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Abstract
Aircraft Jet Engine Health Monitoring Through System Identification Using

Ensemble Neural Networks

Mahdiyeh Amozegar

In this thesis a new approach for jet engine Fault Detection and Isolation (FDI) is proposed using

ensemble neural networks. Ensemble methods combine various model predictions to reduce the

modeling error and increase the prediction accuracy. By combining individual models, more robust

and accurate representations are almost always achievable without the need of ad-hoc fine tunings

that are required for single model-based solutions.

For the purpose of jet engine health monitoring, the model of the jet engine dynamics is repre-

sented using three different stand-alone or individual neural network learning algorithms. Specif-

ically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural

network, and a dynamic support vector machine (SVM) are trained to individually model the jet

engine dynamics. The accuracy of each stand-alone model in identification of the jet engine dy-

namics is evaluated. Next, three ensemble-based techniques are employed to represent jet engine

dynamics. Namely, two heterogenous ensemble models (an ensemble model is heterogeneous

when different learning algorithms (neural networks) are used for training its members) and a

homogeneous ensemble model (all the models are generated using the same learning algorithm

(neural network)). It is concluded that the ensemble models improve the modeling accuracy when

compared to stand-alone solutions. The best selected stand-alone model (i.e the dynamic radial-

basis function neural network in this application) and the best selected ensemble model (i.e. a

heterogenous ensemble) in term of the jet engine modeling accuracy are selected for performing

the FDI study.

Engine residual signals are generated using both single model-based and ensemble-based so-

lutions under various engine health conditions. The obtained residuals are evaluated in order to

iii



detect engine faults. Our simulation results demonstrate that the fault detection task using resid-

uals that are obtained from the ensemble model results in more accurate performance. The fault

isolation task is performed by evaluating variations in residual signals (before and after a fault de-

tection flag) using a neural network classifier. As in the fault detection results, it is observed that

the ensemble-based fault isolation task results in a more promising performance.
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t = 20 sec, ṁf = 0.85 ṁf,maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

3.84 Residual generated using ensemble model with FSS pruning, 4% decrease in tur-
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bine efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum. . . . . . . . . . . . . . . . . . 215

3.87 Residual generated using RBF-NARX model, 2% decrease in turbine efficiency at
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t = 20 sec, ṁf = 0.85 ṁf,maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

4.1 Fault isolation mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

xvi



4.2 Proposed neural network fault classifier. . . . . . . . . . . . . . . . . . . . . . . . . . 255

4.3 Proposed neural network for multiple fault isolation. . . . . . . . . . . . . . . . . . 267

xvii



List of Tables

1.1 A survey of hybrid and ensemble-based soft computing techniques applied to FDI. 10

2.1 Jet engine component fault indications. . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1 Jet engine fault detection (FD) methods selected from the literature as benchmarks. 76

3.2 Training data generation summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Measurement noise standard deviations as percentage of engine parameter values

at cruise condition[199]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 The effectiveness of cross-validation for identification of compressor pressure. . . 81

3.5 The effectiveness of cross-validation for identification of compressor temperature. 82

3.6 The effectiveness of cross-validation for identification of rotational speed. . . . . . 82

3.7 The effectiveness of cross-validation for identification of turbine temperature. . . . 82

3.8 The effectiveness of cross-validation for identification of turbine pressure. . . . . . 83

3.9 Summary of construction of MLP-NARX for modelling the compressor tempera-

ture (see the appendix for extensive summary). . . . . . . . . . . . . . . . . . . . . . 99

3.9 Summary of construction of MLP-NARX for modelling the compressor tempera-

ture (see the appendix for extensive summary). . . . . . . . . . . . . . . . . . . . . . 100

3.10 Best MLP-NARX for modeling of compressor temperature in terms of RMSEtest. 100

3.11 Summary of construction of MLP-NARX for modelling of compressor pressure in

term of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . 102

3.12 Best MLP-NARX for modeling the compressor pressure in terms of RMSEtest. . 103

3.13 Summary of construction of MLP-NARX for modelling of rotational speed in term

of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . . . . 104

xviii



3.13 Summary of construction of MLP-NARX for modelling of rotational speed in term

of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . . . . 105

3.14 Best MLP-NARX for modeling of rotational speed in term of RMSEtest. . . . . . 105

3.15 Summary of construction of MLP-NARX for modelling the turbine temperature in

term of RMSEtest (see the appendix for extensive summary). . . . . . . . . . . . . 107

3.16 Best MLP-NARX for modeling the turbine temperature in term of RMSEtest. . . 108

3.17 Summary of construction of MLP-NARX for modelling the turbine pressure in

term of RMSEtest (see the appendix for extensive summary). . . . . . . . . . . . . 109

3.17 Summary of construction of MLP-NARX for modelling the turbine pressure in

term of RMSEtest (see the appendix for extensive summary). . . . . . . . . . . . . 110

3.18 Best MLP-NARX for modeling of turbine pressure in term of RMSEtest. . . . . . 110

3.19 Summary of construction of RBF-NARX for modelling of compressor temperature

in term of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . 114

3.19 Summary of construction of RBF-NARX for modelling of compressor temperature

in term of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . 115

3.20 Best RBF-NARX for modeling of compressor temperature in term of RMSEtest. 115

3.21 Summary of construction of RBF-NARX for modelling of compressor pressure in

term of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . 116

3.21 Summary of construction of RBF-NARX for modelling of compressor pressure in

term of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . 117

3.22 Best RBF-NARX for modeling of compressor pressure in term of RMSEtest. . . . 117

3.23 Summary of construction of RBF-NARX for modelling of rotational speed in term

of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . . . . 119

3.24 Best RBF-NARX for modeling of rotational speed in term of RMSEtest. . . . . . 120

3.25 Summary of construction of RBF-NARX for modelling of turbine temperature in

term of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . 121

3.25 Summary of construction of RBF-NARX for modelling of turbine temperature in

term of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . 122

3.26 Best RBF-NARX for modeling the turbine temperature in terms of RMSEtest. . . 122

xix



3.27 Summary of construction of RBF-NARX for modelling of turbine pressure in term

of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . . . . 124

3.28 Best RBF-NARX for modeling of turbine pressure in term of RMSEtest. . . . . . 125

3.29 Summary of construction of SVM-NARX for modelling of compressor tempera-

ture in term of RMSEtest (see appendix for extensive summary). . . . . . . . . . . 128

3.30 Best SVM-NARX for modeling of compressor temperature in terms of RMSEtest. 129

3.31 Summary of construction of SVM-NARX for modelling of compressor pressure in

term of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . 130

3.32 Best SVM-NARX for modeling of compressor pressure in term of RMSEtest. . . 131

3.33 Summary of construction of SVM-NARX for modelling of rotational speed in term

of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . . . . 132

3.34 Best SVM-NARX for modeling of rotational speed in term of RMSEtest. . . . . . 133

3.35 Summary of construction of SVM-NARX for modelling of turbine temperature in

term of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . 134

3.36 Best SVM-NARX for modeling of turbine temperature in term of RMSEtest. . . . 135

3.37 Summary of construction of SVM-NARX for modelling of turbine pressure in term

of RMSEtest (see appendix for extensive summary). . . . . . . . . . . . . . . . . . 136

3.38 Best SVM-NARX for modeling of turbine pressure in term of RMSEtest. . . . . . 137

3.39 GEM coefficients for integration of ensemble system (ensemble I) . . . . . . . . . 150

3.40 Gradient descent coefficients for integration of ensemble system (ensemble I) . . . 151

3.41 Heterogeneous ensemble with ranked pruning and GEM as integration method er-

ror analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.42 Heterogeneous ensemble with ranked pruning and gradient descent as integration

method error analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.43 Summary of the heterogeneous ensemble training with ranked pruning. . . . . . . 153

3.44 Summary of the heterogeneous ensemble training with FSS pruning algorithm. . . 155

3.45 Parameters of models inside ensemble model of compressor pressure (ensemble II). 156

3.46 Parameters of models inside ensemble model of compressor temperature (ensem-

ble II). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xx



3.47 Parameters of models inside ensemble model of rotational speed (ensemble II). . . 156

3.48 Parameters of models inside ensemble model of turbine pressure (ensemble II). . . 157

3.49 Parameters of models inside ensemble model of turbine temperature (ensemble II). 157

3.50 Gradient descent coefficients for integration of ensemble system (ensemble II). . . 157

3.51 Heterogeneous ensemble with the FSS pruning, and gradient descent as integration

method error analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

3.52 Best SVM-NARX for modeling of compressor temperature in terms of RMSEtest. 160

3.53 Heterogeneous ensemble with FSS pruning, and gradient descent as integration

method error analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

3.54 Comparison of different methods for identification of compressor pressure. . . . . 165

3.55 Comparison of different methods for identification of compressor temperature. . . 166

3.56 Comparison of different methods for identification of rotational speed. . . . . . . . 167

3.57 Comparison of different methods for identification of turbine pressure. . . . . . . . 168

3.58 Comparison of different methods for identification of turbine temperature. . . . . . 169

3.59 Jet engine component fault indications. . . . . . . . . . . . . . . . . . . . . . . . . . 171

3.60 Fault detection time summary using ensemble model: compressor efficiency fault
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injected at t = 20 sec, ṁf = 0.85 ṁf,maximum. . . . . . . . . . . . . . . . . . . . . 208

3.66 Fault detection time summary using ensemble model: turbine mass flow rate fault
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Chapter 1

Introduction

Fault Detection and Isolation (FDI) has captured a wide range of attention in various industries

including aerospace. FDI plays an important role in increasing safety and reducing operational

costs of an aircraft. This is applicable to different subsystems of an aircraft, which also includes

the engine. Early diagnosis of jet engine faults reduces both the operational and maintenance costs

of an aircraft.

Various algorithms have been proposed for fault detection and diagnosis in various applications.

At the high level these algorithms can be categorized into two major classes: Model Driven and

Data Driven methods. Model driven algorithms require a realistic mathematical model of the

system, which might be expensive to derive. Data-driven models, on the other hand, do not require

a mathematical model and they can be trained using available engine data. The main drawback of

the data-driven methods is their lack of confidence, which comes from the fact that their knowledge

is distributed over a set of nodes (unlike the model-based approaches where the knowledge is

centralized in the mathematical model). To respond to this issue, we propose a fault detection and
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isolation algorithm based on ensemble of data-driven models. The agreement among the ensemble

members reduces the chance of error while increasing the overall confidence.

Ensemble-based decision making is employed in our real life: the essence of democracy where

a group of people vote to make a decision for choosing an elected official or deciding about a new

law, the judicial systems whether based on a jury of peers or a panel of judges, etc. There are also

more tangible examples in daily life: consulting with different doctors before agreeing to a major

medical operation, reading users’ reviews before buying an item and lots of other examples. As a

matter of fact, no matter if ensemble-based systems are going to be used for daily applications or

machine learning applications, the original goal of using them is the same; improving our conˇ -

dence of making the right decision by considering various opinions and then combining them in an

effective manner to finalize our decision. In this chapter we aim to present the overview of using

ensemble systems for the purpose of fault detection and isolation in jet engines.

The remainder of this chapter is organized as follows. The statement of problem is presented

in Section 1.1. Section 1.2 presents a literature review on ensemble learning and soft-computing

approaches applied to FDI problem in various applications. Section 1.3 explains the contributions

of the thesis, followed by the thesis outline in Section 1.4. Finally, Section 1.5 summarizes the

present chapter.

1.1 Thesis Objectives

In recent years, there has been numerous papers in the computer science community discussing

how to combine models or model predictions, in order to reduce model error and increase the

prediction accuracy. By combining models, more robust and accurate models are almost always

2



achievable without the need of ad-hoc fine tunings required for single-model solutions.

The main objective of this thesis is to develop an FDI scheme for a single-spool jet engine by

combining single-model solutions, and building an ensemble system. The goal is to improve the

performance of single-model solutions (such as modeling jet engine dynamics using a single neural

network) by combining multiple learners into an ensemble. In other words we would like to benefit

from different models by combining them in order to have more accurate predictions. Combining

stand-alone models increases the accuracy by reducing the bias and variance of the predictions.

This is critical when we focus on residual generation problem. Having less biased residual with

less variance helps to detect slight variations in jet engine’s performance due to degradation or a

failure which leads to more accurate FDI mechanism (as compared to single-model solutions).

1.2 Literature Review

1.2.1 Fault Detection and Isolation

The term fault is defined as any unexpected or unpredicted deviation or change from the desired

system’s behavior that can happen for either an unbounded or bounded period of time. It is more

cost effective to predict the possible failure in the system due to a fault before it contributes to

the system unsafe performance that in turn the system efficiency may decrease and even a drastic

failure is caused. For this purpose, health monitoring is considered to be useful. Technically, health

monitoring refers to the techniques and processes that enables one to monitor the system condition

so the failure in the system can be predictable in advance. This section aims to briefly summarize

Fault Detection and Isolation (FDI) methodologies in the literature based on [32, 33, 34]. FDI

methodologies are classified into model-based, and data-riven (process history-based) approaches,
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each can be implemented either in qualitative or quantitative manner [32] (see Figure 1.1).

as first-principles models, frequency response models

and so on. The first-principles models (also classified as

macroscopic transport phenomena model (Himmelblau,

1978)) have not been very popular in fault diagnosis

studies because of the computational complexity in

utilizing these models in real-time fault diagnostic

systems and the difficulty in developing these models.
The most important class of models that have been

heavily investigated in fault diagnosis studies are the

input�/output or state�/space models and hence the

focus is on these types of models.

5.1. Analytical redundancy

In the area of automatic control, change/fault detec-

tion problems are known as model-based FDI. Relying

on an explicit model of the monitored plant, all model-

based FDI methods (and many of the statistical

diagnosis methods) require two steps. The first step
generates inconsistencies between the actual and ex-

pected behavior. Such inconsistencies, also called resi-

duals , are ‘artificial signals’ reflecting the potential faults

of the system. The second step chooses a decision rule

for diagnosis.

The check for inconsistency needs some form of

redundancy. There are two types of redundancies,

hardware redundancy and analytical redundancy. The
former requires redundant sensors. It has been utilized

in the control of such safety-critical systems as aircraft

space vehicles and nuclear power plants. However, its

applicability is limited due to the extra cost and

analytical redundancy can be further classified into

two categories (Basseville, 1988; Chow & Willsky,

1984; Frank, 1990), direct and temporal.

A direct redundancy is accomplished from algebraic

relationships among different sensor measurements.

Such relationship are useful in computing the value of

a sensor measurement from measurements of other

sensors. The computed value is then compared with

the measured value from that sensor. A discrepancy

indicates that a sensor fault may have occurred.

A temporal redundancy is obtained from differential

or difference relationships among different sensor out-

puts and actuator inputs. With process input and output

data, temporal redundancy is useful for sensor and

actuator fault detection.

A general scheme of using analytical redundancy in

diagnostic systems is given in Fig. 4. The essence of

analytical redundancy in fault diagnosis is to check the

actual system behavior against the system model for

consistency. Any inconsistency expressed as residuals,

can be used for detection and isolation purposes. The

residuals should be close to zero when no fault occurs

but show ‘significant’ values when the underlying system

changes. The generation of the diagnostic residuals

requires an explicit mathematical model of the system.

Either a model derived analytically using first principles

or a black-box model obtained empirically may be used.

Fig. 3. Classification of diagnostic algorithms.

V. Venkatasubramanian et al. / Computers and Chemical Engineering 27 (2003) 293�/311 301

Figure 1.1: Classification of diagnostic methods [32].

Quantitative model-based approaches are based on explicit model of the plant under observa-

tion. Most of the works in this area focus on state-space estimation and input-output modeling of

the system. Examples of quantitative model-based approaches are observer-based FDI, and Ex-

tended Kalman Filters (EKF). Quantitative model-based approaches consist of two steps. The first

step is to generate inconsistency between the actual output of the system and the expected behavior.

This inconsistency is referred to as residual signal, which is the difference between actual output

and expected behavior [32]. On the other hand, qualitative model-based approaches do not require

mathematical modeling of the monitored system. Instead, they rely on qualitative modeling of the

system’s behavior. As an example, an FDI system with a large set of if-then-else rules (the rules

are extracted from human experts) is categorized as qualitative model-based FDI system [33]. Ex-

amples of qualitative model-based methodologies are fuzzy inference systems, and fault trees [92],

[93].
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Unlike the model-based approaches, the data-driven FDI does not require either a mathematical

or a qualitative model of the monitored system. Data-driven FDI is based on available data acquired

from the system. Similar to the model-based FDI, the data-driven approaches are classified into

qualitative and quantitative. Qualitative data-driven FDI can be categorized into qualitative trend

monitoring and expert systems. In these approaches, the obtained data is used to extract the set

of rules governing the system [34]. Quantitative data-driven method is the category of FDI algo-

rithms. In this approach data-driven approaches (e.g. artificial neural networks (ANN), support

vector machines, etc.) are used to predict the expected behavior of the healthy system. The incon-

sistency between the actual behavior of the system and the prediction of FDI algorithm is used as

an indication of fault occurrence. In another framework, data-driven FDI evaluates the measured

inconsistency in order to isolate the detected fault [34]. Examples of quantitative FDI algorithms

are artificial neural networks [143, 144, 145, 146] and support vector machines [146, 150].

In this thesis, the focus is on quantitative data-driven FDI algorithms. The contribution is to

design an ensemble of quantitative data-driven methods for health monitoring of a jet engine. In

the rest of this chapter, we review the ensemble learning methodologies with the application of

health monitoring and time-series prediction. We also review the literature in order to find the

most promising data-driven algorithms in order to be used in design of our ensemble system.

1.2.2 Jet Engine Fault Detection and Isolation

Jet engine condition monitoring is important both for reducing maintenance cost and increasing

the flight safety. Therefore, it has been increasingly studied by the researches in recent years [94].

We discussed the model-based and data-driven fault diagnosis algorithms in the previous section,

both approaches have been widely used in jet engine fault monitoring application. Kalman filter
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is a well-established quantitative model-based approach which has been extensively applied to

jet engine fault diagnosis as in [95, 96, 97]. Fuzzy logic is a qualitative model-based approach

extensively used for aircraft engine fault diagnosis [161, 171].

The mathematical complications required to derive the model of system especially in a case that

the system nonlinear complexity is high is one of the most significant obstacles in using model-base

approaches. On the other hand, since data-driven approaches rely on real-time or collected data

from the sensors, there is no need of having the mathematical model of the jet engine. Data-driven

approaches are widely used as an alternative for model-based approaches.

Several kinds of ANN are used in the application jet engine fault diagnosis. The use of dy-

namic neural networks for jet engine fault diagnosis is reported in [139, 140]. Feed-forward neural

network is another widely used ANN for jet engine fault diagnosis [143, 144, 145, 146]. The use

of RBF neural network for jet engine fault diagnosis is reported in [143, 179, 165, 174].

A major difficulty associated with data-driven approaches is the computational complexity for

finding the appropriate learning method. Furthermore, there is always a chance that the selected

learning algorithm does not satisfy the design requirements for some unseen samples of the input

space. Ensemble learning has proven to improve individual learners generalization performance

[184], [185], [187], and reduces the chance of selecting a learner with weak performance. An

ensemble of classifiers is presented in [146] for fault isolation of jet engine using SVM, Decision

Tree (DT), and MLP. The authors in [144], studied an ensemble classifier using MLP, Robust Ratio

Thresholding (RRT) and Logistic Regression (LR) for fault diagnosis of jet engine. Random forest

(RF) and Self Organizing Map (SOM) are used in [149] for fault detection of jet engine. Also,

[179] presents an ensemble of neural networks using MLP and RBF for gas turbine fault isolation.

According to our review, the use of ensemble learning for jet engine fault detection through system
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identification has not been reported. This research presents an ensemble of neural networks for

fault detection and isolation of a single-spool jet engine through system identification.

1.2.3 Ensemble Learning

The very first use of ensemble learning goes back to 1979, where Dasarathy and Sheela parti-

tioned the feature space using multiple classifiers [35]. Ensemble of similarly configured neural

networks was first used in [187], the authors showed that an ensemble of neural networks can be

used to improve the generalization performance. Later in 1990, [214] showed that a strong clas-

sifier with an arbitrary low error can be generated by combining a set of weak learners through

an algorithm called boosting [118]. To extend the theory behind ensemble learning, [36] studied

the bias-variance tradeoff, and shows that a single neural network is not able to learn complex

problems standing alone.

Having established the theory behind ensemble learning, ensemble learning has captured lots of

attention in computer science and engineering communities under various names [118] including:

bagging [128], boosting [40, 135], mixture of experts [137], and neural networks ensemble [187],

[186], [193]. The application of ensemble learning to time-series prediction and FDI problems is

presented in the following section.

1.2.4 Ensemble Learning for Fault Detection and Isolation

The use of ensemble learning for FDI problem has been reported in several publications. This

section reviews the literature This section focuses on ensemble techniques, where outputs of sev-

eral predictors are aggregated together in order to form the final prediction. A variety of ensemble
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techniques have been applied to the FDI problem. Almost all authors demonstrate that the tech-

nique they propose outperforms some other methods chosen for the comparison; however, due to

different data sets used by different authors and bearing in mind the fact that confidence intervals

for the prediction accuracies are seldom provided, fair comparison of results obtained by different

authors is hardly possible. Thus, in this section we focus on the architecture of studied ensemble

system, rather than comparison of the obtained results. The details of this review is indexed in

Table 1.1.

Loboda et al. showed that both MLP and RBF show acceptable performances for the appli-

cation of gas turbine fault classification [143]. Xiao developed an ensemble classifier for fault

diagnosis of aircraft engine using LR, MLP, LRT and RRT [144]. Zhang et al. developed an en-

semble of feed-forward neural networks for fault diagnosis of chemical processes [145]. Yan et al.

introduced an ensemble system for jet engine fault diagnosis by using SVM, MLP and DT [146].

Xiao et al. designed an ensemble system for fault diagnosis of gas turbine with GRNN, LoR and

RF [148]. Varma et al. uses RS and SOM for anomaly detection problem of gas turbine [149] .

Donat presented five fault classifiers based on K-NN, SVM, GMM, PNN and PCA [150]. Volponi

presented an ensemble system based on MLP and RBF neural networks to improve diagnostic ac-

curacy and reduce the rate of misdiagnosis for the aircraft engine gas path faults [179]. Kestner et

al. introduced an offline fault diagnostics method for highly degraded industrial gas turbines based

on Bayesian networks [180]. Huang et al. proposed a multiple classifiers fusion using within-class

decision support for fault diagnosis where the base classifiers selected are K-NN, OQDF [152].

Amanda et al. as well as A. J. C. Sharkey et al. used ensemble of MLP networks for fault diag-

nosis of diesel engine [154], [155]. Lei et al. presented an MCS for fault detection problem of a

gearbox by combining MLP, RBF and KNN [157]. Yan proposed a MCS with SVM, LDA, KNN ,
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IIS, LVQ, GMM for fault diagnosis of an induction motor [158]. Oukhellou et al. designed an en-

semble of MLP neural networks for fault diagnosis of railway track circuits [159]. Chen proposed

an ensemble of RBF neural networks for fault diagnosis of power transformers [160]. Bonissone et

al. presented an MCS for aircraft prognostic and health monitoring (PHM) with fuzzy classifiers,

MLP, SOM, SVM and RF as the base classifiers [161]. Dong et al. introduced an expert system

design method based on the neural network ensembles for missile fault diagnosis [164]. Nikunj

et al. presented an ensemble of MLP and RBF for the aircraft health monitoring [165]. Filippi et

al. designed an ensemble of MLPs fault-tolerance pattern recognition [167]. Ren et al. combined

three classifiers MLP, FL and HI to solve fault diagnosis problem of an aero-engine [171]. Mur-

phey et al. selected a two-step neural network ensemble approach by using MLP that is particularly

suitable for solving vehicle diagnostics problems [172]. Chandroth et al. studied MCS with MLP,

RBF, PCA and Wavelets for fault diagnosis of a diesel engine [174]. Aiming at more efficient

fault diagnosis in mechanica systems, Georgoulas et al. presented an MCS with PCA, KNN and

Gaussian Classifier as base classifiers [176]. An ensemble learning algorithm is proposed by Xu

et al. based on individual MLP neural networks that are actively guided to learn diversity in power

transformers [177]. Ren et al. studied a method of analog circuit fault diagnosis using AdaBoost

with SVM-based base classifiers and Tent map is used to adjust parameters of SVM component

classifiers for maintaining the diversity of weak classifiers [178]. More detailed review is shown

in Table 1.1.
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Table 1.1: A survey of hybrid and ensemble-based soft computing techniques applied to FDI.

Techniques Description Application

MLP+RBF

[143] runs comparative study between MLP

and RBF for the application of gas turbine

fault classification. The comparison results

confirm that both MLP and RBF show ac-

ceptable performances while RBF is a lit-

tle more accurate than MLP. However, RBF

needs more available computer memory and

computation time.

Gas turbine

MLP + LRT +

RRT+LR

[144] developed an ensemble classifier for

fault diagnosis of aircraft engine based. The

ensemble classifier composed of 18 different

classifiers including LR, MLP, LRT and RRT

as inference engines. It shows that the fused

result improves as compared with each clas-

sifier standing alone.

Gas turbine

(jet engine)

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

MLP [145] develops an ensemble of feed-forward

neural networks for fault diagnosis of chem-

ical processes. To develop a diverse range

of individual networks, each individual net-

work is trained on a replication of the origi-

nal training data generated through bootstrap

re-sampling with replacement. The final de-

cision is made based on majority voting.

Chemical Pro-

cess

SVM+MLP+

DT

A multiple classifier system is developed for

jet engine fault diagnosis with SVM, MLP

and DT as its inference engine. The final de-

cision is determined with three different ap-

proaches 1- averaging 2- dynamic selection

and 3- dynamic fusion [146]

Gas turbine

(jet engine)

GRNN + LoR

+ RF

[148] deigns a MCS for fault diagnosis of gas

turbine with MLP, LoR and RF as its infer-

ence engines. It shows that by using a set of

diverse classifiers, there is a potential to real-

ize gains in classification accuracy over any

individual classifier.

Gas turbine

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

RF + SOM [149] uses RS and SOM for anomaly de-

tection problem of gas turbine. The paper

discusses about diversity of classifiers but it

doesn’t present any metrics for measuring di-

versity of classifiers. It justifies that using dif-

ferent types of classifiers has a potential of

having diverse classifiers.

Gas turbine

SVM + GMM

+ PCA

[150] initially presents five fault classifiers

based on K-NN, SVM, GMM, PNN and

PCA. It evaluates the performance of each

classifier. Next it selects the three least ac-

curate classifiers for fusion, reasoning that

the least accurate classifiers should be diverse

from each other.

Gas turbine

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

MLP + RBF To improve diagnostic accuracy and reduce

the rate of misdiagnosis of the aircraft en-

gine gas path faults, [179] presents an en-

semble system based on MLP and RBF neu-

ral networks. The fusion algorithm employed

in this research is Dempster-Shafer evidence

theory and least square support vector ma-

chines (LSSVM).

Gas turbine

Bayesian [180] presents an offline fault diagnostics

method for highly degraded industrial gas tur-

bines based on Bayesian networks where the

health condition of each component is quanti-

fied in comparison to an expected value. The

presented method uses multiple Bayesian net-

work models each of which contains a subset

of the unknowns. Their results are averaged

according to how much each of the models is

supported by the data.

Gas turbine

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

KNN + OQDF

+ PC

[152] paper proposes a multiple classifiers fu-

sion using within-class decision support for

fault diagnosis where the base classifiers se-

lected are K-NN, OQDF [153], and PC.

–

MLP [154], [155] use ensemble of MLP networks

for fault diagnosis of diesel engine. They

discuss different architectures for a MCS.

Specifically, they distinguish between mod-

ular (where a winner classifier which is se-

lected dynamically takes the final action) and

ensemble (where there is fusion algorithm for

aggregating between the networks) MCS.

Diesel engine

MLP + RBF +

KNN

[157] presents a MCS for fault detection

problem of a gearbox. MLP, RBF and KNN

are three classifiers which are combined us-

ing GA in order to make the final decision.

Gear box

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

SVM + LDA +

KNN + IIS +

LVQ + GMM

[158] presents a MCS for fault diagnosis of

an induction motor. The proposed algorithm

trains six base classifiers based on a set of

preprocessed data (the data is obtained after

sensor data fusion). Three different fusion

methods are applied 1- Bayesian belief 2- ma-

jority voting and 3- dynamic selection based

on diversity. The last method outperforms the

other two methods.

Induction mo-

tor

MLP [159] designs an ensemble of MLP neural

networks for fault diagnosis of railway track

circuits. To generate the required diversity

the networks are trained using different train-

ing sets. Fusion of classifiers is based on

Dempster-Shafer classifier fusion method.

Railway track

circuits

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

RBF [160] proposes an ensemble of RBF neural

networks for fault diagnosis of power trans-

formers. The authors train a number of RBF

networks by selecting random training sets

without replacement. Classifiers with the best

performance are selected for fusion. The fu-

sion algorithm is majority voting.

Power trans-

formers

FL + MLP +

SOM + SVM

+ RF

[161] presents a MCS for aircraft prognos-

tic and health monitoring (PHM) with fuzzy

classifiers, MLP, SOM, SVM and RF as the

base classifiers. It measures dissimilarity be-

tween classifiers based on a few metrics be-

fore fusing their output.

Aircraft PHM

MLP In [164] an expert system design method

based on the neural network ensembles is

proposed. The expert system design method

is then applied to missile fault diagnosis.

Missile

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

MLP + RBF In [165] presents an ensemble where the mis-

match between actual flight maneuver being

performed and the maneuver predicted by the

ensemble of MLP and RBF networks is a

strong indicator that a fault is present. The

authors do not study fault diagnosis problem

in this paper.

Aircraft health

monitoring

MLP [166] gives a description of a two-stage clas-

sifier system for fault diagnosis of industrial

processes. The first-stage classifier is used

for fault detection and the second one is used

for fault isolation and identification. The first

stage generates the residual signals (acts as

a reference model) while the second stage

works as a classifier.

Aircraft health

monitoring

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

MLP [167] designs an ensemble of MLPs to over-

come a major concern in the use of neu-

ral networks which is the difficulty to define

the proper network for a specific application,

due to the sensitivity to the initial conditions

and to overfitting and underfitting problems

which limit their generalization capability.

fault-tolerance

pattern recog-

nition

CPM In [170] ensemble of change point methods

is used to present a fault prognosis algorithm.

change-point methods include methods like

Generalized Linear Models, logistic regres-

sion (methods based on maximum likelihood

estimation). The fusion method used in the

paper is weighted averaging and it is initiated

from continuous behavior of the models.

–

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

MLP + FL +

HI

[171] combines three classifiers to solve fault

diagnosis problem of an aero-engine: 1-

multi-layer perceptron 2- fuzzy logic expert

system 3- a rule based classifier based on hu-

man experts opinions. The authors deduce

that the classifier should be diverse since they

differ for their reasoning mechanism as artifi-

cial neural network, fuzzy set and human ex-

perts reasoning, respectively.

aero-engine

MLP [172] presents a two-step neural network

ensemble approach that is particularly suit-

able for solving vehicle diagnostics prob-

lems. First, the authors train a large pool of

neural networks and select a diverse neural

network ensemble based on large amounts of

data acquired from a few available vehicles.

Next, they train an ensemble decision func-

tion on a small amount of data that is acquired

from the vehicle model to which the ensem-

ble is applied.

Vehicles

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

MLP +

RBF + PCA

+Wavelets

[174] studies MCS for fault diagnosis of a

diesel engine. The author answers two main

questions 1- Can the diagnostic performance

be improved by combining the decisions of

several individual classifiers 2- Is there a re-

lationship between the robustness of the com-

bined system and the methodological diver-

sity used to create them? It also ranked the

processes used to create diversity (classifier

types, training set variation, training set com-

position and classifier structures).,

Diesel engine

GC + KNN +

PCA

Aiming at more efficient fault diagnosis,

[176] presents an MCS with PCA, KNN and

Gaussian Classifier as base classifiers. Vibra-

tion signals from normal bearings and bear-

ings with three different fault locations in a

mechanical system is used as data set.

Mechanical

systems

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

MLP In [174] The development of a neural net sys-

tem for fault diagnosis in a marine diesel en-

gine is described. Three different types of

data were used: pressure, temperature and

combined pressure and temperature. Subse-

quent to training, three nets were selected and

combined by means of a majority voter to

form a system which achieved 100% gener-

alization to the test set. Following experi-

mental evaluation of methods of creating di-

verse neural nets solutions, the authors con-

clude that the best results should be obtained

when data is taken from two different sensors

(e.g. pressure and sensor).

Marine diesel

engine

Continued on next page
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Table 1.1 – continued from previous page

Techniques Description Application

MLP In [177] an ensemble learning algorithm is

proposed based on individual MLP neural

networks that are actively guided to learn di-

versity. By decomposing the ensemble er-

ror function, error correlation terms were in-

cluded in the learning criterion function of in-

dividual networks. And all the individual net-

works in the ensemble were leaded to learn

diversity through cooperative training. The

method was applied in dissolved gas analysis

based fault diagnosis of power transformer.

Power trans-

former

SVM In [178] presents a method of analog circuit

fault diagnosis using AdaBoost with SVM-

based base classifiers. Each SVM classifier

is equipped with a radial basis function ker-

nel. Tent map is used to adjust parameters of

SVM component classifiers for maintaining

the diversity of weak classifiers.

Analog cir-

cuits
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Ensemble Learning for FDI: A Concluding Remark

According to the literature, the use of ensemble learning for systems’ health monitoring have

shown an extensive interest. Numerous publications have addressed the benefits of ensemble learn-

ing towards FDI problem; however, no research has been reported on the use of ensemble learning

for health monitoring through system identiˇ cation. This thesis proposes a novel approach for the

fault detection and isolation through system identification using ensemble methods.

1.3 Thesis Contributions

To the best of our knowledge ensemble learning has not been used for health monitoring of the

jet engine through system identiˇ cation. Several researches have employed ensemble learning to

evaluate residual signals to detect or isolate a fault but no research has addressed the possible use of

ensemble learning for generating the residuals. In other words, several researches have developed

ensemble of classiˇ ers which receives residual signals; however, no research has addressed the use

of ensemble of regressors to identify the jet engine dynamics and generating residual signals. The

major contributions of this thesis can therefore be summarized as follows:

• A novel approach is proposed for identification of jet engine dynamics based on ensemble

methods. According to the literature, this research reports the first use of ensemble learning

for dynamic systems identification.

• A fault detection scheme is proposed based on system identification of jet engine using

ensemble methods. Various ensemble architectures have been studied to determine the en-

semble method with maximal improvement as compared with single model-based solutions

(e.g. a solution based on only one type of neural network).
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• A comparative study shows that the proposed ensemble-based system identification can re-

duce jet engine modeling error as compared to single-model-based solutions, and thus more

accurate residual signals could be generated. The obtained residuals are then evaluated

toward fault detection and isolation problem of the jet engine, and it is observed that the

ensemble-based jet engine fault detection is more accurate ( as compared to single-model-

based solutions). An improvement in correct classification rate of engine faults is also ob-

served in the fault isolation stage.

• From the standpoint of computational requirement, the use of ensemble methods may appear

more costly (training multiple models instead of one); however, this could be compensated

as ensemble methods remove the need of ad-hoc fine tunings required for single model-based

solutions, as the key for having a more accurate ensemble is to increase the number of en-

semble members. In theory, the accuracy of an ensemble model can be improved arbitrarily

by increasing the number of ensemble members without the need of having very accurate

individual ensemble members.

1.4 Thesis Outline

The organization of this thesis is as follows. Chapter 2 presents the necessary background in-

formation about jet engine dynamics, ensemble learning, and data driven algorithms used in this

research. Moreover, the engine mathematical representation of a single spool jet engine is pre-

sented. Chapter 3, first presents a scheme for identifying the jet engine dynamics and generating

residual signals using neural networks ensemble. The residual signals are later used in the chapter

to accomplish fault detection task. Chapter 4 presents fault isolation scheme and the corresponding
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simulation results using ensemble of classifiers. The thesis conclusions and future work are given

in Chapter 5.

1.5 Summary

This chapter provided an introduction to the jet engine fault detection and isolation problem. It

also reviewed different FDI techniques used in the literature including data-driven approaches. A

comprehensive review on the application of ensemble learning for FDI problem is presented. The

review shows an extensive interest in ensemble systems for solving FDI problem; however, the

use of ensemble system for health monitoring (i.e. FDI problem) through system identification has

never been reported. Thus, the rest of this thesis focuses on the use of ensemble learning for fault

detection and isolation of jet engine through system identification.
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Chapter 2

Background Information

This chapter contains three parts. The first part presents a review on ensemble learning, bias-

variance decomposition, importance of diversity in ensemble learning and the metrics for measur-

ing diversity in ensemble systems. The second part presents the preliminaries about soft-computing

methods used in this research as the ensemble system members. Finally, the third part is a review

on jet engine dynamics and its possible failures.

2.1 Ensemble Learning

Ensemble systems were originally designed to reduce the variance and consequently increasing

the accuracy. They captured an increasing attention among the machine learning community. This

section provides an overview about ensemble systems, their properties, and their design proce-

dures.
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2.1.1 Justification for Ensemble Learning

Any classification error has two components with a trade-off relationship: bias, the accuracy of

the classifier; and variance, the precision of the classifier when trained on different training sets.

The fact is that usually the classifiers with low bias tend to have low variance and vice versa. On

the other hand, averaging has a smoothing affect that can be employed for variance reduction.

Therefore, in ensemble systems we first choose different classifiers with the fixed or similar bias

and then combine them all together with averaging to reduce the variance.

The reduction of variability can be considered as reducing high frequency (high variance) noise

employing a moving average filter. This filter works in a way that each sample of the signal is

averaged by a neighbor of samples around it. If we suppose that the noise in each sample is inde-

pendent, the noise component is averaged out while the information component stays unaffected.

Indeed, the information component is common to all segments of the signal and after averaging

operation, it is still unchanged. The same analysis is valid about increasing classifier accuracy by

using an ensemble of classifiers. It can be assumed that classifiers make different errors on each

sample while they are agreed with each other on their correct answers in terms of correct classifi-

cations. Hence, the error caused by misclassification decreases by averaging the classifier output

and in turn, averaging out the error component.

Here, it is worthwhile to consider two issues. First, averaging is just one of the many ways of

combining the classifier members in ensemble classifier. Secondly, making ensemble system from

the ensemble members is not necessarily a guaranteed way to choose a performance that is better

than that of the best ensemble member. Rather, it reduces the chance of selecting a classifier with

a weak performance. Hence, if there is a member classifier with the better performance than one

of ensemble classifiers, it is chosen and there is no need of using the ensemble classifier.
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All the ensemble-based systems differ from each other in regard with the selection of the train-

ing data for the individual ensemble members, the criteria used for selecting the ensemble members

of the ensemble system and/or the combination rules for joining the ensemble members together

to make the finale ensemble system. Below, we will give more explanations about the presented

discussions above.

2.1.2 Bias Variance Trade-off

A popular measure to evaluate the performance of a learner is Mean Square Error (MSE) [117].

The learning error in term of MSE might be used as a criterion for selecting a learning method.

It can be shown that the learning error can be decomposed into two different components: 1- bias

and 2- variance as follows [119], [117]:

Learning error = (bias)2 variance

The optimal learner is the one which minimizes the learning error. Consequently, the optimal

leaner is the one which has the 1- minimum bias and 2- minimum variance as compared with other

learning algorithms.

In General bias is large if the learning method produces classifiers that are consistently wrong.

Bias is small if:

• The classifiers are consistently right, or

• different training sets cause errors on different documents, or

• different training sets cause positive and negative errors on the same documents, but that

average out to close to 0.
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Variance is the variation of the prediction of learned classifier. Variance is large if choosing

different training sets results in very different classifiers. It is small if:

• The training set has a minor effect on the classification decisions, whether they are correct

or not.

In other words, variance measures how inconsistent the decisions are, not whether they are

correct or incorrect.

In general, when comparing two different learners, in most cases the comparison shows that

one method having higher bias and lower variance and the other lower bias and higher variance

[117]. The decision for one learning method vs. another is then not simply a matter of selecting the

one that has small variance or the one that has small bias. Instead, we have to weigh the respective

merits of bias and variance in our application and choose accordingly. This tradeoff is called the

bias-variance tradeoff.

Originally, ensemble learning methods were developed to improve accuracy by reducing the

variance in learner outputs, while maintaining the bias of the learner low [118]. We further discuss

how ensemble learning helps to reduce the variance. For this purpose we present mathematical

explanation of bias-variance trade-off here. The more detailed explanations can be found in [113].

• Bias-variance tradeoff for regression problem: Suppose we want to learn a function f

fromRN toR. We have n samples of the function f ,(xi, yi)where i = 1, ..., n and yi = f(xi).
The ensemble consists ofN members and the output of member α is denoted by V α(x). The
output of the ensemble which is a weighted average of each networks’ output is denoted by:

V (x) = ∑
α

ωαV
α(x)
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We interpret the wight ωα as our belief to the member α. Thus, we expect:

∑
α

ωα = 1, ωα 0

The ambiguity term on the ensemble x is defined as:

aα(x) = (V α(x) − V (x))2 (2.1)

The ensemble ambiguity on input x is defined as follows and is simply the variance of

weighted ensemble around the weighted mean. It measures the disagreement between dif-

ferent ensemble members on the input x, that is

a(x) = ∑
α

ωαa
α(x) = ∑

α

ωαa(x) = (V α(x) − V (x))2 (2.2)

The quadratic error of ensemble member α and the ensemble are defined as:

εα(x) = (f(x) − V α(x))2

e(x) = (f(x) − V (x))2

Now, if we add and subtract f(x) to and from equation (2.2) we will end up with the next
equation:
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a(x) = ∑
α

ωαε
α(x) − e(x) (2.3)

Finally, we have:

e(x) = ε(x) − a(x) (2.4)

where ε(x) is the weighted average of individual errors. We can average all these expres-
sions over the distribution p(x) of the input x. The generalization error and ambiguity term
for ensemble member α is defined in the first two equations and the last equation is the

generalization error of the ensemble, that is

Eα = ∫ p(x)εα(x)dx (2.5)

Aα = ∫ p(x)aα(x)dx (2.6)

E = ∫ p(x)e(x)dx (2.7)

Considering the above equations and (2.4) we have:

E = E −A (2.8)

where E = ∑α ωαEα is the weighted average of individual ensemble members’ error and

A = ∑α ωαAα is the ensemble ambiguity.

Equation (2.8) separates the generalization error of the ensemble into two terms. The first
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term is the weighted average of individual ensemble members’ errors and the second term is

the ambiguity term. Please note that the ambiguity term can be determined without any prior

knowledge about the value of target function f(x). We can evaluate the ambiguity term just
based on the ensemble members’ output.

Equation (2.8) states if the ensemble is strongly biased (E is a large number) then the am-

biguity term is small. In this case the ensemble members implement very similar functions

which agree together even outside of the training set. On the other hand, if the ambiguity

term is high then the generalization error of the ensemble is less than the weighted average

generalization error of each member. From equation (2.8) we can see that E E. In case of

uniform weights for ensemble member contributions we always have:

E
1

N
∑
α

Eα

This has been proved by several authors for instance in [113], [192]

• Bias-variance tradeoff for classification problem: The same concept can be developed for

ensemble of classifiers. A formal mathematical proof for bias-variance tradeoff in classifi-

cation problem can be found in [198].

2.1.3 Diversity in Ensemble Learning

1. Regression Problem: For regression ensembles, Krogh and Vedelsby [113] proved that the

quadratic error of the ensemble estimator is guaranteed to be less than or equal to the average

quadratic error of the components, that is
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E ensemble = E individual models − A

where E is the prediction error with ... denoting averaging over all models and A

represents the ensemble ambiguity which measures the difference in prediction of individual

models from the overall ensemble [114]. Intuitively this means that larger the ambiguity

term, the larger is the ensemble error reduction. However, if all the models have low predic-

tion error it is likely that they are very similar to one another. If they are very different from

one another, all of them may not have low prediction error.

This implies that the right balance is required between the diversity (ambiguity term) and

the individual accuracy (the average error term) in order to achieve low ensemble error.

Extensions of the model proposed by Krogh et. al have been studied by Brown et. al

[115] who show that Negative Correlation (NC) plays an important role in the diversity of

ensembles [195].

To link this section to bias-variance trade-off, the reader should note that the diversity of

classifiers comes down to their variance which must be different from each other while each

of them must maintain an acceptable level of individual accuracy (bias), since ensemble

learning is a promising approach to reduce the variance of classifiers.

Since diversity is amust for designing an ensemble, we need to have somemetrics to measure

it. For this purpose, [116] introduced different metrics for measuring diversity of ensembles

in regression problem and are presented later in this chapter.

2. Classification problem: An ensemble of classifiers is a set of classifiers whose individual

decisions are combined in some way (typically by weighted or unweighted voting) to classify
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new examples. One of the most active areas of research in supervised learning has been to

study methods for constructing good ensembles of classifiers. The main discovery is that

ensembles are often much more accurate than the individual classifiers that make them up.

A necessary and sufficient condition for an ensemble of classifiers to be more accurate than

any of its individual members is if the classifiers are accurate and diverse [187]. An accurate

classifier is one that has an error rate of better than random guessing on new x values. This

concept has been illustrated in Figure 2.1 [118].
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Figure 2.1: Variability reduction using MCS [118].

Two classifiers are diverse if they make different errors on new data points. To see why

accuracy and diversity are good, imagine that we have an ensemble of three classifiers:
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h1, h2, h3 and consider a new case x. If the three classifiers are identical (i.e., not di-

verse), then when h1(x) is wrong, h2(x) and h3(x) will also be wrong. However, if the
errors made by the classifiers are uncorrelated, then when h1(x) is wrong, h2(x) and h3(x)
may be correct, so that a majority vote will correctly classify x. In other words by diversity

we mean that the classifiers are independent in terms of error. More precisely, if the error

rates of each classifier is equal to p 1 2 and if the errors are independent, then the prob-

ability that the majority vote will be wrong will be the area under the binomial distribution

where more than half of the ensemble members are wrong.

Measuring Diversity in Regression Ensembles

As we previously discussed, diversity is a must for designing an ensemble system. This section

presents metrics for measuring diversity among individual regressor (resp. classifiers) of an en-

semble system based on [124], [125], [126], [127], [213].

In this section we present the metrics for assessing the diversity between regressors. Assume

we have two regressors Rm and Rn. Y m = [ym1 , ..., ymN ] and Y n = [yn1 , ..., ynN] are the continuous
valued outputs of the regressors which are N -dimensional.

i) Correlation coefficient: The correlation between Y m and Y N is defined as follows. The

correlation is inversely proportional with diversity, which means that two regressors with low

correlation are preferred. μY m (resp. μY n) is the mean of Y m (resp. Y n).

ρ = ∑N
i=1(ymi − μY m)(yni − μY n)

∑N
i=1(ymi − μY m)2∑N

i=1(yni − μY n)2
(2.9)

ii) Covariance: covariance between Y m and Y n is defined as follows and it is very related to
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correlation coefficient. Similarly, covariance is inversely related to diversity.

Cov(Y m, Y n) = E[(Y m − μY n)(Y n − μY m)] (2.10)

iii) Chi-square: Chi-square of Y m with respect to Y n is defined with the following equation. It

is directly related with diversity between Y m and Y n, that is

χ2 = ∑
N
i=1(ymi − yni )2

yni
(2.11)

iv) Mutual information: The mutual information between Y m and Y n are given by:

I(Y m, Y n) =H(Y m) H(Hn) −H(Y m, Y n)

where H(Y m) and H(Hn) are the differential entropies of Y m and Y n and H(Y m, Y n) is
the join differential entropy between Y m and Y n [213]. It is inversely related with diversity

of the regressors.

Measuring Diversity in Classification Ensembles

The first three criteria for member classifier selection are more traditional in the literature. The

other two presented in [212] are based on the assumption of the significance of the classification

errors being made. All of these approaches work in a pairwise fashion.

i) Correlation Between Errors: Intuitively, the independence of occurring errors should be

important for member classifier selection. In turn, the correlation of errors is a natural choice

for comparing the subsets of classifiers. The correlation ρa,b is determined as follows:
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ρa,b = Cov(vae , vbe)
V ar(vae)V ar(vbe)

(2.12)

where vae and v
b
e are the binary vectors of error occurrence in classifiers a and b, respectively,

Cov refers to covariance and V ar refers to variance. The best set is the one with minimal

mean pairwise correlation.

ii) Q Statistics: Q static is useful to assess the similarity of two classifiers. For two classifiers a

and b, it is defined as:

Qa,b = N00N11 −N01N10

N00N11 N01N10
(2.13)

whereN11 is the number of times both classifiers are correct,N00 both classifiers are incorrect,

and N10 and N01 are the number of times when just the first classifier or the second one is

correct, respectively. When N11 andN00 are both equal to 1, the value of Qa,b is one. In other

words, when two classifiers make the same correct and incorrect decisions, Qa,b becomes

one. On the other hand, when the classifiers make errors on different inputs, negative Qa,b is

obtained. In the case of dealing with a set contained more than two classifiers, the Q statistic

of the whole set is the mean value of pairwise Q statistics. Therefore, it is expected that the

best set of member classifiers is the one with minimum value of Q.

iii) Mutual Information: Calculating the mutual information of the classifiers is also beneficial

for selecting a good set of member classifiers. By definition, mutual information measures

the amount of information shared between classifiers. Therefore, it is logical that a set of

classifiers is maximally diverse if the mutual information assigned to that set has the minimum

37



value. The mutual information between two classifiers a and b is defined as follows:

Ia,b =
n

∑
i=1

n

∑
j=1

p(ci, cj)log( p(ci, cj)
pa(ci)pb(cj)) (2.14)

where n is the number of total classes and ci, i = 1, ..., n are the class labels. The mutual infor-
mation of the error occurrence is also calculated in experiments and in that, just two classes,

correct or incorrect, are used for each classifier. As in previous criterion, for calculating the

mutual information of the larger set of classifiers, first the pairwise mutual information is

calculated. The minimum mutual information offers the optimal subset of classifiers.

iv) Ratio Between Different and Same Errors: Calculating ratio between different and the

same errors is another attempt to select the best set of member classifiers and it is defined as

follows:

rDES
a,b = N00

different

N00
same

(2.15)

whereN00
different is the number of the times that the two classifiers made different errors at the

same input andN00
same is the number of the times that they made the same error. For more than

two members, the mean of the pairwise ratios is calculated. The optimum subset is the one

with the maximum discussed ratio.

v) Weighted Count of Errors and Correct Results: Information on correct decision should

be taken into consideration with more emphasis on a situation which the classifiers agree

on either the correct and incorrect results. For this purpose, the occurrences of the situation

should be counted and then a suitable emphasis should be placed on a positive situation that
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is assigned to ”both correct” and a negative situation where ”both incorrect” is met:

rWCEC
a,b = N11 1

2
(N10 N01) −N00

different − 5N00
same (2.16)

For multiple classifiers, the mean of the pairwise counts is used. The optimal subset of classi-

fiers is selected in such a way to maximize the measure.

2.1.4 Creating Diverse Learners

As previously discussed, creating diverse set of learners is the key to successfully train an ensemble

of regressor or classifiers. Intuitively, we know that if all ensemble learners provide the same

output, there would be nothing to benefit from their combination. The importance of diversity for

ensemble systems is well established in [193], [194]. Ideally, we would like individual learners to

be independent or even negatively correlated [121], [195].

Thus, the method for creating diversity plays an important role in training an ensemble system.

Generally speaking, two different scenarios can be considered for creation of diversity first, to

manipulate the architecture of the system, and second to alter the training data that a learning

method receives [219]. In this section we discuss these approaches and the ways they can be used

to generate diversity.

Altering the Architectures

The number of works into using different architectures for ensemble systems is relatively small,

and thus it requires more attention. If we want to diversify the error between the ensemble mem-

bers, we can intuitively conclude that using different types of learning algorithms may produce the
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required diversity [219]. Alternatively, we may create different architectures by using the same

learning method with different setting of parameters (e.g. neural networks with different number

of hidden units). Comparative studies between these two approaches conclude that using different

training algorithms is generally more effective than manipulating learners topology [221], [222].

Partridge et al. used MLP and RBF neural networks in an ensemble to determine the effect of

using different network types in diversity, and showed that using different network types is more

productive than variation of network’s hidden units. Islam et al. [186] proposed an ensemble of

neural networks which supports different types of neural networks.

Altering Training Data

Several methods attempt to produce diverse learners by supplying each learner with a slightly

different training set. This approach is the most widely addressed method in ensemble learning.

Different learners can be given different parts of the training set. So they will expectedly learn

different aspects of a same task. The very popular methods of this category are: bagging and

boosting. Bagging (which stands for Bootstrap Aggregation) algorithm is one of the popular en-

semble algorithms, which better suits for relatively small amount of training data. Each learner is

trained using a subset of training set which is obtained by random sampling of the original training

set with replacement. A very well-known version of bagging is the Random Forest, which is an

ensemble of decision trees trained with a bagging mechanism. Boosting is another approach for

altering training data of ensemble members, which is very similar to bagging. The difference be-

tween bagging and boosting is the resampling procedure. In bagging all samples have equal chance

of being selected in each training data set, as resampling takes place with replacement. However,

in boosting, the training data set for each subsequent learner increasingly focuses on instances
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misclassified by previously generated learner. Because of this sequential training, boosting is more

suitable for classification problem.

Combining Ensemble Members

The last step of an ensemble system design is the fusion mechanism used to combine the individual

learners. The aggregation method depends on the type of the outputs in part. This means that

the combination method should be different for learners with discrete output in comparison with

learners with continuous outputs. The following summarizes the aggregation methods for both

cases.

i) Learners with discrete outputs: This case happens only in classification problem, when only

discrete outputs are available at the learners’ outputs. Note that the continuous valued outputs

can easily be converted to discrete outputs (by assigning for the class with the highest output),

but not vice versa. Thus, the methods of this section can be also applied to the continues

outputs for classification problem. Here is a list of popular fusion algorithms for discrete

outputs:

• Majority voting is a winner-take-all strategy where the weight of the vote of all the

learners are equal.

• Weighted majority voting is a winner-take-all strategy where each learner has its own

weight of vote which can be different from the others.

• Borda Count has a different approach than majority voting. In this approach each output

receives an order of support from each learner. This means that the output of ensemble

system, shows the level of support for each class.
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ii) Learners with continues outputs: This case has applications both in classification and re-

gression problems. In classification problem each learner gives a certain level of support to

each class which should then be interpreted to determine the output of the ensemble system.

The case is different for regression problem since its output is continuous by the nature. The

popular fusion methods for continuous outputs are:

• Algebraic Combiners determine the output of ensemble using an algebraic function of

individual learners’ outputs.

• Min/Max/Meadian rule combiners simply takesMin/Max/Meadian of individual learn-

ers for the output of ensemble system.

• Product rule chooses the class whose product of supports from each classifier is the

highest (in classification problem).

• Generalized mean defines a generalized algebraic function for averaging the individual

learners output. Note that all previous combiners are special cases of generalized mean.

2.2 Neural Networks for Dynamic Systems Identification

Basic neural network architectures are capable to learn static nonlinear maps between inputs and

outputs. In the static systems the system outputs at an instance n, y(n), depends only on the inputs
x(n) at the same instant y(n) = f x(n) . Thus, static neural networks can be used for modeling
of such systems. However, the main challenge in system identification is to model the dynamic

systems. In dynamic systems, the current output depends not only on the current outputs, but also

on the previous behavior of the system (i.e. states of the system). There are several ways to form a
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dynamic structure from a formerly static neural network. This section introduces different network

architectures which are used in this thesis for the purpose of system identification.

2.2.1 Nonlinear Autoregressive Exogenous Model (NARX)

The system identification problem consists of parameterizing a suitable identification model and

trying to minimize the error between the plant and identified model by adjusting its parameters. The

nonlinear functions in the representation of the plants are assumed to belong to known classes of

models [83]. One of these models is Nonlinear Autoregressive Exogenous (NARX) model. NARX

model parameterizes any nonlinear dynamics as a (nonlinear) function of a regressor vector which

contains current value of the system’s input, as well as, the past values of inputs and outputs. In

other words, NARX model describes the dynamics of a system using the following equation:

y(n) = f(y(n − 1), ..., y(n − dy), u(n), ..., u(n − du))

The nonlinear function f in the above equation can be approximated using different learning

algorithms such as MLP neural networks, RBF neural networks, wavelets, and SVM [84].

NARX Model Structures

In NARX model inputs and outputs are fed into the model through tapped delay lines. Depending

on the configuration of the feedback path, two types of NARX structures exist. In the following

we present these two models.

1. Parallel Identiˇ cation Model: In this model the feedback comes from the estimated output

rather than the actual output of the plant itself. This is shown in Figure 2.2. In this structure
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the estimated output at each instant n is described by the following equation:

ŷ(n) = f(ŷ(n − 1), ..., ŷ(n − dy), u(n), ..., u(n − du))

where ŷ is the output of the estimated model, and u is the external input, dy and du are

the input and output delays, respectively (tapped delay lines in Figure 2.2). Identification

then involves the estimation of f with for example a neural network. By assumption the

plant is bounded-input bounded-output (BIBO) stable. This guarantees that all the signals

in the plant are uniformly bounded. However, the stability of the identified model (e.g.

neural network) can not be assured and has to proved. Thus, if a parallel model is used,

the convergence of network parameters is not guaranteed [83]. To ensure the stability of the

identification method the series-parallel, which is described below, is used.

Plant

NARX
Model

TDL

TDL

( )y k

�( )y k

( )k

Figure 2.2: Parallel architecture of NARX model [83].

2. Series-Parallel Model: In contrast with the parallel model where estimated outputs are fed

into the identification model, in series-parallel structure the actual outputs of the plant are
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fed back to the identification model. This structure is shown in Figure 2.3. This forms the

following equation for the identification model:

ŷ(n) = f(y(n − 1), ..., y(n − dy), u(n), ..., u(n − du))

In this model, the inputs and outputs of the plant form the input vector of the regressor

function f whose output ŷ(n) corresponds to estimated output of the plant at time n. Series-
parallel structure has several advantages as compared with parallel model [83]. Since the

plant itself is assumed to be BIBO stable, all signals which are used in identification process,

which are inputs of the regressor f , are bounded. This guarantees that the identified model

would be stable as there is no feedback from estimated output to the input of the identification

model.
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Figure 2.3: Series-parallel architecture of NARX model [83].

45



Also, assuming that ŷ(n) ≈ y(n), the series-parallel model can be replaced by a parallel model
during testing phase without serious consequences. Thus, in this thesis we always use series-

parallel structure during identiˇ cation (training) phase. The series-parallel structure would be

replaced by parallel structure during testing stage.

2.2.2 Multi-layer Perceptron

Multi-layer perceptron (MLP) is a type of multi-layer feedforward neural network. All nodes are

fully connected to the nodes in adjacent layers, but there is no connection between neurons of the

same layer or between neurons of non-adjacent layers. The structure of a multi-layer perceptron is

shown in Figure 2.4.

���

���

Input Layer Hidden Layers Output Layer

Figure 2.4: A multi-layer perceptron.

Inputs to the network are passed through each node in the input layer. The outputs of the input

layer become the inputs of the next layer. Thus the last layer works as the output layer. The output

of the ith neuron in the kth layer can be described as the following equation:
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x
(k)
i = a(z(k)i )

where x
(k)
i is the output of the ith neuron in the kth layer, wk

ijs are the connection weights to

the ith neuron in the kth layer, b
(
ik) is the bias term, and a() is the neuron’s activation function.

Two typical choices of activation are sigmoidal function (i.e. a(z) = 1
1+e−z ), and tanh(z).

There are several algorithms for training MLP neural networks. The most popular training

algorithm is the backpropagation. Backpropagation is a supervised learning algorithm. In this

method the connection weights get updated in each iteration by comparing the network output

with the expected output. For more information on backpropagation refer to [20], [23].

Remark 2.1. MLP-NARX. The use of MLP neural networks in NARX model for dynamical systems

identiˇ cation has been reported in several publications including but not limited to [17], [18],

[19], [20], [21], [22], [23]. In this research, MLP neural network is used in an NARX model to

identify the jet engine dynamics. Figure 2.5 shows the structure of the MLP-NARX model during

identiˇ cation (i.e. training) stage.

47



Plant

MLP
Neural Network

TDL

TDL

( )k
( )y k

�( )y k

Figure 2.5: Nonlinear system identification using series-parallel MLP-NARX (training stage).

The series-parallel model would be replaced by parallel structure during testing phase as

shown in Figure 2.6.
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Figure 2.6: Nonlinear system identification using parallel MLP-NARX (testing stage).
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2.2.3 RBF Neural Networks

RBF neural networks have attracted much attention because of their generalization ability and

their simple structure which lessens the calculations as compared with multi-layer feed-forward

neural networks [31]. RBF neural networks are feed-forward networks with only one hidden layer.

The hidden layer of RBF network consists of RBF neurons. The wights between input layer and

hidden layer are simply unity weights. Only the weights between the hidden layer (RBF neurons)

and output layer are adjustable. In other words inputs are directly connected to the RBF neurons.

The structure of RBF neural networks is shown in Figure 2.7.

value of RBF is

T

ural network

of RBF

2 RBF Neural Network Design and Simulation

Figure 2.7: RBF neural network structure [31].

Radial basis functions are used as activation function for RBF neurons. Radial basis functions

are a class of functions whose outputs depend only on the distance of their input from the origin

(i.e. φ(x) = φ( x )) or alternatively from a center point (i.e. φ(x, c) = φ( x − c ). Each RBF
neuron, j, contains a center vector, cj , which has the same dimension as its input vector x. The

Euclidian distance is usually used to find the distance between input vector, x, and the center vector

of the jth neuron, cj . This is denoted by x − cj . Thus, the output of jth RBF neuron is:
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hj = φ( x − cj ), j = 1, ...,m

Most commonly, a Gaussian function is used as the activation function. In this case the above

equation becomes:

hj = φ( x − cj ) = exp − x − cj
2σ2

j

, j = 1, ...,m

Then the output of the network shown in Figure 2.7 would be:

ym =
m

∑
j=1

hjwj

The parameters which require training are the radial basis function centers, radial basis func-

tion widths, and output layer weights. Several training algorithms can be used for training centers

of RBF units including but not limited to subsets of data points, orthogonal least squares, and

clustering algorithms. In subsets of data points the centers of radial basis functions are selected

randomly from the set of training data. On the other hand, orthogonal least squares method in-

crementally adds RBF units one-by-one each time choosing the data point which reduces the error

the most as the center of the newly added unit. Clustering algorithms aim to find the set of points

which most accurately represent the distribution of the data.

Among clustering algorithms k-means clustering algorithm is more common and it is used in

this thesis. In this method, all the data point are ˇ rst randomly assigned to the k clusters. Second

the mean point of each cluster, Sj , is calculated. Third each point is reassigned to the cluster which

has the closest mean. These steps are repeated until no point changes its cluster. It can be shown

that this algorithm is equivalent to minimizing the following sum of squares clustering function:
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J =
k

∑
j=1
∑

xi∈Sj

xi − cj

The radial basis function widths are usually set to the covariance of data points in each cluster

in this algorithm. Least squares is mostly used to determine output layer weights. As previously

explained the RBF model output is governed by the following equation.

ym =
M

∑
j=1

hjwj (2.17)

where hj is the jth RBF neuron output and wjs are the output layer weights. The least square

method minimizes the following error function with respect to the weights of the output layer.

S =
N

∑
i=1
(yi − ym(xi))2

where N is the number of training samples, yi is the target of the ith sample, and ym(xi) is the
predicted target for the ith sample. By adding a weight penalty term to the above error function we

have:

C =
N

∑
i=1
(yi − ym(xi))2

M

∑
j=1

λjw
2
j

The above function is called ridge regression. Minimizing the above function with respect to

the wjs gives:

∂C

∂wj

= 2
N

∑
i=1
(yi − ym(xi))∂ym(xi)

∂wj

2λjwj

according to equation 2.17 we have,
∂ym(xi)

∂wj
= hj(xi) then:
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N

∑
i=1

hj(xi)ym(xi) λjŵj =
N

∑
i=1

yihj(xi)

where ŵj is the optimized value of wj . Showing it in the matrix form we have:

hT
j ym λjŵj = hT

j yi

or equivalently:

hTym Λŵ = hty

where h = [h1, ..., hM], ym = [ym(x1), ..., ym(xn)]T , and Λ = diag λi . Simplifying the above

equation results in the optimal weights of the output layer as follows:

ŵ = (hTh Λ)−1hTy

Remark 2.2. RBF-NARX. The use of RBF neural networks in the NARX model for dynamical

system identiˇ cation has been reported in several publications including but not limited to [8],

[10], [11], [12], [13], [14], [15], [16]. In this research, RBF neural networks is used in an NARX

model to identify the jet engine dynamics. Figure 2.8 shows the structure of the RBF-NARX model

used during identiˇ cation (i.e. training) stage.
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Figure 2.8: Nonlinear system identification using series-parallel RBF-NARX (training stage).

