUS (K. a. Hibbitt 2011) was used to perform nonlinear 

pushover analysis with calculated lateral load pattern. The target displacement for the pushover 

analysis was taken as the displacement when the expected rigid plastic mechanism occurred. For 

EBFs, this occurs when all the links are yielded. Figure 6.3 presents the nonlinear pushover 

curves for the selected EBFs. The MDOF systems were transformed into equivalent SDOF 

systems by applying relations given in Equation 6.9. Masses of equivalent SDOF systems are 

578 ton, 1214 ton and 1810 ton for 4-storey, 8-storey and 14-storey building respectively. Modal 

participation factors of MDOFs were calculated as 1.46 for 4-storey EBF, 1.44 for 8-storey EBF 

and 1.54 for 14-storey EBF. Roof displacement ( tD ) and base shear ( bV ) relation of MDOF 

systems have been transferred into force ( *F ) - displacement ( *
tD ) relationship of equivalent 

SDOF system. After that, force ( *F ) to displacement ( *
tD ) relationship of equivalent SDOF 

systems were idealized as bilinear curves where the post-yielding stiffness of equivalent SDOF 

systems were zero. This was done following the guidelines in FEMA-273 where area under the 

original pushover curve and bilinear curve were same and the two curves intersected at the 60% 

of the yield strength. Bilinear idealized force-displacement curves of SDOF systems were then 

converted into spectral acceleration versus spectral displacement curves. Properties of equivalent 

SDOF systems are presented in Table 6.1 and idealized SDOF curves are shown in Figure 6.4.  

Table 6.1 Structural Properties of Equivalent SDOF System 

Frames 

Effective 

mass *m  

 
(ton) 

Modal Participation 

Factor Γ  

 

 

Yield  

Strength
*
yF  

(kN) 

Yield 

Displacement
*
yD  

(mm) 

Elastic Period 
*T  
 

(sec) 

4-Storey EBF 578.13 1.46 1299.05 34.00 0.77 
8-Storey EBF 1213.61 1.44 1792.29 74.99 1.42 

14-Storey EBF 1810.44 1.54 1782.24 170.72 2.62 
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Figure 6.3. Base shear ( )bV - Roof Displacement ( )tD from Non-Linear Pushover Analysis of 4-Storey 

EBF (top), 8-Storey EBF (middle), 14-Storey EBF (bottom) 
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Figure 6.4. Force-Displacement and Idealized Curve as well as Spectral Acceleration vs. Spectral 

Displacement Curve of Equivalent SDOF System for 4-Storey EBF (top), 8-Storey EBF (middle), 14-

Storey EBF (bottom) 
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Demand spectrum for EBFs: 

Appendix J of National Building Code of Canada provides design spectral accelerations for 

different cities in Canada. Vancouver design spectral acceleration parameters (5% damped 

structure and for reference soil class C were used to obtain seismic demand curve. The design 

spectrum is presented in Figure 6.5. Displacement response spectrum was estimated from 

pseudo-acceleration using equation 5.2. 

The demand curve constructed based on code spectral accelerations was for elastic response of 

the structure (e.g. ductility is equal to one).  Acceleration spectrum ( aS ) and displacement 

spectrum ( dS ) for inelastic SDOF systems were determined from elastic ADRS by using 

expression of reduction factor by Vidic et al. (1994). From the Vancouver design spectrum, the 

characteristics period ( cT ) is taken as 0.20 s.  

 

Figure 6.5. Elastic Design Acceleration Response Spectrum of Vancouver for 5% Damping Ratio and the 

Corresponding Displacement Spectrum 
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Seismic Demand estimation of EBFs using CSM: 

Demand spectra and capacity spectra for equivalent SDOF system were drawn in the same plot. 

Radial line of the capacity curve corresponding to the elastic period of the equivalent SDOF 

system represents the elastic stiffness of the EBF system. Intersection of elastic demand 

spectrum and capacity spectra of equivalent SDOF system gives the strength demand ( aeS ) when 

the response of the EBF is elastic. This intersection point is often referred as performance point. 

The yield spectral acceleration (Say) for the equivalent SDOF system refers to the spectral 

acceleration demands for the inelastic system. Ratio of the elastic spectral acceleration demand 

to the inelastic spectral acceleration demand is called force reduction factor, Rµ . Once the force 

reduction factor was calculated ductility demand was calculated by the reverse calculation of 

equations 6.4 and 6.5. Displacement demand of equivalent SDOF system was estimated from the 

same performance point. Figure 6.6, Figure 6.7 and Figure 6.8 present graphical representations 

of the application of capacity-spectrum method for 4-storey, 8-storey and 14-storey EBF 

respectively.  

From the capacity curves of 4-, 8-, and 14-storey EBFs elastic periods were calculated. The 

elastic periods of equivalent SDOF systems were 0.77 s, 1.42 s, and 2.62 s. Since the elastic 

periods of all the selected EBFs are larger than cT , '' Equal Displacement Rule '' applies here. 

