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Abstract 

 

 
One of the largely unexplored areas of computational organic chemistry is the source of facial 

selectivity from prochiral ketones. Most of the available literature provides reaction pathways 

highlighting the lowest activation barrier, but this approach leaves the origin of the enantioselectivity 

unaddressed at the molecular level. Instead, the interactions that enable energetic differentiation in 

the transition states must be investigated for any useful information to be acquired for predictive 

purposes. The focus of this work is on the enantioselective CBS (Corey-Bakshi-Shibata) reduction 

as it has been extensively studied experimentally. 

This work aims, first, to evaluate the complexation of substituted boranes with a prochiral 

ketone, acetophenone, for better understanding the modes of complexation during a reduction 

reaction, and second, to assess the source of facial selectivity of the enantioselective reduction of 

a different ketone, t-butyl methyl ketone, with borane using an oxazaborolidine catalyst. A 

systematic investigation of weak-bonding interactions in the complexes and their transition states 

is carried out computationally using electronic structure theory. A quantitative relationship 

between the electron demand on boron and the complexation energy is established from electron 

density analyses providing a binding cut-off of 0.19 e·Å
–3

. In the CBS reduction of t-butyl 

methyl ketone, the calculated enantiomeric excess is 99 % or greater in favour of the R-

configured product by transition state theory. The source of facial selectivity is uncovered 

through changes in features of the geometries and the electron densities as the responsible 

complexes as well as their transition states for hydride transfer are compared. 
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Chapter 1.  

 

Introduction 

 

1.1. Stereochemistry 

We interact with the world in three dimensions, and yet we are still developing an 

understanding of chemical concepts and structures in three dimensions. Stereochemistry, which 

refers to chemistry in three dimensions, was a concept that was only lately embraced; in the 19
th

 

century it was still unexplored. In the last 25 years, stereochemistry has become an important 

part of understanding problems in all fields of chemistry and as such no chemist should be 

without proper knowledge on the subject. Stereochemistry has often been divided into two major 

categories: static and dynamic. Static stereochemistry, or stereochemistry of molecules, consists 

mainly of stereoisomers, their energies and their physical properties. In contrast, dynamic 

stereochemistry, or stereochemistry of reactions, on the other hand consists mainly of 

stereochemical requirements and stereochemical outcomes of chemical reactions. 

Stereochemistry cannot be ignored as it is heavily required for the complete understanding of 

reaction mechanisms
1
. 

 

1.1.1. Stereoisomers 

Isomers, compounds that share the same chemical formula but with different structures, can 

be placed into various categories based on their constitution, their configuration and their 

conformation. Isomers that only vary in configuration and/or conformation are recognized as 

stereoisomers. Stereoisomers can be further subdivided into enantiomers and diastereomers. The 
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terms enantiomer and diastereomer refer to molecules as a whole and therefore two 

enantiomeric/diastereomeric molecules must have the same connectivity, but differ in their 

spacial arrangement. While both subdivisions of stereoisomers may differ in configuration or 

only in conformation, the distinction lies in their geometrical relations (Fig. 1.1).  

 

 

Figure 1.1: Stereoisomers of 2,3,4-trihydroxybutanal. 

 

Enantiomers are pairs of isomers that are non-superimposable mirror images of one another, 

and their relation mainly comes from a configurational perspective. In contrast, diastereomers as 

in Fig. 1.1 do not have mirror-image relations to one another and stem from configurational (or 

conformational) differences at several locations in a molecule known as chiral centers. While 

enantiomers, in terms of chiral centers, are associated with one or more, diastereomers contain at 

least two. A chiral center, or center of chirality or asymmetric carbon atom (Fig. 1.2), leads to 

observable chirality. In 1874, van’t Hoff demonstrated that a molecule with an asymmetric 

tetrahedral carbon atom is in fact chiral. This work followed the development of the Le Bel-van’t 
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Hoff rule that states the number of stereoisomers an organic compound with no internal planes of 

symmetry can adopt is 2
n
 where n is equal to the number of asymmetric carbon atoms. 

 

 

Figure 1.2: Asymmetric carbon atom (C*) in a tetrahedral geometry where a ≠ b ≠ c ≠ d. 

 

To identify the stereochemical environment of each asymmetric carbon atom, the descriptors 

R and S are assigned. R, meaning rectus, and S, meaning sinister, identify the absolute 

configuration of a chiral center
2
. Selecting the appropriate descriptor follows a simple set of 

rules
3
: (1) Each substituent is assigned a priority based on atomic number (higher atomic number 

means higher priority) and for two directly attached and identical atoms, the immediately 

connected adjacent atoms are taken into consideration (principle of outward exploration); (2) the 

substituent of lowest priority should be at the back (“d” in Fig. 1.2); and (3) descending in 

assigned priority of the remaining three substituents, a clockwise rotation means an R 

configuration, a counter clockwise rotation an S configuration. Since 1951, absolute 

configurations for chiral molecules possessing a heavy atom can be obtained by X-ray 

crystallography
4
. 

 

1.1.2. Stereoselective synthesis 

One of the fundamental aspects of organic synthesis is carrying out a reaction under 

stereochemical control, and such reactions can be placed into three general categories: (1) those 

that lead to the selective formation of enantiomers – enantioselective synthesis; (2) those that 

lead to the selective formation of diastereomers – diastereoselective synthesis; and (3) double 
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stereodifferentiating reactions, in which at least two reactants are chiral
1
. Both diastereoselective 

synthesis and double stereodifferentiating reactions can be further subdivided, but this will not be 

discussed. 

The term “enantiospecific” is used for syntheses employing one enantiomer of a chiral 

substrate and continue by diastereoselective reactions while maintaining the original 

enantiopurity. The more widely used term “enantioselective”, on the other hand, is used to 

describe syntheses that involve an enantioselective step, or a sequence of steps that produces a 

given enantiomer by temporarily incorporating a chiral auxiliary. These terms were developed to 

replace the cumbersome “enantiomerically pure compound synthesis
5
”, all the while avoiding 

scenarios in which a substrate or product is not technically “enantiomerically pure”. The 

traditionally identified “asymmetric synthesis” that leads to enantiomers has been redefined as 

enantioselective synthesis
6,7

.  

For example, the typical reduction of a generic prochiral ketone (i.e., a ketone in which 

addition to the carbonyl carbon atom leads to a chiral center) has two outcomes (Fig. 1.3). Either 

the reducing moiety, in this case a hydride, will attack the carbonyl Re-face producing the S-

alcohol or it will attack the Si-face producing the R-alcohol. (The Re-/Si-nomenclature for facial 

attack is based on the same principle as that for the absolute configuration.) When no chiral 

information is present, there is no facial preference for the hydride attack. Consequently, the 

activation barriers for both attacks will be identical and a racemate (a 1:1 mixture of 

enantiomers) will be produced. However, the introduction of chiral information by any means 

(such as a solvent or a catalyst), will result in a differentiation of the activation barriers and 

producing potentially high enantiomeric excess. However, simply determining the transition state 

of lower energy is insufficient to determine the source of the facial preference. Facial selectivity 
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is a topic that has not been thoroughly investigated in computational organic chemistry and needs 

to be studied further. These ideas will be further explored in Chapter 4.  

 

 

Figure 1.3: Combined reaction profiles for the reduction of a generic prochiral ketone with 

hydride. Re-face attack producing S-alcohol (left), Si-face attack producing R-alcohol (right). 

 

 

1.2. Reduction reactions 

1.2.1. Brown’s reaction 

There are many different reduction reactions that have been developed over the years. 

Arguably one of the most well-known is Brown’s reaction, or hydroboration-oxidation reaction 

(Scheme 1.1). It is a two-step organic reaction that converts alkenes into alcohols. The reaction 

was first reported by H.C. Brown in 1959
8
 and helped pave the way for his, shared with Georg 

Wittig, 1979 Nobel Prize in chemistry. 

without 

chiral 

information 

with chiral 

information 
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Scheme 1.1: Hydroboration-oxidation reaction scheme. 

 

Prior to Brown’s work on the hydroboration reaction, organic chemists did not have a viable 

method to generate alcohols under mild conditions. Diborane was a rare substance, produced by 

only few laboratories, and organic chemist did not use it. While working with Schlesinger, a 

cheaper synthetic route was discovered by adding methyl borate to sodium hydride at high 

temperatures, producing NaBH4 and NaOCH3. The addition of acetone to the mixture led to the 

discovery that NaBH4 reduced the acetone. The discovery of NaBH4
9
 in 1942 began innovative 

changes in procedures for the reduction of organic molecules. NaBH4 is a mild reducing agent 

that works well on a variety of carbonyl compounds and is still used today
10

. This work led the 

way for the development of countless other carbonyl reduction reactions.  

 

1.2.2. Carbonyl reduction 

Carbonyls, such as aldehydes and ketones, can be reduced in different ways using a vast 

array of reducing agents. The two main types of carbonyl reduction are deoxygenation and 

hydrogenation. Deoxygenation, in the context of a carbonyl reduction, involves the removal of 

oxygen atoms from a molecule. In contrast, hydrogenation involves the addition of H2, generally 

in the presence of a catalyst such as nickel, platinum or palladium. 

These types of reactions can be symmetric (non-stereoselective) or asymmetric 

(stereoselective). Some notable carbonyl reductions in asymmetric synthesis include the CBS 

reduction (using BH3 and a chiral oxazaborolidine catalyst, see Chapter 4) and the Noyori 

asymmetric hydrogenation (Scheme 1.2).  
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In 2001, R. Noyori shared the Nobel Prize in chemistry with W.S. Knowles for their work on 

the asymmetric reduction of ketones. The reduction reaction is enantioselective and exploits the 

use of a chiral ruthenium catalyst
11

. While the asymmetric reduction of ketones was not new
12

, a 

practical catalytic reaction had not yet been available until it was introduced in 1994
13

. Noyori 

demonstrated that diastereoselectivity and enantioselectivity could be obtained simultaneously 

when using a chiral BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthyl) ligand
13,14

. The Noyori 

reaction is now used in the development of several antibacterial and antibiotic pharmaceuticals
15

. 

 

 

Scheme 1.2: Asymmetric reduction of carbonyl compounds using the Noyori reaction. 

 

1.3. Organocatalysis 

Organocatalysis, originating from the terms “organic” and “catalyst”, is a form of catalysis 

and refers to the acceleration of a chemical reaction with non-stoichiometric amounts of an 

organic catalyst. An organic catalyst, or organocatalyst, often consists of carbon, hydrogen, 

oxygen and other non-metal elements, and as such organocatalysts have grown in popularity
16,17

. 

Organocatalyzed reactions now cover a large range of reactions. Coupling reactions such as 

Suzuki
18–20

 and Heck-type coupling
21

, that were once only transition-metal-mediated reactions, 

can now be performed in a green way without their respective inorganic metal components. 

The majority of organocatalysts used are bifunctional and often with a Brønsted acid and a 

Lewis base center
22

. Lewis (hydrogen bonding) and Brønsted (proton-transfer) acid 
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organocatalysts involve (thio)ureas, diols, phosphoric acids, oxazaborolidines, guanidinium/ 

amidinium ions, and bispidine
23

. Organocatalyzed reaction with oxazaborolidines use boron as 

their reactive center (see Chapter 4). 

 

1.4. Boron 

Boron is the only non-metal element in Group 13 of the periodic table and as such shares 

similarities to its neighbouring elements, carbon and silicon, to a greater extent than with the 

other members of Group 13 (Al, Ga, In and Tl). It has the tendency to form covalent bonds, but 

due to having one less valence electron than C or Si, it is referred to as electron deficient and can 

differ severely in properties, both electronic and physical
24

. 

 

1.4.1. Boranes and diboranes 

Less than 100 years ago, one of the simplest molecules of boron and hydrogen, diborane 

(B2H6), was thought to be a serious problem for the Lewis theory of bonding
10

, and this was true 

for all electron deficient boranes. Nowadays it is known that B2H6 possesses four terminal two-

electron B-H bonds and four internal B-H-B bridges in which four electrons are responsible for 

four three-center-two-electron bonds. From an experimental point of view, diborane is of 

particular importance as all other boranes can be made from it. B2H6 is a gas that can be readily 

made, in small quantities, by reacting I2 with NaBH4 in diglyme ((CH3OCH2CH2)2O). 

Interestingly, diborane, can be used as a reactive intermediate, without requiring isolation or 

purification, when Et2OBF3 is added to NaBH4, making it convenient to use in reactions
24

. 
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1.4.2. Boron-containing compounds 

Compounds containing boron play an important role in many disciplines of science
25,26

. For 

example, carboranes are clusters of boron, carbon and hydrogen and have been studied as a 

boron source in boron neutron capture therapy (BNCT). For the past 50 years, boron is used as a 

delivery agent for cancer treatment in BNCT
27

. Interactions between boron in boranes and 

oxygen in carbonyl compounds have also been investigated. Borane reagents form complexes 

with the carbonyl compounds, stabilizing the borane and activating the carbonyl for further 

synthesis
28

. Such complexes are formed through weak coordinating interactions. 

 

1.5. Non-covalent interactions 

Non-covalent, or weak, interactions are part of the glue that holds the building blocks of 

chemistry and nature together. Interactions like ion-ion, ion-dipole, dipole-dipole, induced 

dipole-induced dipole, hydrogen bonding, van der Waals, and more, all fall under the umbrella of 

weak interactions. While the basic principles that govern each weak interaction are 

fundamentally the same, they differ in their magnitude, operative range and mode of operation
29

 

(Table 1.1). 

 

Table 1.1: Non-covalent interactions comparison summary
30

. 

Interaction type Operative range Mode of operation Typical magnitude 

Ion-ion Long Non-directional 250 kJ·mol
–1 

Hydrogen bonding Long Directional 20 kJ·mol
–1

 

Ion-dipole Long Non-directional 15 kJ·mol
–1

 

Ion-induced dipole Moderate Non-directional 12 kJ·mol
–1

 

Dipole-dipole Short-Moderate Directional  1-12 kJ·mol
–1

 

Dispersion Short Non-directional < 1 kJ·mol
–1
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Typically, a hydrogen bond as given in Table 1.1 is the result of an interaction between the 

hydrogen atom of a group X-H and an electronegative atom. The X-H pair is referred to as the 

donor, Y is the acceptor. By convention, both X and Y atoms are electronegative and are often F, 

O or N. Due to the polarized nature of the covalent bond X-H, a highly electropositive hydrogen 

results that is attracted to  the electron rich acceptor, Y.  

Hydrogen bonding in which X is not a strongly electronegative atom, such as C, is often 

referred to as improper, or atypical, hydrogen bonding. The C-H···O interaction was first 

predicted in crystal structures
31

 in 1963 and was the subject of much controversy. It is nowadays 

well established and is a prominent focus in weak interaction research
32–36

. C-H···O interactions 

have numerous roles in the stability of reaction complexes
37–39

 as they help in providing 

anchoring points upon complexation (see Chapters 3 and 4). 
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Chapter 2.  