The series-parallel model would be replaced by parallel structure during testing phase as

shown in Figure 2.9.
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Figure 2.9: Nonlinear system identification using parallel RBF-NARX (testing stage).
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2.2.4 Support Vector Regression

In support vector regression, the idea is to map the input data into a high dimensional feature

space (H) using a generally nonlinear mapping (φ), and then use a linear regression in this high-

dimensional space. Thus, the original problem is to estimate a generally nonlinear function based

on the available data D = (x1, y1), ..., (xi, yi) from n-dimensional input space (xi > Rn) to

assuming one-dimensional output space (y >R). Note that one-dimensional output space dimen-
sion does not impose any limitations, as a problem with multi-dimensional output space can be

decomposed into several problems whose output space is one-dimensional. SVR converts this

nonlinear regression problem into a linear regression problem in a higher dimensional input-

space using a nonlinear function φ(x). This means that the sample space would be mapped to
D′ = (φ(x1), y1), ..., (φ(xi), yi) . Now the regression problem (in this thesis system identifica-
tion) would be to find a function f such that:

f(x) =
l

∑
i=1

wiφ(xi) b (2.18)

where φ(xi) is the input feature, wi and b are regression coefficients and bias respectively.

Assuming the function f(x) approximates (xi, yi) with precision ε, then the coefficients wi and b

are determined by minimizing the following risk function:

R(C) = C
l

∑
i=1

Lε
1

2
w 2

where Lε =max 0, y−f(x) −ε , and it is called ε−insensitivity loss function. Note that the Lε

does not penalize errors less than ε 0. The second term, 1
2 w 2 is a measure of function flatness.
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C is a constant to regulate the trade-off between training error and model flatness, and is there to

penalize the large deviations from final predicted hyperplane. Introduction of the slack variables

ξ(∗) converts the problem to minimizing the following equation:

min
1

2
w 2 C

l

∑
i=1
(ξ(∗)i ξi)

subject to: ((wxi) b) − yi ε ξi

yi − ((wxi) b) ε ξi

ξ
(∗)
i , ξi 0

Introducing the Lagrange multipliers α
(∗)
i , and η

(∗)
i , the Lagrangian primal function of the dual

optimization problem becomes:

LP = 1

2
w 2 −

l

∑
i=1

αi(ξi − yi (w.xi) − b − ε) −
l

∑
i=1

α∗i (ξ∗i − (w.xi) b yi − ε) −
l

∑
i=1
(ηiξi η∗i ξ∗i )

Taking the derivatives with respect to w, b, ξ, and ξ∗ to find KKT conditions leads to w =
∑l

i=1(α∗i − αi)xi. Substituting this new relation equation (2.2.4) has the form f(x) = ∑l
i=1(α∗i −

αi)φ(xi)Tφ(xi) b. For computational convenience, the form φ(xi)Tφ(xi) is defined as the kernel
function which has the form:

k(xi, xj) = φ(xi)Tφ(xi)

Thus the approximated function has the form:
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f(x) =
l

∑
i=1
(α∗i − αi)k(xi, xj) b

The Lagrange multipliers can be obtained by maximizing the following dual problem:

W (α∗) = 1

2

l

∑
i,j=1
(αi − α∗i )k(xi, xj)(αi − α∗i ) ε

l

∑
i=1
(αi α∗i ) −

l

∑
i=1
(αi − α∗i )yi

subject to:

l

∑
i=1
(αi − α∗i ) = 0

0 α∗i C

The nonzero coefficients obtained from the above problem form a hyperplane which is the

so-called support vectors.

Remark 2.3. SVR-NARX. The use of SVR-NARX model in system identiˇ cation has been reported

in various publications. A general framework for nonlinear system identiˇ cation with SVR based

on NARX model is presented in [1]. In another framework, [2] combines Least-Square Support

Vector Machines (LS-SVM) with NARX model for identiˇ cation of Weiner-Hammerstein systems.

Other SVR-based system identiˇ cation methods in companionship with ARX models are reported

in [4, 3, 5, 6]. In this research, support vector regression is used in an NARX model to identify

the jet engine dynamics. Figure 2.10 shows the structure of the SVM-NARX model used during

identiˇ cation (i.e. training) stage.
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Figure 2.10: Nonlinear system identification using series-parallel SVM-NARX (training stage).

The series-parallel model would be replaced by parallel structure during testing phase as

shown in Figure 2.11.
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Figure 2.11: Nonlinear system identification using parallel SVM-NARX (testing stage).
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2.3 Jet Engine Overview

A gas turbine jet engine can be introduced as an internal combustion engine which basically con-

sists of an upstream rotating compressor coupled to a downstream turbine through a combustion

chamber. The mixture of air and fuel is ignited in the combustor, then the produced gas flows to the

turbine. Since the gas in the turbine is of high volume as well as high velocity, the turbine blades

start spinning. This generated energy can be used for different purposes. One of these is to use gas

turbine as an aircraft jet engine where generated energy propels the aircraft.

In summary, a single spool jet engine, works as follows:

1. First, the temperature and pressure of the intake air increases in the compressor (compression

phase).

2. Second, the mixture of fuel and high pressure air coming from compressor is ignited in the

combustion chamber. In this phase it is desirable to keep the pressure unchanged while

increasing the temperature and volume (heating phase).

3. An expansion phase in the turbine where the flow energy converts to the mechanical energy

to power the compressor. In this phase the air temperature and pressure drops.

4. A further expansion phase in the nozzle where the flow speed increases and it returns to the

inlet pressure. The thrust needed for the aircraft to move forward is provided by this high

speed gas.

In this thesis, the fault detection and isolation of a single spool jet engine is studied. A single

spool engine consists of a compressor, a combustion chamber, and a shaft which is driven by a

single turbine. The schematic of a typical single spool jet engine is shown in the Figure 2.12.
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Figure 2.12: schematic of a single spool turbofan jet engine [237].

The mathematical model of a single-spool jet engine is described in this section.

2.3.1 Jet Engine Mathematical Model

This section presents the mathematical model of a single spool jet engine. Although this research is

based on the data-driven approaches, but the data used for the purpose of simulations is generated

by a mathematical model of a single-spool jet engine developed in Simulink environment. Thus, it

is necessary to review the mathematical model of a jet engine dynamics. We should also note that

using a simulation model is of special interest for generating a faulty engine data, since it may not

be generally available for the real jet engine.
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Rotor Dynamics

By applying the concept of energy balance between the shaft and the compressor, the following

equation would be obtained:

dE

dt
= ηmechWT −WC

where E = J(N.2π
60
)2

2 , ηmech denotes the mechanical efficiency,WT denotes the power generated

by the turbine, WC denotes the power consumed by the compressor and J is the rotor moment of

inertia. N stands for the number of turns which is a function of time (rotation per minute).

Volume Dynamics

To model the volume dynamics, it is assumed that the engine components themselves have zero

volume. This assumption simplifies the modeling process by eliminating of algebraic loops, and

it allows to develop a generic model based on jet engine dynamics. Also, we assume that the gas

has zero speed and has homogenous properties over volume. Taking the above considerations into

account, the volume dynamics would be described by the following equation:

Ṗ = RT

V
(∑ ṁin −∑ ṁout) (2.19)

where P denotes the pressure, R denotes the gas constant, T denotes the temperature, V stands

for the volume, ṁin and ṁout denote the input mass flow and the output mass flow, respectively.
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2.3.2 Modeling of Engine Components

Intake Duct

The intake duct is positioned before the compressor and supplies the engine with the required air

flow at highest possible pressure. In the intake duct air’s velocity decreases while its pressure

and temperature increase. Assuming adiabatic process, the inlet pressure ratio to ambient pressure

would be described by the following equation:

Pd

Pamb

= [1 ηd
γ − 1
2

M2] γ
γ−1 (2.20)

where M denotes the Mach number and Pamb denotes the ambient pressure, ηd denotes the

isentropic efficiency and γ stands for specific heat capacity ratio. The inlet temperature ratio , Td

Tamb
,

can also be expressed in terms ofM as

Td

Tamb

= 1 γ − 1
2

M2 (2.21)

where Tamb is the ambient temperature.

Compressor

The role of compressor in a jet engine is to provide high pressure air to the combustion chamber.

For the Simulink model used in this thesis, the behavior of compressor which is considered as

a quasi-steady component is determined by the compressor performance map, obtained from a

commercial software package called GSP [226].

For a given pressure ratio, πC , and the corrected rotational speed, N π, the corrected mass
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flow rate (ṁC

√
θ
δ ), and ηC can be obtained from the performance map by using a proper in-

terpolation technique, where θ = Ti

To
and δ = Pi

Po
, that is ṁC

√
θ
δ = fṁC

N θ,πC and ηC =
fηC N θ,πC .

Once these parameters are obtained, the compressor temperature rise can be found by the fol-

lowing formula [97]:

To = Ti 1
1

ηC
(πC

γ−1
γ − 1) (2.22)

where To denotes the compressor output temperature, Ti denotes the compressor input tem-

perature and ηC is the efficiency of the compressor. Also, the mechanical power is obtained as

follows:

WC = ṁCCp(To − Ti) (2.23)

where ṁC denotes the compressor mass flow rate and Cp denotes the specific heat at a constant

pressure. In a single spool engine, the connection between the compressor and the turbine is made

by the only shaft in the system. The speed of the engine is determined by the shaft (rotor) speed and

in turn the speed is a function of the power which the turbine generates and also the total moment

of inertia of the rotary system. The relation between the power that the compressor consumes and

the speed of the shaft is given by the following formula:

WC = J(2πN)2
2

(2.24)

where J denotes the moment of inertia of the shaft and N is the rotor speed indicated in RPM.
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Combustion Chamber

As previously explained, the combustion chamber is where the mixture of fuel and high pressure

air flowing from the compressor is ignited. As a result, the temperature increases while the gas

pressure is desired to be kept unchanged. The combustion chamber represents both the energy

accumulation and the volume dynamics between the compressor and the turbine at the same time.

The dynamics of combustion chamber is described by the following equations [97]:

ṖCC = PCC

TCC

ṪCC
γRTCC

VCC

(ṁC ṁf ṁT ) (2.25)

ṪCC = 1

cvmCC

[(cpTCṁC ηCCHuṁf − cpTCCṁT ) − cvTCC(ṁC ṁf ṁT )] (2.26)

where TCC and PCC denote the combustion chamber temperature and pressure respectively,

ṁC and ṪCC denote the compressor mass flow rate and the turbine mass flow rate respectively, ṁf

denotes the fuel flow rate, γ denotes the heat capacity ratio, R stands for the gas constant, cp and

cv stand for specific heat at constant pressure and volume respectively, and Hu is the fuel specific

heat.

Turbine

In a jet engine, the turbine function is to extract a portion of the pressure and kinetic energy from

the high-temperature gases coming from the combustion in order to drive the compressor and ac-

cessories. In a typical jet engine, about 75 percent of the internally produced power is consumed

to derive the compressor and the rest is used for generating the required thrust [227]. Turbine is a
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rotatory component through which the gas of high temperature flows and its behavior, like the com-

pressor, is represented by characteristic maps (from the software package GSP [226]). Given the

pressure ratio, πT and the corrected rotational speed, N θ, the corrected mass flow rate, ṁT

√
θ
δ ,

and the efficiency, ηT are found from the performance map, that is ṁT

√
θ
δ = fṁT

(
√
θ
δ , πT ) and

ηT = fηT ( N√
θ
, πT ). The temperature drop and the turbine mechanical power which is proportional

to the temperature decrease in the turbine are given as follows:

To = Ti[1 − ηT (1 − πT

γ−1
γ )] (2.27)

WT = ṁT cp(Ti − To) (2.28)

where ṁT denotes the compressor mass flow rate, and cp denotes the specific heat at a constant

pressure. In a jet engine, the power generated by the turbine and the power consumed by the

compressor are proportional.

Nozzle

Nozzle is the last part of a jet engine in which the working fluid is expanded to produce a high-

velocity jet. The high pressure exhaust gas is accelerated in a jet pipe placed between the turbine

outlet and the nozzle throat to come close to the ambient pressure and consequently, to produce the

necessary thrust. The nozzle exit temperature Tno is given by the equation as follows [97]:

Tni
− Tno = ηnTno[1 − ( 1

Pni
Pamb

) γ−1γ ] (2.29)
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where ηn is the nozzle efficiency, Tni
denotes the nozzle inlet temperature, Tno is the noz-

zle outlet temperature, Pni
is the nozzle inlet pressure, and Pamb is the ambient pressure. If the

condition (2.30) holds, the mass flow is computed by equation (2.31), that is:

Pamb

Pni

[1 1 − γ
ηn(1 γ)]

γ
γ−1 (2.30)

ṁC Tni

Pni

= u

Tni

An

R

Pamb

Pni

Tni

Tno

(2.31)

where u√
Tni

= 2cpηn(1 − (Pamb

Pni
))

γ−1
γ and

Tni

Tno
= 1 − ηn(1 − (Pamb

Pni
)) γ−1γ . On the other hand, if

the condition (2.30) does not hold, the nozzle mass flow rate is give as follows:

ṁC Tni

Pni

= u

Tni

An

R

Pcrit

Pni

Tni

Tcrit

(2.32)

where u√
Tni

= 2γR
γ+1 ,

Pcrit

Pni
= (1 − 1

ηn
(γ−1γ+1))

γ
γ−1 and Tcrit

Tni
= 2

γ+1 . It is assumed that Pni
= PLT and

Tni
= TM . TM is found from the energy balance relation in the mixer as follows:

TM = ṁTTT βṁCTC

ṁT βṁC

(2.33)

where β is the bypass ratio. A schematic view of the information explained above is shown in

Figure 2.13.
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Fig. 1. General architecture of our proposed MM-based FDI scheme.

Fig. 2. Information flow diagram in a modular modeling of the jet engine dynamics.

ech denotes the mechanical efficiency and J denotes the inertia of the shaft connecting the compressor to th
ore, using [21] the following dynamics for the fuel mass flow rate are considered

τ
dṁ f

dt
+ ṁ f = Gu f d

the time constant, G is the gain associated with the fuel valve, and u f d denotes the fuel demand which is c

a feedback from the rotational speed as described in [21]. A modular Simulink model is developed to sim

engine nonlinear dynamics as described by equations (5) and (6). Figure 2 shows the information flow p

ink model of the engine.

e 3 shows the series of steady states that are obtained from our nonlinear model and the GSP [24] at PLA

o 1. At each point, the initial condition of the PLA is set equal to 0.3 followed by a transient to reach to t

esponding to the desired PLA. Since the steady state corresponding to each PLA is independent of the p

e transients (unless the compressor surges), it provides a suitable basis for comparison. As can be obser

he responses corresponding to our model and the GSP match each other within an acceptable error toleran

difference between the two representations is manifested in terms of the complexity of the mathematic

ave used, by taking into account that our structure is simpler as compared to the more complicated repre

P ( [24])

Figure 2.13: Aircraft jet engine modules and information flow chart.

The Set of Nonlinear Equations

The set of nonlinear equations which describe the behavior of a single-spool jet engine is obtained

in [97], which shows that the system is a nonlinear 4th order system. At the inlet of the jet engine

the ratio of duct temperature to ambient temperature, and duct temperature to ambient temperature

are described by the following equation:

T

Tamb

= 1 γ − 1
2

M2
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P

Pamb

= 1 ηd
γ − 1
2

M2

γ
γ−1

The set of nonlinear equations describing a single spool jet engine behavior is given by:

ṪCC = 1

cνmCC

(cPTCṁC ηCCHuṁf − cPTCCṁT ) − cνTCC(ṁC ṁf − ṁT )

Ṅ = ηmechṁT cP (TCC − TT ) − ˙mCcP (TC − Td)
JN(π2

30 )
ṖT = RTMi

VMi

(ṁT
β

1 β
ṁC − ṁn)

ṖCC = PCC

TCC

ṪCC
γRTCC

VCC

(ṁC ṁf − ṁT )

where TCC is temperature of combustion chamber, N stands for the rotational speed, PC is the

compressor pressure, PT is the turbine pressure, mCC is the mass flow in combustion chamber,

cν is the specific heat at constant volume, cp is the specific heat at constant pressure, TC is the

compressor temperature, TT is the turbine temperature, ṁC is the compressor mass flow rate, ηCC

is the combustion chamber efficiency, Hu is the fuel specific heat, ṁf is the fuel mass flow rate,

ηmech is the mechanical efficiency, Td is the diffuser temperature, ṁn is the nozzle mass flow rate,

β is the bypass ratio, TMi
is the mixer temperature, VMi

is the volume mixer, and PCC is the

combustion chamber pressure.

The state variables in the single-spool jet engine are selected as:

x = [TCC ,N,PT , PCC]
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The TC and TT are given by TC = Td[1 1
ηC
(πfracγ−1γ

C −1) and TT = TCC[1−ηT (1−πfracγ−1γ
T ).

Note that we assume PT = Pnoz. The output equation is given by [97]:

z = [PC , TC ,N,PT , TT ]

Remark 2.4. Jet engines are instrumented with several thermocouples working in a wide range of

temperatures. In particular, the highest temperature is the turbine temperature. This temperature

can be instrumented in small engines. However, in larger engines turbine temperature can be over

1500 degC [232], which makes the use of conventional Nickle-based thermocouples impossible.

The thermocouples currently used in jet engines have an operating temperature limitation of about

1000degC and, as a result the turbine temperature is not usually measurable. The requirement

for a higher temperature capability has been reported by gas turbine manufacturers [233]. An on-

going research (HEATTOP project) at university of Cambridge supported by leading gas turbine

manufacturers such as Rolls-Royce and Siemens is working on development of very high tempera-

ture thermocouples for the use in gas turbines [234], [235]. As of September 2013, a ˇ rst prototype

is manufactured and tested at 1300degC [236].

In our research, we deˇ ne two different scenarios to perform FDI task. First, we assume that

the turbine temperature is not measurable and consequently cannot be used for FDI application.

Second, assuming the success of HEATTOP project, we consider the turbine temperature to be

measurable and usable for FDI application. We then study how this achievement may improve the

performance of FDI task.
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Control Input

The mass flow rate of the main fuel, ṁf , is considered as a mechanism to control the engine

parameters. The fuel mass flow rate is a function of the power level angle (PLA) adjusted by the

pilot. The mass flow rate dynamics is determined as follows:

τ
ṁf

dt
ṁf = Gufd (2.34)

where τ is the time constant, G is the gain associated with the fuel valve and ufd denotes the fuel

demand, which is determined by a rotational speed feedback [97].

2.3.3 Faults in the Jet Engine

By an abrupt fault one means any rapid reduction in any of the engine performance parameters such

as compressor efficiency. Engine degeneration is a gradual reduction in the engine performance

during its operation. An example of this kind of fault is the engine degradation due to fouling or

erosion. Like any other system a jet engine is prone to three different types of failures 1- actuator

faults, 2- component faults and 3- sensor faults as shown in Figure 2.14. Each of these fault types

are explained below.
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Actuator Faults Component Faults Sensor Faults

Figure 2.14: Jet engine fault types [237].

• Actuator fault: actuator fault can be defined as any reduction in the actual capability of

engine actuators. In other words, an actuator fault is interpreted as any failure which affects

the effectiveness of the control input. An example of actuator fault is the fuel valves failure

to open or close correctly which leads to loss of effectiveness in delivery of the fuel.

• Component faults: component faults affect the healthy performance of the engine compo-

nent. Fouling and erosion are two examples of component faults. Fouling is caused by

accumulation of small particles on the turbine or the compressor blades contributing to re-

duction of the blades cross sections and finally overall reduction in the flow capacity. Fouling

is caused by adherence of microparticles between 2 − 10μm which affects the smoothness

of surfaces. Fouling results in the changes of aerofoils shape and it may happen in both

compressor and turbine. An indication of fouling in compressor (respectively turbine) is

reduction in compressor (respectively turbine) mass flow rate [229]. Thus, compressor and

turbine mass flow rates can be considered as engine health parameters as an indication of
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fouling. Typically, fouling results in 5% decrease in mass flow rate, and up to 13% in the

engine’s output power. Figure 2.16 shows a fouled compressor.

Figure 2.15: Fouled compressor [230].

Erosion is caused by collision of particles larger than 10μm with the compressor and the

turbine blades. The particles remove the material in the gas flow path which leads to changes

in aerofoil profiles. An indication of turbine (respectively compressor) erosion is decrease

in efficiency of turbine (respectively compressor).
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Figure 2.16: Erosion of turbine blades [230].

Foreign Object Damage (FOD) is another component fault caused by strike of relatively large

objects. FOD fault usually results in decrease of efficiency and mass flow rate of turbine and

compressor. FOD fault can result up to 5% decrease in compressor and turbine efficiency.

Figure 2.17 shows damage caused by a foreign object entered to a jet engine.

Figure 2.17: Turbine blade damage caused by foreign object [230].
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• Sensor faults: sensor fault occurs when the output of a sensor is different from the actual

values of the measured parameter (e.g. wrong temperature reading of a thermocouple is an

example of sensor fault). A sensor fault may lead to poor regulation or tracking performance,

or even affect the stability of the control system. Moreover, a faulty sensor output may also

cause inaccurate diagnostics/prognostics, resulting in unnecessary replacement of system

components or mission abortion. Therefore, it is important to correctly assess the health of

on-board sensors [228]. Examples of jet engine sensor faults are compressor pressure sensor

failure, compressor temperature sensor failure, turbine pressor sensor failure.

In this thesis, the main focus is on component faults. The engine health parameters consid-

ered in this research are compressor efficiency, compressor mass flow rate, turbine efficiency, and

turbine mass flow rate. Thus, any change in any of the above mentioned engine parameters is an

indication of a fault due to a degradation such as fouling or erosion.

Table 2.1: Jet engine component fault indications.

Component Fault Description

Fmc Decrease in the compressor flow capacity (ṁC)

Fec Decrease in the compressor efficiency (ηC)
Fmt Decrease in the turbine flow capacity (ṁC)

Fet Decrease in the turbine efficiency (ηC)

In order to model the engine’s health status, we define the Fmc, Fec, Fmt, and Fet as fault gains

which are indicating compressor mass flow rate, compressor efficiency, turbine mass flow rate, and

turbine efficiency respectively. For a healthy jet engine we consider the fault gains to be at 100%

of their nominal values (i.e. Fmc = Fec = Fmt = Fet = 1). Any degradation in an engine component
results in decrease of one or more engine parameters, which causes the fault gains to have a value

less than one. For typical component faults we consider a reduction up to 8% in engine health
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parameters (note that above 8% decrease in engine health parameters is considered to be so severe

and consequently it can be detected and isolated relatively as easy compared to the less severe

faults).

2.4 Summary

In this chapter a review of the required preliminaries for this research is presented. First the proven

concept for ensemble learning was presented including bias-variance decomposition, the impor-

tance of diversity in ensemble learning and the metrics for measuring diversity in ensemble sys-

tems. Then in the second part the required preliminaries for the data-driven models used in this

research were presented. Also, the required background for identification of dynamical systems

were presented. Finally, the chapter reviewed required background information on jet engine in-

cluding jet engine structure and its mathematical modeling as well as possible faults
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Chapter 3

Ensemble Learning for Jet Engine Fault

Detection

In previous chapter, we discussed ensemble learning as a powerful tool for solving both regression

(e.g. system identification) and classification (e.g fault isolation) problems. In this chapter, we

ˇ rst select three individual learning algorithm based on their characteristics and their popularity

in literature for identification of jet engine dynamics. Second, we model the jet engine dynamics

using the selected individual learning methods in order to validate them. Third, we build two

different ensemble systems to model the jet engine dynamics. Fourth, designed ensemble systems

are used to generate residual signals for fault detection (FD) of the jet engine. The performance

of the ensemble-based fault detection system is compared with each individual methods selected

from the literature.

As explained in Chapter 2 the diversity among individual ensemble members is essential.

Clearly, there is no more information to be gained from a large set of identical individual learners.
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Thus, the diversification approach plays an important role in the design process. The two general

approaches for ensuring diversity which are used in this thesis are:

• Using different types of learning algorithms (e.g. different types of neural networks). In

this first approach, the diversity among the learners is created by choosing different types of

learners in general.

• Training learners using different training data. In this approach each learner is trained on a

different subset of the training set. The diversity in this approach is created as each learner

learns a part of the available data.

We then compare the proposed ensemble-based FD system with conventional (non-ensemble)

methods in the literature from two perspectives. First, the accuracy of identified jet engine model,

and second, accuracy of fault detection process. The individual learners which are trained in the

first stage are used as benchmarks. These methods are used for modeling and FD of jet engine or

gas turbine in the following references.

Model Application Reference

MLP-NARX [24], [25], [26], [27], [28] Jet engine modeling & FD

RBF-NARX [24], [25] Jet engine modeling & FD

Table 3.1: Jet engine fault detection (FD) methods selected from the literature as bench-
marks.

3.1 Generating Engine Data

The required engine data can either be collected directly from a jet engine (if it is available) or

with the help of a simulation model that is as realistic as possible. The later possibility is of special
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interest for collecting data on the different faulty situations, since generally those data may not be

available for the real jet engine.

In this thesis, the data is generated using a Simulink model of a single-spool jet engine. For

fault detection purpose, we collect the data from a healthy jet engine model. This data is used to

identify dynamics of a healthy engine, which will be later used for generating residual signals. The

data is collected while engine is operating in cruise mode. This corresponds to the PLA signal (set

by the pilot) between 50○ and 60○ (PLA > [50○,60○]) [200]. The relation between PLA set by the
pilot and the engine fuel flow rate (ṁf ) is described by the following equation [200].

ṁf =
PLA×ṁmax

f

70 if PLA 70○

ṁmax
f if PLA 70○

so according to the above the fuel flow rate which corresponds to the cruise mode would be

approximately between 70% to 85% of the maximum fuel flow rate or in other words:

ṁcruise
f

ṁmax
f

>(0.7,0.85)

To have a realistic scenario for collecting the training data we assume that the jet engine is

operating in the cruise mode (
ṁcruise

f

ṁmax
f
> (0.7,0.85)) for an hour (3600 sec). The PLA and thus the

fuel flow rate makes slight random changes during the flight every 5 minutes (300 sec). This results

in an input profile as shown in Figure 3.1.
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Figure 3.1: Top: PLA used for generating engine data in the cruise mode. Bottom: engine fuel

flow rate ṁf in the cruise mode used for generating engine data.

The generated training data contains the measured variables along the engine’s gas path, as

well as engine’s fuel flow rate. A summary of the generated data is presented in Table 3.2.

Table 3.2: Training data generation summary.

Flight duration 3600 sec

Flight mode cruise

Fuel rate
ṁcruise

f

ṁmax
f
>(0.7,0.85), PLA >[50○,60○] [200]

PC , compressor pressure

PT , turbine pressure

Instrumented parameters TC , compressor pressure

TT , turbine temperature (see Remark 2.4)

N , rotational speed

Actuator parameter ṁf fuel flow rate (see Remark 3.1)

Total # of samples 3601
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Remark 3.1. Note that the actuator signal is set by the ight controller, and is not usually instru-

mented by a sensor. For a jet engine the actuator signal is the fuel ow rate and it is calculated

based on the PLA set by the pilot.

In order to have a realistic engine data, we add measurement noise to the collected engine data

parameters. The percentage of noise applied to each of the engine parameters is shown in Table

3.3.

Table 3.3: Measurement noise standard deviations as percentage of engine parameter values
at cruise condition[199].

PC TC N PT TT ṁf

0.164 0.23 0.051 0.164 0.097 0.51

We observed that normalization of the data improves the performance of the learners. Thus,

the following min-max normalization function is applied for preprocessing of the data, that is

Xn = 2 Xmax −X
Xmax −Xmin

The generated data is divided into training, testing, and cross-validation data sets in the next

section, and are used for training and validating the jet engine model.

3.1.1 Training, Testing, and Cross-Validation Data Sets

The generated engine data is divided into three data sets: training data set, testing data set, and

validation data set. The training data set, and cross-validation date set are used during training

phase. The training data set is presented to the models during training phase. Since the model

only sees the training data during training phase there is always a chance of overˇ tting. This
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means that the model memorizes the training data, while it looses generalization capability to

unseen data. In order to prevent the model from overfitting, we need to have a cross-validation

set. The cross-validation data set is a subset of the training data which is not used for the training

but instead is used for validation of the trained model during the training. The training stops, if

the model’s performance on cross-validation data set does not improve for i iterations in a row.

Partitioning of the available data into training, test, and cross-validation data sets can affect the

generalization performance of the model. We conduct the following experiment to determine an

optimal partition of the available data into training, testing, and cross-validation data sets. We

first consider partitioning the available data into training and testing data sets with different sizes

which are 1- training data set = 40% of available data, testing data set = 60% of available data

2- training data set = 50% of available data, testing data set = 50% of available data 3- training

data set = 60% of available data, testing data set = 40% of available data. Then for each case

we use a part of the training data as cross-validation data set (in different experiments we use

20%, 30%, 40%, 50%, and 60% of the training data as cross-validation data set). In each case,

the generalization error of the trained model is calculated on the testing data set. The results are

reflected in Figures 3.2 to 3.6. Please note that the figures show the results for an MLP-NARX

model where the network parameters (e.g. number of neurons are fixed to the optimal values

obtained in the following). Ideally, we would like to repeat the above mentioned procedure for

all the models and with various network parameters; however, in the remainder of this chapter,

and due to the computational complexity we first partition the available data into training, and

testing, and then based on the outcome of this experiment we use 40% of the training data set for

cross-validation.

In order to evaluate the successfulness of cross-validation we compare the generalization error
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for different sizes of validation data with the case where no cross-validation is performed. We set

the maximum number of iterations to a relatively big number (i.e. 100 iterations) noting the cross-

validations stops the training in less than 10 iterations. It should be also noted that if we increase

the maximum number of iterations to bigger numbers, then the generalization error would become

even worse due to overfitting of the training data. Tables 3.5 to 3.8 compare the generalization error

with and without cross-validation. One can see that early stopping with cross-validation reduces

the generalization error significantly by preventing overfitting of training data. According to the

experimental results (see Tables 3.5 to 3.8) one can see that using 40% of the available training data

for cross-validation purpose results in a better generalization performance. Thus, in the remainder

of this chapter we select 40% of the training data set for performing cross-validation.

Table 3.4: The effectiveness of cross-validation for identification of compressor pressure.

size of validation set

(% of training data)

Generalization

error

# of iteration Stopping criteria

– 17.3162 100 max iteration

20% 6.3513 12 validation stop

40% 0.0330 9 validation stop

60% 0.1283 5 validation stop

80% 1.1678 5 validation stop
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Table 3.5: The effectiveness of cross-validation for identification of compressor temperature.

size of validation set

(% of training data)

Generalization

error

# of iteration Stopping criteria

– 19.2212 100 max iteration

20% 1.7559 5 validation stop

40% 2.2323 6 validation stop

60% 5.7995 6 validation stop

80% 2.0269 7 validation stop

Table 3.6: The effectiveness of cross-validation for identification of rotational speed.

size of validation set

(% of training data)

Generalization

error

# of iteration Stopping criteria

– 97.3162 100 max iteration

20% 35.8760 20 validation stop

40% 31.8124 19 validation stop

60% 36.0391 23 validation stop

80% 39.5571 21 validation stop

Table 3.7: The effectiveness of cross-validation for identification of turbine temperature.

size of validation set

(% of training data)

Generalization

error

# of iteration Stopping criteria

– 106.8616 100 max iteration

20% 39.1656 7 validation stop

40% 34.4623 16 validation stop

60% 37.4369 7 validation stop

80% 43.1970 6 validation stop
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Table 3.8: The effectiveness of cross-validation for identification of turbine pressure.

size of validation set

(% of training data)

Generalization

error

# of iteration Stopping criteria

– 9.1278 100 max iteration

20% 0.1162 7 validation stop

40% 0.0514 6 validation stop

60% 0.7248 6 validation stop

80% 0.2229 8 validation stop
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Figure 3.2: Compressor temperature estimation error vs. size of cross-validation data for different

sizes of training data.
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Figure 3.3: Compressor pressure estimation error vs. size of cross-validation data for different

sizes of training data.
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Figure 3.4: Rotational speed estimation error vs. size of cross-validation data for different sizes of

training data.
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Figure 3.5: Turbine temperature estimation error vs. size of cross-validation data for different sizes

of training data.
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Figure 3.6: Turbine pressure estimation error vs. size of cross-validation data for different sizes of

training data.
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3.2 Neural Network Construction

In summary, the neural networks are constructed in two steps. First, the available engine data is

partitioned into training, validation and testing data and the optimal size of the data sets is deter-

mined by experimenting different scenarios (i.e. different sizes for training, validation and testing

data sets). Second, the partitioned data is used to construct the neural network while adjusting

different network parameters (i.e. # of neurons, delays). Twelve different scenarios are considered

for partitioning of the available data as described in the following:

• Scenarios 1 - 4: In these scenarios, first the available data is partitioned into 40% training

data and 60% testing data. Then validation data size is selected as a percentage of the training

data as follows.

– Scenario 1: 40% of the available engine data is selected as training data and 60% of

the engine data is selected as testing data with 20% of the training data is selected as

validation data set.

– Scenario 2: 40% of the available engine data is selected as training data and 60% of

the engine data is selected as testing data with 40% of the training data is selected as

validation data set.

– Scenario 3: 40% of the available engine data is selected as training data and 60% of

the engine data is selected as testing data with 60% of the training data is selected as

validation data set.

– Scenario 4: 40% of the available engine data is selected as training data and 60% of

the engine data is selected as testing data with 80% of the training data is selected as

validation data set.
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Figure 3.7 shows how the engine data is divided for the scenarios 1-4.
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Figure 3.7: Partitioning of the available data into training, testing and validation data sets. Training

data size = 60% of available data. Testing data size = 40% of the training data. Validation data size

selected as a percentage of the training data.

• Scenarios 5 - 8: In these scenarios, first the available data is partitioned into 40% of training

data and 60% testing data. Then validation data size is selected as a percentage of the training

data as follows.

– Scenario 5: 50% of the available engine data is selected as training data and 50% of

the engine data is selected as testing data with 20% of the training data is selected as

validation data set.

– Scenario 6: 50% of the available engine data is selected as training data and 50% of

the engine data is selected as testing data with 40% of the training data is selected as

validation data set.

– Scenario 7: 50% of the available engine data is selected as training data and 50% of

the engine data is selected as testing data with 60% of the training data is selected as
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validation data set.

– Scenario 8: 50% of the available engine data is selected as training data and 50% of

the engine data is selected as testing data with 80% of the training data is selected as

validation data set.

Figure 3.8 shows how the engine data is divided for the scenarios 5-8.
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Figure 3.8: Partitioning of the available data into training, testing and validation data sets. Training

data size = 50% of available data. Testing data size = 50% of the training data. Validation data size

selected as a percentage of the training data.

• Scenarios 9 - 12: In these scenarios, first the available data is partitioned into 60% of training

data and 40% testing data size. Then validation data size is selected as a percentage of the

training data as follows.

– Scenario 9: 60% of the available engine data is selected as training data and 40% of

the engine data is selected as testing data with 20% of the training data is selected as

validation data set.
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– Scenario 10: 60% of the available engine data is selected as training data and 40% of

the engine data is selected as testing data with and 40% of the training data is selected

as validation data set.

– Scenario 11: 60% of the available engine data is selected as training data and 40% of

the engine data is selected as testing data with and 60% of the training data is selected

as validation data set.

– Scenario 12: 60% of the available engine data is selected as training data and 40% of

the engine data is selected as testing data with and 80% of the training data is selected

as validation data set.

Figure 3.9 shows how the engine data is divided for the scenarios 9-12.
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Figure 3.9: Partitioning of the available data into training, testing and validation data sets. Training

data size = 60% of available data. Testing data size = 40% of the training data. Validation data size

selected as a percentage of the training data.

Once the data is partitioned into training, validation and testing data sets (different scenarios

are considered) then the networks are constructed and network parameters are adjusted to achieve
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the least generalization (i.e. testing error). Different model parameters (i.e. using different values

for neurons/delays) are considered at this stage. Each model is trained using the training data. The

validation data is used for stopping of the training in order to avoid over fitting of training data. The

testing data is not exposed to the network during the training stage and it is only used to calculate

the generalization error (i.e. RMSEtesting)

Remark 3.2. It should be noted that once the data is partitioned (e.g. 30% for training, 20%

for validation and 50% for testing) then the samples in each set are ˇ xed and do not change

during the model parameters selection stage. Thus, in each experiment the testing data is ˇ xed

and not exposed to the model at the training and validation stages. It should also be noted that the

experiments for partitioning of the data are independent from each other. For example, if data is

partitioned into 30% of training data, 20% of validation and 50% of the testing data then it means

that 30%, 20% and 50% of the available data are randomly selected as training, validation and

testing data sets respectively.

3.3 Jet Engine Dynamics Identification

System identification plays an important role in fault detection algorithms. It is always required to

have a reference model which generates the expected outputs of a healthy jet engine. The residual

signals are then generated by comparing the outputs of the actual engine with the predictions of

the reference model. In this thesis, different machine learning algorithms are trained to identify

the dynamics of a single-spool jet engine. These models are later combined to design an ensemble

system which estimates the normal behavior of a jet engine.

The jet engine dynamic is identified based on Nonlinear Autoregressive Exogenous model
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(NARX) which is commonly used in system identification [217]. NARX relates the current value of

an identified system to its previous values of inputs and outputs. Generally speaking, a system can

be described as a function of its inputs and outputs. This can be summarized using the following

equation:

y(k) = f(y(k − 1), ..., y(k − dy), u(k), ..., u(k − du)) (3.1)

where u and y are the input and output vectors of the system respectively, and f is a nonlinear

relation between the current value of the output y(k) and the previous values of input and output
vectors. When identifying a system using NARX model the goal is to find a (generally) nonlinear

function f̂ as follows:

ŷ(k) = f̂(y(k − 1), ..., y(k − d̂y), u(k), ..., u(k − d̂u)) (3.2)

If we determine the time delays (d̂y) and (d̂u) then the generally nonlinear function f̂ can be

determined such that it identifies the system dynamics. According to [215] a proper approximation

requires the order and time-delay of the approximated function to be equal or greater than the

actual system’s delays. In other words, we need to select d̂y dy and d̂u du. Two structures can

be assumed for NARX model which are described in Chapter 2.

During training phase series-parallel NARX model is used for identification of jet engine dy-

namics. In this model actual outputs of the jet engine are fed back to the identification model rather

than estimated outputs. This structure is shown in Figure 3.10.
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Figure 3.10: Series-parallel NARX model used for training stage [83].

Since the jet engine itself is BIBO stable, all signals which are used in identification process

are bounded. This guarantees that the identified model of the engine is stable. Assuming that

ŷ(n) ≈ y(n), the series-parallel model can be replaced by a parallel model during recall phase

without serious consequences. The structure of the recall phase is shown in Figure 3.11.
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Figure 3.11: Parallel NARX model during recall phase [83].
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Note that y represents engine parameters which can be PT , TT , PC , TC, N .

3.4 Jet Engine Dynamics Identification using MLP-NARX

The use of MLP neural networks in NARX model for dynamical systems identification has been

reported in several publications including but not limited to [17], [18], [19], [20], [21], [22], [23].

NARX model has proven ability in identification of a wide range of nonlinear systems [20], [23].

Feed-forward MLPs have been widely used in various applications. A common feature in all these

applications is that MLPs are employed to realize some complex nonlinear functions. Theoreti-

cally, it is shown that even a single-layer perceptron can approximate any nonlinear function [216].

Thus, the theoretical foundation of nonlinear systems modeling using MLPs is already established.

Nonlinear Autoregressive Exogenous (NARX) model parameterizes any nonlinear dynamics as

a (nonlinear) function of a regressor vector which contains current value of the system’s input, as

well as, the past values of inputs and outputs. In other words, NARXmodel describes the dynamics

of a system using the following equation:

y(n) = f(y(n − 1), ..., y(n − dy), u(n), ..., u(n − du))

The nonlinear function f in the above equation is some nonlinear function. In this section MLP

is used for approximation of the function f with application to jet engine system identification. Two

different architectures are previously presented for NARXmodel in Chapter 2 and Section 3.2. The

series-parallel NARX model uses the actual outputs of the plant are fed back to the identification

model during training phase. There are two main advantages associated with this structure [83].

First, all signal which are used in the identification process (which are inputs of the regressor f ) are
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bounded. This guarantees that the identified model would be also stable. Also, assuming that the

identified model is close enough to the actual system, the series-parallel model can be replaced by

a parallel model during testing phase without serious consequences. Thus, series-parallel structure

is used during training phase of neural networks. The series-parallel NARX structure used for

identification of jet engine dynamics is shown in Figure 3.12.

Jet Engine

Multi-layer
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�( )y k�( )y k

( )e k
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...

Figure 3.12: Schematic of MLP-NARX during training phase.

Note that in Figure 3.12, y can be any of the engine outputs (PT , TT , PC , TC ,N ) and u is the

fuel flow rate (ṁf ). We train a separate neural network for each of the engine outputs. Figure 3.13

shows the system architecture during training. In this architecture each engine output is identified

using a separate model. A series-parallel MLP-NARX model is used to model each engine output.

The inputs to each network are the vectors [ṁf(n), ..., ṁf(n − du)] and [y(n − 1), ..., y(n − dy)]
where y can be any of the engine outputs which are PT , TT , PC , TC and , N.
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Figure 3.13: The architecture of MLP-NARX model of the jet engine during training phase.

Before training the neural networks we have several parameters to adjust for each networks

structure. These parameters include the number of hidden layers, number of neurons, number of

delays (du,dy), and size of training set. Generally speaking, there is no rule to determine the optimal

values of the above mentioned parameters for a specific application. Thus, we follow a constructive

algorithm in order to achieve the desired performance. According to the approximation theorem

[216] any nonlinear function can be approximated using a single-layer perceptron. Hence for

simplicity we limit the number of hidden layers to one. We should note that according to [215]
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using only a single hidden layer may result in larger number of hidden neurons.

We start with a relatively small structure for the neural networks (one hidden layer, two hidden

neurons, and the number of delays equal to two). For avoiding too complex networks we limit the

number of hidden neurons to 20, and the number of delays to 10 (du 10, dy 10). We use Root

Mean Squared Error (RMSE) in order to evaluate the training, and generalization performance of

the trained networks as follows:

RMSE = ∑n
i=1 (Pi − Ti)2

n

where Pi and Ti are the network prediction and the target for the ith sample, respectively and

n is the total number of samples. We also consider theMean of Absolute Error (μae) and Standard

Deviation of Absolute Error (σae), as we expect the error to be randomly distributed around zero

for an appropriately constructed neural network. In the following, a summary of the construction

of networks for each of the engine outputs is presented as follows:

μae = std( Pi − Ti )
σae = ∑

n
i=1 Pi − Ti

n

Remark 3.3. For system identiˇ cation purposes estimating the model order (du and dy in the

NARX model) is specially critical. Generally speaking, the correct order of the model is not known

a priori, and it is usually determined by constructing networks with several different model orders.

In this construction, it is common to start with relatively small model orders, and then increasing
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order until the computed RMSE meets our design criteria. Thus, choosing large enough model

order is a key. Assuming that the system dynamics is governed by the following difference equation,

the appropriate delays must be selected such that du N , and dy M [7].

y(n) = f (y(n − 1), ..., y(n −M)) g u(n), ..., u(n −N)

To reduce the number of trained networks, and with a mild assumption we consider du = dy =
d. Then an appropriate delay, d, should be chosen such that d max M,N

Remark 3.4. As previously stated series-parallel NARX model is used during the training stage as

shown in Figure 3.12. However, during the testing stage the series-parallel architecture is replaced

by parallel architecture as shown in Figure 3.14.
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Figure 3.14: The architecture of the MLP-NARX model of jet engine during testing phase.

3.4.1 MLP-NARX Model of the Compressor Temperature

This section summarizes the construction of MLP-NARX model for identifying the dynamics of

the compressor temperature. Three different sizes are selected for training data set. First, several

neural networks are constructed using 40% of available data (1200 out of 3001 samples). Second,

we construct several networks using 50% of available data (1501 out of 3001 samples), and finally,

we construct the MLP-NARX neural networks using 60% (1801 out of 3001 samples).

In each case, we start with a relatively small structure for the neural networks (one hidden layer,

five hidden neurons, and the number of delays equal to two). For avoiding too complex networks
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we limit the number of hidden neurons to 20 and the number delays to 10 (du 10, dy 10).

Also, as previously discussed in Remark 3.3, we assume dy = du in order to limit the number of
construction trials. The architectures for training of the neural networks are shown in Figure 3.12.

The network is trained using backpropagation as previously described in Chapter 2.

The summary of the network constructions is shown in Table 3.9.

Table 3.9: Summary of construction of MLP-NARX for modelling the compressor tempera-
ture (see the appendix for extensive summary).

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

14 7 1501 108.7845 109.3749 108.1905 16.4491 106.325 23.0051

14 8 1501 111.0706 109.9238 112.2064 16.8075 105.2197 35.5797

14 4 1801 1.3272 1.4965 1.0216 0.202 1.0032 0.86898

14 5 1801 5.1862 5.8258 4.0405 0.7897 3.9202 3.396

14 6 1801 63.8587 63.2542 64.7554 9.653 63.6005 5.7383

14 7 1801 4.0198 4.6657 2.7821 0.61273 3.0276 2.6448

14 8 1801 78.5176 78.3627 78.7496 11.88 78.4966 1.8173

15 4 1200 3.0191 4.0894 2.0113 0.46038 1.839 2.3948

15 5 1200 11.5477 12.252 11.0536 1.7562 9.3723 6.7472

15 6 1200 2.6182 3.3374 2.0003 0.39905 1.8458 1.8572

15 7 1200 3.5106 5.5082 0.56647 0.53711 0.74164 3.432

15 8 1200 2.0647 2.3486 1.8516 0.31423 1.6327 1.2641

15 4 1501 70.2922 70.4178 70.1664 10.6334 58.1478 39.5013

15 5 1501 44.7489 44.8696 44.6278 6.768 34.1267 28.9501

15 6 1501 2.0963 2.493 1.6039 0.31954 1.3973 1.5629

15 7 1501 4.1934 4.6624 3.6644 0.63987 2.8925 3.0366

15 8 1501 4.8707 5.5448 4.0862 0.74261 3.4636 3.425
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Table 3.9: Summary of construction of MLP-NARX for modelling the compressor tempera-
ture (see the appendix for extensive summary).

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

15 4 1801 2.128 2.4083 1.6187 0.32415 1.5784 1.4274

15 5 1801 3.4745 4.2668 1.6931 0.53056 1.7334 3.0117

15 6 1801 2.2914 2.8764 0.84487 0.34997 0.87841 2.1167

15 7 1801 5.401 5.8805 4.5882 0.82196 4.3454 3.2081

In summary the best performance is achieved by the network with the following parameters:

Table 3.10: Best MLP-NARX for modeling the compressor temperature in terms of
RMSEtest.

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

15 7 1200 3.5106 5.5082 0.56647 0.53711 0.74164 3.432

The engine output and the trained network output for both training and testing data are shown

in Figure 3.15.
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Figure 3.15: MLP-NARX model prediction and actual engine output (compressor temperature).

3.4.2 MLP-NARX Model of the Compressor Pressure

This section summarizes the extensive simulations which performed for training MLP-NARX

model of the compressor pressure. Three different sizes are selected for the training data (40%,

50%, 60% of the available data). In each case, we start with a relatively small neural network

structure, and then we construct more complex networks by adding neurons and delays. To avoid

too complex networks we limit the number of hidden neurons to 20 and the number delays to 10

(du 10, dy 10). Also, as previously discussed in Remark 3.3, we assume dy = du in order to
limit the number of trials. The architecture for training the neural networks is shown in Figure

3.12. The network is trained by using backpropagation as previously described in Chapter 2.

The summary of network construction is shown in Table 3.11.
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Table 3.11: Summary of construction of MLP-NARX for modelling the compressor pressure
(see the appendix for extensive summary).

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

12 6 1200 4.8941 4.9334 4.8677 40.6131 4.7393 1.221

12 7 1200 0.06571 0.087446 0.045822 0.55726 0.038364 0.053357

12 8 1200 0.13281 0.18103 0.086906 1.1381 0.078402 0.10721

12 4 1501 7.2386 7.2594 7.2178 59.9556 7.2338 0.26471

12 5 1501 0.075964 0.095119 0.049915 0.64918 0.042239 0.063149

12 6 1501 0.17796 0.24437 0.060041 1.53 0.061056 0.16719

12 7 1501 7.7776 7.8118 7.7433 64.3566 7.7663 0.42043

12 8 1501 0.068131 0.083435 0.048173 0.57905 0.03969 0.055385

12 4 1801 0.30503 0.33921 0.24495 2.6813 0.24049 0.18766

12 5 1801 1.0244 1.0791 0.93632 8.6699 0.74842 0.69957

12 6 1801 0.07754 0.095055 0.038409 0.70861 0.034802 0.069302

12 7 1801 0.10034 0.12331 0.048562 0.85987 0.051821 0.08594

12 8 1801 0.26226 0.33004 0.092335 2.2502 0.15067 0.21469

13 4 1200 6.5354 6.4513 6.5909 53.8924 6.2991 1.7418

13 5 1200 0.12091 0.17572 0.061522 1.035 0.05951 0.10526

13 6 1200 0.13152 0.15096 0.11679 1.1204 0.1015 0.083656

13 7 1200 9.1264 9.0765 9.1595 75.682 8.226 3.9534

13 8 1200 0.12625 0.1864 0.058403 1.2959 0.048202 0.11671

13 4 1501 0.11394 0.15435 0.046155 0.97906 0.042831 0.1056

13 5 1501 0.21434 0.21912 0.20944 1.8191 0.16612 0.13547

13 6 1501 0.34614 0.44288 0.20843 2.9776 0.18655 0.29163

In summary the best performance is achieved by the network with the following parameters:
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Table 3.12: Best MLP-NARX for modeling of compressor pressure in terms of RMSEtest.

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

12 6 1801 0.07754 0.095055 0.038409 0.70861 0.034802 0.069302

The engine output and the trained network output for both training and testing data are shown

in Figure 3.16.
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Figure 3.16: MLP-NARX model prediction and actual engine output (compressor pressure).

3.4.3 MLP-NARX Model of the Rotational Speed

This section summarizes the extensive simulations performed for modeling the engine rotational

speed using MLP-NARX model. Like before, three different sizes of training data are selected

(40%, 50%, 60% of the available data). We start with a relatively small neural network structure,

and then construct more complex networks by adding neurons and delays. To avoid too complex

networks we limit the number of hidden neurons to 20 and the number delays to 10 (du 10, dy
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10). Also, as previously discussed in Remark 3.3, we assume dy = du in order to limit the number
of trials. The architecture for training the neural network is shown in Figure 3.12.

The summary of the network construction is shown in Table 3.13.

Table 3.13: Summary of construction of MLP-NARX for modelling the rotational speed (see
the appendix for extensive summary).

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

10 5 1200 35.5009 37.8877 33.8172 0.29961 28.6901 20.9126

10 6 1200 36.9265 40.1687 34.598 0.31214 29.6183 22.0564

10 7 1200 296.6163 300.5436 293.9705 2.4957 294.5564 34.9023

10 8 1200 35.0706 36.4016 34.1549 0.29608 28.9322 19.8243

10 4 1501 450.7895 447.4808 454.0762 3.7936 449.116 38.8127

10 5 1501 36.5406 40.6434 31.9113 0.30842 29.8534 21.0745

10 6 1501 400.5267 398.5496 402.4953 3.3711 399.6232 26.892

10 7 1501 37.6383 42.1131 32.5504 0.31812 30.6131 21.9006

10 8 1501 46.1702 50.8953 40.899 0.38999 32.591 32.7088

10 4 1801 33.0561 35.247 29.4638 0.27903 27.0061 19.0656

10 5 1801 27.2712 32.668 16.0695 0.23157 16.9852 21.3395

10 6 1801 33.9831 35.9672 30.7663 0.28692 28.2217 18.9344

10 7 1801 33.5627 35.5145 30.3992 0.28338 27.7218 18.923

10 8 1801 43.4787 50.0322 31.1554 0.36597 30.8818 30.6108

11 4 1200 29.9508 32.6795 27.9854 0.25259 24.7664 16.8455

11 5 1200 37.26 38.6579 36.2987 0.31462 30.0035 22.0966

11 6 1200 487.0859 489.2236 485.6564 4.0997 486.0575 31.6409

11 7 1200 34.7142 42.2669 28.5952 0.29399 24.9275 24.1639

11 8 1200 32.9792 34.8175 31.6952 0.27836 27.0523 18.8659
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Table 3.13: Summary of construction of MLP-NARX for modelling the rotational speed (see
the appendix for extensive summary).

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

11 4 1501 34.5558 38.073 30.6348 0.29169 28.7501 19.1745

11 5 1501 37.1712 41.6389 32.0838 0.31366 30.0774 21.8451

Table 3.13 shows network structures as well as validation results (e.g. training, testing, and

total RMSE). The best performance (in terms of testing RMSE) is achieved by the network with

the following parameters:

Table 3.14: Best MLP-NARX for modeling the rotational speed in terms of RMSEtest.

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

10 5 1801 27.2712 32.668 16.0695 0.23157 16.9852 21.3395

The engine output and the trained network output for both training and testing data are shown

in Figure 3.17.
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Figure 3.17: MLP-NARX model prediction and actual engine output (rotational speed).

3.4.4 MLP-NARX Model of the Turbine Temperature

This section summarizes the construction of the MLP-NARX model for identifying the dynamics

of turbine temperature. Like before, three different sizes are selected for training data set (40%,

50%, 60% of the available data). The construction starts with small network and continues to more

complex networks. In order to avoid too complex networks, we limit the number of hidden neurons

to 20 and the number delays to 10 (du 10, dy 10). Also, as previously discussed in Remark 3.3,

we assume dy = du in order to limit the number of construction trials. The architecture for training
the neural network is shown in Figure 3.12. The network is trained by using backpropagation as

previously described in Chapter 2.

Table 3.15 summarises the construction and validation results of the trained MLP-NARX mod-

els for turbine temperature.
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Table 3.15: Summary of construction of MLP-NARX for modelling the turbine temperature
(see the appendix for extensive summary).

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

12 5 1801 460.9805 454.8895 469.9741 24.6622 449.3605 102.8677

12 6 1801 768.8118 771.8882 764.1713 42.5231 709.318 296.5953

12 7 1801 155.7693 159.994 149.2043 8.8018 129.8104 86.1151

12 8 1801 159.2104 154.2648 166.3573 8.7893 150.7838 51.1184

13 4 1200 222.7684 227.2427 219.7365 12.5666 194.0663 109.3984

13 5 1200 1054.4226 1036.3916 1066.2673 57.1032 993.248 353.9877

13 6 1200 74.6131 73.1871 75.5483 4.1297 67.4487 31.908

13 7 1200 1616.5065 1609.1162 1621.4119 88.0136 1392.8149 820.6

13 8 1200 346.7517 336.1981 353.6087 18.9061 321.841 129.0761

13 4 1501 652.3556 655.5736 649.1194 35.4576 613.8091 220.9581

13 5 1501 41.9615 40.4995 43.3752 2.317 37.1441 19.5246

13 6 1501 650.2679 653.681 646.8345 34.8309 604.7047 239.1645

13 7 1501 1060.3711 1066.0517 1054.656 58.2532 1048.166 160.4476

13 8 1501 1048.6294 1058.7777 1038.3751 56.7266 1042.463 113.573

13 4 1801 1218.9509 1213.006 1227.8192 66.3182 983.1694 720.6888

13 5 1801 260.3611 258.2062 263.5621 14.482 241.341 97.7015

13 6 1801 243.6969 227.401 266.2894 13.4599 220.9837 102.7516

13 7 1801 878.8761 874.1466 885.927 48.1715 777.9259 409.0358

13 8 1801 239.4609 243.237 233.6791 13.1819 219.1003 96.6421

14 4 1200 130.0401 123.4004 134.282 7.1211 117.3991 55.9367

14 5 1200 173.9732 168.3939 177.5934 9.6026 158.1745 72.4519

In summary, the best performance (in terms of the testing RMSE) is archived by the following
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parameters.

Table 3.16: Best MLP-NARX for modeling the turbine temperature in terms of RMSEtest.

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

13 5 1501 41.9615 40.4995 43.3752 2.317 37.1441 19.5246

The engine output and the trained network output for both training and testing data are shown

in Figure 3.18.
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Figure 3.18: MLP-NARX model prediction and actual engine output (turbine temperature).

3.4.5 MLP-NARX Model of the Turbine Pressure

This section summarizes the construction of the MLP-NARX model for identifying the dynamics

of turbine pressure. Like before, three different sizes are selected for training data set (40%, 50%,

60% of the available data). The construction starts with small network and continues to more

complex networks. In order to avoid too complex networks, we limit the number of hidden neurons
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to 20 and the number delays to 10 (du 10, dy 10). Also, as previously discussed in Remark 3.3,

we assume dy = du in order to limit the number of construction trials. The architecture for training
the neural network is shown in Figure 3.12. The network is trained by using backpropagation as

previously described in Chapter 2.

Table 3.17 summarises the construction and validation results of trained MLP-NARX models

for turbine temperature.

Table 3.17: Summary of construction of MLP-NARX for modelling the turbine pressure (see
the appendix for extensive summary).

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

12 8 1200 1.5321 1.7145 1.3974 33.2073 1.1832 0.97346

12 4 1501 6.3269 6.5764 6.067 138.2268 3.6285 5.1839

12 5 1501 0.858 0.98273 0.71164 19.1013 0.67116 0.53461

12 6 1501 0.92128 1.2058 0.49312 20.2576 0.4038 0.82821

12 7 1501 16.0708 16.1816 15.9593 330.8824 16.0099 1.3979

12 8 1501 10.0099 10.1097 9.909 205.8049 9.9552 1.0452

12 4 1801 0.49299 0.44647 0.55554 10.3286 0.4192 0.25949

12 5 1801 0.33884 0.40479 0.20299 8.3306 0.20063 0.2731

12 6 1801 9.4812 9.0519 10.0912 198.5974 7.7466 5.4674

12 7 1801 0.38883 0.46908 0.21877 8.517 0.2126 0.32562

12 8 1801 0.50515 0.64118 0.14539 11.2103 0.16013 0.47917

13 4 1200 11.9467 11.7735 12.0607 244.2561 11.4902 3.2713

13 5 1200 30.3314 30.205 30.4153 626.7339 30.2972 1.4392

13 6 1200 0.89159 0.96697 0.83761 19.4837 0.73062 0.5111

13 7 1200 0.3794 0.51465 0.25175 8.2715 0.22773 0.3035

13 8 1200 4.3377 6.411 1.9915 95.4077 2.5099 3.5384
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Table 3.17: Summary of construction of MLP-NARX for modelling the turbine pressure (see
the appendix for extensive summary).

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

13 4 1501 0.87233 1.08 0.59608 22.0664 0.45508 0.74434

13 5 1501 34.6874 34.7931 34.5814 717.0989 34.6576 1.4377

13 6 1501 0.29812 0.34907 0.23639 6.4572 0.20653 0.21502

13 7 1501 9.6314 9.8002 9.4594 197.1338 9.506 1.5491

13 8 1501 0.66389 0.80207 0.48789 14.5958 0.39815 0.53133

In summary, the best performance (in terms of the testing RMSE) is archived by the following

parameters.

Table 3.18: Best MLP-NARX for modeling the turbine pressure in terms of RMSEtest.

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

12 8 1801 0.50515 0.64118 0.14539 11.2103 0.16013 0.47917

The engine output and the trained network output for both training and testing data are shown

in Figure 3.19.
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Figure 3.19: MLP-NARX model prediction and actual engine output (turbine pressure).

3.5 Jet Engine Dynamics Identification using RBF-NARX

The use of RBF neural networks in NARX model for dynamical systems identification has been

reported in several publications including but not limited to [8], [10], [11], [12], [13], [14], [15],

[16]. This section describes construction of the RBF-NARXmodel to identify jet engine dynamics.

As previously described in Chapter 2 a series-parallel architecture is used for training of RBF-

NARX model as shown in Figure 3.21. In this architecture the engine output is fed back into the

RBF-NARX model, assuming that the engine is fault-free during the training stage.
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Figure 3.20: The architecture of the RBF-NARX model of jet engine during training phase.

Once the training stage is completed, the series-parallel architecture would be replaced with a

parallel architecture. In this architecture, the outputs of the RBF-NARX model are fed back into

the model rather than actual engine outputs. This is essential as the engine is prone to faults during

testing stage. Figures 3.20 and 3.21 show the architectures of the RBF-NARX model used in this

section.
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Figure 3.21: The architecture of the RBF-NARX model of jet engine during testing phase.

3.5.1 RBF-NARX Model of the Compressor Temperature

This section summarizes the construction of the RBF-NARX model for identifying the dynamics

of the compressor temperature. Three different sizes are selected for training data set. First, several

neural networks are constructed using 40% of available data (1200 out of 3001 samples). Second,

we construct several networks using 50% of available data (1501 out of 3001 samples), and finally,

we construct the RBF-NARX neural networks using 60% (1801 out of 3001 samples).

Each case starts with a small neural network structure, and then adds to the complexity by
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adding neurons and delays. To avoid complex networks we limit the number of hidden neurons to

20 and the number delays to 10 (du 10, dy 10). Also, as previously discussed in Remark 3.3,

we assume dy = du in order to limit the number of construction trials.
The summary of network construction is shown in Table 3.19.

Table 3.19: Summary of construction of RBF-NARX for modelling the compressor tempera-
ture (see the appendix for extensive summary).

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

10 7 1200 2.2127 2.5475 1.9581 0.33685 1.7548 1.3482

10 8 1200 2.4748 2.8173 2.2174 0.37669 2.001 1.4565

10 4 1501 2.1221 2.1281 2.116 0.32288 1.7637 1.1803

10 5 1501 2.7501 2.9006 2.5908 0.41872 2.1888 1.6654

10 6 1501 1.6867 1.7608 1.6091 0.25666 1.3559 1.0034

10 7 1501 2.8032 2.8708 2.7339 0.42667 2.2943 1.6109

10 8 1501 1.5578 1.6449 1.4655 0.23702 1.2465 0.93455

10 4 1801 1.6739 1.8018 1.4611 0.25456 1.4078 0.90572

10 5 1801 2.7066 3.0159 2.1608 0.4121 2.1352 1.6635

10 6 1801 1.2448 1.3573 1.0536 0.18931 1.0106 0.72697

10 7 1801 0.56069 0.60188 0.49245 0.085012 0.44584 0.34007

10 8 1801 0.76254 0.82931 0.64958 0.11582 0.60207 0.46803

11 4 1200 45.4889 45.4371 45.5234 6.8836 45.4588 1.6552

11 5 1200 3.0822 3.5464 2.7294 0.46925 2.4649 1.8507

11 6 1200 1.4912 1.7501 1.2901 0.22692 1.1631 0.93331

11 7 1200 1.6108 1.8436 1.4348 0.24512 1.2955 0.95744

11 8 1200 1.2776 1.4696 1.1317 0.19436 1.0121 0.77985

11 4 1501 54.1284 54.0921 54.1647 8.191 54.095 1.9
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Table 3.19: Summary of construction of RBF-NARX for modelling the compressor tempera-
ture (see the appendix for extensive summary).

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

11 5 1501 3.1071 3.2399 2.9683 0.47296 2.5174 1.8215

11 6 1501 1.7994 1.9042 1.688 0.27388 1.4164 1.1099

11 7 1501 1.4374 1.5362 1.3312 0.21875 1.1301 0.88849

In summary the best performance is achieved by the network with following parameters:

Table 3.20: Best RBF-NARX for modeling the compressor temperature in terms of
RMSEtest.

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

10 7 1801 0.56069 0.60188 0.49245 0.085012 0.44584 0.34007

The engine output and the trained network output for both training and testing data are shown

in Figure 3.22.
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Figure 3.22: RBF-NARX model prediction and actual engine output (compressor temperature).
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3.5.2 RBF-NARX Model of the Compressor Pressure

This section summarizes the construction of the RBF-NARX model for identifying the dynamics

of the compressor pressure. Three different sizes are selected for training data set. First, several

neural networks are constructed using 40% of available data (1200 out of 3001 samples). Second,

we construct several networks using 50% of available data (1501 out of 3001 samples), and finally,

we construct the RBF-NARX neural networks using 60% (1801 out of 3001 samples).

Each case starts with a small neural network structure, and then adds to the complexity by

adding neurons and delays. To avoid complex networks we limit the number of hidden neurons to

20 and the number delays to 10 (du 10, dy 10). Also, as previously discussed in Remark 3.3,

we assume dy = du in order to limit the number of construction trials.
The summary of network construction is shown in Table 3.21.

Table 3.21: Summary of construction of the RBF-NARX for modelling the compressor pres-
sure (see the appendix for extensive summary).

