## AIRCRAFT JET ENGINE HEALTH MONITORING THROUGH SYSTEM IDENTIFICATION USING ENSEMBLE NEURAL NETWORKS

MAHDIYEH AMOZEGAR

A THESIS IN THE DEPARTMENT OF Electrical & Computer Engineering

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE CONCORDIA UNIVERSITY MONTRÉAL, QUÉBEC, CANADA

> June 2015 © Mahdiyeh Amozegar, 2015

### CONCORDIA UNIVERSITY School of Graduate Studies

This is to certify that the thesis prepared

 By:
 Mahdiyeh Amozegar

 Entitled:
 Aircraft Jet Engine Health Monitoring Through System Identification Using Ensemble Neural Networks

and submitted in partial fulfillment of the requirements for the degree of

#### Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with respect to originality and quality.

Signed by the final examining commitee:

| -        |                                                   | Chair             |
|----------|---------------------------------------------------|-------------------|
|          | Dr. R. Raut                                       |                   |
| -        |                                                   | External Examiner |
|          | Dr. A. Bagchi                                     |                   |
| -        |                                                   | Internal Examiner |
|          | Dr. K. Skonieczny                                 |                   |
| -        | ·                                                 | Supervisor        |
|          | Dr. K. Khorasani                                  | -                 |
| Approx   | <i>v</i> ed                                       |                   |
| 1 appior | Dr. W. E. Lynch, Chair                            |                   |
|          | Department of Electrical and Computer Engineering |                   |
|          | 2015                                              |                   |
|          |                                                   |                   |

Dr. Amir. Asif Dean, Faculty of Engineering and Computer Science

### Abstract

Aircraft Jet Engine Health Monitoring Through System Identification Using Ensemble Neural Networks

Mahdiyeh Amozegar

In this thesis a new approach for jet engine Fault Detection and Isolation (FDI) is proposed using ensemble neural networks. Ensemble methods combine various model predictions to reduce the modeling error and increase the prediction accuracy. By combining individual models, more robust and accurate representations are almost always achievable without the need of ad-hoc fine tunings that are required for single model-based solutions.

For the purpose of jet engine health monitoring, the model of the jet engine dynamics is represented using three different stand-alone or individual neural network learning algorithms. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually model the jet engine dynamics. The accuracy of each stand-alone model in identification of the jet engine dynamics is evaluated. Next, three ensemble-based techniques are employed to represent jet engine dynamics. Namely, two heterogenous ensemble models (an ensemble model is heterogeneous when different learning algorithms (neural networks) are used for training its members) and a homogeneous ensemble model (all the models are generated using the same learning algorithm (neural network)). It is concluded that the ensemble models improve the modeling accuracy when compared to stand-alone solutions. The best selected stand-alone model (i.e. the dynamic radialbasis function neural network in this application) and the best selected ensemble model (i.e. a heterogenous ensemble) in term of the jet engine modeling accuracy are selected for performing the FDI study.

Engine residual signals are generated using both single model-based and ensemble-based solutions under various engine health conditions. The obtained residuals are evaluated in order to detect engine faults. Our simulation results demonstrate that the fault detection task using residuals that are obtained from the ensemble model results in more accurate performance. The fault isolation task is performed by evaluating variations in residual signals (before and after a fault detection flag) using a neural network classifier. As in the fault detection results, it is observed that the ensemble-based fault isolation task results in a more promising performance.

## Acknowledgments

I would like to express my deepest gratitude to my supervisor, Professor Khashayar Khorasani, whose guidance, patience and support from the initial to the final stage enabled me to write this thesis. Completion of my masters would not have been possible without his continuous help and support. I appreciate all his contributions of time and ideas.

# Contents

List of Figures

| Lis | List of Tables |             |                                                     | xviii |
|-----|----------------|-------------|-----------------------------------------------------|-------|
| 1   | Intr           | ntroduction |                                                     | 1     |
|     | 1.1            | Thesis      | Objectives                                          | 2     |
|     | 1.2            | Literat     | ure Review                                          | 3     |
|     |                | 1.2.1       | Fault Detection and Isolation                       | 3     |
|     |                | 1.2.2       | Jet Engine Fault Detection and Isolation            | 5     |
|     |                | 1.2.3       | Ensemble Learning                                   | 7     |
|     |                | 1.2.4       | Ensemble Learning for Fault Detection and Isolation | 7     |
|     |                |             | Ensemble Learning for FDI: A Concluding Remark      | 23    |
|     | 1.3            | Thesis      | Contributions                                       | 23    |
|     | 1.4            | Thesis      | Outline                                             | 24    |
|     | 1.5            | Summ        | ary                                                 | 25    |
| 2   | Bacl           | kground     | 1 Information                                       | 26    |
|     | 2.1            | Ensem       | ble Learning                                        | 26    |
|     |                | 2.1.1       | Justification for Ensemble Learning                 | 27    |
|     |                | 2.1.2       | Bias Variance Trade-off                             | 28    |
|     |                | 2.1.3       | Diversity in Ensemble Learning                      | 32    |
|     |                |             | Measuring Diversity in Regression Ensembles         | 35    |

xi

|     |         | Measuring Diversity in Classification Ensembles   | 36 |
|-----|---------|---------------------------------------------------|----|
|     | 2.1.4   | Creating Diverse Learners                         | 39 |
|     |         | Altering the Architectures                        | 39 |
|     |         | Altering Training Data                            | 40 |
|     |         | Combining Ensemble Members                        | 41 |
| 2.2 | Neura   | l Networks for Dynamic Systems Identification     | 42 |
|     | 2.2.1   | Nonlinear Autoregressive Exogenous Model (NARX)   | 43 |
|     |         | NARX Model Structures                             | 43 |
|     | 2.2.2   | Multi-layer Perceptron                            | 46 |
|     | 2.2.3   | RBF Neural Networks                               | 49 |
|     | 2.2.4   | Support Vector Regression                         | 54 |
| 2.3 | Jet En  | gine Overview                                     | 58 |
|     | 2.3.1   | Jet Engine Mathematical Model                     | 59 |
|     |         | Rotor Dynamics                                    | 60 |
|     |         | Volume Dynamics                                   | 60 |
|     | 2.3.2   | Modeling of Engine Components                     | 61 |
|     |         | Intake Duct                                       | 61 |
|     |         | Compressor                                        | 61 |
|     |         | Combustion Chamber                                | 63 |
|     |         | Turbine                                           | 63 |
|     |         | Nozzle                                            | 64 |
|     |         | The Set of Nonlinear Equations                    | 66 |
|     |         | Control Input                                     | 69 |
|     | 2.3.3   | Faults in the Jet Engine                          | 69 |
| 2.4 | Summ    | ary                                               | 74 |
| Ens | emble I | Learning for Jet Engine Fault Detection           | 75 |
| 3.1 | Genera  | ating Engine Data                                 | 76 |
|     | 3.1.1   | Training, Testing, and Cross-Validation Data Sets | 79 |
| 3.2 | Neural  | l Network Construction                            | 86 |

3

| 3.3 | Jet Eng | gine Dynamics Identification                                           | 90  |
|-----|---------|------------------------------------------------------------------------|-----|
| 3.4 | Jet Eng | gine Dynamics Identification using MLP-NARX                            | 93  |
|     | 3.4.1   | MLP-NARX Model of the Compressor Temperature                           | 98  |
|     | 3.4.2   | MLP-NARX Model of the Compressor Pressure                              | 101 |
|     | 3.4.3   | MLP-NARX Model of the Rotational Speed                                 | 103 |
|     | 3.4.4   | MLP-NARX Model of the Turbine Temperature                              | 106 |
|     | 3.4.5   | MLP-NARX Model of the Turbine Pressure                                 | 108 |
| 3.5 | Jet Eng | gine Dynamics Identification using RBF-NARX                            | 111 |
|     | 3.5.1   | RBF-NARX Model of the Compressor Temperature                           | 113 |
|     | 3.5.2   | RBF-NARX Model of the Compressor Pressure                              | 116 |
|     | 3.5.3   | RBF-NARX Model of the Rotational Speed                                 | 118 |
|     | 3.5.4   | RBF-NARX Model of the Turbine Temperature                              | 120 |
|     | 3.5.5   | RBF-NARX Model of the Turbine Pressure                                 | 123 |
| 3.6 | Jet Eng | gine Dynamics Identification using SVM-NARX                            | 125 |
|     | 3.6.1   | SVM-NARX Model of the Compressor Temperature                           | 127 |
|     | 3.6.2   | SVM-NARX Model of the Compressor Pressure                              | 129 |
|     | 3.6.3   | SVM-NARX Model of the Rotational Speed                                 | 131 |
|     | 3.6.4   | SVM-NARX Model of the Turbine Temperature                              | 133 |
|     | 3.6.5   | SVM-NARX Model of the Turbine Pressure                                 | 135 |
| 3.7 | Jet Eng | gine Dynamic Identification with Ensemble Learning                     | 137 |
|     | 3.7.1   | Ensemble Generation                                                    | 141 |
|     | 3.7.2   | Ensemble Pruning                                                       | 143 |
|     | 3.7.3   | Ensemble Combination                                                   | 144 |
|     |         | Generalized Ensemble Method                                            | 145 |
|     |         | Gradient Decent Optimization                                           | 148 |
|     | 3.7.4   | Ensemble I: Heterogeneous Ensemble with Ranked Pruning                 | 149 |
|     | 3.7.5   | Ensemble II: Heterogeneous Ensemble using Forward Sequential Selection | 153 |
|     | 3.7.6   | Ensemble III: Homogeneous with Bagging                                 | 158 |
|     | 3.7.7   | Effects of the Number of Models in an Ensemble                         | 161 |

|   |                           | 3.7.8                                                                                               | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 165                                                                                                                                                                                 |
|---|---------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 3.8                       | Fault D                                                                                             | Detection Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170                                                                                                                                                                                 |
|   |                           | 3.8.1                                                                                               | Fault Detection Logic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 171                                                                                                                                                                                 |
|   |                           | 3.8.2                                                                                               | Fault Detection Threshold Generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 172                                                                                                                                                                                 |
|   |                           | 3.8.3                                                                                               | Fault Simulation Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 174                                                                                                                                                                                 |
|   |                           | 3.8.4                                                                                               | Scenario I: Fault in the Compressor Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 175                                                                                                                                                                                 |
|   |                           | 3.8.5                                                                                               | Scenario II: Fault in the Compressor Mass Flow Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 186                                                                                                                                                                                 |
|   |                           | 3.8.6                                                                                               | Scenario III: Fault in the Turbine Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 197                                                                                                                                                                                 |
|   |                           | 3.8.7                                                                                               | Scenario IV: Fault in the Turbine Mass Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 208                                                                                                                                                                                 |
|   |                           | 3.8.8                                                                                               | Confusion Matrices and FD Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 219                                                                                                                                                                                 |
|   |                           | 3.8.9                                                                                               | Fault Detection Performance Assuming Measurable Turbine Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 224                                                                                                                                                                                 |
|   |                           | 3.8.10                                                                                              | Fault Detection Performance Assuming Unmeasurable Turbine Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e 234                                                                                                                                                                               |
|   | 3.9                       | Summa                                                                                               | ary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 245                                                                                                                                                                                 |
|   |                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                     |
| 1 | Fnse                      | mbla_b                                                                                              | asad lat Engine Fault Isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 246                                                                                                                                                                                 |
| 4 | Ense                      | emble-b                                                                                             | ased Jet Engine Fault Isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>246</b>                                                                                                                                                                          |
| 4 | <b>Ense</b><br>4.1        | emble-b<br>Single                                                                                   | ased Jet Engine Fault Isolation Fault Isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>246</b><br>247<br>249                                                                                                                                                            |
| 4 | <b>Ense</b><br>4.1        | emble-b<br>Single<br>4.1.1                                                                          | ased Jet Engine Fault Isolation         Fault Isolation         Static Neural Networks for Fault Isolation         Particular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul><li>246</li><li>247</li><li>249</li><li>250</li></ul>                                                                                                                           |
| 4 | <b>Ense</b><br>4.1        | emble-b<br>Single<br>4.1.1<br>4.1.2                                                                 | ased Jet Engine Fault Isolation         Fault Isolation         Fault Isolation         Static Neural Networks for Fault Isolation         Residual Evaluation         Neural Networks Fault Closeifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>246</li> <li>247</li> <li>249</li> <li>250</li> <li>251</li> </ul>                                                                                                         |
| 4 | <b>Ense</b><br>4.1        | emble-b<br>Single<br>4.1.1<br>4.1.2<br>4.1.3                                                        | ased Jet Engine Fault Isolation         Fault Isolation         Static Neural Networks for Fault Isolation         Residual Evaluation         Neural Network Fault Classifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>246</li> <li>247</li> <li>249</li> <li>250</li> <li>251</li> <li>252</li> </ul>                                                                                            |
| 4 | <b>Ense</b><br>4.1        | emble-b<br>Single<br>4.1.1<br>4.1.2<br>4.1.3                                                        | ased Jet Engine Fault Isolation         Fault Isolation         Static Neural Networks for Fault Isolation         Residual Evaluation         Neural Network Fault Classifier         Training Data         Since Mathematical Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>246</li> <li>247</li> <li>249</li> <li>250</li> <li>251</li> <li>252</li> <li>255</li> </ul>                                                                               |
| 4 | <b>Ense</b><br>4.1        | emble-b<br>Single<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4                                               | ased Jet Engine Fault Isolation         Fault Isolation         Static Neural Networks for Fault Isolation         Residual Evaluation         Neural Network Fault Classifier         Training Data         Single Model-based Fault Isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>246</li> <li>247</li> <li>249</li> <li>250</li> <li>251</li> <li>252</li> <li>255</li> <li>250</li> </ul>                                                                  |
| 4 | <b>Ense</b><br>4.1        | emble-b<br>Single<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.1.5                                      | ased Jet Engine Fault Isolation         Fault Isolation         Static Neural Networks for Fault Isolation         Residual Evaluation         Neural Network Fault Classifier         Training Data         Single Model-based Fault Isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>246</li> <li>247</li> <li>249</li> <li>250</li> <li>251</li> <li>252</li> <li>255</li> <li>259</li> <li>250</li> </ul>                                                     |
| 4 | <b>Ense</b><br>4.1<br>4.2 | emble-b<br>Single<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.1.5<br>Multip                            | ased Jet Engine Fault Isolation         Fault Isolation         Static Neural Networks for Fault Isolation         Residual Evaluation         Neural Network Fault Classifier         Training Data         Single Model-based Fault Isolation         Ensemble-based Fault Isolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>246</li> <li>247</li> <li>249</li> <li>250</li> <li>251</li> <li>252</li> <li>255</li> <li>259</li> <li>263</li> </ul>                                                     |
| 4 | <b>Ense</b><br>4.1<br>4.2 | emble-b<br>Single<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.1.5<br>Multip<br>4.2.1                   | ased Jet Engine Fault Isolation         Fault Isolation         Static Neural Networks for Fault Isolation         Residual Evaluation         Neural Network Fault Classifier         Training Data         Single Model-based Fault Isolation         Ensemble-based Fault Isolation         Isolation         Neural Network Fault Classifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>246</li> <li>247</li> <li>249</li> <li>250</li> <li>251</li> <li>252</li> <li>255</li> <li>259</li> <li>263</li> <li>265</li> </ul>                                        |
| 4 | <b>Ense</b><br>4.1<br>4.2 | emble-b<br>Single<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.1.5<br>Multip<br>4.2.1                   | ased Jet Engine Fault Isolation         Fault Isolation         Static Neural Networks for Fault Isolation         Neural Network Fault Classifier         Training Data         Single Model-based Fault Isolation         Isolation         Neural Network Fault Classifier         Single Model-based Fault Isolation         Neural Network Fault Classifier         Training Data         Training Data         Single Model-based Fault Isolation         Isolation         Training Data         Neural Network Fault Classifier         Training Data         Neural Network Fault Classifier         Training Data                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>246</li> <li>247</li> <li>249</li> <li>250</li> <li>251</li> <li>252</li> <li>255</li> <li>259</li> <li>263</li> <li>265</li> <li>266</li> </ul>                           |
| 4 | <b>Ense</b><br>4.1<br>4.2 | emble-b<br>Single<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.1.5<br>Multip<br>4.2.1<br>4.2.2          | ased Jet Engine Fault Isolation         Fault Isolation         Static Neural Networks for Fault Isolation         Residual Evaluation         Neural Network Fault Classifier         Training Data         Single Model-based Fault Isolation         Isolation         Neural Network Fault Classifier         Single Model-based Fault Isolation         Isolation         Neural Network Fault Classifier         Single Model-based Fault Isolation         Isolation         Neural Network Fault Classifier         Single Model-based Fault Isolation         Single Model-based Fault Isolation         Single Model-based Fault Isolation                                                                                                                                                                                                                                                                                                                                           | <ul> <li>246</li> <li>247</li> <li>249</li> <li>250</li> <li>251</li> <li>252</li> <li>255</li> <li>259</li> <li>263</li> <li>265</li> <li>266</li> <li>269</li> </ul>              |
| 4 | <b>Ense</b><br>4.1<br>4.2 | emble-b<br>Single<br>4.1.1<br>4.1.2<br>4.1.3<br>4.1.4<br>4.1.5<br>Multip<br>4.2.1<br>4.2.2<br>4.2.3 | ased Jet Engine Fault Isolation         Fault Isolation         Static Neural Networks for Fault Isolation         Residual Evaluation         Neural Network Fault Classifier         Training Data         Single Model-based Fault Isolation         Ie Faults Isolation         Neural Network Fault Classifier         Single Model-based Fault Isolation         Isolation         Single Model-based Fault Isolation         Isolation         Single Model-based Fault Isolation         Isolation | <ul> <li>246</li> <li>247</li> <li>249</li> <li>250</li> <li>251</li> <li>252</li> <li>255</li> <li>259</li> <li>263</li> <li>265</li> <li>266</li> <li>269</li> <li>272</li> </ul> |

| 5  | Conclusion and Summary |                             |     |  |
|----|------------------------|-----------------------------|-----|--|
|    | 5.1                    | Summary                     | 276 |  |
|    | 5.2                    | Conclusions                 | 278 |  |
|    | 5.3                    | Suggestions for Future Work | 279 |  |
| Bi | Bibliography           |                             |     |  |
| 6  | 6 Appendix             |                             |     |  |

# **List of Figures**

| 1.1  | Classification of diagnostic methods [32]                                          | 4  |
|------|------------------------------------------------------------------------------------|----|
| 2.1  | Variability reduction using MCS [118]                                              | 34 |
| 2.2  | Parallel architecture of NARX model [83]                                           | 44 |
| 2.3  | Series-parallel architecture of NARX model [83]                                    | 45 |
| 2.4  | A multi-layer perceptron.                                                          | 46 |
| 2.5  | Nonlinear system identification using series-parallel MLP-NARX (training stage).   | 48 |
| 2.6  | Nonlinear system identification using parallel MLP-NARX (testing stage)            | 48 |
| 2.7  | RBF neural network structure [31].                                                 | 49 |
| 2.8  | Nonlinear system identification using series-parallel RBF-NARX (training stage).   | 53 |
| 2.9  | Nonlinear system identification using parallel RBF-NARX (testing stage)            | 53 |
| 2.10 | Nonlinear system identification using series-parallel SVM-NARX (training stage).   | 57 |
| 2.11 | Nonlinear system identification using parallel SVM-NARX (testing stage)            | 57 |
| 2.12 | schematic of a single spool turbofan jet engine [237].                             | 59 |
| 2.13 | Aircraft jet engine modules and information flow chart                             | 66 |
| 2.14 | Jet engine fault types [237]                                                       | 70 |
| 2.15 | Fouled compressor [230]                                                            | 71 |
| 2.16 | Erosion of turbine blades [230]                                                    | 72 |
| 2.17 | Turbine blade damage caused by foreign object [230]                                | 72 |
| 3.1  | Top: PLA used for generating engine data in the cruise mode. Bottom: engine fuel   |    |
|      | flow rate $\dot{m}_f$ in the cruise mode used for generating engine data           | 78 |
| 3.2  | Compressor temperature estimation error vs. size of cross-validation data for dif- |    |
|      | ferent sizes of training data.                                                     | 83 |

| 3.3  | Compressor pressure estimation error vs. size of cross-validation data for different      |     |
|------|-------------------------------------------------------------------------------------------|-----|
|      | sizes of training data.                                                                   | 84  |
| 3.4  | Rotational speed estimation error vs. size of cross-validation data for different         |     |
|      | sizes of training data.                                                                   | 84  |
| 3.5  | Turbine temperature estimation error vs. size of cross-validation data for different      |     |
|      | sizes of training data.                                                                   | 85  |
| 3.6  | Turbine pressure estimation error vs. size of cross-validation data for different         |     |
|      | sizes of training data.                                                                   | 85  |
| 3.7  | Partitioning of the available data into training, testing and validation data sets.       |     |
|      | Training data size = $60\%$ of available data. Testing data size = $40\%$ of the training |     |
|      | data. Validation data size selected as a percentage of the training data                  | 87  |
| 3.8  | Partitioning of the available data into training, testing and validation data sets.       |     |
|      | Training data size = $50\%$ of available data. Testing data size = $50\%$ of the training |     |
|      | data. Validation data size selected as a percentage of the training data                  | 88  |
| 3.9  | Partitioning of the available data into training, testing and validation data sets.       |     |
|      | Training data size = $60\%$ of available data. Testing data size = $40\%$ of the training |     |
|      | data. Validation data size selected as a percentage of the training data                  | 89  |
| 3.10 | Series-parallel NARX model used for training stage [83]                                   | 92  |
| 3.11 | Parallel NARX model during recall phase [83]                                              | 92  |
| 3.12 | Schematic of MLP-NARX during training phase.                                              | 94  |
| 3.13 | The architecture of MLP-NARX model of the jet engine during training phase                | 95  |
| 3.14 | The architecture of the MLP-NARX model of jet engine during testing phase                 | 98  |
| 3.15 | MLP-NARX model prediction and actual engine output (compressor temperature).              | 101 |
| 3.16 | MLP-NARX model prediction and actual engine output (compressor pressure)                  | 103 |
| 3.17 | MLP-NARX model prediction and actual engine output (rotational speed)                     | 106 |
| 3.18 | MLP-NARX model prediction and actual engine output (turbine temperature)                  | 108 |
| 3.19 | MLP-NARX model prediction and actual engine output (turbine pressure)                     | 111 |
| 3.20 | The architecture of the RBF-NARX model of jet engine during training phase                | 112 |
| 3.21 | The architecture of the RBF-NARX model of jet engine during testing phase                 | 113 |

| 3.22 | RBF-NARX model prediction and actual engine output (compressor temperature).     | 115 |
|------|----------------------------------------------------------------------------------|-----|
| 3.23 | RBF-NARX model prediction and actual engine output (compressor pressure)         | 118 |
| 3.24 | RBF-NARX model prediction and actual engine output (rotational speed)            | 120 |
| 3.25 | RBF-NARX model prediction and actual engine output (turbine temperature)         | 123 |
| 3.26 | RBF-NARX model prediction and the actual engine output (turbine pressure)        | 125 |
| 3.27 | The architecture of the SVM-NARX model of jet engine during training phase       | 126 |
| 3.28 | The architecture of the SVM-NARX model of jet engine during testing phase        | 127 |
| 3.29 | SVM-NARX model prediction and the actual engine output (compressor tempera-      |     |
|      | ture)                                                                            | 129 |
| 3.30 | SVM-NARX model prediction and actual engine output (compressor pressure)         | 131 |
| 3.31 | The SVM-NARX model prediction and the actual engine output (rotational speed).   | 133 |
| 3.32 | SVM-NARX model prediction and actual engine output (turbine temperature)         | 135 |
| 3.33 | The SVM-NARX model prediction and the actual engine output (turbine pressure).   | 137 |
| 3.34 | Ensemble learning stages [223]                                                   | 138 |
| 3.35 | Architecture of ensemble during the training phase                               | 139 |
| 3.36 | Architecture of the ensemble during testing phase                                | 140 |
| 3.37 | Inside of an ensemble model (refer to Figures 3.36and 3.35)                      | 141 |
| 3.38 | Ensemble learning with bagging                                                   | 159 |
| 3.39 | RMS error for bagged model of the compressor pressure with respect to the number |     |
|      | of models in the ensemble.                                                       | 162 |
| 3.40 | RMS error for bagged model of the compressor temperature with respect to the     |     |
|      | number of models in the ensemble.                                                | 163 |
| 3.41 | RMS error for bagged model of the rotational speed with respect to the number of |     |
|      | models in the ensemble                                                           | 163 |
| 3.42 | RMS error for bagged model of the turbine pressure with respect to the number of |     |
|      | models in the ensemble                                                           | 164 |
| 3.43 | RMS error for bagged model of the turbine temperature with respect to the number |     |
|      | of models in the ensemble.                                                       | 164 |
| 3.44 | Error analysis: compressor pressure identification                               | 166 |

| 3.45 | Error analysis: compressor temperature identification.                           | 167 |
|------|----------------------------------------------------------------------------------|-----|
| 3.46 | Error analysis: rotational speed identification.                                 | 168 |
| 3.47 | Error analysis: turbine pressure identification.                                 | 169 |
| 3.48 | Error analysis: turbine temperature identification.                              | 170 |
| 3.49 | Flow chart of the proposed fault detection algorithm.                            | 172 |
| 3.50 | Residual generated using ensemble model with FSS pruning, 8% decrease in com-    |     |
|      | pressor efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$       | 176 |
| 3.51 | Residual generated using RBF-NARX model, 8% decrease in compressor effi-         |     |
|      | ciency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                 | 177 |
| 3.52 | Residual generated using ensemble model with FSS pruning, 6% decrease in com-    |     |
|      | pressor efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$       | 178 |
| 3.53 | Residual generated using RBF-NARX model, 6% decrease in compressor effi-         |     |
|      | ciency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                 | 179 |
| 3.54 | Residual generated using ensemble model with FSS pruning, 4% decrease in com-    |     |
|      | pressor efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$       | 180 |
| 3.55 | Residual generated using RBF-NARX model, 4% decrease in compressor effi-         |     |
|      | ciency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                 | 181 |
| 3.56 | Residual generated using ensemble model with FSS pruning, 2% decrease in com-    |     |
|      | pressor efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$       | 182 |
| 3.57 | Residual generated using RBF-NARX model, 2% decrease in compressor effi-         |     |
|      | ciency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                 | 183 |
| 3.58 | Residual generated using ensemble model with FSS pruning, 1% decrease in com-    |     |
|      | pressor efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$       | 184 |
| 3.59 | Residual generated using RBF-NARX model, 1% decrease in compressor effi-         |     |
|      | ciency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                 | 185 |
| 3.60 | Residual generated using ensemble model with FSS pruning, 8% decrease in com-    |     |
|      | pressor mass flow rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ . | 187 |
| 3.61 | Residual generated using RBF-NARX model, 8% decrease in compressor mass          |     |
|      | flow rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .              | 188 |

| 3.62 | Residual generated using ensemble model with FSS pruning, 6% decrease in com-                                                                    |     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | pressor mass flow rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                                                                 | 189 |
| 3.63 | Residual generated using RBF-NARX model, 6% decrease in compressor mass                                                                          |     |
|      | flow rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                                                                              | 190 |
| 3.64 | Residual generated using ensemble model with FSS pruning, 4% decrease in com-                                                                    |     |
|      | pressor mass flow rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                                                                 | 191 |
| 3.65 | Residual generated using RBF-NARX model, 4% decrease in compressor mass                                                                          |     |
|      | flow rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                                                                              | 192 |
| 3.66 | Residual generated using ensemble model with FSS pruning, 2% decrease in com-                                                                    |     |
|      | pressor mass flow rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                                                                 | 193 |
| 3.67 | Residual generated using RBF-NARX model, 2% decrease in compressor mass                                                                          |     |
|      | flow rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                                                                              | 194 |
| 3.68 | Residual generated using ensemble model with FSS pruning, 1% decrease in com-                                                                    |     |
|      | pressor mass flow rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                                                                 | 195 |
| 3.69 | Residual generated using RBF-NARX model, 1% decrease in compressor mass                                                                          |     |
|      | flow rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                                                                              | 196 |
| 3.70 | Residual generated using ensemble model with FSS pruning, 8% decrease in tur-                                                                    |     |
|      | bine efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$                                                                          | 198 |
| 3.71 | Residual generated using RBF-NARX model, 8% decrease in turbine efficiency at                                                                    |     |
|      | $t = 20 \text{ sec}, \dot{m}_f = 0.85  \dot{m}_{f,maximum}. \ldots \ldots$ | 199 |
| 3.72 | Residual generated using ensemble model with FSS pruning, 6% decrease in tur-                                                                    |     |
|      | bine efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$                                                                          | 200 |
| 3.73 | Residual generated using RBF-NARX model, 6% decrease in turbine efficiency at                                                                    |     |
|      | $t = 20 \text{ sec}, \dot{m}_f = 0.85  \dot{m}_{f,maximum}. \ldots \ldots$ | 201 |
| 3.74 | Residual generated using ensemble model with FSS pruning, 4% decrease in tur-                                                                    |     |
|      | bine efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$                                                                          | 202 |
| 3.75 | Residual generated using RBF-NARX model, 4% decrease in turbine efficiency at                                                                    |     |
|      | $t = 20 \text{ sec}, \dot{m}_f = 0.85  \dot{m}_{f,maximum}$                                                                                      | 203 |

| 3.76 | Residual generated using ensemble model with FSS pruning, 2% decrease in tur-                                                                                                           |     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | bine efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$                                                                                                                 | 204 |
| 3.77 | Residual generated using RBF-NARX model, 2% decrease in turbine efficiency at                                                                                                           |     |
|      | $t = 20 \text{ sec}, \dot{m}_f = 0.85  \dot{m}_{f,maximum}$                                                                                                                             | 205 |
| 3.78 | Residual generated using ensemble model with FSS pruning, 1% decrease in tur-                                                                                                           |     |
|      | bine efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$                                                                                                                 | 206 |
| 3.79 | Residual generated using RBF-NARX model, 1% decrease in turbine efficiency at                                                                                                           |     |
|      | $t = 20 \text{ sec}, \dot{m}_f = 0.85  \dot{m}_{f,maximum}. \ldots \ldots$                                               | 207 |
| 3.80 | Residual generated using ensemble model with FSS pruning, 8% decrease in tur-                                                                                                           |     |
|      | bine efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$                                                                                                                 | 209 |
| 3.81 | Residual generated using RBF-NARX model, 8% decrease in turbine efficiency at                                                                                                           |     |
|      | $t = 20 \text{ sec}, \dot{m}_f = 0.85  \dot{m}_{f,maximum}.$                                                                                                                            | 210 |
| 3.82 | Residual generated using ensemble model with FSS pruning, 6% decrease in tur-                                                                                                           |     |
|      | bine efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$                                                                                                                 | 211 |
| 3.83 | Residual generated using RBF-NARX model, 6% decrease in turbine efficiency at                                                                                                           |     |
|      | $\mathbf{t} = 20 \text{ sec},  \dot{m}_f = 0.85  \dot{m}_{f,maximum}.  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  $                                        | 212 |
| 3.84 | Residual generated using ensemble model with FSS pruning, 4% decrease in tur-                                                                                                           |     |
|      | bine mass flow rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                                                                                                           | 213 |
| 3.85 | Residual generated using RBF-NARX model, 4% decrease in turbine mass flow                                                                                                               |     |
|      | rate at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                                                                                                                          | 214 |
| 3.86 | Residual generated using ensemble model with FSS pruning, 2% decrease in tur-                                                                                                           |     |
|      | bine efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$                                                                                                                 | 215 |
| 3.87 | Residual generated using RBF-NARX model, 2% decrease in turbine efficiency at                                                                                                           |     |
|      | $\mathbf{t} = 20 \text{ sec},  \dot{m}_f = 0.85  \dot{m}_{f,maximum} \dots \dots$ | 216 |
| 3.88 | Residual generated using ensemble model with FSS pruning, 1% decrease in tur-                                                                                                           |     |
|      | bine efficiency at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$                                                                                                                 | 217 |
| 3.89 | Residual generated using RBF-NARX model, 1% decrease in turbine efficiency at                                                                                                           |     |
|      | $\mathbf{t} = 20 \text{ sec},  \dot{m}_f = 0.85  \dot{m}_{f,maximum} \dots \dots$ | 218 |
| 4.1  | Fault isolation mechanism.                                                                                                                                                              | 250 |

| 4.2 | Proposed neural network fault classifier              | 255 |
|-----|-------------------------------------------------------|-----|
| 4.3 | Proposed neural network for multiple fault isolation. | 267 |

## **List of Tables**

| 1.1  | A survey of hybrid and ensemble-based soft computing techniques applied to FDI.     | 10  |
|------|-------------------------------------------------------------------------------------|-----|
| 2.1  | Jet engine component fault indications                                              | 73  |
| 3.1  | Jet engine fault detection (FD) methods selected from the literature as benchmarks. | 76  |
| 3.2  | Training data generation summary                                                    | 78  |
| 3.3  | Measurement noise standard deviations as percentage of engine parameter values      |     |
|      | at cruise condition[199]                                                            | 79  |
| 3.4  | The effectiveness of cross-validation for identification of compressor pressure     | 81  |
| 3.5  | The effectiveness of cross-validation for identification of compressor temperature. | 82  |
| 3.6  | The effectiveness of cross-validation for identification of rotational speed        | 82  |
| 3.7  | The effectiveness of cross-validation for identification of turbine temperature     | 82  |
| 3.8  | The effectiveness of cross-validation for identification of turbine pressure        | 83  |
| 3.9  | Summary of construction of MLP-NARX for modelling the compressor tempera-           |     |
|      | ture (see the appendix for extensive summary)                                       | 99  |
| 3.9  | Summary of construction of MLP-NARX for modelling the compressor tempera-           |     |
|      | ture (see the appendix for extensive summary)                                       | 100 |
| 3.10 | Best MLP-NARX for modeling of compressor temperature in terms of $RMSE_{test}$ .    | 100 |
| 3.11 | Summary of construction of MLP-NARX for modelling of compressor pressure in         |     |
|      | term of $RMSE_{test}$ (see appendix for extensive summary)                          | 102 |
| 3.12 | Best MLP-NARX for modeling the compressor pressure in terms of $RMSE_{test}$ .      | 103 |
| 3.13 | Summary of construction of MLP-NARX for modelling of rotational speed in term       |     |
|      | of $RMSE_{test}$ (see appendix for extensive summary)                               | 104 |
|      |                                                                                     |     |

| 3.13 | Summary of construction of MLP-NARX for modelling of rotational speed in term   |     |
|------|---------------------------------------------------------------------------------|-----|
|      | of $RMSE_{test}$ (see appendix for extensive summary)                           | 105 |
| 3.14 | Best MLP-NARX for modeling of rotational speed in term of $RMSE_{test}$         | 105 |
| 3.15 | Summary of construction of MLP-NARX for modelling the turbine temperature in    |     |
|      | term of $RMSE_{test}$ (see the appendix for extensive summary)                  | 107 |
| 3.16 | Best MLP-NARX for modeling the turbine temperature in term of $RMSE_{test}$     | 108 |
| 3.17 | Summary of construction of MLP-NARX for modelling the turbine pressure in       |     |
|      | term of $RMSE_{test}$ (see the appendix for extensive summary)                  | 109 |
| 3.17 | Summary of construction of MLP-NARX for modelling the turbine pressure in       |     |
|      | term of $RMSE_{test}$ (see the appendix for extensive summary)                  | 110 |
| 3.18 | Best MLP-NARX for modeling of turbine pressure in term of $RMSE_{test}$         | 110 |
| 3.19 | Summary of construction of RBF-NARX for modelling of compressor temperature     |     |
|      | in term of $RMSE_{test}$ (see appendix for extensive summary)                   | 114 |
| 3.19 | Summary of construction of RBF-NARX for modelling of compressor temperature     |     |
|      | in term of $RMSE_{test}$ (see appendix for extensive summary)                   | 115 |
| 3.20 | Best RBF-NARX for modeling of compressor temperature in term of $RMSE_{test}$ . | 115 |
| 3.21 | Summary of construction of RBF-NARX for modelling of compressor pressure in     |     |
|      | term of $RMSE_{test}$ (see appendix for extensive summary)                      | 116 |
| 3.21 | Summary of construction of RBF-NARX for modelling of compressor pressure in     |     |
|      | term of $RMSE_{test}$ (see appendix for extensive summary)                      | 117 |
| 3.22 | Best RBF-NARX for modeling of compressor pressure in term of $RMSE_{test}$      | 117 |
| 3.23 | Summary of construction of RBF-NARX for modelling of rotational speed in term   |     |
|      | of $RMSE_{test}$ (see appendix for extensive summary)                           | 119 |
| 3.24 | Best RBF-NARX for modeling of rotational speed in term of $RMSE_{test}$         | 120 |
| 3.25 | Summary of construction of RBF-NARX for modelling of turbine temperature in     |     |
|      | term of $RMSE_{test}$ (see appendix for extensive summary)                      | 121 |
| 3.25 | Summary of construction of RBF-NARX for modelling of turbine temperature in     |     |
|      | term of $RMSE_{test}$ (see appendix for extensive summary)                      | 122 |
| 3.26 | Best RBF-NARX for modeling the turbine temperature in terms of $RMSE_{test}$    | 122 |

| 3.27 | Summary of construction of RBF-NARX for modelling of turbine pressure in term    |     |
|------|----------------------------------------------------------------------------------|-----|
|      | of $RMSE_{test}$ (see appendix for extensive summary)                            | 124 |
| 3.28 | Best RBF-NARX for modeling of turbine pressure in term of $RMSE_{test}$          | 125 |
| 3.29 | Summary of construction of SVM-NARX for modelling of compressor tempera-         |     |
|      | ture in term of $RMSE_{test}$ (see appendix for extensive summary)               | 128 |
| 3.30 | Best SVM-NARX for modeling of compressor temperature in terms of $RMSE_{test}$ . | 129 |
| 3.31 | Summary of construction of SVM-NARX for modelling of compressor pressure in      |     |
|      | term of $RMSE_{test}$ (see appendix for extensive summary)                       | 130 |
| 3.32 | Best SVM-NARX for modeling of compressor pressure in term of $RMSE_{test}$       | 131 |
| 3.33 | Summary of construction of SVM-NARX for modelling of rotational speed in term    |     |
|      | of $RMSE_{test}$ (see appendix for extensive summary)                            | 132 |
| 3.34 | Best SVM-NARX for modeling of rotational speed in term of $RMSE_{test}$          | 133 |
| 3.35 | Summary of construction of SVM-NARX for modelling of turbine temperature in      |     |
|      | term of $RMSE_{test}$ (see appendix for extensive summary)                       | 134 |
| 3.36 | Best SVM-NARX for modeling of turbine temperature in term of $RMSE_{test}$       | 135 |
| 3.37 | Summary of construction of SVM-NARX for modelling of turbine pressure in term    |     |
|      | of $RMSE_{test}$ (see appendix for extensive summary)                            | 136 |
| 3.38 | Best SVM-NARX for modeling of turbine pressure in term of $RMSE_{test}$          | 137 |
| 3.39 | GEM coefficients for integration of ensemble system (ensemble I)                 | 150 |
| 3.40 | Gradient descent coefficients for integration of ensemble system (ensemble I)    | 151 |
| 3.41 | Heterogeneous ensemble with ranked pruning and GEM as integration method er-     |     |
|      | ror analysis                                                                     | 152 |
| 3.42 | Heterogeneous ensemble with ranked pruning and gradient descent as integration   |     |
|      | method error analysis                                                            | 152 |
| 3.43 | Summary of the heterogeneous ensemble training with ranked pruning               | 153 |
| 3.44 | Summary of the heterogeneous ensemble training with FSS pruning algorithm        | 155 |
| 3.45 | Parameters of models inside ensemble model of compressor pressure (ensemble II). | 156 |
| 3.46 | Parameters of models inside ensemble model of compressor temperature (ensem-     |     |
|      | ble II).                                                                         | 156 |

| 3.47 | Parameters of models inside ensemble model of rotational speed (ensemble II)     | 156 |
|------|----------------------------------------------------------------------------------|-----|
| 3.48 | Parameters of models inside ensemble model of turbine pressure (ensemble II)     | 157 |
| 3.49 | Parameters of models inside ensemble model of turbine temperature (ensemble II). | 157 |
| 3.50 | Gradient descent coefficients for integration of ensemble system (ensemble II)   | 157 |
| 3.51 | Heterogeneous ensemble with the FSS pruning, and gradient descent as integration |     |
|      | method error analysis                                                            | 158 |
| 3.52 | Best SVM-NARX for modeling of compressor temperature in terms of $RMSE_{test}$ . | 160 |
| 3.53 | Heterogeneous ensemble with FSS pruning, and gradient descent as integration     |     |
|      | method error analysis                                                            | 161 |
| 3.54 | Comparison of different methods for identification of compressor pressure        | 165 |
| 3.55 | Comparison of different methods for identification of compressor temperature     | 166 |
| 3.56 | Comparison of different methods for identification of rotational speed           | 167 |
| 3.57 | Comparison of different methods for identification of turbine pressure           | 168 |
| 3.58 | Comparison of different methods for identification of turbine temperature        | 169 |
| 3.59 | Jet engine component fault indications                                           | 171 |
| 3.60 | Fault detection time summary using ensemble model: compressor efficiency fault   |     |
|      | injected at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .               | 186 |
| 3.61 | Fault detection time summary using RBF-NARX model: compressor efficiency         |     |
|      | fault injected at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .         | 186 |
| 3.62 | Fault detection time summary using ensemble model: compressor efficiency fault   |     |
|      | injected at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .               | 197 |
| 3.63 | Fault detection time summary using RBF-NARX model: compressor efficiency         |     |
|      | fault injected at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .         | 197 |
| 3.64 | Fault detection time summary using ensemble model: turbine efficiency fault in-  |     |
|      | jected at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                 | 208 |
| 3.65 | Fault detection time summary using RBF-NARX model: turbine efficiency fault      |     |
|      | injected at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .               | 208 |
| 3.66 | Fault detection time summary using ensemble model: turbine mass flow rate fault  |     |
|      | injected at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .               | 219 |

| 3.67 | Fault detection time summary using RBF-NARX model: turbine efficiency fault         |     |
|------|-------------------------------------------------------------------------------------|-----|
|      | injected at t = 20 sec, $\dot{m}_f = 0.85$ $\dot{m}_{f,maximum}$ .                  | 219 |
| 3.68 | Confusion matrix general form.                                                      | 220 |
| 3.69 | Summary of fault simulations.                                                       | 223 |
| 3.70 | Confusion matrixes for different fault scenarios based on single model-based solu-  |     |
|      | tion (RBF-NARX model). Fault severity = 1%                                          | 225 |
| 3.71 | Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.        |     |
|      | Fault severity = 1%                                                                 | 225 |
| 3.72 | Confusion matrixes for different fault scenarios based on ensemble-based (i.e. het- |     |
|      | erogenous ensemble with FSS pruning) solution. Fault severity = $1\%$               | 226 |
| 3.73 | Fault detection accuracy of the ensemble-based solution. Fault severity = $1\%$     | 226 |
| 3.74 | Confusion matrixes for different fault scenarios based on single model-based solu-  |     |
|      | tion (RBF-NARX model). Fault severity = 2%                                          | 227 |
| 3.75 | Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.        |     |
|      | Fault severity = 2%                                                                 | 227 |
| 3.76 | Confusion matrixes for different fault scenarios based on ensemble-based (i.e. het- |     |
|      | erogenous ensemble with FSS pruning) solution. Fault severity = $2\%$               | 228 |
| 3.77 | Fault detection accuracy of the ensemble-based solution. Fault severity = $2\%$     | 228 |
| 3.78 | Confusion matrixes for different fault scenarios based on single model-based solu-  |     |
|      | tion (RBF-NARX model). Fault severity = 4%                                          | 229 |
| 3.79 | Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.        |     |
|      | Fault severity = 4%                                                                 | 229 |
| 3.80 | Confusion matrixes for different fault scenarios based on ensemble-based (i.e. het- |     |
|      | erogenous ensemble with FSS pruning) solution. Fault severity = $4\%$               | 230 |
| 3.81 | Fault detection accuracy of the ensemble-based solution. Fault severity = $4\%$     | 230 |
| 3.82 | Confusion matrixes for different fault scenarios based on single model-based solu-  |     |
|      | tion (RBF-NARX model). Fault severity = 6%                                          | 231 |
| 3.83 | Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.        |     |
|      | Fault severity = 6%                                                                 | 231 |

| 3.84 | Confusion matrixes for different fault scenarios based on ensemble-based (i.e. het- |     |
|------|-------------------------------------------------------------------------------------|-----|
|      | erogenous ensemble with FSS pruning) solution. Fault severity = $6\%$               | 232 |
| 3.85 | Fault detection accuracy of the ensemble-based solution. Fault severity = $6\%$     | 232 |
| 3.86 | Confusion matrixes for different fault scenarios based on single model-based solu-  |     |
|      | tion (RBF-NARX model). Fault severity = 8%                                          | 233 |
| 3.87 | Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.        |     |
|      | Fault severity = 8%                                                                 | 233 |
| 3.88 | Confusion matrixes for different fault scenarios based on ensemble-based (i.e. het- |     |
|      | erogenous ensemble with FSS pruning) solution. Fault severity = $8\%$               | 234 |
| 3.89 | Fault detection accuracy of the ensemble-based solution. Fault severity = $8\%$     | 234 |
| 3.90 | Confusion matrixes for different fault scenarios based on single model-based solu-  |     |
|      | tion (RBF-NARX model). Fault severity = 1%                                          | 235 |
| 3.91 | Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.        |     |
|      | Fault severity = 1%                                                                 | 235 |
| 3.92 | Confusion matrixes for different fault scenarios based on ensemble-based (i.e. het- |     |
|      | erogenous ensemble with FSS pruning) solution. Fault severity = $1\%$               | 236 |
| 3.93 | Fault detection accuracy of the ensemble-based solution. Fault severity = $1\%$     | 236 |
| 3.94 | Confusion matrixes for different fault scenarios based on single model-based solu-  |     |
|      | tion (RBF-NARX model). Fault severity = 2%                                          | 237 |
| 3.95 | Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.        |     |
|      | Fault severity = 2%                                                                 | 237 |
| 3.96 | Confusion matrixes for different fault scenarios based on ensemble-based (i.e. het- |     |
|      | erogenous ensemble with FSS pruning) solution. Fault severity = $2\%$               | 238 |
| 3.97 | Fault detection accuracy of the ensemble-based solution. Fault severity = $2\%$     | 238 |
| 3.98 | Confusion matrixes for different fault scenarios based on single model-based solu-  |     |
|      | tion (RBF-NARX model). Fault severity = 4%                                          | 239 |
| 3.99 | Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.        |     |
|      | Fault severity = 4%.                                                                | 239 |

| 3.100 | OConfusion matrixes for different fault scenarios based on ensemble-based (i.e. het- |     |
|-------|--------------------------------------------------------------------------------------|-----|
|       | erogenous ensemble with FSS pruning) solution. Fault severity = $4\%$                | 240 |
| 3.10  | 1 Fault detection accuracy of the ensemble-based solution. Fault severity = $4\%$    | 240 |
| 3.102 | 2Confusion matrixes for different fault scenarios based on single model-based solu-  |     |
|       | tion (RBF-NARX model). Fault severity = $6\%$                                        | 241 |
| 3.103 | 3Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.        |     |
|       | Fault severity = 6%                                                                  | 241 |
| 3.104 | 4Confusion matrixes for different fault scenarios based on ensemble-based (i.e. het- |     |
|       | erogenous ensemble with FSS pruning) solution. Fault severity = $6\%$                | 242 |
| 3.10  | 5 Fault detection accuracy of the ensemble-based solution. Fault severity = $6\%$    | 242 |
| 3.10  | 6Confusion matrixes for different fault scenarios based on single model-based solu-  |     |
|       | tion (RBF-NARX model). Fault severity = 8%                                           | 243 |
| 3.10  | 7Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution.        |     |
|       | Fault severity = 8%                                                                  | 243 |
| 3.10  | 8Confusion matrixes for different fault scenarios based on ensemble-based (i.e. het- |     |
|       | erogenous ensemble with FSS pruning) solution. Fault severity = $8\%$                | 244 |
| 3.10  | 9 Fault detection accuracy of the ensemble-based solution. Fault severity = $8\%$    | 244 |
| 4.1   | Summary of the construction of the neural network fault classifier based on resid-   |     |
|       | uals obtained from single model-based solution                                       | 253 |
| 4.2   | Summary of the construction of the neural network Fault classifier based on resid-   |     |
|       | uals obtained from ensemble-based solution                                           | 254 |
| 4.3   | Confusion matrix for training data using single model-based (RBF-NARX) fault         |     |
|       | isolation                                                                            | 256 |
| 4.4   | Confusion matrix for testing data using single model-based (RBF-NARX) fault          |     |
|       | isolation                                                                            | 257 |
| 4.5   | Confusion matrix for both training and testing data using single model-based (RBF-   |     |
|       | NARX) fault isolation                                                                | 258 |
| 4.6   | Fault isolation performance of single model-based (RBF-NARX) solution in term        |     |
|       | of CCR                                                                               | 259 |

| 4.7  | Confusion matrix for training data using ensemble-based fault isolation             | 260 |
|------|-------------------------------------------------------------------------------------|-----|
| 4.8  | Confusion matrix for testing data using ensemble-based fault isolation              | 261 |
| 4.9  | Confusion matrix for both training and testing data using ensemble-based fault      |     |
|      | isolation                                                                           | 262 |
| 4.10 | Fault isolation performance of ensemble-based solution in term of CCR               | 262 |
| 4.11 | Summary of the construction of the neural network concurrent fault classifier based |     |
|      | on residuals obtained from single model-based solution                              | 268 |
| 4.12 | Summary of the construction of the neural network concurrent fault classifier based |     |
|      | on residuals obtained from ensemble-based solution.                                 | 269 |
| 4.13 | Confusion matrix for training data using single model-based (RBF-NARX) single       |     |
|      | fault isolation                                                                     | 270 |
| 4.14 | Confusion matrix for testing data using single model-based (RBF-NARX) single        |     |
|      | fault isolation                                                                     | 271 |
| 4.15 | Confusion matrix for both training and testing data using single model-based (RBF-  |     |
|      | NARX) single fault isolation                                                        | 271 |
| 4.16 | Multiple Fault isolation performance of single model-based (RBF-NARX) solution      |     |
|      | in term of CCR                                                                      | 272 |
| 4.17 | Confusion matrix for training data using ensemble-based multiple fault isolation    | 273 |
| 4.18 | Confusion matrix for testing data using ensemble-based multiple fault isolation     | 273 |
| 4.19 | Confusion matrix for both training and testing data using ensemble-based multiple   |     |
|      | fault isolation                                                                     | 274 |
| 4.20 | Multiple Fault isolation performance of ensemble-based solution in term of CCR.     | 274 |
| 6.1  | Summary of MLP-NARX model construction for identification of compressor tem-        |     |
|      | perature                                                                            | 310 |
| 6.1  | Summary of MLP-NARX model construction for identification of compressor tem-        |     |
|      | perature                                                                            | 311 |
| 6.1  | Summary of MLP-NARX model construction for identification of compressor tem-        |     |
|      | perature                                                                            | 312 |

| 6.1 | Summary of MLP-NARX model construction for identification of compressor tem-  |     |
|-----|-------------------------------------------------------------------------------|-----|
|     | perature                                                                      | 313 |
| 6.1 | Summary of MLP-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 314 |
| 6.2 | Summary of MLP-NARX model construction for identification of compressor pres- |     |
|     | sure                                                                          | 314 |
| 6.2 | Summary of MLP-NARX model construction for identification of compressor pres- |     |
|     | sure                                                                          | 315 |
| 6.2 | Summary of MLP-NARX model construction for identification of compressor pres- |     |
|     | sure                                                                          | 316 |
| 6.2 | Summary of MLP-NARX model construction for identification of compressor pres- |     |
|     | sure                                                                          | 317 |
| 6.2 | Summary of MLP-NARX model construction for identification of compressor pres- |     |
|     | sure                                                                          | 318 |
| 6.3 | Summary of MLP-NARX model construction for identification of rotational speed | 318 |
| 6.3 | Summary of MLP-NARX model construction for identification of rotational speed | 319 |
| 6.3 | Summary of MLP-NARX model construction for identification of rotational speed | 320 |
| 6.3 | Summary of MLP-NARX model construction for identification of rotational speed | 321 |
| 6.3 | Summary of MLP-NARX model construction for identification of rotational speed | 322 |
| 6.4 | Summary of MLP-NARX model construction for identification of turbine temper-  |     |
|     | ature                                                                         | 322 |
| 6.4 | Summary of MLP-NARX model construction for identification of turbine temper-  |     |
|     | ature                                                                         | 323 |
| 6.4 | Summary of MLP-NARX model construction for identification of turbine temper-  |     |
|     | ature                                                                         | 324 |
| 6.4 | Summary of MLP-NARX model construction for identification of turbine temper-  |     |
|     | ature                                                                         | 325 |
| 6.4 | Summary of MLP-NARX model construction for identification of turbine temper-  |     |
|     | ature                                                                         | 326 |

| 6.5 | Summary of MLP-NARX model construction for identification of turbine pressure | 326 |
|-----|-------------------------------------------------------------------------------|-----|
| 6.5 | Summary of MLP-NARX model construction for identification of turbine pressure | 327 |
| 6.5 | Summary of MLP-NARX model construction for identification of turbine pressure | 328 |
| 6.5 | Summary of MLP-NARX model construction for identification of turbine pressure | 329 |
| 6.5 | Summary of MLP-NARX model construction for identification of turbine pressure | 330 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 330 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 331 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 332 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 333 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 334 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 335 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 336 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 337 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 338 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 339 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 340 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-  |     |
|     | perature                                                                      | 341 |

| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-<br>perature | 342 |
|-----|------------------------------------------------------------------------------------------|-----|
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-             | 0.2 |
|     | perature                                                                                 | 343 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-             |     |
|     | perature                                                                                 | 344 |
| 6.6 | Summary of RBF-NARX model construction for identification of compressor tem-             |     |
|     | perature                                                                                 | 345 |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-            |     |
|     | sure                                                                                     | 345 |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-            |     |
|     | sure                                                                                     | 346 |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-            |     |
|     | sure                                                                                     | 347 |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-            |     |
|     | sure                                                                                     | 348 |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-            |     |
|     | sure                                                                                     | 349 |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-            |     |
|     | sure                                                                                     | 350 |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-            |     |
|     | sure                                                                                     | 351 |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-            | 501 |
|     | sure                                                                                     | 352 |
| 67  | Summary of RBE-NARX model construction for identification of compressor pres-            | 002 |
| 0.7 | sure                                                                                     | 353 |
| 67  | Summary of PBE NARY model construction for identification of compressor pros             | 555 |
| 0.7 | summary of KBT-INAKA model construction for identification of compressor pres-           | 251 |
|     | sure                                                                                     | 334 |

| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-        |      |  |
|-----|--------------------------------------------------------------------------------------|------|--|
|     | sure                                                                                 | 355  |  |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-        |      |  |
|     | sure                                                                                 | 356  |  |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-        |      |  |
|     | sure                                                                                 | 357  |  |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-        |      |  |
|     | sure                                                                                 | 358  |  |
| 6.7 | Summary of RBF-NARX model construction for identification of compressor pres-        |      |  |
|     | sure                                                                                 | 359  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 359  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 360  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 361  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 362  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 363  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 364  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 365  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 366  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 367  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 368  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 369  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 370  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 371  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 372  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 373  |  |
| 6.8 | Summary of RBF-NARX model construction for identification of rotational speed        | 374  |  |
| 6.9 | Summary of RBF-NARX model construction for identification of turbine temperatur      | e374 |  |
| 6.9 | Summary of RBF-NARX model construction for identification of turbine temperature 375 |      |  |
| 6.9 | Summary of RBF-NARX model construction for identification of turbine temperature 376 |      |  |

6.9 Summary of RBF-NARX model construction for identification of turbine temperature 377 6.9 Summary of RBF-NARX model construction for identification of turbine temperature 378 6.9 Summary of RBF-NARX model construction for identification of turbine temperature 379 Summary of RBF-NARX model construction for identification of turbine temperature 380 6.9 6.9 Summary of RBF-NARX model construction for identification of turbine temperature 381 6.9 Summary of RBF-NARX model construction for identification of turbine temperature 382 6.9 Summary of RBF-NARX model construction for identification of turbine temperature 383 6.9 Summary of RBF-NARX model construction for identification of turbine temperature 384 6.9 Summary of RBF-NARX model construction for identification of turbine temperature 385 6.9 Summary of RBF-NARX model construction for identification of turbine temperature 386 6.9 Summary of RBF-NARX model construction for identification of turbine temperature 387 6.9 Summary of RBF-NARX model construction for identification of turbine temperature 388 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 388 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 389 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 390 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 391 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 392 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 393 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 394 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 395 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 396 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 397 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 398 399 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 400 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 401 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 402 6.10 Summary of RBF-NARX model construction for identification of turbine pressure 403

| 6.11 | Summary of SVM-NARX model construction for identification of compressor       |     |
|------|-------------------------------------------------------------------------------|-----|
|      | temperature                                                                   | 403 |
| 6.12 | Summary of SVM-NARX model construction for identification of compressor       |     |
|      | pressure                                                                      | 404 |
| 6.13 | Summary of SVM-NARX model construction for identification of rotational speed | 404 |
| 6.13 | Summary of SVM-NARX model construction for identification of rotational speed | 405 |
| 6.14 | Summary of SVM-NARX model construction for identification of turbine temper-  |     |
|      | ature                                                                         | 405 |
| 6.14 | Summary of SVM-NARX model construction for identification of turbine temper-  |     |
|      | ature                                                                         | 406 |
| 6.15 | Summary of SVM-NARX model construction for identification of turbine pressure | 406 |
| 6.15 | Summary of SVM-NARX model construction for identification of turbine pressure | 407 |
|      |                                                                               |     |

#### NOMENCLATURE

| ANN  | Artificial Neural Network             |
|------|---------------------------------------|
| AANN | Auto Associative Neural Network       |
| BBN  | Bayesian Belief Network               |
| CCR  | Correct Classification Rate           |
| СРМ  | Change Point Methods                  |
| DNN  | Dynamic Neural Network                |
| DT   | Decision Tree                         |
| EKF  | Extended Kalman Filter                |
| ESN  | Echo State Network                    |
| FDI  | Fault Detection and Isolation         |
| FL   | Fuzzy Logic                           |
| GA   | Genetic Algorithms                    |
| GC   | Gaussian Classifier                   |
| GMM  | Gaussian Mixture Model                |
| GP   | Gaussian Process                      |
| GRNN | Generalized Regression Neural Network |
| GRNN | Generalized Regression Neural Network |
| HI   | Human-machine Interaction             |
| HMM  | Hidden Markov Model                   |
| IIS  | Improved Iterative Scaling            |
| KF   | Kalman Filter                         |
| KKT  | KarushKuhnTucker                      |
| K-NN | Nearest Neighbor Classifier           |
| LDA  | Linear Discriminant Analysis          |
| LoR  | Logistic Regression                   |
| LR   | Linear Regression                     |
| LRM  | Linear Ridge Model                    |

| LRT   | Likelihood Ratio Test                      |
|-------|--------------------------------------------|
| LVQ   | Learning Vector Quantisation               |
| MCS   | Multiple Classifier Systems                |
| MLP   | Multi Layer Perceptron                     |
| Ν     | Engine Rotational Speed                    |
| NFIS  | Nonparametric Fuzzy Inference System       |
| NNN   | nested neural network                      |
| OQDF  | Orthogonal Quadratic Discriminant Function |
| PC    | Parzen Classifier                          |
| PCA   | Principle Component Analysis               |
| PLS   | Partial Least Squares                      |
| $P_C$ | Compressor Pressure                        |
| PNN   | Probabilistic Neural Network               |
| $P_T$ | Turbine Pressure                           |
| RBN   | Radial Basis Network                       |
| RF    | Random Forest                              |
| RNN   | Recurrent Neural Network                   |
| RRT   | Robust Ratio Thresholding                  |
| RS    | Rough Sets                                 |
| SOM   | Self Organizing Maps                       |
| SVM   | Support Vector Machines                    |
| $T_C$ | Compressor Temperature                     |
| TDL   | Tapped Delay Line                          |
| $T_T$ | Turbine Temperature                        |
| SVM   | Support Vector Machines                    |

### Chapter 1

### Introduction

Fault Detection and Isolation (FDI) has captured a wide range of attention in various industries including aerospace. FDI plays an important role in increasing safety and reducing operational costs of an aircraft. This is applicable to different subsystems of an aircraft, which also includes the engine. Early diagnosis of jet engine faults reduces both the operational and maintenance costs of an aircraft.

Various algorithms have been proposed for fault detection and diagnosis in various applications. At the high level these algorithms can be categorized into two major classes: Model Driven and Data Driven methods. Model driven algorithms require a realistic mathematical model of the system, which might be expensive to derive. Data-driven models, on the other hand, do not require a mathematical model and they can be trained using available engine data. The main drawback of the data-driven methods is their lack of confidence, which comes from the fact that their knowledge is distributed over a set of nodes (unlike the model-based approaches where the knowledge is centralized in the mathematical model). To respond to this issue, we propose a fault detection and isolation algorithm based on ensemble of data-driven models. The agreement among the ensemble members reduces the chance of error while increasing the overall confidence.

Ensemble-based decision making is employed in our real life: the essence of democracy where a group of people vote to make a decision for choosing an elected official or deciding about a new law, the judicial systems whether based on a jury of peers or a panel of judges, etc. There are also more tangible examples in daily life: consulting with different doctors before agreeing to a major medical operation, reading users' reviews before buying an item and lots of other examples. As a matter of fact, no matter if ensemble-based systems are going to be used for daily applications or machine learning applications, the original goal of using them is the same; *improving our con*<sup>×</sup>-*dence of making the right decision* by considering various opinions and then combining them in an effective manner to finalize our decision. In this chapter we aim to present the overview of using ensemble systems for the purpose of fault detection and isolation in jet engines.

The remainder of this chapter is organized as follows. The statement of problem is presented in Section 1.1. Section 1.2 presents a literature review on ensemble learning and soft-computing approaches applied to FDI problem in various applications. Section 1.3 explains the contributions of the thesis, followed by the thesis outline in Section 1.4. Finally, Section 1.5 summarizes the present chapter.

### **1.1 Thesis Objectives**

In recent years, there has been numerous papers in the computer science community discussing how to combine models or model predictions, in order to reduce model error and increase the prediction accuracy. By combining models, more robust and accurate models are almost always achievable without the need of ad-hoc fine tunings required for single-model solutions.

The main objective of this thesis is to develop an FDI scheme for a single-spool jet engine by combining single-model solutions, and building an ensemble system. The goal is to improve the performance of single-model solutions (such as modeling jet engine dynamics using a single neural network) by combining multiple learners into an ensemble. In other words we would like to benefit from different models by combining them in order to have more accurate predictions. Combining stand-alone models increases the accuracy by reducing the bias and variance of the predictions. This is critical when we focus on residual generation problem. Having less biased residual with less variance helps to detect slight variations in jet engine's performance due to degradation or a failure which leads to more accurate FDI mechanism (as compared to single-model solutions).

#### **1.2 Literature Review**

#### **1.2.1** Fault Detection and Isolation

The term fault is defined as any unexpected or unpredicted deviation or change from the desired system's behavior that can happen for either an unbounded or bounded period of time. It is more cost effective to predict the possible failure in the system due to a fault before it contributes to the system unsafe performance that in turn the system efficiency may decrease and even a drastic failure is caused. For this purpose, health monitoring is considered to be useful. Technically, health monitoring refers to the techniques and processes that enables one to monitor the system condition so the failure in the system can be predictable in advance. This section aims to briefly summarize Fault Detection and Isolation (FDI) methodologies in the literature based on [32, 33, 34]. FDI methodologies are classified into model-based, and data-riven (process history-based) approaches,


Figure Fig: Classification of dengetostleonitethods [32].

as first-principles models, frequency response models analytical redundancy can be further classified into and so on. The first principles appeles (also classified as based two exates priesde Barsheillfant and er Cheervale Willsky, macroscopic transport phenomena model (Himmelblau, 1984; Frank, 1990), direct and temporal.

1978)) havionot/www.orkulan thisfarda fliagnosisstate-space distination adahisput-actput priotheding or algebraic studies because of the computational complexity in relationships among different sensor measurements. utilizing these systeme is Examples to hour atiliation anodel based sapproaches are observer based FDI and Exit value of systems and the difficulty in developing these models. The most important class of models that have been sensors. The computed value is then compared with heavily investigated in fault diagnosis studies are the heavily investigated in fault diagnosis studies are the input-output or state-space models and hence the indicates that a sensor fault may have occurred.

focus is on Thissenty presistence of the as residual signal, which is the aliference her weed a fully differential and expected behavior [32]. On the other hand, qualitative model-based approaches do not require puts and actuator inputs. With process input and output 5.1. Analytical redundancy mathematical modeling of the monitored system. Instead, there are and discurrent and the system and actuator fault detection. In the area of automatic control, change/fault detec-system's behavior. As an example, an FDI system with gelargel sethefite then sites and system detection in tion problems are known as model-based FDI. Relying on an explicit explacted the monitored plant isle model as qualitative model-based FDI system [33]. Ex-analytical redundancy in fault diagnosis is to check the

4

generates inconsistencies between the actual and expected behavior. Such inconsistencies, also called residuals, are 'artificial signals' reflecting the potential faults of the system. The second step chooses a decision rule for diagnosis.

The check for inconsistency needs some form of redundancy. There are two types of redundancies, hardware redundancy and analytical redundancy. The former requires redundant sensors. It has been utilized in the control of such safety-critical systems as aircraft space vehicles and nuclear power plants. However, its applicability is limited due to the extra cost and

diagnosis methods) qualitative wordstephasEllen fitsodstagies are fuzzy system be haviors, and tauther system, model for consistency. Any inconsistency expressed as residuals, can be used for detection and isolation purposes. The residuals should be close to zero when no fault occurs but show 'significant' values when the underlying system changes. The generation of the diagnostic residuals requires an explicit mathematical model of the system. Either a model derived analytically using first principles or a black-box model obtained empirically may be used.



Unlike the model-based approaches, the data-driven FDI does not require either a mathematical or a qualitative model of the monitored system. Data-driven FDI is based on available data acquired from the system. Similar to the model-based FDI, the data-driven approaches are classified into qualitative and quantitative. Qualitative data-driven FDI can be categorized into qualitative trend monitoring and expert systems. In these approaches, the obtained data is used to extract the set of rules governing the system [34]. Quantitative data-driven method is the category of FDI algorithms. In this approach data-driven approaches (e.g. artificial neural networks (ANN), support vector machines, etc.) are used to predict the expected behavior of the healthy system. The inconsistency between the actual behavior of the system and the prediction of FDI algorithm is used as an indication of fault occurrence. In another framework, data-driven FDI evaluates the measured inconsistency in order to isolate the detected fault [34]. Examples of quantitative FDI algorithms are artificial neural networks [143, 144, 145, 146] and support vector machines [146, 150].

In this thesis, the focus is on quantitative data-driven FDI algorithms. The contribution is to design an ensemble of quantitative data-driven methods for health monitoring of a jet engine. In the rest of this chapter, we review the ensemble learning methodologies with the application of health monitoring and time-series prediction. We also review the literature in order to find the most promising data-driven algorithms in order to be used in design of our ensemble system.

#### **1.2.2** Jet Engine Fault Detection and Isolation

Jet engine condition monitoring is important both for reducing maintenance cost and increasing the flight safety. Therefore, it has been increasingly studied by the researches in recent years [94]. We discussed the model-based and data-driven fault diagnosis algorithms in the previous section, both approaches have been widely used in jet engine fault monitoring application. Kalman filter is a well-established quantitative model-based approach which has been extensively applied to jet engine fault diagnosis as in [95, 96, 97]. Fuzzy logic is a qualitative model-based approach extensively used for aircraft engine fault diagnosis [161, 171].

The mathematical complications required to derive the model of system especially in a case that the system nonlinear complexity is high is one of the most significant obstacles in using model-base approaches. On the other hand, since data-driven approaches rely on real-time or collected data from the sensors, there is no need of having the mathematical model of the jet engine. Data-driven approaches are widely used as an alternative for model-based approaches.

Several kinds of ANN are used in the application jet engine fault diagnosis. The use of dynamic neural networks for jet engine fault diagnosis is reported in [139, 140]. Feed-forward neural network is another widely used ANN for jet engine fault diagnosis [143, 144, 145, 146]. The use of RBF neural network for jet engine fault diagnosis is reported in [143, 179, 165, 174].

A major difficulty associated with data-driven approaches is the computational complexity for finding the appropriate learning method. Furthermore, there is always a chance that the selected learning algorithm does not satisfy the design requirements for some unseen samples of the input space. Ensemble learning has proven to improve individual learners generalization performance [184], [185], [187], and reduces the chance of selecting a learner with weak performance. An ensemble of classifiers is presented in [146] for fault isolation of jet engine using SVM, Decision Tree (DT), and MLP. The authors in [144], studied an ensemble classifier using MLP, Robust Ratio Thresholding (RRT) and Logistic Regression (LR) for fault diagnosis of jet engine. Random forest (RF) and Self Organizing Map (SOM) are used in [149] for fault detection of jet engine. Also, [179] presents an ensemble of neural networks using MLP and RBF for gas turbine fault isolation. According to our review, the use of ensemble learning for jet engine fault detection through system

identification <u>has not been</u> reported. This research presents an ensemble of neural networks for fault detection and isolation of a single-spool jet engine through system identification.

#### **1.2.3 Ensemble Learning**

The very first use of ensemble learning goes back to 1979, where Dasarathy and Sheela partitioned the feature space using multiple classifiers [35]. Ensemble of similarly configured neural networks was first used in [187], the authors showed that an ensemble of neural networks can be used to improve the generalization performance. Later in 1990, [214] showed that a strong classifier with an arbitrary low error can be generated by combining a set of weak learners through an algorithm called boosting [118]. To extend the theory behind ensemble learning, [36] studied the bias-variance tradeoff, and shows that a single neural network is not able to learn complex problems standing alone.

Having established the theory behind ensemble learning, ensemble learning has captured lots of attention in computer science and engineering communities under various names [118] including: bagging [128], boosting [40, 135], mixture of experts [137], and neural networks ensemble [187], [186], [193]. The application of ensemble learning to time-series prediction and FDI problems is presented in the following section.

#### **1.2.4** Ensemble Learning for Fault Detection and Isolation

The use of ensemble learning for FDI problem has been reported in several publications. This section reviews the literature This section focuses on ensemble techniques, where outputs of several predictors are aggregated together in order to form the final prediction. A variety of ensemble

techniques have been applied to the FDI problem. Almost all authors demonstrate that the technique they propose outperforms some other methods chosen for the comparison; however, due to different data sets used by different authors and bearing in mind the fact that confidence intervals for the prediction accuracies are seldom provided, fair comparison of results obtained by different authors is hardly possible. Thus, in this section we focus on the architecture of studied ensemble system, rather than comparison of the obtained results. The details of this review is indexed in Table 1.1.

Loboda et al. showed that both MLP and RBF show acceptable performances for the application of gas turbine fault classification [143]. Xiao developed an ensemble classifier for fault diagnosis of aircraft engine using LR, MLP, LRT and RRT [144]. Zhang et al. developed an ensemble of feed-forward neural networks for fault diagnosis of chemical processes [145]. Yan et al. introduced an ensemble system for jet engine fault diagnosis by using SVM, MLP and DT [146]. Xiao et al. designed an ensemble system for fault diagnosis of gas turbine with GRNN, LoR and RF [148]. Varma et al. uses RS and SOM for anomaly detection problem of gas turbine [149]. Donat presented five fault classifiers based on K-NN, SVM, GMM, PNN and PCA [150]. Volponi presented an ensemble system based on MLP and RBF neural networks to improve diagnostic accuracy and reduce the rate of misdiagnosis for the aircraft engine gas path faults [179]. Kestner et al. introduced an offline fault diagnostics method for highly degraded industrial gas turbines based on Bayesian networks [180]. Huang et al. proposed a multiple classifiers fusion using within-class decision support for fault diagnosis where the base classifiers selected are K-NN, OQDF [152]. Amanda et al. as well as A. J. C. Sharkey et al. used ensemble of MLP networks for fault diagnosis of diesel engine [154], [155]. Lei et al. presented an MCS for fault detection problem of a gearbox by combining MLP, RBF and KNN [157]. Yan proposed a MCS with SVM, LDA, KNN,

IIS, LVQ, GMM for fault diagnosis of an induction motor [158]. Oukhellou et al. designed an ensemble of MLP neural networks for fault diagnosis of railway track circuits [159]. Chen proposed an ensemble of RBF neural networks for fault diagnosis of power transformers [160]. Bonissone et al. presented an MCS for aircraft prognostic and health monitoring (PHM) with fuzzy classifiers, MLP, SOM, SVM and RF as the base classifiers [161]. Dong et al. introduced an expert system design method based on the neural network ensembles for missile fault diagnosis [164]. Nikunj et al. presented an ensemble of MLP and RBF for the aircraft health monitoring [165]. Filippi et al. designed an ensemble of MLPs fault-tolerance pattern recognition [167]. Ren et al. combined three classifiers MLP, FL and HI to solve fault diagnosis problem of an aero-engine [171]. Murphey et al. selected a two-step neural network ensemble approach by using MLP that is particularly suitable for solving vehicle diagnostics problems [172]. Chandroth et al. studied MCS with MLP, RBF, PCA and Wavelets for fault diagnosis of a diesel engine [174]. Aiming at more efficient fault diagnosis in mechanica systems, Georgoulas et al. presented an MCS with PCA, KNN and Gaussian Classifier as base classifiers [176]. An ensemble learning algorithm is proposed by Xu et al. based on individual MLP neural networks that are actively guided to learn diversity in power transformers [177]. Ren et al. studied a method of analog circuit fault diagnosis using AdaBoost with SVM-based base classifiers and Tent map is used to adjust parameters of SVM component classifiers for maintaining the diversity of weak classifiers [178]. More detailed review is shown in Table 1.1.

Application **Techniques** Description Gas turbine [143] runs comparative study between MLP MLP+RBF and RBF for the application of gas turbine fault classification. The comparison results confirm that both MLP and RBF show acceptable performances while RBF is a little more accurate than MLP. However, RBF needs more available computer memory and computation time. MLP + LRT +[144] developed an ensemble classifier for Gas turbine RRT+LR fault diagnosis of aircraft engine based. The (jet engine) ensemble classifier composed of 18 different classifiers including LR, MLP, LRT and RRT as inference engines. It shows that the fused result improves as compared with each classifier standing alone. **Continued on next page** 

Table 1.1: A survey of hybrid and ensemble-based soft computing techniques applied to FDI.

| Techniques             | Description                                        | Application   |  |
|------------------------|----------------------------------------------------|---------------|--|
| MLP                    | [145] develops an ensemble of feed-forward         | Chemical Pro- |  |
|                        | neural networks for fault diagnosis of chem-       | cess          |  |
|                        | ical processes. To develop a diverse range         |               |  |
|                        | of individual networks, each individual net-       |               |  |
|                        | work is trained on a replication of the origi-     |               |  |
|                        | nal training data generated through bootstrap      |               |  |
|                        | re-sampling with replacement. The final de-        |               |  |
|                        | cision is made based on majority voting.           |               |  |
| SVM+MLP+               | A multiple classifier system is developed for      | Gas turbine   |  |
| DT                     | jet engine fault diagnosis with SVM, MLP           | (jet engine)  |  |
|                        | and DT as its inference engine. The final de-      |               |  |
|                        | cision is determined with three different ap-      |               |  |
|                        | proaches 1- averaging 2- dynamic selection         |               |  |
|                        | and 3- dynamic fusion [146]                        |               |  |
| GRNN + LoR             | [148] deigns a MCS for fault diagnosis of gas      | Gas turbine   |  |
| + RF                   | turbine with MLP, LoR and RF as its infer-         |               |  |
|                        | ence engines. It shows that by using a set of      |               |  |
|                        | diverse classifiers, there is a potential to real- |               |  |
|                        | ize gains in classification accuracy over any      |               |  |
|                        | individual classifier.                             |               |  |
| Continued on next page |                                                    |               |  |

\_

| Techniques            | Description                                          | Application |
|-----------------------|------------------------------------------------------|-------------|
| RF + SOM              | [149] uses RS and SOM for anomaly de-                | Gas turbine |
|                       | tection problem of gas turbine. The paper            |             |
|                       | discusses about diversity of classifiers but it      |             |
|                       | doesn't present any metrics for measuring di-        |             |
|                       | versity of classifiers. It justifies that using dif- |             |
|                       | ferent types of classifiers has a potential of       |             |
|                       | having diverse classifiers.                          |             |
| SVM + GMM             | [150] initially presents five fault classifiers      | Gas turbine |
| + PCA                 | based on K-NN, SVM, GMM, PNN and                     |             |
|                       | PCA. It evaluates the performance of each            |             |
|                       | classifier. Next it selects the three least ac-      |             |
|                       | curate classifiers for fusion, reasoning that        |             |
|                       | the least accurate classifiers should be diverse     |             |
|                       | from each other.                                     |             |
| Continued on next pag |                                                      |             |

| Techniques             | Description                                    | Application |
|------------------------|------------------------------------------------|-------------|
| MLP + RBF              | To improve diagnostic accuracy and reduce      | Gas turbine |
|                        | the rate of misdiagnosis of the aircraft en-   |             |
|                        | gine gas path faults, [179] presents an en-    |             |
|                        | semble system based on MLP and RBF neu-        |             |
|                        | ral networks. The fusion algorithm employed    |             |
|                        | in this research is Dempster-Shafer evidence   |             |
|                        | theory and least square support vector ma-     |             |
|                        | chines (LSSVM).                                |             |
| Bayesian               | [180] presents an offline fault diagnostics    | Gas turbine |
|                        | method for highly degraded industrial gas tur- |             |
|                        | bines based on Bayesian networks where the     |             |
|                        | health condition of each component is quanti-  |             |
|                        | fied in comparison to an expected value. The   |             |
|                        | presented method uses multiple Bayesian net-   |             |
|                        | work models each of which contains a subset    |             |
|                        | of the unknowns. Their results are averaged    |             |
|                        | according to how much each of the models is    |             |
|                        | supported by the data.                         |             |
| Continued on next page |                                                |             |

| Techniques             | Description                                     | Application   |
|------------------------|-------------------------------------------------|---------------|
| KNN + OQDF             | [152] paper proposes a multiple classifiers fu- | _             |
| + PC                   | sion using within-class decision support for    |               |
|                        | fault diagnosis where the base classifiers se-  |               |
|                        | lected are K-NN, OQDF [153], and PC.            |               |
| MLP                    | [154], [155] use ensemble of MLP networks       | Diesel engine |
|                        | for fault diagnosis of diesel engine. They      |               |
|                        | discuss different architectures for a MCS.      |               |
|                        | Specifically, they distinguish between mod-     |               |
|                        | ular (where a winner classifier which is se-    |               |
|                        | lected dynamically takes the final action) and  |               |
|                        | ensemble (where there is fusion algorithm for   |               |
|                        | aggregating between the networks) MCS.          |               |
| MLP + RBF +            | [157] presents a MCS for fault detection        | Gear box      |
| KNN                    | problem of a gearbox. MLP, RBF and KNN          |               |
|                        | are three classifiers which are combined us-    |               |
|                        | ing GA in order to make the final decision.     |               |
| Continued on next page |                                                 |               |

| Techniques             | Description                                     | Application   |  |  |
|------------------------|-------------------------------------------------|---------------|--|--|
| SVM + LDA +            | [158] presents a MCS for fault diagnosis of     | Induction mo- |  |  |
| KNN + IIS +            | an induction motor. The proposed algorithm      | tor           |  |  |
| LVQ + GMM              | trains six base classifiers based on a set of   |               |  |  |
|                        | preprocessed data (the data is obtained after   |               |  |  |
|                        | sensor data fusion). Three different fusion     |               |  |  |
|                        | methods are applied 1- Bayesian belief 2- ma-   |               |  |  |
|                        | jority voting and 3- dynamic selection based    |               |  |  |
|                        | on diversity. The last method outperforms the   |               |  |  |
|                        | other two methods.                              |               |  |  |
| MLP                    | [159] designs an ensemble of MLP neural         | Railway track |  |  |
|                        | networks for fault diagnosis of railway track   | circuits      |  |  |
|                        | circuits. To generate the required diversity    |               |  |  |
|                        | the networks are trained using different train- |               |  |  |
|                        | ing sets. Fusion of classifiers is based on     |               |  |  |
|                        | Dempster-Shafer classifier fusion method.       |               |  |  |
| Continued on next page |                                                 |               |  |  |

| Techniques             | Description                                     | Application  |  |
|------------------------|-------------------------------------------------|--------------|--|
| RBF                    | [160] proposes an ensemble of RBF neural        | Power trans- |  |
|                        | networks for fault diagnosis of power trans-    | formers      |  |
|                        | formers. The authors train a number of RBF      |              |  |
|                        | networks by selecting random training sets      |              |  |
|                        | without replacement. Classifiers with the best  |              |  |
|                        | performance are selected for fusion. The fu-    |              |  |
|                        | sion algorithm is majority voting.              |              |  |
| FL + MLP +             | [161] presents a MCS for aircraft prognos-      | Aircraft PHM |  |
| SOM + SVM              | tic and health monitoring (PHM) with fuzzy      |              |  |
| + RF                   | classifiers, MLP, SOM, SVM and RF as the        |              |  |
|                        | base classifiers. It measures dissimilarity be- |              |  |
|                        | tween classifiers based on a few metrics be-    |              |  |
|                        | fore fusing their output.                       |              |  |
| MLP                    | In [164] an expert system design method         | Missile      |  |
|                        | based on the neural network ensembles is        |              |  |
|                        | proposed. The expert system design method       |              |  |
|                        | is then applied to missile fault diagnosis.     |              |  |
| Continued on next page |                                                 |              |  |

Г

\_

| Techniques            | Description                                       | Application     |
|-----------------------|---------------------------------------------------|-----------------|
| MLP + RBF             | In [165] presents an ensemble where the mis-      | Aircraft health |
|                       | match between actual flight maneuver being        | monitoring      |
|                       | performed and the maneuver predicted by the       |                 |
|                       | ensemble of MLP and RBF networks is a             |                 |
|                       | strong indicator that a fault is present. The     |                 |
|                       | authors do not study fault diagnosis problem      |                 |
|                       | in this paper.                                    |                 |
| MLP                   | [166] gives a description of a two-stage clas-    | Aircraft health |
|                       | sifier system for fault diagnosis of industrial   | monitoring      |
|                       | processes. The first-stage classifier is used     |                 |
|                       | for fault detection and the second one is used    |                 |
|                       | for fault isolation and identification. The first |                 |
|                       | stage generates the residual signals (acts as     |                 |
|                       | a reference model) while the second stage         |                 |
|                       | works as a classifier.                            |                 |
| Continued on next pag |                                                   |                 |

| Techniques             | Description                                      | Application     |  |
|------------------------|--------------------------------------------------|-----------------|--|
| MLP                    | [167] designs an ensemble of MLPs to over-       | fault-tolerance |  |
|                        | come a major concern in the use of neu-          | pattern recog-  |  |
|                        | ral networks which is the difficulty to define   | nition          |  |
|                        | the proper network for a specific application,   |                 |  |
|                        | due to the sensitivity to the initial conditions |                 |  |
|                        | and to overfitting and underfitting problems     |                 |  |
|                        | which limit their generalization capability.     |                 |  |
| СРМ                    | In [170] ensemble of change point methods        | _               |  |
|                        | is used to present a fault prognosis algorithm.  |                 |  |
|                        | change-point methods include methods like        |                 |  |
|                        | Generalized Linear Models, logistic regres-      |                 |  |
|                        | sion (methods based on maximum likelihood        |                 |  |
|                        | estimation). The fusion method used in the       |                 |  |
|                        | paper is weighted averaging and it is initiated  |                 |  |
|                        | from continuous behavior of the models.          |                 |  |
| Continued on next page |                                                  |                 |  |

| Techniques             | Description                                      | Application |
|------------------------|--------------------------------------------------|-------------|
| MLP + FL +             | [171] combines three classifiers to solve fault  | aero-engine |
| HI                     | diagnosis problem of an aero-engine: 1-          |             |
|                        | multi-layer perceptron 2- fuzzy logic expert     |             |
|                        | system 3- a rule based classifier based on hu-   |             |
|                        | man experts opinions. The authors deduce         |             |
|                        | that the classifier should be diverse since they |             |
|                        | differ for their reasoning mechanism as artifi-  |             |
|                        | cial neural network, fuzzy set and human ex-     |             |
|                        | perts reasoning, respectively.                   |             |
| MLP                    | [172] presents a two-step neural network         | Vehicles    |
|                        | ensemble approach that is particularly suit-     |             |
|                        | able for solving vehicle diagnostics prob-       |             |
|                        | lems. First, the authors train a large pool of   |             |
|                        | neural networks and select a diverse neural      |             |
|                        | network ensemble based on large amounts of       |             |
|                        | data acquired from a few available vehicles.     |             |
|                        | Next, they train an ensemble decision func-      |             |
|                        | tion on a small amount of data that is acquired  |             |
|                        | from the vehicle model to which the ensem-       |             |
|                        | ble is applied.                                  |             |
| Continued on next page |                                                  |             |

\_

| Techniques             | Description                                      | Application   |
|------------------------|--------------------------------------------------|---------------|
| MLP +                  | [174] studies MCS for fault diagnosis of a       | Diesel engine |
| RBF + PCA              | diesel engine. The author answers two main       |               |
| +Wavelets              | questions 1- Can the diagnostic performance      |               |
|                        | be improved by combining the decisions of        |               |
|                        | several individual classifiers 2- Is there a re- |               |
|                        | lationship between the robustness of the com-    |               |
|                        | bined system and the methodological diver-       |               |
|                        | sity used to create them? It also ranked the     |               |
|                        | processes used to create diversity (classifier   |               |
|                        | types, training set variation, training set com- |               |
|                        | position and classifier structures).,            |               |
| GC + KNN +             | Aiming at more efficient fault diagnosis,        | Mechanical    |
| PCA                    | [176] presents an MCS with PCA, KNN and          | systems       |
|                        | Gaussian Classifier as base classifiers. Vibra-  |               |
|                        | tion signals from normal bearings and bear-      |               |
|                        | ings with three different fault locations in a   |               |
|                        | mechanical system is used as data set.           |               |
| Continued on next page |                                                  |               |

| Techniques            | Description                                     | Application |         |
|-----------------------|-------------------------------------------------|-------------|---------|
| MLP                   | In [174] The development of a neural net sys-   | Marine      | diesel  |
|                       | tem for fault diagnosis in a marine diesel en-  | engine      |         |
|                       | gine is described. Three different types of     |             |         |
|                       | data were used: pressure, temperature and       |             |         |
|                       | combined pressure and temperature. Subse-       |             |         |
|                       | quent to training, three nets were selected and |             |         |
|                       | combined by means of a majority voter to        |             |         |
|                       | form a system which achieved 100% gener-        |             |         |
|                       | alization to the test set. Following experi-    |             |         |
|                       | mental evaluation of methods of creating di-    |             |         |
|                       | verse neural nets solutions, the authors con-   |             |         |
|                       | clude that the best results should be obtained  |             |         |
|                       | when data is taken from two different sensors   |             |         |
|                       | (e.g. pressure and sensor).                     |             |         |
| Continued on next pag |                                                 |             | at page |

\_

| Techniques | Description                                      | Application |        |
|------------|--------------------------------------------------|-------------|--------|
| MLP        | In [177] an ensemble learning algorithm is       | Power       | trans- |
|            | proposed based on individual MLP neural          | former      |        |
|            | networks that are actively guided to learn di-   |             |        |
|            | versity. By decomposing the ensemble er-         |             |        |
|            | ror function, error correlation terms were in-   |             |        |
|            | cluded in the learning criterion function of in- |             |        |
|            | dividual networks. And all the individual net-   |             |        |
|            | works in the ensemble were leaded to learn       |             |        |
|            | diversity through cooperative training. The      |             |        |
|            | method was applied in dissolved gas analysis     |             |        |
|            | based fault diagnosis of power transformer.      |             |        |
| SVM        | In [178] presents a method of analog circuit     | Analog      | cir-   |
|            | fault diagnosis using AdaBoost with SVM-         | cuits       |        |
|            | based base classifiers. Each SVM classifier      |             |        |
|            | is equipped with a radial basis function ker-    |             |        |
|            | nel. Tent map is used to adjust parameters of    |             |        |
|            | SVM component classifiers for maintaining        |             |        |
|            | the diversity of weak classifiers.               |             |        |

#### **Ensemble Learning for FDI: A Concluding Remark**

According to the literature, the use of ensemble learning for systems' health monitoring have shown an extensive interest. Numerous publications have addressed the benefits of ensemble learning towards FDI problem; however, no research has been reported on the use of *ensemble learning for health monitoring through system identi cation*. This thesis proposes a novel approach for the fault detection and isolation through system identification using ensemble methods.

### **1.3 Thesis Contributions**

To the best of our knowledge ensemble learning has not been used for health monitoring of the jet engine *through system identi cation*. Several researches have employed ensemble learning to *evaluate* residual signals to detect or isolate a fault but no research has addressed the possible use of ensemble learning for *generating* the residuals. In other words, several researches have developed *ensemble of classi ers* which receives residual signals; however, no research has addressed the use of *ensemble of regressors* to identify the jet engine dynamics and generating residual signals. The major contributions of this thesis can therefore be summarized as follows:

- A novel approach is proposed for identification of jet engine dynamics based on ensemble methods. According to the literature, this research reports the first use of ensemble learning for dynamic systems identification.
- A fault detection scheme is proposed based on system identification of jet engine using ensemble methods. Various ensemble architectures have been studied to determine the ensemble method with maximal improvement as compared with single model-based solutions (e.g. a solution based on only one type of neural network).

- A comparative study shows that the proposed ensemble-based system identification can reduce jet engine modeling error as compared to single-model-based solutions, and thus more accurate residual signals could be generated. The obtained residuals are then evaluated toward fault detection and isolation problem of the jet engine, and it is observed that the ensemble-based jet engine fault detection is more accurate ( as compared to single-modelbased solutions). An improvement in correct classification rate of engine faults is also observed in the fault isolation stage.
- From the standpoint of computational requirement, the use of ensemble methods may appear more costly (training multiple models instead of one); however, this could be compensated as ensemble methods remove the need of ad-hoc fine tunings required for single model-based solutions, as the key for having a more accurate ensemble is to increase the number of ensemble members. In theory, the accuracy of an ensemble model can be improved *arbitrarily* by increasing the number of ensemble members *without the need of having very accurate individual ensemble members*.

#### **1.4** Thesis Outline

The organization of this thesis is as follows. Chapter 2 presents the necessary background information about jet engine dynamics, ensemble learning, and data driven algorithms used in this research. Moreover, the engine mathematical representation of a single spool jet engine is presented. Chapter 3, first presents a scheme for identifying the jet engine dynamics and generating residual signals using neural networks ensemble. The residual signals are later used in the chapter to accomplish fault detection task. Chapter 4 presents fault isolation scheme and the corresponding simulation results using ensemble of classifiers. The thesis conclusions and future work are given in Chapter 5.

# 1.5 Summary

This chapter provided an introduction to the jet engine fault detection and isolation problem. It also reviewed different FDI techniques used in the literature including data-driven approaches. A comprehensive review on the application of ensemble learning for FDI problem is presented. The review shows an extensive interest in ensemble systems for solving FDI problem; however, the use of ensemble system for health monitoring (i.e. FDI problem) through system identification has never been reported. Thus, the rest of this thesis focuses on the use of ensemble learning for fault detection and isolation of jet engine through system identification.

# Chapter 2

# **Background Information**

This chapter contains three parts. The first part presents a review on ensemble learning, biasvariance decomposition, importance of diversity in ensemble learning and the metrics for measuring diversity in ensemble systems. The second part presents the preliminaries about soft-computing methods used in this research as the ensemble system members. Finally, the third part is a review on jet engine dynamics and its possible failures.

### 2.1 Ensemble Learning

Ensemble systems were originally designed to reduce the variance and consequently increasing the accuracy. They captured an increasing attention among the machine learning community. This section provides an overview about ensemble systems, their properties, and their design procedures.

#### 2.1.1 Justification for Ensemble Learning

Any classification error has two components with a trade-off relationship: *bias*, the accuracy of the classifier; and *variance*, the precision of the classifier when trained on different training sets. The fact is that usually the classifiers with low bias tend to have low variance and vice versa. On the other hand, averaging has a smoothing affect that can be employed for variance reduction. Therefore, in ensemble systems we first choose different classifiers with the fixed or similar bias and then combine them all together with averaging to reduce the variance.

The reduction of variability can be considered as reducing high frequency (high variance) noise employing a moving average filter. This filter works in a way that each sample of the signal is averaged by a neighbor of samples around it. If we suppose that the noise in each sample is independent, the noise component is averaged out while the information component stays unaffected. Indeed, the information component is common to all segments of the signal and after averaging operation, it is still unchanged. The same analysis is valid about increasing classifier accuracy by using an ensemble of classifiers. It can be assumed that classifiers make different errors on each sample while they are agreed with each other on their correct answers in terms of correct classifications. Hence, the error caused by misclassification decreases by averaging the classifier output and in turn, averaging out the error component.

Here, it is worthwhile to consider two issues. First, averaging is just one of the many ways of combining the classifier members in ensemble classifier. Secondly, making ensemble system from the ensemble members is not necessarily a guaranteed way to choose a performance that is better than that of the best ensemble member. Rather, it reduces the chance of selecting a classifier with a weak performance. Hence, if there is a member classifier with the better performance than one of ensemble classifiers, it is chosen and there is no need of using the ensemble classifier.

All the ensemble-based systems differ from each other in regard with the selection of the training data for the individual ensemble members, the criteria used for selecting the ensemble members of the ensemble system and/or the combination rules for joining the ensemble members together to make the finale ensemble system. Below, we will give more explanations about the presented discussions above.

#### 2.1.2 Bias Variance Trade-off

A popular measure to evaluate the performance of a learner is *Mean Square Error* (MSE) [117]. The learning error in term of MSE might be used as a criterion for selecting a learning method. It can be shown that the learning error can be decomposed into two different components: 1- bias and 2- variance as follows [119], [117]:

Learning error =  $(bias)^2$  variance

The optimal learner is the one which minimizes the learning error. Consequently, the optimal leaner is the one which has the 1- minimum bias and 2- minimum variance as compared with other learning algorithms.

In General *bias* is large if the learning method produces classifiers that are consistently wrong. Bias is small if:

- The classifiers are consistently right, or
- · different training sets cause errors on different documents, or
- different training sets cause positive and negative errors on the same documents, but that average out to close to 0.

*Variance* is the variation of the prediction of learned classifier. Variance is large if choosing different training sets results in very different classifiers. It is small if:

• The training set has a minor effect on the classification decisions, whether they are correct or not.

In other words, variance measures how inconsistent the decisions are, not whether they are correct or incorrect.

In general, when comparing two different learners, in most cases the comparison shows that one method having higher bias and lower variance and the other lower bias and higher variance [117]. The decision for one learning method vs. another is then not simply a matter of selecting the one that has *small variance* or the one that has *small bias*. Instead, we have to weigh the respective merits of bias and variance in our application and choose accordingly. This tradeoff is called the *bias-variance tradeoff*.

Originally, ensemble learning methods were developed to improve accuracy by reducing the variance in learner outputs, while maintaining the bias of the learner low [118]. We further discuss how ensemble learning helps to reduce the variance. For this purpose we present mathematical explanation of bias-variance trade-off here. The more detailed explanations can be found in [113].

Bias-variance tradeoff for regression problem: Suppose we want to learn a function f from R<sup>N</sup> to R. We have n samples of the function f, (x<sub>i</sub>, y<sub>i</sub>) where i = 1, ..., n and y<sub>i</sub> = f(x<sub>i</sub>). The ensemble consists of N members and the output of member α is denoted by V<sup>α</sup>(x). The output of the ensemble which is a weighted average of each networks' output is denoted by:

$$\overline{V(x)} = \sum_{\alpha} \omega_{\alpha} V^{\alpha}(x)$$

We interpret the wight  $\omega_{\alpha}$  as our belief to the member  $\alpha$ . Thus, we expect:

$$\sum_{\alpha}\omega_{\alpha}=1, \ \omega_{\alpha} \quad 0$$

The *ambiguity* term on the ensemble x is defined as:

$$a^{\alpha}(x) = (V^{\alpha}(x) - \overline{V}(x))^2$$
(2.1)

The *ensemble ambiguity* on input x is defined as follows and is simply the variance of weighted ensemble around the weighted mean. It measures the disagreement between different ensemble members on the input x, that is

$$\overline{a}(x) = \sum_{\alpha} \omega_{\alpha} a^{\alpha}(x) = \sum_{\alpha} \omega_{\alpha} \overline{a}(x) = (V^{\alpha}(x) - \overline{V}(x))^{2}$$
(2.2)

The quadratic error of ensemble member  $\alpha$  and the ensemble are defined as:

$$\epsilon^{\alpha}(x) = (f(x) - V^{\alpha}(x))^{2}$$
$$e(x) = (f(x) - \overline{V}(x))^{2}$$

Now, if we add and subtract f(x) to and from equation (2.2) we will end up with the next equation:

$$\overline{a}(x) = \sum_{\alpha} \omega_{\alpha} \epsilon^{\alpha}(x) - e(x)$$
(2.3)

Finally, we have:

$$e(x) = \overline{\epsilon}(x) - \overline{a}(x) \tag{2.4}$$

where  $\overline{\epsilon}(x)$  is the weighted average of individual errors. We can average all these expressions over the distribution p(x) of the input x. The generalization error and ambiguity term for ensemble member  $\alpha$  is defined in the first two equations and the last equation is the generalization error of the ensemble, that is

$$E^{\alpha} = \int p(x)\epsilon^{\alpha}(x)dx \qquad (2.5)$$

$$A^{\alpha} = \int p(x)a^{\alpha}(x)dx \qquad (2.6)$$

$$E = \int p(x)e(x)dx \qquad (2.7)$$

Considering the above equations and (2.4) we have:

$$E = \overline{E} - \overline{A} \tag{2.8}$$

where  $\overline{E} = \sum_{\alpha} \omega_{\alpha} E^{\alpha}$  is the weighted average of individual ensemble members' error and  $\overline{A} = \sum_{\alpha} \omega_{\alpha} A^{\alpha}$  is the *ensemble ambiguity*.