 

Objectives and organization of the remainder of the thesis 

 

From the interesting observation that the enantioselectivity in the CBS (Corey-Bakshi-

Shibata) reduction reaction can depend strongly on the aromatic substituent on the CBS 

framework (97 % with diphenyl, 28 % with di(ortho-anisyl) for acetophenone), the overall goal 

of this work is to reveal the source of facial selectivity at the molecular level (Scheme 2.1). The 

CBS reduction is selected as it has been extensively studied experimentally and therefore 

provides a wealth of data for a computational study.  

 

 

Scheme 2.1: CBS reduction reaction mechanism proposed by Corey. (Redrawn from ref. 40) 

 

The first objective is to evaluate the complexation of substituted boranes with a prochiral 

ketone, acetophenone, in order to better understand the modes of complexation during the 
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reduction reaction studied later (Scheme 2.1). As suitable choice of boron substituents is to be 

made, and mono-, di- and tri-substitution are to be evaluated. In a first step, the geometries of the 

boranes are to be optimized. For this, the “parameter-free” hybrid DFT method by Pedrew, 

Burke and Ernzerhof (PBE0) functional is to be used and evaluated against the second order 

Møller-Plesset (MP2) method for accuracy. As the complexes used are mostly small, a triple zeta 

basis set is to be used. Changes in electronic structure of the boranes, with special attention to the 

electron demand on boron, are to be evaluated using Natural Bond Orbitals (NBO), Natural 

Resonance Theory (NRT) and the Quantum Theory of Atoms in Molecules (QTAIM) 

methodologies. In a second step, the borane-ketone complexes are to be treated similarly. In 

particular, though, and using the electron density (QTAIM analyses), attempts will be made at 

establishing a quantitative relationship between the electron demand on boron and the 

complexation energy. 

The second objective is to investigate the CBS reduction of ketones with special attention to 

the weak interactions that lead to the facial selectivity. However, the first step in this work is to 

define which system to work on. Scheme 2.2 depicts the thought process in reducing the size (in 

terms of electron count, seeing that electronic structure theory methods will be used) of the 

catalytic system. Here, an unsubstituted CBS catalyst with t-butyl methyl ketone and BH3 is to 

be investigated. The popular Becke’s 3-parameter exchange functional and the Lee-Yang-Parr 

correlation function (B3LYP), along with PBE0 and Head-Gordon’s long-range hybrid 

functional with dispersion correction (B97X-D) are to be employed and evaluated, if necessary, 

against MP2. Geometry optimizations will be carried out in a bottom-up approach for increasing 

complexity: first the CBS catalyst by itself, second plus the borane, lastly plus the ketone 

(Scheme 2.2). From the final complexes, the transition states for hydride transfer will be 
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optimized, and computed enantiomeric excess will be determined from the free energy-based 

rate constants (according to Transition State Theory). The geometries and electronic structures 

(using NBO, NRT and QTAIM) of all species are to be assessed (and evaluated against crystal 

structures if available), with particular emphasis on the weak bonding interactions in the catalyst-

ketone complexes and their transition states. Finally, it will be attempted to determine the source 

of the facial preference, and therefore the enantioselectivity, through changes in features of either 

the geometries or the electron densities.  

 
Scheme 2.2: Thought development of reducing the complexity of the CBS reduction. CH3 

removal: B-CH3 change to B-H does not affect the enantioselectivity
40

; di-phenyl removal: for 

computational economy, and preliminary computational work on the unsubstitued CBS is 

available; ketone substitution: lack of phenyl on CBS warrants the use of an aliphatic ketone. 

 

Work on the first objective is presented in Chapter 3, that on the second objective in Chapter 

4. Both chapters are presented in manuscript format aimed at publication. The two abstracts 

follow here. Chapter 5 presents the overall conclusions and a brief outlook on future work. 

Appendices A and B contain the supplemental material for Chapters 3 and 4, respectively. 
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2.1. Computational investigation of weak-bonding interactions in substituted borane-

acetophenone complexes 

 

To be submitted: Journal of Physical Chemistry A 

Authors: Philippe Archambault and Heidi Muchall 

Contributions by P.A.: Carried out all calculations and analyses of the computational results. 

 

Abstract 

We are interested in further investigating the binding interactions between borane derivatives 

and ketones. As such, in this work, electronic structure theory methods are used to evaluate the 

stability and bonding interactions in acetophenone (C6H5COCH3) complexes with a series of 

substituted borane. While acetophenone, as a ketone, does not possess a C-H atom on an sp
2
-

hybridized carbon, a feature that allows aldehydes to undergo interactions with certain 

substituents on boron, it does feature similar C-H on the phenyl ring. By probing the effect of 

the Lewis acid on the stability of the complexes and their bonding interactions, we hope to shed 

light on binding interactions that govern reactant-catalyst complexes in enantioselective reactions 

that involve borane-carbonyl complexes. 
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2.2. Origin of the enantioselectivity in the t-butyl methyl ketone reduction with a chiral 

oxazaborolidine catalyst 

 

To be submitted: Journal of Organic Chemistry or Journal of Physical Chemistry A 

Authors: Philippe Archambault and Heidi Muchall 

Contributions by P.A.: Carried out all calculations and analyses of the computational results. 

 

Abstract 

The origin of enantioselectivity from prochiral compounds is one of the largely unexplored 

fields in computational organic chemistry. Extensive experimental work on the CBS reduction of 

prochiral ketones, which employs a chiral oxazaborolidine, allows for an interesting opportunity 

to try recovering the sources of facial selectivity. The reduction relies on the chiral catalyst-

borane adducts approaching the ketones on their preferred face, and with the hydride transfer as 

the rate-limiting step. It therefore becomes critical to establish all reasonable ketone orientations 

within the complex. The often-assumed B···O=C complexation, in fact, is disfavoured due to the 

reduced electron demand of the catalytic framework's boron atom and leads to only one 

particular set of reasonable ketone orientations. 

In this work, electronic structure theory methods are used to investigate the complexes of the 

Lewis acid catalyst with t-butyl methyl ketone, their corresponding transition states for hydride 

transfer, and bonding interactions in the complexes and transition states. 
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Chapter 3.  

 

Computational investigation of weak-bonding interactions in substituted borane-

acetophenone complexes 

 

3.1. Introduction 

Weak interactions are generally referred to as non-bonding interactions. Typical weak 

interactions include dipole-dipole interactions, hydrogen bonding and van der Waals forces. 

Their investigation in chemical and biological systems has become an important part of 

understanding how molecules interact with each other
41–43

. Weak interactions are responsible for 

three-dimensional structures, such as proteins and nucleic acids, and life could not exist without 

them. Many different reactions depend on them to coordinate reactants and substrates, driving 

the reaction forward. 

Uncommon hydrogen bonding, such as C-H···O interactions, is believed to play a large part 

in the enantioselectivity of Diels-Alder reactions involving unsaturated aldehydes and often 

using chiral boron compounds as catalysts
44–48

. Corey and co-workers have proposed that the 

nature of the high enantioselectivity from chiral Lewis acid catalysts arises from the presence of 

a formyl hydrogen on the reactant interacting with fluorine or oxygen on the catalyst
37,39,49,50

. 

Weak interactions within the reactant-catalyst complex would restrict the motion of the aldehyde 

and ensure the formation of one enantiomer in excess. X-ray crystal structures of complexes 

from 2,3-methylenedioxybenzaldehyde, as well as dimethylformamide, and boron-containing 

Lewis acids, indicate the potential presence of a hydrogen bond between the formyl hydrogen of 

the aldehyde reactant and the fluorine or oxygen atom of the Lewis acid
51

. The aldehydic C-H 
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and the B-X (X = F,O) bonds have a propensity to adopt a coplanar arrangement, with H···X 

distances suitably close for a possible interaction. The electron deficient boron works as an 

electron acceptor to the oxygen lone pairs. The coordination of an aldehyde with a Lewis acid 

increases the positive charge at the formyl hydrogen, allowing for a “pre-orientation” of the 

aldehyde through weak interactions (Fig. 3.1).  

 

Figure 3.1: Fixation of the aldehyde in pre-reaction complexes of enantioselective reactions 

through B···O (bolded) and C-H···O interactions. (Modified from ref. 39) 

 

The formation of an Haldehydic···X bond within Lewis acid-aldehyde complexes was consistent 

with earlier experimental and theoretical work on monofluoroborane (BH2F) and trifluoroborane 

(BF3) complexing with formaldehyde, acetaldehyde, or benzaldehyde. The complexes exhibited 

a preference for the Lewis acid to orient anti to the alkyl groups allowing the B-F bond to adopt 

a coplanar arrangement with the C=O group
52–56

. It was believed that the conformational 

preference of aldehyde-Lewis acid complexes was determined by a complex interplay of 

hyperconjugation interactions and steric effects from the groups attached to boron
57

.  

Despite experimental and theoretical evidence of Haldehydic···F interactions in aldehyde 

complexes with BF3 and BH2F, it remains unclear whether such interactions occur in the actual 

aldehyde-catalyst complexes. The chemical groups present on the catalyst moiety are expected to 
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exert large electronic effects on the boron atom, which could affect the structure and stability of 

the reactant-catalyst complexes. 

In contrast to aldehydes, ketones lack a formyl hydrogen to form an Haldehydic···X (X = F,O) 

bond, although Lewis acid-ketone complexes still occur. It has been proposed that ,-

unsaturated carbonyls, having C-H (Fig. 3.2) and potentially C-H substitution, could form an 

H···X bond to stabilize the complexes
58

. Corey notes that the reported distances are much shorter 

than the sum of the van der Waals radii, implying the probability of the interaction being present. 

However, no computational or otherwise follow-up study was conducted to substantiate the 

claim. Typical X-ray crystal structures of various ketone-borane derivatives display a lack of 

evidence to support this premise
59–62

. These complexes show an increase in structural flexibility 

while demonstrating substantial changes in bonding interactions, in spite of only small changes 

(e.g. in substitution) on the borane or on the ketone. 

 

 
Figure 3.2: Suggested ketone and ester coordination to trifluoroborane, stabilized by C-H···F 

interactions
60

. 

 

Previous work on borane and ketones has focused almost entirely on borane’s use in 

chemical reactions, like in the reduction of carbonyl compounds
40,63,64

, but not much has been 

done in investigating the binding interactions between borane derivatives and ketones. Morita 

and co-workers published two papers that focus, in part, on the effects of an observed increase in 

the ketone’s carbonyl bond length after coordination of BF3 to the ketone. Morita describes that 

248 pm 252 pm 244 pm 
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the increased bond length improves the interaction between the Pd dxy orbital and the carbonyl 

carbon. Consequently, a shortening of the Pd···C distance, due to the delocalization of Pd 

electrons to the carbonyl, increases the oxidation state of Pd
59

. A similar observation was made 

with Pt
61

. While only a couple of Lewis acids were investigated (BF3 and B(C6F5)3), Morita 

states that, in principle, these observations could be witnessed for a variety of ketones/aldehydes, 

low-valent transition-metals, and Lewis acids combinations and used for the development of 

palladium-catalyzed catalytic conjugate addition of the alkyl-metals
59

. 

We are interested in further investigating the binding interactions between borane derivatives 

and ketones. As such, in this work, computational methods are used to evaluate the stability and 

bonding interactions in acetophenone (C6H5COCH3) complexes with borane and borane 

derivatives. While acetophenone does not have C-H substitution on an sp
2
-hybridized carbon, it 

does have C-H substitution and is widely used by Corey and co-workers in highly 

enantioselective reduction reactions using chiral boron compounds as catalysts
40

. By probing the 

effect of the Lewis acid on the stability and bonding interactions of the complexes, we hope to 

shed light on binding interactions that govern reactant-catalyst complexes in enantioselective 

reactions that involve borane-carbonyl complexes. 

3.2. Computational Details 

All calculations were performed using the Gaussian09 program
65

. The geometries were 

optimized using the “parameter-free” hybrid DFT method by Pedrew, Burke and Ernzerhof 

(PBE0)
66–69

 with the 6-311++G(2d,p) basis set. Second order Møller-Plesset (MP2) perturbation 

theory
70–74

 with the same basis set was used in order to assess the reliability of PBE0. Frequency 

analyses with the same model chemistries were carried out to establish the nature of the 

stationary points. Electronic and free energies are given in S1 and S2 of Appendix A. Relaxed 
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scans (energy profiles) were obtained for the B-O-CC=O-CPh and F-B-O-CC=O dihedral angle 

change in the fluoroborane-acetophenone complex in ten-degree increments: only one dihedral 

angle was fixed at a time, the remaining geometry was allowed to fully optimize. The computed 

binding energies were corrected for basis set superposition error using the Counterpoise 

approach
75

. Additionally, zero-point vibrational energy (ZPVE) corrections were included (Table 

3.5), but are not discussed as they do not change the binding order of the borane-acetophenone 

complexes. 

Bonding interactions for each ketone complex were determined from computed electron 

densities, (r) using the program AIMAll
76

 within the Quantum Theory of Atoms in Molecules 

(QTAIM)
77,78

. Due to negligible differences between the computed (r) obtained using the 

different functionals in this study, only the results from PBE0/6-311++G(2d,p) are presented in 

detail and discussed. Critical points in the topology of the electron density map onto established 

chemical entities: e.g., the position of a nucleus is represented, as expected, by an electron 

density maximum. In a molecule at minimum energy geometry, a line of maximum electron 

density (a so-called bond path) between two nuclei represents a bonding interaction. It is thus 

possible to determine which atoms are bonded, within and between molecules. Properties at the 

lowest-density point, the so-called bond critical point (BCP), along the bond path allow a 

characterization of the nature of the bonding interaction. A large value of the electron density 

(BCP) and a negative value of its Laplacian (the second derivative of the electron density, 


2
BCP) indicate a shared interaction (or covalent bond), whereas a small value in BCP and a 

positive 
2
BCP are representative of a closed-shell interaction (such as in dative and hydrogen 

bonds, van der Waals complexes). The network of all bond paths for a chemical system is termed 

the molecular graph. In the molecular graphs, bond critical points are shown by small red 
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spheres; ring critical points, indicating structural ring features, by small yellow spheres; and cage 

critical points, indicating structural cage features, by small green spheres. 

Atomic charges were determined using AIMAll and the natural bond orbital (NBO)
79,80

 

approach as implemented in Gaussian09. The NBO calculations were also used to validate the 

presence of -bonding within the catalyst framework. The NBO approach provided the 

occupancy of the pz orbital on boron, which is empty in the unsubstituted borane. Upon 

substitution, the orbital occupancy provides insight into the appearance of -bonding. Additional 

natural resonance theory (NRT)
81–84

 evaluations were carried out using NBO5.G
80,85

. Only the 

first one or two major resonance contributors are given; resonance structures with smaller 

contributions exhibit breakage of single bonds and were not considered further. 

The novel -on-
2
 approach was developed due to a lack of ways to directly measure the 

charge depletion, or hole in the VSCC (Valence Shell Charge Concentration). The density values 

obtained are an estimate of the electron density within the B 2pz orbital and provide a 

complimentary analysis to the occupancy obtained using the NBO analysis. 