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

12 7 1200 0.064396 0.07691 0.054486 0.54703 0.048821 0.042

12 8 1200 0.056249 0.067569 0.047225 0.47793 0.04124 0.038259

12 4 1501 1.8216 1.8187 1.8245 15.1073 1.8189 0.10028

12 5 1501 0.076144 0.079472 0.072662 0.64574 0.0601 0.046762

12 6 1501 0.093508 0.10086 0.08552 0.79507 0.071535 0.06023

12 7 1501 0.041526 0.047645 0.034328 0.35198 0.02924 0.029492

12 8 1501 0.10399 0.10738 0.10049 0.88305 0.083082 0.062552

12 4 1801 0.028344 0.028788 0.027662 0.23564 0.02311 0.016413

12 5 1801 0.051061 0.054583 0.045264 0.43124 0.041898 0.029191

12 6 1801 0.03562 0.040527 0.026609 0.30139 0.023059 0.027154
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Table 3.21: Summary of construction of the RBF-NARX for modelling the compressor pres-
sure (see the appendix for extensive summary).

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

12 7 1801 0.035583 0.041004 0.025357 0.30124 0.022888 0.027249

12 8 1801 0.056521 0.064461 0.041869 0.48031 0.04089 0.039028

13 4 1200 1.2741 1.2871 1.2653 10.5876 0.70762 1.0597

13 5 1200 0.033538 0.041606 0.02685 0.28245 0.022606 0.024779

13 6 1200 0.083601 0.09174 0.077706 0.70904 0.068072 0.048539

13 7 1200 0.032045 0.037664 0.027674 0.26878 0.023128 0.022184

13 8 1200 0.050918 0.06243 0.041511 0.43244 0.036921 0.03507

13 4 1501 0.032368 0.035112 0.029368 0.27105 0.02435 0.021329

13 5 1501 0.045542 0.05078 0.039613 0.38571 0.033105 0.03128

13 6 1501 0.072641 0.075026 0.070174 0.61587 0.058254 0.043404

13 7 1501 0.069493 0.07567 0.062705 0.59061 0.052806 0.045183

In summary the best performance is achieved by the network with the following parameters:

Table 3.22: Best RBF-NARX for modeling the compressor pressure in terms of RMSEtest.

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

12 7 1801 0.035583 0.041004 0.025357 0.30124 0.022888 0.027249

The engine output and the trained network output for both training and testing data are shown

in Figure 3.23.
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Figure 3.23: RBF-NARX model prediction and actual engine output (compressor pressure)

3.5.3 RBF-NARX Model of the Rotational Speed

This section summarizes the construction of the RBF-NARX model for identifying the jet en-

gine rotational speed. Three different sizes are selected for training data set. First, several neural

networks are constructed using 40% of available data (1200 out of 3001 samples). Second, we

construct several networks using 50% of available data (1501 out of 3001 samples), and finally, we

construct the RBF-NARX neural networks using 60% (1801 out of 3001 samples).

Each case starts with a small neural network structure, and then adds to the complexity by

adding neurons and delays. To avoid complex networks we limit the number of hidden neurons to

20 and the number delays to 10 (du 10, dy 10). Also, as previously discussed in Remark 3.3,

we assume dy = du in order to limit the number of construction trials.
The summary of network construction is shown in Table 3.23.
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Table 3.23: Summary of construction of the RBF-NARX for modelling the rotational speed
(see appendix for extensive summary).

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

17 8 1501 114.1124 114.047 114.1777 0.96081 114.0516 3.7236

17 4 1801 108.6896 108.6528 108.745 0.91517 108.6376 3.3633

17 5 1801 106.5698 106.4812 106.7026 0.89733 106.4511 5.0283

17 6 1801 115.2259 115.1704 115.3091 0.9702 115.1513 4.1453

17 7 1801 176.9808 176.9117 177.0844 1.4902 176.8843 5.8453

17 8 1801 161.857 161.8074 161.9314 1.3628 161.7737 5.1925

18 4 1200 109.285 109.1958 109.3444 0.92018 109.2308 3.4437

18 5 1200 102.3664 102.29 102.4172 0.86192 102.3211 3.0438

18 6 1200 169.5445 169.3732 169.6585 1.4276 169.4363 6.0576

18 7 1200 126.7108 126.6152 126.7745 1.0669 126.6515 3.8752

18 8 1200 134.4747 212.6346 2.6076 1.1263 7.0685 134.3112

18 4 1501 99.7465 99.6975 99.7955 0.83987 99.699 3.0786

18 5 1501 43.4613 52.6548 31.6962 0.36598 30.5798 30.8881

18 6 1501 180.9963 180.9068 181.0859 1.524 180.9185 5.3067

18 7 1501 120.5452 120.4738 120.6166 1.015 120.4874 3.7331

18 8 1501 158.1591 157.9758 158.3422 1.3317 158.0073 6.9275

18 4 1801 31.6943 34.3004 27.3204 0.2673 26.1631 17.8921

18 5 1801 107.6138 107.5772 107.6686 0.9061 107.562 3.3388

18 6 1801 125.7658 125.7153 125.8417 1.0589 125.6994 4.0889

18 7 1801 109.3846 109.3492 109.4377 0.92101 109.336 3.2609

18 8 1801 133.667 133.8736 133.3563 1.1254 94.2531 94.7957

In summary the best performance is achieved by the network with following parameters:
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Table 3.24: Best RBF-NARX for modeling the rotational speed in terms of RMSEtest.

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

18 8 1200 134.4747 212.6346 2.6076 1.1263 7.0685 134.3112

The engine output and the trained network output for both training and testing data are shown

in Figure 3.24.
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Figure 3.24: RBF-NARX model prediction and actual engine output (rotational speed).

3.5.4 RBF-NARX Model of the Turbine Temperature

This section summarizes the construction of the RBF-NARX model for identifying the jet engine

turbine temperature. Three different sizes are selected for training data set. First, several neural

networks are constructed using 40% of available data (1200 out of 3001 samples). Second, we

construct several networks using 50% of available data (1501 out of 3001 samples), and finally, we

construct the RBF-NARX neural networks using 60% (1801 out of 3001 samples).
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Each case starts with a small neural network structure, and then adds to the complexity by

adding neurons and delays. To avoid complex networks we limit the number of hidden neurons to

20 and the number delays to 10 (du 10, dy 10). Also, as previously discussed in Remark 3.3,

we assume dy = du in order to limit the number of construction trials.
The summary of network construction is shown in Table 3.25.

Table 3.25: Summary of construction of the RBF-NARX for modelling the turbine tempera-
ture (see the appendix for extensive summary).

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

10 4 1200 248.0781 179.3072 284.8268 15.7583 153.0082 195.3048

10 5 1200 207.1761 148.416 238.4197 13.2638 175.6342 109.9026

10 6 1200 116.529 106.6732 122.657 9.5312 77.1716 87.3275

10 7 1200 107.7162 99.2078 113.0304 8.6593 80.7307 71.3234

10 8 1200 172.1691 174.8978 170.3266 13.1648 120.1952 123.2898

10 4 1501 147.9648 147.6238 148.3052 9.397 147.6888 9.0341

10 5 1501 210.1373 171.3942 242.7947 13.4563 143.7779 153.2757

10 6 1501 183.362 149.3543 212.0001 11.7609 159.1257 91.123

10 7 1501 191.311 154.2249 222.3129 12.2994 165.1711 96.5481

10 8 1501 116.2038 109.0299 122.9642 9.4428 77.3203 86.7606

10 4 1801 178.8614 230.875 2.4151 9.2798 47.9622 172.3396

10 5 1801 131.9345 130.7706 133.6623 7.821 61.2848 116.8565

10 6 1801 180.3875 158.4 209.0921 11.5788 156.4552 89.8003

10 7 1801 152.1321 130.5643 179.7081 9.8619 129.5118 79.8311

10 8 1801 123.4252 113.3757 137.1327 9.9988 84.0548 90.3952

11 4 1200 220.7185 159.9259 253.2489 14.0443 192.6668 107.7034

11 5 1200 211.3474 150.6581 243.5286 13.4975 147.5283 151.363
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Table 3.25: Summary of construction of the RBF-NARX for modelling the turbine tempera-
ture (see the appendix for extensive summary).

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

11 6 1200 181.9475 127.4505 210.5694 11.68 157.7301 90.7129

11 7 1200 185.3197 129.6805 214.5254 11.8944 160.6223 92.4485

11 8 1200 116.0043 110.1355 119.7551 9.423 79.1754 84.7977

11 4 1501 242.1402 198.9689 278.7254 15.5464 152.3787 188.2138

In summary the best performance is achieved by the network with following parameters:

Table 3.26: Best RBF-NARX for modeling the turbine temperature in terms of RMSEtest.

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

10 4 1801 178.8614 230.875 2.4151 9.2798 47.9622 172.3396

The engine output and the trained network output for both training and testing data are shown

in Figure 3.25.

122



0 500 1000 1500 2000 2500 3000 3500
1400

1500

1600

1700

1800

1900

2000

2100

2200

time (sec)

Tu
rb

in
e 

Te
m

pe
ra

tu
re

 (d
eg

re
e 

C
)

Actual Engine Output & RBF−NARX Predicted Output

Actual
Prediction

Figure 3.25: RBF-NARX model prediction and actual engine output (turbine temperature)

3.5.5 RBF-NARX Model of the Turbine Pressure

This section summarizes the construction of the RBF-NARX model for identifying the jet engine

turbine pressure. Three different sizes are selected for training data set. First, several neural

networks are constructed using 40% of available data (1200 out of 3001 samples). Second, we

construct several networks using 50% of available data (1501 out of 3001 samples), and finally, we

construct the RBF-NARX neural networks using 60% (1801 out of 3001 samples).

Each case starts with a small neural network structure, and then adds to the complexity by

adding neurons and delays. To avoid complex networks we limit the number of hidden neurons to

20, and the number delays to 10 (du 10, dy 10). Also, as previously discussed in Remark 3.3,

we assume dy = du in order to limit the number of construction trials.
The summary of the network construction is shown in Table 3.27.
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Table 3.27: Summary of construction of the RBF-NARX for modelling the turbine pressure
(see the appendix for extensive summary).

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

10 6 1200 0.11497 0.13096 0.10294 2.4936 0.091399 0.069754

10 7 1200 0.073515 0.089074 0.060983 1.6013 0.054738 0.049082

10 8 1200 0.094749 0.1096 0.083398 2.0586 0.073986 0.059199

10 4 1501 0.03267 0.030641 0.034581 0.68331 0.027145 0.018182

10 5 1501 0.047137 0.054334 0.038616 1.0301 0.032015 0.034603

10 6 1501 0.047366 0.044367 0.050188 1.0006 0.041462 0.022904

10 7 1501 0.047904 0.054466 0.040282 1.0461 0.033841 0.033912

10 8 1501 0.088548 0.097417 0.078678 1.9289 0.066065 0.058968

10 4 1801 0.030375 0.029691 0.031373 0.63827 0.024336 0.018179

10 5 1801 0.065731 0.066521 0.064526 1.3976 0.057415 0.032005

10 6 1801 0.026215 0.030958 0.01674 0.56995 0.015856 0.02088

10 7 1801 0.036441 0.04369 0.021358 0.7974 0.022423 0.028731

10 8 1801 0.04342 0.052328 0.024601 0.95268 0.027342 0.033735

11 4 1200 1.4267 1.4251 1.4277 29.5852 1.4257 0.051337

11 5 1200 0.030405 0.029495 0.030997 0.63677 0.025548 0.016489

11 6 1200 0.040449 0.050807 0.031723 0.88388 0.027711 0.02947

11 7 1200 0.12818 0.14652 0.11433 2.7813 0.10118 0.078712

11 8 1200 0.034697 0.046994 0.023121 0.76037 0.021102 0.027548

11 4 1501 0.071209 0.067685 0.074568 1.5146 0.062443 0.034233

11 5 1501 0.072483 0.069072 0.075743 1.5416 0.063722 0.034551

11 6 1501 0.064206 0.063003 0.065387 1.3644 0.055589 0.032133

In summary the best performance is achieved by the network with the following parameters:
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Table 3.28: Best RBF-NARX for modeling the turbine pressure in terms of RMSEtest.

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

10 6 1801 0.026215 0.030958 0.01674 0.56995 0.015856 0.02088

The engine output and the trained network output for both training and testing data are shown

in Figure 3.26.
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Figure 3.26: RBF-NARX model prediction and the actual engine output (turbine pressure).

3.6 Jet Engine Dynamics Identification using SVM-NARX

The use of SVR-NARX model in system identification has been reported in various publications.

A general framework for nonlinear system identification with SVR based on NARX model is

presented in [1]. In another framework, [2] combines Least-Square Support Vector Machines

(LS-SVM) with NARX model for identification of Weiner-Hammerstein systems. Other SVR-

based system identification methods together with ARX models are reported in [4, 3, 5, 6]. In this
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research, support vector regression is used in an NARX model to identify the jet engine dynamics.

Figure 2.10 shows the structure of the SVR-NARX system identification algorithm.

As previously described in Chapter 2 a series-parallel architecture is used for training of SVM-

NARX model as shown in Figure 3.27. In this architecture the engine output is fed back into the

SVM-NARX model, assuming that the engine is fault-free during the training stage.
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Figure 3.27: The architecture of the SVM-NARX model of jet engine during training phase.

Once the training stage is completed, the series-parallel architecture would be replaced with

a parallel architecture. In this architecture, the outputs of SVM-NARX model are fed back into

126



the model rather than actual engine outputs. This is essential as the engine is prone to fault dur-

ing testing stage. Figure 3.28 shows the parallel architecture of SVM-NARX model used in this

section.
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Figure 3.28: The architecture of the SVM-NARX model of jet engine during testing phase.

3.6.1 SVM-NARX Model of the Compressor Temperature

This section summarizes the construction of the SVM-NARX model for identifying the dynamics

of the compressor temperature. Three different sizes are selected for training data set. First, several

support vector regressions are constructed using 40% of available data (1200 out of 3001 samples).
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Second, we construct several SVRs using 50% of available data (1501 out of 3001 samples), and

finally, we construct the SVM-NARX models using 60% (1801 out of 3001 samples).

We put the goal to achieve an RMSE percentage less than ε 1%. Initially we limit the delays

to (du 10, dy 10). If it does not satisfy our constraint, then we would increase the number

of delays. Also, as previously discussed in Remark 3.3, we assume dy = du in order to limit the
number of construction trials.

The summary of construction is shown in Table 3.29.

Table 3.29: Summary of construction of the SVM-NARX for modelling the compressor tem-
perature (see the appendix for extensive summary).

# delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

4 1200 5.785 6.1078 5.5595 0.88026 4.7571 3.2922

5 1200 3.2587 3.4575 3.1191 0.49584 2.5706 2.0029

6 1200 6.7519 6.9366 6.626 1.0262 5.8765 3.3252

7 1200 2.6112 2.7304 2.5287 0.39709 2.0356 1.6357

8 1200 8.5326 8.646 8.4563 1.2962 7.6082 3.863

4 1501 10.0526 10.2897 9.8096 1.5335 7.1987 7.0172

5 1501 2.7116 2.6177 2.8024 0.41237 2.1957 1.5913

6 1501 8.0053 8.0475 7.9629 1.22 6.1615 5.1112

7 1501 3.1256 3.0234 3.2246 0.47547 2.4852 1.8958

8 1501 10.1568 10.4808 9.8219 1.5495 7.2417 7.1222

4 1801 4.0933 3.9579 4.2883 0.6212 3.2124 2.537

5 1801 5.1256 5.1964 5.0174 0.77866 4.3276 2.7467

6 1801 25.5922 27.3954 22.6185 3.8929 19.709 16.3266

7 1801 12.9035 13.9279 11.192 1.9636 10.4707 7.5416

8 1801 4.8782 5.1378 4.4605 0.74155 3.5143 3.3836
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In summary the best performance is achieved by the network with the following parameters:

Table 3.30: Best SVM-NARX for modeling the compressor temperature in terms of
RMSEtest.

# delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

7 1200 2.6112 2.7304 2.5287 0.39709 2.0356 1.6357

The engine output and the trained network output for both training and testing data are shown

in Figure 3.29.
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Figure 3.29: SVM-NARX model prediction and the actual engine output (compressor tempera-

ture).

3.6.2 SVM-NARX Model of the Compressor Pressure

This section summarizes the construction of the SVM-NARX model for identifying the dynamics

of compressor pressure. Three different sizes are selected for training data set. First, several

support vector regressions are constructed using 40% of available data (1200 out of 3001 samples).
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Second, we construct several SVRs using 50% of available data (1501 out of 3001 samples), and

finally, we construct the SVM-NARX models using 60% (1801 out of 3001 samples).

We put the goal to achieve an RMSE percentage less than ε 1%. Initially we limit the delays

to (du 10, dy 10). If it does not satisfy our constraint, then we would increase the number

of delays. Also, as previously discussed in Remark 3.3, we assume dy = du in order to limit the
number of construction trials.

The summary of construction is shown in Table 3.31.

Table 3.31: Summary of construction of the SVM-NARX for modelling the compressor pres-
sure (see the appendix for extensive summary).

# delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

4 1200 0.04434 0.044539 0.044207 0.37271 0.023476 0.037618

5 1200 0.06586 0.074462 0.059439 0.56046 0.042214 0.050556

6 1200 0.054944 0.058191 0.052668 0.46561 0.032905 0.044004

7 1200 0.051974 0.051877 0.052039 0.43826 0.022331 0.046936

8 1200 0.070633 0.067559 0.072611 0.59467 0.029654 0.064113

4 1501 0.047934 0.046986 0.048864 0.40478 0.030515 0.03697

5 1501 0.046661 0.046592 0.04673 0.39495 0.029562 0.036105

6 1501 0.059857 0.058357 0.061321 0.50837 0.033006 0.049939

7 1501 0.10016 0.10284 0.097396 0.85469 0.065978 0.075359

8 1501 0.047577 0.047181 0.04797 0.40371 0.025682 0.040053

4 1801 0.041185 0.037001 0.046766 0.34187 0.028081 0.030129

5 1801 0.16758 0.19602 0.11212 1.4287 0.11603 0.12093

6 1801 0.064463 0.04931 0.082111 0.53039 0.022916 0.060257

7 1801 0.073084 0.078509 0.064088 0.61647 0.04068 0.060721

8 1801 0.058766 0.044294 0.07544 0.48336 0.02175 0.054597
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In summary the best performance is achieved by the network with the following parameters:

Table 3.32: Best SVM-NARX for modeling the compressor pressure in term of RMSEtest.

# delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

4 1200 0.04434 0.044539 0.044207 0.37271 0.023476 0.037618

The engine output and the trained network output for both training and testing data are shown

in Figure 3.30.
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Figure 3.30: SVM-NARX model prediction and actual engine output (compressor pressure).

3.6.3 SVM-NARX Model of the Rotational Speed

This section summarizes the construction of the SVM-NARX model for identifying the dynamics

of the rotational speed. Three different sizes are selected for training data set. First, several support

vector regressions are constructed using 40% of available data (1200 out of 3001 samples). Second,

we construct several SVRs using 50% of available data (1501 out of 3001 samples), and finally,
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we construct the SVM-NARX models using 60% (1801 out of 3001 samples).

We put the goal to achieve an RMSE percentage less than ε 1%. Initially we limit the delays

to (du 10, dy 10). If it does not satisfy our constraint, then we would increase the number

of delays. Also, as previously discussed in Remark 3.3, we assume dy = du in order to limit the
number of construction trials.

The summary of construction is shown in Table 3.33.

Table 3.33: Summary of construction of the SVM-NARX for modelling the rotational speed
(see the appendix for extensive summary).

# delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

4 1200 26.3914 26.3745 26.4026 0.22282 22.6819 13.4932

5 1200 27.3764 27.3992 27.3612 0.23114 23.5228 14.0064

6 1200 27.8955 27.874 27.9099 0.23553 23.9589 14.2887

7 1200 27.4287 27.3904 27.4543 0.23158 23.7126 13.7868

8 1200 26.1403 26.1954 26.1035 0.2207 22.3773 13.513

4 1501 24.6728 26.5164 22.6791 0.20831 21.236 12.562

5 1501 26.7274 28.7473 24.5411 0.22566 22.9553 13.6908

6 1501 28.2652 30.4459 25.9008 0.23865 24.18 14.6386

7 1501 26.9222 28.8732 24.8176 0.2273 23.1971 13.665

8 1501 26.0438 27.9951 23.9333 0.21988 22.4468 13.2081

4 1801 26.545 27.0505 25.7681 0.22412 22.7997 13.5956

5 1801 27.4482 27.9494 26.6783 0.23175 23.5607 14.0829

6 1801 25.4999 25.9773 24.7663 0.21528 21.9856 12.9192

7 1801 25.2779 25.7547 24.545 0.21342 21.7604 12.864

8 1801 26.1525 26.6325 25.4153 0.2208 22.5576 13.2339
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In summary the best performance is achieved by the network with the following parameters:

Table 3.34: Best SVM-NARX for modeling the rotational speed in terms of RMSEtest.

# delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

4 1501 24.6728 26.5164 22.6791 0.20831 21.236 12.562

The engine output and the trained network output for both training and testing data are shown

in Figure 3.31.
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Figure 3.31: The SVM-NARX model prediction and the actual engine output (rotational speed).

3.6.4 SVM-NARX Model of the Turbine Temperature

This section summarizes the construction of the SVM-NARX model for identifying the dynamics

of the turbine temperature. Three different sizes are selected for training data set. First, several

support vector regressions are constructed using 40% of available data (1200 out of 3001 samples).

Second, we construct several SVRs using 50% of available data (1501 out of 3001 samples), and
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finally, we construct the SVM-NARX models using 60% (1801 out of 3001 samples).

We put the goal to achieve an RMSE percentage less than ε 1%. Initially we limit the delays

to (du 10, dy 10). If it does not satisfy our constraint, then we would increase the number

of delays. Also, as previously discussed in Remark 3.3, we assume dy = du in order to limit the
number of construction trials.

The summary of construction is shown in Table 3.35.

Table 3.35: Summary of construction of the SVM-NARX for modelling the turbine temper-
ature (see the appendix for extensive summary).

# delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

4 1200 183.6261 189.9563 179.2832 10.4182 160.2343 89.6932

5 1200 166.4114 175.3166 160.2015 9.4955 141.1499 88.1518

6 1200 104.3983 107.0395 102.6002 5.9073 90.6818 51.7326

7 1200 136.832 133.9356 138.7288 7.6189 123.4487 59.0255

8 1200 166.3491 161.8485 169.2822 9.2006 154.693 61.1777

4 1501 293.6453 273.8494 312.1944 16.4391 262.022 132.5706

5 1501 282.3101 269.7902 294.3017 15.649 259.5313 111.1059

6 1501 215.896 209.24 222.355 11.9547 202.3673 75.2297

7 1501 249.4072 235.4363 262.6403 13.9182 226.8929 103.5634

8 1501 236.7342 224.6235 248.2584 13.3207 212.1327 105.0933

4 1801 408.2675 398.3448 422.7191 22.527 380.7186 147.4427

5 1801 307.8869 291.5684 330.865 17.1951 274.3306 139.7866

6 1801 202.5877 190.7599 219.1402 11.2666 183.4603 85.938

7 1801 272.9621 258.0228 293.9563 15.1594 248.0573 113.9212

8 1801 205.2928 208.9996 199.6019 11.6387 174.1967 108.6398
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In summary the best performance is achieved by the network with the following parameters:

Table 3.36: Best SVM-NARX for modeling the turbine temperature in terms of RMSEtest.

# delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

6 1200 104.3983 107.0395 102.6002 5.9073 90.6818 51.7326

The engine output and the trained network output for both training and testing data are shown

in Figure 3.32.
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Figure 3.32: SVM-NARX model prediction and actual engine output (turbine temperature).

3.6.5 SVM-NARX Model of the Turbine Pressure

This section summarizes the construction of the SVM-NARX model for identifying the dynamics

of turbine pressure. Three different sizes are selected for training data set. First, several support

vector regressions are constructed using 40% of available data (1200 out of 3001 samples). Second,

we construct several SVRs using 50% of available data (1501 out of 3001 samples), and finally,
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we construct the SVM-NARX models using 60% (1801 out of 3001 samples).

We put the goal to achieve an RMSE percentage less than ε 1%. Initially we limit the delays

to (du 10, dy 10). If it does not satisfy our constraint, then we would increase the number

of delays. Also, as previously discussed in Remark 3.3, we assume dy = du in order to limit the
number of construction trials.

The summary of construction is shown in Table 3.37.

Table 3.37: Summary of construction of the SVM-NARX for modelling the turbine pressure
(see the appendix for extensive summary).

# delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

4 1200 0.14436 0.166 0.12793 3.164 0.099075 0.10501

5 1200 0.22767 0.25312 0.209 4.9621 0.16848 0.15314

6 1200 0.13213 0.14305 0.12432 2.858 0.10348 0.08217

7 1200 0.36862 0.40489 0.34232 8.0233 0.27583 0.24456

8 1200 0.26315 0.27079 0.25794 5.6279 0.22447 0.13736

4 1501 0.15671 0.15761 0.1558 3.4091 0.11986 0.10096

5 1501 0.14812 0.14611 0.15011 3.203 0.11887 0.088379

6 1501 0.15141 0.14926 0.15353 3.2731 0.12131 0.090617

7 1501 0.11376 0.10654 0.12055 2.4167 0.097374 0.058823

8 1501 0.11595 0.11134 0.12038 2.4909 0.094515 0.067168

4 1801 0.088902 0.084001 0.095787 1.8751 0.075015 0.047715

5 1801 0.14606 0.14218 0.15169 3.0978 0.12598 0.073916

6 1801 0.12097 0.11917 0.12363 2.5699 0.10214 0.064829

7 1801 0.18853 0.20295 0.16453 4.0615 0.14994 0.1143

8 1801 0.27965 0.3162 0.21338 6.0711 0.21025 0.18441
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In summary the best performance is achieved by the network with the following parameters:

Table 3.38: Best SVM-NARX for modeling the turbine pressure in terms of RMSEtest.

# delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

4 1801 0.088902 0.084001 0.095787 1.8751 0.075015 0.047715

The engine output and the trained network output for both training and testing data are shown

in Figure 3.33.
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Figure 3.33: The SVM-NARX model prediction and the actual engine output (turbine pressure).

3.7 Jet Engine Dynamic Identification with Ensemble Learn-

ing

This section describes identification of jet engine dynamics using ensemble methods. Training an

ensemble system can be generally divided into three steps [201] as shown in Figure 3.34. The first

137



step is ensemble generation, which consists of generating a set of models. It often happens that a

number of redundant models are generated during ensemble generation. The next step is ensemble

pruning where the pool of generated models are trimmed in order to achieve maximum diversity

among the learners. Finally, the models are combined in the ensemble integration step, where the

final prediction is formed based on the models’ prediction. Different ensemble architectures can

be made by considering different methodologies for each of these three steps.

Ensemble generation
(generating a pool of models)

Ensemble pruning
(selecting a subset of models from 
the pool to improve performance )

Ensemble integration
(combining the strengths of 

selected models  )

Figure 3.34: Ensemble learning stages [223].

In this section three different methodologies are considered for creating ensemble model of the

jet engine dynamics. Different strategies are first discussed, and then applied toward jet engine

identification problem. The simulation results are presented at the end of this section.

As previously described in Chapter 2 a series-parallel architecture is used for training of en-

semble model as shown in Figure 3.35.
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Figure 3.35: Architecture of ensemble during the training phase.

Once the training stage is completed, the series-parallel architecture would be replaced with

a parallel architecture. This assumption is valid since the a trained model outputs replicate the

outputs of the actual jet engine. The architecture of the ensemble during the testing phase is shown

in Figure 3.36.
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Figure 3.36: Architecture of the ensemble during testing phase.

Figure 3.37 shows inside of each ensemble model. Note that each model has its own parameters

such as the number of neurons (in case of neural networks) or time delays.
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Figure 3.37: Inside of an ensemble model (refer to Figures 3.36and 3.35).

3.7.1 Ensemble Generation

Definition 3.1. Ensemble generation approaches are divided into homogeneous where all the mod-

els are generated using the same learning algorithm, and heterogeneous where different learning

algorithms are used for training of ensemble members [133].

As previously discussed in Chapter 2, creating diverse set of learners is the key to successfully

train an ensemble of regressors or classifiers. Intuitively, we know that if all ensemble learners

provide the same output, there would be nothing to benefit from their combination. The impor-

tance of diversity for ensemble systems is well established in [193], [194]. Ideally, we would like

the individual learners to be independent or even negatively correlated [121], [195]. Below, we

describe two different approaches that can be adopted to create diversity among ensemble.

Homogeneous ensemble generation is the best covered area of ensemble learning in the lit-

erature [219]. In this approach, the ensemble members are generated using the same learning
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algorithm (e.g. the same kind of neural networks), and the diversity among them are to be gen-

erated by altering the training data. Alternatively, we may diversify the homogeneous models

by using a same learning method with different setting of parameters (e.g. neural networks with

different number of hidden units). Comparative studies between these two approaches conclude

that altering training data is generally more effective than altering model parameters [221], [222].

Several approaches are suggested in the literature for training ensemble systems by manipulating

the training data. Bagging (bootstrap aggregating) is the most extensively homogeneous ensemble

method used in the literature [223]. In this approach the original training data is resampled by the

bootstrap sampling in order to create several training set of the training data. The authors in [128]

and [129] give insight about why bagging works.

Boosting is another algorithm which uses manipulation of training data to generate diversity.

Similar to bagging, several training data sets are generated by resampling of the training data;

however, unlink bagging the probability of being selected in not necessarily the same for different

samples. In fact, the probability of being selected is initially equal for all the samples, but in the

subsequent iterations samples with more inaccurate predictions would have higher chance of being

selected. Boosting has been originally developed for classification problems. Although several

modifications of it are proposed for regression but none of them has demonstrated as promising

results as bagging [130].

In heterogeneous ensemble on the other hand the models are trained using the same training

data. The number of works into using different architectures for ensemble systems is relatively

small, and thus it requires more attention [223]. The diversity among the models is generated by

different learning algorithms. This approach is studied less in the literature; however, some very

good results are reported using heterogeneous ensembles [30]. The diversity in this approach is
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obtained by inherent properties of different learning algorithms. The problem is the lack of control

on the diversity of the ensemble during the generation phase. This approach is discussed further in

the following.

3.7.2 Ensemble Pruning

The ensemble pruning algorithms are previously discussed in Chapter 2 in details. Ensemble

pruning is the procedure for trimming the pool of trained models, with the goal of improving gen-

eralization error of the ensemble. It is also used to reduce the complexity of the ensemble system.

Several pruning methods are addressed in the literature. Three different pruning approaches are

compared in [222]. The first approach is ranking based on the accuracy, second method is the

forward selective search (FSS) algorithm, and the third using genetic algorithm. The authors test

the above mentioned approaches and conclude that FSS gives the best result.

Roli et al. [201] conduct a benchmark in order to compare different pruning algorithms where

they compare FSS by selecting the best model in the first iteration, backward selective search

(BSS), and tabu search. They conclude FSS that selects the best model in the first iteration outper-

forms the other approaches.

Coelho et al. [134] compare FSS with ranking (FSSwR, starting with best members), FSS,

BSS with Ranking (BSSwR) and BSS. Each one of these algorithms are tested with a different in-

tegration methodologies. The authors conclude that FSS and BSS gives higher diversity in general.

All of these benchmark studies address the ensemble classification problem; however the pro-

posed approaches are general and can be applied to regression problems as well. It seems that

more sophisticated algorithms such as FSS, BSS or clustering algorithms are able to give better

results in term of accuracy, as expected when compared with more primitive algorithms discussed
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in Chapter 2 such as exponential pruning algorithms and randomized pruning algorithms.

3.7.3 Ensemble Combination

Ensemble integration is the last step in training an ensemble. Ensemble integration combines the

predictions made by various models in the ensemble to generate the final ensemble prediction.

For regression problems all integration mechanisms combine models using a linear combination

of predictors which can be described by the following equation [223]:

fensemble(x) =
n

∑
i

αifi(x)

where fensemble(x) is the output of ensemble model for the instant x, fi(x) is the output of the
ith model for the instance x, αi is the averaging weight for the ith model, and n is the number of

ensemble members.

In other words, the ensemble combination for a regression problem can be restated as esti-

mating the averaging weights αis. Merz et al. [224] conducted a comparative study in order

to determine the most effective ensemble combination techniques. The authors studied several

ensemble combination techniques including Generalized Ensemble Method (GEM) [192], Basic

Ensemble Method (BEM) [192], Linear Regression (LR), Gradient Descent, and Exponential Gra-

dient Descent [225]. For this purpose the authors conducted different comparative studies between

the aforementioned combination methods using eight different data sets. The study concludes that

optimizing the averaging weights using gradient descent method and generalized ensemble method

results in a better generalization performance.

Remark 3.5. We should note that the optimization of weights would be conducted on the training
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data. Assume that the members of the ensemble are trained separately using different training

data set that is xi, i = 1, ..., n (i.e. training input vector of the ith model) and ti, i = 1, ..., n (i.e.

training target vector of the ith model) where n is the number of models in the ensemble. Then the

training data of the ensemble system would be the union of all the training data used for training

of individual models. In other words:

Training input vector: xtraining = x1 x2 ... xn

Training target vector: ttraining = t1 t2 ... tn

Generalized Ensemble Method

Generalized ensemble method (GEM) is an ensemble combination technique which was first pre-

sented in [192]. In this method the averaging weights (αis) are optimized using the method of

Lagrange multipliers. The GEM estimator defines the fGEM(x), as follows:

fGEM(x) =
n

∑
i=1

αifi(x)

where fGEM(x) is the output of the ensemble model combined using GEM, fi(x) is the ith
model regression estimates, f(x) is the actual estimation (i.e. target value), αi is the averaging

weight for the ith model, n is the number of ensemble members. Defining mi(x) = f(x) − fi(x)
(i.e. the error of the ith model) we have:

fGEM(x) =
n

∑
i=1

αifi(x) =
n

∑
i=1

αi f(x) mi(x)

Assuming that∑n
i=1 αi = 1 we have∑n

i=1 αif(x) = f(x). Then we can write the above equation
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as follows:

fGEM(x) =
n

∑
i=1

αifi(x) =
n

∑
i=1

αi f(x) mi(x) = f(x)
n

∑
i=1

αimi(x)

The ensemble absolute error is defined as:

fGEM(x) − f(x) =
n

∑
i=1

αi mi(x)

Alternatively, the ensemble absolute error can be rewritten as:

fGEM(x) − f(x) =
n

∑
j=1

αj mj(x)

There the mean of squared error of the ensemble can be formulated as:

MSE fGEM(x) = E fGEM(x) − f(x) 2

= E
n

∑
i=1

αi mi(x)
n

∑
j=1

αj mj(x)

=
n

∑
i=1

n

∑
j=1

αiαjE mi(x) mj(x)

where the expected value is taken over all instances of input vector x. Since we use the train-

ing data to determine the αis then window size of the expected value would be size of training

data. Defining the symmetric correlation matrix Cij(x) = E[mi(x) mj(x) ] the above equation
simplifies to the following equation:
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MSE fGEM(x) =
n

∑
i=1

n

∑
j=1

αiαjCij(x)

The authors in [192] then formulate the following optimization problem with the objective of

minimizing the MSE.

minimize MSE fGEM(xtraining) =
n

∑
i=1

n

∑
j=1

αiαjCij(xtraining)

subject to
n

∑
i=1

αi = 1

Using the method of Lagrange multipliers to solve for αk we want αk such that for k:

∂

∂αk

[
n

∑
i=1

n

∑
j=1

αiαjCij(xtraining) − 2λ(
n

∑
i=1

αi)] = 0

Taking the partial derivatives the above equation simplifies to the following condition:

n

∑
k=1

αkCkj(xtraining) = λ, k > 1, ..., n

Imposing the constraint∑n
i=1 αi = 1we can solve the set of equations and determine the optimal

αis as follows [192]:

αi = ∑
j

Cij(xtraining)−1 ∑
k

∑
j

Ckj(xtraining)−1 −1 (3.3)
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Gradient Decent Optimization

Another integration method which was suggested in [225], and [224] is the very well–known gradi-

ent decent optimization scheme. One advantage of this method is the possibility to adopt different

objective functions for the optimization problem (i.e. minimizing RMSE, mean of error, etc.).

In this research both the GEM and gradient descent are adopted for combining individual

models in an ensemble. Our experiments show that the gradient descent performs significantly

better than GEM. The objective function which is minimized by using the gradient descent is

RMSE of the ensemble as follows:

min
αi

RMSEensemble(α) =
n

∑
i=1

αifi(xtraining) − f(xtraining) (3.4)

Updating rule: αk+1 = αk − γ RMSEensemble(αk) (3.5)

where α = [α1, ..., αn], fi(xtraining) is the prediction of the ith model for the training data set,
f(xtraining) is the target value of the training data, αk is the value of α at the kth iteration, αk+1

is the value of α at the k 1th iteration, RMSEensemble(αk) is the gradient of RMSEensemble

at the kth iteration, and γ is the step size. The step size should be carefully selected as with a

too large step size the gradient descent may diverge, and with a too small step size it may take

a long time to converge. Note that the step size can be either fixed or adaptive (i.e. changing at

each iteration). Adaptive step size is initialized with a bigger step size and it becomes smaller as

the gradient of the function gets smaller. After trying different step sizes, we picked γ = 0.1 with
which the optimization problem converges within a reasonable time.

Remark 3.6. In order to have an ensemble whose performance is better than all the individual
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models (or at least as well as the best model in the pool), the weights of the gradient descent would

be initialized as follows:

αi =
1 if model i is the best model in the pool

0 otherwise

This way if the gradient descent gets trapped in a local minimum, we are guaranteed that the

result is at least as good as the best member of the ensemble. In other words, the RMSE with 100%

contribution of the best ensemble member is either a local minimum of the error function or, if not,

we can ˇ nd another point where the error function is smaller.

In the next subsection we present the simulation results for different ensemble techniques ap-

plied for the jet engine modeling problem.

3.7.4 Ensemble I: Heterogeneous Ensemble with Ranked Pruning

Heterogeneous ensemble with ranked pruning is reported in several papers in the literature includ-

ing but not limited to [222], [132], and [133]. In this approach first a pool of individual learners are

trained using different learning algorithms. Then, the most accurate models are selected for each

learning algorithm in order to be aggregated and generate the final prediction. The only source of

diversity in this approach is the use of heterogeneous ensemble (using different kinds of learning

algorithms).

In this research the above procedure is used to identify the jet engine dynamics. First, in

the previous section, several learners are trained using each of MLP-NARX, RBF-NARX, and

SVM-NARX models to identify jet engine dynamics. Second, for each learning algorithm (e.g.

MLP-NARX) the regressor with best performance is selected from the pool of individual trained
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regressors. Then the selected regressors are combined together by using the weighted averaging.

Two different combination techniques are used to determine optimal averaging weights: gradient

descent and generalized ensemble method.

According to equation (3.3) the αis required for integrating the three individual learners are

determined as follows:

α1 = ∑3
j=1C−11j

∑3
k=1∑3

j=1C−1kj

α2 = ∑3
j=1C−12j

∑3
k=1∑3

j=1C−1kj

α3 = ∑3
j=1C−13j

∑3
k=1∑3

j=1C−1kj

The averaging weights obtained by using GEM are presented in Table 3.39.

Table 3.39: GEM coefficients for integration of ensemble system (ensemble I)

.

αMLP αRBF αSVM

PC 0.23 0.455 0.312

TC 0.232 0.455 0.312

N 0.232 0.455 0.312

PT 0.23 0.455 0.313

TT 0.231 0.454 0.314

Alternatively, gradient descent is used to determine the optimal weights for combining the

ensemble models. The optimization problem is formulated as follows:
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min
αi

RMSEensemble(α) =
n

∑
i=1

αifi(xtraining) − f(xtraining)
Updating rule: αk+1 = αk − 0.1 RMSEensemble(αk)

where α = [α1, α2, α3] = [αRBF , αMLP , αSVM]. The α is initialized as α0 = [1,0,0]. After
trying different step sizes, we picked a fixed step size γ = 0.1 with which the optimization problem
converges within a reasonable time. Note that the fixed step size will assure convergence, if it

is small enough (although it may take a long time to converge if the step size is too small). The

optimized weights are presented in Table 3.40.

Table 3.40: Gradient descent coefficients for integration of ensemble system (ensemble I)

.

αMLP αRBF αSVM

PC 9.1313 10−5 1.001 9.1266 10−5

TC 0.0234 0.738 0.238

N -0.238 1.854 -0.853

PT 0.020 0.975 0.0049

TT 0.272 0.785 0.053

The performance of heterogeneous ensemble with ranked pruning and GEM as integration

method is summarized in Table 3.41.
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Table 3.41: Heterogeneous ensemble with ranked pruning and GEM as integration method
error analysis.

RMSE μae σae

PC 1.0043 0.8511 0.5332

TC 0.0286 0.0219 0.0184

TT 20.0723 16.7455 11.0693

PTT 0.1093 0.0914 0.0599

N 39.7872 35.9183 17.1171

The performance of heterogeneous ensemble with ranked pruning and gradient descent as

integration method is summarized in Table 3.42.

Table 3.42: Heterogeneous ensemble with ranked pruning and gradient descent as integra-
tion method error analysis.

RMSE μae σae

PC 0.536 0.4294 0.3212

TC 0.0246 0.0208 0.0133

TT 11.073 8.6915 6.862

PT 0.0179 0.0145 0.0105

N 7.339 4.229 6.0014

According to the simulations the gradient descent has way better results in term of general-

ization error as compared with GEM. Further comparative studies of the obtained results with the
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other designed ensembles systems as well as individual learners are presented in the following

sections. Table 3.43 summarizes heterogeneous ensemble training with ranked pruning.

Table 3.43: Summary of the heterogeneous ensemble training with ranked pruning.

1: Several models are trained using MLP-NARX, RBF-NARX, and SVM-NARX

modeling engine parameters.

2: For each algorithm the best trained model is selected to be combined.

3: GEM and gradient decent algorithms are used to determine averaging weights.

4: The initial point of gradient decent algorithm is initialized such that the best learner
in the pool has the maximum contribution.

3.7.5 Ensemble II: Heterogeneous Ensemble using Forward Sequential Se-

lection

The use of heterogeneous ensemble with Forward Sequential Selection (FSS) as pruning algorithm

is reported in several publications including but not limited to [201], [192], [134]. Forward selec-

tion starts with an empty set and iteratively adds models with the aim of decreasing the expected

prediction error. Two different versions of FSS are presented in the literature, namely Forward Se-

quential Selection with Ranking (FSSwR) and Forward Sequential Selection (FSS). The FSSwR

ranks all the candidates with respect to their performance on a training set. Then, it selects the

candidate at the top until the performance of the ensemble decreases. In the FSS algorithm, each

time a new candidate is added to the ensemble, all candidates are tested and it is selected the one

that leads to the maximal improvement of the ensemble performance. Yates et al. [220] modify the
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FSS by adding a diversity measure. In this version the criterion for the inclusion of a new model

is a diversity measure, and that the new model is diverse from the previously selected models. The

ensemble size is an input parameter of the algorithm.

In this research a heterogeneous ensemble with FSS as pruning algorithm is used to identify the

jet engine dynamics. First, as presented at the beginning of this chapter, several models are trained

using each of MLP-NARX, RBF-NARX, and SVM-NARX to model different parameters of the jet

engine dynamics. To limit the complexity of the problem, a subset of the trained models is selected

based on their performance (i.e. we select the 10 best RBF-NARX models, the 10 best MLP-

NARX models and the 10 best SVM-NARX models). Then the members of the ensemble system

are selected using the FSS algorithm. The FSS algorithm is initialized using the model with the best

performance in the pool. Each time a new model is added to the ensemble, all candidates are tested

and the model with maximal improvement would be added as the next model. In each iteration all

the selected models are aggregated using gradient descent. Note that GEM is not employed in this

section due to its poor performance in the previous section. Table 3.44 summarizes the procedure

of construction of the ensemble system.
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Table 3.44: Summary of the heterogeneous ensemble training with FSS pruning algorithm.

1: Several models are trained using MLP-NARX, RBF-NARX, and SVM-NARX

modeling engine parameters.

2: Subsets of 10 best RBF-NARX models, the 10 best MLP-NARX models and the 10

best SVM-NARX models are selected from the pool of models trained in step 1 in
order to reduce complexity.

3: For each engine parameter (i.e. PC , TC , N , PT , TT ), FSS algorithm is initialized

with the best trained model.

4: Each time a new model is added to the ensemble, all candidates are tested and the

model with maximal improvement would be added as next model.

5: Each time a new model is added to the ensemble the optimal combining weights are

recalculated using gradient descent algorithm as discussed in Section 3.7.3, page

148, equation 3.4.

6: All the evaluations for FSS are performed on the training set.

In this section we train a heterogeneous ensembleMLP-NARX, RBF-NARX, and SVM-NARX

models with FSS pruning. Therefore, for each engine parameter (e.g. rotational speed) we initialize

the ensemble with the best individually trained model. Since in our application the RBF-NARX

model shows a better performance (refer to the previous sections to see the performance of the

individual models), we initialize the ensemble with the best RBF-NARX model of each engine

parameter. Next we select the MLP-NARX model (or alternatively the SVM-NARX model) so

that the maximal improvement to the performance of the ensemble is achieved. Note that to find

the maximal improvement we have to test all the candidate models in the pool. Finally, we select

the SVM-NARX (or alternatively the MLP-NARXmodel) which brings the maximal improvement

to the ensemble previous two models.
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Using the FSS algorithm we selected (i.e. pruning state) the following models as individual

model of the ensemble (refer to Tables 3.45 to 3.49).

Table 3.45: Parameters of models inside ensemble model of compressor pressure (ensemble
II).

# training samples # delays # of neurons

MLP-NARX 1501 7 11

RBF-NARX 1801 7 10

SVM-NARX 1501 5 NA

Table 3.46: Parameters of models inside ensemble model of compressor temperature (ensem-
ble II).

# training samples # delays # of neurons

MLP-NARX 1801 5 11

RBF-NARX 1201 7 20

SVM-NARX 1201 6 NA

Table 3.47: Parameters of models inside ensemble model of rotational speed (ensemble II).

# training samples # delays # of neurons

MLP-NARX 1201 6 10

RBF-NARX 1501 8 11

SVM-NARX 1201 6 NA
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Table 3.48: Parameters of models inside ensemble model of turbine pressure (ensemble II).

# training samples # delays # of neurons

MLP-NARX 1201 6 13

RBF-NARX 1201 7 10

SVM-NARX 1201 6 NA

Table 3.49: Parameters of models inside ensemble model of turbine temperature (ensemble
II).

# training samples # delays # of neurons

MLP-NARX 1801 5 10

RBF-NARX 1501 8 17

SVM-NARX 1501 4 NA

Gradient descent is used to minimize the RMSE by optimizing the averaging weights of mod-

els. The αis required for integrating the three individual learners are determined as presented in

Table 3.50.

Table 3.50: Gradient descent coefficients for integration of ensemble system (ensemble II).

αMLP αRBF αSVM

PC 9.5212 10−5 1.0001 9.4425 10−5

TC 0.0646 0.8164 0.1190

N 0.0685 1.7562 -0.8261

PT 0.0048 0.8974 0.109

TT -0.0995 1.086 0.0131
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The summary of the ensemble system performance for identification of each engine parameter

is presented in Table 3.51.

Table 3.51: Heterogeneous ensemble with the FSS pruning, and gradient descent as integra-
tion method error analysis.

RMSE μae σae

PC 0.023135 0.023113 0.00101

TC 0.5049 0.3883 0.1045

TT 10.139 7.848 3.820

PT 0.016865 0.016841 0.000896

N 6.8672 4.563 3.654

A comparative study of the obtained results with the other designed ensembles systems and

each of the individual learners are presented in the following sections.

3.7.6 Ensemble III: Homogeneous with Bagging

Bootstrap sampling or bagging is one of the most extensively used techniques for manipulation

of training data [223]. Empirical studies show that bagging is a simple and effective method in

reducing prediction error in both classification and regression problems [129]. The main idea is to

train a different model using different subsets of the training data which are generated by bootstrap

sampling. In the bagging procedure, a training set with the size s, several bootstrap replicates of it

would be constructed by taking s samples out of it with replacement. Thus, a new training set with
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the same size would be generated where each of the samples in the original training set may appear

once, more than once or may not appear at all [129]. The learning algorithm then uses this new

training set. This procedure would be repeated several times, and all the obtained models would

be aggregated to generate the final ensemble. Figure 3.38 graphically summarizes the bagging

procedure. Several studies have been conducted on the theoretical basis of bagging establishing its

theoretical foundation. The theoretical background about bagging and effectiveness can be found

in [128], [129], [119].

Training data

Training dataTraining data

Ensemble

Bootstrap sampling 
N times

Aggregation
mechanism

1M

2M

NM

1T

2T

NT

...

Training individual models

Figure 3.38: Ensemble learning with bagging.

In this section a homogeneous ensemble is trained using bagging for modeling each of the

jet engine outputs. In order to select the training algorithm, and parameters of it we refer to the

experiments conducted in the previous sections. According to Sections 3.4, 3.5, 3.6, the RBF-

NARX model outperform MLP-NARX and SVM-NARX models for modeling engine outputs.

Thus, in this section we use RBF-NARX to form our homogeneous ensemble. For the network
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parameters (i.e. number of neurons, number of delays, size of training data) we set them to the

parameters of the models with best performance (in term of RMSE) in Section 3.5. As an example,

in Section 3.5 we saw that the RBF-NARX model with the following parameters has the best

performance for modeling compressor pressure of the jet engine:

Table 3.52: Best SVM-NARX for modeling the compressor temperature in terms of
RMSEtest.

# delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

7 1200 2.6112 2.7304 2.5287 0.39709 2.0356 1.6357

Thus, in this section we train several RBF-NARX models with exactly the same parameters.

The only thing which alters is the training data where for different models of the homogeneous

models the training data is obtained by bootstrap sampling as mentioned above. As previously

mentioned in Chapter 2 the number of models in an ensemble plays an important in its performance

[187], [186]. Thus, in order to have a faire comparison between the heterogenous ensembles

discussed before (ensemble I and ensemble II) and the homogeneous ensemble (ensemble III)

discussed in this section we select the same number of models for all of them. We study the

effects of the number of models in ensemble in the next section. As in the previous sections

previous sections a weighted averaging is used to combine models of the ensemble. The weights

are optimized using the gradient descent with the objective of minimizing RMSE on training data.

The obtained results are reflected in Table 3.53.
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Table 3.53: Heterogeneous ensemble with FSS pruning, and gradient descent as integration
method error analysis.

RMSE μae σae

PC 0.0316 0.0304 0.0315

TC 0.6754 0.7737 0.6711

TT 10.139 7.848 3.820

PT 8.686 9.386 8.637

N 9.111 7.262 9.083

We study the effects of the number of models in the ensemble in the next section.

3.7.7 Effects of the Number of Models in an Ensemble

As previously mentioned the number of models in ensemble plays an important role in the ac-

curacy of the ensemble. According to [187], [186] and several other references the error can be

theoretically decreased arbitrarily by increasing the number of models in the ensemble. In this

section we would like to validate this claim in our experimental setup.

For this purpose, we start increasing the number of models in the ensemble models of the jet

engine outputs. Homogeneous ensemble with bagging is used for this purpose, as it is easy to

generate arbitrary number of models in this approach just by resampling the training data. Figures

3.39 to 3.43 show the performance of bagged ensembles for identification of different outputs of

a jet engine. The ensemble error generally decreases by increasing the number of models in an

ensemble.

It should be noted that each iteration is totaly independent from the previous ones. Suppose
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that a bagged ensemble containing n models is trained in the ith iteration, then for the step after

(i.e. i 1th step) n 1models are trained and aggregated independently from the models trained in

the previous step. An alternative would be to keep all previously trained models and add a model

to the ensemble in each iteration.
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Figure 3.39: RMS error for bagged model of the compressor pressure with respect to the number

of models in the ensemble.
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Figure 3.40: RMS error for bagged model of the compressor temperature with respect to the num-

ber of models in the ensemble.
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Figure 3.41: RMS error for bagged model of the rotational speed with respect to the number of

models in the ensemble.
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Figure 3.42: RMS error for bagged model of the turbine pressure with respect to the number of

models in the ensemble.
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Figure 3.43: RMS error for bagged model of the turbine temperature with respect to the number

of models in the ensemble.
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3.7.8 Summary

In this chapter several models are developed to model dynamics of the jet engine. Three stand-

alone (MLP-NARX, RBF-NARX, and SVM-NARX) learning algorithms are first used to model

each engine output. Then the individual models are used to create ensemble systems. Different

architectures of ensembles are trained and compared together and with the stand-alone models. We

observe that by combining stand-alone models and building an ensemble system one can always

build a regressor which has a better performance (or at least as well as the best model in the pool).

Table 3.54 shows comparison of different methods for modeling the compressor pressure. The

error analysis is also shown in Figure 3.44. One can see that the heterogeneous ensemble with FSS

pruning has a better performance in modeling of the compressor pressure.

Remark 3.7. RMSEtraining, RSMEtest and RSMEtotal are the root mean square error calcu-

lated over the “training”, “testing” and “all the available data” (training and testing) respec-

tively. Note that the training data includes the samples which are exposed to the networks during

the training stage. This covers the data which directly used for training as well as the cross-

validation data which is indirectly used during the training stage.

Table 3.54: Comparison of different methods for identification of compressor pressure.

RMSEtotal RMSEtrain RMSEtest μae σae

MLP-NARX 0.0531 0.060215 0.040119 0.033786 0.040972

RBF-NARX 0.026612 0.027382 0.026087 0.021582 0.015573

SVM-NARX 0.041185 0.037001 0.046766 0.028081 0.03013

Ensemble I 0.024672 0.024926 0.024285 0.02894 0.02103

Ensemble II 0.023135 0.023115 0.023166 0.023113 0.0010121

Ensemble III 0.031684 0.027609 0.042234 0.030476 0.031543
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RMSE_total RMSE_train RMSE_test %RMSE mean sigma

MLP-NARX 0.05695994 0.06459238 0.0430354 0.481906 0.036242 0.04395

RBF-NARX 0.03948843 0.04063023 0.038709 0.328007 0.032025 0.023107

SVM-NARX 0.06804089 0.06112859 0.0772607 0.564795 0.046393 0.049776

Ensemble I 0.03099947 0.03420156 0.0274235 0.265349 0.023378 0.020361

Ensemble II 0.032391

Ensemble III 0.03107098 improveme
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Figure 3.44: Error analysis: compressor pressure identification.

Table 3.55 shows comparison of different methods for modeling the compressor pressure. The

error analysis is also shown in Figure 3.45. One can see that the heterogeneous ensemble with FSS

pruning has a better performance in modeling compressor pressure.

Table 3.55: Comparison of different methods for identification of compressor temperature.

RMSEtotal RMSEtrain RMSEtest μae σae

MLP-NARX 1.0016 1.0817 0.91441 0.73773 0.67756

RBF-NARX 0.56069 0.60188 0.49245 0.44584 0.34007

SVM-NARX 2.6112 2.7304 2.5287 2.0356 1.6357

Ensemble I 0.53621 0.57179 0.47787 0.4294 0.1032

Ensemble II 0.50493 0.47823 0.5303 0.38835 0.10459

Ensemble III 0.67545 0.75346 0.64762 0.77372 0.67111
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RMSE_total RMSE_train RMSE_test %RMSE mean sigma

MLP-NARX 1.5339092 1.65661695 1.4003979 0.233214 1.129811 1.037672

RBF-NARX 0.82816977 0.88900992 0.7273705 0.125567 0.658522 0.502293

SVM-NARX 3.26100159 3.40977775 3.157955 0.495902 2.542115 2.042665

Ensemble I 1.3152219 1.29057196 1.3394343 0.199706 1.141432 0.653516

Ensemble II

Ensemble III 1.2864
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Figure 3.45: Error analysis: compressor temperature identification.

Table 3.56 shows comparison of different methods for modeling the compressor pressure. The

error analysis is also shown in Figure 3.46. One can see that the heterogeneous ensemble with FSS

pruning has a better performance in modeling the compressor pressure.

Table 3.56: Comparison of different methods for identification of rotational speed.

RMSEtotal RMSEtrain RMSEtest μae σae

MLP-NARX 22.7076 24.7451 21.2417 19.597 11.4732

RBF-NARX 17.8349 19.7104 15.7359 14.2826 10.6831

SVM-NARX 24.6728 26.5164 22.6791 21.236 12.562

Ensemble I 7.3392 8.575 4.9343 4.2259 3.5032

Ensemble II 6.8672 6.7947 6.9391 4.5636 3.6543

Ensemble III 9.1115 8.0348 12.0596 7.2627 9.084
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RMSE_total RMSE_train RMSE_test %RMSE mean sigma

MLP-NARX 56.8288983 61.9281767 53.160426 0.478681 49.04432 28.71329

RBF-NARX 44.8280081 49.5421607 39.552223 0.378495 35.89936 26.85193

SVM-NARX 93.0503374 100.003348 85.53136 0.785621 80.08902 47.37603

Ensemble I 51.1684386 53.5649498 38.461508 0.178457 37.69918 31.61408

Ensemble II 36.2141536

Ensemble III 28.1931 improveme
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Figure 3.46: Error analysis: rotational speed identification.

Table 3.57 shows comparison of different methods for modeling the compressor pressure. The

error analysis is also shown in Figure 3.47. One can see that the heterogeneous ensemble with FSS

pruning has a better performance in modeling compressor pressure.

Table 3.57: Comparison of different methods for identification of turbine pressure.

RMSEtotal RMSEtrain RMSEtest μae σae

MLP-NARX 0.28118 0.33468 0.21468 0.1725 0.22208

RBF-NARX 0.018406 0.018638 0.018172 0.015086 0.010548

SVM-NARX 0.088902 0.084001 0.095787 0.075015 0.047715

Ensemble I 0.01791 0.018221 0.017432 0.014507 0.00011

Ensemble II 0.016865 0.016835 0.016894 0.016841 0.0008965

Ensemble III 0.02045 0.023039 0.019989 0.020046 0.020861
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RMSE_total RMSE_train RMSE_test %RMSE mean sigma

MLP-NARX 0.07101077 0.08452287 0.0542175 1.798008 0.043566 0.056086

RBF-NARX 0.03734914 0.03781917 0.0368728 0.777323 0.030611 0.021403

SVM-NARX 0.08327656 0.07868526 0.0897258 1.756486 0.070268 0.044695

Ensemble I 0.06410522 0.05560946 0.066296 1.319943 0.117578 0.077931

Ensemble II 0.03098247

Ensemble III 0.03261

0

0.05

0.1

0.15

0.2

0.25

0.3

Turbine Pressure Error Analysis (RMSE)

Figure 3.47: Error analysis: turbine pressure identification.

Table 3.58 shows comparison of different methods for modeling the compressor pressure. The

error analysis is also shown in Figure 3.48. One can see that the heterogeneous ensemble with FSS

pruning has a better performance in modeling of the compressor pressure.

Table 3.58: Comparison of different methods for identification of turbine temperature.

RMSEtotal RMSEtrain RMSEtest μae σae

MLP-NARX 41.9615 40.4995 43.3752 37.1441 19.5246

RBF-NARX 13.4734 15.2044 12.1843 9.8925 9.1487

SVM-NARX 104.3983 107.0395 102.6002 90.6818 51.7326

Ensemble I 11.0734 11.1823 10.9079 8.6915 6.8625

Ensemble II 10.1397 9.8846 10.3887 7.8483 3.821

Ensemble III 8.6865 8.2657 9.7165 9.3865 8.6371
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RMSE_total RMSE_train RMSE_test %RMSE mean sigma

MLP-NARX 20.9592222 20.2289664 21.66534002 1.15729486 18.5529861 9.752301928

RBF-NARX 1.33378387 1.50513759 1.206172871 0.07450583 0.97930077 0.905661486

SVM-NARX 52.1645898 53.48433 51.26614367 2.95170614 45.3108776 25.84918062

Ensemble I 34.6805544 31.6187933 37.5816222 2.06100145 29.1721054 13.92190986

Ensemble II 1.33378387 1.50513759 1.206172871 0.07450583 0.97930077 0.905661486

Ensemble III 8.203
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Figure 3.48: Error analysis: turbine temperature identification.

In summary one can see that the heterogeneous ensemble with FSS pruning and gradient de-

scent combination (ensemble II) has better performance in modeling and identification of the jet

engine dynamics. In the rest of this thesis we use this model (heterogeneous ensemble with FSS)

for residual generation. Then generated residuals would be evaluated for the FDI purpose. The re-

sults are compared with RBF-NARX model as it has the best performance among the stand-alone

models which are trained in this section. In this section we showed how utilization of ensemble

methods can improve the accuracy of modeling in comparison with stand-alone algorithms. Below

we show the effects of this improvement in the FDI application.

3.8 Fault Detection Process

In the previous sections we modeled the jet engine dynamics using both ensemble-based and stand-

alone models. In this section we would like to use the trained models to generate the residual
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signals while the engine is operating in different conditions (healthy as well as different faulty

conditions). The faulty conditions were previously explained in Section 2.3.3. Table 3.59 summa-

rizes the jet engine degradations that are studied in the remainder of this thesis.

Table 3.59: Jet engine component fault indications.

Component Fault Indication Symbol

Compressor fouling Decrease in the compressor flow capacity (ṁC) Fmc

Compressor erosion Decrease in the compressor efficiency (ηC) Fec

Turbine fouling Decrease in the turbine flow capacity (ṁT ) Fmt

Turbine erosion Decrease in the turbine efficiency (ηC) Fet

3.8.1 Fault Detection Logic

This section explains the fault detection logic that is used in this thesis, noting that once the residual

signals are generated then the fault detection would be a relatively easy task. The first required step

in fault detection process is to gather the residual signals while the engine is working under healthy

condition. These signals (residual signals under healthy condition) would be used to determine the

fault detection thresholds, so that one determines an interval such that the residuals of a healthy jet

engine stay within it with a high confidence (probability). A fault would be detected if any of the

engine residuals goes beyond its threshold. The fault detection logic is summarized in Figure 3.49.
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Figure 3.49: Flow chart of the proposed fault detection algorithm.

3.8.2 Fault Detection Threshold Generation

In the previous section we trained individual learning methods and the ensemble system using

healthy engine data. From now on, the goal is to use the trained models to detect engine faults
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by comparing the residual signals with predefined thresholds. As explained before, residual sig-

nals are the difference between actual engine outputs with predicted values obtained from trained

models. In this comparison, a residual signal should remain below a predefined threshold in the

healthy condition of jet engine, while it exceeds the defined threshold under the faulty condition.

The thresholds can be determined using the residual signals which are obtained from a healthy

engine. In this thesis, we define the thresholds as follows:

t.h.upper = μ zσ

t.h.lower = μ − zσ

where μ and σ are mean and standard deviation of residual signals obtained from healthy

engine in previous experiments. Assuming that the residual signals have normal distribution, we

can define a confidence interval for each of them. In statistics, confidence interval is a measure

of the reliability of an estimate. For future observations of a random variable X with mean and

standard deviation of μ and σ, respectively, the probability of l X u is determined from:

P (t.h.lower X t.h.upper) = P (t.h.lower − μ
σ

Z
t.h.upper μ

σ
)

= P (−z Z z) = φ(z) − φ(−z) = 2φ(z)

where Z is the standard normal variable. Thus, according to the above equation t.h.upper = μ zσ,

t.h.lower = μ−zσ. Hence, the probability of having the residual signals under normal condition can
be adjusted by choosing different threshold values. In this thesis we consider a 99% confidence

interval which corresponds to z = 2.6
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In the following section, we study different single fault scenarios for the best individual learning

methods (i.e. RBF-NARX) as well as the ensemble system in terms of the modeling accuracy.

Thus, for each residual signal the threshold is determined by using the following relation:

t.h.upper = μ 2.6σ

t.h.lower = μ − 2.6σ

where μ and σ are mean and standard deviation of residual signals obtained from the healthy

engine in previous experiments.

Remark 3.8. In this research all ˇ ve residuals of the engine parameters are used for fault detection

purpose. The fault would then be detected by the residual which acts faster than the others. If

multiple residuals detect a fault at different time instances, then the fault detection time would be

the minimum of different detection times given by different residuals. In other words:

tFD =min(tFDres1
, ..., tFDresn

)

where tFD is the fault detection time and tFDresi
is the time instance when the fault is detected by

the ith residual.

3.8.3 Fault Simulation Results

In this section different fault scenarios are studied to determine the effectiveness of the proposed

ensemble method in fault detection. The simulation results of the selected scenarios are described

in this section. These scenarios vary in the (a) fault type, (b) fault magnitude, and (c) fuel rate. In
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order to make a comparative study, the simulation results are individual learning models are also

provided in this section. The simulations are performed in the cruise mode where the fuel rate

varies between ṁf = 0.7,0.75,0.8,0.85 of the maximum fuel rate. The ambient condition is set to
normal condition, which is 0.7 Mach as a typical number in the cruise mode. The temperature is

set to 0 Celsius degree.