Equation (2.8) separates the generalization error of the ensemble into two terms. The first

term is the weighted average of individual ensemble members' errors and the second term is the ambiguity term. Please note that the ambiguity term can be determined without any prior knowledge about the value of target function f(x). We can evaluate the ambiguity term just based on the ensemble members' output.

Equation (2.8) states if the ensemble is strongly biased (E is a large number) then the ambiguity term is small. In this case the ensemble members implement very similar functions which agree together even outside of the training set. On the other hand, if the ambiguity term is high then the generalization error of the ensemble is less than the weighted average generalization error of each member. From equation (2.8) we can see that  $E = \overline{E}$ . In case of uniform weights for ensemble member contributions we always have:

$$E \quad \frac{1}{N}\sum_{\alpha} E^{\alpha}$$

This has been proved by several authors for instance in [113], [192]

• **Bias-variance tradeoff for classification problem:** The same concept can be developed for ensemble of classifiers. A formal mathematical proof for bias-variance tradeoff in classification problem can be found in [198].

#### 2.1.3 Diversity in Ensemble Learning

1. **Regression Problem:** For regression ensembles, Krogh and Vedelsby [113] proved that the quadratic error of the ensemble estimator is guaranteed to be less than or equal to the average quadratic error of the components, that is

#### $E_{\text{ensemble}} = E_{\text{individual models}} - A$

where E is the prediction error with  $\dots$  denoting averaging over all models and A represents the ensemble ambiguity which measures the difference in prediction of individual models from the overall ensemble [114]. Intuitively this means that larger the ambiguity term, the larger is the ensemble error reduction. However, if all the models have low prediction error it is likely that they are very similar to one another. If they are very different from one another, all of them may not have low prediction error.

This implies that the right balance is required between the *diversity* (ambiguity term) and the *individual accuracy* (the average error term) in order to achieve low ensemble error. Extensions of the model proposed by Krogh et. *al* have been studied by Brown et. *al* [115] who show that Negative Correlation (NC) plays an important role in the diversity of ensembles [195].

To *link* this section to *bias-variance trade-off*, the reader should note that the diversity of classifiers comes down to their variance which must be different from each other while each of them must maintain an acceptable level of individual accuracy (bias), since ensemble learning is a promising approach to reduce the variance of classifiers.

Since diversity is a *must* for designing an ensemble, we need to have some metrics to measure it. For this purpose, [116] introduced different metrics for measuring diversity of ensembles in *regression problem* and are presented later in this chapter.

2. **Classification problem**: An ensemble of classifiers is a set of classifiers whose individual decisions are combined in some way (typically by weighted or unweighted voting) to classify

new examples. One of the most active areas of research in supervised learning has been to study methods for constructing good ensembles of classifiers. The main discovery is that ensembles are often much more accurate than the individual classifiers that make them up.

A necessary and sufficient condition for an ensemble of classifiers to be more accurate than any of its individual members is if the classifiers are *accurate* and *diverse* [187]. An accurate classifier is one that has an error rate of better than random guessing on new x values. This concept has been illustrated in Figure 2.1 [118].



Figure 2.1: Variability reduction using MCS [118].

Two classifiers are diverse if they make different errors on new data points. To see why accuracy and diversity are good, imagine that we have an ensemble of three classifiers:

 $h_1, h_2, h_3$  and consider a new case x. If the three classifiers are identical (i.e., not diverse), then when  $h_1(x)$  is wrong,  $h_2(x)$  and  $h_3(x)$  will also be wrong. However, if the errors made by the classifiers are uncorrelated, then when  $h_1(x)$  is wrong,  $h_2(x)$  and  $h_3(x)$  may be correct, so that a majority vote will correctly classify x. In other words by diversity we mean that the classifiers are independent in terms of error. More precisely, if the error rates of each classifier is equal to  $p = 1 \ 2$  and if the errors are independent, then the probability that the majority vote will be wrong will be the area under the binomial distribution where more than half of the ensemble members are wrong.

#### **Measuring Diversity in Regression Ensembles**

As we previously discussed, diversity is a *must* for designing an ensemble system. This section presents metrics for measuring diversity among individual regressor (resp. classifiers) of an ensemble system based on [124], [125], [126], [127], [213].

In this section we present the metrics for assessing the diversity between regressors. Assume we have two regressors  $R^m$  and  $R^n$ .  $Y^m = [y_1^m, ..., y_N^m]$  and  $Y^n = [y_1^n, ..., y_N^n]$  are the continuous valued outputs of the regressors which are N-dimensional.

i) Correlation coefficient: The correlation between  $Y^m$  and  $Y^N$  is defined as follows. The correlation is inversely proportional with diversity, which means that two regressors with low correlation are preferred.  $\mu_{Y^m}$  (resp.  $\mu_{Y^n}$ ) is the mean of  $Y^m$  (resp.  $Y^n$ ).

$$\rho = \frac{\sum_{i=1}^{N} (y_i^m - \mu_{Y^m}) (y_i^n - \mu_{Y^n})}{\sum_{i=1}^{N} (y_i^m - \mu_{Y^m})^2 \sum_{i=1}^{N} (y_i^n - \mu_{Y^n})^2}$$
(2.9)

ii) Covariance: covariance between  $Y^m$  and  $Y^n$  is defined as follows and it is very related to

correlation coefficient. Similarly, covariance is inversely related to diversity.

$$Cov(Y^m, Y^n) = E[(Y^m - \mu_{Y^n})(Y^n - \mu_{Y^m})]$$
(2.10)

iii) **Chi-square:** Chi-square of  $Y^m$  with respect to  $Y^n$  is defined with the following equation. It is directly related with diversity between  $Y^m$  and  $Y^n$ , that is

$$\chi^2 = \frac{\sum_{i=1}^{N} (y_i^m - y_i^n)^2}{y_i^n}$$
(2.11)

iv) Mutual information: The mutual information between  $Y^m$  and  $Y^n$  are given by:

$$I(Y^m, Y^n) = H(Y^m) \quad H(H^n) - H(Y^m, Y^n)$$

where  $H(Y^m)$  and  $H(H^n)$  are the differential entropies of  $Y^m$  and  $Y^n$  and  $H(Y^m, Y^n)$  is the join differential entropy between  $Y^m$  and  $Y^n$  [213]. It is inversely related with diversity of the regressors.

#### **Measuring Diversity in Classification Ensembles**

The first three criteria for member classifier selection are more traditional in the literature. The other two presented in [212] are based on the assumption of the significance of the classification errors being made. All of these approaches work in a pairwise fashion.

i) Correlation Between Errors: Intuitively, the independence of occurring errors should be important for member classifier selection. In turn, the correlation of errors is a natural choice for comparing the subsets of classifiers. The correlation  $\rho_{a,b}$  is determined as follows:

$$\rho_{a,b} = \frac{Cov(v_e^a, v_e^b)}{\overline{Var(v_e^a)Var(v_e^b)}}$$
(2.12)

where  $v_e^a$  and  $v_e^b$  are the binary vectors of error occurrence in classifiers a and b, respectively, Cov refers to covariance and Var refers to variance. The best set is the one with minimal mean pairwise correlation.

ii) Q Statistics: Q static is useful to assess the similarity of two classifiers. For two classifiers a and b, it is defined as:

$$Q_{a,b} = \frac{N^{00}N^{11} - N^{01}N^{10}}{N^{00}N^{11} - N^{01}N^{10}}$$
(2.13)

where  $N^{11}$  is the number of times both classifiers are correct,  $N^{00}$  both classifiers are incorrect, and  $N^{10}$  and  $N^{01}$  are the number of times when just the first classifier or the second one is correct, respectively. When  $N^{11}$  and  $N^{00}$  are both equal to 1, the value of  $Q_{a,b}$  is one. In other words, when two classifiers make the same correct and incorrect decisions,  $Q_{a,b}$  becomes one. On the other hand, when the classifiers make errors on different inputs, negative  $Q_{a,b}$  is obtained. In the case of dealing with a set contained more than two classifiers, the Q statistic of the whole set is the mean value of pairwise Q statistics. Therefore, it is expected that the best set of member classifiers is the one with minimum value of Q.

iii) Mutual Information: Calculating the mutual information of the classifiers is also beneficial for selecting a good set of member classifiers. By definition, mutual information measures the amount of information shared between classifiers. Therefore, it is logical that a set of classifiers is maximally diverse if the mutual information assigned to that set has the minimum value. The mutual information between two classifiers a and b is defined as follows:

$$I_{a,b} = \sum_{i=1}^{n} \sum_{j=1}^{n} p(c_i, c_j) log(\frac{p(c_i, c_j)}{p_a(c_i)p_b(c_j)})$$
(2.14)

where n is the number of total classes and  $c_i$ , i = 1, ..., n are the class labels. The mutual information of the error occurrence is also calculated in experiments and in that, just two classes, correct or incorrect, are used for each classifier. As in previous criterion, for calculating the mutual information of the larger set of classifiers, first the pairwise mutual information is calculated. The minimum mutual information offers the optimal subset of classifiers.

iv) Ratio Between Different and Same Errors: Calculating ratio between different and the same errors is another attempt to select the best set of member classifiers and it is defined as follows:

$$r_{a,b}^{DES} = \frac{N_{different}^{00}}{N_{same}^{00}}$$
(2.15)

where  $N_{different}^{00}$  is the number of the times that the two classifiers made different errors at the same input and  $N_{same}^{00}$  is the number of the times that they made the same error. For more than two members, the mean of the pairwise ratios is calculated. The optimum subset is the one with the maximum discussed ratio.

v) Weighted Count of Errors and Correct Results: Information on correct decision should be taken into consideration with more emphasis on a situation which the classifiers agree on either the correct and incorrect results. For this purpose, the occurrences of the situation should be counted and then a suitable emphasis should be placed on a positive situation that is assigned to "both correct" and a negative situation where "both incorrect" is met:

$$r_{a,b}^{WCEC} = N^{11} \quad \frac{1}{2} (N^{10} \quad N^{01}) - N_{different}^{00} - 5N_{same}^{00}$$
(2.16)

For multiple classifiers, the mean of the pairwise counts is used. The optimal subset of classifiers is selected in such a way to maximize the measure.

#### 2.1.4 Creating Diverse Learners

As previously discussed, creating diverse set of learners is the key to successfully train an ensemble of regressor or classifiers. Intuitively, we know that if all ensemble learners provide the same output, there would be nothing to benefit from their combination. The importance of diversity for ensemble systems is well established in [193], [194]. Ideally, we would like individual learners to be independent or even negatively correlated [121], [195].

Thus, the method for creating diversity plays an important role in training an ensemble system. Generally speaking, two different scenarios can be considered for creation of diversity first, to manipulate the architecture of the system, and second to alter the training data that a learning method receives [219]. In this section we discuss these approaches and the ways they can be used to generate diversity.

#### **Altering the Architectures**

The number of works into using different architectures for ensemble systems is relatively small, and thus it requires more attention. If we want to diversify the error between the ensemble members, we can intuitively conclude that using different types of learning algorithms may produce the
required diversity [219]. Alternatively, we may create different architectures by using the same learning method with different setting of parameters (e.g. neural networks with different number of hidden units). Comparative studies between these two approaches conclude that using different training algorithms is generally more effective than manipulating learners topology [221], [222]. Partridge *et al.* used MLP and RBF neural networks in an ensemble to determine the effect of using different network types in diversity, and showed that using different network types is more productive than variation of network's hidden units. Islam *et al.* [186] proposed an ensemble of neural networks which supports different types of neural networks.

#### **Altering Training Data**

Several methods attempt to produce diverse learners by supplying each learner with a slightly different training set. This approach is the most widely addressed method in ensemble learning. Different learners can be given different parts of the training set. So they will expectedly learn different aspects of a same task. The very popular methods of this category are: bagging and boosting. Bagging (which stands for Bootstrap Aggregation) algorithm is one of the popular ensemble algorithms, which better suits for relatively small amount of training data. Each learner is trained using a subset of training set which is obtained by random sampling of the original training set with replacement. A very well-known version of bagging is the Random Forest, which is an ensemble of decision trees trained with a bagging mechanism. Boosting is another approach for altering training data of ensemble members, which is very similar to bagging. The difference between bagging and boosting is the resampling procedure. In bagging all samples have equal chance of being selected in each training data set, as resampling takes place with replacement. However, in boosting, the training data set for each subsequent learner increasingly focuses on instances

misclassified by previously generated learner. Because of this sequential training, boosting is more suitable for classification problem.

#### **Combining Ensemble Members**

The last step of an ensemble system design is the fusion mechanism used to combine the individual learners. The aggregation method depends on the type of the outputs in part. This means that the combination method should be different for learners with discrete output in comparison with learners with continuous outputs. The following summarizes the aggregation methods for both cases.

- i) Learners with discrete outputs: This case happens only in classification problem, when only discrete outputs are available at the learners' outputs. Note that the continuous valued outputs can easily be converted to discrete outputs (by assigning for the class with the highest output), but not vice versa. Thus, the methods of this section can be also applied to the continues outputs for classification problem. Here is a list of popular fusion algorithms for discrete outputs:
  - **Majority voting** is a winner-take-all strategy where the weight of the vote of all the learners are equal.
  - Weighted majority voting is a winner-take-all strategy where each learner has its own weight of vote which can be different from the others.
  - **Borda Count** has a different approach than majority voting. In this approach each output receives an order of support from each learner. This means that the output of ensemble system, shows the level of support for each class.

- ii) Learners with continues outputs: This case has applications both in classification and regression problems. In classification problem each learner gives a certain level of support to each class which should then be interpreted to determine the output of the ensemble system. The case is different for regression problem since its output is continuous by the nature. The popular fusion methods for continuous outputs are:
  - Algebraic Combiners determine the output of ensemble using an algebraic function of individual learners' outputs.
  - Min/Max/Meadian rule combiners simply takes Min/Max/Meadian of individual learners for the output of ensemble system.
  - **Product rule** chooses the class whose product of supports from each classifier is the highest (in classification problem).
  - Generalized mean defines a generalized algebraic function for averaging the individual learners output. Note that all previous combiners are special cases of generalized mean.

## 2.2 Neural Networks for Dynamic Systems Identification

Basic neural network architectures are capable to learn static nonlinear maps between inputs and outputs. In the static systems the system outputs at an instance n, y(n), depends only on the inputs x(n) at the same instant y(n) = f x(n). Thus, static neural networks can be used for modeling of such systems. However, the main challenge in system identification is to model the dynamic systems. In dynamic systems, the current output depends not only on the current outputs, but also on the previous behavior of the system (i.e. states of the system). There are several ways to form a

dynamic structure from a formerly static neural network. This section introduces different network architectures which are used in this thesis for the purpose of system identification.

## 2.2.1 Nonlinear Autoregressive Exogenous Model (NARX)

The system identification problem consists of parameterizing a suitable identification model and trying to minimize the error between the plant and identified model by adjusting its parameters. The nonlinear functions in the representation of the plants are assumed to belong to known classes of models [83]. One of these models is Nonlinear Autoregressive Exogenous (NARX) model. NARX model parameterizes any nonlinear dynamics as a (nonlinear) function of a regressor vector which contains current value of the system's input, as well as, the past values of inputs and outputs. In other words, NARX model describes the dynamics of a system using the following equation:

$$y(n) = f(y(n-1), ..., y(n-d_y), u(n), ..., u(n-d_u))$$

The nonlinear function f in the above equation can be approximated using different learning algorithms such as MLP neural networks, RBF neural networks, wavelets, and SVM [84].

#### NARX Model Structures

In NARX model inputs and outputs are fed into the model through tapped delay lines. Depending on the configuration of the feedback path, two types of NARX structures exist. In the following we present these two models.

1. *Parallel Identi*<sup>\*</sup>*cation Model*: In this model the feedback comes from the estimated output rather than the actual output of the plant itself. This is shown in Figure 2.2. In this structure

the estimated output at each instant n is described by the following equation:

$$\hat{y}(n) = f(\hat{y}(n-1), ..., \hat{y}(n-d_y), u(n), ..., u(n-d_u))$$

where  $\hat{y}$  is the output of the estimated model, and u is the external input,  $d_y$  and  $d_u$  are the input and output delays, respectively (tapped delay lines in Figure 2.2). Identification then involves the estimation of f with for example a neural network. By assumption the plant is bounded-input bounded-output (BIBO) stable. This guarantees that all the signals in the plant are uniformly bounded. However, the stability of the identified model (e.g. neural network) can not be assured and has to proved. Thus, if a parallel model is used, the convergence of network parameters is not guaranteed [83]. To ensure the stability of the identification method the series-parallel, which is described below, is used.



Figure 2.2: Parallel architecture of NARX model [83].

2. *Series-Parallel Model:* In contrast with the parallel model where estimated outputs are fed into the identification model, in series-parallel structure the actual outputs of the plant are

fed back to the identification model. This structure is shown in Figure 2.3. This forms the following equation for the identification model:

$$\hat{y}(n) = f(y(n-1), ..., y(n-d_y), u(n), ..., u(n-d_u))$$

In this model, the inputs and outputs of the plant form the input vector of the regressor function f whose output  $\hat{y}(n)$  corresponds to estimated output of the plant at time n. Seriesparallel structure has several advantages as compared with parallel model [83]. Since the plant itself is assumed to be BIBO stable, all signals which are used in identification process, which are inputs of the regressor f, are bounded. This guarantees that the identified model would be stable as there is no feedback from estimated output to the input of the identification model.



Figure 2.3: Series-parallel architecture of NARX model [83].

Also, assuming that  $\hat{y}(n) \approx y(n)$ , the series-parallel model can be replaced by a parallel model during *testing phase* without serious consequences. Thus, in this thesis we always use series-parallel structure during *identi*<sup>×</sup>*cation (training) phase*. The series-parallel structure would be replaced by parallel structure during testing stage.

## 2.2.2 Multi-layer Perceptron

Multi-layer perceptron (MLP) is a type of multi-layer feedforward neural network. All nodes are fully connected to the nodes in adjacent layers, but there is no connection between neurons of the same layer or between neurons of non-adjacent layers. The structure of a multi-layer perceptron is shown in Figure 2.4.



Figure 2.4: A multi-layer perceptron.

Inputs to the network are passed through each node in the input layer. The outputs of the input layer become the inputs of the next layer. Thus the last layer works as the output layer. The output of the  $i^{th}$  neuron in the  $k^{th}$  layer can be described as the following equation:

$$z_i^{(k)} = \sum_{j=1}^{n_{k-1}} w_{ij}^k x_j^{(k-1)} \quad b_i^{(k)}$$
$$x_i^{(k)} = a(z_i^{(k)})$$

where  $x_i^{(k)}$  is the output of the  $i^{th}$  neuron in the  $k^{th}$  layer,  $w_{ij}^k$ s are the connection weights to the  $i^{th}$  neuron in the  $k^{th}$  layer,  $b_i^(k)$  is the bias term, and a() is the neuron's activation function. Two typical choices of activation are sigmoidal function (i.e.  $a(z) = \frac{1}{1+e^{-z}}$ ), and tanh(z).

There are several algorithms for training MLP neural networks. The most popular training algorithm is the backpropagation. Backpropagation is a supervised learning algorithm. In this method the connection weights get updated in each iteration by comparing the network output with the expected output. For more information on backpropagation refer to [20], [23].

**Remark 2.1.** *MLP-NARX.* The use of MLP neural networks in NARX model for dynamical systems identi<sup>×</sup> cation has been reported in several publications including but not limited to [17], [18], [19], [20], [21], [22], [23]. In this research, MLP neural network is used in an NARX model to identify the jet engine dynamics. Figure 2.5 shows the structure of the MLP-NARX model during identi<sup>×</sup> cation (i.e. training) stage.



Figure 2.5: Nonlinear system identification using series-parallel MLP-NARX (training stage).

The series-parallel model would be replaced by parallel structure during testing phase as shown in Figure 2.6.



Figure 2.6: Nonlinear system identification using parallel MLP-NARX (testing stage).

## 2.2.3 **RBF** Neural Networks

RBF neural networks have attracted much attention because of their generalization ability and their simple structure which lessens the calculations as compared with multi-layer feed-forward neural networks [31]. RBF neural networks are feed-forward networks with only one hidden layer. The hidden layer of RBF network consists of RBF neurons. The wights between input layer and hidden layer are simply unity weights. Only the weights between the hidden layer (RBF neurons) and output layer are adjustable. In other words inputs are directly connected to the RBF neurons. The structure of RBF neuronal Network Design and Simulation







value of RBF is

$$h_j = \phi(x - c_j), j = 1, ..., m$$

Most commonly, a Gaussian function is used as the activation function. In this case the above equation becomes:

$$h_j = \phi(x - c_j) = \exp(-\frac{x - c_j}{2\sigma_j^2}), j = 1, ..., m$$

Then the output of the network shown in Figure 2.7 would be:

$$y_m = \sum_{j=1}^m h_j w_j$$

The parameters which require training are the radial basis function centers, radial basis function widths, and output layer weights. Several training algorithms can be used for training *centers* of RBF units including but not limited to *subsets of data points*, *orthogonal least squares*, and *clustering algorithms*. In *subsets of data points* the centers of radial basis functions are selected *randomly* from the set of training data. On the other hand, *orthogonal least squares* method incrementally adds RBF units one-by-one each time choosing the data point which reduces the error the most as the center of the newly added unit. *Clustering algorithms* aim to find the set of points which most accurately represent the distribution of the data.

Among clustering algorithms *k-means clustering* algorithm is more common and it is used in this thesis. In this method, all the data point are *rst* randomly assigned to the *k* clusters. Second the mean point of each cluster,  $S_j$ , is calculated. Third each point is reassigned to the cluster which has the closest mean. These steps are repeated until no point changes its cluster. It can be shown that this algorithm is equivalent to minimizing the following sum of squares clustering function:

$$J = \sum_{j=1}^{k} \sum_{x_i \in S_j} x_i - c_j$$

The radial basis function widths are usually set to the covariance of data points in each cluster in this algorithm. Least squares is mostly used to determine *output layer weights*. As previously explained the RBF model output is governed by the following equation.

$$y_m = \sum_{j=1}^M h_j w_j$$
 (2.17)

where  $h_j$  is the  $j^{th}$  RBF neuron output and  $w_j$ s are the output layer weights. The least square method minimizes the following error function with respect to the weights of the output layer.

$$S = \sum_{i=1}^{N} (y_i - y_m(x_i))^2$$

where N is the number of training samples,  $y_i$  is the target of the  $i^{th}$  sample, and  $y_m(x_i)$  is the predicted target for the  $i^{th}$  sample. By adding a weight penalty term to the above error function we have:

$$C = \sum_{i=1}^{N} (y_i - y_m(x_i))^2 \sum_{j=1}^{M} \lambda_j w_j^2$$

The above function is called ridge regression. Minimizing the above function with respect to the  $w_j$ s gives:

$$\frac{\partial C}{\partial w_j} = 2\sum_{i=1}^N (y_i - y_m(x_i)) \frac{\partial y_m(x_i)}{\partial w_j} - 2\lambda_j w_j$$

according to equation 2.17 we have,  $\frac{\partial y_m(x_i)}{\partial w_j} = h_j(x_i)$  then:

$$\sum_{i=1}^{N} h_j(x_i) y_m(x_i) \quad \lambda_j \hat{w}_j = \sum_{i=1}^{N} y_i h_j(x_i)$$

where  $\hat{w}_j$  is the optimized value of  $w_j$ . Showing it in the matrix form we have:

$$h_j^T y_m \quad \lambda_j \hat{w}_j = h_j^T y_i$$

or equivalently:

$$h^T y_m \quad \Lambda \hat{w} = h^t y$$

where  $h = [h_1, ..., h_M]$ ,  $y_m = [y_m(x_1), ..., y_m(x_n)]^T$ , and  $\Lambda = diag \lambda_i$ . Simplifying the above equation results in the optimal weights of the output layer as follows:

$$\hat{w} = (h^T h \quad \Lambda)^{-1} h^T y$$

**Remark 2.2.** *RBF-NARX.* The use of RBF neural networks in the NARX model for dynamical system identi<sup>×</sup> cation has been reported in several publications including but not limited to [8], [10], [11], [12], [13], [14], [15], [16]. In this research, RBF neural networks is used in an NARX model to identify the jet engine dynamics. Figure 2.8 shows the structure of the RBF-NARX model used during identi<sup>×</sup> cation (i.e. training) stage.



Figure 2.8: Nonlinear system identification using series-parallel RBF-NARX (training stage).

The series-parallel model would be replaced by parallel structure during testing phase as shown in Figure 2.9.



Figure 2.9: Nonlinear system identification using parallel RBF-NARX (testing stage).

#### 2.2.4 Support Vector Regression

In support vector regression, the idea is to map the input data into a high dimensional feature space (H) using a generally nonlinear mapping ( $\phi$ ), and then use a linear regression in this highdimensional space. Thus, the original problem is to estimate a generally nonlinear function based on the available data  $D = (x_1, y_1), ..., (x_i, y_i)$  from n-dimensional input space  $(x_i > R^n)$  to assuming one-dimensional output space (y > R). Note that one-dimensional output space dimension does not impose any limitations, as a problem with multi-dimensional output space can be decomposed into several problems whose output space is one-dimensional. SVR converts this nonlinear regression problem into a linear regression problem in a higher dimensional inputspace using a nonlinear function  $\phi(x)$ . This means that the sample space would be mapped to  $D' = (\phi(x_1), y_1), ..., (\phi(x_i), y_i)$ . Now the regression problem (in this thesis system identification) would be to find a function f such that:

$$f(x) = \sum_{i=1}^{l} w_i \phi(x_i) \quad b$$
 (2.18)

where  $\phi(x_i)$  is the input feature,  $w_i$  and b are regression coefficients and bias respectively. Assuming the function f(x) approximates  $(x_i, y_i)$  with precision  $\epsilon$ , then the coefficients  $w_i$  and b are determined by minimizing the following risk function:

$$R(C) = C \sum_{i=1}^{l} L_{\epsilon} + \frac{1}{2} w^{2}$$

where  $L_{\epsilon} = max \ 0, \ y - f(x) - \epsilon$ , and it is called  $\epsilon$ -insensitivity loss function. Note that the  $L_{\epsilon}$  does not penalize errors less than  $\epsilon = 0$ . The second term,  $\frac{1}{2} \ w^{-2}$  is a measure of function flatness.

*C* is a constant to regulate the trade-off between training error and model flatness, and is there to penalize the large deviations from final predicted hyperplane. Introduction of the slack variables  $\xi^{(*)}$  converts the problem to minimizing the following equation:

$$min \qquad \frac{1}{2} w^2 \quad C \sum_{i=1}^{l} (\xi_i^{(*)} \quad \xi_i)$$
  
subject to: 
$$((wx_i) \quad b) - y_i \quad \epsilon \quad \xi_i$$
$$y_i - ((wx_i) \quad b) \quad \epsilon \quad \xi_i$$
$$\xi_i^{(*)}, \xi_i \quad 0$$

Introducing the Lagrange multipliers  $\alpha_i^{(*)}$ , and  $\eta_i^{(*)}$ , the Lagrangian primal function of the dual optimization problem becomes:

$$\mathcal{L}_{\mathcal{P}} = \frac{1}{2} w^{2} - \sum_{i=1}^{l} \alpha_{i} (\xi_{i} - y_{i} (w.x_{i}) - b - \epsilon) - \sum_{i=1}^{l} \alpha_{i}^{*} (\xi_{i}^{*} - (w.x_{i}) b y_{i} - \epsilon) - \sum_{i=1}^{l} (\eta_{i}\xi_{i} \eta_{i}^{*}\xi_{i}^{*})$$

Taking the derivatives with respect to w, b,  $\xi$ , and  $\xi^*$  to find KKT conditions leads to  $w = \sum_{i=1}^{l} (\alpha_i^* - \alpha_i) x_i$ . Substituting this new relation equation (2.2.4) has the form  $f(x) = \sum_{i=1}^{l} (\alpha_i^* - \alpha_i) \phi(x_i)^T \phi(x_i)$  b. For computational convenience, the form  $\phi(x_i)^T \phi(x_i)$  is defined as the kernel function which has the form:

$$k(x_i, x_j) = \phi(x_i)^T \phi(x_i)$$

Thus the approximated function has the form:

$$f(x) = \sum_{i=1}^{l} (\alpha_i^* - \alpha_i) k(x_i, x_j) \quad b$$

The Lagrange multipliers can be obtained by maximizing the following dual problem:

$$W(\alpha^{*}) = \frac{1}{2} \sum_{i,j=1}^{l} (\alpha_{i} - \alpha_{i}^{*}) k(x_{i}, x_{j}) (\alpha_{i} - \alpha_{i}^{*}) \quad \epsilon \sum_{i=1}^{l} (\alpha_{i} - \alpha_{i}^{*}) - \sum_{i=1}^{l} (\alpha_{i} - \alpha_{i}^{*}) y_{i}$$

subject to:

$$\sum_{i=1}^{l} (\alpha_i - \alpha_i^*) = 0$$
$$0 \quad \alpha_i^* \quad C$$

The nonzero coefficients obtained from the above problem form a hyperplane which is the so-called support vectors.

**Remark 2.3.** *SVR-NARX.* The use of SVR-NARX model in system identi<sup>×</sup> cation has been reported in various publications. A general framework for nonlinear system identi<sup>×</sup> cation with SVR based on NARX model is presented in [1]. In another framework, [2] combines Least-Square Support Vector Machines (LS-SVM) with NARX model for identi<sup>×</sup> cation of Weiner-Hammerstein systems. Other SVR-based system identi<sup>×</sup> cation methods in companionship with ARX models are reported in [4, 3, 5, 6]. In this research, support vector regression is used in an NARX model to identify the jet engine dynamics. Figure 2.10 shows the structure of the SVM-NARX model used during identi<sup>×</sup> cation (i.e. training) stage.



Figure 2.10: Nonlinear system identification using series-parallel SVM-NARX (training stage).

The series-parallel model would be replaced by parallel structure during testing phase as shown in Figure 2.11.



Figure 2.11: Nonlinear system identification using parallel SVM-NARX (testing stage).

## 2.3 Jet Engine Overview

A gas turbine jet engine can be introduced as an internal combustion engine which basically consists of an upstream rotating compressor coupled to a downstream turbine through a combustion chamber. The mixture of air and fuel is ignited in the combustor, then the produced gas flows to the turbine. Since the gas in the turbine is of high volume as well as high velocity, the turbine blades start spinning. This generated energy can be used for different purposes. One of these is to use gas turbine as an aircraft jet engine where generated energy propels the aircraft.

In summary, a single spool jet engine, works as follows:

- 1. *First*, the temperature and pressure of the intake air increases in the compressor (compression phase).
- 2. *Second*, the mixture of fuel and high pressure air coming from compressor is ignited in the combustion chamber. In this phase it is desirable to keep the pressure unchanged while increasing the temperature and volume (heating phase).
- 3. An expansion phase in the turbine where the flow energy converts to the mechanical energy to power the compressor. In this phase the air temperature and pressure drops.
- 4. A further expansion phase in the nozzle where the flow speed increases and it returns to the inlet pressure. The thrust needed for the aircraft to move forward is provided by this high speed gas.

In this thesis, the fault detection and isolation of a single spool jet engine is studied. A single spool engine consists of a compressor, a combustion chamber, and a shaft which is driven by a single turbine. The schematic of a typical single spool jet engine is shown in the Figure 2.12.



Figure 2.12: schematic of a single spool turbofan jet engine [237].

The mathematical model of a single-spool jet engine is described in this section.

## 2.3.1 Jet Engine Mathematical Model

This section presents the mathematical model of a single spool jet engine. Although this research is based on the data-driven approaches, but the data used for the purpose of simulations is generated by a mathematical model of a single-spool jet engine developed in Simulink environment. Thus, it is necessary to review the mathematical model of a jet engine dynamics. We should also note that using a simulation model is of special interest for generating a faulty engine data, since it may not be generally available for the real jet engine.

#### **Rotor Dynamics**

By applying the concept of energy balance between the shaft and the compressor, the following equation would be obtained:

$$\frac{dE}{dt} = \eta_{mech} W_T - W_C$$

where  $E = \frac{J(\frac{N.2\pi}{60})^2}{2}$ ,  $\eta_{mech}$  denotes the mechanical efficiency,  $W_T$  denotes the power generated by the turbine,  $W_C$  denotes the power consumed by the compressor and J is the rotor moment of inertia. N stands for the number of turns which is a function of time (rotation per minute).

#### **Volume Dynamics**

To model the volume dynamics, it is assumed that the engine components themselves have zero volume. This assumption simplifies the modeling process by eliminating of algebraic loops, and it allows to develop a generic model based on jet engine dynamics. Also, we assume that the gas has zero speed and has homogenous properties over volume. Taking the above considerations into account, the volume dynamics would be described by the following equation:

$$\dot{P} = \frac{RT}{V} \left( \sum \dot{m}_{in} - \sum \dot{m}_{out} \right) \tag{2.19}$$

where P denotes the pressure, R denotes the gas constant, T denotes the temperature, V stands for the volume,  $\dot{m}_{in}$  and  $\dot{m}_{out}$  denote the input mass flow and the output mass flow, respectively.

## 2.3.2 Modeling of Engine Components

#### **Intake Duct**

The intake duct is positioned before the compressor and supplies the engine with the required air flow at highest possible pressure. In the intake duct air's velocity decreases while its pressure and temperature increase. Assuming adiabatic process, the inlet pressure ratio to ambient pressure would be described by the following equation:

$$\frac{P_d}{P_{amb}} = \begin{bmatrix} 1 & \eta_d \frac{\gamma - 1}{2} M^2 \end{bmatrix}^{\frac{\gamma}{\gamma - 1}}$$
(2.20)

where M denotes the Mach number and  $P_{amb}$  denotes the ambient pressure,  $\eta_d$  denotes the isentropic efficiency and  $\gamma$  stands for specific heat capacity ratio. The inlet temperature ratio,  $\frac{T_d}{T_{amb}}$ , can also be expressed in terms of M as

$$\frac{T_d}{T_{amb}} = 1 - \frac{\gamma - 1}{2}M^2$$
 (2.21)

where  $T_{amb}$  is the ambient temperature.

#### Compressor

The role of compressor in a jet engine is to provide high pressure air to the combustion chamber. For the Simulink model used in this thesis, the behavior of compressor which is considered as a quasi-steady component is determined by the compressor performance map, obtained from a commercial software package called GSP [226].

For a given pressure ratio,  $\pi_C$ , and the corrected rotational speed,  $N = \overline{\pi}$ , the corrected mass

flow rate  $(\dot{m}_C \frac{\sqrt{\theta}}{\delta})$ , and  $\eta_C$  can be obtained from the performance map by using a proper interpolation technique, where  $\theta = \frac{T_i}{T_o}$  and  $\delta = \frac{P_i}{P_o}$ , that is  $\dot{m}_C \frac{\sqrt{\theta}}{\delta} = f_{\dot{m}_C} \quad N \quad \overline{\theta}, \pi_C$  and  $\eta_C = f_{\eta_C} \quad N \quad \overline{\theta}, \pi_C$ .

Once these parameters are obtained, the compressor temperature rise can be found by the following formula [97]:

$$T_{o} = T_{i} \ 1 \ \frac{1}{\eta_{C}} \left( \pi_{C} \frac{\gamma - 1}{\gamma} - 1 \right)$$
(2.22)

where  $T_o$  denotes the compressor output temperature,  $T_i$  denotes the compressor input temperature and  $\eta_C$  is the efficiency of the compressor. Also, the mechanical power is obtained as follows:

$$W_C = \dot{m}_C C_p (T_o - T_i) \tag{2.23}$$

where  $\dot{m}_C$  denotes the compressor mass flow rate and  $C_p$  denotes the specific heat at a constant pressure. In a single spool engine, the connection between the compressor and the turbine is made by the only shaft in the system. The speed of the engine is determined by the shaft (rotor) speed and in turn the speed is a function of the power which the turbine generates and also the total moment of inertia of the rotary system. The relation between the power that the compressor consumes and the speed of the shaft is given by the following formula:

$$W_C = \frac{J(2\pi N)^2}{2}$$
(2.24)

where J denotes the moment of inertia of the shaft and N is the rotor speed indicated in RPM.

#### **Combustion Chamber**

As previously explained, the combustion chamber is where the mixture of fuel and high pressure air flowing from the compressor is ignited. As a result, the temperature increases while the gas pressure is desired to be kept unchanged. The combustion chamber represents both the energy accumulation and the volume dynamics between the compressor and the turbine at the same time. The dynamics of combustion chamber is described by the following equations [97]:

$$\dot{P}_{CC} = \frac{P_{CC}}{T_{CC}} \dot{T}_{CC} \quad \frac{\gamma R T_{CC}}{V_{CC}} (\dot{m}_C \quad \dot{m}_f \quad \dot{m}_T)$$
(2.25)

$$\dot{T}_{CC} = \frac{1}{c_v m_{CC}} \left[ (c_p T_C \dot{m}_C \quad \eta_{CC} H_u \dot{m}_f - c_p T_{CC} \dot{m}_T) - c_v T_{CC} (\dot{m}_C \quad \dot{m}_f \quad \dot{m}_T) \right]$$
(2.26)

where  $T_{CC}$  and  $P_{CC}$  denote the combustion chamber temperature and pressure respectively,  $\dot{m}_{C}$  and  $\dot{T}_{CC}$  denote the compressor mass flow rate and the turbine mass flow rate respectively,  $\dot{m}_{f}$ denotes the fuel flow rate,  $\gamma$  denotes the heat capacity ratio, R stands for the gas constant,  $c_{p}$  and  $c_{v}$  stand for specific heat at constant pressure and volume respectively, and  $H_{u}$  is the fuel specific heat.

#### Turbine

In a jet engine, the turbine function is to extract a portion of the pressure and kinetic energy from the high-temperature gases coming from the combustion in order to drive the compressor and accessories. In a typical jet engine, about 75 percent of the internally produced power is consumed to derive the compressor and the rest is used for generating the required thrust [227]. Turbine is a

rotatory component through which the gas of high temperature flows and its behavior, like the compressor, is represented by characteristic maps (from the software package GSP [226]). Given the pressure ratio,  $\pi_T$  and the corrected rotational speed,  $N = \overline{\theta}$ , the corrected mass flow rate,  $\dot{m}_T \frac{\sqrt{\theta}}{\delta}$ , and the efficiency,  $\eta_T$  are found from the performance map, that is  $\dot{m}_T \frac{\sqrt{\theta}}{\delta} = f_{\dot{m}_T}(\frac{\sqrt{\theta}}{\delta}, \pi_T)$  and  $\eta_T = f_{\eta_T}(\frac{N}{\sqrt{\theta}}, \pi_T)$ . The temperature drop and the turbine mechanical power which is proportional to the temperature decrease in the turbine are given as follows:

$$T_o = T_i [1 - \eta_T (1 - \pi_T \frac{\gamma - 1}{\gamma})]$$
(2.27)

$$W_T = \dot{m}_T c_p (T_i - T_o) \tag{2.28}$$

where  $\dot{m}_T$  denotes the compressor mass flow rate, and  $c_p$  denotes the specific heat at a constant pressure. In a jet engine, the power generated by the turbine and the power consumed by the compressor are proportional.

#### Nozzle

Nozzle is the last part of a jet engine in which the working fluid is expanded to produce a highvelocity jet. The high pressure exhaust gas is accelerated in a jet pipe placed between the turbine outlet and the nozzle throat to come close to the ambient pressure and consequently, to produce the necessary thrust. The nozzle exit temperature  $T_{n_o}$  is given by the equation as follows [97]:

$$T_{n_i} - T_{n_o} = \eta_n T_{n_o} \left[ 1 - \left(\frac{1}{P_{n_i} P_{amb}}\right)^{\frac{\gamma - 1}{\gamma}} \right]$$
(2.29)

where  $\eta_n$  is the nozzle efficiency,  $T_{n_i}$  denotes the nozzle inlet temperature,  $T_{n_o}$  is the nozzle outlet temperature,  $P_{n_i}$  is the nozzle inlet pressure, and  $P_{amb}$  is the ambient pressure. If the condition (2.30) holds, the mass flow is computed by equation (2.31), that is:

$$\frac{P_{amb}}{P_{n_i}} \quad \begin{bmatrix} 1 & \frac{1-\gamma}{\eta_n(1-\gamma)} \end{bmatrix}^{\frac{\gamma}{\gamma-1}} \tag{2.30}$$

$$\frac{\dot{m}_C \quad T_{n_i}}{P_{n_i}} = -\frac{u}{\overline{T_{n_i}}} \frac{A_n}{R} \frac{P_{amb}}{P_{n_i}} \frac{T_{n_i}}{T_{n_o}}$$
(2.31)

where  $\frac{u}{\sqrt{T_{n_i}}} = \frac{1}{2c_p\eta_n(1-(\frac{P_{amb}}{P_{n_i}}))^{\frac{\gamma-1}{\gamma}}}$  and  $\frac{T_{n_i}}{T_{n_o}} = 1 - \eta_n(1-(\frac{P_{amb}}{P_{n_i}}))^{\frac{\gamma-1}{\gamma}}$ . On the other hand, if the condition (2.30) does not hold, the nozzle mass flow rate is give as follows:

$$\cdot$$
  $\overline{T}$   $+$   $D$   $\overline{T}$ 

$$\frac{\dot{m}_C}{P_{n_i}} = -\frac{u}{\overline{T_{n_i}}} \frac{A_n}{R} \frac{P_{crit}}{P_{n_i}} \frac{T_{n_i}}{T_{crit}}$$
(2.32)

where  $\frac{u}{\sqrt{T_{n_i}}} = \frac{2\gamma R}{\gamma+1}$ ,  $\frac{P_{crit}}{P_{n_i}} = \left(1 - \frac{1}{\eta_n} \left(\frac{\gamma-1}{\gamma+1}\right)\right)^{\frac{\gamma}{\gamma-1}}$  and  $\frac{T_{crit}}{T_{n_i}} = \frac{2}{\gamma+1}$ . It is assumed that  $P_{n_i} = P_{LT}$  and  $T_{n_i} = T_M$ .  $T_M$  is found from the energy balance relation in the mixer as follows:

$$T_M = \frac{\dot{m}_T T_T \quad \beta \dot{m}_C T_C}{\dot{m}_T \quad \beta \dot{m}_C} \tag{2.33}$$

where  $\beta$  is the bypass ratio. A schematic view of the information explained above is shown in Figure 2.13.



Fig. 1. General architecture of our proposed MM-based FDI scheme.



Fig. 2. Information flow diagram in an adular modeling of the jet engine dynamics.

#### The Set of Nonlinear Equations

 $f_{ch}$  denotes the mechanical efficiency and J denotes the inertia of the shaft connecting the compressor to the pre, using [21] The set of nonlinear equations which describe the behavior of a single-spool jet engine is obtained by the following dynamics for the fuel mass flow rate are considered

in [97], which shows that the system is a nonlinear  $4^{th}$  order system. At the inlet of the jet engine

the ratio of duct temperature to ambient temperature, and duct temperature to ambient temperature are described by the following equation:  $\frac{d\dot{m}_f}{dt} + \dot{m}_f = Gu_{fd}$ 

$$\frac{T}{T} = 1 \frac{\gamma - 1}{2} M^2$$

the time constant, G is the gain associated with the fuel<sup>2</sup>valve, and  $u_{fd}$  denotes the fuel demand which is a feedback from the rotational speed as described in [21]. A modular Simulink model is developed to sirrengine nonlinear dynamics as described by equations (5) and (6). Figure 2 shows the information flow pink model of the engine.

e 3 shows the series of steady states that are obtained from our nonlinear model and the GSP [24] at PLA to 1. At each point, the initial condition of the PLA is set equal to 0.3 followed by a transient to reach to the sponding to the desired PLA. Since the steady state corresponding to each PLA is independent of the pretransients (unless the compressor surges), it provides a suitable basis for comparison. As can be observed the responses corresponding to our model and the GSP match each other within an acceptable error tolerand difference between the two representations is manifested in terms of the complexity of the mathematic two used, by taking into account that our structure is simpler as compared to the more complicated repre-

$$\frac{P}{P_{amb}} = 1 \quad \eta_d \frac{\gamma - 1}{2} M^2 \quad \stackrel{\frac{\gamma}{\gamma - 1}}{}$$

The set of nonlinear equations describing a single spool jet engine behavior is given by:

$$\dot{T}_{CC} = \frac{1}{c_{\nu}m_{CC}} (c_{P}T_{C}\dot{m}_{C} \quad \eta_{CC}H_{u}\dot{m}_{f} - c_{P}T_{CC}\dot{m}_{T}) - c_{\nu}T_{CC}(\dot{m}_{C} \quad \dot{m}_{f} - \dot{m}_{T})$$

$$\dot{N} = \frac{\eta_{mech}\dot{m}_{T}c_{P}(T_{CC} - T_{T}) - m_{C}c_{P}(\dot{T}_{C} - T_{d})}{JN(\frac{\pi^{2}}{30})}$$

$$\dot{P}_{T} = \frac{RT_{M_{i}}}{V_{M_{i}}}(\dot{m}_{T} \quad \frac{\beta}{1 \quad \beta}\dot{m}_{C} - \dot{m}_{n})$$

$$\dot{P}_{CC} = \frac{P_{CC}}{T_{CC}}\dot{T}_{CC} \quad \frac{\gamma RT_{CC}}{V_{CC}}(\dot{m}_{C} \quad \dot{m}_{f} - \dot{m}_{T})$$

where  $T_{CC}$  is temperature of combustion chamber, N stands for the rotational speed,  $P_C$  is the compressor pressure,  $P_T$  is the turbine pressure,  $m_{CC}$  is the mass flow in combustion chamber,  $c_{\nu}$  is the specific heat at constant volume,  $c_p$  is the specific heat at constant pressure,  $T_C$  is the compressor temperature,  $T_T$  is the turbine temperature,  $\dot{m}_C$  is the compressor mass flow rate,  $\eta_{CC}$ is the combustion chamber efficiency,  $H_u$  is the fuel specific heat,  $\dot{m}_f$  is the fuel mass flow rate,  $\eta_{mech}$  is the mechanical efficiency,  $T_d$  is the diffuser temperature,  $\dot{m}_n$  is the nozzle mass flow rate,  $\beta$  is the bypass ratio,  $T_{M_i}$  is the mixer temperature,  $V_{M_i}$  is the volume mixer, and  $P_{CC}$  is the combustion chamber pressure.

The state variables in the single-spool jet engine are selected as:

$$x = [T_{CC}, N, P_T, P_{CC}]$$

The  $T_C$  and  $T_T$  are given by  $T_C = T_d \begin{bmatrix} 1 & \frac{1}{\eta_C} (\pi_C^{frac\gamma - 1\gamma} - 1) \text{ and } T_T = T_{CC} \begin{bmatrix} 1 - \eta_T (1 - \pi_T^{frac\gamma - 1\gamma}) \end{bmatrix}$ . Note that we assume  $P_T = P_{noz}$ . The output equation is given by [97]:

$$z = [P_C, T_C, N, P_T, T_T]$$

**Remark 2.4.** Jet engines are instrumented with several thermocouples working in a wide range of temperatures. In particular, the highest temperature is the turbine temperature. This temperature can be instrumented in small engines. However, in larger engines turbine temperature can be over 1500 deg C [232], which makes the use of conventional Nickle-based thermocouples impossible. The thermocouples currently used in jet engines have an operating temperature limitation of about 1000 deg C and, as a result the turbine temperature is not usually measurable. The requirement for a higher temperature capability has been reported by gas turbine manufacturers [233]. An ongoing research (HEATTOP project) at university of Cambridge supported by leading gas turbine manufacturers such as Rolls-Royce and Siemens is working on development of very high temperature thermocouples for the use in gas turbines [234], [235]. As of September 2013, a `rst prototype is manufactured and tested at 1300 deg C [236].

In our research, we de<sup>\*</sup> ne two different scenarios to perform FDI task. First, we assume that the turbine temperature is not measurable and consequently cannot be used for FDI application. Second, assuming the success of HEATTOP project, we consider the turbine temperature to be measurable and usable for FDI application. We then study how this achievement may improve the performance of FDI task.

#### **Control Input**

The mass flow rate of the main fuel,  $\dot{m}_f$ , is considered as a mechanism to control the engine parameters. The fuel mass flow rate is a function of the power level angle (PLA) adjusted by the pilot. The mass flow rate dynamics is determined as follows:

$$\tau \frac{\dot{m}_f}{dt} \quad \dot{m}_f = G u_{fd} \tag{2.34}$$

where  $\tau$  is the time constant, G is the gain associated with the fuel valve and  $u_{fd}$  denotes the fuel demand, which is determined by a rotational speed feedback [97].

## **2.3.3** Faults in the Jet Engine

By an abrupt fault one means any rapid reduction in any of the engine performance parameters such as compressor efficiency. Engine degeneration is a gradual reduction in the engine performance during its operation. An example of this kind of fault is the engine degradation due to fouling or erosion. Like any other system a jet engine is prone to three different types of failures 1- actuator faults, 2- component faults and 3- sensor faults as shown in Figure 2.14. Each of these fault types are explained below.



Figure 2.14: Jet engine fault types [237].

- Actuator fault: actuator fault can be defined as any reduction in the actual capability of engine actuators. In other words, an actuator fault is interpreted as any failure which affects the effectiveness of the control input. An example of actuator fault is the fuel valves failure to open or close correctly which leads to loss of effectiveness in delivery of the fuel.
- Component faults: component faults affect the healthy performance of the engine component. Fouling and erosion are two examples of component faults. Fouling is caused by accumulation of small particles on the turbine or the compressor blades contributing to reduction of the blades cross sections and finally overall reduction in the flow capacity. Fouling is caused by adherence of microparticles between 2 10µm which affects the smoothness of surfaces. Fouling results in the changes of aerofoils shape and it may happen in both compressor and turbine. An indication of fouling in compressor (respectively turbine) is reduction in compressor (respectively turbine) mass flow rate [229]. Thus, compressor and turbine mass flow rates can be considered as engine health parameters as an indication of

fouling. Typically, fouling results in 5% decrease in mass flow rate, and up to 13% in the engine's output power. Figure 2.16 shows a fouled compressor.



Figure 2.15: Fouled compressor [230].

Erosion is caused by collision of particles larger than  $10\mu m$  with the compressor and the turbine blades. The particles remove the material in the gas flow path which leads to changes in aerofoil profiles. An indication of turbine (respectively compressor) erosion is decrease in efficiency of turbine (respectively compressor).



Figure 2.16: Erosion of turbine blades [230].

Foreign Object Damage (FOD) is another component fault caused by strike of relatively large objects. FOD fault usually results in decrease of efficiency and mass flow rate of turbine and compressor. FOD fault can result up to 5% decrease in compressor and turbine efficiency. Figure 2.17 shows damage caused by a foreign object entered to a jet engine.



Figure 2.17: Turbine blade damage caused by foreign object [230].

• Sensor faults: sensor fault occurs when the output of a sensor is different from the actual values of the measured parameter (e.g. wrong temperature reading of a thermocouple is an example of sensor fault). A sensor fault may lead to poor regulation or tracking performance, or even affect the stability of the control system. Moreover, a faulty sensor output may also cause inaccurate diagnostics/prognostics, resulting in unnecessary replacement of system components or mission abortion. Therefore, it is important to correctly assess the health of on-board sensors [228]. Examples of jet engine sensor faults are compressor pressure sensor failure, compressor temperature sensor failure, turbine pressor sensor failure.

In this thesis, the main focus is on component faults. The engine health parameters considered in this research are compressor efficiency, compressor mass flow rate, turbine efficiency, and turbine mass flow rate. Thus, any change in any of the above mentioned engine parameters is an indication of a fault due to a degradation such as fouling or erosion.

| Component Fault | Description                                            |
|-----------------|--------------------------------------------------------|
| $F_{mc}$        | Decrease in the compressor flow capacity $(\dot{m}_C)$ |
| $F_{ec}$        | Decrease in the compressor efficiency $(\eta_C)$       |
| $F_{mt}$        | Decrease in the turbine flow capacity $(\dot{m}_C)$    |
| $F_{et}$        | Decrease in the turbine efficiency $(\eta_C)$          |

 Table 2.1: Jet engine component fault indications.

In order to model the engine's health status, we define the  $F_{mc}$ ,  $F_{ec}$ ,  $F_{mt}$ , and  $F_{et}$  as fault gains which are indicating compressor mass flow rate, compressor efficiency, turbine mass flow rate, and turbine efficiency respectively. For a healthy jet engine we consider the fault gains to be at 100% of their nominal values (i.e.  $F_{mc} = F_{ec} = F_{mt} = F_{et} = 1$ ). Any degradation in an engine component results in decrease of one or more engine parameters, which causes the fault gains to have a value less than one. For typical component faults we consider a reduction up to 8% in engine health parameters (note that above 8% decrease in engine health parameters is considered to be so severe and consequently it can be detected and isolated relatively as easy compared to the less severe faults).

## 2.4 Summary

In this chapter a review of the required preliminaries for this research is presented. First the proven concept for ensemble learning was presented including bias-variance decomposition, the importance of diversity in ensemble learning and the metrics for measuring diversity in ensemble systems. Then in the second part the required preliminaries for the data-driven models used in this research were presented. Also, the required background for identification of dynamical systems were presented. Finally, the chapter reviewed required background information on jet engine including jet engine structure and its mathematical modeling as well as possible faults

## **Chapter 3**

# **Ensemble Learning for Jet Engine Fault Detection**

In previous chapter, we discussed ensemble learning as a powerful tool for solving both regression (e.g. system identification) and classification (e.g fault isolation) problems. In this chapter, we rst select three individual learning algorithm based on their characteristics and their popularity in literature for identification of jet engine dynamics. *Second*, we model the jet engine dynamics using the selected individual learning methods in order to *validate* them. *Third*, we build two different ensemble systems to model the jet engine dynamics. *Fourth*, designed ensemble systems are used to generate residual signals for fault detection (FD) of the jet engine. The performance of the ensemble-based fault detection system is compared with each individual methods selected from the literature.

As explained in Chapter 2 the diversity among individual ensemble members is essential. Clearly, there is no more information to be gained from a large set of identical individual learners.
Thus, the diversification approach plays an important role in the design process. The two general approaches for ensuring diversity which are used in this thesis are:

- Using different types of learning algorithms (e.g. different types of neural networks). In this first approach, the diversity among the learners is created by choosing different types of learners in general.
- Training learners using different training data. In this approach each learner is trained on a different subset of the training set. The diversity in this approach is created as each learner learns a part of the available data.

We then compare the proposed ensemble-based FD system with conventional (non-ensemble) methods in the literature from two perspectives. *First*, the accuracy of identified jet engine model, and *second*, accuracy of fault detection process. The individual learners which are trained in the first stage are used as benchmarks. These methods are used for modeling and FD of jet engine or gas turbine in the following references.

| Model    | Application                  | Reference                |
|----------|------------------------------|--------------------------|
| MLP-NARX | [24], [25], [26], [27], [28] | Jet engine modeling & FD |
| RBF-NARX | [24], [25]                   | Jet engine modeling & FD |

Table 3.1: Jet engine fault detection (FD) methods selected from the literature as benchmarks.

# **3.1** Generating Engine Data

The required engine data can either be collected directly from a jet engine (if it is available) or with the help of a simulation model that is as realistic as possible. The later possibility is of special

interest for collecting data on the different faulty situations, since generally those data may not be available for the real jet engine.

In this thesis, the data is generated using a Simulink model of a single-spool jet engine. For fault detection purpose, we collect the data from a healthy jet engine model. This data is used to identify dynamics of a healthy engine, which will be later used for generating residual signals. The data is collected while engine is operating in cruise mode. This corresponds to the PLA signal (set by the pilot) between 50° and 60° (*PLA* > [50°, 60°]) [200]. The relation between PLA set by the pilot and the engine fuel flow rate ( $\dot{m}_f$ ) is described by the following equation [200].

$$\dot{m}_f = \begin{array}{c} \frac{PLA \times \dot{m}_f^{\max}}{70} & \text{if } PLA \quad 70^{\circ} \\ \dot{m}_f^{\max} & \text{if } PLA \quad 70^{\circ} \end{array}$$

so according to the above the fuel flow rate which corresponds to the cruise mode would be approximately between 70% to 85% of the maximum fuel flow rate or in other words:

$$\frac{\dot{m}_f^{cruise}}{\dot{m}_f^{max}} > (0.7, 0.85)$$

To have a realistic scenario for collecting the training data we assume that the jet engine is operating in the cruise mode  $(\frac{\hat{m}_{f}^{cruise}}{\hat{m}_{f}^{max}} > (0.7, 0.85))$  for *an hour (3600 sec)*. The PLA and thus the fuel flow rate makes slight random changes during the flight every 5 minutes (300 sec). This results in an input profile as shown in Figure 3.1.



Figure 3.1: Top: PLA used for generating engine data in the cruise mode. Bottom: engine fuel flow rate  $\dot{m}_f$  in the cruise mode used for generating engine data.

The generated training data contains the measured variables along the engine's gas path, as well as engine's fuel flow rate. A summary of the generated data is presented in Table 3.2.

| Flight duration         | 3600 sec                                                                                                                                                      |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flight mode             | cruise                                                                                                                                                        |
| Fuel rate               | $\frac{\dot{m}_{f}^{cruise}}{\dot{m}_{f}^{max}} > (0.7, 0.85), PLA > [50^{\circ}, 60^{\circ}] [200]$                                                          |
| Instrumented parameters | $P_C$ , compressor pressure<br>$P_T$ , turbine pressure<br>$T_C$ , compressor pressure<br>$T_T$ , turbine temperature (see Remark 2.4)<br>N, rotational speed |
| Actuator parameter      | $\dot{m}_f$ fuel flow rate (see Remark 3.1)                                                                                                                   |
| Total # of samples      | 3601                                                                                                                                                          |

 Table 3.2: Training data generation summary.

**Remark 3.1.** Note that the actuator signal is set by the *ight controller, and is not usually instrumented by a sensor. For a jet engine the actuator signal is the fuel ow rate and it is calculated based on the PLA set by the pilot.* 

In order to have a realistic engine data, we add measurement noise to the collected engine data parameters. The percentage of noise applied to each of the engine parameters is shown in Table 3.3.

 Table 3.3: Measurement noise standard deviations as percentage of engine parameter values at cruise condition[199].

| $P_C$ | $T_C$ | N     | $P_T$ | $T_T$ | $\dot{m}_f$ |
|-------|-------|-------|-------|-------|-------------|
| 0.164 | 0.23  | 0.051 | 0.164 | 0.097 | 0.51        |

We observed that normalization of the data improves the performance of the learners. Thus, the following min-max normalization function is applied for preprocessing of the data, that is

$$X_n = 2 \quad \frac{X_{max} - X}{X_{max} - X_{min}}$$

The generated data is divided into training, testing, and cross-validation data sets in the next section, and are used for training and validating the jet engine model.

### 3.1.1 Training, Testing, and Cross-Validation Data Sets

The generated engine data is divided into three data sets: training data set, testing data set, and validation data set. The training data set, and cross-validation date set are used during training phase. The training data set is presented to the models during training phase. Since the model only sees the training data during training phase there is always a chance of *over*<sup>\*</sup>*tting*. This

means that the model memorizes the training data, while it looses generalization capability to unseen data. In order to prevent the model from overfitting, we need to have a cross-validation set. The cross-validation data set is a subset of the training data which is not used for the training but instead is used for validation of the trained model during the training. The training stops, if the model's performance on cross-validation data set does not improve for i iterations in a row. Partitioning of the available data into training, test, and cross-validation data sets can affect the generalization performance of the model. We conduct the following experiment to determine an optimal partition of the available data into training, testing, and cross-validation data sets. We first consider partitioning the available data into training and testing data sets with different sizes which are 1- training data set = 40% of available data, testing data set = 60% of available data 2- training data set = 50% of available data, testing data set = 50% of available data 3- training data set = 60% of available data, testing data set = 40% of available data. Then for each case we use a part of the training data as cross-validation data set (in different experiments we use 20%, 30%, 40%, 50%, and 60% of the training data as cross-validation data set). In each case, the generalization error of the trained model is calculated on the testing data set. The results are reflected in Figures 3.2 to 3.6. Please note that the figures show the results for an MLP-NARX model where the network parameters (e.g. number of neurons are fixed to the optimal values obtained in the following). Ideally, we would like to repeat the above mentioned procedure for all the models and with various network parameters; however, in the remainder of this chapter, and due to the computational complexity we first partition the available data into training, and testing, and then based on the outcome of this experiment we use 40% of the training data set for cross-validation.

In order to evaluate the successfulness of cross-validation we compare the generalization error

for different sizes of validation data with the case where no cross-validation is performed. We set the maximum number of iterations to a relatively big number (i.e. 100 iterations) noting the crossvalidations stops the training in less than 10 iterations. It should be also noted that if we increase the maximum number of iterations to bigger numbers, then the generalization error would become even worse due to overfitting of the training data. Tables 3.5 to 3.8 compare the generalization error with and without cross-validation. One can see that early stopping with cross-validation reduces the generalization error significantly by preventing overfitting of training data. According to the experimental results (see Tables 3.5 to 3.8) one can see that using 40% of the available training data for cross-validation purpose results in a better generalization performance. Thus, in the remainder of this chapter we select 40% of the training data set for performing cross-validation.

| size of validation set<br>(% of training data) | Generalization error | # of iteration | Stopping criteria |
|------------------------------------------------|----------------------|----------------|-------------------|
| _                                              | 17.3162              | 100            | max iteration     |
| 20%                                            | 6.3513               | 12             | validation stop   |
| 40%                                            | 0.0330               | 9              | validation stop   |
| 60%                                            | 0.1283               | 5              | validation stop   |
| 80%                                            | 1.1678               | 5              | validation stop   |

Table 3.4: The effectiveness of cross-validation for identification of compressor pressure.

| size of validation set<br>(% of training data) | Generalization error | # of iteration | Stopping criteria |
|------------------------------------------------|----------------------|----------------|-------------------|
| _                                              | 19.2212              | 100            | max iteration     |
| 20%                                            | 1.7559               | 5              | validation stop   |
| 40%                                            | 2.2323               | 6              | validation stop   |
| 60%                                            | 5.7995               | 6              | validation stop   |
| 80%                                            | 2.0269               | 7              | validation stop   |

Table 3.5: The effectiveness of cross-validation for identification of compressor temperature.

Table 3.6: The effectiveness of cross-validation for identification of rotational speed.

| size of validation set<br>(% of training data) | Generalization error | # of iteration | Stopping criteria |
|------------------------------------------------|----------------------|----------------|-------------------|
| _                                              | 97.3162              | 100            | max iteration     |
| 20%                                            | 35.8760              | 20             | validation stop   |
| 40%                                            | 31.8124              | 19             | validation stop   |
| 60%                                            | 36.0391              | 23             | validation stop   |
| 80%                                            | 39.5571              | 21             | validation stop   |

#### Table 3.7: The effectiveness of cross-validation for identification of turbine temperature.

| size of validation set<br>(% of training data) | Generalization error | # of iteration | Stopping criteria |
|------------------------------------------------|----------------------|----------------|-------------------|
| -                                              | 106.8616             | 100            | max iteration     |
| 20%                                            | 39.1656              | 7              | validation stop   |
| 40%                                            | 34.4623              | 16             | validation stop   |
| 60%                                            | 37.4369              | 7              | validation stop   |
| 80%                                            | 43.1970              | 6              | validation stop   |

| size of validation set<br>(% of training data) | Generalization error | # of iteration | Stopping criteria |
|------------------------------------------------|----------------------|----------------|-------------------|
| _                                              | 9.1278               | 100            | max iteration     |
| 20%                                            | 0.1162               | 7              | validation stop   |
| 40%                                            | 0.0514               | 6              | validation stop   |
| 60%                                            | 0.7248               | 6              | validation stop   |
| 80%                                            | 0.2229               | 8              | validation stop   |

 Table 3.8: The effectiveness of cross-validation for identification of turbine pressure.



Figure 3.2: Compressor temperature estimation error vs. size of cross-validation data for different sizes of training data.



Figure 3.3: Compressor pressure estimation error vs. size of cross-validation data for different sizes of training data.



Figure 3.4: Rotational speed estimation error vs. size of cross-validation data for different sizes of training data.



Figure 3.5: Turbine temperature estimation error vs. size of cross-validation data for different sizes of training data.



Figure 3.6: Turbine pressure estimation error vs. size of cross-validation data for different sizes of training data.

## 3.2 Neural Network Construction

In summary, the neural networks are constructed in two steps. First, the available engine data is partitioned into training, validation and testing data and the optimal size of the data sets is determined by experimenting different scenarios (i.e. different sizes for training, validation and testing data sets). Second, the partitioned data is used to construct the neural network while adjusting different network parameters (i.e. # of neurons, delays). Twelve different scenarios are considered for partitioning of the available data as described in the following:

- Scenarios 1 4: In these scenarios, first the available data is partitioned into 40% training data and 60% testing data. Then validation data size is selected as a percentage of the training data as follows.
  - Scenario 1: 40% of the available engine data is selected as training data and 60% of the engine data is selected as testing data with 20% of the training data is selected as validation data set.
  - Scenario 2: 40% of the available engine data is selected as training data and 60% of the engine data is selected as testing data with 40% of the training data is selected as validation data set.
  - Scenario 3: 40% of the available engine data is selected as training data and 60% of the engine data is selected as testing data with 60% of the training data is selected as validation data set.
  - Scenario 4: 40% of the available engine data is selected as training data and 60% of the engine data is selected as testing data with 80% of the training data is selected as validation data set.



Figure 3.7 shows how the engine data is divided for the scenarios 1-4.

Figure 3.7: Partitioning of the available data into training, testing and validation data sets. Training data size = 60% of available data. Testing data size = 40% of the training data. Validation data size selected as a percentage of the training data.

- Scenarios 5 8: In these scenarios, first the available data is partitioned into 40% of training data and 60% testing data. Then validation data size is selected as a percentage of the training data as follows.
  - Scenario 5: 50% of the available engine data is selected as training data and 50% of the engine data is selected as testing data with 20% of the training data is selected as validation data set.
  - Scenario 6: 50% of the available engine data is selected as training data and 50% of the engine data is selected as testing data with 40% of the training data is selected as validation data set.
  - Scenario 7: 50% of the available engine data is selected as training data and 50% of the engine data is selected as testing data with 60% of the training data is selected as

validation data set.

- Scenario 8: 50% of the available engine data is selected as training data and 50% of the engine data is selected as testing data with 80% of the training data is selected as validation data set.

Figure 3.8 shows how the engine data is divided for the scenarios 5-8.



Figure 3.8: Partitioning of the available data into training, testing and validation data sets. Training data size = 50% of available data. Testing data size = 50% of the training data. Validation data size selected as a percentage of the training data.

- Scenarios 9 12: In these scenarios, first the available data is partitioned into 60% of training data and 40% testing data size. Then validation data size is selected as a percentage of the training data as follows.
  - Scenario 9: 60% of the available engine data is selected as training data and 40% of the engine data is selected as testing data with 20% of the training data is selected as validation data set.

- Scenario 10: 60% of the available engine data is selected as training data and 40% of the engine data is selected as testing data with and 40% of the training data is selected as validation data set.
- Scenario 11: 60% of the available engine data is selected as training data and 40% of the engine data is selected as testing data with and 60% of the training data is selected as validation data set.
- Scenario 12: 60% of the available engine data is selected as training data and 40% of the engine data is selected as testing data with and 80% of the training data is selected as validation data set.





Figure 3.9: Partitioning of the available data into training, testing and validation data sets. Training data size = 60% of available data. Testing data size = 40% of the training data. Validation data size selected as a percentage of the training data.

Once the data is partitioned into training, validation and testing data sets (different scenarios are considered) then the networks are constructed and network parameters are adjusted to achieve

the least generalization (i.e. testing error). Different model parameters (i.e. using different values for neurons/delays) are considered at this stage. Each model is trained using the training data. The validation data is used for stopping of the training in order to avoid over fitting of training data. The testing data is not exposed to the network during the training stage and it is only used to calculate the generalization error (i.e.  $RMSE_{testing}$ )

**Remark 3.2.** It should be noted that once the data is partitioned (e.g. 30% for training, 20% for validation and 50% for testing) then the samples in each set are `xed and do not change during the model parameters selection stage. Thus, in each experiment the testing data is `xed and not exposed to the model at the training and validation stages. It should also be noted that the experiments for partitioning of the data are independent from each other. For example, if data is partitioned into 30% of training data, 20% of validation and 50% of the testing data then it means that 30%, 20% and 50% of the available data are <u>randomly</u> selected as training, validation and testing data sets respectively.

## **3.3 Jet Engine Dynamics Identification**

System identification plays an important role in fault detection algorithms. It is always required to have a reference model which generates the expected outputs of a healthy jet engine. The residual signals are then generated by comparing the outputs of the actual engine with the predictions of the reference model. In this thesis, different machine learning algorithms are trained to identify the dynamics of a single-spool jet engine. These models are later combined to design an ensemble system which estimates the normal behavior of a jet engine.

The jet engine dynamic is identified based on Nonlinear Autoregressive Exogenous model

(NARX) which is commonly used in system identification [217]. NARX relates the current value of an identified system to its previous values of inputs and outputs. Generally speaking, a system can be described as a function of its inputs and outputs. This can be summarized using the following equation:

$$y(k) = f(y(k-1), ..., y(k-d_y), u(k), ..., u(k-d_u))$$
(3.1)

where u and y are the input and output vectors of the system respectively, and f is a nonlinear relation between the current value of the output y(k) and the previous values of input and output vectors. When identifying a system using NARX model the goal is to find a (generally) nonlinear function  $\hat{f}$  as follows:

$$\hat{y}(k) = \hat{f}(y(k-1), \dots, y(k-\hat{d}_y), u(k), \dots, u(k-\hat{d}_u))$$
(3.2)

If we determine the time delays  $(\hat{d}_y)$  and  $(\hat{d}_u)$  then the generally nonlinear function  $\hat{f}$  can be determined such that it identifies the system dynamics. According to [215] a proper approximation requires the order and time-delay of the approximated function to be equal or greater than the actual system's delays. In other words, we need to select  $\hat{d}_y = d_y$  and  $\hat{d}_u = d_u$ . Two structures can be assumed for NARX model which are described in Chapter 2.

During training phase *series-parallel NARX model* is used for identification of jet engine dynamics. In this model actual outputs of the jet engine are fed back to the identification model rather than estimated outputs. This structure is shown in Figure 3.10.



Figure 3.10: Series-parallel NARX model used for training stage [83].

Since the jet engine itself is BIBO stable, all signals which are used in identification process are bounded. This guarantees that the identified model of the engine is stable. Assuming that  $\hat{y}(n) \approx y(n)$ , the series-parallel model can be replaced by a parallel model during *recall phase* without serious consequences. The structure of the recall phase is shown in Figure 3.11.



Figure 3.11: Parallel NARX model during recall phase [83].

Note that y represents engine parameters which can be  $P_T$ ,  $T_T$ ,  $P_C$ , TC, N.

## 3.4 Jet Engine Dynamics Identification using MLP-NARX

The use of MLP neural networks in NARX model for dynamical systems identification has been reported in several publications including but not limited to [17], [18], [19], [20], [21], [22], [23]. NARX model has proven ability in identification of a wide range of nonlinear systems [20], [23]. Feed-forward MLPs have been widely used in various applications. A common feature in all these applications is that MLPs are employed to realize some complex nonlinear functions. Theoretically, it is shown that even a single-layer perceptron can approximate any nonlinear function [216]. Thus, the theoretical foundation of nonlinear systems modeling using MLPs is already established.

Nonlinear Autoregressive Exogenous (NARX) model parameterizes any nonlinear dynamics as a (nonlinear) function of a regressor vector which contains current value of the system's input, as well as, the past values of inputs and outputs. In other words, NARX model describes the dynamics of a system using the following equation:

$$y(n) = f(y(n-1), ..., y(n-d_y), u(n), ..., u(n-d_u))$$

The nonlinear function f in the above equation is some nonlinear function. In this section MLP is used for approximation of the function f with application to jet engine system identification. Two different architectures are previously presented for NARX model in Chapter 2 and Section 3.2. The *series-parallel NARX model* uses the actual outputs of the plant are fed back to the identification model during training phase. There are two main advantages associated with this structure [83]. First, all signal which are used in the identification process (which are inputs of the regressor f) are

bounded. This guarantees that the identified model would be also stable. Also, assuming that the identified model is close enough to the actual system, the series-parallel model can be replaced by a parallel model during *testing phase* without serious consequences. Thus, series-parallel structure is used during training phase of neural networks. The series-parallel NARX structure used for identification of jet engine dynamics is shown in Figure 3.12.



Figure 3.12: Schematic of MLP-NARX during training phase.

Note that in Figure 3.12, y can be any of the engine outputs  $(P_T, T_T, P_C, T_C, N)$  and u is the fuel flow rate  $(\dot{m}_f)$ . We train a separate neural network for each of the engine outputs. Figure 3.13 shows the system architecture during training. In this architecture each engine output is identified using a separate model. A series-parallel MLP-NARX model is used to model each engine output. The inputs to each network are the vectors  $[\dot{m}_f(n), ..., \dot{m}_f(n - d_u)]$  and  $[y(n - 1), ..., y(n - d_y)]$  where y can be any of the engine outputs which are  $P_T, T_T, P_C, T_C$  and , N.



Figure 3.13: The architecture of MLP-NARX model of the jet engine during training phase.

Before training the neural networks we have several parameters to adjust for each networks structure. These parameters include the number of hidden layers, number of neurons, number of delays  $(d_u, d_y)$ , and size of training set. Generally speaking, there is no rule to determine the optimal values of the above mentioned parameters for a specific application. Thus, we follow a constructive algorithm in order to achieve the desired performance. According to the approximation theorem [216] *any* nonlinear function can be approximated using a single-layer perceptron. Hence for simplicity we limit the number of hidden layers to one. We should note that according to [215]

using only a single hidden layer may result in larger number of hidden neurons.

We start with a relatively small structure for the neural networks (one hidden layer, two hidden neurons, and the number of delays equal to two). For avoiding too complex networks we limit the number of hidden neurons to 20, and the number of delays to  $10 (d_u \ 10, d_y \ 10)$ . We use *Root Mean Squared Error (RMSE)* in order to evaluate the training, and generalization performance of the trained networks as follows:

$$RMSE = \frac{\sum_{i=1}^{n} (P_i - T_i)^2}{n}$$

where  $P_i$  and  $T_i$  are the network prediction and the target for the *i*<sup>th</sup> sample, respectively and n is the total number of samples. We also consider the *Mean of Absolute Error* ( $\mu_{ae}$ ) and *Standard Deviation of Absolute Error* ( $\sigma_{ae}$ ), as we expect the error to be randomly distributed around zero for an appropriately constructed neural network. In the following, a summary of the construction of networks for each of the engine outputs is presented as follows:

$$\mu_{ae} = std(P_i - T_i)$$
  
$$\sigma_{ae} = \frac{\sum_{i=1}^{n} P_i - T_i}{n}$$

**Remark 3.3.** For system identi<sup>×</sup> cation purposes estimating the model order  $(d_u \text{ and } d_y \text{ in the NARX model})$  is specially critical. Generally speaking, the correct order of the model is not known a priori, and it is usually determined by constructing networks with several different model orders. In this construction, it is common to start with relatively small model orders, and then increasing

order until the computed RMSE meets our design criteria. Thus, choosing large enough model order is a key. Assuming that the system dynamics is governed by the following difference equation, the appropriate delays must be selected such that  $d_u = N$ , and  $d_y = M$  [7].

$$y(n) = f(y(n-1), ..., y(n-M))$$
  $g(u(n), ..., u(n-N))$ 

To reduce the number of trained networks, and with a mild assumption we consider  $d_u = d_y = d$ . Then an appropriate delay, d, should be chosen such that  $d \max M, N$ 

**Remark 3.4.** As previously stated series-parallel NARX model is used during the training stage as shown in Figure 3.12. However, during the testing stage the series-parallel architecture is replaced by parallel architecture as shown in Figure 3.14.



Figure 3.14: The architecture of the MLP-NARX model of jet engine during testing phase.

### 3.4.1 MLP-NARX Model of the Compressor Temperature

This section summarizes the construction of MLP-NARX model for identifying the dynamics of the compressor temperature. Three different sizes are selected for training data set. First, several neural networks are constructed using 40% of available data (1200 out of 3001 samples). Second, we construct several networks using 50% of available data (1501 out of 3001 samples), and finally, we construct the MLP-NARX neural networks using 60% (1801 out of 3001 samples).

In each case, we start with a relatively small structure for the neural networks (one hidden layer, five hidden neurons, and the number of delays equal to two). *For avoiding too complex networks* 

we limit the number of hidden neurons to 20 and the number delays to 10 ( $d_u$  10,  $d_y$  10). Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials. The architectures for training of the neural networks are shown in Figure 3.12. The network is trained using backpropagation as previously described in Chapter 2.

The summary of the network constructions is shown in Table 3.9.

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|------------------------------|
| 14        | 7        | 1501               | 108.7845                      | 109.3749                         | 108.1905                     | 16.4491                         | 106.325             | 23.0051                      |
| 14        | 8        | 1501               | 111.0706                      | 109.9238                         | 112.2064                     | 16.8075                         | 105.2197            | 35.5797                      |
| 14        | 4        | 1801               | 1.3272                        | 1.4965                           | 1.0216                       | 0.202                           | 1.0032              | 0.86898                      |
| 14        | 5        | 1801               | 5.1862                        | 5.8258                           | 4.0405                       | 0.7897                          | 3.9202              | 3.396                        |
| 14        | 6        | 1801               | 63.8587                       | 63.2542                          | 64.7554                      | 9.653                           | 63.6005             | 5.7383                       |
| 14        | 7        | 1801               | 4.0198                        | 4.6657                           | 2.7821                       | 0.61273                         | 3.0276              | 2.6448                       |
| 14        | 8        | 1801               | 78.5176                       | 78.3627                          | 78.7496                      | 11.88                           | 78.4966             | 1.8173                       |
| 15        | 4        | 1200               | 3.0191                        | 4.0894                           | 2.0113                       | 0.46038                         | 1.839               | 2.3948                       |
| 15        | 5        | 1200               | 11.5477                       | 12.252                           | 11.0536                      | 1.7562                          | 9.3723              | 6.7472                       |
| 15        | 6        | 1200               | 2.6182                        | 3.3374                           | 2.0003                       | 0.39905                         | 1.8458              | 1.8572                       |
| 15        | 7        | 1200               | 3.5106                        | 5.5082                           | 0.56647                      | 0.53711                         | 0.74164             | 3.432                        |
| 15        | 8        | 1200               | 2.0647                        | 2.3486                           | 1.8516                       | 0.31423                         | 1.6327              | 1.2641                       |
| 15        | 4        | 1501               | 70.2922                       | 70.4178                          | 70.1664                      | 10.6334                         | 58.1478             | 39.5013                      |
| 15        | 5        | 1501               | 44.7489                       | 44.8696                          | 44.6278                      | 6.768                           | 34.1267             | 28.9501                      |
| 15        | 6        | 1501               | 2.0963                        | 2.493                            | 1.6039                       | 0.31954                         | 1.3973              | 1.5629                       |
| 15        | 7        | 1501               | 4.1934                        | 4.6624                           | 3.6644                       | 0.63987                         | 2.8925              | 3.0366                       |
| 15        | 8        | 1501               | 4.8707                        | 5.5448                           | 4.0862                       | 0.74261                         | 3.4636              | 3.425                        |

Table 3.9: Summary of construction of MLP-NARX for modelling the compressor temperature (see the appendix for extensive summary).

Table 3.9: Summary of construction of MLP-NARX for modelling the compressor temperature (see the appendix for extensive summary).

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean $(\mu_{ae})$ | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|-------------------|-----------------------|
| 15        | 4        | 1801               | 2.128                         | 2.4083                           | 1.6187                       | 0.32415                          | 1.5784            | 1.4274                |
| 15        | 5        | 1801               | 3.4745                        | 4.2668                           | 1.6931                       | 0.53056                          | 1.7334            | 3.0117                |
| 15        | 6        | 1801               | 2.2914                        | 2.8764                           | 0.84487                      | 0.34997                          | 0.87841           | 2.1167                |
| 15        | 7        | 1801               | 5.401                         | 5.8805                           | 4.5882                       | 0.82196                          | 4.3454            | 3.2081                |

In summary the best performance is achieved by the network with the following parameters:

Table 3.10: Best MLP-NARX for modeling the compressor temperature in terms of  $RMSE_{test}$ .

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|------------------------------|
| 15        | 7        | 1200               | 3.5106                        | 5.5082                           | 0.56647                      | 0.53711                          | 0.74164             | 3.432                        |

The engine output and the trained network output for both training and testing data are shown in Figure 3.15.



Figure 3.15: MLP-NARX model prediction and actual engine output (compressor temperature).

#### 3.4.2 MLP-NARX Model of the Compressor Pressure

This section summarizes the extensive simulations which performed for training MLP-NARX model of the compressor pressure. Three different sizes are selected for the training data (40%, 50%, 60% of the available data). In each case, we start with a relatively small neural network structure, and then we construct more complex networks by adding neurons and delays. To avoid too complex networks we limit the number of hidden neurons to 20 and the number delays to 10  $(d_u \ 10, d_y \ 10)$ . Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of trials. The architecture for training the neural networks is shown in Figure 3.12. The network is trained by using backpropagation as previously described in Chapter 2.

The summary of network construction is shown in Table 3.11.

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------|
| 12        | 6        | 1200               | 4.8941                        | 4.9334                           | 4.8677                       | 40.6131                           | 4.7393              | 1.221                 |
| 12        | 7        | 1200               | 0.06571                       | 0.087446                         | 0.045822                     | 0.55726                           | 0.038364            | 0.053357              |
| 12        | 8        | 1200               | 0.13281                       | 0.18103                          | 0.086906                     | 1.1381                            | 0.078402            | 0.10721               |
| 12        | 4        | 1501               | 7.2386                        | 7.2594                           | 7.2178                       | 59.9556                           | 7.2338              | 0.26471               |
| 12        | 5        | 1501               | 0.075964                      | 0.095119                         | 0.049915                     | 0.64918                           | 0.042239            | 0.063149              |
| 12        | 6        | 1501               | 0.17796                       | 0.24437                          | 0.060041                     | 1.53                              | 0.061056            | 0.16719               |
| 12        | 7        | 1501               | 7.7776                        | 7.8118                           | 7.7433                       | 64.3566                           | 7.7663              | 0.42043               |
| 12        | 8        | 1501               | 0.068131                      | 0.083435                         | 0.048173                     | 0.57905                           | 0.03969             | 0.055385              |
| 12        | 4        | 1801               | 0.30503                       | 0.33921                          | 0.24495                      | 2.6813                            | 0.24049             | 0.18766               |
| 12        | 5        | 1801               | 1.0244                        | 1.0791                           | 0.93632                      | 8.6699                            | 0.74842             | 0.69957               |
| 12        | 6        | 1801               | 0.07754                       | 0.095055                         | 0.038409                     | 0.70861                           | 0.034802            | 0.069302              |
| 12        | 7        | 1801               | 0.10034                       | 0.12331                          | 0.048562                     | 0.85987                           | 0.051821            | 0.08594               |
| 12        | 8        | 1801               | 0.26226                       | 0.33004                          | 0.092335                     | 2.2502                            | 0.15067             | 0.21469               |
| 13        | 4        | 1200               | 6.5354                        | 6.4513                           | 6.5909                       | 53.8924                           | 6.2991              | 1.7418                |
| 13        | 5        | 1200               | 0.12091                       | 0.17572                          | 0.061522                     | 1.035                             | 0.05951             | 0.10526               |
| 13        | 6        | 1200               | 0.13152                       | 0.15096                          | 0.11679                      | 1.1204                            | 0.1015              | 0.083656              |
| 13        | 7        | 1200               | 9.1264                        | 9.0765                           | 9.1595                       | 75.682                            | 8.226               | 3.9534                |
| 13        | 8        | 1200               | 0.12625                       | 0.1864                           | 0.058403                     | 1.2959                            | 0.048202            | 0.11671               |
| 13        | 4        | 1501               | 0.11394                       | 0.15435                          | 0.046155                     | 0.97906                           | 0.042831            | 0.1056                |
| 13        | 5        | 1501               | 0.21434                       | 0.21912                          | 0.20944                      | 1.8191                            | 0.16612             | 0.13547               |
| 13        | 6        | 1501               | 0.34614                       | 0.44288                          | 0.20843                      | 2.9776                            | 0.18655             | 0.29163               |

Table 3.11: Summary of construction of MLP-NARX for modelling the compressor pressure (see the appendix for extensive summary).

In summary the best performance is achieved by the network with the following parameters:

 Table 3.12: Best MLP-NARX for modeling of compressor pressure in terms of  $RMSE_{test}$ .

 # neurons
 # delays
 # training samples
  $RMSE_{test}^{P_C}$   $RMSE_{test}^{P_C}$   $RMSE_{test}^{P_C}$   $mean (\mu_{ae})$   $Std (\sigma_{ae})$ 

| # neurons # | f delays | # training samples | RMSE <sub>total</sub> | <b>RMSE</b> <sup>1</sup> C<br>training | $\mathbf{RMSE}_{test}^{1 \text{ C}}$ | $% \mathbf{RMSE}_{total}^{TC}$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-------------|----------|--------------------|-----------------------|----------------------------------------|--------------------------------------|--------------------------------|---------------------|-----------------------|
| 12          | 6        | 1801               | 0.07754               | 0.095055                               | 0.038409                             | 0.70861                        | 0.034802            | 0.069302              |

The engine output and the trained network output for both training and testing data are shown in Figure 3.16.



Figure 3.16: MLP-NARX model prediction and actual engine output (compressor pressure).

#### 3.4.3 MLP-NARX Model of the Rotational Speed

This section summarizes the extensive simulations performed for modeling the engine rotational speed using MLP-NARX model. Like before, three different sizes of training data are selected (40%, 50%, 60% of the available data). We start with a relatively small neural network structure, and then construct more complex networks by adding neurons and delays. To avoid too complex networks we limit the number of hidden neurons to 20 and the number delays to 10 ( $d_u$  10,  $d_y$ 

10). Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of trials. The architecture for training the neural network is shown in Figure 3.12.

The summary of the network construction is shown in Table 3.13.

Table 3.13: Summary of construction of MLP-NARX for modelling the rotational speed (see the appendix for extensive summary).

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|--------------------------------|---------------------|------------------------------|
| 10        | 5        | 1200               | 35.5009                     | 37.8877                      | 33.8172                  | 0.29961                        | 28.6901             | 20.9126                      |
| 10        | 6        | 1200               | 36.9265                     | 40.1687                      | 34.598                   | 0.31214                        | 29.6183             | 22.0564                      |
| 10        | 7        | 1200               | 296.6163                    | 300.5436                     | 293.9705                 | 2.4957                         | 294.5564            | 34.9023                      |
| 10        | 8        | 1200               | 35.0706                     | 36.4016                      | 34.1549                  | 0.29608                        | 28.9322             | 19.8243                      |
| 10        | 4        | 1501               | 450.7895                    | 447.4808                     | 454.0762                 | 3.7936                         | 449.116             | 38.8127                      |
| 10        | 5        | 1501               | 36.5406                     | 40.6434                      | 31.9113                  | 0.30842                        | 29.8534             | 21.0745                      |
| 10        | 6        | 1501               | 400.5267                    | 398.5496                     | 402.4953                 | 3.3711                         | 399.6232            | 26.892                       |
| 10        | 7        | 1501               | 37.6383                     | 42.1131                      | 32.5504                  | 0.31812                        | 30.6131             | 21.9006                      |
| 10        | 8        | 1501               | 46.1702                     | 50.8953                      | 40.899                   | 0.38999                        | 32.591              | 32.7088                      |
| 10        | 4        | 1801               | 33.0561                     | 35.247                       | 29.4638                  | 0.27903                        | 27.0061             | 19.0656                      |
| 10        | 5        | 1801               | 27.2712                     | 32.668                       | 16.0695                  | 0.23157                        | 16.9852             | 21.3395                      |
| 10        | 6        | 1801               | 33.9831                     | 35.9672                      | 30.7663                  | 0.28692                        | 28.2217             | 18.9344                      |
| 10        | 7        | 1801               | 33.5627                     | 35.5145                      | 30.3992                  | 0.28338                        | 27.7218             | 18.923                       |
| 10        | 8        | 1801               | 43.4787                     | 50.0322                      | 31.1554                  | 0.36597                        | 30.8818             | 30.6108                      |
| 11        | 4        | 1200               | 29.9508                     | 32.6795                      | 27.9854                  | 0.25259                        | 24.7664             | 16.8455                      |
| 11        | 5        | 1200               | 37.26                       | 38.6579                      | 36.2987                  | 0.31462                        | 30.0035             | 22.0966                      |
| 11        | 6        | 1200               | 487.0859                    | 489.2236                     | 485.6564                 | 4.0997                         | 486.0575            | 31.6409                      |
| 11        | 7        | 1200               | 34.7142                     | 42.2669                      | 28.5952                  | 0.29399                        | 24.9275             | 24.1639                      |
| 11        | 8        | 1200               | 32.9792                     | 34.8175                      | 31.6952                  | 0.27836                        | 27.0523             | 18.8659                      |

Table 3.13: Summary of construction of MLP-NARX for modelling the rotational speed (see the appendix for extensive summary).

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\mathbf{\%RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------------|-------------------|------------------------------|
| 11        | 4        | 1501               | 34.5558                     | 38.073                       | 30.6348                  | 0.29169                       | 28.7501           | 19.1745                      |
| 11        | 5        | 1501               | 37.1712                     | 41.6389                      | 32.0838                  | 0.31366                       | 30.0774           | 21.8451                      |

Table 3.13 shows network structures as well as validation results (e.g. training, testing, and total RMSE). The best performance (in terms of testing RMSE) is achieved by the network with the following parameters:

Table 3.14: Best MLP-NARX for modeling the rotational speed in terms of *RMSE*<sub>test</sub>.

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|--------------------------------|---------------------|------------------------------|
| 10        | 5        | 1801               | 27.2712                     | 32.668                       | 16.0695                  | 0.23157                        | 16.9852             | 21.3395                      |

The engine output and the trained network output for both training and testing data are shown in Figure 3.17.



Figure 3.17: MLP-NARX model prediction and actual engine output (rotational speed).

### 3.4.4 MLP-NARX Model of the Turbine Temperature

This section summarizes the construction of the MLP-NARX model for identifying the dynamics of turbine temperature. Like before, three different sizes are selected for training data set (40%, 50%, 60% of the available data). The construction starts with small network and continues to more complex networks. In order to avoid too complex networks, we limit the number of hidden neurons to 20 and the number delays to 10 ( $d_u$  10,  $d_y$  10). Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials. The architecture for training the neural network is shown in Figure 3.12. The network is trained by using backpropagation as previously described in Chapter 2.

Table 3.15 summarises the construction and validation results of the trained MLP-NARX models for turbine temperature.

| # neurons                                                                                                                                                                                                           | # delays                                       | # training samples                                           | $\mathbf{RMSE}_{total}^{T_T}$                                                                               | $\mathbf{RMSE}_{training}^{T_T}$                                                                        | $\mathbf{RMSE}_{test}^{T_T}$                                                                             | $\mathbf{\%RMSE}_{total}^{T_{T}}$                                                                                                     | mean ( $\mu_{ae}$ )                                                                                                                             | $\mathbf{Std}\left( \sigma_{ae}\right)$                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 12                                                                                                                                                                                                                  | 5                                              | 1801                                                         | 460.9805                                                                                                    | 454.8895                                                                                                | 469.9741                                                                                                 | 24.6622                                                                                                                               | 449.3605                                                                                                                                        | 102.8677                                                                                             |
| 12                                                                                                                                                                                                                  | 6                                              | 1801                                                         | 768.8118                                                                                                    | 771.8882                                                                                                | 764.1713                                                                                                 | 42.5231                                                                                                                               | 709.318                                                                                                                                         | 296.5953                                                                                             |
| 12                                                                                                                                                                                                                  | 7                                              | 1801                                                         | 155.7693                                                                                                    | 159.994                                                                                                 | 149.2043                                                                                                 | 8.8018                                                                                                                                | 129.8104                                                                                                                                        | 86.1151                                                                                              |
| 12                                                                                                                                                                                                                  | 8                                              | 1801                                                         | 159.2104                                                                                                    | 154.2648                                                                                                | 166.3573                                                                                                 | 8.7893                                                                                                                                | 150.7838                                                                                                                                        | 51.1184                                                                                              |
| 13                                                                                                                                                                                                                  | 4                                              | 1200                                                         | 222.7684                                                                                                    | 227.2427                                                                                                | 219.7365                                                                                                 | 12.5666                                                                                                                               | 194.0663                                                                                                                                        | 109.3984                                                                                             |
| 13                                                                                                                                                                                                                  | 5                                              | 1200                                                         | 1054.4226                                                                                                   | 1036.3916                                                                                               | 1066.2673                                                                                                | 57.1032                                                                                                                               | 993.248                                                                                                                                         | 353.9877                                                                                             |
| 13                                                                                                                                                                                                                  | 6                                              | 1200                                                         | 74.6131                                                                                                     | 73.1871                                                                                                 | 75.5483                                                                                                  | 4.1297                                                                                                                                | 67.4487                                                                                                                                         | 31.908                                                                                               |
| 13                                                                                                                                                                                                                  | 7                                              | 1200                                                         | 1616.5065                                                                                                   | 1609.1162                                                                                               | 1621.4119                                                                                                | 88.0136                                                                                                                               | 1392.8149                                                                                                                                       | 820.6                                                                                                |
| 13                                                                                                                                                                                                                  | 8                                              | 1200                                                         | 346.7517                                                                                                    | 336.1981                                                                                                | 353.6087                                                                                                 | 18.9061                                                                                                                               | 321.841                                                                                                                                         | 129.0761                                                                                             |
| 13                                                                                                                                                                                                                  | 4                                              | 1501                                                         | 652.3556                                                                                                    | 655.5736                                                                                                | 649.1194                                                                                                 | 35.4576                                                                                                                               | 613.8091                                                                                                                                        | 220.9581                                                                                             |
| 13                                                                                                                                                                                                                  | 5                                              | 1501                                                         | 41.9615                                                                                                     | 40.4995                                                                                                 | 43.3752                                                                                                  | 2.317                                                                                                                                 | 37.1441                                                                                                                                         | 19.5246                                                                                              |
|                                                                                                                                                                                                                     |                                                |                                                              |                                                                                                             |                                                                                                         |                                                                                                          |                                                                                                                                       |                                                                                                                                                 |                                                                                                      |
| 13                                                                                                                                                                                                                  | 6                                              | 1501                                                         | 650.2679                                                                                                    | 653.681                                                                                                 | 646.8345                                                                                                 | 34.8309                                                                                                                               | 604.7047                                                                                                                                        | 239.1645                                                                                             |
| 13                                                                                                                                                                                                                  | 6<br>7                                         | 1501                                                         | 650.2679<br>1060.3711                                                                                       | 653.681<br>1066.0517                                                                                    | 646.8345<br>1054.656                                                                                     | 34.8309<br>58.2532                                                                                                                    | 604.7047<br>1048.166                                                                                                                            | 239.1645<br>160.4476                                                                                 |
| 13<br>13<br>13                                                                                                                                                                                                      | 6<br>7<br>8                                    | 1501<br>1501<br>1501                                         | 650.2679<br>1060.3711<br>1048.6294                                                                          | 653.681<br>1066.0517<br>1058.7777                                                                       | 646.8345<br>1054.656<br>1038.3751                                                                        | 34.8309<br>58.2532<br>56.7266                                                                                                         | 604.7047<br>1048.166<br>1042.463                                                                                                                | 239.1645<br>160.4476<br>113.573                                                                      |
| 13<br>13<br>13<br>13<br>13                                                                                                                                                                                          | 6<br>7<br>8<br>4                               | 1501<br>1501<br>1501<br>1801                                 | 650.2679<br>1060.3711<br>1048.6294<br>1218.9509                                                             | 653.681<br>1066.0517<br>1058.7777<br>1213.006                                                           | 646.8345<br>1054.656<br>1038.3751<br>1227.8192                                                           | 34.8309<br>58.2532<br>56.7266<br>66.3182                                                                                              | 604.7047<br>1048.166<br>1042.463<br>983.1694                                                                                                    | 239.1645<br>160.4476<br>113.573<br>720.6888                                                          |
| 13       13       13       13       13       13       13                                                                                                                                                            | 6<br>7<br>8<br>4<br>5                          | 1501<br>1501<br>1501<br>1801<br>1801                         | 650.2679<br>1060.3711<br>1048.6294<br>1218.9509<br>260.3611                                                 | 653.681<br>1066.0517<br>1058.7777<br>1213.006<br>258.2062                                               | 646.8345<br>1054.656<br>1038.3751<br>1227.8192<br>263.5621                                               | 34.8309<br>58.2532<br>56.7266<br>66.3182<br>14.482                                                                                    | 604.7047           1048.166           1042.463           983.1694           241.341                                                             | 239.1645<br>160.4476<br>113.573<br>720.6888<br>97.7015                                               |
| 13           13           13           13           13           13           13           13           13                                                                                                          | 6<br>7<br>8<br>4<br>5<br>6                     | 1501<br>1501<br>1501<br>1801<br>1801<br>1801                 | 650.2679<br>1060.3711<br>1048.6294<br>1218.9509<br>260.3611<br>243.6969                                     | 653.681<br>1066.0517<br>1058.7777<br>1213.006<br>258.2062<br>227.401                                    | 646.8345<br>1054.656<br>1038.3751<br>1227.8192<br>263.5621<br>266.2894                                   | 34.8309<br>58.2532<br>56.7266<br>66.3182<br>14.482<br>13.4599                                                                         | 604.7047         1048.166         1042.463         983.1694         241.341         220.9837                                                    | 239.1645<br>160.4476<br>113.573<br>720.6888<br>97.7015<br>102.7516                                   |
| 13       13       13       13       13       13       13       13       13       13       13                                                                                                                        | 6<br>7<br>8<br>4<br>5<br>6<br>7                | 1501<br>1501<br>1501<br>1801<br>1801<br>1801<br>1801         | 650.2679<br>1060.3711<br>1048.6294<br>1218.9509<br>260.3611<br>243.6969<br>878.8761                         | 653.681<br>1066.0517<br>1058.7777<br>1213.006<br>258.2062<br>227.401<br>874.1466                        | 646.8345<br>1054.656<br>1038.3751<br>1227.8192<br>263.5621<br>266.2894<br>885.927                        | 34.8309<br>58.2532<br>56.7266<br>66.3182<br>14.482<br>13.4599<br>48.1715                                                              | 604.7047         1048.166         1042.463         983.1694         241.341         220.9837         777.9259                                   | 239.1645<br>160.4476<br>113.573<br>720.6888<br>97.7015<br>102.7516<br>409.0358                       |
| 13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13 | 6<br>7<br>8<br>4<br>5<br>6<br>7<br>8           | 1501<br>1501<br>1501<br>1801<br>1801<br>1801<br>1801<br>1801 | 650.2679<br>1060.3711<br>1048.6294<br>1218.9509<br>260.3611<br>243.6969<br>878.8761<br>239.4609             | 653.681<br>1066.0517<br>1058.7777<br>1213.006<br>258.2062<br>227.401<br>874.1466<br>243.237             | 646.8345<br>1054.656<br>1038.3751<br>1227.8192<br>263.5621<br>266.2894<br>885.927<br>233.6791            | 34.8309<br>58.2532<br>56.7266<br>66.3182<br>14.482<br>13.4599<br>48.1715<br>13.1819                                                   | 604.7047         1048.166         1042.463         983.1694         241.341         220.9837         777.9259         219.1003                  | 239.1645<br>160.4476<br>113.573<br>720.6888<br>97.7015<br>102.7516<br>409.0358<br>96.6421            |
| 13         13         13         13         13         13         13         13         13         13         13         13         13         13         14                                                        | 6<br>7<br>8<br>4<br>5<br>6<br>7<br>8<br>8<br>4 | 1501<br>1501<br>1501<br>1801<br>1801<br>1801<br>1801<br>1801 | 650.2679<br>1060.3711<br>1048.6294<br>1218.9509<br>260.3611<br>243.6969<br>878.8761<br>239.4609<br>130.0401 | 653.681<br>1066.0517<br>1058.7777<br>1213.006<br>258.2062<br>227.401<br>874.1466<br>243.237<br>123.4004 | 646.8345<br>1054.656<br>1038.3751<br>1227.8192<br>263.5621<br>266.2894<br>885.927<br>233.6791<br>134.282 | 34.8309         58.2532         56.7266         66.3182         14.482         13.4599         48.1715         13.1819         7.1211 | 604.7047         1048.166         1042.463         983.1694         241.341         220.9837         777.9259         219.1003         117.3991 | 239.1645<br>160.4476<br>113.573<br>720.6888<br>97.7015<br>102.7516<br>409.0358<br>96.6421<br>55.9367 |

Table 3.15: Summary of construction of MLP-NARX for modelling the turbine temperature (see the appendix for extensive summary).