 

3.3. Results and Discussion 

3.3.1. Boranes 

In order to understand the electronic effects on boron, a systematic approach was taken that 

depended on selecting substituents of both electron donating and electron withdrawing character; 

for a lack of more suitable options, substituents were selected based on their Hammett 

constants
86

. While Hammett constants are defined for the benzenoid system, it seemed that 

boranes with their formally unoccupied 2pz orbital on boron should respond compatibly to 

attached -systems; the Hammett constants themselves were not used in this study but merely 
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guided the selection of the substituents. In all 12 substituents, plus an additional “cage”-

substituent from a literature crystal structure
62

, were chosen, covering a wide range of potential 

electronic effects (Fig. 3.3). The boranes used in this study as well as the numbering scheme 

used are given in Table 3.1. 

 

 

Figure 3.3: Range of electron donating and electron withdrawing groups using the Hammett  

(m or p) constant as a reference point. Substituents chosen for this study are highlighted in the 

spread in pink. 

 

The optimized geometries of boranes 1-20 are shown in Fig. 3.4. Selected electronic 

properties from NBO and QTAIM analyses of these structures are summarized in Tables 3.2 and 

3.3, respectively. The PBE0 functional was found in agreement with MP2 in finding minima and 

so the results are presented primarily using PBE0/6-311++G(2d,p). 

Boranes with larger substituents (e.g., methoxyl substitution in 9, 10 and 11) can adopt 

different conformations (in the plane defined by the sp
2
-hybridized boron atom or out-of-plane), 

and their global minima are used in this study. The nitro-substituted 17 presents a strange case 

(Fig. 3.4). The O-N-O angle of its nitro group is immensely distorted from the norm, seemingly 

in an attempt of an oxygen atom to interact with the boron to satisfy the electron demand of the 

latter. An additional geometry was optimized by fixing the O-N-O angle (to a regular 115.6°, the 
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value in complex 17k, see Section 3.3.2) for comparisons in the analyses of the electronic 

properties; this structure carries the planar BH2 and NO2 moieties at 90° to each other. 

 

Table 3.1: Substituents R
1
, R

2
 and R

3
 in substituted boranes BR

1
R

2
R

3
 1-20.

a
 

 R
1 

R
2
 R

3 

1 H H H 

    

2 F H H 

3 Cl H H 

4 Br H H 

5 F F F 

    

6 CH3 H H 

7 CH3 CH3 H 

8 CH3 CH3 CH3 

    

9 OCH3 H H 

10 OCH3 OCH3 H 

11 OCH3 OCH3 OCH3 

    

12 OH H H 

13 OH OH H 

    

14 NH2 H H 

15 NH3
+

 H H 

16 CN H H 

17 NO2 H H 

    

18 NO2 OCH3 N(CH3)2 

19 C6F5 C6F5 C6F5 

20 

 
a
 See Fig. 3.4 for structures. 
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Figure 3.4: Molecular graphs of mono-, di-, and tri-substituted boranes from PBE0/6-

311++G(2d,p). Atoms are represented by large spheres: carbon (grey), hydrogen (white), oxygen 

(red), nitrogen (blue), boron (pink), fluorine (cyan), chlorine (lime green) and bromine (maroon). 

Bond critical points are indicated by small red spheres, ring critical points by small yellow 

spheres. 

 

NBO: 

Natural population analysis from the NBO method was used to measure the electron 

occupancy of the boron 2pz orbital. As shown in Fig. 3.5, boron, with its electron sextet, in BH3 

is hypovalent and vastly electron deficient. A neighbouring amino group, with its -electron 

donating character, can fill the vacant p-orbital to satisfy the electron demand on boron. NBO 

calculates the bonding orbital with maximum electron occupancy, and as such, informs on which 
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substituents contribute to the 2pz orbital and by how much. The NBO results from PBE0/6-

311++G(2d,p) are summarized in Table 3.2. 

 

 
Figure 3.5: a) Borane with its empty 2pz orbital. b) Adjacent nitrogen lone pair filling the 2pz 

orbital on boron in the boranamine. 

 

The B-H bonds in borane (1), as expected, do not possess any -character and the 2pz orbital 

is entirely unoccupied. Due to their high electronegativity, halogens are typically referred to as 

electron withdrawing groups, but their -electron donating character is demonstrated through 

their ability to donate their electron lone pairs to fill the B 2pz orbital. For the mono-substituted 

2-4, the charge on boron in 2 is more largely positive (0.749) compared to that in 3 and 4 (0.312 

and 0.239, respectively), and the B 2pz orbital shows less occupancy. Fluorine of course, as the 

most electronegative element, is less willing to donate its electrons to boron than Cl or Br. 

PBE0/6-311++G(2d,p) reports 5 as possessing a -bond, which is in disagreement with the 

original work of Weinhold and co-workers
81,82,87

, in which a hypovalent trifluoroborane structure 

with hardly any partial double bond character (bond order of 1.050) was reported.  

Boranes 6-8 with their methyl substitution do not possess -electron donating groups and as 

expected do not shown any double bond character. The linear increase in B 2pz occupancy along 

the series is observed due to increasing amounts in hyperconjugation (B 2pz/C-H interaction). 

 

b) a) 
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Table 3.2: Charge on boron, qB (au) and occupancy (number of electrons), from NBO natural 

population analyses following optimization at PBE0/6-311++G(2d,p).
a
 

 qB B 2pz occupancy  bond 

1 0.317 0.00 No 

    

2 0.749 0.14 Yes 

3 0.312 0.19 Yes 

4 0.239 0.20 Yes 

5 1.405 0.33 Yes 

    

6 0.486 0.07 No 

7 0.681 0.12 No 

8 0.916 0.17 No 

    

9 0.584 0.23 Yes 

10 0.911 0.36 Yes 

11 1.245 0.42 Yes 

    

12 0.593 0.14 Yes 

13 0.903 0.33 Yes 

    

14 0.405 0.29 Yes 

15 0.662 0.03 No 

16 0.378 0.07 No 

17 0.324 (0.533)
b
 0.28 (0.11)

b
 No 

    

18 1.075 0.46 Yes 

19 0.849 0.24 No 

20 1.347 0.34 No 
a
 See Fig. 3.4 for structures. 

b
 Value from the constrained geometry, see text. 

 

Methoxyl (9-11) and hydroxyl (12 and 13) substituted boranes exhibit B=O bond character 

and, in general, higher B 2pz occupancy (again with a linear increase along a series) as the O 

lone pairs can donate into the empty 2pz-orbital to form a -bond. The ability to donate to the B 

2pz orbital can be dramatically demonstrated through 14, with its amino substituent, and the 

related ammonium-substituted 15. The removal of the nitrogen lone pair drops the rather large B 

2pz occupancy in 14 to about zero in 15 (again there is a small hyperconjugative interaction from 
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N-H,), and the -character to the B-N bond in 14 is not present in 15. For the aminoborane (14), 

the B 2pz occupancy is comparable to that in borazine (0.35 electrons). 

The cyano group in 16 is clearly a -substituent, but its -electrons are not available to 

donation and the B 2pz orbital is left largely unoccupied. Similarly, the nitro group in 17 has -

character, but in its “proper” (i.e., constrained) geometry it does not donate its -electrons to 

boron, because the NO2 -system and the vacant B 2pz orbital are orthogonal. The occupancy 

instead arises from oxygen lone pairs through B 2pz/nO interactions. In the optimized structure, 

the electron demand on boron is sufficiently great for an oxygen to lean over. The geometry 

distortion is huge, but the required energy is more than compensated (optimized 17 is more 

stable than restrained 17 by 4.8 kcal·mol
–1

) through the now present B···O interaction that fills 

the B 2pz orbital to the same degree as the amino nitrogen in 14. 

The trisubstituted 18 exhibits the largest B 2pz occupancy observed here, with a value similar 

to that in trimethoxyborane (11). 19 and 20 do not show the formation of a -bond despite 

having higher B 2pz occupancy.  

 

NRT: 

In accord with the NBO analysis, -electron donating groups satisfy the electron demand on 

boron through resonance, which can be captured through NRT analysis (Fig 3.6). All 10 boranes 

with one or more electron donating groups possess a -bond. There is, of course, no resonance in 

1. 

For halogen mono-substituted boranes 2-4, the leading resonance structure, with greater than 

97 % weight, shows the presence of a -bond. Like 2, the trifluoro-substituted 5 prefers to have 

one fluorine lone pair fill the empty 2pz orbital on boron, which, as mentioned above, contradicts 
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the findings of Weinhold and co-workers
81,82,87

. From HF/6-31G*, the trifluoroborane octet-

violating form was reported as the leading resonance structure, weighted at 76.1 %, and the 

octet-obeying structures weighted at only 5.2 %, which explains the reported small double bond 

character. In this work, from PBE0 and MP2 with a much larger basis set, the octet-violating 

structure is only weighted at 4.7 % (4.2 % for MP2), and the octet-obeying structures total 90.2 

% (91.9 % for MP2), a result that seems more reasonable.  

 

 

Figure 3.6: NRT structures for mono-substituted boranes with -electron donating groups. For 

simplicity, the lone pairs have been omitted. (From PBE0/6-311++G(2d,p).) 

 

For mono-substitution in 9 (OCH3), 12 (OH) and 14 (NH2), there is a preference for N to 

donate its electrons than for O. This is to be expected with N being closer in size to B and 

therefore experiencing a better orbital overlap, a fact that was made use of in the development of 

stable carbenes
88

. The idea of N/O competition in their interaction with B is further addressed in 

Chapter 4, where the electronic structure of an oxazaborolidine (O-B-N functionality) catalyst is 

explored.  
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Again in accord with the NBO analysis, those substituents not -electron donating prefer an 

octet-violating Lewis structure (Fig. 3.7). The hyperconjugation from C-H in 6 (CH3 

substitution) and N-H in 15 (NH3
+
 substitution) suggested from the B 2pz occupancy is also 

reflected in the resonance description (Fig. 3.7). Not surprisingly, the resonance weight of the -

description for the already charged 15 is smaller than that for the neutral 6. 

Nitroborane (17) was not evaluated with respect to its resonance contributors, as its 

optimized geometry does not allow for “normal” resonance contributors. In the trisubstituted 18, 

two distinct resonance contributors emerge from the analysis: 71.03% B=N (from NMe2) and 

8.05% B=O, as would be expected from the N/O competition discussed above. 19 and 20 were 

not investigated. 

 

 

Figure 3.7: NRT structures for mono-substituted boranes with non-electron donating groups. For 

simplicity, the lone pairs have been omitted. (From PBE0/6-311++G(2d,p).) 
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QTAIM: 

Although direct indication of electron lone pairs is not presented in the electron density, (r), 

itself, it can be found in the Laplacian of the electron density, 
2
(r), as a maximum in the 

valence shell charge concentration (VSCC)
89

. Figure 3.8a shows such a maximum in ∇2
 of 

acetophenone. In analogy, regions of charge depletion can be recovered through 
2
(r) 

89
, which 

is illustrated through borane in Fig. 3.8b, where an area of charge depletion, displaced from the 

plane of the nuclei, is visible above boron. With borane and acetophenone properly oriented, the 

source of complexation thus is captured through the Laplacian of the electron density. It was 

therefore desirable to determine the electron density in the general area of charge depletion on 

boron, i.e., at the location of the B 2pz orbital in the molecular orbital picture. This “mapping of 

the electron density onto the Laplacian” (or -on-
2
) approach is described in Appendix A. A 

proof of principle evaluating the -on-
2
 approach against a previous and related study of the 

effect of the -electron density at the positively charged carbon of a series of substituted 

carbocations on the 
13

C chemical shift
90,91

 can be found in Appendix A.  

The novel -on-
2
 approach avoids simply using a -value at an arbitrary distance from the 

B nucleus. Instead, we aimed to let QTAIM, which analyses the electron density obtained from 

the quantum chemical wavefunction, define a suitable point above B that would naturally be 

adjusted through any change in substitution. 
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Figure 3.8: a) Partial molecular graph of acetophenone with ∇2

 contour plot (∇2
 > 0 dashed 

lines, ∇2
 < 0 solid lines; the arrow indicates a VSCC maximum). b) Molecular graph of borane 

with ∇2
 = 0 surface (blue). Atoms are represented by large spheres: carbon (grey), oxygen (red), 

hydrogen (white) and boron (pink). Bond critical points are indicated by small red spheres. 

 

 
Figure 3.9: Choosing a ∇2

 isosurface value to map . a) Molecular graph of borane. b) 

Molecular graph of borane with (3,-1) Laplacian critical points. The black arrow points to one of 

the highlighted critical points that are displaced about boron. c) Blue ∇2
 isosurface with white 

arrow pointing to the same critical point. d)  mapped on ∇2
 isosurface. The  colour gradient 

allows a graphical determination of the density value. Atoms are represented by large spheres: 

hydrogen (white) and boron (pink). Bond critical points are indicated by small red spheres and 

Laplacian critical points by even smaller pink spheres. 

b) a) 

c) d) 

b) a) 
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Figure 3.9 illustrates the -on-
2
 approach. A 

2
 isosurface is chosen according to the 

value at a (3,-1) Laplacian critical point (LP CP). Whereas the value of such a (3,-1) Laplacian 

critical point around boron varies somewhat with substitution, its (3,-1) nature is the same 

regardless of substitution. The associated surface is plotted and the value of  determined (the 

colour gradient in Fig. 3.9d illustrates the location of the specific point). For the mono-

substituted boranes, the (3,-1) LP CP chosen is located opposite to the substituent. For boranes 

with increased substitution lacking these critical points, the corresponding value from borane 

was used. This was deemed satisfactory as for the mono-substituted boranes only small 

variations of the 
2
 isosurface values are observed and negligible differences in  values 

resulted from their use compared to the use of the BH3 
2
 isosurface value (for example, 0.118 

e·Å–3
 instead of 0.120 e·Å–3

 for 6 and 0.106 e·Å–3
 instead of 0.102 e·Å–3

 for 15).  

Table 3.3 gives the electron density values obtained from the -on-
2
 approach and the 

underlying Laplacian isosurface values. Whereas the value of the (3,-1) LP CP (which defines 

the isosurface) exhibits only slight variations, the resulting values of the electron density above 

boron varies rather widely. 

For halogen mono-substituted boranes 2-4, the  value increases moving down the family, in 

analogy to the B 2pz occupancy from Table 3.2. It is unclear why 2 and 5 possess similar density 

values, especially considering the difference in the qB charge values. This issue between mono- 

and trisubstitution does not occur for the methyl substituent (6-8), but recurs somewhat for 

methoxyl substitution (9-11). The overall picture that emerges again follows that from Table 3.2. 

Boranes with -electron donating groups (2-5, 9-14, and 19 and 20) exhibit larger  values above 

boron than those without (6-8 and 15-17). The trisubstituted 18, possessing both donating and 
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withdrawing groups, exhibits by far the highest  value (reflective of its high B 2pz occupancy) 

and will be further discussed in Sections 3.3.2 and 3.3.3. 