The residuals are generated using the ensemble model that is trained in the previous section.

We also generated the residuals using RBF-NARX model in order to make comparison between

the ensemble and single-model solutions. The residuals are evaluated using the generated thresh-

olds. We detect a fault if at least one of the residuals is greater than its corresponding determined

thresholds.

In the following we study different fault scenarios in terms of fault type, fault severity, and fuel

flow rate when the fault occurs.

3.8.4 Scenario I: Fault in the Compressor Efficiency

In this case we assume that there is a decrease in efficiency of the compressor. A failure happens

with different magnitudes that are 1%, 2%, 4%, 6%, and 8% at t = 20 sec. Also the fuel rate

varies within the range of cruise mode between 70%, 75%, 80%, 85% of the maximum fuel flow

rate. The residual signals are generated for both the ensemble model (heterogenous ensemble

with FSS pruning), and single-model (RBF-NARX) solutions. For breviary only the cases with

ṁf = 0.85 ṁf,maximum are plotted here. Figures 3.50, 3.52, 3.54, 3.56, 3.58 show the fault in

compressor efficiency detected using the ensemble model. Figures 3.51, 3.53, 3.55, 3.57, 3.59

show the fault in compressor efficiency detected using the single-model based solution (i.e. RBF-

NARX model).
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Residual signals for the compressor efficieny: fault magnitude = 8 
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Figure 3.50: Residual generated using ensemble model with FSS pruning, 8% decrease in com-

pressor efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor efficiency: fault magnitude = 8 
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Figure 3.51: Residual generated using RBF-NARX model, 8% decrease in compressor efficiency

at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor efficieny: fault magnitude = 6 

10 15 20 25 30 35 40
−0.2

−0.1

0

0.1

0.2
Pt residual

10 20 30 40
−100

−50

0

50

100
Tt residual

10 20 30 40
0

100

200

300
N residual

10 20 30 40
−0.4

−0.2

0

0.2

0.4
Pc residual

10 20 30 40
−30

−20

−10

0

10
Tc residual

← Detection time = 20.04

Figure 3.52: Residual generated using ensemble model with FSS pruning, 6% decrease in com-

pressor efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor efficiency: fault magnitude = 6 
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Figure 3.53: Residual generated using RBF-NARX model, 6% decrease in compressor efficiency

at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor efficieny: fault magnitude = 4 
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Figure 3.54: Residual generated using ensemble model with FSS pruning, 4% decrease in com-

pressor efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor efficiency: fault magnitude = 4 
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Figure 3.55: Residual generated using RBF-NARX model, 4% decrease in compressor efficiency

at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor efficieny: fault magnitude = 2 
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Figure 3.56: Residual generated using ensemble model with FSS pruning, 2% decrease in com-

pressor efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor efficiency: fault magnitude = 2 
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Figure 3.57: Residual generated using RBF-NARX model, 2% decrease in compressor efficiency

at t = 20 sec, ṁf = 0.85 ṁf,maximum.

183



Residual signals for the compressor efficieny: fault magnitude = 1 
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Figure 3.58: Residual generated using ensemble model with FSS pruning, 1% decrease in com-

pressor efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor efficiency: fault magnitude = 1 
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Figure 3.59: Residual generated using RBF-NARX model, 1% decrease in compressor efficiency

at t = 20 sec, ṁf = 0.85 ṁf,maximum.

Section 3.8.8 shows a comparative study between the fault detection results of the ensemble

solution and the single-model solution which indicates an improvement in fault detection accuracy

using the ensemble model. The failure has happened at t = 20 sec. Tables 3.60 and 3.61 summarize
the fault detection time using ensemble model and RBF-NARX models respectively.
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Table 3.60: Fault detection time summary using ensemble model: compressor efficiency fault
injected at t = 20 sec, ṁf = 0.85 ṁf,maximum.

Fault Type Fault Severity Fuel Rate Injection Time Detection Time

Fec 8% ṁf = 0.85 ṁf,maximum 20 20.04

Fec 6% ṁf = 0.85 ṁf,maximum 20 20.04

Fec 4% ṁf = 0.85 ṁf,maximum 20 20.04

Fec 2% ṁf = 0.85 ṁf,maximum 20 20.04

Fec 1% ṁf = 0.85 ṁf,maximum 20 20.16

Table 3.61: Fault detection time summary using RBF-NARX model: compressor efficiency
fault injected at t = 20 sec, ṁf = 0.85 ṁf,maximum.

Fault Type Fault Severity Fuel Rate Injection Time Detection Time

Fec 8% ṁf = 0.85 ṁf,maximum 20 20.04

Fec 6% ṁf = 0.85 ṁf,maximum 20 20.04

Fec 4% ṁf = 0.85 ṁf,maximum 20 20.04

Fec 2% ṁf = 0.85 ṁf,maximum 20 20.10

Fec 1% ṁf = 0.85 ṁf,maximum 20 20.22

3.8.5 Scenario II: Fault in the Compressor Mass Flow Rate

In this case we assume that there is a decrease in effectiveness of the compressor mass flow rate.

The failure happens with different magnitudes that are 1%, 2%, 4%, 6%, and 8%. Also the fuel

rate varies between 70%, 75%, 80%, and 85% of the maximum in each case. The residual signals

are generated for the individual learning algorithms as well as the ensemble system. Figures 3.60,

3.62, 3.64, 3.66, 3.68 show the fault in compressor efficiency detected using the ensemble model.

Figures 3.61, 3.63, 3.65, 3.67, 3.69 show the fault in compressor efficiency detected using the

single-model based solution (i.e. RBF-NARX model).
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Residual signals for the compressor mass flow rate: fault magnitude = 8 
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Figure 3.60: Residual generated using ensemble model with FSS pruning, 8% decrease in com-

pressor mass flow rate at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor mass flow rate fault: fault magnitude = 8 
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Figure 3.61: Residual generated using RBF-NARX model, 8% decrease in compressor mass flow

rate at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor mass flow rate: fault magnitude = 6 
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Figure 3.62: Residual generated using ensemble model with FSS pruning, 6% decrease in com-

pressor mass flow rate at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor mass flow rate fault: fault magnitude = 6 
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Figure 3.63: Residual generated using RBF-NARX model, 6% decrease in compressor mass flow

rate at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor mass flow rate: fault magnitude = 4 
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Figure 3.64: Residual generated using ensemble model with FSS pruning, 4% decrease in com-

pressor mass flow rate at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor mass flow rate fault: fault magnitude = 4 
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Figure 3.65: Residual generated using RBF-NARX model, 4% decrease in compressor mass flow

rate at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor mass flow rate: fault magnitude = 2 
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Figure 3.66: Residual generated using ensemble model with FSS pruning, 2% decrease in com-

pressor mass flow rate at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor mass flow rate fault: fault magnitude = 2 
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Figure 3.67: Residual generated using RBF-NARX model, 2% decrease in compressor mass flow

rate at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor mass flow rate: fault magnitude = 1 
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Figure 3.68: Residual generated using ensemble model with FSS pruning, 1% decrease in com-

pressor mass flow rate at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the compressor mass flow rate fault: fault magnitude = 1 
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Figure 3.69: Residual generated using RBF-NARX model, 1% decrease in compressor mass flow

rate at t = 20 sec, ṁf = 0.85 ṁf,maximum.

Section 3.8.8 shows a comparative study between the fault detection results of the ensemble

solution and the single-model solution which indicates an improvement in fault detection accuracy

using the ensemble model. The failure has happened at t = 20 sec. Tables 3.62 and 3.63 summarize
the fault detection time using ensemble model and RBF-NARX models respectively.
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Table 3.62: Fault detection time summary using ensemble model: compressor efficiency fault
injected at t = 20 sec, ṁf = 0.85 ṁf,maximum.

Fault Type Fault Severity Fuel Rate Injection Time Detection Time

Fmc 8% ṁf = 0.85 ṁf,maximum 20 20.10

Fmc 6% ṁf = 0.85 ṁf,maximum 20 20.10

Fmc 4% ṁf = 0.85 ṁf,maximum 20 20.16

Fmc 2% ṁf = 0.85 ṁf,maximum 20 20.16

Fmc 1% ṁf = 0.85 ṁf,maximum 20 20.22

Table 3.63: Fault detection time summary using RBF-NARX model: compressor efficiency
fault injected at t = 20 sec, ṁf = 0.85 ṁf,maximum.

Fault Type Fault Severity Fuel Rate Injection Time Detection Time

Fmc 8% ṁf = 0.85 ṁf,maximum 20 20.10

Fmc 6% ṁf = 0.85 ṁf,maximum 20 20.10

Fmc 4% ṁf = 0.85 ṁf,maximum 20 20.10

Fmc 2% ṁf = 0.85 ṁf,maximum 20 20.16

Fmc 1% ṁf = 0.85 ṁf,maximum 20 20.16

3.8.6 Scenario III: Fault in the Turbine Efficiency

In this scenario we assume that there is a decrease in the turbine efficiency. The failure happens

with different magnitudes that are 1%, 2%, 4%, 6%, and 8%. Also the fuel rate varies between 70%,

75%, 80%, 90%, and 95% of the maximum in each case. The residual signals are generated for the

individual learning algorithms as well as the ensemble system. Figures 3.70, 3.72, 3.74, 3.76, 3.78

show the fault in compressor efficiency detected using the ensemble model. Figures 3.71, 3.73,

3.75, 3.77, 3.79 show the fault in compressor efficiency detected using the single-model based

solution (i.e. RBF-NARX model).
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Residual signals for the turbine efficiency: fault magnitude = 8 
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Figure 3.70: Residual generated using ensemble model with FSS pruning, 8% decrease in turbine

efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine efficiency fault: fault magnitude = 8 
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Figure 3.71: Residual generated using RBF-NARX model, 8% decrease in turbine efficiency at t =

20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine efficiency: fault magnitude = 6 
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Figure 3.72: Residual generated using ensemble model with FSS pruning, 6% decrease in turbine

efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine efficiency fault: fault magnitude = 6 
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Figure 3.73: Residual generated using RBF-NARX model, 6% decrease in turbine efficiency at t =

20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine efficiency: fault magnitude = 4 
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Figure 3.74: Residual generated using ensemble model with FSS pruning, 4% decrease in turbine

efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine efficiency fault: fault magnitude = 4 
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Figure 3.75: Residual generated using RBF-NARX model, 4% decrease in turbine efficiency at t =

20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine efficiency: fault magnitude = 2 

10 15 20 25 30 35 40
−0.2

−0.1

0

0.1

0.2
Pt residual

10 20 30 40
−100

−50

0

50

100
Tt residual

10 20 30 40
0

50

100

150

200
N residual

← Detection time = 20.16

10 20 30 40
−0.4

−0.2

0

0.2

0.4
Pc residual

10 20 30 40
−5

0

5

10
Tc residual

Figure 3.76: Residual generated using ensemble model with FSS pruning, 2% decrease in turbine

efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine efficiency fault: fault magnitude = 2 
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Figure 3.77: Residual generated using RBF-NARX model, 2% decrease in turbine efficiency at t =

20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine efficiency: fault magnitude = 1 
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Figure 3.78: Residual generated using ensemble model with FSS pruning, 1% decrease in turbine

efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine efficiency fault: fault magnitude = 1 

10 15 20 25 30 35 40
−0.2

−0.1

0

0.1

0.2
Pt residual

10 20 30 40
−100

0

100

200
Tt residual

10 20 30 40
50

100

150

200
N residual

← Detection time = 20.16

10 20 30 40
−0.4

−0.2

0

0.2

0.4
Pc residual

10 20 30 40
−4

−2

0

2

4
Tc residual

Figure 3.79: Residual generated using RBF-NARX model, 1% decrease in turbine efficiency at t =

20 sec, ṁf = 0.85 ṁf,maximum.

Section 3.8.8 shows a comparative study between the fault detection results of the ensemble

solution and the single-model solution which indicates an improvement in fault detection accuracy

using the ensemble model. The failure has happened at t = 20 sec. Tables 3.64 and 3.65 summarize
the fault detection time using ensemble model and RBF-NARX models respectively. Figures 3.60,
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3.62, 3.64, 3.66, 3.68 show the fault in compressor efficiency detected using the ensemble model.

Figures 3.61, 3.63, 3.65, 3.67, 3.69 show the fault in compressor efficiency detected using the

single-model based solution (i.e. RBF-NARX model).

Table 3.64: Fault detection time summary using ensemble model: turbine efficiency fault
injected at t = 20 sec, ṁf = 0.85 ṁf,maximum.

Fault Type Fault Severity Fuel Rate Injection Time Detection Time

Fet 8% ṁf = 0.85 ṁf,maximum 20 20.10

Fet 6% ṁf = 0.85 ṁf,maximum 20 20.10

Fet 4% ṁf = 0.85 ṁf,maximum 20 20.16

Fet 2% ṁf = 0.85 ṁf,maximum 20 20.16

Fet 1% ṁf = 0.85 ṁf,maximum 20 20.22

Table 3.65: Fault detection time summary using RBF-NARX model: turbine efficiency fault
injected at t = 20 sec, ṁf = 0.85 ṁf,maximum.

Fault Type Fault Severity Fuel Rate Injection Time Detection Time

Fet 8% ṁf = 0.85 ṁf,maximum 20 20.10

Fet 6% ṁf = 0.85 ṁf,maximum 20 20.10

Fet 4% ṁf = 0.85 ṁf,maximum 20 20.10

Fet 2% ṁf = 0.85 ṁf,maximum 20 20.16

Fet 1% ṁf = 0.85 ṁf,maximum 20 20.16

3.8.7 Scenario IV: Fault in the Turbine Mass Flow

In this scenario we assume that there is a decrease in the effectiveness of turbine mass flow rate.

The failure happens with different magnitudes that are 1%, 2%, 4%, 6%, and 8%. Also the fuel rate

varies between 70%, 75%, 80%, 90%, and 95% of the maximum in each case. The residual signals

are generated for the individual learning algorithms as well as the ensemble system. Figures 3.80,

3.82, 3.84, 3.86, 3.88 show the fault in compressor efficiency detected using the ensemble model.
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Figures 3.81, 3.83, 3.85, 3.87, 3.89 show the fault in compressor efficiency detected using the

single-model based solution (i.e. RBF-NARX model).

Residual signals for the turbine mass flow rate: fault magnitude = 8 
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Figure 3.80: Residual generated using ensemble model with FSS pruning, 8% decrease in turbine

efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine mass flow rate: fault magnitude = 8 
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Figure 3.81: Residual generated using RBF-NARX model, 8% decrease in turbine efficiency at t =

20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine mass flow rate: fault magnitude = 6 
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Figure 3.82: Residual generated using ensemble model with FSS pruning, 6% decrease in turbine

efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine mass flow rate: fault magnitude = 6 
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Figure 3.83: Residual generated using RBF-NARX model, 6% decrease in turbine efficiency at t =

20 sec, ṁf = 0.85 ṁf,maximum.

212



Residual signals for the turbine mass flow rate: fault magnitude = 4 
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Figure 3.84: Residual generated using ensemble model with FSS pruning, 4% decrease in turbine

mass flow rate at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine mass flow rate: fault magnitude = 4 
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Figure 3.85: Residual generated using RBF-NARX model, 4% decrease in turbine mass flow rate

at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine mass flow rate: fault magnitude = 2 
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Figure 3.86: Residual generated using ensemble model with FSS pruning, 2% decrease in turbine

efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine mass flow rate: fault magnitude = 2 
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Figure 3.87: Residual generated using RBF-NARX model, 2% decrease in turbine efficiency at t =

20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine mass flow rate: fault magnitude = 1 
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Figure 3.88: Residual generated using ensemble model with FSS pruning, 1% decrease in turbine

efficiency at t = 20 sec, ṁf = 0.85 ṁf,maximum.
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Residual signals for the turbine mass flow rate: fault magnitude = 1 
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Figure 3.89: Residual generated using RBF-NARX model, 1% decrease in turbine efficiency at t =

20 sec, ṁf = 0.85 ṁf,maximum.

Section 3.8.8 shows a comparative study between the fault detection results of the ensemble

solution and the single-model solution which indicates an improvement in fault detection accuracy

using the ensemble model. The failure has happened at t = 20 sec. Tables 3.66 and 3.67 summarize
the fault detection time using ensemble model and RBF-NARX models respectively.
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Table 3.66: Fault detection time summary using ensemble model: turbine mass ow rate
fault injected at t = 20 sec, ṁf = 0.85 ṁf,maximum.

Fault Type Fault Severity Fuel Rate Injection Time Detection Time

Fet 8% ṁf = 0.85 ṁf,maximum 20 20.10

Fet 6% ṁf = 0.85 ṁf,maximum 20 20.10

Fet 4% ṁf = 0.85 ṁf,maximum 20 20.16

Fet 2% ṁf = 0.85 ṁf,maximum 20 20.16

Fet 1% ṁf = 0.85 ṁf,maximum 20 20.22

Table 3.67: Fault detection time summary using RBF-NARX model: turbine efficiency fault
injected at t = 20 sec, ṁf = 0.85 ṁf,maximum.

Fault Type Fault Severity Fuel Rate Injection Time Detection Time

Fet 8% ṁf = 0.85 ṁf,maximum 20 20.10

Fet 6% ṁf = 0.85 ṁf,maximum 20 20.10

Fet 4% ṁf = 0.85 ṁf,maximum 20 20.10

Fet 2% ṁf = 0.85 ṁf,maximum 20 20.16

Fet 1% ṁf = 0.85 ṁf,maximum 20 20.16

3.8.8 Confusion Matrices and FD Analysis

As previously stated in Remark 2.4 turbine temperature may not be instrumented due to very high

temperature of turbine. Though recent research has focused on development of new thermocouple

which are capable of measuring turbine temperature with required accuracy. Thus, in this sec-

tion we perform fault detection analysis within two different scenarios (a) turbine temperature is

measurable (i.e. [RESPC
,RESTC

,RESN ,RESPT
,RESTT

] is used for fault detection), and (b)

turbine temperature is not measurable (i.e. [RESPC
,RESTC

,RESN ,RESPT
] is used for fault

detection).

Below we summarize the fault detection results for both ensemble-based and single model-

based solution in form of confusion matrices. A confusion matrix for fault detection is generally a
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table with four entries which are the number of true positive, true negative, false positive, and false

negative classifications which are defined as follows:

• True positive (t.p.): the number of simulations classified as faulty and the engine is also

faulty.

• False positive (f.p.): the number of simulations classified as faulty, but the engine is healthy.

• True negative (t.n.): the number of simulations classified as healthy and the engine is healthy.

• False negative (f.n.): the number of simulations classified as healthy but the engine is faulty.

The generic form of a confusion matrix is shown in Table 3.68.

Table 3.68: Confusion matrix general form.

Alarm No Alarm

Faulty True positive False negative

Healthy False positive True negative

Correct Classiˇ cation Ration (CCR) (also known as accuracy) is presented as a measure to

evaluate the accuracy of the fault detection which is defined as follows:

CCR = t.p. t.n

t.p. t.n. f.p. f.n.

Other classifier performance measures are defined as follows:
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Precision = t.n

t.n. f.n.

True Positive Rate (TPR) = t.p

t.p. f.n.

False Positive Rate (FPR) = f.p

f.p. t.n.

True Negative Rate (TNR) = t.n

t.n. f.p.

False Negative Rate (FNR) = f.n

t.p. f.n.

In this section a total of 200 simulations are performed under different engine operating con-

ditions where a total of 100 experiments are made under presence of fault, and the other 100 are

performed while the engine is operating under healthy condition. The 100 faulty simulations are

conducted under presence of different fault types with different fault severities.

The fault types considered in this section are the component faults which were previously

described in Section 2.3.3. The first considered fault scenario is the fault in the compressor mass

flow rate which is an indication of the fouling in the compressor. The considered fault severities

are 1%, 2%, 4%, 6% and 8% reduction in the compressor mass flow rate. Several simulations are

made while the engine operates under different fuel flow rates (i.e. 70%, 75%, 80% and 85% of the

maximum fuel rate). The second considered fault scenario is the fault in the compressor efficiency

which is an indication of the erosion in the compressor. The considered fault severities are 1%,

2%, 4%, 6% and 8% reduction in the compressor efficiency. Several simulations are made while

the engine operates under different fuel flow rates (i.e. 70%, 75%, 80% and 85% of the maximum

fuel rate). The third considered fault scenario is the fault in the turbine mass flow rate which is
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an indication of the turbine fouling. The considered fault severities are 1%, 2%, 4%, 6% and 8%

reduction in the turbine mass flow rate. Several simulations are made while the engine operates

under different fuel flow rates (i.e. 70%, 75%, 80% and 85% of the maximum fuel rate). The

fourth considered fault scenario is the fault in the turbine efficiency which is an indication of the

erosion in the turbine. The considered fault severities are 1%, 2%, 4%, 6% and 8% reduction in

the turbine efficiency. Similar to the previous scenarios, several simulations are made while the

engine operates under different fuel flow rates (i.e. 70%, 75%, 80% and 85% of the maximum fuel

rate).

A total of 25 simulations are considered under presence of each of the above mentioned faults.

This results in a total of 100 simulations under a fault presence. Another 100 simulations are

considered while the engine operates in healthy condition. The summary of fault simulations is

presented in Table 3.69.
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Table 3.69: Summary of fault simulations.

Fault

type

Fault simulation detail # of tests

Fmc Considered fault severities are 1%, 2%,

4%, 6%, and 8% decrease in compres-

sor flow capacity (ṁC). 5 simulations are

conducted for each fault severity (under

different fuel flow rates)

25

Fec Considered fault severities are 1%, 2%,

4%, 6%, and 8% decrease in compres-

sor efficiency (ηC). 5 simulations are con-
ducted for each fault severity (under dif-

ferent fuel flow rates)

25

Fmt Considered fault severities are 1%, 2%,

4%, 6%, and 8% decrease in turbine flow

capacity (ṁT ). 5 simulations are con-

ducted for each fault severity (under dif-

ferent fuel flow rates)

25

Fet Considered fault severities are 1%, 2%,

4%, 6%, and 8% decrease in turbine effi-

ciency (ηT ). 5 simulations are conducted
for each fault severity (under different

fuel flow rates)

25

– Engine operates in healthy condition 100

Total 200

The obtained results are presented in the following confusion matrices (refer to Tables 3.70

to 3.86 for confusion matrices based on single model-based solution and Tables 3.72 to 3.88 for

confusion matrices based on ensemble-based solution) for each fault severity. More detailed de-

scription is presented in the following subsection. A comparison between the results of the single

model-based (i.e. RBF-NARX model) fault detection and the ensemble-based (i.e. heterogenous
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ensemble with FSS pruning) fault detection illustrates the advantage of ensemble-based solution.

We observe that for a total of 200 simulations (25 simulations for each fault type) the fault detection

accuracy is increased from 85.5% for single model-based fault detection to 90.5% for ensemble-

based fault detection.

Remark 3.9. For each engine parameter, the structure of the RBF-NARX networks used for fault

detection simulations is the same structure as obtained in Section 3.5 through extensive simulations

(refer to Tables 3.20, 3.22, 3.24, 3.28 and 3.26 for the structures). Moreover, for each engine

parameter, the ensemble architecture used for fault detection simulations is heterogenous ensemble

with FSS pruning as presented in Section 3.7.5 (refer to Tables 3.45, 3.46, 3.48, 3.49 and 3.47).

We should also note that (for brevity purpose) other single model-based solutions (i.e. MLP-NARX

and SVM-NARX) are not considered for further fault detection simulations as they showed a less

promising performance in term of modeling accuracy as compared with RBF-NARX model. This

is also true for the ensemble-based solution as we only use the ensemble architecture with better

performance (in term of engine parameters modeling) for fault detection simulations.

3.8.9 Fault Detection Performance Assuming Measurable Turbine Temper-

ature

This section evaluates the fault detection performance assuming that the turbine temperature is

measurable. Confusion matrices are presented for different fault severities. Also different measures

for evaluating the performance of the fault detection are presented for each fault severity. Table

3.70 presents the confusion matrices for different fault scenarios based on the single model-based

solution when the fault severity is equal to 1%. Table 3.71 shows different measures for evaluating
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the performance of the fault detection task based on the residuals obtained from the single model-

based solution when the fault severity is equal to 1%.

Table 3.70: Confusion matrixes for different fault scenarios based on single model-based
solution (RBF-NARX model). Fault severity = 1%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 2 3

Healthy 1 4

Alarm No Alarm

Faulty 4 1

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 4 1

Healthy 0 5

Table 3.71: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.
Fault severity = 1%.

Fmc Fec Fmt Fet

CCR 60% 90% 100% 90%

Precision 57.14% 83% 100% 83%

TPR 40% 80% 100% 80%

FPR 20% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 60% 20% 0% 20%

Table 3.72 presents the confusion matrices for different fault scenarios based on the ensemble-

based solution when the fault severity is equal to 1%. Table 3.73 shows different measures for

evaluating the performance of the fault detection task based on the residuals obtained from the

ensemble-based solution when the fault severity is equal to 1%.
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Table 3.72: Confusion matrixes for different fault scenarios based on ensemble-based (i.e.
heterogenous ensemble with FSS pruning) solution. Fault severity = 1%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 3 2

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.73: Fault detection accuracy of the ensemble-based solution. Fault severity = 1%.

Fmc Fec Fmt Fet

CCR 70% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 60% 0% 0% 0%

TNR 40% 100% 100% 100%

FNR 0% 0% 0% 0%

Table 3.74 presents the confusion matrices for different fault scenarios based on the single

model-based solution when the fault severity is equal to 2%. Table 3.75 shows different measures

for evaluating the performance of the fault detection task based on the residuals obtained from the

single model-based solution when the fault severity is equal to 2%.
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Table 3.74: Confusion matrixes for different fault scenarios based on single model-based
solution (RBF-NARX model). Fault severity = 2%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 4 2

Healthy 1 3

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.75: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.
Fault severity = 2%.

Fmc Fec Fmt Fet

CCR 70% 100% 100% 100%

Precision 60% 100% 100% 100%

TPR 67% 100% 100% 100%

FPR 25% 0% 0% 0%

TNR 75% 100% 100% 100%

FNR 33% 0% 0% 0%

Table 3.76 presents the confusion matrices for different fault scenarios based on the ensemble-

based solution when the fault severity is equal to 2%. Table 3.77 shows different measures for

evaluating the performance of the fault detection task based on the residuals obtained from the

ensemble-based solution when the fault severity is equal to 2%.
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Table 3.76: Confusion matrixes for different fault scenarios based on ensemble-based (i.e.
heterogenous ensemble with FSS pruning) solution. Fault severity = 2%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 4 1

Healthy 1 4

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.77: Fault detection accuracy of the ensemble-based solution. Fault severity = 2%.

Fmc Fec Fmt Fet

CCR 80% 100% 100% 100%

Precision 80% 100% 100% 100%

TPR 80% 100% 100% 100%

FPR 20% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 20% 0% 0% 0%

Table 3.78 presents the confusion matrices for different fault scenarios based on the single

model-based solution when the fault severity is equal to 4%. Table 3.79 shows different measures

for evaluating the performance of the fault detection task based on the residuals obtained from the

single model-based solution when the fault severity is equal to 4%.
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Table 3.78: Confusion matrixes for different fault scenarios based on single model-based
solution (RBF-NARX model). Fault severity = 4%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 1 4

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.79: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.
Fault severity = 4%.

Fmc Fec Fmt Fet

CCR 90% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 20% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 0% 0% 0% 0%

Table 3.80 presents the confusion matrices for different fault scenarios based on the ensemble-

based solution when the fault severity is equal to 4%. Table 3.81 shows different measures for

evaluating the performance of the fault detection task based on the residuals obtained from the

ensemble-based solution when the fault severity is equal to 4%.
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Table 3.80: Confusion matrixes for different fault scenarios based on ensemble-based (i.e.
heterogenous ensemble with FSS pruning) solution. Fault severity = 4%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.81: Fault detection accuracy of the ensemble-based solution. Fault severity = 4%.

Fmc Fec Fmt Fet

CCR 100% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 0% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 100% 0% 0% 0%

Table 3.82 presents the confusion matrices for different fault scenarios based on the single

model-based solution when the fault severity is equal to 6%. Table 3.83 shows different measures

for evaluating the performance of the fault detection task based on the residuals obtained from the

single model-based solution when the fault severity is equal to 6%.
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Table 3.82: Confusion matrixes for different fault scenarios based on single model-based
solution (RBF-NARX model). Fault severity = 6%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 1 4

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.83: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.
Fault severity = 6%.

Fmc Fec Fmt Fet

CCR 90% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 20% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 0% 0% 0% 0%

Table 3.84 presents the confusion matrices for different fault scenarios based on the ensemble-

based solution when the fault severity is equal to 6%. Table 3.85 shows different measures for

evaluating the performance of the fault detection task based on the residuals obtained from the

ensemble-based solution when the fault severity is equal to 6%.
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Table 3.84: Confusion matrixes for different fault scenarios based on ensemble-based (i.e.
heterogenous ensemble with FSS pruning) solution. Fault severity = 6%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 4 0

Healthy 1 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.85: Fault detection accuracy of the ensemble-based solution. Fault severity = 6%.

Fmc Fec Fmt Fet

CCR 90% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 17% 0% 0% 0%

TNR 83% 100% 100% 100%

FNR 0% 0% 0% 0%

Table 3.86 presents the confusion matrices for different fault scenarios based on the single

model-based solution when the fault severity is equal to 8%. Table 3.87 shows different measures

for evaluating the performance of the fault detection task based on the residuals obtained from the

single model-based solution when the fault severity is equal to 8%.
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Table 3.86: Confusion matrixes for different fault scenarios based on single model-based
solution (RBF-NARX model). Fault severity = 8%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 1 4

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.87: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.
Fault severity = 8%.

Fmc Fec Fmt Fet

CCR 90% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 20% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 0% 0% 0% 0%

Table 3.88 presents the confusion matrices for different fault scenarios based on the ensemble-

based solution when the fault severity is equal to 8%. Table 3.89 shows different measures for

evaluating the performance of the fault detection task based on the residuals obtained from the

ensemble-based solution when the fault severity is equal to 8%.
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Table 3.88: Confusion matrixes for different fault scenarios based on ensemble-based (i.e.
heterogenous ensemble with FSS pruning) solution. Fault severity = 8%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.89: Fault detection accuracy of the ensemble-based solution. Fault severity = 8%.

Fmc Fec Fmt Fet

CCR 100% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 0% 0% 0% 0%

TNR 100% 100% 100% 100%

FNR 0% 0% 0% 0%

3.8.10 Fault Detection Performance Assuming Unmeasurable Turbine Tem-

perature

This section evaluates the fault detection performance assuming that the turbine temperature is

not measurable. Confusion matrices are presented for different fault severities. Also different

measures for evaluating the performance of the fault detection are presented for each fault severity.
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Table 3.90 presents the confusion matrices for different fault scenarios based on the single model-

based solution when the fault severity is equal to 1%. Table 3.91 shows different measures for

evaluating the performance of the fault detection task based on the residuals obtained from the

single model-based solution when the fault severity is equal to 1%.

Table 3.90: Confusion matrixes for different fault scenarios based on single model-based
solution (RBF-NARX model). Fault severity = 1%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 2 3

Healthy 1 4

Alarm No Alarm

Faulty 4 1

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 4 1

Healthy 0 5

Alarm No Alarm

Faulty 4 1

Healthy 0 5

Table 3.91: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.
Fault severity = 1%.

Fmc Fec Fmt Fet

CCR 60% 90% 90% 90%

Precision 57% 83% 83% 83%

TPR 40% 80% 80% 80%

FPR 20% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 60% 20% 20% 20%

Table 3.92 presents the confusion matrices for different fault scenarios based on the ensemble-

based solution when the fault severity is equal to 1%. Table 3.93 shows different measures for
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evaluating the performance of the fault detection task based on the residuals obtained from the

ensemble-based solution when the fault severity is equal to 1%.

Table 3.92: Confusion matrixes for different fault scenarios based on ensemble-based (i.e.
heterogenous ensemble with FSS pruning) solution. Fault severity = 1%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 4 1

Healthy 1 4

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 4 1

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.93: Fault detection accuracy of the ensemble-based solution. Fault severity = 1%.

Fmc Fec Fmt Fet

CCR 80% 100% 90% 100%

Precision 80% 100% 83% 100%

TPR 80% 100% 80% 100%

FPR 20% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 20% 0% 20% 0%

Table 3.94 presents the confusion matrices for different fault scenarios based on the single

model-based solution when the fault severity is equal to 2%. Table 3.95 shows different measures

for evaluating the performance of the fault detection task based on the residuals obtained from the

single model-based solution when the fault severity is equal to 2%.
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Table 3.94: Confusion matrixes for different fault scenarios based on single model-based
solution (RBF-NARX model). Fault severity = 2%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 4 1

Healthy 1 4

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.95: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.
Fault severity = 2%.

Fmc Fec Fmt Fet

CCR 80% 100% 100% 100%

Precision 80% 100% 100% 100%

TPR 80% 100% 100% 100%

FPR 20% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 20% 0% 0% 0%

Table 3.96 presents the confusion matrices for different fault scenarios based on the ensemble-

based solution when the fault severity is equal to 2%. Table 3.97 shows different measures for

evaluating the performance of the fault detection task based on the residuals obtained from the

ensemble-based solution when the fault severity is equal to 2%.
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Table 3.96: Confusion matrixes for different fault scenarios based on ensemble-based (i.e.
heterogenous ensemble with FSS pruning) solution. Fault severity = 2%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 4 1

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.97: Fault detection accuracy of the ensemble-based solution. Fault severity = 2%.

Fmc Fec Fmt Fet

CCR 90% 100% 100% 100%

Precision 83% 100% 100% 100%

TPR 80% 100% 100% 100%

FPR 0% 0% 0% 0%

TNR 100% 100% 100% 100%

FNR 20% 0% 0% 0%

Table 3.98 presents the confusion matrices for different fault scenarios based on the single

model-based solution when the fault severity is equal to 4%. Table 3.99 shows different measures

for evaluating the performance of the fault detection task based on the residuals obtained from the

single model-based solution when the fault severity is equal to 4%.
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Table 3.98: Confusion matrixes for different fault scenarios based on single model-based
solution (RBF-NARX model). Fault severity = 4%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 1 4

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.99: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.
Fault severity = 4%.

Fmc Fec Fmt Fet

CCR 90% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 20% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 0% 0% 0% 0%

Table 3.100 presents the confusion matrices for different fault scenarios based on the ensemble-

based solution when the fault severity is equal to 4%. Table 3.101 shows different measures for

evaluating the performance of the fault detection task based on the residuals obtained from the

ensemble-based solution when the fault severity is equal to 4%.
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Table 3.100: Confusion matrixes for different fault scenarios based on ensemble-based (i.e.
heterogenous ensemble with FSS pruning) solution. Fault severity = 4%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 4 1

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.101: Fault detection accuracy of the ensemble-based solution. Fault severity = 4%.

Fmc Fec Fmt Fet

CCR 100% 100% 90% 100%

Precision 100% 100% 83% 100%

TPR 100% 100% 80% 100%

FPR 0% 0% 0% 0%

TNR 100% 100% 100% 100%

FNR 0% 0% 20% 0%

Table 3.102 presents the confusion matrices for different fault scenarios based on the single

model-based solution when the fault severity is equal to 6%. Table 3.103 shows different measures

for evaluating the performance of the fault detection task based on the residuals obtained from the

single model-based solution when the fault severity is equal to 6%.
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Table 3.102: Confusion matrixes for different fault scenarios based on single model-based
solution (RBF-NARX model). Fault severity = 6%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 1 4

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.103: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.
Fault severity = 6%.

Fmc Fec Fmt Fet

CCR 90% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 20% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 0% 0% 0% 0%

Table 3.104 presents the confusion matrices for different fault scenarios based on the ensemble-

based solution when the fault severity is equal to 6%. Table 3.105 shows different measures for

evaluating the performance of the fault detection task based on the residuals obtained from the

ensemble-based solution when the fault severity is equal to 6%.
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Table 3.104: Confusion matrixes for different fault scenarios based on ensemble-based (i.e.
heterogenous ensemble with FSS pruning) solution. Fault severity = 6%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 4 0

Healthy 1 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.105: Fault detection accuracy of the ensemble-based solution. Fault severity = 6%.

Fmc Fec Fmt Fet

CCR 90% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 17% 0% 0% 0%

TNR 83% 100% 100% 100%

FNR 0% 0% 0% 0%

Table 3.106 presents the confusion matrices for different fault scenarios based on the single

model-based solution when the fault severity is equal to 8%. Table 3.107 shows different measures

for evaluating the performance of the fault detection task based on the residuals obtained from the

single model-based solution when the fault severity is equal to 8%.
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Table 3.106: Confusion matrixes for different fault scenarios based on single model-based
solution (RBF-NARX model). Fault severity = 8%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 1 4

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.107: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.
Fault severity = 8%.

Fmc Fec Fmt Fet

CCR 90% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 20% 0% 0% 0%

TNR 80% 100% 100% 100%

FNR 0% 0% 0% 0%

Table 3.108 presents the confusion matrices for different fault scenarios based on the ensemble-

based solution when the fault severity is equal to 8%. Table 3.109 shows different measures for

evaluating the performance of the fault detection task based on the residuals obtained from the

ensemble-based solution when the fault severity is equal to 8%.
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Table 3.108: Confusion matrixes for different fault scenarios based on ensemble-based (i.e.
heterogenous ensemble with FSS pruning) solution. Fault severity = 8%.

Decrease in compressor mass flow rate. Decrease in compressor efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Decrease in turbine mass flow rate. Decrease in turbine efficiency.

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Alarm No Alarm

Faulty 5 0

Healthy 0 5

Table 3.109: Fault detection accuracy of the ensemble-based solution. Fault severity = 8%.

Fmc Fec Fmt Fet

CCR 100% 100% 100% 100%

Precision 100% 100% 100% 100%

TPR 100% 100% 100% 100%

FPR 0% 0% 0% 0%

TNR 100% 100% 100% 100%

FNR 0% 0% 0% 0%

Based on the above observations, measurability of turbine temperature may improve fault de-

tection performance. We observed that using turbine temperature residual make it possible to detect

some fault scenarios which were not detectable otherwise (decrease in turbine mass flow rate with

different severities). More specifically, using turbine temperature measurement improves accuracy

of detecting the fault in compressor mass flow rate up to 10% for faults lower severities (1% and

2% in fault magnitude). Further investigation would be required based on specifications of new

developed sensor as part of HEATTOP project [234], [235] as the accuracy of the sensor plays an
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important role in its effectiveness for fault detection.

3.9 Summary

In this chapter, first, jet engine dynamic was modeled using both single model-based and ensemble-

based solutions. This includes identification of the jet engine dynamics using RBF-NARX, MLP-

NARX, and SVM-NARX models (single model-based solutions), as well as two heterogeneous

and one homogeneous ensemble systems (ensemble-based solutions). It is observed that system

modeling accuracy can be improved up to 67% by using the ensemble learning over the stand-alone

learning models. In the rest of the chapter an ensemble-based as well as a single model-based fault

detection mechanism were developed. It was shown that the ensemble-based fault detection is

generally more accurate. More specifically, it improves the fault detection accuracy by 5% on

average over the single model-based solution.
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Chapter 4

Ensemble-based Jet Engine Fault Isolation

In Chapter 3 we discussed modeling of jet engine outputs using both single-model solutions, and

ensemble models. We showed that a more accurate model can be achieved by using the ensemble

systems as compared to the stand-alone models. We also discussed the effects of more accurate

modeling on accuracy of the fault detection. In this chapter we use the results of the previous

chapter to perform the fault isolation task. To do so we evaluate the residuals that are generated in

the previous chapter to isolate engine faults. As we previously discussed in Chapter 3 heteroge-

nous ensemble model with Forward Sequential Selection (FSS) pruning demonstrates the maximal

improvement as compared with the single-model solutions. Also, RBF-NARX model has the best

performance among the single-model solutions that are studied in the previous chapter. Thus, in

this chapter we perform the fault isolation task using by the residual signals that are generated by

both models. We then do comparison between the ensemble-based and single-model based fault

isolation schemes.
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4.1 Single Fault Isolation

In the previous chapter we modeled jet engine dynamics with the purpose of generating residual

signals. We also performed a residual evaluation with the goal of performing fault detection. In

this section, we propose a methodology for evaluating residuals with the objective of fault isolation

of the jet engine. The fault classes covering the severity ranges discussed in the previous chapter

are listed in the following.

Remark 4.1. Note that in this research only two ranges of fault severities are considered for the

sake of illustration, that is (a) less severe faults ( 3%), and (b) more severe faults ( 3%). It

should be emphasized that more severity ranges can be easily added by considering more fault

labels.

• Class 1 (f1): This class contains loss of compressor efficiency (i.e. Fec), by severity between

1% to 3%. As previously described it is common to model component faults by considering

some percentage reduction in either efficiency or flow capacity of the engine component.

Thus, all the faults in this class can be classified as reduction in the compressor efficiency

between 1% to 3%.

• Class 2 (f2): This class contains loss of compressor efficiency (i.e. Fec), by severity between

4% to 6%. As previously described it is common to model component faults by considering

some percentage reduction in either efficiency or flow capacity of the engine component.

Thus, all the faults in this class can be classified as reduction in the compressor efficiency

between 4% to 6%.

• Class 3 (f3): This class contains loss of compressor mass flow rate (i.e. Fmc), by severity

between 1% to 3%. As previously described it is common to model component faults by
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considering some percentage reduction in either efficiency or flow capacity of the engine

component. Thus, all the faults in this class can be classified as reduction in the compressor

mass flow rate by 1% to 3%.

• Class 4 (f4): This class contains loss of compressor mass flow rate (i.e. Fmc), by severity

between 4% to 6%. As previously described it is common to model component faults by

considering some percentage reduction in either efficiency or flow capacity of the engine

component. Thus, all the faults in this class can be classified as reduction in the compressor

mass flow rate by 4% to 6%.

• Class 5 (f5): This class contains loss of turbine efficiency (i.e. Fet), by severity between 1%

to 3%. As previously described it is common to model component faults by considering some

percentage reduction in either efficiency or flow capacity of the engine component. Thus, all

the faults in this class can be classified as reduction in the turbine efficiency between 1% to

3%.

• Class 6 (f6): This class contains loss of turbine efficiency (i.e. Fet), by severity between 4%

to 6%. As previously described it is common to model component faults by considering some

percentage reduction in either efficiency or flow capacity of the engine component. Thus, all

the faults in this class can be classified as reduction in the turbine efficiency between 4% to

6%.

• Class 7 (f7): This class contains loss of turbine mass flow rate (i.e. Fmt), by severity between

1% to 3%. As previously described it is common to model component faults by considering

some percentage reduction in either efficiency or flow capacity of the engine component.

Thus, all the faults in this class can be classified as reduction in the turbine mass flow rate
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by 1% to 3%.

• Class 8 (f8): This class contains loss of turbine mass flow rate (i.e. Fmt), by severity between

4% to 6%. As previously described it is common to model component faults by considering

some percentage reduction in either efficiency or flow capacity of the engine component.

Thus, all the faults in this class can be classified as reduction in the turbine mass flow rate

by 4% to 6%.

4.1.1 Static Neural Networks for Fault Isolation

The use of static neural networks for the purpose of fault isolation of a jet engine is reported in

several publications including but not limited to [143], [144], [146], [154], [155], [161], [164],

[167], [172], [177]. The same methodology is used in this thesis to isolate the engine faults.

Towards this end, a static neural network (multi-layer perceptron) is trained to isolate the engine

faults. The inputs of the neural networks should be scalers (rather than time-series, i.e. residual

signal); thus, the residuals should be preprocessed in order to be suitable for inputs of the static

neural network. In the previous chapter we saw how the variations in the residual signals can be an

indication of fault occurrence. Here in this section we use the same concept for determination of

fault type, and estimating the fault severity. The designed neural network fault classifier receives

the variations of residual signals before and after the fault occurrence, and returns the fault label

corresponding to the isolated fault (the list of fault classes is presented before). This is the function

of residual evaluation block in Figure 4.1. It receives the residual signals at any moment, and

compares them with the fault thresholds (refer to Section 3.8.2), once at least one the residuals

exceeds its threshold the residual evaluation block detects a fault. Next the residual evaluation

block calculates the variation of the residual signals before and after the fault detection. This
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scaler vector is then used as an input to the neural network fault classifier. Figure 4.1 summarizes

the above mentioned mechanism.
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Figure 4.1: Fault isolation mechanism.

The fault isolation task is then performed twice, one time using the residual signals obtained

from single model-based solution, and the second time using the residual signals obtained from the

ensemble-based solution. In the next section we discuss the residual evaluation mechanism, and

the neural network classifier in more details. Then we present the obtained fault isolation results.

4.1.2 Residual Evaluation

The residuals obtained by comparing the actual engine outputs and the engine model outputs are

evaluated for the purpose of fault detection and isolation. First, the residuals are compared with the

determined thresholds in the previous chapter to detect the fault. Now we evaluate the residuals
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for the purpose of fault isolation. The residual evaluation block in Figure 4.1 sends the signals

into neural network classifier by determining the variations of residuals before and after the fault

detection. In other words, the output of the residual evaluation block can be defined as:

ΔRES = ΔRESTC
,ΔRESPC

,ΔRESN ,ΔRESTT
,ΔRESPT

We should emphasize that the fault isolation neural network is only called when a fault is

detected and theΔRES vector is defined. Note that the value ofΔRES is only defined for t tD,

and undefined otherwise; where tD is the detection time.

4.1.3 Neural Network Fault Classifier

This section explains the structure of the MLP neural network fault classifier that is used in this

research for the fault isolation task. The use of MLP neural networks for fault isolation of jet

engines has been reported in many researches including but not limited to [143], [144], [146],

[154], [155], [161], [164], [167], [172], [177]. The classifier employs the previously described

ΔRES vector as its input, and it returns a fault label vector as listed below:

• Fec with severity less than 3% (f1) is labeled using [1,0,0,0,0,0,0,0]

• Fec with severity more than 3% (f2) is labeled using [0,1,0,0,0,0,0,0]

• Fmc with severity less than 3% (f3) is labeled using [0,0,1,0,0,0,0,0]

• Fmc with severity more than 3% (f4) is labeled using [0,0,0,1,0,0,0,0]

• Fet with severity less than 3% (f5) is labeled using [0,0,0,0,1,0,0,0]
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• Fet with severity more than 3% (f6) is labeled using [0,0,0,0,0,1,0,0]

• Fmt with severity less than 3% (f7) is labeled using [0,0,0,0,0,0,1,0]

• Fmt with severity more than 3% (f8) is labeled using [0,0,0,0,0,0,0,1]

Training Data

The training data is labeled as mentioned above. The total number of fault scenarios considered

here is the same as in Chapter 3. For each of the four fault types (Fmc, Fec, Fmt, Fet) we collect

the data while engine is operating using ˇ ve different input proˇ les ṁf = 0.68,0.7,0.75,0.8,0.85
of the maximum fuel rate (range of the fuel flow rate while in cruise mode [200]). Four different

fault severities are considered for each fault type (1%, 2%, 4%, 6% and 8%). Then the residuals

are evaluated using the previously mentioned procedure. The total number of input/target pairs

generated for training and validation of neural network fault classifier is 4 5 5 = 100. Two

different neural network fault classifiers are constructed based on the available data. The first

network is constructed using the data obtained from the single model-based solution and the second

network is constructed using the data obtained from the ensemble based solution. The summary

of the construction of the neural network fault classifier using the data obtained from the single

model-based and the ensemble based solutions is shown in Tables 4.1 and 4.1 respectively.
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Table 4.1: Summary of the Construction of the Neural Network Fault Classifier based on
residuals obtained from single model-based solution.

# neurons training data (%) # validation data (%) test data (%) CCRtrain CCRtest CCRvalid CCRtotal

8 60 10 30 83 83 70 82

8 50 20 30 88 90 80 87

8 40 30 30 85 73 67 76

8 50 10 40 88 85 90 87

8 40 20 40 85 70 70 76

8 30 30 40 87 70 77 77

8 40 10 50 85 66 90 76

8 30 20 50 87 68 85 77

8 20 30 50 90 60 67 68

9 60 10 30 87 83 100 87

9 50 20 30 88 73 85 83

9 40 30 30 88 77 90 85

9 50 10 40 88 80 70 83

9 40 20 40 88 83 85 85

9 30 30 40 87 80 77 81

9 40 10 50 88 78 90 83

9 30 20 50 87 78 80 81

9 20 30 50 85 76 63 74

10 60 10 30 85 73 80 81

10 50 20 30 84 67 65 75
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Table 4.2: Summary of the Construction of the Neural Network Fault Classifier based on
residuals obtained from ensemble-based solution.

# neurons training data (%) # validation data (%) test data (%) CCRtrain (%) CCRtest (%) CCRvalid (%) CCRtotal (%)

8 60 10 30 95 92 71 96

8 50 20 30 78 62 62 75

8 40 30 30 83 66 69 79

8 50 10 40 92 83 91 93

8 40 20 40 88 73 77 85

8 30 30 40 89 73 82 86

8 40 10 50 88 72 91 85

8 30 20 50 89 72 87 85

8 20 30 50 97 68 79 82

9 60 10 30 91 86 100 95

9 50 20 30 92 86 92 95

9 40 30 30 91 76 92 92

9 50 10 40 92 91 81 95

9 40 20 40 91 83 87 92

9 30 30 40 89 83 82 90

9 40 10 50 91 84 91 92

9 30 20 50 89 82 87 90

9 20 30 50 87 80 69 83

10 60 10 30 90 79 91 91

10 50 20 30 88 76 92 90

The trained neural network receives the ΔRES vector as input and returns the fault label as

output. Figure 4.2 shows input-output relation of the designed neural network fault classifier.
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Figure 4.2: Proposed neural network fault classifier.

In the next sections the simulation results are shown for the fault isolation task by using resid-

uals obtained from single-model and ensemble model solutions.

4.1.4 Single Model-based Fault Isolation

In this section we use the residuals that are obtained from the single-model solution (RBF-NARX)

for fault isolation task. The fault scenarios are previously explained and data samples for these

scenarios are collected (total number of 100 scenarios are developed for the sake of illustration).

Among the collected data we randomly select 50 samples (after experimenting with different sizes
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of training data, i.e. 30, 40, 50, 60 samples). Starting from a small structure we construct a neural

network classifier for fault isolation. We observe that an acceptable performance can be archived

using a single-layer network with 15 hidden neurons. Tables 4.3 to 4.5 show the confusion matrixes

for training and testing of all available data.

Table 4.3: Confusion matrix for training data using single model-based (RBF-NARX) fault
isolation.

Prediction

Actual
Fec more

than 3%

Fec less

than 3%

Fmc

more than

3%

Fmc less

than 3%

Fmt

more than

3%

Fmt less

than 3%

Fet more

than 3%

Fet less

than 3%

Fec more

than 3%

3 0 0 0 1 0 0 0

Fec less

than 3%

0 5 0 0 0 0 0 0

Fmc

more than

3%

0 0 7 0 0 0 0 0

Fmc less

than 3%

0 0 0 7 0 0 0 0

Fmt

more than

3%

2 2 0 0 8 1 0 0

Fmt less

than 3%

0 0 0 0 0 6 0 0

Fet more

than 3%

0 0 0 0 0 0 3 0

Fet less

than 3%

0 0 0 0 0 0 0 5
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Table 4.4: Confusion matrix for testing data using single model-based (RBF-NARX) fault
isolation.

Prediction

Actual
Fec more

than 3%

Fec less

than 3%

Fmc

more than

3%

Fmc less

than 3%

Fmt

more than

3%

Fmt less

than 3%

Fet more

than 3%

Fet less

than 3%

Fec more

than 3%

7 0 0 0 1 0 1 0

Fec less

than 3%

0 3 0 0 0 0 0 0

Fmc

more than

3%

0 0 6 0 0 0 0 0

Fmc less

than 3%

0 0 0 5 0 0 0 0

Fmt

more than

3%

1 0 0 0 5 1 1 2

Fmt less

than 3%

0 0 0 0 0 4 0 0

Fet more

than 3%

0 0 0 0 0 0 5 0

Fet less

than 3%

0 0 0 0 0 0 3 5
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Table 4.5: Confusion matrix for both training and testing data using single model-based
(RBF-NARX) fault isolation.

Prediction

Actual
Fec more

than 3%

Fec less

than 3%

Fmc

more than

3%

Fmc less

than 3%

Fmt

more than

3%

Fmt less

than 3%

Fet more

than 3%

Fet less

than 3%

Fec more

than 3%

10 0 0 0 2 0 1 0

Fec less

than 3%

0 8 0 0 0 0 0 0

Fmc

more than

3%

0 0 13 0 0 0 0 0

Fmc less

than 3%

0 0 0 12 0 0 0 0

Fmt

more than

3%

3 2 0 0 13 2 1 2

Fmt less

than 3%

0 0 0 0 0 10 0 0

Fet more

than 3%

0 0 0 0 0 0 8 0

Fet less

than 3%

0 0 0 0 0 0 3 10

We use correct classiˇ cation rate (CCR) as a measure for accuracy of fault isolation task as

defined below:

CCR = total number of correctly classified samples
total number of samples

Table 4.6 shows the fault isolation performance for single model-based fault isolation.
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Table 4.6: Fault isolation performance of single model-based (RBF-NARX) solution in term
of CCR.

CCRtraining 88%

CCRtesting 80%

CCRtotal 84%

4.1.5 Ensemble-based Fault Isolation

In this section we use the residuals that are obtained from the ensemble-based solution (RBF-

NARX) for fault isolation task. The fault scenarios are previously explained and data samples

for these scenarios are collected (total number of 100 scenarios are developed for the sake of

illustration). Among the collected data we randomly select 50 samples (after experimenting with

different sizes of training data i.e., 30, 40, 50, 60 samples). To have faire comparative study we

use the same number of training samples, and network architecture as in the single model-based

solution. Tables 4.7 to 4.9 show the confusion matrices for the training, testing for all available

data.
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Table 4.7: Confusion matrix for training data using ensemble-based fault isolation.

Prediction

Actual
Fec more

than 3%

Fec less

than 3%

Fmc

more than

3%

Fmc less

than 3%

Fmt

more than

3%

Fmt less

than 3%

Fet more

than 3%

Fet less

than 3%

Fec more

than 3%

5 0 0 0 0 0 0 0

Fec less

than 3%

0 2 0 0 0 0 0 0

Fmc

more than

3%

0 0 9 0 0 0 0 0

Fmc less

than 3%

0 0 0 3 0 0 0 0

Fmt

more than

3%

0 1 0 0 9 0 0 0

Fmt less

than 3%

0 0 0 0 0 7 0 0

Fet more

than 3%

0 0 0 0 0 0 10 0

Fet less

than 3%

0 0 0 0 0 0 0 4
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Table 4.8: Confusion matrix for testing data using ensemble-based fault isolation.

Prediction

Actual
Fec more

than 3%

Fec less

than 3%

Fmc

more than

3%

Fmc less

than 3%

Fmt

more than

3%

Fmt less

than 3%

Fet more

than 3%

Fet less

than 3%

Fec more

than 3%

9 0 0 0 0 0 0 0

Fec less

than 3%

0 6 0 0 0 0 0 0

Fmc

more than

3%

0 0 4 0 0 0 0 0

Fmc less

than 3%

0 0 0 5 0 0 0 0

Fmt

more than

3%

0 0 0 0 5 0 0 0

Fmt less

than 3%

0 0 0 0 0 4 0 0

Fet more

than 3%

0 0 0 0 0 0 4 0

Fet less

than 3%

0 0 0 0 0 0 0 3
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Table 4.9: Confusion matrix for both training and testing data using ensemble-based fault
isolation.

Prediction

Actual
Fec more

than 3%

Fec less

than 3%

Fmc

more than

3%

Fmc less

than 3%

Fmt

more than

3%

Fmt less

than 3%

Fet more

than 3%

Fet less

than 3%

Fec more

than 3%

14 0 0 0 0 0 0 0

Fec less

than 3%

0 8 0 0 0 0 0 0

Fmc

more than

3%

0 0 13 0 0 0 0 0

Fmc less

than 3%

0 0 0 8 0 0 0 0

Fmt

more than

3%

0 1 0 0 14 0 0 0

Fmt less

than 3%

0 0 0 0 0 11 0 0

Fet more

than 3%

0 0 0 0 0 0 14 0

Fet less

than 3%

0 0 0 0 0 0 0 7

Table 4.10 shows the fault isolation performance for ensemble-based fault isolation in term of

CCR.

Table 4.10: Fault isolation performance of ensemble-based solution in term of CCR.

CCRtrain 98%

CCRtest 100%

CCRtotal 99%
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4.2 Multiple Faults Isolation

In the previous section we studied the fault isolation problem, assuming that only a single fault

may be present at each time. In this section, however, the goal is to isolate simultaneous faults.

Isolating multiple faults is a complex problem. Thus, in order to limit the complexity we assume

that only two concurrent faults may happen. We assume that the first fault happens at t1 = 20 sec
and the second fault happens at t2 = 30 sec. The fault scenarios studied in this section are listed in
the following.

• Class 1 ( Fec ): This class contains loss of compressor efficiency (i.e. Fec), by severity

between 1% to 6%. As previously described it is common to model component faults by

considering some percentage reduction in either efficiency or flow capacity of the engine

component. Thus, all the faults in this class can be classified as reduction in the compressor

efficiency between 1% to 6%.

• Class 2 ( Fmc ): This class contains loss of compressor mass flow rate (i.e. Fmc), by severity

between 1% to 6%. As previously described it is common to model component faults by

considering some percentage reduction in either efficiency or flow capacity of the engine

component. Thus, all the faults in this class can be classified as reduction in the compressor

mass flow rate by 1% to 6%

• Class 3 ( Fet ): This class contains loss of turbine efficiency (i.e. Fet), by severity between

1% to 6%. As previously described it is common to model component faults by considering

some percentage reduction in either efficiency or flow capacity of the engine component.

Thus, all the faults in this class can be classified as reduction in the turbine efficiency between

1% to 6%.
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• Class 4 ( Fmt ): This class contains loss of turbine mass flow rate (i.e. Fmt), by severity

between 1% to 6%. As previously described it is common to model component faults by

considering some percentage reduction in either efficiency or flow capacity of the engine

component. Thus, all the faults in this class can be classified as reduction in the turbine mass

flow rate by 1% to 6%.

• Class 5 ( Fec, Fmc ): This fault class includes simultaneous faults in both compressor ef-

ficiency (i.e. Fec) and compressor mass flow rate (i.e. Fmc). The severity of each fault is

between 1% to 6%. In other words, there is a drop of 1% to 6% in compressor efficiency, as

well as, a drop of 1% to 6% in compressor mass flow rate.

• Class 6 ( Fec, Fet ): This fault class includes simultaneous faults in both compressor effi-

ciency (i.e. Fec) and turbine efficiency (i.e. Fet). The severity of each fault is between 1% to

6%. In other words, there is a drop of 1% to 6% in compressor efficiency, as well as, a drop

of 1% to 6% in turbine efficiency.

• Class 7 ( Fec, Fmt ): This fault class includes simultaneous faults in both compressor effi-

ciency (i.e. Fec) and turbine mass flow rate (i.e. Fmt). The severity of each fault is between

1% to 6%. In other words, there is a drop of 1% to 6% in compressor efficiency, as well as,

a drop of 1% to 6% in turbine mass flow rate.

• Class 8 ( Fmc, Fet ): This fault class includes simultaneous faults in both compressor mass

flow rate (i.e. Fmc) and turbine efficiency (i.e. Fet). The severity of each fault is between 1%

to 6%. In other words, there is a drop of 1% to 6% in compressor mass flow rate, as well as,

a drop of 1% to 6% in turbine efficiency.
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• Class 9 ( Fmc, Fmt ): This fault class includes simultaneous faults in both compressor mass

flow rate (i.e. Fmc) and turbine mass flow rate (i.e. Fmt). The severity of each fault is

between 1% to 6%. In other words, there is a drop of 1% to 6% in compressor mass flow

rate, as well as, a drop of 1% to 6% in turbine mass flow rate.

• Class 10 ( Fet, Fmt ): This fault class includes simultaneous faults in both turbine efficiency

(i.e. Fet) and turbine mass flow rate (i.e. Fmt). The severity of each fault is between 1% to

6%. In other words, there is a drop of 1% to 6% in turbine efficiency, as well as, a drop of

1% to 6% in turbine mass flow rate.

4.2.1 Neural Network Fault Classifier

The structure of the MLP neural network fault classifier used for multiple fault isolation is shown

in Figure 4.3. The neural network receives the set of variations in the value of residuals before and

after the fault detection. The output vector of the classifier is labeled to identify the class of fault(s)

as listed below:

• Fault class Fec is labeled using [1,0,0,0,0,0,0,0,0,0]

• Fault class Fmc is labeled using [0,1,0,0,0,0,0,0,0,0]

• Fault class Fmt is labeled using [0,0,1,0,0,0,0,0,0,0]

• Fault class Fet is labeled using [0,0,0,1,0,0,0,0,0,0]

• Fault class Fmc, Fec is labeled using [0,0,0,0,1,0,0,0,0,0]

• Fault class Fmc, Fmt is labeled using [0,0,0,0,0,1,0,0,0,0]

265



• Fault class Fmc, Fet is labeled using [0,0,0,0,0,0,1,0,0,0]

• Fault class Fec, Fet is labeled using [0,0,0,0,0,0,0,1,0,0]

• Fault class Fec, Fmt is labeled using [0,0,0,0,0,0,0,0,1,0]

• Fault class Fmt, Fet is labeled using [0,0,0,0,0,0,0,0,0,1]

Training Data

The training data is labeled as mentioned above. For each of the above mentioned ten fault

classes we collect the data while engine is operating using ˇ ve different input proˇ les ṁf =
0.68,0.7,0.75,0.8,0.85 of the maximum fuel rate (range of the fuel flow rate while in cruise mode

[200]). Four different fault severities are considered for each fault type (1%, 2%, 4%, and 6%).

We assume that the first fault happens at t1 = 20 sec and the second fault happens at t2 = 30 sec.
Then the residuals are evaluated using the previously mentioned procedure. The total number of

input/target pairs generated for training and validation of neural network fault classifier is 200.

Figure 4.2 shows input-output relation of the designed neural network fault classifier.
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Figure 4.3: Proposed neural network for multiple fault isolation.

Two different neural network fault classifiers are constructed based on the available data. The

first network is constructed using the data obtained from the single model-based solution and the

second network is constructed using the data obtained from the ensemble based solution. The

summary of the construction of the neural network fault classifier using the data obtained from the

single model-based and the ensemble based solutions is shown in Tables 4.11 and 4.12 respectively.
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Table 4.11: Summary of the construction of the neural network concurrent fault classifier
based on residuals obtained from single model-based solution.

# neurons training data (%) # validation data (%) test data (%) CCRtrain(%) CCRtest (%) CCRvalid (%) CCRtotal (%)

8 60 10 30 88.6667 79.5 78.5 82

8 50 20 30 96.5 90.6667 91 90.5

8 40 30 30 84.25 73.5 75.1667 75

8 50 10 40 97.5 93.25 98 92.5

8 40 20 40 84.25 75.25 78 76

8 30 30 40 98.5 81 83 83.5

8 40 10 50 84.25 74.5 72.5 74.5

8 30 20 50 98.5 82 82.5 83.5

8 20 30 50 99 79.5 84.1667 81.5

9 60 10 30 97 96.1667 98.5 94

9 50 20 30 97.5 97.3333 98.5 94.5

9 40 30 30 98 93.5 96.8333 93

9 50 10 40 97.5 98.25 98 94.5

9 40 20 40 98 94 98 93

9 30 30 40 98.5 96 96.3333 93.5

9 40 10 50 98 96.5 97.5 93.5

9 30 20 50 98.5 97 95 93.5

9 20 30 50 99 90.5 89.1667 88.5

10 60 10 30 97 96.1667 98.5 94

10 50 20 30 97.5 95.6667 98.5 94
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Table 4.12: Summary of the construction of the neural network concurrent fault classifier
based on residuals obtained from ensemble-based solution.

# neurons training data (%) # validation data (%) test data (%) CCRtrain(%) CCRtest (%) CCRvalid (%) CCRtotal (%)

8 60 10 30 98.8 94.8 94.4 96

8 50 20 30 89 91.2667 89.4 88.5

8 40 30 30 99.2 92.7333 97.7333 95.5

8 50 10 40 89 89.8 99.2 89

8 40 20 40 99.2 93.35 99.2 95.5

8 30 30 40 91.0667 76.9 72.5333 78.5

8 40 10 50 99.2 94.8 99 95.5

8 30 20 50 91.0667 78.6 66.5 78.5

8 20 30 50 84.6 70.4 62.3333 69.5

9 60 10 30 98.8 94.8 99.4 96.5

9 50 20 30 99 97.9333 99.4 97.5

9 40 30 30 99.2 91.0667 94.4 94

9 50 10 40 99 98.55 99.2 97.5

9 40 20 40 99.2 92.1 94.2 94

9 30 30 40 97.7333 90.65 89.2 91

9 40 10 50 94.2 87.8 79 88

9 30 20 50 97.7333 91.6 86.5 91

9 20 30 50 99.6 80.4 79 82.5

10 60 10 30 98.8 99.8 99.4 98

10 50 20 30 99 99.6 99.4 98

In the next sections the simulation results are shown for the fault isolation task by using resid-

uals obtained from single-model and ensemble model solutions.