In summary, the best performance (in terms of the testing RMSE) is archived by the following

parameters.

Table 3.16: Best MLP-NARX for modeling the turbine temperature in terms of  $RMSE_{test}$ .

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|------------------------------|
| 13        | 5        | 1501               | 41.9615                       | 40.4995                          | 43.3752                      | 2.317                             | 37.1441           | 19.5246                      |

The engine output and the trained network output for both training and testing data are shown in Figure 3.18.



Figure 3.18: MLP-NARX model prediction and actual engine output (turbine temperature).

## 3.4.5 MLP-NARX Model of the Turbine Pressure

This section summarizes the construction of the MLP-NARX model for identifying the dynamics of turbine pressure. Like before, three different sizes are selected for training data set (40%, 50%, 60% of the available data). The construction starts with small network and continues to more complex networks. In order to avoid too complex networks, we limit the number of hidden neurons

to 20 and the number delays to 10 ( $d_u$  10,  $d_y$  10). Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials. The architecture for training the neural network is shown in Figure 3.12. The network is trained by using backpropagation as previously described in Chapter 2.

Table 3.17 summarises the construction and validation results of trained MLP-NARX models for turbine temperature.

| Table 3.17: Summary of construction of MLP-NARX for modelling the turbine pressure (see |
|-----------------------------------------------------------------------------------------|
| the appendix for extensive summary).                                                    |
|                                                                                         |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_{T}}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|---------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------|
| 12        | 8        | 1200               | 1.5321                          | 1.7145                           | 1.3974                       | 33.2073                           | 1.1832            | 0.97346                     |
| 12        | 4        | 1501               | 6.3269                          | 6.5764                           | 6.067                        | 138.2268                          | 3.6285            | 5.1839                      |
| 12        | 5        | 1501               | 0.858                           | 0.98273                          | 0.71164                      | 19.1013                           | 0.67116           | 0.53461                     |
| 12        | 6        | 1501               | 0.92128                         | 1.2058                           | 0.49312                      | 20.2576                           | 0.4038            | 0.82821                     |
| 12        | 7        | 1501               | 16.0708                         | 16.1816                          | 15.9593                      | 330.8824                          | 16.0099           | 1.3979                      |
| 12        | 8        | 1501               | 10.0099                         | 10.1097                          | 9.909                        | 205.8049                          | 9.9552            | 1.0452                      |
| 12        | 4        | 1801               | 0.49299                         | 0.44647                          | 0.55554                      | 10.3286                           | 0.4192            | 0.25949                     |
| 12        | 5        | 1801               | 0.33884                         | 0.40479                          | 0.20299                      | 8.3306                            | 0.20063           | 0.2731                      |
| 12        | 6        | 1801               | 9.4812                          | 9.0519                           | 10.0912                      | 198.5974                          | 7.7466            | 5.4674                      |
| 12        | 7        | 1801               | 0.38883                         | 0.46908                          | 0.21877                      | 8.517                             | 0.2126            | 0.32562                     |
| 12        | 8        | 1801               | 0.50515                         | 0.64118                          | 0.14539                      | 11.2103                           | 0.16013           | 0.47917                     |
| 13        | 4        | 1200               | 11.9467                         | 11.7735                          | 12.0607                      | 244.2561                          | 11.4902           | 3.2713                      |
| 13        | 5        | 1200               | 30.3314                         | 30.205                           | 30.4153                      | 626.7339                          | 30.2972           | 1.4392                      |
| 13        | 6        | 1200               | 0.89159                         | 0.96697                          | 0.83761                      | 19.4837                           | 0.73062           | 0.5111                      |
| 13        | 7        | 1200               | 0.3794                          | 0.51465                          | 0.25175                      | 8.2715                            | 0.22773           | 0.3035                      |
| 13        | 8        | 1200               | 4.3377                          | 6.411                            | 1.9915                       | 95.4077                           | 2.5099            | 3.5384                      |

Table 3.17: Summary of construction of MLP-NARX for modelling the turbine pressure (see the appendix for extensive summary).

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\% \mathbf{RMSE}_{total}^{P_T}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|-------------------|-----------------------------------|
| 13        | 4        | 1501               | 0.87233                       | 1.08                             | 0.59608                      | 22.0664                          | 0.45508           | 0.74434                           |
| 13        | 5        | 1501               | 34.6874                       | 34.7931                          | 34.5814                      | 717.0989                         | 34.6576           | 1.4377                            |
| 13        | 6        | 1501               | 0.29812                       | 0.34907                          | 0.23639                      | 6.4572                           | 0.20653           | 0.21502                           |
| 13        | 7        | 1501               | 9.6314                        | 9.8002                           | 9.4594                       | 197.1338                         | 9.506             | 1.5491                            |
| 13        | 8        | 1501               | 0.66389                       | 0.80207                          | 0.48789                      | 14.5958                          | 0.39815           | 0.53133                           |

In summary, the best performance (in terms of the testing RMSE) is archived by the following parameters.

Table 3.18: Best MLP-NARX for modeling the turbine pressure in terms of  $RMSE_{test}$ .

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\% \mathbf{RMSE}_{total}^{P_T}$ | Mean ( $\mu_{ae}$ ) | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------------|
| 12        | 8        | 1801               | 0.50515                       | 0.64118                          | 0.14539                      | 11.2103                          | 0.16013             | 0.47917                           |

The engine output and the trained network output for both training and testing data are shown in Figure 3.19.



Figure 3.19: MLP-NARX model prediction and actual engine output (turbine pressure).

# 3.5 Jet Engine Dynamics Identification using RBF-NARX

The use of RBF neural networks in NARX model for dynamical systems identification has been reported in several publications including but not limited to [8], [10], [11], [12], [13], [14], [15], [16]. This section describes construction of the RBF-NARX model to identify jet engine dynamics.

As previously described in Chapter 2 a series-parallel architecture is used for training of RBF-NARX model as shown in Figure 3.21. In this architecture the engine output is fed back into the RBF-NARX model, assuming that the engine is fault-free during the training stage.


Figure 3.20: The architecture of the RBF-NARX model of jet engine during training phase.

Once the training stage is completed, the series-parallel architecture would be replaced with a parallel architecture. In this architecture, the outputs of the RBF-NARX model are fed back into the model rather than actual engine outputs. This is essential as the engine is prone to faults during testing stage. Figures 3.20 and 3.21 show the architectures of the RBF-NARX model used in this section.



Figure 3.21: The architecture of the RBF-NARX model of jet engine during testing phase.

## 3.5.1 **RBF-NARX** Model of the Compressor Temperature

This section summarizes the construction of the RBF-NARX model for identifying the dynamics of the compressor temperature. Three different sizes are selected for training data set. First, several neural networks are constructed using 40% of available data (1200 out of 3001 samples). Second, we construct several networks using 50% of available data (1501 out of 3001 samples), and finally, we construct the RBF-NARX neural networks using 60% (1801 out of 3001 samples).

Each case starts with a small neural network structure, and then adds to the complexity by

adding neurons and delays. To avoid complex networks we limit the number of hidden neurons to 20 and the number delays to 10 ( $d_u$  10,  $d_y$  10). Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials.

The summary of network construction is shown in Table 3.19.

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|-------------------|------------------------------|
| 10        | 7        | 1200               | 2.2127                        | 2.5475                           | 1.9581                       | 0.33685                         | 1.7548            | 1.3482                       |
| 10        | 8        | 1200               | 2.4748                        | 2.8173                           | 2.2174                       | 0.37669                         | 2.001             | 1.4565                       |
| 10        | 4        | 1501               | 2.1221                        | 2.1281                           | 2.116                        | 0.32288                         | 1.7637            | 1.1803                       |
| 10        | 5        | 1501               | 2.7501                        | 2.9006                           | 2.5908                       | 0.41872                         | 2.1888            | 1.6654                       |
| 10        | 6        | 1501               | 1.6867                        | 1.7608                           | 1.6091                       | 0.25666                         | 1.3559            | 1.0034                       |
| 10        | 7        | 1501               | 2.8032                        | 2.8708                           | 2.7339                       | 0.42667                         | 2.2943            | 1.6109                       |
| 10        | 8        | 1501               | 1.5578                        | 1.6449                           | 1.4655                       | 0.23702                         | 1.2465            | 0.93455                      |
| 10        | 4        | 1801               | 1.6739                        | 1.8018                           | 1.4611                       | 0.25456                         | 1.4078            | 0.90572                      |
| 10        | 5        | 1801               | 2.7066                        | 3.0159                           | 2.1608                       | 0.4121                          | 2.1352            | 1.6635                       |
| 10        | 6        | 1801               | 1.2448                        | 1.3573                           | 1.0536                       | 0.18931                         | 1.0106            | 0.72697                      |
| 10        | 7        | 1801               | 0.56069                       | 0.60188                          | 0.49245                      | 0.085012                        | 0.44584           | 0.34007                      |
| 10        | 8        | 1801               | 0.76254                       | 0.82931                          | 0.64958                      | 0.11582                         | 0.60207           | 0.46803                      |
| 11        | 4        | 1200               | 45.4889                       | 45.4371                          | 45.5234                      | 6.8836                          | 45.4588           | 1.6552                       |
| 11        | 5        | 1200               | 3.0822                        | 3.5464                           | 2.7294                       | 0.46925                         | 2.4649            | 1.8507                       |
| 11        | 6        | 1200               | 1.4912                        | 1.7501                           | 1.2901                       | 0.22692                         | 1.1631            | 0.93331                      |
| 11        | 7        | 1200               | 1.6108                        | 1.8436                           | 1.4348                       | 0.24512                         | 1.2955            | 0.95744                      |
| 11        | 8        | 1200               | 1.2776                        | 1.4696                           | 1.1317                       | 0.19436                         | 1.0121            | 0.77985                      |
| 11        | 4        | 1501               | 54.1284                       | 54.0921                          | 54.1647                      | 8.191                           | 54.095            | 1.9                          |

Table 3.19: Summary of construction of RBF-NARX for modelling the compressor temperature (see the appendix for extensive summary).

Table 3.19: Summary of construction of RBF-NARX for modelling the compressor temperature (see the appendix for extensive summary).

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|------------------------------|
| 11        | 5        | 1501               | 3.1071                        | 3.2399                           | 2.9683                       | 0.47296                          | 2.5174              | 1.8215                       |
| 11        | 6        | 1501               | 1.7994                        | 1.9042                           | 1.688                        | 0.27388                          | 1.4164              | 1.1099                       |
| 11        | 7        | 1501               | 1.4374                        | 1.5362                           | 1.3312                       | 0.21875                          | 1.1301              | 0.88849                      |

In summary the best performance is achieved by the network with following parameters:

Table 3.20: Best RBF-NARX for modeling the compressor temperature in terms of  $RMSE_{test}$ .

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|-------------------|------------------------------|
| 10        | 7        | 1801               | 0.56069                       | 0.60188                          | 0.49245                      | 0.085012                        | 0.44584           | 0.34007                      |

The engine output and the trained network output for both training and testing data are shown in Figure 3.22.



Figure 3.22: RBF-NARX model prediction and actual engine output (compressor temperature).

#### 3.5.2 **RBF-NARX Model of the Compressor Pressure**

This section summarizes the construction of the RBF-NARX model for identifying the dynamics of the compressor pressure. Three different sizes are selected for training data set. First, several neural networks are constructed using 40% of available data (1200 out of 3001 samples). Second, we construct several networks using 50% of available data (1501 out of 3001 samples), and finally, we construct the RBF-NARX neural networks using 60% (1801 out of 3001 samples).

Each case starts with a small neural network structure, and then adds to the complexity by adding neurons and delays. To avoid complex networks we limit the number of hidden neurons to 20 and the number delays to 10 ( $d_u$  10,  $d_y$  10). Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials.

The summary of network construction is shown in Table 3.21.

| Table 3.21: Summary of construction of the RBF-NARX for modelling the compressor pres |
|---------------------------------------------------------------------------------------|
| sure (see the appendix for extensive summary).                                        |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\% \mathbf{RMSE}_{total}^{P_C}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|------------------------------|
| 12        | 7        | 1200               | 0.064396                      | 0.07691                          | 0.054486                     | 0.54703                          | 0.048821            | 0.042                        |
| 12        | 8        | 1200               | 0.056249                      | 0.067569                         | 0.047225                     | 0.47793                          | 0.04124             | 0.038259                     |
| 12        | 4        | 1501               | 1.8216                        | 1.8187                           | 1.8245                       | 15.1073                          | 1.8189              | 0.10028                      |
| 12        | 5        | 1501               | 0.076144                      | 0.079472                         | 0.072662                     | 0.64574                          | 0.0601              | 0.046762                     |
| 12        | 6        | 1501               | 0.093508                      | 0.10086                          | 0.08552                      | 0.79507                          | 0.071535            | 0.06023                      |
| 12        | 7        | 1501               | 0.041526                      | 0.047645                         | 0.034328                     | 0.35198                          | 0.02924             | 0.029492                     |
| 12        | 8        | 1501               | 0.10399                       | 0.10738                          | 0.10049                      | 0.88305                          | 0.083082            | 0.062552                     |
| 12        | 4        | 1801               | 0.028344                      | 0.028788                         | 0.027662                     | 0.23564                          | 0.02311             | 0.016413                     |
| 12        | 5        | 1801               | 0.051061                      | 0.054583                         | 0.045264                     | 0.43124                          | 0.041898            | 0.029191                     |
| 12        | 6        | 1801               | 0.03562                       | 0.040527                         | 0.026609                     | 0.30139                          | 0.023059            | 0.027154                     |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 12        | 7        | 1801               | 0.035583                      | 0.041004                         | 0.025357                     | 0.30124                           | 0.022888            | 0.027249                    |
| 12        | 8        | 1801               | 0.056521                      | 0.064461                         | 0.041869                     | 0.48031                           | 0.04089             | 0.039028                    |
| 13        | 4        | 1200               | 1.2741                        | 1.2871                           | 1.2653                       | 10.5876                           | 0.70762             | 1.0597                      |
| 13        | 5        | 1200               | 0.033538                      | 0.041606                         | 0.02685                      | 0.28245                           | 0.022606            | 0.024779                    |
| 13        | 6        | 1200               | 0.083601                      | 0.09174                          | 0.077706                     | 0.70904                           | 0.068072            | 0.048539                    |
| 13        | 7        | 1200               | 0.032045                      | 0.037664                         | 0.027674                     | 0.26878                           | 0.023128            | 0.022184                    |
| 13        | 8        | 1200               | 0.050918                      | 0.06243                          | 0.041511                     | 0.43244                           | 0.036921            | 0.03507                     |
| 13        | 4        | 1501               | 0.032368                      | 0.035112                         | 0.029368                     | 0.27105                           | 0.02435             | 0.021329                    |
| 13        | 5        | 1501               | 0.045542                      | 0.05078                          | 0.039613                     | 0.38571                           | 0.033105            | 0.03128                     |
| 13        | 6        | 1501               | 0.072641                      | 0.075026                         | 0.070174                     | 0.61587                           | 0.058254            | 0.043404                    |
| 13        | 7        | 1501               | 0.069493                      | 0.07567                          | 0.062705                     | 0.59061                           | 0.052806            | 0.045183                    |

Table 3.21: Summary of construction of the RBF-NARX for modelling the compressor pressure (see the appendix for extensive summary).

In summary the best performance is achieved by the network with the following parameters:

Table 3.22: Best RBF-NARX for modeling the compressor pressure in terms of  $RMSE_{test}$ .

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\% \mathbf{RMSE}_{total}^{P_C}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|------------------------------|
| 12        | 7        | 1801               | 0.035583                      | 0.041004                         | 0.025357                     | 0.30124                          | 0.022888            | 0.027249                     |

The engine output and the trained network output for both training and testing data are shown in Figure 3.23.



Figure 3.23: RBF-NARX model prediction and actual engine output (compressor pressure)

#### 3.5.3 **RBF-NARX** Model of the Rotational Speed

This section summarizes the construction of the RBF-NARX model for identifying the jet engine rotational speed. Three different sizes are selected for training data set. First, several neural networks are constructed using 40% of available data (1200 out of 3001 samples). Second, we construct several networks using 50% of available data (1501 out of 3001 samples), and finally, we construct the RBF-NARX neural networks using 60% (1801 out of 3001 samples).

Each case starts with a small neural network structure, and then adds to the complexity by adding neurons and delays. To avoid complex networks we limit the number of hidden neurons to 20 and the number delays to 10 ( $d_u$  10,  $d_y$  10). Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials.

The summary of network construction is shown in Table 3.23.

| # neurons                                                                                                  | # delays                        | # training samples                                   | $\mathbf{RMSE}_{total}^{N}$                                                                                               | $\mathbf{RMSE}_{training}^{N}$                                                                                | $\mathbf{RMSE}_{test}^N$                                                                                                      | $\% \mathbf{RMSE}_{total}^{N}$                                                                                  | mean ( $\mu_{ae}$ )                                                                                                                       | Std ( $\sigma_{ae}$ )                                                                             |
|------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 17                                                                                                         | 8                               | 1501                                                 | 114.1124                                                                                                                  | 114.047                                                                                                       | 114.1777                                                                                                                      | 0.96081                                                                                                         | 114.0516                                                                                                                                  | 3.7236                                                                                            |
| 17                                                                                                         | 4                               | 1801                                                 | 108.6896                                                                                                                  | 108.6528                                                                                                      | 108.745                                                                                                                       | 0.91517                                                                                                         | 108.6376                                                                                                                                  | 3.3633                                                                                            |
| 17                                                                                                         | 5                               | 1801                                                 | 106.5698                                                                                                                  | 106.4812                                                                                                      | 106.7026                                                                                                                      | 0.89733                                                                                                         | 106.4511                                                                                                                                  | 5.0283                                                                                            |
| 17                                                                                                         | 6                               | 1801                                                 | 115.2259                                                                                                                  | 115.1704                                                                                                      | 115.3091                                                                                                                      | 0.9702                                                                                                          | 115.1513                                                                                                                                  | 4.1453                                                                                            |
| 17                                                                                                         | 7                               | 1801                                                 | 176.9808                                                                                                                  | 176.9117                                                                                                      | 177.0844                                                                                                                      | 1.4902                                                                                                          | 176.8843                                                                                                                                  | 5.8453                                                                                            |
| 17                                                                                                         | 8                               | 1801                                                 | 161.857                                                                                                                   | 161.8074                                                                                                      | 161.9314                                                                                                                      | 1.3628                                                                                                          | 161.7737                                                                                                                                  | 5.1925                                                                                            |
| 18                                                                                                         | 4                               | 1200                                                 | 109.285                                                                                                                   | 109.1958                                                                                                      | 109.3444                                                                                                                      | 0.92018                                                                                                         | 109.2308                                                                                                                                  | 3.4437                                                                                            |
| 18                                                                                                         | 5                               | 1200                                                 | 102.3664                                                                                                                  | 102.29                                                                                                        | 102.4172                                                                                                                      | 0.86192                                                                                                         | 102.3211                                                                                                                                  | 3.0438                                                                                            |
| 18                                                                                                         | 6                               | 1200                                                 | 169.5445                                                                                                                  | 169.3732                                                                                                      | 169.6585                                                                                                                      | 1.4276                                                                                                          | 169.4363                                                                                                                                  | 6.0576                                                                                            |
| 18                                                                                                         | 7                               | 1200                                                 | 126.7108                                                                                                                  | 126.6152                                                                                                      | 126.7745                                                                                                                      | 1.0669                                                                                                          | 126.6515                                                                                                                                  | 3.8752                                                                                            |
| 18                                                                                                         | 8                               | 1200                                                 | 134.4747                                                                                                                  | 212.6346                                                                                                      | 2.6076                                                                                                                        | 1.1263                                                                                                          | 7.0685                                                                                                                                    | 134.3112                                                                                          |
| 18                                                                                                         | 4                               | 1501                                                 | 99.7465                                                                                                                   | 99.6975                                                                                                       | 99.7955                                                                                                                       | 0.83987                                                                                                         | 99.699                                                                                                                                    | 3.0786                                                                                            |
| 18                                                                                                         | 5                               | 1501                                                 | 43.4613                                                                                                                   | 52 6548                                                                                                       | 21 (0(2                                                                                                                       | 0.26508                                                                                                         | 20 5708                                                                                                                                   | 30.8881                                                                                           |
| 18                                                                                                         |                                 |                                                      |                                                                                                                           | 52.0540                                                                                                       | 31.0902                                                                                                                       | 0.30398                                                                                                         | 30.3798                                                                                                                                   |                                                                                                   |
|                                                                                                            | 6                               | 1501                                                 | 180.9963                                                                                                                  | 180.9068                                                                                                      | 181.0859                                                                                                                      | 1.524                                                                                                           | 180.9185                                                                                                                                  | 5.3067                                                                                            |
| 18                                                                                                         | 6<br>7                          | 1501<br>1501                                         | 180.9963<br>120.5452                                                                                                      | 180.9068<br>120.4738                                                                                          | 31.6962         181.0859         120.6166                                                                                     | 1.524                                                                                                           | 180.9185<br>120.4874                                                                                                                      | 5.3067<br>3.7331                                                                                  |
| 18                                                                                                         | 6<br>7<br>8                     | 1501<br>1501<br>1501                                 | 180.9963<br>120.5452<br>158.1591                                                                                          | 180.9068<br>120.4738<br>157.9758                                                                              | 31.0962           181.0859           120.6166           158.3422                                                              | 1.524<br>1.015<br>1.3317                                                                                        | 30.3798           180.9185           120.4874           158.0073                                                                          | 5.3067<br>3.7331<br>6.9275                                                                        |
| 18<br>18<br>18                                                                                             | 6<br>7<br>8<br>4                | 1501<br>1501<br>1501<br>1801                         | 180.9963           120.5452           158.1591           31.6943                                                          | 180.9068           120.4738           157.9758           34.3004                                              | 31.0962           181.0859           120.6166           158.3422           27.3204                                            | 1.524<br>1.015<br>1.3317<br>0.2673                                                                              | 30.3798           180.9185           120.4874           158.0073           26.1631                                                        | 5.3067<br>3.7331<br>6.9275<br>17.8921                                                             |
| 18           18           18           18           18           18                                        | 6<br>7<br>8<br>4<br>5           | 1501<br>1501<br>1501<br>1801<br>1801                 | 180.9963           120.5452           158.1591           31.6943           107.6138                                       | 180.9068           120.4738           157.9758           34.3004           107.5772                           | 31.6962           181.0859           120.6166           158.3422           27.3204           107.6686                         | 0.30398           1.524           1.015           1.3317           0.2673           0.9061                      | 30.3798           180.9185           120.4874           158.0073           26.1631           107.562                                      | 5.3067<br>3.7331<br>6.9275<br>17.8921<br>3.3388                                                   |
| 18           18           18           18           18           18           18           18              | 6<br>7<br>8<br>4<br>5<br>6      | 1501<br>1501<br>1501<br>1801<br>1801<br>1801         | 180.9963           120.5452           158.1591           31.6943           107.6138           125.7658                    | 180.9068           120.4738           157.9758           34.3004           107.5772           125.7153        | 31.6962         181.0859         120.6166         158.3422         27.3204         107.6686         125.8417                  | 0.30398           1.524           1.015           1.3317           0.2673           0.9061           1.0589     | 30.3798           180.9185           120.4874           158.0073           26.1631           107.562           125.6994                   | 5.3067<br>3.7331<br>6.9275<br>17.8921<br>3.3388<br>4.0889                                         |
| 18           18           18           18           18           18           18           18           18 | 6<br>7<br>8<br>4<br>5<br>6<br>7 | 1501<br>1501<br>1501<br>1801<br>1801<br>1801<br>1801 | 180.9963           120.5452           158.1591           31.6943           107.6138           125.7658           109.3846 | 180.9068         120.4738         157.9758         34.3004         107.5772         125.7153         109.3492 | 31.6962         181.0859         120.6166         158.3422         27.3204         107.6686         125.8417         109.4377 | 0.30398         1.524         1.015         1.3317         0.2673         0.9061         1.0589         0.92101 | 30.3798           180.9185           120.4874           158.0073           26.1631           107.562           125.6994           109.336 | 5.3067         3.7331         6.9275         17.8921         3.3388         4.0889         3.2609 |

Table 3.23: Summary of construction of the RBF-NARX for modelling the rotational speed (see appendix for extensive summary).

In summary the best performance is achieved by the network with following parameters:

 $\mathbf{RMSE}_{total}^{N}$  $\mathbf{RMSE}_{training}^{N}$  $\mathbf{RMSE}_{test}^N$ %**RMSE**<sup>N</sup><sub>total</sub> # neurons # delays # training samples mean  $(\mu_{ae})$ Std ( $\sigma_{ae}$ ) 8 1200 134.4747 212.6346 2.6076 1.1263 7.0685 134.3112 18

Table 3.24: Best RBF-NARX for modeling the rotational speed in terms of  $RMSE_{test}$ .

The engine output and the trained network output for both training and testing data are shown in Figure 3.24.



Figure 3.24: RBF-NARX model prediction and actual engine output (rotational speed).

#### **3.5.4 RBF-NARX Model of the Turbine Temperature**

This section summarizes the construction of the RBF-NARX model for identifying the jet engine turbine temperature. Three different sizes are selected for training data set. First, several neural networks are constructed using 40% of available data (1200 out of 3001 samples). Second, we construct several networks using 50% of available data (1501 out of 3001 samples), and finally, we construct the RBF-NARX neural networks using 60% (1801 out of 3001 samples).

Each case starts with a small neural network structure, and then adds to the complexity by adding neurons and delays. To avoid complex networks we limit the number of hidden neurons to 20 and the number delays to 10 ( $d_u$  10,  $d_y$  10). Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials.

The summary of network construction is shown in Table 3.25.

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|------------------------------|
| 10        | 4        | 1200               | 248.0781                      | 179.3072                         | 284.8268                     | 15.7583                           | 153.0082            | 195.3048                     |
| 10        | 5        | 1200               | 207.1761                      | 148.416                          | 238.4197                     | 13.2638                           | 175.6342            | 109.9026                     |
| 10        | 6        | 1200               | 116.529                       | 106.6732                         | 122.657                      | 9.5312                            | 77.1716             | 87.3275                      |
| 10        | 7        | 1200               | 107.7162                      | 99.2078                          | 113.0304                     | 8.6593                            | 80.7307             | 71.3234                      |
| 10        | 8        | 1200               | 172.1691                      | 174.8978                         | 170.3266                     | 13.1648                           | 120.1952            | 123.2898                     |
| 10        | 4        | 1501               | 147.9648                      | 147.6238                         | 148.3052                     | 9.397                             | 147.6888            | 9.0341                       |
| 10        | 5        | 1501               | 210.1373                      | 171.3942                         | 242.7947                     | 13.4563                           | 143.7779            | 153.2757                     |
| 10        | 6        | 1501               | 183.362                       | 149.3543                         | 212.0001                     | 11.7609                           | 159.1257            | 91.123                       |
| 10        | 7        | 1501               | 191.311                       | 154.2249                         | 222.3129                     | 12.2994                           | 165.1711            | 96.5481                      |
| 10        | 8        | 1501               | 116.2038                      | 109.0299                         | 122.9642                     | 9.4428                            | 77.3203             | 86.7606                      |
| 10        | 4        | 1801               | 178.8614                      | 230.875                          | 2.4151                       | 9.2798                            | 47.9622             | 172.3396                     |
| 10        | 5        | 1801               | 131.9345                      | 130.7706                         | 133.6623                     | 7.821                             | 61.2848             | 116.8565                     |
| 10        | 6        | 1801               | 180.3875                      | 158.4                            | 209.0921                     | 11.5788                           | 156.4552            | 89.8003                      |
| 10        | 7        | 1801               | 152.1321                      | 130.5643                         | 179.7081                     | 9.8619                            | 129.5118            | 79.8311                      |
| 10        | 8        | 1801               | 123.4252                      | 113.3757                         | 137.1327                     | 9.9988                            | 84.0548             | 90.3952                      |
| 11        | 4        | 1200               | 220.7185                      | 159.9259                         | 253.2489                     | 14.0443                           | 192.6668            | 107.7034                     |
| 11        | 5        | 1200               | 211.3474                      | 150.6581                         | 243.5286                     | 13.4975                           | 147.5283            | 151.363                      |

Table 3.25: Summary of construction of the RBF-NARX for modelling the turbine temperature (see the appendix for extensive summary).

Table 3.25: Summary of construction of the RBF-NARX for modelling the turbine temperature (see the appendix for extensive summary).

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\% \mathbf{RMSE}_{total}^{T_T}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|------------------------------|
| 11        | 6        | 1200               | 181.9475                      | 127.4505                         | 210.5694                     | 11.68                            | 157.7301            | 90.7129                      |
| 11        | 7        | 1200               | 185.3197                      | 129.6805                         | 214.5254                     | 11.8944                          | 160.6223            | 92.4485                      |
| 11        | 8        | 1200               | 116.0043                      | 110.1355                         | 119.7551                     | 9.423                            | 79.1754             | 84.7977                      |
| 11        | 4        | 1501               | 242.1402                      | 198.9689                         | 278.7254                     | 15.5464                          | 152.3787            | 188.2138                     |

In summary the best performance is achieved by the network with following parameters:

Table 3.26: Best RBF-NARX for modeling the turbine temperature in terms of  $RMSE_{test}$ .

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|------------------------------|
| 10        | 4        | 1801               | 178.8614                      | 230.875                          | 2.4151                       | 9.2798                            | 47.9622             | 172.3396                     |

The engine output and the trained network output for both training and testing data are shown in Figure 3.25.



Figure 3.25: RBF-NARX model prediction and actual engine output (turbine temperature)

#### 3.5.5 **RBF-NARX** Model of the Turbine Pressure

This section summarizes the construction of the RBF-NARX model for identifying the jet engine turbine pressure. Three different sizes are selected for training data set. First, several neural networks are constructed using 40% of available data (1200 out of 3001 samples). Second, we construct several networks using 50% of available data (1501 out of 3001 samples), and finally, we construct the RBF-NARX neural networks using 60% (1801 out of 3001 samples).

Each case starts with a small neural network structure, and then adds to the complexity by adding neurons and delays. To avoid complex networks we limit the number of hidden neurons to 20, and the number delays to 10 ( $d_u$  10,  $d_y$  10). Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials.

The summary of the network construction is shown in Table 3.27.

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 10        | 6        | 1200               | 0.11497                       | 0.13096                          | 0.10294                      | 2.4936                            | 0.091399          | 0.069754                          |
| 10        | 7        | 1200               | 0.073515                      | 0.089074                         | 0.060983                     | 1.6013                            | 0.054738          | 0.049082                          |
| 10        | 8        | 1200               | 0.094749                      | 0.1096                           | 0.083398                     | 2.0586                            | 0.073986          | 0.059199                          |
| 10        | 4        | 1501               | 0.03267                       | 0.030641                         | 0.034581                     | 0.68331                           | 0.027145          | 0.018182                          |
| 10        | 5        | 1501               | 0.047137                      | 0.054334                         | 0.038616                     | 1.0301                            | 0.032015          | 0.034603                          |
| 10        | 6        | 1501               | 0.047366                      | 0.044367                         | 0.050188                     | 1.0006                            | 0.041462          | 0.022904                          |
| 10        | 7        | 1501               | 0.047904                      | 0.054466                         | 0.040282                     | 1.0461                            | 0.033841          | 0.033912                          |
| 10        | 8        | 1501               | 0.088548                      | 0.097417                         | 0.078678                     | 1.9289                            | 0.066065          | 0.058968                          |
| 10        | 4        | 1801               | 0.030375                      | 0.029691                         | 0.031373                     | 0.63827                           | 0.024336          | 0.018179                          |
| 10        | 5        | 1801               | 0.065731                      | 0.066521                         | 0.064526                     | 1.3976                            | 0.057415          | 0.032005                          |
| 10        | 6        | 1801               | 0.026215                      | 0.030958                         | 0.01674                      | 0.56995                           | 0.015856          | 0.02088                           |
| 10        | 7        | 1801               | 0.036441                      | 0.04369                          | 0.021358                     | 0.7974                            | 0.022423          | 0.028731                          |
| 10        | 8        | 1801               | 0.04342                       | 0.052328                         | 0.024601                     | 0.95268                           | 0.027342          | 0.033735                          |
| 11        | 4        | 1200               | 1.4267                        | 1.4251                           | 1.4277                       | 29.5852                           | 1.4257            | 0.051337                          |
| 11        | 5        | 1200               | 0.030405                      | 0.029495                         | 0.030997                     | 0.63677                           | 0.025548          | 0.016489                          |
| 11        | 6        | 1200               | 0.040449                      | 0.050807                         | 0.031723                     | 0.88388                           | 0.027711          | 0.02947                           |
| 11        | 7        | 1200               | 0.12818                       | 0.14652                          | 0.11433                      | 2.7813                            | 0.10118           | 0.078712                          |
| 11        | 8        | 1200               | 0.034697                      | 0.046994                         | 0.023121                     | 0.76037                           | 0.021102          | 0.027548                          |
| 11        | 4        | 1501               | 0.071209                      | 0.067685                         | 0.074568                     | 1.5146                            | 0.062443          | 0.034233                          |
| 11        | 5        | 1501               | 0.072483                      | 0.069072                         | 0.075743                     | 1.5416                            | 0.063722          | 0.034551                          |
| 11        | 6        | 1501               | 0.064206                      | 0.063003                         | 0.065387                     | 1.3644                            | 0.055589          | 0.032133                          |

Table 3.27: Summary of construction of the RBF-NARX for modelling the turbine pressure (see the appendix for extensive summary).

In summary the best performance is achieved by the network with the following parameters:

Table 3.28: Best RBF-NARX for modeling the turbine pressure in terms of  $RMSE_{test}$ .

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_{T}}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|---------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 10        | 6        | 1801               | 0.026215                        | 0.030958                         | 0.01674                      | 0.56995                           | 0.015856          | 0.02088                           |

The engine output and the trained network output for both training and testing data are shown in Figure 3.26.



Figure 3.26: RBF-NARX model prediction and the actual engine output (turbine pressure).

# **3.6 Jet Engine Dynamics Identification using SVM-NARX**

The use of SVR-NARX model in system identification has been reported in various publications. A general framework for nonlinear system identification with SVR based on NARX model is presented in [1]. In another framework, [2] combines Least-Square Support Vector Machines (LS-SVM) with NARX model for identification of Weiner-Hammerstein systems. Other SVRbased system identification methods together with ARX models are reported in [4, 3, 5, 6]. In this research, support vector regression is used in an NARX model to identify the jet engine dynamics. Figure 2.10 shows the structure of the SVR-NARX system identification algorithm.

As previously described in Chapter 2 a series-parallel architecture is used for training of SVM-NARX model as shown in Figure 3.27. In this architecture the engine output is fed back into the SVM-NARX model, assuming that the engine is fault-free during the training stage.



Figure 3.27: The architecture of the SVM-NARX model of jet engine during training phase.

Once the training stage is completed, the series-parallel architecture would be replaced with a parallel architecture. In this architecture, the outputs of SVM-NARX model are fed back into the model rather than actual engine outputs. This is essential as the engine is prone to fault during testing stage. Figure 3.28 shows the parallel architecture of SVM-NARX model used in this section.



Figure 3.28: The architecture of the SVM-NARX model of jet engine during testing phase.

# 3.6.1 SVM-NARX Model of the Compressor Temperature

This section summarizes the construction of the SVM-NARX model for identifying the dynamics of the compressor temperature. Three different sizes are selected for training data set. First, several support vector regressions are constructed using 40% of available data (1200 out of 3001 samples).

Second, we construct several SVRs using 50% of available data (1501 out of 3001 samples), and finally, we construct the SVM-NARX models using 60% (1801 out of 3001 samples).

We put the goal to achieve an RMSE percentage less than  $\epsilon = 1\%$ . Initially we limit the delays to  $(d_u = 10, d_y = 10)$ . If it does not satisfy our constraint, then we would increase the number of delays. Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials.

The summary of construction is shown in Table 3.29.

Table 3.29: Summary of construction of the SVM-NARX for modelling the compressor temperature (see the appendix for extensive summary).

| # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|-------------------|------------------------------|
| 4        | 1200               | 5.785                         | 6.1078                           | 5.5595                       | 0.88026                          | 4.7571            | 3.2922                       |
| 5        | 1200               | 3.2587                        | 3.4575                           | 3.1191                       | 0.49584                          | 2.5706            | 2.0029                       |
| 6        | 1200               | 6.7519                        | 6.9366                           | 6.626                        | 1.0262                           | 5.8765            | 3.3252                       |
| 7        | 1200               | 2.6112                        | 2.7304                           | 2.5287                       | 0.39709                          | 2.0356            | 1.6357                       |
| 8        | 1200               | 8.5326                        | 8.646                            | 8.4563                       | 1.2962                           | 7.6082            | 3.863                        |
| 4        | 1501               | 10.0526                       | 10.2897                          | 9.8096                       | 1.5335                           | 7.1987            | 7.0172                       |
| 5        | 1501               | 2.7116                        | 2.6177                           | 2.8024                       | 0.41237                          | 2.1957            | 1.5913                       |
| 6        | 1501               | 8.0053                        | 8.0475                           | 7.9629                       | 1.22                             | 6.1615            | 5.1112                       |
| 7        | 1501               | 3.1256                        | 3.0234                           | 3.2246                       | 0.47547                          | 2.4852            | 1.8958                       |
| 8        | 1501               | 10.1568                       | 10.4808                          | 9.8219                       | 1.5495                           | 7.2417            | 7.1222                       |
| 4        | 1801               | 4.0933                        | 3.9579                           | 4.2883                       | 0.6212                           | 3.2124            | 2.537                        |
| 5        | 1801               | 5.1256                        | 5.1964                           | 5.0174                       | 0.77866                          | 4.3276            | 2.7467                       |
| 6        | 1801               | 25.5922                       | 27.3954                          | 22.6185                      | 3.8929                           | 19.709            | 16.3266                      |
| 7        | 1801               | 12.9035                       | 13.9279                          | 11.192                       | 1.9636                           | 10.4707           | 7.5416                       |
| 8        | 1801               | 4.8782                        | 5.1378                           | 4.4605                       | 0.74155                          | 3.5143            | 3.3836                       |

In summary the best performance is achieved by the network with the following parameters:

Table 3.30: Best SVM-NARX for modeling the compressor temperature in terms of  $RMSE_{test}$ .

| # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|------------------------------|
| 7        | 1200               | 2.6112                        | 2.7304                           | 2.5287                       | 0.39709                         | 2.0356              | 1.6357                       |

The engine output and the trained network output for both training and testing data are shown in Figure 3.29.



Figure 3.29: SVM-NARX model prediction and the actual engine output (compressor temperature).

# 3.6.2 SVM-NARX Model of the Compressor Pressure

This section summarizes the construction of the SVM-NARX model for identifying the dynamics of compressor pressure. Three different sizes are selected for training data set. First, several support vector regressions are constructed using 40% of available data (1200 out of 3001 samples).

Second, we construct several SVRs using 50% of available data (1501 out of 3001 samples), and finally, we construct the SVM-NARX models using 60% (1801 out of 3001 samples).

We put the goal to achieve an RMSE percentage less than  $\epsilon = 1\%$ . Initially we limit the delays to  $(d_u = 10, d_y = 10)$ . If it does not satisfy our constraint, then we would increase the number of delays. Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials.

The summary of construction is shown in Table 3.31.

Table 3.31: Summary of construction of the SVM-NARX for modelling the compressor pressure (see the appendix for extensive summary).

| # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean $(\mu_{ae})$ | Std ( $\sigma_{ae}$ ) |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------|
| 4        | 1200               | 0.04434                       | 0.044539                         | 0.044207                     | 0.37271                           | 0.023476          | 0.037618              |
| 5        | 1200               | 0.06586                       | 0.074462                         | 0.059439                     | 0.56046                           | 0.042214          | 0.050556              |
| 6        | 1200               | 0.054944                      | 0.058191                         | 0.052668                     | 0.46561                           | 0.032905          | 0.044004              |
| 7        | 1200               | 0.051974                      | 0.051877                         | 0.052039                     | 0.43826                           | 0.022331          | 0.046936              |
| 8        | 1200               | 0.070633                      | 0.067559                         | 0.072611                     | 0.59467                           | 0.029654          | 0.064113              |
| 4        | 1501               | 0.047934                      | 0.046986                         | 0.048864                     | 0.40478                           | 0.030515          | 0.03697               |
| 5        | 1501               | 0.046661                      | 0.046592                         | 0.04673                      | 0.39495                           | 0.029562          | 0.036105              |
| 6        | 1501               | 0.059857                      | 0.058357                         | 0.061321                     | 0.50837                           | 0.033006          | 0.049939              |
| 7        | 1501               | 0.10016                       | 0.10284                          | 0.097396                     | 0.85469                           | 0.065978          | 0.075359              |
| 8        | 1501               | 0.047577                      | 0.047181                         | 0.04797                      | 0.40371                           | 0.025682          | 0.040053              |
| 4        | 1801               | 0.041185                      | 0.037001                         | 0.046766                     | 0.34187                           | 0.028081          | 0.030129              |
| 5        | 1801               | 0.16758                       | 0.19602                          | 0.11212                      | 1.4287                            | 0.11603           | 0.12093               |
| 6        | 1801               | 0.064463                      | 0.04931                          | 0.082111                     | 0.53039                           | 0.022916          | 0.060257              |
| 7        | 1801               | 0.073084                      | 0.078509                         | 0.064088                     | 0.61647                           | 0.04068           | 0.060721              |
| 8        | 1801               | 0.058766                      | 0.044294                         | 0.07544                      | 0.48336                           | 0.02175           | 0.054597              |

In summary the best performance is achieved by the network with the following parameters:

Table 3.32: Best SVM-NARX for modeling the compressor pressure in term of  $RMSE_{test}$ .

| # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\% \mathbf{RMSE}_{total}^{P_C}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|-------------------|------------------------------|
| 4        | 1200               | 0.04434                       | 0.044539                         | 0.044207                     | 0.37271                          | 0.023476          | 0.037618                     |

The engine output and the trained network output for both training and testing data are shown in Figure 3.30.



Figure 3.30: SVM-NARX model prediction and actual engine output (compressor pressure).

#### 3.6.3 SVM-NARX Model of the Rotational Speed

This section summarizes the construction of the SVM-NARX model for identifying the dynamics of the rotational speed. Three different sizes are selected for training data set. First, several support vector regressions are constructed using 40% of available data (1200 out of 3001 samples). Second, we construct several SVRs using 50% of available data (1501 out of 3001 samples), and finally,

we construct the SVM-NARX models using 60% (1801 out of 3001 samples).

We put the goal to achieve an RMSE percentage less than  $\epsilon = 1\%$ . Initially we limit the delays to  $(d_u = 10, d_y = 10)$ . If it does not satisfy our constraint, then we would increase the number of delays. Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials.

The summary of construction is shown in Table 3.33.

 Table 3.33: Summary of construction of the SVM-NARX for modelling the rotational speed (see the appendix for extensive summary).

| # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^{N}$ | $\mathbf{RMSE}_{test}^N$ | $\mathbf{\%RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | $\mathbf{Std} \ (\sigma_{ae})$ |
|----------|--------------------|-----------------------------|--------------------------------|--------------------------|-------------------------------|-------------------|--------------------------------|
| 4        | 1200               | 26.3914                     | 26.3745                        | 26.4026                  | 0.22282                       | 22.6819           | 13.4932                        |
| 5        | 1200               | 27.3764                     | 27.3992                        | 27.3612                  | 0.23114                       | 23.5228           | 14.0064                        |
| 6        | 1200               | 27.8955                     | 27.874                         | 27.9099                  | 0.23553                       | 23.9589           | 14.2887                        |
| 7        | 1200               | 27.4287                     | 27.3904                        | 27.4543                  | 0.23158                       | 23.7126           | 13.7868                        |
| 8        | 1200               | 26.1403                     | 26.1954                        | 26.1035                  | 0.2207                        | 22.3773           | 13.513                         |
| 4        | 1501               | 24.6728                     | 26.5164                        | 22.6791                  | 0.20831                       | 21.236            | 12.562                         |
| 5        | 1501               | 26.7274                     | 28.7473                        | 24.5411                  | 0.22566                       | 22.9553           | 13.6908                        |
| 6        | 1501               | 28.2652                     | 30.4459                        | 25.9008                  | 0.23865                       | 24.18             | 14.6386                        |
| 7        | 1501               | 26.9222                     | 28.8732                        | 24.8176                  | 0.2273                        | 23.1971           | 13.665                         |
| 8        | 1501               | 26.0438                     | 27.9951                        | 23.9333                  | 0.21988                       | 22.4468           | 13.2081                        |
| 4        | 1801               | 26.545                      | 27.0505                        | 25.7681                  | 0.22412                       | 22.7997           | 13.5956                        |
| 5        | 1801               | 27.4482                     | 27.9494                        | 26.6783                  | 0.23175                       | 23.5607           | 14.0829                        |
| 6        | 1801               | 25.4999                     | 25.9773                        | 24.7663                  | 0.21528                       | 21.9856           | 12.9192                        |
| 7        | 1801               | 25.2779                     | 25.7547                        | 24.545                   | 0.21342                       | 21.7604           | 12.864                         |
| 8        | 1801               | 26.1525                     | 26.6325                        | 25.4153                  | 0.2208                        | 22.5576           | 13.2339                        |

In summary the best performance is achieved by the network with the following parameters:

Table 3.34: Best SVM-NARX for modeling the rotational speed in terms of  $RMSE_{test}$ .

| # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^{N}$ | $\mathbf{RMSE}_{test}^N$ | $\mathbf{\%RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|----------|--------------------|-----------------------------|--------------------------------|--------------------------|-------------------------------|-------------------|------------------------------|
| 4        | 1501               | 24.6728                     | 26.5164                        | 22.6791                  | 0.20831                       | 21.236            | 12.562                       |

The engine output and the trained network output for both training and testing data are shown in Figure 3.31.



Figure 3.31: The SVM-NARX model prediction and the actual engine output (rotational speed).

## **3.6.4 SVM-NARX Model of the Turbine Temperature**

This section summarizes the construction of the SVM-NARX model for identifying the dynamics of the turbine temperature. Three different sizes are selected for training data set. First, several support vector regressions are constructed using 40% of available data (1200 out of 3001 samples). Second, we construct several SVRs using 50% of available data (1501 out of 3001 samples), and

finally, we construct the SVM-NARX models using 60% (1801 out of 3001 samples).

We put the goal to achieve an RMSE percentage less than  $\epsilon = 1\%$ . Initially we limit the delays to  $(d_u = 10, d_y = 10)$ . If it does not satisfy our constraint, then we would increase the number of delays. Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials.

The summary of construction is shown in Table 3.35.

 

 Table 3.35: Summary of construction of the SVM-NARX for modelling the turbine temperature (see the appendix for extensive summary).

| # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|------------------------------|
| 4        | 1200               | 183.6261                      | 189.9563                         | 179.2832                     | 10.4182                           | 160.2343          | 89.6932                      |
| 5        | 1200               | 166.4114                      | 175.3166                         | 160.2015                     | 9.4955                            | 141.1499          | 88.1518                      |
| 6        | 1200               | 104.3983                      | 107.0395                         | 102.6002                     | 5.9073                            | 90.6818           | 51.7326                      |
| 7        | 1200               | 136.832                       | 133.9356                         | 138.7288                     | 7.6189                            | 123.4487          | 59.0255                      |
| 8        | 1200               | 166.3491                      | 161.8485                         | 169.2822                     | 9.2006                            | 154.693           | 61.1777                      |
| 4        | 1501               | 293.6453                      | 273.8494                         | 312.1944                     | 16.4391                           | 262.022           | 132.5706                     |
| 5        | 1501               | 282.3101                      | 269.7902                         | 294.3017                     | 15.649                            | 259.5313          | 111.1059                     |
| 6        | 1501               | 215.896                       | 209.24                           | 222.355                      | 11.9547                           | 202.3673          | 75.2297                      |
| 7        | 1501               | 249.4072                      | 235.4363                         | 262.6403                     | 13.9182                           | 226.8929          | 103.5634                     |
| 8        | 1501               | 236.7342                      | 224.6235                         | 248.2584                     | 13.3207                           | 212.1327          | 105.0933                     |
| 4        | 1801               | 408.2675                      | 398.3448                         | 422.7191                     | 22.527                            | 380.7186          | 147.4427                     |
| 5        | 1801               | 307.8869                      | 291.5684                         | 330.865                      | 17.1951                           | 274.3306          | 139.7866                     |
| 6        | 1801               | 202.5877                      | 190.7599                         | 219.1402                     | 11.2666                           | 183.4603          | 85.938                       |
| 7        | 1801               | 272.9621                      | 258.0228                         | 293.9563                     | 15.1594                           | 248.0573          | 113.9212                     |
| 8        | 1801               | 205.2928                      | 208.9996                         | 199.6019                     | 11.6387                           | 174.1967          | 108.6398                     |

In summary the best performance is achieved by the network with the following parameters:

Table 3.36: Best SVM-NARX for modeling the turbine temperature in terms of  $RMSE_{test}$ .

| # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\% \mathbf{RMSE}_{total}^{T_T}$ | mean $(\mu_{ae})$ | Std ( $\sigma_{ae}$ ) |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|-------------------|-----------------------|
| 6        | 1200               | 104.3983                      | 107.0395                         | 102.6002                     | 5.9073                           | 90.6818           | 51.7326               |

The engine output and the trained network output for both training and testing data are shown in Figure 3.32.



Figure 3.32: SVM-NARX model prediction and actual engine output (turbine temperature).

## 3.6.5 SVM-NARX Model of the Turbine Pressure

This section summarizes the construction of the SVM-NARX model for identifying the dynamics of turbine pressure. Three different sizes are selected for training data set. First, several support vector regressions are constructed using 40% of available data (1200 out of 3001 samples). Second, we construct several SVRs using 50% of available data (1501 out of 3001 samples), and finally,

we construct the SVM-NARX models using 60% (1801 out of 3001 samples).

We put the goal to achieve an RMSE percentage less than  $\epsilon = 1\%$ . Initially we limit the delays to  $(d_u = 10, d_y = 10)$ . If it does not satisfy our constraint, then we would increase the number of delays. Also, as previously discussed in Remark 3.3, we assume  $d_y = d_u$  in order to limit the number of construction trials.

The summary of construction is shown in Table 3.37.

Table 3.37: Summary of construction of the SVM-NARX for modelling the turbine pressure (see the appendix for extensive summary).

| # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\textbf{Std}(\sigma_{ae})$ |
|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------|
| 4        | 1200               | 0.14436                       | 0.166                              | 0.12793                      | 3.164                             | 0.099075          | 0.10501                     |
| 5        | 1200               | 0.22767                       | 0.25312                            | 0.209                        | 4.9621                            | 0.16848           | 0.15314                     |
| 6        | 1200               | 0.13213                       | 0.14305                            | 0.12432                      | 2.858                             | 0.10348           | 0.08217                     |
| 7        | 1200               | 0.36862                       | 0.40489                            | 0.34232                      | 8.0233                            | 0.27583           | 0.24456                     |
| 8        | 1200               | 0.26315                       | 0.27079                            | 0.25794                      | 5.6279                            | 0.22447           | 0.13736                     |
| 4        | 1501               | 0.15671                       | 0.15761                            | 0.1558                       | 3.4091                            | 0.11986           | 0.10096                     |
| 5        | 1501               | 0.14812                       | 0.14611                            | 0.15011                      | 3.203                             | 0.11887           | 0.088379                    |
| 6        | 1501               | 0.15141                       | 0.14926                            | 0.15353                      | 3.2731                            | 0.12131           | 0.090617                    |
| 7        | 1501               | 0.11376                       | 0.10654                            | 0.12055                      | 2.4167                            | 0.097374          | 0.058823                    |
| 8        | 1501               | 0.11595                       | 0.11134                            | 0.12038                      | 2.4909                            | 0.094515          | 0.067168                    |
| 4        | 1801               | 0.088902                      | 0.084001                           | 0.095787                     | 1.8751                            | 0.075015          | 0.047715                    |
| 5        | 1801               | 0.14606                       | 0.14218                            | 0.15169                      | 3.0978                            | 0.12598           | 0.073916                    |
| 6        | 1801               | 0.12097                       | 0.11917                            | 0.12363                      | 2.5699                            | 0.10214           | 0.064829                    |
| 7        | 1801               | 0.18853                       | 0.20295                            | 0.16453                      | 4.0615                            | 0.14994           | 0.1143                      |
| 8        | 1801               | 0.27965                       | 0.3162                             | 0.21338                      | 6.0711                            | 0.21025           | 0.18441                     |

In summary the best performance is achieved by the network with the following parameters:

Table 3.38: Best SVM-NARX for modeling the turbine pressure in terms of  $RMSE_{test}$ .

| # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\% \mathbf{RMSE}_{total}^{P_T}$ | Mean $(\mu_{ae})$ | $\textbf{Std}(\sigma_{ae})$ |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|-------------------|-----------------------------|
| 4        | 1801               | 0.088902                      | 0.084001                         | 0.095787                     | 1.8751                           | 0.075015          | 0.047715                    |

The engine output and the trained network output for both training and testing data are shown in Figure 3.33.



Figure 3.33: The SVM-NARX model prediction and the actual engine output (turbine pressure).

# 3.7 Jet Engine Dynamic Identification with Ensemble Learning

This section describes identification of jet engine dynamics using ensemble methods. Training an ensemble system can be generally divided into three steps [201] as shown in Figure 3.34. The first

step is *ensemble generation*, which consists of generating a set of models. It often happens that a number of redundant models are generated during ensemble generation. The next step is *ensemble pruning* where the pool of generated models are trimmed in order to achieve maximum diversity among the learners. Finally, the models are combined in the ensemble integration step, where the final prediction is formed based on the models' prediction. Different ensemble architectures can be made by considering different methodologies for each of these three steps.



Figure 3.34: Ensemble learning stages [223].

In this section three different methodologies are considered for creating ensemble model of the jet engine dynamics. Different strategies are first discussed, and then applied toward jet engine identification problem. The simulation results are presented at the end of this section.

As previously described in Chapter 2 a series-parallel architecture is used for training of ensemble model as shown in Figure 3.35.



Figure 3.35: Architecture of ensemble during the training phase.

Once the training stage is completed, the series-parallel architecture would be replaced with a parallel architecture. This assumption is valid since the a trained model outputs replicate the outputs of the actual jet engine. The architecture of the ensemble during the testing phase is shown in Figure 3.36.



Figure 3.36: Architecture of the ensemble during testing phase.

Figure 3.37 shows inside of each ensemble model. Note that each model has its own parameters such as the number of neurons (in case of neural networks) or time delays.



Figure 3.37: Inside of an ensemble model (refer to Figures 3.36and 3.35).

#### **3.7.1 Ensemble Generation**

**Definition 3.1.** Ensemble generation approaches are divided into *homogeneous* where all the models are generated using the same learning algorithm, and *heterogeneous* where different learning algorithms are used for training of ensemble members [133].

As previously discussed in Chapter 2, creating diverse set of learners is the key to successfully train an ensemble of regressors or classifiers. Intuitively, we know that if all ensemble learners provide the same output, there would be nothing to benefit from their combination. The importance of diversity for ensemble systems is well established in [193], [194]. Ideally, we would like the individual learners to be independent or even negatively correlated [121], [195]. Below, we describe two different approaches that can be adopted to create diversity among ensemble.

*Homogeneous* ensemble generation is the best covered area of ensemble learning in the literature [219]. In this approach, the ensemble members are generated using the same learning algorithm (e.g. the same kind of neural networks), and the diversity among them are to be generated by *altering the training data*. Alternatively, we may diversify the homogeneous models by using a same learning method with different setting of parameters (e.g. neural networks with different number of hidden units). Comparative studies between these two approaches conclude that altering training data is generally more effective than altering model parameters [221], [222]. Several approaches are suggested in the literature for training ensemble systems by manipulating the training data. Bagging (bootstrap aggregating) is the most extensively homogeneous ensemble method used in the literature [223]. In this approach the original training data is resampled by the bootstrap sampling in order to create several training set of the training data. The authors in [128] and [129] give insight about why bagging works.

Boosting is another algorithm which uses manipulation of training data to generate diversity. Similar to bagging, several training data sets are generated by resampling of the training data; however, unlink bagging the probability of being selected in not necessarily the same for different samples. In fact, the probability of being selected is initially equal for all the samples, but in the subsequent iterations samples with more inaccurate predictions would have higher chance of being selected. Boosting has been originally developed for classification problems. Although several modifications of it are proposed for regression but none of them has demonstrated as promising results as bagging [130].

In *heterogeneous* ensemble on the other hand the models are trained using the same training data. The number of works into using different architectures for ensemble systems is relatively small, and thus it requires more attention [223]. The diversity among the models is generated by different learning algorithms. This approach is studied less in the literature; however, some very good results are reported using heterogeneous ensembles [30]. The diversity in this approach is

obtained by inherent properties of different learning algorithms. The problem is the lack of control on the diversity of the ensemble during the generation phase. This approach is discussed further in the following.

## 3.7.2 Ensemble Pruning

The ensemble pruning algorithms are previously discussed in Chapter 2 in details. Ensemble pruning is the procedure for trimming the pool of trained models, with the goal of improving generalization error of the ensemble. It is also used to reduce the complexity of the ensemble system. Several pruning methods are addressed in the literature. Three different pruning approaches are compared in [222]. The first approach is ranking based on the accuracy, second method is the forward selective search (FSS) algorithm, and the third using genetic algorithm. The authors test the above mentioned approaches and conclude that FSS gives the best result.

Roli *et al.* [201] conduct a benchmark in order to compare different pruning algorithms where they compare FSS by selecting the best model in the first iteration, backward selective search (BSS), and tabu search. They conclude FSS that selects the best model in the first iteration outperforms the other approaches.

Coelho *et al.* [134] compare FSS with ranking (FSSwR, starting with best members), FSS, BSS with Ranking (BSSwR) and BSS. Each one of these algorithms are tested with a different integration methodologies. The authors conclude that FSS and BSS gives higher diversity in general.

All of these benchmark studies address the ensemble classification problem; however the proposed approaches are general and can be applied to regression problems as well. It seems that more sophisticated algorithms such as FSS, BSS or clustering algorithms are able to give better results in term of accuracy, as expected when compared with more primitive algorithms discussed in Chapter 2 such as exponential pruning algorithms and randomized pruning algorithms.

#### 3.7.3 Ensemble Combination

Ensemble integration is the last step in training an ensemble. Ensemble integration combines the predictions made by various models in the ensemble to generate the final ensemble prediction. For regression problems all integration mechanisms combine models using a linear combination of predictors which can be described by the following equation [223]:

$$f_{ensemble}(x) = \sum_{i}^{n} \alpha_{i} f_{i}(x)$$

where  $f_{ensemble}(x)$  is the output of ensemble model for the instant x,  $f_i(x)$  is the output of the  $i^{th}$  model for the instance x,  $\alpha_i$  is the averaging weight for the  $i^{th}$  model, and n is the number of ensemble members.

In other words, the ensemble combination for a regression problem can be restated as estimating the averaging weights  $\alpha_i$ s. Merz *et al.* [224] conducted a comparative study in order to determine the most effective ensemble combination techniques. The authors studied several ensemble combination techniques including Generalized Ensemble Method (GEM) [192], Basic Ensemble Method (BEM) [192], Linear Regression (LR), Gradient Descent, and Exponential Gradient Descent [225]. For this purpose the authors conducted different comparative studies between the aforementioned combination methods using eight different data sets. The study concludes that optimizing the averaging weights using *gradient descent method* and *generalized ensemble method* results in a better generalization performance.

**Remark 3.5.** We should note that the optimization of weights would be conducted on the training

data. Assume that the members of the ensemble are trained separately using different training data set that is  $x_i$ , i = 1, ..., n (i.e. training input vector of the  $i^{th}$  model) and  $t_i$ , i = 1, ..., n (i.e. training target vector of the  $i^{th}$  model) where n is the number of models in the ensemble. Then the training data of the ensemble system would be the union of all the training data used for training of individual models. In other words:

Training input vector: 
$$x_{training} = x_1 \quad x_2 \quad \dots \quad x_n$$
  
Training target vector:  $t_{training} = t_1 \quad t_2 \quad \dots \quad t_n$ 

#### **Generalized Ensemble Method**

Generalized ensemble method (GEM) is an ensemble combination technique which was first presented in [192]. In this method the averaging weights ( $\alpha_i$ s) are optimized using the method of Lagrange multipliers. The GEM estimator defines the  $f_{GEM}(x)$ , as follows:

$$f_{GEM}(x) = \sum_{i=1}^{n} \alpha_i f_i(x)$$

where  $f_{GEM}(x)$  is the output of the ensemble model combined using GEM,  $f_i(x)$  is the  $i^{th}$ model regression estimates, f(x) is the actual estimation (i.e. target value),  $\alpha_i$  is the averaging weight for the  $i^{th}$  model, n is the number of ensemble members. Defining  $m_i(x) = f(x) - f_i(x)$ (i.e. the error of the  $i^{th}$  model) we have:

$$f_{GEM}(x) = \sum_{i=1}^{n} \alpha_i f_i(x) = \sum_{i=1}^{n} \alpha_i f(x) \quad m_i(x)$$

Assuming that  $\sum_{i=1}^{n} \alpha_i = 1$  we have  $\sum_{i=1}^{n} \alpha_i f(x) = f(x)$ . Then we can write the above equation

as follows:

$$f_{GEM}(x) = \sum_{i=1}^{n} \alpha_i f_i(x) = \sum_{i=1}^{n} \alpha_i f(x) \quad m_i(x) = f(x) \quad \sum_{i=1}^{n} \alpha_i m_i(x)$$

The ensemble absolute error is defined as:

$$f_{GEM}(x) - f(x) = \sum_{i=1}^{n} \alpha_i m_i(x)$$

Alternatively, the ensemble absolute error can be rewritten as:

$$f_{GEM}(x) - f(x) = \sum_{j=1}^{n} \alpha_j m_j(x)$$

There the mean of squared error of the ensemble can be formulated as:

$$MSE \ f_{GEM}(x) = E \ f_{GEM}(x) - f(x)^2$$
$$= E \ \sum_{i=1}^n \alpha_i \ m_i(x) \ \sum_{j=1}^n \alpha_j \ m_j(x)$$
$$= \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j E \ m_i(x) \ m_j(x)$$

where the expected value is taken over all instances of input vector x. Since we use the training data to determine the  $\alpha_i$ s then window size of the expected value would be size of training data. Defining the symmetric correlation matrix  $C_{ij}(x) = E[m_i(x) \ m_j(x)]$  the above equation simplifies to the following equation:

$$MSE \ f_{GEM}(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j C_{ij}(x)$$

The authors in [192] then formulate the following optimization problem with the objective of minimizing the MSE.

minimize 
$$MSE \ f_{GEM}(x_{training}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j C_{ij}(x_{training})$$
  
subject to  $\sum_{i=1}^{n} \alpha_i = 1$ 

Using the method of Lagrange multipliers to solve for  $\alpha_k$  we want  $\alpha_k$  such that for k:

$$\frac{\partial}{\partial \alpha_k} \left[ \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j C_{ij}(x_{training}) - 2\lambda(\sum_{i=1}^n \alpha_i) \right] = 0$$

Taking the partial derivatives the above equation simplifies to the following condition:

$$\sum_{k=1}^{n} \alpha_k C_{kj}(x_{training}) = \lambda, \quad k > 1, ..., n$$

Imposing the constraint  $\sum_{i=1}^{n} \alpha_i = 1$  we can solve the set of equations and determine the optimal  $\alpha_i$ s as follows [192]:

$$\alpha_i = \sum_j C_{ij} (x_{training})^{-1} \sum_k \sum_j C_{kj} (x_{training})^{-1} ^{-1}$$
(3.3)
#### **Gradient Decent Optimization**

Another integration method which was suggested in [225], and [224] is the very well–known gradient decent optimization scheme. One advantage of this method is the possibility to adopt different objective functions for the optimization problem (i.e. minimizing RMSE, mean of error, etc.).

In this research both the *GEM* and *gradient descent* are adopted for combining individual models in an ensemble. Our experiments show that the gradient descent performs significantly better than *GEM*. The objective function which is minimized by using the gradient descent is RMSE of the ensemble as follows:

$$\min_{\alpha_i} \quad RMSE_{ensemble}(\alpha) = \sum_{i=1}^n \alpha_i f_i(x_{training}) - f(x_{training})$$
(3.4)

Updating rule: 
$$\alpha_{k+1} = \alpha_k - \gamma \quad RMSE_{ensemble}(\alpha_k)$$
 (3.5)

where  $\alpha = [\alpha_1, ..., \alpha_n]$ ,  $f_i(x_{training})$  is the prediction of the  $i^{th}$  model for the training data set,  $f(x_{training})$  is the target value of the training data,  $\alpha_k$  is the value of  $\alpha$  at the  $k^{th}$  iteration,  $\alpha_{k+1}$ is the value of  $\alpha$  at the k 1<sup>th</sup> iteration,  $RMSE_{ensemble}(\alpha_k)$  is the gradient of  $RMSE_{ensemble}$ at the  $k^{th}$  iteration, and  $\gamma$  is the step size. The step size should be carefully selected as with a too large step size the gradient descent may diverge, and with a too small step size it may take a long time to converge. Note that the step size can be either fixed or adaptive (i.e. changing at each iteration). Adaptive step size is initialized with a bigger step size and it becomes smaller as the gradient of the function gets smaller. After trying different step sizes, we picked  $\gamma = 0.1$  with which the optimization problem converges within a reasonable time.

Remark 3.6. In order to have an ensemble whose performance is better than all the individual

models (or at least as well as the best model in the pool), the weights of the gradient descent would be initialized as follows:

 $\alpha_i = \begin{array}{c} 1 & \textit{if model i is the best model in the pool} \\ 0 & \textit{otherwise} \end{array}$ 

This way if the gradient descent gets trapped in a local minimum, we are guaranteed that the result is at least as good as the best member of the ensemble. In other words, the RMSE with 100% contribution of the best ensemble member is either a local minimum of the error function or, if not, we can `nd another point where the error function is smaller.

In the next subsection we present the simulation results for different ensemble techniques applied for the jet engine modeling problem.

### 3.7.4 Ensemble I: Heterogeneous Ensemble with Ranked Pruning

Heterogeneous ensemble with ranked pruning is reported in several papers in the literature including but not limited to [222], [132], and [133]. In this approach first a pool of individual learners are trained using different learning algorithms. Then, the most accurate models are selected for each learning algorithm in order to be aggregated and generate the final prediction. The only source of diversity in this approach is the use of heterogeneous ensemble (using different kinds of learning algorithms).

In this research the above procedure is used to identify the jet engine dynamics. First, in the previous section, several learners are trained using each of MLP-NARX, RBF-NARX, and SVM-NARX models to identify jet engine dynamics. Second, for each learning algorithm (e.g. MLP-NARX) the regressor with *best performance* is selected from the pool of individual trained

regressors. Then the selected regressors are combined together by using the weighted averaging. Two different combination techniques are used to determine optimal averaging weights: gradient descent and generalized ensemble method.

According to equation (3.3) the  $\alpha_i$ s required for integrating the three individual learners are determined as follows:

$$\begin{split} \alpha_1 &=& \frac{\sum_{j=1}^3 C_{1j}^{-1}}{\sum_{k=1}^3 \sum_{j=1}^3 C_{kj}^{-1}} \\ \alpha_2 &=& \frac{\sum_{j=1}^3 C_{2j}^{-1}}{\sum_{k=1}^3 \sum_{j=1}^3 C_{kj}^{-1}} \\ \alpha_3 &=& \frac{\sum_{j=1}^3 C_{3j}^{-1}}{\sum_{k=1}^3 \sum_{j=1}^3 C_{kj}^{-1}} \end{split}$$

The averaging weights obtained by using GEM are presented in Table 3.39.

|   |       | $\alpha_{MLP}$ | $\alpha_{RBF}$ | $\alpha_{SVM}$ |
|---|-------|----------------|----------------|----------------|
| • | $P_C$ | 0.23           | 0.455          | 0.312          |
|   | $T_C$ | 0.232          | 0.455          | 0.312          |
|   | N     | 0.232          | 0.455          | 0.312          |
|   | $P_T$ | 0.23           | 0.455          | 0.313          |
|   | $T_T$ | 0.231          | 0.454          | 0.314          |

Table 3.39: GEM coefficients for integration of ensemble system (ensemble I)

Alternatively, gradient descent is used to determine the optimal weights for combining the ensemble models. The optimization problem is formulated as follows:

$$\min_{\alpha_i} \qquad RMSE_{ensemble}(\alpha) = \sum_{i=1}^n \alpha_i f_i(x_{training}) - f(x_{training})$$
Updating rule:  $\alpha_{k+1} = \alpha_k - 0.1 \qquad RMSE_{ensemble}(\alpha_k)$ 

where  $\alpha = [\alpha_1, \alpha_2, \alpha_3] = [\alpha_{RBF}, \alpha_{MLP}, \alpha_{SVM}]$ . The  $\alpha$  is initialized as  $\alpha_0 = [1, 0, 0]$ . After trying different step sizes, we picked a fixed step size  $\gamma = 0.1$  with which the optimization problem converges within a reasonable time. Note that the fixed step size will assure convergence, if it is small enough (although it may take a long time to converge if the step size is too small). The optimized weights are presented in Table 3.40.

|   |       | $\alpha_{MLP}$   | $\alpha_{RBF}$ | $\alpha_{SVM}$    |
|---|-------|------------------|----------------|-------------------|
|   | $P_C$ | 9.1313 $10^{-5}$ | 1.001          | $9.1266  10^{-5}$ |
|   | $T_C$ | 0.0234           | 0.738          | 0.238             |
| • | N     | -0.238           | 1.854          | -0.853            |
|   | $P_T$ | $P_T$ 0.020      |                | 0.0049            |
|   | $T_T$ | 0.272            | 0.785          | 0.053             |

Table 3.40: Gradient descent coefficients for integration of ensemble system (ensemble I)

The performance of *heterogeneous* ensemble with *ranked pruning* and *GEM* as integration method is summarized in Table 3.41.

|        | RMSE    | $\mu_{ae}$ | $\sigma_{ae}$ |
|--------|---------|------------|---------------|
| $P_C$  | 1.0043  | 0.8511     | 0.5332        |
| $T_C$  | 0.0286  | 0.0219     | 0.0184        |
| $T_T$  | 20.0723 | 16.7455    | 11.0693       |
| $PT_T$ | 0.1093  | 0.0914     | 0.0599        |
| N      | 39.7872 | 35.9183    | 17.1171       |

Table 3.41: Heterogeneous ensemble with ranked pruning and GEM as integration method error analysis.

The performance of *heterogeneous* ensemble with *ranked pruning* and *gradient descent* as integration method is summarized in Table 3.42.

Table 3.42: Heterogeneous ensemble with ranked pruning and gradient descent as integration method error analysis.

|       | RMSE   | $\mu_{ae}$ | $\sigma_{ae}$ |
|-------|--------|------------|---------------|
| $P_C$ | 0.536  | 0.4294     | 0.3212        |
| $T_C$ | 0.0246 | 0.0208     | 0.0133        |
| $T_T$ | 11.073 | 8.6915     | 6.862         |
| $P_T$ | 0.0179 | 0.0145     | 0.0105        |
| N     | 7.339  | 4.229      | 6.0014        |

According to the simulations the gradient descent has way better results in term of generalization error as compared with GEM. Further comparative studies of the obtained results with the other designed ensembles systems as well as individual learners are presented in the following sections. Table 3.43 summarizes heterogeneous ensemble training with ranked pruning.

| 1: | Several models are trained using MLP-NARX, RBF-NARX, and SVM-NARX modeling engine parameters.                                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|
| 2: | For each algorithm the best trained model is selected to be combined.                                                                     |
| 3: | GEM and gradient decent algorithms are used to determine averaging weights.                                                               |
| 4: | The <i>initial point</i> of gradient decent algorithm is initialized such that the best learner in the pool has the maximum contribution. |

Table 3.43: Summary of the heterogeneous ensemble training with ranked pruning.

# 3.7.5 Ensemble II: Heterogeneous Ensemble using Forward Sequential Selection

The use of heterogeneous ensemble with Forward Sequential Selection (FSS) as pruning algorithm is reported in several publications including but not limited to [201], [192], [134]. Forward selection starts with an empty set and iteratively adds models with the aim of decreasing the expected prediction error. Two different versions of FSS are presented in the literature, namely Forward Sequential Selection with Ranking (FSSwR) and Forward Sequential Selection (FSS). The FSSwR ranks all the candidates with respect to their performance on a training set. Then, it selects the candidate at the top until the performance of the ensemble decreases. In the FSS algorithm, each time a new candidate is added to the ensemble, all candidates are tested and it is selected the one that leads to the maximal improvement of the ensemble performance. Yates *et al.* [220] modify the

FSS by adding a diversity measure. In this version the criterion for the inclusion of a new model is a diversity measure, and that the new model is diverse from the previously selected models. The ensemble size is an input parameter of the algorithm.

In this research a heterogeneous ensemble with FSS as pruning algorithm is used to identify the jet engine dynamics. First, as presented at the beginning of this chapter, several models are trained using each of MLP-NARX, RBF-NARX, and SVM-NARX to model different parameters of the jet engine dynamics. To limit the complexity of the problem, a subset of the trained models is selected based on their performance (i.e. we select the 10 best RBF-NARX models, the 10 best MLP-NARX models and the 10 best SVM-NARX models). Then the members of the ensemble system are selected using the FSS algorithm. The FSS algorithm is initialized using the model with the best performance in the pool. Each time a new model is added to the ensemble, all candidates are tested and the model with maximal improvement would be added as the next model. In each iteration all the selected models are aggregated using gradient descent. Note that GEM is not employed in this section due to its poor performance in the previous section. Table 3.44 summarizes the procedure of construction of the ensemble system.

Table 3.44: Summary of the heterogeneous ensemble training with FSS pruning algorithm.

| 1: | Several models are trained using MLP-NARX, RBF-NARX, and SVM-NARX modeling engine parameters.                                                                                                 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2: | Subsets of 10 best RBF-NARX models, the 10 best MLP-NARX models and the 10 best SVM-NARX models are selected from the pool of models trained in step 1 <i>in order to reduce complexity</i> . |
| 3: | For each engine parameter (i.e. $P_C$ , $T_C$ , $N$ , $P_T$ , $T_T$ ), FSS algorithm is initialized with the best trained model.                                                              |
| 4: | Each time a new model is added to the ensemble, all candidates are tested and the model with maximal improvement would be added as next model.                                                |
| 5: | Each time a new model is added to the ensemble the optimal combining weights are recalculated using gradient descent algorithm as discussed in Section 3.7.3, page 148, equation 3.4.         |
| 6: | All the evaluations for FSS are performed on the training set.                                                                                                                                |

In this section we train a heterogeneous ensemble MLP-NARX, RBF-NARX, and SVM-NARX models with FSS pruning. Therefore, for each engine parameter (e.g. rotational speed) we initialize the ensemble with the best individually trained model. Since in our application the RBF-NARX model shows a better performance (refer to the previous sections to see the performance of the individual models), we initialize the ensemble with the best RBF-NARX model of each engine parameter. Next we select the MLP-NARX model (or alternatively the SVM-NARX model) so that the maximal improvement to the performance of the ensemble is achieved. Note that to find the maximal improvement we have to test all the candidate models in the pool. Finally, we select the SVM-NARX (or alternatively the MLP-NARX model) which brings the maximal improvement to the previous two models.

Using the FSS algorithm we selected (i.e. pruning state) the following models as individual model of the ensemble (refer to Tables 3.45 to 3.49).

 Table 3.45: Parameters of models inside ensemble model of compressor pressure (ensemble II).

| # training samples |      | # delays | # of neurons |
|--------------------|------|----------|--------------|
| MLP-NARX           | 1501 | 7        | 11           |
| RBF-NARX           | 1801 | 7        | 10           |
| SVM-NARX           | 1501 | 5        | NA           |

 Table 3.46: Parameters of models inside ensemble model of compressor temperature (ensemble II).

|          | # training samples | # delays | # of neurons |
|----------|--------------------|----------|--------------|
| MLP-NARX | 1801               | 5        | 11           |
| RBF-NARX | 1201               | 7        | 20           |
| SVM-NARX | 1201               | 6        | NA           |

Table 3.47: Parameters of models inside ensemble model of rotational speed (ensemble II).

|          | # training samples | # delays | # of neurons |
|----------|--------------------|----------|--------------|
| MLP-NARX | 1201               | 6        | 10           |
| RBF-NARX | 1501               | 8        | 11           |
| SVM-NARX | 1201               | 6        | NA           |

| # training samples |      | # delays | # of neurons |
|--------------------|------|----------|--------------|
| MLP-NARX           | 1201 | 6        | 13           |
| RBF-NARX           | 1201 | 7        | 10           |
| SVM-NARX           | 1201 | 6        | NA           |

Table 3.48: Parameters of models inside ensemble model of turbine pressure (ensemble II).

 Table 3.49: Parameters of models inside ensemble model of turbine temperature (ensemble II).

| # training samples |      | # delays | # of neurons |
|--------------------|------|----------|--------------|
| MLP-NARX           | 1801 | 5        | 10           |
| RBF-NARX           | 1501 | 8        | 17           |
| SVM-NARX           | 1501 | 4        | NA           |

Gradient descent is used to minimize the RMSE by optimizing the averaging weights of models. The  $\alpha_i$ s required for integrating the three individual learners are determined as presented in Table 3.50.

Table 3.50: Gradient descent coefficients for integration of ensemble system (ensemble II).

|       | $\alpha_{MLP}$ | $\alpha_{RBF}$ | $\alpha_{SV}$ | M         |
|-------|----------------|----------------|---------------|-----------|
| $P_C$ | 9.5212 10      | -5 1.0001      | 9.4425        | $10^{-5}$ |
| $T_C$ | 0.0646         | 0.8164         | 0.1190        |           |
| N     | 0.0685         | 1.7562         | -0.82         | 261       |
| $P_T$ | 0.0048         | 0.8974         | 0.109         |           |
| $T_T$ | -0.0995        | 1.086          | 0.01          | 31        |

The summary of the ensemble system performance for identification of each engine parameter is presented in Table 3.51.

|       | RMSE     | $\mu_{ae}$ | $\sigma_{ae}$ |
|-------|----------|------------|---------------|
| $P_C$ | 0.023135 | 0.023113   | 0.00101       |
| $T_C$ | 0.5049   | 0.3883     | 0.1045        |
| $T_T$ | 10.139   | 7.848      | 3.820         |
| $P_T$ | 0.016865 | 0.016841   | 0.000896      |
| N     | 6.8672   | 4.563      | 3.654         |

Table 3.51: Heterogeneous ensemble with the FSS pruning, and gradient descent as integration method error analysis.

A comparative study of the obtained results with the other designed ensembles systems and each of the individual learners are presented in the following sections.

### 3.7.6 Ensemble III: Homogeneous with Bagging

Bootstrap sampling or *bagging* is one of the most extensively used techniques for manipulation of training data [223]. Empirical studies show that bagging is a simple and effective method in reducing prediction error in both classification and regression problems [129]. The main idea is to train a different model using different subsets of the training data which are generated by bootstrap sampling. In the bagging procedure, a training set with the size *s*, several bootstrap replicates of it would be constructed by taking *s* samples out of it *with replacement*. Thus, a new training set with

the same size would be generated where each of the samples in the original training set may appear once, more than once or may not appear at all [129]. The learning algorithm then uses this new training set. This procedure would be repeated several times, and all the obtained models would be aggregated to generate the final ensemble. Figure 3.38 graphically summarizes the bagging procedure. Several studies have been conducted on the theoretical basis of bagging establishing its theoretical foundation. The theoretical background about bagging and effectiveness can be found in [128], [129], [119].



Figure 3.38: Ensemble learning with bagging.

In this section a homogeneous ensemble is trained using bagging for modeling each of the jet engine outputs. In order to select the training algorithm, and parameters of it we refer to the experiments conducted in the previous sections. According to Sections 3.4, 3.5, 3.6, the RBF-NARX model outperform MLP-NARX and SVM-NARX models for modeling engine outputs. Thus, in this section we use RBF-NARX to form our homogeneous ensemble. For the network

parameters (i.e. number of neurons, number of delays, size of training data) we set them to the parameters of the models with best performance (in term of RMSE) in Section 3.5. *As an example*, in Section 3.5 we saw that the RBF-NARX model with the following parameters has the best performance for modeling compressor pressure of the jet engine:

Table 3.52: Best SVM-NARX for modeling the compressor temperature in terms of  $RMSE_{test}$ .

| # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std} \ (\sigma_{ae})$ |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|--------------------------------|
| 7        | 1200               | 2.6112                        | 2.7304                           | 2.5287                       | 0.39709                          | 2.0356              | 1.6357                         |

Thus, in this section we train several RBF-NARX models with exactly the same parameters. The only thing which alters is the training data where for different models of the homogeneous models the training data is obtained by bootstrap sampling as mentioned above. As previously mentioned in Chapter 2 the number of models in an ensemble plays an important in its performance [187], [186]. Thus, in order to have a faire comparison between the heterogenous ensembles discussed before (ensemble I and ensemble II) and the homogeneous ensemble (ensemble III) discussed in this section we select the same number of models for all of them. We study the effects of the number of models in ensemble in the next section. As in the previous sections previous sections a weighted averaging is used to combine models of the ensemble. The weights are optimized using the gradient descent with the *objective of minimizing RMSE on training data*.

The obtained results are reflected in Table 3.53.

|       | RMSE   | $\mu_{ae}$ | $\sigma_{ae}$ |
|-------|--------|------------|---------------|
| $P_C$ | 0.0316 | 0.0304     | 0.0315        |
| $T_C$ | 0.6754 | 0.7737     | 0.6711        |
| $T_T$ | 10.139 | 7.848      | 3.820         |
| $P_T$ | 8.686  | 9.386      | 8.637         |
| N     | 9.111  | 7.262      | 9.083         |

Table 3.53: Heterogeneous ensemble with FSS pruning, and gradient descent as integration method error analysis.

We study the effects of the number of models in the ensemble in the next section.

### **3.7.7** Effects of the Number of Models in an Ensemble

As previously mentioned the number of models in ensemble plays an important role in the accuracy of the ensemble. According to [187], [186] and several other references the error can be theoretically decreased arbitrarily by increasing the number of models in the ensemble. In this section we would like to validate this claim in our experimental setup.

For this purpose, we start increasing the number of models in the ensemble models of the jet engine outputs. Homogeneous ensemble with bagging is used for this purpose, as it is easy to generate arbitrary number of models in this approach just by resampling the training data. Figures 3.39 to 3.43 show the performance of bagged ensembles for identification of different outputs of a jet engine. The ensemble error generally decreases by increasing the number of models in an ensemble.

It should be noted that each iteration is totaly independent from the previous ones. Suppose

that a bagged ensemble containing n models is trained in the  $i^{th}$  iteration, then for the step after (i.e.  $i = 1^{th}$  step) n = 1 models are trained and aggregated independently from the models trained in the previous step. An alternative would be to keep all previously trained models and add a model to the ensemble in each iteration.



Figure 3.39: RMS error for bagged model of the compressor pressure with respect to the number of models in the ensemble.



Figure 3.40: RMS error for bagged model of the compressor temperature with respect to the number of models in the ensemble.



Figure 3.41: RMS error for bagged model of the rotational speed with respect to the number of models in the ensemble.



Figure 3.42: RMS error for bagged model of the turbine pressure with respect to the number of models in the ensemble.



Figure 3.43: RMS error for bagged model of the turbine temperature with respect to the number of models in the ensemble.

### 3.7.8 Summary

In this chapter several models are developed to model dynamics of the jet engine. Three standalone (MLP-NARX, RBF-NARX, and SVM-NARX) learning algorithms are first used to model each engine output. Then the individual models are used to create ensemble systems. Different architectures of ensembles are trained and compared together and with the stand-alone models. We observe that by combining stand-alone models and building an ensemble system one can *always* build a regressor which has a better performance (or at least as well as the best model in the pool).

Table 3.54 shows comparison of different methods for modeling the compressor pressure. The error analysis is also shown in Figure 3.44. One can see that the heterogeneous ensemble with FSS pruning has a better performance in modeling of the compressor pressure.

**Remark 3.7.**  $RMSE_{training}$ ,  $RSME_{test}$  and  $RSME_{total}$  are the root mean square error calculated over the "training", "testing" and "all the available data" (training and testing) respectively. Note that the training data includes the samples which are exposed to the networks during the training stage. This covers the data which directly used for training as well as the cross-validation data which is indirectly used during the training stage.

|              | $RMSE_{total}$ | $RMSE_{train}$ | $RMSE_{test}$ | $\mu_{ae}$ | $\sigma_{ae}$ |
|--------------|----------------|----------------|---------------|------------|---------------|
| MLP-NARX     | 0.0531         | 0.060215       | 0.040119      | 0.033786   | 0.040972      |
| RBF-NARX     | 0.026612       | 0.027382       | 0.026087      | 0.021582   | 0.015573      |
| SVM-NARX     | 0.041185       | 0.037001       | 0.046766      | 0.028081   | 0.03013       |
| Ensemble I   | 0.024672       | 0.024926       | 0.024285      | 0.02894    | 0.02103       |
| Ensemble II  | 0.023135       | 0.023115       | 0.023166      | 0.023113   | 0.0010121     |
| Ensemble III | 0.031684       | 0.027609       | 0.042234      | 0.030476   | 0.031543      |

Table 3.54: Comparison of different methods for identification of compressor pressure.

|              | RMSE_total | RMSE_train | RMSE_test | %RMSE    | mean     | sigma    |
|--------------|------------|------------|-----------|----------|----------|----------|
| MLP-NARX     | 0.05695994 | 0.06459238 | 0.0430354 | 0.481906 | 0.036242 | 0.04395  |
| RBF-NARX     | 0.03948843 | 0.04063023 | 0.038709  | 0.328007 | 0.032025 | 0.023107 |
| SVM-NARX     | 0.06804089 | 0.06112859 | 0.0772607 | 0.564795 | 0.046393 | 0.049776 |
| Ensemble I   | 0.03099947 | 0.03420156 | 0.0274235 | 0.265349 | 0.023378 | 0.020361 |
| Ensemble II  | 0.032391   |            |           |          |          |          |
| Ensemble III | 0.03107098 |            |           |          |          |          |
|              |            |            |           |          |          |          |

improveme



Figure 3.44: Error analysis: compressor pressure identification.

Table 3.55 shows comparison of different methods for modeling the compressor pressure. The error analysis is also shown in Figure 3.45. One can see that the heterogeneous ensemble with FSS pruning has a better performance in modeling compressor pressure.

Table 3.55: Comparison of different methods for identification of compressor temperature.

|              | $RMSE_{total}$ | $RMSE_{train}$ | $RMSE_{test}$ | $\mu_{ae}$ | $\sigma_{ae}$ |
|--------------|----------------|----------------|---------------|------------|---------------|
| MLP-NARX     | 1.0016         | 1.0817         | 0.91441       | 0.73773    | 0.67756       |
| RBF-NARX     | 0.56069        | 0.60188        | 0.49245       | 0.44584    | 0.34007       |
| SVM-NARX     | 2.6112         | 2.7304         | 2.5287        | 2.0356     | 1.6357        |
| Ensemble I   | 0.53621        | 0.57179        | 0.47787       | 0.4294     | 0.1032        |
| Ensemble II  | 0.50493        | 0.47823        | 0.5303        | 0.38835    | 0.10459       |
| Ensemble III | 0.67545        | 0.75346        | 0.64762       | 0.77372    | 0.67111       |

|              | RMSE_total | RMSE_train | RIVISE_test | %RMSE    | mean     | sigma    |
|--------------|------------|------------|-------------|----------|----------|----------|
| MLP-NARX     | 1.5339092  | 1.65661695 | 1.4003979   | 0.233214 | 1.129811 | 1.037672 |
| RBF-NARX     | 0.82816977 | 0.88900992 | 0.7273705   | 0.125567 | 0.658522 | 0.502293 |
| SVM-NARX     | 3.26100159 | 3.40977775 | 3.157955    | 0.495902 | 2.542115 | 2.042665 |
| Ensemble I   | 1.3152219  | 1.29057196 | 1.3394343   | 0.199706 | 1.141432 | 0.653516 |
| Ensemble II  |            |            |             |          |          |          |
| Ensemble III | 1.2864     |            |             |          |          |          |
|              |            |            |             |          |          |          |



Figure 3.45: Error analysis: compressor temperature identification.

Table 3.56 shows comparison of different methods for modeling the compressor pressure. The error analysis is also shown in Figure 3.46. One can see that the heterogeneous ensemble with FSS pruning has a better performance in modeling the compressor pressure.

|                 | $RMSE_{total}$ | $RMSE_{train}$ | $RMSE_{test}$ | $\mu_{ae}$ | $\sigma_{ae}$ |
|-----------------|----------------|----------------|---------------|------------|---------------|
| MLP-NARX        | 22.7076        | 24.7451        | 21.2417       | 19.597     | 11.4732       |
| <b>RBF-NARX</b> | 17.8349        | 19.7104        | 15.7359       | 14.2826    | 10.6831       |
| SVM-NARX        | 24.6728        | 26.5164        | 22.6791       | 21.236     | 12.562        |
| Ensemble I      | 7.3392         | 8.575          | 4.9343        | 4.2259     | 3.5032        |
| Ensemble II     | 6.8672         | 6.7947         | 6.9391        | 4.5636     | 3.6543        |
| Ensemble III    | 9.1115         | 8.0348         | 12.0596       | 7.2627     | 9.084         |

 Table 3.56: Comparison of different methods for identification of rotational speed.

|              | RMSE_total | RMSE_train | RMSE_test | %RMSE    | mean     | sigma    |
|--------------|------------|------------|-----------|----------|----------|----------|
| MLP-NARX     | 56.8288983 | 61.9281767 | 53.160426 | 0.478681 | 49.04432 | 28.71329 |
| RBF-NARX     | 44.8280081 | 49.5421607 | 39.552223 | 0.378495 | 35.89936 | 26.85193 |
| SVM-NARX     | 93.0503374 | 100.003348 | 85.53136  | 0.785621 | 80.08902 | 47.37603 |
| Ensemble I   | 51.1684386 | 53.5649498 | 38.461508 | 0.178457 | 37.69918 | 31.61408 |
| Ensemble II  | 36.2141536 |            |           |          |          |          |
| Ensemble III | 28.1931    |            |           |          |          |          |
|              |            |            |           |          |          |          |

improveme



Figure 3.46: Error analysis: rotational speed identification.

Table 3.57 shows comparison of different methods for modeling the compressor pressure. The error analysis is also shown in Figure 3.47. One can see that the heterogeneous ensemble with FSS pruning has a better performance in modeling compressor pressure.

|              | $RMSE_{total}$ | $RMSE_{train}$ | $RMSE_{test}$ | $\mu_{ae}$ | $\sigma_{ae}$ |
|--------------|----------------|----------------|---------------|------------|---------------|
| MLP-NARX     | 0.28118        | 0.33468        | 0.21468       | 0.1725     | 0.22208       |
| RBF-NARX     | 0.018406       | 0.018638       | 0.018172      | 0.015086   | 0.010548      |
| SVM-NARX     | 0.088902       | 0.084001       | 0.095787      | 0.075015   | 0.047715      |
| Ensemble I   | 0.01791        | 0.018221       | 0.017432      | 0.014507   | 0.00011       |
| Ensemble II  | 0.016865       | 0.016835       | 0.016894      | 0.016841   | 0.0008965     |
| Ensemble III | 0.02045        | 0.023039       | 0.019989      | 0.020046   | 0.020861      |

Table 3.57: Comparison of different methods for identification of turbine pressure.

| RMSE_total | RMSE_train                                                                                  | RMSE_test                                                                                                                                                                                                                          | %RMSE                                                                                                                                                                                                                                                                                                                                       | mean                                                                                                                                                                                                                                                                                                                                                                                                                                            | sigma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.07101077 | 0.08452287                                                                                  | 0.0542175                                                                                                                                                                                                                          | 1.798008                                                                                                                                                                                                                                                                                                                                    | 0.043566                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.056086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.03734914 | 0.03781917                                                                                  | 0.0368728                                                                                                                                                                                                                          | 0.777323                                                                                                                                                                                                                                                                                                                                    | 0.030611                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.021403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.08327656 | 0.07868526                                                                                  | 0.0897258                                                                                                                                                                                                                          | 1.756486                                                                                                                                                                                                                                                                                                                                    | 0.070268                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.044695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.06410522 | 0.05560946                                                                                  | 0.066296                                                                                                                                                                                                                           | 1.319943                                                                                                                                                                                                                                                                                                                                    | 0.117578                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.077931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.03098247 |                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.03261    |                                                                                             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | RMSE_total<br>0.07101077<br>0.03734914<br>0.08327656<br>0.06410522<br>0.03098247<br>0.03261 | RMSE_total         RMSE_train           0.07101077         0.08452287           0.03734914         0.03781917           0.08327656         0.07868526           0.06410522         0.05560946           0.03098247         0.03261 | RMSE_total         RMSE_train         RMSE_test           0.07101077         0.08452287         0.0542175           0.03734914         0.03781917         0.0368728           0.08327656         0.07868526         0.0897258           0.06410522         0.05560946         0.066296           0.03098247         0.03261         0.03261 | RMSE_total         RMSE_train         RMSE_test         %RMSE           0.07101077         0.08452287         0.0542175         1.798008           0.03734914         0.03781917         0.0368728         0.777323           0.08327656         0.07868526         0.0897258         1.756486           0.06410522         0.05560946         0.066296         1.319943           0.03098247         0.03261         0.03261         0.0368726 | RMSE_total         RMSE_train         RMSE_test         %RMSE         mean           0.07101077         0.08452287         0.0542175         1.798008         0.043566           0.03734914         0.03781917         0.0368728         0.777323         0.030611           0.08327656         0.07868526         0.0897258         1.756486         0.070268           0.06410522         0.05560946         0.066296         1.319943         0.117578           0.03098247         0.03261         0.03261         0.041052         0.02061 |



Figure 3.47: Error analysis: turbine pressure identification.