 

Table 3.3: Selected QTAIM results for mapping the electron density, (r), onto an isosurface of 

its Laplacian, ∇2
(r): ∇2

 isosurface (e·Å
–5

) and electron density (e·Å
–3

) for boranes 1-20. The 

charge on boron, qB (au), is presented as well.
a,b

 

 qB ∇2
 isosurface

c
 (r)

d
 

1 1.869 1.42 0.100 

    

2 2.063 1.44 0.146 

3 1.906 1.44 0.158 

4 1.785 1.42 0.162 

5 2.438 1.42
e
 0.145

f
 

    

6 1.903 1.46 0.120 

7 1.934 1.42
e
 0.129

f
 

8 1.960 1.42
e
 0.133

f
 

    

9 2.017 0.143 0.188 

10 2.176 1.42
e
 0.239

f
 

11 2.345 1.42
e
 0.221

f
 

    

12 2.030 1.45 0.176 

13 2.189 1.42
e
 0.198

f
 

    

14 1.973 1.42 0.193 

15 1.958 1.37 0.102 

16 1.923 1.41 0.115 

17
 1.930 (1.959)

g
 1.57 (1.33)

g
 0.190 (0.109)

g
 

    

18 2.244 1.42
e
 0.422

f
 

19 1.975 1.42
e
 0.175

f
 

20 2.366 1.42
e
 0.184

f
 

a
 From PBE0/6-311++G(2d,p). 

b
 See Fig. 3.4 for structures. 

c
 See Fig. 3.8 for choice of ∇2

 

isosurface. 
d
 The “-on-

2
” value, see text. 

e
 BH3 ∇

2
 value, see text.  

f
 Obtained from the BH3 

∇2
 value, see text. 

g
 Values from the constrained geometry of BH2NO2, see text. 
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The QTAIM charges, like the NBO charges, do not seem to have any particular trend. A 

comparison of the computed charges using these two methods can be found in S 3 of Appendix 

A. 

 

3.3.2. Acetophenone-borane complexes 

Geometries and structures: 

The carbonyl oxygen of acetophenone can complex to an electron-deficient boron atom of a 

borane. Selected geometric parameters of complexes 1k-20k are summarised in Table 3.4, and 

their molecular graphs are shown in Figs. 3.10 and 3.11. The notation of the complexes follows 

that of the boranes, with an added k to signify complexation to a ketone, acetophenone. 

Borane-acetophenone complexation will occurs through a B∙∙∙O interaction, with potentially 

different conformations. Firstly, the boron atom and the phenyl group can be anti (B-O-CC=O-CPh 

180°) or syn (B-O-CC=O-CPh 0°). Secondly, with the addition of substituents on boron, the R-B-

O-CC=O dihedral angle can describe different conformational arrangements. 

A conformational search was performed through a series of relaxed scans on 2k by twisting 

the B-O-CC=O-CPh and F-B-O-CC=O dihedral angles in 10° increments (Fig. 3.12). The torsions 

confirm that the global minimum of 2k is as given in Fig. 3.10. As the B-O-CC=O-CPh is twisted 

from 180° to 0° an increase in the B-O-C angle (125.3° to 139.4°, respectively) is observed. The 

distortion of the B-O-C angle towards a more linear geometry causes a small increase in 

energy
92

. Further difference in energy is most likely due to steric hindrance. A second conformer 

is located at a F-B-O-CC=O dihedral of 50° and is destabilized by approximately 0.5 kcal·mol
–1

. It 

exhibits a C-H···F interaction that is also present in the global minimum of 5k (Fig. 3.10), 

where it cannot be avoided.  
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Table 3.4: Selected geometric properties (distances in pm, dihedral angles and bond angles in °) 

in complexes 1k-20k, from PBE0/6-311++G(2d,p).
a
 

 B···O C=O
 

B···O=C-CPh  R-B-R 

1k 157.5 124.3 -179.87 339.4 

     

2k 159.2 124.3 180.0 342.2 

3k 155.9 124.6 180.0 337.8 

4k 154.8 124.7 180.0 336.4 

5k 164.3 124.0 180.0 343.5 

     

6k 161.9 123.7 -179.0 341.6 

7k 168.4 123.2 180.0 342.4 

8k 175.1 122.9 180.0 344.8 

     

9k 167.2 123.8 177.7 344.7 

10k 293.5 121.4 152.5 359.9 

11k 304.3 121.3 180.0 359.9 

     

12k 170.6 123.7 178.4 346.6 

13k 290.9 121.4 -153.9 359.9 

     

14k 336.9 121.2 -177.7 360.0 

15k 150.9 126.9 180.0 331.1 

16k 155.4 124.7 180.0 335.9 

17k 152.1 124.7 180.0 333.2 

     

18k 160.8 125.0 153.2 339.7 

 19k 157.4 124.7 -177.0 338.2 

20k 162.9 124.0 179.0 346.4 
a
 See Figs. 3.9 and 3.10 for structures. 
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Figure 3.10: Molecular graphs of substituted borane-acetophenone complexes 1k-17k, from 

PBE0/6-311++G(2d,p). Atoms are represented by large spheres: carbon (grey), hydrogen 

(white), oxygen (red), nitrogen (blue), boron (pink), fluorine (cyan), chlorine (lime green) and 

bromine (maroon). Bond critical points are indicated by small red spheres, ring critical points by 

small yellow spheres and cage critical points by small green spheres. 
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Figure 3.11: Molecular graphs of substituted borane-acetophenone complexes 18k-20k, from 

PBE0/6-311++G(2d,p). Atoms are represented by large spheres: carbon (grey), hydrogen 

(white), oxygen (red), nitrogen (blue), boron (pink), fluorine (cyan), chlorine (lime green) and 

bromine (maroon). Bond critical points are indicated by small red spheres, ring critical points by 

small yellow spheres and cage critical points by small green spheres. 

 

 

Figure 3.12: Relative energies for relaxed scans of dihedral torsions in a conformational search 

for the fluoroborane-acetophenone complex 2k. Torsion (in 10° increments) of the (top) B-O-

CC=O-CPh dihedral and (bottom) F-B-O-CC=O dihedral. Structures shown represent minima. 

Dashed line added using Gaussview software
93

. Atoms are represented by large spheres: carbon 

(grey), hydrogen (white), oxygen (red), fluorine (cyan) and boron (pink). From PBE0/6-

311++G(2d,p). 
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Table 3.4 allows a sorting into distinct sets of binding. The borane coordinates closely (B∙∙∙O 

distance below 180 pm) with acetophone in most complexes analyzed, causing the once trigonal 

planar boron geometry to become tetrahedral (as given through the sum of the three bond angles 

on boron, R-B-R, without considering B∙∙∙O). With the B∙∙∙O distance much longer than the 

standard standard single-bond length of 137 pm
94

, the coordinating bond is not a fully formed 

single bond. In contrast, very weak binding is observed in 10k (dimethoxyl), 11k (trimethoxyl), 

13k (dihydroxyl) and 14k (amino), with B∙∙∙O distances greater than 290 pm. These boranes 

remain trigonal planar, in accord with their high B 2pz occupancy (Table 3.2) and their 

congruently large -on-
2
 value (Table 3.3), and are clearly not to be considered electron-

deficient. Along with the geometry values above, the -on-
2
 value seems better suited for the 

sorting of borane complexes into the two sets of binding. For example, the trifluoroborane in 5k, 

if uncoordinated, possesses the same B 2pz value as the dihydroxylborane (13), however its 

boron atom still shows a tetrahedral environment, and the B∙∙∙O distance in 5k is still short, 

marking trifluoroborane as possessing an electron-deficient boron. This is well reflected in the 

smaller -on-
2
 value of 5 as compared to that of 13 (Table 3.3). 

Complexes 11k and 13k, despite their large B···O distances (292.7 pm and 306.9 pm 

respectively), maintain a C-H···O interaction to the methyl group on acetophenone (Fig. 3.13). 

As demonstrated through the fact that complexes for the electron-rich boranes 11 and 13 are 

located at all, these interactions (shown by black arrows), though weak, stabilize the complexes. 

In addition to the CCH3-H···O interaction, 13k demonstrates stabilizing C-H···H-C contacts 

between the methoxyl and methyl groups. Complexes 10k and 12k also show evidence of C-

H···O interactions. 
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Figure 3.13: Molecular graphs of acetophenone-borane complexes 11k and 13k, highlighting 

the weak interactions (arrows indicate C-H···O). Atoms are represented by large spheres: 

carbon (grey), hydrogen (white), oxygen (red) and boron (pink). Bond critical points are 

indicated by small red spheres, ring critical points by small yellow spheres and a cage critical 

point by a small green sphere. From PBE0/6-311++G(2d,p).  

 

Finally, the carbonyl oxygen in 17k seems to be more suitable for interaction with the boron 

atom in 17 than the oxygen atom of its nitro group, because Fig. 3.10 illustrates the displacement 

of the latter and the change in geometry of the nitro group from Fig. 3.4. 

 

Energies: 

The binding energies of the complexes as well as selected electronic properties are 

summarised in Table 3.5. For all complexes, the basis set superposition error (BSSE) calculated 

with PBE0/6-311++G(2d,p) ranges from 0.1 to 2.5 kcal·mol
–1

, while the zero-point vibrational 

energy ranges from 0.3 to 3.7 kcal·mol
–1

. As expected, the addition of the BSSE correction (and 

zero-point vibrational energies) yields weaker interaction energies but does not alter the relative 

interaction strengths in the acetophenone complexes. 
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The MP2 binding energies, though they can be higher or lower than those from PBE0, are in 

general good agreement, and the ordering of the binding energies remains mostly consistent. Due 

to their size, complexes 18k, 19k and 20k were not computed using MP2/6-311++G(2d,p). In 

addition, minima for complexes 10k, 11k and 13k with the boron atom bound to the carbonyl 

oxygen were not present using MP2/6-311++G(2d,p). The calculated binding energy of 12k 

using MP2/6-311++(2d,p) is drastically different to the one calculated with PBE0/6-

311++(2d,p). This is in part due to geometrical changes in the two optimized complexes. 

However, it is unclear at this time the exact nature of the large energy differences.  

 

Complexation:  

Bonding interactions between two atoms may be classified as shared or closed–shell, based 

on the values of ρBCP and 
2
ρBCP

78
. Generally, shared interactions, such as covalent bonds, are 

characterised by relatively large values of ρBCP (on the order of 10
–1

 e·Å–3
) and a negative value 

of 
2
ρBCP, while closed-shell interactions are characterised by a lower value of the electron 

density (on the order of 10
–1

 – 10
–2

 e·Å–3
) and a positive value of the 

2
ρBCP. 

The ρBCP and 
2
ρBCP values for the B···O interaction in complexes 1k-20k are reported in 

Table 3.5. All 
2
ρBCP values are positive, and thus all B···O interactions might be considered 

closed-shell, in accord with a dative nature, despite the large ρBCP values of the more tightly 

bound complexes. As already judged from the geometric changes, an electronic effect of a 

substituent on the boron atom is reflected in the electron density, and therefore strength, of the 

B···O interaction, and effects are additive as more groups on boron are introduced. The effect 

can be small, as on going from 2k to 5k, or dramatic (9k to 11k), according to the available -

electron donating capacity (here methyl versus methoxyl). 
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Table 3.5: Uncorrected and corrected binding energies (kcal·mol
–1

) and selected electronic 

properties (electron density in e·Å
–3

, Laplacian in e·Å
–5

) at the bond critical point of the B···O 

interaction in complexes 1k-20k, from PBE0/6-311++G(2d,p).
a,b

 

 Ebind
b,c

 Ebind
CC, d 

Ebind
CC+ZPVE, e 

qB BCP 
2
BCP 

1k 22.0(18.6) 21.6 17.9 1.861 0.702 13.62 

       

2k 13.9(11.2) 13.1 10.6 2.075 0.702 10.83 

3k 17.5(16.1) 16.6 13.9 1.933 0.768 13.32 

4k 19.1(18.1) 18.3 15.7 1.823 0.792 13.12 

5k 13.8(13.5) 12.1 10.7 2.428 0.668 5.89 

       

6k 13.7(14.0) 13.2 10.0 1.894 0.616 11.74 

7k 5.4(8.8) 4.9 2.2 1.921 0.519 9.07 

8k 1.3(6.9) 0.7 -1.7 1.943 0.444 6.66 

       

9k 2.7(4.0) 2.0 0.5 2.050 0.576 7.54 

10k 2.4 1.8 1.4 2.185 0.055 0.62 

11k 1.4 0.8 0.5 2.350 0.043 0.54 

       

12k 3.8(20.2) 3.1 1.1 2.047 0.532 6.42 

13k 2.6 2.1 1.6 2.195 0.057 0.64 

       

14k 0.5(1.7) 0.4 0.1 1.981 0.024 0.30 

15k 65.3(61.4) 64.6 60.9 1.991 0.908 14.08 

16k 28.0(25.8) 27.4 24.3 1.934 0.770 13.46 

17k 25.7(25.2) 24.8 22.3 1.976 0.848 14.75 

       

18k -4.2 -5.8 -6.6 2.281 0.714 7.64 

19k 12.4 9.9 8.4 1.994 0.751 11.35 

20k 10.4 9.0 8.1 2.375 0.680 6.94 
a
 See Figs. 3.9 and 3.10 for structures. 

b
 Values from MP2/6-311++G(2d,p) in parentheses. 

c
 

Uncorrected binding energy. 
d
 Including counterpoise correction. 

e
 Including counterpoise and 

zero-point vibrational energy corrections.  

 

The exponential dependence between BCP and distance has been reported, and it provides a 

measure of the strength of the interaction
29,43

. This relationship is once again, over a large range, 

observed for the B···O interaction in Figure 3.14a, where higher density values relate to shorter 

distances. The substantial gap in the two sets of data points further illustrates the two modes of 

binding (strong and weak interactions) observed from the B···O distance from Table 3.4. 
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Interestingly, it is unclear if the gap could be bridged through a judicious choice of substituents 

on the borane. Figure 3.14b, which evaluates whether the strength of the B···O interaction as 

given by its electron density can be related to the change in charge on boron upon complexation, 

demonstrates that the range in qB is the same for both sets of complexes, strongly bound or not. 

As the change in (B∙∙∙O) within a set is small, only the fact that two sets of complexes exist can 

be learned from the plot. With qB of the boranes instead of qB, a scatter plot is obtained (not 

shown). Overall, and not surprisingly, qB, which as a charge does not allow a distinction 

between - and -effects that give rise to its changes, is a poor choice for observing 

dependencies in these complexes. 

 

 

Figure 3.14: Structural and electronic relationships in borane-acetophenone complexes: a) 

expected exponential relation between BCP and distance
29,43

; b) scatter plot between BCP and the 

change in charge upon complexation, qB (borane minus borane-complex). 

 

In contrast to the failure of qB, the binding energy can be related to the B 2pz occupancy. 

Figure 3.15 shows that, as expected, an increase in B 2pz orbital occupancy results in a decrease 

b) a) 
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in binding. Thus, once the electron demand on boron is met through substitution, B···O 

complexation is prevented. 

 

 

Figure 3.15: Relationship between counterpoise-corrected binding energy in a set of borane-

acetophenone complexes and B 2pz occupancy for the corresponding set of boranes. Symbols are 

BH3 (●), mono-substituted (○), di-substituted (×) and tri-substituted () boranes. The y-error 

incorporated by dashed lines represents + 1 y of the fitted curve.  