4.2.2 Single Model-based Multiple Faults Isolation

In this section we use the residuals that are obtained from the single-model solution (RBF-NARX)

for fault isolation task. The fault scenarios are previously explained and data samples for these
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scenarios are collected (total number of 100 scenarios are developed for the sake of illustration).

Among the collected data we randomly select 50 samples (after experimenting with different sizes

of training data, i.e. 30, 40, 50, 60 samples). Starting from a small structure we construct a neural

network classifier for fault isolation. We observe that an acceptable performance can be archived

using a single-layer network with 15 hidden neurons. Tables 4.13 to 4.15 show the confusion

matrixes for training and testing of all available data.

Table 4.13: Confusion matrix for training data using single model-based (RBF-NARX) single
fault isolation.

Prediction

Actual
Fec Fmc Fmt Fet Fmc ,

Fec

Fmc ,

Fmt

Fmc ,

Fet

Fec ,

Fet

Fec ,

Fmt

Fmt ,

Fet

Fec 7 0 0 0 0 0 0 0 0 0

Fmc 0 9 0 0 0 1 0 0 0 0

Fmt 0 0 12 0 0 0 0 0 0 0

Fet 0 0 0 12 0 0 0 0 0 0

Fmc , Fec 0 0 0 0 14 0 0 0 0 0

Fmc , Fmt 0 0 0 0 0 12 0 0 0 0

Fmc , Fet 0 0 0 0 0 0 12 0 0 0

Fec , Fet 1 0 0 0 0 0 0 13 0 0

Fec , Fmt 0 0 0 0 0 0 0 0 15 0

Fmt , Fet 0 0 0 0 0 0 0 0 0 12
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Table 4.14: Confusion matrix for testing data using single model-based (RBF-NARX) single
fault isolation.

Prediction

Actual
Fec Fmc Fmt Fet Fmc ,

Fec

Fmc ,

Fmt

Fmc ,

Fet

Fec ,

Fet

Fec ,

Fmt

Fmt ,

Fet

Fec 4 0 0 0 0 0 0 0 0 0

Fmc 0 11 0 0 0 2 0 0 0 0

Fmt 0 0 8 0 0 0 0 0 0 0

Fet 0 0 0 8 0 0 0 0 0 0

Fmc , Fec 0 0 0 0 6 0 0 0 0 0

Fmc , Fmt 0 0 0 0 0 5 0 0 0 0

Fmc , Fet 0 0 0 0 0 0 8 0 0 0

Fec , Fet 8 0 0 0 0 0 0 7 0 0

Fec , Fmt 0 0 0 0 0 0 0 0 5 0

Fmt , Fet 0 0 0 0 0 0 0 0 0 8

Table 4.15: Confusion matrix for both training and testing data using single model-based
(RBF-NARX) single fault isolation.

Prediction

Actual
Fec Fmc Fmt Fet Fmc ,

Fec

Fmc ,

Fmt

Fmc ,

Fet

Fec ,

Fet

Fec ,

Fmt

Fmt ,

Fet

Fec 11 0 0 0 0 0 0 0 0 0

Fmc 0 20 0 0 0 3 0 0 0 0

Fmt 0 0 20 0 0 0 0 0 0 0

Fet 0 0 0 20 0 0 0 0 0 0

Fmc , Fec 0 0 0 0 20 0 0 0 0 0

Fmc , Fmt 0 0 0 0 0 17 0 0 0 0

Fmc , Fet 0 0 0 0 0 0 20 0 0 0

Fec , Fet 9 0 0 0 0 0 0 20 0 0

Fec , Fmt 0 0 0 0 0 0 0 0 20 0

Fmt , Fet 0 0 0 0 0 0 0 0 0 20

Table 4.16 shows the fault isolation performance for single model-based fault isolation.
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Table 4.16: Multiple Fault isolation performance of single model-based (RBF-NARX) solu-
tion in term of CCR.

CCRtraining 98.33%

CCRtesting 87.5%

CCRtotal 94%

4.2.3 Ensemble-based Multiple Faults Isolation

In this section we use the residuals that are obtained from the ensemble-based solution (RBF-

NARX) for fault isolation task. The fault scenarios are previously explained and data samples

for these scenarios are collected (total number of 100 scenarios are developed for the sake of

illustration). Among the collected data we randomly select 50 samples (after experimenting with

different sizes of training data i.e., 30, 40, 50, 60 samples). To have faire comparative study we

use the same number of training samples, and network architecture as in the single model-based

solution. Tables 4.17 to 4.19 show the confusion matrices for the training, testing for all available

data.
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Table 4.17: Confusion matrix for training data using ensemble-based multiple fault isolation.

Prediction

Actual
Fec Fmc Fmt Fet Fmc ,

Fec

Fmc ,

Fmt

Fmc ,

Fet

Fec ,

Fet

Fec ,

Fmt

Fmt ,

Fet

Fec 8 0 0 0 0 0 0 0 0 0

Fmc 0 9 0 0 0 0 0 0 0 0

Fmt 0 0 12 0 0 0 0 0 0 0

Fet 0 0 0 12 0 0 0 0 0 0

Fmc , Fec 0 0 0 0 14 0 0 0 0 0

Fmc , Fmt 0 0 0 0 0 12 0 0 0 0

Fmc , Fet 0 0 0 0 0 0 12 0 0 0

Fec , Fet 0 0 0 0 0 0 0 13 0 0

Fec , Fmt 0 0 0 0 0 0 0 0 15 0

Fmt , Fet 0 0 0 0 0 1 0 0 0 12

Table 4.18: Confusion matrix for testing data using ensemble-based multiple fault isolation.

Prediction

Actual
Fec Fmc Fmt Fet Fmc ,

Fec

Fmc ,

Fmt

Fmc ,

Fet

Fec ,

Fet

Fec ,

Fmt

Fmt ,

Fet

Fec 9 0 0 0 0 0 0 0 0 0

Fmc 0 11 0 0 0 2 0 0 0 0

Fmt 0 0 8 0 0 0 0 0 0 0

Fet 0 0 0 8 0 0 0 0 0 0

Fmc , Fec 0 0 0 0 6 0 0 0 0 0

Fmc , Fmt 0 0 0 0 0 5 0 0 0 0

Fmc , Fet 0 0 0 0 0 0 8 0 0 0

Fec , Fet 3 0 0 0 0 0 0 7 0 0

Fec , Fmt 0 0 0 0 0 0 0 0 5 0

Fmt , Fet 0 0 0 0 0 0 0 0 0 8
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Table 4.19: Confusion matrix for both training and testing data using ensemble-based mul-
tiple fault isolation.

Prediction

Actual
Fec Fmc Fmt Fet Fmc ,

Fec

Fmc ,

Fmt

Fmc ,

Fet

Fec ,

Fet

Fec ,

Fmt

Fmt ,

Fet

Fec 17 0 0 0 0 0 0 0 0 0

Fmc 0 20 0 0 0 2 0 0 0 0

Fmt 0 0 20 0 0 0 0 0 0 0

Fet 0 0 0 20 0 0 0 0 0 0

Fmc , Fec 0 0 0 0 20 0 0 0 0 0

Fmc , Fmt 0 0 0 0 0 17 0 0 0 0

Fmc , Fet 0 0 0 0 0 0 20 0 0 0

Fec , Fet 3 0 0 0 0 0 0 20 0 0

Fec , Fmt 0 0 0 0 0 0 0 0 20 0

Fmt , Fet 0 0 0 0 0 1 0 0 0 20

Table 4.20 shows the fault isolation performance for ensemble-based fault isolation in term of

CCR.

Table 4.20: Multiple Fault isolation performance of ensemble-based solution in term of CCR.

CCRtrain 99.17%

CCRtest 93.75%

CCRtotal 97%

4.3 Summary

In this chapter we have performed the fault isolation task using the residual signals generated by

both ensemble model as well as stand-alone model. We then do comparison between the ensemble-

based and single-model based fault isolation schemes. The fault isolation mechanism used in this

chapter is a static neural network, the network evaluates the changes in engine parameters in order
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to isolate the occurred fault. It is observed that the ensemble-based fault isolation solution is

generally more accurate, and it can improve the single fault isolation accuracy up to 12% and

the multiple fault isolation by up to 4% as compared with the single model-based fault isolation

scheme. It should be noted that the single fault isolation problem is formulated such that the

severity of the fault has to be estimated. Based on the observations estimating the fault severity is

generally a more complex task.
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Chapter 5

Conclusion and Summary

5.1 Summary

The objective of this thesis was to develop ensemble-based approach for fault-detection and iso-

lation (FDI) of aircraft jet engines and compare the results with conventional single-model-based

FDI solutions. It was shown that by combining stand-alone models, more accurate ensemble mod-

els can be designed to model the jet engine dynamics without the need of ad-hoc fine tunings

required for single-model-based solutions.

For the purpose of jet engine health monitoring, first we modeled the jet engine dynamics using

three different stand-alone learning algorithm. Specifically, MLP-NARX, RBF-NARX, and SVM-

NARX models are trained to individually model jet engine parameters. A separate model was

trained for each of the engine outputs using each individual learning algorithm. Input parameters

of the individual learning algorithm (e.g. number of neural network neurons) are optimized by

performing several trials. We observed that the RBF-NARX model shows a better performance (in
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term of modeling accuracy) among the stand-alone models.

In Chapter 3, three different ensemble methods were designed to identify the jet engine dy-

namics. The first trained ensemble model is a heterogeneous ensemble with ranked pruning. In

this approach, first a pool of individual learners were trained using different learning algorithms

(MLP-NARX, RBF-NARX, SVM-NARX). Then, the most accurate models are selected for each

learning algorithm in order to be aggregated and generate the final prediction. The predictions of

ensemble members were combined using weighted averaging where the weights are optimized us-

ing gradient descent method. The second ensemble approach is the heterogeneous ensemble with

Forward Sequential Selection (FSS) pruning. Similar to the heterogeneous ensemble with ranked

pruning, we first trained a pool of stand-alone models for identifying engine outputs. Then, the

ensemble initially use the model with best performance (in term of modeling accuracy), and then

other models were added to the ensemble based on their contribution to improve the ensemble

performance (in each iteration, all candidates in the pool were tested and the one with the maxi-

mal improvement to the ensemble performance was selected). The third ensemble model which

attempted to model engine dynamics was a homogeneous ensemble with bagging where several

RBF-NARX models were trained using different subsets of the training data which are generated

by the bootstrap sampling to model the engine dynamics. Also, the effects of the number of mod-

els in an ensemble on its accuracy was studied. It was observed that by increasing the number of

models in an ensemble the prediction error decreases in general. We also observed that all three

ensemble models outperform the stand-alone models in term of modeling accuracy. More specif-

ically, we observed than modeling error was reduced by up to 67% using ensemble methods as

compared with single-model-based solutions.

In Chapter 3, we selected heterogenous ensembles with FSS pruning (as it performed the best
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among the other ensembles), and RBF-NARX as a stand-alone model with better performance to

solve the FDI problem. Engine residual signals were generated using both single-model-based

and ensemble-based solutions under different engine health conditions. Different fault scenarios

were developed based on fault type, fault severity, and engine’s input profile (fuel flow rate). The

obtained residuals were evaluated in order detect engine faults. Our experiments showed that the

fault detection task using residuals obtained from the ensemble model results is more accurate. In

Chapter 4, the fault isolation task was performed by evaluating variations in the residual signals

(before and after a fault detection) by using a neural network classifier. Eight different fault classes

were defined (based on the fault type and fault severity). Since the inputs of the neural network fault

classifier should be scaler vector (rather than time-series, i.e. residual signal), we preprocessed the

residuals so we could make them suitable for inputs of a static neural network classifier. As in the

fault detection case, it is observed that the ensemble-based fault isolation task results in a more

promising performance. Specifically, we observed that ensemble-based fault isolation solution

improves the fault isolation accuracy by 10% as compared with single-model-based fault isolation

scheme.

5.2 Conclusions

In this thesis, first jet engine dynamic was modeled using both single model-based and ensemble-

based solutions. It is observed that system modeling accuracy can be improved up to 67% by

using the ensemble learning over the stand-alone learning models. Second, an ensemble-based

as well as a single model-based fault detection mechanism were developed. It was shown that

the ensemble-based fault detection is generally more accurate. Specifically, it improves the fault
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detection accuracy by 5% on average over the single model-based solution. We also performed the

fault isolation task using the residual signals generated by both ensemble model as well as stand-

alone model. We then did comparison between the ensemble-based and single-model based fault

isolation schemes. It was observed that the ensemble-based fault isolation solution is generally

more accurate, and it can improve the single fault isolation accuracy up to 12% and the multiple

fault isolation by up to 4% as compared with the single model-based fault isolation scheme.

5.3 Suggestions for Future Work

This research can be extended in a number directions. Some suggestions for future work are

explained below:

• In this research we used external dynamics (external delays) to model dynamics of the sys-

tem. An alternative would be to use learning methods with internal dynamics such as neural

networks with dynamic neurons or recurrent neural networks with local feedback and then

combine them to build an ensemble system.

• As described briefly in this thesis, increasing the number of models in an ensemble can

reduce the prediction error (theoretically any arbitrary level of accuracy can be achieved by

increasing the number of ensemble members [187]). A future research could be to increase

the number of ensemble members with the goal of achieving more accurate FDI system.

• In this thesis we studied the ensemble models where source of diversity is either the varia-

tion in the training data (homogeneous with bagging) or employment of different learning

methods (heterogenous ensemble). An alternative would be studying homogenous ensemble
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with different architectures (e.g. using several feedforward neural networks with different

number of layers and/or neurons).

• In this thesis batch learning (off-line) techniques are applied for identifying the jet engine

dynamics. A potential future work is to study the online ensemble learning to identify the

jet engine dynamics while the engine is operating.

• In this thesis, the combining weights of the ensemble are assumed to be constant as well as

identical for all instances of the input. A potential future work is to study the ensembles

where the combining weights differ from a sample to another. For example the model Amay

have more contribution in the output at the instance xA while the model B may have more

contribution in the output at the instance xB.

280



Bibliography

[1] H. Rong, G. Zhang, C. Zhang, “Application of support vector machines to nonlinear system

identification,” Autonomous Decentralized Systems, pp. 501–507, 2005.

[2] T. Falck, P. Dreesen, K. Brabanter, K. Pelckmans, B. Moor, J. Suykens, “Least-Squares Sup-

port Vector Machines for the identification of WienerHammerstein systems”, Control Engineer-

ing Practice, vol. 20, no. 11, pp. 1165–1174, 2012.

[3] M. Martinez-Ramon, J. L. Rojo-Alvarez, G. Camps-Valls, J. Munoz-Mari, A. Navia-Vazquez,

E. Soria-Olivas, A.R. Figueiras-Vidal, “Support Vector Machines for Nonlinear Kernel ARMA

System Identification,” IEEE Transactions on Neural Networks, vol. 17, no.6, pp.1617–1622,

2006.

[4] M. Vogt, “System identification techniques based on support vector machines without bias

term,” International Journal of Adaptive Control and Signal, vol. 27, no.9, pp.1099–1115, 2013.

[5] R. Salat, M. Awtoniuk, K. Korpysz, “Black-Box system identification by means of Support

Vector Regression and Imperialist Competitive Algorithm”, vol. 9, pp. 223–226, Przeglkad

Elektrotechniczny, 2013.

281



[6] P. M. L. Drezet, R. F. Harrison, “Support vector machines for system identification,” UKACC

International Conference on Control, vol. 1, pp. 688–692, 1998.

[7] J. D. Bomberger, D. E. Seborg, “Determination of model order for NARX models directly

from input-output data”, Journal of Process Control, vol. 8, no. 56, pp. 459–468, 1998.

[8] S. Tan, J. Hao, J. Vandewalle, “Efficient identification of RBF neural net models for nonlin-

ear discrete-time multivariable dynamical systems”, Neurocomputing, vol. 9, no. 1, pp. 11–26,

1995.

[9] S. Lu, T. Basar, “Robust nonlinear system identification using neural-network models,” IEEE

Transactions on Neural Networks, vol.9, no.3, pp. 407–429, 1998.

[10] V. T. Elanayar, Y. C. Shin, “Radial basis function neural network for approximation and

estimation of nonlinear stochastic dynamic systems,” IEEE Transactions on Neural Networks,

vol. 5, no. 4, pp. 594–603, 1994.

[11] S. Tan, J. Hao, J. Vandewalle, “Nonlinear systems identification using RBF neural networks,”,

Proceedings of International Joint Conference on Neural Networks, vol. 2, pp. 1833–1836,

1993.

[12] J. Li, F. Zhao, “Identification of dynamical systems using radial basis function neural net-

works with hybrid learning algorithm,”, International Symposium on Systems and Control in

Aerospace and Astronautics, pp. 1115–1118, 2006.

[13] S. Chen, X. X. Wang, C. J. Harris, “NARX-Based Nonlinear System Identification Using

Orthogonal Least Squares Basis Hunting,” IEEE Transactions on Control Systems Technology,

vol. 16, no. 1, pp.78–84, 2008.

282



[14] I. M. Yassin, M. N. Taib, M. Z. Abdul Aziz, “Identification of DC motor drive system model

using Radial Basis Function (RBF) Neural Network,” IEEE Symposium on Industrial Electron-

ics and Applications, pp. 13–18, 2011.

[15] S. Chen, S. A. Billings , P. M. Grant, “Recursive hybrid algorithm for non-linear system

identification using radial basis function networks”, International Journal of Control, vol. 55,

no. 5, pp. 1051–1070, 1992.

[16] S. Chen, S. A. Billings , C.F. Cowan, P. M. Grant, “Practical identification of NARMAX

models using radial basis functions”, International Journal of Control, vol. 52, no. 6, pp. 1327–

1350, 1990.

[17] J. G. Kuschewski, S. Hui, S.H. Zak, “Application of feedforward neural networks to dynam-

ical system identification and control,” IEEE Transactions on Control Systems Technology, vol.

1, no. 1, pp. 37–49, Mar 1993.

[18] V. Prasad, B. W. Bequette, “Nonlinear system identification and model reduction using arti-

ficial neural networks”, Computers & Chemical Engineering, vol. 27, no. 12, pp. 1741–1754,

2003.

[19] H. Zhao, J. Zhang, “Nonlinear dynamic system identification using pipelined functional link

artificial recurrent neural network”, Neurocomputing, vol. 72, no. 13, pp. 3046-3054, 2009.

[20] S. Chen, S. A. Billings, P. M. Grant, “Non-linear system identification using neural net-

works”, International Journal of Control, vol. 51, no. 6, pp. 1191-1214, 1990.

[21] C. C. Huang, C. Loh, “Nonlinear Identification of Dynamic Systems Using Neural Net-

works”, Computer-Aided Civil and Infrastructure Engineering, vol. 16, no. 1, pp. 28-41, 2001.

283



[22] J. C. Patra, R. N. Pal, B. N. Chatterji, G. Panda, “Identification of nonlinear dynamic sys-

tems using functional link artificial neural networks,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 29, no. 2, pp.254–262, 1999.

[23] S. Chen, S. A. Billings, “Neural networks for nonlinear dynamic system modelling and iden-

tification”, International Journal of Control, vol. 56, no. 2, pp. 319–346, 1992.

[24] N. Chiras, C. Evans, D. Rees, “Nonlinear Gas Turbine Modelling Using NARMAX Struc-

tures,” IEEE Transaction on Instrumentation & Measeurement, vol. 50, no. 4 , pp. 893-898,

2001.

[25] A. Ruano, P. J. Fleming, C. Teixeira, K. R. Rodrguez-Vzquez, C. M. Fonseca, “Nonlinear

Identification of Aircraft Gas Turbine Dynamics,” Neurocomputing, vol. 55, no. 3, pp. 551-579,

2003.

[26] G. Torella, F. Gamma, and G. Palmesano, “Neural Networks for the Study of Gas Turbine

Engines Air System,” Proceedings of the International Gas Turbine Congress, 2003.

[27] R. Bettocchi, M. Pinelli, P. R. Spina, M. Venturini, “Artificial Intelligent for the Diagnostics

of Gas Turbines: Part 1Neural Network Approach,” ASME Turbo Expo 2005, pp. 9-18, 2005.

[28] H. Asgari, X. Chen, R. Sainudiin, M. Morini, M. Pinelli, P. R. Spina, M. Venturini,“Modeling

and Simulation of the Start-Up Operation of a Heavy-Duty Gas Turbine by Using NARX Mod-

els,” ASME Turbo Expo 2014, 10 pages, 2014.

[29] N. Rooney, D. Patterson, S. Anand, and A. Tsymbal, “Dynamic integration of regression

models”, International Workshop on Multiple Classiˇ er Systems. vol. LNCS 3181, pp. 164-173,

Springer, 2004.

284



[30] G. I. Webb and Z. Zheng, “Multistrategy ensemble learning: reducing error by combining

ensemble learning techniques”, IEEE Transactions on Knowledge and Data Engineering, vol.

16, no. 8, pp. 980-991, 2004.

[31] J. Liu, “RBF Neural Network Control for Mechanical Systems”, Springer, 2013.

[32] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri, “A review of process fault

detection and diagnosis: Part I: Quantitative model-based methods”, Computers & Chemical

Engineering, vol. 27, no. 3, pp 293–311.

[33] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri, “A review of process fault

detection and diagnosis: Part II: Qualitative models and search strategies”, Computers & Chem-

ical Engineering, vol. 27, no. 3, pp 313–326.

[34] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri, “A review of process fault

detection and diagnosis: Part III: Process history based methods”, Computers & Chemical En-

gineering, vol. 27, no. 3, pp 327–346.

[35] B. V. Dasarathy and B. V. Sheela, “Composite classifier system design: concepts and method-

ology,” Proceedings of the IEEE, vol. 67, no. 5, pp. 708–771, 1979.

[36] S. Geman, E. Bienenstock, R. Doursat, “Neural networks and the bias/variance dilemma”.

Neural Computation, vol. 4, no. 1, pp 1–58, 1992.

[37] A. Bouchachia, S. Bouchachia, “Ensemble Learning for Time Series Prediction”, Workshop

on Nonlinear Dynamics and Synchronization, Aachen, pp. 205–212, 2008.

[38] A. Bouchachia, “Radial Basis Function Nets for Time Series Prediction”, International Jour-

nal of Computational Intelligence Systems, vol. 2, no. 2, pp. 147–157, 2012.

285



[39] P. Melin, J. Soto, O. Castillo, J. Soria, “A new approach for time series prediction using

ensembles of ANFIS models”, Expert Systems with Applications, vol. 39, pp. 3494–3506, 2012.

[40] R. Avnimelech, N. Intrator, “Boosting Regression Estimators”, Neural Computation, vol. 11,

no. 2, pp. 491–513, 1999.

[41] T. Hatanaka, N. Kondo, K. Uosaki, “Multi-Objective Structure Selection for RBF Networks

and Its Application to Nonlinear System Identification”, Studies in Computational Intelligence,

vol. 16, pp. 491–505, Springer, 2006.

[42] S. C. Chiam, K. C. Tan, A. Al-Mamun, “Multiobjective Evolutionary Neural Networks for

Time Series Forecasting”, Lecture Notes in Computer Science, vol. 4403, pp. 346–360, 2007.

[43] W. M. Azmy, N. Gayar, A. F. Atiya, H El-Shishiny, “MLP, Gaussian Processes and Negative

Correlation Learning for Time Series Prediction”, MultipleClassiˇ er Systems 2009, LNCS, vol.

5519, pp. 428–437, 2009.

[44] S. Oeda, I. Kurimoto, T. Ichimura, “Time Series Data Classification Using Recurrent Neural

Network with Ensemble Learning”, Knowledge-Based Intelligent Information and Engineering

Systems, LNCS, vol. 4253, pp. 742–748, Springer, 2006.

[45] A. Chitra and S. Uma, “An Ensemble Model of Multiple Classifiers for Time Series Predic-

tion”, International Journal of Computer Theory and Engineering, vol. 2, no. 3, pp. 454–458,

2010.

[46] Md. M. Islam, X. Yao, K. Murase, “A Constructive Algorithm for Training Cooperative Neu-

ral Network Ensembles”, IEEE Transactions On Neural Network, vol. 14, no. 4, pp. 820–834,

2003.

286



[47] Z. S. H. Chan, N. Kasabov, “Fast neural network ensemble learning via negative-correlation

data correction,” IEEE Transactions on Neural Networks, vol.16, no.6, pp.1707–1710, 2005.

[48] J. D. Wichard and M. Ogorzalek “Time Series Prediction with Ensemble Models”, Proceed-

ings of IEEE Joint Conference on Neural Networks, vol. 2, pp. 1625–1630, 2004.

[49] J. D. Wichard “Model Selection in an Ensemble Framework”, Proceedings of IEEE Joint

Conference on Neural Networks, vol. 2, pp. 2187–2192, 2006.

[50] N. Kondo, T. Hatanaka, K. Uosaki, “Nonlinear Dynamic System Identification Based on

Multiobjectively Selected RBF Networks”, Proceedings of IEEE Symposium on Computational

Intelligence in Multicriteria Decision Making (MCDM 2007), pp. 122–127, 2007.

[51] D. Wang and Y. Li, “A Novel Nonlinear RBF Neural Network Ensemble Model for Financial

Time Series Forecasting”, Proceedings of Third International Workshop on Advanced Compu-

tational Intelligence, pp. 86–90, 2010.

[52] Y. Xiao, J. Xiao, F. Lu, S. Wang, “Ensemble ANNs-PSO-GA Approach for Day-ahead Stock

E-exchange Prices Forecasting”, International Journal of Computational Intelligence Systems,

vol. 6, no. 1, pp. 96–114, 2013.

[53] X. Caia, N. Zhang, G. K. Venayagamoorthya, D. C. Wunsch, “Time series prediction with

recurrent neural networks trained by a hybrid PSO-EA algorithm”, Neurocomputing, vol. 70,

no. 13, pp. 2342–2353, 2007.

[54] I. A. Gheyas, L. S. Smith, “A Neural Network Approach to Time Series Forecasting”, Pro-

ceedings of the World Congress on Engineering, vol. 2, 5 pages, 2009.

287



[55] J. T. Connor, R. D. Martin, L. E. Atlas, “Recurrent neural networks and robust time series

prediction,”, IEEE Transactions on Neural Networks, vol. 5, no. 2, pp.240–254, 1994.

[56] C. L. Giles, S. Lawrence, A. Tsoi, “Noisy Time Series Prediction using Recurrent Neural

Networks and Grammatical Inference”,Machine Learning, vol. 44, no. 1, pp 161-183, Springer,

2001.

[57] X. Cai, N. Zhang, G. K. Venayagamoorthy, D. C. Wunsch, “Time series prediction with re-

current neural networks using a hybrid PSO-EA algorithm”, Proceedings of IEEE International

Joint Conference on Neural Networks, vol.2, pp.1647–1652, 2004.

[58] X. Cai, N. Zhang, G. K. Venayagamoorthy, D. C. Wunsch, “Time series prediction with

recurrent neural networks trained by a hybrid PSOEA algorithm”, Neurocomputing, vol.70,

pp.2347–2353, 2007.

[59] R. Bone, M. Assaad, M. Crucianu. “Boosting Recurrent Neural Networks for Time Series

Prediction”. RFAI Publication, Artificial Neural Nets and Genetic Algorithms, Proceedings of

the International Conference, Lecture Nontes in Computer Science, pp. 18–22, Springer.

[60] N. I. Sapankevych, R. Sankar, “Time Series Prediction Using Support Vector Machines: A

Survey”, IEEE Computational Intelligence Magazine, vol. 4, no. 2, pp. 24–38, 2009.

[61] T. B. Trafalis and H. Ince, “Support vector machine for regression and applications to finan-

cial forecasting, in Proc. IEEE-INNS-ENNS Int. Joint Conf. on Neural Networks (IJCNN 2000),

vol. 6, pp. 348–353.

[62] F. E. H. Tay and L. J. Cao, “Application of support vector machines in financial time series

forecasting, Omega, vol. 29, no. 4, pp. 309–317, 2001.

288



[63] T. Van Gestel, J. A. K. Suykens, D. E. Baestaens, A. Lambrechts, G. Lanckriet, B. Vandaele,

B. De Moor, and J. Vandewall, “Financial time series prediction using least squares support

vector machines within the evidence framework, IEEE Transaction on Neural Networks, vol.

12, no. 4, pp. 809–821, 2001.

[64] F. E. H. Tay and L. J. Cao, “Improved financial time series forecasting by combining support

vector machines with self-organizing feature map”, Intelligent Data Analysis, vol. 5, no. 4, pp.

339–354, 2001.

[65] F. E. H. Tay and L. J. Cao, “Modified support vector machines in financial time series fore-

casting”, Neurocomputing, vol. 48, pp. 847–861, Oct. 2002.

[66] F. E. H. Tay and L. J. Cao, “ε-descending support vector machines for financial time series

forecasting”, Neural Processessing Letters, vol. 15, no. 2, pp. 179–195, 2002.

[67] H. Yang, I. King, and L. Chan, “Non-fixed and asymetrical margin approach to stock market

prediction using support vector regression”, in Proceedings of 9th International Conference on

Neural Information Processing, vol. 3, pp. 1398–1402, 2002.

[68] H. Yang, L. Chan, and I. King, “Support vector machine regression for volatile stock market

prediction,” in Proceedings 3rd Internationa Conference on Intelligent Data Engineering and

Automated Learning, Springer-Verlag, pp. 391–396, 2002.

[69] A. Abraham, N. S. Philip, and P. Saratchandran, “Modeling chaotic behavior of stock indices

using intelligent paradigms,” International Journal of Neural, Parallel, and Scientiˇ c Compu-

tatation, vol. 11, no. 1, pp. 143–160, 2003.

289



[70] H. Yang, “Margin variations in support vector regression for the stock market prediction”,

Ph.D. dissertation, Chinese Univ. of Hong Kong, June 2003.

[71] P. Ongsritrakul and N. Soonthornphisaj, “Apply decision tree and support vector regression to

predict the gold price,” Proceedings of the International Joint Conference on Neural Networks,

vol. 4, pp. 2488–2492, 2003.

[72] W. Lu, W. Wang, A. Y. T. Leung, S.-M. Lo, R. K. K. Yuen, Z. Xu, and H. Fan, “Air pollutant

parameter forecasting using support vector machines,” Proceedings of the International Joint

Conference on Neural Networks, vol. 1, pp. 630–635, 2002.

[73] T. B. Trafalis, B. Santosa, and M. B. Richman, “Prediction of rainfall from WSR radar using

kernel-based methods”, International Journal of Smart Engineering System Design, vol. 5, no.

4, pp. 429–438, 2003.

[74] W. Wang, Z. Xu, and J. W. Lu, “Three improved neural network models for air quality fore-

casting”, Engineering Computatation, vol. 20, no. 2, pp. 192–210, 2003.

[75] M. Mohandes, “Support vector machines for short-term load forecasting,” International Jour-

nal of Energy Resources, vol. 26, no. 4, pp. 335–345, Mar. 2002.

[76] D. C. Sansom and T. K. Saha, “Energy constrained generation dispatch based on price fore-

casts including expected values and risk”, Proceedings of the IEEE Power Energy Society Gen-

eral Meeting vol. 1, pp. 261–266, 2004.

[77] L. Tian and A. Noore, “A novel approach for short-term load forecasting using support vector

machines”, International Journal of Neural Systems, vol. 14, no. 5, pp. 329–335, 2004.

290



[78] B. J. Chen, M. W. Chang, and C. J. Lin, “Load forecasting using support vector machines: A

study on EUNITE competition 2001”, IEEE Transaction on Power Systems, vol. 19, no. 4, pp.

1821–1830, Nov. 2004.

[79] J. Yang and Y. Zhang, “Application research of support vector machines in condition trend

prediction of mechanical equipment,” Proceedings of the 2nd International Symposiom on Neu-

ral Networks, Lecture Notes in Computer Science, vol. 3498, pp. 857–864, 2005.

[80] D. Mandic and J. Chambers, “Recurrent neural networks for prediction: learning algorithms,

architectures and stability”, John Wiley & Sons, Inc., 2001.

[81] L. Tsungnan, B. G. Horne, C.Lee Giles, “How Embedded Nlemory in Recurrent Neural

Network Architectures Helps Learning Long-term Temporal Dependencies”, Computer Science

Technical Report CS-TR-3626 and UMIACS, University of Maryland, College Park, Ml 20742,

1996.

[82] D. R. Seidl, R. D. Lorenz, “A structure by which a recurrent neural network can approximate

a nonlinear dynamic system,” International Joint Conference on Neural Networks, pp. 709–714

vol. 2, no. 1, 1991.

[83] K. S. Narendra, K. Parthasarathy, “Identification and control of dynamical systems using

neural networks,” IEEE Transactions on Neural Networks, vol. 1, no. 1, pp.4–27, 1990.

[84] J. Sjberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Glorennec, H. Hjalmarsson, A.

Juditsky, “Nonlinear black-box modeling in system identification: a unified overview”, Auto-

matica, vol. 31, no. 12, pp. 1691–1724, 1995.

291



[85] W. C. Hong, P. F. Pai, C. T. Chen, and P. T. Chang, “Recurrent support vector machines in

reliability prediction,” Lecture Notes in Computer Science, vol. 3610, pp. 619–7629, 2005.

[86] W. C. Hong and P.-F. Pai, “Predicting engine reliability using support vector machines,” In-

ternational Journal of Advanced Manufufacturing Technology, vol. 28, no. 1, pp. 154–161,

2006.

[87] S. Gezici, H. Kobayashi, and H. V. Poor, “A new approach to mobile position tracking,”

Proceedings of IEEE Sarnoff Symposiom on Advances in Wired and Wireless Communications,

pp. 204–207, 2003.

[88] C. J. Huang and C. L. Cheng, “Application of support vector machines to admission control

for proportional differentiated services enabled internet servers,” Proceedings of International

Conference on Hybrid Intelligent Systems, pp. 248–253, 2004.

[89] X. Liu, J. Yi, and D. Zhao, “Adaptive inverse disturbance cancelling control system based on

least square support vector machines”, American Control Conference, pp. 2625–2629, 2005.

[90] Q. Yang and S. Xie, “An application of support vector regression on narrow-band interference

suppression in spread spectrum systems”, Lecture Notes Computer Science, vol. 3611, pp. 442–

450, 2005.

[91] Y. F. Deng, X. Jin, and Y. X. Zhong, “Ensemble SVR for prediction of time series”, Proceed-

ings of the 4th International Conference on Machine Learning and Cybernetics, pp. 3528–3534,

2005.

[92] J. Ni, W. Tang, Y. Xing, “A Simple Algebra for Fault Tree Analysis of Static and Dynamic

Systems,” IEEE Transactions on Reliability, vol.62, no.4, pp. 846–861, 2013.

292



[93] P. M. Frank, B. Kppen-Seliger, “Fuzzy logic and neural network applications to fault diagno-

sis”, International Journal of Approximate Reasoning, vol 16, no. 1, pp. 67–88, 1997.

[94] W. Yan, F. Xue, “Jet engine gas path fault diagnosis using dynamic fusion of multiple clas-

sifiers”, in the proceedings of IEEE World Congress on Computational Intelligence, pp.1585–

1591, 2008.

[95] T. Kobayashi, D. L. Simon, “Application of a Bank of Kalman Filters for Aircraft Engine

Fault Diagnostics”, Proceedings ASME TurboExpo, pp. 461–470, 2003.

[96] W. Xue, Y. Guo, X. Zhang, “A Bank of Kalman Filters and a Robust Kalman Filter Applied in

Fault Diagnosis of Aircraft Engine Sensor/Actuator,” Innovative Computing, Information and

Control, 10 pages, 2007.

[97] E. Naderi, N. Meskin, K. Khorasani, “Nonlinear fault diagnosis of jet engines by using a

multiple model-based approach”, Transactions of the ASME Engineering for Gas Turbines and

Power, vol. 134, no. 1, pp. 319–329, 2012.

[98] H. Valpola and J. Karhunen, “An Unsupervised Ensemble Learning Method for Nonlinear

Dynamic State-Space Models”, Neural Computation, vol. 14, pp. 2647–2692 , 2001.

[99] V. Palade, C. D. Bocaniala, and L. C. Jain, “Computational Intelligence in Fault Diagnosis”,

Advanced Information and Knowledge Processing, Springer, 2006.

[100] R. B. Joly, S. O. T. Ogaji, R. Singh, S. D. Probert, “Gas-turbine diagnostics using artificial

neural-networks for a high bypass ratio military turbofan engine”, Applied Energy, vol. 78, no.

4, pp. 397–418, 2004.

293



[101] S. O. T. Ogaji, R. Singh, “Advanced engine diagnostics using artificial neural networks”,

Applied Soft Computing, vol. 3, no. 3, pp. 259–271, 2003.

[102] P. Alexander and R. Singh, “Gas Turbine Engine Fault Diagnostics Using Fuzzy Concepts”,

Proceedings of AIAA 1st Intelligent Systems Technical Conference, ,2004.

[103] V. Palade, R. J. Patton, F. J. Uppal, J. Quevedo, S. Daley, “Fault diagnosis of an industrial

gas turbine using neuro-fuzzy methods”, Proceedings of the 15th IFAC World Congress, pp.

2477–2482, 2002.

[104] W. Yang, K. Y. Lee, S. T. Junker, H. Ghezel-Ayagh, “Fault diagnosis and accommodation

system with a hybrid model for fuel cell power plant,” IEEE Power and Energy Society General

Meeting - Conversion and Delivery of Electrical Energy in the 21st Century , 8 pages, 2008.

[105] S. O. T. Ogaji, L. Marinai, S. Sampath, R. Singh, S.D. Prober, “Gas-turbine fault diagnos-

tics: a fuzzy-logic approach,” Applied Energy, vol. 82, no. 1, pp. 81–89, 2004.

[106] P. J. Fleming, C. M., Fonseca, “Genetic algorithms in control systems engineering: a brief

introduction,” IEE Colloquium on Genetic Algorithms for Control Systems Engineering, pp.1–5,

1993.

[107] J. M. Rogero, “A Genetic algorithms based optimisation tool for the preliminary design of

gas turbine combustors,” PhD Thesis, Cranfield University, 2002.

[108] A. Chipperfield, P. Fleming, “Multiobjective gas turbine engine controller design using ge-

netic algorithms,” IEEE Transactions on Industrial Electronics, vol.43, no.5, pp.583–587, 1996.

[109] S. O. T. Ogaji, S. Sampath, L. Marinai, R. Singh, S.D. Probert, “Evolution strategy for

gas-turbine fault-diagnoses,” Applied Energy, vol. 81, no. 2, pp. 222–230, 2005.

294



[110] G. Biswas and G. Simon, N. Mahadevan, S. Narasimhan, J. Ramirez, G. Karsai, “A robust

method for hybrid diagnosis of complex systems”, 5th IFAC Symposium on Fault Detection,

Supervision and Safety of Technical Processes, pp. 1125–1131, 2005.

[111] S. Gupta, G. Biswas and J. W. Ramirez, “An Improved Algorithm for Hybrid Diagnosis of

Complex Systems,” 15th International Workshop on Principles of Diagnosis, 2004.

[112] J. F. D. Addison, S. Wermter, J. MacIntyre, “Effectiveness of feature extraction in neural

network architectures for novelty detection,” Ninth International Conference on Artiˇ cial Neu-

ral Networks, vol.2, pp. 976–981, 1999.

[113] K. Anders and J. Vedelsby, “Neural network ensembles, cross validation, and active learn-

ing,” In Advances in Neural Information Processing Systems, MIT Press, pp. 231–238, 1995.

[114] S. W. Christensen, “Ensemble construction via designed output distortion,” Lecture Notes

in Computer Science, pp. 286–295, 2003.

[115] G. Brown, J. L. Wyatt, and T. Peter “Managing diversity in regression ensembles,” Journal

of Machine Learning Research, pp. 1621–1650, 2005.

[116] H. Dutta, “Measuring diversity in regression ensembles,” Proceedings of 4th Indian inter-

national conference on artiˇ cial intelligence, 2009.

[117] M. Bishop, “Pattern recognition and machine learning,” Springer, 2006.

[118] R. Polikar, “Ensemble Learning”, Ensemble Machine Learning, Editors: Zhang, Cha and

Ma, Yunqian, pp. 1–34, 2012.

295



[119] J. Friedman, “On bias, variance, 0/1-loss, and the curse-of dimensionality”, Data Mining

and Knowledge Discovery, 1997.

[120] G. Brown, “Diversity in neural network ensembles,” PhD, University of Birmingham, UK,

2004.

[121] A. Chandra and X. Yao, “Evolving hybrid ensembles of learning machines for better gener-

alisation,”Neurocomputing, vol. 69, no. 7–9, pp. 686–700, Mar. 2006.

[122] W. Yan, Feng Xue, “Jet engine gas path fault diagnosis using dynamic fusion of multiple

classifiers,” Proceedings of the International Joint Conference on Neural Networks, pp. 1585–

1591, 2008.

[123] W. Yan, “A Multiple Classifier System for Aircraft Engine Fault Diagnosis,” PhD Thesis,

Rensselaer Polytechnic Institute, 2008.

[124] L. I. Kuncheva, “Combining pattern classifiers, methods and algorithms,” New York,Wiley,

2005.

[125] R. E. Banfield, L. O. Hall, K.W. Bowyer, andW. P. Kegelmeyer, “Ensemble diversity mea-

sures and their application to thinning,” Information Fusion, vol. 6, no. 1, pp. 49–62, 2005.

[126] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier ensembles and their

relationship with the ensemble accuracy,”Machine Learning, vol. 51, no. 2, pp. 181–207, 2003.

[127] L. I. Kuncheva, “That elusive diversity in classifier ensembles,” Pattern Recognition and

Image Analysis, Lecture Notes in Computer Science, vol. 2652, 2003, pp. 1126–1138

[128] L. Breiman, “Bagging predictors,”Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.

296



[129] P. Domingos, “Why does bagging work? a bayesian account and its implications”, Inter-

national Conference on Knowledge Discovery and Data Mining., pp. 155-158, AAAI Press,

1997.

[130] P. M. Granitto, P. F. Verdes, and H. A. Ceccatto, “Neural network ensembles: evaluation of

aggregation algorithms”, Artiˇ cial Intelligence, vol. 163, no. 2, pp. 139-162, 2005.

[131] D. Partridge and W. B. Yates, “Engineering multiversion neural-net systems”, Neural Com-

putation, vol. 8, no. 4, pp. 869-893, 1996.

[132] S. B. Kotsiantis and P. E. Pintelas, “Selective averaging of regression models”, Annals of

Mathematics, Computing & Teleinformatics, vol. 1, no. 3, pp. 65-74, 2005.

[133] N. Rooney, D. Patterson, S. Anand, A. Tsymbal, “Dynamic integration of regression mod-

els”, International Workshop on Multiple Classiˇ er Systems, vol. LNCS 3181, pp. 164-173,

Springer, 2004.

[134] P. Guilherme, F. J. V. Zuben, “The influence of the pool of candidates on the performance of

selection and combination techniques in ensembles”, International Joint Conference on Neural

Networks, pp. 10588-10595, 2006.

[135] H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik, “Boosting and other ensemble

methods,” Neural Computation, vol. 6, no. 6, pp. 1289–1301, 1994.

[136] D. H. Wolpert, “Stacked generalization,”Neural Networks, vol. 5, no. 2, pp. 241–259, 1992.

[137] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of local

experts,” Neural Computation, vol. 3, no. 1, pp. 79–87, 1991.

297



[138] M. J. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the EMalgorithm,”

Neural Computation, vol. 6, no. 2, pp. 181–214, 1994.

[139] S. Sina Tayarani-Bathaie, Z.N. Sadough Vanini, K. Khorasani, “Dynamic neural network-

based fault diagnosis of gas turbine engines”, Neurocomputing, vol. 125, pp. 153–165, 2014.

[140] S. Tayarani-Bathaie, Z. S. Vanini, K. Khorasani, “Fault detection of gas turbine engines

using dynamic neural networks,” IEEE Canadian Conference on Electrical & Computer Engi-

neering (CCECE), 5 pages, 2012.

[141] A. J. Volponi, “Use of hybrid engine modeling for on-board module performance tracking”,

Proceedings of the ASME Turbo Expo, pp. 525–533, 2005.

[142] T. Chen, J. G. Sun, “Rough set and neural network based fault diagnosis for aeroengine gas

path” ,Proceedings of the ASME Turbo Expo, pp. 535–539, 2005.

[143] I. Loboda, Y. Feldshteyn, V. Ponomaryov, “Neural networks for gas turbine fault identifi-

cation: Multilayer perceptron or radial basis network?” Proceedings of the ASME Turbo Expo,

pp. 465–475, 2011.

[144] H. Xiao, N. Eklund, K. Goebel, W. Cheetham, “Hybrid Change Detection for Aircraft En-

gine Fault Diagnostics”, Proceedings of IEEE Aerospace Conference, pp.1–10, 2007.

[145] J. Zhang, “Improved on-line process fault diagnosis through information fusion in multiple

neural networks”, Computers & Chemical Engineering, vol. 30, no. 3, pp. 558–571, 2005.

[146] W. Yan, F. Xue, “Jet engine gas path fault diagnosis using dynamic fusion of multiple clas-

sifiers,”, Proceedings of IEEE World Congress on Computational Intelligence, pp.1585–1591,

2008.

298



[147] R. Mohammadi, E. Naderi, K. Khorasani, S. Hashtrudi-Zad, “Fault diagnosis of gas turbine

engines by using dynamic neural networks”, Proceedings of the ASME Turbo Expo, pp. 365–

373, 2010.

[148] H. Xiao, N. Eklund, K. Goebel, “A data fusion approach for aircraft engine fault diagnos-

tics,” Proceedings of the ASME Turbo Expo, pp. 767–775, 2007.

[149] A. Varma, P. Bonissone, W. Yan, N. Eklund, K. Goebel, N.Iyer, S.Bonissone, “Anomaly

detection using non-parametric information”, Proceedings of the ASME Turbo Expo, pp. 813–

821, 2007.

[150] W. Donat, K. Choi, W. An, S. Singh, K. Pattipati, “Data visualization, data reduction and

classifier fusion for intelligent fault detection and diagnosis in gas turbine engines”, Proceedings

of the ASME Turbo Expo, pp. 883–892, 2007.

[151] A. J. Volponi, “Use of hybrid engine modeling for on-board module performance tracking”

Proceedings of the ASME Turbo Expo, pp. 525–533.

[152] J. Huang, M. Wang, “Multiple Classifiers Combination Model for Fault Diagnosis Using

Within-class Decision Support,”, Proceedings of Information Science and Management Engi-

neering (ISME), pp.226–229, 2010.

[153] S. C. Gu, Y. Tan and X. G. He, “Orthogonal quadratic discriminant functions for face recog-

nition”, Advances in Neural Networks, pp. 466–475, Springer, 2009.

[154] J. Amanda, C. Sharkey, “Types of Multinet System”, Multiple Classiˇ er Systems, Lecture

Notes in Computer Science, pp. 108–117, Springer, 2002.

299



[155] A. J. C.Sharkey, G. O. Chandroth, N. E. Sharkey, “A Multi-Net System for the Fault Diag-

nosis of a Diesel Engine”, Neural Computing and Applications, vol. 9, pp 152–160, 2000.

[156] K. Choi, S. Singh, A. Kodali, K. Pattipati, R. Sheppard, J. W. Namburu, S. M. Chigusa et

al., “Novel Classifier Fusion Approaches for Fault Diagnosis in Automotive Systems”, IEEE

Transaction on Instrumentation and Measurement, vol. 58, no. 3, pp. 602–611, 2009.

[157] Y. Lei, M. J. Zuo, Z. He, Y. Zi, “A multidimensional hybrid intelligent method for gear fault

diagnosis”, Expert Systems with Applications, vol. 37, no. 2, pp. 1419–1430, 2010.

[158] G. Niu, T. Han, B. S. Yang, A. Chit, Ch. Tan, “Multi-agent decision fusion for motor fault

diagnosis”, Mechanical Systems and Signal Processing, vol. 21, no. 3, pp. 1285–1299, 2007.

[159] L. Oukhellou, A. Debiolles, T. Denaux, P. Aknin, “Fault diagnosis in railway track circuits

using Dempster-Shafer classifier fusion”, Engineering Applications of Artiˇ cial Intelligence,

vol. 23, no. 1, pp. 117–128, 2010.

[160] W. C. Chen, P. P. K. Chan, W. W. Y. Ng, D. S. Yeung, “Multiple classifier systems combined

with localized generalization error for fault diagnosis of power transformers”, Proceedings of

International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1464–1469, 2010.

[161] P. P. Bonissone, N. Iyer, “Soft computing applications to prognostics and health manage-

ment (PHM): leveraging field data and domain knowledge”, Proceedings of the international

work conference on Artiˇ cial neural networks, pp. 928–939, Springer, 2007.

[162] P. Bonissone, X. Hu, R. Subbu, “A Systematic PHM Approach for Anomaly Resolution: A

Hybrid Neural Fuzzy System for Model Construction”, Proceeding of Annual Conference of the

Prognostics and Health Management Society, San Diego, pp. 2009.

300



[163] H. A. Nozari, M. A. Shoorehdeli, S. Simani, H. D. Banadaki, “Model-based robust fault

detection and isolation of an industrial gas turbine prototype using soft computing techniques”,

Neurocomputing, vol. 91, pp. 29–47, 2012.

[164] D. Xu, M. Wu, J. An, “Design of an expert system based on neural network ensembles for

missile fault diagnosis,” Proceedings of IEEE International Conference on Robotics, Intelligent

Systems and Signal Processing, vol. 2, pp. 903–908, 2003.

[165] N. C. Oza, K. Tumer, I. Y. Tumer, E. M. Huff, “Classification of Aircraft Maneuvers for

Fault Detection”, Multiple Classiˇ er Systems, Lecture Notes in Computer Science, pp. 375–

384, Springer, 2003.

[166] A. Lipnickas, “Two-Stage Neural Networks Based Classifier System for Fault Diagnosis”,

Computational Intelligence in Fault Diagnosis, Advanced Information and Knowledge Process-

ing, pp 209–230, Springer, 2006.

[167] E. Filippi, M. Costa, E. Pasero, “Multi-layer perceptron ensembles for increased perfor-

mance and fault-tolerance in pattern recognition tasks”, Proceedings of IEEE International

Conference on Neural Networks, pp. 2901–2906, 1994.

[168] R. Lowen, A. Verschoren, “An Integrated Fuzzy Inference-based Monitoring, Diagnostic,

and Prognostic System for Intelligent Control and Maintenance”, Foundations of Generic Opti-

mization, Mathematical Modelling: Theory and Applications, pp. 203–222, Springer, 2008.

[169] W. Z. Yan, J. C. Li and K. F. Goebel, “On improving performance of aircraft engine gas

path fault diagnosis”, Transactions of the Institute of Measurement and Control, vol. 31, no.3,

pp. 275–291, 2009.

301



[170] C. Alippi, G. Boracchi, V. Puig, M. Roveri, “An Ensemble Approach to Estimate the Fault-

Time Instant, ”, Proceedings of IEEE International Conference on Intelligent Control and In-

formation Processing, 2013.

[171] Ch. Ren, J. F. Yan, Z. H Li, “Improved ensemble learning in fault diagnosis system”, IEEE

International Conference on Machine Learning and Cybernetics, vol. 1, pp. 54–60, 2009.

[172] Y.L. Murphey, Z. Chen, M. Abou-Nasr, R. Baker, T. Feldkamp, I. Kolmanovsky, “Ensem-

bles of neural networks with generalization capabilities for vehicle fault diagnostics”, IEEE

International Joint Conference on Neural Networks, pp. 2188–2194, 2009.

[173] R. K. Shahzad, N. Lavesson, “Veto-based Malware Detection,” IEEE International Confer-

ence on Availability, Reliability and Security, pp.47–54, 2012.

[174] G. O. Chandroth, “Diagnostic Classifier Ensembles: Enforcing Diversity for Reliebility in

the Combination,” Sheˇ eld University, PhD Dissretation, 1999.

[175] Q. Yang, C. Liu, D. Zhang, D. Wu, “A New Ensemble Fault Diagnosis Method Based on

K-means Algorithm”, International Journal of Intelligent Engineering & Systems, vol. 5, no. 5,

2012.

[176] G. Georgoulas, T. Loutas, Ch. D. Stylios, V. Kostopoulos, “Bearing fault detection based on

hybrid ensemble detector and empirical mode decomposition”,Mechanical Systems and Signal

Processing, vol. 41, no. 1, pp. 510–525, 2013.

[177] Y. Xu, D. Zhang, Y. Wang, “Active Diverse Learning Neural Network Ensemble Approach

for Power Transformer Fault Diagnosis”, Journal of Networks, vol. 5, no. 10, October 2010.

302



[178] B. Y. Dong, G. Ren, “Analog Circuit Fault Diagnosis Using AdaBoost with SVM-Based

Component Classifers”, Advanced Materials Research, pp. 1414–1417, 2012.

[179] F. Lu, T. B. Zhu, Y. Q. Lv, “Data-Driven Based Gas Path Fault Diagnosis for Turbo-Shaft

Engine”, Applied Mechanics and Materials, vol. 249, pp. 400–404,2012.

[180] B. K. Kestner, Y. K. Lee, G. Voleti, D. N. Mavris, V. Kumar, T. Lin, “Diagnostics of Highly

Degraded Industrial Gas Turbines Using Bayesian Networks”, Proceedings of ASME Turbo

Expo, pp. 39–49, 2011.

[181] R. Ganguli, R. Verma, N. Roy, “Soft Computing Application for Gas Path Fault Isolation”,

Proceedings of ASME Turbo Expo, pp. 499–508, 2004.

[182] C. Romessis, K. Mathioudakis, “Bayesian Network Approach for Gas Path Fault Diagno-

sis”, Proceedings of ASME Turbo Expo, pp. 691–699, 2004.

[183] S. Sampath, R. Singh, “An Integrated Fault Diagnostics Model Using Genetic Algorithm

and Neural Networks”, Proceedings of ASME Turbo Expo, pp. 749–758, 2004.

[184] A. J. C. Sharkey and N. E. Sharkey, “Combining diverse neural nets,” Knowledge Eng. Rev.,

vol. 12, no. 3, pp. 1—17, 1997.

[185] A. J. C. Sharkey, “On combining artificial neural nets,” Connection Sci. vol. 8, no. 3, pp.

299–314, 1996.

[186] M. Md. Islam, Y. Xin Yao, K. Murase, “A constructive algorithm for training cooperative

neural network ensembles,” IEEE Transactions on Neural Networks , vol.14, no.4, pp. 820–834,

2003.

303



[187] L. K. Hansen, P. Salamon, ”Neural Network Ensembles,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–1001, October, 1990.

[188] A. Khotanzad and C. Chung, “Hand written digit recognition using BKS combination of

neural network classifiers,” in Proc. IEEE Southwest Symp. Image Anal. Interpretation, pp.

94—99, 1994.

[189] S. Hashem, “Optimal linear combinations of neural networks,” Neural Networks, vol. 10,

no. 4, pp. 599—614, 1997.

[190] D. W. Opitz and J. W. Shavlik, “Actively searching for an effective neural-network ensem-

ble,” Connection Science, vol. 8, no. 3, pp. 337—353, 1996.

[191] D. H. Wolpert. “Stacked generalization,” Neural Networks, 5:241–259, 1992.

[192] M. P. Perrone, L. N. Cooper, “When networks disagree: Ensemble methods for hybrid neural

networks”, Neural Networks for Speech and Image Processing pp. 126–142, 1994.

[193] G. Brown, “Diversity in neural network ensembles”, PhD, University of Birmingham, UK,

2004.

[194] G. Brown, J. Wyatt, R. Harris, X. Yao, “Diversity creation methods: a survey and categori-

sation,” Information Fusion, vol. 6, no. 1, pp. 5–20, 2005.

[195] Y. Liu and X. Yao, “Ensemble learning via negative correlation,” Neural Networks, vol. 12,

no. 10, pp. 1399–1404, 1999.

304



[196] Y. Freund and R. E. Schapire, “Decision-theoretic generalization of on-line learning and an

application to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119–139,

1997.

[197] S. Bathaei, “Fault Detection and Isolation of Jet Engines Using Neural Networks, Master

Thesis”, Concordia University, 2012.

[198] Y. A. Borgne, “Bias-Variance trade-off characterization in a classification problem What

differences with regression ”, Technical Report, Universite Libre de Bruxelles - Belgium.

[199] E. Naderi, N. Meskin, and K. Khorasani, “Nonlinear Fault Diagnosis of Jet Engines by

Using a Multiple Model-Based Approach,” J. Eng. Gas Turbines Power, 2012.

[200] R. Mohammadi, “Fault Diagnosis of Hybrid Systems with Applications to Gas Turbine

Engines,” PhD Thesis, Concordia University, 2009.

[201] F. Roli, G. Giacinto, and G. Vernazza, “Methods for DesigningMultiple Classifier Systems”,

Multiple Classiˇ er Systems, vol. 2096, pp.78–87, 2001.

[202] A. J. Volponi, H. Depold, R. Ganguli, “The use of Kalman Filters and Nural Networks

Methodologies in Gas Turbine Fault Diagnosis: A Comparison Study,” Proceeding of Turbo

Expo, pp. 8-11, 2000.

[203] P. J. Lu, M. C. Zhang , T. C. Su, “An Evaluation of Engine Fault Diagnostics Using Artificial

Neural Networks,” Proceedings of ASME Turbo Expo, 2000.

[204] V. Vapnik, “The Nature of Statistical Learning Theory,” Springer-Verlag, New York, 1995.

305



[205] B. Sun, J. Zhang, S. Zhang, “An investigation of artificial neural network (ANN) in quanti-

tative fault diagnosis for turbofan engine,” proceedings of ASME Turbo Expo, 2000.

[206] A. M. Ison, W. Li, C. J. Spanos, “Fault diagnosis of plasma etch equipment,” Semiconductor

Manufacturing Conference Proceedings, IEEE International Symposium on , vol., no., pp.B49–

B52, 6–8 Oct 1997.

[207] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. “Comparing negative binomial and recursive

partitioning models for fault prediction,” In Proceedings of the 4th international workshop on

Predictor models in software engineering , 2008.

[208] D. Jearkpaporn, D. C. Montgomery, G. C. Runger, and C. M. Borror, “Process monitor-

ing for correlated gamma-distributed data using generalized-linear-modelbased control charts,”

Quality and Reliability Engineering International, pp. 477–491, 2003.

[209] K. R. Skinner, D. C. Montgomery, and G. C. Runger, “Process monitoring for multiple count

data using generalized linear model-based control charts,” International Journal of Production

Research, pp. 1167–1180, 2003.

[210] T. Brotherton, G. Jahns, J. Jacobs, D. Wroblewski, “Prognosis of faults in gas turbine en-

gines,” Aerospace Conference Proceedings, vol. 6, pp. 163–171, 2000.

[211] A. Bajwa, and D. Kulkarni, “Engine Data Analysis Using Decision Trees, ” 36th Joint

Propulsion Conference and Exhibit, 2000.

[212] M. Aksela, “Comparison of Classifier Selection Methods for Improving Committee Perfor-

mance”, Technical Report, Helsinki University of Technology.

306



[213] X. Yao and Y. Liu, “Evolving neural network ensembles by minimization of mutual infor-

mation,” International Journal of Hybrid Intelligent Systems, 2004.

[214] R. E. Schapire, “The strength of weak learnability,” Machine Learning, vol. 5, no. 2, pp.

197–227, June 1990

[215] A. Yazdizadeh, K. Khorasani, Adaptive time delay neural network structures for nonlinear

system identification, Neurocomputing, Volume 47, Issues 14, Pages 207–240, ISSN 0925–

2312, 2002.

[216] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of

Control, Signals and Systems, 1989.

[217] S. A. Billings. “Nonlinear System Identification: NARMAX Methods in the Time, Fre-

quency, and Spatio-Temporal Domains”, Wiley, ISBN 978-1-1199-4359-4, 2013.

[218] J. Sjoberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.Y. Glorennec, H. Hjalmars-

son, A. Juditsky, “Nonlinear black-box modeling in system identification: a unified overview”,

Automatica, vol. 31, no. 12, Pages 1691–1724.

[219] G. Brown, J. Wyatt, R. Harris, X. Yao, “Diversity creation methods: a survey and categori-

sation”, Information Fusion, vol. 6, no. 1, pp. 5–20, 2005.

[220] W. Yates, D. Partridge, “Use of methodological diversity to improve neural network gener-

alization”, Neural Computing and Applications, vol. 4, no.2, pp. 114-128, 1996.

[221] D. Opitz, R. Macli, “Popular Ensemble Methods: An Empirical Study”, Journal of Artiˇ cial

Intelligence Research, vol. 11, pp. 169–198, 1999.

307



[222] D. Partridge, “Network generalization differences quantified”, Neural Networks, vol. 9, no.

2, pp. 263–271, 1996.

[223] J. Mendes-Moreira, C. Soares, A. M. Jorge, J. F. D. Sousa, “Ensemble approaches for re-

gression: A survey”, ACM Computing Surveys (CSUR), vol. 45, no. 1, article no. 10, 2012.

[224] C. J. Merz, M. J. Pazzani, “A principal components approach to combining regression esti-

mates”, Machine Learning, vol. 36, pp. 9-32, 1999.

[225] J. Kivinen, M. K. Warmuth, “Exponentiated gradient versus gradient descent for linear pre-

dictors”, Information and Computation, vol. 132, no. 1, pp. 1-63, 1997.

[226] W. Visser and M. Broonhead, “GSP, a generic object-oriented gas turbine simulation envi-

ronment,” ASME Turbo Expo, 2000.

[227] H. Saravanamuttoo, G. Rogers, and H. Cohen, “Gas Turbine Theory,” Pearson Education,

2001.

[228] L. Tang, I. Technol, X. Zhang, J. DeCastro, “Diagnosis of engine sensor, actuator and com-

ponent faults using a bank of adaptive nonlinear estimators,”, IEEE Aerospace Conference, 11

pages, 2011.

[229] I. S. Diakunchak, “Performance deteriorations in industrial gas turbines,”ASME Journal of

Engineering for Gas turbines and Power, vol. 114, no. 2, pp. 161–168, 1992.

[230] Turbotect, Internet: “http:www.turbotect.comgalleryexamples of some severe gas turbine

compressor fou.html”, Jan 12, 2015.

308



[231] C. B. Meher-Homji, A. Bromley, “Gas Turbine Axial Compressor Fouling and Wash-

ing,”Turbomachinery Symposium, 2004.

[232] N. Cumpsty, “Jet Propulsion”, Cambridge University Press, Cambridge, UK, 2003.

[233] HEATTOP Project, Work Package 1, 2007, “Definitions and Sensor Specifications.”

[234] HEATTOP Project, “Accurate High Temperature Engine Aero-Thermal Measurements for

Gas-Turbine Life Optimization, Performance and Condition Monitoring”, 2011.

[235] M. Massini, R. J. Miller, H. P. Hodson, “A New Intermittent Aspirated Probe for the Mea-

surement of Stagnation Quantities in High Temperature Gases”, Journal of Tourbomachinery,

vol. 133, no.4, 6 pages, 2011.

[236] M. Scervini, C. Rae, “An Improved Nickel Based MIMS Thermocouple for High Tempera-

ture Gas Turbine Applications”, Journal of Engineering for Gas Turbines and Power, vol. 135,

6 pages, 2013.

[237] Rolls Royce, “The Jet Engine”, ISBN 0902121235, 1996.