Table 3.58 shows comparison of different methods for modeling the compressor pressure. The error analysis is also shown in Figure 3.48. One can see that the heterogeneous ensemble with FSS pruning has a better performance in modeling of the compressor pressure.

| T-11. 2 50. C          | - f -1°ff 4 411-     | f ! ] 4!f 4!       | - C 4 A                 |
|------------------------|----------------------|--------------------|-------------------------|
| Table 5 58. Comparison | of different methods | tor identification | of filrning temperature |
| Tuble 5.50. Comparison | of uniterent methods | ior inclineation   | or turbine temperatures |

|              | $RMSE_{total}$ | $RMSE_{train}$ | $RMSE_{test}$ | $\mu_{ae}$ | $\sigma_{ae}$ |
|--------------|----------------|----------------|---------------|------------|---------------|
| MLP-NARX     | 41.9615        | 40.4995        | 43.3752       | 37.1441    | 19.5246       |
| RBF-NARX     | 13.4734        | 15.2044        | 12.1843       | 9.8925     | 9.1487        |
| SVM-NARX     | 104.3983       | 107.0395       | 102.6002      | 90.6818    | 51.7326       |
| Ensemble I   | 11.0734        | 11.1823        | 10.9079       | 8.6915     | 6.8625        |
| Ensemble II  | 10.1397        | 9.8846         | 10.3887       | 7.8483     | 3.821         |
| Ensemble III | 8.6865         | 8.2657         | 9.7165        | 9.3865     | 8.6371        |

|              | RMSE_total | RMSE_train | RMSE_test   | %RMSE      | mean       | sigma       |
|--------------|------------|------------|-------------|------------|------------|-------------|
| MLP-NARX     | 20.9592222 | 20.2289664 | 21.66534002 | 1.15729486 | 18.5529861 | 9.752301928 |
| RBF-NARX     | 1.33378387 | 1.50513759 | 1.206172871 | 0.07450583 | 0.97930077 | 0.905661486 |
| SVM-NARX     | 52.1645898 | 53.48433   | 51.26614367 | 2.95170614 | 45.3108776 | 25.84918062 |
| Ensemble I   | 34.6805544 | 31.6187933 | 37.5816222  | 2.06100145 | 29.1721054 | 13.92190986 |
| Ensemble II  | 1.33378387 | 1.50513759 | 1.206172871 | 0.07450583 | 0.97930077 | 0.905661486 |
| Ensemble III | 8.203      |            |             |            |            |             |
|              |            |            |             |            |            |             |



Figure 3.48: Error analysis: turbine temperature identification.

In summary one can see that the heterogeneous ensemble with FSS pruning and gradient descent combination (ensemble II) has better performance in modeling and identification of the jet engine dynamics. In the rest of this thesis we use this model (heterogeneous ensemble with FSS) for residual generation. Then generated residuals would be evaluated for the FDI purpose. The results are compared with RBF-NARX model as it has the best performance among the stand-alone models which are trained in this section. In this section we showed how utilization of ensemble methods can improve the accuracy of modeling in comparison with stand-alone algorithms. Below we show the effects of this improvement in the FDI application.

### **3.8 Fault Detection Process**

In the previous sections we modeled the jet engine dynamics using both ensemble-based and standalone models. In this section we would like to use the trained models to generate the residual signals while the engine is operating in different conditions (healthy as well as different faulty conditions). The faulty conditions were previously explained in Section 2.3.3. Table 3.59 summarizes the jet engine degradations that are studied in the remainder of this thesis.

| Component Fault    | Indication                                             | Symbol   |
|--------------------|--------------------------------------------------------|----------|
| Compressor fouling | Decrease in the compressor flow capacity $(\dot{m}_C)$ | $F_{mc}$ |
| Compressor erosion | Decrease in the compressor efficiency $(\eta_C)$       | $F_{ec}$ |
| Turbine fouling    | Decrease in the turbine flow capacity $(\dot{m}_T)$    | $F_{mt}$ |
| Turbine erosion    | Decrease in the turbine efficiency $(\eta_C)$          | $F_{et}$ |

 Table 3.59: Jet engine component fault indications.

### **3.8.1** Fault Detection Logic

This section explains the fault detection logic that is used in this thesis, noting that once the residual signals are generated then the fault detection would be a relatively easy task. The first required step in fault detection process is to gather the residual signals while the engine is working under healthy condition. These signals (residual signals under healthy condition) would be used to determine the fault detection thresholds, so that one determines an interval such that the residuals of a healthy jet engine stay within it with a high confidence (probability). A fault would be detected if any of the engine residuals goes beyond its threshold. The fault detection logic is summarized in Figure 3.49.



Figure 3.49: Flow chart of the proposed fault detection algorithm.

## 3.8.2 Fault Detection Threshold Generation

In the previous section we trained individual learning methods and the ensemble system using healthy engine data. From now on, the goal is to use the trained models to detect engine faults

by comparing the residual signals with predefined thresholds. As explained before, residual signals are the difference between actual engine outputs with predicted values obtained from trained models. In this comparison, a residual signal should remain below a predefined threshold in the healthy condition of jet engine, while it exceeds the defined threshold under the faulty condition. The thresholds can be determined using the residual signals which are obtained from a healthy engine. In this thesis, we define the thresholds as follows:

$$t.h._{upper} = \mu z\sigma$$
  
 $t.h._{lower} = \mu - z\sigma$ 

where  $\mu$  and  $\sigma$  are mean and standard deviation of residual signals obtained from healthy engine in previous experiments. Assuming that the residual signals have normal distribution, we can define a confidence interval for each of them. In statistics, confidence interval is a measure of the reliability of an estimate. For future observations of a random variable X with mean and standard deviation of  $\mu$  and  $\sigma$ , respectively, the probability of l = X - u is determined from:

$$P(t.h._{lower} \ X \ t.h._{upper}) = P(\frac{t.h._{lower} - \mu}{\sigma} \ Z \ \frac{t.h._{upper} \ \mu}{\sigma})$$
$$= P(-z \ Z \ z) = \phi(z) - \phi(-z) = 2\phi(z)$$

where Z is the standard normal variable. Thus, according to the above equation  $t.h_{upper} = \mu - z\sigma$ ,  $t.h_{lower} = \mu - z\sigma$ . Hence, the probability of having the residual signals under normal condition can be adjusted by choosing different threshold values. In this thesis we consider a 99% confidence interval which corresponds to z = 2.6 In the following section, we study different single fault scenarios for the best individual learning methods (i.e. RBF-NARX) as well as the ensemble system in terms of the modeling accuracy. Thus, for each residual signal the threshold is determined by using the following relation:

$$t.h._{upper} = \mu - 2.6\sigma$$
  
 $t.h._{lower} = \mu - 2.6\sigma$ 

where  $\mu$  and  $\sigma$  are mean and standard deviation of residual signals obtained from the healthy engine in previous experiments.

**Remark 3.8.** In this research all <sup>v</sup> ve residuals of the engine parameters are used for fault detection purpose. The fault would then be detected by the residual which acts faster than the others. If multiple residuals detect a fault at different time instances, then the fault detection time would be the minimum of different detection times given by different residuals. In other words:

 $t_{FD} = \min(t_{FD_{res_1}}, \dots, t_{FD_{res_n}})$ 

where  $t_{FD}$  is the fault detection time and  $t_{FD_{res_i}}$  is the time instance when the fault is detected by the *i*<sup>th</sup> residual.

### **3.8.3 Fault Simulation Results**

In this section different fault scenarios are studied to determine the effectiveness of the proposed ensemble method in fault detection. The simulation results of the selected scenarios are described in this section. These scenarios vary in the (a) fault type, (b) fault magnitude, and (c) fuel rate. In order to make a comparative study, the simulation results are individual learning models are also provided in this section. The simulations are performed in the cruise mode where the fuel rate varies between  $\dot{m}_f = 0.7, 0.75, 0.8, 0.85$  of the maximum fuel rate. The ambient condition is set to normal condition, which is 0.7 Mach as a typical number in the cruise mode. The temperature is set to 0 Celsius degree.

The residuals are generated using the ensemble model that is trained in the previous section. We also generated the residuals using RBF-NARX model in order to make comparison between the ensemble and single-model solutions. The residuals are evaluated using the generated thresholds. We detect a fault if at least one of the residuals is greater than its corresponding determined thresholds.

In the following we study different fault scenarios in terms of fault type, fault severity, and fuel flow rate when the fault occurs.

### 3.8.4 Scenario I: Fault in the Compressor Efficiency

In this case we assume that there is a decrease in efficiency of the compressor. A failure happens with different magnitudes that are 1%, 2%, 4%, 6%, and 8% at t = 20 sec. Also the fuel rate varies within the range of cruise mode between 70%, 75%, 80%, 85% of the maximum fuel flow rate. The residual signals are generated for both the ensemble model (heterogenous ensemble with FSS pruning), and single-model (RBF-NARX) solutions. For breviary only the cases with  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$  are plotted here. Figures 3.50, 3.52, 3.54, 3.56, 3.58 show the fault in compressor efficiency detected using the ensemble model. Figures 3.51, 3.53, 3.55, 3.57, 3.59 show the fault in compressor efficiency detected using the single-model based solution (i.e. RBF-NARX model).



Residual signals for the compressor efficieny: fault magnitude = 8

Figure 3.50: Residual generated using ensemble model with FSS pruning, 8% decrease in compressor efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor efficiency: fault magnitude = 8

Figure 3.51: Residual generated using RBF-NARX model, 8% decrease in compressor efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor efficieny: fault magnitude = 6

Figure 3.52: Residual generated using ensemble model with FSS pruning, 6% decrease in compressor efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor efficiency: fault magnitude = 6

Figure 3.53: Residual generated using RBF-NARX model, 6% decrease in compressor efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor efficieny: fault magnitude = 4

Figure 3.54: Residual generated using ensemble model with FSS pruning, 4% decrease in compressor efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor efficiency: fault magnitude = 4

Figure 3.55: Residual generated using RBF-NARX model, 4% decrease in compressor efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor efficieny: fault magnitude = 2

Figure 3.56: Residual generated using ensemble model with FSS pruning, 2% decrease in compressor efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor efficiency: fault magnitude = 2

Figure 3.57: Residual generated using RBF-NARX model, 2% decrease in compressor efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .


Residual signals for the compressor efficieny: fault magnitude = 1

Figure 3.58: Residual generated using ensemble model with FSS pruning, 1% decrease in compressor efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor efficiency: fault magnitude = 1

Figure 3.59: Residual generated using RBF-NARX model, 1% decrease in compressor efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .

Section 3.8.8 shows a comparative study between the fault detection results of the ensemble solution and the single-model solution which indicates an improvement in fault detection accuracy using the ensemble model. The failure has happened at t = 20 sec. Tables 3.60 and 3.61 summarize the fault detection time using ensemble model and RBF-NARX models respectively.

| Fault Type | Fault Severity | Fuel Rate            |                       | Injection Time | Detection Time |
|------------|----------------|----------------------|-----------------------|----------------|----------------|
| $F_{ec}$   | 8%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.04          |
| $F_{ec}$   | 6%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.04          |
| $F_{ec}$   | 4%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.04          |
| $F_{ec}$   | 2%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.04          |
| $F_{ec}$   | 1%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f.maximum}$ | 20             | 20.16          |

Table 3.60: Fault detection time summary using ensemble model: compressor efficiency fault injected at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .

Table 3.61: Fault detection time summary using RBF-NARX model: compressor efficiency fault injected at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .

| Fault Type | Fault Severity | Fuel Rate            |                       | Injection Time | Detection Time |
|------------|----------------|----------------------|-----------------------|----------------|----------------|
| $F_{ec}$   | 8%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.04          |
| $F_{ec}$   | 6%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.04          |
| $F_{ec}$   | 4%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.04          |
| $F_{ec}$   | 2%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{ec}$   | 1%             | $\dot{m}_{f}$ = 0.85 | $\dot{m}_{f,maximum}$ | 20             | 20.22          |

## **3.8.5** Scenario II: Fault in the Compressor Mass Flow Rate

In this case we assume that there is a decrease in effectiveness of the compressor mass flow rate. The failure happens with different magnitudes that are 1%, 2%, 4%, 6%, and 8%. Also the fuel rate varies between 70%, 75%, 80%, and 85% of the maximum in each case. The residual signals are generated for the individual learning algorithms as well as the ensemble system. Figures 3.60, 3.62, 3.64, 3.66, 3.68 show the fault in compressor efficiency detected using the ensemble model. Figures 3.61, 3.63, 3.65, 3.67, 3.69 show the fault in compressor efficiency detected using the single-model based solution (i.e. RBF-NARX model).



Residual signals for the compressor mass flow rate: fault magnitude = 8

Figure 3.60: Residual generated using ensemble model with FSS pruning, 8% decrease in compressor mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor mass flow rate fault: fault magnitude = 8

Figure 3.61: Residual generated using RBF-NARX model, 8% decrease in compressor mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor mass flow rate: fault magnitude = 6

Figure 3.62: Residual generated using ensemble model with FSS pruning, 6% decrease in compressor mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor mass flow rate fault: fault magnitude = 6

Figure 3.63: Residual generated using RBF-NARX model, 6% decrease in compressor mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor mass flow rate: fault magnitude = 4

Figure 3.64: Residual generated using ensemble model with FSS pruning, 4% decrease in compressor mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor mass flow rate fault: fault magnitude = 4

Figure 3.65: Residual generated using RBF-NARX model, 4% decrease in compressor mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor mass flow rate: fault magnitude = 2

Figure 3.66: Residual generated using ensemble model with FSS pruning, 2% decrease in compressor mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor mass flow rate fault: fault magnitude = 2

Figure 3.67: Residual generated using RBF-NARX model, 2% decrease in compressor mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the compressor mass flow rate: fault magnitude = 1

Figure 3.68: Residual generated using ensemble model with FSS pruning, 1% decrease in compressor mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .





Figure 3.69: Residual generated using RBF-NARX model, 1% decrease in compressor mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .

Section 3.8.8 shows a comparative study between the fault detection results of the ensemble solution and the single-model solution which indicates an improvement in fault detection accuracy using the ensemble model. The failure has happened at t = 20 sec. Tables 3.62 and 3.63 summarize the fault detection time using ensemble model and RBF-NARX models respectively.

| injected at t = 20 sec, $\dot{m}_f = 0.85$ | $\dot{m}_{f,maximum}$ . | -              | ·              |  |
|--------------------------------------------|-------------------------|----------------|----------------|--|
| Fault Type Fault Severity                  | Fuel Rate               | Injection Time | Detection Time |  |

 $\dot{m}_{f,maximum}$ 

 $\dot{m}_{f,maximum}$ 

 $\dot{m}_{f,maximum}$ 

 $\dot{m}_{f,maximum}$ 

 $\dot{m}_{f,maximum}$ 

20

20

20

20

20

20.10

20.10

20.16

20.16

20.22

 $\dot{m}_{f} = 0.85$ 

 $\dot{m}_{f} = 0.85$ 

 $\dot{m}_{f} = 0.85$ 

 $\dot{m}_{f} = 0.85$ 

 $\dot{m}_{f} = 0.85$ 

| Table 3.62: Fault detection time s         | ummary using ensemble model | : compressor efficiency fault |
|--------------------------------------------|-----------------------------|-------------------------------|
| injected at t = 20 sec, $\dot{m}_f$ = 0.85 | $\dot{m}_{f,maximum}$ •     |                               |

Table 3.63: Fault detection time summary using RBF-NARX model: compressor efficiency fault injected at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f.maximum}$ .

| Fault Type | Fault Severity | Fuel Rate            |                       | Injection Time | Detection Time |
|------------|----------------|----------------------|-----------------------|----------------|----------------|
| $F_{mc}$   | 8%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{mc}$   | 6%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{mc}$   | 4%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{mc}$   | 2%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.16          |
| $F_{mc}$   | 1%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.16          |

## **Scenario III: Fault in the Turbine Efficiency** 3.8.6

 $F_{mc}$ 

 $F_{mc}$ 

 $F_{mc}$ 

 $F_{mc}$ 

 $F_{mc}$ 

8%

6%

4%

2%

1%

In this scenario we assume that there is a decrease in the turbine efficiency. The failure happens with different magnitudes that are 1%, 2%, 4%, 6%, and 8%. Also the fuel rate varies between 70%, 75%, 80%, 90%, and 95% of the maximum in each case. The residual signals are generated for the individual learning algorithms as well as the ensemble system. Figures 3.70, 3.72, 3.74, 3.76, 3.78 show the fault in compressor efficiency detected using the ensemble model. Figures 3.71, 3.73, 3.75, 3.77, 3.79 show the fault in compressor efficiency detected using the single-model based solution (i.e. RBF-NARX model).



Residual signals for the turbine efficiency: fault magnitude = 8

Figure 3.70: Residual generated using ensemble model with FSS pruning, 8% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine efficiency fault: fault magnitude = 8

Figure 3.71: Residual generated using RBF-NARX model, 8% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine efficiency: fault magnitude = 6

Figure 3.72: Residual generated using ensemble model with FSS pruning, 6% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine efficiency fault: fault magnitude = 6

Figure 3.73: Residual generated using RBF-NARX model, 6% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine efficiency: fault magnitude = 4

Figure 3.74: Residual generated using ensemble model with FSS pruning, 4% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine efficiency fault: fault magnitude = 4

Figure 3.75: Residual generated using RBF-NARX model, 4% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine efficiency: fault magnitude = 2

Figure 3.76: Residual generated using ensemble model with FSS pruning, 2% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine efficiency fault: fault magnitude = 2

Figure 3.77: Residual generated using RBF-NARX model, 2% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine efficiency: fault magnitude = 1

Figure 3.78: Residual generated using ensemble model with FSS pruning, 1% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine efficiency fault: fault magnitude = 1

Figure 3.79: Residual generated using RBF-NARX model, 1% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .

Section 3.8.8 shows a comparative study between the fault detection results of the ensemble solution and the single-model solution which indicates an improvement in fault detection accuracy using the ensemble model. The failure has happened at t = 20 sec. Tables 3.64 and 3.65 summarize the fault detection time using ensemble model and RBF-NARX models respectively. Figures 3.60,

3.62, 3.64, 3.66, 3.68 show the fault in compressor efficiency detected using the ensemble model. Figures 3.61, 3.63, 3.65, 3.67, 3.69 show the fault in compressor efficiency detected using the single-model based solution (i.e. RBF-NARX model).

Table 3.64: Fault detection time summary using ensemble model: turbine efficiency fault injected at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .

| Fault Type | Fault Severity | Fuel Rate            |                       | Injection Time | Detection Time |
|------------|----------------|----------------------|-----------------------|----------------|----------------|
| $F_{et}$   | 8%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{et}$   | 6%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{et}$   | 4%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.16          |
| $F_{et}$   | 2%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.16          |
| $F_{et}$   | 1%             | $\dot{m}_f$ = 0.85   | $\dot{m}_{f,maximum}$ | 20             | 20.22          |

Table 3.65: Fault detection time summary using RBF-NARX model: turbine efficiency fault injected at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .

| Fault Type | Fault Severity | Fuel Rate            |                       | Injection Time | Detection Time |
|------------|----------------|----------------------|-----------------------|----------------|----------------|
| $F_{et}$   | 8%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{et}$   | 6%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{et}$   | 4%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{et}$   | 2%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.16          |
| $F_{et}$   | 1%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.16          |

## 3.8.7 Scenario IV: Fault in the Turbine Mass Flow

In this scenario we assume that there is a decrease in the effectiveness of turbine mass flow rate. The failure happens with different magnitudes that are 1%, 2%, 4%, 6%, and 8%. Also the fuel rate varies between 70%, 75%, 80%, 90%, and 95% of the maximum in each case. The residual signals are generated for the individual learning algorithms as well as the ensemble system. Figures 3.80, 3.82, 3.84, 3.86, 3.88 show the fault in compressor efficiency detected using the ensemble model.

Figures 3.81, 3.83, 3.85, 3.87, 3.89 show the fault in compressor efficiency detected using the single-model based solution (i.e. RBF-NARX model).



Residual signals for the turbine mass flow rate: fault magnitude = 8

Figure 3.80: Residual generated using ensemble model with FSS pruning, 8% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine mass flow rate: fault magnitude = 8

Figure 3.81: Residual generated using RBF-NARX model, 8% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine mass flow rate: fault magnitude = 6

Figure 3.82: Residual generated using ensemble model with FSS pruning, 6% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine mass flow rate: fault magnitude = 6

Figure 3.83: Residual generated using RBF-NARX model, 6% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine mass flow rate: fault magnitude = 4

Figure 3.84: Residual generated using ensemble model with FSS pruning, 4% decrease in turbine mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine mass flow rate: fault magnitude = 4

Figure 3.85: Residual generated using RBF-NARX model, 4% decrease in turbine mass flow rate at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine mass flow rate: fault magnitude = 2

Figure 3.86: Residual generated using ensemble model with FSS pruning, 2% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine mass flow rate: fault magnitude = 2

Figure 3.87: Residual generated using RBF-NARX model, 2% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine mass flow rate: fault magnitude = 1

Figure 3.88: Residual generated using ensemble model with FSS pruning, 1% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .



Residual signals for the turbine mass flow rate: fault magnitude = 1

Figure 3.89: Residual generated using RBF-NARX model, 1% decrease in turbine efficiency at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .

Section 3.8.8 shows a comparative study between the fault detection results of the ensemble solution and the single-model solution which indicates an improvement in fault detection accuracy using the ensemble model. The failure has happened at t = 20 sec. Tables 3.66 and 3.67 summarize the fault detection time using ensemble model and RBF-NARX models respectively.

Table 3.66: Fault detection time summary using ensemble model: turbine mass ow rate fault injected at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .

| Fault Type | Fault Severity | Fuel Rate            |                       | Injection Time | Detection Time |
|------------|----------------|----------------------|-----------------------|----------------|----------------|
| $F_{et}$   | 8%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{et}$   | 6%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{et}$   | 4%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.16          |
| $F_{et}$   | 2%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.16          |
| $F_{et}$   | 1%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.22          |

Table 3.67: Fault detection time summary using RBF-NARX model: turbine efficiency fault injected at t = 20 sec,  $\dot{m}_f = 0.85$   $\dot{m}_{f,maximum}$ .

| Fault Type | Fault Severity | Fuel Rate            |                       | Injection Time | Detection Time |
|------------|----------------|----------------------|-----------------------|----------------|----------------|
| $F_{et}$   | 8%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{et}$   | 6%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{et}$   | 4%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.10          |
| $F_{et}$   | 2%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.16          |
| $F_{et}$   | 1%             | $\dot{m}_{f} = 0.85$ | $\dot{m}_{f,maximum}$ | 20             | 20.16          |

## 3.8.8 Confusion Matrices and FD Analysis

As previously stated in Remark 2.4 turbine temperature may not be instrumented due to very high temperature of turbine. Though recent research has focused on development of new thermocouple which are capable of measuring turbine temperature with required accuracy. Thus, in this section we perform fault detection analysis within two different scenarios (a) turbine temperature is *measurable* (i.e.  $[RES_{P_C}, RES_{T_C}, RES_N, RES_{P_T}, RES_{T_T}]$  is used for fault detection), and (b) turbine temperature is *not measurable* (i.e.  $[RES_{P_C}, RES_{T_C}, RES_{T_C}, RES_{T_C}, RES_{T_C}, RES_{T_T}]$  is used for fault detection).

Below we summarize the fault detection results for both ensemble-based and single modelbased solution in form of confusion matrices. A confusion matrix for fault detection is generally a
table with four entries which are the number of true positive, true negative, false positive, and false negative classifications which are defined as follows:

- True positive (t.p.): the number of simulations classified as faulty and the engine is also faulty.
- False positive (f.p.): the number of simulations classified as faulty, but the engine is healthy.
- True negative (t.n.): the number of simulations classified as healthy and the engine is healthy.
- False negative (f.n.): the number of simulations classified as healthy but the engine is faulty.

The generic form of a confusion matrix is shown in Table 3.68.

|         | Alarm          | No Alarm       |
|---------|----------------|----------------|
| Faulty  | True positive  | False negative |
| Healthy | False positive | True negative  |

Table 3.68: Confusion matrix general form.

*Correct Classi*<sup>\*</sup>*cation Ration* (CCR) (also known as *accuracy*) is presented as a measure to evaluate the *accuracy* of the fault detection which is defined as follows:

$$CCR = \frac{t.p. \quad t.n}{t.p. \quad t.n. \quad f.p. \quad f.n.}$$

Other classifier performance measures are defined as follows:

$$Precision = \frac{t.n}{t.n. f.n.}$$

$$True \ Positive \ Rate \ (TPR) = \frac{t.p}{t.p. f.n.}$$

$$False \ Positive \ Rate \ (FPR) = \frac{f.p}{f.p. t.n.}$$

$$True \ Negative \ Rate \ (TNR) = \frac{t.n}{t.n. f.p.}$$

$$False \ Negative \ Rate \ (FNR) = \frac{f.n}{t.p. f.n.}$$

In this section a total of 200 simulations are performed under different engine operating conditions where a total of 100 experiments are made under presence of fault, and the other 100 are performed while the engine is operating under healthy condition. The 100 faulty simulations are conducted under presence of different fault types with different fault severities.

The fault types considered in this section are the component faults which were previously described in Section 2.3.3. The first considered fault scenario is the fault in the compressor mass flow rate which is an indication of the fouling in the compressor. The considered fault severities are 1%, 2%, 4%, 6% and 8% reduction in the compressor mass flow rate. Several simulations are made while the engine operates under different fuel flow rates (i.e. 70%, 75%, 80% and 85% of the maximum fuel rate). The second considered fault scenario is the fault in the compressor efficiency which is an indication of the erosion in the compressor. The considered fault severities are 1%, 2%, 4%, 6% and 8% reduction in the compressor. The considered fault severities are 1%, 2%, 4%, 6% and 8% reduction in the compressor. The considered fault severities are 1%, 2%, 4%, 6% and 8% reduction in the compressor efficiency. Several simulations are made while the engine operates under different fuel flow rates (i.e. 70%, 75%, 80% and 85% of the maximum fuel rate). The third considered fault scenario is the fault in the turbine mass flow rate which is

an indication of the turbine fouling. The considered fault severities are 1%, 2%, 4%, 6% and 8% reduction in the turbine mass flow rate. Several simulations are made while the engine operates under different fuel flow rates (i.e. 70%, 75%, 80% and 85% of the maximum fuel rate). The fourth considered fault scenario is the fault in the turbine efficiency which is an indication of the erosion in the turbine. The considered fault severities are 1%, 2%, 4%, 6% and 8% reduction in the turbine efficiency. Similar to the previous scenarios, several simulations are made while the engine operates under different fuel flow rates (i.e. 70%, 75%, 80% and 85% of the maximum fuel rate).

A total of 25 simulations are considered under presence of each of the above mentioned faults. This results in a total of 100 simulations under a fault presence. Another 100 simulations are considered while the engine operates in healthy condition. The summary of fault simulations is presented in Table 3.69.

| Fault<br>type | Fault simulation detail                                                                                                                                                                            | # of tests |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| $F_{mc}$      | Considered fault severities are 1%, 2%, 4%, 6%, and 8% decrease in compressor flow capacity ( $\dot{m}_C$ ). 5 simulations are conducted for each fault severity (under different fuel flow rates) | 25         |
| $F_{ec}$      | Considered fault severities are 1%, 2%, 4%, 6%, and 8% decrease in compressor efficiency ( $\eta_C$ ). 5 simulations are conducted for each fault severity (under different fuel flow rates)       | 25         |
| $F_{mt}$      | Considered fault severities are 1%, 2%, 4%, 6%, and 8% decrease in turbine flow capacity $(\dot{m}_T)$ . 5 simulations are conducted for each fault severity (under different fuel flow rates)     | 25         |
| $F_{et}$      | Considered fault severities are 1%, 2%, 4%, 6%, and 8% decrease in turbine efficiency ( $\eta_T$ ). 5 simulations are conducted for each fault severity (under different fuel flow rates)          | 25         |
| _             | Engine operates in healthy condition                                                                                                                                                               | 100        |
| Total         |                                                                                                                                                                                                    | 200        |

Table 3.69: Summary of fault simulations.

The obtained results are presented in the following confusion matrices (refer to Tables 3.70 to 3.86 for confusion matrices based on single model-based solution and Tables 3.72 to 3.88 for confusion matrices based on ensemble-based solution) for each fault severity. More detailed description is presented in the following subsection. A comparison between the results of the single model-based (i.e. RBF-NARX model) fault detection and the ensemble-based (i.e. heterogenous

ensemble with FSS pruning) fault detection illustrates the advantage of ensemble-based solution. We observe that for a total of 200 simulations (25 simulations for each fault type) the fault detection accuracy is increased from 85.5% for single model-based fault detection to 90.5% for ensemble-based fault detection.

**Remark 3.9.** For each engine parameter, the structure of the RBF-NARX networks used for fault detection simulations is the same structure as obtained in Section 3.5 through extensive simulations (refer to Tables 3.20, 3.22, 3.24, 3.28 and 3.26 for the structures). Moreover, for each engine parameter, the ensemble architecture used for fault detection simulations is heterogenous ensemble with FSS pruning as presented in Section 3.7.5 (refer to Tables 3.45, 3.46, 3.48, 3.49 and 3.47). We should also note that (for brevity purpose) other single model-based solutions (i.e. MLP-NARX and SVM-NARX) are not considered for further fault detection simulations as they showed a less promising performance in term of modeling accuracy as compared with RBF-NARX model. This is also true for the ensemble-based solution as we only use the ensemble architecture with better performance (in term of engine parameters modeling) for fault detection simulations.

### **3.8.9** Fault Detection Performance Assuming Measurable Turbine Temperature

This section evaluates the fault detection performance assuming that the turbine temperature is measurable. Confusion matrices are presented for different fault severities. Also different measures for evaluating the performance of the fault detection are presented for each fault severity. Table 3.70 presents the confusion matrices for different fault scenarios based on the single model-based solution when the fault severity is equal to 1%. Table 3.71 shows different measures for evaluating

the performance of the fault detection task based on the residuals obtained from the single model-

based solution when the fault severity is equal to 1%.

# Table 3.70: Confusion matrixes for different fault scenarios based on single model-based solution (RBF-NARX model). Fault severity = 1%.

| Decrease in compressor mass flow rate. |           | Decrease in compressor efficiency |          |           |               |
|----------------------------------------|-----------|-----------------------------------|----------|-----------|---------------|
|                                        | Alarm     | No Alarm                          |          | Alarm     | No Alarm      |
| Faulty                                 | 2         | 3                                 | Faulty   | 4         | 1             |
| Healthy                                | 1         | 4                                 | Healthy  | 0         | 5             |
| Decrease in                            | turbine r | mass flow rate.                   | Decrease | in turbin | e efficiency. |
|                                        | Alarm     | No Alarm                          |          | Alarm     | No Alarm      |
| Faulty                                 | 5         | 0                                 | Faulty   | 4         | 1             |
| Uaalthy                                | 0         | 5                                 | Uaalthy  | 0         | 5             |

Table 3.71: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution. Fault severity = 1%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 60%      | 90%      | 100%     | 90%      |
| Precision | 57.14%   | 83%      | 100%     | 83%      |
| TPR       | 40%      | 80%      | 100%     | 80%      |
| FPR       | 20%      | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 60%      | 20%      | 0%       | 20%      |

Table 3.72 presents the confusion matrices for different fault scenarios based on the ensemblebased solution when the fault severity is equal to 1%. Table 3.73 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the ensemble-based solution when the fault severity is equal to 1%. Table 3.72: Confusion matrixes for different fault scenarios based on ensemble-based (i.e. heterogenous ensemble with FSS pruning) solution. Fault severity = 1%.

| Decrease in compressor mass flow rate. |       |          | Decrease in compressor efficiency. |           |               |
|----------------------------------------|-------|----------|------------------------------------|-----------|---------------|
|                                        | Alarm | No Alarm |                                    | Alarm     | No Alarm      |
| Faulty                                 | 5     | 0        | Faulty                             | 5         | 0             |
| Healthy                                | 3     | 2        | Healthy                            | 0         | 5             |
| Decrease in turbine mass flow rate.    |       |          | Decrease                           | in turbin | e efficiency. |
|                                        | Alarm | No Alarm |                                    | Alarm     | No Alarm      |
| Faulty                                 | 5     | 0        | Faulty                             | 5         | 0             |
| Healthy                                | 0     | 5        | Healthy                            | 0         | 5             |

Table 3.73: Fault detection accuracy of the ensemble-based solution. Fault severity = 1%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 70%      | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 60%      | 0%       | 0%       | 0%       |
| TNR       | 40%      | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 0%       | 0%       |

Table 3.74 presents the confusion matrices for different fault scenarios based on the single model-based solution when the fault severity is equal to 2%. Table 3.75 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the single model-based solution when the fault severity is equal to 2%.

Table 3.74: Confusion matrixes for different fault scenarios based on single model-based solution (RBF-NARX model). Fault severity = 2%.

| Decrease in compressor mass flow rate. |       | Decre    | Decrease in compressor efficiency. |        |           |               |
|----------------------------------------|-------|----------|------------------------------------|--------|-----------|---------------|
|                                        | Alarm | No Alarm |                                    |        | Alarm     | No Alarm      |
| Faulty                                 | 4     | 2        | Fa                                 | aulty  | 5         | 0             |
| Healthy                                | 1     | 3        | He                                 | ealthy | 0         | 5             |
| Decrease in turbine mass flow rate.    |       |          | De                                 | crease | in turbin | e efficiency. |
|                                        | Alarm | No Alarm |                                    |        | Alarm     | No Alarm      |
| Faulty                                 | 5     | 0        | Fa                                 | aulty  | 5         | 0             |
| Healthy                                | 0     | 5        | He                                 | ealthy | 0         | 5             |

Table 3.75: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution. Fault severity = 2%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 70%      | 100%     | 100%     | 100%     |
| Precision | 60%      | 100%     | 100%     | 100%     |
| TPR       | 67%      | 100%     | 100%     | 100%     |
| FPR       | 25%      | 0%       | 0%       | 0%       |
| TNR       | 75%      | 100%     | 100%     | 100%     |
| FNR       | 33%      | 0%       | 0%       | 0%       |

Table 3.76 presents the confusion matrices for different fault scenarios based on the ensemblebased solution when the fault severity is equal to 2%. Table 3.77 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the ensemble-based solution when the fault severity is equal to 2%. Table 3.76: Confusion matrixes for different fault scenarios based on ensemble-based (i.e. heterogenous ensemble with FSS pruning) solution. Fault severity = 2%.

| Decrease in compressor mass flow rate. |       | Decrease in compressor efficiency |          |           |               |
|----------------------------------------|-------|-----------------------------------|----------|-----------|---------------|
|                                        | Alarm | No Alarm                          |          | Alarm     | No Alarm      |
| Faulty                                 | 4     | 1                                 | Faulty   | 5         | 0             |
| Healthy                                | 1     | 4                                 | Healthy  | 0         | 5             |
| Decrease in turbine mass flow rate.    |       |                                   | Decrease | in turbin | e efficiency. |
|                                        | Alarm | No Alarm                          |          | Alarm     | No Alarm      |
| Faulty                                 | 5     | 0                                 | Faulty   | 5         | 0             |
| Healthy                                | 0     | 5                                 | Healthy  | 0         | 5             |

Table 3.77: Fault detection accuracy of the ensemble-based solution. Fault severity = 2%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 80%      | 100%     | 100%     | 100%     |
| Precision | 80%      | 100%     | 100%     | 100%     |
| TPR       | 80%      | 100%     | 100%     | 100%     |
| FPR       | 20%      | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 20%      | 0%       | 0%       | 0%       |

Table 3.78 presents the confusion matrices for different fault scenarios based on the single model-based solution when the fault severity is equal to 4%. Table 3.79 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the single model-based solution when the fault severity is equal to 4%.

Table 3.78: Confusion matrixes for different fault scenarios based on single model-based solution (RBF-NARX model). Fault severity = 4%.

| Decrease in compressor mass flow rate. |       |          | Decrease in compressor efficiency. |           |               |
|----------------------------------------|-------|----------|------------------------------------|-----------|---------------|
|                                        | Alarm | No Alarm |                                    | Alarm     | No Alarm      |
| Faulty                                 | 5     | 0        | Faulty                             | 5         | 0             |
| Healthy                                | 1     | 4        | Healthy                            | 0         | 5             |
| Decrease in turbine mass flow rate.    |       |          | Decrease                           | in turbin | e efficiency. |
|                                        | Alarm | No Alarm |                                    | Alarm     | No Alarm      |
| Faulty                                 | 5     | 0        | Faulty                             | 5         | 0             |
| Healthy                                | 0     | 5        | Healthy                            | 0         | 5             |

Table 3.79: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution. Fault severity = 4%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 90%      | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 20%      | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 0%       | 0%       |

Table 3.80 presents the confusion matrices for different fault scenarios based on the ensemblebased solution when the fault severity is equal to 4%. Table 3.81 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the ensemble-based solution when the fault severity is equal to 4%. Table 3.80: Confusion matrixes for different fault scenarios based on ensemble-based (i.e. heterogenous ensemble with FSS pruning) solution. Fault severity = 4%.

| Decrease in compressor mass flow rate. |       |          | Decrease in compressor efficiency. |       |          |  |
|----------------------------------------|-------|----------|------------------------------------|-------|----------|--|
|                                        | Alarm | No Alarm |                                    | Alarm | No Alarm |  |
| Faulty                                 | 5     | 0        | Faulty                             | 5     | 0        |  |
| Healthy                                | 0     | 5        | Healthy                            | 0     | 5        |  |
| Decrease in turbine mass flow rate.    |       |          | Decrease in turbine efficiency.    |       |          |  |
|                                        | Alarm | No Alarm |                                    | Alarm | No Alarm |  |
| Faulty                                 | 5     | 0        | Faulty                             | 5     | 0        |  |
| Healthy                                | 0     | 5        | Healthy                            | 0     | 5        |  |

Table 3.81: Fault detection accuracy of the ensemble-based solution. Fault severity = 4%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 100%     | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 0%       | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 100%     | 0%       | 0%       | 0%       |

Table 3.82 presents the confusion matrices for different fault scenarios based on the single model-based solution when the fault severity is equal to 6%. Table 3.83 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the single model-based solution when the fault severity is equal to 6%.

Table 3.82: Confusion matrixes for different fault scenarios based on single model-based solution (RBF-NARX model). Fault severity = 6%.

| Decrease in compressor mass flow rate. |                                     |          | Decrease in | Decrease in compressor efficiency. |          |  |  |
|----------------------------------------|-------------------------------------|----------|-------------|------------------------------------|----------|--|--|
|                                        | Alarm                               | No Alarm |             | Alarm                              | No Alarm |  |  |
| Faulty                                 | 5                                   | 0        | Faulty      | 5                                  | 0        |  |  |
| Healthy                                | 1                                   | 4        | Healthy     | 0                                  | 5        |  |  |
| Decrease in                            | Decrease in turbine mass flow rate. |          |             | Decrease in turbine efficiency.    |          |  |  |
|                                        | Alarm                               | No Alarm |             | Alarm                              | No Alarm |  |  |
| Faulty                                 | 5                                   | 0        | Faulty      | 5                                  | 0        |  |  |
| Healthy                                | 0                                   | 5        | Healthy     | 0                                  | 5        |  |  |

Table 3.83: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution. Fault severity = 6%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 90%      | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 20%      | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 0%       | 0%       |

Table 3.84 presents the confusion matrices for different fault scenarios based on the ensemblebased solution when the fault severity is equal to 6%. Table 3.85 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the ensemble-based solution when the fault severity is equal to 6%. Table 3.84: Confusion matrixes for different fault scenarios based on ensemble-based (i.e. heterogenous ensemble with FSS pruning) solution. Fault severity = 6%.

| Decrease in compressor mass flow rate. |       |          | Decrease in compressor efficiency. |       |          |  |
|----------------------------------------|-------|----------|------------------------------------|-------|----------|--|
|                                        | Alarm | No Alarm |                                    | Alarm | No Alarm |  |
| Faulty                                 | 4     | 0        | Faulty                             | 5     | 0        |  |
| Healthy                                | 1     | 5        | Healthy                            | 0     | 5        |  |
| Decrease in turbine mass flow rate.    |       |          | Decrease in turbine efficiency.    |       |          |  |
|                                        | Alarm | No Alarm |                                    | Alarm | No Alarm |  |
| Faulty                                 | 5     | 0        | Faulty                             | 5     | 0        |  |
| Healthy                                | 0     | 5        | Healthy                            | 0     | 5        |  |

Table 3.85: Fault detection accuracy of the ensemble-based solution. Fault severity = 6%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 90%      | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 17%      | 0%       | 0%       | 0%       |
| TNR       | 83%      | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 0%       | 0%       |

Table 3.86 presents the confusion matrices for different fault scenarios based on the single model-based solution when the fault severity is equal to 8%. Table 3.87 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the single model-based solution when the fault severity is equal to 8%.

Table 3.86: Confusion matrixes for different fault scenarios based on single model-based solution (RBF-NARX model). Fault severity = 8%.

| Decrease in compressor mass flow rate. |                                     |          | Decrease in | Decrease in compressor efficiency. |          |  |  |
|----------------------------------------|-------------------------------------|----------|-------------|------------------------------------|----------|--|--|
|                                        | Alarm                               | No Alarm |             | Alarm                              | No Alarm |  |  |
| Faulty                                 | 5                                   | 0        | Faulty      | 5                                  | 0        |  |  |
| Healthy                                | 1                                   | 4        | Healthy     | 0                                  | 5        |  |  |
| Decrease in                            | Decrease in turbine mass flow rate. |          |             | Decrease in turbine efficiency.    |          |  |  |
|                                        | Alarm                               | No Alarm |             | Alarm                              | No Alarm |  |  |
| Faulty                                 | 5                                   | 0        | Faulty      | 5                                  | 0        |  |  |
| Healthy                                | 0                                   | 5        | Healthy     | 0                                  | 5        |  |  |

Table 3.87: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution. Fault severity = 8%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 90%      | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 20%      | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 0%       | 0%       |

Table 3.88 presents the confusion matrices for different fault scenarios based on the ensemblebased solution when the fault severity is equal to 8%. Table 3.89 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the ensemble-based solution when the fault severity is equal to 8%. Table 3.88: Confusion matrixes for different fault scenarios based on ensemble-based (i.e. heterogenous ensemble with FSS pruning) solution. Fault severity = 8%.

| Decrease in compressor mass flow rate. |       |          | Decrease in compressor efficiency. |       |          |
|----------------------------------------|-------|----------|------------------------------------|-------|----------|
|                                        | Alarm | No Alarm |                                    | Alarm | No Alarm |
| Faulty                                 | 5     | 0        | Faulty                             | 5     | 0        |
| Healthy                                | 0     | 5        | Healthy                            | 0     | 5        |
| Decrease in turbine mass flow rate.    |       |          | Decrease in turbine efficiency.    |       |          |
|                                        | Alarm | No Alarm |                                    | Alarm | No Alarm |
| Faulty                                 | 5     | 0        | Faulty                             | 5     | 0        |
| Healthy                                | 0     | 5        | Healthy                            | 0     | 5        |

Table 3.89: Fault detection accuracy of the ensemble-based solution. Fault severity = 8%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 100%     | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 0%       | 0%       | 0%       | 0%       |
| TNR       | 100%     | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 0%       | 0%       |

### 3.8.10 Fault Detection Performance Assuming Unmeasurable Turbine Temperature

This section evaluates the fault detection performance assuming that the turbine temperature is not measurable. Confusion matrices are presented for different fault severities. Also different measures for evaluating the performance of the fault detection are presented for each fault severity.

Table 3.90 presents the confusion matrices for different fault scenarios based on the single modelbased solution when the fault severity is equal to 1%. Table 3.91 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the single model-based solution when the fault severity is equal to 1%.

# Table 3.90: Confusion matrixes for different fault scenarios based on single model-based solution (RBF-NARX model). Fault severity = 1%.

| Decrease in compressor mass flow rate. |                                     |          |  | Decrease in compressor efficiency. |       |          |
|----------------------------------------|-------------------------------------|----------|--|------------------------------------|-------|----------|
|                                        | Alarm                               | No Alarm |  |                                    | Alarm | No Alarm |
| Faulty                                 | 2                                   | 3        |  | Faulty                             | 4     | 1        |
| Healthy                                | 1                                   | 4        |  | Healthy                            | 0     | 5        |
| Decrease in                            | Decrease in turbine mass flow rate. |          |  | Decrease in turbine efficiency.    |       |          |
|                                        | Alarm                               | No Alarm |  |                                    | Alarm | No Alarm |
| Faulty                                 | 4                                   | 1        |  | Faulty                             | 4     | 1        |
| Healthy                                | 0                                   | 5        |  | Healthy                            | 0     | 5        |

Table 3.91: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution. Fault severity = 1%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 60%      | 90%      | 90%      | 90%      |
| Precision | 57%      | 83%      | 83%      | 83%      |
| TPR       | 40%      | 80%      | 80%      | 80%      |
| FPR       | 20%      | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 60%      | 20%      | 20%      | 20%      |

Table 3.92 presents the confusion matrices for different fault scenarios based on the ensemblebased solution when the fault severity is equal to 1%. Table 3.93 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the ensemble-based solution when the fault severity is equal to 1%.

# Table 3.92: Confusion matrixes for different fault scenarios based on ensemble-based (i.e. heterogenous ensemble with FSS pruning) solution. Fault severity = 1%.

| Decrease in compressor mass flow rate. |           | Decrease in compressor efficiency |          |                                 |          |  |
|----------------------------------------|-----------|-----------------------------------|----------|---------------------------------|----------|--|
|                                        | Alarm     | No Alarm                          |          | Alarm                           | No Alarm |  |
| Faulty                                 | 4         | 1                                 | Faulty   | 5                               | 0        |  |
| Healthy                                | 1         | 4                                 | Healthy  | 0                               | 5        |  |
| Decrease in                            | turbine r | nass flow rate.                   | Decrease | Decrease in turbine efficiency. |          |  |
|                                        | Alarm     | No Alarm                          |          | Alarm                           | No Alarm |  |
| Faulty                                 | 4         | 1                                 | Faulty   | 5                               | 0        |  |
| Healthy                                | 0         | 5                                 | Healthy  | 0                               | 5        |  |

Table 3.93: Fault detection accuracy of the ensemble-based solution. Fault severity = 1%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 80%      | 100%     | 90%      | 100%     |
| Precision | 80%      | 100%     | 83%      | 100%     |
| TPR       | 80%      | 100%     | 80%      | 100%     |
| FPR       | 20%      | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 20%      | 0%       | 20%      | 0%       |
|           |          |          |          |          |

Table 3.94 presents the confusion matrices for different fault scenarios based on the single model-based solution when the fault severity is equal to 2%. Table 3.95 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the single model-based solution when the fault severity is equal to 2%.

Table 3.94: Confusion matrixes for different fault scenarios based on single model-based solution (RBF-NARX model). Fault severity = 2%.

| Decrease in compressor mass flow rate. |       | Decrease in | Decrease in compressor efficiency. |                                 |          |  |  |
|----------------------------------------|-------|-------------|------------------------------------|---------------------------------|----------|--|--|
|                                        | Alarm | No Alarm    |                                    | Alarm                           | No Alarm |  |  |
| Faulty                                 | 4     | 1           | Faulty                             | 5                               | 0        |  |  |
| Healthy                                | 1     | 4           | Healthy                            | 0                               | 5        |  |  |
| Decrease in turbine mass flow rate.    |       |             | Decrease                           | Decrease in turbine efficiency. |          |  |  |
|                                        | Alarm | No Alarm    |                                    | Alarm                           | No Alarm |  |  |
| Faulty                                 | 5     | 0           | Faulty                             | 5                               | 0        |  |  |
| Healthy                                | 0     | 5           | Healthy                            | 0                               | 5        |  |  |

Table 3.95: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution. Fault severity = 2%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 80%      | 100%     | 100%     | 100%     |
| Precision | 80%      | 100%     | 100%     | 100%     |
| TPR       | 80%      | 100%     | 100%     | 100%     |
| FPR       | 20%      | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 20%      | 0%       | 0%       | 0%       |

Table 3.96 presents the confusion matrices for different fault scenarios based on the ensemblebased solution when the fault severity is equal to 2%. Table 3.97 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the ensemble-based solution when the fault severity is equal to 2%. Table 3.96: Confusion matrixes for different fault scenarios based on ensemble-based (i.e. heterogenous ensemble with FSS pruning) solution. Fault severity = 2%.

| Decrease in compressor mass flow rate. |                                     | Decrease in compressor efficiency. |         |                                 |          |  |  |
|----------------------------------------|-------------------------------------|------------------------------------|---------|---------------------------------|----------|--|--|
|                                        | Alarm                               | No Alarm                           |         | Alarm                           | No Alarm |  |  |
| Faulty                                 | 4                                   | 1                                  | Faulty  | 5                               | 0        |  |  |
| Healthy                                | 0                                   | 5                                  | Healthy | 0                               | 5        |  |  |
| Decrease in                            | Decrease in turbine mass flow rate. |                                    |         | Decrease in turbine efficiency. |          |  |  |
|                                        | Alarm                               | No Alarm                           |         | Alarm                           | No Alarm |  |  |
| Faulty                                 | 5                                   | 0                                  | Faulty  | 5                               | 0        |  |  |
| Healthy                                | 0                                   | 5                                  | Healthy | 0                               | 5        |  |  |

Table 3.97: Fault detection accuracy of the ensemble-based solution. Fault severity = 2%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 90%      | 100%     | 100%     | 100%     |
| Precision | 83%      | 100%     | 100%     | 100%     |
| TPR       | 80%      | 100%     | 100%     | 100%     |
| FPR       | 0%       | 0%       | 0%       | 0%       |
| TNR       | 100%     | 100%     | 100%     | 100%     |
| FNR       | 20%      | 0%       | 0%       | 0%       |

Table 3.98 presents the confusion matrices for different fault scenarios based on the single model-based solution when the fault severity is equal to 4%. Table 3.99 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the single model-based solution when the fault severity is equal to 4%.

Table 3.98: Confusion matrixes for different fault scenarios based on single model-based solution (RBF-NARX model). Fault severity = 4%.

| Decrease in compressor mass flow rate. |                                     | Decrease | Decrease in compressor efficiency. |                                 |       |          |  |
|----------------------------------------|-------------------------------------|----------|------------------------------------|---------------------------------|-------|----------|--|
|                                        | Alarm                               | No Alarm |                                    |                                 | Alarm | No Alarm |  |
| Faulty                                 | 5                                   | 0        | Fault                              | ty                              | 5     | 0        |  |
| Healthy                                | 1                                   | 4        | Healt                              | hy                              | 0     | 5        |  |
| Decrease in                            | Decrease in turbine mass flow rate. |          |                                    | Decrease in turbine efficiency. |       |          |  |
|                                        | Alarm                               | No Alarm |                                    |                                 | Alarm | No Alarm |  |
| Faulty                                 | 5                                   | 0        | Fault                              | ty                              | 5     | 0        |  |
| Healthy                                | 0                                   | 5        | Healt                              | hy                              | 0     | 5        |  |

Table 3.99: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution. Fault severity = 4%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 90%      | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 20%      | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 0%       | 0%       |

Table 3.100 presents the confusion matrices for different fault scenarios based on the ensemblebased solution when the fault severity is equal to 4%. Table 3.101 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the ensemble-based solution when the fault severity is equal to 4%. Table 3.100: Confusion matrixes for different fault scenarios based on ensemble-based (i.e. heterogenous ensemble with FSS pruning) solution. Fault severity = 4%.

| Decrease in compressor mass flow rate. |                                     |          | De | Decrease in compressor efficiency. |       |          |  |
|----------------------------------------|-------------------------------------|----------|----|------------------------------------|-------|----------|--|
|                                        | Alarm                               | No Alarm |    |                                    | Alarm | No Alarm |  |
| Faulty                                 | 5                                   | 0        |    | Faulty                             | 5     | 0        |  |
| Healthy                                | 0                                   | 5        | ]  | Healthy                            | 0     | 5        |  |
| Decrease in                            | Decrease in turbine mass flow rate. |          |    | Decrease in turbine efficiency.    |       |          |  |
|                                        | Alarm                               | No Alarm |    |                                    | Alarm | No Alarm |  |
| Faulty                                 | 4                                   | 1        |    | Faulty                             | 5     | 0        |  |
| Healthy                                | 0                                   | 5        | ]  | Healthy                            | 0     | 5        |  |

Table 3.101: Fault detection accuracy of the ensemble-based solution. Fault severity = 4%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 100%     | 100%     | 90%      | 100%     |
| Precision | 100%     | 100%     | 83%      | 100%     |
| TPR       | 100%     | 100%     | 80%      | 100%     |
| FPR       | 0%       | 0%       | 0%       | 0%       |
| TNR       | 100%     | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 20%      | 0%       |

Table 3.102 presents the confusion matrices for different fault scenarios based on the single model-based solution when the fault severity is equal to 6%. Table 3.103 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the single model-based solution when the fault severity is equal to 6%.

Table 3.102: Confusion matrixes for different fault scenarios based on single model-based solution (RBF-NARX model). Fault severity = 6%.

| Decrease in compressor mass flow rate. |                                     | Decrease in | Decrease in compressor efficiency. |                                 |          |  |  |
|----------------------------------------|-------------------------------------|-------------|------------------------------------|---------------------------------|----------|--|--|
|                                        | Alarm                               | No Alarm    |                                    | Alarm                           | No Alarm |  |  |
| Faulty                                 | 5                                   | 0           | Faulty                             | 5                               | 0        |  |  |
| Healthy                                | 1                                   | 4           | Healthy                            | 0                               | 5        |  |  |
| Decrease in                            | Decrease in turbine mass flow rate. |             |                                    | Decrease in turbine efficiency. |          |  |  |
|                                        | Alarm                               | No Alarm    |                                    | Alarm                           | No Alarm |  |  |
| Faulty                                 | 5                                   | 0           | Faulty                             | 5                               | 0        |  |  |
| Healthy                                | 0                                   | 5           | Healthy                            | 0                               | 5        |  |  |

Table 3.103: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution. Fault severity = 6%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 90%      | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 20%      | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 0%       | 0%       |

Table 3.104 presents the confusion matrices for different fault scenarios based on the ensemblebased solution when the fault severity is equal to 6%. Table 3.105 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the ensemble-based solution when the fault severity is equal to 6%. Table 3.104: Confusion matrixes for different fault scenarios based on ensemble-based (i.e. heterogenous ensemble with FSS pruning) solution. Fault severity = 6%.

| Decrease in co                      | ompresso  | r mass flow rate. | Decrease in                     | Decrease in compressor efficiency. |          |  |  |
|-------------------------------------|-----------|-------------------|---------------------------------|------------------------------------|----------|--|--|
|                                     | Alarm     | No Alarm          |                                 | Alarm                              | No Alarm |  |  |
| Faulty                              | 4         | 0                 | Faulty                          | 5                                  | 0        |  |  |
| Healthy                             | Healthy 1 |                   | Healthy                         | 0                                  | 5        |  |  |
| Decrease in turbine mass flow rate. |           |                   | Decrease in turbine efficiency. |                                    |          |  |  |
|                                     | Alarm     | No Alarm          |                                 | Alarm                              | No Alarm |  |  |
| Faulty                              | 5         | 0                 | Faulty                          | 5                                  | 0        |  |  |
| Healthy                             | 0         | 5                 | Healthy                         | 0                                  | 5        |  |  |

Table 3.105: Fault detection accuracy of the ensemble-based solution. Fault severity = 6%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 90%      | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 17%      | 0%       | 0%       | 0%       |
| TNR       | 83%      | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 0%       | 0%       |

Table 3.106 presents the confusion matrices for different fault scenarios based on the single model-based solution when the fault severity is equal to 8%. Table 3.107 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the single model-based solution when the fault severity is equal to 8%.

Table 3.106: Confusion matrixes for different fault scenarios based on single model-based solution (RBF-NARX model). Fault severity = 8%.

| Decrease in co                      | ompresso    | r mass flow rate. | Decrease in compressor efficiency. |           |          |  |
|-------------------------------------|-------------|-------------------|------------------------------------|-----------|----------|--|
|                                     | Alarm       | No Alarm          |                                    | Alarm     | No Alarm |  |
| Faulty                              | 5           | 0                 | Faulty                             | 5         | 0        |  |
| Healthy                             | Healthy 1 4 |                   | Healthy                            | Healthy 0 |          |  |
| Decrease in turbine mass flow rate. |             |                   | Decrease in turbine efficiency.    |           |          |  |
|                                     | Alarm       | No Alarm          |                                    | Alarm     | No Alarm |  |
| Faulty                              | 5           | 0                 | Faulty                             | 5         | 0        |  |
| Healthy                             | 0           | 5                 | Healthy                            | 0         | 5        |  |

Table 3.107: Fault detection accuracy of the single model-based (i.e. RBF-NARX) solution. Fault severity = 8%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 90%      | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 20%      | 0%       | 0%       | 0%       |
| TNR       | 80%      | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 0%       | 0%       |

Table 3.108 presents the confusion matrices for different fault scenarios based on the ensemblebased solution when the fault severity is equal to 8%. Table 3.109 shows different measures for evaluating the performance of the fault detection task based on the residuals obtained from the ensemble-based solution when the fault severity is equal to 8%. Table 3.108: Confusion matrixes for different fault scenarios based on ensemble-based (i.e. heterogenous ensemble with FSS pruning) solution. Fault severity = 8%.

| Decrease in co                      | ompresso    | r mass flow rate. | Decrease in compressor efficienc |           |               |  |
|-------------------------------------|-------------|-------------------|----------------------------------|-----------|---------------|--|
|                                     | Alarm       | No Alarm          |                                  | Alarm     | No Alarm      |  |
| Faulty                              | 5           | 0                 | Faulty                           | 5         | 0             |  |
| Healthy                             | Healthy 0 5 |                   | Healthy                          | Healthy 0 |               |  |
| Decrease in turbine mass flow rate. |             |                   | Decrease                         | in turbin | e efficiency. |  |
|                                     | Alarm       | No Alarm          |                                  | Alarm     | No Alarm      |  |
| Faulty                              | 5           | 0                 | Faulty                           | 5         | 0             |  |
| Healthy                             | 0           | 5                 | Healthy                          | 0         | 5             |  |

Table 3.109: Fault detection accuracy of the ensemble-based solution. Fault severity = 8%.

|           | $F_{mc}$ | $F_{ec}$ | $F_{mt}$ | $F_{et}$ |
|-----------|----------|----------|----------|----------|
| CCR       | 100%     | 100%     | 100%     | 100%     |
| Precision | 100%     | 100%     | 100%     | 100%     |
| TPR       | 100%     | 100%     | 100%     | 100%     |
| FPR       | 0%       | 0%       | 0%       | 0%       |
| TNR       | 100%     | 100%     | 100%     | 100%     |
| FNR       | 0%       | 0%       | 0%       | 0%       |

Based on the above observations, measurability of turbine temperature may improve fault detection performance. We observed that using turbine temperature residual make it possible to detect some fault scenarios which were not detectable otherwise (decrease in turbine mass flow rate with different severities). More specifically, using turbine temperature measurement improves accuracy of detecting the fault in compressor mass flow rate up to 10% for faults lower severities (1% and 2% in fault magnitude). Further investigation would be required based on specifications of new developed sensor as part of HEATTOP project [234], [235] as the accuracy of the sensor plays an important role in its effectiveness for fault detection.

### 3.9 Summary

In this chapter, first, jet engine dynamic was modeled using both single model-based and ensemblebased solutions. This includes identification of the jet engine dynamics using RBF-NARX, MLP-NARX, and SVM-NARX models (single model-based solutions), as well as two heterogeneous and one homogeneous ensemble systems (ensemble-based solutions). It is observed that system modeling accuracy can be improved up to 67% by using the ensemble learning over the stand-alone learning models. In the rest of the chapter an ensemble-based as well as a single model-based fault detection mechanism were developed. It was shown that the ensemble-based fault detection is generally more accurate. More specifically, it improves the fault detection accuracy by 5% on average over the single model-based solution.

### **Chapter 4**

## **Ensemble-based Jet Engine Fault Isolation**

In Chapter 3 we discussed modeling of jet engine outputs using both single-model solutions, and ensemble models. We showed that a more accurate model can be achieved by using the ensemble systems as compared to the stand-alone models. We also discussed the effects of more accurate modeling on accuracy of the fault detection. In this chapter we use the results of the previous chapter to perform the fault isolation task. To do so we evaluate the residuals that are generated in the previous chapter to isolate engine faults. As we previously discussed in Chapter 3 heterogenous ensemble model with Forward Sequential Selection (FSS) pruning demonstrates the maximal improvement as compared with the single-model solutions. Also, RBF-NARX model has the best performance among the single-model solutions that are studied in the previous chapter. Thus, in this chapter we perform the fault isolation task using by the residual signals that are generated by both models. We then do comparison between the ensemble-based and single-model based fault isolation schemes.

### 4.1 Single Fault Isolation

In the previous chapter we modeled jet engine dynamics with the purpose of generating residual signals. We also performed a residual evaluation with the goal of performing fault detection. In this section, we propose a methodology for evaluating residuals with the objective of fault isolation of the jet engine. The fault classes covering the severity ranges discussed in the previous chapter are listed in the following.

**Remark 4.1.** Note that in this research only two ranges of fault severities are considered for the sake of <u>illustration</u>, that is (a) less severe faults (3%), and (b) more severe faults (3%). It should be emphasized that more severity ranges can be easily added by considering more fault labels.

- Class 1 (f<sub>1</sub>): This class contains loss of compressor efficiency (i.e. F<sub>ec</sub>), by severity between 1% to 3%. As previously described it is common to model component faults by considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the compressor efficiency between 1% to 3%.
- Class 2 (f<sub>2</sub>): This class contains loss of compressor efficiency (i.e. F<sub>ec</sub>), by severity between 4% to 6%. As previously described it is common to model component faults by considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the compressor efficiency between 4% to 6%.
- Class 3 ( $f_3$ ): This class contains loss of compressor mass flow rate (i.e.  $F_{mc}$ ), by severity between 1% to 3%. As previously described it is common to model component faults by

considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the compressor mass flow rate by 1% to 3%.

- Class 4 ( $f_4$ ): This class contains loss of compressor mass flow rate (i.e.  $F_{mc}$ ), by severity between 4% to 6%. As previously described it is common to model component faults by considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the compressor mass flow rate by 4% to 6%.
- Class 5 ( $f_5$ ): This class contains loss of turbine efficiency (i.e.  $F_{et}$ ), by severity between 1% to 3%. As previously described it is common to model component faults by considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the turbine efficiency between 1% to 3%.
- Class 6 ( $f_6$ ): This class contains loss of turbine efficiency (i.e.  $F_{et}$ ), by severity between 4% to 6%. As previously described it is common to model component faults by considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the turbine efficiency between 4% to 6%.
- Class 7 (f<sub>7</sub>): This class contains loss of turbine mass flow rate (i.e. F<sub>mt</sub>), by severity between 1% to 3%. As previously described it is common to model component faults by considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the turbine mass flow rate

by 1% to 3%.

Class 8 (f<sub>8</sub>): This class contains loss of turbine mass flow rate (i.e. F<sub>mt</sub>), by severity between 4% to 6%. As previously described it is common to model component faults by considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the turbine mass flow rate by 4% to 6%.

#### 4.1.1 Static Neural Networks for Fault Isolation

The use of static neural networks for the purpose of fault isolation of a jet engine is reported in several publications including but not limited to [143], [144], [146], [154], [155], [161], [164], [167], [172], [177]. The same methodology is used in this thesis to isolate the engine faults. Towards this end, a static neural network (multi-layer perceptron) is trained to isolate the engine faults. The inputs of the neural networks should be scalers (rather than time-series, i.e. residual signal); thus, the residuals should be preprocessed in order to be suitable for inputs of the static neural network. In the previous chapter we saw how the variations in the residual signals can be an indication of fault occurrence. Here in this section we use the same concept for determination of fault type, and estimating the fault severity. The designed neural network fault classifier receives the variations of residual signals before and after the fault occurrence, and returns the fault label corresponding to the isolated fault (the list of fault classes is presented before). This is the function of residual evaluation block in Figure 4.1. It receives the residual signals at any moment, and compares them with the fault thresholds (refer to Section 3.8.2), once at least one the residuals exceeds its threshold the residual evaluation block detects a fault. Next the residual evaluation block calculates the variation of the residual signals before and after the fault.

scaler vector is then used as an input to the neural network fault classifier. Figure 4.1 summarizes the above mentioned mechanism.



Figure 4.1: Fault isolation mechanism.

The fault isolation task is then performed twice, one time using the residual signals obtained from single model-based solution, and the second time using the residual signals obtained from the ensemble-based solution. In the next section we discuss the residual evaluation mechanism, and the neural network classifier in more details. Then we present the obtained fault isolation results.

#### 4.1.2 Residual Evaluation

The residuals obtained by comparing the actual engine outputs and the engine model outputs are evaluated for the purpose of fault detection and isolation. First, the residuals are compared with the determined thresholds in the previous chapter to detect the fault. Now we evaluate the residuals for the purpose of fault isolation. The residual evaluation block in Figure 4.1 sends the signals into neural network classifier by determining the variations of residuals before and after the fault detection. In other words, the output of the residual evaluation block can be defined as:

$$\Delta RES = \Delta RES_{T_C}, \Delta RES_{P_C}, \Delta RES_N, \Delta RES_{T_T}, \Delta RES_{P_T}$$

We should emphasize that the fault isolation neural network is only called when a fault is detected and the  $\Delta RES$  vector is defined. Note that the value of  $\Delta RES$  is only defined for  $t = t_D$ , and undefined otherwise; where  $t_D$  is the detection time.

#### 4.1.3 Neural Network Fault Classifier

This section explains the structure of the MLP neural network fault classifier that is used in this research for the fault isolation task. The use of MLP neural networks for fault isolation of jet engines has been reported in many researches including but not limited to [143], [144], [146], [154], [155], [161], [164], [167], [172], [177]. The classifier employs the previously described  $\Delta RES$  vector as its input, and it returns a fault label vector as listed below:

- $F_{ec}$  with severity less than 3% ( $f_1$ ) is labeled using [1,0,0,0,0,0,0,0]
- $F_{ec}$  with severity more than 3% ( $f_2$ ) is labeled using [0,1,0,0,0,0,0,0]
- $F_{mc}$  with severity less than 3% ( $f_3$ ) is labeled using [0,0,1,0,0,0,0,0]
- $F_{mc}$  with severity more than 3% ( $f_4$ ) is labeled using [0,0,0,1,0,0,0,0]
- $F_{et}$  with severity less than 3% ( $f_5$ ) is labeled using [0,0,0,0,1,0,0,0]

- $F_{et}$  with severity more than 3% ( $f_6$ ) is labeled using [0,0,0,0,0,1,0,0]
- $F_{mt}$  with severity less than 3% ( $f_7$ ) is labeled using [0,0,0,0,0,0,1,0]
- $F_{mt}$  with severity more than 3% ( $f_8$ ) is labeled using [0,0,0,0,0,0,1]

#### **Training Data**

The training data is labeled as mentioned above. The total number of fault scenarios considered here is the same as in Chapter 3. For each of the *four fault types* ( $F_{mc}$ ,  $F_{ec}$ ,  $F_{mt}$ ,  $F_{et}$ ) we collect the data while engine is operating using *ve different input pro les*  $\dot{m}_f = 0.68, 0.7, 0.75, 0.8, 0.85$  of the maximum fuel rate (range of the fuel flow rate while in cruise mode [200]). *Four different fault severities* are considered for each fault type (1%, 2%, 4%, 6% and 8%). Then the residuals are evaluated using the previously mentioned procedure. The total number of input/target pairs generated for training and validation of neural network fault classifier is 4 5 5 = 100. Two different neural network fault classifiers are constructed based on the available data. The first network is constructed using the data obtained from the single model-based solution and the second network is constructed using the data obtained from the ensemble based solution. The summary of the construction of the neural network fault classifier using the data obtained from the single model-based and the ensemble based solutions is shown in Tables 4.1 and 4.1 respectively.

| # neurons | training data $(\%)$ | # validation data (%) | test data (%) | $CCR_{train}$ | $CCR_{test}$ | $CCR_{valid}$ | $CCR_{total}$ |
|-----------|----------------------|-----------------------|---------------|---------------|--------------|---------------|---------------|
| 8         | 60                   | 10                    | 30            | 83            | 83           | 70            | 82            |
| 8         | 50                   | 20                    | 30            | 88            | 90           | 80            | 87            |
| 8         | 40                   | 30                    | 30            | 85            | 73           | 67            | 76            |
| 8         | 50                   | 10                    | 40            | 88            | 85           | 90            | 87            |
| 8         | 40                   | 20                    | 40            | 85            | 70           | 70            | 76            |
| 8         | 30                   | 30                    | 40            | 87            | 70           | 77            | 77            |
| 8         | 40                   | 10                    | 50            | 85            | 66           | 90            | 76            |
| 8         | 30                   | 20                    | 50            | 87            | 68           | 85            | 77            |
| 8         | 20                   | 30                    | 50            | 90            | 60           | 67            | 68            |
| 9         | 60                   | 10                    | 30            | 87            | 83           | 100           | 87            |
| 9         | 50                   | 20                    | 30            | 88            | 73           | 85            | 83            |
| 9         | 40                   | 30                    | 30            | 88            | 77           | 90            | 85            |
| 9         | 50                   | 10                    | 40            | 88            | 80           | 70            | 83            |
| 9         | 40                   | 20                    | 40            | 88            | 83           | 85            | 85            |
| 9         | 30                   | 30                    | 40            | 87            | 80           | 77            | 81            |
| 9         | 40                   | 10                    | 50            | 88            | 78           | 90            | 83            |
| 9         | 30                   | 20                    | 50            | 87            | 78           | 80            | 81            |
| 9         | 20                   | 30                    | 50            | 85            | 76           | 63            | 74            |
| 10        | 60                   | 10                    | 30            | 85            | 73           | 80            | 81            |
| 10        | 50                   | 20                    | 30            | 84            | 67           | 65            | 75            |

Table 4.1: Summary of the Construction of the Neural Network Fault Classifier based onresiduals obtained from single model-based solution.

| # neurons | training data (%) | # validation data (%) | test data (%) | $CCR_{train}$ (%) | $CCR_{test}$ (%) | $CCR_{valid}$ (%) | $CCR_{total}$ (%) |
|-----------|-------------------|-----------------------|---------------|-------------------|------------------|-------------------|-------------------|
| 8         | 60                | 10                    | 30            | 95                | 92               | 71                | 96                |
| 8         | 50                | 20                    | 30            | 78                | 62               | 62                | 75                |
| 8         | 40                | 30                    | 30            | 83                | 66               | 69                | 79                |
| 8         | 50                | 10                    | 40            | 92                | 83               | 91                | 93                |
| 8         | 40                | 20                    | 40            | 88                | 73               | 77                | 85                |
| 8         | 30                | 30                    | 40            | 89                | 73               | 82                | 86                |
| 8         | 40                | 10                    | 50            | 88                | 72               | 91                | 85                |
| 8         | 30                | 20                    | 50            | 89                | 72               | 87                | 85                |
| 8         | 20                | 30                    | 50            | 97                | 68               | 79                | 82                |
| 9         | 60                | 10                    | 30            | 91                | 86               | 100               | 95                |
| 9         | 50                | 20                    | 30            | 92                | 86               | 92                | 95                |
| 9         | 40                | 30                    | 30            | 91                | 76               | 92                | 92                |
| 9         | 50                | 10                    | 40            | 92                | 91               | 81                | 95                |
| 9         | 40                | 20                    | 40            | 91                | 83               | 87                | 92                |
| 9         | 30                | 30                    | 40            | 89                | 83               | 82                | 90                |
| 9         | 40                | 10                    | 50            | 91                | 84               | 91                | 92                |
| 9         | 30                | 20                    | 50            | 89                | 82               | 87                | 90                |
| 9         | 20                | 30                    | 50            | 87                | 80               | 69                | 83                |
| 10        | 60                | 10                    | 30            | 90                | 79               | 91                | 91                |
| 10        | 50                | 20                    | 30            | 88                | 76               | 92                | 90                |

 Table 4.2: Summary of the Construction of the Neural Network Fault Classifier based on residuals obtained from ensemble-based solution.

The trained neural network receives the  $\Delta RES$  vector as input and returns the fault label as output. Figure 4.2 shows input-output relation of the designed neural network fault classifier.



Figure 4.2: Proposed neural network fault classifier.

In the next sections the simulation results are shown for the fault isolation task by using residuals obtained from single-model and ensemble model solutions.

#### 4.1.4 Single Model-based Fault Isolation

In this section we use the residuals that are obtained from the single-model solution (RBF-NARX) for fault isolation task. The fault scenarios are previously explained and data samples for these scenarios are collected (total number of 100 scenarios are developed for the sake of illustration). Among the collected data we randomly select 50 samples (after experimenting with different sizes
of training data, i.e. 30, 40, 50, 60 samples). Starting from a small structure we construct a neural network classifier for fault isolation. We observe that an acceptable performance can be archived using a single-layer network with 15 hidden neurons. Tables 4.3 to 4.5 show the confusion matrixes for training and testing of all available data.

| Actual<br>Prediction                                                      | $F_{ec}$ more than 3% | $F_{ec}$ less than 3% | $F_{mc}$<br>more than 3% | $F_{mc}$ less than 3% | $\begin{array}{c} F_{mt} \\ \text{more than} \\ 3\% \end{array}$ | $F_{mt}$ less than 3% | $F_{et}$ more than 3% | $F_{et}$ less than 3% |
|---------------------------------------------------------------------------|-----------------------|-----------------------|--------------------------|-----------------------|------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|
| $F_{ec}$ more than 3%                                                     | 3                     | 0                     | 0                        | 0                     | 1                                                                | 0                     | 0                     | 0                     |
| $\begin{array}{c} F_{ec}  \text{less} \\ \text{than } 3\% \end{array}$    | 0                     | 5                     | 0                        | 0                     | 0                                                                | 0                     | 0                     | 0                     |
| $\begin{array}{c} F_{mc} \\ \text{more than} \\ 3\% \end{array}$          | 0                     | 0                     | 7                        | 0                     | 0                                                                | 0                     | 0                     | 0                     |
| $F_{mc}$ less than 3%                                                     | 0                     | 0                     | 0                        | 7                     | 0                                                                | 0                     | 0                     | 0                     |
| $\begin{array}{c} F_{mt} \\ \text{more than} \\ 3\% \end{array}$          | 2                     | 2                     | 0                        | 0                     | 8                                                                | 1                     | 0                     | 0                     |
| $F_{mt}$ less than 3%                                                     | 0                     | 0                     | 0                        | 0                     | 0                                                                | 6                     | 0                     | 0                     |
| $\begin{array}{c c} F_{et} & \text{more} \\ \text{than } 3\% \end{array}$ | 0                     | 0                     | 0                        | 0                     | 0                                                                | 0                     | 3                     | 0                     |
| $F_{et}$ less than 3%                                                     | 0                     | 0                     | 0                        | 0                     | 0                                                                | 0                     | 0                     | 5                     |

 Table 4.3: Confusion matrix for training data using single model-based (RBF-NARX) fault isolation.

| Actual<br>Prediction                                             | $F_{ec}$ more than 3% | $F_{ec}$ less than 3% | $F_{mc}$<br>more than $3\%$ | $F_{mc}$ less than 3% | $F_{mt}$<br>more than $3\%$ | $F_{mt}$ less than 3% | $F_{et}$ more than 3% | $F_{et}$ less than 3% |
|------------------------------------------------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|-----------------------------|-----------------------|-----------------------|-----------------------|
| $F_{ec}$ more than 3%                                            | 7                     | 0                     | 0                           | 0                     | 1                           | 0                     | 1                     | 0                     |
| $F_{ec}$ less than 3%                                            | 0                     | 3                     | 0                           | 0                     | 0                           | 0                     | 0                     | 0                     |
| $\begin{array}{c} F_{mc} \\ \text{more than} \\ 3\% \end{array}$ | 0                     | 0                     | 6                           | 0                     | 0                           | 0                     | 0                     | 0                     |
| $F_{mc}$ less than 3%                                            | 0                     | 0                     | 0                           | 5                     | 0                           | 0                     | 0                     | 0                     |
| $\begin{array}{c} F_{mt} \\ \text{more than} \\ 3\% \end{array}$ | 1                     | 0                     | 0                           | 0                     | 5                           | 1                     | 1                     | 2                     |
| $F_{mt}$ less than 3%                                            | 0                     | 0                     | 0                           | 0                     | 0                           | 4                     | 0                     | 0                     |
| $F_{et}$ more than 3%                                            | 0                     | 0                     | 0                           | 0                     | 0                           | 0                     | 5                     | 0                     |
| $F_{et}$ less than 3%                                            | 0                     | 0                     | 0                           | 0                     | 0                           | 0                     | 3                     | 5                     |

 Table 4.4: Confusion matrix for testing data using single model-based (RBF-NARX) fault isolation.

| Actual<br>Prediction                                                   | $F_{ec}$ more than 3% | $F_{ec}$ less than 3% | $F_{mc}$ more than $3\%$ | $F_{mc}$ less than 3% | $F_{mt}$<br>more than $3\%$ | $F_{mt}$ less than 3% | $F_{et}$ more than 3% | $F_{et}$ less than 3% |
|------------------------------------------------------------------------|-----------------------|-----------------------|--------------------------|-----------------------|-----------------------------|-----------------------|-----------------------|-----------------------|
| $\begin{array}{c} F_{ec}  \text{more} \\ \text{than } 3\% \end{array}$ | 10                    | 0                     | 0                        | 0                     | 2                           | 0                     | 1                     | 0                     |
| $\begin{array}{c} F_{ec}  \text{less} \\ \text{than } 3\% \end{array}$ | 0                     | 8                     | 0                        | 0                     | 0                           | 0                     | 0                     | 0                     |
| $\begin{array}{c} F_{mc} \\ \text{more than} \\ 3\% \end{array}$       | 0                     | 0                     | 13                       | 0                     | 0                           | 0                     | 0                     | 0                     |
| $F_{mc}$ less than 3%                                                  | 0                     | 0                     | 0                        | 12                    | 0                           | 0                     | 0                     | 0                     |
| $\begin{array}{c} F_{mt} \\ \text{more than} \\ 3\% \end{array}$       | 3                     | 2                     | 0                        | 0                     | 13                          | 2                     | 1                     | 2                     |
| $F_{mt}$ less than 3%                                                  | 0                     | 0                     | 0                        | 0                     | 0                           | 10                    | 0                     | 0                     |
| $F_{et}$ more than 3%                                                  | 0                     | 0                     | 0                        | 0                     | 0                           | 0                     | 8                     | 0                     |
| $\begin{array}{c} F_{et}  \text{less} \\ \text{than } 3\% \end{array}$ | 0                     | 0                     | 0                        | 0                     | 0                           | 0                     | 3                     | 10                    |

Table 4.5: Confusion matrix for both training and testing data using single model-based(RBF-NARX) fault isolation.

We use *correct classi cation rate (CCR)* as a measure for accuracy of fault isolation task as defined below:

$$CCR = \frac{\text{total number of correctly classified samples}}{\text{total number of samples}}$$

Table 4.6 shows the fault isolation performance for single model-based fault isolation.

 Table 4.6: Fault isolation performance of single model-based (RBF-NARX) solution in term of CCR.

| $CCR_{training}$ | 88% |
|------------------|-----|
| $CCR_{testing}$  | 80% |
| $CCR_{total}$    | 84% |

#### 4.1.5 Ensemble-based Fault Isolation

In this section we use the residuals that are obtained from the ensemble-based solution (RBF-NARX) for fault isolation task. The fault scenarios are previously explained and data samples for these scenarios are collected (total number of 100 scenarios are developed for the sake of illustration). Among the collected data we randomly select 50 samples (after experimenting with different sizes of training data i.e., 30, 40, 50, 60 samples). To have faire comparative study we use the same number of training samples, and network architecture as in the single model-based solution. Tables 4.7 to 4.9 show the confusion matrices for the training, testing for all available data.

| Actual<br>Prediction     | $F_{ec}$ more than 3% | $F_{ec}$ less than 3% | $F_{mc}$ more than $3\%$ | $F_{mc}$ less than 3% | $F_{mt}$ more than 3% | $F_{mt}$ less than 3% | $F_{et}$ more than 3% | $F_{et}$ less than 3% |
|--------------------------|-----------------------|-----------------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $F_{ec}$ more than 3%    | 5                     | 0                     | 0                        | 0                     | 0                     | 0                     | 0                     | 0                     |
| $F_{ec}$ less than 3%    | 0                     | 2                     | 0                        | 0                     | 0                     | 0                     | 0                     | 0                     |
| $F_{mc}$<br>more than 3% | 0                     | 0                     | 9                        | 0                     | 0                     | 0                     | 0                     | 0                     |
| $F_{mc}$ less than 3%    | 0                     | 0                     | 0                        | 3                     | 0                     | 0                     | 0                     | 0                     |
| $F_{mt}$ more than $3\%$ | 0                     | 1                     | 0                        | 0                     | 9                     | 0                     | 0                     | 0                     |
| $F_{mt}$ less than 3%    | 0                     | 0                     | 0                        | 0                     | 0                     | 7                     | 0                     | 0                     |
| $F_{et}$ more than 3%    | 0                     | 0                     | 0                        | 0                     | 0                     | 0                     | 10                    | 0                     |
| $F_{et}$ less than 3%    | 0                     | 0                     | 0                        | 0                     | 0                     | 0                     | 0                     | 4                     |

 Table 4.7: Confusion matrix for training data using ensemble-based fault isolation.

| Actual<br>Prediction     | $F_{ec}$ more than 3% | $F_{ec}$ less than 3% | $F_{mc}$ more than $3\%$ | $F_{mc}$ less than 3% | $\begin{array}{c} F_{mt} \\ \text{more than} \\ 3\% \end{array}$ | $F_{mt}$ less than 3% | $F_{et}$ more than 3% | $F_{et}$ less than 3% |
|--------------------------|-----------------------|-----------------------|--------------------------|-----------------------|------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|
| $F_{ec}$ more than 3%    | 9                     | 0                     | 0                        | 0                     | 0                                                                | 0                     | 0                     | 0                     |
| $F_{ec}$ less than 3%    | 0                     | 6                     | 0                        | 0                     | 0                                                                | 0                     | 0                     | 0                     |
| $F_{mc}$<br>more than 3% | 0                     | 0                     | 4                        | 0                     | 0                                                                | 0                     | 0                     | 0                     |
| $F_{mc}$ less than 3%    | 0                     | 0                     | 0                        | 5                     | 0                                                                | 0                     | 0                     | 0                     |
| $F_{mt}$ more than $3\%$ | 0                     | 0                     | 0                        | 0                     | 5                                                                | 0                     | 0                     | 0                     |
| $F_{mt}$ less than 3%    | 0                     | 0                     | 0                        | 0                     | 0                                                                | 4                     | 0                     | 0                     |
| $F_{et}$ more than 3%    | 0                     | 0                     | 0                        | 0                     | 0                                                                | 0                     | 4                     | 0                     |
| $F_{et}$ less than 3%    | 0                     | 0                     | 0                        | 0                     | 0                                                                | 0                     | 0                     | 3                     |

 Table 4.8: Confusion matrix for testing data using ensemble-based fault isolation.

| Actual<br>Prediction                                                  | $F_{ec}$ more than 3% | $F_{ec}$ less than 3% | $F_{mc}$<br>more than $3\%$ | $F_{mc}$ less than 3% | $\begin{array}{c} F_{mt} \\ \text{more than} \\ 3\% \end{array}$ | $F_{mt}$ less than 3% | $F_{et}$ more than 3% | $F_{et}$ less than 3% |
|-----------------------------------------------------------------------|-----------------------|-----------------------|-----------------------------|-----------------------|------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|
| $F_{ec}$ more than 3%                                                 | 14                    | 0                     | 0                           | 0                     | 0                                                                | 0                     | 0                     | 0                     |
| $F_{ec}$ less than 3%                                                 | 0                     | 8                     | 0                           | 0                     | 0                                                                | 0                     | 0                     | 0                     |
| $\begin{array}{c} F_{mc} \\ \text{more than} \\ 3\% \end{array}$      | 0                     | 0                     | 13                          | 0                     | 0                                                                | 0                     | 0                     | 0                     |
| $F_{mc}$ less than 3%                                                 | 0                     | 0                     | 0                           | 8                     | 0                                                                | 0                     | 0                     | 0                     |
| $\begin{array}{c} F_{mt} \\ \text{more than} \\ 3\% \end{array}$      | 0                     | 1                     | 0                           | 0                     | 14                                                               | 0                     | 0                     | 0                     |
| $F_{mt}$ less than 3%                                                 | 0                     | 0                     | 0                           | 0                     | 0                                                                | 11                    | 0                     | 0                     |
| $F_{et}$ more than 3%                                                 | 0                     | 0                     | 0                           | 0                     | 0                                                                | 0                     | 14                    | 0                     |
| $\begin{array}{c} F_{et}  {\rm less} \\ {\rm than} \ 3\% \end{array}$ | 0                     | 0                     | 0                           | 0                     | 0                                                                | 0                     | 0                     | 7                     |

 Table 4.9: Confusion matrix for both training and testing data using ensemble-based fault isolation.

Table 4.10 shows the fault isolation performance for ensemble-based fault isolation in term of CCR.

#### Table 4.10: Fault isolation performance of ensemble-based solution in term of CCR.

| $CCR_{train}$ | 98%  |
|---------------|------|
| $CCR_{test}$  | 100% |
| $CCR_{total}$ | 99%  |

## 4.2 Multiple Faults Isolation

In the previous section we studied the fault isolation problem, assuming that only a single fault may be present at each time. In this section, however, the goal is to isolate simultaneous faults. Isolating multiple faults is a complex problem. Thus, in order to limit the complexity we assume that only two concurrent faults may happen. We assume that the first fault happens at  $t_1 = 20$  sec and the second fault happens at  $t_2 = 30$  sec. The fault scenarios studied in this section are listed in the following.

- Class 1 ( $F_{ec}$ ): This class contains loss of compressor efficiency (i.e.  $F_{ec}$ ), by severity between 1% to 6%. As previously described it is common to model component faults by considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the compressor efficiency between 1% to 6%.
- Class 2 ( $F_{mc}$ ): This class contains loss of compressor mass flow rate (i.e.  $F_{mc}$ ), by severity between 1% to 6%. As previously described it is common to model component faults by considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the compressor mass flow rate by 1% to 6%
- Class 3 ( $F_{et}$ ): This class contains loss of turbine efficiency (i.e.  $F_{et}$ ), by severity between 1% to 6%. As previously described it is common to model component faults by considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the turbine efficiency between 1% to 6%.

- Class 4 ( $F_{mt}$ ): This class contains loss of turbine mass flow rate (i.e.  $F_{mt}$ ), by severity between 1% to 6%. As previously described it is common to model component faults by considering some percentage reduction in either efficiency or flow capacity of the engine component. Thus, all the faults in this class can be classified as reduction in the turbine mass flow rate by 1% to 6%.
- Class 5 ( F<sub>ec</sub>, F<sub>mc</sub> ): This fault class includes simultaneous faults in both compressor efficiency (i.e. F<sub>ec</sub>) and compressor mass flow rate (i.e. F<sub>mc</sub>). The severity of each fault is between 1% to 6%. In other words, there is a drop of 1% to 6% in compressor efficiency, as well as, a drop of 1% to 6% in compressor mass flow rate.
- Class 6 ( F<sub>ec</sub>, F<sub>et</sub> ): This fault class includes simultaneous faults in both compressor efficiency (i.e. F<sub>ec</sub>) and turbine efficiency (i.e. F<sub>et</sub>). The severity of each fault is between 1% to 6%. In other words, there is a drop of 1% to 6% in compressor efficiency, as well as, a drop of 1% to 6% in turbine efficiency.
- Class 7 ( F<sub>ec</sub>, F<sub>mt</sub> ): This fault class includes simultaneous faults in both compressor efficiency (i.e. F<sub>ec</sub>) and turbine mass flow rate (i.e. F<sub>mt</sub>). The severity of each fault is between 1% to 6%. In other words, there is a drop of 1% to 6% in compressor efficiency, as well as, a drop of 1% to 6% in turbine mass flow rate.
- Class 8 ( F<sub>mc</sub>, F<sub>et</sub> ): This fault class includes simultaneous faults in both compressor mass flow rate (i.e. F<sub>mc</sub>) and turbine efficiency (i.e. F<sub>et</sub>). The severity of each fault is between 1% to 6%. In other words, there is a drop of 1% to 6% in compressor mass flow rate, as well as, a drop of 1% to 6% in turbine efficiency.

- Class 9 ( F<sub>mc</sub>, F<sub>mt</sub> ): This fault class includes simultaneous faults in both compressor mass flow rate (i.e. F<sub>mc</sub>) and turbine mass flow rate (i.e. F<sub>mt</sub>). The severity of each fault is between 1% to 6%. In other words, there is a drop of 1% to 6% in compressor mass flow rate, as well as, a drop of 1% to 6% in turbine mass flow rate.
- Class 10 ( F<sub>et</sub>, F<sub>mt</sub> ): This fault class includes simultaneous faults in both turbine efficiency (i.e. F<sub>et</sub>) and turbine mass flow rate (i.e. F<sub>mt</sub>). The severity of each fault is between 1% to 6%. In other words, there is a drop of 1% to 6% in turbine efficiency, as well as, a drop of 1% to 6% in turbine mass flow rate.

#### 4.2.1 Neural Network Fault Classifier

The structure of the MLP neural network fault classifier used for multiple fault isolation is shown in Figure 4.3. The neural network receives the set of variations in the value of residuals before and after the fault detection. The output vector of the classifier is labeled to identify the class of fault(s) as listed below:

- Fault class  $F_{ec}$  is labeled using [1,0,0,0,0,0,0,0,0,0]
- Fault class  $F_{mc}$  is labeled using [0,1,0,0,0,0,0,0,0,0]
- Fault class  $F_{mt}$  is labeled using [0,0,1,0,0,0,0,0,0,0]
- Fault class  $F_{et}$  is labeled using [0,0,0,1,0,0,0,0,0,0]
- Fault class  $F_{mc}, F_{ec}$  is labeled using [0,0,0,0,1,0,0,0,0,0]
- Fault class  $F_{mc}, F_{mt}$  is labeled using [0,0,0,0,0,1,0,0,0,0]

- Fault class  $F_{mc}, F_{et}$  is labeled using [0,0,0,0,0,0,1,0,0,0]
- Fault class  $F_{ec}, F_{et}$  is labeled using [0,0,0,0,0,0,0,1,0,0]
- Fault class  $F_{ec}, F_{mt}$  is labeled using [0,0,0,0,0,0,0,0,1,0]
- Fault class  $F_{mt}, F_{et}$  is labeled using [0,0,0,0,0,0,0,0,0,1]

#### **Training Data**

The training data is labeled as mentioned above. For each of the above mentioned *ten fault* classes we collect the data while engine is operating using *ve different input pro les*  $\dot{m}_f =$ 0.68, 0.7, 0.75, 0.8, 0.85 of the maximum fuel rate (range of the fuel flow rate while in cruise mode [200]). Four different fault severities are considered for each fault type (1%, 2%, 4%, and 6%). We assume that the first fault happens at  $t_1 = 20$  sec and the second fault happens at  $t_2 = 30$  sec. Then the residuals are evaluated using the previously mentioned procedure. The total number of input/target pairs generated for training and validation of neural network fault classifier is 200. Figure 4.2 shows input-output relation of the designed neural network fault classifier.



Figure 4.3: Proposed neural network for multiple fault isolation.

Two different neural network fault classifiers are constructed based on the available data. The first network is constructed using the data obtained from the single model-based solution and the second network is constructed using the data obtained from the ensemble based solution. The summary of the construction of the neural network fault classifier using the data obtained from the single model-based and the ensemble based solutions is shown in Tables 4.11 and 4.12 respectively.

| # neurons | training data $(\%)$ | # validation data (%) | test data (%) | $CCR_{train}(\%)$ | $CCR_{test}$ (%) | $CCR_{valid}\left(\% ight)$ | $CCR_{total}$ (%) |
|-----------|----------------------|-----------------------|---------------|-------------------|------------------|-----------------------------|-------------------|
| 8         | 60                   | 10                    | 30            | 88.6667           | 79.5             | 78.5                        | 82                |
| 8         | 50                   | 20                    | 30            | 96.5              | 90.6667          | 91                          | 90.5              |
| 8         | 40                   | 30                    | 30            | 84.25             | 73.5             | 75.1667                     | 75                |
| 8         | 50                   | 10                    | 40            | 97.5              | 93.25            | 98                          | 92.5              |
| 8         | 40                   | 20                    | 40            | 84.25             | 75.25            | 78                          | 76                |
| 8         | 30                   | 30                    | 40            | 98.5              | 81               | 83                          | 83.5              |
| 8         | 40                   | 10                    | 50            | 84.25             | 74.5             | 72.5                        | 74.5              |
| 8         | 30                   | 20                    | 50            | 98.5              | 82               | 82.5                        | 83.5              |
| 8         | 20                   | 30                    | 50            | 99                | 79.5             | 84.1667                     | 81.5              |
| 9         | 60                   | 10                    | 30            | 97                | 96.1667          | 98.5                        | 94                |
| 9         | 50                   | 20                    | 30            | 97.5              | 97.3333          | 98.5                        | 94.5              |
| 9         | 40                   | 30                    | 30            | 98                | 93.5             | 96.8333                     | 93                |
| 9         | 50                   | 10                    | 40            | 97.5              | 98.25            | 98                          | 94.5              |
| 9         | 40                   | 20                    | 40            | 98                | 94               | 98                          | 93                |
| 9         | 30                   | 30                    | 40            | 98.5              | 96               | 96.3333                     | 93.5              |
| 9         | 40                   | 10                    | 50            | 98                | 96.5             | 97.5                        | 93.5              |
| 9         | 30                   | 20                    | 50            | 98.5              | 97               | 95                          | 93.5              |
| 9         | 20                   | 30                    | 50            | 99                | 90.5             | 89.1667                     | 88.5              |
| 10        | 60                   | 10                    | 30            | 97                | 96.1667          | 98.5                        | 94                |
| 10        | 50                   | 20                    | 30            | 97.5              | 95.6667          | 98.5                        | 94                |

Table 4.11: Summary of the construction of the neural network concurrent fault classifierbased on residuals obtained from single model-based solution.

| # neurons | training data $(\%)$ | # validation data (%) | test data (%) | $CCR_{train}(\%)$ | $CCR_{test}$ (%) | $CCR_{valid}\left(\% ight)$ | $CCR_{total}$ (%) |
|-----------|----------------------|-----------------------|---------------|-------------------|------------------|-----------------------------|-------------------|
| 8         | 60                   | 10                    | 30            | 98.8              | 94.8             | 94.4                        | 96                |
| 8         | 50                   | 20                    | 30            | 89                | 91.2667          | 89.4                        | 88.5              |
| 8         | 40                   | 30                    | 30            | 99.2              | 92.7333          | 97.7333                     | 95.5              |
| 8         | 50                   | 10                    | 40            | 89                | 89.8             | 99.2                        | 89                |
| 8         | 40                   | 20                    | 40            | 99.2              | 93.35            | 99.2                        | 95.5              |
| 8         | 30                   | 30                    | 40            | 91.0667           | 76.9             | 72.5333                     | 78.5              |
| 8         | 40                   | 10                    | 50            | 99.2              | 94.8             | 99                          | 95.5              |
| 8         | 30                   | 20                    | 50            | 91.0667           | 78.6             | 66.5                        | 78.5              |
| 8         | 20                   | 30                    | 50            | 84.6              | 70.4             | 62.3333                     | 69.5              |
| 9         | 60                   | 10                    | 30            | 98.8              | 94.8             | 99.4                        | 96.5              |
| 9         | 50                   | 20                    | 30            | 99                | 97.9333          | 99.4                        | 97.5              |
| 9         | 40                   | 30                    | 30            | 99.2              | 91.0667          | 94.4                        | 94                |
| 9         | 50                   | 10                    | 40            | 99                | 98.55            | 99.2                        | 97.5              |
| 9         | 40                   | 20                    | 40            | 99.2              | 92.1             | 94.2                        | 94                |
| 9         | 30                   | 30                    | 40            | 97.7333           | 90.65            | 89.2                        | 91                |
| 9         | 40                   | 10                    | 50            | 94.2              | 87.8             | 79                          | 88                |
| 9         | 30                   | 20                    | 50            | 97.7333           | 91.6             | 86.5                        | 91                |
| 9         | 20                   | 30                    | 50            | 99.6              | 80.4             | 79                          | 82.5              |
| 10        | 60                   | 10                    | 30            | 98.8              | 99.8             | 99.4                        | 98                |
| 10        | 50                   | 20                    | 30            | 99                | 99.6             | 99.4                        | 98                |

Table 4.12: Summary of the construction of the neural network concurrent fault classifier based on residuals obtained from ensemble-based solution.

In the next sections the simulation results are shown for the fault isolation task by using residuals obtained from single-model and ensemble model solutions.

### 4.2.2 Single Model-based Multiple Faults Isolation

In this section we use the residuals that are obtained from the single-model solution (RBF-NARX) for fault isolation task. The fault scenarios are previously explained and data samples for these

scenarios are collected (total number of 100 scenarios are developed for the sake of illustration). Among the collected data we randomly select 50 samples (after experimenting with different sizes of training data, i.e. 30, 40, 50, 60 samples). Starting from a small structure we construct a neural network classifier for fault isolation. We observe that an acceptable performance can be archived using a single-layer network with 15 hidden neurons. Tables 4.13 to 4.15 show the confusion matrixes for training and testing of all available data.