 

While the B 2pz occupancy offers a somewhat satisfactory explanation of the changes in 

binding energy (Fig. 3.15), utilizing the ρ-on-
2
ρ values above B provides a slightly tighter fit 

and strengthens the viability of the here-derived methodology, and this holds for the relation with 

binding free energies as well (Fig 3.16). 

Some outliers warrant further analysis and are discussed here with their counterpoise-

corrected binding energies (Fig. 3.16 top). While 1k (●) falls just outside the y-error (dashed 

lines), its x-uncertainty places it within. 
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Figure 3.16: Relationship between binding (free) energies in borane-acetophenone complexes 

and ρ-on-
2
ρ values on boron in the corresponding set of boranes. Symbols are BH3 (●), mono-

substituted (○), di-substituted (×) and tri-substituted () boranes. The position of the “corrected” 

nitroborane density value from its restrained geometry is given by (●) (see text for details). x-

error bars represent the largest error (0.015 e·Å
–3

, from 17) identified in the determination of ρ-

on-
2
ρ values. y-error incorporated by dashed lines represented + 1 y of the fitted curve.  

 

As previously mentioned, the bent geometry of nitroborane (17, Fig. 3.17a) is not maintained 

after complexation (Fig 3.16c). As such, the B···O interaction in 17 results in a misleadingly 

large ρ-on-
2
ρ value. The more appropriate ρ-on-

2
ρ value of the restrained geometry (Fig. 

3.17b) falls almost exactly on the fitted trendline (●). 

The set of outliers belonging to 6k, 7k and 8k, i.e., the methyl-substitution series, follows a 

predictable pattern (Fig 3.18). The increasing substitution on the boron atom causes more 

crowding upon re-hybridization and results in a decrease (exponential digression) in the binding 

energy of the complexes. Figure 3.19 demonstrates that contacts between methyl substituents on 

● 
17k 

15k 
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borane and ketone moieties are only avoided for mono-substitution (6k); 7k and 8k exhibit C-

H∙∙∙H-C contacts, which, while still stabilizing, are repulsive (see S5 of Appendix A for the 

graphical definition of a stabilizing-repulsive interaction).  

 

 
Figure 3.17: Molecular graphs of the a) nitroborane (17) optimized geometry, b) nitroborane 

constrained geometry, and c) optimized nitroborane-acetophenone complex (17k), from PBE0/6-

311++G(2d,p). Atoms are represented by large spheres: carbon (grey), hydrogen (white), oxygen 

(red), nitrogen (blue) and boron (pink). Bond critical points are indicated by small red spheres, 

ring critical points by small yellow spheres.  

 

 
Figure 3.18: Relationship between counterpoise-corrected binding energy in methyl-substituted 

borane-acetophenone complexes 6k-8k and ρ-on-
2
ρ values on boron in the corresponding set of 

boranes. Symbols used are borane (●), methylborane (○), dimethylborane (×) and 

trimethylborane (). 

b) 

c) a) 



46 

 

 
Figure 3.19: Molecular graphs of methylborane-acetophenone complexes 6k-8k highlighting the 

weak interactions (arrows indicate H···H contacts). Atoms are represented by large spheres: 

carbon (grey), hydrogen (white), oxygen (red) and boron (pink). Bond critical points are 

indicated by small red spheres, ring critical points by small yellow spheres. From PBE0/6-

311++G(2d,p). 

 

Boranes with N and O substitution, such as BHOCH3N(CH3)2 or BCH3OCH3N(CH3)2, are 

unable to bind to acetophenone (and are therefore not included in Section 3.3.1). With their much 

higher ρ-on-
2
ρ values (0.281 e·Å–3

 and 0.306 e·Å–3
, respectively), it would seem that a ρ-on-


2
ρ cut-off value for binding to boron could be established. However, the introduction of the 

electron-withdrawing nitro group in 18 leads to 18k, despite the still higher ρ-on-
2
ρ value of 

0.422 e·Å–3
. An interpretation for this is currently unavailable.  

Finally, knowledge of the exact electron demand on boron in a borane can be beneficial to 

the experimental chemist. For example, in the CBS reduction of prochiral ketones, the crucial 

ketone complexation only proceeds upon prior addition of borane, and this is correctly attributed 

to the B=N character in the oxazaborolidine
95–97

. Scheme 3.1 shows the process for an 

unsubstituted oxazaborolidine catalyst and t-butyl methyl ketone, which will be discussed in 

detail in Chapter 4. 

From the point of view of the electron density, such a system can be readily analyzed and 

understood and, if necessary, modified through further substitution (e.g., on boron). From the 

above, it seems that substituted boranes with ρ-on-
2
ρ on boron of less than 0.19 e·Å–3

 bind and 



47 

 

those with greater values do not. With the participation of the nitrogen electron lone pairs, ρ-on-


2
ρ on boron in the oxazaborolidine is 0.346 e·Å–3

, a high value that precludes ketone 

complexation. The coordination of borane to the oxazaborolidine nitrogen atom causes this value 

to decrease to 0.194 e·Å–3
, a value for which, within error, complexation becomes possible. 

 

 

Scheme 3.1: Reaction scheme of a t-butyl methyl ketone reduction catalyzed by an unsubstituted 

oxazaborolidine catalyst using borane. 

 

3.4. Conclusions 

For a set of boranes with widely differing electron demand on boron, as dictated through the 

choice of substituents, NBO and NRT calculations corroborate Lewis structures that attempt to 

satisfy the electron demand on boron. As expected, -electron donating groups fill the empty B 

2pz orbital through resonance, and less effective hyperconjugative interactions are also 

demonstrated in cases where -electron donation is impossible. Decreasing the electron demand 

on boron through -electron donating groups decreases the strength of the B···O interaction in 

complexes between boranes and acetophenone and can lead to loss of complexing ability. 

The quantification of a binding cut-off was determined by evaluating the relation between the 

binding energy and the estimated -electron density within the B 2pz orbital. From an NBO 

analysis, substituted boranes with a B 2pz occupancy of less than 0.25 electrons bind 

acetophenone; from an electron density analysis, the cut-off is 0.19 e·Å–3
.  



48 

 

In the question on whether or not a ketone will bind to a borane a degree of quantification 

thus has been achieved; it remains to be seen if this holds for a range of different ketones and a 

wider selection of boranes. 
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Chapter 4.  

 

Origin of the enantioselectivity in the t-butyl methyl ketone reduction with a chiral 

oxazaborolidine catalyst 

 

4.1. Introduction 

A key task in the life sciences is the understanding of molecular chirality because it dictates 

life at the molecular level. All of life’s building blocks (proteins, enzymes, DNA, RNA) are 

chiral, and so are most substrates with which these macromolecules interact within our bodies. 

Most medicinal drugs nowadays are administered enantiomerically pure. While isolation of the 

desired enantiomer from a (racemic) mixture is often feasible, the challenge for the chemical 

community is its enantioselective synthesis, as recognized in the 1990 Nobel Prize in Chemistry 

to Corey as well as the 2001 Nobel Prize in Chemistry to Sharpless, Noyori and Knowles. Thus, 

providing the necessary chiral information through a chiral catalyst has become an important 

methodology for the formation of chirality from prochiral compounds
23,98,99

. Synthetic organic 

chemists are developing an ever larger number of reactions that proceed with high to very high 

enantioselectivities. Yet, the origin of the enantioselectivity from a prochiral compound is 

usually not understood, and it is one of the largely unexplored fields in computational organic 

chemistry. The approach to simply determine the transition state of lower free energy and then 

argue via this lower free energy is insufficient; rather, the interactions that lead to the energetic 

differentiation in the two transition states need to be explored if any useful insight for predictive 

purposes is to be gained. 
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As an example, in a keystone study for the field, Houk has speculated on such interactions in 

the enantioselective hetero Diels-Alder addition between a prochiral diene and a prochiral 

aldehyde under catalysis with a chiral catalyst
100

. The seminal experimental work by Rawal, 

using a diol (TADDOL) as a chiral solvating agent, demonstrated extraordinarily high 

enantioselectivities
101,102

. A coordinating hydrogen bond between the TADDOL catalyst and 

benzaldehyde, the first point of interaction, was determined from a crystal structure
103

. A second 

point of interaction, in the form of a C-H∙∙∙ interaction was determined by computational work, 

precluding free rotation of the aldehyde within the complex and leading to one of the carbonyl 

faces being hindered for attack by the diene
100

. This work followed two computational models 

that had recently appeared in the literature where ONIOM:PM3
104

 and molecular mechanics 

based docking methods
105,106

 had been used to study the TADDOL catalyzed reaction. Houk’s 

conclusions, for the second anchoring point, were attained based on the proximity of the 

aldehydic hydrogen to a naphthyl group on the TADDOL catalyst. While Houk states that the 

M06-2X method has been found to accurately compute weak dispersion type interactions
107

, 

their physical and electronic properties within the complex were never evaluated. Additionally, a 

more extensive conformational search of the complexes that lead to the hetero Diels-Alder 

product is lacking and therefore more work is needed to accurately investigate such a reaction 

and its source of facial selectivity. It is important to note that while Houk’s work may have 

certain shortcomings, the underlying notion offers ideas to consider when investigating other 

systems that may contain similar weak interactions to ensure they are not overlooked.  
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Scheme 4.1: CBS reduction of acetophenone using a chiral oxazaborolidine catalyst with borane 

in THF. (Redrawn from ref. 40) 

 

We are interested in applying these types of studies to other enantioselective reactions that 

involve other chiral catalysts. For example, the hydroboration of terpenoids has provided a range 

of chiral boranes that act as valuable chiral reducing agents
108–113

. One such chiral framework is 

the oxazaborolidine catalyst developed by Corey, Bakshi and Shibata (the CBS catalyst, after its 

developers)
95

. After extensive experimental evidence, a mechanism for the enantioselective 

reduction of prochiral ketones with borane catalyzed by the CBS oxazaborolidine catalyst was 

formulated
95,114–116

. According to the authors, this mechanism provides explanations for the 

regioselectivity (in case multiple carbonyl groups are available in the reactant), enantioselectivity 

(R configuration), rate enhancement and catalyst turnover of the reduction
40,95,114

. With respect to 

the enantioselectivity, though, the proposed mechanism only provides information on a single 

point of interaction, between the catalyst’s boron atom and the carbonyl oxygen. While this 

interaction is critical, it leaves unaddressed the question of rotational freedom of the ketone 

within the complex, a question that is at the heart of the observed enantioselectivity. 

Previous work by Nevalainen on the quantum chemical modeling of chiral catalysis provides 

preliminary work on mostly smaller modelled systems using ab initio calculations
96,97,117–133

. 

These systems range from simple boranamine-borane adducts to larger substituted (typically 

alkyl or aryl) CBS-borane structures. Additionally, Nevalainen studied the reduction of 
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formaldehyde, acetaldehyde, acetone as well as some prochiral ketones which were reported to 

have high enantiomeric excess
95

. In his work, Nevalainen confirmed Corey’s speculation that the 

formation of the catalyst-borane adduct was exothermic and that the adducts did indeed adopt a 

cis configuration upon complexation (with respect to the hydrogen on the asymmetric carbon of 

the catalyst framework) of BH3 with the catalyst in contrast to a trans configuration
40,96,134,135

. 

Additionally, various ketone orientations with B∙∙∙O connectivity were obtained, yet little 

importance was placed on the B-O-C-Rlarge torsion angle for the generation of additional 

complexes. Finally, a computational explanation for the dimeric aggregates of the 

oxazaborolidine catalysts was provided based on their speculation from previous NMR 

experiments
95

. In his studies, Nevalainen focused on the characterization of the intermediates 

rather than the transition states. 

A conflict between the Nevalainen assertion that ketone complexation was endothermic
121

 

and Corey’s statement that the complexation was highly exothermic
95

 brought upon the interest 

of Alagona and co-workers, who confirmed the endothermicity
136

. Based on accurate 

reproductions of experimental enantiomeric excess on the substituted catalyst, Alagona 

speculated that the CBS reduction could be used and exploited to predict stereoselectivity in 

reduction compounds not yet carried out experimentally
137

. However, once again there was no 

insight into a possible second site of anchoring that would “lock-in” the ketone for a favoured 

pre-orientation to yield the observed enantiomer.  

Certain experimental findings, such as a drop in enantioselectivity from 97 to 28 %ee when 

the diphenyl substituted CBS catalyst is replaced with one that possesses di(ortho-anisyl) 

substitution in the reduction of acetophenone
40

, raised our interest in pursuing the source of 
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enantioselectivity of the CBS reduction by investigating the weak interactions that lead to the 

differences in the transition state barriers.  

As our first step in this work, reported here, computational methods are used to investigate 

the pre-reaction complexes and transition states of the un-substituted CBS catalyst with t-butyl 

methyl ketone. Previously, the un-substituted catalyst has been studied by Li 

computationally
138,139

. Li established that while Nevalainen’s work supported Corey’s 

mechanism of the enantioselective reduction, several intermediate complexes, such as the 

catalyst-borane-ketone and catalyst-alkoxyborane adducts, were not well described
138

 and needed 

to be explored for a better understanding of the reaction process. While the work does not 

elucidate the source of facial selectivity of the reduction reaction, much structural information is 

provided as well as NBO
79,80

 (Natural Bond Orbital) results that proved to be an excellent 

starting point for this work. 

With the hydride transfer as the rate-limiting step, the reduction relies on the chiral catalyst-

borane adduct approaching the prochiral ketone from the preferred face. It thus becomes critical 

to establish, first, all reasonable ketone orientations within the complex. We will show that the 

often-assumed B···O=C complexation
40

, in fact, is disfavoured due to the reduced electron 

demand of the catalytic framework’s boron atom and leads to only one particular set of 

reasonable ketone orientations. 

 

4.2. Computational Details 

All calculations were performed using the Gaussian09 program
65

. Geometries were obtained 

using density-functional theory (DFT) using Becke’s 3-parameter exchange functional and the 

Lee-Yang-Parr correlation functional (B3LYP)
140–142

, the “parameter-free” hybrid DFT method 
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by Perdew, Burke and Ernzerhof (PBE0)
66–69

, and Head-Gordon’s long-range corrected hybrid 

functional with dispersion correction (B97X-D)
143

, all with the 6-31+G(2d,2p) basis set. 

Frequency analyses with the same model chemistries established the optimized geometries as 

being minima or first-order saddle points. Electronic and free energies are given in S1 of 

Appendix B. For a transition state, the connection to its corresponding pre-reaction complex was 

ascertained through an intrinsic reaction coordinate scan. In light of the involvement of weak 

interactions in the complexes, the B3LYP results were compared to those from PBE0, B97X-D 

and the second order Møller-Plesset (MP2) perturbation perturbation theory
70–74

. For this 

purpose, the basis set size was increased to 6-311++G(2d,p). Relaxed scans (energy profiles) 

were obtained for the B-N-B angle change in the catalyst-borane adducts in one-degree 

increments and the remaining geometry was allowed to fully optimize. The size of the basis set 

superposition error (BSSE) was evaluated using the counterpoise approach
75

. The tabulated 

BSSE correction energies of selected complexes can be found in S2 of Appendix B. 