309



Chapter 6

Appendix

Table 6.1: Summary of MLP-NARX model construction for identification of compressor
temperature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

10 4 1200 2.7879 3.0934 2.5642 0.42469 2.1886 1.7272

10 5 1200 20.9207 21.4008 20.5946 3.1769 16.2987 13.118

10 6 1200 2.3186 3.0833 1.6198 0.35368 1.4804 1.7848

10 7 1200 19.9439 31.4826 1.5435 3.0499 6.9422 18.6998

10 8 1200 2.7822 3.6898 1.9563 0.42456 1.7735 2.144

10 4 1501 50.7861 51.1885 50.3802 7.6758 49.3208 12.1133

10 5 1501 2.4312 2.4207 2.4417 0.36956 2.0321 1.3349

10 6 1501 2.2036 2.5874 1.7366 0.33616 1.431 1.676

10 7 1501 3.6805 3.4781 3.8725 0.55892 3.205 1.8098

10 8 1501 2.177 2.4418 1.8749 0.33189 1.5631 1.5155

10 4 1801 1.5442 1.578 1.4921 0.23453 1.3122 0.81427

10 5 1801 1.6296 1.7687 1.3951 0.24789 1.3153 0.9623
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Table 6.1: Summary of MLP-NARX model construction for identification of compressor
temperature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

10 6 1801 43.6162 43.5828 43.6664 6.6003 43.6042 1.0263

10 7 1801 80.5395 79.7868 81.6561 12.1774 80.3288 5.8234

10 8 1801 2.7925 3.0573 2.3394 0.42497 2.2723 1.6235

11 4 1200 2.3929 2.8235 2.0566 0.36452 1.8417 1.528

11 5 1200 86.0789 85.6501 86.3633 13.0184 85.9729 4.2713

11 6 1200 75.2982 75.0649 75.4532 11.3917 75.2709 2.0268

11 7 1200 3.5717 4.1891 3.0927 0.54406 2.7173 2.3185

11 8 1200 4.6462 6.7439 2.3806 0.71023 2.2969 4.0394

11 4 1501 2.6398 2.5909 2.6879 0.40145 2.2234 1.4232

11 5 1501 54.435 54.7195 54.1488 8.2313 54.3311 3.3613

11 6 1501 4.0782 4.2999 3.8437 0.62113 3.1776 2.5568

11 7 1501 1.4337 1.8878 0.7389 0.21885 0.64245 1.2819

11 8 1501 9.6467 9.2376 10.0394 1.472 5.8961 7.6363

11 4 1801 1.7293 2.0072 1.1966 0.26349 1.2099 1.2357

11 5 1801 118.2379 117.8377 118.836 17.8814 118.0842 6.0289

11 6 1801 2.194 2.5873 1.4109 0.33452 1.5441 1.5588

11 7 1801 3.663 4.2249 2.6011 0.55827 2.7901 2.3738

11 8 1801 1.8026 1.8981 1.649 0.27394 1.5337 0.94741

12 4 1200 95.7778 95.3331 96.0729 14.4851 95.6603 4.7432

12 5 1200 2.2768 2.6802 1.9626 0.34685 1.7141 1.4988

12 6 1200 54.5425 54.4929 54.5755 8.2538 50.0748 21.6231

12 7 1200 2.2538 2.4209 2.1353 0.34275 1.8984 1.215

12 8 1200 2.972 3.6885 2.3778 0.45271 2.2093 1.9883
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Table 6.1: Summary of MLP-NARX model construction for identification of compressor
temperature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

12 4 1501 1.6918 1.6993 1.6842 0.25716 1.3875 0.96808

12 5 1501 18.5113 26.1153 1.7614 2.8315 6.5389 17.3208

12 6 1501 3.0609 3.0336 3.0881 0.46546 2.5609 1.677

12 7 1501 2.4458 2.7593 2.0855 0.3722 1.797 1.6594

12 8 1501 4.0489 4.1655 3.9287 0.61464 3.3299 2.3036

12 4 1801 1.8869 1.9021 1.8637 0.28662 1.5925 1.0121

12 5 1801 56.0854 55.7542 56.5789 8.4777 55.8554 5.0751

12 6 1801 69.025 68.3138 70.0787 10.4312 68.0593 11.5075

12 7 1801 115.6588 114.8802 116.8178 17.4908 114.0775 19.0634

12 8 1801 1.2931 1.4344 1.0459 0.19672 0.9086 0.92024

13 4 1200 2.6436 3.2199 2.1765 0.4035 1.7738 1.9605

13 5 1200 119.4697 118.8057 119.9101 18.0659 119.2628 7.0291

13 6 1200 1.7008 2.3915 1.0046 0.25952 0.92274 1.4289

13 7 1200 3.4807 5.1903 1.4959 0.53189 1.4496 3.1649

13 8 1200 162.0597 161.0352 162.7388 24.5091 160.0364 25.5331

13 4 1501 32.7057 33.0116 32.3966 4.943 32.5351 3.3362

13 5 1501 63.4672 63.7249 63.2083 9.5987 63.3847 3.235

13 6 1501 28.0316 31.0267 24.6732 4.2694 14.996 23.6871

13 7 1501 109.006 109.3235 108.6874 16.4872 108.6279 9.0721

13 8 1501 11.8155 12.0117 11.6159 1.7982 9.2896 7.3026

13 4 1801 109.5966 108.9625 110.5414 16.5723 109.3952 6.6417

13 5 1801 1.8502 2.167 1.2301 0.28207 0.98749 1.5649

13 6 1801 2.7206 3.0914 2.0414 0.41443 1.999 1.8457
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Table 6.1: Summary of MLP-NARX model construction for identification of compressor
temperature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

13 7 1801 1.6001 1.8165 1.2044 0.24369 1.1783 1.0827

13 8 1801 86.597 86.0953 87.3445 13.0916 86.3317 6.7745

14 4 1200 2.2693 2.4864 2.1123 0.3449 1.8897 1.2567

14 5 1200 73.5512 73.0571 73.8786 11.1207 73.3719 5.1334

14 6 1200 2.5582 3.7001 1.3351 0.39059 1.2711 2.2204

14 7 1200 64.9872 64.8008 65.1112 9.8309 64.9361 2.5782

14 8 1200 1.9399 2.3602 1.5998 0.29581 1.4046 1.3383

14 4 1501 3.0572 3.152 2.9594 0.46553 2.3882 1.9091

14 5 1501 1.0016 1.0817 0.91441 0.15228 0.73773 0.67756

14 6 1501 105.5055 105.9321 105.0769 15.9566 105.3147 6.3436

14 7 1501 108.7845 109.3749 108.1905 16.4491 106.325 23.0051

14 8 1501 111.0706 109.9238 112.2064 16.8075 105.2197 35.5797

14 4 1801 1.3272 1.4965 1.0216 0.202 1.0032 0.86898

14 5 1801 5.1862 5.8258 4.0405 0.7897 3.9202 3.396

14 6 1801 63.8587 63.2542 64.7554 9.653 63.6005 5.7383

14 7 1801 4.0198 4.6657 2.7821 0.61273 3.0276 2.6448

14 8 1801 78.5176 78.3627 78.7496 11.88 78.4966 1.8173

15 4 1200 3.0191 4.0894 2.0113 0.46038 1.839 2.3948

15 5 1200 11.5477 12.252 11.0536 1.7562 9.3723 6.7472

15 6 1200 2.6182 3.3374 2.0003 0.39905 1.8458 1.8572

15 7 1200 3.5106 5.5082 0.56647 0.53711 0.74164 3.432

15 8 1200 2.0647 2.3486 1.8516 0.31423 1.6327 1.2641

15 4 1501 70.2922 70.4178 70.1664 10.6334 58.1478 39.5013
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Table 6.1: Summary of MLP-NARX model construction for identification of compressor
temperature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

15 5 1501 44.7489 44.8696 44.6278 6.768 34.1267 28.9501

15 6 1501 2.0963 2.493 1.6039 0.31954 1.3973 1.5629

15 7 1501 4.1934 4.6624 3.6644 0.63987 2.8925 3.0366

15 8 1501 4.8707 5.5448 4.0862 0.74261 3.4636 3.425

15 4 1801 2.128 2.4083 1.6187 0.32415 1.5784 1.4274

15 5 1801 3.4745 4.2668 1.6931 0.53056 1.7334 3.0117

15 6 1801 2.2914 2.8764 0.84487 0.34997 0.87841 2.1167

15 7 1801 5.401 5.8805 4.5882 0.82196 4.3454 3.2081

15 8 1801 2.6791 2.8942 2.319 0.4076 1.9931 1.7905

Table 6.2: Summary of MLP-NARX model construction for identification of compressor
pressure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

10 4 1200 0.18213 0.26799 0.086148 1.7474 0.088784 0.15905

10 5 1200 1.0284 1.6244 0.06558 8.6029 0.46376 0.91807

10 6 1200 0.086456 0.10144 0.07482 0.7319 0.065487 0.056454

10 7 1200 0.10925 0.14425 0.077618 1.0546 0.068825 0.084862

10 8 1200 4.783 4.7566 4.8004 39.6577 4.137 2.4009

10 4 1501 0.11202 0.13932 0.075388 1.0006 0.062874 0.092727

10 5 1501 0.18394 0.19742 0.16939 1.5638 0.14116 0.11796

10 6 1501 0.22605 0.31705 0.040604 1.9488 0.053844 0.21958

10 7 1501 0.71708 0.74943 0.68318 6.1644 0.38489 0.60513

10 8 1501 0.34356 0.41064 0.25963 2.9939 0.19477 0.28306
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Table 6.2: Summary of MLP-NARX model construction for identification of compressor
pressure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

10 4 1801 0.19124 0.23213 0.1029 1.6368 0.12894 0.14126

10 5 1801 0.087609 0.084868 0.091569 0.73536 0.069388 0.053494

10 6 1801 0.99772 1.2858 0.090768 8.6028 0.37033 0.9266

10 7 1801 1.6202 1.7103 1.4746 13.4828 1.4548 0.71315

10 8 1801 2.5661 2.4638 2.7123 21.5761 1.8921 1.7337

11 4 1200 0.12354 0.16832 0.080952 1.0549 0.073862 0.099042

11 5 1200 1.1083 1.7426 0.15357 9.5529 0.40053 1.0336

11 6 1200 0.12312 0.18319 0.053833 1.0557 0.04865 0.11312

11 7 1200 0.18312 0.24641 0.12419 1.5965 0.099219 0.15394

11 8 1200 0.19815 0.30157 0.069496 1.7042 0.077238 0.18251

11 4 1501 4.438 4.4617 4.4142 36.7173 4.4304 0.26021

11 5 1501 0.15432 0.1564 0.15221 1.3054 0.12637 0.088587

11 6 1501 5.3541 5.3673 5.3409 44.3119 5.0162 1.8724

11 7 1501 1.7701 2.502 0.069162 15.2137 0.53807 1.6867

11 8 1501 0.29538 0.3922 0.14367 2.6522 0.12672 0.26686

11 4 1801 0.17184 0.19401 0.13175 1.4687 0.13447 0.10701

11 5 1801 0.0531 0.060215 0.040119 0.44925 0.033786 0.040972

11 6 1801 0.20253 0.25712 0.057921 1.745 0.063521 0.19234

11 7 1801 0.28186 0.3321 0.18207 2.4086 0.19848 0.20015

11 8 1801 0.096033 0.11708 0.049887 0.8213 0.043779 0.085488

12 4 1200 0.10272 0.13776 0.070256 0.87585 0.061253 0.08247

12 5 1200 4.7372 4.6983 4.7629 39.127 4.7172 0.43431

12 6 1200 4.8941 4.9334 4.8677 40.6131 4.7393 1.221
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Table 6.2: Summary of MLP-NARX model construction for identification of compressor
pressure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

12 7 1200 0.06571 0.087446 0.045822 0.55726 0.038364 0.053357

12 8 1200 0.13281 0.18103 0.086906 1.1381 0.078402 0.10721

12 4 1501 7.2386 7.2594 7.2178 59.9556 7.2338 0.26471

12 5 1501 0.075964 0.095119 0.049915 0.64918 0.042239 0.063149

12 6 1501 0.17796 0.24437 0.060041 1.53 0.061056 0.16719

12 7 1501 7.7776 7.8118 7.7433 64.3566 7.7663 0.42043

12 8 1501 0.068131 0.083435 0.048173 0.57905 0.03969 0.055385

12 4 1801 0.30503 0.33921 0.24495 2.6813 0.24049 0.18766

12 5 1801 1.0244 1.0791 0.93632 8.6699 0.74842 0.69957

12 6 1801 0.07754 0.095055 0.038409 0.70861 0.034802 0.069302

12 7 1801 0.10034 0.12331 0.048562 0.85987 0.051821 0.08594

12 8 1801 0.26226 0.33004 0.092335 2.2502 0.15067 0.21469

13 4 1200 6.5354 6.4513 6.5909 53.8924 6.2991 1.7418

13 5 1200 0.12091 0.17572 0.061522 1.035 0.05951 0.10526

13 6 1200 0.13152 0.15096 0.11679 1.1204 0.1015 0.083656

13 7 1200 9.1264 9.0765 9.1595 75.682 8.226 3.9534

13 8 1200 0.12625 0.1864 0.058403 1.2959 0.048202 0.11671

13 4 1501 0.11394 0.15435 0.046155 0.97906 0.042831 0.1056

13 5 1501 0.21434 0.21912 0.20944 1.8191 0.16612 0.13547

13 6 1501 0.34614 0.44288 0.20843 2.9776 0.18655 0.29163

13 7 1501 0.12039 0.13573 0.10278 1.0239 0.087382 0.082833

13 8 1501 0.18682 0.19134 0.18218 1.5853 0.15063 0.11053

13 4 1801 0.082647 0.093705 0.062483 0.70218 0.060456 0.056362
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Table 6.2: Summary of MLP-NARX model construction for identification of compressor
pressure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

13 5 1801 7.98 7.9231 8.0645 65.8928 7.942 0.77771

13 6 1801 0.11234 0.13316 0.070332 0.95974 0.078713 0.080161

13 7 1801 0.35358 0.44185 0.14012 3.0747 0.15876 0.31599

13 8 1801 0.14306 0.17946 0.053318 1.2319 0.047365 0.13501

14 4 1200 3.0543 3.0171 3.0789 25.166 3.0217 0.44535

14 5 1200 0.17808 0.23261 0.12957 1.5245 0.11519 0.13582

14 6 1200 3.177 3.1626 3.1865 26.298 2.9583 1.1585

14 7 1200 1.0844 1.7109 0.094754 9.3402 0.38975 1.0121

14 8 1200 0.19612 0.27806 0.11214 1.6802 0.107 0.16438

14 4 1501 6.0358 6.0773 5.9939 49.8937 6.0186 0.45463

14 5 1501 3.0994 3.1435 3.0546 25.5519 2.4406 1.9107

14 6 1501 5.564 5.551 5.577 46.1213 4.7338 2.9245

14 7 1501 0.12707 0.15962 0.082525 1.0881 0.077944 0.10038

14 8 1501 6.7051 6.5953 6.8133 55.8471 6.4094 1.9698

14 4 1801 0.11488 0.13506 0.075026 0.97998 0.073882 0.087987

14 5 1801 5.258 5.2637 5.2495 43.6147 3.851 3.5807

14 6 1801 7.2773 7.2458 7.3245 60.2648 7.2292 0.83576

14 7 1801 6.7024 6.6705 6.75 55.4286 6.6879 0.44111

14 8 1801 0.29521 0.33017 0.23312 2.5236 0.22838 0.1871

15 4 1200 0.45821 0.70645 0.13161 3.9451 0.20759 0.40855

15 5 1200 0.14851 0.20881 0.087736 1.2759 0.077464 0.12673

15 6 1200 2.4671 2.0366 2.7163 20.6687 1.3214 2.0837

15 7 1200 0.26738 0.37361 0.16163 2.339 0.15321 0.21917
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Table 6.2: Summary of MLP-NARX model construction for identification of compressor
pressure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

15 8 1200 0.16821 0.18365 0.15708 1.4242 0.13848 0.095501

15 4 1501 0.10891 0.12253 0.093327 0.92813 0.073243 0.080623

15 5 1501 1.9863 2.8078 0.068087 17.1378 0.62537 1.8856

15 6 1501 6.6395 6.6501 6.6288 55.0155 5.2845 4.0202

15 7 1501 0.1662 0.19207 0.13546 1.4277 0.095222 0.13624

15 8 1501 0.1144 0.15527 0.045379 0.98157 0.039342 0.10744

15 4 1801 1.6933 2.1853 0.058908 14.4662 0.60032 1.5836

15 5 1801 0.093528 0.10992 0.061178 0.79657 0.049086 0.079625

15 6 1801 0.1709 0.20455 0.10122 1.463 0.10857 0.13201

15 7 1801 1.4032 1.5127 1.2205 11.8839 1.0235 0.95995

15 8 1801 0.14999 0.18796 0.05692 1.2874 0.06694 0.13425

Table 6.3: Summary of MLP-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

10 4 1200 33.0806 36.2859 30.76 0.27904 26.7032 19.5293

10 5 1200 35.5009 37.8877 33.8172 0.29961 28.6901 20.9126

10 6 1200 36.9265 40.1687 34.598 0.31214 29.6183 22.0564

10 7 1200 296.6163 300.5436 293.9705 2.4957 294.5564 34.9023

10 8 1200 35.0706 36.4016 34.1549 0.29608 28.9322 19.8243

10 4 1501 450.7895 447.4808 454.0762 3.7936 449.116 38.8127

10 5 1501 36.5406 40.6434 31.9113 0.30842 29.8534 21.0745

10 6 1501 400.5267 398.5496 402.4953 3.3711 399.6232 26.892

10 7 1501 37.6383 42.1131 32.5504 0.31812 30.6131 21.9006
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Table 6.3: Summary of MLP-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

10 8 1501 46.1702 50.8953 40.899 0.38999 32.591 32.7088

10 4 1801 33.0561 35.247 29.4638 0.27903 27.0061 19.0656

10 5 1801 27.2712 32.668 16.0695 0.23157 16.9852 21.3395

10 6 1801 33.9831 35.9672 30.7663 0.28692 28.2217 18.9344

10 7 1801 33.5627 35.5145 30.3992 0.28338 27.7218 18.923

10 8 1801 43.4787 50.0322 31.1554 0.36597 30.8818 30.6108

11 4 1200 29.9508 32.6795 27.9854 0.25259 24.7664 16.8455

11 5 1200 37.26 38.6579 36.2987 0.31462 30.0035 22.0966

11 6 1200 487.0859 489.2236 485.6564 4.0997 486.0575 31.6409

11 7 1200 34.7142 42.2669 28.5952 0.29399 24.9275 24.1639

11 8 1200 32.9792 34.8175 31.6952 0.27836 27.0523 18.8659

11 4 1501 34.5558 38.073 30.6348 0.29169 28.7501 19.1745

11 5 1501 37.1712 41.6389 32.0838 0.31366 30.0774 21.8451

11 6 1501 34.7302 38.3597 30.6712 0.29319 28.6172 19.6817

11 7 1501 36.4697 42.0848 29.8102 0.30877 28.2442 23.0756

11 8 1501 34.4748 38.1447 30.3616 0.291 28.3878 19.5646

11 4 1801 37.7851 40.5383 33.2276 0.3189 30.3886 22.4592

11 5 1801 35.4457 37.5555 32.0193 0.29925 29.2598 20.0099

11 6 1801 28.6433 30.836 24.9939 0.24207 24.2875 15.1865

11 7 1801 38.6031 42.3721 32.1269 0.32549 30.1513 24.11

11 8 1801 35.892 38.3071 31.9263 0.303 28.9653 21.199

12 4 1200 33.3506 34.5145 32.552 0.28155 27.5514 18.7963

12 5 1200 22.7076 24.7451 21.2417 0.19127 19.597 11.4732
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Table 6.3: Summary of MLP-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

12 6 1200 38.2502 39.8544 37.1429 0.32296 30.8839 22.5706

12 7 1200 35.4754 38.3312 33.4375 0.29933 28.8403 20.6611

12 8 1200 36.7194 38.6374 35.3838 0.30998 29.8033 21.453

12 4 1501 38.526 43.1089 33.3149 0.32513 31.132 22.6986

12 5 1501 54.5015 69.7232 32.8368 0.45814 35.5807 41.2917

12 6 1501 35.6932 40.9638 29.4908 0.30207 28.2363 21.8374

12 7 1501 37.3729 42.2716 31.7226 0.31531 30.0193 22.2654

12 8 1501 34.9172 38.652 30.7288 0.29474 28.8567 19.6629

12 4 1801 35.1419 37.7757 30.7687 0.29653 28.6724 20.322

12 5 1801 33.468 36.0716 29.1269 0.28292 26.817 20.0271

12 6 1801 32.1788 34.1415 28.9847 0.27168 26.3386 18.4897

12 7 1801 36.1885 38.7392 31.9808 0.30542 29.4998 20.9646

12 8 1801 38.4828 43.0119 30.4461 0.32429 29.0541 25.2388

13 4 1200 30.3273 32.5552 28.7471 0.25624 25.2177 16.8495

13 5 1200 36.9635 40.7537 34.2057 0.31184 29.2038 22.663

13 6 1200 37.9818 39.7273 36.7728 0.32063 31.1684 21.7095

13 7 1200 36.8154 37.8332 36.1214 0.31086 30.3545 20.8357

13 8 1200 535.0246 538.3124 532.8227 4.5031 533.7736 36.5728

13 4 1501 36.7224 40.3748 32.6612 0.31007 30.2088 20.8832

13 5 1501 37.1962 41.1086 32.8176 0.31413 29.4022 22.7868

13 6 1501 50.6195 64.5005 31.0369 0.42555 31.4409 39.6778

13 7 1501 32.8622 37.8066 27.0237 0.27799 26.1423 19.9158

13 8 1501 328.2111 332.4521 323.9117 2.7643 256.0869 205.3194
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Table 6.3: Summary of MLP-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

13 4 1801 35.7897 37.8966 32.3713 0.30219 29.4593 20.3271

13 5 1801 35.4896 37.5681 32.1187 0.29964 29.3142 20.008

13 6 1801 35.2558 37.8341 30.9863 0.29749 29.1605 19.8183

13 7 1801 35.8739 37.9694 32.4761 0.30288 29.8119 19.9579

13 8 1801 35.6625 37.9595 31.9062 0.30103 29.27 20.377

14 4 1200 36.1804 37.6448 35.1709 0.30545 29.5687 20.8533

14 5 1200 49.6096 67.0212 33.2873 0.41704 32.6444 37.362

14 6 1200 38.4341 43.8615 34.3449 0.32408 29.474 24.6711

14 7 1200 36.8356 41.247 33.5761 0.31076 28.5198 23.3166

14 8 1200 36.251 39.1543 34.18 0.30591 29.075 21.655

14 4 1501 37.8188 41.6659 33.5301 0.31932 30.836 21.8988

14 5 1501 38.6098 43.9471 32.4005 0.32567 30.531 23.6381

14 6 1501 37.3452 41.0259 33.2568 0.31536 30.3182 21.8091

14 7 1501 35.2852 39.8261 30.0624 0.29771 28.2574 21.1355

14 8 1501 34.1887 38.061 29.8146 0.28855 27.9037 19.7582

14 4 1801 712.4439 714.7679 708.9416 5.9976 696.3584 150.5617

14 5 1801 59.9799 60.5449 59.1218 0.50693 39.5671 45.0855

14 6 1801 31.0426 33.5547 26.8344 0.26237 25.6354 17.5091

14 7 1801 32.3665 34.4462 28.9665 0.27318 27.0184 17.8242

14 8 1801 37.9365 40.5811 33.5789 0.32019 30.9341 21.9641

15 4 1200 33.4166 34.9402 32.3616 0.2821 27.4471 19.0643

15 5 1200 37.1318 38.0837 36.4838 0.31356 30.0931 21.7562

15 6 1200 713.1613 713.904 712.666 6.0037 712.6353 27.3897
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Table 6.3: Summary of MLP-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

15 7 1200 36.0034 39.0281 33.8383 0.30378 28.8403 21.5555

15 8 1200 35.9989 39.9228 33.1274 0.30419 28.7657 21.6474

15 4 1501 37.8108 41.6367 33.5485 0.31928 30.6306 22.1718

15 5 1501 33.6943 37.7805 29.0353 0.28434 27.3686 19.6569

15 6 1501 33.0052 36.1817 29.4862 0.27866 27.3713 18.4465

15 7 1501 40.6191 49.4791 29.1738 0.34338 28.7374 28.7115

15 8 1501 36.169 40.2415 31.5722 0.30564 29.2187 21.3217

15 4 1801 34.3201 36.4397 30.867 0.28979 28.6673 18.8725

15 5 1801 36.4057 38.5832 32.8681 0.30735 30.2351 20.2818

15 6 1801 38.3364 41.0148 33.922 0.32357 31.2112 22.2645

15 7 1801 35.8865 38.54 31.4873 0.30286 29.1371 20.9527

15 8 1801 36.1209 38.2355 32.6914 0.30498 29.4963 20.8526

Table 6.4: Summary of MLP-NARX model construction for identification of turbine temper-
ature

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

10 4 1200 86.2842 84.782 87.2708 4.7602 78.8147 35.1228

10 5 1200 114.9699 110.2181 118.0298 6.3535 105.4733 45.7618

10 6 1200 86.2803 84.7756 87.2684 4.8021 77.8133 37.2805

10 7 1200 930.9048 920.7743 937.5939 50.5021 774.085 517.1704

10 8 1200 1095.165 1088.7004 1099.4513 58.987 1000.969 444.4248

10 4 1501 577.7018 579.4093 575.9881 31.4064 528.7571 232.7517

10 5 1501 2364.3461 2370.6231 2358.0483 128.8574 2362.5123 93.1191

10 6 1501 229.9371 222.5503 237.0985 13.0265 200.8767 111.9097
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Table 6.4: Summary of MLP-NARX model construction for identification of turbine temper-
ature

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

10 7 1501 1181.8417 1192.916 1170.6551 64.0139 1176.33 114.0256

10 8 1501 130.4287 133.0368 127.7656 7.3695 114.9828 61.578

10 4 1801 70.7158 69.4678 72.5486 3.9678 62.8399 32.438

10 5 1801 656.2278 642.3161 676.5703 35.5456 648.928 97.6245

10 6 1801 233.7606 230.9564 237.9072 13.1615 205.3947 111.6297

10 7 1801 1005.5096 997.4026 1017.5558 54.4685 1000.8644 96.5564

10 8 1801 256.2628 271.5278 231.471 14.6062 215.3638 138.9081

11 4 1200 139.4849 143.23 136.9328 7.869 125.017 61.8714

11 5 1200 1261.2341 1253.7716 1266.1819 69.0058 1113.1521 593.0608

11 6 1200 378.4427 379.7617 377.5612 21.1857 355.8449 128.8362

11 7 1200 429.5365 420.8968 435.1979 23.7517 386.4996 187.4336

11 8 1200 455.3462 469.0084 446.0108 25.2523 443.7013 102.3366

11 4 1501 740.6979 740.5685 740.8273 40.5325 731.7059 115.084

11 5 1501 80.8497 82.3675 79.3018 4.4279 72.4651 35.8597

11 6 1501 131.4283 124.118 138.3574 7.3447 118.1782 57.5189

11 7 1501 214.2128 215.6458 212.7692 12.1863 184.8479 108.2694

11 8 1501 801.0144 815.2247 786.5377 43.3282 661.5941 451.6474

11 4 1801 1495.9311 1487.2264 1508.9012 81.2455 1492.1397 106.4552

11 5 1801 1962.6822 1956.7733 1971.5173 107.3316 1962.3915 33.7822

11 6 1801 182.0535 173.7044 193.9106 10.2063 157.2423 91.7668

11 7 1801 1383.8495 1374.9559 1397.091 75.0955 1379.3474 111.5538

11 8 1801 88.8737 86.5153 92.3001 4.9587 80.6425 37.3602

12 4 1200 417.1126 412.9852 419.8402 22.6221 415.5116 36.5166
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Table 6.4: Summary of MLP-NARX model construction for identification of turbine temper-
ature

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

12 5 1200 228.9008 233.9692 225.4605 12.8634 204.535 102.7838

12 6 1200 301.6147 290.2484 308.9559 16.6357 277.4068 118.4125

12 7 1200 273.0264 264.6687 278.4559 15.2701 239.1907 131.6702

12 8 1200 96.9854 93.8887 98.995 5.3556 91.7 31.585

12 4 1501 153.2034 142.4869 163.2243 8.6239 133.9317 74.4004

12 5 1501 90.9468 84.5294 96.9441 5.0702 81.4169 40.5358

12 6 1501 1302.4153 1301.6046 1303.226 71.2834 1290.9371 172.5598

12 7 1501 133.5628 127.9617 138.9417 7.5297 120.6802 57.2398

12 8 1501 890.1844 900.5047 879.7361 48.23 658.0775 599.5683

12 4 1801 1361.443 1351.1735 1376.7119 73.9571 1338.3089 249.9539

12 5 1801 460.9805 454.8895 469.9741 24.6622 449.3605 102.8677

12 6 1801 768.8118 771.8882 764.1713 42.5231 709.318 296.5953

12 7 1801 155.7693 159.994 149.2043 8.8018 129.8104 86.1151

12 8 1801 159.2104 154.2648 166.3573 8.7893 150.7838 51.1184

13 4 1200 222.7684 227.2427 219.7365 12.5666 194.0663 109.3984

13 5 1200 1054.4226 1036.3916 1066.2673 57.1032 993.248 353.9877

13 6 1200 74.6131 73.1871 75.5483 4.1297 67.4487 31.908

13 7 1200 1616.5065 1609.1162 1621.4119 88.0136 1392.8149 820.6

13 8 1200 346.7517 336.1981 353.6087 18.9061 321.841 129.0761

13 4 1501 652.3556 655.5736 649.1194 35.4576 613.8091 220.9581

13 5 1501 41.9615 40.4995 43.3752 2.317 37.1441 19.5246

13 6 1501 650.2679 653.681 646.8345 34.8309 604.7047 239.1645

13 7 1501 1060.3711 1066.0517 1054.656 58.2532 1048.166 160.4476
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Table 6.4: Summary of MLP-NARX model construction for identification of turbine temper-
ature

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

13 8 1501 1048.6294 1058.7777 1038.3751 56.7266 1042.463 113.573

13 4 1801 1218.9509 1213.006 1227.8192 66.3182 983.1694 720.6888

13 5 1801 260.3611 258.2062 263.5621 14.482 241.341 97.7015

13 6 1801 243.6969 227.401 266.2894 13.4599 220.9837 102.7516

13 7 1801 878.8761 874.1466 885.927 48.1715 777.9259 409.0358

13 8 1801 239.4609 243.237 233.6791 13.1819 219.1003 96.6421

14 4 1200 130.0401 123.4004 134.282 7.1211 117.3991 55.9367

14 5 1200 173.9732 168.3939 177.5934 9.6026 158.1745 72.4519

14 6 1200 754.8172 747.7665 759.4788 40.8737 750.8711 77.0947

14 7 1200 911.8461 901.548 918.6436 50.1024 727.9573 549.2194

14 8 1200 247.1411 293.9019 210.2895 14.3173 183.7063 165.3476

14 4 1501 808.2084 818.3531 797.928 43.5568 799.5518 117.9933

14 5 1501 351.15 419.351 265.9369 19.1711 303.198 177.1661

14 6 1501 910.9752 921.3106 900.5142 49.2092 904.0685 111.9824

14 7 1501 228.2557 209.1028 245.9327 12.6991 203.1249 104.1371

14 8 1501 826.0468 816.3956 835.5929 46.2767 573.3683 594.7436

14 4 1801 217.5181 191.1598 251.9547 11.9087 190.1916 105.5698

14 5 1801 115.208 108.5372 124.5511 6.3797 106.3547 44.2969

14 6 1801 803.6739 791.8736 821.066 43.49 620.2961 511.0885

14 7 1801 1892.8008 1884.2143 1905.615 103.0585 1890.6459 90.3081

14 8 1801 786.7352 782.2075 793.4819 42.7907 615.6425 489.9147

15 4 1200 735.0109 725.2283 741.4574 39.7693 592.5796 434.9178

15 5 1200 72.3041 89.5903 57.9933 4.2701 54.71 47.2805
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Table 6.4: Summary of MLP-NARX model construction for identification of turbine temper-
ature

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

15 6 1200 132.7953 125.7867 137.2665 7.3261 123.4316 48.9901

15 7 1200 570.6931 562.4994 576.0877 30.5359 556.9198 124.644

15 8 1200 1056.8093 1049.6544 1061.5499 57.4449 1054.6707 67.211

15 4 1501 69.4952 66.8344 72.0596 3.8014 62.6495 30.0821

15 5 1501 1264.9367 1276.0041 1253.7641 68.5253 1258.453 127.9308

15 6 1501 63.7402 62.3916 65.0617 3.5802 57.0702 28.3914

15 7 1501 2615.1995 2627.8768 2602.452 142.2172 2610.3347 159.4672

15 8 1501 979.3735 981.0944 977.6485 53.3414 778.5604 594.2507

15 4 1801 225.0481 221.0978 230.8501 12.2838 220.775 43.654

15 5 1801 175.4078 169.6901 183.6554 9.5226 160.1606 71.5416

15 6 1801 58.1133 60.3584 54.5705 3.2513 46.0157 35.4982

15 7 1801 1155.4365 1144.4554 1171.7242 62.6479 953.6273 652.5108

15 8 1801 1302.7874 1294.6493 1314.9068 70.9242 1301.2054 64.1943

Table 6.5: Summary of MLP-NARX model construction for identification of turbine pressure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

10 4 1200 0.61736 0.84759 0.39549 16.6077 0.34541 0.51178

10 5 1200 0.74108 0.9734 0.53274 16.2669 0.48182 0.56317

10 6 1200 23.6913 23.5281 23.7995 488.3952 23.6296 1.7098

10 7 1200 2.3141 2.2167 2.3768 48.6664 2.0344 1.103

10 8 1200 0.86353 1.3064 0.32455 19.4462 0.32792 0.79898

10 4 1501 16.231 16.2678 16.194 335.6864 14.3999 7.4904

10 5 1501 0.51204 0.54052 0.48185 10.9378 0.4084 0.3089
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Table 6.5: Summary of MLP-NARX model construction for identification of turbine pressure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

10 6 1501 1.6483 1.677 1.6191 36.5713 1.2807 1.0378

10 7 1501 12.7909 12.9199 12.6605 262.9978 9.9073 8.0917

10 8 1501 32.7956 32.8578 32.7332 678.0984 32.7683 1.3393

10 4 1801 0.29078 0.34912 0.16889 6.3238 0.18091 0.22769

10 5 1801 0.41103 0.45438 0.33563 8.8664 0.29668 0.28453

10 6 1801 25.8255 25.6233 26.1261 531.1693 25.6994 2.5502

10 7 1801 14.0682 13.9438 14.253 289.5548 14.0089 1.291

10 8 1801 1.3633 1.7122 0.49871 30.0466 0.79375 1.1086

11 4 1200 1.336 1.4292 1.2702 28.9235 1.066 0.80557

11 5 1200 1.8308 1.8435 1.8222 38.9351 1.5011 1.0482

11 6 1200 14.8961 14.8353 14.9365 307.627 11.9244 8.9291

11 7 1200 0.37046 0.53256 0.19929 8.1656 0.18305 0.32213

11 8 1200 2.4268 2.9471 2.0065 53.3629 1.5214 1.8909

11 4 1501 0.93895 0.9567 0.92084 20.2668 0.74825 0.56732

11 5 1501 0.96676 0.98362 0.94958 22.753 0.77654 0.57594

11 6 1501 0.28118 0.33468 0.21468 7.1195 0.1725 0.22208

11 7 1501 0.6162 0.71211 0.50223 13.3094 0.41847 0.45239

11 8 1501 9.7346 9.9208 9.5446 198.9315 9.5818 1.718

11 4 1801 17.3306 17.2907 17.3904 358.081 12.6387 11.86

11 5 1801 23.606 23.4847 23.7869 487.1657 19.1527 13.8015

11 6 1801 0.91825 1.0085 0.76293 19.8547 0.74643 0.53489

11 7 1801 25.6889 25.5127 25.9511 529.416 25.6146 1.9525

11 8 1801 0.79725 0.965 0.43809 17.5232 0.50798 0.61456
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Table 6.5: Summary of MLP-NARX model construction for identification of turbine pressure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

12 4 1200 0.68867 0.90247 0.49761 15.193 0.44739 0.52364

12 5 1200 1.0516 1.2086 0.93251 23.0321 0.76095 0.72601

12 6 1200 0.93991 1.4069 0.39147 20.8212 0.38121 0.85927

12 7 1200 0.62931 0.95104 0.23929 17.1666 0.21893 0.5901

12 8 1200 1.5321 1.7145 1.3974 33.2073 1.1832 0.97346

12 4 1501 6.3269 6.5764 6.067 138.2268 3.6285 5.1839

12 5 1501 0.858 0.98273 0.71164 19.1013 0.67116 0.53461

12 6 1501 0.92128 1.2058 0.49312 20.2576 0.4038 0.82821

12 7 1501 16.0708 16.1816 15.9593 330.8824 16.0099 1.3979

12 8 1501 10.0099 10.1097 9.909 205.8049 9.9552 1.0452

12 4 1801 0.49299 0.44647 0.55554 10.3286 0.4192 0.25949

12 5 1801 0.33884 0.40479 0.20299 8.3306 0.20063 0.2731

12 6 1801 9.4812 9.0519 10.0912 198.5974 7.7466 5.4674

12 7 1801 0.38883 0.46908 0.21877 8.517 0.2126 0.32562

12 8 1801 0.50515 0.64118 0.14539 11.2103 0.16013 0.47917

13 4 1200 11.9467 11.7735 12.0607 244.2561 11.4902 3.2713

13 5 1200 30.3314 30.205 30.4153 626.7339 30.2972 1.4392

13 6 1200 0.89159 0.96697 0.83761 19.4837 0.73062 0.5111

13 7 1200 0.3794 0.51465 0.25175 8.2715 0.22773 0.3035

13 8 1200 4.3377 6.411 1.9915 95.4077 2.5099 3.5384

13 4 1501 0.87233 1.08 0.59608 22.0664 0.45508 0.74434

13 5 1501 34.6874 34.7931 34.5814 717.0989 34.6576 1.4377

13 6 1501 0.29812 0.34907 0.23639 6.4572 0.20653 0.21502
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Table 6.5: Summary of MLP-NARX model construction for identification of turbine pressure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

13 7 1501 9.6314 9.8002 9.4594 197.1338 9.506 1.5491

13 8 1501 0.66389 0.80207 0.48789 14.5958 0.39815 0.53133

13 4 1801 26.3962 26.2536 26.6087 544.9101 26.3524 1.5206

13 5 1801 4.0733 4.5273 3.2757 90.9811 2.8369 2.9234

13 6 1801 1.2687 1.3849 1.0709 29.2593 0.9786 0.80752

13 7 1801 3.4399 4.3475 1.1073 76.2508 1.6667 3.0097

13 8 1801 13.908 13.9529 13.8404 288.8155 13.8941 0.62199

14 4 1200 1.2754 1.3011 1.258 27.2448 1.083 0.67374

14 5 1200 0.71459 0.95191 0.49712 17.192 0.42187 0.57687

14 6 1200 1.5257 1.7439 1.361 33.8264 0.73711 1.336

14 7 1200 17.4743 17.5339 17.4345 361.3258 15.4905 8.0881

14 8 1200 6.3131 7.5319 5.349 137.3551 2.9154 5.6005

14 4 1501 1.1009 1.0743 1.1269 23.6802 0.9099 0.61987

14 5 1501 26.9401 27.0032 26.8769 557.362 26.9103 1.2686

14 6 1501 21.7712 21.8919 21.6497 448.5972 17.4501 13.0205

14 7 1501 28.2245 28.3741 28.074 581.8819 28.1509 2.0375

14 8 1501 3.0235 3.9004 1.7508 66.5406 1.3466 2.7075

14 4 1801 21.9488 21.7796 22.2004 452.0385 21.8723 1.8322

14 5 1801 1.5451 1.9074 0.71433 34.0482 0.99151 1.1852

14 6 1801 0.39968 0.49498 0.17828 8.7999 0.22656 0.32932

14 7 1801 1.5624 1.8584 0.95995 34.5175 1.0387 1.1674

14 8 1801 38.1375 37.9635 38.3972 787.4985 38.07 2.2677

15 4 1200 48.9207 48.579 49.1471 1011.6081 48.8172 3.1811
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Table 6.5: Summary of MLP-NARX model construction for identification of turbine pressure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

15 5 1200 0.68459 0.77571 0.61644 14.7063 0.54185 0.41847

15 6 1200 19.1261 19.0117 19.2019 394.8097 19.0931 1.1227

15 7 1200 21.5211 21.4103 21.5946 444.6303 21.4786 1.3518

15 8 1200 11.3364 11.2663 11.3829 233.8526 11.2221 1.6061

15 4 1501 16.4788 16.8723 16.0754 337.7952 15.4934 5.614

15 5 1501 20.3829 20.4886 20.2766 419.8953 19.4243 6.1784

15 6 1501 0.92138 0.93858 0.90384 19.9011 0.71491 0.58134

15 7 1501 1.5704 1.8169 1.277 34.3909 1.0678 1.1517

15 8 1501 19.2311 19.3101 19.1517 396.3926 16.4121 10.0254

15 4 1801 1.0687 1.2234 0.78097 23.3224 0.70858 0.80016

15 5 1801 36.1745 36.1267 36.2461 748.913 35.5076 6.9153

15 6 1801 15.1982 15.0784 15.3761 312.8291 12.9857 7.8979

15 7 1801 3.2803 3.133 3.4896 69.4147 2.8556 1.6144

15 8 1801 0.78905 0.86334 0.66211 17.0243 0.64414 0.4558

Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

10 4 1200 37.1059 37.0562 37.139 5.6904 37.0772 1.4608

10 5 1200 39.874 39.8252 39.9065 6.1147 39.8422 1.5937

10 6 1200 12.0564 11.4695 12.432 1.8955 10.2058 6.4196

10 7 1200 12.1397 11.3374 12.646 1.9114 10.2748 6.4663

10 8 1200 13.1253 13.5237 12.8529 2.0499 10.6265 7.7051

10 4 1501 11.4065 12.0461 10.7283 1.7111 9.9734 5.5362
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

10 5 1501 14.0235 13.9928 14.054 2.1509 13.9973 0.85648

10 6 1501 11.8029 11.1789 12.3959 1.8569 10.0777 6.1449

10 7 1501 15.7584 15.7401 15.7768 2.4168 15.7445 0.66356

10 8 1501 12.2912 11.6931 12.8619 1.9323 10.4459 6.4785

10 4 1801 63.811 63.7799 63.8576 9.7862 63.7726 2.214

10 5 1801 11.7002 11.4894 12.0097 1.8296 9.4859 6.8503

10 6 1801 11.996 11.2131 13.0834 1.887 10.2332 6.2609

10 7 1801 12.2488 11.5384 13.2437 1.9238 10.3576 6.5396

10 8 1801 12.1271 11.4897 13.0253 1.9028 10.2038 6.5547

11 4 1200 56.9408 56.8806 56.9809 8.7324 56.9053 2.0113

11 5 1200 25.2383 27.8302 23.3522 3.7799 21.6501 12.9731

11 6 1200 11.8853 11.6766 12.0224 1.8638 9.9086 6.5646

11 7 1200 11.6016 11.2514 11.8291 1.8211 9.7301 6.3194

11 8 1200 12.1749 12.1503 12.1912 1.8673 12.1626 0.54588

11 4 1501 37.2969 37.2635 37.3302 5.7197 37.2683 1.4594

11 5 1501 13.399 13.3544 13.4435 2.0551 13.3593 1.0313

11 6 1501 6.6793 6.0077 7.2897 1.0626 4.9412 4.495

11 7 1501 12.0362 11.5564 12.4979 1.8908 10.2024 6.3871

11 8 1501 7.8293 7.8104 7.8483 1.2009 7.815 0.47431

11 4 1801 29.0455 29.0235 29.0784 4.4547 29.0199 1.2184

11 5 1801 12.364 13.0864 11.1927 1.8554 10.87 5.8927

11 6 1801 19.2164 19.1991 19.2424 2.9472 19.1974 0.85332

11 7 1801 29.0256 29.0069 29.0537 4.4516 29.0049 1.098
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

11 8 1801 12.4443 11.7598 13.4063 1.9533 10.5 6.6803

12 4 1200 45.7386 45.6973 45.7662 7.014 45.7157 1.4474

12 5 1200 42.7625 42.7259 42.7868 6.5578 42.7415 1.3376

12 6 1200 48.1793 44.6089 50.418 7.4113 41.0336 25.2527

12 7 1200 15.0275 16.1381 14.2394 2.2546 13.2045 7.1752

12 8 1200 12.2575 11.787 12.5612 1.9251 10.3639 6.546

12 4 1501 14.0441 14.9103 13.1202 2.1049 12.1566 7.0335

12 5 1501 79.246 79.1979 79.2941 12.1528 79.2065 2.5028

12 6 1501 6.3564 6.4083 6.3039 0.96243 5.8674 2.4452

12 7 1501 20.0476 20.0226 20.0726 3.0746 20.0277 0.89241

12 8 1501 9.4697 9.8834 9.0367 1.4226 8.373 4.4242

12 4 1801 13.1183 13.1136 13.1253 2.0118 13.112 0.40691

12 5 1801 9.983 10.5289 9.1026 1.4995 8.8604 4.6001

12 6 1801 8.3703 8.8575 7.5806 1.2595 7.416 3.8821

12 7 1801 12.7812 13.5392 11.5508 1.918 11.2396 6.0864

12 8 1801 18.9443 18.9289 18.9674 2.9055 18.9278 0.79126

13 4 1200 43.6067 43.5666 43.6334 6.6873 43.5847 1.385

13 5 1200 47.9875 47.9494 48.0129 7.3591 47.9644 1.4907

13 6 1200 14.2436 14.1938 14.2766 2.1846 14.2147 0.90659

13 7 1200 11.5982 12.2702 11.1279 1.7414 10.2404 5.4462

13 8 1200 24.139 24.1057 24.1611 3.702 24.1213 0.925

13 4 1501 46.4519 46.4246 46.4792 7.1235 46.4289 1.4618

13 5 1501 9.4095 9.7953 9.007 1.4151 8.3934 4.254
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

13 6 1501 12.3984 12.368 12.4287 1.9016 12.3726 0.79832

13 7 1501 34.4792 34.4539 34.5045 5.2874 34.455 1.2909

13 8 1501 13.2331 13.2156 13.2506 2.0296 13.2201 0.58747

13 4 1801 23.3831 13.3664 33.1547 3.7213 14.6371 18.2382

13 5 1801 60.4617 60.4332 60.5046 9.2727 60.429 1.9889

13 6 1801 16.0629 17.2239 14.1427 2.4069 13.8547 8.1294

13 7 1801 10.9775 11.6518 9.8795 1.6473 9.6438 5.2452

13 8 1801 21.8927 21.8778 21.915 3.3576 21.8771 0.82585

14 4 1200 45.7869 45.7387 45.819 7.0215 45.7609 1.5415

14 5 1200 67.014 66.9447 67.0601 10.2768 66.9751 2.2809

14 6 1200 11.2758 12.1485 10.6547 1.6916 9.8599 5.4713

14 7 1200 8.9071 9.3756 8.5807 1.3392 7.9384 4.0402

14 8 1200 16.784 18.1357 15.8194 2.5173 14.702 8.098

14 4 1501 79.8436 79.7902 79.8971 12.2445 79.7999 2.6432

14 5 1501 46.0183 45.9928 46.0437 7.0571 45.9959 1.435

14 6 1501 13.3598 13.9538 12.7378 2.005 11.7543 6.3511

14 7 1501 6.5458 6.3632 6.7235 1.0328 4.5504 4.7062

14 8 1501 20.8594 20.8366 20.8822 3.1987 20.8365 0.97668

14 4 1801 58.5788 58.55 58.622 8.9837 58.5435 2.0316

14 5 1801 14.8626 15.8977 13.157 2.2276 12.8685 7.4375

14 6 1801 55.332 55.3061 55.3709 8.4857 55.303 1.792

14 7 1801 75.0613 75.0327 75.1041 11.5113 75.0253 2.325

14 8 1801 17.8698 19.0079 16.0106 2.6806 15.6776 8.5772
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

15 4 1200 11.6869 11.6778 11.693 1.7922 11.6813 0.36322

15 5 1200 68.5693 68.5011 68.6146 10.5155 68.5326 2.243

15 6 1200 15.5082 16.9006 14.5065 2.3241 13.3914 7.8229

15 7 1200 12.6432 13.4383 12.0844 1.8977 11.1385 5.9831

15 8 1200 17.5365 17.4983 17.5619 2.6892 17.5116 0.93515

15 4 1501 61.7851 61.7418 61.8285 9.4752 61.748 2.1426

15 5 1501 14.3016 15.1684 13.3781 2.1437 12.3917 7.1412

15 6 1501 10.3437 10.7724 9.8961 1.5535 9.1452 4.8338

15 7 1501 18.489 18.4641 18.5138 2.8356 18.4688 0.8639

15 8 1501 11.1698 11.145 11.1945 1.7132 11.1494 0.67529

15 4 1801 26.4547 26.4409 26.4755 4.0573 26.4412 0.84657

15 5 1801 35.5596 35.5403 35.5887 5.4535 35.5373 1.2608

15 6 1801 48.6086 48.591 48.6351 7.4545 48.5855 1.4992

15 7 1801 9.8646 9.8459 9.8926 1.5131 9.843 0.65294

15 8 1801 13.8776 13.8611 13.9023 2.1285 13.8595 0.70739

16 4 1200 13.7285 13.733 13.7255 2.1037 7.1855 11.6998

16 5 1200 75.0503 74.9818 75.096 11.5093 75.0129 2.371

16 6 1200 14.5399 15.8235 13.6177 2.1796 12.6224 7.2182

16 7 1200 69.4502 69.3915 69.4893 10.6502 69.4167 2.1583

16 8 1200 15.8408 15.8061 15.8638 2.4295 15.822 0.77032

16 4 1501 3.6593 3.6546 3.6641 0.56134 3.6565 0.14423

16 5 1501 78.2691 78.221 78.3172 12.0026 78.2299 2.4789

16 6 1501 13.1059 13.0767 13.1351 2.0101 13.0814 0.80203
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

16 7 1501 14.2931 14.2692 14.317 2.1922 14.2735 0.74841

16 8 1501 13.7794 14.3995 13.1296 2.0683 12.1486 6.5037

16 4 1801 33.953 33.932 33.9844 5.2071 33.9296 1.2588

16 5 1801 48.1168 48.0993 48.1431 7.3789 48.094 1.4814

16 6 1801 12.6367 13.4062 11.3846 1.8958 11.0585 6.1162

16 7 1801 64.5851 64.5581 64.6256 9.9049 64.5535 2.02

16 8 1801 11.1573 11.7728 10.1639 1.6756 9.8167 5.3035

17 4 1200 42.091 42.0505 42.118 6.4548 42.0689 1.3665

17 5 1200 53.4853 53.4287 53.523 8.2025 53.4529 1.8609

17 6 1200 64.2304 64.1697 64.2709 9.8502 64.198 2.0416

17 7 1200 21.1758 21.1415 21.1986 3.2476 21.1578 0.87324

17 8 1200 14.1546 15.0486 13.5262 2.1253 12.5055 6.6318

17 4 1501 39.3369 39.3128 39.3611 6.0323 39.3127 1.3806

17 5 1501 61.5826 61.5434 61.6219 9.444 61.5514 1.9606

17 6 1501 57.1463 57.1076 57.1849 8.7636 57.1156 1.8737

17 7 1501 69.0996 69.0603 69.1388 10.5968 69.0662 2.148

17 8 1501 21.6675 22.835 20.4326 3.2508 19.0703 10.2878

17 4 1801 12.541 12.5366 12.5478 1.9232 12.535 0.39016

17 5 1801 18.193 16.2431 20.7788 2.8048 14.8732 10.4789

17 6 1801 17.4117 18.6292 15.4048 2.6095 15.0821 8.7018

17 7 1801 12.0782 12.8119 10.8846 1.8126 10.6159 5.7616

17 8 1801 15.4996 16.3867 14.0637 2.3269 13.6952 7.2592

18 4 1200 11.4663 11.4393 11.4842 1.7583 11.4481 0.64484
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

18 5 1200 32.8715 32.8369 32.8946 5.041 32.8541 1.0707

18 6 1200 41.2334 41.2004 41.2554 6.3233 41.2136 1.2776

18 7 1200 36.0543 36.0147 36.0807 5.5291 36.0321 1.2657

18 8 1200 14.3084 14.2748 14.3308 2.1944 14.2905 0.71583

18 4 1501 11.0357 11.0242 11.0473 1.6926 11.0272 0.43441

18 5 1501 78.3479 78.3017 78.3941 12.0152 78.3094 2.4583

18 6 1501 67.9008 67.8587 67.9428 10.4129 67.8668 2.147

18 7 1501 69.37 69.3307 69.4092 10.6382 69.3365 2.1556

18 8 1501 11.0717 11.5356 10.5872 1.6621 9.7577 5.2326

18 4 1801 10.5559 10.552 10.5618 1.6188 10.5506 0.33704

18 5 1801 67.2312 67.2056 67.2697 10.3108 67.1992 2.0747

18 6 1801 42.3215 42.3059 42.345 6.4904 42.3013 1.3083

18 7 1801 9.7916 10.5509 8.5259 1.4716 8.4621 4.927

18 8 1801 43.6666 43.6447 43.6995 6.6966 43.6419 1.4697

19 4 1200 13.5707 13.5599 13.5779 2.0811 13.564 0.42636

19 5 1200 65.2731 65.2112 65.3143 10.0098 65.24 2.0784

19 6 1200 47.0096 46.9726 47.0342 7.2091 46.9872 1.4511

19 7 1200 54.234 54.1801 54.2698 8.317 54.2056 1.7529

19 8 1200 59.3057 59.2522 59.3414 9.0949 59.2767 1.8555

19 4 1501 18.7134 18.7038 18.723 2.8697 18.7043 0.58252

19 5 1501 51.9912 51.9592 52.0232 7.9732 51.9657 1.6281

19 6 1501 52.1396 52.1033 52.1759 7.9959 52.1103 1.7486

19 7 1501 56.2939 56.2569 56.3308 8.6329 56.2648 1.8087
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

19 8 1501 11.8008 11.7771 11.8245 1.8099 11.7816 0.67322

19 4 1801 9.5582 9.5518 9.5678 1.466 9.5537 0.29317

19 5 1801 15.4643 15.4549 15.4785 2.3718 15.4556 0.52102

19 6 1801 79.7739 79.7443 79.8182 12.2339 79.736 2.4571

19 7 1801 8.7064 8.6968 8.7207 1.3354 8.6974 0.39373

19 8 1801 19.0332 19.0175 19.0568 2.9191 19.0159 0.81098

20 4 1200 15.672 15.6599 15.68 2.4033 15.6644 0.48657

20 5 1200 53.0984 53.0446 53.1343 8.143 53.07 1.7391

20 6 1200 39.0374 38.9944 39.066 5.9868 39.0129 1.3806

20 7 1200 10.5105 10.4759 10.5335 1.6121 10.4915 0.63185

20 8 1200 50.1478 50.0975 50.1813 7.6907 50.1215 1.6245

20 4 1501 55.8549 55.8188 55.891 8.5656 55.8265 1.7801

20 5 1501 66.7542 66.7114 66.797 10.2372 66.72 2.136

20 6 1501 17.8533 17.8276 17.879 2.7381 17.8324 0.86377

20 7 1501 49.1491 49.1152 49.183 7.5374 49.1223 1.6245

20 8 1501 25.3704 26.9835 23.6463 3.8028 22.0646 12.5245

20 4 1801 10.7061 10.7022 10.7118 1.6419 10.7011 0.32566

20 5 1801 46.0865 46.0689 46.1129 7.0678 46.0641 1.4376

20 6 1801 44.1258 44.1045 44.1578 6.7672 44.1027 1.4268

20 7 1801 70.2318 70.2052 70.2717 10.7706 70.1984 2.1666

20 8 1801 38.5068 38.4868 38.5368 5.9055 38.4833 1.346

10 4 1200 1.8188 1.9454 1.7292 0.27661 1.5266 0.98879

10 5 1200 2.1915 2.7306 1.7421 0.33391 1.5908 1.5077
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

10 6 1200 0.95653 1.1003 0.84731 0.14544 0.72307 0.6263

10 7 1200 2.2127 2.5475 1.9581 0.33685 1.7548 1.3482

10 8 1200 2.4748 2.8173 2.2174 0.37669 2.001 1.4565

10 4 1501 2.1221 2.1281 2.116 0.32288 1.7637 1.1803

10 5 1501 2.7501 2.9006 2.5908 0.41872 2.1888 1.6654

10 6 1501 1.6867 1.7608 1.6091 0.25666 1.3559 1.0034

10 7 1501 2.8032 2.8708 2.7339 0.42667 2.2943 1.6109

10 8 1501 1.5578 1.6449 1.4655 0.23702 1.2465 0.93455

10 4 1801 1.6739 1.8018 1.4611 0.25456 1.4078 0.90572

10 5 1801 2.7066 3.0159 2.1608 0.4121 2.1352 1.6635

10 6 1801 1.2448 1.3573 1.0536 0.18931 1.0106 0.72697

10 7 1801 0.56069 0.60188 0.49245 0.085012 0.44584 0.34007

10 8 1801 0.76254 0.82931 0.64958 0.11582 0.60207 0.46803

11 4 1200 45.4889 45.4371 45.5234 6.8836 45.4588 1.6552

11 5 1200 3.0822 3.5464 2.7294 0.46925 2.4649 1.8507

11 6 1200 1.4912 1.7501 1.2901 0.22692 1.1631 0.93331

11 7 1200 1.6108 1.8436 1.4348 0.24512 1.2955 0.95744

11 8 1200 1.2776 1.4696 1.1317 0.19436 1.0121 0.77985

11 4 1501 54.1284 54.0921 54.1647 8.191 54.095 1.9

11 5 1501 3.1071 3.2399 2.9683 0.47296 2.5174 1.8215

11 6 1501 1.7994 1.9042 1.688 0.27388 1.4164 1.1099

11 7 1501 1.4374 1.5362 1.3312 0.21875 1.1301 0.88849

11 8 1501 2.0893 2.2507 1.9142 0.3181 1.6294 1.3079
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

11 4 1801 2.1869 2.4166 1.7875 0.3329 1.727 1.3419

11 5 1801 2.3996 2.6633 1.9376 0.36529 1.921 1.4382

11 6 1801 1.6637 1.8499 1.3364 0.25323 1.2925 1.0477

11 7 1801 1.4928 1.6711 1.1756 0.22725 1.1435 0.95983

11 8 1801 1.4931 1.6556 1.2091 0.22719 1.2009 0.88751

12 4 1200 31.8172 31.7683 31.8497 4.8147 31.7869 1.3891

12 5 1200 2.5468 2.8568 2.3172 0.38768 2.0666 1.4885

12 6 1200 1.5706 1.6786 1.4942 0.23885 1.3162 0.85706

12 7 1200 1.0923 1.199 1.015 0.16608 0.87641 0.65199

12 8 1200 1.6724 1.9087 1.4944 0.25453 1.3335 1.0095

12 4 1501 36.8247 36.7942 36.8552 5.5725 36.7976 1.4117

12 5 1501 2.9844 3.0319 2.9361 0.45415 2.4711 1.6737

12 6 1501 2.2253 2.2574 2.1927 0.3386 1.8362 1.2572

12 7 1501 1.5064 1.5509 1.4605 0.22918 1.2232 0.87932

12 8 1501 1.75 1.8437 1.651 0.26632 1.3974 1.0538

12 4 1801 31.1707 31.1519 31.1988 4.7168 31.1452 1.2608

12 5 1801 2.0925 2.3587 1.6125 0.31866 1.6032 1.3449

12 6 1801 2.3492 2.605 1.902 0.3576 1.8923 1.3924

12 7 1801 2.4381 2.7469 1.8818 0.37129 1.8876 1.5435

12 8 1801 1.2231 1.348 1.0068 0.18606 0.97606 0.73713

13 4 1200 1.734 1.8262 1.6697 0.26369 1.4618 0.93282

13 5 1200 1.9642 2.3439 1.6638 0.29915 1.5049 1.2625

13 6 1200 1.3912 1.4892 1.3219 0.21152 1.1653 0.7601
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

13 7 1200 1.824 2.1602 1.5603 0.27771 1.4136 1.1529

13 8 1200 2.2697 2.7246 1.9074 0.34567 1.7255 1.4748

13 4 1501 39.2468 39.2152 39.2784 5.9388 39.2183 1.4956

13 5 1501 1.8953 1.8459 1.9436 0.28825 1.602 1.013

13 6 1501 4.2071 4.4422 3.9579 0.64051 3.378 2.5082

13 7 1501 2.9497 3.3332 2.5079 0.44947 2.1652 2.0035

13 8 1501 1.7758 1.8509 1.6974 0.27024 1.4384 1.0417

13 4 1801 2.9932 3.5804 1.7792 0.45676 1.8668 2.3401

13 5 1801 2.2647 2.4674 1.9208 0.34457 1.8741 1.2717

13 6 1801 2.7406 2.9344 2.4209 0.41684 2.3275 1.4473

13 7 1801 2.0785 2.2825 1.7278 0.31628 1.7023 1.1928

13 8 1801 2.2654 2.5389 1.7778 0.34495 1.765 1.4204

14 4 1200 33.2243 33.1831 33.2518 5.0276 33.1984 1.3138

14 5 1200 18.6368 18.6 18.6613 2.8202 18.6149 0.90325

14 6 1200 2.2654 2.5689 2.0382 0.34471 1.8505 1.3069

14 7 1200 2.3937 2.7497 2.1236 0.36441 1.9126 1.4395

14 8 1200 3.2324 3.6559 2.9163 0.49206 2.6246 1.8872

14 4 1501 48.8653 48.8322 48.8985 7.3946 48.8343 1.7413

14 5 1501 19.4212 19.3954 19.447 2.9388 19.3969 0.97207

14 6 1501 2.2395 2.2748 2.2036 0.34072 1.854 1.2564

14 7 1501 2.1311 2.3581 1.8766 0.32459 1.6207 1.3841

14 8 1501 2.8692 3.2333 2.4514 0.43712 2.1245 1.9287

14 4 1801 6.0451 6.0353 6.0596 0.91473 6.0326 0.38871
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

14 5 1801 3.1537 3.8191 1.727 0.48133 1.8656 2.5431

14 6 1801 1.8494 1.9689 1.6539 0.28119 1.5682 0.98046

14 7 1801 1.2996 1.4351 1.0643 0.19772 1.0333 0.78824

14 8 1801 1.5496 1.7265 1.2374 0.23581 1.2356 0.93538

15 4 1200 18.9485 18.8963 18.9832 2.8673 18.9164 1.1019

15 5 1200 21.2376 21.2017 21.2615 3.2137 21.216 0.95905

15 6 1200 3.2826 4.1553 2.5398 0.50036 2.3466 2.2958

15 7 1200 2.0564 2.6026 1.5917 0.31343 1.4511 1.4574

15 8 1200 1.7945 2.0812 1.5748 0.27316 1.422 1.0948

15 4 1501 1.7864 1.8355 1.736 0.2718 1.4534 1.0389

15 5 1501 26.0661 26.0411 26.0911 3.9444 26.0444 1.0626

15 6 1501 1.3764 1.4353 1.3149 0.20945 1.0882 0.84293

15 7 1501 2.4402 2.5931 2.2769 0.37148 1.9353 1.4865

15 8 1501 1.9282 2.1107 1.7264 0.29365 1.4635 1.2557

15 4 1801 30.871 30.8435 30.9122 4.6715 30.8314 1.5638

15 5 1801 2.3518 2.5143 2.0844 0.35771 1.9896 1.2543

15 6 1801 4.2938 5.2265 2.2605 0.65558 2.5007 3.491

15 7 1801 2.7786 3.0661 2.2801 0.42293 2.2594 1.6177

15 8 1801 1.7323 1.945 1.3515 0.26372 1.3381 1.1003

16 4 1200 2.1754 2.4794 1.9466 0.33101 1.7633 1.2742

16 5 1200 18.0577 18.0157 18.0856 2.7325 18.0321 0.96152

16 6 1200 11.7985 11.7584 11.8251 1.7853 11.7737 0.76453

16 7 1200 1.8597 2.0211 1.7439 0.28278 1.5705 0.99617
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

16 8 1200 2.1562 2.3735 1.9983 0.32806 1.7965 1.1926

16 4 1501 15.8265 15.8058 15.8472 2.3949 15.8062 0.80131

16 5 1501 3.9168 4.8465 2.6812 0.59771 2.4167 3.0829

16 6 1501 2.7457 2.9554 2.5185 0.41813 2.1451 1.7142

16 7 1501 3.604 3.896 3.2861 0.54882 2.8319 2.2296

16 8 1501 1.7144 1.9144 1.4877 0.26108 1.2854 1.1347

16 4 1801 22.61 22.5835 22.6496 3.4214 22.5735 1.2844

16 5 1801 15.1746 15.1563 15.202 2.2962 15.1486 0.88899

16 6 1801 36.7634 36.747 36.788 5.5632 36.7401 1.3084

16 7 1801 2.4541 2.6683 2.0918 0.37337 2.0319 1.3764

16 8 1801 2.2422 2.5104 1.7647 0.34137 1.7684 1.3787

17 4 1200 71.9109 71.8401 71.958 10.8819 71.868 2.4826

17 5 1200 10.7752 10.7387 10.7994 1.6305 10.7532 0.68717

17 6 1200 3.9621 5.3719 2.6327 0.60448 2.5027 3.0722

17 7 1200 21.353 21.3231 21.3729 3.2312 21.3354 0.86683

17 8 1200 1.8598 2.0995 1.6813 0.28298 1.5119 1.0833

17 4 1501 40.674 40.6467 40.7012 6.1549 40.648 1.4517

17 5 1501 13.2463 13.22 13.2725 2.0044 13.2217 0.80749

17 6 1501 35.8034 35.7777 35.8292 5.4178 35.7803 1.287

17 7 1501 2.0474 2.2249 1.8528 0.31173 1.5885 1.2919

17 8 1501 2.5649 2.6771 2.4475 0.39036 2.0774 1.5047

17 4 1801 2.943 3.4926 1.8313 0.44902 1.8595 2.2815

17 5 1801 2.8404 3.3139 1.9222 0.43307 1.9016 2.1102
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