 Table 4.13: Confusion matrix for training data using single model-based (RBF-NARX) single fault isolation.

| Actual              | F    | F    | Ft   | F.,  | F                   | F          | F                   | F                   | F                   | Ft                  |
|---------------------|------|------|------|------|---------------------|------------|---------------------|---------------------|---------------------|---------------------|
| Prediction          | - ec | - mc | - mt | - et | $F_{ec}$ , $F_{ec}$ | $F_{mt}$ , | $F_{et}$ , $F_{et}$ | $F_{et}$ , $F_{et}$ | $F_{mt}$ , $F_{mt}$ | $F_{et}$ , $F_{et}$ |
| $F_{ec}$            | 7    | 0    | 0    | 0    | 0                   | 0          | 0                   | 0                   | 0                   | 0                   |
| $F_{mc}$            | 0    | 9    | 0    | 0    | 0                   | 1          | 0                   | 0                   | 0                   | 0                   |
| $F_{mt}$            | 0    | 0    | 12   | 0    | 0                   | 0          | 0                   | 0                   | 0                   | 0                   |
| $F_{et}$            | 0    | 0    | 0    | 12   | 0                   | 0          | 0                   | 0                   | 0                   | 0                   |
| $F_{mc}$ , $F_{ec}$ | 0    | 0    | 0    | 0    | 14                  | 0          | 0                   | 0                   | 0                   | 0                   |
| $F_{mc}$ , $F_{mt}$ | 0    | 0    | 0    | 0    | 0                   | 12         | 0                   | 0                   | 0                   | 0                   |
| $F_{mc}$ , $F_{et}$ | 0    | 0    | 0    | 0    | 0                   | 0          | 12                  | 0                   | 0                   | 0                   |
| $F_{ec}$ , $F_{et}$ | 1    | 0    | 0    | 0    | 0                   | 0          | 0                   | 13                  | 0                   | 0                   |
| $F_{ec}$ , $F_{mt}$ | 0    | 0    | 0    | 0    | 0                   | 0          | 0                   | 0                   | 15                  | 0                   |
| $F_{mt}$ , $F_{et}$ | 0    | 0    | 0    | 0    | 0                   | 0          | 0                   | 0                   | 0                   | 12                  |

| Actual              | $F_{ec}$ | $F_{mc}$ | $F_{mt}$ | $F_{et}$ | $F_{mc}$ , | $F_{mc}$ , | $F_{mc}$ , | $F_{ec}$ , | $F_{ec}$ , | $F_{mt}$ , |
|---------------------|----------|----------|----------|----------|------------|------------|------------|------------|------------|------------|
| Prediction          |          |          |          |          | $F_{ec}$   | $F_{mt}$   | $F_{et}$   | $F_{et}$   | $F_{mt}$   | $F_{et}$   |
| $F_{ec}$            | 4        | 0        | 0        | 0        | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$            | 0        | 11       | 0        | 0        | 0          | 2          | 0          | 0          | 0          | 0          |
| $F_{mt}$            | 0        | 0        | 8        | 0        | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{et}$            | 0        | 0        | 0        | 8        | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{ec}$ | 0        | 0        | 0        | 0        | 6          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{mt}$ | 0        | 0        | 0        | 0        | 0          | 5          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{et}$ | 0        | 0        | 0        | 0        | 0          | 0          | 8          | 0          | 0          | 0          |
| $F_{ec}$ , $F_{et}$ | 8        | 0        | 0        | 0        | 0          | 0          | 0          | 7          | 0          | 0          |
| $F_{ec}$ , $F_{mt}$ | 0        | 0        | 0        | 0        | 0          | 0          | 0          | 0          | 5          | 0          |
| $F_{mt}$ , $F_{et}$ | 0        | 0        | 0        | 0        | 0          | 0          | 0          | 0          | 0          | 8          |

 Table 4.14: Confusion matrix for testing data using single model-based (RBF-NARX) single fault isolation.

Table 4.15: Confusion matrix for both training and testing data using single model-based(RBF-NARX) single fault isolation.

| Actual              | $F_{ec}$ | $F_{mc}$ | $F_{mt}$ | $F_{et}$ | $F_{mc}$ , | $F_{mc}$ , | $F_{mc}$ , | $F_{ec}$ , | $F_{ec}$ , | $F_{mt}$ , |
|---------------------|----------|----------|----------|----------|------------|------------|------------|------------|------------|------------|
| Prediction          |          |          |          |          | $F_{ec}$   | $F_{mt}$   | $F_{et}$   | $F_{et}$   | $F_{mt}$   | $F_{et}$   |
| $F_{ec}$            | 11       | 0        | 0        | 0        | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$            | 0        | 20       | 0        | 0        | 0          | 3          | 0          | 0          | 0          | 0          |
| $F_{mt}$            | 0        | 0        | 20       | 0        | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{et}$            | 0        | 0        | 0        | 20       | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{ec}$ | 0        | 0        | 0        | 0        | 20         | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{mt}$ | 0        | 0        | 0        | 0        | 0          | 17         | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{et}$ | 0        | 0        | 0        | 0        | 0          | 0          | 20         | 0          | 0          | 0          |
| $F_{ec}$ , $F_{et}$ | 9        | 0        | 0        | 0        | 0          | 0          | 0          | 20         | 0          | 0          |
| $F_{ec}$ , $F_{mt}$ | 0        | 0        | 0        | 0        | 0          | 0          | 0          | 0          | 20         | 0          |
| $F_{mt}$ , $F_{et}$ | 0        | 0        | 0        | 0        | 0          | 0          | 0          | 0          | 0          | 20         |

Table 4.16 shows the fault isolation performance for single model-based fault isolation.

 Table 4.16: Multiple Fault isolation performance of single model-based (RBF-NARX) solution in term of CCR.

| $CCR_{training}$ | 98.33% |
|------------------|--------|
| $CCR_{testing}$  | 87.5%  |
| $CCR_{total}$    | 94%    |

#### 4.2.3 Ensemble-based Multiple Faults Isolation

In this section we use the residuals that are obtained from the ensemble-based solution (RBF-NARX) for fault isolation task. The fault scenarios are previously explained and data samples for these scenarios are collected (total number of 100 scenarios are developed for the sake of illustration). Among the collected data we randomly select 50 samples (after experimenting with different sizes of training data i.e., 30, 40, 50, 60 samples). To have faire comparative study we use the same number of training samples, and network architecture as in the single model-based solution. Tables 4.17 to 4.19 show the confusion matrices for the training, testing for all available data.

| Actual              | $F_{ec}$ | $F_{mc}$ | $F_{mt}$ | $F_{et}$ | $F_{mc}$ , | $F_{mc}$ , | $F_{mc}$ , | $F_{ec}$ , | $F_{ec}$ , | $F_{mt}$ , |
|---------------------|----------|----------|----------|----------|------------|------------|------------|------------|------------|------------|
| Prediction          |          |          |          |          | $F_{ec}$   | $F_{mt}$   | $F_{et}$   | $F_{et}$   | $F_{mt}$   | $F_{et}$   |
| $F_{ec}$            | 8        | 0        | 0        | 0        | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$            | 0        | 9        | 0        | 0        | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{mt}$            | 0        | 0        | 12       | 0        | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{et}$            | 0        | 0        | 0        | 12       | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{ec}$ | 0        | 0        | 0        | 0        | 14         | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{mt}$ | 0        | 0        | 0        | 0        | 0          | 12         | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{et}$ | 0        | 0        | 0        | 0        | 0          | 0          | 12         | 0          | 0          | 0          |
| $F_{ec}$ , $F_{et}$ | 0        | 0        | 0        | 0        | 0          | 0          | 0          | 13         | 0          | 0          |
| $F_{ec}$ , $F_{mt}$ | 0        | 0        | 0        | 0        | 0          | 0          | 0          | 0          | 15         | 0          |
| $F_{mt}$ , $F_{et}$ | 0        | 0        | 0        | 0        | 0          | 1          | 0          | 0          | 0          | 12         |

 Table 4.17: Confusion matrix for training data using ensemble-based multiple fault isolation.

 Table 4.18: Confusion matrix for testing data using ensemble-based multiple fault isolation.

| Actual              | $F_{ec}$ | $F_{mc}$ | $F_{mt}$ | $F_{et}$ | $F_{mc}$ , | $F_{mc}$ , | $F_{mc}$ , | $F_{ec}$ , | $F_{ec}$ , | $F_{mt}$ , |
|---------------------|----------|----------|----------|----------|------------|------------|------------|------------|------------|------------|
| Prediction          |          |          |          |          | $F_{ec}$   | $F_{mt}$   | $F_{et}$   | $F_{et}$   | $F_{mt}$   | $F_{et}$   |
| $F_{ec}$            | 9        | 0        | 0        | 0        | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$            | 0        | 11       | 0        | 0        | 0          | 2          | 0          | 0          | 0          | 0          |
| $F_{mt}$            | 0        | 0        | 8        | 0        | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{et}$            | 0        | 0        | 0        | 8        | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{ec}$ | 0        | 0        | 0        | 0        | 6          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{mt}$ | 0        | 0        | 0        | 0        | 0          | 5          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{et}$ | 0        | 0        | 0        | 0        | 0          | 0          | 8          | 0          | 0          | 0          |
| $F_{ec}$ , $F_{et}$ | 3        | 0        | 0        | 0        | 0          | 0          | 0          | 7          | 0          | 0          |
| $F_{ec}$ , $F_{mt}$ | 0        | 0        | 0        | 0        | 0          | 0          | 0          | 0          | 5          | 0          |
| $F_{mt}$ , $F_{et}$ | 0        | 0        | 0        | 0        | 0          | 0          | 0          | 0          | 0          | 8          |

| Actual              | Fec | Fmc | $F_{mt}$ | F <sub>et</sub> | $F_{mc}$ , | $F_{mc}$ , | $F_{mc}$ , | $F_{ec}$ , | $F_{ec}$ , | $F_{mt}$ , |
|---------------------|-----|-----|----------|-----------------|------------|------------|------------|------------|------------|------------|
| Prediction          |     |     |          |                 | $F_{ec}$   | $F_{mt}$   | $F_{et}$   | $F_{et}$   | $F_{mt}$   | $F_{et}$   |
| $F_{ec}$            | 17  | 0   | 0        | 0               | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$            | 0   | 20  | 0        | 0               | 0          | 2          | 0          | 0          | 0          | 0          |
| $F_{mt}$            | 0   | 0   | 20       | 0               | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{et}$            | 0   | 0   | 0        | 20              | 0          | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{ec}$ | 0   | 0   | 0        | 0               | 20         | 0          | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{mt}$ | 0   | 0   | 0        | 0               | 0          | 17         | 0          | 0          | 0          | 0          |
| $F_{mc}$ , $F_{et}$ | 0   | 0   | 0        | 0               | 0          | 0          | 20         | 0          | 0          | 0          |
| $F_{ec}$ , $F_{et}$ | 3   | 0   | 0        | 0               | 0          | 0          | 0          | 20         | 0          | 0          |
| $F_{ec}$ , $F_{mt}$ | 0   | 0   | 0        | 0               | 0          | 0          | 0          | 0          | 20         | 0          |
| $F_{mt}$ , $F_{et}$ | 0   | 0   | 0        | 0               | 0          | 1          | 0          | 0          | 0          | 20         |

 

 Table 4.19: Confusion matrix for both training and testing data using ensemble-based multiple fault isolation.

Table 4.20 shows the fault isolation performance for ensemble-based fault isolation in term of CCR.

Table 4.20: Multiple Fault isolation performance of ensemble-based solution in term of CCR.

| $CCR_{train}$        | 99.17% |
|----------------------|--------|
| $CCR_{test}$         | 93.75% |
| CCR <sub>total</sub> | 97%    |

## 4.3 Summary

In this chapter we have performed the fault isolation task using the residual signals generated by both ensemble model as well as stand-alone model. We then do comparison between the ensemblebased and single-model based fault isolation schemes. The fault isolation mechanism used in this chapter is a static neural network, the network evaluates the changes in engine parameters in order to isolate the occurred fault. It is observed that the ensemble-based fault isolation solution is generally more accurate, and it can improve the single fault isolation accuracy up to 12% and the multiple fault isolation by up to 4% as compared with the single model-based fault isolation scheme. It should be noted that the single fault isolation problem is formulated such that the severity of the fault has to be estimated. Based on the observations estimating the fault severity is generally a more complex task.

# Chapter 5

# **Conclusion and Summary**

### 5.1 Summary

The objective of this thesis was to develop ensemble-based approach for fault-detection and isolation (FDI) of aircraft jet engines and compare the results with conventional single-model-based FDI solutions. It was shown that by combining stand-alone models, more accurate ensemble models can be designed to model the jet engine dynamics without the need of ad-hoc fine tunings required for single-model-based solutions.

For the purpose of jet engine health monitoring, first we modeled the jet engine dynamics using three different stand-alone learning algorithm. Specifically, MLP-NARX, RBF-NARX, and SVM-NARX models are trained to individually model jet engine parameters. A separate model was trained for each of the engine outputs using each individual learning algorithm. Input parameters of the individual learning algorithm (e.g. number of neural network neurons) are optimized by performing several trials. We observed that the RBF-NARX model shows a better performance (in

term of modeling accuracy) among the stand-alone models.

In Chapter 3, three different ensemble methods were designed to identify the jet engine dynamics. The first trained ensemble model is a heterogeneous ensemble with ranked pruning. In this approach, first a pool of individual learners were trained using different learning algorithms (MLP-NARX, RBF-NARX, SVM-NARX). Then, the most accurate models are selected for each learning algorithm in order to be aggregated and generate the final prediction. The predictions of ensemble members were combined using weighted averaging where the weights are optimized using gradient descent method. The second ensemble approach is the heterogeneous ensemble with Forward Sequential Selection (FSS) pruning. Similar to the heterogeneous ensemble with ranked pruning, we first trained a pool of stand-alone models for identifying engine outputs. Then, the ensemble initially use the model with best performance (in term of modeling accuracy), and then other models were added to the ensemble based on their contribution to improve the ensemble performance (in each iteration, all candidates in the pool were tested and the one with the maximal improvement to the ensemble performance was selected). The third ensemble model which attempted to model engine dynamics was a homogeneous ensemble with bagging where several RBF-NARX models were trained using different subsets of the training data which are generated by the bootstrap sampling to model the engine dynamics. Also, the effects of the number of models in an ensemble on its accuracy was studied. It was observed that by increasing the number of models in an ensemble the prediction error decreases in general. We also observed that all three ensemble models outperform the stand-alone models in term of modeling accuracy. More specifically, we observed than modeling error was reduced by up to 67% using ensemble methods as compared with single-model-based solutions.

In Chapter 3, we selected heterogenous ensembles with FSS pruning (as it performed the best

among the other ensembles), and RBF-NARX as a stand-alone model with better performance to solve the FDI problem. Engine residual signals were generated using both single-model-based and ensemble-based solutions under different engine health conditions. Different fault scenarios were developed based on fault type, fault severity, and engine's input profile (fuel flow rate). The obtained residuals were evaluated in order detect engine faults. Our experiments showed that the fault detection task using residuals obtained from the ensemble model results is more accurate. In Chapter 4, the fault isolation task was performed by evaluating variations in the residual signals (before and after a fault detection) by using a neural network classifier. Eight different fault classes were defined (based on the fault type and fault severity). Since the inputs of the neural network fault classifier should be scaler vector (rather than time-series, i.e. residual signal), we preprocessed the residuals so we could make them suitable for inputs of a static neural network classifier. As in the fault detection case, it is observed that the ensemble-based fault isolation solution improves the fault isolation accuracy by 10% as compared with single-model-based fault isolation scheme.

## 5.2 Conclusions

In this thesis, first jet engine dynamic was modeled using both single model-based and ensemblebased solutions. It is observed that system modeling accuracy can be improved up to 67% by using the ensemble learning over the stand-alone learning models. Second, an ensemble-based as well as a single model-based fault detection mechanism were developed. It was shown that the ensemble-based fault detection is generally more accurate. Specifically, it improves the fault detection accuracy by 5% on average over the single model-based solution. We also performed the fault isolation task using the residual signals generated by both ensemble model as well as standalone model. We then did comparison between the ensemble-based and single-model based fault isolation schemes. It was observed that the ensemble-based fault isolation solution is generally more accurate, and it can improve the single fault isolation accuracy up to 12% and the multiple fault isolation by up to 4% as compared with the single model-based fault isolation scheme.

### **5.3** Suggestions for Future Work

This research can be extended in a number directions. Some suggestions for future work are explained below:

- In this research we used external dynamics (external delays) to model dynamics of the system. An alternative would be to use learning methods with internal dynamics such as neural networks with dynamic neurons or recurrent neural networks with local feedback and then combine them to build an ensemble system.
- As described briefly in this thesis, increasing the number of models in an ensemble can reduce the prediction error (theoretically any arbitrary level of accuracy can be achieved by increasing the number of ensemble members [187]). A future research could be to increase the number of ensemble members with the goal of achieving more accurate FDI system.
- In this thesis we studied the ensemble models where source of diversity is either the variation in the training data (homogeneous with bagging) or employment of different learning methods (heterogenous ensemble). An alternative would be studying homogenous ensemble

with different architectures (e.g. using several feedforward neural networks with different number of layers and/or neurons).

- In this thesis batch learning (off-line) techniques are applied for identifying the jet engine dynamics. A potential future work is to study the online ensemble learning to identify the jet engine dynamics while the engine is operating.
- In this thesis, the combining weights of the ensemble are assumed to be constant as well as identical for all instances of the input. A potential future work is to study the ensembles where the combining weights differ from a sample to another. For example the *model A* may have more contribution in the output at the instance  $x_A$  while the *model B* may have more contribution in the instance  $x_B$ .

# **Bibliography**

- H. Rong, G. Zhang, C. Zhang, "Application of support vector machines to nonlinear system identification," *Autonomous Decentralized Systems*, pp. 501–507, 2005.
- [2] T. Falck, P. Dreesen, K. Brabanter, K. Pelckmans, B. Moor, J. Suykens, "Least-Squares Support Vector Machines for the identification of WienerHammerstein systems", *Control Engineering Practice*, vol. 20, no. 11, pp. 1165–1174, 2012.
- [3] M. Martinez-Ramon, J. L. Rojo-Alvarez, G. Camps-Valls, J. Munoz-Mari, A. Navia-Vazquez,
   E. Soria-Olivas, A.R. Figueiras-Vidal, "Support Vector Machines for Nonlinear Kernel ARMA System Identification," *IEEE Transactions on Neural Networks*, vol. 17, no.6, pp.1617–1622, 2006.
- [4] M. Vogt, "System identification techniques based on support vector machines without bias term," *International Journal of Adaptive Control and Signal*, vol. 27, no.9, pp.1099–1115, 2013.
- [5] R. Salat, M. Awtoniuk, K. Korpysz, "Black-Box system identification by means of Support Vector Regression and Imperialist Competitive Algorithm", vol. 9, pp. 223–226, *Przeglkad Elektrotechniczny*, 2013.

- [6] P. M. L. Drezet, R. F. Harrison, "Support vector machines for system identification," UKACC International Conference on Control, vol. 1, pp. 688–692, 1998.
- [7] J. D. Bomberger, D. E. Seborg, "Determination of model order for NARX models directly from input-output data", *Journal of Process Control*, vol. 8, no. 56, pp. 459–468, 1998.
- [8] S. Tan, J. Hao, J. Vandewalle, "Efficient identification of RBF neural net models for nonlinear discrete-time multivariable dynamical systems", *Neurocomputing*, vol. 9, no. 1, pp. 11–26, 1995.
- [9] S. Lu, T. Basar, "Robust nonlinear system identification using neural-network models," *IEEE Transactions on Neural Networks*, vol.9, no.3, pp. 407–429, 1998.
- [10] V. T. Elanayar, Y. C. Shin, "Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems," *IEEE Transactions on Neural Networks*, vol. 5, no. 4, pp. 594–603, 1994.
- [11] S. Tan, J. Hao, J. Vandewalle, "Nonlinear systems identification using RBF neural networks,", *Proceedings of International Joint Conference on Neural Networks*, vol. 2, pp. 1833–1836, 1993.
- [12] J. Li, F. Zhao, "Identification of dynamical systems using radial basis function neural networks with hybrid learning algorithm,", *International Symposium on Systems and Control in Aerospace and Astronautics*, pp. 1115–1118, 2006.
- [13] S. Chen, X. X. Wang, C. J. Harris, "NARX-Based Nonlinear System Identification Using Orthogonal Least Squares Basis Hunting," *IEEE Transactions on Control Systems Technology*, vol. 16, no. 1, pp.78–84, 2008.

- [14] I. M. Yassin, M. N. Taib, M. Z. Abdul Aziz, "Identification of DC motor drive system model using Radial Basis Function (RBF) Neural Network," *IEEE Symposium on Industrial Electronics and Applications*, pp. 13–18, 2011.
- [15] S. Chen, S. A. Billings, P. M. Grant, "Recursive hybrid algorithm for non-linear system identification using radial basis function networks", *International Journal of Control*, vol. 55, no. 5, pp. 1051–1070, 1992.
- [16] S. Chen, S. A. Billings, C.F. Cowan, P. M. Grant, "Practical identification of NARMAX models using radial basis functions", *International Journal of Control*, vol. 52, no. 6, pp. 1327– 1350, 1990.
- [17] J. G. Kuschewski, S. Hui, S.H. Zak, "Application of feedforward neural networks to dynamical system identification and control," *IEEE Transactions on Control Systems Technology*, vol. 1, no. 1, pp. 37–49, Mar 1993.
- [18] V. Prasad, B. W. Bequette, "Nonlinear system identification and model reduction using artificial neural networks", *Computers & Chemical Engineering*, vol. 27, no. 12, pp. 1741–1754, 2003.
- [19] H. Zhao, J. Zhang, "Nonlinear dynamic system identification using pipelined functional link artificial recurrent neural network", *Neurocomputing*, vol. 72, no. 13, pp. 3046-3054, 2009.
- [20] S. Chen, S. A. Billings, P. M. Grant, "Non-linear system identification using neural networks", *International Journal of Control*, vol. 51, no. 6, pp. 1191-1214, 1990.
- [21] C. C. Huang, C. Loh, "Nonlinear Identification of Dynamic Systems Using Neural Networks", *Computer-Aided Civil and Infrastructure Engineering*, vol. 16, no. 1, pp. 28-41, 2001.

- [22] J. C. Patra, R. N. Pal, B. N. Chatterji, G. Panda, "Identification of nonlinear dynamic systems using functional link artificial neural networks," *IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics*, vol. 29, no. 2, pp.254–262, 1999.
- [23] S. Chen, S. A. Billings, "Neural networks for nonlinear dynamic system modelling and identification", *International Journal of Control*, vol. 56, no. 2, pp. 319–346, 1992.
- [24] N. Chiras, C. Evans, D. Rees, "Nonlinear Gas Turbine Modelling Using NARMAX Structures," *IEEE Transaction on Instrumentation & Measeurement*, vol. 50, no. 4, pp. 893-898, 2001.
- [25] A. Ruano, P. J. Fleming, C. Teixeira, K. R. Rodrguez-Vzquez, C. M. Fonseca, "Nonlinear Identification of Aircraft Gas Turbine Dynamics," *Neurocomputing*, vol. 55, no. 3, pp. 551-579, 2003.
- [26] G. Torella, F. Gamma, and G. Palmesano, "Neural Networks for the Study of Gas Turbine Engines Air System," *Proceedings of the International Gas Turbine Congress*, 2003.
- [27] R. Bettocchi, M. Pinelli, P. R. Spina, M. Venturini, "Artificial Intelligent for the Diagnostics of Gas Turbines: Part 1Neural Network Approach," *ASME Turbo Expo 2005*, pp. 9-18, 2005.
- [28] H. Asgari, X. Chen, R. Sainudiin, M. Morini, M. Pinelli, P. R. Spina, M. Venturini, "Modeling and Simulation of the Start-Up Operation of a Heavy-Duty Gas Turbine by Using NARX Models," ASME Turbo Expo 2014, 10 pages, 2014.
- [29] N. Rooney, D. Patterson, S. Anand, and A. Tsymbal, "Dynamic integration of regression models", *International Workshop on Multiple Classi* er Systems. vol. LNCS 3181, pp. 164-173, Springer, 2004.

- [30] G. I. Webb and Z. Zheng, "Multistrategy ensemble learning: reducing error by combining ensemble learning techniques", *IEEE Transactions on Knowledge and Data Engineering*, vol. 16, no. 8, pp. 980-991, 2004.
- [31] J. Liu, "RBF Neural Network Control for Mechanical Systems", Springer, 2013.
- [32] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri, "A review of process fault detection and diagnosis: Part I: Quantitative model-based methods", *Computers & Chemical Engineering*, vol. 27, no. 3, pp 293–311.
- [33] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri, "A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies", *Computers & Chemical Engineering*, vol. 27, no. 3, pp 313–326.
- [34] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri, "A review of process fault detection and diagnosis: Part III: Process history based methods", *Computers & Chemical Engineering*, vol. 27, no. 3, pp 327–346.
- [35] B. V. Dasarathy and B. V. Sheela, "Composite classifier system design: concepts and methodology," *Proceedings of the IEEE*, vol. 67, no. 5, pp. 708–771, 1979.
- [36] S. Geman, E. Bienenstock, R. Doursat, "Neural networks and the bias/variance dilemma". *Neural Computation*, vol. 4, no. 1, pp 1–58, 1992.
- [37] A. Bouchachia, S. Bouchachia, "Ensemble Learning for Time Series Prediction", *Workshop* on Nonlinear Dynamics and Synchronization, Aachen, pp. 205–212, 2008.
- [38] A. Bouchachia, "Radial Basis Function Nets for Time Series Prediction", *International Journal of Computational Intelligence Systems*, vol. 2, no. 2, pp. 147–157, 2012.

- [39] P. Melin, J. Soto, O. Castillo, J. Soria, "A new approach for time series prediction using ensembles of ANFIS models", *Expert Systems with Applications*, vol. 39, pp. 3494–3506, 2012.
- [40] R. Avnimelech, N. Intrator, "Boosting Regression Estimators", *Neural Computation*, vol. 11, no. 2, pp. 491–513, 1999.
- [41] T. Hatanaka, N. Kondo, K. Uosaki, "Multi-Objective Structure Selection for RBF Networks and Its Application to Nonlinear System Identification", *Studies in Computational Intelligence*, vol. 16, pp. 491–505, Springer, 2006.
- [42] S. C. Chiam, K. C. Tan, A. Al-Mamun, "Multiobjective Evolutionary Neural Networks for Time Series Forecasting", *Lecture Notes in Computer Science*, vol. 4403, pp. 346–360, 2007.
- [43] W. M. Azmy, N. Gayar, A. F. Atiya, H El-Shishiny, "MLP, Gaussian Processes and Negative Correlation Learning for Time Series Prediction", *MultipleClassi* er Systems 2009, LNCS, vol. 5519, pp. 428–437, 2009.
- [44] S. Oeda, I. Kurimoto, T. Ichimura, "Time Series Data Classification Using Recurrent Neural Network with Ensemble Learning", *Knowledge-Based Intelligent Information and Engineering Systems, LNCS*, vol. 4253, pp. 742–748, Springer, 2006.
- [45] A. Chitra and S. Uma, "An Ensemble Model of Multiple Classifiers for Time Series Prediction", *International Journal of Computer Theory and Engineering*, vol. 2, no. 3, pp. 454–458, 2010.
- [46] Md. M. Islam, X. Yao, K. Murase, "A Constructive Algorithm for Training Cooperative Neural Network Ensembles", *IEEE Transactions On Neural Network*, vol. 14, no. 4, pp. 820–834, 2003.

- [47] Z. S. H. Chan, N. Kasabov, "Fast neural network ensemble learning via negative-correlation data correction," *IEEE Transactions on Neural Networks*, vol.16, no.6, pp.1707–1710, 2005.
- [48] J. D. Wichard and M. Ogorzalek "Time Series Prediction with Ensemble Models", Proceedings of IEEE Joint Conference on Neural Networks, vol. 2, pp. 1625–1630, 2004.
- [49] J. D. Wichard "Model Selection in an Ensemble Framework", Proceedings of IEEE Joint Conference on Neural Networks, vol. 2, pp. 2187–2192, 2006.
- [50] N. Kondo, T. Hatanaka, K. Uosaki, "Nonlinear Dynamic System Identification Based on Multiobjectively Selected RBF Networks", *Proceedings of IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM 2007)*, pp. 122–127, 2007.
- [51] D. Wang and Y. Li, "A Novel Nonlinear RBF Neural Network Ensemble Model for Financial Time Series Forecasting", *Proceedings of Third International Workshop on Advanced Computational Intelligence*, pp. 86–90, 2010.
- [52] Y. Xiao, J. Xiao, F. Lu, S. Wang, "Ensemble ANNs-PSO-GA Approach for Day-ahead Stock E-exchange Prices Forecasting", *International Journal of Computational Intelligence Systems*, vol. 6, no. 1, pp. 96–114, 2013.
- [53] X. Caia, N. Zhang, G. K. Venayagamoorthya, D. C. Wunsch, "Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithm", *Neurocomputing*, vol. 70, no. 13, pp. 2342–2353, 2007.
- [54] I. A. Gheyas, L. S. Smith, "A Neural Network Approach to Time Series Forecasting", *Proceedings of the World Congress on Engineering*, vol. 2, 5 pages, 2009.

- [55] J. T. Connor, R. D. Martin, L. E. Atlas, "Recurrent neural networks and robust time series prediction,", *IEEE Transactions on Neural Networks*, vol. 5, no. 2, pp.240–254, 1994.
- [56] C. L. Giles, S. Lawrence, A. Tsoi, "Noisy Time Series Prediction using Recurrent Neural Networks and Grammatical Inference", *Machine Learning*, vol. 44, no. 1, pp 161-183, Springer, 2001.
- [57] X. Cai, N. Zhang, G. K. Venayagamoorthy, D. C. Wunsch, "Time series prediction with recurrent neural networks using a hybrid PSO-EA algorithm", *Proceedings of IEEE International Joint Conference on Neural Networks*, vol.2, pp.1647–1652, 2004.
- [58] X. Cai, N. Zhang, G. K. Venayagamoorthy, D. C. Wunsch, "Time series prediction with recurrent neural networks trained by a hybrid PSOEA algorithm", *Neurocomputing*, vol.70, pp.2347–2353, 2007.
- [59] R. Bone, M. Assaad, M. Crucianu. "Boosting Recurrent Neural Networks for Time Series Prediction". RFAI Publication, Artificial Neural Nets and Genetic Algorithms, Proceedings of the International Conference, *Lecture Nontes in Computer Science*, pp. 18–22, Springer.
- [60] N. I. Sapankevych, R. Sankar, "Time Series Prediction Using Support Vector Machines: A Survey", *IEEE Computational Intelligence Magazine*, vol. 4, no. 2, pp. 24–38, 2009.
- [61] T. B. Trafalis and H. Ince, "Support vector machine for regression and applications to financial forecasting, in *Proc. IEEE-INNS-ENNS Int. Joint Conf. on Neural Networks (IJCNN 2000)*, vol. 6, pp. 348–353.
- [62] F. E. H. Tay and L. J. Cao, "Application of support vector machines in financial time series forecasting, *Omega*, vol. 29, no. 4, pp. 309–317, 2001.

- [63] T. Van Gestel, J. A. K. Suykens, D. E. Baestaens, A. Lambrechts, G. Lanckriet, B. Vandaele,
  B. De Moor, and J. Vandewall, "Financial time series prediction using least squares support vector machines within the evidence framework, *IEEE Transaction on Neural Networks*, vol. 12, no. 4, pp. 809–821, 2001.
- [64] F. E. H. Tay and L. J. Cao, "Improved financial time series forecasting by combining support vector machines with self-organizing feature map", *Intelligent Data Analysis*, vol. 5, no. 4, pp. 339–354, 2001.
- [65] F. E. H. Tay and L. J. Cao, "Modified support vector machines in financial time series forecasting", *Neurocomputing*, vol. 48, pp. 847–861, Oct. 2002.
- [66] F. E. H. Tay and L. J. Cao, "ε-descending support vector machines for financial time series forecasting", *Neural Processessing Letters*, vol. 15, no. 2, pp. 179–195, 2002.
- [67] H. Yang, I. King, and L. Chan, "Non-fixed and asymetrical margin approach to stock market prediction using support vector regression", in *Proceedings of 9th International Conference on Neural Information Processing*, vol. 3, pp. 1398–1402, 2002.
- [68] H. Yang, L. Chan, and I. King, "Support vector machine regression for volatile stock market prediction," in *Proceedings 3rd Internationa Conference on Intelligent Data Engineering and Automated Learning*, Springer-Verlag, pp. 391–396, 2002.
- [69] A. Abraham, N. S. Philip, and P. Saratchandran, "Modeling chaotic behavior of stock indices using intelligent paradigms," *International Journal of Neural, Parallel, and Scienti* c Computatation, vol. 11, no. 1, pp. 143–160, 2003.

- [70] H. Yang, "Margin variations in support vector regression for the stock market prediction", Ph.D. dissertation, Chinese Univ. of Hong Kong, June 2003.
- [71] P. Ongsritrakul and N. Soonthornphisaj, "Apply decision tree and support vector regression to predict the gold price," *Proceedings of the International Joint Conference on Neural Networks*, vol. 4, pp. 2488–2492, 2003.
- [72] W. Lu, W. Wang, A. Y. T. Leung, S.-M. Lo, R. K. K. Yuen, Z. Xu, and H. Fan, "Air pollutant parameter forecasting using support vector machines," *Proceedings of the International Joint Conference on Neural Networks*, vol. 1, pp. 630–635, 2002.
- [73] T. B. Trafalis, B. Santosa, and M. B. Richman, "Prediction of rainfall from WSR radar using kernel-based methods", *International Journal of Smart Engineering System Design*, vol. 5, no. 4, pp. 429–438, 2003.
- [74] W. Wang, Z. Xu, and J. W. Lu, "Three improved neural network models for air quality forecasting", *Engineering Computatation*, vol. 20, no. 2, pp. 192–210, 2003.
- [75] M. Mohandes, "Support vector machines for short-term load forecasting," *International Jour-nal of Energy Resources*, vol. 26, no. 4, pp. 335–345, Mar. 2002.
- [76] D. C. Sansom and T. K. Saha, "Energy constrained generation dispatch based on price forecasts including expected values and risk", *Proceedings of the IEEE Power Energy Society General Meeting* vol. 1, pp. 261–266, 2004.
- [77] L. Tian and A. Noore, "A novel approach for short-term load forecasting using support vector machines", *International Journal of Neural Systems*, vol. 14, no. 5, pp. 329–335, 2004.

- [78] B. J. Chen, M. W. Chang, and C. J. Lin, "Load forecasting using support vector machines: A study on EUNITE competition 2001", *IEEE Transaction on Power Systems*, vol. 19, no. 4, pp. 1821–1830, Nov. 2004.
- [79] J. Yang and Y. Zhang, "Application research of support vector machines in condition trend prediction of mechanical equipment," *Proceedings of the 2nd International Symposium on Neural Networks*, Lecture Notes in Computer Science, vol. 3498, pp. 857–864, 2005.
- [80] D. Mandic and J. Chambers, "Recurrent neural networks for prediction: learning algorithms, architectures and stability", *John Wiley & Sons, Inc.*, 2001.
- [81] L. Tsungnan, B. G. Horne, C.Lee Giles, "How Embedded Nlemory in Recurrent Neural Network Architectures Helps Learning Long-term Temporal Dependencies", Computer Science Technical Report CS-TR-3626 and UMIACS, University of Maryland, College Park, MI 20742, 1996.
- [82] D. R. Seidl, R. D. Lorenz, "A structure by which a recurrent neural network can approximate a nonlinear dynamic system," *International Joint Conference on Neural Networks*, pp. 709–714 vol. 2, no. 1, 1991.
- [83] K. S. Narendra, K. Parthasarathy, "Identification and control of dynamical systems using neural networks," *IEEE Transactions on Neural Networks*, vol. 1, no. 1, pp.4–27, 1990.
- [84] J. Sjberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Glorennec, H. Hjalmarsson, A. Juditsky, "Nonlinear black-box modeling in system identification: a unified overview", *Automatica*, vol. 31, no. 12, pp. 1691–1724, 1995.
- [85] W. C. Hong, P. F. Pai, C. T. Chen, and P. T. Chang, "Recurrent support vector machines in reliability prediction," *Lecture Notes in Computer Science*, vol. 3610, pp. 619–7629, 2005.
- [86] W. C. Hong and P.-F. Pai, "Predicting engine reliability using support vector machines," *International Journal of Advanced Manufufacturing Technology*, vol. 28, no. 1, pp. 154–161, 2006.
- [87] S. Gezici, H. Kobayashi, and H. V. Poor, "A new approach to mobile position tracking," *Proceedings of IEEE Sarnoff Symposium on Advances in Wired and Wireless Communications*, pp. 204–207, 2003.
- [88] C. J. Huang and C. L. Cheng, "Application of support vector machines to admission control for proportional differentiated services enabled internet servers," *Proceedings of International Conference on Hybrid Intelligent Systems*, pp. 248–253, 2004.
- [89] X. Liu, J. Yi, and D. Zhao, "Adaptive inverse disturbance cancelling control system based on least square support vector machines", *American Control Conference*, pp. 2625–2629, 2005.
- [90] Q. Yang and S. Xie, "An application of support vector regression on narrow-band interference suppression in spread spectrum systems", *Lecture Notes Computer Science*, vol. 3611, pp. 442– 450, 2005.
- [91] Y. F. Deng, X. Jin, and Y. X. Zhong, "Ensemble SVR for prediction of time series", Proceedings of the 4th International Conference on Machine Learning and Cybernetics, pp. 3528–3534, 2005.
- [92] J. Ni, W. Tang, Y. Xing, "A Simple Algebra for Fault Tree Analysis of Static and Dynamic Systems," *IEEE Transactions on Reliability*, vol.62, no.4, pp. 846–861, 2013.

- [93] P. M. Frank, B. Kppen-Seliger, "Fuzzy logic and neural network applications to fault diagnosis", *International Journal of Approximate Reasoning*, vol 16, no. 1, pp. 67–88, 1997.
- [94] W. Yan, F. Xue, "Jet engine gas path fault diagnosis using dynamic fusion of multiple classifiers", *in the proceedings of IEEE World Congress on Computational Intelligence*, pp.1585–1591, 2008.
- [95] T. Kobayashi, D. L. Simon, "Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics", *Proceedings ASME TurboExpo*, pp. 461–470, 2003.
- [96] W. Xue, Y. Guo, X. Zhang, "A Bank of Kalman Filters and a Robust Kalman Filter Applied in Fault Diagnosis of Aircraft Engine Sensor/Actuator," *Innovative Computing, Information and Control*, 10 pages, 2007.
- [97] E. Naderi, N. Meskin, K. Khorasani, "Nonlinear fault diagnosis of jet engines by using a multiple model-based approach", *Transactions of the ASME Engineering for Gas Turbines and Power*, vol. 134, no. 1, pp. 319–329, 2012.
- [98] H. Valpola and J. Karhunen, "An Unsupervised Ensemble Learning Method for Nonlinear Dynamic State-Space Models", *Neural Computation*, vol. 14, pp. 2647–2692, 2001.
- [99] V. Palade, C. D. Bocaniala, and L. C. Jain, "Computational Intelligence in Fault Diagnosis", *Advanced Information and Knowledge Processing*, Springer, 2006.
- [100] R. B. Joly, S. O. T. Ogaji, R. Singh, S. D. Probert, "Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine", *Applied Energy*, vol. 78, no. 4, pp. 397–418, 2004.

- [101] S. O. T. Ogaji, R. Singh, "Advanced engine diagnostics using artificial neural networks", *Applied Soft Computing*, vol. 3, no. 3, pp. 259–271, 2003.
- [102] P. Alexander and R. Singh, "Gas Turbine Engine Fault Diagnostics Using Fuzzy Concepts", Proceedings of AIAA 1<sup>st</sup> Intelligent Systems Technical Conference, ,2004.
- [103] V. Palade, R. J. Patton, F. J. Uppal, J. Quevedo, S. Daley, "Fault diagnosis of an industrial gas turbine using neuro-fuzzy methods", *Proceedings of the 15th IFAC World Congress*, pp. 2477–2482, 2002.
- [104] W. Yang, K. Y. Lee, S. T. Junker, H. Ghezel-Ayagh, "Fault diagnosis and accommodation system with a hybrid model for fuel cell power plant," *IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century*, 8 pages, 2008.
- [105] S. O. T. Ogaji, L. Marinai, S. Sampath, R. Singh, S.D. Prober, "Gas-turbine fault diagnostics: a fuzzy-logic approach," *Applied Energy*, vol. 82, no. 1, pp. 81–89, 2004.
- [106] P. J. Fleming, C. M., Fonseca, "Genetic algorithms in control systems engineering: a brief introduction," *IEE Colloquium on Genetic Algorithms for Control Systems Engineering*, pp.1–5, 1993.
- [107] J. M. Rogero, "A Genetic algorithms based optimisation tool for the preliminary design of gas turbine combustors," PhD Thesis, Cranfield University, 2002.
- [108] A. Chipperfield, P. Fleming, "Multiobjective gas turbine engine controller design using genetic algorithms," *IEEE Transactions on Industrial Electronics*, vol.43, no.5, pp.583–587, 1996.
- [109] S. O. T. Ogaji, S. Sampath, L. Marinai, R. Singh, S.D. Probert, "Evolution strategy for gas-turbine fault-diagnoses," *Applied Energy*, vol. 81, no. 2, pp. 222–230, 2005.

- [110] G. Biswas and G. Simon, N. Mahadevan, S. Narasimhan, J. Ramirez, G. Karsai, "A robust method for hybrid diagnosis of complex systems", *5th IFAC Symposium on Fault Detection*, *Supervision and Safety of Technical Processes*, pp. 1125–1131, 2005.
- [111] S. Gupta, G. Biswas and J. W. Ramirez, "An Improved Algorithm for Hybrid Diagnosis of Complex Systems," 15th International Workshop on Principles of Diagnosis, 2004.
- [112] J. F. D. Addison, S. Wermter, J. MacIntyre, "Effectiveness of feature extraction in neural network architectures for novelty detection," *Ninth International Conference on Arti<sup>\*</sup> cial Neural Networks*, vol.2, pp. 976–981, 1999.
- [113] K. Anders and J. Vedelsby, "Neural network ensembles, cross validation, and active learning," *In Advances in Neural Information Processing Systems*, MIT Press, pp. 231–238, 1995.
- [114] S. W. Christensen, "Ensemble construction via designed output distortion," *Lecture Notes in Computer Science*, pp. 286–295, 2003.
- [115] G. Brown, J. L. Wyatt, and T. Peter "Managing diversity in regression ensembles," *Journal of Machine Learning Research*, pp. 1621–1650, 2005.
- [116] H. Dutta, "Measuring diversity in regression ensembles," *Proceedings of 4th Indian international conference on arti*<sup>×</sup>*cial intelligence*, 2009.
- [117] M. Bishop, "Pattern recognition and machine learning," Springer, 2006.
- [118] R. Polikar, "Ensemble Learning", *Ensemble Machine Learning*, Editors: Zhang, Cha and Ma, Yunqian, pp. 1–34, 2012.

- [119] J. Friedman, "On bias, variance, 0/1-loss, and the curse-of dimensionality", *Data Mining and Knowledge Discovery*, 1997.
- [120] G. Brown, "Diversity in neural network ensembles," PhD, University of Birmingham, UK, 2004.
- [121] A. Chandra and X. Yao, "Evolving hybrid ensembles of learning machines for better generalisation," *Neurocomputing*, vol. 69, no. 7–9, pp. 686–700, Mar. 2006.
- [122] W. Yan, Feng Xue, "Jet engine gas path fault diagnosis using dynamic fusion of multiple classifiers," *Proceedings of the International Joint Conference on Neural Networks*, pp. 1585– 1591, 2008.
- [123] W. Yan, "A Multiple Classifier System for Aircraft Engine Fault Diagnosis," PhD Thesis, *Rensselaer Polytechnic Institute*, 2008.
- [124] L. I. Kuncheva, "Combining pattern classifiers, methods and algorithms," New York, *Wiley*, 2005.
- [125] R. E. Banfield, L. O. Hall, K.W. Bowyer, andW. P. Kegelmeyer, "Ensemble diversity measures and their application to thinning," *Information Fusion*, vol. 6, no. 1, pp. 49–62, 2005.
- [126] L. I. Kuncheva and C. J. Whitaker, "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy," *Machine Learning*, vol. 51, no. 2, pp. 181–207, 2003.
- [127] L. I. Kuncheva, "That elusive diversity in classifier ensembles," *Pattern Recognition and Image Analysis*, Lecture Notes in Computer Science, vol. 2652, 2003, pp. 1126–1138
- [128] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.

- [129] P. Domingos, "Why does bagging work? a bayesian account and its implications", *International Conference on Knowledge Discovery and Data Mining.*, pp. 155-158, AAAI Press, 1997.
- [130] P. M. Granitto, P. F. Verdes, and H. A. Ceccatto, "Neural network ensembles: evaluation of aggregation algorithms", *Arti* cial Intelligence, vol. 163, no. 2, pp. 139-162, 2005.
- [131] D. Partridge and W. B. Yates, "Engineering multiversion neural-net systems", *Neural Computation*, vol. 8, no. 4, pp. 869-893, 1996.
- [132] S. B. Kotsiantis and P. E. Pintelas, "Selective averaging of regression models", Annals of Mathematics, Computing & Teleinformatics, vol. 1, no. 3, pp. 65-74, 2005.
- [133] N. Rooney, D. Patterson, S. Anand, A. Tsymbal, "Dynamic integration of regression models", *International Workshop on Multiple Classi* er Systems, vol. LNCS 3181, pp. 164-173, Springer, 2004.
- [134] P. Guilherme, F. J. V. Zuben, "The influence of the pool of candidates on the performance of selection and combination techniques in ensembles", *International Joint Conference on Neural Networks*, pp. 10588-10595, 2006.
- [135] H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik, "Boosting and other ensemble methods," *Neural Computation*, vol. 6, no. 6, pp. 1289–1301, 1994.
- [136] D. H. Wolpert, "Stacked generalization," Neural Networks, vol. 5, no. 2, pp. 241–259, 1992.
- [137] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, "Adaptive mixtures of local experts," *Neural Computation*, vol. 3, no. 1, pp. 79–87, 1991.

- [138] M. J. Jordan and R. A. Jacobs, "Hierarchical mixtures of experts and the EMalgorithm," *Neural Computation*, vol. 6, no. 2, pp. 181–214, 1994.
- [139] S. Sina Tayarani-Bathaie, Z.N. Sadough Vanini, K. Khorasani, "Dynamic neural networkbased fault diagnosis of gas turbine engines", *Neurocomputing*, vol. 125, pp. 153–165, 2014.
- [140] S. Tayarani-Bathaie, Z. S. Vanini, K. Khorasani, "Fault detection of gas turbine engines using dynamic neural networks," *IEEE Canadian Conference on Electrical & Computer Engineering (CCECE)*, 5 pages, 2012.
- [141] A. J. Volponi, "Use of hybrid engine modeling for on-board module performance tracking", *Proceedings of the ASME Turbo Expo*, pp. 525–533, 2005.
- [142] T. Chen, J. G. Sun, "Rough set and neural network based fault diagnosis for aeroengine gas path", *Proceedings of the ASME Turbo Expo*, pp. 535–539, 2005.
- [143] I. Loboda, Y. Feldshteyn, V. Ponomaryov, "Neural networks for gas turbine fault identification: Multilayer perceptron or radial basis network?" *Proceedings of the ASME Turbo Expo*, pp. 465–475, 2011.
- [144] H. Xiao, N. Eklund, K. Goebel, W. Cheetham, "Hybrid Change Detection for Aircraft Engine Fault Diagnostics", *Proceedings of IEEE Aerospace Conference*, pp.1–10, 2007.
- [145] J. Zhang, "Improved on-line process fault diagnosis through information fusion in multiple neural networks", *Computers & Chemical Engineering*, vol. 30, no. 3, pp. 558–571, 2005.
- [146] W. Yan, F. Xue, "Jet engine gas path fault diagnosis using dynamic fusion of multiple classifiers,", *Proceedings of IEEE World Congress on Computational Intelligence*, pp.1585–1591, 2008.

- [147] R. Mohammadi, E. Naderi, K. Khorasani, S. Hashtrudi-Zad, "Fault diagnosis of gas turbine engines by using dynamic neural networks", *Proceedings of the ASME Turbo Expo*, pp. 365– 373, 2010.
- [148] H. Xiao, N. Eklund, K. Goebel, "A data fusion approach for aircraft engine fault diagnostics," *Proceedings of the ASME Turbo Expo*, pp. 767–775, 2007.
- [149] A. Varma, P. Bonissone, W. Yan, N. Eklund, K. Goebel, N.Iyer, S.Bonissone, "Anomaly detection using non-parametric information", *Proceedings of the ASME Turbo Expo*, pp. 813– 821, 2007.
- [150] W. Donat, K. Choi, W. An, S. Singh, K. Pattipati, "Data visualization, data reduction and classifier fusion for intelligent fault detection and diagnosis in gas turbine engines", *Proceedings* of the ASME Turbo Expo, pp. 883–892, 2007.
- [151] A. J. Volponi, "Use of hybrid engine modeling for on-board module performance tracking" *Proceedings of the ASME Turbo Expo*, pp. 525–533.
- [152] J. Huang, M. Wang, "Multiple Classifiers Combination Model for Fault Diagnosis Using Within-class Decision Support,", *Proceedings of Information Science and Management Engineering (ISME)*, pp.226–229, 2010.
- [153] S. C. Gu, Y. Tan and X. G. He, "Orthogonal quadratic discriminant functions for face recognition", *Advances in Neural Networks*, pp. 466–475, Springer, 2009.
- [154] J. Amanda, C. Sharkey, "Types of Multinet System", Multiple Classi<sup>\*</sup>er Systems, Lecture Notes in Computer Science, pp. 108–117, Springer, 2002.

- [155] A. J. C.Sharkey, G. O. Chandroth, N. E. Sharkey, "A Multi-Net System for the Fault Diagnosis of a Diesel Engine", *Neural Computing and Applications*, vol. 9, pp 152–160, 2000.
- [156] K. Choi, S. Singh, A. Kodali, K. Pattipati, R. Sheppard, J. W. Namburu, S. M. Chigusa et al., "Novel Classifier Fusion Approaches for Fault Diagnosis in Automotive Systems", *IEEE Transaction on Instrumentation and Measurement*, vol. 58, no. 3, pp. 602–611, 2009.
- [157] Y. Lei, M. J. Zuo, Z. He, Y. Zi, "A multidimensional hybrid intelligent method for gear fault diagnosis", *Expert Systems with Applications*, vol. 37, no. 2, pp. 1419–1430, 2010.
- [158] G. Niu, T. Han, B. S. Yang, A. Chit, Ch. Tan, "Multi-agent decision fusion for motor fault diagnosis", *Mechanical Systems and Signal Processing*, vol. 21, no. 3, pp. 1285–1299, 2007.
- [159] L. Oukhellou, A. Debiolles, T. Denaux, P. Aknin, "Fault diagnosis in railway track circuits using Dempster-Shafer classifier fusion", *Engineering Applications of Arti* cial Intelligence, vol. 23, no. 1, pp. 117–128, 2010.
- [160] W. C. Chen, P. P. K. Chan, W. W. Y. Ng, D. S. Yeung, "Multiple classifier systems combined with localized generalization error for fault diagnosis of power transformers", *Proceedings of International Conference on Machine Learning and Cybernetics*, vol. 3, pp. 1464–1469, 2010.
- [161] P. P. Bonissone, N. Iyer, "Soft computing applications to prognostics and health management (PHM): leveraging field data and domain knowledge", *Proceedings of the international work conference on Arti cial neural networks*, pp. 928–939, Springer, 2007.
- [162] P. Bonissone, X. Hu, R. Subbu, "A Systematic PHM Approach for Anomaly Resolution: A Hybrid Neural Fuzzy System for Model Construction", *Proceeding of Annual Conference of the Prognostics and Health Management Society*, San Diego, pp. 2009.

- [163] H. A. Nozari, M. A. Shoorehdeli, S. Simani, H. D. Banadaki, "Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques", *Neurocomputing*, vol. 91, pp. 29–47, 2012.
- [164] D. Xu, M. Wu, J. An, "Design of an expert system based on neural network ensembles for missile fault diagnosis," *Proceedings of IEEE International Conference on Robotics, Intelligent Systems and Signal Processing*, vol. 2, pp. 903–908, 2003.
- [165] N. C. Oza, K. Tumer, I. Y. Tumer, E. M. Huff, "Classification of Aircraft Maneuvers for Fault Detection", *Multiple Classi* er Systems, Lecture Notes in Computer Science, pp. 375– 384, Springer, 2003.
- [166] A. Lipnickas, "Two-Stage Neural Networks Based Classifier System for Fault Diagnosis", Computational Intelligence in Fault Diagnosis, Advanced Information and Knowledge Processing, pp 209–230, Springer, 2006.
- [167] E. Filippi, M. Costa, E. Pasero, "Multi-layer perceptron ensembles for increased performance and fault-tolerance in pattern recognition tasks", *Proceedings of IEEE International Conference on Neural Networks*, pp. 2901–2906, 1994.
- [168] R. Lowen, A. Verschoren, "An Integrated Fuzzy Inference-based Monitoring, Diagnostic, and Prognostic System for Intelligent Control and Maintenance", *Foundations of Generic Optimization, Mathematical Modelling: Theory and Applications*, pp. 203–222, Springer, 2008.
- [169] W. Z. Yan, J. C. Li and K. F. Goebel, "On improving performance of aircraft engine gas path fault diagnosis", *Transactions of the Institute of Measurement and Control*, vol. 31, no.3, pp. 275–291, 2009.

- [170] C. Alippi, G. Boracchi, V. Puig, M. Roveri, "An Ensemble Approach to Estimate the Fault-Time Instant,", *Proceedings of IEEE International Conference on Intelligent Control and Information Processing*, 2013.
- [171] Ch. Ren, J. F. Yan, Z. H Li, "Improved ensemble learning in fault diagnosis system", *IEEE International Conference on Machine Learning and Cybernetics*, vol. 1, pp. 54–60, 2009.
- [172] Y.L. Murphey, Z. Chen, M. Abou-Nasr, R. Baker, T. Feldkamp, I. Kolmanovsky, "Ensembles of neural networks with generalization capabilities for vehicle fault diagnostics", *IEEE International Joint Conference on Neural Networks*, pp. 2188–2194, 2009.
- [173] R. K. Shahzad, N. Lavesson, "Veto-based Malware Detection," *IEEE International Confer*ence on Availability, Reliability and Security, pp.47–54, 2012.
- [174] G. O. Chandroth, "Diagnostic Classifier Ensembles: Enforcing Diversity for Reliebility in the Combination," *She* eld University, PhD Dissretation, 1999.
- [175] Q. Yang, C. Liu, D. Zhang, D. Wu, "A New Ensemble Fault Diagnosis Method Based on K-means Algorithm", *International Journal of Intelligent Engineering & Systems*, vol. 5, no. 5, 2012.
- [176] G. Georgoulas, T. Loutas, Ch. D. Stylios, V. Kostopoulos, "Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition", *Mechanical Systems and Signal Processing*, vol. 41, no. 1, pp. 510–525, 2013.
- [177] Y. Xu, D. Zhang, Y. Wang, "Active Diverse Learning Neural Network Ensemble Approach for Power Transformer Fault Diagnosis", *Journal of Networks*, vol. 5, no. 10, October 2010.

- [178] B. Y. Dong, G. Ren, "Analog Circuit Fault Diagnosis Using AdaBoost with SVM-Based Component Classifers", *Advanced Materials Research*, pp. 1414–1417, 2012.
- [179] F. Lu, T. B. Zhu, Y. Q. Lv, "Data-Driven Based Gas Path Fault Diagnosis for Turbo-Shaft Engine", *Applied Mechanics and Materials*, vol. 249, pp. 400–404,2012.
- [180] B. K. Kestner, Y. K. Lee, G. Voleti, D. N. Mavris, V. Kumar, T. Lin, "Diagnostics of Highly Degraded Industrial Gas Turbines Using Bayesian Networks", *Proceedings of ASME Turbo Expo*, pp. 39–49, 2011.
- [181] R. Ganguli, R. Verma, N. Roy, "Soft Computing Application for Gas Path Fault Isolation", *Proceedings of ASME Turbo Expo*, pp. 499–508, 2004.
- [182] C. Romessis, K. Mathioudakis, "Bayesian Network Approach for Gas Path Fault Diagnosis", *Proceedings of ASME Turbo Expo*, pp. 691–699, 2004.
- [183] S. Sampath, R. Singh, "An Integrated Fault Diagnostics Model Using Genetic Algorithm and Neural Networks", *Proceedings of ASME Turbo Expo*, pp. 749–758, 2004.
- [184] A. J. C. Sharkey and N. E. Sharkey, "Combining diverse neural nets," *Knowledge Eng. Rev.*, vol. 12, no. 3, pp. 1—17, 1997.
- [185] A. J. C. Sharkey, "On combining artificial neural nets," *Connection Sci.* vol. 8, no. 3, pp. 299–314, 1996.
- [186] M. Md. Islam, Y. Xin Yao, K. Murase, "A constructive algorithm for training cooperative neural network ensembles," *IEEE Transactions on Neural Networks*, vol.14, no.4, pp. 820–834, 2003.

- [187] L. K. Hansen, P. Salamon, "Neural Network Ensembles," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 12, no. 10, pp. 993–1001, October, 1990.
- [188] A. Khotanzad and C. Chung, "Hand written digit recognition using BKS combination of neural network classifiers," *in Proc. IEEE Southwest Symp. Image Anal. Interpretation*, pp. 94—99, 1994.
- [189] S. Hashem, "Optimal linear combinations of neural networks," *Neural Networks*, vol. 10, no. 4, pp. 599—614, 1997.
- [190] D. W. Opitz and J. W. Shavlik, "Actively searching for an effective neural-network ensemble," *Connection Science*, vol. 8, no. 3, pp. 337—353, 1996.
- [191] D. H. Wolpert. "Stacked generalization," Neural Networks, 5:241–259, 1992.
- [192] M. P. Perrone, L. N. Cooper, "When networks disagree: Ensemble methods for hybrid neural networks", *Neural Networks for Speech and Image Processing* pp. 126–142, 1994.
- [193] G. Brown, "Diversity in neural network ensembles", PhD, University of Birmingham, UK, 2004.
- [194] G. Brown, J. Wyatt, R. Harris, X. Yao, "Diversity creation methods: a survey and categorisation," *Information Fusion*, vol. 6, no. 1, pp. 5–20, 2005.
- [195] Y. Liu and X. Yao, "Ensemble learning via negative correlation," *Neural Networks*, vol. 12, no. 10, pp. 1399–1404, 1999.

- [196] Y. Freund and R. E. Schapire, "Decision-theoretic generalization of on-line learning and an application to boosting," *Journal of Computer and System Sciences*, vol. 55, no. 1, pp. 119–139, 1997.
- [197] S. Bathaei, "Fault Detection and Isolation of Jet Engines Using Neural Networks, Master Thesis", *Concordia University*, 2012.
- [198] Y. A. Borgne, "Bias-Variance trade-off characterization in a classification problem What differences with regression", *Technical Report, Universite Libre de Bruxelles Belgium*.
- [199] E. Naderi, N. Meskin, and K. Khorasani, "Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach," *J. Eng. Gas Turbines Power*, 2012.
- [200] R. Mohammadi, "Fault Diagnosis of Hybrid Systems with Applications to Gas Turbine Engines," PhD Thesis, *Concordia University*, 2009.
- [201] F. Roli, G. Giacinto, and G. Vernazza, "Methods for Designing Multiple Classifier Systems", *Multiple Classi* er Systems, vol. 2096, pp.78–87, 2001.
- [202] A. J. Volponi, H. Depold, R. Ganguli, "The use of Kalman Filters and Nural Networks Methodologies in Gas Turbine Fault Diagnosis: A Comparison Study," *Proceeding of Turbo Expo*, pp. 8-11, 2000.
- [203] P. J. Lu, M. C. Zhang, T. C. Su, "An Evaluation of Engine Fault Diagnostics Using Artificial Neural Networks," *Proceedings of ASME Turbo Expo*, 2000.
- [204] V. Vapnik, "The Nature of Statistical Learning Theory," Springer-Verlag, New York, 1995.

- [205] B. Sun, J. Zhang, S. Zhang, "An investigation of artificial neural network (ANN) in quantitative fault diagnosis for turbofan engine," *proceedings of ASME Turbo Expo*, 2000.
- [206] A. M. Ison, W. Li, C. J. Spanos, "Fault diagnosis of plasma etch equipment," Semiconductor Manufacturing Conference Proceedings, IEEE International Symposium on , vol., no., pp.B49– B52, 6–8 Oct 1997.
- [207] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. "Comparing negative binomial and recursive partitioning models for fault prediction," *In Proceedings of the 4th international workshop on Predictor models in software engineering*, 2008.
- [208] D. Jearkpaporn, D. C. Montgomery, G. C. Runger, and C. M. Borror, "Process monitoring for correlated gamma-distributed data using generalized-linear-modelbased control charts," *Quality and Reliability Engineering International*, pp. 477–491, 2003.
- [209] K. R. Skinner, D. C. Montgomery, and G. C. Runger, "Process monitoring for multiple count data using generalized linear model-based control charts," *International Journal of Production Research*, pp. 1167–1180, 2003.
- [210] T. Brotherton, G. Jahns, J. Jacobs, D. Wroblewski, "Prognosis of faults in gas turbine engines," *Aerospace Conference Proceedings*, vol. 6, pp. 163–171, 2000.
- [211] A. Bajwa, and D. Kulkarni, "Engine Data Analysis Using Decision Trees," 36th Joint Propulsion Conference and Exhibit, 2000.
- [212] M. Aksela, "Comparison of Classifier Selection Methods for Improving Committee Performance", Technical Report, *Helsinki University of Technology*.

- [213] X. Yao and Y. Liu, "Evolving neural network ensembles by minimization of mutual information," *International Journal of Hybrid Intelligent Systems*, 2004.
- [214] R. E. Schapire, "The strength of weak learnability," *Machine Learning*, vol. 5, no. 2, pp. 197–227, June 1990
- [215] A. Yazdizadeh, K. Khorasani, Adaptive time delay neural network structures for nonlinear system identification, *Neurocomputing*, Volume 47, Issues 14, Pages 207–240, ISSN 0925– 2312, 2002.
- [216] G. Cybenko, "Approximation by superpositions of a sigmoidal function," *Mathematics of Control, Signals and Systems*, 1989.
- [217] S. A. Billings. "Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains", Wiley, ISBN 978-1-1199-4359-4, 2013.
- [218] J. Sjoberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.Y. Glorennec, H. Hjalmarsson, A. Juditsky, "Nonlinear black-box modeling in system identification: a unified overview", *Automatica*, vol. 31, no. 12, Pages 1691–1724.
- [219] G. Brown, J. Wyatt, R. Harris, X. Yao, "Diversity creation methods: a survey and categorisation", *Information Fusion*, vol. 6, no. 1, pp. 5–20, 2005.
- [220] W. Yates, D. Partridge, "Use of methodological diversity to improve neural network generalization", *Neural Computing and Applications*, vol. 4, no.2, pp. 114-128, 1996.
- [221] D. Opitz, R. Macli, "Popular Ensemble Methods: An Empirical Study", *Journal of Arti<sup>\*</sup> cial Intelligence Research*, vol. 11, pp. 169–198, 1999.

- [222] D. Partridge, "Network generalization differences quantified", *Neural Networks*, vol. 9, no. 2, pp. 263–271, 1996.
- [223] J. Mendes-Moreira, C. Soares, A. M. Jorge, J. F. D. Sousa, "Ensemble approaches for regression: A survey", ACM Computing Surveys (CSUR), vol. 45, no. 1, article no. 10, 2012.
- [224] C. J. Merz, M. J. Pazzani, "A principal components approach to combining regression estimates", *Machine Learning*, vol. 36, pp. 9-32, 1999.
- [225] J. Kivinen, M. K. Warmuth, "Exponentiated gradient versus gradient descent for linear predictors", *Information and Computation*, vol. 132, no. 1, pp. 1-63, 1997.
- [226] W. Visser and M. Broonhead, "GSP, a generic object-oriented gas turbine simulation environment," *ASME Turbo Expo*, 2000.
- [227] H. Saravanamuttoo, G. Rogers, and H. Cohen, "Gas Turbine Theory," *Pearson Education*, 2001.
- [228] L. Tang, I. Technol, X. Zhang, J. DeCastro, "Diagnosis of engine sensor, actuator and component faults using a bank of adaptive nonlinear estimators,", *IEEE Aerospace Conference*, 11 pages, 2011.
- [229] I. S. Diakunchak, "Performance deteriorations in industrial gas turbines," ASME Journal of Engineering for Gas turbines and Power, vol. 114, no. 2, pp. 161–168, 1992.
- [230] Turbotect, Internet: "http:www.turbotect.comgalleryexamples\_of\_some\_severe\_gas\_turbine \_compressor\_fou.html", Jan 12, 2015.

- [231] C. B. Meher-Homji, A. Bromley, "Gas Turbine Axial Compressor Fouling and Washing,"*Turbomachinery Symposium*, 2004.
- [232] N. Cumpsty, "Jet Propulsion", Cambridge University Press, Cambridge, UK, 2003.
- [233] HEATTOP Project, Work Package 1, 2007, "Definitions and Sensor Specifications."
- [234] HEATTOP Project, "Accurate High Temperature Engine Aero-Thermal Measurements for Gas-Turbine Life Optimization, Performance and Condition Monitoring", 2011.
- [235] M. Massini, R. J. Miller, H. P. Hodson, "A New Intermittent Aspirated Probe for the Measurement of Stagnation Quantities in High Temperature Gases", Journal of Tourbomachinery, vol. 133, no.4, 6 pages, 2011.
- [236] M. Scervini, C. Rae, "An Improved Nickel Based MIMS Thermocouple for High Temperature Gas Turbine Applications", *Journal of Engineering for Gas Turbines and Power*, vol. 135, 6 pages, 2013.
- [237] Rolls Royce, "The Jet Engine", ISBN 0902121235, 1996.

## **Chapter 6**

## Appendix

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|------------------------------|
| 10        | 4        | 1200               | 2.7879                        | 3.0934                           | 2.5642                       | 0.42469                          | 2.1886              | 1.7272                       |
| 10        | 5        | 1200               | 20.9207                       | 21.4008                          | 20.5946                      | 3.1769                           | 16.2987             | 13.118                       |
| 10        | 6        | 1200               | 2.3186                        | 3.0833                           | 1.6198                       | 0.35368                          | 1.4804              | 1.7848                       |
| 10        | 7        | 1200               | 19.9439                       | 31.4826                          | 1.5435                       | 3.0499                           | 6.9422              | 18.6998                      |
| 10        | 8        | 1200               | 2.7822                        | 3.6898                           | 1.9563                       | 0.42456                          | 1.7735              | 2.144                        |
| 10        | 4        | 1501               | 50.7861                       | 51.1885                          | 50.3802                      | 7.6758                           | 49.3208             | 12.1133                      |
| 10        | 5        | 1501               | 2.4312                        | 2.4207                           | 2.4417                       | 0.36956                          | 2.0321              | 1.3349                       |
| 10        | 6        | 1501               | 2.2036                        | 2.5874                           | 1.7366                       | 0.33616                          | 1.431               | 1.676                        |
| 10        | 7        | 1501               | 3.6805                        | 3.4781                           | 3.8725                       | 0.55892                          | 3.205               | 1.8098                       |
| 10        | 8        | 1501               | 2.177                         | 2.4418                           | 1.8749                       | 0.33189                          | 1.5631              | 1.5155                       |
| 10        | 4        | 1801               | 1.5442                        | 1.578                            | 1.4921                       | 0.23453                          | 1.3122              | 0.81427                      |
| 10        | 5        | 1801               | 1.6296                        | 1.7687                           | 1.3951                       | 0.24789                          | 1.3153              | 0.9623                       |

 Table 6.1: Summary of MLP-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\textbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|-----------------------------|
| 10        | 6        | 1801               | 43.6162                       | 43.5828                          | 43.6664                      | 6.6003                          | 43.6042             | 1.0263                      |
| 10        | 7        | 1801               | 80.5395                       | 79.7868                          | 81.6561                      | 12.1774                         | 80.3288             | 5.8234                      |
| 10        | 8        | 1801               | 2.7925                        | 3.0573                           | 2.3394                       | 0.42497                         | 2.2723              | 1.6235                      |
| 11        | 4        | 1200               | 2.3929                        | 2.8235                           | 2.0566                       | 0.36452                         | 1.8417              | 1.528                       |
| 11        | 5        | 1200               | 86.0789                       | 85.6501                          | 86.3633                      | 13.0184                         | 85.9729             | 4.2713                      |
| 11        | 6        | 1200               | 75.2982                       | 75.0649                          | 75.4532                      | 11.3917                         | 75.2709             | 2.0268                      |
| 11        | 7        | 1200               | 3.5717                        | 4.1891                           | 3.0927                       | 0.54406                         | 2.7173              | 2.3185                      |
| 11        | 8        | 1200               | 4.6462                        | 6.7439                           | 2.3806                       | 0.71023                         | 2.2969              | 4.0394                      |
| 11        | 4        | 1501               | 2.6398                        | 2.5909                           | 2.6879                       | 0.40145                         | 2.2234              | 1.4232                      |
| 11        | 5        | 1501               | 54.435                        | 54.7195                          | 54.1488                      | 8.2313                          | 54.3311             | 3.3613                      |
| 11        | 6        | 1501               | 4.0782                        | 4.2999                           | 3.8437                       | 0.62113                         | 3.1776              | 2.5568                      |
| 11        | 7        | 1501               | 1.4337                        | 1.8878                           | 0.7389                       | 0.21885                         | 0.64245             | 1.2819                      |
| 11        | 8        | 1501               | 9.6467                        | 9.2376                           | 10.0394                      | 1.472                           | 5.8961              | 7.6363                      |
| 11        | 4        | 1801               | 1.7293                        | 2.0072                           | 1.1966                       | 0.26349                         | 1.2099              | 1.2357                      |
| 11        | 5        | 1801               | 118.2379                      | 117.8377                         | 118.836                      | 17.8814                         | 118.0842            | 6.0289                      |
| 11        | 6        | 1801               | 2.194                         | 2.5873                           | 1.4109                       | 0.33452                         | 1.5441              | 1.5588                      |
| 11        | 7        | 1801               | 3.663                         | 4.2249                           | 2.6011                       | 0.55827                         | 2.7901              | 2.3738                      |
| 11        | 8        | 1801               | 1.8026                        | 1.8981                           | 1.649                        | 0.27394                         | 1.5337              | 0.94741                     |
| 12        | 4        | 1200               | 95.7778                       | 95.3331                          | 96.0729                      | 14.4851                         | 95.6603             | 4.7432                      |
| 12        | 5        | 1200               | 2.2768                        | 2.6802                           | 1.9626                       | 0.34685                         | 1.7141              | 1.4988                      |
| 12        | 6        | 1200               | 54.5425                       | 54.4929                          | 54.5755                      | 8.2538                          | 50.0748             | 21.6231                     |
| 12        | 7        | 1200               | 2.2538                        | 2.4209                           | 2.1353                       | 0.34275                         | 1.8984              | 1.215                       |
| 12        | 8        | 1200               | 2.972                         | 3.6885                           | 2.3778                       | 0.45271                         | 2.2093              | 1.9883                      |

 
 Table 6.1: Summary of MLP-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|-----------------------------|
| 12        | 4        | 1501               | 1.6918                        | 1.6993                           | 1.6842                       | 0.25716                         | 1.3875              | 0.96808                     |
| 12        | 5        | 1501               | 18.5113                       | 26.1153                          | 1.7614                       | 2.8315                          | 6.5389              | 17.3208                     |
| 12        | 6        | 1501               | 3.0609                        | 3.0336                           | 3.0881                       | 0.46546                         | 2.5609              | 1.677                       |
| 12        | 7        | 1501               | 2.4458                        | 2.7593                           | 2.0855                       | 0.3722                          | 1.797               | 1.6594                      |
| 12        | 8        | 1501               | 4.0489                        | 4.1655                           | 3.9287                       | 0.61464                         | 3.3299              | 2.3036                      |
| 12        | 4        | 1801               | 1.8869                        | 1.9021                           | 1.8637                       | 0.28662                         | 1.5925              | 1.0121                      |
| 12        | 5        | 1801               | 56.0854                       | 55.7542                          | 56.5789                      | 8.4777                          | 55.8554             | 5.0751                      |
| 12        | 6        | 1801               | 69.025                        | 68.3138                          | 70.0787                      | 10.4312                         | 68.0593             | 11.5075                     |
| 12        | 7        | 1801               | 115.6588                      | 114.8802                         | 116.8178                     | 17.4908                         | 114.0775            | 19.0634                     |
| 12        | 8        | 1801               | 1.2931                        | 1.4344                           | 1.0459                       | 0.19672                         | 0.9086              | 0.92024                     |
| 13        | 4        | 1200               | 2.6436                        | 3.2199                           | 2.1765                       | 0.4035                          | 1.7738              | 1.9605                      |
| 13        | 5        | 1200               | 119.4697                      | 118.8057                         | 119.9101                     | 18.0659                         | 119.2628            | 7.0291                      |
| 13        | 6        | 1200               | 1.7008                        | 2.3915                           | 1.0046                       | 0.25952                         | 0.92274             | 1.4289                      |
| 13        | 7        | 1200               | 3.4807                        | 5.1903                           | 1.4959                       | 0.53189                         | 1.4496              | 3.1649                      |
| 13        | 8        | 1200               | 162.0597                      | 161.0352                         | 162.7388                     | 24.5091                         | 160.0364            | 25.5331                     |
| 13        | 4        | 1501               | 32.7057                       | 33.0116                          | 32.3966                      | 4.943                           | 32.5351             | 3.3362                      |
| 13        | 5        | 1501               | 63.4672                       | 63.7249                          | 63.2083                      | 9.5987                          | 63.3847             | 3.235                       |
| 13        | 6        | 1501               | 28.0316                       | 31.0267                          | 24.6732                      | 4.2694                          | 14.996              | 23.6871                     |
| 13        | 7        | 1501               | 109.006                       | 109.3235                         | 108.6874                     | 16.4872                         | 108.6279            | 9.0721                      |
| 13        | 8        | 1501               | 11.8155                       | 12.0117                          | 11.6159                      | 1.7982                          | 9.2896              | 7.3026                      |
| 13        | 4        | 1801               | 109.5966                      | 108.9625                         | 110.5414                     | 16.5723                         | 109.3952            | 6.6417                      |
| 13        | 5        | 1801               | 1.8502                        | 2.167                            | 1.2301                       | 0.28207                         | 0.98749             | 1.5649                      |
| 13        | 6        | 1801               | 2.7206                        | 3.0914                           | 2.0414                       | 0.41443                         | 1.999               | 1.8457                      |

 
 Table 6.1: Summary of MLP-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|------------------------------|
| 13        | 7        | 1801               | 1.6001                        | 1.8165                           | 1.2044                       | 0.24369                         | 1.1783              | 1.0827                       |
| 13        | 8        | 1801               | 86.597                        | 86.0953                          | 87.3445                      | 13.0916                         | 86.3317             | 6.7745                       |
| 14        | 4        | 1200               | 2.2693                        | 2.4864                           | 2.1123                       | 0.3449                          | 1.8897              | 1.2567                       |
| 14        | 5        | 1200               | 73.5512                       | 73.0571                          | 73.8786                      | 11.1207                         | 73.3719             | 5.1334                       |
| 14        | 6        | 1200               | 2.5582                        | 3.7001                           | 1.3351                       | 0.39059                         | 1.2711              | 2.2204                       |
| 14        | 7        | 1200               | 64.9872                       | 64.8008                          | 65.1112                      | 9.8309                          | 64.9361             | 2.5782                       |
| 14        | 8        | 1200               | 1.9399                        | 2.3602                           | 1.5998                       | 0.29581                         | 1.4046              | 1.3383                       |
| 14        | 4        | 1501               | 3.0572                        | 3.152                            | 2.9594                       | 0.46553                         | 2.3882              | 1.9091                       |
| 14        | 5        | 1501               | 1.0016                        | 1.0817                           | 0.91441                      | 0.15228                         | 0.73773             | 0.67756                      |
| 14        | 6        | 1501               | 105.5055                      | 105.9321                         | 105.0769                     | 15.9566                         | 105.3147            | 6.3436                       |
| 14        | 7        | 1501               | 108.7845                      | 109.3749                         | 108.1905                     | 16.4491                         | 106.325             | 23.0051                      |
| 14        | 8        | 1501               | 111.0706                      | 109.9238                         | 112.2064                     | 16.8075                         | 105.2197            | 35.5797                      |
| 14        | 4        | 1801               | 1.3272                        | 1.4965                           | 1.0216                       | 0.202                           | 1.0032              | 0.86898                      |
| 14        | 5        | 1801               | 5.1862                        | 5.8258                           | 4.0405                       | 0.7897                          | 3.9202              | 3.396                        |
| 14        | 6        | 1801               | 63.8587                       | 63.2542                          | 64.7554                      | 9.653                           | 63.6005             | 5.7383                       |
| 14        | 7        | 1801               | 4.0198                        | 4.6657                           | 2.7821                       | 0.61273                         | 3.0276              | 2.6448                       |
| 14        | 8        | 1801               | 78.5176                       | 78.3627                          | 78.7496                      | 11.88                           | 78.4966             | 1.8173                       |
| 15        | 4        | 1200               | 3.0191                        | 4.0894                           | 2.0113                       | 0.46038                         | 1.839               | 2.3948                       |
| 15        | 5        | 1200               | 11.5477                       | 12.252                           | 11.0536                      | 1.7562                          | 9.3723              | 6.7472                       |
| 15        | 6        | 1200               | 2.6182                        | 3.3374                           | 2.0003                       | 0.39905                         | 1.8458              | 1.8572                       |
| 15        | 7        | 1200               | 3.5106                        | 5.5082                           | 0.56647                      | 0.53711                         | 0.74164             | 3.432                        |
| 15        | 8        | 1200               | 2.0647                        | 2.3486                           | 1.8516                       | 0.31423                         | 1.6327              | 1.2641                       |
| 15        | 4        | 1501               | 70.2922                       | 70.4178                          | 70.1664                      | 10.6334                         | 58.1478             | 39.5013                      |

 
 Table 6.1: Summary of MLP-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------|
| 15        | 5        | 1501               | 44.7489                       | 44.8696                          | 44.6278                      | 6.768                            | 34.1267             | 28.9501               |
| 15        | 6        | 1501               | 2.0963                        | 2.493                            | 1.6039                       | 0.31954                          | 1.3973              | 1.5629                |
| 15        | 7        | 1501               | 4.1934                        | 4.6624                           | 3.6644                       | 0.63987                          | 2.8925              | 3.0366                |
| 15        | 8        | 1501               | 4.8707                        | 5.5448                           | 4.0862                       | 0.74261                          | 3.4636              | 3.425                 |
| 15        | 4        | 1801               | 2.128                         | 2.4083                           | 1.6187                       | 0.32415                          | 1.5784              | 1.4274                |
| 15        | 5        | 1801               | 3.4745                        | 4.2668                           | 1.6931                       | 0.53056                          | 1.7334              | 3.0117                |
| 15        | 6        | 1801               | 2.2914                        | 2.8764                           | 0.84487                      | 0.34997                          | 0.87841             | 2.1167                |
| 15        | 7        | 1801               | 5.401                         | 5.8805                           | 4.5882                       | 0.82196                          | 4.3454              | 3.2081                |
| 15        | 8        | 1801               | 2.6791                        | 2.8942                           | 2.319                        | 0.4076                           | 1.9931              | 1.7905                |

 
 Table 6.1: Summary of MLP-NARX model construction for identification of compressor temperature

 Table 6.2: Summary of MLP-NARX model construction for identification of compressor

 pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|------------------------------|
| 10        | 4        | 1200               | 0.18213                       | 0.26799                          | 0.086148                     | 1.7474                            | 0.088784            | 0.15905                      |
| 10        | 5        | 1200               | 1.0284                        | 1.6244                           | 0.06558                      | 8.6029                            | 0.46376             | 0.91807                      |
| 10        | 6        | 1200               | 0.086456                      | 0.10144                          | 0.07482                      | 0.7319                            | 0.065487            | 0.056454                     |
| 10        | 7        | 1200               | 0.10925                       | 0.14425                          | 0.077618                     | 1.0546                            | 0.068825            | 0.084862                     |
| 10        | 8        | 1200               | 4.783                         | 4.7566                           | 4.8004                       | 39.6577                           | 4.137               | 2.4009                       |
| 10        | 4        | 1501               | 0.11202                       | 0.13932                          | 0.075388                     | 1.0006                            | 0.062874            | 0.092727                     |
| 10        | 5        | 1501               | 0.18394                       | 0.19742                          | 0.16939                      | 1.5638                            | 0.14116             | 0.11796                      |
| 10        | 6        | 1501               | 0.22605                       | 0.31705                          | 0.040604                     | 1.9488                            | 0.053844            | 0.21958                      |
| 10        | 7        | 1501               | 0.71708                       | 0.74943                          | 0.68318                      | 6.1644                            | 0.38489             | 0.60513                      |
| 10        | 8        | 1501               | 0.34356                       | 0.41064                          | 0.25963                      | 2.9939                            | 0.19477             | 0.28306                      |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\textbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------------------|
| 10        | 4        | 1801               | 0.19124                       | 0.23213                          | 0.1029                       | 1.6368                            | 0.12894             | 0.14126                                 |
| 10        | 5        | 1801               | 0.087609                      | 0.084868                         | 0.091569                     | 0.73536                           | 0.069388            | 0.053494                                |
| 10        | 6        | 1801               | 0.99772                       | 1.2858                           | 0.090768                     | 8.6028                            | 0.37033             | 0.9266                                  |
| 10        | 7        | 1801               | 1.6202                        | 1.7103                           | 1.4746                       | 13.4828                           | 1.4548              | 0.71315                                 |
| 10        | 8        | 1801               | 2.5661                        | 2.4638                           | 2.7123                       | 21.5761                           | 1.8921              | 1.7337                                  |
| 11        | 4        | 1200               | 0.12354                       | 0.16832                          | 0.080952                     | 1.0549                            | 0.073862            | 0.099042                                |
| 11        | 5        | 1200               | 1.1083                        | 1.7426                           | 0.15357                      | 9.5529                            | 0.40053             | 1.0336                                  |
| 11        | 6        | 1200               | 0.12312                       | 0.18319                          | 0.053833                     | 1.0557                            | 0.04865             | 0.11312                                 |
| 11        | 7        | 1200               | 0.18312                       | 0.24641                          | 0.12419                      | 1.5965                            | 0.099219            | 0.15394                                 |
| 11        | 8        | 1200               | 0.19815                       | 0.30157                          | 0.069496                     | 1.7042                            | 0.077238            | 0.18251                                 |
| 11        | 4        | 1501               | 4.438                         | 4.4617                           | 4.4142                       | 36.7173                           | 4.4304              | 0.26021                                 |
| 11        | 5        | 1501               | 0.15432                       | 0.1564                           | 0.15221                      | 1.3054                            | 0.12637             | 0.088587                                |
| 11        | 6        | 1501               | 5.3541                        | 5.3673                           | 5.3409                       | 44.3119                           | 5.0162              | 1.8724                                  |
| 11        | 7        | 1501               | 1.7701                        | 2.502                            | 0.069162                     | 15.2137                           | 0.53807             | 1.6867                                  |
| 11        | 8        | 1501               | 0.29538                       | 0.3922                           | 0.14367                      | 2.6522                            | 0.12672             | 0.26686                                 |
| 11        | 4        | 1801               | 0.17184                       | 0.19401                          | 0.13175                      | 1.4687                            | 0.13447             | 0.10701                                 |
| 11        | 5        | 1801               | 0.0531                        | 0.060215                         | 0.040119                     | 0.44925                           | 0.033786            | 0.040972                                |
| 11        | 6        | 1801               | 0.20253                       | 0.25712                          | 0.057921                     | 1.745                             | 0.063521            | 0.19234                                 |
| 11        | 7        | 1801               | 0.28186                       | 0.3321                           | 0.18207                      | 2.4086                            | 0.19848             | 0.20015                                 |
| 11        | 8        | 1801               | 0.096033                      | 0.11708                          | 0.049887                     | 0.8213                            | 0.043779            | 0.085488                                |
| 12        | 4        | 1200               | 0.10272                       | 0.13776                          | 0.070256                     | 0.87585                           | 0.061253            | 0.08247                                 |
| 12        | 5        | 1200               | 4.7372                        | 4.6983                           | 4.7629                       | 39.127                            | 4.7172              | 0.43431                                 |
| 12        | 6        | 1200               | 4.8941                        | 4.9334                           | 4.8677                       | 40.6131                           | 4.7393              | 1.221                                   |

 
 Table 6.2: Summary of MLP-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\textbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------------------|
| 12        | 7        | 1200               | 0.06571                       | 0.087446                         | 0.045822                     | 0.55726                           | 0.038364            | 0.053357                                |
| 12        | 8        | 1200               | 0.13281                       | 0.18103                          | 0.086906                     | 1.1381                            | 0.078402            | 0.10721                                 |
| 12        | 4        | 1501               | 7.2386                        | 7.2594                           | 7.2178                       | 59.9556                           | 7.2338              | 0.26471                                 |
| 12        | 5        | 1501               | 0.075964                      | 0.095119                         | 0.049915                     | 0.64918                           | 0.042239            | 0.063149                                |
| 12        | 6        | 1501               | 0.17796                       | 0.24437                          | 0.060041                     | 1.53                              | 0.061056            | 0.16719                                 |
| 12        | 7        | 1501               | 7.7776                        | 7.8118                           | 7.7433                       | 64.3566                           | 7.7663              | 0.42043                                 |
| 12        | 8        | 1501               | 0.068131                      | 0.083435                         | 0.048173                     | 0.57905                           | 0.03969             | 0.055385                                |
| 12        | 4        | 1801               | 0.30503                       | 0.33921                          | 0.24495                      | 2.6813                            | 0.24049             | 0.18766                                 |
| 12        | 5        | 1801               | 1.0244                        | 1.0791                           | 0.93632                      | 8.6699                            | 0.74842             | 0.69957                                 |
| 12        | 6        | 1801               | 0.07754                       | 0.095055                         | 0.038409                     | 0.70861                           | 0.034802            | 0.069302                                |
| 12        | 7        | 1801               | 0.10034                       | 0.12331                          | 0.048562                     | 0.85987                           | 0.051821            | 0.08594                                 |
| 12        | 8        | 1801               | 0.26226                       | 0.33004                          | 0.092335                     | 2.2502                            | 0.15067             | 0.21469                                 |
| 13        | 4        | 1200               | 6.5354                        | 6.4513                           | 6.5909                       | 53.8924                           | 6.2991              | 1.7418                                  |
| 13        | 5        | 1200               | 0.12091                       | 0.17572                          | 0.061522                     | 1.035                             | 0.05951             | 0.10526                                 |
| 13        | 6        | 1200               | 0.13152                       | 0.15096                          | 0.11679                      | 1.1204                            | 0.1015              | 0.083656                                |
| 13        | 7        | 1200               | 9.1264                        | 9.0765                           | 9.1595                       | 75.682                            | 8.226               | 3.9534                                  |
| 13        | 8        | 1200               | 0.12625                       | 0.1864                           | 0.058403                     | 1.2959                            | 0.048202            | 0.11671                                 |
| 13        | 4        | 1501               | 0.11394                       | 0.15435                          | 0.046155                     | 0.97906                           | 0.042831            | 0.1056                                  |
| 13        | 5        | 1501               | 0.21434                       | 0.21912                          | 0.20944                      | 1.8191                            | 0.16612             | 0.13547                                 |
| 13        | 6        | 1501               | 0.34614                       | 0.44288                          | 0.20843                      | 2.9776                            | 0.18655             | 0.29163                                 |
| 13        | 7        | 1501               | 0.12039                       | 0.13573                          | 0.10278                      | 1.0239                            | 0.087382            | 0.082833                                |
| 13        | 8        | 1501               | 0.18682                       | 0.19134                          | 0.18218                      | 1.5853                            | 0.15063             | 0.11053                                 |
| 13        | 4        | 1801               | 0.082647                      | 0.093705                         | 0.062483                     | 0.70218                           | 0.060456            | 0.056362                                |

 
 Table 6.2: Summary of MLP-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\textbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 13        | 5        | 1801               | 7.98                          | 7.9231                           | 8.0645                       | 65.8928                           | 7.942               | 0.77771                     |
| 13        | 6        | 1801               | 0.11234                       | 0.13316                          | 0.070332                     | 0.95974                           | 0.078713            | 0.080161                    |
| 13        | 7        | 1801               | 0.35358                       | 0.44185                          | 0.14012                      | 3.0747                            | 0.15876             | 0.31599                     |
| 13        | 8        | 1801               | 0.14306                       | 0.17946                          | 0.053318                     | 1.2319                            | 0.047365            | 0.13501                     |
| 14        | 4        | 1200               | 3.0543                        | 3.0171                           | 3.0789                       | 25.166                            | 3.0217              | 0.44535                     |
| 14        | 5        | 1200               | 0.17808                       | 0.23261                          | 0.12957                      | 1.5245                            | 0.11519             | 0.13582                     |
| 14        | 6        | 1200               | 3.177                         | 3.1626                           | 3.1865                       | 26.298                            | 2.9583              | 1.1585                      |
| 14        | 7        | 1200               | 1.0844                        | 1.7109                           | 0.094754                     | 9.3402                            | 0.38975             | 1.0121                      |
| 14        | 8        | 1200               | 0.19612                       | 0.27806                          | 0.11214                      | 1.6802                            | 0.107               | 0.16438                     |
| 14        | 4        | 1501               | 6.0358                        | 6.0773                           | 5.9939                       | 49.8937                           | 6.0186              | 0.45463                     |
| 14        | 5        | 1501               | 3.0994                        | 3.1435                           | 3.0546                       | 25.5519                           | 2.4406              | 1.9107                      |
| 14        | 6        | 1501               | 5.564                         | 5.551                            | 5.577                        | 46.1213                           | 4.7338              | 2.9245                      |
| 14        | 7        | 1501               | 0.12707                       | 0.15962                          | 0.082525                     | 1.0881                            | 0.077944            | 0.10038                     |
| 14        | 8        | 1501               | 6.7051                        | 6.5953                           | 6.8133                       | 55.8471                           | 6.4094              | 1.9698                      |
| 14        | 4        | 1801               | 0.11488                       | 0.13506                          | 0.075026                     | 0.97998                           | 0.073882            | 0.087987                    |
| 14        | 5        | 1801               | 5.258                         | 5.2637                           | 5.2495                       | 43.6147                           | 3.851               | 3.5807                      |
| 14        | 6        | 1801               | 7.2773                        | 7.2458                           | 7.3245                       | 60.2648                           | 7.2292              | 0.83576                     |
| 14        | 7        | 1801               | 6.7024                        | 6.6705                           | 6.75                         | 55.4286                           | 6.6879              | 0.44111                     |
| 14        | 8        | 1801               | 0.29521                       | 0.33017                          | 0.23312                      | 2.5236                            | 0.22838             | 0.1871                      |
| 15        | 4        | 1200               | 0.45821                       | 0.70645                          | 0.13161                      | 3.9451                            | 0.20759             | 0.40855                     |
| 15        | 5        | 1200               | 0.14851                       | 0.20881                          | 0.087736                     | 1.2759                            | 0.077464            | 0.12673                     |
| 15        | 6        | 1200               | 2.4671                        | 2.0366                           | 2.7163                       | 20.6687                           | 1.3214              | 2.0837                      |
| 15        | 7        | 1200               | 0.26738                       | 0.37361                          | 0.16163                      | 2.339                             | 0.15321             | 0.21917                     |

 
 Table 6.2: Summary of MLP-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\textbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\% \mathbf{RMSE}_{total}^{P_C}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|-------------------|------------------------------|
| 15        | 8        | 1200               | 0.16821                       | 0.18365                          | 0.15708                      | 1.4242                           | 0.13848           | 0.095501                     |
| 15        | 4        | 1501               | 0.10891                       | 0.12253                          | 0.093327                     | 0.92813                          | 0.073243          | 0.080623                     |
| 15        | 5        | 1501               | 1.9863                        | 2.8078                           | 0.068087                     | 17.1378                          | 0.62537           | 1.8856                       |
| 15        | 6        | 1501               | 6.6395                        | 6.6501                           | 6.6288                       | 55.0155                          | 5.2845            | 4.0202                       |
| 15        | 7        | 1501               | 0.1662                        | 0.19207                          | 0.13546                      | 1.4277                           | 0.095222          | 0.13624                      |
| 15        | 8        | 1501               | 0.1144                        | 0.15527                          | 0.045379                     | 0.98157                          | 0.039342          | 0.10744                      |
| 15        | 4        | 1801               | 1.6933                        | 2.1853                           | 0.058908                     | 14.4662                          | 0.60032           | 1.5836                       |
| 15        | 5        | 1801               | 0.093528                      | 0.10992                          | 0.061178                     | 0.79657                          | 0.049086          | 0.079625                     |
| 15        | 6        | 1801               | 0.1709                        | 0.20455                          | 0.10122                      | 1.463                            | 0.10857           | 0.13201                      |
| 15        | 7        | 1801               | 1.4032                        | 1.5127                           | 1.2205                       | 11.8839                          | 1.0235            | 0.95995                      |
| 15        | 8        | 1801               | 0.14999                       | 0.18796                          | 0.05692                      | 1.2874                           | 0.06694           | 0.13425                      |

 Table 6.2: Summary of MLP-NARX model construction for identification of compressor

 pressure

Table 6.3: Summary of MLP-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|--------------------------------|---------------------|------------------------------|
| 10        | 4        | 1200               | 33.0806                     | 36.2859                      | 30.76                    | 0.27904                        | 26.7032             | 19.5293                      |
| 10        | 5        | 1200               | 35.5009                     | 37.8877                      | 33.8172                  | 0.29961                        | 28.6901             | 20.9126                      |
| 10        | 6        | 1200               | 36.9265                     | 40.1687                      | 34.598                   | 0.31214                        | 29.6183             | 22.0564                      |
| 10        | 7        | 1200               | 296.6163                    | 300.5436                     | 293.9705                 | 2.4957                         | 294.5564            | 34.9023                      |
| 10        | 8        | 1200               | 35.0706                     | 36.4016                      | 34.1549                  | 0.29608                        | 28.9322             | 19.8243                      |
| 10        | 4        | 1501               | 450.7895                    | 447.4808                     | 454.0762                 | 3.7936                         | 449.116             | 38.8127                      |
| 10        | 5        | 1501               | 36.5406                     | 40.6434                      | 31.9113                  | 0.30842                        | 29.8534             | 21.0745                      |
| 10        | 6        | 1501               | 400.5267                    | 398.5496                     | 402.4953                 | 3.3711                         | 399.6232            | 26.892                       |
| 10        | 7        | 1501               | 37.6383                     | 42.1131                      | 32.5504                  | 0.31812                        | 30.6131             | 21.9006                      |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^N$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|------------------------------|---------------------|------------------------------|
| 10        | 8        | 1501               | 46.1702                     | 50.8953                      | 40.899                   | 0.38999                      | 32.591              | 32.7088                      |
| 10        | 4        | 1801               | 33.0561                     | 35.247                       | 29.4638                  | 0.27903                      | 27.0061             | 19.0656                      |
| 10        | 5        | 1801               | 27.2712                     | 32.668                       | 16.0695                  | 0.23157                      | 16.9852             | 21.3395                      |
| 10        | 6        | 1801               | 33.9831                     | 35.9672                      | 30.7663                  | 0.28692                      | 28.2217             | 18.9344                      |
| 10        | 7        | 1801               | 33.5627                     | 35.5145                      | 30.3992                  | 0.28338                      | 27.7218             | 18.923                       |
| 10        | 8        | 1801               | 43.4787                     | 50.0322                      | 31.1554                  | 0.36597                      | 30.8818             | 30.6108                      |
| 11        | 4        | 1200               | 29.9508                     | 32.6795                      | 27.9854                  | 0.25259                      | 24.7664             | 16.8455                      |
| 11        | 5        | 1200               | 37.26                       | 38.6579                      | 36.2987                  | 0.31462                      | 30.0035             | 22.0966                      |
| 11        | 6        | 1200               | 487.0859                    | 489.2236                     | 485.6564                 | 4.0997                       | 486.0575            | 31.6409                      |
| 11        | 7        | 1200               | 34.7142                     | 42.2669                      | 28.5952                  | 0.29399                      | 24.9275             | 24.1639                      |
| 11        | 8        | 1200               | 32.9792                     | 34.8175                      | 31.6952                  | 0.27836                      | 27.0523             | 18.8659                      |
| 11        | 4        | 1501               | 34.5558                     | 38.073                       | 30.6348                  | 0.29169                      | 28.7501             | 19.1745                      |
| 11        | 5        | 1501               | 37.1712                     | 41.6389                      | 32.0838                  | 0.31366                      | 30.0774             | 21.8451                      |
| 11        | 6        | 1501               | 34.7302                     | 38.3597                      | 30.6712                  | 0.29319                      | 28.6172             | 19.6817                      |
| 11        | 7        | 1501               | 36.4697                     | 42.0848                      | 29.8102                  | 0.30877                      | 28.2442             | 23.0756                      |
| 11        | 8        | 1501               | 34.4748                     | 38.1447                      | 30.3616                  | 0.291                        | 28.3878             | 19.5646                      |
| 11        | 4        | 1801               | 37.7851                     | 40.5383                      | 33.2276                  | 0.3189                       | 30.3886             | 22.4592                      |
| 11        | 5        | 1801               | 35.4457                     | 37.5555                      | 32.0193                  | 0.29925                      | 29.2598             | 20.0099                      |
| 11        | 6        | 1801               | 28.6433                     | 30.836                       | 24.9939                  | 0.24207                      | 24.2875             | 15.1865                      |
| 11        | 7        | 1801               | 38.6031                     | 42.3721                      | 32.1269                  | 0.32549                      | 30.1513             | 24.11                        |
| 11        | 8        | 1801               | 35.892                      | 38.3071                      | 31.9263                  | 0.303                        | 28.9653             | 21.199                       |
| 12        | 4        | 1200               | 33.3506                     | 34.5145                      | 32.552                   | 0.28155                      | 27.5514             | 18.7963                      |
| 12        | 5        | 1200               | 22.7076                     | 24.7451                      | 21.2417                  | 0.19127                      | 19.597              | 11.4732                      |