Thus for all the selected cases, inelastic displacement demands are equal to the elastic 

displacement demands. Displacement demands of equivalent SDOFs were determined from the 

intersection points of the capacity curves and the demand curves corresponding to the ductility 

demands. The displacement demands for equivalent SDOF systems were determined as 63.5 

mm, 117.5 mm and 219 mm for 4-storey, 8-storey and 14-storey EBFs respectively. The results 
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from equivalent SDOF systems were then transferred into displacement demands of MDOF 

systems by multiplying with the modal participations factors. The top displacement demands for 

4-storey EBF, 8-storey EBF, and 14-storey EBF were determined as 92.63 mm, 169.08 mm, and 

336.75 mm respectively. For the three selected EBFs, the displacement demands obtained from 

capacity spectrum method were compared with average top storey displacements from non-linear 

time history analysis.  Table 3.3 presents the displacement demands of the selected EBFs. It is 

observed that that the displacement demands from CSM agree very well with the average 

maximum top storey displacements from nonlinear seismic analysis.  The maximum difference 

between seismic analysis and CSM was 4.52% and was observed for 8-storey EBF.  

According to the current design standard of Canada, ductility based reduction factor for EBF is 

4.0 and over-strength related reduction factor is 1.5. In CSM, ductility demands of the selected 

EBFs were lower than the code suggested ductility. However, ductility demand calculations 

using CSM have some limitations. First of all, the elastic period calculated using CSM may not 

be constants after yielding of the structure. In addition, all the analysis approximations also have 

some influence on this lower ductility demand. 

Table 6.2 Performance Evaluation of EBFs using CSM and NLTHA 

Parameters 4-Storey EBF 8-Storey EBF 14-Storey EBF 

Max Top Displacement (mm) 

(CSM) 92.63 169.08 336.75 

Max Top Displacement (mm) 

(NLTHA) 88.78 161.77 332.28 

Percentage Error (%) 

(CSM W.R.T NLTHA) 4.34 4.52 1.345 
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Figure 6.6. Graphical Representation of CSM on 4-Storey EBF in ADRS format 

 

 

Figure 6.7. Graphical Representation of CSM on 8-Storey EBF in ADRS format 
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Figure 6.8. Graphical Representation of CSM on 14-Storey EBF in ADRS format 

 

6.4. Summary 

Seismic performance evaluation is one of the important steps in performance based design 

procedure. CSM has been used previously as a performance evaluation tool for framed 

structures. The applicability of CSM for estimation of seismic demands for three EBFs is 

investigated in this chapter. Non-linear pushover curves of MDOF have been converted into 

capacity curves of equivalent SDOF system. Vancouver design response spectrum was 

transferred into inelastic demand spectrum for different ductility factors. Displacement demand 

and ductility demand were calculated from the intersection point of the capacity curve and 

demand curve.  For all the selected EBFs, the displacement demands were very close to the non-

linear time history analysis results. On the other hand, estimated ductility demands of all EBFs 
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by CSM were lower than the designed ductility of EBF, which represents the satisfactory 

performance of these systems.  

Finally, capacity-spectrum method can be used for estimation of performance parameters of 

EBFs. Capacity-spectrum method needs an assumed displacement shape and a lateral load 

pattern for nonlinear pushover analysis. In this method, first elastic vibration mode shape was 

used as an assumed mode shape. Therefore, this method cannot include higher mode contribution 

in the overall building performance. Therefore, this method is suitable for structure which is 

mainly dominated by its fundamental mode of vibration. For different hazard level, CSM can be 

performed with different response spectrum for corresponding hazard level. So the expected 

performance level for different level of ground motion can be analyzed by CSM as well. 
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Chapter 7. Summary and Conclusions 

7.1. Summary 

In this research, seismic performance of eccentrically braced frames designed according to 

NBCC 2010 and CSA S16-09 provisions was evaluated. A detailed finite element model with 

material and geometrical non-linearities was developed. The finite element model was validated 

using the results from one quasi-static experimental program. The same finite element modeling 

technique was then used to model a set of three eccentrically chevron braced frames with 4-, 8- 

and 14-storey designed according to current Canadian provisions. To determine the seismic 

responses of EBFs, non-linear time history analyses were conducted. A set of eight ground 

motions including real and simulated records compatible with design spectrum of Vancouver 

was selected for seismic analysis. The critical response parameters including inelastic link 

rotations and maximum shear forces in the links were investigated. Also, storey displacement 

and inter-storey drift results were provided. It is well accepted that the non-linear time history 

analysis provides very accurate results; however, seismic performance evaluation using NLTHA 

is very complex and time consuming and most importantly require expertise. Therefore, simple 