17 6 1801 9.941 9.9167 9.9774 1.5042 9.9064 0.82979

17 7 1801 2.305 2.6162 1.7361 0.35108 1.7495 1.501

17 8 1801 2.3534 2.5865 1.9519 0.35815 1.9142 1.3692

18 4 1200 67.0134 66.9513 67.0547 10.1407 66.9778 2.183

18 5 1200 22.0574 22.0224 22.0808 3.3378 22.0365 0.96074

18 6 1200 1.4406 1.5852 1.3356 0.21912 1.1819 0.82385

18 7 1200 3.7845 4.5955 3.1296 0.57653 2.8723 2.4646

18 8 1200 10.6259 10.5965 10.6455 1.6079 10.6079 0.61859

18 4 1501 28.8231 28.7996 28.8466 4.3616 28.801 1.1283

18 5 1501 20.8712 20.8465 20.8959 3.1582 20.8486 0.9717

18 6 1501 16.1921 16.1714 16.2127 2.4502 16.174 0.76541

18 7 1501 51.1541 51.1223 51.186 7.7409 51.1275 1.6502

18 8 1501 2.2437 2.3539 2.1277 0.34145 1.8061 1.3315

18 4 1801 57.8469 57.8173 57.8914 8.7537 57.8082 2.1158

18 5 1801 14.2412 14.2228 14.2687 2.155 14.215 0.86248

18 6 1801 3.0729 3.8268 1.2792 0.46953 1.3844 2.7439

18 7 1801 6.139 7.617 2.678 0.93797 3.1563 5.2663

18 8 1801 2.3159 2.6464 1.7035 0.35277 1.7307 1.5392

19 4 1200 6.7305 6.71 6.7441 1.0184 6.7186 0.40023

19 5 1200 3.9568 4.7748 3.3011 0.60287 2.9916 2.5902

19 6 1200 32.5637 32.5258 32.589 4.9277 32.5416 1.1995

19 7 1200 2.2081 2.5027 1.9876 0.33608 1.7755 1.3128

19 8 1200 2.5378 2.6721 2.4441 0.38594 2.1649 1.3244
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

19 4 1501 15.5102 15.4996 15.5207 2.3471 15.4947 0.69243

19 5 1501 36.3256 36.2687 36.3825 5.4967 36.2721 1.9713

19 6 1501 2.248 2.2595 2.2364 0.34198 1.8758 1.2392

19 7 1501 3.2822 3.4332 3.1238 0.49962 2.6627 1.9194

19 8 1501 2.9195 3.1035 2.723 0.44441 2.3401 1.746

19 4 1801 17.8715 17.8598 17.8892 2.7044 17.8513 0.84988

19 5 1801 28.1041 28.0855 28.1319 4.2527 28.0775 1.222

19 6 1801 2.1404 2.3484 1.7833 0.32573 1.7603 1.2178

19 7 1801 1.264 1.3644 1.0961 0.19216 1.0465 0.70905

19 8 1801 2.0942 2.3248 1.69 0.31873 1.6732 1.2596

20 4 1200 3.3749 3.9728 2.9091 0.51418 2.5874 2.1672

20 5 1200 2.3095 2.8049 1.9094 0.35182 1.7325 1.5275

20 6 1200 2.3741 3.1574 1.6583 0.36206 1.5538 1.7953

20 7 1200 2.9552 3.4639 2.5607 0.44983 2.3282 1.8203

20 8 1200 14.3277 14.2983 14.3473 2.1681 14.3102 0.70793

20 4 1501 10.2453 10.2357 10.2549 1.5503 10.2366 0.42231

20 5 1501 49.5614 49.5368 49.586 7.5 49.5377 1.5332

20 6 1501 22.4266 22.4046 22.4486 3.3937 22.4076 0.92383

20 7 1501 12.6035 12.5793 12.6277 1.9071 12.5812 0.75018

20 8 1501 13.7666 13.749 13.7842 2.0832 13.7506 0.66428

20 4 1801 5.8958 5.8939 5.8986 0.8922 5.8921 0.20937

20 5 1801 24.1078 24.0954 24.1265 3.6481 24.0912 0.89588

20 6 1801 1.5806 1.6944 1.3924 0.24032 1.3323 0.85053
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Table 6.6: Summary of RBF-NARX model construction for identification of compressor tem-
perature

# neurons # delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

20 7 1801 2.3228 2.484 2.0573 0.35322 1.9812 1.2128

20 8 1801 2.1765 2.4505 1.6835 0.33138 1.6635 1.4038

Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

10 4 1200 0.27729 0.27057 0.28167 2.6835 0.18022 0.21077

10 5 1200 0.2495 0.22431 0.26496 2.4478 0.17078 0.18193

10 6 1200 0.36428 0.32529 0.38809 3.5942 0.25576 0.25944

10 7 1200 0.49642 0.45142 0.52425 4.8411 0.3804 0.31899

10 8 1200 0.49292 0.44786 0.52079 4.804 0.37688 0.31776

10 4 1501 0.26541 0.22748 0.29858 2.6596 0.16943 0.20432

10 5 1501 0.23573 0.20105 0.26595 2.3341 0.16305 0.17028

10 6 1501 0.39076 0.35537 0.42322 3.8445 0.28424 0.26819

10 7 1501 0.45941 0.4237 0.49255 4.4883 0.34727 0.30081

10 8 1501 0.44724 0.41178 0.48011 4.3721 0.33566 0.29561

10 4 1801 1.1516 1.1506 1.1531 10.0516 1.1505 0.050379

10 5 1801 0.24287 0.22155 0.27175 2.3507 0.16949 0.17398

10 6 1801 0.21905 0.19276 0.25344 2.117 0.17276 0.13469

10 7 1801 0.45406 0.41265 0.50993 4.4376 0.34153 0.29926

10 8 1801 0.46189 0.41917 0.51945 4.5183 0.34831 0.3034

11 4 1200 3.3114 3.2965 3.3213 28.9083 3.3024 0.24376

11 5 1200 0.43436 0.38927 0.46197 4.2643 0.32616 0.28691
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

11 6 1200 0.25316 0.22564 0.26995 2.5006 0.16227 0.19436

11 7 1200 0.31217 0.27981 0.33199 3.087 0.20591 0.23467

11 8 1200 0.44639 0.40343 0.47286 4.3703 0.33323 0.29708

11 4 1501 0.25549 0.22948 0.2791 2.5073 0.16807 0.19246

11 5 1501 0.26464 0.24162 0.28583 2.585 0.1746 0.19891

11 6 1501 0.2285 0.19818 0.25526 2.2368 0.16076 0.1624

11 7 1501 0.38733 0.36051 0.41242 3.7817 0.27443 0.27338

11 8 1501 0.50747 0.47154 0.54104 4.9383 0.3905 0.32414

11 4 1801 0.28079 0.24998 0.32153 2.7877 0.17914 0.21625

11 5 1801 0.24886 0.22088 0.28577 2.4524 0.16769 0.18392

11 6 1801 0.20601 0.1795 0.24038 1.9433 0.175 0.10872

11 7 1801 0.61769 0.56468 0.68965 5.9957 0.48668 0.38043

11 8 1801 0.2727 0.2513 0.30199 2.6516 0.17377 0.21021

12 4 1200 0.32781 0.3111 0.33849 3.208 0.20895 0.25262

12 5 1200 0.23131 0.19446 0.2529 2.2988 0.15838 0.16862

12 6 1200 0.27221 0.24732 0.28761 2.6824 0.17416 0.20924

12 7 1200 0.27992 0.26796 0.28762 2.7224 0.17539 0.2182

12 8 1200 0.72836 0.66784 0.76604 7.0486 0.5781 0.44314

12 4 1501 0.40207 0.40601 0.39809 3.8368 0.25615 0.30997

12 5 1501 0.18382 0.15026 0.21215 1.7631 0.14662 0.11088

12 6 1501 0.41938 0.38413 0.4519 4.1141 0.31007 0.28242

12 7 1501 0.24373 0.21003 0.27332 2.4229 0.16106 0.18296

12 8 1501 0.28221 0.25853 0.30407 2.763 0.17764 0.21933
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

12 4 1801 3.1086 3.1048 3.1143 27.1382 3.1042 0.16505

12 5 1801 1.4399 1.4388 1.4415 12.5672 1.4386 0.059397

12 6 1801 0.46907 0.42517 0.52816 4.59 0.35626 0.30519

12 7 1801 0.28504 0.25415 0.32595 2.8285 0.18177 0.2196

12 8 1801 0.21429 0.19242 0.24346 2.0043 0.17885 0.11806

13 4 1200 3.2028 3.1951 3.208 27.9563 3.1986 0.16441

13 5 1200 0.21169 0.17245 0.23421 2.1133 0.14349 0.15567

13 6 1200 2.3936 2.3854 2.399 20.8964 2.389 0.14737

13 7 1200 0.20783 0.17069 0.22927 1.9472 0.17839 0.10665

13 8 1200 0.22611 0.20788 0.23748 2.1465 0.1745 0.14382

13 4 1501 0.22129 0.18274 0.25407 2.1845 0.16128 0.15155

13 5 1501 0.25489 0.22415 0.28231 2.5192 0.167 0.19259

13 6 1501 0.28789 0.28713 0.28865 2.7343 0.18022 0.22454

13 7 1501 0.22635 0.19835 0.25127 2.2 0.16481 0.15518

13 8 1501 0.53687 0.49701 0.574 5.2298 0.41463 0.3411

13 4 1801 3.4083 3.405 3.4133 29.753 3.4046 0.15905

13 5 1801 0.22288 0.19118 0.2634 2.2253 0.15171 0.1633

13 6 1801 0.20361 0.17408 0.24124 1.9881 0.15853 0.1278

13 7 1801 0.22131 0.19672 0.25378 2.0797 0.1865 0.11917

13 8 1801 0.21898 0.19559 0.25001 2.0826 0.17688 0.12912

14 4 1200 0.39179 0.4219 0.37038 3.712 0.23663 0.31232

14 5 1200 0.20587 0.17015 0.22656 1.8846 0.18115 0.097821

14 6 1200 0.23809 0.19789 0.26147 2.3855 0.15235 0.183
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

14 7 1200 0.2073 0.16992 0.22884 2.0362 0.15616 0.13636

14 8 1200 0.22481 0.19147 0.24452 1.9687 0.20179 0.099123

14 4 1501 0.35318 0.32374 0.38036 3.4851 0.22438 0.27279

14 5 1501 0.41109 0.43278 0.38817 3.8563 0.248 0.32792

14 6 1501 0.27294 0.26606 0.27966 2.6113 0.17579 0.20883

14 7 1501 0.27604 0.25067 0.29928 2.3314 0.23951 0.13726

14 8 1501 0.23 0.2021 0.25488 2.2183 0.17316 0.1514

14 4 1801 3.429 3.4254 3.4344 29.9306 3.4249 0.16716

14 5 1801 2.8881 2.8849 2.8928 25.2102 2.8847 0.1407

14 6 1801 2.3418 2.3378 2.3477 20.4487 2.3372 0.14631

14 7 1801 0.30941 0.29792 0.32588 2.5975 0.25967 0.16826

14 8 1801 0.2217 0.2019 0.24849 2.0147 0.19213 0.11065

15 4 1200 0.43115 0.46429 0.40758 4.0764 0.27641 0.33095

15 5 1200 0.27279 0.26985 0.27473 2.6239 0.17986 0.20513

15 6 1200 0.29513 0.3171 0.27953 2.7865 0.18358 0.23112

15 7 1200 0.2077 0.1777 0.22548 1.8368 0.18385 0.096639

15 8 1200 0.23644 0.22366 0.24457 2.1341 0.19811 0.12907

15 4 1501 0.32802 0.31222 0.3431 3.1905 0.20596 0.25534

15 5 1501 0.25707 0.23293 0.27914 2.5073 0.17132 0.1917

15 6 1501 0.20471 0.16697 0.23652 1.9701 0.16456 0.12178

15 7 1501 0.25635 0.24594 0.26635 2.4437 0.17342 0.18882

15 8 1501 0.33477 0.30639 0.36093 2.8124 0.28841 0.16999

15 4 1801 3.3353 3.3318 3.3406 29.1183 3.3315 0.16064
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

15 5 1801 0.24709 0.22678 0.27477 2.3809 0.17826 0.17114

15 6 1801 1.4641 1.4631 1.4656 12.7794 1.463 0.056395

15 7 1801 1.935 1.9298 1.9429 16.9009 1.9285 0.15864

15 8 1801 0.26447 0.24586 0.29018 2.25 0.23386 0.12353

16 4 1200 0.28487 0.24611 0.30801 2.8389 0.18627 0.21557

16 5 1200 0.35642 0.34882 0.3614 3.4574 0.23157 0.271

16 6 1200 2.3845 2.3774 2.3892 20.8182 2.3807 0.13551

16 7 1200 0.23444 0.21631 0.24577 2.2075 0.18785 0.14028

16 8 1200 0.23581 0.22585 0.24222 2.1883 0.18775 0.1427

16 4 1501 3.5263 3.5236 3.529 30.7675 3.5237 0.1345

16 5 1501 0.41183 0.40234 0.42112 3.9623 0.27065 0.31046

16 6 1501 3.3109 3.3064 3.3154 28.9006 3.3073 0.15503

16 7 1501 0.27366 0.24441 0.30009 2.3227 0.23972 0.13202

16 8 1501 0.22316 0.18936 0.2525 1.968 0.19989 0.099242

16 4 1801 0.31182 0.2779 0.35673 3.0941 0.20236 0.23728

16 5 1801 0.30919 0.2848 0.34255 3.0313 0.19647 0.23878

16 6 1801 2.6603 2.6574 2.6646 23.2261 2.6573 0.12607

16 7 1801 0.21901 0.1956 0.25006 2.0507 0.18329 0.1199

16 8 1801 0.32885 0.34869 0.29657 2.9872 0.19262 0.26657

17 4 1200 0.30438 0.27417 0.32294 2.9991 0.20601 0.2241

17 5 1200 0.43951 0.49983 0.39423 4.0914 0.26638 0.34965

17 6 1200 1.5079 1.5025 1.5115 13.1665 1.5051 0.092196

17 7 1200 0.20107 0.16349 0.22262 1.9271 0.16391 0.11649
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

17 8 1200 0.38303 0.3519 0.40245 3.1942 0.32889 0.19637

17 4 1501 0.35668 0.32375 0.38683 3.5287 0.22894 0.27355

17 5 1501 1.4298 1.4249 1.4347 12.4795 1.4249 0.11813

17 6 1501 1.4487 1.4449 1.4525 12.6508 1.4457 0.093066

17 7 1501 0.2465 0.21187 0.27686 2.1676 0.22207 0.10702

17 8 1501 0.30593 0.32726 0.28298 2.8178 0.18793 0.24144

17 4 1801 4.8255 4.8231 4.829 42.1144 4.8224 0.17382

17 5 1801 0.2955 0.26973 0.33042 2.9032 0.18505 0.23042

17 6 1801 1.522 1.5199 1.5253 13.2906 1.52 0.078676

17 7 1801 0.28553 0.27501 0.30064 2.7051 0.18777 0.21514

17 8 1801 0.33944 0.32125 0.36505 2.8409 0.29538 0.16727

18 4 1200 0.50234 0.49635 0.50628 4.8522 0.33745 0.37218

18 5 1200 2.5842 2.578 2.5884 22.5589 2.5809 0.13035

18 6 1200 0.31453 0.29285 0.32819 3.0854 0.19871 0.24386

18 7 1200 0.26602 0.2386 0.28283 2.3636 0.23415 0.12629

18 8 1200 0.20878 0.17355 0.22927 1.9111 0.18352 0.099555

18 4 1501 2.8501 2.849 2.8513 24.8739 2.8481 0.10885

18 5 1501 0.34186 0.3226 0.3601 3.3328 0.21996 0.26174

18 6 1501 0.32467 0.33594 0.31298 3.0653 0.1933 0.2609

18 7 1501 0.28165 0.27079 0.29211 2.6996 0.1805 0.21625

18 8 1501 1.5804 1.5765 1.5842 13.8006 1.5774 0.097441

18 4 1801 4.9155 4.9126 4.9198 42.8959 4.9115 0.19783

18 5 1801 2.061 2.0598 2.0627 17.984 2.0592 0.085708
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

18 6 1801 1.6421 1.6391 1.6465 14.341 1.6389 0.10142

18 7 1801 1.0644 1.0635 1.0657 9.2906 1.0635 0.044132

18 8 1801 0.2436 0.22755 0.26589 2.2733 0.19039 0.152

19 4 1200 6.5112 6.5031 6.5166 56.8194 6.5065 0.24699

19 5 1200 1.7997 1.797 1.8016 15.7024 1.798 0.080089

19 6 1200 0.31955 0.39161 0.26071 2.8548 0.20116 0.24833

19 7 1200 0.33369 0.37108 0.30625 3.1263 0.1936 0.27183

19 8 1200 0.23499 0.21372 0.24816 2.2736 0.17194 0.16021

19 4 1501 3.6776 3.6744 3.6809 32.091 3.6747 0.14743

19 5 1501 0.37256 0.38189 0.36298 3.5792 0.22176 0.29942

19 6 1501 0.25818 0.22878 0.28458 2.5371 0.17517 0.1897

19 7 1501 0.37538 0.36184 0.38845 3.6213 0.2401 0.28859

19 8 1501 0.23901 0.22374 0.25337 2.2682 0.17435 0.16351

19 4 1801 1.1541 1.1536 1.1549 10.0699 1.1532 0.046035

19 5 1801 0.37758 0.34033 0.42744 3.7399 0.24398 0.28821

19 6 1801 0.38844 0.36992 0.41469 3.7306 0.24333 0.30284

19 7 1801 2.3634 2.3609 2.3671 20.6324 2.3609 0.10726

19 8 1801 2.1844 2.1817 2.1886 19.0726 2.1816 0.11208

20 4 1200 1.1557 1.1542 1.1566 10.0766 1.1544 0.054232

20 5 1200 0.36147 0.33889 0.37576 3.5483 0.22658 0.28169

20 6 1200 0.37161 0.35245 0.38385 3.6222 0.24561 0.27892

20 7 1200 1.3763 1.3684 1.3815 12.0213 1.3719 0.10993

20 8 1200 0.24181 0.20557 0.2632 2.1215 0.21852 0.10356
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

20 4 1501 1.8584 1.8564 1.8604 16.215 1.8564 0.085352

20 5 1501 0.3058 0.27388 0.33471 3.0288 0.19746 0.23355

20 6 1501 0.27417 0.24039 0.30424 2.7087 0.18496 0.20242

20 7 1501 1.817 1.8132 1.8207 15.8639 1.8141 0.10262

20 8 1501 0.2428 0.22181 0.26213 2.3224 0.17849 0.16463

20 4 1801 4.1517 4.1496 4.1549 36.2324 4.149 0.15036

20 5 1801 0.40426 0.3787 0.43985 3.9667 0.25692 0.31217

20 6 1801 1.9252 1.9218 1.9304 16.8117 1.9214 0.12207

20 7 1801 1.1892 1.1867 1.1929 10.387 1.1867 0.077042

20 8 1801 2.2976 2.2949 2.3016 20.0598 2.2948 0.113

10 4 1200 0.045255 0.048601 0.04288 0.38168 0.036667 0.026529

10 5 1200 0.049547 0.058181 0.042839 0.41991 0.03709 0.032857

10 6 1200 0.1011 0.11501 0.090647 0.85861 0.080238 0.06151

10 7 1200 0.049792 0.059925 0.041696 0.42267 0.036615 0.033749

10 8 1200 0.063384 0.07224 0.05672 0.53788 0.049643 0.039416

10 4 1501 0.04399 0.046569 0.041247 0.37117 0.034084 0.027814

10 5 1501 0.070668 0.075439 0.065546 0.60009 0.05507 0.044293

10 6 1501 0.098157 0.10246 0.093655 0.83352 0.077801 0.059858

10 7 1501 0.075723 0.084845 0.065333 0.64391 0.055672 0.051337

10 8 1501 0.094174 0.099654 0.088352 0.80033 0.073373 0.059045

10 4 1801 0.047926 0.052365 0.040358 0.40531 0.036169 0.031449

10 5 1801 0.038502 0.043303 0.029882 0.3256 0.026933 0.027519

10 6 1801 0.036631 0.038677 0.033326 0.30776 0.026959 0.024805
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

10 7 1801 0.1107 0.12201 0.091128 0.93991 0.088808 0.0661

10 8 1801 0.11619 0.12879 0.094159 0.98687 0.092656 0.070115

11 4 1200 0.051992 0.072403 0.031802 0.44357 0.027571 0.044087

11 5 1200 0.080207 0.093272 0.070164 0.68116 0.062647 0.050093

11 6 1200 0.040124 0.051533 0.030218 0.34002 0.026533 0.030103

11 7 1200 0.12367 0.14025 0.11126 1.0508 0.098222 0.075162

11 8 1200 0.11721 0.13328 0.10514 0.99584 0.092762 0.071652

11 4 1501 0.027487 0.027771 0.0272 0.22817 0.022586 0.015669

11 5 1501 0.04925 0.051472 0.046922 0.41599 0.039263 0.029736

11 6 1501 0.059555 0.068344 0.049214 0.50653 0.042195 0.042036

11 7 1501 0.04245 0.04814 0.035864 0.35982 0.029964 0.030074

11 8 1501 0.10588 0.11102 0.10047 0.89965 0.083626 0.06495

11 4 1801 0.060627 0.065327 0.052793 0.51309 0.049614 0.03485

11 5 1801 0.050903 0.05566 0.042784 0.43074 0.039926 0.031582

11 6 1801 0.054671 0.061952 0.041406 0.46434 0.03981 0.037477

11 7 1801 0.066057 0.073566 0.05282 0.56075 0.05145 0.041437

11 8 1801 0.035093 0.039023 0.028183 0.2957 0.02369 0.025894

12 4 1200 0.10875 0.13641 0.085501 0.92731 0.07627 0.07754

12 5 1200 0.045572 0.059391 0.033323 0.38684 0.028897 0.035245

12 6 1200 0.083142 0.10497 0.064632 0.70826 0.057959 0.059619

12 7 1200 0.064396 0.07691 0.054486 0.54703 0.048821 0.042

12 8 1200 0.056249 0.067569 0.047225 0.47793 0.04124 0.038259

12 4 1501 1.8216 1.8187 1.8245 15.1073 1.8189 0.10028
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

12 5 1501 0.076144 0.079472 0.072662 0.64574 0.0601 0.046762

12 6 1501 0.093508 0.10086 0.08552 0.79507 0.071535 0.06023

12 7 1501 0.041526 0.047645 0.034328 0.35198 0.02924 0.029492

12 8 1501 0.10399 0.10738 0.10049 0.88305 0.083082 0.062552

12 4 1801 0.028344 0.028788 0.027662 0.23564 0.02311 0.016413

12 5 1801 0.051061 0.054583 0.045264 0.43124 0.041898 0.029191

12 6 1801 0.03562 0.040527 0.026609 0.30139 0.023059 0.027154

12 7 1801 0.035583 0.041004 0.025357 0.30124 0.022888 0.027249

12 8 1801 0.056521 0.064461 0.041869 0.48031 0.04089 0.039028

13 4 1200 1.2741 1.2871 1.2653 10.5876 0.70762 1.0597

13 5 1200 0.033538 0.041606 0.02685 0.28245 0.022606 0.024779

13 6 1200 0.083601 0.09174 0.077706 0.70904 0.068072 0.048539

13 7 1200 0.032045 0.037664 0.027674 0.26878 0.023128 0.022184

13 8 1200 0.050918 0.06243 0.041511 0.43244 0.036921 0.03507

13 4 1501 0.032368 0.035112 0.029368 0.27105 0.02435 0.021329

13 5 1501 0.045542 0.05078 0.039613 0.38571 0.033105 0.03128

13 6 1501 0.072641 0.075026 0.070174 0.61587 0.058254 0.043404

13 7 1501 0.069493 0.07567 0.062705 0.59061 0.052806 0.045183

13 8 1501 0.052283 0.057391 0.046614 0.44387 0.038782 0.03507

13 4 1801 3.2764 3.2721 3.2827 27.1722 3.2704 0.1984

13 5 1801 0.04808 0.050947 0.043422 0.40563 0.039531 0.027372

13 6 1801 0.071332 0.082952 0.048967 0.60806 0.047868 0.052895

13 7 1801 0.054074 0.062127 0.038982 0.45981 0.03667 0.039747
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

13 8 1801 0.043556 0.049781 0.032016 0.36956 0.029975 0.031606

14 4 1200 1.0129 1.0111 1.0141 8.4004 1.0118 0.046425

14 5 1200 0.064431 0.069885 0.060525 0.54542 0.052523 0.037325

14 6 1200 0.091408 0.10307 0.082733 0.77585 0.073103 0.054884

14 7 1200 0.054535 0.072042 0.038698 0.4649 0.03396 0.042678

14 8 1200 0.11768 0.13147 0.10751 0.99915 0.094852 0.069666

14 4 1501 0.036899 0.040352 0.033085 0.31077 0.026804 0.025363

14 5 1501 0.073946 0.096419 0.040456 0.63434 0.035644 0.064799

14 6 1501 0.05818 0.05986 0.056447 0.49221 0.047427 0.033703

14 7 1501 0.044687 0.049362 0.03946 0.37684 0.032871 0.030278

14 8 1501 0.045384 0.049522 0.040825 0.38408 0.034028 0.030035

14 4 1801 0.039974 0.042503 0.035846 0.33629 0.03186 0.024147

14 5 1801 0.055296 0.06248 0.042282 0.4693 0.039759 0.038437

14 6 1801 0.14598 0.18156 0.06182 1.2542 0.0664 0.13003

14 7 1801 0.083208 0.09505 0.061281 0.70827 0.060448 0.05719

14 8 1801 0.063606 0.074342 0.042699 0.54247 0.042109 0.047679

15 4 1200 1.9361 1.9329 1.9383 16.0587 1.9341 0.088474

15 5 1200 2.2672 2.2603 2.2718 18.8016 2.263 0.13813

15 6 1200 0.10616 0.15322 0.056008 0.91005 0.052929 0.092037

15 7 1200 0.045481 0.061963 0.02981 0.38714 0.027039 0.036577

15 8 1200 0.040803 0.048874 0.03439 0.34403 0.028927 0.028783

15 4 1501 0.066835 0.074775 0.057809 0.56847 0.047925 0.046593

15 5 1501 0.052253 0.055173 0.049158 0.4425 0.040493 0.033031
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

15 6 1501 0.066257 0.074895 0.056302 0.56385 0.047381 0.046322

15 7 1501 0.083473 0.10278 0.058041 0.71321 0.050036 0.066826

15 8 1501 0.035413 0.040005 0.030124 0.29816 0.024823 0.02526

15 4 1801 2.5369 2.5352 2.5394 21.0397 2.5345 0.11054

15 5 1801 0.11075 0.13572 0.055031 0.94981 0.057266 0.094809

15 6 1801 1.0939 1.0932 1.095 9.0726 1.0929 0.046844

15 7 1801 0.04905 0.057733 0.031847 0.41803 0.030275 0.038598

15 8 1801 0.073294 0.086017 0.048268 0.62498 0.048125 0.05529

16 4 1200 0.20233 0.3163 0.039462 1.7441 0.049222 0.19629

16 5 1200 0.13017 0.20044 0.038301 1.1202 0.039069 0.12419

16 6 1200 1.8355 1.8336 1.8368 15.2233 1.8343 0.065504

16 7 1200 0.059929 0.06423 0.056884 0.50723 0.049165 0.034274

16 8 1200 0.044958 0.057679 0.03393 0.38183 0.029459 0.033966

16 4 1501 0.06301 0.080856 0.037433 0.53855 0.031566 0.054542

16 5 1501 0.064637 0.067983 0.061106 0.54798 0.05079 0.039986

16 6 1501 0.041816 0.048603 0.033681 0.35423 0.028583 0.030527

16 7 1501 0.065641 0.081933 0.043621 0.56149 0.037257 0.054052

16 8 1501 0.056182 0.061621 0.050152 0.47715 0.041609 0.037757

16 4 1801 0.087095 0.10617 0.045309 0.74603 0.045412 0.074331

16 5 1801 0.075267 0.082307 0.063247 0.6381 0.060591 0.044661

16 6 1801 2.2419 2.2398 2.2451 18.594 2.239 0.11474

16 7 1801 0.057159 0.063748 0.045514 0.48517 0.043217 0.037415

16 8 1801 0.053814 0.065003 0.03001 0.45964 0.028763 0.04549
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

17 4 1200 0.15511 0.23959 0.042926 1.3391 0.043933 0.14878

17 5 1200 1.1879 1.1846 1.1901 9.8511 1.186 0.066559

17 6 1200 0.032872 0.040236 0.026866 0.27645 0.02281 0.023673

17 7 1200 0.058083 0.062424 0.055002 0.49126 0.047694 0.033156

17 8 1200 0.059656 0.083781 0.035401 0.51003 0.032174 0.050245

17 4 1501 2.5692 2.5577 2.5806 21.3007 2.5586 0.23329

17 5 1501 0.1218 0.15872 0.066853 1.0456 0.058771 0.1067

17 6 1501 0.099118 0.10047 0.097746 0.84125 0.079942 0.058606

17 7 1501 2.3399 2.3361 2.3437 19.406 2.3363 0.12902

17 8 1501 0.094925 0.11511 0.069047 0.81088 0.05935 0.074096

17 4 1801 1.964 1.9629 1.9656 16.289 1.9624 0.078848

17 5 1801 0.077919 0.087389 0.061006 0.66198 0.059042 0.050856

17 6 1801 0.048496 0.054455 0.037831 0.41124 0.034659 0.033927

17 7 1801 0.08177 0.091503 0.064462 0.69492 0.063171 0.051929

17 8 1801 0.082432 0.099809 0.045189 0.70564 0.046355 0.068174

18 4 1200 1.5146 1.51 1.5177 12.5608 1.5117 0.093573

18 5 1200 2.3986 2.3895 2.4047 19.8921 2.3931 0.16367

18 6 1200 0.073466 0.10596 0.03889 0.62892 0.035486 0.064338

18 7 1200 1.7734 1.762 1.7809 14.7043 1.7663 0.15872

18 8 1200 0.033752 0.038904 0.029829 0.28434 0.024965 0.022718

18 4 1501 2.1436 2.142 2.1451 17.7791 2.1418 0.087252

18 5 1501 0.092963 0.1156 0.062587 0.79581 0.053528 0.076018

18 6 1501 1.4178 1.4167 1.419 11.7595 1.4169 0.052434

357



Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

18 7 1501 0.048777 0.048848 0.048705 0.41184 0.040067 0.027822

18 8 1501 0.26333 0.36648 0.065893 2.2719 0.070491 0.25377

18 4 1801 0.11862 0.14104 0.073029 1.0134 0.072469 0.093927

18 5 1801 0.051237 0.055162 0.044704 0.4332 0.041232 0.030422

18 6 1801 0.1944 0.24529 0.064903 1.6748 0.072147 0.18055

18 7 1801 0.18489 0.23726 0.03174 1.5941 0.047631 0.17868

18 8 1801 0.032492 0.036435 0.025454 0.27376 0.022677 0.023274

19 4 1200 1.3706 1.3679 1.3725 11.3689 1.3684 0.078338

19 5 1200 0.11223 0.12982 0.098791 0.95359 0.087921 0.069768

19 6 1200 2.7996 2.7956 2.8023 23.2182 2.7973 0.11207

19 7 1200 2.6736 2.6684 2.6771 22.1745 2.6706 0.12778

19 8 1200 0.077209 0.10484 0.051089 0.66026 0.046285 0.061808

19 4 1501 1.3338 1.3329 1.3346 11.0615 1.3327 0.052835

19 5 1501 0.076719 0.098805 0.044794 0.65697 0.039529 0.065763

19 6 1501 2.1384 2.1349 2.1419 17.7332 2.1351 0.11808

19 7 1501 0.079964 0.095365 0.060764 0.68281 0.051883 0.060857

19 8 1501 0.1804 0.22911 0.11219 1.5463 0.098717 0.15102

19 4 1801 2.9608 2.9569 2.9667 24.5674 1.4772 2.5665

19 5 1801 0.045958 0.055135 0.026829 0.39134 0.023892 0.039266

19 6 1801 1.7208 1.7191 1.7235 14.2717 1.7187 0.086636

19 7 1801 0.077622 0.093526 0.044044 0.66366 0.044036 0.063933

19 8 1801 0.055913 0.061076 0.047114 0.47354 0.044227 0.034214

20 4 1200 3.992 3.9849 3.9967 33.1073 3.9874 0.19111
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Table 6.7: Summary of RBF-NARX model construction for identification of compressor pres-
sure

# neurons # delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

20 5 1200 2.2234 2.2186 2.2266 18.4401 2.2206 0.11152

20 6 1200 0.18978 0.29207 0.056375 1.6344 0.058052 0.18072

20 7 1200 0.026612 0.027382 0.026087 0.22105 0.021582 0.015573

20 8 1200 1.1471 1.1456 1.148 9.5132 1.1462 0.043905

20 4 1501 2.0735 2.072 2.0749 17.1978 2.0722 0.072711

20 5 1501 3.1189 3.1143 3.1235 25.865 3.1145 0.16564

20 6 1501 1.7084 1.7046 1.7123 14.1676 1.7047 0.11207

20 7 1501 0.07222 0.07616 0.068049 0.61267 0.05719 0.04411

20 8 1501 0.09826 0.13648 0.026036 0.84626 0.027685 0.094295

20 4 1801 2.2607 2.2594 2.2626 18.7494 2.2589 0.089497

20 5 1801 0.29094 0.37354 0.047716 2.5141 0.062761 0.28414

20 6 1801 0.10058 0.11274 0.078897 0.85496 0.077371 0.064281

20 7 1801 0.029222 0.030812 0.026658 0.24434 0.023319 0.017613

20 8 1801 0.071298 0.08182 0.051628 0.60701 0.051156 0.049672

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

10 4 1200 118.567 118.3704 118.6978 0.99667 118.4587 5.0664

10 5 1200 138.6245 138.4739 138.7247 1.1653 138.5356 4.9642

10 6 1200 143.3147 142.3956 143.9238 1.2043 143.046 8.7721

10 7 1200 140.3586 139.4537 140.9584 1.1795 140.0928 8.6367

10 8 1200 112.5416 111.5024 113.2287 0.94555 112.2358 8.2925

10 4 1501 116.8197 131.0573 100.5751 0.99035 95.5964 67.1542
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

10 5 1501 91.4612 90.4949 92.418 0.77149 74.7798 52.6693

10 6 1501 110.9079 110.3935 111.4202 0.93213 110.5313 9.1329

10 7 1501 82.1303 61.9147 98.2816 0.6843 49.3958 65.6268

10 8 1501 122.442 118.751 126.0272 1.0282 119.5219 26.5855

10 4 1801 148.8705 148.8179 148.9494 1.2514 148.7983 4.6357

10 5 1801 74.2458 77.7809 68.5991 0.62725 62.0095 40.8389

10 6 1801 106.1983 91.911 124.6039 0.88821 79.5694 70.3452

10 7 1801 54.6591 53.9191 55.7513 0.4607 45.8394 29.7768

10 8 1801 74.3076 80.1776 64.5029 0.62913 61.5287 41.6704

11 4 1200 187.566 187.3236 187.7274 1.5767 187.4148 7.5307

11 5 1200 182.0991 181.926 182.2143 1.5308 181.9879 6.364

11 6 1200 125.2834 125.139 125.3795 1.0532 125.1935 4.745

11 7 1200 107.505 105.8796 108.5745 0.90312 106.8773 11.602

11 8 1200 127.3944 126.3958 128.0555 1.0713 102.2268 76.0325

11 4 1501 198.519 191.7188 205.0983 1.6681 192.1677 49.8216

11 5 1501 126.5581 141.7409 109.2735 1.0725 105.8762 69.3453

11 6 1501 148.1275 166.0076 127.7547 1.2546 127.1138 76.0643

11 7 1501 61.8822 52.4594 70.0539 0.51771 43.9866 43.5341

11 8 1501 95.4988 77.2658 110.7797 0.79698 69.6312 65.3678

11 4 1801 104.6924 104.6591 104.7424 0.88007 104.6435 3.2012

11 5 1801 129.6726 144.5396 103.4239 1.0988 109.1068 70.088

11 6 1801 101.1666 112.8487 80.5132 0.85769 81.6375 59.7595

11 7 1801 89.5914 94.371 81.8963 0.75748 75.3896 48.413
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

11 8 1801 59.0911 47.2497 73.3596 0.49287 36.8988 46.1621

12 4 1200 154.0742 153.961 154.1496 1.2952 154.0045 4.6357

12 5 1200 131.1338 130.6356 131.4648 1.1022 130.8989 7.8474

12 6 1200 145.3746 167.4808 128.552 1.2316 123.9898 75.9093

12 7 1200 140.111 138.7068 141.0389 1.1773 139.5494 12.5348

12 8 1200 185.9278 182.2081 188.3654 1.561 184.7441 20.95

12 4 1501 120.6407 120.5817 120.6997 1.0141 120.586 3.6313

12 5 1501 125.6828 125.507 125.8585 1.0565 125.5421 5.9475

12 6 1501 128.2679 144.1459 110.1109 1.0872 105.7388 72.6204

12 7 1501 110.2457 112.7494 107.682 0.92678 94.5956 56.6291

12 8 1501 161.1686 160.6853 161.6507 1.3547 160.772 11.3007

12 4 1801 102.2751 100.0085 105.5857 0.8594 99.077 25.3802

12 5 1801 138.1374 134.8228 142.968 1.1607 133.6537 34.915

12 6 1801 111.5261 111.2751 111.9018 0.93747 111.1847 8.722

12 7 1801 149.4662 143.3673 158.1789 1.256 142.0304 46.5643

12 8 1801 50.2835 53.4578 45.1021 0.42529 43.4647 25.2877

13 4 1200 163.5469 163.4334 163.6225 1.3748 163.4857 4.475

13 5 1200 143.9317 167.2578 126.0151 1.2197 120.4286 78.8377

13 6 1200 141.5269 165.079 123.3629 1.1993 117.3758 79.0878

13 7 1200 105.7315 104.7936 106.3519 0.88877 105.1323 11.2431

13 8 1200 64.1622 51.0525 71.5764 0.53556 40.7252 49.589

13 4 1501 149.5453 149.4725 149.6181 1.2571 149.4744 4.6043

13 5 1501 125.9023 141.9513 107.4697 1.0676 101.2818 74.8014
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

13 6 1501 160.6022 160.4928 160.7116 1.3501 160.5099 5.4447

13 7 1501 131.8204 130.8059 132.8278 1.1081 130.8466 15.9961

13 8 1501 101.011 100.2333 101.7832 0.84913 100.3407 11.6192

13 4 1801 103.5608 103.5335 103.6018 0.87056 103.5258 2.6947

13 5 1801 143.9336 139.0946 150.9052 1.2093 90.4553 111.9772

13 6 1801 141.8952 157.3164 114.9308 1.2015 123.197 70.416

13 7 1801 134.5244 149.8718 107.4526 1.1398 113.7847 71.7744

13 8 1801 88.5059 96.9864 73.9756 0.74997 71.1803 52.6079

14 4 1200 193.069 192.9233 193.1661 1.623 192.9812 5.8244

14 5 1200 111.4357 111.3557 111.489 0.93676 111.3844 3.3821

14 6 1200 137.8684 159.2897 121.5169 1.1683 116.0658 74.4195

14 7 1200 147.9648 173.0284 128.5809 1.2538 123.3927 81.6703

14 8 1200 155.3776 181.1303 135.5288 1.3159 132.2648 81.5501

14 4 1501 160.7593 160.6815 160.8372 1.3514 160.6908 4.6951

14 5 1501 129.4571 144.9806 111.7859 1.0969 109.4717 69.1136

14 6 1501 132.6148 148.7176 114.2516 1.124 110.2971 73.6414

14 7 1501 149.7606 166.4367 130.9648 1.2675 131.6671 71.3703

14 8 1501 142.8018 159.3518 124.05 1.2095 123.1979 72.2245

14 4 1801 109.0475 109.0137 109.0982 0.91668 109.0045 3.0609

14 5 1801 124.276 124.2382 124.3326 1.0447 124.2166 3.841

14 6 1801 103.2836 103.2458 103.3404 0.86823 103.224 3.5108

14 7 1801 153.0669 170.3251 122.691 1.296 131.6667 78.0729

14 8 1801 132.3178 131.4718 133.5775 1.1122 131.1579 17.4845
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

15 4 1200 188.9176 188.7816 189.0082 1.5881 188.8394 5.4344

15 5 1200 189.0883 188.9571 189.1756 1.5895 189.0157 5.2397

15 6 1200 153.0785 143.7442 158.994 1.2863 147.5421 40.8033

15 7 1200 165.4212 165.0233 165.6858 1.3906 165.1674 9.1619

15 8 1200 148.6452 171.7218 131.0323 1.2591 127.143 77.0196

15 4 1501 124.3326 124.2892 124.3759 1.0452 124.2912 3.207

15 5 1501 128.1748 128.1319 128.2177 1.0775 128.1322 3.3027

15 6 1501 141.87 159.3568 121.8856 1.2016 121.4664 73.3131

15 7 1501 145.4795 162.3275 126.3918 1.2319 126.3271 72.163

15 8 1501 149.8521 167.3655 129.9862 1.2688 129.9252 74.6791

15 4 1801 104.9228 104.8979 104.9601 0.88201 104.8878 2.7089

15 5 1801 121.1159 121.0793 121.1707 1.0181 121.0597 3.6879

15 6 1801 146.57 146.4977 146.6784 1.2321 146.4764 5.2381

15 7 1801 136.0246 151.4872 108.768 1.1525 115.5601 71.7654

15 8 1801 165.1245 174.6201 149.7474 1.3954 135.15 94.8871

16 4 1200 160.9517 160.8704 161.0059 1.353 160.8982 4.1493

16 5 1200 124.3016 124.1498 124.4027 1.0449 124.2186 4.5442

16 6 1200 187.3906 187.0991 187.5845 1.5753 187.1932 8.6005

16 7 1200 105.29 13.193 135.4864 0.88014 32.8083 100.0646

16 8 1200 149.669 151.4778 148.4516 1.2663 103.9657 107.6839

16 4 1501 132.7762 132.7301 132.8223 1.1162 132.7321 3.4246

16 5 1501 125.2926 125.2073 125.3779 1.0532 125.2121 4.4915

16 6 1501 99.8341 99.6802 99.9879 0.83925 99.6838 5.4783
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

16 7 1501 143.8729 160.3881 125.1844 1.2182 125.0647 71.1331

16 8 1501 147.2423 164.4998 127.6589 1.2471 126.7165 75.0006

16 4 1801 119.696 119.6682 119.7376 1.0062 119.6561 3.0877

16 5 1801 137.9771 137.9178 138.066 1.1599 137.9047 4.4695

16 6 1801 193.966 193.8441 194.1489 1.6305 193.8172 7.598

16 7 1801 133.526 133.4788 133.5967 1.1225 133.444 4.6782

16 8 1801 152.8045 168.3582 125.9054 1.2931 134.6588 72.2354

17 4 1200 156.2535 156.1748 156.3059 1.3135 156.2016 4.0279

17 5 1200 100.8808 100.8282 100.9158 0.84803 100.8473 2.6007

17 6 1200 180.7924 180.6297 180.9008 1.5198 180.6853 6.2259

17 7 1200 180.4423 149.5515 198.3721 1.5168 150.3707 99.7566

17 8 1200 155.0478 178.6612 137.0744 1.313 133.688 78.5454

17 4 1501 109.3911 109.3528 109.4294 0.91957 109.3547 2.8215

17 5 1501 166.7579 166.6649 166.851 1.4018 166.6751 5.2566

17 6 1501 159.1486 158.8199 159.4768 1.3378 158.8342 9.9992

17 7 1501 198.3663 202.9424 193.6789 1.6718 109.5602 165.3931

17 8 1501 141.0683 157.6225 122.2799 1.195 120.7233 72.9926

17 4 1801 103.4299 103.4071 103.4642 0.86946 103.3956 2.6661

17 5 1801 131.6153 131.5748 131.676 1.1064 131.5567 3.9279

17 6 1801 105.1297 105.1088 105.1611 0.88377 105.066 3.6597

17 7 1801 117.5298 114.4912 121.9483 0.98767 113.349 31.0739

17 8 1801 162.3177 178.5691 134.2856 1.3731 143.2879 76.2729

18 4 1200 138.5035 138.4339 138.5498 1.1643 138.4575 3.5693
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

18 5 1200 110.9355 110.8609 110.9851 0.93255 110.8946 3.0099

18 6 1200 127.1022 126.9931 127.1749 1.0685 127.028 4.3434

18 7 1200 109.2968 109.0603 109.4542 0.91875 109.1609 5.4496

18 8 1200 116.3631 110.4611 120.1348 0.97775 112.7685 28.704

18 4 1501 178.5482 178.4888 178.6076 1.5009 178.4889 4.6019

18 5 1501 123.8616 123.8185 123.9048 1.0412 123.8205 3.1937

18 6 1501 140.4227 140.3486 140.4968 1.1804 140.3544 4.379

18 7 1501 180.7813 180.6526 180.9101 1.5197 180.6558 6.7369

18 8 1501 156.2365 174.1055 136.0258 1.3222 136.9175 75.2684

18 4 1801 190.5705 190.5284 190.6336 1.602 190.5072 4.9124

18 5 1801 147.6573 147.6247 147.7061 1.2412 147.6083 3.8046

18 6 1801 149.219 149.1744 149.2858 1.2544 149.1627 4.099

18 7 1801 105.0991 96.7681 116.4899 0.88017 42.1574 96.2895

18 8 1801 123.4976 123.4639 123.5481 1.0381 123.4557 3.2199

19 4 1200 105.706 105.6262 105.7591 0.88859 105.6538 3.3221

19 5 1200 104.7804 104.7263 104.8164 0.88081 104.7456 2.7007

19 6 1200 100.6417 100.5892 100.6767 0.84602 100.6083 2.5936

19 7 1200 175.8074 175.3908 176.0844 1.4778 175.5798 8.9439

19 8 1200 195.6385 178.7287 206.1369 1.6442 186.0336 60.5568

19 4 1501 111.592 111.541 111.643 0.93807 111.5509 3.0275

19 5 1501 162.8035 162.7261 162.8809 1.3686 162.7376 4.6306

19 6 1501 152.9837 152.9045 153.0629 1.286 152.9089 4.7843

19 7 1501 146.5968 146.5215 146.6721 1.2323 146.5255 4.5723

365



Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

19 8 1501 102.8393 98.9187 106.6182 0.86421 99.2251 27.0284

19 4 1801 187.6882 187.6468 187.7503 1.5778 187.6259 4.8365

19 5 1801 146.9256 146.8932 146.9743 1.2351 146.8769 3.786

19 6 1801 119.515 119.4833 119.5625 1.0047 119.4592 3.6532

19 7 1801 190.7536 190.7013 190.832 1.6035 190.6872 5.0328

19 8 1801 180.7319 175.1315 188.8257 1.5193 173.5615 50.4108

20 4 1200 105.5638 105.4856 105.6159 0.8874 105.5194 3.0629

20 5 1200 157.918 157.8392 157.9705 1.3275 157.8656 4.0693

20 6 1200 118.583 118.2188 118.8251 0.99678 118.3918 6.7323

20 7 1200 138.4243 138.3254 138.4901 1.1636 138.3648 4.0586

20 8 1200 140.565 132.0434 145.967 1.1812 135.5051 37.3812

20 4 1501 165.4456 165.3787 165.5125 1.3908 165.3892 4.3194

20 5 1501 131.6426 131.5986 131.6865 1.1066 131.5989 3.392

20 6 1501 110.3316 110.2939 110.3694 0.92748 110.295 2.8424

20 7 1501 123.1024 123.0548 123.15 1.0348 123.0609 3.1966

20 8 1501 100.3862 100.2958 100.4767 0.84389 100.2986 4.1938

20 4 1801 166.3651 166.349 166.3892 1.3985 166.3033 4.5343

20 5 1801 180.5676 180.5278 180.6274 1.5179 180.5077 4.6532

20 6 1801 127.7655 127.7305 127.8179 1.0741 127.687 4.4788

20 7 1801 118.2387 118.174 118.3356 0.99393 118.1623 4.2489

20 8 1801 132.0718 129.1096 136.3969 1.1096 128.2404 31.5861

10 4 1200 197.8189 197.6827 197.9095 1.6656 197.7329 5.8314

10 5 1200 31.7621 35.6254 28.9027 0.26792 24.2162 20.556
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

10 6 1200 27.7337 28.9878 26.8656 0.23414 22.6132 16.0589

10 7 1200 24.1489 24.7567 23.7352 0.20394 19.7707 13.8691

10 8 1200 23.7161 26.2896 21.8336 0.2001 17.9005 15.5597

10 4 1501 136.4467 136.3816 136.5119 1.1489 136.3859 4.0737

10 5 1501 158.5063 158.4054 158.6072 1.3346 158.4169 5.3233

10 6 1501 134.2091 134.0978 134.3204 1.13 134.1031 5.3345

10 7 1501 23.5804 25.8368 21.0821 0.1991 19.4593 13.3203

10 8 1501 24.3621 26.6978 21.7756 0.20575 19.8336 14.1496

10 4 1801 192.895 192.8469 192.967 1.6242 192.8006 6.0345

10 5 1801 104.1589 104.126 104.2082 0.87702 104.1184 2.9045

10 6 1801 30.0592 32.1954 26.5323 0.25368 23.8423 18.3088

10 7 1801 25.3203 26.6328 23.2116 0.21381 20.6473 14.6586

10 8 1801 27.0634 28.578 24.6159 0.22848 22.2212 15.4507

11 4 1200 109.3886 109.3176 109.4359 0.92105 109.3499 2.9125

11 5 1200 99.5778 99.4775 99.6446 0.83845 99.5155 3.5241

11 6 1200 99.7219 99.6412 99.7756 0.83966 99.673 3.1213

11 7 1200 19.3312 19.7905 19.019 0.16326 15.5321 11.5105

11 8 1200 24.6523 25.9969 23.7142 0.20813 19.6357 14.908

11 4 1501 147.0733 146.9979 147.1486 1.2384 147.0007 4.6188

11 5 1501 158.848 158.6143 159.0815 1.3375 158.624 8.4339

11 6 1501 48.2913 62.0058 28.6071 0.40593 28.1757 39.2261

11 7 1501 194.8794 194.7818 194.9771 1.6409 194.7849 6.0712

11 8 1501 17.8349 19.7104 15.7359 0.15058 14.2826 10.6831
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

11 4 1801 108.5608 108.5258 108.6134 0.91409 108.512 3.2558

11 5 1801 162.7971 162.7248 162.9056 1.3708 162.7041 5.5039

11 6 1801 101.546 101.5122 101.5968 0.85502 101.5008 3.033

11 7 1801 106.6311 106.5568 106.7425 0.89784 106.5324 4.5859

11 8 1801 31.5214 33.7312 27.878 0.26603 25.1598 18.9921

12 4 1200 134.7526 134.6541 134.8182 1.1346 134.6957 3.9163

12 5 1200 158.8403 158.9074 158.7956 1.3374 158.7434 5.5485

12 6 1200 174.0177 173.679 174.243 1.4652 173.8199 8.2962

12 7 1200 22.3895 22.8313 22.0902 0.18909 18.1601 13.098

12 8 1200 21.4239 21.9979 21.0327 0.18094 17.2234 12.7433

12 4 1501 110.3973 110.3074 110.4871 0.92954 110.3119 4.3402

12 5 1501 187.9859 187.7416 188.23 1.5829 174.8184 69.129

12 6 1501 132.477 132.4127 132.5414 1.1155 132.4211 3.848

12 7 1501 40.6883 52.9485 22.5115 0.34188 21.7558 34.3893

12 8 1501 23.8213 27.2392 19.8196 0.201 17.6634 15.9857

12 4 1801 103.9238 103.8889 103.9763 0.87503 103.8728 3.2563

12 5 1801 103.9092 103.8261 104.0339 0.87492 103.7993 4.7791

12 6 1801 106.6845 106.6496 106.7368 0.89828 106.6329 3.3189

12 7 1801 142.3174 142.1863 142.5141 1.1983 142.1493 6.9164

12 8 1801 28.8442 30.4067 26.3257 0.24355 23.7556 16.363

13 4 1200 121.39 121.3101 121.4432 1.0221 121.3465 3.2497

13 5 1200 156.4517 156.1772 156.6343 1.3173 156.2865 7.1886

13 6 1200 138.099 138.049 138.1323 1.1628 138.035 4.204

368



Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

13 7 1200 148.9182 148.7316 149.0424 1.2539 148.8092 5.6981

13 8 1200 109.3495 109.194 109.453 0.92073 109.2604 4.4148

13 4 1501 192.9423 192.852 193.0325 1.6246 192.8686 5.3344

13 5 1501 156.4688 156.3694 156.5681 1.3175 156.3932 4.8641

13 6 1501 191.3481 191.1951 191.501 1.6112 191.2101 7.2664

13 7 1501 35.6909 43.1833 26.1244 0.30062 24.4982 25.9596

13 8 1501 27.3397 30.7586 23.4242 0.23076 21.3602 17.0674

13 4 1801 120.1863 120.1469 120.2453 1.012 120.1289 3.7127

13 5 1801 109.3148 109.269 109.3835 0.92043 109.2466 3.8623

13 6 1801 33.626 35.8951 29.8989 0.28381 27.5591 19.2697

13 7 1801 136.2239 136.1643 136.3133 1.147 136.1494 4.506

13 8 1801 130.9234 130.7983 131.1108 1.1024 130.762 6.4999

14 4 1200 108.5498 108.469 108.6036 0.91398 108.4997 3.2991

14 5 1200 122.1959 122.0905 122.266 1.0289 122.1344 3.8757

14 6 1200 125.0431 125.6167 124.6595 1.0526 66.8142 105.7136

14 7 1200 102.228 101.9847 102.3898 0.86077 102.1024 5.0666

14 8 1200 19.3903 19.8797 19.0573 0.16379 15.0864 12.1833

14 4 1501 155.4973 155.4212 155.5735 1.3093 155.4321 4.5054

14 5 1501 114.4408 114.3844 114.4971 0.96359 114.3857 3.55

14 6 1501 112.9992 112.9339 113.0645 0.95146 112.9418 3.6019

14 7 1501 132.1841 132.0747 132.2935 1.113 132.0771 5.3177

14 8 1501 34.1636 43.3203 21.3818 0.28735 20.0418 27.6719

14 4 1801 143.4549 143.3896 143.5528 1.2079 143.3655 5.0645
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

14 5 1801 133.7946 133.7501 133.8614 1.1265 133.7348 4.0015

14 6 1801 103.4022 103.3651 103.4579 0.87064 103.3425 3.5131

14 7 1801 135.5024 135.4101 135.6406 1.1409 135.3818 5.716

14 8 1801 26.387 27.7557 24.188 0.22281 21.5437 15.2388

15 4 1200 128.0073 127.8447 128.1154 1.0778 127.9096 4.9997

15 5 1200 184.0351 183.8988 184.1258 1.5496 183.9527 5.5085

15 6 1200 158.9563 158.8395 159.0341 1.3384 158.8873 4.6839

15 7 1200 128.8983 128.7768 128.9792 1.0853 59.3397 114.4462

15 8 1200 123.7 195.5603 3.9289 1.0359 16.675 122.5914

15 4 1501 169.7219 169.5944 169.8493 1.4291 169.6078 6.2224

15 5 1501 186.9378 186.8444 187.0312 1.574 186.8535 5.6137

15 6 1501 32.2446 36.7231 27.0302 0.27199 25.5307 19.6983

15 7 1501 185.7616 185.4671 186.0558 1.5641 185.5246 9.3829

15 8 1501 107.7857 107.5937 107.9776 0.90758 107.6049 6.2411

15 4 1801 122.8516 122.8095 122.9146 1.0344 122.7918 3.8329

15 5 1801 120.6032 120.5638 120.6624 1.0155 120.5464 3.7039

15 6 1801 154.7901 154.7438 154.8595 1.3033 154.7332 4.196

15 7 1801 129.9287 132.1046 126.5929 1.0939 118.8526 52.5018

15 8 1801 150.2668 150.2065 150.3572 1.2652 150.1911 4.7678

16 4 1200 142.3425 142.2363 142.4132 1.1985 142.2734 4.4355

16 5 1200 191.3012 191.0476 191.4699 1.6108 191.1466 7.691

16 6 1200 174.9901 174.5932 175.2541 1.4734 174.7426 9.3056

16 7 1200 106.1852 106.1148 106.232 0.89406 47.1922 95.1378
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

16 8 1200 109.8723 109.7892 109.9276 0.92513 109.8199 3.3931

16 4 1501 134.7526 134.6856 134.8196 1.1346 134.6866 4.217

16 5 1501 184.8367 184.7104 184.9631 1.5563 184.72 6.5678

16 6 1501 143.9517 143.6926 144.2105 1.2121 143.7053 8.4212

16 7 1501 113.7375 113.6621 113.813 0.95766 113.6896 3.3035

16 8 1501 198.4534 198.3125 198.5944 1.671 198.3491 6.4353

16 4 1801 113.4815 113.443 113.5393 0.95552 113.4263 3.5401

16 5 1801 36.0698 38.3197 32.4011 0.30457 28.618 21.959

16 6 1801 194.979 194.9019 195.0945 1.6417 194.8773 6.2968

16 7 1801 35.4897 38.4603 30.493 0.29943 27.7047 22.184

16 8 1801 181.0007 180.9445 181.0849 1.524 180.9306 5.0377

17 4 1200 114.7937 114.6781 114.8707 0.96656 114.725 3.9737

17 5 1200 110.7563 110.6739 110.8112 0.93257 110.7029 3.4406

17 6 1200 140.0575 139.9604 140.1222 1.1793 140.0045 3.8542

17 7 1200 127.626 127.5402 127.6831 1.0746 127.5794 3.4474

17 8 1200 171.4596 171.5034 171.4305 1.4436 171.3664 5.653

17 4 1501 31.2318 34.7716 27.2329 0.26354 25.7931 17.6137

17 5 1501 31.7757 34.7174 28.5299 0.26821 26.9939 16.7666

17 6 1501 137.831 137.7619 137.9002 1.1605 137.7683 4.1597

17 7 1501 180.7312 180.316 181.1457 1.5217 180.3773 11.3064

17 8 1501 114.1124 114.047 114.1777 0.96081 114.0516 3.7236

17 4 1801 108.6896 108.6528 108.745 0.91517 108.6376 3.3633

17 5 1801 106.5698 106.4812 106.7026 0.89733 106.4511 5.0283
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

17 6 1801 115.2259 115.1704 115.3091 0.9702 115.1513 4.1453

17 7 1801 176.9808 176.9117 177.0844 1.4902 176.8843 5.8453

17 8 1801 161.857 161.8074 161.9314 1.3628 161.7737 5.1925

18 4 1200 109.285 109.1958 109.3444 0.92018 109.2308 3.4437

18 5 1200 102.3664 102.29 102.4172 0.86192 102.3211 3.0438

18 6 1200 169.5445 169.3732 169.6585 1.4276 169.4363 6.0576

18 7 1200 126.7108 126.6152 126.7745 1.0669 126.6515 3.8752

18 8 1200 134.4747 212.6346 2.6076 1.1263 7.0685 134.3112

18 4 1501 99.7465 99.6975 99.7955 0.83987 99.699 3.0786

18 5 1501 43.4613 52.6548 31.6962 0.36598 30.5798 30.8881

18 6 1501 180.9963 180.9068 181.0859 1.524 180.9185 5.3067

18 7 1501 120.5452 120.4738 120.6166 1.015 120.4874 3.7331

18 8 1501 158.1591 157.9758 158.3422 1.3317 158.0073 6.9275

18 4 1801 31.6943 34.3004 27.3204 0.2673 26.1631 17.8921

18 5 1801 107.6138 107.5772 107.6686 0.9061 107.562 3.3388

18 6 1801 125.7658 125.7153 125.8417 1.0589 125.6994 4.0889

18 7 1801 109.3846 109.3492 109.4377 0.92101 109.336 3.2609

18 8 1801 133.667 133.8736 133.3563 1.1254 94.2531 94.7957

19 4 1200 113.3755 113.2606 113.452 0.95463 113.3044 4.0155

19 5 1200 161.2492 161.0849 161.3585 1.3577 161.1482 5.7073

19 6 1200 101.6249 101.5501 101.6747 0.85568 101.5807 2.9954

19 7 1200 163.5428 162.8733 163.9873 1.3771 163.1303 11.61

19 8 1200 161.2447 161.0644 161.3648 1.3577 161.1397 5.8206
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

19 4 1501 119.4811 119.4204 119.5419 1.006 119.4251 3.6589

19 5 1501 164.5157 164.2498 164.7814 1.3852 164.2581 9.2054

19 6 1501 33.7852 38.1586 28.7505 0.28505 26.9957 20.3177

19 7 1501 183.9956 183.902 184.0891 1.5492 183.908 5.6785

19 8 1501 100.8118 100.743 100.8807 0.84884 100.7555 3.3711

19 4 1801 138.6046 138.5524 138.6829 1.167 138.5301 4.5441

19 5 1801 111.6155 111.5645 111.6919 0.93981 111.5479 3.8832

19 6 1801 116.7497 116.7018 116.8216 0.98303 116.6861 3.8542

19 7 1801 177.7103 177.6361 177.8216 1.4963 177.6176 5.7405

19 8 1801 147.2936 147.2461 147.3648 1.2402 147.2306 4.3075

20 4 1200 119.0366 118.9487 119.0952 1.0023 118.9833 3.5631

20 5 1200 149.2693 149.1581 149.3434 1.2568 149.1983 4.6048

20 6 1200 30.5354 32.0403 29.4901 0.25768 25.7183 16.4642

20 7 1200 128.9061 128.8108 128.9695 1.0854 128.8481 3.8654

20 8 1200 154.0375 153.8927 154.1339 1.297 153.9489 5.2256

20 4 1501 130.4491 130.3829 130.5154 1.0984 130.365 4.6845

20 5 1501 105.9153 105.8617 105.9689 0.8918 105.8641 3.2937

20 6 1501 111.6484 111.5898 111.7071 0.94008 111.5939 3.4901

20 7 1501 134.4554 134.3937 134.5172 1.1321 134.4055 3.6653

20 8 1501 145.4837 145.3953 145.5721 1.225 145.403 4.8458

20 4 1801 121.9545 121.8886 122.0535 1.0269 121.8579 4.8553

20 5 1801 111.0587 111.0208 111.1156 0.93511 111.005 3.4541

20 6 1801 158.8357 158.7808 158.918 1.3374 158.7583 4.9592
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Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

# neurons # delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

20 7 1801 159.4777 159.4262 159.555 1.3428 159.4092 4.6751

20 8 1801 151.8963 151.7926 152.0517 1.279 151.7578 6.484

Table 6.9: Summary of RBF-NARX model construction for identification of turbine temper-
ature

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

10 4 1200 248.0781 179.3072 284.8268 15.7583 153.0082 195.3048

10 5 1200 207.1761 148.416 238.4197 13.2638 175.6342 109.9026

10 6 1200 116.529 106.6732 122.657 9.5312 77.1716 87.3275

10 7 1200 107.7162 99.2078 113.0304 8.6593 80.7307 71.3234

10 8 1200 172.1691 174.8978 170.3266 13.1648 120.1952 123.2898

10 4 1501 147.9648 147.6238 148.3052 9.397 147.6888 9.0341

10 5 1501 210.1373 171.3942 242.7947 13.4563 143.7779 153.2757

10 6 1501 183.362 149.3543 212.0001 11.7609 159.1257 91.123

10 7 1501 191.311 154.2249 222.3129 12.2994 165.1711 96.5481

10 8 1501 116.2038 109.0299 122.9642 9.4428 77.3203 86.7606

10 4 1801 178.8614 230.875 2.4151 9.2798 47.9622 172.3396

10 5 1801 131.9345 130.7706 133.6623 7.821 61.2848 116.8565

10 6 1801 180.3875 158.4 209.0921 11.5788 156.4552 89.8003

10 7 1801 152.1321 130.5643 179.7081 9.8619 129.5118 79.8311

10 8 1801 123.4252 113.3757 137.1327 9.9988 84.0548 90.3952

11 4 1200 220.7185 159.9259 253.2489 14.0443 192.6668 107.7034

11 5 1200 211.3474 150.6581 243.5286 13.4975 147.5283 151.363

11 6 1200 181.9475 127.4505 210.5694 11.68 157.7301 90.7129
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Table 6.9: Summary of RBF-NARX model construction for identification of turbine temper-
ature