Bonding interactions for each ketone complex and transition state were determined from 

computed electron densities, (r), using the program AIMAll
76

 within the Quantum Theory of 

Atoms in Molecules (QTAIM)
77,78

. Because of negligible differences between the computed (r) 

obtained from the different functionals used in this study, only the results from B3LYP/6-

31+G(2d,2p) are presented here. Critical points in the topology of the electron density map onto 

established chemical entities: e.g., the position of a nucleus is represented, as expected, by an 

electron density maximum. In a molecule at minimum energy geometry, a line of maximum 

electron density (a so-called bond path) between two nuclei represents a bonding interaction. It is 

thus possible to determine which atoms are bonded, within and between molecules. Properties at 

the lowest-density point, the so-called bond critical point (BCP), along the bond path allow a 
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characterization of the nature of the bonding interaction. A large value of the electron density 

(BCP) and a negative value of its Laplacian (the second derivative of the electron density, 


2
BCP) indicate a shared interaction (or covalent bond), whereas a small value in BCP and a 

positive 
2
BCP are representative of a closed-shell interaction (such as in dative and hydrogen 

bonds, van der Waals complexes). The network of all bond paths for a chemical system is termed 

the molecular graph. In the molecular graphs, bond critical points are shown by small red 

spheres; ring critical points, indicating structural ring features, by small yellow spheres. 

Atomic charges were determined using AIMAll and the natural bond orbital (NBO)
79,80

 

approach as implemented in Gaussian09. The NBO calculations were also used to validate the 

presence of -bonding within the catalyst framework. Additional natural resonance theory 

(NRT)
81–84

 evaluations were performed using NBO5.G
80,85

. Only the first one or two major 

resonance contributors are given; resonance structures with smaller contributions exhibit cleaved 

single bonds and were not considered further. 

 

4.3. Results and Discussion 

4.3.1. CBS Catalyst 

The C4 S-configured CBS catalyst framework consists of two fused five-membered rings 

(Fig. 4.1), a pyrrolidine and an oxazaborolidine with its O1–B2–N3 arrangement. The geometry 

of the unsubstituted CBS catalyst, with its relatively short B-N bond, has been described as a 

twisted chair
138

, and little further insight is gained here on merely geometrical grounds
117,137–139

. 
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Figure 4.1: The unsubstituted CBS catalyst with ring atoms numbered. 

 

 

According to an NBO analysis, and in agreement with the B=N formulation given earlier
95

, 

as well as from an earlier NBO interpretation
138

, the electron demand on boron with its formal 

electron sextet is satisfied by the lone pair of electrons on the adjacent nitrogen atom. This 

causes a substantial shortening of the N-B bond (142.9 pm from B3LYP/6-31+G(2d,2p)) from 

the calculated single-bond value of 149.2 pm (see Table 4.1 for this bond in the CBS-BH3 

adduct, which is in agreement with the standard single-bond length of approximately 150 pm
94

) 

and the appearance of a double bond reminiscent of that in borazine (distance in the crystal 

structure
144

 and calculated from B3LYP/6-31+G(2d,2p) is 142.9 pm). The N3 lone pair 

contributes 87.8% to the electron occupancy of the -bond, which again is comparable to the 

NBO finding for borazine (88.7%; see S3 and S4 of Appendix B). The finding (HF/6-31G(d)) of 

a ‘much shortened’ B-O bond
138

, though, is not reproduced from the here employed, larger 

model chemistry. The B-O bond length (137.6 pm from B3LYP/6-31+G(2d,2p)) is in full 

agreement with the standard single-bond length of 137 pm
94

. In accordance, from an NRT 

analysis, the B=N resonance with 73.6% vastly dominates the electronic structure of the CBS 

catalyst, with an additional mere 8.9% for the B=O description. The electron densities at the B-N 

and B-O bond critical points are discussed in the context of borane complexation (Section 4.3.2).  

Contrary to an earlier claim that the positive (NBO) charge on B2 of CBS leads to an easy 

complexation of the ketone oxygen atom
138

, the blocking of the formal vacancy on B2 by the N3 

lone pair should prevent the formation of a CBS-ketone adduct. This is indeed in agreement with 
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the fact that experimentally, for the diphenyl-substituted oxazaborolidine, enantiomeric excesses 

as high as 92% are observed in the reduction of t-butyl methyl ketone when the reducing BH3 is 

added slowly to a CBS-ketone mix
95

, presumably because a CBS-ketone adduct is not achieved 

in the absence of BH3 (and because the CBS-uncatalyzed reaction is slow
95

). In corroboration, 

and in analogy to the lack of a minimum along the B∙∙∙O approach path between acetone and an 

unsubstituted and unfused oxazaborolidine
136

, a CBS-ketone adduct with B∙∙∙O interaction was 

not obtained with the model chemistries chosen here. 

It is the proximity of N3 with its -electron donation capability that interferes with the 

formation of such a CBS-ketone adduct. As demonstrated, the N3 lone pair of electrons fill the 

empty 2pz orbital and thus satisfy the electron demand on boron. 

4.3.2. Catalyst-borane adducts 

According to 
11

B NMR spectroscopic results, the introduction of BH3 to the CBS catalyst 

leads to N3-BH3 adduct formation
95

. Representations of the optimized catalyst-borane adduct are 

shown in Fig. 4.2 as molecular graphs, and selected geometric parameters are given in Table 4.1. 

Complexation (free) energies are listed in Table 4.2. 

Table 4.1: Selected geometric parameters (distances in pm, angles in °) of catalyst-borane 

adducts
a
 from various model chemistries. 

 B3LYP
b
 PBE0

b
 B97X-D

b
 MP2

c


 CBS-BH3 CBS-dBH3 CBS-dBH3 CBS-BH3 CBS-dBH3 CBS-BH3 CBS-dBH3 

O1-B2 134.5 139.8 140.0 134.3 140.0 135.0 141.0 

B2-N3 149.2 154.9 155.0 149.0 154.5 149.5 155.5 

N3-BBH3 166.0 157.1 155.9 164.6 156.0 165.3 156.3 

        

O1-B2-N3 112.0 108.1 108.0 111.8 107.8 111.8 107.8 

B2-N3-BBH3 101.8 79.2 77.7 101.7 78.6 102.3 78.2 

        

O1-B2-N3-BBH3 105.8 114.1 114.0 105.3 114.2 103.7 114.6 

H-B2-N3-BBH3 -77.3 -101.6 -103.3 -78.0 -102.7 -78.9 -103.1 
a
 See Fig. 4.2 for structures. 

b
 6-31+G(2d,2p) basis set. 

c
 6-311++G(2d,p) basis set. 
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Table 4.2: Relative
a
 electronic and Gibbs free energies (kcal·mol

–1
) of catalyst-borane adducts.

b
  

 B3LYP
c
 PBE0

c
 B97X-D

c
 MP2

d
 

 E G E G E G E G 

CBS-BH3 -22.6 -8.2 N/A N/A -29.1 -14.5 -31.0 -17.0 

CBS-dBH3 -24.8 -9.2 -35.4 -19.8 -33.0 -17.4 -34.4 -18.9 
a
 With respect to the free reactants. 

b
 See Fig. 4.2 for structures. 

c
 6-31+G(2d,2p) basis set. 

d
 6-

311++G(2d,p) basis set. 

 

Figure 4.2 shows that the complexation of the CBS catalyst with BH3 leads to two 

arrangements, the more flexible ‘dangling’ conformation (CBS-BH3) and the lower-energy (by 

2.2 kcal·mol
–1

 in electronic energy, Table 4.2) conformation of diborane-like character (CBS-

dBH3) with its bridging hydrogen atom. In both cases, and in accord with previous work on the 

substituted
40,137

 and the unsubstituted
139

 catalyst, the adducts form by borane binding with N3 on 

the oxazaborolidine nitrogen’s -face (i.e., ‘under’ the catalyst). As the B-N-B angle increases 

on going from CBS-dBH3 to CBS-BH3, there are two further distinct geometrical changes: B2 

re-hybridizes causing the N-B-O-H moiety to become nearly planar (177.6°), and the pyrrolidine 

ring undergoes a small conformational change. 

 

 

Figure 4.2: Molecular graphs of catalyst-borane adducts, showing non-diborane-like character 

(CBS-BH3) and diborane-like character (CBS-dBH3), from B3LYP/6-31+G(2d,2p). Atoms are 

represented by large spheres: carbon (grey), hydrogen (white), oxygen (red), nitrogen (blue) and 

boron (pink). Bond critical points are indicated by small red spheres, ring critical points by small 

yellow spheres. 

CBS-BH3 CBS-dBH3 
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While both minima are located with B3LYP (Fig. 4.2) and B97X-D, as well as MP2, only 

the diborane-like CBS-dBH3 adduct is found with PBE0. In previous work, curiously, and based 

on an assessment of the out-of-plane distortion on boron B2, only the ‘dangling’ BH3 adduct was 

reported from Hartree-Fock theory for the unsubstituted and unfused oxazaborolidine
136

, as well 

as for the unsubstituted but pyrrolidine-fused CBS
138

 (the “CBS-BH3” of this work); the 

diborane-like adduct was located with B3LYP and MP2 only once polarization functions on 

heavy atoms were introduced into the basis set
136

. The presence of both species in equilibrium 

has not been reported. 

As the absence of CBS-BH3 with PBE0 was puzzling, a series of relaxed scans were 

performed by increasing the B2-N3-BBH3 bond angle starting from CBS-dBH3 (Fig. 4.3). The 

energy increases with the bond angle, revealing the relative amount of energy required to break 

the bond between the bridging hydride and B2 in the catalyst framework. The reaction 

coordinates for B3LYP (solid line) and B97X-D (dotted line) develop a plateau or saddle point 

(at 2.1 and 4.0 kcal·mol
–1

, respectively), and at around 102° this corresponds in energy to that of 

the respective optimized CBS-BH3 minimum (indicated by an ×). A relaxed scan using MP2/6-

311++G(2d,p) shows a pronounced minimum in this region (Fig. 4.3), supporting the B3LYP 

and B97X-D results. For further support, these two functionals were also tested using the larger 

6-311++G(2d,p) basis set, with fundamentally no different results (S5 of the supplementary 

information). In contrast, with PBE0, bond angle opening results in a steeper rise of the energy 

with the absence of a minimum around 102° (Fig. 4.3). With an increase in the size of the basis 

set from double zeta (6-31+G(2d,2p)) to triple zeta (6-311++G(2d,2p)), the same curve is 

observed (S5 of the supplementary material). Even by forcing the pyrrolidine ring to adopt a 

different conformation (half-chair instead of envelope, to prevent the observed conformational 
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changes), the results persists, and an offset curve with an adduct of slightly higher energy is 

produced (S5 in the supplementary information). From these scans, it would seem that PBE0 

treats the bridging hydrogen as much more effective in satisfying the electron demand on B2 

than is the case for the other two functionals and MP2. 

 

 
Figure 4.3: Energy profiles (relaxed scans, in kcal·mol

–1
) for the B-N-B angle change in the 

catalyst-borane adducts. B3LYP/6-31+G(2d,2p) (solid line), MP2/6-311++G(2d,p) (dashed line), 

B97X-D/6-31+G(2d,2p) (dotted line) and PBE0/6-31+G(2d,2p) (dash-dotted line). The three × 

points represent the optimized CBS-BH3 minima calculated with the respective model 

chemistries. The energies of the CBS-dBH3 complexes from each functional are set to relative 

zero; the B-N-B bond angle was increased by one-degree increments.  

 

Interestingly, the crystal structures of the substituted (diphenyl substitution on the 

oxazaborolidine ring and B-CH3 substituent) catalyst-borane adduct only show the dangling 

CBS-BH3 conformation
145,146

. The relative free energies of the CBS-BH3 and CBS-dBH3 of the 

substituted catalyst, using B3LYP/6-31+G(2d,2p), are approximately 1.4 kcal·mol
–1

 in favour of 

the diborane-like character, i.e., similar to the situation in the unsubstituted catalyst. An 
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alignment of the CBS-BH3 crystal structures with the B3LYP/6-31+G(2d,2p) optimized 

geometry is shown in Fig. 4.4. The CBS framework overlay, excluding hydrogen positions and 

substituents, shows a low RMS value of 0.082 Å, indicating that B3LYP is able to reproduce the 

geometries of these complexes with a high degree of accuracy. Crystal structures showing the 

diborane-like character have apparently not been reported. Based on the Boltzmann distribution 

and using the free energies obtained from B3LYP/6-31+G(2d,2p), in a room temperature 

equilibrium of CBS-dBH3 and CBS-BH3, the population ratio is 85:15 (91:9 for the substituted 

catalyst). Why, then, only the less stable CHS-BH3 arrangement is found in the crystal remains 

unknown. 

 
Figure 4.4: Alignment of the substituted CBS-BH3 geometry observed in the crystal

145,146
 

(green) with that of the optimized unsubstituted CBS-BH3 from B3LYP/6-31+G(2d,2p) 

(coloured by element). 

 

It is instructive to analyze the electronic structures of the two complexes from Fig. 4.2 as 

compared to that of the catalytic framework itself. From an NBO perspective, and in analogy to 

the B2=N description for CBS, CBS-BH3 shows a B2=O description, which could, in principle, 

thwart ketone complexation. In CBS, though, an NRT analysis reveals that both N3 and O1 

electron lone pairs donate to the deficient B2 atom, with a resonance structure description of 

73.6% (B=N) and 8.9% (B=O), respectively (Fig. 4.5). Accordingly, less energetic importance 



62 

 

must be assigned to the B=O interaction, and this holds for “B=O” in the CBS-BH3 adduct as 

well. Thus, while the B=O resonance with 76.8% dominates its electronic structure (Fig. 4.5), 

B∙∙∙O complexation to the ketone is now possible (see Section 4.3.3.1), rendering CBS-BH3 the 

reactive species. The relative importance of the “B=O” can also be seen from the NRT results for 

CBS-dBH3. As in CBS itself, the B=O description with 2.5% is small, whereas the diborane-like 

character is described through three resonance structures totaling 71.4% (Fig. 4.5, and S6 of 

Appendix B).  

 

 
Figure 4.5: NRT structures of CBS (left), CBS-BH3 (middle) and CBS-dBH3 (right) with their 

associated resonance weights in percent. For simplicity, only the lone pairs are represented and 

the formal charges have been omitted. (From B3LYP/6-31+G(2d,2p).) 

 

Table 4.3: Value of the electron density (e·Å
–3

) at the bond critical point of N3-B2 and B2-O1 

interactions of the catalyst and catalyst-borane adducts.
a
 Values in parentheses give the densities 

at the N3-BBH3 bond critical point. 