methods with enough accuracy in estimating seismic demands of EBFs are required by 

practicing engineers. Two such simple methods are modal pushover analysis and capacity 

spectrum method. MPA and CSM procedures are non-linear static methods that have been used 

previously for moment resisting frames. In this research, these two methods were evaluated for 

estimating seismic performance parameters of EBFs. The modal pushover method was selected 

because it incorporates the contributions of higher modes into the responses. This method was 

applied on the three EBFs to estimate the displacements and inter-storey drifts demands of all 
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floors as well as the base shear demands. The capacity spectrum method which graphically 

compares the capacity of the structure with seismic demands was employed as another non-linear 

static method. Critical seismic response parameters, such as top storey displacements and inter-

storey drifts, from MPA and CSM were compared with the results obtained from non-linear 

seismic analysis.  

7.2. Conclusions 

The following observations were made from non-linear time history analysis of EBFs: 

• The finite element model developed in this study was able to provide reasonably accurate 

predictions of the behavior of EBF. Excellent agreement was observed between results 

from FE analysis and results from experiment. The finite element model was capable to 

capture all essential features of the test specimens, such as initial stiffness, ultimate 

strength. 

• Based on the results of non-linear time history analyses, it was observed that all EBFs 

behaved in compliance with the capacity design approach provided by Canadian seismic 

provisions. For all ground motions, all the links were yielded at all floors. Though some 

partial yielding of adjacent beams was observed for some ground motions, all other 

members remained elastic.  

• During the design process, it was attempted to keep the ratio of the link shear resistance 

to the link shear forces uniform along the height of EBFs in order to avoid the 

concentration of link rotations at some specific floors as it was recommended in the 
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literature. However, the analysis results showed that the link rotations at all floor were 

not uniform especially in medium and high-rise EBFs.  

• The average link rotation of all EBFs remained below the design limit of 0.08 rad, except 

for the two upper floors in 14-storey EBFs where the link rotation slightly exceeded the 

limit. The larger link rotation demands might be due to participation of higher modes. 

The modal pushover analysis also showed significant contribution of the second mode 

into the responses of 14-storey EBF. Thus, for design of taller EBF buildings higher 

mode contributions are important and shall be considered at the design phase.  

• The link overstrength factors in all EBFs also follow the same trend as the link rotations 

with average values of 1.5, which exceeds the code limit of 1.3, but it is below of the 

available experimental results. The amount of overstrength developed by the link is 

because of strain hardening of the link and also due to development of shear resistance in 

the link flanges. Therefore, based on the results of this study, the current link 

overstrength factor of 1.3 suggested by CSA S16-09 underestimates the actual link 

overstrength factor. However, more analysis should be done on EBFs of different 

geometry before suggesting modifications of link overstrength factor.   

The accuracy of MPA and CSM methods was also evaluated on the three EBFs. The following 

conclusions were made:  

• In general, modal pushover analysis results showed sufficient accuracy in predicting 

seismic demands of all eccentric braced frames. For low-rise EBF, the top storey 
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displacement was accurately predicted by the first mode. Considering higher mode 

effects didn't improve the accuracy of the results considerably. For medium-rise EBF, the 

accuracy of the displacement and inter-storey drift results were improved by including 

higher modes contribution. For high-rise EBF, the most significant contributions of 

higher modes on both displacements and inter-storey drifts were observed leading into 

sufficiently precise results. For all EBFs, the results of storey displacements were more 

precise than inter-storey drifts. Also, the modal pushover method was able to predict the 

base shear demand with reasonable accuracy. 

•  The capacity spectrum method showed excellent accuracy in predicting the displacement 

demands and ductility demands of all EBFs. Based on the results of this study, CSM can 

be accepted as a simplified method for preliminary design of low to medium-rise EBFs. 

Although both CSM and MPA method was found precise in predicting top floor 

displacements of all EBFs, MPA is superior in providing more realistic measure of other 

floors displacements and inter-storey drifts.  
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7.3. Future Work 

The non-linear time history analysis results provided in this thesis is limited to three eccentrically 

chevron braced frames. More research works are required on EBFs of different types, geometry 

and height to verify achievement of the desired frame behavior of EBFs designed according to 

current Canadian provisions. Also, based on the results of this study, the link overstrength factor 

suggested by CSA S16-09 is lower than the actual link overstrength. More studies are required 

on EBFs of different type and height before making more general conclusions and suggestions in 

this regard.   

The applicability of modal pushover analysis method in this study was evaluated for 

eccentrically chevron braced frames with symmetrical plan. More studies are required for 

unsymmetrical plan with torsional effects. 

The post-yielding behavior of the structure is neglected in capacity spectrum method. It is well-

known that after yielding, stiffness of any lateral load resisting system changes. Thus, future 

research is required to incorporate post-yielding hardening in the capacity spectrum method. 
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