Table 6.3: Summary of MLP-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^N$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|------------------------------|---------------------|-----------------------|
| 12        | 6        | 1200               | 38.2502                     | 39.8544                      | 37.1429                  | 0.32296                      | 30.8839             | 22.5706               |
| 12        | 7        | 1200               | 35.4754                     | 38.3312                      | 33.4375                  | 0.29933                      | 28.8403             | 20.6611               |
| 12        | 8        | 1200               | 36.7194                     | 38.6374                      | 35.3838                  | 0.30998                      | 29.8033             | 21.453                |
| 12        | 4        | 1501               | 38.526                      | 43.1089                      | 33.3149                  | 0.32513                      | 31.132              | 22.6986               |
| 12        | 5        | 1501               | 54.5015                     | 69.7232                      | 32.8368                  | 0.45814                      | 35.5807             | 41.2917               |
| 12        | 6        | 1501               | 35.6932                     | 40.9638                      | 29.4908                  | 0.30207                      | 28.2363             | 21.8374               |
| 12        | 7        | 1501               | 37.3729                     | 42.2716                      | 31.7226                  | 0.31531                      | 30.0193             | 22.2654               |
| 12        | 8        | 1501               | 34.9172                     | 38.652                       | 30.7288                  | 0.29474                      | 28.8567             | 19.6629               |
| 12        | 4        | 1801               | 35.1419                     | 37.7757                      | 30.7687                  | 0.29653                      | 28.6724             | 20.322                |
| 12        | 5        | 1801               | 33.468                      | 36.0716                      | 29.1269                  | 0.28292                      | 26.817              | 20.0271               |
| 12        | 6        | 1801               | 32.1788                     | 34.1415                      | 28.9847                  | 0.27168                      | 26.3386             | 18.4897               |
| 12        | 7        | 1801               | 36.1885                     | 38.7392                      | 31.9808                  | 0.30542                      | 29.4998             | 20.9646               |
| 12        | 8        | 1801               | 38.4828                     | 43.0119                      | 30.4461                  | 0.32429                      | 29.0541             | 25.2388               |
| 13        | 4        | 1200               | 30.3273                     | 32.5552                      | 28.7471                  | 0.25624                      | 25.2177             | 16.8495               |
| 13        | 5        | 1200               | 36.9635                     | 40.7537                      | 34.2057                  | 0.31184                      | 29.2038             | 22.663                |
| 13        | 6        | 1200               | 37.9818                     | 39.7273                      | 36.7728                  | 0.32063                      | 31.1684             | 21.7095               |
| 13        | 7        | 1200               | 36.8154                     | 37.8332                      | 36.1214                  | 0.31086                      | 30.3545             | 20.8357               |
| 13        | 8        | 1200               | 535.0246                    | 538.3124                     | 532.8227                 | 4.5031                       | 533.7736            | 36.5728               |
| 13        | 4        | 1501               | 36.7224                     | 40.3748                      | 32.6612                  | 0.31007                      | 30.2088             | 20.8832               |
| 13        | 5        | 1501               | 37.1962                     | 41.1086                      | 32.8176                  | 0.31413                      | 29.4022             | 22.7868               |
| 13        | 6        | 1501               | 50.6195                     | 64.5005                      | 31.0369                  | 0.42555                      | 31.4409             | 39.6778               |
| 13        | 7        | 1501               | 32.8622                     | 37.8066                      | 27.0237                  | 0.27799                      | 26.1423             | 19.9158               |
| 13        | 8        | 1501               | 328.2111                    | 332.4521                     | 323.9117                 | 2.7643                       | 256.0869            | 205.3194              |

Table 6.3: Summary of MLP-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|--------------------------------|---------------------|-----------------------|
| 13        | 4        | 1801               | 35.7897                     | 37.8966                      | 32.3713                  | 0.30219                        | 29.4593             | 20.3271               |
| 13        | 5        | 1801               | 35.4896                     | 37.5681                      | 32.1187                  | 0.29964                        | 29.3142             | 20.008                |
| 13        | 6        | 1801               | 35.2558                     | 37.8341                      | 30.9863                  | 0.29749                        | 29.1605             | 19.8183               |
| 13        | 7        | 1801               | 35.8739                     | 37.9694                      | 32.4761                  | 0.30288                        | 29.8119             | 19.9579               |
| 13        | 8        | 1801               | 35.6625                     | 37.9595                      | 31.9062                  | 0.30103                        | 29.27               | 20.377                |
| 14        | 4        | 1200               | 36.1804                     | 37.6448                      | 35.1709                  | 0.30545                        | 29.5687             | 20.8533               |
| 14        | 5        | 1200               | 49.6096                     | 67.0212                      | 33.2873                  | 0.41704                        | 32.6444             | 37.362                |
| 14        | 6        | 1200               | 38.4341                     | 43.8615                      | 34.3449                  | 0.32408                        | 29.474              | 24.6711               |
| 14        | 7        | 1200               | 36.8356                     | 41.247                       | 33.5761                  | 0.31076                        | 28.5198             | 23.3166               |
| 14        | 8        | 1200               | 36.251                      | 39.1543                      | 34.18                    | 0.30591                        | 29.075              | 21.655                |
| 14        | 4        | 1501               | 37.8188                     | 41.6659                      | 33.5301                  | 0.31932                        | 30.836              | 21.8988               |
| 14        | 5        | 1501               | 38.6098                     | 43.9471                      | 32.4005                  | 0.32567                        | 30.531              | 23.6381               |
| 14        | 6        | 1501               | 37.3452                     | 41.0259                      | 33.2568                  | 0.31536                        | 30.3182             | 21.8091               |
| 14        | 7        | 1501               | 35.2852                     | 39.8261                      | 30.0624                  | 0.29771                        | 28.2574             | 21.1355               |
| 14        | 8        | 1501               | 34.1887                     | 38.061                       | 29.8146                  | 0.28855                        | 27.9037             | 19.7582               |
| 14        | 4        | 1801               | 712.4439                    | 714.7679                     | 708.9416                 | 5.9976                         | 696.3584            | 150.5617              |
| 14        | 5        | 1801               | 59.9799                     | 60.5449                      | 59.1218                  | 0.50693                        | 39.5671             | 45.0855               |
| 14        | 6        | 1801               | 31.0426                     | 33.5547                      | 26.8344                  | 0.26237                        | 25.6354             | 17.5091               |
| 14        | 7        | 1801               | 32.3665                     | 34.4462                      | 28.9665                  | 0.27318                        | 27.0184             | 17.8242               |
| 14        | 8        | 1801               | 37.9365                     | 40.5811                      | 33.5789                  | 0.32019                        | 30.9341             | 21.9641               |
| 15        | 4        | 1200               | 33.4166                     | 34.9402                      | 32.3616                  | 0.2821                         | 27.4471             | 19.0643               |
| 15        | 5        | 1200               | 37.1318                     | 38.0837                      | 36.4838                  | 0.31356                        | 30.0931             | 21.7562               |
| 15        | 6        | 1200               | 713.1613                    | 713.904                      | 712.666                  | 6.0037                         | 712.6353            | 27.3897               |

Table 6.3: Summary of MLP-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\mathbf{\%RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------------|---------------------|------------------------------|
| 15        | 7        | 1200               | 36.0034                     | 39.0281                      | 33.8383                  | 0.30378                       | 28.8403             | 21.5555                      |
| 15        | 8        | 1200               | 35.9989                     | 39.9228                      | 33.1274                  | 0.30419                       | 28.7657             | 21.6474                      |
| 15        | 4        | 1501               | 37.8108                     | 41.6367                      | 33.5485                  | 0.31928                       | 30.6306             | 22.1718                      |
| 15        | 5        | 1501               | 33.6943                     | 37.7805                      | 29.0353                  | 0.28434                       | 27.3686             | 19.6569                      |
| 15        | 6        | 1501               | 33.0052                     | 36.1817                      | 29.4862                  | 0.27866                       | 27.3713             | 18.4465                      |
| 15        | 7        | 1501               | 40.6191                     | 49.4791                      | 29.1738                  | 0.34338                       | 28.7374             | 28.7115                      |
| 15        | 8        | 1501               | 36.169                      | 40.2415                      | 31.5722                  | 0.30564                       | 29.2187             | 21.3217                      |
| 15        | 4        | 1801               | 34.3201                     | 36.4397                      | 30.867                   | 0.28979                       | 28.6673             | 18.8725                      |
| 15        | 5        | 1801               | 36.4057                     | 38.5832                      | 32.8681                  | 0.30735                       | 30.2351             | 20.2818                      |
| 15        | 6        | 1801               | 38.3364                     | 41.0148                      | 33.922                   | 0.32357                       | 31.2112             | 22.2645                      |
| 15        | 7        | 1801               | 35.8865                     | 38.54                        | 31.4873                  | 0.30286                       | 29.1371             | 20.9527                      |
| 15        | 8        | 1801               | 36.1209                     | 38.2355                      | 32.6914                  | 0.30498                       | 29.4963             | 20.8526                      |

Table 6.3: Summary of MLP-NARX model construction for identification of rotational speed

 
 Table 6.4: Summary of MLP-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\% \mathbf{RMSE}_{total}^{T_T}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|------------------------------|
| 10        | 4        | 1200               | 86.2842                       | 84.782                           | 87.2708                      | 4.7602                           | 78.8147             | 35.1228                      |
| 10        | 5        | 1200               | 114.9699                      | 110.2181                         | 118.0298                     | 6.3535                           | 105.4733            | 45.7618                      |
| 10        | 6        | 1200               | 86.2803                       | 84.7756                          | 87.2684                      | 4.8021                           | 77.8133             | 37.2805                      |
| 10        | 7        | 1200               | 930.9048                      | 920.7743                         | 937.5939                     | 50.5021                          | 774.085             | 517.1704                     |
| 10        | 8        | 1200               | 1095.165                      | 1088.7004                        | 1099.4513                    | 58.987                           | 1000.969            | 444.4248                     |
| 10        | 4        | 1501               | 577.7018                      | 579.4093                         | 575.9881                     | 31.4064                          | 528.7571            | 232.7517                     |
| 10        | 5        | 1501               | 2364.3461                     | 2370.6231                        | 2358.0483                    | 128.8574                         | 2362.5123           | 93.1191                      |
| 10        | 6        | 1501               | 229.9371                      | 222.5503                         | 237.0985                     | 13.0265                          | 200.8767            | 111.9097                     |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------|
| 10        | 7        | 1501               | 1181.8417                     | 1192.916                         | 1170.6551                    | 64.0139                           | 1176.33             | 114.0256              |
| 10        | 8        | 1501               | 130.4287                      | 133.0368                         | 127.7656                     | 7.3695                            | 114.9828            | 61.578                |
| 10        | 4        | 1801               | 70.7158                       | 69.4678                          | 72.5486                      | 3.9678                            | 62.8399             | 32.438                |
| 10        | 5        | 1801               | 656.2278                      | 642.3161                         | 676.5703                     | 35.5456                           | 648.928             | 97.6245               |
| 10        | 6        | 1801               | 233.7606                      | 230.9564                         | 237.9072                     | 13.1615                           | 205.3947            | 111.6297              |
| 10        | 7        | 1801               | 1005.5096                     | 997.4026                         | 1017.5558                    | 54.4685                           | 1000.8644           | 96.5564               |
| 10        | 8        | 1801               | 256.2628                      | 271.5278                         | 231.471                      | 14.6062                           | 215.3638            | 138.9081              |
| 11        | 4        | 1200               | 139.4849                      | 143.23                           | 136.9328                     | 7.869                             | 125.017             | 61.8714               |
| 11        | 5        | 1200               | 1261.2341                     | 1253.7716                        | 1266.1819                    | 69.0058                           | 1113.1521           | 593.0608              |
| 11        | 6        | 1200               | 378.4427                      | 379.7617                         | 377.5612                     | 21.1857                           | 355.8449            | 128.8362              |
| 11        | 7        | 1200               | 429.5365                      | 420.8968                         | 435.1979                     | 23.7517                           | 386.4996            | 187.4336              |
| 11        | 8        | 1200               | 455.3462                      | 469.0084                         | 446.0108                     | 25.2523                           | 443.7013            | 102.3366              |
| 11        | 4        | 1501               | 740.6979                      | 740.5685                         | 740.8273                     | 40.5325                           | 731.7059            | 115.084               |
| 11        | 5        | 1501               | 80.8497                       | 82.3675                          | 79.3018                      | 4.4279                            | 72.4651             | 35.8597               |
| 11        | 6        | 1501               | 131.4283                      | 124.118                          | 138.3574                     | 7.3447                            | 118.1782            | 57.5189               |
| 11        | 7        | 1501               | 214.2128                      | 215.6458                         | 212.7692                     | 12.1863                           | 184.8479            | 108.2694              |
| 11        | 8        | 1501               | 801.0144                      | 815.2247                         | 786.5377                     | 43.3282                           | 661.5941            | 451.6474              |
| 11        | 4        | 1801               | 1495.9311                     | 1487.2264                        | 1508.9012                    | 81.2455                           | 1492.1397           | 106.4552              |
| 11        | 5        | 1801               | 1962.6822                     | 1956.7733                        | 1971.5173                    | 107.3316                          | 1962.3915           | 33.7822               |
| 11        | 6        | 1801               | 182.0535                      | 173.7044                         | 193.9106                     | 10.2063                           | 157.2423            | 91.7668               |
| 11        | 7        | 1801               | 1383.8495                     | 1374.9559                        | 1397.091                     | 75.0955                           | 1379.3474           | 111.5538              |
| 11        | 8        | 1801               | 88.8737                       | 86.5153                          | 92.3001                      | 4.9587                            | 80.6425             | 37.3602               |
| 12        | 4        | 1200               | 417.1126                      | 412.9852                         | 419.8402                     | 22.6221                           | 415.5116            | 36.5166               |

 
 Table 6.4: Summary of MLP-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------------------|
| 12        | 5        | 1200               | 228.9008                      | 233.9692                         | 225.4605                     | 12.8634                           | 204.535             | 102.7838                                |
| 12        | 6        | 1200               | 301.6147                      | 290.2484                         | 308.9559                     | 16.6357                           | 277.4068            | 118.4125                                |
| 12        | 7        | 1200               | 273.0264                      | 264.6687                         | 278.4559                     | 15.2701                           | 239.1907            | 131.6702                                |
| 12        | 8        | 1200               | 96.9854                       | 93.8887                          | 98.995                       | 5.3556                            | 91.7                | 31.585                                  |
| 12        | 4        | 1501               | 153.2034                      | 142.4869                         | 163.2243                     | 8.6239                            | 133.9317            | 74.4004                                 |
| 12        | 5        | 1501               | 90.9468                       | 84.5294                          | 96.9441                      | 5.0702                            | 81.4169             | 40.5358                                 |
| 12        | 6        | 1501               | 1302.4153                     | 1301.6046                        | 1303.226                     | 71.2834                           | 1290.9371           | 172.5598                                |
| 12        | 7        | 1501               | 133.5628                      | 127.9617                         | 138.9417                     | 7.5297                            | 120.6802            | 57.2398                                 |
| 12        | 8        | 1501               | 890.1844                      | 900.5047                         | 879.7361                     | 48.23                             | 658.0775            | 599.5683                                |
| 12        | 4        | 1801               | 1361.443                      | 1351.1735                        | 1376.7119                    | 73.9571                           | 1338.3089           | 249.9539                                |
| 12        | 5        | 1801               | 460.9805                      | 454.8895                         | 469.9741                     | 24.6622                           | 449.3605            | 102.8677                                |
| 12        | 6        | 1801               | 768.8118                      | 771.8882                         | 764.1713                     | 42.5231                           | 709.318             | 296.5953                                |
| 12        | 7        | 1801               | 155.7693                      | 159.994                          | 149.2043                     | 8.8018                            | 129.8104            | 86.1151                                 |
| 12        | 8        | 1801               | 159.2104                      | 154.2648                         | 166.3573                     | 8.7893                            | 150.7838            | 51.1184                                 |
| 13        | 4        | 1200               | 222.7684                      | 227.2427                         | 219.7365                     | 12.5666                           | 194.0663            | 109.3984                                |
| 13        | 5        | 1200               | 1054.4226                     | 1036.3916                        | 1066.2673                    | 57.1032                           | 993.248             | 353.9877                                |
| 13        | 6        | 1200               | 74.6131                       | 73.1871                          | 75.5483                      | 4.1297                            | 67.4487             | 31.908                                  |
| 13        | 7        | 1200               | 1616.5065                     | 1609.1162                        | 1621.4119                    | 88.0136                           | 1392.8149           | 820.6                                   |
| 13        | 8        | 1200               | 346.7517                      | 336.1981                         | 353.6087                     | 18.9061                           | 321.841             | 129.0761                                |
| 13        | 4        | 1501               | 652.3556                      | 655.5736                         | 649.1194                     | 35.4576                           | 613.8091            | 220.9581                                |
| 13        | 5        | 1501               | 41.9615                       | 40.4995                          | 43.3752                      | 2.317                             | 37.1441             | 19.5246                                 |
| 13        | 6        | 1501               | 650.2679                      | 653.681                          | 646.8345                     | 34.8309                           | 604.7047            | 239.1645                                |
| 13        | 7        | 1501               | 1060.3711                     | 1066.0517                        | 1054.656                     | 58.2532                           | 1048.166            | 160.4476                                |

 
 Table 6.4: Summary of MLP-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------------------|
| 13        | 8        | 1501               | 1048.6294                     | 1058.7777                        | 1038.3751                    | 56.7266                           | 1042.463            | 113.573                                 |
| 13        | 4        | 1801               | 1218.9509                     | 1213.006                         | 1227.8192                    | 66.3182                           | 983.1694            | 720.6888                                |
| 13        | 5        | 1801               | 260.3611                      | 258.2062                         | 263.5621                     | 14.482                            | 241.341             | 97.7015                                 |
| 13        | 6        | 1801               | 243.6969                      | 227.401                          | 266.2894                     | 13.4599                           | 220.9837            | 102.7516                                |
| 13        | 7        | 1801               | 878.8761                      | 874.1466                         | 885.927                      | 48.1715                           | 777.9259            | 409.0358                                |
| 13        | 8        | 1801               | 239.4609                      | 243.237                          | 233.6791                     | 13.1819                           | 219.1003            | 96.6421                                 |
| 14        | 4        | 1200               | 130.0401                      | 123.4004                         | 134.282                      | 7.1211                            | 117.3991            | 55.9367                                 |
| 14        | 5        | 1200               | 173.9732                      | 168.3939                         | 177.5934                     | 9.6026                            | 158.1745            | 72.4519                                 |
| 14        | 6        | 1200               | 754.8172                      | 747.7665                         | 759.4788                     | 40.8737                           | 750.8711            | 77.0947                                 |
| 14        | 7        | 1200               | 911.8461                      | 901.548                          | 918.6436                     | 50.1024                           | 727.9573            | 549.2194                                |
| 14        | 8        | 1200               | 247.1411                      | 293.9019                         | 210.2895                     | 14.3173                           | 183.7063            | 165.3476                                |
| 14        | 4        | 1501               | 808.2084                      | 818.3531                         | 797.928                      | 43.5568                           | 799.5518            | 117.9933                                |
| 14        | 5        | 1501               | 351.15                        | 419.351                          | 265.9369                     | 19.1711                           | 303.198             | 177.1661                                |
| 14        | 6        | 1501               | 910.9752                      | 921.3106                         | 900.5142                     | 49.2092                           | 904.0685            | 111.9824                                |
| 14        | 7        | 1501               | 228.2557                      | 209.1028                         | 245.9327                     | 12.6991                           | 203.1249            | 104.1371                                |
| 14        | 8        | 1501               | 826.0468                      | 816.3956                         | 835.5929                     | 46.2767                           | 573.3683            | 594.7436                                |
| 14        | 4        | 1801               | 217.5181                      | 191.1598                         | 251.9547                     | 11.9087                           | 190.1916            | 105.5698                                |
| 14        | 5        | 1801               | 115.208                       | 108.5372                         | 124.5511                     | 6.3797                            | 106.3547            | 44.2969                                 |
| 14        | 6        | 1801               | 803.6739                      | 791.8736                         | 821.066                      | 43.49                             | 620.2961            | 511.0885                                |
| 14        | 7        | 1801               | 1892.8008                     | 1884.2143                        | 1905.615                     | 103.0585                          | 1890.6459           | 90.3081                                 |
| 14        | 8        | 1801               | 786.7352                      | 782.2075                         | 793.4819                     | 42.7907                           | 615.6425            | 489.9147                                |
| 15        | 4        | 1200               | 735.0109                      | 725.2283                         | 741.4574                     | 39.7693                           | 592.5796            | 434.9178                                |
| 15        | 5        | 1200               | 72.3041                       | 89.5903                          | 57.9933                      | 4.2701                            | 54.71               | 47.2805                                 |

 
 Table 6.4: Summary of MLP-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean $(\mu_{ae})$ | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------|
| 15        | 6        | 1200               | 132.7953                      | 125.7867                         | 137.2665                     | 7.3261                            | 123.4316          | 48.9901                     |
| 15        | 7        | 1200               | 570.6931                      | 562.4994                         | 576.0877                     | 30.5359                           | 556.9198          | 124.644                     |
| 15        | 8        | 1200               | 1056.8093                     | 1049.6544                        | 1061.5499                    | 57.4449                           | 1054.6707         | 67.211                      |
| 15        | 4        | 1501               | 69.4952                       | 66.8344                          | 72.0596                      | 3.8014                            | 62.6495           | 30.0821                     |
| 15        | 5        | 1501               | 1264.9367                     | 1276.0041                        | 1253.7641                    | 68.5253                           | 1258.453          | 127.9308                    |
| 15        | 6        | 1501               | 63.7402                       | 62.3916                          | 65.0617                      | 3.5802                            | 57.0702           | 28.3914                     |
| 15        | 7        | 1501               | 2615.1995                     | 2627.8768                        | 2602.452                     | 142.2172                          | 2610.3347         | 159.4672                    |
| 15        | 8        | 1501               | 979.3735                      | 981.0944                         | 977.6485                     | 53.3414                           | 778.5604          | 594.2507                    |
| 15        | 4        | 1801               | 225.0481                      | 221.0978                         | 230.8501                     | 12.2838                           | 220.775           | 43.654                      |
| 15        | 5        | 1801               | 175.4078                      | 169.6901                         | 183.6554                     | 9.5226                            | 160.1606          | 71.5416                     |
| 15        | 6        | 1801               | 58.1133                       | 60.3584                          | 54.5705                      | 3.2513                            | 46.0157           | 35.4982                     |
| 15        | 7        | 1801               | 1155.4365                     | 1144.4554                        | 1171.7242                    | 62.6479                           | 953.6273          | 652.5108                    |
| 15        | 8        | 1801               | 1302.7874                     | 1294.6493                        | 1314.9068                    | 70.9242                           | 1301.2054         | 64.1943                     |

 
 Table 6.4: Summary of MLP-NARX model construction for identification of turbine temperature

## Table 6.5: Summary of MLP-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------|
| 10        | 4        | 1200               | 0.61736                       | 0.84759                          | 0.39549                      | 16.6077                           | 0.34541           | 0.51178                     |
| 10        | 5        | 1200               | 0.74108                       | 0.9734                           | 0.53274                      | 16.2669                           | 0.48182           | 0.56317                     |
| 10        | 6        | 1200               | 23.6913                       | 23.5281                          | 23.7995                      | 488.3952                          | 23.6296           | 1.7098                      |
| 10        | 7        | 1200               | 2.3141                        | 2.2167                           | 2.3768                       | 48.6664                           | 2.0344            | 1.103                       |
| 10        | 8        | 1200               | 0.86353                       | 1.3064                           | 0.32455                      | 19.4462                           | 0.32792           | 0.79898                     |
| 10        | 4        | 1501               | 16.231                        | 16.2678                          | 16.194                       | 335.6864                          | 14.3999           | 7.4904                      |
| 10        | 5        | 1501               | 0.51204                       | 0.54052                          | 0.48185                      | 10.9378                           | 0.4084            | 0.3089                      |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_{T}}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|---------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 10        | 6        | 1501               | 1.6483                          | 1.677                            | 1.6191                       | 36.5713                           | 1.2807            | 1.0378                            |
| 10        | 7        | 1501               | 12.7909                         | 12.9199                          | 12.6605                      | 262.9978                          | 9.9073            | 8.0917                            |
| 10        | 8        | 1501               | 32.7956                         | 32.8578                          | 32.7332                      | 678.0984                          | 32.7683           | 1.3393                            |
| 10        | 4        | 1801               | 0.29078                         | 0.34912                          | 0.16889                      | 6.3238                            | 0.18091           | 0.22769                           |
| 10        | 5        | 1801               | 0.41103                         | 0.45438                          | 0.33563                      | 8.8664                            | 0.29668           | 0.28453                           |
| 10        | 6        | 1801               | 25.8255                         | 25.6233                          | 26.1261                      | 531.1693                          | 25.6994           | 2.5502                            |
| 10        | 7        | 1801               | 14.0682                         | 13.9438                          | 14.253                       | 289.5548                          | 14.0089           | 1.291                             |
| 10        | 8        | 1801               | 1.3633                          | 1.7122                           | 0.49871                      | 30.0466                           | 0.79375           | 1.1086                            |
| 11        | 4        | 1200               | 1.336                           | 1.4292                           | 1.2702                       | 28.9235                           | 1.066             | 0.80557                           |
| 11        | 5        | 1200               | 1.8308                          | 1.8435                           | 1.8222                       | 38.9351                           | 1.5011            | 1.0482                            |
| 11        | 6        | 1200               | 14.8961                         | 14.8353                          | 14.9365                      | 307.627                           | 11.9244           | 8.9291                            |
| 11        | 7        | 1200               | 0.37046                         | 0.53256                          | 0.19929                      | 8.1656                            | 0.18305           | 0.32213                           |
| 11        | 8        | 1200               | 2.4268                          | 2.9471                           | 2.0065                       | 53.3629                           | 1.5214            | 1.8909                            |
| 11        | 4        | 1501               | 0.93895                         | 0.9567                           | 0.92084                      | 20.2668                           | 0.74825           | 0.56732                           |
| 11        | 5        | 1501               | 0.96676                         | 0.98362                          | 0.94958                      | 22.753                            | 0.77654           | 0.57594                           |
| 11        | 6        | 1501               | 0.28118                         | 0.33468                          | 0.21468                      | 7.1195                            | 0.1725            | 0.22208                           |
| 11        | 7        | 1501               | 0.6162                          | 0.71211                          | 0.50223                      | 13.3094                           | 0.41847           | 0.45239                           |
| 11        | 8        | 1501               | 9.7346                          | 9.9208                           | 9.5446                       | 198.9315                          | 9.5818            | 1.718                             |
| 11        | 4        | 1801               | 17.3306                         | 17.2907                          | 17.3904                      | 358.081                           | 12.6387           | 11.86                             |
| 11        | 5        | 1801               | 23.606                          | 23.4847                          | 23.7869                      | 487.1657                          | 19.1527           | 13.8015                           |
| 11        | 6        | 1801               | 0.91825                         | 1.0085                           | 0.76293                      | 19.8547                           | 0.74643           | 0.53489                           |
| 11        | 7        | 1801               | 25.6889                         | 25.5127                          | 25.9511                      | 529.416                           | 25.6146           | 1.9525                            |
| 11        | 8        | 1801               | 0.79725                         | 0.965                            | 0.43809                      | 17.5232                           | 0.50798           | 0.61456                           |

 Table 6.5: Summary of MLP-NARX model construction for identification of turbine pressure
| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 12        | 4        | 1200               | 0.68867                       | 0.90247                          | 0.49761                      | 15.193                            | 0.44739           | 0.52364                           |
| 12        | 5        | 1200               | 1.0516                        | 1.2086                           | 0.93251                      | 23.0321                           | 0.76095           | 0.72601                           |
| 12        | 6        | 1200               | 0.93991                       | 1.4069                           | 0.39147                      | 20.8212                           | 0.38121           | 0.85927                           |
| 12        | 7        | 1200               | 0.62931                       | 0.95104                          | 0.23929                      | 17.1666                           | 0.21893           | 0.5901                            |
| 12        | 8        | 1200               | 1.5321                        | 1.7145                           | 1.3974                       | 33.2073                           | 1.1832            | 0.97346                           |
| 12        | 4        | 1501               | 6.3269                        | 6.5764                           | 6.067                        | 138.2268                          | 3.6285            | 5.1839                            |
| 12        | 5        | 1501               | 0.858                         | 0.98273                          | 0.71164                      | 19.1013                           | 0.67116           | 0.53461                           |
| 12        | 6        | 1501               | 0.92128                       | 1.2058                           | 0.49312                      | 20.2576                           | 0.4038            | 0.82821                           |
| 12        | 7        | 1501               | 16.0708                       | 16.1816                          | 15.9593                      | 330.8824                          | 16.0099           | 1.3979                            |
| 12        | 8        | 1501               | 10.0099                       | 10.1097                          | 9.909                        | 205.8049                          | 9.9552            | 1.0452                            |
| 12        | 4        | 1801               | 0.49299                       | 0.44647                          | 0.55554                      | 10.3286                           | 0.4192            | 0.25949                           |
| 12        | 5        | 1801               | 0.33884                       | 0.40479                          | 0.20299                      | 8.3306                            | 0.20063           | 0.2731                            |
| 12        | 6        | 1801               | 9.4812                        | 9.0519                           | 10.0912                      | 198.5974                          | 7.7466            | 5.4674                            |
| 12        | 7        | 1801               | 0.38883                       | 0.46908                          | 0.21877                      | 8.517                             | 0.2126            | 0.32562                           |
| 12        | 8        | 1801               | 0.50515                       | 0.64118                          | 0.14539                      | 11.2103                           | 0.16013           | 0.47917                           |
| 13        | 4        | 1200               | 11.9467                       | 11.7735                          | 12.0607                      | 244.2561                          | 11.4902           | 3.2713                            |
| 13        | 5        | 1200               | 30.3314                       | 30.205                           | 30.4153                      | 626.7339                          | 30.2972           | 1.4392                            |
| 13        | 6        | 1200               | 0.89159                       | 0.96697                          | 0.83761                      | 19.4837                           | 0.73062           | 0.5111                            |
| 13        | 7        | 1200               | 0.3794                        | 0.51465                          | 0.25175                      | 8.2715                            | 0.22773           | 0.3035                            |
| 13        | 8        | 1200               | 4.3377                        | 6.411                            | 1.9915                       | 95.4077                           | 2.5099            | 3.5384                            |
| 13        | 4        | 1501               | 0.87233                       | 1.08                             | 0.59608                      | 22.0664                           | 0.45508           | 0.74434                           |
| 13        | 5        | 1501               | 34.6874                       | 34.7931                          | 34.5814                      | 717.0989                          | 34.6576           | 1.4377                            |
| 13        | 6        | 1501               | 0.29812                       | 0.34907                          | 0.23639                      | 6.4572                            | 0.20653           | 0.21502                           |

 Table 6.5: Summary of MLP-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 13        | 7        | 1501               | 9.6314                        | 9.8002                           | 9.4594                       | 197.1338                          | 9.506             | 1.5491                            |
| 13        | 8        | 1501               | 0.66389                       | 0.80207                          | 0.48789                      | 14.5958                           | 0.39815           | 0.53133                           |
| 13        | 4        | 1801               | 26.3962                       | 26.2536                          | 26.6087                      | 544.9101                          | 26.3524           | 1.5206                            |
| 13        | 5        | 1801               | 4.0733                        | 4.5273                           | 3.2757                       | 90.9811                           | 2.8369            | 2.9234                            |
| 13        | 6        | 1801               | 1.2687                        | 1.3849                           | 1.0709                       | 29.2593                           | 0.9786            | 0.80752                           |
| 13        | 7        | 1801               | 3.4399                        | 4.3475                           | 1.1073                       | 76.2508                           | 1.6667            | 3.0097                            |
| 13        | 8        | 1801               | 13.908                        | 13.9529                          | 13.8404                      | 288.8155                          | 13.8941           | 0.62199                           |
| 14        | 4        | 1200               | 1.2754                        | 1.3011                           | 1.258                        | 27.2448                           | 1.083             | 0.67374                           |
| 14        | 5        | 1200               | 0.71459                       | 0.95191                          | 0.49712                      | 17.192                            | 0.42187           | 0.57687                           |
| 14        | 6        | 1200               | 1.5257                        | 1.7439                           | 1.361                        | 33.8264                           | 0.73711           | 1.336                             |
| 14        | 7        | 1200               | 17.4743                       | 17.5339                          | 17.4345                      | 361.3258                          | 15.4905           | 8.0881                            |
| 14        | 8        | 1200               | 6.3131                        | 7.5319                           | 5.349                        | 137.3551                          | 2.9154            | 5.6005                            |
| 14        | 4        | 1501               | 1.1009                        | 1.0743                           | 1.1269                       | 23.6802                           | 0.9099            | 0.61987                           |
| 14        | 5        | 1501               | 26.9401                       | 27.0032                          | 26.8769                      | 557.362                           | 26.9103           | 1.2686                            |
| 14        | 6        | 1501               | 21.7712                       | 21.8919                          | 21.6497                      | 448.5972                          | 17.4501           | 13.0205                           |
| 14        | 7        | 1501               | 28.2245                       | 28.3741                          | 28.074                       | 581.8819                          | 28.1509           | 2.0375                            |
| 14        | 8        | 1501               | 3.0235                        | 3.9004                           | 1.7508                       | 66.5406                           | 1.3466            | 2.7075                            |
| 14        | 4        | 1801               | 21.9488                       | 21.7796                          | 22.2004                      | 452.0385                          | 21.8723           | 1.8322                            |
| 14        | 5        | 1801               | 1.5451                        | 1.9074                           | 0.71433                      | 34.0482                           | 0.99151           | 1.1852                            |
| 14        | 6        | 1801               | 0.39968                       | 0.49498                          | 0.17828                      | 8.7999                            | 0.22656           | 0.32932                           |
| 14        | 7        | 1801               | 1.5624                        | 1.8584                           | 0.95995                      | 34.5175                           | 1.0387            | 1.1674                            |
| 14        | 8        | 1801               | 38.1375                       | 37.9635                          | 38.3972                      | 787.4985                          | 38.07             | 2.2677                            |
| 15        | 4        | 1200               | 48.9207                       | 48.579                           | 49.1471                      | 1011.6081                         | 48.8172           | 3.1811                            |

 Table 6.5: Summary of MLP-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 15        | 5        | 1200               | 0.68459                       | 0.77571                          | 0.61644                      | 14.7063                           | 0.54185           | 0.41847                           |
| 15        | 6        | 1200               | 19.1261                       | 19.0117                          | 19.2019                      | 394.8097                          | 19.0931           | 1.1227                            |
| 15        | 7        | 1200               | 21.5211                       | 21.4103                          | 21.5946                      | 444.6303                          | 21.4786           | 1.3518                            |
| 15        | 8        | 1200               | 11.3364                       | 11.2663                          | 11.3829                      | 233.8526                          | 11.2221           | 1.6061                            |
| 15        | 4        | 1501               | 16.4788                       | 16.8723                          | 16.0754                      | 337.7952                          | 15.4934           | 5.614                             |
| 15        | 5        | 1501               | 20.3829                       | 20.4886                          | 20.2766                      | 419.8953                          | 19.4243           | 6.1784                            |
| 15        | 6        | 1501               | 0.92138                       | 0.93858                          | 0.90384                      | 19.9011                           | 0.71491           | 0.58134                           |
| 15        | 7        | 1501               | 1.5704                        | 1.8169                           | 1.277                        | 34.3909                           | 1.0678            | 1.1517                            |
| 15        | 8        | 1501               | 19.2311                       | 19.3101                          | 19.1517                      | 396.3926                          | 16.4121           | 10.0254                           |
| 15        | 4        | 1801               | 1.0687                        | 1.2234                           | 0.78097                      | 23.3224                           | 0.70858           | 0.80016                           |
| 15        | 5        | 1801               | 36.1745                       | 36.1267                          | 36.2461                      | 748.913                           | 35.5076           | 6.9153                            |
| 15        | 6        | 1801               | 15.1982                       | 15.0784                          | 15.3761                      | 312.8291                          | 12.9857           | 7.8979                            |
| 15        | 7        | 1801               | 3.2803                        | 3.133                            | 3.4896                       | 69.4147                           | 2.8556            | 1.6144                            |
| 15        | 8        | 1801               | 0.78905                       | 0.86334                          | 0.66211                      | 17.0243                           | 0.64414           | 0.4558                            |

 Table 6.5: Summary of MLP-NARX model construction for identification of turbine pressure

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|------------------------------|
| 10        | 4        | 1200               | 37.1059                       | 37.0562                          | 37.139                       | 5.6904                          | 37.0772             | 1.4608                       |
| 10        | 5        | 1200               | 39.874                        | 39.8252                          | 39.9065                      | 6.1147                          | 39.8422             | 1.5937                       |
| 10        | 6        | 1200               | 12.0564                       | 11.4695                          | 12.432                       | 1.8955                          | 10.2058             | 6.4196                       |
| 10        | 7        | 1200               | 12.1397                       | 11.3374                          | 12.646                       | 1.9114                          | 10.2748             | 6.4663                       |
| 10        | 8        | 1200               | 13.1253                       | 13.5237                          | 12.8529                      | 2.0499                          | 10.6265             | 7.7051                       |
| 10        | 4        | 1501               | 11.4065                       | 12.0461                          | 10.7283                      | 1.7111                          | 9.9734              | 5.5362                       |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------|
| 10        | 5        | 1501               | 14.0235                       | 13.9928                          | 14.054                       | 2.1509                           | 13.9973             | 0.85648               |
| 10        | 6        | 1501               | 11.8029                       | 11.1789                          | 12.3959                      | 1.8569                           | 10.0777             | 6.1449                |
| 10        | 7        | 1501               | 15.7584                       | 15.7401                          | 15.7768                      | 2.4168                           | 15.7445             | 0.66356               |
| 10        | 8        | 1501               | 12.2912                       | 11.6931                          | 12.8619                      | 1.9323                           | 10.4459             | 6.4785                |
| 10        | 4        | 1801               | 63.811                        | 63.7799                          | 63.8576                      | 9.7862                           | 63.7726             | 2.214                 |
| 10        | 5        | 1801               | 11.7002                       | 11.4894                          | 12.0097                      | 1.8296                           | 9.4859              | 6.8503                |
| 10        | 6        | 1801               | 11.996                        | 11.2131                          | 13.0834                      | 1.887                            | 10.2332             | 6.2609                |
| 10        | 7        | 1801               | 12.2488                       | 11.5384                          | 13.2437                      | 1.9238                           | 10.3576             | 6.5396                |
| 10        | 8        | 1801               | 12.1271                       | 11.4897                          | 13.0253                      | 1.9028                           | 10.2038             | 6.5547                |
| 11        | 4        | 1200               | 56.9408                       | 56.8806                          | 56.9809                      | 8.7324                           | 56.9053             | 2.0113                |
| 11        | 5        | 1200               | 25.2383                       | 27.8302                          | 23.3522                      | 3.7799                           | 21.6501             | 12.9731               |
| 11        | 6        | 1200               | 11.8853                       | 11.6766                          | 12.0224                      | 1.8638                           | 9.9086              | 6.5646                |
| 11        | 7        | 1200               | 11.6016                       | 11.2514                          | 11.8291                      | 1.8211                           | 9.7301              | 6.3194                |
| 11        | 8        | 1200               | 12.1749                       | 12.1503                          | 12.1912                      | 1.8673                           | 12.1626             | 0.54588               |
| 11        | 4        | 1501               | 37.2969                       | 37.2635                          | 37.3302                      | 5.7197                           | 37.2683             | 1.4594                |
| 11        | 5        | 1501               | 13.399                        | 13.3544                          | 13.4435                      | 2.0551                           | 13.3593             | 1.0313                |
| 11        | 6        | 1501               | 6.6793                        | 6.0077                           | 7.2897                       | 1.0626                           | 4.9412              | 4.495                 |
| 11        | 7        | 1501               | 12.0362                       | 11.5564                          | 12.4979                      | 1.8908                           | 10.2024             | 6.3871                |
| 11        | 8        | 1501               | 7.8293                        | 7.8104                           | 7.8483                       | 1.2009                           | 7.815               | 0.47431               |
| 11        | 4        | 1801               | 29.0455                       | 29.0235                          | 29.0784                      | 4.4547                           | 29.0199             | 1.2184                |
| 11        | 5        | 1801               | 12.364                        | 13.0864                          | 11.1927                      | 1.8554                           | 10.87               | 5.8927                |
| 11        | 6        | 1801               | 19.2164                       | 19.1991                          | 19.2424                      | 2.9472                           | 19.1974             | 0.85332               |
| 11        | 7        | 1801               | 29.0256                       | 29.0069                          | 29.0537                      | 4.4516                           | 29.0049             | 1.098                 |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------------------|
| 11        | 8        | 1801               | 12.4443                       | 11.7598                          | 13.4063                      | 1.9533                           | 10.5                | 6.6803                                  |
| 12        | 4        | 1200               | 45.7386                       | 45.6973                          | 45.7662                      | 7.014                            | 45.7157             | 1.4474                                  |
| 12        | 5        | 1200               | 42.7625                       | 42.7259                          | 42.7868                      | 6.5578                           | 42.7415             | 1.3376                                  |
| 12        | 6        | 1200               | 48.1793                       | 44.6089                          | 50.418                       | 7.4113                           | 41.0336             | 25.2527                                 |
| 12        | 7        | 1200               | 15.0275                       | 16.1381                          | 14.2394                      | 2.2546                           | 13.2045             | 7.1752                                  |
| 12        | 8        | 1200               | 12.2575                       | 11.787                           | 12.5612                      | 1.9251                           | 10.3639             | 6.546                                   |
| 12        | 4        | 1501               | 14.0441                       | 14.9103                          | 13.1202                      | 2.1049                           | 12.1566             | 7.0335                                  |
| 12        | 5        | 1501               | 79.246                        | 79.1979                          | 79.2941                      | 12.1528                          | 79.2065             | 2.5028                                  |
| 12        | 6        | 1501               | 6.3564                        | 6.4083                           | 6.3039                       | 0.96243                          | 5.8674              | 2.4452                                  |
| 12        | 7        | 1501               | 20.0476                       | 20.0226                          | 20.0726                      | 3.0746                           | 20.0277             | 0.89241                                 |
| 12        | 8        | 1501               | 9.4697                        | 9.8834                           | 9.0367                       | 1.4226                           | 8.373               | 4.4242                                  |
| 12        | 4        | 1801               | 13.1183                       | 13.1136                          | 13.1253                      | 2.0118                           | 13.112              | 0.40691                                 |
| 12        | 5        | 1801               | 9.983                         | 10.5289                          | 9.1026                       | 1.4995                           | 8.8604              | 4.6001                                  |
| 12        | 6        | 1801               | 8.3703                        | 8.8575                           | 7.5806                       | 1.2595                           | 7.416               | 3.8821                                  |
| 12        | 7        | 1801               | 12.7812                       | 13.5392                          | 11.5508                      | 1.918                            | 11.2396             | 6.0864                                  |
| 12        | 8        | 1801               | 18.9443                       | 18.9289                          | 18.9674                      | 2.9055                           | 18.9278             | 0.79126                                 |
| 13        | 4        | 1200               | 43.6067                       | 43.5666                          | 43.6334                      | 6.6873                           | 43.5847             | 1.385                                   |
| 13        | 5        | 1200               | 47.9875                       | 47.9494                          | 48.0129                      | 7.3591                           | 47.9644             | 1.4907                                  |
| 13        | 6        | 1200               | 14.2436                       | 14.1938                          | 14.2766                      | 2.1846                           | 14.2147             | 0.90659                                 |
| 13        | 7        | 1200               | 11.5982                       | 12.2702                          | 11.1279                      | 1.7414                           | 10.2404             | 5.4462                                  |
| 13        | 8        | 1200               | 24.139                        | 24.1057                          | 24.1611                      | 3.702                            | 24.1213             | 0.925                                   |
| 13        | 4        | 1501               | 46.4519                       | 46.4246                          | 46.4792                      | 7.1235                           | 46.4289             | 1.4618                                  |
| 13        | 5        | 1501               | 9.4095                        | 9.7953                           | 9.007                        | 1.4151                           | 8.3934              | 4.254                                   |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------|
| 13        | 6        | 1501               | 12.3984                       | 12.368                           | 12.4287                      | 1.9016                           | 12.3726             | 0.79832                     |
| 13        | 7        | 1501               | 34.4792                       | 34.4539                          | 34.5045                      | 5.2874                           | 34.455              | 1.2909                      |
| 13        | 8        | 1501               | 13.2331                       | 13.2156                          | 13.2506                      | 2.0296                           | 13.2201             | 0.58747                     |
| 13        | 4        | 1801               | 23.3831                       | 13.3664                          | 33.1547                      | 3.7213                           | 14.6371             | 18.2382                     |
| 13        | 5        | 1801               | 60.4617                       | 60.4332                          | 60.5046                      | 9.2727                           | 60.429              | 1.9889                      |
| 13        | 6        | 1801               | 16.0629                       | 17.2239                          | 14.1427                      | 2.4069                           | 13.8547             | 8.1294                      |
| 13        | 7        | 1801               | 10.9775                       | 11.6518                          | 9.8795                       | 1.6473                           | 9.6438              | 5.2452                      |
| 13        | 8        | 1801               | 21.8927                       | 21.8778                          | 21.915                       | 3.3576                           | 21.8771             | 0.82585                     |
| 14        | 4        | 1200               | 45.7869                       | 45.7387                          | 45.819                       | 7.0215                           | 45.7609             | 1.5415                      |
| 14        | 5        | 1200               | 67.014                        | 66.9447                          | 67.0601                      | 10.2768                          | 66.9751             | 2.2809                      |
| 14        | 6        | 1200               | 11.2758                       | 12.1485                          | 10.6547                      | 1.6916                           | 9.8599              | 5.4713                      |
| 14        | 7        | 1200               | 8.9071                        | 9.3756                           | 8.5807                       | 1.3392                           | 7.9384              | 4.0402                      |
| 14        | 8        | 1200               | 16.784                        | 18.1357                          | 15.8194                      | 2.5173                           | 14.702              | 8.098                       |
| 14        | 4        | 1501               | 79.8436                       | 79.7902                          | 79.8971                      | 12.2445                          | 79.7999             | 2.6432                      |
| 14        | 5        | 1501               | 46.0183                       | 45.9928                          | 46.0437                      | 7.0571                           | 45.9959             | 1.435                       |
| 14        | 6        | 1501               | 13.3598                       | 13.9538                          | 12.7378                      | 2.005                            | 11.7543             | 6.3511                      |
| 14        | 7        | 1501               | 6.5458                        | 6.3632                           | 6.7235                       | 1.0328                           | 4.5504              | 4.7062                      |
| 14        | 8        | 1501               | 20.8594                       | 20.8366                          | 20.8822                      | 3.1987                           | 20.8365             | 0.97668                     |
| 14        | 4        | 1801               | 58.5788                       | 58.55                            | 58.622                       | 8.9837                           | 58.5435             | 2.0316                      |
| 14        | 5        | 1801               | 14.8626                       | 15.8977                          | 13.157                       | 2.2276                           | 12.8685             | 7.4375                      |
| 14        | 6        | 1801               | 55.332                        | 55.3061                          | 55.3709                      | 8.4857                           | 55.303              | 1.792                       |
| 14        | 7        | 1801               | 75.0613                       | 75.0327                          | 75.1041                      | 11.5113                          | 75.0253             | 2.325                       |
| 14        | 8        | 1801               | 17.8698                       | 19.0079                          | 16.0106                      | 2.6806                           | 15.6776             | 8.5772                      |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------------------|
| 15        | 4        | 1200               | 11.6869                       | 11.6778                          | 11.693                       | 1.7922                           | 11.6813             | 0.36322                                 |
| 15        | 5        | 1200               | 68.5693                       | 68.5011                          | 68.6146                      | 10.5155                          | 68.5326             | 2.243                                   |
| 15        | 6        | 1200               | 15.5082                       | 16.9006                          | 14.5065                      | 2.3241                           | 13.3914             | 7.8229                                  |
| 15        | 7        | 1200               | 12.6432                       | 13.4383                          | 12.0844                      | 1.8977                           | 11.1385             | 5.9831                                  |
| 15        | 8        | 1200               | 17.5365                       | 17.4983                          | 17.5619                      | 2.6892                           | 17.5116             | 0.93515                                 |
| 15        | 4        | 1501               | 61.7851                       | 61.7418                          | 61.8285                      | 9.4752                           | 61.748              | 2.1426                                  |
| 15        | 5        | 1501               | 14.3016                       | 15.1684                          | 13.3781                      | 2.1437                           | 12.3917             | 7.1412                                  |
| 15        | 6        | 1501               | 10.3437                       | 10.7724                          | 9.8961                       | 1.5535                           | 9.1452              | 4.8338                                  |
| 15        | 7        | 1501               | 18.489                        | 18.4641                          | 18.5138                      | 2.8356                           | 18.4688             | 0.8639                                  |
| 15        | 8        | 1501               | 11.1698                       | 11.145                           | 11.1945                      | 1.7132                           | 11.1494             | 0.67529                                 |
| 15        | 4        | 1801               | 26.4547                       | 26.4409                          | 26.4755                      | 4.0573                           | 26.4412             | 0.84657                                 |
| 15        | 5        | 1801               | 35.5596                       | 35.5403                          | 35.5887                      | 5.4535                           | 35.5373             | 1.2608                                  |
| 15        | 6        | 1801               | 48.6086                       | 48.591                           | 48.6351                      | 7.4545                           | 48.5855             | 1.4992                                  |
| 15        | 7        | 1801               | 9.8646                        | 9.8459                           | 9.8926                       | 1.5131                           | 9.843               | 0.65294                                 |
| 15        | 8        | 1801               | 13.8776                       | 13.8611                          | 13.9023                      | 2.1285                           | 13.8595             | 0.70739                                 |
| 16        | 4        | 1200               | 13.7285                       | 13.733                           | 13.7255                      | 2.1037                           | 7.1855              | 11.6998                                 |
| 16        | 5        | 1200               | 75.0503                       | 74.9818                          | 75.096                       | 11.5093                          | 75.0129             | 2.371                                   |
| 16        | 6        | 1200               | 14.5399                       | 15.8235                          | 13.6177                      | 2.1796                           | 12.6224             | 7.2182                                  |
| 16        | 7        | 1200               | 69.4502                       | 69.3915                          | 69.4893                      | 10.6502                          | 69.4167             | 2.1583                                  |
| 16        | 8        | 1200               | 15.8408                       | 15.8061                          | 15.8638                      | 2.4295                           | 15.822              | 0.77032                                 |
| 16        | 4        | 1501               | 3.6593                        | 3.6546                           | 3.6641                       | 0.56134                          | 3.6565              | 0.14423                                 |
| 16        | 5        | 1501               | 78.2691                       | 78.221                           | 78.3172                      | 12.0026                          | 78.2299             | 2.4789                                  |
| 16        | 6        | 1501               | 13.1059                       | 13.0767                          | 13.1351                      | 2.0101                           | 13.0814             | 0.80203                                 |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|-----------------------------------------|
| 16        | 7        | 1501               | 14.2931                       | 14.2692                          | 14.317                       | 2.1922                          | 14.2735             | 0.74841                                 |
| 16        | 8        | 1501               | 13.7794                       | 14.3995                          | 13.1296                      | 2.0683                          | 12.1486             | 6.5037                                  |
| 16        | 4        | 1801               | 33.953                        | 33.932                           | 33.9844                      | 5.2071                          | 33.9296             | 1.2588                                  |
| 16        | 5        | 1801               | 48.1168                       | 48.0993                          | 48.1431                      | 7.3789                          | 48.094              | 1.4814                                  |
| 16        | 6        | 1801               | 12.6367                       | 13.4062                          | 11.3846                      | 1.8958                          | 11.0585             | 6.1162                                  |
| 16        | 7        | 1801               | 64.5851                       | 64.5581                          | 64.6256                      | 9.9049                          | 64.5535             | 2.02                                    |
| 16        | 8        | 1801               | 11.1573                       | 11.7728                          | 10.1639                      | 1.6756                          | 9.8167              | 5.3035                                  |
| 17        | 4        | 1200               | 42.091                        | 42.0505                          | 42.118                       | 6.4548                          | 42.0689             | 1.3665                                  |
| 17        | 5        | 1200               | 53.4853                       | 53.4287                          | 53.523                       | 8.2025                          | 53.4529             | 1.8609                                  |
| 17        | 6        | 1200               | 64.2304                       | 64.1697                          | 64.2709                      | 9.8502                          | 64.198              | 2.0416                                  |
| 17        | 7        | 1200               | 21.1758                       | 21.1415                          | 21.1986                      | 3.2476                          | 21.1578             | 0.87324                                 |
| 17        | 8        | 1200               | 14.1546                       | 15.0486                          | 13.5262                      | 2.1253                          | 12.5055             | 6.6318                                  |
| 17        | 4        | 1501               | 39.3369                       | 39.3128                          | 39.3611                      | 6.0323                          | 39.3127             | 1.3806                                  |
| 17        | 5        | 1501               | 61.5826                       | 61.5434                          | 61.6219                      | 9.444                           | 61.5514             | 1.9606                                  |
| 17        | 6        | 1501               | 57.1463                       | 57.1076                          | 57.1849                      | 8.7636                          | 57.1156             | 1.8737                                  |
| 17        | 7        | 1501               | 69.0996                       | 69.0603                          | 69.1388                      | 10.5968                         | 69.0662             | 2.148                                   |
| 17        | 8        | 1501               | 21.6675                       | 22.835                           | 20.4326                      | 3.2508                          | 19.0703             | 10.2878                                 |
| 17        | 4        | 1801               | 12.541                        | 12.5366                          | 12.5478                      | 1.9232                          | 12.535              | 0.39016                                 |
| 17        | 5        | 1801               | 18.193                        | 16.2431                          | 20.7788                      | 2.8048                          | 14.8732             | 10.4789                                 |
| 17        | 6        | 1801               | 17.4117                       | 18.6292                          | 15.4048                      | 2.6095                          | 15.0821             | 8.7018                                  |
| 17        | 7        | 1801               | 12.0782                       | 12.8119                          | 10.8846                      | 1.8126                          | 10.6159             | 5.7616                                  |
| 17        | 8        | 1801               | 15.4996                       | 16.3867                          | 14.0637                      | 2.3269                          | 13.6952             | 7.2592                                  |
| 18        | 4        | 1200               | 11.4663                       | 11.4393                          | 11.4842                      | 1.7583                          | 11.4481             | 0.64484                                 |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------|
| 18        | 5        | 1200               | 32.8715                       | 32.8369                          | 32.8946                      | 5.041                            | 32.8541             | 1.0707                |
| 18        | 6        | 1200               | 41.2334                       | 41.2004                          | 41.2554                      | 6.3233                           | 41.2136             | 1.2776                |
| 18        | 7        | 1200               | 36.0543                       | 36.0147                          | 36.0807                      | 5.5291                           | 36.0321             | 1.2657                |
| 18        | 8        | 1200               | 14.3084                       | 14.2748                          | 14.3308                      | 2.1944                           | 14.2905             | 0.71583               |
| 18        | 4        | 1501               | 11.0357                       | 11.0242                          | 11.0473                      | 1.6926                           | 11.0272             | 0.43441               |
| 18        | 5        | 1501               | 78.3479                       | 78.3017                          | 78.3941                      | 12.0152                          | 78.3094             | 2.4583                |
| 18        | 6        | 1501               | 67.9008                       | 67.8587                          | 67.9428                      | 10.4129                          | 67.8668             | 2.147                 |
| 18        | 7        | 1501               | 69.37                         | 69.3307                          | 69.4092                      | 10.6382                          | 69.3365             | 2.1556                |
| 18        | 8        | 1501               | 11.0717                       | 11.5356                          | 10.5872                      | 1.6621                           | 9.7577              | 5.2326                |
| 18        | 4        | 1801               | 10.5559                       | 10.552                           | 10.5618                      | 1.6188                           | 10.5506             | 0.33704               |
| 18        | 5        | 1801               | 67.2312                       | 67.2056                          | 67.2697                      | 10.3108                          | 67.1992             | 2.0747                |
| 18        | 6        | 1801               | 42.3215                       | 42.3059                          | 42.345                       | 6.4904                           | 42.3013             | 1.3083                |
| 18        | 7        | 1801               | 9.7916                        | 10.5509                          | 8.5259                       | 1.4716                           | 8.4621              | 4.927                 |
| 18        | 8        | 1801               | 43.6666                       | 43.6447                          | 43.6995                      | 6.6966                           | 43.6419             | 1.4697                |
| 19        | 4        | 1200               | 13.5707                       | 13.5599                          | 13.5779                      | 2.0811                           | 13.564              | 0.42636               |
| 19        | 5        | 1200               | 65.2731                       | 65.2112                          | 65.3143                      | 10.0098                          | 65.24               | 2.0784                |
| 19        | 6        | 1200               | 47.0096                       | 46.9726                          | 47.0342                      | 7.2091                           | 46.9872             | 1.4511                |
| 19        | 7        | 1200               | 54.234                        | 54.1801                          | 54.2698                      | 8.317                            | 54.2056             | 1.7529                |
| 19        | 8        | 1200               | 59.3057                       | 59.2522                          | 59.3414                      | 9.0949                           | 59.2767             | 1.8555                |
| 19        | 4        | 1501               | 18.7134                       | 18.7038                          | 18.723                       | 2.8697                           | 18.7043             | 0.58252               |
| 19        | 5        | 1501               | 51.9912                       | 51.9592                          | 52.0232                      | 7.9732                           | 51.9657             | 1.6281                |
| 19        | 6        | 1501               | 52.1396                       | 52.1033                          | 52.1759                      | 7.9959                           | 52.1103             | 1.7486                |
| 19        | 7        | 1501               | 56.2939                       | 56.2569                          | 56.3308                      | 8.6329                           | 56.2648             | 1.8087                |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|-----------------------------|
| 19        | 8        | 1501               | 11.8008                       | 11.7771                          | 11.8245                      | 1.8099                          | 11.7816             | 0.67322                     |
| 19        | 4        | 1801               | 9.5582                        | 9.5518                           | 9.5678                       | 1.466                           | 9.5537              | 0.29317                     |
| 19        | 5        | 1801               | 15.4643                       | 15.4549                          | 15.4785                      | 2.3718                          | 15.4556             | 0.52102                     |
| 19        | 6        | 1801               | 79.7739                       | 79.7443                          | 79.8182                      | 12.2339                         | 79.736              | 2.4571                      |
| 19        | 7        | 1801               | 8.7064                        | 8.6968                           | 8.7207                       | 1.3354                          | 8.6974              | 0.39373                     |
| 19        | 8        | 1801               | 19.0332                       | 19.0175                          | 19.0568                      | 2.9191                          | 19.0159             | 0.81098                     |
| 20        | 4        | 1200               | 15.672                        | 15.6599                          | 15.68                        | 2.4033                          | 15.6644             | 0.48657                     |
| 20        | 5        | 1200               | 53.0984                       | 53.0446                          | 53.1343                      | 8.143                           | 53.07               | 1.7391                      |
| 20        | 6        | 1200               | 39.0374                       | 38.9944                          | 39.066                       | 5.9868                          | 39.0129             | 1.3806                      |
| 20        | 7        | 1200               | 10.5105                       | 10.4759                          | 10.5335                      | 1.6121                          | 10.4915             | 0.63185                     |
| 20        | 8        | 1200               | 50.1478                       | 50.0975                          | 50.1813                      | 7.6907                          | 50.1215             | 1.6245                      |
| 20        | 4        | 1501               | 55.8549                       | 55.8188                          | 55.891                       | 8.5656                          | 55.8265             | 1.7801                      |
| 20        | 5        | 1501               | 66.7542                       | 66.7114                          | 66.797                       | 10.2372                         | 66.72               | 2.136                       |
| 20        | 6        | 1501               | 17.8533                       | 17.8276                          | 17.879                       | 2.7381                          | 17.8324             | 0.86377                     |
| 20        | 7        | 1501               | 49.1491                       | 49.1152                          | 49.183                       | 7.5374                          | 49.1223             | 1.6245                      |
| 20        | 8        | 1501               | 25.3704                       | 26.9835                          | 23.6463                      | 3.8028                          | 22.0646             | 12.5245                     |
| 20        | 4        | 1801               | 10.7061                       | 10.7022                          | 10.7118                      | 1.6419                          | 10.7011             | 0.32566                     |
| 20        | 5        | 1801               | 46.0865                       | 46.0689                          | 46.1129                      | 7.0678                          | 46.0641             | 1.4376                      |
| 20        | 6        | 1801               | 44.1258                       | 44.1045                          | 44.1578                      | 6.7672                          | 44.1027             | 1.4268                      |
| 20        | 7        | 1801               | 70.2318                       | 70.2052                          | 70.2717                      | 10.7706                         | 70.1984             | 2.1666                      |
| 20        | 8        | 1801               | 38.5068                       | 38.4868                          | 38.5368                      | 5.9055                          | 38.4833             | 1.346                       |
| 10        | 4        | 1200               | 1.8188                        | 1.9454                           | 1.7292                       | 0.27661                         | 1.5266              | 0.98879                     |
| 10        | 5        | 1200               | 2.1915                        | 2.7306                           | 1.7421                       | 0.33391                         | 1.5908              | 1.5077                      |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------------------|
| 10        | 6        | 1200               | 0.95653                       | 1.1003                           | 0.84731                      | 0.14544                          | 0.72307             | 0.6263                                  |
| 10        | 7        | 1200               | 2.2127                        | 2.5475                           | 1.9581                       | 0.33685                          | 1.7548              | 1.3482                                  |
| 10        | 8        | 1200               | 2.4748                        | 2.8173                           | 2.2174                       | 0.37669                          | 2.001               | 1.4565                                  |
| 10        | 4        | 1501               | 2.1221                        | 2.1281                           | 2.116                        | 0.32288                          | 1.7637              | 1.1803                                  |
| 10        | 5        | 1501               | 2.7501                        | 2.9006                           | 2.5908                       | 0.41872                          | 2.1888              | 1.6654                                  |
| 10        | 6        | 1501               | 1.6867                        | 1.7608                           | 1.6091                       | 0.25666                          | 1.3559              | 1.0034                                  |
| 10        | 7        | 1501               | 2.8032                        | 2.8708                           | 2.7339                       | 0.42667                          | 2.2943              | 1.6109                                  |
| 10        | 8        | 1501               | 1.5578                        | 1.6449                           | 1.4655                       | 0.23702                          | 1.2465              | 0.93455                                 |
| 10        | 4        | 1801               | 1.6739                        | 1.8018                           | 1.4611                       | 0.25456                          | 1.4078              | 0.90572                                 |
| 10        | 5        | 1801               | 2.7066                        | 3.0159                           | 2.1608                       | 0.4121                           | 2.1352              | 1.6635                                  |
| 10        | 6        | 1801               | 1.2448                        | 1.3573                           | 1.0536                       | 0.18931                          | 1.0106              | 0.72697                                 |
| 10        | 7        | 1801               | 0.56069                       | 0.60188                          | 0.49245                      | 0.085012                         | 0.44584             | 0.34007                                 |
| 10        | 8        | 1801               | 0.76254                       | 0.82931                          | 0.64958                      | 0.11582                          | 0.60207             | 0.46803                                 |
| 11        | 4        | 1200               | 45.4889                       | 45.4371                          | 45.5234                      | 6.8836                           | 45.4588             | 1.6552                                  |
| 11        | 5        | 1200               | 3.0822                        | 3.5464                           | 2.7294                       | 0.46925                          | 2.4649              | 1.8507                                  |
| 11        | 6        | 1200               | 1.4912                        | 1.7501                           | 1.2901                       | 0.22692                          | 1.1631              | 0.93331                                 |
| 11        | 7        | 1200               | 1.6108                        | 1.8436                           | 1.4348                       | 0.24512                          | 1.2955              | 0.95744                                 |
| 11        | 8        | 1200               | 1.2776                        | 1.4696                           | 1.1317                       | 0.19436                          | 1.0121              | 0.77985                                 |
| 11        | 4        | 1501               | 54.1284                       | 54.0921                          | 54.1647                      | 8.191                            | 54.095              | 1.9                                     |
| 11        | 5        | 1501               | 3.1071                        | 3.2399                           | 2.9683                       | 0.47296                          | 2.5174              | 1.8215                                  |
| 11        | 6        | 1501               | 1.7994                        | 1.9042                           | 1.688                        | 0.27388                          | 1.4164              | 1.1099                                  |
| 11        | 7        | 1501               | 1.4374                        | 1.5362                           | 1.3312                       | 0.21875                          | 1.1301              | 0.88849                                 |
| 11        | 8        | 1501               | 2.0893                        | 2.2507                           | 1.9142                       | 0.3181                           | 1.6294              | 1.3079                                  |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|-----------------------------|
| 11        | 4        | 1801               | 2.1869                        | 2.4166                           | 1.7875                       | 0.3329                          | 1.727               | 1.3419                      |
| 11        | 5        | 1801               | 2.3996                        | 2.6633                           | 1.9376                       | 0.36529                         | 1.921               | 1.4382                      |
| 11        | 6        | 1801               | 1.6637                        | 1.8499                           | 1.3364                       | 0.25323                         | 1.2925              | 1.0477                      |
| 11        | 7        | 1801               | 1.4928                        | 1.6711                           | 1.1756                       | 0.22725                         | 1.1435              | 0.95983                     |
| 11        | 8        | 1801               | 1.4931                        | 1.6556                           | 1.2091                       | 0.22719                         | 1.2009              | 0.88751                     |
| 12        | 4        | 1200               | 31.8172                       | 31.7683                          | 31.8497                      | 4.8147                          | 31.7869             | 1.3891                      |
| 12        | 5        | 1200               | 2.5468                        | 2.8568                           | 2.3172                       | 0.38768                         | 2.0666              | 1.4885                      |
| 12        | 6        | 1200               | 1.5706                        | 1.6786                           | 1.4942                       | 0.23885                         | 1.3162              | 0.85706                     |
| 12        | 7        | 1200               | 1.0923                        | 1.199                            | 1.015                        | 0.16608                         | 0.87641             | 0.65199                     |
| 12        | 8        | 1200               | 1.6724                        | 1.9087                           | 1.4944                       | 0.25453                         | 1.3335              | 1.0095                      |
| 12        | 4        | 1501               | 36.8247                       | 36.7942                          | 36.8552                      | 5.5725                          | 36.7976             | 1.4117                      |
| 12        | 5        | 1501               | 2.9844                        | 3.0319                           | 2.9361                       | 0.45415                         | 2.4711              | 1.6737                      |
| 12        | 6        | 1501               | 2.2253                        | 2.2574                           | 2.1927                       | 0.3386                          | 1.8362              | 1.2572                      |
| 12        | 7        | 1501               | 1.5064                        | 1.5509                           | 1.4605                       | 0.22918                         | 1.2232              | 0.87932                     |
| 12        | 8        | 1501               | 1.75                          | 1.8437                           | 1.651                        | 0.26632                         | 1.3974              | 1.0538                      |
| 12        | 4        | 1801               | 31.1707                       | 31.1519                          | 31.1988                      | 4.7168                          | 31.1452             | 1.2608                      |
| 12        | 5        | 1801               | 2.0925                        | 2.3587                           | 1.6125                       | 0.31866                         | 1.6032              | 1.3449                      |
| 12        | 6        | 1801               | 2.3492                        | 2.605                            | 1.902                        | 0.3576                          | 1.8923              | 1.3924                      |
| 12        | 7        | 1801               | 2.4381                        | 2.7469                           | 1.8818                       | 0.37129                         | 1.8876              | 1.5435                      |
| 12        | 8        | 1801               | 1.2231                        | 1.348                            | 1.0068                       | 0.18606                         | 0.97606             | 0.73713                     |
| 13        | 4        | 1200               | 1.734                         | 1.8262                           | 1.6697                       | 0.26369                         | 1.4618              | 0.93282                     |
| 13        | 5        | 1200               | 1.9642                        | 2.3439                           | 1.6638                       | 0.29915                         | 1.5049              | 1.2625                      |
| 13        | 6        | 1200               | 1.3912                        | 1.4892                           | 1.3219                       | 0.21152                         | 1.1653              | 0.7601                      |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------|
| 13        | 7        | 1200               | 1.824                         | 2.1602                           | 1.5603                       | 0.27771                          | 1.4136              | 1.1529                      |
| 13        | 8        | 1200               | 2.2697                        | 2.7246                           | 1.9074                       | 0.34567                          | 1.7255              | 1.4748                      |
| 13        | 4        | 1501               | 39.2468                       | 39.2152                          | 39.2784                      | 5.9388                           | 39.2183             | 1.4956                      |
| 13        | 5        | 1501               | 1.8953                        | 1.8459                           | 1.9436                       | 0.28825                          | 1.602               | 1.013                       |
| 13        | 6        | 1501               | 4.2071                        | 4.4422                           | 3.9579                       | 0.64051                          | 3.378               | 2.5082                      |
| 13        | 7        | 1501               | 2.9497                        | 3.3332                           | 2.5079                       | 0.44947                          | 2.1652              | 2.0035                      |
| 13        | 8        | 1501               | 1.7758                        | 1.8509                           | 1.6974                       | 0.27024                          | 1.4384              | 1.0417                      |
| 13        | 4        | 1801               | 2.9932                        | 3.5804                           | 1.7792                       | 0.45676                          | 1.8668              | 2.3401                      |
| 13        | 5        | 1801               | 2.2647                        | 2.4674                           | 1.9208                       | 0.34457                          | 1.8741              | 1.2717                      |
| 13        | 6        | 1801               | 2.7406                        | 2.9344                           | 2.4209                       | 0.41684                          | 2.3275              | 1.4473                      |
| 13        | 7        | 1801               | 2.0785                        | 2.2825                           | 1.7278                       | 0.31628                          | 1.7023              | 1.1928                      |
| 13        | 8        | 1801               | 2.2654                        | 2.5389                           | 1.7778                       | 0.34495                          | 1.765               | 1.4204                      |
| 14        | 4        | 1200               | 33.2243                       | 33.1831                          | 33.2518                      | 5.0276                           | 33.1984             | 1.3138                      |
| 14        | 5        | 1200               | 18.6368                       | 18.6                             | 18.6613                      | 2.8202                           | 18.6149             | 0.90325                     |
| 14        | 6        | 1200               | 2.2654                        | 2.5689                           | 2.0382                       | 0.34471                          | 1.8505              | 1.3069                      |
| 14        | 7        | 1200               | 2.3937                        | 2.7497                           | 2.1236                       | 0.36441                          | 1.9126              | 1.4395                      |
| 14        | 8        | 1200               | 3.2324                        | 3.6559                           | 2.9163                       | 0.49206                          | 2.6246              | 1.8872                      |
| 14        | 4        | 1501               | 48.8653                       | 48.8322                          | 48.8985                      | 7.3946                           | 48.8343             | 1.7413                      |
| 14        | 5        | 1501               | 19.4212                       | 19.3954                          | 19.447                       | 2.9388                           | 19.3969             | 0.97207                     |
| 14        | 6        | 1501               | 2.2395                        | 2.2748                           | 2.2036                       | 0.34072                          | 1.854               | 1.2564                      |
| 14        | 7        | 1501               | 2.1311                        | 2.3581                           | 1.8766                       | 0.32459                          | 1.6207              | 1.3841                      |
| 14        | 8        | 1501               | 2.8692                        | 3.2333                           | 2.4514                       | 0.43712                          | 2.1245              | 1.9287                      |
| 14        | 4        | 1801               | 6.0451                        | 6.0353                           | 6.0596                       | 0.91473                          | 6.0326              | 0.38871                     |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|-----------------------------------------|
| 14        | 5        | 1801               | 3.1537                        | 3.8191                           | 1.727                        | 0.48133                         | 1.8656              | 2.5431                                  |
| 14        | 6        | 1801               | 1.8494                        | 1.9689                           | 1.6539                       | 0.28119                         | 1.5682              | 0.98046                                 |
| 14        | 7        | 1801               | 1.2996                        | 1.4351                           | 1.0643                       | 0.19772                         | 1.0333              | 0.78824                                 |
| 14        | 8        | 1801               | 1.5496                        | 1.7265                           | 1.2374                       | 0.23581                         | 1.2356              | 0.93538                                 |
| 15        | 4        | 1200               | 18.9485                       | 18.8963                          | 18.9832                      | 2.8673                          | 18.9164             | 1.1019                                  |
| 15        | 5        | 1200               | 21.2376                       | 21.2017                          | 21.2615                      | 3.2137                          | 21.216              | 0.95905                                 |
| 15        | 6        | 1200               | 3.2826                        | 4.1553                           | 2.5398                       | 0.50036                         | 2.3466              | 2.2958                                  |
| 15        | 7        | 1200               | 2.0564                        | 2.6026                           | 1.5917                       | 0.31343                         | 1.4511              | 1.4574                                  |
| 15        | 8        | 1200               | 1.7945                        | 2.0812                           | 1.5748                       | 0.27316                         | 1.422               | 1.0948                                  |
| 15        | 4        | 1501               | 1.7864                        | 1.8355                           | 1.736                        | 0.2718                          | 1.4534              | 1.0389                                  |
| 15        | 5        | 1501               | 26.0661                       | 26.0411                          | 26.0911                      | 3.9444                          | 26.0444             | 1.0626                                  |
| 15        | 6        | 1501               | 1.3764                        | 1.4353                           | 1.3149                       | 0.20945                         | 1.0882              | 0.84293                                 |
| 15        | 7        | 1501               | 2.4402                        | 2.5931                           | 2.2769                       | 0.37148                         | 1.9353              | 1.4865                                  |
| 15        | 8        | 1501               | 1.9282                        | 2.1107                           | 1.7264                       | 0.29365                         | 1.4635              | 1.2557                                  |
| 15        | 4        | 1801               | 30.871                        | 30.8435                          | 30.9122                      | 4.6715                          | 30.8314             | 1.5638                                  |
| 15        | 5        | 1801               | 2.3518                        | 2.5143                           | 2.0844                       | 0.35771                         | 1.9896              | 1.2543                                  |
| 15        | 6        | 1801               | 4.2938                        | 5.2265                           | 2.2605                       | 0.65558                         | 2.5007              | 3.491                                   |
| 15        | 7        | 1801               | 2.7786                        | 3.0661                           | 2.2801                       | 0.42293                         | 2.2594              | 1.6177                                  |
| 15        | 8        | 1801               | 1.7323                        | 1.945                            | 1.3515                       | 0.26372                         | 1.3381              | 1.1003                                  |
| 16        | 4        | 1200               | 2.1754                        | 2.4794                           | 1.9466                       | 0.33101                         | 1.7633              | 1.2742                                  |
| 16        | 5        | 1200               | 18.0577                       | 18.0157                          | 18.0856                      | 2.7325                          | 18.0321             | 0.96152                                 |
| 16        | 6        | 1200               | 11.7985                       | 11.7584                          | 11.8251                      | 1.7853                          | 11.7737             | 0.76453                                 |
| 16        | 7        | 1200               | 1.8597                        | 2.0211                           | 1.7439                       | 0.28278                         | 1.5705              | 0.99617                                 |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|-----------------------------------------|
| 16        | 8        | 1200               | 2.1562                        | 2.3735                           | 1.9983                       | 0.32806                         | 1.7965              | 1.1926                                  |
| 16        | 4        | 1501               | 15.8265                       | 15.8058                          | 15.8472                      | 2.3949                          | 15.8062             | 0.80131                                 |
| 16        | 5        | 1501               | 3.9168                        | 4.8465                           | 2.6812                       | 0.59771                         | 2.4167              | 3.0829                                  |
| 16        | 6        | 1501               | 2.7457                        | 2.9554                           | 2.5185                       | 0.41813                         | 2.1451              | 1.7142                                  |
| 16        | 7        | 1501               | 3.604                         | 3.896                            | 3.2861                       | 0.54882                         | 2.8319              | 2.2296                                  |
| 16        | 8        | 1501               | 1.7144                        | 1.9144                           | 1.4877                       | 0.26108                         | 1.2854              | 1.1347                                  |
| 16        | 4        | 1801               | 22.61                         | 22.5835                          | 22.6496                      | 3.4214                          | 22.5735             | 1.2844                                  |
| 16        | 5        | 1801               | 15.1746                       | 15.1563                          | 15.202                       | 2.2962                          | 15.1486             | 0.88899                                 |
| 16        | 6        | 1801               | 36.7634                       | 36.747                           | 36.788                       | 5.5632                          | 36.7401             | 1.3084                                  |
| 16        | 7        | 1801               | 2.4541                        | 2.6683                           | 2.0918                       | 0.37337                         | 2.0319              | 1.3764                                  |
| 16        | 8        | 1801               | 2.2422                        | 2.5104                           | 1.7647                       | 0.34137                         | 1.7684              | 1.3787                                  |
| 17        | 4        | 1200               | 71.9109                       | 71.8401                          | 71.958                       | 10.8819                         | 71.868              | 2.4826                                  |
| 17        | 5        | 1200               | 10.7752                       | 10.7387                          | 10.7994                      | 1.6305                          | 10.7532             | 0.68717                                 |
| 17        | 6        | 1200               | 3.9621                        | 5.3719                           | 2.6327                       | 0.60448                         | 2.5027              | 3.0722                                  |
| 17        | 7        | 1200               | 21.353                        | 21.3231                          | 21.3729                      | 3.2312                          | 21.3354             | 0.86683                                 |
| 17        | 8        | 1200               | 1.8598                        | 2.0995                           | 1.6813                       | 0.28298                         | 1.5119              | 1.0833                                  |
| 17        | 4        | 1501               | 40.674                        | 40.6467                          | 40.7012                      | 6.1549                          | 40.648              | 1.4517                                  |
| 17        | 5        | 1501               | 13.2463                       | 13.22                            | 13.2725                      | 2.0044                          | 13.2217             | 0.80749                                 |
| 17        | 6        | 1501               | 35.8034                       | 35.7777                          | 35.8292                      | 5.4178                          | 35.7803             | 1.287                                   |
| 17        | 7        | 1501               | 2.0474                        | 2.2249                           | 1.8528                       | 0.31173                         | 1.5885              | 1.2919                                  |
| 17        | 8        | 1501               | 2.5649                        | 2.6771                           | 2.4475                       | 0.39036                         | 2.0774              | 1.5047                                  |
| 17        | 4        | 1801               | 2.943                         | 3.4926                           | 1.8313                       | 0.44902                         | 1.8595              | 2.2815                                  |
| 17        | 5        | 1801               | 2.8404                        | 3.3139                           | 1.9222                       | 0.43307                         | 1.9016              | 2.1102                                  |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|-----------------------------------------|
| 17        | 6        | 1801               | 9.941                         | 9.9167                           | 9.9774                       | 1.5042                          | 9.9064              | 0.82979                                 |
| 17        | 7        | 1801               | 2.305                         | 2.6162                           | 1.7361                       | 0.35108                         | 1.7495              | 1.501                                   |
| 17        | 8        | 1801               | 2.3534                        | 2.5865                           | 1.9519                       | 0.35815                         | 1.9142              | 1.3692                                  |
| 18        | 4        | 1200               | 67.0134                       | 66.9513                          | 67.0547                      | 10.1407                         | 66.9778             | 2.183                                   |
| 18        | 5        | 1200               | 22.0574                       | 22.0224                          | 22.0808                      | 3.3378                          | 22.0365             | 0.96074                                 |
| 18        | 6        | 1200               | 1.4406                        | 1.5852                           | 1.3356                       | 0.21912                         | 1.1819              | 0.82385                                 |
| 18        | 7        | 1200               | 3.7845                        | 4.5955                           | 3.1296                       | 0.57653                         | 2.8723              | 2.4646                                  |
| 18        | 8        | 1200               | 10.6259                       | 10.5965                          | 10.6455                      | 1.6079                          | 10.6079             | 0.61859                                 |
| 18        | 4        | 1501               | 28.8231                       | 28.7996                          | 28.8466                      | 4.3616                          | 28.801              | 1.1283                                  |
| 18        | 5        | 1501               | 20.8712                       | 20.8465                          | 20.8959                      | 3.1582                          | 20.8486             | 0.9717                                  |
| 18        | 6        | 1501               | 16.1921                       | 16.1714                          | 16.2127                      | 2.4502                          | 16.174              | 0.76541                                 |
| 18        | 7        | 1501               | 51.1541                       | 51.1223                          | 51.186                       | 7.7409                          | 51.1275             | 1.6502                                  |
| 18        | 8        | 1501               | 2.2437                        | 2.3539                           | 2.1277                       | 0.34145                         | 1.8061              | 1.3315                                  |
| 18        | 4        | 1801               | 57.8469                       | 57.8173                          | 57.8914                      | 8.7537                          | 57.8082             | 2.1158                                  |
| 18        | 5        | 1801               | 14.2412                       | 14.2228                          | 14.2687                      | 2.155                           | 14.215              | 0.86248                                 |
| 18        | 6        | 1801               | 3.0729                        | 3.8268                           | 1.2792                       | 0.46953                         | 1.3844              | 2.7439                                  |
| 18        | 7        | 1801               | 6.139                         | 7.617                            | 2.678                        | 0.93797                         | 3.1563              | 5.2663                                  |
| 18        | 8        | 1801               | 2.3159                        | 2.6464                           | 1.7035                       | 0.35277                         | 1.7307              | 1.5392                                  |
| 19        | 4        | 1200               | 6.7305                        | 6.71                             | 6.7441                       | 1.0184                          | 6.7186              | 0.40023                                 |
| 19        | 5        | 1200               | 3.9568                        | 4.7748                           | 3.3011                       | 0.60287                         | 2.9916              | 2.5902                                  |
| 19        | 6        | 1200               | 32.5637                       | 32.5258                          | 32.589                       | 4.9277                          | 32.5416             | 1.1995                                  |
| 19        | 7        | 1200               | 2.2081                        | 2.5027                           | 1.9876                       | 0.33608                         | 1.7755              | 1.3128                                  |
| 19        | 8        | 1200               | 2.5378                        | 2.6721                           | 2.4441                       | 0.38594                         | 2.1649              | 1.3244                                  |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\mathbf{\%RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|---------------------------------|---------------------|-----------------------------------------|
| 19        | 4        | 1501               | 15.5102                       | 15.4996                          | 15.5207                      | 2.3471                          | 15.4947             | 0.69243                                 |
| 19        | 5        | 1501               | 36.3256                       | 36.2687                          | 36.3825                      | 5.4967                          | 36.2721             | 1.9713                                  |
| 19        | 6        | 1501               | 2.248                         | 2.2595                           | 2.2364                       | 0.34198                         | 1.8758              | 1.2392                                  |
| 19        | 7        | 1501               | 3.2822                        | 3.4332                           | 3.1238                       | 0.49962                         | 2.6627              | 1.9194                                  |
| 19        | 8        | 1501               | 2.9195                        | 3.1035                           | 2.723                        | 0.44441                         | 2.3401              | 1.746                                   |
| 19        | 4        | 1801               | 17.8715                       | 17.8598                          | 17.8892                      | 2.7044                          | 17.8513             | 0.84988                                 |
| 19        | 5        | 1801               | 28.1041                       | 28.0855                          | 28.1319                      | 4.2527                          | 28.0775             | 1.222                                   |
| 19        | 6        | 1801               | 2.1404                        | 2.3484                           | 1.7833                       | 0.32573                         | 1.7603              | 1.2178                                  |
| 19        | 7        | 1801               | 1.264                         | 1.3644                           | 1.0961                       | 0.19216                         | 1.0465              | 0.70905                                 |
| 19        | 8        | 1801               | 2.0942                        | 2.3248                           | 1.69                         | 0.31873                         | 1.6732              | 1.2596                                  |
| 20        | 4        | 1200               | 3.3749                        | 3.9728                           | 2.9091                       | 0.51418                         | 2.5874              | 2.1672                                  |
| 20        | 5        | 1200               | 2.3095                        | 2.8049                           | 1.9094                       | 0.35182                         | 1.7325              | 1.5275                                  |
| 20        | 6        | 1200               | 2.3741                        | 3.1574                           | 1.6583                       | 0.36206                         | 1.5538              | 1.7953                                  |
| 20        | 7        | 1200               | 2.9552                        | 3.4639                           | 2.5607                       | 0.44983                         | 2.3282              | 1.8203                                  |
| 20        | 8        | 1200               | 14.3277                       | 14.2983                          | 14.3473                      | 2.1681                          | 14.3102             | 0.70793                                 |
| 20        | 4        | 1501               | 10.2453                       | 10.2357                          | 10.2549                      | 1.5503                          | 10.2366             | 0.42231                                 |
| 20        | 5        | 1501               | 49.5614                       | 49.5368                          | 49.586                       | 7.5                             | 49.5377             | 1.5332                                  |
| 20        | 6        | 1501               | 22.4266                       | 22.4046                          | 22.4486                      | 3.3937                          | 22.4076             | 0.92383                                 |
| 20        | 7        | 1501               | 12.6035                       | 12.5793                          | 12.6277                      | 1.9071                          | 12.5812             | 0.75018                                 |
| 20        | 8        | 1501               | 13.7666                       | 13.749                           | 13.7842                      | 2.0832                          | 13.7506             | 0.66428                                 |
| 20        | 4        | 1801               | 5.8958                        | 5.8939                           | 5.8986                       | 0.8922                          | 5.8921              | 0.20937                                 |
| 20        | 5        | 1801               | 24.1078                       | 24.0954                          | 24.1265                      | 3.6481                          | 24.0912             | 0.89588                                 |
| 20        | 6        | 1801               | 1.5806                        | 1.6944                           | 1.3924                       | 0.24032                         | 1.3323              | 0.85053                                 |

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

 Table 6.6: Summary of RBF-NARX model construction for identification of compressor temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|------------------------------|
| 20        | 7        | 1801               | 2.3228                        | 2.484                            | 2.0573                       | 0.35322                          | 1.9812              | 1.2128                       |
| 20        | 8        | 1801               | 2.1765                        | 2.4505                           | 1.6835                       | 0.33138                          | 1.6635              | 1.4038                       |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\% \mathbf{RMSE}_{total}^{P_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------|
| 10        | 4        | 1200               | 0.27729                       | 0.27057                          | 0.28167                      | 2.6835                           | 0.18022             | 0.21077                     |
| 10        | 5        | 1200               | 0.2495                        | 0.22431                          | 0.26496                      | 2.4478                           | 0.17078             | 0.18193                     |
| 10        | 6        | 1200               | 0.36428                       | 0.32529                          | 0.38809                      | 3.5942                           | 0.25576             | 0.25944                     |
| 10        | 7        | 1200               | 0.49642                       | 0.45142                          | 0.52425                      | 4.8411                           | 0.3804              | 0.31899                     |
| 10        | 8        | 1200               | 0.49292                       | 0.44786                          | 0.52079                      | 4.804                            | 0.37688             | 0.31776                     |
| 10        | 4        | 1501               | 0.26541                       | 0.22748                          | 0.29858                      | 2.6596                           | 0.16943             | 0.20432                     |
| 10        | 5        | 1501               | 0.23573                       | 0.20105                          | 0.26595                      | 2.3341                           | 0.16305             | 0.17028                     |
| 10        | 6        | 1501               | 0.39076                       | 0.35537                          | 0.42322                      | 3.8445                           | 0.28424             | 0.26819                     |
| 10        | 7        | 1501               | 0.45941                       | 0.4237                           | 0.49255                      | 4.4883                           | 0.34727             | 0.30081                     |
| 10        | 8        | 1501               | 0.44724                       | 0.41178                          | 0.48011                      | 4.3721                           | 0.33566             | 0.29561                     |
| 10        | 4        | 1801               | 1.1516                        | 1.1506                           | 1.1531                       | 10.0516                          | 1.1505              | 0.050379                    |
| 10        | 5        | 1801               | 0.24287                       | 0.22155                          | 0.27175                      | 2.3507                           | 0.16949             | 0.17398                     |
| 10        | 6        | 1801               | 0.21905                       | 0.19276                          | 0.25344                      | 2.117                            | 0.17276             | 0.13469                     |
| 10        | 7        | 1801               | 0.45406                       | 0.41265                          | 0.50993                      | 4.4376                           | 0.34153             | 0.29926                     |
| 10        | 8        | 1801               | 0.46189                       | 0.41917                          | 0.51945                      | 4.5183                           | 0.34831             | 0.3034                      |
| 11        | 4        | 1200               | 3.3114                        | 3.2965                           | 3.3213                       | 28.9083                          | 3.3024              | 0.24376                     |
| 11        | 5        | 1200               | 0.43436                       | 0.38927                          | 0.46197                      | 4.2643                           | 0.32616             | 0.28691                     |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\textbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 11        | 6        | 1200               | 0.25316                       | 0.22564                          | 0.26995                      | 2.5006                            | 0.16227             | 0.19436                     |
| 11        | 7        | 1200               | 0.31217                       | 0.27981                          | 0.33199                      | 3.087                             | 0.20591             | 0.23467                     |
| 11        | 8        | 1200               | 0.44639                       | 0.40343                          | 0.47286                      | 4.3703                            | 0.33323             | 0.29708                     |
| 11        | 4        | 1501               | 0.25549                       | 0.22948                          | 0.2791                       | 2.5073                            | 0.16807             | 0.19246                     |
| 11        | 5        | 1501               | 0.26464                       | 0.24162                          | 0.28583                      | 2.585                             | 0.1746              | 0.19891                     |
| 11        | 6        | 1501               | 0.2285                        | 0.19818                          | 0.25526                      | 2.2368                            | 0.16076             | 0.1624                      |
| 11        | 7        | 1501               | 0.38733                       | 0.36051                          | 0.41242                      | 3.7817                            | 0.27443             | 0.27338                     |
| 11        | 8        | 1501               | 0.50747                       | 0.47154                          | 0.54104                      | 4.9383                            | 0.3905              | 0.32414                     |
| 11        | 4        | 1801               | 0.28079                       | 0.24998                          | 0.32153                      | 2.7877                            | 0.17914             | 0.21625                     |
| 11        | 5        | 1801               | 0.24886                       | 0.22088                          | 0.28577                      | 2.4524                            | 0.16769             | 0.18392                     |
| 11        | 6        | 1801               | 0.20601                       | 0.1795                           | 0.24038                      | 1.9433                            | 0.175               | 0.10872                     |
| 11        | 7        | 1801               | 0.61769                       | 0.56468                          | 0.68965                      | 5.9957                            | 0.48668             | 0.38043                     |
| 11        | 8        | 1801               | 0.2727                        | 0.2513                           | 0.30199                      | 2.6516                            | 0.17377             | 0.21021                     |
| 12        | 4        | 1200               | 0.32781                       | 0.3111                           | 0.33849                      | 3.208                             | 0.20895             | 0.25262                     |
| 12        | 5        | 1200               | 0.23131                       | 0.19446                          | 0.2529                       | 2.2988                            | 0.15838             | 0.16862                     |
| 12        | 6        | 1200               | 0.27221                       | 0.24732                          | 0.28761                      | 2.6824                            | 0.17416             | 0.20924                     |
| 12        | 7        | 1200               | 0.27992                       | 0.26796                          | 0.28762                      | 2.7224                            | 0.17539             | 0.2182                      |
| 12        | 8        | 1200               | 0.72836                       | 0.66784                          | 0.76604                      | 7.0486                            | 0.5781              | 0.44314                     |
| 12        | 4        | 1501               | 0.40207                       | 0.40601                          | 0.39809                      | 3.8368                            | 0.25615             | 0.30997                     |
| 12        | 5        | 1501               | 0.18382                       | 0.15026                          | 0.21215                      | 1.7631                            | 0.14662             | 0.11088                     |
| 12        | 6        | 1501               | 0.41938                       | 0.38413                          | 0.4519                       | 4.1141                            | 0.31007             | 0.28242                     |
| 12        | 7        | 1501               | 0.24373                       | 0.21003                          | 0.27332                      | 2.4229                            | 0.16106             | 0.18296                     |
| 12        | 8        | 1501               | 0.28221                       | 0.25853                          | 0.30407                      | 2.763                             | 0.17764             | 0.21933                     |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\textbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 12        | 4        | 1801               | 3.1086                        | 3.1048                           | 3.1143                       | 27.1382                           | 3.1042              | 0.16505                     |
| 12        | 5        | 1801               | 1.4399                        | 1.4388                           | 1.4415                       | 12.5672                           | 1.4386              | 0.059397                    |
| 12        | 6        | 1801               | 0.46907                       | 0.42517                          | 0.52816                      | 4.59                              | 0.35626             | 0.30519                     |
| 12        | 7        | 1801               | 0.28504                       | 0.25415                          | 0.32595                      | 2.8285                            | 0.18177             | 0.2196                      |
| 12        | 8        | 1801               | 0.21429                       | 0.19242                          | 0.24346                      | 2.0043                            | 0.17885             | 0.11806                     |
| 13        | 4        | 1200               | 3.2028                        | 3.1951                           | 3.208                        | 27.9563                           | 3.1986              | 0.16441                     |
| 13        | 5        | 1200               | 0.21169                       | 0.17245                          | 0.23421                      | 2.1133                            | 0.14349             | 0.15567                     |
| 13        | 6        | 1200               | 2.3936                        | 2.3854                           | 2.399                        | 20.8964                           | 2.389               | 0.14737                     |
| 13        | 7        | 1200               | 0.20783                       | 0.17069                          | 0.22927                      | 1.9472                            | 0.17839             | 0.10665                     |
| 13        | 8        | 1200               | 0.22611                       | 0.20788                          | 0.23748                      | 2.1465                            | 0.1745              | 0.14382                     |
| 13        | 4        | 1501               | 0.22129                       | 0.18274                          | 0.25407                      | 2.1845                            | 0.16128             | 0.15155                     |
| 13        | 5        | 1501               | 0.25489                       | 0.22415                          | 0.28231                      | 2.5192                            | 0.167               | 0.19259                     |
| 13        | 6        | 1501               | 0.28789                       | 0.28713                          | 0.28865                      | 2.7343                            | 0.18022             | 0.22454                     |
| 13        | 7        | 1501               | 0.22635                       | 0.19835                          | 0.25127                      | 2.2                               | 0.16481             | 0.15518                     |
| 13        | 8        | 1501               | 0.53687                       | 0.49701                          | 0.574                        | 5.2298                            | 0.41463             | 0.3411                      |
| 13        | 4        | 1801               | 3.4083                        | 3.405                            | 3.4133                       | 29.753                            | 3.4046              | 0.15905                     |
| 13        | 5        | 1801               | 0.22288                       | 0.19118                          | 0.2634                       | 2.2253                            | 0.15171             | 0.1633                      |
| 13        | 6        | 1801               | 0.20361                       | 0.17408                          | 0.24124                      | 1.9881                            | 0.15853             | 0.1278                      |
| 13        | 7        | 1801               | 0.22131                       | 0.19672                          | 0.25378                      | 2.0797                            | 0.1865              | 0.11917                     |
| 13        | 8        | 1801               | 0.21898                       | 0.19559                          | 0.25001                      | 2.0826                            | 0.17688             | 0.12912                     |
| 14        | 4        | 1200               | 0.39179                       | 0.4219                           | 0.37038                      | 3.712                             | 0.23663             | 0.31232                     |
| 14        | 5        | 1200               | 0.20587                       | 0.17015                          | 0.22656                      | 1.8846                            | 0.18115             | 0.097821                    |
| 14        | 6        | 1200               | 0.23809                       | 0.19789                          | 0.26147                      | 2.3855                            | 0.15235             | 0.183                       |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|------------------------------|
| 14        | 7        | 1200               | 0.2073                        | 0.16992                          | 0.22884                      | 2.0362                            | 0.15616             | 0.13636                      |
| 14        | 8        | 1200               | 0.22481                       | 0.19147                          | 0.24452                      | 1.9687                            | 0.20179             | 0.099123                     |
| 14        | 4        | 1501               | 0.35318                       | 0.32374                          | 0.38036                      | 3.4851                            | 0.22438             | 0.27279                      |
| 14        | 5        | 1501               | 0.41109                       | 0.43278                          | 0.38817                      | 3.8563                            | 0.248               | 0.32792                      |
| 14        | 6        | 1501               | 0.27294                       | 0.26606                          | 0.27966                      | 2.6113                            | 0.17579             | 0.20883                      |
| 14        | 7        | 1501               | 0.27604                       | 0.25067                          | 0.29928                      | 2.3314                            | 0.23951             | 0.13726                      |
| 14        | 8        | 1501               | 0.23                          | 0.2021                           | 0.25488                      | 2.2183                            | 0.17316             | 0.1514                       |
| 14        | 4        | 1801               | 3.429                         | 3.4254                           | 3.4344                       | 29.9306                           | 3.4249              | 0.16716                      |
| 14        | 5        | 1801               | 2.8881                        | 2.8849                           | 2.8928                       | 25.2102                           | 2.8847              | 0.1407                       |
| 14        | 6        | 1801               | 2.3418                        | 2.3378                           | 2.3477                       | 20.4487                           | 2.3372              | 0.14631                      |
| 14        | 7        | 1801               | 0.30941                       | 0.29792                          | 0.32588                      | 2.5975                            | 0.25967             | 0.16826                      |
| 14        | 8        | 1801               | 0.2217                        | 0.2019                           | 0.24849                      | 2.0147                            | 0.19213             | 0.11065                      |
| 15        | 4        | 1200               | 0.43115                       | 0.46429                          | 0.40758                      | 4.0764                            | 0.27641             | 0.33095                      |
| 15        | 5        | 1200               | 0.27279                       | 0.26985                          | 0.27473                      | 2.6239                            | 0.17986             | 0.20513                      |
| 15        | 6        | 1200               | 0.29513                       | 0.3171                           | 0.27953                      | 2.7865                            | 0.18358             | 0.23112                      |
| 15        | 7        | 1200               | 0.2077                        | 0.1777                           | 0.22548                      | 1.8368                            | 0.18385             | 0.096639                     |
| 15        | 8        | 1200               | 0.23644                       | 0.22366                          | 0.24457                      | 2.1341                            | 0.19811             | 0.12907                      |
| 15        | 4        | 1501               | 0.32802                       | 0.31222                          | 0.3431                       | 3.1905                            | 0.20596             | 0.25534                      |
| 15        | 5        | 1501               | 0.25707                       | 0.23293                          | 0.27914                      | 2.5073                            | 0.17132             | 0.1917                       |
| 15        | 6        | 1501               | 0.20471                       | 0.16697                          | 0.23652                      | 1.9701                            | 0.16456             | 0.12178                      |
| 15        | 7        | 1501               | 0.25635                       | 0.24594                          | 0.26635                      | 2.4437                            | 0.17342             | 0.18882                      |
| 15        | 8        | 1501               | 0.33477                       | 0.30639                          | 0.36093                      | 2.8124                            | 0.28841             | 0.16999                      |
| 15        | 4        | 1801               | 3.3353                        | 3.3318                           | 3.3406                       | 29.1183                           | 3.3315              | 0.16064                      |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean $(\mu_{ae})$ | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------|
| 15        | 5        | 1801               | 0.24709                       | 0.22678                          | 0.27477                      | 2.3809                            | 0.17826           | 0.17114               |
| 15        | 6        | 1801               | 1.4641                        | 1.4631                           | 1.4656                       | 12.7794                           | 1.463             | 0.056395              |
| 15        | 7        | 1801               | 1.935                         | 1.9298                           | 1.9429                       | 16.9009                           | 1.9285            | 0.15864               |
| 15        | 8        | 1801               | 0.26447                       | 0.24586                          | 0.29018                      | 2.25                              | 0.23386           | 0.12353               |
| 16        | 4        | 1200               | 0.28487                       | 0.24611                          | 0.30801                      | 2.8389                            | 0.18627           | 0.21557               |
| 16        | 5        | 1200               | 0.35642                       | 0.34882                          | 0.3614                       | 3.4574                            | 0.23157           | 0.271                 |
| 16        | 6        | 1200               | 2.3845                        | 2.3774                           | 2.3892                       | 20.8182                           | 2.3807            | 0.13551               |
| 16        | 7        | 1200               | 0.23444                       | 0.21631                          | 0.24577                      | 2.2075                            | 0.18785           | 0.14028               |
| 16        | 8        | 1200               | 0.23581                       | 0.22585                          | 0.24222                      | 2.1883                            | 0.18775           | 0.1427                |
| 16        | 4        | 1501               | 3.5263                        | 3.5236                           | 3.529                        | 30.7675                           | 3.5237            | 0.1345                |
| 16        | 5        | 1501               | 0.41183                       | 0.40234                          | 0.42112                      | 3.9623                            | 0.27065           | 0.31046               |
| 16        | 6        | 1501               | 3.3109                        | 3.3064                           | 3.3154                       | 28.9006                           | 3.3073            | 0.15503               |
| 16        | 7        | 1501               | 0.27366                       | 0.24441                          | 0.30009                      | 2.3227                            | 0.23972           | 0.13202               |
| 16        | 8        | 1501               | 0.22316                       | 0.18936                          | 0.2525                       | 1.968                             | 0.19989           | 0.099242              |
| 16        | 4        | 1801               | 0.31182                       | 0.2779                           | 0.35673                      | 3.0941                            | 0.20236           | 0.23728               |
| 16        | 5        | 1801               | 0.30919                       | 0.2848                           | 0.34255                      | 3.0313                            | 0.19647           | 0.23878               |
| 16        | 6        | 1801               | 2.6603                        | 2.6574                           | 2.6646                       | 23.2261                           | 2.6573            | 0.12607               |
| 16        | 7        | 1801               | 0.21901                       | 0.1956                           | 0.25006                      | 2.0507                            | 0.18329           | 0.1199                |
| 16        | 8        | 1801               | 0.32885                       | 0.34869                          | 0.29657                      | 2.9872                            | 0.19262           | 0.26657               |
| 17        | 4        | 1200               | 0.30438                       | 0.27417                          | 0.32294                      | 2.9991                            | 0.20601           | 0.2241                |
| 17        | 5        | 1200               | 0.43951                       | 0.49983                          | 0.39423                      | 4.0914                            | 0.26638           | 0.34965               |
| 17        | 6        | 1200               | 1.5079                        | 1.5025                           | 1.5115                       | 13.1665                           | 1.5051            | 0.092196              |
| 17        | 7        | 1200               | 0.20107                       | 0.16349                          | 0.22262                      | 1.9271                            | 0.16391           | 0.11649               |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------|
| 17        | 8        | 1200               | 0.38303                       | 0.3519                           | 0.40245                      | 3.1942                            | 0.32889             | 0.19637               |
| 17        | 4        | 1501               | 0.35668                       | 0.32375                          | 0.38683                      | 3.5287                            | 0.22894             | 0.27355               |
| 17        | 5        | 1501               | 1.4298                        | 1.4249                           | 1.4347                       | 12.4795                           | 1.4249              | 0.11813               |
| 17        | 6        | 1501               | 1.4487                        | 1.4449                           | 1.4525                       | 12.6508                           | 1.4457              | 0.093066              |
| 17        | 7        | 1501               | 0.2465                        | 0.21187                          | 0.27686                      | 2.1676                            | 0.22207             | 0.10702               |
| 17        | 8        | 1501               | 0.30593                       | 0.32726                          | 0.28298                      | 2.8178                            | 0.18793             | 0.24144               |
| 17        | 4        | 1801               | 4.8255                        | 4.8231                           | 4.829                        | 42.1144                           | 4.8224              | 0.17382               |
| 17        | 5        | 1801               | 0.2955                        | 0.26973                          | 0.33042                      | 2.9032                            | 0.18505             | 0.23042               |
| 17        | 6        | 1801               | 1.522                         | 1.5199                           | 1.5253                       | 13.2906                           | 1.52                | 0.078676              |
| 17        | 7        | 1801               | 0.28553                       | 0.27501                          | 0.30064                      | 2.7051                            | 0.18777             | 0.21514               |
| 17        | 8        | 1801               | 0.33944                       | 0.32125                          | 0.36505                      | 2.8409                            | 0.29538             | 0.16727               |
| 18        | 4        | 1200               | 0.50234                       | 0.49635                          | 0.50628                      | 4.8522                            | 0.33745             | 0.37218               |
| 18        | 5        | 1200               | 2.5842                        | 2.578                            | 2.5884                       | 22.5589                           | 2.5809              | 0.13035               |
| 18        | 6        | 1200               | 0.31453                       | 0.29285                          | 0.32819                      | 3.0854                            | 0.19871             | 0.24386               |
| 18        | 7        | 1200               | 0.26602                       | 0.2386                           | 0.28283                      | 2.3636                            | 0.23415             | 0.12629               |
| 18        | 8        | 1200               | 0.20878                       | 0.17355                          | 0.22927                      | 1.9111                            | 0.18352             | 0.099555              |
| 18        | 4        | 1501               | 2.8501                        | 2.849                            | 2.8513                       | 24.8739                           | 2.8481              | 0.10885               |
| 18        | 5        | 1501               | 0.34186                       | 0.3226                           | 0.3601                       | 3.3328                            | 0.21996             | 0.26174               |
| 18        | 6        | 1501               | 0.32467                       | 0.33594                          | 0.31298                      | 3.0653                            | 0.1933              | 0.2609                |
| 18        | 7        | 1501               | 0.28165                       | 0.27079                          | 0.29211                      | 2.6996                            | 0.1805              | 0.21625               |
| 18        | 8        | 1501               | 1.5804                        | 1.5765                           | 1.5842                       | 13.8006                           | 1.5774              | 0.097441              |
| 18        | 4        | 1801               | 4.9155                        | 4.9126                           | 4.9198                       | 42.8959                           | 4.9115              | 0.19783               |
| 18        | 5        | 1801               | 2.061                         | 2.0598                           | 2.0627                       | 17.984                            | 2.0592              | 0.085708              |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