 B3LYP
b
 PBE0

b
 B97X-D

b
 MP2

c
 

 N-B B-O N-B B-O N-B B-O N-B B-O 

CBS 1.438 1.390 1.437 1.399 1.439 1.403 1.391 1.346 

         

CBS-BH3 
1.266 

(0.698) 
1.512 N/A N/A 

1.267 

(0.754) 
1.524 

1.228 

(0.726) 
1.463 

         

CBS-dBH3 
1.060 

(0.952) 
1.335 

1.053 

(0.978) 
1.325 

1.063 

(0.974) 
1.329 

1.025 

(0.951) 
1.276 

a
 See Figs. 4.1 and 4.2 for structures. 

b
 6-31+G(2d,2p) basis set. 

c
 6-311++G(2d,p) basis set. 
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These changes in bonding are also reflected in the electron density (Table 4.3). The value of 

the electron density at the N3-B2 bond critical point decreases upon addition of BH3 to N3. 

Without the N3 lone pair available, those on O1 donate to the empty 2pz orbital on B2 and an 

increase in electron density at the O1-B2 bond critical point is observed for CBS-BH3. 

 

4.3.3. Pre-reaction complexes 

4.3.3.1. B···O complexation 

Geometries:  

In a systematic search, involving changes in dihedral angles, to locate pre-reaction complexes 

that would lead to the two enantiomeric products, catalyst-borane-ketone (CBK) complexes 1-6 

with B···O interactions were identified. Their optimized geometries are shown in Fig. 4.6 and 

selected geometric parameters are given in Table 4.4. Figure 4.7 gives an overlay of 1-6 that 

illustrates the B···O complexation landscape. 

As expected, ketone complexation to the catalytic framework affects the carbonyl bond 

length, and the shortest C=O bond is found in the loosest (as given by its complexation distance 

B2-OC=O) complex, 6; the longest C=O bond in the tightest complex, 5. In fact, this B∙∙∙OC=O 

distance varies distinctly between 156.8 and 173.1 pm (Table 4.4), and, in line with the long-

distance cut-off in the visualization program, Fig. 4.6 only shows the B∙∙∙O interaction for 

complex 5, the complex with the shortest distance in the set (Table 4.4). The values for the 

remaining distances and bond angles in Table 4.4 change less noticeably as they involve the 

rather rigid oxazaborolidine ring. 
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Figure 4.6: Representations of B···O CBK complexes 1-6, from B3LYP/6-31+G(2d,2p). The 

dashed lines (added using Gaussview software
93

) indicate the carbonyl oxygen interaction with 

the catalyst framework. 

 

Table 4.4: Selected geometric parameters (distances in pm, angles in °) of B···O CBK 

complexes 1-6, from B3LYP/6-31+G(2d,2p). 

 1 2 3 4 5 6 

O1-B2 140.6 140.3 141.7 141.5 142.6 139.6 

B2-N3 157.3 156.6 156.3 158.4 159.0 156.1 

N3-BBH3 163.1 162.8 164.0 163.8 163.1 164.1 

B2-OC=O 165.7 166.7 165.2 163.6 156.8 173.1 

OC=O-CC=O 123.7 123.8 123.8 123.7 124.2 123.1 

       

O1-B2-N3 107.0 106.7 107.3 107.3 105.7 108.0 

B2-N3-BBH3 117.7 118.8 117.1 115.5 114.9 118.1 

       

O1-B2-N3-BBH3 134.7 150.7 128.5 102.0 98.1 132.3 

H-B2-N3-BBH3 -93.6 -77.0 -99.6 -127.6 -133.7 -92.3 

H-B2-OC=O-CC=O 20.9 25.4 -57.9 -133.5 -138.7 1.8 

B2-OC=O-CC=O-CtBu -179.0 -178.0 177.8 177.7 -175.7 -5.3 
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In contrast, large ranges are observed for the various torsion angles, and those for the ketone 

orientation, H-B2-OC=O-CC=O and B2-OC=O-CC=O-CtBu, are most important considering the 

experimentally observed outcome of the reduction. Thus, in complexes 1 and 2, the ketone 

presents its carbonyl Si-face to the catalytic hydride on the dangling BH3, allowing for eventual 

formation of the observed R configuration in the product. In contrast, complexes 4, 5 and 6 

expose the Re-face of the carbonyl to the bound borane, eventually leading to the unobserved (or 

very minor) S-configured enantiomer
40

. In complex 3, a catalytic hydride would lie in the 

carbonyl plane of the ketone, rendering it unreactive. For the reduction to occur, a re-orientation 

within the complex is required: a counter-clockwise rotation about H-B2-OC=O-CC=O leads to 

complexes 1 or 2, a clockwise rotation to complexes 4, 5 or 6. 

In order to illustrate the complexation landscape for B∙∙∙O complexation, Fig. 4.7 shows a 

superposition of complexes 1-6, with an RMS of 0.990 Å (determined from all atoms within the 

catalyst framework). The complexity observed in the ketone region is expected from the 

differences in torsion angles, but one further feature stands out. The fused pyrrolidine ring in 

complex 2, though 2 presents a ketone orientation similar to that in 1 (Fig. 4.6), possesses a 

different conformation (C7 of the envelope pointed inwards); so does complex 5. To highlight 

these differences further, the CBS-BH3 component was extracted from complexes 1-6, and all six 

fragments are presented together with the optimized CBS-BH3 adduct in Fig. 4.8. 
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Figure 4.7: Alignment of the catalytic framework of B···O CBK complexes 1-6, from 

B3LYP/6-31+G(2d,2p), illustrating the B···O complexation landscape. 

 

 

Figure 4.8: Relative energies (kcal·mol
–1

) for various “conformations” of the CBS-BH3 adduct, 

with that of the optimized B3LYP/6-31+G(2d,2p) geometry set to relative zero. A higher-energy 

conformation, identified with a prime on the number of the original complex, is isolated from its 

respective CBK complex 1-6, and its energy evaluated with the same model chemistry.  

 

Energies: 

The BSSE for B···O complex 1 (S2 of the supplementary information) was determined to be 

minor, around 1 kcal·mol
–1

 (depending on the basis set) for the treatment of CBS-BH3 and t-
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butyl methyl ketone as individual fragments, in agreement with previous work
136

 on a closely 

related complex exhibiting negligible counterpoise correction. Therefore the relative energies 

reported here are uncorrected. 

The relative (free) energies, reported with respect to the free reactants CBS and BH3, for 

complexes 1-6 are given in Table 4.5. With respect to the order of the relative energies, that of 

the relative free energy values remains the same. The complexation is endergonic, with a 

substantial range of approximately 7 kcal·mol
–1

 between 1 and 6. In contrast, the process may be 

just exergonic when PBE0 and B97X-D results are considered, yet the range remains. 

Complexes 1 and 2, whose major difference consists in the conformation of their pyrrolidine 

rings, are the most energetically favourable of the six B···O CBK complexes, which is a 

promising result with respect to the experimental outcome (R configuration) seeing that the Si-

face is presented to the catalytic hydride. 

 

Table 4.5: Relative
a
 electronic and Gibbs free energies (kcal·mol

–1
) of pre-reaction complexes 

1-6 with B···O interactions. 

 B3LYP
b
 PBE0

b
 B97X-D

b
 

 E G E G E G 

1 -22.3 6.6 -34.2 -4.9 -38.2 -7.5 

2 -21.7 7.8 -33.7 -3.9 -37.8 -7.2 

3 -20.1 9.2 -31.2 -2.5 -34.6 -4.3 

4 -19.9 9.8 -31.8 -2.2 -36.0 -3.7 

5 -19.2 10.8 -31.4 -1.5 -35.3 -3.1 

6 -15.6 13.3 -27.0 2.7 -31.6 -0.4 
 

a
 With respect to the free reactants. 

b
 6-31+G(2d,2p) basis set. 

 

Whereas there is a relation between complexation distance (B2-OC=O) and carbonyl bond 

length (Table 4.4), the complexation distance alone does not allow a ranking of the complexation 

energy (E in Table 4.5), and the tightest complex 5 does not distinguish itself as being either 
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the most or the least stabilized. Given the geometrical changes from Table 4.4, this is hardly 

surprising. The lengthening of the carbonyl bond, for example, ranging from 1.5 to 2.6 pm, 

increases the energies of the complexes by 1.6 to 2.3 kcal·mol
–1

, respectively (as determined 

from independent calculations on a C=O stretch in t-butyl methyl ketone).  

More importantly, though, the tightness of the complexation also influences the hybridization 

on B2 from trigonal planar to tetrahedral, of which one measure is given in Table 4.4 (H-B2-N3-

BBH3). Thus, the different ketone orientations in complexes 1-6, through their different B···O 

interactions, express different effects on the catalyst framework, and these can be evaluated 

energetically (Fig. 4.8). With the optimized CBS-BH3 as relative zero, 4’, which closely 

resembles the calculated CBS-BH3 in structure, safe for the change in hybridization of B2, has a 

deformation energy of 24 kcal·mol
–1

. Accordingly, the deformation energy attributed to this 

particular degree of rehybridization of B2 would be approximately 24 kcal·mol
–1

. Complexes 1, 

2, 3 and 6 all have weaker complexation (Table 4.5) and therefore lower deformation energies 

(Fig. 4.8), with 6 being the weakest. 

Complex 5 with the longest C=O bond length has the strongest complexation if judged by 

complexation distance (Table 4.4) and also possesses the largest deformation energy (Fig. 4.8), 

which is doubtlessly due in part to its higher degree of rehybridization. In addition, though, while 

2’ and 5’ have like pyrrolidine geometries, the envelope in 5’ is more pronounced. Because the 

oxazaborolidine ring in 5’ is also in an envelope conformation (Fig. 4.8), its C5 methylene 

hydrogens find themselves in proximity to those on C7 in the pyrrolidine ring. The overall effect 

of these conformational changes results in complex 5, while possessing the strongest 

complexation, not possessing the greatest complexation energy (Table 4.5). 
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Figure 4.9: Complexation profiles for CBS-(d)BH3 and subsequent CBK formation, with the 

reactants (ketone, CBS, BH3) at relative zero, from B3LYP/6-31+G(2d,2p). Relative a) free 

energy and b) electronic energy (kcal·mol
–1

).  

 

Part of Figure 4.9 illustrates the relative complexation (free) energies for the B···O 

complexes 1-6 and the pronounced decrease in entropy that is associated with the tight binding 

of the ketone. 

 

Electron densities: 

The molecular graphs for complexes 1-6 showing all interactions are given in Fig. 4.10. All 

three model chemistries are in good agreement, and therefore the following discussion is 

presented for the B3LYP functional. Selected electron density values for complexes 1-6 are 

summarized in Table 4.6. 

From Table 4.6, it can be seen that, even though complexes 1-6 derive from CBS-BH3, in 

each case the electron density in the immediate environment of B2, i.e., O1-B2 and B2-N3, 

resembles more that in the tetracoordinate CBS-dBH3 (Table 4.3). The entries also demonstrate 

that the electron density recovers the trends noted already in the geometries (Table 4.4). For 

example, complex 5, which possesses the shortest complexation distance in the set, shows the 

a) b) 
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highest electron density value at the corresponding bond critical point (B2-OC=O). The B···O 

interaction is of course the first and most obvious anchoring point for the ketone to the catalytic 

framework. 

 
Figure 4.10: Molecular graphs of pre-reaction complexes 1-6 from B3LYP/6-31+G(2d,2p). 

Atoms are represented by large spheres: carbon (grey), hydrogen (white), oxygen (red), nitrogen 

(blue) and boron (pink). Bond critical points are indicated by small red spheres, ring critical 

points by small yellow spheres, cage critical points (indicating cage features) by small green 

spheres. 
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Table 4.6: Value of the electron density (e·Å
–3

) at the bond critical point of selected interactions 

of B···O CBK complexes 1-6, from B3LYP/6-31+G(2d,2p). 

 1 2 3 4 5 6 

O1-B2 1.319 1.324 1.279 1.278 1.259 1.350 

B2-N3 1.071 1.084 1.100 1.047 1.033 1.105 

N3-BBH3 0.819 0.834 0.792 0.804 0.820 0.792 

B2-OC=O 0.611 0.599 0.630 0.635 0.746 0.493 

OC=O-CC=O 2.636 2.631 2.639 2.620 2.584 2.653 

 

The second anchoring point for the ketone, which prevents its rotation within the complex, 

can be recovered from the electron densities or, more accurately, from the molecular graphs (Fig. 

4.10). Anchoring the ketone in complexes 1 and 2 is an H∙∙∙H interaction between the partially 

negatively charged hydride on B2 of the catalytic framework and the partially positively charged 

protons of the methyl group on the ketone. While such interactions are often simply seen as 

“contact points” in crystallographic studies, QTAIM shows a path of maximum density of 0.071 

e·Å–3
 and 0.072 e·Å–3

, for 1 and 2 respectfully, between the two atoms and the presence of a 

bond critical point, and therefore a bonding interaction.  

In analogy, complexes 4 and 5 contain a Cmethyl-H∙∙∙O interaction (0.103 e·Å–3
 and 0.105 

e·Å–3
 for 4 and 5, respectively) with the catalyst framework in addition to the B∙∙∙O interaction. 

While it is unclear of the effects this interaction has on the catalyst framework, it is important to 

not a large change in O1-B2-N3-BBH3, for 4 and 5 compared to the other B···O pre-reaction 

complexes (Table 4.4). In 6, a Re-face attack will occur, but due to a significant difference in 

ketone orientation (Fig 4.10) the second anchoring points are two H∙∙∙H interactions (0.065 e·Å–3 
 

and 0.069 e·Å–3
) and not a C-H∙∙∙O interaction.  

To prevent the ketone to rotate freely in the catalytic complex, as this would lead to loss of 

enantioselectivity, it needs to be anchored through two interactions. In the B∙∙∙O complexes, the 

second anchoring point differs for the Si- and Re-face attacks. Whereas a ketone offering its Si-
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face is anchored through an H∙∙∙H interaction that results in a twisted chair six-membered ring, a 

ketone offering its Re-face prefers a C-H∙∙∙O anchoring interaction to the catalyst framework that 

results in a boat-like six-membered ring. 

 

4.3.3.2. C-H···O complexation 

Geometries: 

The systematic search for B···O complexation referred to in Section 4.3.3.1, involving 

changes in dihedral angles, also resulted in unexpectedly large movements of the ketone during 

the optimization that produced C-H···O complexes 7-15. The optimized geometries of these are 

shown in Fig. 4.11, and Fig. 4.12 gives an overlay of 7-15 that illustrates part of the C-H···O 

complexation landscape. An extensive search to locate further complexes was not conducted. 

Figure 4.12, in particular, illustrates two regions of complexation for the ketone, and because 

the reactive BH3 is found “below” the chiral framework while the ketone in complexes 13-15 is 

found “above”, an intra-complex reaction is precluded. As reactions between complexes are not 

considered in this study, 13-15 are excluded from further analysis, and Table 4.7 presents 

selected geometric parameters for complexes 7-12 only. 