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

11 7 1200 185.3197 129.6805 214.5254 11.8944 160.6223 92.4485

11 8 1200 116.0043 110.1355 119.7551 9.423 79.1754 84.7977

11 4 1501 242.1402 198.9689 278.7254 15.5464 152.3787 188.2138

11 5 1501 197.3852 161.5336 227.6781 12.5992 143.3319 135.7315

11 6 1501 181.4568 147.828 209.7794 11.6385 157.508 90.1138

11 7 1501 160.4448 129.4396 186.3772 10.3228 138.661 80.7331

11 8 1501 101.7118 92.1387 110.464 8.3056 74.2975 69.4751

11 4 1801 266.1683 235.7966 306.1479 16.9956 232.294 129.9641

11 5 1801 193.558 170.0927 224.2131 12.3949 150.5632 121.6567

11 6 1801 179.4307 157.8617 207.6392 11.5045 155.9445 88.7656

11 7 1801 183.0264 159.5606 213.4572 11.779 157.7368 92.8474

11 8 1801 153.4241 133.9736 178.686 9.8792 132.5832 77.2181

12 4 1200 297.9633 214.5184 342.4553 19.0474 259.9294 145.6911

12 5 1200 198.2247 141.1172 228.4844 12.6965 171.3687 99.6449

12 6 1200 178.3149 123.0885 207.0918 11.4621 153.9954 89.9128

12 7 1200 154.5077 106.734 179.4111 9.9457 133.6015 77.6226

12 8 1200 176.8405 120.0556 206.1693 11.3898 152.1847 90.0837

12 4 1501 313.1933 258.3615 359.792 19.9726 273.2148 153.1388

12 5 1501 243.3416 199.3398 280.5475 15.5136 211.392 120.5546

12 6 1501 182.6072 149.0022 210.9421 11.7089 158.6305 90.4681

12 7 1501 176.7276 143.5864 204.5858 11.3462 153.2398 88.0501

12 8 1501 159.1183 127.7437 185.2695 10.2495 137.1953 80.6116

12 4 1801 177.0031 228.4751 2.566 9.491 51.9466 169.2371
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# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
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mean (μae) Std (σae)

12 5 1801 204.3356 180.1991 235.9719 13.0841 176.604 102.7988

12 6 1801 182.011 159.8666 210.9274 11.6798 156.6419 92.7048

12 7 1801 166.2136 145.5467 193.1244 10.6858 143.8962 83.2055

12 8 1801 147.6718 128.8098 172.1447 9.5167 127.4851 74.5409

13 4 1200 160.0443 159.9158 160.1299 10.1498 159.9665 4.9917

13 5 1200 196.8365 140.4223 226.7635 12.5784 136.1104 142.2157

13 6 1200 177.3899 124.3245 205.268 11.3868 153.8168 88.3752

13 7 1200 162.7089 113.247 188.5965 10.4612 140.9099 81.3681

13 8 1200 147.2319 99.5911 171.7909 9.5003 126.6637 75.0695

13 4 1501 180.5525 147.0356 208.7732 11.6277 115.2624 138.9972

13 5 1501 199.6514 163.5347 230.188 12.7807 173.7579 98.3469

13 6 1501 176.2766 143.9626 203.54 11.2734 124.2613 125.0511

13 7 1501 161.4472 130.3833 187.4477 10.3845 139.5647 81.1732

13 8 1501 149.9837 120.5348 174.5476 9.669 129.407 75.8343

13 4 1801 364.305 364.0052 364.7545 23.1158 363.9673 15.6851

13 5 1801 195.5261 172.3409 225.9009 12.5118 165.2882 104.4698

13 6 1801 179.164 157.3983 207.5912 11.498 155.4176 89.1502

13 7 1801 161.3369 141.2276 187.5132 10.3754 139.6646 80.781

13 8 1801 149.2598 130.2251 173.962 9.6177 128.911 75.2483

14 4 1200 143.3894 143.2674 143.4706 9.0918 143.3191 4.4908

14 5 1200 242.6513 84.923 305.4598 15.6643 165.5776 177.4097

14 6 1200 189.9998 133.5594 219.6992 12.1875 164.8188 94.5393

14 7 1200 165.3938 115.4255 191.5845 10.6265 143.333 82.5411
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# neurons # delays # training samples RMSETT
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14 8 1200 148.7356 101.2245 173.3065 9.5924 128.1657 75.4834

14 4 1501 164.4817 134.1277 190.0639 10.5964 124.8976 107.0451

14 5 1501 145.1324 159.0167 129.7602 7.7193 42.0025 138.9447

14 6 1501 172.2062 139.7434 199.4705 11.0469 148.235 87.6579

14 7 1501 163.9222 132.5066 190.2345 10.5418 141.8263 82.2073

14 8 1501 146.3392 117.9054 170.0989 9.4246 126.455 73.6621

14 4 1801 212.9757 186.4941 247.4579 13.84 185.2406 105.1107

14 5 1801 134.7458 134.6747 134.8524 8.5484 134.6626 4.7339

14 6 1801 192.6953 169.6611 222.8415 12.3514 167.3851 95.4817

14 7 1801 166.3764 145.5187 193.5062 10.706 143.8947 83.5329

14 8 1801 147.1616 128.4627 171.44 9.4809 127.1611 74.084

15 4 1200 228.4541 228.2762 228.5726 14.4822 228.3452 7.0537

15 5 1200 225.476 158.2258 260.8305 14.4524 195.462 112.42

15 6 1200 213.0437 150.3132 246.1196 13.6509 184.9246 105.8027

15 7 1200 160.1158 110.2076 186.0815 10.3081 138.2707 80.7495

15 8 1200 149.775 102.5474 174.2771 9.6547 129.2304 75.7228

15 4 1501 215.7758 277.3815 127.1126 10.084 43.3616 211.4092

15 5 1501 162.9787 133.8174 187.6773 10.3713 141.6756 80.5743

15 6 1501 180.8626 147.4978 208.9839 11.5997 149.3284 102.0578

15 7 1501 265.4489 215.1401 307.6638 17.004 229.5758 133.2816

15 8 1501 153.5239 123.6985 178.4472 9.8818 132.6238 77.3467

15 4 1801 159.2979 159.0704 159.6387 10.1151 159.0675 8.5672

15 5 1801 230.6506 230.3683 231.0735 14.6418 230.3447 11.8755
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15 6 1801 179.4164 157.5194 207.9981 11.5151 155.5938 89.3502

15 7 1801 160.7468 140.222 187.3785 10.353 138.7222 81.2274

15 8 1801 149.7369 130.6232 174.5386 9.6506 129.294 75.5389

16 4 1200 190.8991 190.7492 190.9989 12.1036 190.8069 5.9337

16 5 1200 111.6185 111.4783 111.7117 7.0788 111.5447 4.0576

16 6 1200 164.0801 115.2647 189.758 10.5506 142.4627 81.4177

16 7 1200 199.3492 138.3108 231.2415 12.8013 172.3719 100.1568

16 8 1200 149.4384 102.7163 173.7285 9.6283 129.0739 75.3236

16 4 1501 251.6964 251.4689 251.9238 15.9672 251.5156 9.5384

16 5 1501 175.5114 142.8542 202.9978 11.258 129.2537 118.7536

16 6 1501 170.8703 138.6451 197.9332 10.9865 148.068 85.2934

16 7 1501 167.8862 135.8406 194.7444 10.797 145.3064 84.1081

16 8 1501 154.9198 124.5044 180.2903 9.9802 133.6493 78.3585

16 4 1801 203.0655 202.9921 203.1755 12.8745 202.9681 6.2887

16 5 1801 160.8186 141.0275 186.6238 10.3616 139.6286 79.8036

16 6 1801 142.1869 141.9502 142.5413 9.033 141.9414 8.3525

16 7 1801 172.2232 150.9866 199.9058 11.0627 149.222 86.0004

16 8 1801 150.639 131.2802 175.7358 9.7103 129.9693 76.171

17 4 1200 143.2665 143.1283 143.3586 9.0806 143.1752 5.1147

17 5 1200 198.9403 198.1171 199.4869 12.6323 198.4646 13.7515

17 6 1200 179.0259 125.0522 207.3299 11.4997 155.1831 89.2813

17 7 1200 109.564 109.4738 109.6241 6.947 109.5113 3.3979

17 8 1200 138.2809 93.1241 161.5056 8.9352 118.9004 70.6113
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17 4 1501 114.1674 114.0506 114.2842 7.2593 114.075 4.5929

17 5 1501 243.8794 197.8934 282.4998 15.6403 211.2356 121.9084

17 6 1501 172.153 139.9335 199.2451 11.0673 149.0685 86.1261

17 7 1501 174.8686 141.0802 203.1295 11.2458 151.077 88.0758

17 8 1501 151.9932 122.3192 176.7692 9.7944 131.254 76.657

17 4 1801 265.1592 265.0653 265.3002 16.8127 265.0339 8.1533

17 5 1801 144.9792 144.7145 145.3755 9.211 144.6921 9.1199

17 6 1801 201.5678 177.5594 233.0034 12.9157 175.231 99.6343

17 7 1801 140.7777 121.9195 165.0863 9.0396 120.2346 73.2378

17 8 1801 143.714 125.1645 167.7474 9.272 123.9534 72.7394

18 4 1200 120.9347 120.8214 121.0101 7.6649 120.8622 4.185

18 5 1200 201.6752 201.4751 201.8083 12.7875 201.5696 6.5265

18 6 1200 217.3619 152.3322 251.5247 13.8832 188.1734 108.8159

18 7 1200 191.6773 134.7552 221.6321 12.2958 166.3042 95.3212

18 8 1200 151.8592 103.1033 177.042 9.7927 130.7558 77.2406

18 4 1501 106.229 106.1014 106.3567 6.7455 106.1607 3.8103

18 5 1501 143.638 143.5612 143.7147 9.1078 143.5686 4.4649

18 6 1501 154.0754 125.3085 178.274 9.8866 110.2697 107.6276

18 7 1501 166.8522 135.0458 193.5158 10.7219 144.407 83.5979

18 8 1501 131.6182 104.479 154.062 8.5257 112.9845 67.523

18 4 1801 151.417 151.3618 151.4998 9.5846 151.2192 7.738

18 5 1801 244.4467 213.1544 285.0355 15.5842 195.0991 147.3016

18 6 1801 163.518 143.2958 189.8685 10.5107 131.9807 96.5524
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18 7 1801 164.6883 144.2214 191.3405 10.5909 142.606 82.3896

18 8 1801 144.312 125.587 168.5555 9.3131 124.3424 73.2578

19 4 1200 124.8185 124.7166 124.8864 7.9148 124.7584 3.8747

19 5 1200 116.8087 116.6751 116.8976 7.4073 116.7347 4.1578

19 6 1200 258.6026 180.1182 299.6961 16.5827 223.7498 129.6801

19 7 1200 163.7364 110.4903 191.1506 10.5774 140.7091 83.7431

19 8 1200 153.1936 104.6758 178.3381 9.8849 132.1211 77.5519

19 4 1501 135.7304 135.5991 135.8616 8.6062 135.5985 5.9818

19 5 1501 170.5506 170.4608 170.6404 10.8149 170.4692 5.2713

19 6 1501 345.84 282.746 399.1138 22.0843 300.2976 171.5706

19 7 1501 143.298 115.173 166.7592 9.2705 123.7542 72.256

19 8 1501 144.2192 115.5175 168.1043 9.3055 124.24 73.2489

19 4 1801 141.176 141.1338 141.2394 8.9519 141.1076 4.3971

19 5 1801 158.3819 140.0886 182.4264 10.0795 137.7159 78.2381

19 6 1801 169.7877 148.6794 197.2737 10.9525 147.2371 84.5664

19 7 1801 154.7682 135.2971 180.0826 9.9732 133.9595 77.5245

19 8 1801 152.7537 133.1631 178.1581 9.8506 131.8532 77.139

20 4 1200 106.3589 106.2383 106.4391 6.7416 106.2848 3.9681

20 5 1200 121.3176 121.1253 121.4456 7.7018 121.2445 4.2119

20 6 1200 134.3155 88.9803 157.4347 8.7846 115.1983 69.0768

20 7 1200 101.7451 101.6587 101.8026 6.4505 101.696 3.1625

20 8 1200 133.2454 56.0057 165.8133 8.6894 107.5564 78.6639

20 4 1501 183.0812 182.9638 183.1986 11.6064 182.9635 6.5636
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20 5 1501 176.9939 176.9007 177.0872 11.2232 176.908 5.5133

20 6 1501 145.9677 116.5589 170.3887 9.4693 124.6972 75.8887

20 7 1501 196.2827 158.9363 227.6003 12.61 169.8009 98.4773

20 8 1501 148.6711 119.7122 172.8594 9.5822 128.4488 74.8724

20 4 1801 175.4014 175.3249 175.5162 11.1216 175.2861 6.3613

20 5 1801 221.6818 221.4134 222.0841 14.072 221.3955 11.2665

20 6 1801 150.7779 150.5315 151.147 9.5784 150.5184 8.844

20 7 1801 162.3079 141.8501 188.8986 10.45 140.252 81.7034

20 8 1801 270.9309 270.6958 271.2833 17.1924 270.6922 11.3718

10 4 1200 75.263 72.913 76.7889 4.1533 69.2869 29.3961

10 5 1200 155.2793 153.5769 156.4032 8.4818 154.207 18.2197

10 6 1200 122.867 122.7376 122.9532 6.7205 122.7884 4.3959

10 7 1200 13.4734 15.2044 12.1843 0.75263 9.8925 9.1487

10 8 1200 22.5846 31.8863 13.1326 1.3285 11.7452 19.2934

10 4 1501 66.0248 65.7916 66.2573 3.6329 59.822 27.9438

10 5 1501 126.1031 123.1248 129.0147 7.1544 108.7094 63.9189

10 6 1501 93.3593 89.6891 96.8929 5.2703 82.2458 44.1842

10 7 1501 86.8293 82.4681 90.9844 4.8991 76.7083 40.6905

10 8 1501 95.8502 92.8938 98.72 5.4188 83.7536 46.619

10 4 1801 85.4081 81.5205 90.9313 4.696 80.3869 28.8577

10 5 1801 115.4479 117.7485 111.9063 6.5295 101.1892 55.5877

10 6 1801 165.0215 168.7851 159.2061 9.3289 144.67 79.4028

10 7 1801 163.6824 168.4355 156.2778 9.2552 143.1648 79.3592
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10 8 1801 120.0939 123.6459 114.5566 6.7916 104.8588 58.5519

11 4 1200 188.364 187.9744 188.6232 10.3011 188.1229 9.5295

11 5 1200 74.3993 75.1104 73.9218 4.1802 66.3091 33.7452

11 6 1200 78.4977 83.4896 74.9873 4.4516 67.3956 40.2524

11 7 1200 191.3645 200.8411 184.7807 10.8268 166.5947 94.1783

11 8 1200 51.4856 53.4922 50.1041 2.9079 44.8358 25.3127

11 4 1501 163.5491 163.251 163.8469 8.944 163.2847 9.297

11 5 1501 98.1482 96.5899 99.6832 5.5735 84.0678 50.661

11 6 1501 215.7239 215.3266 216.1207 11.7954 215.3484 12.7252

11 7 1501 95.122 91.5659 98.5521 5.371 83.7565 45.0969

11 8 1501 75.4676 72.5398 78.2879 4.2608 66.2887 36.0778

11 4 1801 233.055 232.9305 233.2417 12.747 232.8748 9.1643

11 5 1801 112.4904 109.292 117.127 6.2709 103.0009 45.2282

11 6 1801 161.4779 161.1155 162.0203 8.8276 160.9836 12.6277

11 7 1801 109.1645 113.5457 102.2374 6.1887 94.2014 55.1725

11 8 1801 126.0525 130.1258 119.6794 7.1327 109.8405 61.8512

12 4 1200 140.6624 140.5237 140.7547 7.6935 140.5742 4.9801

12 5 1200 116.0673 111.1493 119.2315 6.3221 113.4825 24.3628

12 6 1200 156.9673 165.4299 151.0658 8.8876 136.159 78.1121

12 7 1200 124.3935 138.5776 113.9669 7.0995 103.0884 69.6286

12 8 1200 100.6909 106.1413 96.8893 5.7065 87.0066 50.6888

12 4 1501 108.6603 108.5932 108.7274 5.9437 108.6038 3.5047

12 5 1501 63.4218 63.5902 63.2529 3.5309 56.0428 29.6955
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12 6 1501 115.8169 115.5856 116.0479 6.594 97.777 62.0845

12 7 1501 94.2649 91.5878 96.8698 5.3389 81.7837 46.8832

12 8 1501 74.3123 72.41 76.1683 4.2032 64.6406 36.6656

12 4 1801 260.6618 260.576 260.7905 14.2548 260.5391 7.9965

12 5 1801 104.8933 100.8564 110.6759 5.795 98.6375 35.6886

12 6 1801 232.7136 232.4245 233.1467 12.7256 232.326 13.4278

12 7 1801 118.0944 125.4911 106.0292 6.7156 99.9576 62.8974

12 8 1801 129.4815 134.3815 121.7579 7.3284 112.3561 64.3657

13 4 1200 195.3688 195.1844 195.4915 10.6855 195.2624 6.4472

13 5 1200 118.2804 113.2926 121.4901 6.5048 112.3531 36.9796

13 6 1200 71.876 70.1018 73.0342 3.951 65.8688 28.7704

13 7 1200 110.4787 117.0547 105.8707 6.2668 94.9364 56.5127

13 8 1200 85.1731 88.8288 82.6477 4.8231 73.8752 42.3971

13 4 1501 171.962 171.8752 172.0488 9.4062 171.8789 5.348

13 5 1501 103.5105 103.4361 103.5849 5.6611 103.4443 3.701

13 6 1501 109.7544 107.2162 112.2368 6.0001 106.4395 26.7748

13 7 1501 242.2456 241.9009 242.5899 13.2491 241.9263 12.4342

13 8 1501 108.4142 107.6971 109.1272 6.15 93.0013 55.7265

13 4 1801 115.2928 115.2483 115.3596 6.3063 115.2342 3.6769

13 5 1801 83.8456 79.8002 89.5749 4.6037 78.2682 30.0745

13 6 1801 181.9527 187.4275 173.412 10.2644 158.8225 88.7967

13 7 1801 185.9137 185.6961 186.2397 10.1661 185.6267 10.3273

13 8 1801 152.366 159.1441 141.5858 8.6365 131.4585 77.0457
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14 4 1200 180.7673 180.6325 180.857 9.8877 180.6801 5.6147

14 5 1200 75.4158 80.1993 72.0525 4.1889 66.7299 35.1436

14 6 1200 76.5233 74.5947 77.7818 4.2057 70.6501 29.4053

14 7 1200 143.5512 149.6471 139.3416 8.1097 125.6482 69.434

14 8 1200 67.7342 70.4228 65.882 3.8324 58.9656 33.337

14 4 1501 152.0941 152.0167 152.1716 8.3186 152.0201 4.745

14 5 1501 88.963 85.6909 92.121 4.8852 83.2991 31.2409

14 6 1501 73.258 72.616 73.8949 4.0356 66.8802 29.9012

14 7 1501 135.8022 130.8733 140.5615 7.5949 122.0812 59.4946

14 8 1501 123.7952 121.9249 125.639 7.0145 106.9044 62.4341

14 4 1801 147.9563 147.8927 148.0518 8.0918 147.8656 5.182

14 5 1801 112.0852 112.037 112.1575 6.1295 112.0148 3.9746

14 6 1801 76.3416 73.4146 80.535 4.2159 70.2029 29.9981

14 7 1801 168.4348 167.8746 169.272 9.2046 167.6496 16.2466

14 8 1801 216.1583 225.821 200.7854 12.2265 187.7567 107.1244

15 4 1200 163.7234 163.6005 163.8053 8.9556 163.6436 5.1129

15 5 1200 329.9522 329.5097 330.2466 18.0454 329.6858 13.2581

15 6 1200 82.7747 80.0486 84.5422 4.5716 76.6884 31.1586

15 7 1200 103.154 99.0631 105.792 5.6426 99.487 27.264

15 8 1200 99.9741 105.4351 96.1634 5.6573 86.5782 49.9987

15 4 1501 269.969 269.8335 270.1045 14.7653 269.8422 8.2736

15 5 1501 172.4222 172.3352 172.5091 9.4316 172.3402 5.3179

15 6 1501 76.0029 73.1782 78.728 4.1932 70.1689 29.207
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15 7 1501 88.2302 85.5833 90.8018 4.8468 82.988 29.9643

15 8 1501 173.5299 170.5947 176.4182 9.8003 151.2111 85.1483

15 4 1801 145.1103 145.047 145.2054 7.9367 145.0176 5.1871

15 5 1801 318.7874 318.5947 319.0765 17.4343 318.5217 13.015

15 6 1801 78.6741 75.0771 83.7832 4.3353 72.9309 29.5126

15 7 1801 84.6347 80.9734 89.8502 4.6604 78.4778 31.6957

15 8 1801 117.8525 117.1005 118.9721 6.4344 116.7983 15.7304

16 4 1200 206.0819 205.8089 206.2636 11.2706 205.9154 8.2844

16 5 1200 145.8192 145.7106 145.8914 7.976 145.7488 4.5302

16 6 1200 89.8905 86.8022 91.8907 4.9569 83.8622 32.3696

16 7 1200 166.2082 166.0699 166.3003 9.0922 166.1264 5.2152

16 8 1200 95.1256 100.3104 91.5081 5.3854 82.2592 47.7814

16 4 1501 327.4169 326.93 327.9033 17.9041 326.9518 17.4477

16 5 1501 167.3758 167.2913 167.4602 9.1564 167.2956 5.1799

16 6 1501 165.3899 165.0985 165.681 9.044 165.1301 9.2694

16 7 1501 80.1312 77.3356 82.8343 4.4538 72.6451 33.8244

16 8 1501 212.9614 212.0284 213.8908 11.6377 212.0636 19.5375

16 4 1801 166.2228 166.1468 166.3368 9.0906 166.1165 5.944

16 5 1801 106.2498 106.2109 106.3083 5.8115 106.1971 3.3461

16 6 1801 67.0757 64.7288 70.4514 3.7051 60.3785 29.2211

16 7 1801 88.667 85.1697 93.6712 4.8851 82.7182 31.9355

16 8 1801 153.7005 151.0812 157.5499 8.5341 141.8058 59.2971

17 4 1200 144.3074 144.1639 144.4029 7.8928 144.2218 4.97
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ature

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

17 5 1200 127.2684 127.1435 127.3516 6.9605 127.1902 4.4621

17 6 1200 101.8417 101.7405 101.9091 5.5709 101.7777 3.611

17 7 1200 116.8393 116.0062 117.3911 6.5287 107.0782 46.7592

17 8 1200 97.7279 94.2515 99.977 5.3759 92.3643 31.936

17 4 1501 333.3508 333.0754 333.6263 18.2307 333.0895 13.2003

17 5 1501 121.0593 120.9959 121.1228 6.6214 121.0004 3.7779

17 6 1501 113.6087 111.4546 115.7241 6.1928 110.9945 24.2354

17 7 1501 79.2788 76.0168 82.4139 4.3862 72.9622 31.0157

17 8 1501 78.7968 76.8145 80.7317 4.3407 72.99 29.6933

17 4 1801 198.377 198.2867 198.5123 10.85 198.2478 7.1599

17 5 1801 115.8266 115.7769 115.9011 6.3356 115.7539 4.1042

17 6 1801 312.072 311.8909 312.3436 17.0675 311.8201 12.5391

17 7 1801 81.0421 77.417 86.1971 4.478 74.571 31.7383

17 8 1801 97.3345 94.0969 102.001 5.3652 90.9517 34.6728

18 4 1200 154.5424 154.4256 154.6201 8.4531 154.4695 4.7458

18 5 1200 245.8031 245.5166 245.9938 13.4453 245.6345 9.1043

18 6 1200 319.0891 318.6504 319.3811 17.4524 318.8281 12.9072

18 7 1200 168.8379 168.6988 168.9304 9.2343 168.755 5.2895

18 8 1200 106.8291 102.5336 109.5978 5.8341 103.3303 27.121

18 4 1501 150.9882 144.8087 156.9285 8.5609 131.7746 73.7205

18 5 1501 318.2245 317.8918 318.5571 17.4054 317.9272 13.7543

18 6 1501 152.8787 152.7814 152.9759 8.3619 152.7975 4.9804

18 7 1501 72.334 71.401 73.2556 3.9708 66.3955 28.7074
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Table 6.9: Summary of RBF-NARX model construction for identification of turbine temper-
ature

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

18 8 1501 89.2868 86.0931 92.3722 4.919 83.7634 30.9215

18 4 1801 203.2992 203.2134 203.4279 11.1198 203.0464 10.1367

18 5 1801 305.4033 305.2101 305.6931 16.7038 305.1255 13.0274

18 6 1801 77.0923 77.9437 75.7964 4.2977 67.2325 37.7291

18 7 1801 95.2301 91.4629 100.6196 5.2332 89.9476 31.2814

18 8 1801 82.8859 79.9299 87.1344 4.5651 77.121 30.3764

19 4 1200 203.0169 202.8579 203.1228 11.1043 202.9167 6.3811

19 5 1200 112.4697 112.3793 112.53 6.1516 112.4146 3.5229

19 6 1200 140.2444 140.1401 140.3139 7.6714 140.1774 4.3369

19 7 1200 355.6418 354.6987 356.2687 19.4473 355.0636 20.2748

19 8 1200 91.2141 89.1937 92.5358 5.0432 84.7102 33.8318

19 4 1501 141.6924 141.6043 141.7806 7.7499 141.6162 4.6491

19 5 1501 348.6103 348.2395 348.981 19.0662 348.2722 15.3534

19 6 1501 121.4029 121.3407 121.4651 6.6401 121.3441 3.7787

19 7 1501 171.2182 170.9769 171.4593 9.3648 171.0071 8.4993

19 8 1501 73.87 72.887 74.8407 4.0737 67.6725 29.6226

19 4 1801 168.0132 167.9403 168.1226 9.1893 167.9127 5.8117

19 5 1801 158.6007 158.4484 158.829 8.6744 158.3896 8.1813

19 6 1801 189.0908 189.0221 189.1937 10.3432 188.9975 5.9389

19 7 1801 168.3026 168.1474 168.5352 9.2034 168.0832 8.5924

19 8 1801 103.862 100.3007 108.9887 5.7256 97.9948 34.4199

20 4 1200 113.3846 113.1547 113.5375 6.2 113.2568 5.3826

20 5 1200 129.3069 129.2056 129.3743 7.073 129.2437 4.0445
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Table 6.9: Summary of RBF-NARX model construction for identification of turbine temper-
ature

# neurons # delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

20 6 1200 366.0749 365.6302 366.3709 20.0232 365.8011 14.1584

20 7 1200 120.268 120.1509 120.346 6.5781 120.197 4.1323

20 8 1200 112.288 108.1027 114.9921 6.1543 108.2228 29.945

20 4 1501 118.412 119.2438 117.5739 6.4856 117.7228 12.7593

20 5 1501 121.2861 121.203 121.3692 6.6342 121.2084 4.3429

20 6 1501 174.5369 174.4326 174.6412 9.5466 174.4489 5.5426

20 7 1501 163.5183 163.4196 163.6171 8.9438 163.4355 5.2048

20 8 1501 149.2317 148.9954 149.4677 8.1611 149.0276 7.8036

20 4 1801 269.0185 268.9439 269.1305 14.7141 268.9265 7.0397

20 5 1801 191.0713 190.9919 191.1903 10.4501 190.9667 6.3226

20 6 1801 186.1256 186.0559 186.2301 10.1793 186.0326 5.8823

20 7 1801 118.6237 118.5738 118.6986 6.4887 118.5553 4.0306

20 8 1801 144.507 144.4525 144.5888 7.9045 144.4348 4.5689

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

10 4 1200 0.17341 0.15102 0.18684 4.0658 0.15852 0.070299

10 5 1200 0.28252 0.25483 0.29956 8.0653 0.21092 0.188

10 6 1200 0.40855 0.37653 0.42856 11.3677 0.3273 0.24456

10 7 1200 0.40959 0.37842 0.42911 11.3902 0.32791 0.24548

10 8 1200 0.41573 0.38502 0.43499 11.5348 0.33392 0.24769

10 4 1501 0.16658 0.14323 0.18706 4.7807 0.12635 0.10858
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

10 5 1501 0.15222 0.12974 0.1718 4.2867 0.11862 0.095417

10 6 1501 0.41334 0.39033 0.43514 11.4875 0.33179 0.24654

10 7 1501 0.41563 0.3929 0.4372 11.5311 0.3338 0.24769

10 8 1501 0.40801 0.38742 0.42761 11.2828 0.32686 0.24424

10 4 1801 0.15822 0.14295 0.17871 4.0204 0.13973 0.074252

10 5 1801 0.15052 0.13281 0.17374 4.0655 0.12921 0.077221

10 6 1801 0.35217 0.32356 0.39121 9.8711 0.27698 0.21754

10 7 1801 0.41857 0.38637 0.46271 11.6143 0.33577 0.24997

10 8 1801 0.39683 0.36582 0.43928 11.0358 0.31658 0.23931

11 4 1200 0.16607 0.13992 0.18142 4.7667 0.12687 0.10719

11 5 1200 0.14777 0.12949 0.15879 4.0298 0.11894 0.087706

11 6 1200 0.40936 0.37682 0.42968 11.39 0.32858 0.24419

11 7 1200 0.2243 0.19842 0.23999 6.5191 0.15357 0.16351

11 8 1200 0.41328 0.38318 0.43218 11.4588 0.33078 0.2478

11 4 1501 0.1613 0.14108 0.17927 3.8098 0.14582 0.068969

11 5 1501 0.29467 0.27299 0.31488 8.3818 0.22182 0.19401

11 6 1501 0.29503 0.27377 0.31488 8.3781 0.22268 0.19357

11 7 1501 0.40803 0.3859 0.42903 11.3181 0.32712 0.24392

11 8 1501 0.42192 0.39865 0.44399 11.72 0.33909 0.25112

11 4 1801 0.1602 0.14263 0.18345 4.2136 0.14096 0.07615

11 5 1801 0.15634 0.13913 0.17908 4.1112 0.13741 0.074573

11 6 1801 0.42399 0.39093 0.46925 11.7806 0.34006 0.25327

11 7 1801 0.41666 0.38565 0.45928 11.5441 0.33409 0.24901

389



Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

11 8 1801 0.41358 0.38228 0.45654 11.4675 0.33205 0.24659

12 4 1200 0.17937 0.15471 0.19407 5.2697 0.11871 0.13449

12 5 1200 0.15691 0.13247 0.17127 4.1181 0.13841 0.07393

12 6 1200 0.1572 0.13413 0.17085 4.183 0.136 0.078853

12 7 1200 0.35646 0.32787 0.3743 9.9654 0.28065 0.21982

12 8 1200 0.15295 0.12988 0.16655 3.9215 0.13616 0.06968

12 4 1501 0.20898 0.18956 0.22675 6.0481 0.13986 0.1553

12 5 1501 0.20107 0.18363 0.21712 4.3573 0.17846 0.092633

12 6 1501 0.15412 0.13133 0.17396 4.1141 0.13277 0.078268

12 7 1501 0.1664 0.14522 0.18518 4.1044 0.15103 0.069867

12 8 1501 0.40551 0.38233 0.42745 11.266 0.32475 0.24289

12 4 1801 0.29504 0.28998 0.30247 8.034 0.19086 0.22503

12 5 1801 0.16163 0.14548 0.18321 4.109 0.14538 0.070651

12 6 1801 0.2453 0.23398 0.26138 5.1353 0.21535 0.11749

12 7 1801 0.36721 0.33827 0.4068 10.2438 0.29112 0.22385

12 8 1801 0.4098 0.37871 0.45247 11.3674 0.32884 0.24459

13 4 1200 0.27449 0.30972 0.24827 7.2799 0.16384 0.22027

13 5 1200 0.17281 0.15093 0.18597 4.0403 0.15764 0.070827

13 6 1200 0.21746 0.1964 0.23043 4.6786 0.19538 0.0955

13 7 1200 0.1722 0.14998 0.18554 4.037 0.15744 0.069779

13 8 1200 0.41879 0.38723 0.43856 11.6118 0.33589 0.25016

13 4 1501 0.18842 0.16625 0.20825 5.4767 0.13224 0.13423

13 5 1501 0.20297 0.18336 0.22085 5.8225 0.14432 0.14274
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

13 6 1501 0.20229 0.18269 0.22016 4.4097 0.18341 0.085346

13 7 1501 0.21975 0.2134 0.22593 4.6072 0.18175 0.12354

13 8 1501 0.41912 0.3968 0.44032 11.6104 0.33579 0.25085

13 4 1801 0.1805 0.16068 0.2067 5.091 0.14107 0.11261

13 5 1801 0.2038 0.1821 0.2326 5.9328 0.13829 0.14973

13 6 1801 0.32965 0.30192 0.36737 9.2896 0.25564 0.20816

13 7 1801 0.22104 0.20887 0.23815 4.7029 0.19758 0.099132

13 8 1801 0.40903 0.37806 0.45153 11.3617 0.32803 0.24438

14 4 1200 0.19045 0.16646 0.20488 5.5674 0.12782 0.14121

14 5 1200 0.1736 0.14828 0.18858 5.0556 0.12448 0.12102

14 6 1200 0.15847 0.13322 0.17327 4.4575 0.12731 0.094392

14 7 1200 0.17537 0.16215 0.18365 3.9319 0.15535 0.081388

14 8 1200 0.16292 0.13831 0.17743 4.7045 0.12093 0.10919

14 4 1501 0.15872 0.1343 0.17986 4.4875 0.12614 0.096356

14 5 1501 0.16651 0.14225 0.18767 4.4331 0.14598 0.080102

14 6 1501 0.16312 0.14041 0.18305 3.9469 0.14849 0.067539

14 7 1501 0.15565 0.13251 0.17578 4.1328 0.13565 0.076332

14 8 1501 0.39992 0.3771 0.42153 11.1172 0.31894 0.24132

14 4 1801 0.20918 0.18922 0.23599 5.9837 0.1489 0.14694

14 5 1801 0.15576 0.13962 0.17725 3.9694 0.13917 0.069958

14 6 1801 0.19116 0.17782 0.20959 4.3266 0.1744 0.078288

14 7 1801 0.1634 0.14864 0.18333 3.9848 0.14819 0.06886

14 8 1801 0.41607 0.38513 0.45861 11.526 0.33453 0.24743
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

15 4 1200 0.20997 0.19955 0.21663 5.9195 0.14395 0.15288

15 5 1200 0.16738 0.14225 0.18222 4.4499 0.14664 0.08073

15 6 1200 0.15993 0.13413 0.17502 4.1837 0.1417 0.074164

15 7 1200 0.15588 0.13756 0.16698 3.9527 0.13725 0.073911

15 8 1200 0.19112 0.16974 0.20413 4.2836 0.17481 0.077283

15 4 1501 0.16466 0.1406 0.18565 4.1592 0.14918 0.069729

15 5 1501 0.15414 0.12993 0.17505 4.1733 0.1319 0.079782

15 6 1501 0.18321 0.16135 0.20274 4.1509 0.16798 0.073153

15 7 1501 0.20674 0.18737 0.22445 4.4743 0.18681 0.088576

15 8 1501 0.23053 0.21386 0.24609 4.8671 0.20426 0.10689

15 4 1801 0.2583 0.23681 0.28756 7.4048 0.17101 0.19361

15 5 1801 0.20657 0.18812 0.23153 5.9167 0.14177 0.15027

15 6 1801 0.2291 0.22894 0.22934 6.0948 0.1549 0.16882

15 7 1801 0.18331 0.16895 0.20296 4.2106 0.1682 0.072884

15 8 1801 0.24153 0.23153 0.2558 5.0505 0.2118 0.11611

16 4 1200 0.17345 0.14945 0.18774 4.8011 0.14361 0.097287

16 5 1200 0.17208 0.14872 0.18602 4.7858 0.14067 0.099132

16 6 1200 0.15316 0.129 0.16734 4.2878 0.12412 0.089753

16 7 1200 0.16309 0.13763 0.17804 4.7181 0.12046 0.10996

16 8 1200 0.33429 0.31564 0.34616 6.8605 0.28845 0.16898

16 4 1501 0.17346 0.15012 0.19402 5.0495 0.12527 0.12

16 5 1501 0.25953 0.25131 0.2675 7.2733 0.16892 0.19706

16 6 1501 0.1759 0.15082 0.19785 4.2955 0.1618 0.069027
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

16 7 1501 0.23676 0.21796 0.2542 4.9863 0.21003 0.10931

16 8 1501 0.18498 0.16706 0.20132 4.1458 0.16786 0.077743

16 4 1801 0.18945 0.17408 0.21042 5.3738 0.1326 0.13533

16 5 1801 1.4345 1.4319 1.4384 33.3405 1.4314 0.094621

16 6 1801 0.16698 0.14913 0.19066 4.3179 0.14977 0.073855

16 7 1801 0.18564 0.17258 0.20367 4.2731 0.16948 0.075752

16 8 1801 0.31558 0.30654 0.32869 6.4683 0.27113 0.16151

17 4 1200 0.21012 0.18757 0.22389 6.095 0.14106 0.15576

17 5 1200 0.18371 0.16095 0.19743 5.2533 0.13849 0.12073

17 6 1200 0.19627 0.18173 0.20539 5.5872 0.13569 0.14183

17 7 1200 0.20198 0.18787 0.21086 5.7554 0.14015 0.14548

17 8 1200 0.17304 0.15081 0.18639 4.0441 0.15856 0.069309

17 4 1501 1.4664 1.4651 1.4678 34.0343 1.465 0.064273

17 5 1501 1.413 1.4096 1.4165 32.8381 1.4101 0.090598

17 6 1501 0.16192 0.13719 0.18337 4.3214 0.14101 0.079615

17 7 1501 0.16695 0.1442 0.18696 4.0278 0.15258 0.067764

17 8 1501 0.26526 0.24838 0.28114 5.5073 0.2317 0.12917

17 4 1801 0.18678 0.16756 0.21237 5.2777 0.14369 0.11935

17 5 1801 0.17127 0.15133 0.19746 4.7039 0.14399 0.092763

17 6 1801 0.18288 0.16335 0.20879 5.2071 0.13924 0.11858

17 7 1801 0.18968 0.17778 0.20626 4.2043 0.17126 0.081565

17 8 1801 0.19754 0.18497 0.21504 4.3971 0.18106 0.079008

18 4 1200 0.24963 0.25246 0.24773 6.9408 0.15765 0.19358
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

18 5 1200 0.19701 0.17252 0.21176 5.726 0.13885 0.13978

18 6 1200 0.2047 0.18515 0.21675 4.452 0.1851 0.087419

18 7 1200 0.16083 0.13579 0.17554 4.4744 0.132 0.091903

18 8 1200 0.19766 0.18159 0.20768 4.2985 0.17671 0.088573

18 4 1501 1.4694 1.4668 1.472 34.1376 1.4673 0.078111

18 5 1501 0.67461 0.60113 0.74088 19.6023 0.3926 0.54869

18 6 1501 0.21023 0.18781 0.23049 4.5629 0.19169 0.086345

18 7 1501 0.15741 0.13293 0.17857 4.325 0.13192 0.085876

18 8 1501 0.16257 0.14042 0.18206 4.0461 0.14689 0.069685

18 4 1801 1.4733 1.4716 1.4759 34.1807 1.4701 0.098081

18 5 1801 0.22554 0.20514 0.2531 6.4925 0.14753 0.17063

18 6 1801 0.16887 0.14847 0.19553 4.7782 0.13343 0.10352

18 7 1801 0.16357 0.14457 0.18852 4.4953 0.13752 0.088572

18 8 1801 0.1747 0.16187 0.19235 4.0297 0.15923 0.0719

19 4 1200 1.4287 1.4235 1.4321 33.219 1.4258 0.089758

19 5 1200 0.1927 0.1714 0.20567 5.5264 0.14045 0.13195

19 6 1200 0.25968 0.27367 0.24992 7.0684 0.16272 0.20241

19 7 1200 0.16022 0.13563 0.17469 4.538 0.12688 0.097847

19 8 1200 0.20522 0.18778 0.21606 4.4081 0.18294 0.093013

19 4 1501 1.443 1.4416 1.4444 33.4975 1.4417 0.061913

19 5 1501 0.14435 0.12168 0.16393 3.9774 0.11955 0.08092

19 6 1501 0.19762 0.17263 0.2198 4.4995 0.18327 0.073943

19 7 1501 0.17227 0.15038 0.19169 4.0776 0.15847 0.067564
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

19 8 1501 0.27264 0.25564 0.28864 5.6491 0.23612 0.13633

19 4 1801 1.4764 1.4751 1.4784 34.2772 1.4745 0.076201

19 5 1801 0.18392 0.1672 0.20649 4.5022 0.16967 0.070988

19 6 1801 0.18663 0.16721 0.21247 5.3202 0.13986 0.12359

19 7 1801 0.18095 0.16398 0.20379 4.4519 0.16669 0.070418

19 8 1801 0.17096 0.1539 0.19377 4.1979 0.15691 0.067896

20 4 1200 0.18305 0.1669 0.19306 4.0771 0.15857 0.09146

20 5 1200 0.18895 0.16622 0.20268 5.4662 0.13378 0.13345

20 6 1200 0.18663 0.16441 0.20007 5.1916 0.15096 0.10975

20 7 1200 0.30882 0.29634 0.31687 6.3757 0.26047 0.16594

20 8 1200 0.19195 0.18209 0.19824 5.3289 0.14366 0.12733

20 4 1501 1.447 1.4453 1.4486 33.5804 1.4453 0.069737

20 5 1501 0.17864 0.15907 0.19629 4.9635 0.14234 0.10796

20 6 1501 0.18077 0.15644 0.2022 4.3436 0.16741 0.068216

20 7 1501 0.19983 0.19119 0.20811 5.4617 0.14902 0.13315

20 8 1501 0.23403 0.21624 0.25057 4.9404 0.20818 0.10694

20 4 1801 1.4135 1.4126 1.4149 32.8144 1.4121 0.063044

20 5 1801 0.22907 0.20709 0.25858 6.6167 0.15354 0.17002

20 6 1801 0.18464 0.16298 0.21305 5.3652 0.13155 0.12958

20 7 1801 0.16689 0.14681 0.19314 4.6352 0.13725 0.094949

20 8 1801 0.20249 0.1898 0.22017 4.4921 0.18499 0.082353

10 4 1200 0.04206 0.041372 0.042512 0.88469 0.036605 0.020719

10 5 1200 0.028388 0.038265 0.019162 0.61667 0.016816 0.022874
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

10 6 1200 0.11497 0.13096 0.10294 2.4936 0.091399 0.069754

10 7 1200 0.073515 0.089074 0.060983 1.6013 0.054738 0.049082

10 8 1200 0.094749 0.1096 0.083398 2.0586 0.073986 0.059199

10 4 1501 0.03267 0.030641 0.034581 0.68331 0.027145 0.018182

10 5 1501 0.047137 0.054334 0.038616 1.0301 0.032015 0.034603

10 6 1501 0.047366 0.044367 0.050188 1.0006 0.041462 0.022904

10 7 1501 0.047904 0.054466 0.040282 1.0461 0.033841 0.033912

10 8 1501 0.088548 0.097417 0.078678 1.9289 0.066065 0.058968

10 4 1801 0.030375 0.029691 0.031373 0.63827 0.024336 0.018179

10 5 1801 0.065731 0.066521 0.064526 1.3976 0.057415 0.032005

10 6 1801 0.026215 0.030958 0.01674 0.56995 0.015856 0.02088

10 7 1801 0.036441 0.04369 0.021358 0.7974 0.022423 0.028731

10 8 1801 0.04342 0.052328 0.024601 0.95268 0.027342 0.033735

11 4 1200 1.4267 1.4251 1.4277 29.5852 1.4257 0.051337

11 5 1200 0.030405 0.029495 0.030997 0.63677 0.025548 0.016489

11 6 1200 0.040449 0.050807 0.031723 0.88388 0.027711 0.02947

11 7 1200 0.12818 0.14652 0.11433 2.7813 0.10118 0.078712

11 8 1200 0.034697 0.046994 0.023121 0.76037 0.021102 0.027548

11 4 1501 0.071209 0.067685 0.074568 1.5146 0.062443 0.034233

11 5 1501 0.072483 0.069072 0.075743 1.5416 0.063722 0.034551

11 6 1501 0.064206 0.063003 0.065387 1.3644 0.055589 0.032133

11 7 1501 0.043092 0.042758 0.043423 0.91498 0.036079 0.023567

11 8 1501 0.11623 0.12267 0.1094 2.5246 0.091222 0.072033
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

11 4 1801 0.066314 0.066005 0.066776 1.4089 0.058451 0.031326

11 5 1801 0.043722 0.042411 0.04562 0.9219 0.038088 0.021474

11 6 1801 0.020864 0.021939 0.019137 0.44107 0.015397 0.014083

11 7 1801 0.03452 0.041366 0.020296 0.75521 0.021121 0.027309

11 8 1801 0.05938 0.06966 0.039181 1.2987 0.041333 0.042641

12 4 1200 0.032625 0.044754 0.020954 0.70981 0.018091 0.027155

12 5 1200 0.035273 0.036749 0.034255 0.74349 0.028822 0.020338

12 6 1200 0.065915 0.06767 0.06472 1.4006 0.057841 0.031617

12 7 1200 0.05134 0.065687 0.038951 1.1226 0.034657 0.037885

12 8 1200 0.045565 0.057994 0.034907 0.9965 0.030973 0.033424

12 4 1501 0.023214 0.022812 0.023609 0.48382 0.018241 0.014361

12 5 1501 0.02834 0.027496 0.02916 0.59226 0.023181 0.016307

12 6 1501 0.024525 0.026245 0.022673 0.52858 0.018337 0.016288

12 7 1501 0.027698 0.03478 0.018011 0.60314 0.015955 0.022645

12 8 1501 0.052635 0.050503 0.054685 1.1172 0.045958 0.025661

12 4 1801 0.14823 0.17743 0.087753 3.2539 0.094387 0.11432

12 5 1801 0.035068 0.033602 0.037161 0.73626 0.029781 0.01852

12 6 1801 0.059673 0.059894 0.05934 1.2663 0.052263 0.028805

12 7 1801 0.12516 0.13937 0.1001 2.7148 0.099655 0.075729

12 8 1801 0.12388 0.13876 0.097363 2.6886 0.097604 0.076296

13 4 1200 1.474 1.4699 1.4768 30.5629 1.4714 0.087703

13 5 1200 1.4541 1.4518 1.4557 30.1535 1.4527 0.063725

13 6 1200 0.077259 0.081178 0.074534 1.6474 0.067068 0.038358
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

13 7 1200 0.037102 0.047673 0.027919 0.81098 0.024424 0.027934

13 8 1200 0.040892 0.054545 0.028353 0.89654 0.025381 0.032067

13 4 1501 0.041596 0.042409 0.040766 0.88009 0.033355 0.024856

13 5 1501 0.1115 0.11365 0.1093 2.395 0.092664 0.062017

13 6 1501 0.066864 0.064291 0.069343 1.4225 0.058569 0.032262

13 7 1501 0.049219 0.053668 0.044323 1.0726 0.036346 0.033194

13 8 1501 0.024709 0.029619 0.018538 0.5354 0.015837 0.01897

13 4 1801 1.4094 1.4076 1.412 29.2249 1.4068 0.084817

13 5 1801 0.050166 0.062046 0.022716 1.1093 0.019466 0.046243

13 6 1801 0.046749 0.045883 0.048019 0.98659 0.040852 0.022731

13 7 1801 0.028914 0.028024 0.030201 0.6052 0.023772 0.016462

13 8 1801 0.035692 0.042236 0.022553 0.78023 0.02378 0.026621

14 4 1200 1.4452 1.4428 1.4468 29.9693 1.4437 0.065887

14 5 1200 1.4614 1.4588 1.4632 30.3062 1.4598 0.068578

14 6 1200 0.07883 0.079598 0.078313 1.6729 0.070046 0.036168

14 7 1200 0.020993 0.025351 0.017496 0.44707 0.015005 0.014683

14 8 1200 0.12506 0.13048 0.12131 2.6714 0.10891 0.061474

14 4 1501 0.069742 0.066965 0.072414 1.4837 0.061019 0.033778

14 5 1501 1.4125 1.4103 1.4147 29.2909 1.4105 0.0762

14 6 1501 0.023566 0.024334 0.022773 0.49333 0.017749 0.015505

14 7 1501 0.021527 0.021479 0.021575 0.44644 0.017339 0.01276

14 8 1501 0.022119 0.025674 0.017866 0.47387 0.014976 0.01628

14 4 1801 1.4465 1.445 1.4488 29.9948 1.4445 0.074752

398



Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

14 5 1801 0.056737 0.069122 0.029657 1.2494 0.023616 0.051597

14 6 1801 0.079201 0.08438 0.070719 1.7016 0.060981 0.050546

14 7 1801 0.098559 0.10231 0.092643 2.1036 0.085313 0.049361

14 8 1801 0.050611 0.059655 0.032628 1.1072 0.034886 0.036672

15 4 1200 1.4307 1.4272 1.433 29.6659 1.4285 0.078949

15 5 1200 0.10279 0.10923 0.098265 2.2005 0.088002 0.053122

15 6 1200 0.059166 0.061167 0.057795 1.2565 0.05124 0.029588

15 7 1200 0.074292 0.075628 0.073388 1.5814 0.065193 0.035631

15 8 1200 0.046574 0.047446 0.045983 0.98517 0.04066 0.022717

15 4 1501 1.4452 1.4441 1.4464 29.9726 1.4442 0.054294

15 5 1501 0.031998 0.032731 0.031247 0.67227 0.025259 0.019646

15 6 1501 1.4377 1.4342 1.4411 29.8111 1.4346 0.094833

15 7 1501 0.023133 0.024462 0.021722 0.49686 0.017967 0.014574

15 8 1501 0.049894 0.056786 0.041876 1.0901 0.034921 0.035642

15 4 1801 0.050115 0.062658 0.019709 1.1072 0.021415 0.045316

15 5 1801 1.4403 1.4393 1.4418 29.8702 1.4391 0.060429

15 6 1801 0.071329 0.090572 0.020303 1.5851 0.020521 0.068325

15 7 1801 0.055182 0.05401 0.056897 1.1666 0.048793 0.025779

15 8 1801 0.062035 0.061789 0.062402 1.3166 0.05472 0.029228

16 4 1200 0.06567 0.096431 0.031466 1.4551 0.028344 0.059248

16 5 1200 0.16122 0.17734 0.14952 3.4682 0.13466 0.088673

16 6 1200 0.12102 0.15922 0.086683 2.6478 0.081322 0.089646

16 7 1200 0.085805 0.13341 0.020234 1.9188 0.02176 0.083014
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

16 8 1200 0.031074 0.031003 0.031121 0.65147 0.026185 0.016735

16 4 1501 0.12161 0.16499 0.048471 2.7032 0.040982 0.11452

16 5 1501 0.037034 0.036627 0.037438 0.78281 0.030758 0.020631

16 6 1501 1.4318 1.4306 1.4331 29.6963 1.4307 0.05646

16 7 1501 0.034484 0.032592 0.036278 0.7232 0.02959 0.01771

16 8 1501 0.048363 0.048392 0.048334 1.0251 0.041594 0.02468

16 4 1801 1.4454 1.444 1.4474 29.9748 1.4434 0.075118

16 5 1801 1.4761 1.4748 1.4781 30.6118 1.4745 0.07027

16 6 1801 0.045078 0.043919 0.046762 0.95159 0.039441 0.02183

16 7 1801 0.024813 0.028923 0.016858 0.53562 0.016518 0.018518

16 8 1801 0.037625 0.036508 0.039242 0.79316 0.032311 0.019282

17 4 1200 1.4763 1.4746 1.4775 30.6193 1.4753 0.055544

17 5 1200 1.422 1.413 1.428 29.4785 1.4161 0.12899

17 6 1200 1.4384 1.4345 1.441 29.8238 1.436 0.082249

17 7 1200 0.024307 0.0263 0.022883 0.50998 0.018606 0.015644

17 8 1200 0.053271 0.053439 0.053159 1.1299 0.046792 0.025466

17 4 1501 1.4649 1.464 1.4659 30.3818 1.464 0.051179

17 5 1501 0.048999 0.058781 0.036686 1.0583 0.03019 0.0386

17 6 1501 1.4675 1.4663 1.4687 30.4352 1.4664 0.054846

17 7 1501 0.031027 0.038864 0.020361 0.67887 0.017461 0.025652

17 8 1501 0.018406 0.018638 0.018172 0.38308 0.015086 0.010548

17 4 1801 1.459 1.4581 1.4604 30.2571 1.4581 0.051869

17 5 1801 1.4377 1.4368 1.4391 29.8166 1.4364 0.06115
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

17 6 1801 0.03815 0.046058 0.021355 0.83621 0.023142 0.030334

17 7 1801 0.074625 0.074948 0.074136 1.5864 0.065705 0.035385

17 8 1801 0.07342 0.073538 0.073243 1.5605 0.064584 0.034927

18 4 1200 1.4521 1.4506 1.453 30.1166 1.4511 0.052419

18 5 1200 1.4292 1.4275 1.4303 29.6421 1.4282 0.052805

18 6 1200 1.422 1.4203 1.4231 29.4901 1.421 0.053529

18 7 1200 1.4375 1.4315 1.4415 29.8009 1.4338 0.1028

18 8 1200 0.059971 0.071567 0.050795 1.2864 0.045512 0.03906

18 4 1501 1.4679 1.4623 1.4735 30.4262 1.4624 0.12696

18 5 1501 0.091542 0.092588 0.090485 1.9623 0.076248 0.050667

18 6 1501 1.4218 1.4203 1.4232 29.4884 1.4205 0.059915

18 7 1501 0.066377 0.068944 0.063706 1.4211 0.054895 0.037322

18 8 1501 0.030275 0.03843 0.018865 0.66069 0.016332 0.025496

18 4 1801 1.4567 1.4557 1.4583 30.2115 1.4553 0.064355

18 5 1801 0.076893 0.0981 0.018513 1.7082 0.02305 0.073369

18 6 1801 1.4312 1.4297 1.4335 29.6812 1.429 0.079396

18 7 1801 0.033566 0.040858 0.017668 0.7371 0.016677 0.029134

18 8 1801 0.041694 0.051019 0.020998 0.91788 0.018033 0.037599

19 4 1200 1.4323 1.4309 1.4333 29.7046 1.4314 0.050839

19 5 1200 0.069068 0.10323 0.029133 1.5263 0.026436 0.06382

19 6 1200 0.063055 0.096234 0.021319 1.3992 0.019558 0.059955

19 7 1200 0.072169 0.07432 0.070699 1.5345 0.063071 0.035083

19 8 1200 0.10115 0.10574 0.097979 2.1595 0.087896 0.050074
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

19 4 1501 1.4276 1.4252 1.4301 29.601 1.4254 0.080317

19 5 1501 1.4119 1.4095 1.4143 29.2869 1.4101 0.071733

19 6 1501 0.16438 0.23131 0.022781 3.6681 0.027756 0.16204

19 7 1501 0.074149 0.077964 0.070125 1.5917 0.060196 0.043304

19 8 1501 0.11309 0.13408 0.087163 2.4692 0.077395 0.082469

19 4 1801 1.4478 1.4471 1.4488 30.0256 1.4468 0.052634

19 5 1801 1.4554 1.4539 1.4578 30.1799 1.4533 0.078788

19 6 1801 0.072153 0.091119 0.023638 1.5986 0.021015 0.069037

19 7 1801 0.13462 0.15046 0.10651 2.9142 0.10522 0.083982

19 8 1801 0.137 0.16037 0.091331 2.9905 0.095528 0.098221

20 4 1200 1.4434 1.4417 1.4446 29.9351 1.4425 0.052544

20 5 1200 1.4265 1.4245 1.4278 29.5887 1.4252 0.06128

20 6 1200 0.041779 0.060832 0.021043 0.91763 0.018697 0.037368

20 7 1200 0.14213 0.15349 0.13402 3.0466 0.12069 0.075074

20 8 1200 1.4438 1.4395 1.4467 29.9358 1.4413 0.085749

20 4 1501 1.4363 1.4353 1.4372 29.7895 1.4354 0.050693

20 5 1501 1.4546 1.4507 1.4585 30.157 1.4508 0.10543

20 6 1501 0.093735 0.12761 0.035837 2.0828 0.030188 0.088755

20 7 1501 0.038534 0.037442 0.039596 0.81183 0.032927 0.02002

20 8 1501 0.060782 0.060575 0.060988 1.2897 0.051954 0.031552

20 4 1801 1.4622 1.4612 1.4636 30.3222 1.4609 0.060632

20 5 1801 1.4193 1.4179 1.4214 29.4313 1.4175 0.070515

20 6 1801 1.4628 1.462 1.4641 30.3379 1.4617 0.058603
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Table 6.10: Summary of RBF-NARX model construction for identification of turbine pres-
sure

# neurons # delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

20 7 1801 1.4544 1.4534 1.4557 30.1598 1.4531 0.061056

20 8 1801 1.4652 1.4631 1.4684 30.3769 1.4624 0.090441

Table 6.11: Summary of SVM-NARX model construction for identification of compressor
temperature

# delays # training samples RMSETC
total

RMSETC
training RMSETC

test %RMSETC
total

mean (μae) Std (σae)

4 1200 5.785 6.1078 5.5595 0.88026 4.7571 3.2922

5 1200 3.2587 3.4575 3.1191 0.49584 2.5706 2.0029

6 1200 6.7519 6.9366 6.626 1.0262 5.8765 3.3252

7 1200 2.6112 2.7304 2.5287 0.39709 2.0356 1.6357

8 1200 8.5326 8.646 8.4563 1.2962 7.6082 3.863

4 1501 10.0526 10.2897 9.8096 1.5335 7.1987 7.0172

5 1501 2.7116 2.6177 2.8024 0.41237 2.1957 1.5913

6 1501 8.0053 8.0475 7.9629 1.22 6.1615 5.1112

7 1501 3.1256 3.0234 3.2246 0.47547 2.4852 1.8958

8 1501 10.1568 10.4808 9.8219 1.5495 7.2417 7.1222

4 1801 4.0933 3.9579 4.2883 0.6212 3.2124 2.537

5 1801 5.1256 5.1964 5.0174 0.77866 4.3276 2.7467

6 1801 25.5922 27.3954 22.6185 3.8929 19.709 16.3266

7 1801 12.9035 13.9279 11.192 1.9636 10.4707 7.5416

8 1801 4.8782 5.1378 4.4605 0.74155 3.5143 3.3836
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Table 6.12: Summary of SVM-NARX model construction for identification of compressor
pressure

# delays # training samples RMSEPC
total

RMSEPC
training RMSEPC

test %RMSEPC
total

mean (μae) Std (σae)

4 1200 0.04434 0.044539 0.044207 0.37271 0.023476 0.037618

5 1200 0.06586 0.074462 0.059439 0.56046 0.042214 0.050556

6 1200 0.054944 0.058191 0.052668 0.46561 0.032905 0.044004

7 1200 0.051974 0.051877 0.052039 0.43826 0.022331 0.046936

8 1200 0.070633 0.067559 0.072611 0.59467 0.029654 0.064113

4 1501 0.047934 0.046986 0.048864 0.40478 0.030515 0.03697

5 1501 0.046661 0.046592 0.04673 0.39495 0.029562 0.036105

6 1501 0.059857 0.058357 0.061321 0.50837 0.033006 0.049939

7 1501 0.10016 0.10284 0.097396 0.85469 0.065978 0.075359

8 1501 0.047577 0.047181 0.04797 0.40371 0.025682 0.040053

4 1801 0.041185 0.037001 0.046766 0.34187 0.028081 0.030129

5 1801 0.16758 0.19602 0.11212 1.4287 0.11603 0.12093

6 1801 0.064463 0.04931 0.082111 0.53039 0.022916 0.060257

7 1801 0.073084 0.078509 0.064088 0.61647 0.04068 0.060721

8 1801 0.058766 0.044294 0.07544 0.48336 0.02175 0.054597

Table 6.13: Summary of SVM-NARX model construction for identification of rotational
speed

# delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

4 1200 26.3914 26.3745 26.4026 0.22282 22.6819 13.4932

5 1200 27.3764 27.3992 27.3612 0.23114 23.5228 14.0064

6 1200 27.8955 27.874 27.9099 0.23553 23.9589 14.2887

7 1200 27.4287 27.3904 27.4543 0.23158 23.7126 13.7868

404



Table 6.13: Summary of SVM-NARX model construction for identification of rotational
speed

# delays # training samples RMSEN
total RMSEN

training RMSEN
test %RMSEN

total mean (μae) Std (σae)

8 1200 26.1403 26.1954 26.1035 0.2207 22.3773 13.513

4 1501 24.6728 26.5164 22.6791 0.20831 21.236 12.562

5 1501 26.7274 28.7473 24.5411 0.22566 22.9553 13.6908

6 1501 28.2652 30.4459 25.9008 0.23865 24.18 14.6386

7 1501 26.9222 28.8732 24.8176 0.2273 23.1971 13.665

8 1501 26.0438 27.9951 23.9333 0.21988 22.4468 13.2081

4 1801 26.545 27.0505 25.7681 0.22412 22.7997 13.5956

5 1801 27.4482 27.9494 26.6783 0.23175 23.5607 14.0829

6 1801 25.4999 25.9773 24.7663 0.21528 21.9856 12.9192

7 1801 25.2779 25.7547 24.545 0.21342 21.7604 12.864

8 1801 26.1525 26.6325 25.4153 0.2208 22.5576 13.2339

Table 6.14: Summary of SVM-NARX model construction for identification of turbine tem-
perature

# delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

4 1200 183.6261 189.9563 179.2832 10.4182 160.2343 89.6932

5 1200 166.4114 175.3166 160.2015 9.4955 141.1499 88.1518

6 1200 104.3983 107.0395 102.6002 5.9073 90.6818 51.7326

7 1200 136.832 133.9356 138.7288 7.6189 123.4487 59.0255

8 1200 166.3491 161.8485 169.2822 9.2006 154.693 61.1777

4 1501 293.6453 273.8494 312.1944 16.4391 262.022 132.5706

5 1501 282.3101 269.7902 294.3017 15.649 259.5313 111.1059

6 1501 215.896 209.24 222.355 11.9547 202.3673 75.2297
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Table 6.14: Summary of SVM-NARX model construction for identification of turbine tem-
perature

# delays # training samples RMSETT
total

RMSETT
training RMSETT

test %RMSETT
total

mean (μae) Std (σae)

7 1501 249.4072 235.4363 262.6403 13.9182 226.8929 103.5634

8 1501 236.7342 224.6235 248.2584 13.3207 212.1327 105.0933

4 1801 408.2675 398.3448 422.7191 22.527 380.7186 147.4427

5 1801 307.8869 291.5684 330.865 17.1951 274.3306 139.7866

6 1801 202.5877 190.7599 219.1402 11.2666 183.4603 85.938

7 1801 272.9621 258.0228 293.9563 15.1594 248.0573 113.9212

8 1801 205.2928 208.9996 199.6019 11.6387 174.1967 108.6398

Table 6.15: Summary of SVM-NARX model construction for identification of turbine pres-
sure

# delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

4 1200 0.14436 0.166 0.12793 3.164 0.099075 0.10501

5 1200 0.22767 0.25312 0.209 4.9621 0.16848 0.15314

6 1200 0.13213 0.14305 0.12432 2.858 0.10348 0.08217

7 1200 0.36862 0.40489 0.34232 8.0233 0.27583 0.24456

8 1200 0.26315 0.27079 0.25794 5.6279 0.22447 0.13736

4 1501 0.15671 0.15761 0.1558 3.4091 0.11986 0.10096

5 1501 0.14812 0.14611 0.15011 3.203 0.11887 0.088379

6 1501 0.15141 0.14926 0.15353 3.2731 0.12131 0.090617

7 1501 0.11376 0.10654 0.12055 2.4167 0.097374 0.058823

8 1501 0.11595 0.11134 0.12038 2.4909 0.094515 0.067168

4 1801 0.088902 0.084001 0.095787 1.8751 0.075015 0.047715

5 1801 0.14606 0.14218 0.15169 3.0978 0.12598 0.073916
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Table 6.15: Summary of SVM-NARX model construction for identification of turbine pres-
sure

# delays # training samples RMSEPT
total

RMSEPT
training RMSEPT

test %RMSEPT
total

Mean (μae) Std(σae)

6 1801 0.12097 0.11917 0.12363 2.5699 0.10214 0.064829

7 1801 0.18853 0.20295 0.16453 4.0615 0.14994 0.1143

8 1801 0.27965 0.3162 0.21338 6.0711 0.21025 0.18441
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