 $\mathbf{RMSE}_{test}^{P_C}$  $\mathbf{RMSE}_{total}^{P_C}$  $\mathbf{RMSE}_{training}^{P_C}$  $\mathbf{\%RMSE}_{total}^{P_{C}}$ # training samples # neurons # delays mean ( $\mu_{ae}$ ) **Std** ( $\sigma_{ae}$ ) 18 6 1801 1.6421 1.6391 1.6465 14.341 1.6389 0.10142 18 7 1801 1.0644 1.0635 1.0657 9.2906 1.0635 0.044132 18 8 1801 0.2436 0.22755 0.26589 2.2733 0.19039 0.152 19 4 6.5112 6.5031 6.5166 56.8194 0.24699 1200 6.5065 19 5 1200 1.7997 1.797 1.8016 15.7024 1.798 0.080089 19 6 1200 0.31955 0.39161 0.26071 2.8548 0.20116 0.24833 7 19 1200 0.33369 0.37108 0.30625 3.1263 0.1936 0.27183 19 8 0.23499 1200 0.21372 0.24816 2.2736 0.17194 0.16021 19 4 1501 3.6776 3.6744 3.6809 32.091 3.6747 0.14743 19 5 1501 0.37256 0.38189 0.36298 3.5792 0.22176 0.29942 19 6 1501 0.25818 0.22878 0.28458 2.5371 0.17517 0.1897 7 0.37538 0.28859 19 1501 0.36184 0.38845 3.6213 0.2401 0.23901 0.22374 19 8 1501 0.25337 2.2682 0.17435 0.16351 19 4 1801 1.1541 1.1536 1.1549 10.0699 1.1532 0.046035 19 5 1801 0.37758 0.34033 0.42744 3.7399 0.24398 0.28821 19 6 1801 0.38844 0.36992 0.41469 3.7306 0.24333 0.30284 7 19 1801 2.3634 2.3609 2.3671 20.6324 2.3609 0.10726 2.1886 19 8 1801 2.1844 2.1817 19.0726 2.1816 0.11208 20 4 1200 1.1557 1.1542 1.1566 10.0766 1.1544 0.054232 20 5 1200 0.36147 0.33889 0.37576 3.5483 0.22658 0.28169 0.37161 0.35245 0.38385 0.24561 0.27892 20 6 1200 3.6222 7 20 1200 1.3763 1.3684 1.3815 12.0213 1.3719 0.10993 8 0.20557 0.10356 20 1200 0.24181 0.2632 2.1215 0.21852

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 20        | 4        | 1501               | 1.8584                        | 1.8564                           | 1.8604                       | 16.215                            | 1.8564              | 0.085352                    |
| 20        | 5        | 1501               | 0.3058                        | 0.27388                          | 0.33471                      | 3.0288                            | 0.19746             | 0.23355                     |
| 20        | 6        | 1501               | 0.27417                       | 0.24039                          | 0.30424                      | 2.7087                            | 0.18496             | 0.20242                     |
| 20        | 7        | 1501               | 1.817                         | 1.8132                           | 1.8207                       | 15.8639                           | 1.8141              | 0.10262                     |
| 20        | 8        | 1501               | 0.2428                        | 0.22181                          | 0.26213                      | 2.3224                            | 0.17849             | 0.16463                     |
| 20        | 4        | 1801               | 4.1517                        | 4.1496                           | 4.1549                       | 36.2324                           | 4.149               | 0.15036                     |
| 20        | 5        | 1801               | 0.40426                       | 0.3787                           | 0.43985                      | 3.9667                            | 0.25692             | 0.31217                     |
| 20        | 6        | 1801               | 1.9252                        | 1.9218                           | 1.9304                       | 16.8117                           | 1.9214              | 0.12207                     |
| 20        | 7        | 1801               | 1.1892                        | 1.1867                           | 1.1929                       | 10.387                            | 1.1867              | 0.077042                    |
| 20        | 8        | 1801               | 2.2976                        | 2.2949                           | 2.3016                       | 20.0598                           | 2.2948              | 0.113                       |
| 10        | 4        | 1200               | 0.045255                      | 0.048601                         | 0.04288                      | 0.38168                           | 0.036667            | 0.026529                    |
| 10        | 5        | 1200               | 0.049547                      | 0.058181                         | 0.042839                     | 0.41991                           | 0.03709             | 0.032857                    |
| 10        | 6        | 1200               | 0.1011                        | 0.11501                          | 0.090647                     | 0.85861                           | 0.080238            | 0.06151                     |
| 10        | 7        | 1200               | 0.049792                      | 0.059925                         | 0.041696                     | 0.42267                           | 0.036615            | 0.033749                    |
| 10        | 8        | 1200               | 0.063384                      | 0.07224                          | 0.05672                      | 0.53788                           | 0.049643            | 0.039416                    |
| 10        | 4        | 1501               | 0.04399                       | 0.046569                         | 0.041247                     | 0.37117                           | 0.034084            | 0.027814                    |
| 10        | 5        | 1501               | 0.070668                      | 0.075439                         | 0.065546                     | 0.60009                           | 0.05507             | 0.044293                    |
| 10        | 6        | 1501               | 0.098157                      | 0.10246                          | 0.093655                     | 0.83352                           | 0.077801            | 0.059858                    |
| 10        | 7        | 1501               | 0.075723                      | 0.084845                         | 0.065333                     | 0.64391                           | 0.055672            | 0.051337                    |
| 10        | 8        | 1501               | 0.094174                      | 0.099654                         | 0.088352                     | 0.80033                           | 0.073373            | 0.059045                    |
| 10        | 4        | 1801               | 0.047926                      | 0.052365                         | 0.040358                     | 0.40531                           | 0.036169            | 0.031449                    |
| 10        | 5        | 1801               | 0.038502                      | 0.043303                         | 0.029882                     | 0.3256                            | 0.026933            | 0.027519                    |
| 10        | 6        | 1801               | 0.036631                      | 0.038677                         | 0.033326                     | 0.30776                           | 0.026959            | 0.024805                    |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\textbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 10        | 7        | 1801               | 0.1107                        | 0.12201                          | 0.091128                     | 0.93991                           | 0.088808            | 0.0661                      |
| 10        | 8        | 1801               | 0.11619                       | 0.12879                          | 0.094159                     | 0.98687                           | 0.092656            | 0.070115                    |
| 11        | 4        | 1200               | 0.051992                      | 0.072403                         | 0.031802                     | 0.44357                           | 0.027571            | 0.044087                    |
| 11        | 5        | 1200               | 0.080207                      | 0.093272                         | 0.070164                     | 0.68116                           | 0.062647            | 0.050093                    |
| 11        | 6        | 1200               | 0.040124                      | 0.051533                         | 0.030218                     | 0.34002                           | 0.026533            | 0.030103                    |
| 11        | 7        | 1200               | 0.12367                       | 0.14025                          | 0.11126                      | 1.0508                            | 0.098222            | 0.075162                    |
| 11        | 8        | 1200               | 0.11721                       | 0.13328                          | 0.10514                      | 0.99584                           | 0.092762            | 0.071652                    |
| 11        | 4        | 1501               | 0.027487                      | 0.027771                         | 0.0272                       | 0.22817                           | 0.022586            | 0.015669                    |
| 11        | 5        | 1501               | 0.04925                       | 0.051472                         | 0.046922                     | 0.41599                           | 0.039263            | 0.029736                    |
| 11        | 6        | 1501               | 0.059555                      | 0.068344                         | 0.049214                     | 0.50653                           | 0.042195            | 0.042036                    |
| 11        | 7        | 1501               | 0.04245                       | 0.04814                          | 0.035864                     | 0.35982                           | 0.029964            | 0.030074                    |
| 11        | 8        | 1501               | 0.10588                       | 0.11102                          | 0.10047                      | 0.89965                           | 0.083626            | 0.06495                     |
| 11        | 4        | 1801               | 0.060627                      | 0.065327                         | 0.052793                     | 0.51309                           | 0.049614            | 0.03485                     |
| 11        | 5        | 1801               | 0.050903                      | 0.05566                          | 0.042784                     | 0.43074                           | 0.039926            | 0.031582                    |
| 11        | 6        | 1801               | 0.054671                      | 0.061952                         | 0.041406                     | 0.46434                           | 0.03981             | 0.037477                    |
| 11        | 7        | 1801               | 0.066057                      | 0.073566                         | 0.05282                      | 0.56075                           | 0.05145             | 0.041437                    |
| 11        | 8        | 1801               | 0.035093                      | 0.039023                         | 0.028183                     | 0.2957                            | 0.02369             | 0.025894                    |
| 12        | 4        | 1200               | 0.10875                       | 0.13641                          | 0.085501                     | 0.92731                           | 0.07627             | 0.07754                     |
| 12        | 5        | 1200               | 0.045572                      | 0.059391                         | 0.033323                     | 0.38684                           | 0.028897            | 0.035245                    |
| 12        | 6        | 1200               | 0.083142                      | 0.10497                          | 0.064632                     | 0.70826                           | 0.057959            | 0.059619                    |
| 12        | 7        | 1200               | 0.064396                      | 0.07691                          | 0.054486                     | 0.54703                           | 0.048821            | 0.042                       |
| 12        | 8        | 1200               | 0.056249                      | 0.067569                         | 0.047225                     | 0.47793                           | 0.04124             | 0.038259                    |
| 12        | 4        | 1501               | 1.8216                        | 1.8187                           | 1.8245                       | 15.1073                           | 1.8189              | 0.10028                     |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

 $\mathbf{RMSE}_{total}^{P_C}$  $\mathbf{RMSE}_{training}^{P_C}$  $\mathbf{RMSE}_{test}^{P_C}$  $\mathbf{\%RMSE}_{total}^{P_{C}}$ # neurons # delays # training samples mean  $(\mu_{ae})$ **Std** ( $\sigma_{ae}$ ) 12 5 1501 0.076144 0.079472 0.072662 0.64574 0.0601 0.046762 1501 0.071535 12 6 0.093508 0.10086 0.08552 0.79507 0.06023 7 0.029492 12 1501 0.041526 0.047645 0.034328 0.35198 0.02924 8 0.10399 0.10738 0.10049 0.88305 0.083082 0.062552 12 1501 12 4 1801 0.028344 0.028788 0.027662 0.23564 0.02311 0.016413 12 5 1801 0.051061 0.054583 0.045264 0.43124 0.041898 0.029191 0.040527 0.027154 12 6 1801 0.03562 0.026609 0.30139 0.023059 12 7 1801 0.035583 0.041004 0.025357 0.30124 0.022888 0.027249 12 8 1801 0.056521 0.064461 0.041869 0.48031 0.04089 0.039028 13 4 1.2871 0.70762 1.0597 1200 1.2741 1.2653 10.5876 13 5 1200 0.033538 0.041606 0.02685 0.28245 0.022606 0.024779 0.09174 0.048539 13 6 1200 0.083601 0.077706 0.70904 0.068072 7 13 1200 0.032045 0.037664 0.027674 0.26878 0.023128 0.022184 13 8 1200 0.050918 0.06243 0.041511 0.43244 0.036921 0.03507 13 4 1501 0.032368 0.035112 0.029368 0.27105 0.02435 0.021329 13 5 1501 0.045542 0.05078 0.039613 0.38571 0.033105 0.03128 13 6 1501 0.072641 0.075026 0.070174 0.61587 0.058254 0.043404 13 7 1501 0.069493 0.07567 0.062705 0.59061 0.052806 0.045183 13 8 1501 0.052283 0.057391 0.046614 0.44387 0.038782 0.03507 13 4 1801 3.2764 3.2721 3.2827 27.1722 3.2704 0.1984 5 1801 0.04808 0.050947 0.043422 0.40563 0.039531 0.027372 13 13 6 1801 0.071332 0.082952 0.048967 0.60806 0.047868 0.052895 7 1801 0.054074 0.038982 0.039747 13 0.062127 0.45981 0.03667

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

 $\mathbf{RMSE}_{total}^{P_C}$  $\mathbf{RMSE}_{training}^{P_C}$  $\mathbf{RMSE}_{test}^{P_C}$  $\mathbf{\%RMSE}_{total}^{P_{C}}$ # neurons # delays # training samples mean ( $\mu_{ae}$ ) **Std** ( $\sigma_{ae}$ ) 13 8 1801 0.043556 0.049781 0.032016 0.36956 0.029975 0.031606 14 4 1200 1.0129 1.0111 1.0141 8.4004 1.0118 0.046425 14 5 1200 0.064431 0.069885 0.060525 0.54542 0.052523 0.037325 6 0.091408 0.10307 0.082733 0.77585 0.073103 0.05488414 1200 7 14 1200 0.054535 0.072042 0.038698 0.4649 0.03396 0.042678 14 8 1200 0.11768 0.13147 0.10751 0.99915 0.094852 0.069666 4 0.040352 14 1501 0.036899 0.033085 0.31077 0.026804 0.025363 5 1501 14 0.073946 0.096419 0.040456 0.63434 0.035644 0.064799 14 6 1501 0.05818 0.05986 0.056447 0.49221 0.047427 0.033703 14 7 1501 0.049362 0.03946 0.0302780.0446870.37684 0.032871 14 8 1501 0.045384 0.049522 0.040825 0.38408 0.034028 0.030035 14 4 1801 0.039974 0.042503 0.035846 0.33629 0.03186 0.024147 0.039759 0.038437 14 5 1801 0.055296 0.06248 0.042282 0.4693 14 6 1801 0.14598 0.18156 0.06182 1.2542 0.0664 0.13003 14 7 1801 0.083208 0.09505 0.061281 0.70827 0.060448 0.05719 14 8 1801 0.063606 0.074342 0.042699 0.54247 0.042109 0.047679 15 4 1200 1.9361 1.9329 1.9383 16.0587 1.9341 0.088474 15 5 1200 2.2672 2.2603 2.2718 18.8016 2.263 0.13813 15 6 1200 0.10616 0.15322 0.056008 0.91005 0.052929 0.092037 15 7 1200 0.045481 0.061963 0.02981 0.38714 0.027039 0.036577 15 8 0.040803 0.048874 0.03439 0.34403 0.028783 1200 0.028927 15 4 1501 0.066835 0.074775 0.057809 0.56847 0.047925 0.046593 15 1501 0.052253 0.049158 0.033031 5 0.055173 0.4425 0.040493

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\textbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\% \mathbf{RMSE}_{total}^{P_C}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------|
| 15        | 6        | 1501               | 0.066257                      | 0.074895                         | 0.056302                     | 0.56385                          | 0.047381            | 0.046322                    |
| 15        | 7        | 1501               | 0.083473                      | 0.10278                          | 0.058041                     | 0.71321                          | 0.050036            | 0.066826                    |
| 15        | 8        | 1501               | 0.035413                      | 0.040005                         | 0.030124                     | 0.29816                          | 0.024823            | 0.02526                     |
| 15        | 4        | 1801               | 2.5369                        | 2.5352                           | 2.5394                       | 21.0397                          | 2.5345              | 0.11054                     |
| 15        | 5        | 1801               | 0.11075                       | 0.13572                          | 0.055031                     | 0.94981                          | 0.057266            | 0.094809                    |
| 15        | 6        | 1801               | 1.0939                        | 1.0932                           | 1.095                        | 9.0726                           | 1.0929              | 0.046844                    |
| 15        | 7        | 1801               | 0.04905                       | 0.057733                         | 0.031847                     | 0.41803                          | 0.030275            | 0.038598                    |
| 15        | 8        | 1801               | 0.073294                      | 0.086017                         | 0.048268                     | 0.62498                          | 0.048125            | 0.05529                     |
| 16        | 4        | 1200               | 0.20233                       | 0.3163                           | 0.039462                     | 1.7441                           | 0.049222            | 0.19629                     |
| 16        | 5        | 1200               | 0.13017                       | 0.20044                          | 0.038301                     | 1.1202                           | 0.039069            | 0.12419                     |
| 16        | 6        | 1200               | 1.8355                        | 1.8336                           | 1.8368                       | 15.2233                          | 1.8343              | 0.065504                    |
| 16        | 7        | 1200               | 0.059929                      | 0.06423                          | 0.056884                     | 0.50723                          | 0.049165            | 0.034274                    |
| 16        | 8        | 1200               | 0.044958                      | 0.057679                         | 0.03393                      | 0.38183                          | 0.029459            | 0.033966                    |
| 16        | 4        | 1501               | 0.06301                       | 0.080856                         | 0.037433                     | 0.53855                          | 0.031566            | 0.054542                    |
| 16        | 5        | 1501               | 0.064637                      | 0.067983                         | 0.061106                     | 0.54798                          | 0.05079             | 0.039986                    |
| 16        | 6        | 1501               | 0.041816                      | 0.048603                         | 0.033681                     | 0.35423                          | 0.028583            | 0.030527                    |
| 16        | 7        | 1501               | 0.065641                      | 0.081933                         | 0.043621                     | 0.56149                          | 0.037257            | 0.054052                    |
| 16        | 8        | 1501               | 0.056182                      | 0.061621                         | 0.050152                     | 0.47715                          | 0.041609            | 0.037757                    |
| 16        | 4        | 1801               | 0.087095                      | 0.10617                          | 0.045309                     | 0.74603                          | 0.045412            | 0.074331                    |
| 16        | 5        | 1801               | 0.075267                      | 0.082307                         | 0.063247                     | 0.6381                           | 0.060591            | 0.044661                    |
| 16        | 6        | 1801               | 2.2419                        | 2.2398                           | 2.2451                       | 18.594                           | 2.239               | 0.11474                     |
| 16        | 7        | 1801               | 0.057159                      | 0.063748                         | 0.045514                     | 0.48517                          | 0.043217            | 0.037415                    |
| 16        | 8        | 1801               | 0.053814                      | 0.065003                         | 0.03001                      | 0.45964                          | 0.028763            | 0.04549                     |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------|
| 17        | 4        | 1200               | 0.15511                       | 0.23959                          | 0.042926                     | 1.3391                            | 0.043933            | 0.14878               |
| 17        | 5        | 1200               | 1.1879                        | 1.1846                           | 1.1901                       | 9.8511                            | 1.186               | 0.066559              |
| 17        | 6        | 1200               | 0.032872                      | 0.040236                         | 0.026866                     | 0.27645                           | 0.02281             | 0.023673              |
| 17        | 7        | 1200               | 0.058083                      | 0.062424                         | 0.055002                     | 0.49126                           | 0.047694            | 0.033156              |
| 17        | 8        | 1200               | 0.059656                      | 0.083781                         | 0.035401                     | 0.51003                           | 0.032174            | 0.050245              |
| 17        | 4        | 1501               | 2.5692                        | 2.5577                           | 2.5806                       | 21.3007                           | 2.5586              | 0.23329               |
| 17        | 5        | 1501               | 0.1218                        | 0.15872                          | 0.066853                     | 1.0456                            | 0.058771            | 0.1067                |
| 17        | 6        | 1501               | 0.099118                      | 0.10047                          | 0.097746                     | 0.84125                           | 0.079942            | 0.058606              |
| 17        | 7        | 1501               | 2.3399                        | 2.3361                           | 2.3437                       | 19.406                            | 2.3363              | 0.12902               |
| 17        | 8        | 1501               | 0.094925                      | 0.11511                          | 0.069047                     | 0.81088                           | 0.05935             | 0.074096              |
| 17        | 4        | 1801               | 1.964                         | 1.9629                           | 1.9656                       | 16.289                            | 1.9624              | 0.078848              |
| 17        | 5        | 1801               | 0.077919                      | 0.087389                         | 0.061006                     | 0.66198                           | 0.059042            | 0.050856              |
| 17        | 6        | 1801               | 0.048496                      | 0.054455                         | 0.037831                     | 0.41124                           | 0.034659            | 0.033927              |
| 17        | 7        | 1801               | 0.08177                       | 0.091503                         | 0.064462                     | 0.69492                           | 0.063171            | 0.051929              |
| 17        | 8        | 1801               | 0.082432                      | 0.099809                         | 0.045189                     | 0.70564                           | 0.046355            | 0.068174              |
| 18        | 4        | 1200               | 1.5146                        | 1.51                             | 1.5177                       | 12.5608                           | 1.5117              | 0.093573              |
| 18        | 5        | 1200               | 2.3986                        | 2.3895                           | 2.4047                       | 19.8921                           | 2.3931              | 0.16367               |
| 18        | 6        | 1200               | 0.073466                      | 0.10596                          | 0.03889                      | 0.62892                           | 0.035486            | 0.064338              |
| 18        | 7        | 1200               | 1.7734                        | 1.762                            | 1.7809                       | 14.7043                           | 1.7663              | 0.15872               |
| 18        | 8        | 1200               | 0.033752                      | 0.038904                         | 0.029829                     | 0.28434                           | 0.024965            | 0.022718              |
| 18        | 4        | 1501               | 2.1436                        | 2.142                            | 2.1451                       | 17.7791                           | 2.1418              | 0.087252              |
| 18        | 5        | 1501               | 0.092963                      | 0.1156                           | 0.062587                     | 0.79581                           | 0.053528            | 0.076018              |
| 18        | 6        | 1501               | 1.4178                        | 1.4167                           | 1.419                        | 11.7595                           | 1.4169              | 0.052434              |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------------------|
| 18        | 7        | 1501               | 0.048777                      | 0.048848                         | 0.048705                     | 0.41184                           | 0.040067            | 0.027822                                |
| 18        | 8        | 1501               | 0.26333                       | 0.36648                          | 0.065893                     | 2.2719                            | 0.070491            | 0.25377                                 |
| 18        | 4        | 1801               | 0.11862                       | 0.14104                          | 0.073029                     | 1.0134                            | 0.072469            | 0.093927                                |
| 18        | 5        | 1801               | 0.051237                      | 0.055162                         | 0.044704                     | 0.4332                            | 0.041232            | 0.030422                                |
| 18        | 6        | 1801               | 0.1944                        | 0.24529                          | 0.064903                     | 1.6748                            | 0.072147            | 0.18055                                 |
| 18        | 7        | 1801               | 0.18489                       | 0.23726                          | 0.03174                      | 1.5941                            | 0.047631            | 0.17868                                 |
| 18        | 8        | 1801               | 0.032492                      | 0.036435                         | 0.025454                     | 0.27376                           | 0.022677            | 0.023274                                |
| 19        | 4        | 1200               | 1.3706                        | 1.3679                           | 1.3725                       | 11.3689                           | 1.3684              | 0.078338                                |
| 19        | 5        | 1200               | 0.11223                       | 0.12982                          | 0.098791                     | 0.95359                           | 0.087921            | 0.069768                                |
| 19        | 6        | 1200               | 2.7996                        | 2.7956                           | 2.8023                       | 23.2182                           | 2.7973              | 0.11207                                 |
| 19        | 7        | 1200               | 2.6736                        | 2.6684                           | 2.6771                       | 22.1745                           | 2.6706              | 0.12778                                 |
| 19        | 8        | 1200               | 0.077209                      | 0.10484                          | 0.051089                     | 0.66026                           | 0.046285            | 0.061808                                |
| 19        | 4        | 1501               | 1.3338                        | 1.3329                           | 1.3346                       | 11.0615                           | 1.3327              | 0.052835                                |
| 19        | 5        | 1501               | 0.076719                      | 0.098805                         | 0.044794                     | 0.65697                           | 0.039529            | 0.065763                                |
| 19        | 6        | 1501               | 2.1384                        | 2.1349                           | 2.1419                       | 17.7332                           | 2.1351              | 0.11808                                 |
| 19        | 7        | 1501               | 0.079964                      | 0.095365                         | 0.060764                     | 0.68281                           | 0.051883            | 0.060857                                |
| 19        | 8        | 1501               | 0.1804                        | 0.22911                          | 0.11219                      | 1.5463                            | 0.098717            | 0.15102                                 |
| 19        | 4        | 1801               | 2.9608                        | 2.9569                           | 2.9667                       | 24.5674                           | 1.4772              | 2.5665                                  |
| 19        | 5        | 1801               | 0.045958                      | 0.055135                         | 0.026829                     | 0.39134                           | 0.023892            | 0.039266                                |
| 19        | 6        | 1801               | 1.7208                        | 1.7191                           | 1.7235                       | 14.2717                           | 1.7187              | 0.086636                                |
| 19        | 7        | 1801               | 0.077622                      | 0.093526                         | 0.044044                     | 0.66366                           | 0.044036            | 0.063933                                |
| 19        | 8        | 1801               | 0.055913                      | 0.061076                         | 0.047114                     | 0.47354                           | 0.044227            | 0.034214                                |
| 20        | 4        | 1200               | 3.992                         | 3.9849                           | 3.9967                       | 33.1073                           | 3.9874              | 0.19111                                 |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\mathbf{\%RMSE}_{total}^{P_{C}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------------------|
| 20        | 5        | 1200               | 2.2234                        | 2.2186                           | 2.2266                       | 18.4401                           | 2.2206              | 0.11152                                 |
| 20        | 6        | 1200               | 0.18978                       | 0.29207                          | 0.056375                     | 1.6344                            | 0.058052            | 0.18072                                 |
| 20        | 7        | 1200               | 0.026612                      | 0.027382                         | 0.026087                     | 0.22105                           | 0.021582            | 0.015573                                |
| 20        | 8        | 1200               | 1.1471                        | 1.1456                           | 1.148                        | 9.5132                            | 1.1462              | 0.043905                                |
| 20        | 4        | 1501               | 2.0735                        | 2.072                            | 2.0749                       | 17.1978                           | 2.0722              | 0.072711                                |
| 20        | 5        | 1501               | 3.1189                        | 3.1143                           | 3.1235                       | 25.865                            | 3.1145              | 0.16564                                 |
| 20        | 6        | 1501               | 1.7084                        | 1.7046                           | 1.7123                       | 14.1676                           | 1.7047              | 0.11207                                 |
| 20        | 7        | 1501               | 0.07222                       | 0.07616                          | 0.068049                     | 0.61267                           | 0.05719             | 0.04411                                 |
| 20        | 8        | 1501               | 0.09826                       | 0.13648                          | 0.026036                     | 0.84626                           | 0.027685            | 0.094295                                |
| 20        | 4        | 1801               | 2.2607                        | 2.2594                           | 2.2626                       | 18.7494                           | 2.2589              | 0.089497                                |
| 20        | 5        | 1801               | 0.29094                       | 0.37354                          | 0.047716                     | 2.5141                            | 0.062761            | 0.28414                                 |
| 20        | 6        | 1801               | 0.10058                       | 0.11274                          | 0.078897                     | 0.85496                           | 0.077371            | 0.064281                                |
| 20        | 7        | 1801               | 0.029222                      | 0.030812                         | 0.026658                     | 0.24434                           | 0.023319            | 0.017613                                |
| 20        | 8        | 1801               | 0.071298                      | 0.08182                          | 0.051628                     | 0.60701                           | 0.051156            | 0.049672                                |

 Table 6.7: Summary of RBF-NARX model construction for identification of compressor pressure

## Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|--------------------------------|---------------------|------------------------------|
| 10        | 4        | 1200               | 118.567                     | 118.3704                     | 118.6978                 | 0.99667                        | 118.4587            | 5.0664                       |
| 10        | 5        | 1200               | 138.6245                    | 138.4739                     | 138.7247                 | 1.1653                         | 138.5356            | 4.9642                       |
| 10        | 6        | 1200               | 143.3147                    | 142.3956                     | 143.9238                 | 1.2043                         | 143.046             | 8.7721                       |
| 10        | 7        | 1200               | 140.3586                    | 139.4537                     | 140.9584                 | 1.1795                         | 140.0928            | 8.6367                       |
| 10        | 8        | 1200               | 112.5416                    | 111.5024                     | 113.2287                 | 0.94555                        | 112.2358            | 8.2925                       |
| 10        | 4        | 1501               | 116.8197                    | 131.0573                     | 100.5751                 | 0.99035                        | 95.5964             | 67.1542                      |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|--------------------------------|-------------------|------------------------------|
| 10        | 5        | 1501               | 91.4612                     | 90.4949                      | 92.418                   | 0.77149                        | 74.7798           | 52.6693                      |
| 10        | 6        | 1501               | 110.9079                    | 110.3935                     | 111.4202                 | 0.93213                        | 110.5313          | 9.1329                       |
| 10        | 7        | 1501               | 82.1303                     | 61.9147                      | 98.2816                  | 0.6843                         | 49.3958           | 65.6268                      |
| 10        | 8        | 1501               | 122.442                     | 118.751                      | 126.0272                 | 1.0282                         | 119.5219          | 26.5855                      |
| 10        | 4        | 1801               | 148.8705                    | 148.8179                     | 148.9494                 | 1.2514                         | 148.7983          | 4.6357                       |
| 10        | 5        | 1801               | 74.2458                     | 77.7809                      | 68.5991                  | 0.62725                        | 62.0095           | 40.8389                      |
| 10        | 6        | 1801               | 106.1983                    | 91.911                       | 124.6039                 | 0.88821                        | 79.5694           | 70.3452                      |
| 10        | 7        | 1801               | 54.6591                     | 53.9191                      | 55.7513                  | 0.4607                         | 45.8394           | 29.7768                      |
| 10        | 8        | 1801               | 74.3076                     | 80.1776                      | 64.5029                  | 0.62913                        | 61.5287           | 41.6704                      |
| 11        | 4        | 1200               | 187.566                     | 187.3236                     | 187.7274                 | 1.5767                         | 187.4148          | 7.5307                       |
| 11        | 5        | 1200               | 182.0991                    | 181.926                      | 182.2143                 | 1.5308                         | 181.9879          | 6.364                        |
| 11        | 6        | 1200               | 125.2834                    | 125.139                      | 125.3795                 | 1.0532                         | 125.1935          | 4.745                        |
| 11        | 7        | 1200               | 107.505                     | 105.8796                     | 108.5745                 | 0.90312                        | 106.8773          | 11.602                       |
| 11        | 8        | 1200               | 127.3944                    | 126.3958                     | 128.0555                 | 1.0713                         | 102.2268          | 76.0325                      |
| 11        | 4        | 1501               | 198.519                     | 191.7188                     | 205.0983                 | 1.6681                         | 192.1677          | 49.8216                      |
| 11        | 5        | 1501               | 126.5581                    | 141.7409                     | 109.2735                 | 1.0725                         | 105.8762          | 69.3453                      |
| 11        | 6        | 1501               | 148.1275                    | 166.0076                     | 127.7547                 | 1.2546                         | 127.1138          | 76.0643                      |
| 11        | 7        | 1501               | 61.8822                     | 52.4594                      | 70.0539                  | 0.51771                        | 43.9866           | 43.5341                      |
| 11        | 8        | 1501               | 95.4988                     | 77.2658                      | 110.7797                 | 0.79698                        | 69.6312           | 65.3678                      |
| 11        | 4        | 1801               | 104.6924                    | 104.6591                     | 104.7424                 | 0.88007                        | 104.6435          | 3.2012                       |
| 11        | 5        | 1801               | 129.6726                    | 144.5396                     | 103.4239                 | 1.0988                         | 109.1068          | 70.088                       |
| 11        | 6        | 1801               | 101.1666                    | 112.8487                     | 80.5132                  | 0.85769                        | 81.6375           | 59.7595                      |
| 11        | 7        | 1801               | 89.5914                     | 94.371                       | 81.8963                  | 0.75748                        | 75.3896           | 48.413                       |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|--------------------------------|-------------------|-----------------------|
| 11        | 8        | 1801               | 59.0911                     | 47.2497                      | 73.3596                  | 0.49287                        | 36.8988           | 46.1621               |
| 12        | 4        | 1200               | 154.0742                    | 153.961                      | 154.1496                 | 1.2952                         | 154.0045          | 4.6357                |
| 12        | 5        | 1200               | 131.1338                    | 130.6356                     | 131.4648                 | 1.1022                         | 130.8989          | 7.8474                |
| 12        | 6        | 1200               | 145.3746                    | 167.4808                     | 128.552                  | 1.2316                         | 123.9898          | 75.9093               |
| 12        | 7        | 1200               | 140.111                     | 138.7068                     | 141.0389                 | 1.1773                         | 139.5494          | 12.5348               |
| 12        | 8        | 1200               | 185.9278                    | 182.2081                     | 188.3654                 | 1.561                          | 184.7441          | 20.95                 |
| 12        | 4        | 1501               | 120.6407                    | 120.5817                     | 120.6997                 | 1.0141                         | 120.586           | 3.6313                |
| 12        | 5        | 1501               | 125.6828                    | 125.507                      | 125.8585                 | 1.0565                         | 125.5421          | 5.9475                |
| 12        | 6        | 1501               | 128.2679                    | 144.1459                     | 110.1109                 | 1.0872                         | 105.7388          | 72.6204               |
| 12        | 7        | 1501               | 110.2457                    | 112.7494                     | 107.682                  | 0.92678                        | 94.5956           | 56.6291               |
| 12        | 8        | 1501               | 161.1686                    | 160.6853                     | 161.6507                 | 1.3547                         | 160.772           | 11.3007               |
| 12        | 4        | 1801               | 102.2751                    | 100.0085                     | 105.5857                 | 0.8594                         | 99.077            | 25.3802               |
| 12        | 5        | 1801               | 138.1374                    | 134.8228                     | 142.968                  | 1.1607                         | 133.6537          | 34.915                |
| 12        | 6        | 1801               | 111.5261                    | 111.2751                     | 111.9018                 | 0.93747                        | 111.1847          | 8.722                 |
| 12        | 7        | 1801               | 149.4662                    | 143.3673                     | 158.1789                 | 1.256                          | 142.0304          | 46.5643               |
| 12        | 8        | 1801               | 50.2835                     | 53.4578                      | 45.1021                  | 0.42529                        | 43.4647           | 25.2877               |
| 13        | 4        | 1200               | 163.5469                    | 163.4334                     | 163.6225                 | 1.3748                         | 163.4857          | 4.475                 |
| 13        | 5        | 1200               | 143.9317                    | 167.2578                     | 126.0151                 | 1.2197                         | 120.4286          | 78.8377               |
| 13        | 6        | 1200               | 141.5269                    | 165.079                      | 123.3629                 | 1.1993                         | 117.3758          | 79.0878               |
| 13        | 7        | 1200               | 105.7315                    | 104.7936                     | 106.3519                 | 0.88877                        | 105.1323          | 11.2431               |
| 13        | 8        | 1200               | 64.1622                     | 51.0525                      | 71.5764                  | 0.53556                        | 40.7252           | 49.589                |
| 13        | 4        | 1501               | 149.5453                    | 149.4725                     | 149.6181                 | 1.2571                         | 149.4744          | 4.6043                |
| 13        | 5        | 1501               | 125.9023                    | 141.9513                     | 107.4697                 | 1.0676                         | 101.2818          | 74.8014               |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|--------------------------------|-------------------|-----------------------|
| 13        | 6        | 1501               | 160.6022                    | 160.4928                     | 160.7116                 | 1.3501                         | 160.5099          | 5.4447                |
| 13        | 7        | 1501               | 131.8204                    | 130.8059                     | 132.8278                 | 1.1081                         | 130.8466          | 15.9961               |
| 13        | 8        | 1501               | 101.011                     | 100.2333                     | 101.7832                 | 0.84913                        | 100.3407          | 11.6192               |
| 13        | 4        | 1801               | 103.5608                    | 103.5335                     | 103.6018                 | 0.87056                        | 103.5258          | 2.6947                |
| 13        | 5        | 1801               | 143.9336                    | 139.0946                     | 150.9052                 | 1.2093                         | 90.4553           | 111.9772              |
| 13        | 6        | 1801               | 141.8952                    | 157.3164                     | 114.9308                 | 1.2015                         | 123.197           | 70.416                |
| 13        | 7        | 1801               | 134.5244                    | 149.8718                     | 107.4526                 | 1.1398                         | 113.7847          | 71.7744               |
| 13        | 8        | 1801               | 88.5059                     | 96.9864                      | 73.9756                  | 0.74997                        | 71.1803           | 52.6079               |
| 14        | 4        | 1200               | 193.069                     | 192.9233                     | 193.1661                 | 1.623                          | 192.9812          | 5.8244                |
| 14        | 5        | 1200               | 111.4357                    | 111.3557                     | 111.489                  | 0.93676                        | 111.3844          | 3.3821                |
| 14        | 6        | 1200               | 137.8684                    | 159.2897                     | 121.5169                 | 1.1683                         | 116.0658          | 74.4195               |
| 14        | 7        | 1200               | 147.9648                    | 173.0284                     | 128.5809                 | 1.2538                         | 123.3927          | 81.6703               |
| 14        | 8        | 1200               | 155.3776                    | 181.1303                     | 135.5288                 | 1.3159                         | 132.2648          | 81.5501               |
| 14        | 4        | 1501               | 160.7593                    | 160.6815                     | 160.8372                 | 1.3514                         | 160.6908          | 4.6951                |
| 14        | 5        | 1501               | 129.4571                    | 144.9806                     | 111.7859                 | 1.0969                         | 109.4717          | 69.1136               |
| 14        | 6        | 1501               | 132.6148                    | 148.7176                     | 114.2516                 | 1.124                          | 110.2971          | 73.6414               |
| 14        | 7        | 1501               | 149.7606                    | 166.4367                     | 130.9648                 | 1.2675                         | 131.6671          | 71.3703               |
| 14        | 8        | 1501               | 142.8018                    | 159.3518                     | 124.05                   | 1.2095                         | 123.1979          | 72.2245               |
| 14        | 4        | 1801               | 109.0475                    | 109.0137                     | 109.0982                 | 0.91668                        | 109.0045          | 3.0609                |
| 14        | 5        | 1801               | 124.276                     | 124.2382                     | 124.3326                 | 1.0447                         | 124.2166          | 3.841                 |
| 14        | 6        | 1801               | 103.2836                    | 103.2458                     | 103.3404                 | 0.86823                        | 103.224           | 3.5108                |
| 14        | 7        | 1801               | 153.0669                    | 170.3251                     | 122.691                  | 1.296                          | 131.6667          | 78.0729               |
| 14        | 8        | 1801               | 132.3178                    | 131.4718                     | 133.5775                 | 1.1122                         | 131.1579          | 17.4845               |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\%\mathbf{RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------------|-------------------|-----------------------|
| 15        | 4        | 1200               | 188.9176                    | 188.7816                     | 189.0082                 | 1.5881                        | 188.8394          | 5.4344                |
| 15        | 5        | 1200               | 189.0883                    | 188.9571                     | 189.1756                 | 1.5895                        | 189.0157          | 5.2397                |
| 15        | 6        | 1200               | 153.0785                    | 143.7442                     | 158.994                  | 1.2863                        | 147.5421          | 40.8033               |
| 15        | 7        | 1200               | 165.4212                    | 165.0233                     | 165.6858                 | 1.3906                        | 165.1674          | 9.1619                |
| 15        | 8        | 1200               | 148.6452                    | 171.7218                     | 131.0323                 | 1.2591                        | 127.143           | 77.0196               |
| 15        | 4        | 1501               | 124.3326                    | 124.2892                     | 124.3759                 | 1.0452                        | 124.2912          | 3.207                 |
| 15        | 5        | 1501               | 128.1748                    | 128.1319                     | 128.2177                 | 1.0775                        | 128.1322          | 3.3027                |
| 15        | 6        | 1501               | 141.87                      | 159.3568                     | 121.8856                 | 1.2016                        | 121.4664          | 73.3131               |
| 15        | 7        | 1501               | 145.4795                    | 162.3275                     | 126.3918                 | 1.2319                        | 126.3271          | 72.163                |
| 15        | 8        | 1501               | 149.8521                    | 167.3655                     | 129.9862                 | 1.2688                        | 129.9252          | 74.6791               |
| 15        | 4        | 1801               | 104.9228                    | 104.8979                     | 104.9601                 | 0.88201                       | 104.8878          | 2.7089                |
| 15        | 5        | 1801               | 121.1159                    | 121.0793                     | 121.1707                 | 1.0181                        | 121.0597          | 3.6879                |
| 15        | 6        | 1801               | 146.57                      | 146.4977                     | 146.6784                 | 1.2321                        | 146.4764          | 5.2381                |
| 15        | 7        | 1801               | 136.0246                    | 151.4872                     | 108.768                  | 1.1525                        | 115.5601          | 71.7654               |
| 15        | 8        | 1801               | 165.1245                    | 174.6201                     | 149.7474                 | 1.3954                        | 135.15            | 94.8871               |
| 16        | 4        | 1200               | 160.9517                    | 160.8704                     | 161.0059                 | 1.353                         | 160.8982          | 4.1493                |
| 16        | 5        | 1200               | 124.3016                    | 124.1498                     | 124.4027                 | 1.0449                        | 124.2186          | 4.5442                |
| 16        | 6        | 1200               | 187.3906                    | 187.0991                     | 187.5845                 | 1.5753                        | 187.1932          | 8.6005                |
| 16        | 7        | 1200               | 105.29                      | 13.193                       | 135.4864                 | 0.88014                       | 32.8083           | 100.0646              |
| 16        | 8        | 1200               | 149.669                     | 151.4778                     | 148.4516                 | 1.2663                        | 103.9657          | 107.6839              |
| 16        | 4        | 1501               | 132.7762                    | 132.7301                     | 132.8223                 | 1.1162                        | 132.7321          | 3.4246                |
| 16        | 5        | 1501               | 125.2926                    | 125.2073                     | 125.3779                 | 1.0532                        | 125.2121          | 4.4915                |
| 16        | 6        | 1501               | 99.8341                     | 99.6802                      | 99.9879                  | 0.83925                       | 99.6838           | 5.4783                |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed
| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\mathbf{\%RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------------|-------------------|-----------------------|
| 16        | 7        | 1501               | 143.8729                    | 160.3881                     | 125.1844                 | 1.2182                        | 125.0647          | 71.1331               |
| 16        | 8        | 1501               | 147.2423                    | 164.4998                     | 127.6589                 | 1.2471                        | 126.7165          | 75.0006               |
| 16        | 4        | 1801               | 119.696                     | 119.6682                     | 119.7376                 | 1.0062                        | 119.6561          | 3.0877                |
| 16        | 5        | 1801               | 137.9771                    | 137.9178                     | 138.066                  | 1.1599                        | 137.9047          | 4.4695                |
| 16        | 6        | 1801               | 193.966                     | 193.8441                     | 194.1489                 | 1.6305                        | 193.8172          | 7.598                 |
| 16        | 7        | 1801               | 133.526                     | 133.4788                     | 133.5967                 | 1.1225                        | 133.444           | 4.6782                |
| 16        | 8        | 1801               | 152.8045                    | 168.3582                     | 125.9054                 | 1.2931                        | 134.6588          | 72.2354               |
| 17        | 4        | 1200               | 156.2535                    | 156.1748                     | 156.3059                 | 1.3135                        | 156.2016          | 4.0279                |
| 17        | 5        | 1200               | 100.8808                    | 100.8282                     | 100.9158                 | 0.84803                       | 100.8473          | 2.6007                |
| 17        | 6        | 1200               | 180.7924                    | 180.6297                     | 180.9008                 | 1.5198                        | 180.6853          | 6.2259                |
| 17        | 7        | 1200               | 180.4423                    | 149.5515                     | 198.3721                 | 1.5168                        | 150.3707          | 99.7566               |
| 17        | 8        | 1200               | 155.0478                    | 178.6612                     | 137.0744                 | 1.313                         | 133.688           | 78.5454               |
| 17        | 4        | 1501               | 109.3911                    | 109.3528                     | 109.4294                 | 0.91957                       | 109.3547          | 2.8215                |
| 17        | 5        | 1501               | 166.7579                    | 166.6649                     | 166.851                  | 1.4018                        | 166.6751          | 5.2566                |
| 17        | 6        | 1501               | 159.1486                    | 158.8199                     | 159.4768                 | 1.3378                        | 158.8342          | 9.9992                |
| 17        | 7        | 1501               | 198.3663                    | 202.9424                     | 193.6789                 | 1.6718                        | 109.5602          | 165.3931              |
| 17        | 8        | 1501               | 141.0683                    | 157.6225                     | 122.2799                 | 1.195                         | 120.7233          | 72.9926               |
| 17        | 4        | 1801               | 103.4299                    | 103.4071                     | 103.4642                 | 0.86946                       | 103.3956          | 2.6661                |
| 17        | 5        | 1801               | 131.6153                    | 131.5748                     | 131.676                  | 1.1064                        | 131.5567          | 3.9279                |
| 17        | 6        | 1801               | 105.1297                    | 105.1088                     | 105.1611                 | 0.88377                       | 105.066           | 3.6597                |
| 17        | 7        | 1801               | 117.5298                    | 114.4912                     | 121.9483                 | 0.98767                       | 113.349           | 31.0739               |
| 17        | 8        | 1801               | 162.3177                    | 178.5691                     | 134.2856                 | 1.3731                        | 143.2879          | 76.2729               |
| 18        | 4        | 1200               | 138.5035                    | 138.4339                     | 138.5498                 | 1.1643                        | 138.4575          | 3.5693                |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|--------------------------------|-------------------|-----------------------|
| 18        | 5        | 1200               | 110.9355                    | 110.8609                     | 110.9851                 | 0.93255                        | 110.8946          | 3.0099                |
| 18        | 6        | 1200               | 127.1022                    | 126.9931                     | 127.1749                 | 1.0685                         | 127.028           | 4.3434                |
| 18        | 7        | 1200               | 109.2968                    | 109.0603                     | 109.4542                 | 0.91875                        | 109.1609          | 5.4496                |
| 18        | 8        | 1200               | 116.3631                    | 110.4611                     | 120.1348                 | 0.97775                        | 112.7685          | 28.704                |
| 18        | 4        | 1501               | 178.5482                    | 178.4888                     | 178.6076                 | 1.5009                         | 178.4889          | 4.6019                |
| 18        | 5        | 1501               | 123.8616                    | 123.8185                     | 123.9048                 | 1.0412                         | 123.8205          | 3.1937                |
| 18        | 6        | 1501               | 140.4227                    | 140.3486                     | 140.4968                 | 1.1804                         | 140.3544          | 4.379                 |
| 18        | 7        | 1501               | 180.7813                    | 180.6526                     | 180.9101                 | 1.5197                         | 180.6558          | 6.7369                |
| 18        | 8        | 1501               | 156.2365                    | 174.1055                     | 136.0258                 | 1.3222                         | 136.9175          | 75.2684               |
| 18        | 4        | 1801               | 190.5705                    | 190.5284                     | 190.6336                 | 1.602                          | 190.5072          | 4.9124                |
| 18        | 5        | 1801               | 147.6573                    | 147.6247                     | 147.7061                 | 1.2412                         | 147.6083          | 3.8046                |
| 18        | 6        | 1801               | 149.219                     | 149.1744                     | 149.2858                 | 1.2544                         | 149.1627          | 4.099                 |
| 18        | 7        | 1801               | 105.0991                    | 96.7681                      | 116.4899                 | 0.88017                        | 42.1574           | 96.2895               |
| 18        | 8        | 1801               | 123.4976                    | 123.4639                     | 123.5481                 | 1.0381                         | 123.4557          | 3.2199                |
| 19        | 4        | 1200               | 105.706                     | 105.6262                     | 105.7591                 | 0.88859                        | 105.6538          | 3.3221                |
| 19        | 5        | 1200               | 104.7804                    | 104.7263                     | 104.8164                 | 0.88081                        | 104.7456          | 2.7007                |
| 19        | 6        | 1200               | 100.6417                    | 100.5892                     | 100.6767                 | 0.84602                        | 100.6083          | 2.5936                |
| 19        | 7        | 1200               | 175.8074                    | 175.3908                     | 176.0844                 | 1.4778                         | 175.5798          | 8.9439                |
| 19        | 8        | 1200               | 195.6385                    | 178.7287                     | 206.1369                 | 1.6442                         | 186.0336          | 60.5568               |
| 19        | 4        | 1501               | 111.592                     | 111.541                      | 111.643                  | 0.93807                        | 111.5509          | 3.0275                |
| 19        | 5        | 1501               | 162.8035                    | 162.7261                     | 162.8809                 | 1.3686                         | 162.7376          | 4.6306                |
| 19        | 6        | 1501               | 152.9837                    | 152.9045                     | 153.0629                 | 1.286                          | 152.9089          | 4.7843                |
| 19        | 7        | 1501               | 146.5968                    | 146.5215                     | 146.6721                 | 1.2323                         | 146.5255          | 4.5723                |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\mathbf{\%RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------------|---------------------|------------------------------|
| 19        | 8        | 1501               | 102.8393                    | 98.9187                      | 106.6182                 | 0.86421                       | 99.2251             | 27.0284                      |
| 19        | 4        | 1801               | 187.6882                    | 187.6468                     | 187.7503                 | 1.5778                        | 187.6259            | 4.8365                       |
| 19        | 5        | 1801               | 146.9256                    | 146.8932                     | 146.9743                 | 1.2351                        | 146.8769            | 3.786                        |
| 19        | 6        | 1801               | 119.515                     | 119.4833                     | 119.5625                 | 1.0047                        | 119.4592            | 3.6532                       |
| 19        | 7        | 1801               | 190.7536                    | 190.7013                     | 190.832                  | 1.6035                        | 190.6872            | 5.0328                       |
| 19        | 8        | 1801               | 180.7319                    | 175.1315                     | 188.8257                 | 1.5193                        | 173.5615            | 50.4108                      |
| 20        | 4        | 1200               | 105.5638                    | 105.4856                     | 105.6159                 | 0.8874                        | 105.5194            | 3.0629                       |
| 20        | 5        | 1200               | 157.918                     | 157.8392                     | 157.9705                 | 1.3275                        | 157.8656            | 4.0693                       |
| 20        | 6        | 1200               | 118.583                     | 118.2188                     | 118.8251                 | 0.99678                       | 118.3918            | 6.7323                       |
| 20        | 7        | 1200               | 138.4243                    | 138.3254                     | 138.4901                 | 1.1636                        | 138.3648            | 4.0586                       |
| 20        | 8        | 1200               | 140.565                     | 132.0434                     | 145.967                  | 1.1812                        | 135.5051            | 37.3812                      |
| 20        | 4        | 1501               | 165.4456                    | 165.3787                     | 165.5125                 | 1.3908                        | 165.3892            | 4.3194                       |
| 20        | 5        | 1501               | 131.6426                    | 131.5986                     | 131.6865                 | 1.1066                        | 131.5989            | 3.392                        |
| 20        | 6        | 1501               | 110.3316                    | 110.2939                     | 110.3694                 | 0.92748                       | 110.295             | 2.8424                       |
| 20        | 7        | 1501               | 123.1024                    | 123.0548                     | 123.15                   | 1.0348                        | 123.0609            | 3.1966                       |
| 20        | 8        | 1501               | 100.3862                    | 100.2958                     | 100.4767                 | 0.84389                       | 100.2986            | 4.1938                       |
| 20        | 4        | 1801               | 166.3651                    | 166.349                      | 166.3892                 | 1.3985                        | 166.3033            | 4.5343                       |
| 20        | 5        | 1801               | 180.5676                    | 180.5278                     | 180.6274                 | 1.5179                        | 180.5077            | 4.6532                       |
| 20        | 6        | 1801               | 127.7655                    | 127.7305                     | 127.8179                 | 1.0741                        | 127.687             | 4.4788                       |
| 20        | 7        | 1801               | 118.2387                    | 118.174                      | 118.3356                 | 0.99393                       | 118.1623            | 4.2489                       |
| 20        | 8        | 1801               | 132.0718                    | 129.1096                     | 136.3969                 | 1.1096                        | 128.2404            | 31.5861                      |
| 10        | 4        | 1200               | 197.8189                    | 197.6827                     | 197.9095                 | 1.6656                        | 197.7329            | 5.8314                       |
| 10        | 5        | 1200               | 31.7621                     | 35.6254                      | 28.9027                  | 0.26792                       | 24.2162             | 20.556                       |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\% \mathbf{RMSE}_{total}^N$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|------------------------------|---------------------|------------------------------|
| 10        | 6        | 1200               | 27.7337                     | 28.9878                      | 26.8656                  | 0.23414                      | 22.6132             | 16.0589                      |
| 10        | 7        | 1200               | 24.1489                     | 24.7567                      | 23.7352                  | 0.20394                      | 19.7707             | 13.8691                      |
| 10        | 8        | 1200               | 23.7161                     | 26.2896                      | 21.8336                  | 0.2001                       | 17.9005             | 15.5597                      |
| 10        | 4        | 1501               | 136.4467                    | 136.3816                     | 136.5119                 | 1.1489                       | 136.3859            | 4.0737                       |
| 10        | 5        | 1501               | 158.5063                    | 158.4054                     | 158.6072                 | 1.3346                       | 158.4169            | 5.3233                       |
| 10        | 6        | 1501               | 134.2091                    | 134.0978                     | 134.3204                 | 1.13                         | 134.1031            | 5.3345                       |
| 10        | 7        | 1501               | 23.5804                     | 25.8368                      | 21.0821                  | 0.1991                       | 19.4593             | 13.3203                      |
| 10        | 8        | 1501               | 24.3621                     | 26.6978                      | 21.7756                  | 0.20575                      | 19.8336             | 14.1496                      |
| 10        | 4        | 1801               | 192.895                     | 192.8469                     | 192.967                  | 1.6242                       | 192.8006            | 6.0345                       |
| 10        | 5        | 1801               | 104.1589                    | 104.126                      | 104.2082                 | 0.87702                      | 104.1184            | 2.9045                       |
| 10        | 6        | 1801               | 30.0592                     | 32.1954                      | 26.5323                  | 0.25368                      | 23.8423             | 18.3088                      |
| 10        | 7        | 1801               | 25.3203                     | 26.6328                      | 23.2116                  | 0.21381                      | 20.6473             | 14.6586                      |
| 10        | 8        | 1801               | 27.0634                     | 28.578                       | 24.6159                  | 0.22848                      | 22.2212             | 15.4507                      |
| 11        | 4        | 1200               | 109.3886                    | 109.3176                     | 109.4359                 | 0.92105                      | 109.3499            | 2.9125                       |
| 11        | 5        | 1200               | 99.5778                     | 99.4775                      | 99.6446                  | 0.83845                      | 99.5155             | 3.5241                       |
| 11        | 6        | 1200               | 99.7219                     | 99.6412                      | 99.7756                  | 0.83966                      | 99.673              | 3.1213                       |
| 11        | 7        | 1200               | 19.3312                     | 19.7905                      | 19.019                   | 0.16326                      | 15.5321             | 11.5105                      |
| 11        | 8        | 1200               | 24.6523                     | 25.9969                      | 23.7142                  | 0.20813                      | 19.6357             | 14.908                       |
| 11        | 4        | 1501               | 147.0733                    | 146.9979                     | 147.1486                 | 1.2384                       | 147.0007            | 4.6188                       |
| 11        | 5        | 1501               | 158.848                     | 158.6143                     | 159.0815                 | 1.3375                       | 158.624             | 8.4339                       |
| 11        | 6        | 1501               | 48.2913                     | 62.0058                      | 28.6071                  | 0.40593                      | 28.1757             | 39.2261                      |
| 11        | 7        | 1501               | 194.8794                    | 194.7818                     | 194.9771                 | 1.6409                       | 194.7849            | 6.0712                       |
| 11        | 8        | 1501               | 17.8349                     | 19.7104                      | 15.7359                  | 0.15058                      | 14.2826             | 10.6831                      |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\%\mathbf{RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------------|---------------------|-----------------------|
| 11        | 4        | 1801               | 108.5608                    | 108.5258                     | 108.6134                 | 0.91409                       | 108.512             | 3.2558                |
| 11        | 5        | 1801               | 162.7971                    | 162.7248                     | 162.9056                 | 1.3708                        | 162.7041            | 5.5039                |
| 11        | 6        | 1801               | 101.546                     | 101.5122                     | 101.5968                 | 0.85502                       | 101.5008            | 3.033                 |
| 11        | 7        | 1801               | 106.6311                    | 106.5568                     | 106.7425                 | 0.89784                       | 106.5324            | 4.5859                |
| 11        | 8        | 1801               | 31.5214                     | 33.7312                      | 27.878                   | 0.26603                       | 25.1598             | 18.9921               |
| 12        | 4        | 1200               | 134.7526                    | 134.6541                     | 134.8182                 | 1.1346                        | 134.6957            | 3.9163                |
| 12        | 5        | 1200               | 158.8403                    | 158.9074                     | 158.7956                 | 1.3374                        | 158.7434            | 5.5485                |
| 12        | 6        | 1200               | 174.0177                    | 173.679                      | 174.243                  | 1.4652                        | 173.8199            | 8.2962                |
| 12        | 7        | 1200               | 22.3895                     | 22.8313                      | 22.0902                  | 0.18909                       | 18.1601             | 13.098                |
| 12        | 8        | 1200               | 21.4239                     | 21.9979                      | 21.0327                  | 0.18094                       | 17.2234             | 12.7433               |
| 12        | 4        | 1501               | 110.3973                    | 110.3074                     | 110.4871                 | 0.92954                       | 110.3119            | 4.3402                |
| 12        | 5        | 1501               | 187.9859                    | 187.7416                     | 188.23                   | 1.5829                        | 174.8184            | 69.129                |
| 12        | 6        | 1501               | 132.477                     | 132.4127                     | 132.5414                 | 1.1155                        | 132.4211            | 3.848                 |
| 12        | 7        | 1501               | 40.6883                     | 52.9485                      | 22.5115                  | 0.34188                       | 21.7558             | 34.3893               |
| 12        | 8        | 1501               | 23.8213                     | 27.2392                      | 19.8196                  | 0.201                         | 17.6634             | 15.9857               |
| 12        | 4        | 1801               | 103.9238                    | 103.8889                     | 103.9763                 | 0.87503                       | 103.8728            | 3.2563                |
| 12        | 5        | 1801               | 103.9092                    | 103.8261                     | 104.0339                 | 0.87492                       | 103.7993            | 4.7791                |
| 12        | 6        | 1801               | 106.6845                    | 106.6496                     | 106.7368                 | 0.89828                       | 106.6329            | 3.3189                |
| 12        | 7        | 1801               | 142.3174                    | 142.1863                     | 142.5141                 | 1.1983                        | 142.1493            | 6.9164                |
| 12        | 8        | 1801               | 28.8442                     | 30.4067                      | 26.3257                  | 0.24355                       | 23.7556             | 16.363                |
| 13        | 4        | 1200               | 121.39                      | 121.3101                     | 121.4432                 | 1.0221                        | 121.3465            | 3.2497                |
| 13        | 5        | 1200               | 156.4517                    | 156.1772                     | 156.6343                 | 1.3173                        | 156.2865            | 7.1886                |
| 13        | 6        | 1200               | 138.099                     | 138.049                      | 138.1323                 | 1.1628                        | 138.035             | 4.204                 |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^N$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\mathbf{\%RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|---------------------------|------------------------------|--------------------------|-------------------------------|-------------------|-----------------------|
| 13        | 7        | 1200               | 148.9182                  | 148.7316                     | 149.0424                 | 1.2539                        | 148.8092          | 5.6981                |
| 13        | 8        | 1200               | 109.3495                  | 109.194                      | 109.453                  | 0.92073                       | 109.2604          | 4.4148                |
| 13        | 4        | 1501               | 192.9423                  | 192.852                      | 193.0325                 | 1.6246                        | 192.8686          | 5.3344                |
| 13        | 5        | 1501               | 156.4688                  | 156.3694                     | 156.5681                 | 1.3175                        | 156.3932          | 4.8641                |
| 13        | 6        | 1501               | 191.3481                  | 191.1951                     | 191.501                  | 1.6112                        | 191.2101          | 7.2664                |
| 13        | 7        | 1501               | 35.6909                   | 43.1833                      | 26.1244                  | 0.30062                       | 24.4982           | 25.9596               |
| 13        | 8        | 1501               | 27.3397                   | 30.7586                      | 23.4242                  | 0.23076                       | 21.3602           | 17.0674               |
| 13        | 4        | 1801               | 120.1863                  | 120.1469                     | 120.2453                 | 1.012                         | 120.1289          | 3.7127                |
| 13        | 5        | 1801               | 109.3148                  | 109.269                      | 109.3835                 | 0.92043                       | 109.2466          | 3.8623                |
| 13        | 6        | 1801               | 33.626                    | 35.8951                      | 29.8989                  | 0.28381                       | 27.5591           | 19.2697               |
| 13        | 7        | 1801               | 136.2239                  | 136.1643                     | 136.3133                 | 1.147                         | 136.1494          | 4.506                 |
| 13        | 8        | 1801               | 130.9234                  | 130.7983                     | 131.1108                 | 1.1024                        | 130.762           | 6.4999                |
| 14        | 4        | 1200               | 108.5498                  | 108.469                      | 108.6036                 | 0.91398                       | 108.4997          | 3.2991                |
| 14        | 5        | 1200               | 122.1959                  | 122.0905                     | 122.266                  | 1.0289                        | 122.1344          | 3.8757                |
| 14        | 6        | 1200               | 125.0431                  | 125.6167                     | 124.6595                 | 1.0526                        | 66.8142           | 105.7136              |
| 14        | 7        | 1200               | 102.228                   | 101.9847                     | 102.3898                 | 0.86077                       | 102.1024          | 5.0666                |
| 14        | 8        | 1200               | 19.3903                   | 19.8797                      | 19.0573                  | 0.16379                       | 15.0864           | 12.1833               |
| 14        | 4        | 1501               | 155.4973                  | 155.4212                     | 155.5735                 | 1.3093                        | 155.4321          | 4.5054                |
| 14        | 5        | 1501               | 114.4408                  | 114.3844                     | 114.4971                 | 0.96359                       | 114.3857          | 3.55                  |
| 14        | 6        | 1501               | 112.9992                  | 112.9339                     | 113.0645                 | 0.95146                       | 112.9418          | 3.6019                |
| 14        | 7        | 1501               | 132.1841                  | 132.0747                     | 132.2935                 | 1.113                         | 132.0771          | 5.3177                |
| 14        | 8        | 1501               | 34.1636                   | 43.3203                      | 21.3818                  | 0.28735                       | 20.0418           | 27.6719               |
| 14        | 4        | 1801               | 143.4549                  | 143.3896                     | 143.5528                 | 1.2079                        | 143.3655          | 5.0645                |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\%\mathbf{RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------------|-------------------|------------------------------|
| 14        | 5        | 1801               | 133.7946                    | 133.7501                     | 133.8614                 | 1.1265                        | 133.7348          | 4.0015                       |
| 14        | 6        | 1801               | 103.4022                    | 103.3651                     | 103.4579                 | 0.87064                       | 103.3425          | 3.5131                       |
| 14        | 7        | 1801               | 135.5024                    | 135.4101                     | 135.6406                 | 1.1409                        | 135.3818          | 5.716                        |
| 14        | 8        | 1801               | 26.387                      | 27.7557                      | 24.188                   | 0.22281                       | 21.5437           | 15.2388                      |
| 15        | 4        | 1200               | 128.0073                    | 127.8447                     | 128.1154                 | 1.0778                        | 127.9096          | 4.9997                       |
| 15        | 5        | 1200               | 184.0351                    | 183.8988                     | 184.1258                 | 1.5496                        | 183.9527          | 5.5085                       |
| 15        | 6        | 1200               | 158.9563                    | 158.8395                     | 159.0341                 | 1.3384                        | 158.8873          | 4.6839                       |
| 15        | 7        | 1200               | 128.8983                    | 128.7768                     | 128.9792                 | 1.0853                        | 59.3397           | 114.4462                     |
| 15        | 8        | 1200               | 123.7                       | 195.5603                     | 3.9289                   | 1.0359                        | 16.675            | 122.5914                     |
| 15        | 4        | 1501               | 169.7219                    | 169.5944                     | 169.8493                 | 1.4291                        | 169.6078          | 6.2224                       |
| 15        | 5        | 1501               | 186.9378                    | 186.8444                     | 187.0312                 | 1.574                         | 186.8535          | 5.6137                       |
| 15        | 6        | 1501               | 32.2446                     | 36.7231                      | 27.0302                  | 0.27199                       | 25.5307           | 19.6983                      |
| 15        | 7        | 1501               | 185.7616                    | 185.4671                     | 186.0558                 | 1.5641                        | 185.5246          | 9.3829                       |
| 15        | 8        | 1501               | 107.7857                    | 107.5937                     | 107.9776                 | 0.90758                       | 107.6049          | 6.2411                       |
| 15        | 4        | 1801               | 122.8516                    | 122.8095                     | 122.9146                 | 1.0344                        | 122.7918          | 3.8329                       |
| 15        | 5        | 1801               | 120.6032                    | 120.5638                     | 120.6624                 | 1.0155                        | 120.5464          | 3.7039                       |
| 15        | 6        | 1801               | 154.7901                    | 154.7438                     | 154.8595                 | 1.3033                        | 154.7332          | 4.196                        |
| 15        | 7        | 1801               | 129.9287                    | 132.1046                     | 126.5929                 | 1.0939                        | 118.8526          | 52.5018                      |
| 15        | 8        | 1801               | 150.2668                    | 150.2065                     | 150.3572                 | 1.2652                        | 150.1911          | 4.7678                       |
| 16        | 4        | 1200               | 142.3425                    | 142.2363                     | 142.4132                 | 1.1985                        | 142.2734          | 4.4355                       |
| 16        | 5        | 1200               | 191.3012                    | 191.0476                     | 191.4699                 | 1.6108                        | 191.1466          | 7.691                        |
| 16        | 6        | 1200               | 174.9901                    | 174.5932                     | 175.2541                 | 1.4734                        | 174.7426          | 9.3056                       |
| 16        | 7        | 1200               | 106.1852                    | 106.1148                     | 106.232                  | 0.89406                       | 47.1922           | 95.1378                      |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\%\mathbf{RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------------|---------------------|------------------------------|
| 16        | 8        | 1200               | 109.8723                    | 109.7892                     | 109.9276                 | 0.92513                       | 109.8199            | 3.3931                       |
| 16        | 4        | 1501               | 134.7526                    | 134.6856                     | 134.8196                 | 1.1346                        | 134.6866            | 4.217                        |
| 16        | 5        | 1501               | 184.8367                    | 184.7104                     | 184.9631                 | 1.5563                        | 184.72              | 6.5678                       |
| 16        | 6        | 1501               | 143.9517                    | 143.6926                     | 144.2105                 | 1.2121                        | 143.7053            | 8.4212                       |
| 16        | 7        | 1501               | 113.7375                    | 113.6621                     | 113.813                  | 0.95766                       | 113.6896            | 3.3035                       |
| 16        | 8        | 1501               | 198.4534                    | 198.3125                     | 198.5944                 | 1.671                         | 198.3491            | 6.4353                       |
| 16        | 4        | 1801               | 113.4815                    | 113.443                      | 113.5393                 | 0.95552                       | 113.4263            | 3.5401                       |
| 16        | 5        | 1801               | 36.0698                     | 38.3197                      | 32.4011                  | 0.30457                       | 28.618              | 21.959                       |
| 16        | 6        | 1801               | 194.979                     | 194.9019                     | 195.0945                 | 1.6417                        | 194.8773            | 6.2968                       |
| 16        | 7        | 1801               | 35.4897                     | 38.4603                      | 30.493                   | 0.29943                       | 27.7047             | 22.184                       |
| 16        | 8        | 1801               | 181.0007                    | 180.9445                     | 181.0849                 | 1.524                         | 180.9306            | 5.0377                       |
| 17        | 4        | 1200               | 114.7937                    | 114.6781                     | 114.8707                 | 0.96656                       | 114.725             | 3.9737                       |
| 17        | 5        | 1200               | 110.7563                    | 110.6739                     | 110.8112                 | 0.93257                       | 110.7029            | 3.4406                       |
| 17        | 6        | 1200               | 140.0575                    | 139.9604                     | 140.1222                 | 1.1793                        | 140.0045            | 3.8542                       |
| 17        | 7        | 1200               | 127.626                     | 127.5402                     | 127.6831                 | 1.0746                        | 127.5794            | 3.4474                       |
| 17        | 8        | 1200               | 171.4596                    | 171.5034                     | 171.4305                 | 1.4436                        | 171.3664            | 5.653                        |
| 17        | 4        | 1501               | 31.2318                     | 34.7716                      | 27.2329                  | 0.26354                       | 25.7931             | 17.6137                      |
| 17        | 5        | 1501               | 31.7757                     | 34.7174                      | 28.5299                  | 0.26821                       | 26.9939             | 16.7666                      |
| 17        | 6        | 1501               | 137.831                     | 137.7619                     | 137.9002                 | 1.1605                        | 137.7683            | 4.1597                       |
| 17        | 7        | 1501               | 180.7312                    | 180.316                      | 181.1457                 | 1.5217                        | 180.3773            | 11.3064                      |
| 17        | 8        | 1501               | 114.1124                    | 114.047                      | 114.1777                 | 0.96081                       | 114.0516            | 3.7236                       |
| 17        | 4        | 1801               | 108.6896                    | 108.6528                     | 108.745                  | 0.91517                       | 108.6376            | 3.3633                       |
| 17        | 5        | 1801               | 106.5698                    | 106.4812                     | 106.7026                 | 0.89733                       | 106.4511            | 5.0283                       |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\%\mathbf{RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------------|---------------------|------------------------------|
| 17        | 6        | 1801               | 115.2259                    | 115.1704                     | 115.3091                 | 0.9702                        | 115.1513            | 4.1453                       |
| 17        | 7        | 1801               | 176.9808                    | 176.9117                     | 177.0844                 | 1.4902                        | 176.8843            | 5.8453                       |
| 17        | 8        | 1801               | 161.857                     | 161.8074                     | 161.9314                 | 1.3628                        | 161.7737            | 5.1925                       |
| 18        | 4        | 1200               | 109.285                     | 109.1958                     | 109.3444                 | 0.92018                       | 109.2308            | 3.4437                       |
| 18        | 5        | 1200               | 102.3664                    | 102.29                       | 102.4172                 | 0.86192                       | 102.3211            | 3.0438                       |
| 18        | 6        | 1200               | 169.5445                    | 169.3732                     | 169.6585                 | 1.4276                        | 169.4363            | 6.0576                       |
| 18        | 7        | 1200               | 126.7108                    | 126.6152                     | 126.7745                 | 1.0669                        | 126.6515            | 3.8752                       |
| 18        | 8        | 1200               | 134.4747                    | 212.6346                     | 2.6076                   | 1.1263                        | 7.0685              | 134.3112                     |
| 18        | 4        | 1501               | 99.7465                     | 99.6975                      | 99.7955                  | 0.83987                       | 99.699              | 3.0786                       |
| 18        | 5        | 1501               | 43.4613                     | 52.6548                      | 31.6962                  | 0.36598                       | 30.5798             | 30.8881                      |
| 18        | 6        | 1501               | 180.9963                    | 180.9068                     | 181.0859                 | 1.524                         | 180.9185            | 5.3067                       |
| 18        | 7        | 1501               | 120.5452                    | 120.4738                     | 120.6166                 | 1.015                         | 120.4874            | 3.7331                       |
| 18        | 8        | 1501               | 158.1591                    | 157.9758                     | 158.3422                 | 1.3317                        | 158.0073            | 6.9275                       |
| 18        | 4        | 1801               | 31.6943                     | 34.3004                      | 27.3204                  | 0.2673                        | 26.1631             | 17.8921                      |
| 18        | 5        | 1801               | 107.6138                    | 107.5772                     | 107.6686                 | 0.9061                        | 107.562             | 3.3388                       |
| 18        | 6        | 1801               | 125.7658                    | 125.7153                     | 125.8417                 | 1.0589                        | 125.6994            | 4.0889                       |
| 18        | 7        | 1801               | 109.3846                    | 109.3492                     | 109.4377                 | 0.92101                       | 109.336             | 3.2609                       |
| 18        | 8        | 1801               | 133.667                     | 133.8736                     | 133.3563                 | 1.1254                        | 94.2531             | 94.7957                      |
| 19        | 4        | 1200               | 113.3755                    | 113.2606                     | 113.452                  | 0.95463                       | 113.3044            | 4.0155                       |
| 19        | 5        | 1200               | 161.2492                    | 161.0849                     | 161.3585                 | 1.3577                        | 161.1482            | 5.7073                       |
| 19        | 6        | 1200               | 101.6249                    | 101.5501                     | 101.6747                 | 0.85568                       | 101.5807            | 2.9954                       |
| 19        | 7        | 1200               | 163.5428                    | 162.8733                     | 163.9873                 | 1.3771                        | 163.1303            | 11.61                        |
| 19        | 8        | 1200               | 161.2447                    | 161.0644                     | 161.3648                 | 1.3577                        | 161.1397            | 5.8206                       |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^N$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\mathbf{\%RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|---------------------------|------------------------------|--------------------------|-------------------------------|---------------------|------------------------------|
| 19        | 4        | 1501               | 119.4811                  | 119.4204                     | 119.5419                 | 1.006                         | 119.4251            | 3.6589                       |
| 19        | 5        | 1501               | 164.5157                  | 164.2498                     | 164.7814                 | 1.3852                        | 164.2581            | 9.2054                       |
| 19        | 6        | 1501               | 33.7852                   | 38.1586                      | 28.7505                  | 0.28505                       | 26.9957             | 20.3177                      |
| 19        | 7        | 1501               | 183.9956                  | 183.902                      | 184.0891                 | 1.5492                        | 183.908             | 5.6785                       |
| 19        | 8        | 1501               | 100.8118                  | 100.743                      | 100.8807                 | 0.84884                       | 100.7555            | 3.3711                       |
| 19        | 4        | 1801               | 138.6046                  | 138.5524                     | 138.6829                 | 1.167                         | 138.5301            | 4.5441                       |
| 19        | 5        | 1801               | 111.6155                  | 111.5645                     | 111.6919                 | 0.93981                       | 111.5479            | 3.8832                       |
| 19        | 6        | 1801               | 116.7497                  | 116.7018                     | 116.8216                 | 0.98303                       | 116.6861            | 3.8542                       |
| 19        | 7        | 1801               | 177.7103                  | 177.6361                     | 177.8216                 | 1.4963                        | 177.6176            | 5.7405                       |
| 19        | 8        | 1801               | 147.2936                  | 147.2461                     | 147.3648                 | 1.2402                        | 147.2306            | 4.3075                       |
| 20        | 4        | 1200               | 119.0366                  | 118.9487                     | 119.0952                 | 1.0023                        | 118.9833            | 3.5631                       |
| 20        | 5        | 1200               | 149.2693                  | 149.1581                     | 149.3434                 | 1.2568                        | 149.1983            | 4.6048                       |
| 20        | 6        | 1200               | 30.5354                   | 32.0403                      | 29.4901                  | 0.25768                       | 25.7183             | 16.4642                      |
| 20        | 7        | 1200               | 128.9061                  | 128.8108                     | 128.9695                 | 1.0854                        | 128.8481            | 3.8654                       |
| 20        | 8        | 1200               | 154.0375                  | 153.8927                     | 154.1339                 | 1.297                         | 153.9489            | 5.2256                       |
| 20        | 4        | 1501               | 130.4491                  | 130.3829                     | 130.5154                 | 1.0984                        | 130.365             | 4.6845                       |
| 20        | 5        | 1501               | 105.9153                  | 105.8617                     | 105.9689                 | 0.8918                        | 105.8641            | 3.2937                       |
| 20        | 6        | 1501               | 111.6484                  | 111.5898                     | 111.7071                 | 0.94008                       | 111.5939            | 3.4901                       |
| 20        | 7        | 1501               | 134.4554                  | 134.3937                     | 134.5172                 | 1.1321                        | 134.4055            | 3.6653                       |
| 20        | 8        | 1501               | 145.4837                  | 145.3953                     | 145.5721                 | 1.225                         | 145.403             | 4.8458                       |
| 20        | 4        | 1801               | 121.9545                  | 121.8886                     | 122.0535                 | 1.0269                        | 121.8579            | 4.8553                       |
| 20        | 5        | 1801               | 111.0587                  | 111.0208                     | 111.1156                 | 0.93511                       | 111.005             | 3.4541                       |
| 20        | 6        | 1801               | 158.8357                  | 158.7808                     | 158.918                  | 1.3374                        | 158.7583            | 4.9592                       |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\mathbf{\%RMSE}_{total}^{N}$ | mean ( $\mu_{ae}$ ) | Std ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------------|---------------------|-----------------------|
| 20        | 7        | 1801               | 159.4777                    | 159.4262                     | 159.555                  | 1.3428                        | 159.4092            | 4.6751                |
| 20        | 8        | 1801               | 151.8963                    | 151.7926                     | 152.0517                 | 1.279                         | 151.7578            | 6.484                 |

Table 6.8: Summary of RBF-NARX model construction for identification of rotational speed

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\% \mathbf{RMSE}_{total}^{T_T}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|------------------------------|
| 10        | 4        | 1200               | 248.0781                      | 179.3072                         | 284.8268                     | 15.7583                          | 153.0082            | 195.3048                     |
| 10        | 5        | 1200               | 207.1761                      | 148.416                          | 238.4197                     | 13.2638                          | 175.6342            | 109.9026                     |
| 10        | 6        | 1200               | 116.529                       | 106.6732                         | 122.657                      | 9.5312                           | 77.1716             | 87.3275                      |
| 10        | 7        | 1200               | 107.7162                      | 99.2078                          | 113.0304                     | 8.6593                           | 80.7307             | 71.3234                      |
| 10        | 8        | 1200               | 172.1691                      | 174.8978                         | 170.3266                     | 13.1648                          | 120.1952            | 123.2898                     |
| 10        | 4        | 1501               | 147.9648                      | 147.6238                         | 148.3052                     | 9.397                            | 147.6888            | 9.0341                       |
| 10        | 5        | 1501               | 210.1373                      | 171.3942                         | 242.7947                     | 13.4563                          | 143.7779            | 153.2757                     |
| 10        | 6        | 1501               | 183.362                       | 149.3543                         | 212.0001                     | 11.7609                          | 159.1257            | 91.123                       |
| 10        | 7        | 1501               | 191.311                       | 154.2249                         | 222.3129                     | 12.2994                          | 165.1711            | 96.5481                      |
| 10        | 8        | 1501               | 116.2038                      | 109.0299                         | 122.9642                     | 9.4428                           | 77.3203             | 86.7606                      |
| 10        | 4        | 1801               | 178.8614                      | 230.875                          | 2.4151                       | 9.2798                           | 47.9622             | 172.3396                     |
| 10        | 5        | 1801               | 131.9345                      | 130.7706                         | 133.6623                     | 7.821                            | 61.2848             | 116.8565                     |
| 10        | 6        | 1801               | 180.3875                      | 158.4                            | 209.0921                     | 11.5788                          | 156.4552            | 89.8003                      |
| 10        | 7        | 1801               | 152.1321                      | 130.5643                         | 179.7081                     | 9.8619                           | 129.5118            | 79.8311                      |
| 10        | 8        | 1801               | 123.4252                      | 113.3757                         | 137.1327                     | 9.9988                           | 84.0548             | 90.3952                      |
| 11        | 4        | 1200               | 220.7185                      | 159.9259                         | 253.2489                     | 14.0443                          | 192.6668            | 107.7034                     |
| 11        | 5        | 1200               | 211.3474                      | 150.6581                         | 243.5286                     | 13.4975                          | 147.5283            | 151.363                      |
| 11        | 6        | 1200               | 181.9475                      | 127.4505                         | 210.5694                     | 11.68                            | 157.7301            | 90.7129                      |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 11        | 7        | 1200               | 185.3197                      | 129.6805                         | 214.5254                     | 11.8944                           | 160.6223            | 92.4485                     |
| 11        | 8        | 1200               | 116.0043                      | 110.1355                         | 119.7551                     | 9.423                             | 79.1754             | 84.7977                     |
| 11        | 4        | 1501               | 242.1402                      | 198.9689                         | 278.7254                     | 15.5464                           | 152.3787            | 188.2138                    |
| 11        | 5        | 1501               | 197.3852                      | 161.5336                         | 227.6781                     | 12.5992                           | 143.3319            | 135.7315                    |
| 11        | 6        | 1501               | 181.4568                      | 147.828                          | 209.7794                     | 11.6385                           | 157.508             | 90.1138                     |
| 11        | 7        | 1501               | 160.4448                      | 129.4396                         | 186.3772                     | 10.3228                           | 138.661             | 80.7331                     |
| 11        | 8        | 1501               | 101.7118                      | 92.1387                          | 110.464                      | 8.3056                            | 74.2975             | 69.4751                     |
| 11        | 4        | 1801               | 266.1683                      | 235.7966                         | 306.1479                     | 16.9956                           | 232.294             | 129.9641                    |
| 11        | 5        | 1801               | 193.558                       | 170.0927                         | 224.2131                     | 12.3949                           | 150.5632            | 121.6567                    |
| 11        | 6        | 1801               | 179.4307                      | 157.8617                         | 207.6392                     | 11.5045                           | 155.9445            | 88.7656                     |
| 11        | 7        | 1801               | 183.0264                      | 159.5606                         | 213.4572                     | 11.779                            | 157.7368            | 92.8474                     |
| 11        | 8        | 1801               | 153.4241                      | 133.9736                         | 178.686                      | 9.8792                            | 132.5832            | 77.2181                     |
| 12        | 4        | 1200               | 297.9633                      | 214.5184                         | 342.4553                     | 19.0474                           | 259.9294            | 145.6911                    |
| 12        | 5        | 1200               | 198.2247                      | 141.1172                         | 228.4844                     | 12.6965                           | 171.3687            | 99.6449                     |
| 12        | 6        | 1200               | 178.3149                      | 123.0885                         | 207.0918                     | 11.4621                           | 153.9954            | 89.9128                     |
| 12        | 7        | 1200               | 154.5077                      | 106.734                          | 179.4111                     | 9.9457                            | 133.6015            | 77.6226                     |
| 12        | 8        | 1200               | 176.8405                      | 120.0556                         | 206.1693                     | 11.3898                           | 152.1847            | 90.0837                     |
| 12        | 4        | 1501               | 313.1933                      | 258.3615                         | 359.792                      | 19.9726                           | 273.2148            | 153.1388                    |
| 12        | 5        | 1501               | 243.3416                      | 199.3398                         | 280.5475                     | 15.5136                           | 211.392             | 120.5546                    |
| 12        | 6        | 1501               | 182.6072                      | 149.0022                         | 210.9421                     | 11.7089                           | 158.6305            | 90.4681                     |
| 12        | 7        | 1501               | 176.7276                      | 143.5864                         | 204.5858                     | 11.3462                           | 153.2398            | 88.0501                     |
| 12        | 8        | 1501               | 159.1183                      | 127.7437                         | 185.2695                     | 10.2495                           | 137.1953            | 80.6116                     |
| 12        | 4        | 1801               | 177.0031                      | 228.4751                         | 2.566                        | 9.491                             | 51.9466             | 169.2371                    |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\% \mathbf{RMSE}_{total}^{T_T}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------------------|
| 12        | 5        | 1801               | 204.3356                      | 180.1991                         | 235.9719                     | 13.0841                          | 176.604             | 102.7988                                |
| 12        | 6        | 1801               | 182.011                       | 159.8666                         | 210.9274                     | 11.6798                          | 156.6419            | 92.7048                                 |
| 12        | 7        | 1801               | 166.2136                      | 145.5467                         | 193.1244                     | 10.6858                          | 143.8962            | 83.2055                                 |
| 12        | 8        | 1801               | 147.6718                      | 128.8098                         | 172.1447                     | 9.5167                           | 127.4851            | 74.5409                                 |
| 13        | 4        | 1200               | 160.0443                      | 159.9158                         | 160.1299                     | 10.1498                          | 159.9665            | 4.9917                                  |
| 13        | 5        | 1200               | 196.8365                      | 140.4223                         | 226.7635                     | 12.5784                          | 136.1104            | 142.2157                                |
| 13        | 6        | 1200               | 177.3899                      | 124.3245                         | 205.268                      | 11.3868                          | 153.8168            | 88.3752                                 |
| 13        | 7        | 1200               | 162.7089                      | 113.247                          | 188.5965                     | 10.4612                          | 140.9099            | 81.3681                                 |
| 13        | 8        | 1200               | 147.2319                      | 99.5911                          | 171.7909                     | 9.5003                           | 126.6637            | 75.0695                                 |
| 13        | 4        | 1501               | 180.5525                      | 147.0356                         | 208.7732                     | 11.6277                          | 115.2624            | 138.9972                                |
| 13        | 5        | 1501               | 199.6514                      | 163.5347                         | 230.188                      | 12.7807                          | 173.7579            | 98.3469                                 |
| 13        | 6        | 1501               | 176.2766                      | 143.9626                         | 203.54                       | 11.2734                          | 124.2613            | 125.0511                                |
| 13        | 7        | 1501               | 161.4472                      | 130.3833                         | 187.4477                     | 10.3845                          | 139.5647            | 81.1732                                 |
| 13        | 8        | 1501               | 149.9837                      | 120.5348                         | 174.5476                     | 9.669                            | 129.407             | 75.8343                                 |
| 13        | 4        | 1801               | 364.305                       | 364.0052                         | 364.7545                     | 23.1158                          | 363.9673            | 15.6851                                 |
| 13        | 5        | 1801               | 195.5261                      | 172.3409                         | 225.9009                     | 12.5118                          | 165.2882            | 104.4698                                |
| 13        | 6        | 1801               | 179.164                       | 157.3983                         | 207.5912                     | 11.498                           | 155.4176            | 89.1502                                 |
| 13        | 7        | 1801               | 161.3369                      | 141.2276                         | 187.5132                     | 10.3754                          | 139.6646            | 80.781                                  |
| 13        | 8        | 1801               | 149.2598                      | 130.2251                         | 173.962                      | 9.6177                           | 128.911             | 75.2483                                 |
| 14        | 4        | 1200               | 143.3894                      | 143.2674                         | 143.4706                     | 9.0918                           | 143.3191            | 4.4908                                  |
| 14        | 5        | 1200               | 242.6513                      | 84.923                           | 305.4598                     | 15.6643                          | 165.5776            | 177.4097                                |
| 14        | 6        | 1200               | 189.9998                      | 133.5594                         | 219.6992                     | 12.1875                          | 164.8188            | 94.5393                                 |
| 14        | 7        | 1200               | 165.3938                      | 115.4255                         | 191.5845                     | 10.6265                          | 143.333             | 82.5411                                 |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 14        | 8        | 1200               | 148.7356                      | 101.2245                         | 173.3065                     | 9.5924                            | 128.1657            | 75.4834                     |
| 14        | 4        | 1501               | 164.4817                      | 134.1277                         | 190.0639                     | 10.5964                           | 124.8976            | 107.0451                    |
| 14        | 5        | 1501               | 145.1324                      | 159.0167                         | 129.7602                     | 7.7193                            | 42.0025             | 138.9447                    |
| 14        | 6        | 1501               | 172.2062                      | 139.7434                         | 199.4705                     | 11.0469                           | 148.235             | 87.6579                     |
| 14        | 7        | 1501               | 163.9222                      | 132.5066                         | 190.2345                     | 10.5418                           | 141.8263            | 82.2073                     |
| 14        | 8        | 1501               | 146.3392                      | 117.9054                         | 170.0989                     | 9.4246                            | 126.455             | 73.6621                     |
| 14        | 4        | 1801               | 212.9757                      | 186.4941                         | 247.4579                     | 13.84                             | 185.2406            | 105.1107                    |
| 14        | 5        | 1801               | 134.7458                      | 134.6747                         | 134.8524                     | 8.5484                            | 134.6626            | 4.7339                      |
| 14        | 6        | 1801               | 192.6953                      | 169.6611                         | 222.8415                     | 12.3514                           | 167.3851            | 95.4817                     |
| 14        | 7        | 1801               | 166.3764                      | 145.5187                         | 193.5062                     | 10.706                            | 143.8947            | 83.5329                     |
| 14        | 8        | 1801               | 147.1616                      | 128.4627                         | 171.44                       | 9.4809                            | 127.1611            | 74.084                      |
| 15        | 4        | 1200               | 228.4541                      | 228.2762                         | 228.5726                     | 14.4822                           | 228.3452            | 7.0537                      |
| 15        | 5        | 1200               | 225.476                       | 158.2258                         | 260.8305                     | 14.4524                           | 195.462             | 112.42                      |
| 15        | 6        | 1200               | 213.0437                      | 150.3132                         | 246.1196                     | 13.6509                           | 184.9246            | 105.8027                    |
| 15        | 7        | 1200               | 160.1158                      | 110.2076                         | 186.0815                     | 10.3081                           | 138.2707            | 80.7495                     |
| 15        | 8        | 1200               | 149.775                       | 102.5474                         | 174.2771                     | 9.6547                            | 129.2304            | 75.7228                     |
| 15        | 4        | 1501               | 215.7758                      | 277.3815                         | 127.1126                     | 10.084                            | 43.3616             | 211.4092                    |
| 15        | 5        | 1501               | 162.9787                      | 133.8174                         | 187.6773                     | 10.3713                           | 141.6756            | 80.5743                     |
| 15        | 6        | 1501               | 180.8626                      | 147.4978                         | 208.9839                     | 11.5997                           | 149.3284            | 102.0578                    |
| 15        | 7        | 1501               | 265.4489                      | 215.1401                         | 307.6638                     | 17.004                            | 229.5758            | 133.2816                    |
| 15        | 8        | 1501               | 153.5239                      | 123.6985                         | 178.4472                     | 9.8818                            | 132.6238            | 77.3467                     |
| 15        | 4        | 1801               | 159.2979                      | 159.0704                         | 159.6387                     | 10.1151                           | 159.0675            | 8.5672                      |
| 15        | 5        | 1801               | 230.6506                      | 230.3683                         | 231.0735                     | 14.6418                           | 230.3447            | 11.8755                     |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 15        | 6        | 1801               | 179.4164                      | 157.5194                         | 207.9981                     | 11.5151                           | 155.5938            | 89.3502                     |
| 15        | 7        | 1801               | 160.7468                      | 140.222                          | 187.3785                     | 10.353                            | 138.7222            | 81.2274                     |
| 15        | 8        | 1801               | 149.7369                      | 130.6232                         | 174.5386                     | 9.6506                            | 129.294             | 75.5389                     |
| 16        | 4        | 1200               | 190.8991                      | 190.7492                         | 190.9989                     | 12.1036                           | 190.8069            | 5.9337                      |
| 16        | 5        | 1200               | 111.6185                      | 111.4783                         | 111.7117                     | 7.0788                            | 111.5447            | 4.0576                      |
| 16        | 6        | 1200               | 164.0801                      | 115.2647                         | 189.758                      | 10.5506                           | 142.4627            | 81.4177                     |
| 16        | 7        | 1200               | 199.3492                      | 138.3108                         | 231.2415                     | 12.8013                           | 172.3719            | 100.1568                    |
| 16        | 8        | 1200               | 149.4384                      | 102.7163                         | 173.7285                     | 9.6283                            | 129.0739            | 75.3236                     |
| 16        | 4        | 1501               | 251.6964                      | 251.4689                         | 251.9238                     | 15.9672                           | 251.5156            | 9.5384                      |
| 16        | 5        | 1501               | 175.5114                      | 142.8542                         | 202.9978                     | 11.258                            | 129.2537            | 118.7536                    |
| 16        | 6        | 1501               | 170.8703                      | 138.6451                         | 197.9332                     | 10.9865                           | 148.068             | 85.2934                     |
| 16        | 7        | 1501               | 167.8862                      | 135.8406                         | 194.7444                     | 10.797                            | 145.3064            | 84.1081                     |
| 16        | 8        | 1501               | 154.9198                      | 124.5044                         | 180.2903                     | 9.9802                            | 133.6493            | 78.3585                     |
| 16        | 4        | 1801               | 203.0655                      | 202.9921                         | 203.1755                     | 12.8745                           | 202.9681            | 6.2887                      |
| 16        | 5        | 1801               | 160.8186                      | 141.0275                         | 186.6238                     | 10.3616                           | 139.6286            | 79.8036                     |
| 16        | 6        | 1801               | 142.1869                      | 141.9502                         | 142.5413                     | 9.033                             | 141.9414            | 8.3525                      |
| 16        | 7        | 1801               | 172.2232                      | 150.9866                         | 199.9058                     | 11.0627                           | 149.222             | 86.0004                     |
| 16        | 8        | 1801               | 150.639                       | 131.2802                         | 175.7358                     | 9.7103                            | 129.9693            | 76.171                      |
| 17        | 4        | 1200               | 143.2665                      | 143.1283                         | 143.3586                     | 9.0806                            | 143.1752            | 5.1147                      |
| 17        | 5        | 1200               | 198.9403                      | 198.1171                         | 199.4869                     | 12.6323                           | 198.4646            | 13.7515                     |
| 17        | 6        | 1200               | 179.0259                      | 125.0522                         | 207.3299                     | 11.4997                           | 155.1831            | 89.2813                     |
| 17        | 7        | 1200               | 109.564                       | 109.4738                         | 109.6241                     | 6.947                             | 109.5113            | 3.3979                      |
| 17        | 8        | 1200               | 138.2809                      | 93.1241                          | 161.5056                     | 8.9352                            | 118.9004            | 70.6113                     |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 17        | 4        | 1501               | 114.1674                      | 114.0506                         | 114.2842                     | 7.2593                            | 114.075             | 4.5929                      |
| 17        | 5        | 1501               | 243.8794                      | 197.8934                         | 282.4998                     | 15.6403                           | 211.2356            | 121.9084                    |
| 17        | 6        | 1501               | 172.153                       | 139.9335                         | 199.2451                     | 11.0673                           | 149.0685            | 86.1261                     |
| 17        | 7        | 1501               | 174.8686                      | 141.0802                         | 203.1295                     | 11.2458                           | 151.077             | 88.0758                     |
| 17        | 8        | 1501               | 151.9932                      | 122.3192                         | 176.7692                     | 9.7944                            | 131.254             | 76.657                      |
| 17        | 4        | 1801               | 265.1592                      | 265.0653                         | 265.3002                     | 16.8127                           | 265.0339            | 8.1533                      |
| 17        | 5        | 1801               | 144.9792                      | 144.7145                         | 145.3755                     | 9.211                             | 144.6921            | 9.1199                      |
| 17        | 6        | 1801               | 201.5678                      | 177.5594                         | 233.0034                     | 12.9157                           | 175.231             | 99.6343                     |
| 17        | 7        | 1801               | 140.7777                      | 121.9195                         | 165.0863                     | 9.0396                            | 120.2346            | 73.2378                     |
| 17        | 8        | 1801               | 143.714                       | 125.1645                         | 167.7474                     | 9.272                             | 123.9534            | 72.7394                     |
| 18        | 4        | 1200               | 120.9347                      | 120.8214                         | 121.0101                     | 7.6649                            | 120.8622            | 4.185                       |
| 18        | 5        | 1200               | 201.6752                      | 201.4751                         | 201.8083                     | 12.7875                           | 201.5696            | 6.5265                      |
| 18        | 6        | 1200               | 217.3619                      | 152.3322                         | 251.5247                     | 13.8832                           | 188.1734            | 108.8159                    |
| 18        | 7        | 1200               | 191.6773                      | 134.7552                         | 221.6321                     | 12.2958                           | 166.3042            | 95.3212                     |
| 18        | 8        | 1200               | 151.8592                      | 103.1033                         | 177.042                      | 9.7927                            | 130.7558            | 77.2406                     |
| 18        | 4        | 1501               | 106.229                       | 106.1014                         | 106.3567                     | 6.7455                            | 106.1607            | 3.8103                      |
| 18        | 5        | 1501               | 143.638                       | 143.5612                         | 143.7147                     | 9.1078                            | 143.5686            | 4.4649                      |
| 18        | 6        | 1501               | 154.0754                      | 125.3085                         | 178.274                      | 9.8866                            | 110.2697            | 107.6276                    |
| 18        | 7        | 1501               | 166.8522                      | 135.0458                         | 193.5158                     | 10.7219                           | 144.407             | 83.5979                     |
| 18        | 8        | 1501               | 131.6182                      | 104.479                          | 154.062                      | 8.5257                            | 112.9845            | 67.523                      |
| 18        | 4        | 1801               | 151.417                       | 151.3618                         | 151.4998                     | 9.5846                            | 151.2192            | 7.738                       |
| 18        | 5        | 1801               | 244.4467                      | 213.1544                         | 285.0355                     | 15.5842                           | 195.0991            | 147.3016                    |
| 18        | 6        | 1801               | 163.518                       | 143.2958                         | 189.8685                     | 10.5107                           | 131.9807            | 96.5524                     |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 18        | 7        | 1801               | 164.6883                      | 144.2214                         | 191.3405                     | 10.5909                           | 142.606             | 82.3896                     |
| 18        | 8        | 1801               | 144.312                       | 125.587                          | 168.5555                     | 9.3131                            | 124.3424            | 73.2578                     |
| 19        | 4        | 1200               | 124.8185                      | 124.7166                         | 124.8864                     | 7.9148                            | 124.7584            | 3.8747                      |
| 19        | 5        | 1200               | 116.8087                      | 116.6751                         | 116.8976                     | 7.4073                            | 116.7347            | 4.1578                      |
| 19        | 6        | 1200               | 258.6026                      | 180.1182                         | 299.6961                     | 16.5827                           | 223.7498            | 129.6801                    |
| 19        | 7        | 1200               | 163.7364                      | 110.4903                         | 191.1506                     | 10.5774                           | 140.7091            | 83.7431                     |
| 19        | 8        | 1200               | 153.1936                      | 104.6758                         | 178.3381                     | 9.8849                            | 132.1211            | 77.5519                     |
| 19        | 4        | 1501               | 135.7304                      | 135.5991                         | 135.8616                     | 8.6062                            | 135.5985            | 5.9818                      |
| 19        | 5        | 1501               | 170.5506                      | 170.4608                         | 170.6404                     | 10.8149                           | 170.4692            | 5.2713                      |
| 19        | 6        | 1501               | 345.84                        | 282.746                          | 399.1138                     | 22.0843                           | 300.2976            | 171.5706                    |
| 19        | 7        | 1501               | 143.298                       | 115.173                          | 166.7592                     | 9.2705                            | 123.7542            | 72.256                      |
| 19        | 8        | 1501               | 144.2192                      | 115.5175                         | 168.1043                     | 9.3055                            | 124.24              | 73.2489                     |
| 19        | 4        | 1801               | 141.176                       | 141.1338                         | 141.2394                     | 8.9519                            | 141.1076            | 4.3971                      |
| 19        | 5        | 1801               | 158.3819                      | 140.0886                         | 182.4264                     | 10.0795                           | 137.7159            | 78.2381                     |
| 19        | 6        | 1801               | 169.7877                      | 148.6794                         | 197.2737                     | 10.9525                           | 147.2371            | 84.5664                     |
| 19        | 7        | 1801               | 154.7682                      | 135.2971                         | 180.0826                     | 9.9732                            | 133.9595            | 77.5245                     |
| 19        | 8        | 1801               | 152.7537                      | 133.1631                         | 178.1581                     | 9.8506                            | 131.8532            | 77.139                      |
| 20        | 4        | 1200               | 106.3589                      | 106.2383                         | 106.4391                     | 6.7416                            | 106.2848            | 3.9681                      |
| 20        | 5        | 1200               | 121.3176                      | 121.1253                         | 121.4456                     | 7.7018                            | 121.2445            | 4.2119                      |
| 20        | 6        | 1200               | 134.3155                      | 88.9803                          | 157.4347                     | 8.7846                            | 115.1983            | 69.0768                     |
| 20        | 7        | 1200               | 101.7451                      | 101.6587                         | 101.8026                     | 6.4505                            | 101.696             | 3.1625                      |
| 20        | 8        | 1200               | 133.2454                      | 56.0057                          | 165.8133                     | 8.6894                            | 107.5564            | 78.6639                     |
| 20        | 4        | 1501               | 183.0812                      | 182.9638                         | 183.1986                     | 11.6064                           | 182.9635            | 6.5636                      |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\% \mathbf{RMSE}_{total}^{T_T}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------|
| 20        | 5        | 1501               | 176.9939                      | 176.9007                         | 177.0872                     | 11.2232                          | 176.908             | 5.5133                      |
| 20        | 6        | 1501               | 145.9677                      | 116.5589                         | 170.3887                     | 9.4693                           | 124.6972            | 75.8887                     |
| 20        | 7        | 1501               | 196.2827                      | 158.9363                         | 227.6003                     | 12.61                            | 169.8009            | 98.4773                     |
| 20        | 8        | 1501               | 148.6711                      | 119.7122                         | 172.8594                     | 9.5822                           | 128.4488            | 74.8724                     |
| 20        | 4        | 1801               | 175.4014                      | 175.3249                         | 175.5162                     | 11.1216                          | 175.2861            | 6.3613                      |
| 20        | 5        | 1801               | 221.6818                      | 221.4134                         | 222.0841                     | 14.072                           | 221.3955            | 11.2665                     |
| 20        | 6        | 1801               | 150.7779                      | 150.5315                         | 151.147                      | 9.5784                           | 150.5184            | 8.844                       |
| 20        | 7        | 1801               | 162.3079                      | 141.8501                         | 188.8986                     | 10.45                            | 140.252             | 81.7034                     |
| 20        | 8        | 1801               | 270.9309                      | 270.6958                         | 271.2833                     | 17.1924                          | 270.6922            | 11.3718                     |
| 10        | 4        | 1200               | 75.263                        | 72.913                           | 76.7889                      | 4.1533                           | 69.2869             | 29.3961                     |
| 10        | 5        | 1200               | 155.2793                      | 153.5769                         | 156.4032                     | 8.4818                           | 154.207             | 18.2197                     |
| 10        | 6        | 1200               | 122.867                       | 122.7376                         | 122.9532                     | 6.7205                           | 122.7884            | 4.3959                      |
| 10        | 7        | 1200               | 13.4734                       | 15.2044                          | 12.1843                      | 0.75263                          | 9.8925              | 9.1487                      |
| 10        | 8        | 1200               | 22.5846                       | 31.8863                          | 13.1326                      | 1.3285                           | 11.7452             | 19.2934                     |
| 10        | 4        | 1501               | 66.0248                       | 65.7916                          | 66.2573                      | 3.6329                           | 59.822              | 27.9438                     |
| 10        | 5        | 1501               | 126.1031                      | 123.1248                         | 129.0147                     | 7.1544                           | 108.7094            | 63.9189                     |
| 10        | 6        | 1501               | 93.3593                       | 89.6891                          | 96.8929                      | 5.2703                           | 82.2458             | 44.1842                     |
| 10        | 7        | 1501               | 86.8293                       | 82.4681                          | 90.9844                      | 4.8991                           | 76.7083             | 40.6905                     |
| 10        | 8        | 1501               | 95.8502                       | 92.8938                          | 98.72                        | 5.4188                           | 83.7536             | 46.619                      |
| 10        | 4        | 1801               | 85.4081                       | 81.5205                          | 90.9313                      | 4.696                            | 80.3869             | 28.8577                     |
| 10        | 5        | 1801               | 115.4479                      | 117.7485                         | 111.9063                     | 6.5295                           | 101.1892            | 55.5877                     |
| 10        | 6        | 1801               | 165.0215                      | 168.7851                         | 159.2061                     | 9.3289                           | 144.67              | 79.4028                     |
| 10        | 7        | 1801               | 163.6824                      | 168.4355                         | 156.2778                     | 9.2552                           | 143.1648            | 79.3592                     |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\% \mathbf{RMSE}_{total}^{T_T}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}\left( \sigma_{ae}\right)$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------------------|
| 10        | 8        | 1801               | 120.0939                      | 123.6459                         | 114.5566                     | 6.7916                           | 104.8588            | 58.5519                                 |
| 11        | 4        | 1200               | 188.364                       | 187.9744                         | 188.6232                     | 10.3011                          | 188.1229            | 9.5295                                  |
| 11        | 5        | 1200               | 74.3993                       | 75.1104                          | 73.9218                      | 4.1802                           | 66.3091             | 33.7452                                 |
| 11        | 6        | 1200               | 78.4977                       | 83.4896                          | 74.9873                      | 4.4516                           | 67.3956             | 40.2524                                 |
| 11        | 7        | 1200               | 191.3645                      | 200.8411                         | 184.7807                     | 10.8268                          | 166.5947            | 94.1783                                 |
| 11        | 8        | 1200               | 51.4856                       | 53.4922                          | 50.1041                      | 2.9079                           | 44.8358             | 25.3127                                 |
| 11        | 4        | 1501               | 163.5491                      | 163.251                          | 163.8469                     | 8.944                            | 163.2847            | 9.297                                   |
| 11        | 5        | 1501               | 98.1482                       | 96.5899                          | 99.6832                      | 5.5735                           | 84.0678             | 50.661                                  |
| 11        | 6        | 1501               | 215.7239                      | 215.3266                         | 216.1207                     | 11.7954                          | 215.3484            | 12.7252                                 |
| 11        | 7        | 1501               | 95.122                        | 91.5659                          | 98.5521                      | 5.371                            | 83.7565             | 45.0969                                 |
| 11        | 8        | 1501               | 75.4676                       | 72.5398                          | 78.2879                      | 4.2608                           | 66.2887             | 36.0778                                 |
| 11        | 4        | 1801               | 233.055                       | 232.9305                         | 233.2417                     | 12.747                           | 232.8748            | 9.1643                                  |
| 11        | 5        | 1801               | 112.4904                      | 109.292                          | 117.127                      | 6.2709                           | 103.0009            | 45.2282                                 |
| 11        | 6        | 1801               | 161.4779                      | 161.1155                         | 162.0203                     | 8.8276                           | 160.9836            | 12.6277                                 |
| 11        | 7        | 1801               | 109.1645                      | 113.5457                         | 102.2374                     | 6.1887                           | 94.2014             | 55.1725                                 |
| 11        | 8        | 1801               | 126.0525                      | 130.1258                         | 119.6794                     | 7.1327                           | 109.8405            | 61.8512                                 |
| 12        | 4        | 1200               | 140.6624                      | 140.5237                         | 140.7547                     | 7.6935                           | 140.5742            | 4.9801                                  |
| 12        | 5        | 1200               | 116.0673                      | 111.1493                         | 119.2315                     | 6.3221                           | 113.4825            | 24.3628                                 |
| 12        | 6        | 1200               | 156.9673                      | 165.4299                         | 151.0658                     | 8.8876                           | 136.159             | 78.1121                                 |
| 12        | 7        | 1200               | 124.3935                      | 138.5776                         | 113.9669                     | 7.0995                           | 103.0884            | 69.6286                                 |
| 12        | 8        | 1200               | 100.6909                      | 106.1413                         | 96.8893                      | 5.7065                           | 87.0066             | 50.6888                                 |
| 12        | 4        | 1501               | 108.6603                      | 108.5932                         | 108.7274                     | 5.9437                           | 108.6038            | 3.5047                                  |
| 12        | 5        | 1501               | 63.4218                       | 63.5902                          | 63.2529                      | 3.5309                           | 56.0428             | 29.6955                                 |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 12        | 6        | 1501               | 115.8169                      | 115.5856                         | 116.0479                     | 6.594                             | 97.777              | 62.0845                     |
| 12        | 7        | 1501               | 94.2649                       | 91.5878                          | 96.8698                      | 5.3389                            | 81.7837             | 46.8832                     |
| 12        | 8        | 1501               | 74.3123                       | 72.41                            | 76.1683                      | 4.2032                            | 64.6406             | 36.6656                     |
| 12        | 4        | 1801               | 260.6618                      | 260.576                          | 260.7905                     | 14.2548                           | 260.5391            | 7.9965                      |
| 12        | 5        | 1801               | 104.8933                      | 100.8564                         | 110.6759                     | 5.795                             | 98.6375             | 35.6886                     |
| 12        | 6        | 1801               | 232.7136                      | 232.4245                         | 233.1467                     | 12.7256                           | 232.326             | 13.4278                     |
| 12        | 7        | 1801               | 118.0944                      | 125.4911                         | 106.0292                     | 6.7156                            | 99.9576             | 62.8974                     |
| 12        | 8        | 1801               | 129.4815                      | 134.3815                         | 121.7579                     | 7.3284                            | 112.3561            | 64.3657                     |
| 13        | 4        | 1200               | 195.3688                      | 195.1844                         | 195.4915                     | 10.6855                           | 195.2624            | 6.4472                      |
| 13        | 5        | 1200               | 118.2804                      | 113.2926                         | 121.4901                     | 6.5048                            | 112.3531            | 36.9796                     |
| 13        | 6        | 1200               | 71.876                        | 70.1018                          | 73.0342                      | 3.951                             | 65.8688             | 28.7704                     |
| 13        | 7        | 1200               | 110.4787                      | 117.0547                         | 105.8707                     | 6.2668                            | 94.9364             | 56.5127                     |
| 13        | 8        | 1200               | 85.1731                       | 88.8288                          | 82.6477                      | 4.8231                            | 73.8752             | 42.3971                     |
| 13        | 4        | 1501               | 171.962                       | 171.8752                         | 172.0488                     | 9.4062                            | 171.8789            | 5.348                       |
| 13        | 5        | 1501               | 103.5105                      | 103.4361                         | 103.5849                     | 5.6611                            | 103.4443            | 3.701                       |
| 13        | 6        | 1501               | 109.7544                      | 107.2162                         | 112.2368                     | 6.0001                            | 106.4395            | 26.7748                     |
| 13        | 7        | 1501               | 242.2456                      | 241.9009                         | 242.5899                     | 13.2491                           | 241.9263            | 12.4342                     |
| 13        | 8        | 1501               | 108.4142                      | 107.6971                         | 109.1272                     | 6.15                              | 93.0013             | 55.7265                     |
| 13        | 4        | 1801               | 115.2928                      | 115.2483                         | 115.3596                     | 6.3063                            | 115.2342            | 3.6769                      |
| 13        | 5        | 1801               | 83.8456                       | 79.8002                          | 89.5749                      | 4.6037                            | 78.2682             | 30.0745                     |
| 13        | 6        | 1801               | 181.9527                      | 187.4275                         | 173.412                      | 10.2644                           | 158.8225            | 88.7967                     |
| 13        | 7        | 1801               | 185.9137                      | 185.6961                         | 186.2397                     | 10.1661                           | 185.6267            | 10.3273                     |
| 13        | 8        | 1801               | 152.366                       | 159.1441                         | 141.5858                     | 8.6365                            | 131.4585            | 77.0457                     |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 14        | 4        | 1200               | 180.7673                      | 180.6325                         | 180.857                      | 9.8877                            | 180.6801            | 5.6147                      |
| 14        | 5        | 1200               | 75.4158                       | 80.1993                          | 72.0525                      | 4.1889                            | 66.7299             | 35.1436                     |
| 14        | 6        | 1200               | 76.5233                       | 74.5947                          | 77.7818                      | 4.2057                            | 70.6501             | 29.4053                     |
| 14        | 7        | 1200               | 143.5512                      | 149.6471                         | 139.3416                     | 8.1097                            | 125.6482            | 69.434                      |
| 14        | 8        | 1200               | 67.7342                       | 70.4228                          | 65.882                       | 3.8324                            | 58.9656             | 33.337                      |
| 14        | 4        | 1501               | 152.0941                      | 152.0167                         | 152.1716                     | 8.3186                            | 152.0201            | 4.745                       |
| 14        | 5        | 1501               | 88.963                        | 85.6909                          | 92.121                       | 4.8852                            | 83.2991             | 31.2409                     |
| 14        | 6        | 1501               | 73.258                        | 72.616                           | 73.8949                      | 4.0356                            | 66.8802             | 29.9012                     |
| 14        | 7        | 1501               | 135.8022                      | 130.8733                         | 140.5615                     | 7.5949                            | 122.0812            | 59.4946                     |
| 14        | 8        | 1501               | 123.7952                      | 121.9249                         | 125.639                      | 7.0145                            | 106.9044            | 62.4341                     |
| 14        | 4        | 1801               | 147.9563                      | 147.8927                         | 148.0518                     | 8.0918                            | 147.8656            | 5.182                       |
| 14        | 5        | 1801               | 112.0852                      | 112.037                          | 112.1575                     | 6.1295                            | 112.0148            | 3.9746                      |
| 14        | 6        | 1801               | 76.3416                       | 73.4146                          | 80.535                       | 4.2159                            | 70.2029             | 29.9981                     |
| 14        | 7        | 1801               | 168.4348                      | 167.8746                         | 169.272                      | 9.2046                            | 167.6496            | 16.2466                     |
| 14        | 8        | 1801               | 216.1583                      | 225.821                          | 200.7854                     | 12.2265                           | 187.7567            | 107.1244                    |
| 15        | 4        | 1200               | 163.7234                      | 163.6005                         | 163.8053                     | 8.9556                            | 163.6436            | 5.1129                      |
| 15        | 5        | 1200               | 329.9522                      | 329.5097                         | 330.2466                     | 18.0454                           | 329.6858            | 13.2581                     |
| 15        | 6        | 1200               | 82.7747                       | 80.0486                          | 84.5422                      | 4.5716                            | 76.6884             | 31.1586                     |
| 15        | 7        | 1200               | 103.154                       | 99.0631                          | 105.792                      | 5.6426                            | 99.487              | 27.264                      |
| 15        | 8        | 1200               | 99.9741                       | 105.4351                         | 96.1634                      | 5.6573                            | 86.5782             | 49.9987                     |
| 15        | 4        | 1501               | 269.969                       | 269.8335                         | 270.1045                     | 14.7653                           | 269.8422            | 8.2736                      |
| 15        | 5        | 1501               | 172.4222                      | 172.3352                         | 172.5091                     | 9.4316                            | 172.3402            | 5.3179                      |
| 15        | 6        | 1501               | 76.0029                       | 73.1782                          | 78.728                       | 4.1932                            | 70.1689             | 29.207                      |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 15        | 7        | 1501               | 88.2302                       | 85.5833                          | 90.8018                      | 4.8468                            | 82.988              | 29.9643                     |
| 15        | 8        | 1501               | 173.5299                      | 170.5947                         | 176.4182                     | 9.8003                            | 151.2111            | 85.1483                     |
| 15        | 4        | 1801               | 145.1103                      | 145.047                          | 145.2054                     | 7.9367                            | 145.0176            | 5.1871                      |
| 15        | 5        | 1801               | 318.7874                      | 318.5947                         | 319.0765                     | 17.4343                           | 318.5217            | 13.015                      |
| 15        | 6        | 1801               | 78.6741                       | 75.0771                          | 83.7832                      | 4.3353                            | 72.9309             | 29.5126                     |
| 15        | 7        | 1801               | 84.6347                       | 80.9734                          | 89.8502                      | 4.6604                            | 78.4778             | 31.6957                     |
| 15        | 8        | 1801               | 117.8525                      | 117.1005                         | 118.9721                     | 6.4344                            | 116.7983            | 15.7304                     |
| 16        | 4        | 1200               | 206.0819                      | 205.8089                         | 206.2636                     | 11.2706                           | 205.9154            | 8.2844                      |
| 16        | 5        | 1200               | 145.8192                      | 145.7106                         | 145.8914                     | 7.976                             | 145.7488            | 4.5302                      |
| 16        | 6        | 1200               | 89.8905                       | 86.8022                          | 91.8907                      | 4.9569                            | 83.8622             | 32.3696                     |
| 16        | 7        | 1200               | 166.2082                      | 166.0699                         | 166.3003                     | 9.0922                            | 166.1264            | 5.2152                      |
| 16        | 8        | 1200               | 95.1256                       | 100.3104                         | 91.5081                      | 5.3854                            | 82.2592             | 47.7814                     |
| 16        | 4        | 1501               | 327.4169                      | 326.93                           | 327.9033                     | 17.9041                           | 326.9518            | 17.4477                     |
| 16        | 5        | 1501               | 167.3758                      | 167.2913                         | 167.4602                     | 9.1564                            | 167.2956            | 5.1799                      |
| 16        | 6        | 1501               | 165.3899                      | 165.0985                         | 165.681                      | 9.044                             | 165.1301            | 9.2694                      |
| 16        | 7        | 1501               | 80.1312                       | 77.3356                          | 82.8343                      | 4.4538                            | 72.6451             | 33.8244                     |
| 16        | 8        | 1501               | 212.9614                      | 212.0284                         | 213.8908                     | 11.6377                           | 212.0636            | 19.5375                     |
| 16        | 4        | 1801               | 166.2228                      | 166.1468                         | 166.3368                     | 9.0906                            | 166.1165            | 5.944                       |
| 16        | 5        | 1801               | 106.2498                      | 106.2109                         | 106.3083                     | 5.8115                            | 106.1971            | 3.3461                      |
| 16        | 6        | 1801               | 67.0757                       | 64.7288                          | 70.4514                      | 3.7051                            | 60.3785             | 29.2211                     |
| 16        | 7        | 1801               | 88.667                        | 85.1697                          | 93.6712                      | 4.8851                            | 82.7182             | 31.9355                     |
| 16        | 8        | 1801               | 153.7005                      | 151.0812                         | 157.5499                     | 8.5341                            | 141.8058            | 59.2971                     |
| 17        | 4        | 1200               | 144.3074                      | 144.1639                         | 144.4029                     | 7.8928                            | 144.2218            | 4.97                        |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 17        | 5        | 1200               | 127.2684                      | 127.1435                         | 127.3516                     | 6.9605                            | 127.1902            | 4.4621                      |
| 17        | 6        | 1200               | 101.8417                      | 101.7405                         | 101.9091                     | 5.5709                            | 101.7777            | 3.611                       |
| 17        | 7        | 1200               | 116.8393                      | 116.0062                         | 117.3911                     | 6.5287                            | 107.0782            | 46.7592                     |
| 17        | 8        | 1200               | 97.7279                       | 94.2515                          | 99.977                       | 5.3759                            | 92.3643             | 31.936                      |
| 17        | 4        | 1501               | 333.3508                      | 333.0754                         | 333.6263                     | 18.2307                           | 333.0895            | 13.2003                     |
| 17        | 5        | 1501               | 121.0593                      | 120.9959                         | 121.1228                     | 6.6214                            | 121.0004            | 3.7779                      |
| 17        | 6        | 1501               | 113.6087                      | 111.4546                         | 115.7241                     | 6.1928                            | 110.9945            | 24.2354                     |
| 17        | 7        | 1501               | 79.2788                       | 76.0168                          | 82.4139                      | 4.3862                            | 72.9622             | 31.0157                     |
| 17        | 8        | 1501               | 78.7968                       | 76.8145                          | 80.7317                      | 4.3407                            | 72.99               | 29.6933                     |
| 17        | 4        | 1801               | 198.377                       | 198.2867                         | 198.5123                     | 10.85                             | 198.2478            | 7.1599                      |
| 17        | 5        | 1801               | 115.8266                      | 115.7769                         | 115.9011                     | 6.3356                            | 115.7539            | 4.1042                      |
| 17        | 6        | 1801               | 312.072                       | 311.8909                         | 312.3436                     | 17.0675                           | 311.8201            | 12.5391                     |
| 17        | 7        | 1801               | 81.0421                       | 77.417                           | 86.1971                      | 4.478                             | 74.571              | 31.7383                     |
| 17        | 8        | 1801               | 97.3345                       | 94.0969                          | 102.001                      | 5.3652                            | 90.9517             | 34.6728                     |
| 18        | 4        | 1200               | 154.5424                      | 154.4256                         | 154.6201                     | 8.4531                            | 154.4695            | 4.7458                      |
| 18        | 5        | 1200               | 245.8031                      | 245.5166                         | 245.9938                     | 13.4453                           | 245.6345            | 9.1043                      |
| 18        | 6        | 1200               | 319.0891                      | 318.6504                         | 319.3811                     | 17.4524                           | 318.8281            | 12.9072                     |
| 18        | 7        | 1200               | 168.8379                      | 168.6988                         | 168.9304                     | 9.2343                            | 168.755             | 5.2895                      |
| 18        | 8        | 1200               | 106.8291                      | 102.5336                         | 109.5978                     | 5.8341                            | 103.3303            | 27.121                      |
| 18        | 4        | 1501               | 150.9882                      | 144.8087                         | 156.9285                     | 8.5609                            | 131.7746            | 73.7205                     |
| 18        | 5        | 1501               | 318.2245                      | 317.8918                         | 318.5571                     | 17.4054                           | 317.9272            | 13.7543                     |
| 18        | 6        | 1501               | 152.8787                      | 152.7814                         | 152.9759                     | 8.3619                            | 152.7975            | 4.9804                      |
| 18        | 7        | 1501               | 72.334                        | 71.401                           | 73.2556                      | 3.9708                            | 66.3955             | 28.7074                     |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 18        | 8        | 1501               | 89.2868                       | 86.0931                          | 92.3722                      | 4.919                             | 83.7634             | 30.9215                     |
| 18        | 4        | 1801               | 203.2992                      | 203.2134                         | 203.4279                     | 11.1198                           | 203.0464            | 10.1367                     |
| 18        | 5        | 1801               | 305.4033                      | 305.2101                         | 305.6931                     | 16.7038                           | 305.1255            | 13.0274                     |
| 18        | 6        | 1801               | 77.0923                       | 77.9437                          | 75.7964                      | 4.2977                            | 67.2325             | 37.7291                     |
| 18        | 7        | 1801               | 95.2301                       | 91.4629                          | 100.6196                     | 5.2332                            | 89.9476             | 31.2814                     |
| 18        | 8        | 1801               | 82.8859                       | 79.9299                          | 87.1344                      | 4.5651                            | 77.121              | 30.3764                     |
| 19        | 4        | 1200               | 203.0169                      | 202.8579                         | 203.1228                     | 11.1043                           | 202.9167            | 6.3811                      |
| 19        | 5        | 1200               | 112.4697                      | 112.3793                         | 112.53                       | 6.1516                            | 112.4146            | 3.5229                      |
| 19        | 6        | 1200               | 140.2444                      | 140.1401                         | 140.3139                     | 7.6714                            | 140.1774            | 4.3369                      |
| 19        | 7        | 1200               | 355.6418                      | 354.6987                         | 356.2687                     | 19.4473                           | 355.0636            | 20.2748                     |
| 19        | 8        | 1200               | 91.2141                       | 89.1937                          | 92.5358                      | 5.0432                            | 84.7102             | 33.8318                     |
| 19        | 4        | 1501               | 141.6924                      | 141.6043                         | 141.7806                     | 7.7499                            | 141.6162            | 4.6491                      |
| 19        | 5        | 1501               | 348.6103                      | 348.2395                         | 348.981                      | 19.0662                           | 348.2722            | 15.3534                     |
| 19        | 6        | 1501               | 121.4029                      | 121.3407                         | 121.4651                     | 6.6401                            | 121.3441            | 3.7787                      |
| 19        | 7        | 1501               | 171.2182                      | 170.9769                         | 171.4593                     | 9.3648                            | 171.0071            | 8.4993                      |
| 19        | 8        | 1501               | 73.87                         | 72.887                           | 74.8407                      | 4.0737                            | 67.6725             | 29.6226                     |
| 19        | 4        | 1801               | 168.0132                      | 167.9403                         | 168.1226                     | 9.1893                            | 167.9127            | 5.8117                      |
| 19        | 5        | 1801               | 158.6007                      | 158.4484                         | 158.829                      | 8.6744                            | 158.3896            | 8.1813                      |
| 19        | 6        | 1801               | 189.0908                      | 189.0221                         | 189.1937                     | 10.3432                           | 188.9975            | 5.9389                      |
| 19        | 7        | 1801               | 168.3026                      | 168.1474                         | 168.5352                     | 9.2034                            | 168.0832            | 8.5924                      |
| 19        | 8        | 1801               | 103.862                       | 100.3007                         | 108.9887                     | 5.7256                            | 97.9948             | 34.4199                     |
| 20        | 4        | 1200               | 113.3846                      | 113.1547                         | 113.5375                     | 6.2                               | 113.2568            | 5.3826                      |
| 20        | 5        | 1200               | 129.3069                      | 129.2056                         | 129.3743                     | 7.073                             | 129.2437            | 4.0445                      |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 20        | 6        | 1200               | 366.0749                      | 365.6302                         | 366.3709                     | 20.0232                           | 365.8011            | 14.1584                     |
| 20        | 7        | 1200               | 120.268                       | 120.1509                         | 120.346                      | 6.5781                            | 120.197             | 4.1323                      |
| 20        | 8        | 1200               | 112.288                       | 108.1027                         | 114.9921                     | 6.1543                            | 108.2228            | 29.945                      |
| 20        | 4        | 1501               | 118.412                       | 119.2438                         | 117.5739                     | 6.4856                            | 117.7228            | 12.7593                     |
| 20        | 5        | 1501               | 121.2861                      | 121.203                          | 121.3692                     | 6.6342                            | 121.2084            | 4.3429                      |
| 20        | 6        | 1501               | 174.5369                      | 174.4326                         | 174.6412                     | 9.5466                            | 174.4489            | 5.5426                      |
| 20        | 7        | 1501               | 163.5183                      | 163.4196                         | 163.6171                     | 8.9438                            | 163.4355            | 5.2048                      |
| 20        | 8        | 1501               | 149.2317                      | 148.9954                         | 149.4677                     | 8.1611                            | 149.0276            | 7.8036                      |
| 20        | 4        | 1801               | 269.0185                      | 268.9439                         | 269.1305                     | 14.7141                           | 268.9265            | 7.0397                      |
| 20        | 5        | 1801               | 191.0713                      | 190.9919                         | 191.1903                     | 10.4501                           | 190.9667            | 6.3226                      |
| 20        | 6        | 1801               | 186.1256                      | 186.0559                         | 186.2301                     | 10.1793                           | 186.0326            | 5.8823                      |
| 20        | 7        | 1801               | 118.6237                      | 118.5738                         | 118.6986                     | 6.4887                            | 118.5553            | 4.0306                      |
| 20        | 8        | 1801               | 144.507                       | 144.4525                         | 144.5888                     | 7.9045                            | 144.4348            | 4.5689                      |

 
 Table 6.9: Summary of RBF-NARX model construction for identification of turbine temperature

| Table 6.10: | Summary | of RBF-NA | ARX mod | el construction | for identif | ication of tu | rbine pres- |
|-------------|---------|-----------|---------|-----------------|-------------|---------------|-------------|
| sure        |         |           |         |                 |             |               |             |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\% \mathbf{RMSE}_{total}^{P_T}$ | Mean $(\mu_{ae})$ | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|-------------------|-----------------------------|
| 10        | 4        | 1200               | 0.17341                       | 0.15102                          | 0.18684                      | 4.0658                           | 0.15852           | 0.070299                    |
| 10        | 5        | 1200               | 0.28252                       | 0.25483                          | 0.29956                      | 8.0653                           | 0.21092           | 0.188                       |
| 10        | 6        | 1200               | 0.40855                       | 0.37653                          | 0.42856                      | 11.3677                          | 0.3273            | 0.24456                     |
| 10        | 7        | 1200               | 0.40959                       | 0.37842                          | 0.42911                      | 11.3902                          | 0.32791           | 0.24548                     |
| 10        | 8        | 1200               | 0.41573                       | 0.38502                          | 0.43499                      | 11.5348                          | 0.33392           | 0.24769                     |
| 10        | 4        | 1501               | 0.16658                       | 0.14323                          | 0.18706                      | 4.7807                           | 0.12635           | 0.10858                     |

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 10        | 5        | 1501               | 0.15222                       | 0.12974                            | 0.1718                       | 4.2867                            | 0.11862           | 0.095417                          |
| 10        | 6        | 1501               | 0.41334                       | 0.39033                            | 0.43514                      | 11.4875                           | 0.33179           | 0.24654                           |
| 10        | 7        | 1501               | 0.41563                       | 0.3929                             | 0.4372                       | 11.5311                           | 0.3338            | 0.24769                           |
| 10        | 8        | 1501               | 0.40801                       | 0.38742                            | 0.42761                      | 11.2828                           | 0.32686           | 0.24424                           |
| 10        | 4        | 1801               | 0.15822                       | 0.14295                            | 0.17871                      | 4.0204                            | 0.13973           | 0.074252                          |
| 10        | 5        | 1801               | 0.15052                       | 0.13281                            | 0.17374                      | 4.0655                            | 0.12921           | 0.077221                          |
| 10        | 6        | 1801               | 0.35217                       | 0.32356                            | 0.39121                      | 9.8711                            | 0.27698           | 0.21754                           |
| 10        | 7        | 1801               | 0.41857                       | 0.38637                            | 0.46271                      | 11.6143                           | 0.33577           | 0.24997                           |
| 10        | 8        | 1801               | 0.39683                       | 0.36582                            | 0.43928                      | 11.0358                           | 0.31658           | 0.23931                           |
| 11        | 4        | 1200               | 0.16607                       | 0.13992                            | 0.18142                      | 4.7667                            | 0.12687           | 0.10719                           |
| 11        | 5        | 1200               | 0.14777                       | 0.12949                            | 0.15879                      | 4.0298                            | 0.11894           | 0.087706                          |
| 11        | 6        | 1200               | 0.40936                       | 0.37682                            | 0.42968                      | 11.39                             | 0.32858           | 0.24419                           |
| 11        | 7        | 1200               | 0.2243                        | 0.19842                            | 0.23999                      | 6.5191                            | 0.15357           | 0.16351                           |
| 11        | 8        | 1200               | 0.41328                       | 0.38318                            | 0.43218                      | 11.4588                           | 0.33078           | 0.2478                            |
| 11        | 4        | 1501               | 0.1613                        | 0.14108                            | 0.17927                      | 3.8098                            | 0.14582           | 0.068969                          |
| 11        | 5        | 1501               | 0.29467                       | 0.27299                            | 0.31488                      | 8.3818                            | 0.22182           | 0.19401                           |
| 11        | 6        | 1501               | 0.29503                       | 0.27377                            | 0.31488                      | 8.3781                            | 0.22268           | 0.19357                           |
| 11        | 7        | 1501               | 0.40803                       | 0.3859                             | 0.42903                      | 11.3181                           | 0.32712           | 0.24392                           |
| 11        | 8        | 1501               | 0.42192                       | 0.39865                            | 0.44399                      | 11.72                             | 0.33909           | 0.25112                           |
| 11        | 4        | 1801               | 0.1602                        | 0.14263                            | 0.18345                      | 4.2136                            | 0.14096           | 0.07615                           |
| 11        | 5        | 1801               | 0.15634                       | 0.13913                            | 0.17908                      | 4.1112                            | 0.13741           | 0.074573                          |
| 11        | 6        | 1801               | 0.42399                       | 0.39093                            | 0.46925                      | 11.7806                           | 0.34006           | 0.25327                           |
| 11        | 7        | 1801               | 0.41666                       | 0.38565                            | 0.45928                      | 11.5441                           | 0.33409           | 0.24901                           |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 11        | 8        | 1801               | 0.41358                       | 0.38228                            | 0.45654                      | 11.4675                           | 0.33205           | 0.24659                           |
| 12        | 4        | 1200               | 0.17937                       | 0.15471                            | 0.19407                      | 5.2697                            | 0.11871           | 0.13449                           |
| 12        | 5        | 1200               | 0.15691                       | 0.13247                            | 0.17127                      | 4.1181                            | 0.13841           | 0.07393                           |
| 12        | 6        | 1200               | 0.1572                        | 0.13413                            | 0.17085                      | 4.183                             | 0.136             | 0.078853                          |
| 12        | 7        | 1200               | 0.35646                       | 0.32787                            | 0.3743                       | 9.9654                            | 0.28065           | 0.21982                           |
| 12        | 8        | 1200               | 0.15295                       | 0.12988                            | 0.16655                      | 3.9215                            | 0.13616           | 0.06968                           |
| 12        | 4        | 1501               | 0.20898                       | 0.18956                            | 0.22675                      | 6.0481                            | 0.13986           | 0.1553                            |
| 12        | 5        | 1501               | 0.20107                       | 0.18363                            | 0.21712                      | 4.3573                            | 0.17846           | 0.092633                          |
| 12        | 6        | 1501               | 0.15412                       | 0.13133                            | 0.17396                      | 4.1141                            | 0.13277           | 0.078268                          |
| 12        | 7        | 1501               | 0.1664                        | 0.14522                            | 0.18518                      | 4.1044                            | 0.15103           | 0.069867                          |
| 12        | 8        | 1501               | 0.40551                       | 0.38233                            | 0.42745                      | 11.266                            | 0.32475           | 0.24289                           |
| 12        | 4        | 1801               | 0.29504                       | 0.28998                            | 0.30247                      | 8.034                             | 0.19086           | 0.22503                           |
| 12        | 5        | 1801               | 0.16163                       | 0.14548                            | 0.18321                      | 4.109                             | 0.14538           | 0.070651                          |
| 12        | 6        | 1801               | 0.2453                        | 0.23398                            | 0.26138                      | 5.1353                            | 0.21535           | 0.11749                           |
| 12        | 7        | 1801               | 0.36721                       | 0.33827                            | 0.4068                       | 10.2438                           | 0.29112           | 0.22385                           |
| 12        | 8        | 1801               | 0.4098                        | 0.37871                            | 0.45247                      | 11.3674                           | 0.32884           | 0.24459                           |
| 13        | 4        | 1200               | 0.27449                       | 0.30972                            | 0.24827                      | 7.2799                            | 0.16384           | 0.22027                           |
| 13        | 5        | 1200               | 0.17281                       | 0.15093                            | 0.18597                      | 4.0403                            | 0.15764           | 0.070827                          |
| 13        | 6        | 1200               | 0.21746                       | 0.1964                             | 0.23043                      | 4.6786                            | 0.19538           | 0.0955                            |
| 13        | 7        | 1200               | 0.1722                        | 0.14998                            | 0.18554                      | 4.037                             | 0.15744           | 0.069779                          |
| 13        | 8        | 1200               | 0.41879                       | 0.38723                            | 0.43856                      | 11.6118                           | 0.33589           | 0.25016                           |
| 13        | 4        | 1501               | 0.18842                       | 0.16625                            | 0.20825                      | 5.4767                            | 0.13224           | 0.13423                           |
| 13        | 5        | 1501               | 0.20297                       | 0.18336                            | 0.22085                      | 5.8225                            | 0.14432           | 0.14274                           |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean ( $\mu_{ae}$ ) | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------------|
| 13        | 6        | 1501               | 0.20229                       | 0.18269                            | 0.22016                      | 4.4097                            | 0.18341             | 0.085346                          |
| 13        | 7        | 1501               | 0.21975                       | 0.2134                             | 0.22593                      | 4.6072                            | 0.18175             | 0.12354                           |
| 13        | 8        | 1501               | 0.41912                       | 0.3968                             | 0.44032                      | 11.6104                           | 0.33579             | 0.25085                           |
| 13        | 4        | 1801               | 0.1805                        | 0.16068                            | 0.2067                       | 5.091                             | 0.14107             | 0.11261                           |
| 13        | 5        | 1801               | 0.2038                        | 0.1821                             | 0.2326                       | 5.9328                            | 0.13829             | 0.14973                           |
| 13        | 6        | 1801               | 0.32965                       | 0.30192                            | 0.36737                      | 9.2896                            | 0.25564             | 0.20816                           |
| 13        | 7        | 1801               | 0.22104                       | 0.20887                            | 0.23815                      | 4.7029                            | 0.19758             | 0.099132                          |
| 13        | 8        | 1801               | 0.40903                       | 0.37806                            | 0.45153                      | 11.3617                           | 0.32803             | 0.24438                           |
| 14        | 4        | 1200               | 0.19045                       | 0.16646                            | 0.20488                      | 5.5674                            | 0.12782             | 0.14121                           |
| 14        | 5        | 1200               | 0.1736                        | 0.14828                            | 0.18858                      | 5.0556                            | 0.12448             | 0.12102                           |
| 14        | 6        | 1200               | 0.15847                       | 0.13322                            | 0.17327                      | 4.4575                            | 0.12731             | 0.094392                          |
| 14        | 7        | 1200               | 0.17537                       | 0.16215                            | 0.18365                      | 3.9319                            | 0.15535             | 0.081388                          |
| 14        | 8        | 1200               | 0.16292                       | 0.13831                            | 0.17743                      | 4.7045                            | 0.12093             | 0.10919                           |
| 14        | 4        | 1501               | 0.15872                       | 0.1343                             | 0.17986                      | 4.4875                            | 0.12614             | 0.096356                          |
| 14        | 5        | 1501               | 0.16651                       | 0.14225                            | 0.18767                      | 4.4331                            | 0.14598             | 0.080102                          |
| 14        | 6        | 1501               | 0.16312                       | 0.14041                            | 0.18305                      | 3.9469                            | 0.14849             | 0.067539                          |
| 14        | 7        | 1501               | 0.15565                       | 0.13251                            | 0.17578                      | 4.1328                            | 0.13565             | 0.076332                          |
| 14        | 8        | 1501               | 0.39992                       | 0.3771                             | 0.42153                      | 11.1172                           | 0.31894             | 0.24132                           |
| 14        | 4        | 1801               | 0.20918                       | 0.18922                            | 0.23599                      | 5.9837                            | 0.1489              | 0.14694                           |
| 14        | 5        | 1801               | 0.15576                       | 0.13962                            | 0.17725                      | 3.9694                            | 0.13917             | 0.069958                          |
| 14        | 6        | 1801               | 0.19116                       | 0.17782                            | 0.20959                      | 4.3266                            | 0.1744              | 0.078288                          |
| 14        | 7        | 1801               | 0.1634                        | 0.14864                            | 0.18333                      | 3.9848                            | 0.14819             | 0.06886                           |
| 14        | 8        | 1801               | 0.41607                       | 0.38513                            | 0.45861                      | 11.526                            | 0.33453             | 0.24743                           |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\mathbf{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------|
| 15        | 4        | 1200               | 0.20997                       | 0.19955                            | 0.21663                      | 5.9195                            | 0.14395           | 0.15288                     |
| 15        | 5        | 1200               | 0.16738                       | 0.14225                            | 0.18222                      | 4.4499                            | 0.14664           | 0.08073                     |
| 15        | 6        | 1200               | 0.15993                       | 0.13413                            | 0.17502                      | 4.1837                            | 0.1417            | 0.074164                    |
| 15        | 7        | 1200               | 0.15588                       | 0.13756                            | 0.16698                      | 3.9527                            | 0.13725           | 0.073911                    |
| 15        | 8        | 1200               | 0.19112                       | 0.16974                            | 0.20413                      | 4.2836                            | 0.17481           | 0.077283                    |
| 15        | 4        | 1501               | 0.16466                       | 0.1406                             | 0.18565                      | 4.1592                            | 0.14918           | 0.069729                    |
| 15        | 5        | 1501               | 0.15414                       | 0.12993                            | 0.17505                      | 4.1733                            | 0.1319            | 0.079782                    |
| 15        | 6        | 1501               | 0.18321                       | 0.16135                            | 0.20274                      | 4.1509                            | 0.16798           | 0.073153                    |
| 15        | 7        | 1501               | 0.20674                       | 0.18737                            | 0.22445                      | 4.4743                            | 0.18681           | 0.088576                    |
| 15        | 8        | 1501               | 0.23053                       | 0.21386                            | 0.24609                      | 4.8671                            | 0.20426           | 0.10689                     |
| 15        | 4        | 1801               | 0.2583                        | 0.23681                            | 0.28756                      | 7.4048                            | 0.17101           | 0.19361                     |
| 15        | 5        | 1801               | 0.20657                       | 0.18812                            | 0.23153                      | 5.9167                            | 0.14177           | 0.15027                     |
| 15        | 6        | 1801               | 0.2291                        | 0.22894                            | 0.22934                      | 6.0948                            | 0.1549            | 0.16882                     |
| 15        | 7        | 1801               | 0.18331                       | 0.16895                            | 0.20296                      | 4.2106                            | 0.1682            | 0.072884                    |
| 15        | 8        | 1801               | 0.24153                       | 0.23153                            | 0.2558                       | 5.0505                            | 0.2118            | 0.11611                     |
| 16        | 4        | 1200               | 0.17345                       | 0.14945                            | 0.18774                      | 4.8011                            | 0.14361           | 0.097287                    |
| 16        | 5        | 1200               | 0.17208                       | 0.14872                            | 0.18602                      | 4.7858                            | 0.14067           | 0.099132                    |
| 16        | 6        | 1200               | 0.15316                       | 0.129                              | 0.16734                      | 4.2878                            | 0.12412           | 0.089753                    |
| 16        | 7        | 1200               | 0.16309                       | 0.13763                            | 0.17804                      | 4.7181                            | 0.12046           | 0.10996                     |
| 16        | 8        | 1200               | 0.33429                       | 0.31564                            | 0.34616                      | 6.8605                            | 0.28845           | 0.16898                     |
| 16        | 4        | 1501               | 0.17346                       | 0.15012                            | 0.19402                      | 5.0495                            | 0.12527           | 0.12                        |
| 16        | 5        | 1501               | 0.25953                       | 0.25131                            | 0.2675                       | 7.2733                            | 0.16892           | 0.19706                     |
| 16        | 6        | 1501               | 0.1759                        | 0.15082                            | 0.19785                      | 4.2955                            | 0.1618            | 0.069027                    |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean ( $\mu_{ae}$ ) | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------------|
| 16        | 7        | 1501               | 0.23676                       | 0.21796                            | 0.2542                       | 4.9863                            | 0.21003             | 0.10931                           |
| 16        | 8        | 1501               | 0.18498                       | 0.16706                            | 0.20132                      | 4.1458                            | 0.16786             | 0.077743                          |
| 16        | 4        | 1801               | 0.18945                       | 0.17408                            | 0.21042                      | 5.3738                            | 0.1326              | 0.13533                           |
| 16        | 5        | 1801               | 1.4345                        | 1.4319                             | 1.4384                       | 33.3405                           | 1.4314              | 0.094621                          |
| 16        | 6        | 1801               | 0.16698                       | 0.14913                            | 0.19066                      | 4.3179                            | 0.14977             | 0.073855                          |
| 16        | 7        | 1801               | 0.18564                       | 0.17258                            | 0.20367                      | 4.2731                            | 0.16948             | 0.075752                          |
| 16        | 8        | 1801               | 0.31558                       | 0.30654                            | 0.32869                      | 6.4683                            | 0.27113             | 0.16151                           |
| 17        | 4        | 1200               | 0.21012                       | 0.18757                            | 0.22389                      | 6.095                             | 0.14106             | 0.15576                           |
| 17        | 5        | 1200               | 0.18371                       | 0.16095                            | 0.19743                      | 5.2533                            | 0.13849             | 0.12073                           |
| 17        | 6        | 1200               | 0.19627                       | 0.18173                            | 0.20539                      | 5.5872                            | 0.13569             | 0.14183                           |
| 17        | 7        | 1200               | 0.20198                       | 0.18787                            | 0.21086                      | 5.7554                            | 0.14015             | 0.14548                           |
| 17        | 8        | 1200               | 0.17304                       | 0.15081                            | 0.18639                      | 4.0441                            | 0.15856             | 0.069309                          |
| 17        | 4        | 1501               | 1.4664                        | 1.4651                             | 1.4678                       | 34.0343                           | 1.465               | 0.064273                          |
| 17        | 5        | 1501               | 1.413                         | 1.4096                             | 1.4165                       | 32.8381                           | 1.4101              | 0.090598                          |
| 17        | 6        | 1501               | 0.16192                       | 0.13719                            | 0.18337                      | 4.3214                            | 0.14101             | 0.079615                          |
| 17        | 7        | 1501               | 0.16695                       | 0.1442                             | 0.18696                      | 4.0278                            | 0.15258             | 0.067764                          |
| 17        | 8        | 1501               | 0.26526                       | 0.24838                            | 0.28114                      | 5.5073                            | 0.2317              | 0.12917                           |
| 17        | 4        | 1801               | 0.18678                       | 0.16756                            | 0.21237                      | 5.2777                            | 0.14369             | 0.11935                           |
| 17        | 5        | 1801               | 0.17127                       | 0.15133                            | 0.19746                      | 4.7039                            | 0.14399             | 0.092763                          |
| 17        | 6        | 1801               | 0.18288                       | 0.16335                            | 0.20879                      | 5.2071                            | 0.13924             | 0.11858                           |
| 17        | 7        | 1801               | 0.18968                       | 0.17778                            | 0.20626                      | 4.2043                            | 0.17126             | 0.081565                          |
| 17        | 8        | 1801               | 0.19754                       | 0.18497                            | 0.21504                      | 4.3971                            | 0.18106             | 0.079008                          |
| 18        | 4        | 1200               | 0.24963                       | 0.25246                            | 0.24773                      | 6.9408                            | 0.15765             | 0.19358                           |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 18        | 5        | 1200               | 0.19701                       | 0.17252                            | 0.21176                      | 5.726                             | 0.13885           | 0.13978                           |
| 18        | 6        | 1200               | 0.2047                        | 0.18515                            | 0.21675                      | 4.452                             | 0.1851            | 0.087419                          |
| 18        | 7        | 1200               | 0.16083                       | 0.13579                            | 0.17554                      | 4.4744                            | 0.132             | 0.091903                          |
| 18        | 8        | 1200               | 0.19766                       | 0.18159                            | 0.20768                      | 4.2985                            | 0.17671           | 0.088573                          |
| 18        | 4        | 1501               | 1.4694                        | 1.4668                             | 1.472                        | 34.1376                           | 1.4673            | 0.078111                          |
| 18        | 5        | 1501               | 0.67461                       | 0.60113                            | 0.74088                      | 19.6023                           | 0.3926            | 0.54869                           |
| 18        | 6        | 1501               | 0.21023                       | 0.18781                            | 0.23049                      | 4.5629                            | 0.19169           | 0.086345                          |
| 18        | 7        | 1501               | 0.15741                       | 0.13293                            | 0.17857                      | 4.325                             | 0.13192           | 0.085876                          |
| 18        | 8        | 1501               | 0.16257                       | 0.14042                            | 0.18206                      | 4.0461                            | 0.14689           | 0.069685                          |
| 18        | 4        | 1801               | 1.4733                        | 1.4716                             | 1.4759                       | 34.1807                           | 1.4701            | 0.098081                          |
| 18        | 5        | 1801               | 0.22554                       | 0.20514                            | 0.2531                       | 6.4925                            | 0.14753           | 0.17063                           |
| 18        | 6        | 1801               | 0.16887                       | 0.14847                            | 0.19553                      | 4.7782                            | 0.13343           | 0.10352                           |
| 18        | 7        | 1801               | 0.16357                       | 0.14457                            | 0.18852                      | 4.4953                            | 0.13752           | 0.088572                          |
| 18        | 8        | 1801               | 0.1747                        | 0.16187                            | 0.19235                      | 4.0297                            | 0.15923           | 0.0719                            |
| 19        | 4        | 1200               | 1.4287                        | 1.4235                             | 1.4321                       | 33.219                            | 1.4258            | 0.089758                          |
| 19        | 5        | 1200               | 0.1927                        | 0.1714                             | 0.20567                      | 5.5264                            | 0.14045           | 0.13195                           |
| 19        | 6        | 1200               | 0.25968                       | 0.27367                            | 0.24992                      | 7.0684                            | 0.16272           | 0.20241                           |
| 19        | 7        | 1200               | 0.16022                       | 0.13563                            | 0.17469                      | 4.538                             | 0.12688           | 0.097847                          |
| 19        | 8        | 1200               | 0.20522                       | 0.18778                            | 0.21606                      | 4.4081                            | 0.18294           | 0.093013                          |
| 19        | 4        | 1501               | 1.443                         | 1.4416                             | 1.4444                       | 33.4975                           | 1.4417            | 0.061913                          |
| 19        | 5        | 1501               | 0.14435                       | 0.12168                            | 0.16393                      | 3.9774                            | 0.11955           | 0.08092                           |
| 19        | 6        | 1501               | 0.19762                       | 0.17263                            | 0.2198                       | 4.4995                            | 0.18327           | 0.073943                          |
| 19        | 7        | 1501               | 0.17227                       | 0.15038                            | 0.19169                      | 4.0776                            | 0.15847           | 0.067564                          |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean ( $\mu_{ae}$ ) | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------------|
| 19        | 8        | 1501               | 0.27264                       | 0.25564                            | 0.28864                      | 5.6491                            | 0.23612             | 0.13633                           |
| 19        | 4        | 1801               | 1.4764                        | 1.4751                             | 1.4784                       | 34.2772                           | 1.4745              | 0.076201                          |
| 19        | 5        | 1801               | 0.18392                       | 0.1672                             | 0.20649                      | 4.5022                            | 0.16967             | 0.070988                          |
| 19        | 6        | 1801               | 0.18663                       | 0.16721                            | 0.21247                      | 5.3202                            | 0.13986             | 0.12359                           |
| 19        | 7        | 1801               | 0.18095                       | 0.16398                            | 0.20379                      | 4.4519                            | 0.16669             | 0.070418                          |
| 19        | 8        | 1801               | 0.17096                       | 0.1539                             | 0.19377                      | 4.1979                            | 0.15691             | 0.067896                          |
| 20        | 4        | 1200               | 0.18305                       | 0.1669                             | 0.19306                      | 4.0771                            | 0.15857             | 0.09146                           |
| 20        | 5        | 1200               | 0.18895                       | 0.16622                            | 0.20268                      | 5.4662                            | 0.13378             | 0.13345                           |
| 20        | 6        | 1200               | 0.18663                       | 0.16441                            | 0.20007                      | 5.1916                            | 0.15096             | 0.10975                           |
| 20        | 7        | 1200               | 0.30882                       | 0.29634                            | 0.31687                      | 6.3757                            | 0.26047             | 0.16594                           |
| 20        | 8        | 1200               | 0.19195                       | 0.18209                            | 0.19824                      | 5.3289                            | 0.14366             | 0.12733                           |
| 20        | 4        | 1501               | 1.447                         | 1.4453                             | 1.4486                       | 33.5804                           | 1.4453              | 0.069737                          |
| 20        | 5        | 1501               | 0.17864                       | 0.15907                            | 0.19629                      | 4.9635                            | 0.14234             | 0.10796                           |
| 20        | 6        | 1501               | 0.18077                       | 0.15644                            | 0.2022                       | 4.3436                            | 0.16741             | 0.068216                          |
| 20        | 7        | 1501               | 0.19983                       | 0.19119                            | 0.20811                      | 5.4617                            | 0.14902             | 0.13315                           |
| 20        | 8        | 1501               | 0.23403                       | 0.21624                            | 0.25057                      | 4.9404                            | 0.20818             | 0.10694                           |
| 20        | 4        | 1801               | 1.4135                        | 1.4126                             | 1.4149                       | 32.8144                           | 1.4121              | 0.063044                          |
| 20        | 5        | 1801               | 0.22907                       | 0.20709                            | 0.25858                      | 6.6167                            | 0.15354             | 0.17002                           |
| 20        | 6        | 1801               | 0.18464                       | 0.16298                            | 0.21305                      | 5.3652                            | 0.13155             | 0.12958                           |
| 20        | 7        | 1801               | 0.16689                       | 0.14681                            | 0.19314                      | 4.6352                            | 0.13725             | 0.094949                          |
| 20        | 8        | 1801               | 0.20249                       | 0.1898                             | 0.22017                      | 4.4921                            | 0.18499             | 0.082353                          |
| 10        | 4        | 1200               | 0.04206                       | 0.041372                           | 0.042512                     | 0.88469                           | 0.036605            | 0.020719                          |
| 10        | 5        | 1200               | 0.028388                      | 0.038265                           | 0.019162                     | 0.61667                           | 0.016816            | 0.022874                          |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\% \mathbf{RMSE}_{total}^{P_T}$ | Mean ( $\mu_{ae}$ ) | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------------|
| 10        | 6        | 1200               | 0.11497                       | 0.13096                          | 0.10294                      | 2.4936                           | 0.091399            | 0.069754                          |
| 10        | 7        | 1200               | 0.073515                      | 0.089074                         | 0.060983                     | 1.6013                           | 0.054738            | 0.049082                          |
| 10        | 8        | 1200               | 0.094749                      | 0.1096                           | 0.083398                     | 2.0586                           | 0.073986            | 0.059199                          |
| 10        | 4        | 1501               | 0.03267                       | 0.030641                         | 0.034581                     | 0.68331                          | 0.027145            | 0.018182                          |
| 10        | 5        | 1501               | 0.047137                      | 0.054334                         | 0.038616                     | 1.0301                           | 0.032015            | 0.034603                          |
| 10        | 6        | 1501               | 0.047366                      | 0.044367                         | 0.050188                     | 1.0006                           | 0.041462            | 0.022904                          |
| 10        | 7        | 1501               | 0.047904                      | 0.054466                         | 0.040282                     | 1.0461                           | 0.033841            | 0.033912                          |
| 10        | 8        | 1501               | 0.088548                      | 0.097417                         | 0.078678                     | 1.9289                           | 0.066065            | 0.058968                          |
| 10        | 4        | 1801               | 0.030375                      | 0.029691                         | 0.031373                     | 0.63827                          | 0.024336            | 0.018179                          |
| 10        | 5        | 1801               | 0.065731                      | 0.066521                         | 0.064526                     | 1.3976                           | 0.057415            | 0.032005                          |
| 10        | 6        | 1801               | 0.026215                      | 0.030958                         | 0.01674                      | 0.56995                          | 0.015856            | 0.02088                           |
| 10        | 7        | 1801               | 0.036441                      | 0.04369                          | 0.021358                     | 0.7974                           | 0.022423            | 0.028731                          |
| 10        | 8        | 1801               | 0.04342                       | 0.052328                         | 0.024601                     | 0.95268                          | 0.027342            | 0.033735                          |
| 11        | 4        | 1200               | 1.4267                        | 1.4251                           | 1.4277                       | 29.5852                          | 1.4257              | 0.051337                          |
| 11        | 5        | 1200               | 0.030405                      | 0.029495                         | 0.030997                     | 0.63677                          | 0.025548            | 0.016489                          |
| 11        | 6        | 1200               | 0.040449                      | 0.050807                         | 0.031723                     | 0.88388                          | 0.027711            | 0.02947                           |
| 11        | 7        | 1200               | 0.12818                       | 0.14652                          | 0.11433                      | 2.7813                           | 0.10118             | 0.078712                          |
| 11        | 8        | 1200               | 0.034697                      | 0.046994                         | 0.023121                     | 0.76037                          | 0.021102            | 0.027548                          |
| 11        | 4        | 1501               | 0.071209                      | 0.067685                         | 0.074568                     | 1.5146                           | 0.062443            | 0.034233                          |
| 11        | 5        | 1501               | 0.072483                      | 0.069072                         | 0.075743                     | 1.5416                           | 0.063722            | 0.034551                          |
| 11        | 6        | 1501               | 0.064206                      | 0.063003                         | 0.065387                     | 1.3644                           | 0.055589            | 0.032133                          |
| 11        | 7        | 1501               | 0.043092                      | 0.042758                         | 0.043423                     | 0.91498                          | 0.036079            | 0.023567                          |
| 11        | 8        | 1501               | 0.11623                       | 0.12267                          | 0.1094                       | 2.5246                           | 0.091222            | 0.072033                          |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 11        | 4        | 1801               | 0.066314                      | 0.066005                           | 0.066776                     | 1.4089                            | 0.058451          | 0.031326                          |
| 11        | 5        | 1801               | 0.043722                      | 0.042411                           | 0.04562                      | 0.9219                            | 0.038088          | 0.021474                          |
| 11        | 6        | 1801               | 0.020864                      | 0.021939                           | 0.019137                     | 0.44107                           | 0.015397          | 0.014083                          |
| 11        | 7        | 1801               | 0.03452                       | 0.041366                           | 0.020296                     | 0.75521                           | 0.021121          | 0.027309                          |
| 11        | 8        | 1801               | 0.05938                       | 0.06966                            | 0.039181                     | 1.2987                            | 0.041333          | 0.042641                          |
| 12        | 4        | 1200               | 0.032625                      | 0.044754                           | 0.020954                     | 0.70981                           | 0.018091          | 0.027155                          |
| 12        | 5        | 1200               | 0.035273                      | 0.036749                           | 0.034255                     | 0.74349                           | 0.028822          | 0.020338                          |
| 12        | 6        | 1200               | 0.065915                      | 0.06767                            | 0.06472                      | 1.4006                            | 0.057841          | 0.031617                          |
| 12        | 7        | 1200               | 0.05134                       | 0.065687                           | 0.038951                     | 1.1226                            | 0.034657          | 0.037885                          |
| 12        | 8        | 1200               | 0.045565                      | 0.057994                           | 0.034907                     | 0.9965                            | 0.030973          | 0.033424                          |
| 12        | 4        | 1501               | 0.023214                      | 0.022812                           | 0.023609                     | 0.48382                           | 0.018241          | 0.014361                          |
| 12        | 5        | 1501               | 0.02834                       | 0.027496                           | 0.02916                      | 0.59226                           | 0.023181          | 0.016307                          |
| 12        | 6        | 1501               | 0.024525                      | 0.026245                           | 0.022673                     | 0.52858                           | 0.018337          | 0.016288                          |
| 12        | 7        | 1501               | 0.027698                      | 0.03478                            | 0.018011                     | 0.60314                           | 0.015955          | 0.022645                          |
| 12        | 8        | 1501               | 0.052635                      | 0.050503                           | 0.054685                     | 1.1172                            | 0.045958          | 0.025661                          |
| 12        | 4        | 1801               | 0.14823                       | 0.17743                            | 0.087753                     | 3.2539                            | 0.094387          | 0.11432                           |
| 12        | 5        | 1801               | 0.035068                      | 0.033602                           | 0.037161                     | 0.73626                           | 0.029781          | 0.01852                           |
| 12        | 6        | 1801               | 0.059673                      | 0.059894                           | 0.05934                      | 1.2663                            | 0.052263          | 0.028805                          |
| 12        | 7        | 1801               | 0.12516                       | 0.13937                            | 0.1001                       | 2.7148                            | 0.099655          | 0.075729                          |
| 12        | 8        | 1801               | 0.12388                       | 0.13876                            | 0.097363                     | 2.6886                            | 0.097604          | 0.076296                          |
| 13        | 4        | 1200               | 1.474                         | 1.4699                             | 1.4768                       | 30.5629                           | 1.4714            | 0.087703                          |
| 13        | 5        | 1200               | 1.4541                        | 1.4518                             | 1.4557                       | 30.1535                           | 1.4527            | 0.063725                          |
| 13        | 6        | 1200               | 0.077259                      | 0.081178                           | 0.074534                     | 1.6474                            | 0.067068          | 0.038358                          |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean ( $\mu_{ae}$ ) | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------------|
| 13        | 7        | 1200               | 0.037102                      | 0.047673                           | 0.027919                     | 0.81098                           | 0.024424            | 0.027934                          |
| 13        | 8        | 1200               | 0.040892                      | 0.054545                           | 0.028353                     | 0.89654                           | 0.025381            | 0.032067                          |
| 13        | 4        | 1501               | 0.041596                      | 0.042409                           | 0.040766                     | 0.88009                           | 0.033355            | 0.024856                          |
| 13        | 5        | 1501               | 0.1115                        | 0.11365                            | 0.1093                       | 2.395                             | 0.092664            | 0.062017                          |
| 13        | 6        | 1501               | 0.066864                      | 0.064291                           | 0.069343                     | 1.4225                            | 0.058569            | 0.032262                          |
| 13        | 7        | 1501               | 0.049219                      | 0.053668                           | 0.044323                     | 1.0726                            | 0.036346            | 0.033194                          |
| 13        | 8        | 1501               | 0.024709                      | 0.029619                           | 0.018538                     | 0.5354                            | 0.015837            | 0.01897                           |
| 13        | 4        | 1801               | 1.4094                        | 1.4076                             | 1.412                        | 29.2249                           | 1.4068              | 0.084817                          |
| 13        | 5        | 1801               | 0.050166                      | 0.062046                           | 0.022716                     | 1.1093                            | 0.019466            | 0.046243                          |
| 13        | 6        | 1801               | 0.046749                      | 0.045883                           | 0.048019                     | 0.98659                           | 0.040852            | 0.022731                          |
| 13        | 7        | 1801               | 0.028914                      | 0.028024                           | 0.030201                     | 0.6052                            | 0.023772            | 0.016462                          |
| 13        | 8        | 1801               | 0.035692                      | 0.042236                           | 0.022553                     | 0.78023                           | 0.02378             | 0.026621                          |
| 14        | 4        | 1200               | 1.4452                        | 1.4428                             | 1.4468                       | 29.9693                           | 1.4437              | 0.065887                          |
| 14        | 5        | 1200               | 1.4614                        | 1.4588                             | 1.4632                       | 30.3062                           | 1.4598              | 0.068578                          |
| 14        | 6        | 1200               | 0.07883                       | 0.079598                           | 0.078313                     | 1.6729                            | 0.070046            | 0.036168                          |
| 14        | 7        | 1200               | 0.020993                      | 0.025351                           | 0.017496                     | 0.44707                           | 0.015005            | 0.014683                          |
| 14        | 8        | 1200               | 0.12506                       | 0.13048                            | 0.12131                      | 2.6714                            | 0.10891             | 0.061474                          |
| 14        | 4        | 1501               | 0.069742                      | 0.066965                           | 0.072414                     | 1.4837                            | 0.061019            | 0.033778                          |
| 14        | 5        | 1501               | 1.4125                        | 1.4103                             | 1.4147                       | 29.2909                           | 1.4105              | 0.0762                            |
| 14        | 6        | 1501               | 0.023566                      | 0.024334                           | 0.022773                     | 0.49333                           | 0.017749            | 0.015505                          |
| 14        | 7        | 1501               | 0.021527                      | 0.021479                           | 0.021575                     | 0.44644                           | 0.017339            | 0.01276                           |
| 14        | 8        | 1501               | 0.022119                      | 0.025674                           | 0.017866                     | 0.47387                           | 0.014976            | 0.01628                           |
| 14        | 4        | 1801               | 1.4465                        | 1.445                              | 1.4488                       | 29.9948                           | 1.4445              | 0.074752                          |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\% \mathbf{RMSE}_{total}^{P_T}$ | Mean ( $\mu_{ae}$ ) | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------------|
| 14        | 5        | 1801               | 0.056737                      | 0.069122                         | 0.029657                     | 1.2494                           | 0.023616            | 0.051597                          |
| 14        | 6        | 1801               | 0.079201                      | 0.08438                          | 0.070719                     | 1.7016                           | 0.060981            | 0.050546                          |
| 14        | 7        | 1801               | 0.098559                      | 0.10231                          | 0.092643                     | 2.1036                           | 0.085313            | 0.049361                          |
| 14        | 8        | 1801               | 0.050611                      | 0.059655                         | 0.032628                     | 1.1072                           | 0.034886            | 0.036672                          |
| 15        | 4        | 1200               | 1.4307                        | 1.4272                           | 1.433                        | 29.6659                          | 1.4285              | 0.078949                          |
| 15        | 5        | 1200               | 0.10279                       | 0.10923                          | 0.098265                     | 2.2005                           | 0.088002            | 0.053122                          |
| 15        | 6        | 1200               | 0.059166                      | 0.061167                         | 0.057795                     | 1.2565                           | 0.05124             | 0.029588                          |
| 15        | 7        | 1200               | 0.074292                      | 0.075628                         | 0.073388                     | 1.5814                           | 0.065193            | 0.035631                          |
| 15        | 8        | 1200               | 0.046574                      | 0.047446                         | 0.045983                     | 0.98517                          | 0.04066             | 0.022717                          |
| 15        | 4        | 1501               | 1.4452                        | 1.4441                           | 1.4464                       | 29.9726                          | 1.4442              | 0.054294                          |
| 15        | 5        | 1501               | 0.031998                      | 0.032731                         | 0.031247                     | 0.67227                          | 0.025259            | 0.019646                          |
| 15        | 6        | 1501               | 1.4377                        | 1.4342                           | 1.4411                       | 29.8111                          | 1.4346              | 0.094833                          |
| 15        | 7        | 1501               | 0.023133                      | 0.024462                         | 0.021722                     | 0.49686                          | 0.017967            | 0.014574                          |
| 15        | 8        | 1501               | 0.049894                      | 0.056786                         | 0.041876                     | 1.0901                           | 0.034921            | 0.035642                          |
| 15        | 4        | 1801               | 0.050115                      | 0.062658                         | 0.019709                     | 1.1072                           | 0.021415            | 0.045316                          |
| 15        | 5        | 1801               | 1.4403                        | 1.4393                           | 1.4418                       | 29.8702                          | 1.4391              | 0.060429                          |
| 15        | 6        | 1801               | 0.071329                      | 0.090572                         | 0.020303                     | 1.5851                           | 0.020521            | 0.068325                          |
| 15        | 7        | 1801               | 0.055182                      | 0.05401                          | 0.056897                     | 1.1666                           | 0.048793            | 0.025779                          |
| 15        | 8        | 1801               | 0.062035                      | 0.061789                         | 0.062402                     | 1.3166                           | 0.05472             | 0.029228                          |
| 16        | 4        | 1200               | 0.06567                       | 0.096431                         | 0.031466                     | 1.4551                           | 0.028344            | 0.059248                          |
| 16        | 5        | 1200               | 0.16122                       | 0.17734                          | 0.14952                      | 3.4682                           | 0.13466             | 0.088673                          |
| 16        | 6        | 1200               | 0.12102                       | 0.15922                          | 0.086683                     | 2.6478                           | 0.081322            | 0.089646                          |
| 16        | 7        | 1200               | 0.085805                      | 0.13341                          | 0.020234                     | 1.9188                           | 0.02176             | 0.083014                          |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure
| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\% \mathbf{RMSE}_{total}^{P_T}$ | Mean ( $\mu_{ae}$ ) | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|----------------------------------|---------------------|-----------------------------------|
| 16        | 8        | 1200               | 0.031074                      | 0.031003                           | 0.031121                     | 0.65147                          | 0.026185            | 0.016735                          |
| 16        | 4        | 1501               | 0.12161                       | 0.16499                            | 0.048471                     | 2.7032                           | 0.040982            | 0.11452                           |
| 16        | 5        | 1501               | 0.037034                      | 0.036627                           | 0.037438                     | 0.78281                          | 0.030758            | 0.020631                          |
| 16        | 6        | 1501               | 1.4318                        | 1.4306                             | 1.4331                       | 29.6963                          | 1.4307              | 0.05646                           |
| 16        | 7        | 1501               | 0.034484                      | 0.032592                           | 0.036278                     | 0.7232                           | 0.02959             | 0.01771                           |
| 16        | 8        | 1501               | 0.048363                      | 0.048392                           | 0.048334                     | 1.0251                           | 0.041594            | 0.02468                           |
| 16        | 4        | 1801               | 1.4454                        | 1.444                              | 1.4474                       | 29.9748                          | 1.4434              | 0.075118                          |
| 16        | 5        | 1801               | 1.4761                        | 1.4748                             | 1.4781                       | 30.6118                          | 1.4745              | 0.07027                           |
| 16        | 6        | 1801               | 0.045078                      | 0.043919                           | 0.046762                     | 0.95159                          | 0.039441            | 0.02183                           |
| 16        | 7        | 1801               | 0.024813                      | 0.028923                           | 0.016858                     | 0.53562                          | 0.016518            | 0.018518                          |
| 16        | 8        | 1801               | 0.037625                      | 0.036508                           | 0.039242                     | 0.79316                          | 0.032311            | 0.019282                          |
| 17        | 4        | 1200               | 1.4763                        | 1.4746                             | 1.4775                       | 30.6193                          | 1.4753              | 0.055544                          |
| 17        | 5        | 1200               | 1.422                         | 1.413                              | 1.428                        | 29.4785                          | 1.4161              | 0.12899                           |
| 17        | 6        | 1200               | 1.4384                        | 1.4345                             | 1.441                        | 29.8238                          | 1.436               | 0.082249                          |
| 17        | 7        | 1200               | 0.024307                      | 0.0263                             | 0.022883                     | 0.50998                          | 0.018606            | 0.015644                          |
| 17        | 8        | 1200               | 0.053271                      | 0.053439                           | 0.053159                     | 1.1299                           | 0.046792            | 0.025466                          |
| 17        | 4        | 1501               | 1.4649                        | 1.464                              | 1.4659                       | 30.3818                          | 1.464               | 0.051179                          |
| 17        | 5        | 1501               | 0.048999                      | 0.058781                           | 0.036686                     | 1.0583                           | 0.03019             | 0.0386                            |
| 17        | 6        | 1501               | 1.4675                        | 1.4663                             | 1.4687                       | 30.4352                          | 1.4664              | 0.054846                          |
| 17        | 7        | 1501               | 0.031027                      | 0.038864                           | 0.020361                     | 0.67887                          | 0.017461            | 0.025652                          |
| 17        | 8        | 1501               | 0.018406                      | 0.018638                           | 0.018172                     | 0.38308                          | 0.015086            | 0.010548                          |
| 17        | 4        | 1801               | 1.459                         | 1.4581                             | 1.4604                       | 30.2571                          | 1.4581              | 0.051869                          |
| 17        | 5        | 1801               | 1.4377                        | 1.4368                             | 1.4391                       | 29.8166                          | 1.4364              | 0.06115                           |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 17        | 6        | 1801               | 0.03815                       | 0.046058                           | 0.021355                     | 0.83621                           | 0.023142          | 0.030334                          |
| 17        | 7        | 1801               | 0.074625                      | 0.074948                           | 0.074136                     | 1.5864                            | 0.065705          | 0.035385                          |
| 17        | 8        | 1801               | 0.07342                       | 0.073538                           | 0.073243                     | 1.5605                            | 0.064584          | 0.034927                          |
| 18        | 4        | 1200               | 1.4521                        | 1.4506                             | 1.453                        | 30.1166                           | 1.4511            | 0.052419                          |
| 18        | 5        | 1200               | 1.4292                        | 1.4275                             | 1.4303                       | 29.6421                           | 1.4282            | 0.052805                          |
| 18        | 6        | 1200               | 1.422                         | 1.4203                             | 1.4231                       | 29.4901                           | 1.421             | 0.053529                          |
| 18        | 7        | 1200               | 1.4375                        | 1.4315                             | 1.4415                       | 29.8009                           | 1.4338            | 0.1028                            |
| 18        | 8        | 1200               | 0.059971                      | 0.071567                           | 0.050795                     | 1.2864                            | 0.045512          | 0.03906                           |
| 18        | 4        | 1501               | 1.4679                        | 1.4623                             | 1.4735                       | 30.4262                           | 1.4624            | 0.12696                           |
| 18        | 5        | 1501               | 0.091542                      | 0.092588                           | 0.090485                     | 1.9623                            | 0.076248          | 0.050667                          |
| 18        | 6        | 1501               | 1.4218                        | 1.4203                             | 1.4232                       | 29.4884                           | 1.4205            | 0.059915                          |
| 18        | 7        | 1501               | 0.066377                      | 0.068944                           | 0.063706                     | 1.4211                            | 0.054895          | 0.037322                          |
| 18        | 8        | 1501               | 0.030275                      | 0.03843                            | 0.018865                     | 0.66069                           | 0.016332          | 0.025496                          |
| 18        | 4        | 1801               | 1.4567                        | 1.4557                             | 1.4583                       | 30.2115                           | 1.4553            | 0.064355                          |
| 18        | 5        | 1801               | 0.076893                      | 0.0981                             | 0.018513                     | 1.7082                            | 0.02305           | 0.073369                          |
| 18        | 6        | 1801               | 1.4312                        | 1.4297                             | 1.4335                       | 29.6812                           | 1.429             | 0.079396                          |
| 18        | 7        | 1801               | 0.033566                      | 0.040858                           | 0.017668                     | 0.7371                            | 0.016677          | 0.029134                          |
| 18        | 8        | 1801               | 0.041694                      | 0.051019                           | 0.020998                     | 0.91788                           | 0.018033          | 0.037599                          |
| 19        | 4        | 1200               | 1.4323                        | 1.4309                             | 1.4333                       | 29.7046                           | 1.4314            | 0.050839                          |
| 19        | 5        | 1200               | 0.069068                      | 0.10323                            | 0.029133                     | 1.5263                            | 0.026436          | 0.06382                           |
| 19        | 6        | 1200               | 0.063055                      | 0.096234                           | 0.021319                     | 1.3992                            | 0.019558          | 0.059955                          |
| 19        | 7        | 1200               | 0.072169                      | 0.07432                            | 0.070699                     | 1.5345                            | 0.063071          | 0.035083                          |
| 19        | 8        | 1200               | 0.10115                       | 0.10574                            | 0.097979                     | 2.1595                            | 0.087896          | 0.050074                          |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_{T}}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|------------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 19        | 4        | 1501               | 1.4276                        | 1.4252                             | 1.4301                       | 29.601                            | 1.4254            | 0.080317                          |
| 19        | 5        | 1501               | 1.4119                        | 1.4095                             | 1.4143                       | 29.2869                           | 1.4101            | 0.071733                          |
| 19        | 6        | 1501               | 0.16438                       | 0.23131                            | 0.022781                     | 3.6681                            | 0.027756          | 0.16204                           |
| 19        | 7        | 1501               | 0.074149                      | 0.077964                           | 0.070125                     | 1.5917                            | 0.060196          | 0.043304                          |
| 19        | 8        | 1501               | 0.11309                       | 0.13408                            | 0.087163                     | 2.4692                            | 0.077395          | 0.082469                          |
| 19        | 4        | 1801               | 1.4478                        | 1.4471                             | 1.4488                       | 30.0256                           | 1.4468            | 0.052634                          |
| 19        | 5        | 1801               | 1.4554                        | 1.4539                             | 1.4578                       | 30.1799                           | 1.4533            | 0.078788                          |
| 19        | 6        | 1801               | 0.072153                      | 0.091119                           | 0.023638                     | 1.5986                            | 0.021015          | 0.069037                          |
| 19        | 7        | 1801               | 0.13462                       | 0.15046                            | 0.10651                      | 2.9142                            | 0.10522           | 0.083982                          |
| 19        | 8        | 1801               | 0.137                         | 0.16037                            | 0.091331                     | 2.9905                            | 0.095528          | 0.098221                          |
| 20        | 4        | 1200               | 1.4434                        | 1.4417                             | 1.4446                       | 29.9351                           | 1.4425            | 0.052544                          |
| 20        | 5        | 1200               | 1.4265                        | 1.4245                             | 1.4278                       | 29.5887                           | 1.4252            | 0.06128                           |
| 20        | 6        | 1200               | 0.041779                      | 0.060832                           | 0.021043                     | 0.91763                           | 0.018697          | 0.037368                          |
| 20        | 7        | 1200               | 0.14213                       | 0.15349                            | 0.13402                      | 3.0466                            | 0.12069           | 0.075074                          |
| 20        | 8        | 1200               | 1.4438                        | 1.4395                             | 1.4467                       | 29.9358                           | 1.4413            | 0.085749                          |
| 20        | 4        | 1501               | 1.4363                        | 1.4353                             | 1.4372                       | 29.7895                           | 1.4354            | 0.050693                          |
| 20        | 5        | 1501               | 1.4546                        | 1.4507                             | 1.4585                       | 30.157                            | 1.4508            | 0.10543                           |
| 20        | 6        | 1501               | 0.093735                      | 0.12761                            | 0.035837                     | 2.0828                            | 0.030188          | 0.088755                          |
| 20        | 7        | 1501               | 0.038534                      | 0.037442                           | 0.039596                     | 0.81183                           | 0.032927          | 0.02002                           |
| 20        | 8        | 1501               | 0.060782                      | 0.060575                           | 0.060988                     | 1.2897                            | 0.051954          | 0.031552                          |
| 20        | 4        | 1801               | 1.4622                        | 1.4612                             | 1.4636                       | 30.3222                           | 1.4609            | 0.060632                          |
| 20        | 5        | 1801               | 1.4193                        | 1.4179                             | 1.4214                       | 29.4313                           | 1.4175            | 0.070515                          |
| 20        | 6        | 1801               | 1.4628                        | 1.462                              | 1.4641                       | 30.3379                           | 1.4617            | 0.058603                          |

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

Table 6.10: Summary of RBF-NARX model construction for identification of turbine pressure

| # neurons | # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\operatorname{Std}(\sigma_{ae})$ |
|-----------|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------------|
| 20        | 7        | 1801               | 1.4544                        | 1.4534                           | 1.4557                       | 30.1598                           | 1.4531            | 0.061056                          |
| 20        | 8        | 1801               | 1.4652                        | 1.4631                           | 1.4684                       | 30.3769                           | 1.4624            | 0.090441                          |

 Table 6.11: Summary of SVM-NARX model construction for identification of compressor temperature

| # delays | # training samples | $\mathbf{RMSE}_{total}^{T_C}$ | $\mathbf{RMSE}_{training}^{T_C}$ | $\mathbf{RMSE}_{test}^{T_C}$ | $\% \mathbf{RMSE}_{total}^{T_C}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|-------------------|------------------------------|
| 4        | 1200               | 5.785                         | 6.1078                           | 5.5595                       | 0.88026                          | 4.7571            | 3.2922                       |
| 5        | 1200               | 3.2587                        | 3.4575                           | 3.1191                       | 0.49584                          | 2.5706            | 2.0029                       |
| 6        | 1200               | 6.7519                        | 6.9366                           | 6.626                        | 1.0262                           | 5.8765            | 3.3252                       |
| 7        | 1200               | 2.6112                        | 2.7304                           | 2.5287                       | 0.39709                          | 2.0356            | 1.6357                       |
| 8        | 1200               | 8.5326                        | 8.646                            | 8.4563                       | 1.2962                           | 7.6082            | 3.863                        |
| 4        | 1501               | 10.0526                       | 10.2897                          | 9.8096                       | 1.5335                           | 7.1987            | 7.0172                       |
| 5        | 1501               | 2.7116                        | 2.6177                           | 2.8024                       | 0.41237                          | 2.1957            | 1.5913                       |
| 6        | 1501               | 8.0053                        | 8.0475                           | 7.9629                       | 1.22                             | 6.1615            | 5.1112                       |
| 7        | 1501               | 3.1256                        | 3.0234                           | 3.2246                       | 0.47547                          | 2.4852            | 1.8958                       |
| 8        | 1501               | 10.1568                       | 10.4808                          | 9.8219                       | 1.5495                           | 7.2417            | 7.1222                       |
| 4        | 1801               | 4.0933                        | 3.9579                           | 4.2883                       | 0.6212                           | 3.2124            | 2.537                        |
| 5        | 1801               | 5.1256                        | 5.1964                           | 5.0174                       | 0.77866                          | 4.3276            | 2.7467                       |
| 6        | 1801               | 25.5922                       | 27.3954                          | 22.6185                      | 3.8929                           | 19.709            | 16.3266                      |
| 7        | 1801               | 12.9035                       | 13.9279                          | 11.192                       | 1.9636                           | 10.4707           | 7.5416                       |
| 8        | 1801               | 4.8782                        | 5.1378                           | 4.4605                       | 0.74155                          | 3.5143            | 3.3836                       |

| # delays | # training samples | $\mathbf{RMSE}_{total}^{P_C}$ | $\mathbf{RMSE}_{training}^{P_C}$ | $\mathbf{RMSE}_{test}^{P_C}$ | $\% \mathbf{RMSE}_{total}^{P_C}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|-------------------|------------------------------|
| 4        | 1200               | 0.04434                       | 0.044539                         | 0.044207                     | 0.37271                          | 0.023476          | 0.037618                     |
| 5        | 1200               | 0.06586                       | 0.074462                         | 0.059439                     | 0.56046                          | 0.042214          | 0.050556                     |
| 6        | 1200               | 0.054944                      | 0.058191                         | 0.052668                     | 0.46561                          | 0.032905          | 0.044004                     |
| 7        | 1200               | 0.051974                      | 0.051877                         | 0.052039                     | 0.43826                          | 0.022331          | 0.046936                     |
| 8        | 1200               | 0.070633                      | 0.067559                         | 0.072611                     | 0.59467                          | 0.029654          | 0.064113                     |
| 4        | 1501               | 0.047934                      | 0.046986                         | 0.048864                     | 0.40478                          | 0.030515          | 0.03697                      |
| 5        | 1501               | 0.046661                      | 0.046592                         | 0.04673                      | 0.39495                          | 0.029562          | 0.036105                     |
| 6        | 1501               | 0.059857                      | 0.058357                         | 0.061321                     | 0.50837                          | 0.033006          | 0.049939                     |
| 7        | 1501               | 0.10016                       | 0.10284                          | 0.097396                     | 0.85469                          | 0.065978          | 0.075359                     |
| 8        | 1501               | 0.047577                      | 0.047181                         | 0.04797                      | 0.40371                          | 0.025682          | 0.040053                     |
| 4        | 1801               | 0.041185                      | 0.037001                         | 0.046766                     | 0.34187                          | 0.028081          | 0.030129                     |
| 5        | 1801               | 0.16758                       | 0.19602                          | 0.11212                      | 1.4287                           | 0.11603           | 0.12093                      |
| 6        | 1801               | 0.064463                      | 0.04931                          | 0.082111                     | 0.53039                          | 0.022916          | 0.060257                     |
| 7        | 1801               | 0.073084                      | 0.078509                         | 0.064088                     | 0.61647                          | 0.04068           | 0.060721                     |
| 8        | 1801               | 0.058766                      | 0.044294                         | 0.07544                      | 0.48336                          | 0.02175           | 0.054597                     |

 Table 6.12: Summary of SVM-NARX model construction for identification of compressor

 pressure

 Table 6.13:
 Summary of SVM-NARX model construction for identification of rotational speed

| # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^{N}$ | $\mathbf{RMSE}_{test}^N$ | $\mathbf{\%RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|----------|--------------------|-----------------------------|--------------------------------|--------------------------|-------------------------------|-------------------|------------------------------|
| 4        | 1200               | 26.3914                     | 26.3745                        | 26.4026                  | 0.22282                       | 22.6819           | 13.4932                      |
| 5        | 1200               | 27.3764                     | 27.3992                        | 27.3612                  | 0.23114                       | 23.5228           | 14.0064                      |
| 6        | 1200               | 27.8955                     | 27.874                         | 27.9099                  | 0.23553                       | 23.9589           | 14.2887                      |
| 7        | 1200               | 27.4287                     | 27.3904                        | 27.4543                  | 0.23158                       | 23.7126           | 13.7868                      |

| # delays | # training samples | $\mathbf{RMSE}_{total}^{N}$ | $\mathbf{RMSE}_{training}^N$ | $\mathbf{RMSE}_{test}^N$ | $\mathbf{\%RMSE}_{total}^{N}$ | mean $(\mu_{ae})$ | <b>Std</b> ( $\sigma_{ae}$ ) |
|----------|--------------------|-----------------------------|------------------------------|--------------------------|-------------------------------|-------------------|------------------------------|
| 8        | 1200               | 26.1403                     | 26.1954                      | 26.1035                  | 0.2207                        | 22.3773           | 13.513                       |
| 4        | 1501               | 24.6728                     | 26.5164                      | 22.6791                  | 0.20831                       | 21.236            | 12.562                       |
| 5        | 1501               | 26.7274                     | 28.7473                      | 24.5411                  | 0.22566                       | 22.9553           | 13.6908                      |
| 6        | 1501               | 28.2652                     | 30.4459                      | 25.9008                  | 0.23865                       | 24.18             | 14.6386                      |
| 7        | 1501               | 26.9222                     | 28.8732                      | 24.8176                  | 0.2273                        | 23.1971           | 13.665                       |
| 8        | 1501               | 26.0438                     | 27.9951                      | 23.9333                  | 0.21988                       | 22.4468           | 13.2081                      |
| 4        | 1801               | 26.545                      | 27.0505                      | 25.7681                  | 0.22412                       | 22.7997           | 13.5956                      |
| 5        | 1801               | 27.4482                     | 27.9494                      | 26.6783                  | 0.23175                       | 23.5607           | 14.0829                      |
| 6        | 1801               | 25.4999                     | 25.9773                      | 24.7663                  | 0.21528                       | 21.9856           | 12.9192                      |
| 7        | 1801               | 25.2779                     | 25.7547                      | 24.545                   | 0.21342                       | 21.7604           | 12.864                       |
| 8        | 1801               | 26.1525                     | 26.6325                      | 25.4153                  | 0.2208                        | 22.5576           | 13.2339                      |

 Table 6.13:
 Summary of SVM-NARX model construction for identification of rotational speed

 Table 6.14: Summary of SVM-NARX model construction for identification of turbine temperature

| # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\% \mathbf{RMSE}_{total}^{T_T}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------|------------------------------|
| 4        | 1200               | 183.6261                      | 189.9563                         | 179.2832                     | 10.4182                          | 160.2343            | 89.6932                      |
| 5        | 1200               | 166.4114                      | 175.3166                         | 160.2015                     | 9.4955                           | 141.1499            | 88.1518                      |
| 6        | 1200               | 104.3983                      | 107.0395                         | 102.6002                     | 5.9073                           | 90.6818             | 51.7326                      |
| 7        | 1200               | 136.832                       | 133.9356                         | 138.7288                     | 7.6189                           | 123.4487            | 59.0255                      |
| 8        | 1200               | 166.3491                      | 161.8485                         | 169.2822                     | 9.2006                           | 154.693             | 61.1777                      |
| 4        | 1501               | 293.6453                      | 273.8494                         | 312.1944                     | 16.4391                          | 262.022             | 132.5706                     |
| 5        | 1501               | 282.3101                      | 269.7902                         | 294.3017                     | 15.649                           | 259.5313            | 111.1059                     |
| 6        | 1501               | 215.896                       | 209.24                           | 222.355                      | 11.9547                          | 202.3673            | 75.2297                      |

| # delays | # training samples | $\mathbf{RMSE}_{total}^{T_T}$ | $\mathbf{RMSE}_{training}^{T_T}$ | $\mathbf{RMSE}_{test}^{T_T}$ | $\mathbf{\%RMSE}_{total}^{T_{T}}$ | mean ( $\mu_{ae}$ ) | <b>Std</b> ( $\sigma_{ae}$ ) |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|------------------------------|
| 7        | 1501               | 249.4072                      | 235.4363                         | 262.6403                     | 13.9182                           | 226.8929            | 103.5634                     |
| 8        | 1501               | 236.7342                      | 224.6235                         | 248.2584                     | 13.3207                           | 212.1327            | 105.0933                     |
| 4        | 1801               | 408.2675                      | 398.3448                         | 422.7191                     | 22.527                            | 380.7186            | 147.4427                     |
| 5        | 1801               | 307.8869                      | 291.5684                         | 330.865                      | 17.1951                           | 274.3306            | 139.7866                     |
| 6        | 1801               | 202.5877                      | 190.7599                         | 219.1402                     | 11.2666                           | 183.4603            | 85.938                       |
| 7        | 1801               | 272.9621                      | 258.0228                         | 293.9563                     | 15.1594                           | 248.0573            | 113.9212                     |
| 8        | 1801               | 205.2928                      | 208.9996                         | 199.6019                     | 11.6387                           | 174.1967            | 108.6398                     |

 Table 6.14: Summary of SVM-NARX model construction for identification of turbine temperature

 Table 6.15: Summary of SVM-NARX model construction for identification of turbine pressure

| # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean $(\mu_{ae})$ | $\mathbf{Std}(\sigma_{ae})$ |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|-------------------|-----------------------------|
| 4        | 1200               | 0.14436                       | 0.166                            | 0.12793                      | 3.164                             | 0.099075          | 0.10501                     |
| 5        | 1200               | 0.22767                       | 0.25312                          | 0.209                        | 4.9621                            | 0.16848           | 0.15314                     |
| 6        | 1200               | 0.13213                       | 0.14305                          | 0.12432                      | 2.858                             | 0.10348           | 0.08217                     |
| 7        | 1200               | 0.36862                       | 0.40489                          | 0.34232                      | 8.0233                            | 0.27583           | 0.24456                     |
| 8        | 1200               | 0.26315                       | 0.27079                          | 0.25794                      | 5.6279                            | 0.22447           | 0.13736                     |
| 4        | 1501               | 0.15671                       | 0.15761                          | 0.1558                       | 3.4091                            | 0.11986           | 0.10096                     |
| 5        | 1501               | 0.14812                       | 0.14611                          | 0.15011                      | 3.203                             | 0.11887           | 0.088379                    |
| 6        | 1501               | 0.15141                       | 0.14926                          | 0.15353                      | 3.2731                            | 0.12131           | 0.090617                    |
| 7        | 1501               | 0.11376                       | 0.10654                          | 0.12055                      | 2.4167                            | 0.097374          | 0.058823                    |
| 8        | 1501               | 0.11595                       | 0.11134                          | 0.12038                      | 2.4909                            | 0.094515          | 0.067168                    |
| 4        | 1801               | 0.088902                      | 0.084001                         | 0.095787                     | 1.8751                            | 0.075015          | 0.047715                    |
| 5        | 1801               | 0.14606                       | 0.14218                          | 0.15169                      | 3.0978                            | 0.12598           | 0.073916                    |

Table 6.15: Summary of SVM-NARX model construction for identification of turbine pressure

\_

| # delays | # training samples | $\mathbf{RMSE}_{total}^{P_T}$ | $\mathbf{RMSE}_{training}^{P_T}$ | $\mathbf{RMSE}_{test}^{P_T}$ | $\mathbf{\%RMSE}_{total}^{P_{T}}$ | Mean ( $\mu_{ae}$ ) | $\mathbf{Std}(\sigma_{ae})$ |
|----------|--------------------|-------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------|-----------------------------|
| 6        | 1801               | 0.12097                       | 0.11917                          | 0.12363                      | 2.5699                            | 0.10214             | 0.064829                    |
| 7        | 1801               | 0.18853                       | 0.20295                          | 0.16453                      | 4.0615                            | 0.14994             | 0.1143                      |
| 8        | 1801               | 0.27965                       | 0.3162                           | 0.21338                      | 6.0711                            | 0.21025             | 0.18441                     |