The dashed lines in Fig. 4.11 identify the interactions between the carbonyl oxygen and the 

methylene hydrogens on the catalyst framework. These, in comparison to the B∙∙∙O interaction in 

1-6, weaker interactions in 7-12 do not induce large changes in the geometries of either their 

uncomplexed, constituent CBS-BH3 or ketone. In particular, the large conformational changes 

observed in the CBS moiety upon B···O complexation (Fig. 4.7) are absent for C-H···O 

complexation (Fig. 4.12), and Table 4.7 is invariant in the C=O bond length (which is shortened 

from that in 1 and 2 by about 2 pm, Table 4.4). 



73 

 

 
Figure 4.11: Representations of C-H···O CBK complexes 7-15, from B3LYP/6-31+G(2d,2p). 

Bonds to the bridged hydrogen atom in 11 and 12 were not given in the Gaussview software and 

were not added manually. The dashed lines (added using Gaussview software
93

) indicate the 

carbonyl oxygen interaction with the catalyst framework. 

 

As can be seen from Fig. 4.11, complexes 11 and 12, in contrast to 7-10, possess the 

diborane-like character of CBS-dBH3. Keeping in mind that, with B3LYP (and B97X-D and 

MP2) both CBS-BH3 and CBS-dBH3 were located, the fact that both types can be found for the 

larger CBK complexes is therefore not surprising. As noted with the catalyst-borane adducts 
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themselves (Section 4.3.2), CBS-BH3 was not located by PBE0, and this is again reflected in the 

larger CBK complexes. 

 

 

Figure 4.12: Alignment of the catalytic framework of C-H···O CBK complexes 7-15, from 

B3LYP/6-31+G(2d,2p), illustrating part of the C-H···O complexation landscape. 

 

Table 4.7: Selected geometric parameters (distances in pm, angles in °) of C-H···O CBK 

complexes 7-12, from B3LYP/6-31+G(2d,2p). 

 7 8 9 10 11 12 

O1-B2 134.5 134.6 134.2 134.3 139.6 139.7 

B2-N3 149.3 149.4 149.4 149.3 154.5 154.6 

N3-BBH3 165.3 165.5 165.3 165.4 157.3 157.2 

OC=O-CC=O 121.6 121.6 121.7 121.6 121.6 121.6 

       

O1-B2-N3 112.1 112.0 112.2 112.1 108.6 108.6 

B2-N3-BBH3 101.8 101.5 103.2 102.5 79.2 79.2 

       

O1-B2-N3-BBH3 105.7 104.9 106.7 106.0 113.1 113.1 

H-B2-N3-BBH3 -77.2 -77.5 -75.8 -76.7 -101.3 -101.5 
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Energies: 

The BSSE correction was assessed for the C-H···O complexes 10 and 12 and was determined 

to be even smaller (0.3 to 0.5 kcal·mol
–1

, respectively) than that for B···O complexation (S2 of 

the supplementary information) and therefore negligible. 

 

Table 4.8: Relative
a
 electronic and Gibbs free energies (kcal·mol

–1
) of pre-reaction complexes 

7-15 with C-H···O interactions. 

 B3LYP
b
 PBE0

b
 B97X-D

b
 

 E G E G E G 

7 -25.3 -1.0 -39.0 -13.8 -41.9 -13.3 

8 -24.9 -1.5 -37.7 -13.0 -36.9 -10.0 

9 -26.0 -2.4 -39.1 -13.4 -38.3 -10.5 

10 -25.6 -2.4 –
c
 –

c
 -38.1 -11.9 

11 -27.5 -2.8 -39.1 -13.4 -42.2 -12.4 

12 -29.8 -2.6 -39.0 -13.8 -41.9 -13.3 

       

13 -25.4 -1.7 -38.3 -13.3 -37.3 -9.0 

14 -25.6 -1.7 -39.1 -12.8 -38.2 -10.5 

15 -25.1 -2.2 -38.8 -12.8 -42.0 -13.5 
 

a
 With respect to the free reactants. 

b
 6-31+G(2d,2p) basis set. 

c
 A minimum was not found. 

 

The relative (free) energies for complexes 7-15 are given in Table 4.8. In contrast to Table 

4.5 for 1-6, and as a direct result from the lack of deformation upon complex formation, all 

complexation free energies are negative. As seen for 1-6 (Table 4.5), the degree of binding for 7-

15 changes with the functional employed, yet the relative order remains the same. A comparison 

of the B3LYP values with those from Table 4.5 for complexes 1-6 reveals a smaller range of 

complexation energies. Whereas the electronic and free energies for 1-6 are spread over a range 

of 6.7 kcal·mol
–1

, 7-15 only span 4.9 kcal·mol
–1

 in electronic and 1.8 kcal·mol
–1

 in free energy. 

These numbers are shown graphically in Fig. 4.9 and agree well with the lack of change in 

geometry upon formation of 7-15 (or 7-12 as given in Table 4.7). Figure 4.9 also shows that 
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these C-H···O complexes are lower in (free) energy than their B···O counterparts, and the gap 

between the two sets is 7.6 kcal·mol
–1

 (free energy, Fig. 4.9a) or 2.6 kcal·mol
–1

 (electronic 

energy, Fig. 4.9b). Thus, the entropy contribution to the looser binding of the ketone in 7-15 is 

much less than that in the tighter bound B···O complexes 1-6. 

 

Electron densities: 

With only small changes to the catalyst framework geometry, changes in the electron density 

are expected to be small as well. The salient electron density values for complexes 7-12 are 

summarized in Table 4.9, and the molecular graphs of 7-15 are shown in Fig. 4.13. All three 

model chemistries are in good agreement, and therefore the following is presented for the 

B3LYP functional.  

 

Table 4.9: Value (e·Å
–3

) of the electron density at the bond critical point of selected interactions 

of C-H···O CBK complexes 7-12, from B3LYP/6-31+G(2d,2p). 

 7 8 9 10 11 12 

O1-B2 1.512 1.510 1.526 1.520 1.340 1.339 

B2-N3 1.268 1.263 1.262 1.265 1.074 1.073 

N3-BBH3 0.750 0.746 0.751 0.747 0.954 0.955 

OC=O-CC=O 2.812 2.814 2.808 2.811 2.812 2.813 

 

Judged against complexes 1-6 (Table 4.6), Table 4.9 shows a substantial increase in electron 

density at the O1-B2 bond critical point for 7-10 with their tricoordinate B2 atom. This situation 

is similar to that in CBS-BH3 (Fig. 4.2 and Table 4.3), and a B2=O1 resonance contribution can 

be expected in 7-10. Complexes 11 and 12, on the other hand, with their tetracoordinate B2, 

resemble CBS-dBH3 and 1-6 in this respect. The remaining electron density values in Table 4.9 
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are unremarkable and reminiscent of the CBS-BH3 and CBS-dBH3 values as well. Clearly, the 

electronic influence of the ketones in the C-H···O complexes is minimal (Fig 4.13).  

 

 
Figure 4.13: Molecular graphs of pre-reaction complexes 7-15 from B3LYP/6-31+G(2d,2p). 

Atoms are represented by large spheres: carbon (grey), hydrogen (white), oxygen (red), nitrogen 

(blue) and boron (pink). Bond critical points are indicated by small red spheres, ring critical 

points by small yellow spheres, cage critical points (indicating cage features) by small green 

spheres. 
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4.3.4. Reaction pathways (Transition States) 

Based on experimental results, it has been established that the Si-face of the ketone should be 

the preferred face of attack in order to give the R-configured product in excess
40,95

. As the 

reaction is catalyzed by the CBS framework and to put the required activation energies into 

perspective, the uncatalyzed reaction was studied first with the here-employed model 

chemistries. In the following, the uncatalyzed reaction up to its transition state will be presented, 

followed by the catalyzed reaction.  

 

4.3.4.1. Uncatalyzed reaction 

The optimized geometries for the un-catalyzed reaction (we chose t-butyl methyl ketone plus 

BH3) are shown in Fig. 4.14, and total and free energies can be found in the supplementary 

material (S1). Each stationary point (pre-reaction complex, transition state, product) was 

optimized with all three functionals; the IRC calculation to validate the transition state connected 

to the correct pre-reaction complex and borinate product was only performed with B3LYP. 

Due to the fact that both the ketone and BH3 are achiral, product formation would be 

racemic, and only the transition state for the Si-face attack was calculated and is shown in Fig. 

4.14. The IRC path for the un-catalyzed reaction shows a shoulder in both the forward and 

reverse path from the transition state. These shoulders are due to conformational changes: the 

borane is moving from within the carbonyl plane of the pre-reaction complex (given as E 

relative zero) to being out-of-plane in the transition state and finally falling back into the former 

carbonyl plane in the borinate product. The calculated transition state free energy for the 

uncatalyzed reaction with respect to the reactants is 12.5 kcal·mol
–1

 (B3LYP), 6.2 kcal·mol
–1

 

(PBE0) and 8.5 kcal·mol
–1

 (B97X-D). The binding free energy of the pre-reaction complex 
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from the ketone and BH3 is 32.4 kcal·mol
–1

 (B3LYP), 8.5 kcal·mol
–1

 (PBE0) and 6.4 kcal·mol
–1

 

(B97X-D), i.e., the complexation is exergonic. Thus, from the associated pre-reaction complex, 

the barrier (activation free energy) increases to 44.9 kcal·mol
–1

 (B3LYP), 14.7 kcal·mol
–1

 

(PBE0) and 14.9 kcal·mol
–1

 (B97X-D).  

 

 
Figure 4.14: Intrinsic reaction coordinate for the uncatalyzed reduction of t-butyl methyl ketone 

by BH3, B3LYP/6-31+G(2d,2p). The points of inflection discussed (see text) are indicated with 

arrows. 

 

Obviously, the activation free energies obtained vary with the functional, but even for the 

smaller barriers, at room temperature, the uncatalyzed reduction would be very slow. Even an 

unfused, achiral oxazaborolidine in which the framework-boron B2 is unsubstituted greatly 

increases the rate of reduction of acetophenone at room temperature
95

. 
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4.3.4.2. Catalyzed reaction 

The catalyzed reaction, to achieve enantioselectivity, requires the ketone, BH3 and the chiral 

CBS framework. In Section 4.3.3, the various ways in which these three components can 

combine were presented, specifically, reaction can occur from B∙∙∙O and from C-H∙∙∙O 

complexes. In the following, reaction barriers (Table 4.10 and Fig. 4.15) are discussed and then 

the reactions are analyzed by type: Pathway 1 describes the reaction of a Si-face attack from 

B∙∙∙O pre-reaction complexes 1 and 2, through TS1 (Fig. 4.16); Pathway 2 the reaction of a Re-

face attack from B∙∙∙O pre-reaction complexes 4, 5 and 6, through TS2, TS3 and TS4, 

respectively (Fig. 4.17); and Pathway 3 the Re-face and Si-face attacks from two C-H∙∙∙O pre-

reaction complexes, 11 and 12, through TS5 and TS6, respectively (Fig. 4.18). TS7, which 

derives from B∙∙∙O complex 3, is related to the uncatalyzed reaction in that the C=O∙∙∙B2-H 

hydride is transferred, exhibits reaction barriers comparable to that of the uncatalyzed reaction, 

and is therefore only included in Table 4.10 but not analyzed further (the molecular graph is 

presented in S7 of Appendix B). 

All three functionals are in qualitative agreement, and therefore more detailed results will be 

presented from the B3LYP functional. 

The reactions barriers in Table 4.10 are presented with respect to the free reactants. Because 

BH3 complexation to CBS in a highly exothermic event (more than 20 kcal·mol
–1

 from B3LYP, 

Table 4.2 and Fig. 4.9b), the activation energies presented for TS1-TS4 are in fact (still) 

negative. The large entropy loss upon formation of complexes 1-6 (Fig. 4.9a and Fig. 4.15) leads 

to positive activation free energies from B3LYP. In accord with these transition states 

representing catalyzed reactions, the barrier on going from, e.g., pre-reaction complex 1 to TS1 

is only 2.8 kcal·mol
–1

 (B3LYP), compared to 44.9 kcal·mol
–1

 for the uncatalyzed reaction (i.e., 
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lacking the CBS unit, Section 4.3.4.1). This, of course, is in part due to the lengthened, and 

therefore activated,
147

 C=O bond of the ketone in complex 1 and the more favourable geometry 

for hydride transfer from the dangling BH3. In the uncatalyzed reaction, as in TS7 from complex 

3, hydride transfer involves an energetically unfavourable 4-membered ring transition state. 

 

Table 4.10: Relative
a
 electronic and Gibbs free energies (kcal·mol

–1
) of transition states TS1-

TS7. 

 B3LYP
b
 PBE0

b
 B97X-D

b
 

 E G E G E G 

TS1 -19.4 11.7 -32.8 -1.8 -36.8 -4.5 

       

TS2 -15.0 15.8 -28.6 2.3 -32.0 0.6 

TS3 -16.3 14.8 -29.7 1.5 -32.8 -0.7 

TS4 -13.5 17.8 -26.7 4.6 -31.0 2.0 

       

TS5 29.6 58.4 17.4 46.4 13.8 43.5 

TS6 29.8 58.7 17.7 46.7 14.0 44.7 

       

TS7
c
 6.5 35.9 -9.2 19.9 -11.5 18.7 

 

a
 With respect to the three reactants (CBS, BH3, ketone). 

b
 6-31+G(2d,2p) basis set. 

c
 The 

hydride of the catalytic framework (B2-H) is transferred. 

 

Whereas Table 4.10, with entries TS1-TS4 and TS7, considers all B∙∙∙O complexes 1-6, C-

H∙∙∙O complexes 7-12 are only represented through two transition states, TS5 and TS6, from 11 

and 12, respectively. The carbonyl carbon in 7 and 8 is more than 400 pm distant from the 

reactive borane, precluding hydride transfer within the complex; 9 and 10 cannot exist for the 

experimentally employed C5-diphenyl-substituted CBS. All four were thus discarded. Even 

though the C-H∙∙∙O pre-reaction complexes 11 and 12 are lower in energy than the B∙∙∙O 

complexes 1-6, their respective transition states are enormously higher in (free) energy, and 

Pathway 3 is implausible at room temperature. In Fig. 4.9a, the already substantial gap in free 

energy between the two sets of complexes appears relatively small in light of the gap between 
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the transition states (6.1 kcal·mol
–1

 vs. 40.6 kcal·mol
–1

, respectively); the extremely large 

difference in activation free energies is currently not understood (Fig 4.15, see S8 and S9 of 

Appendix B results of all three functionals). 

 

 

Figure 4.15: t-Butyl methyl ketone reduction reaction profile from reactants (ketone, CBS, BH3) 

at relative zero to the rate limiting step: the hydride transfer transition state. Relative free 

energies (kcal·mol
–1

) with the three reactants at relative zero, from B3LYP/6-31+G(2d,2p). 

 

The rate constants calculated from the free energy barriers are given in Table 4.11. 

Considered were, following Fig. 4.15, the largest possible barrier (that from CBS-BH3 or CBS-

dBH3 plus the free ketone), given as k1, and the barrier from the free reactants (CBS, BH3, 

ketone), given as k2. The relative rates clearly show that Pathway 1 is vastly favoured 

irrespective of whether k1 or k2 are chosen; it is this pathway that, through TS1, leads to the 

experimentally observed major enantiomer. Pathway 2 leads to the experimentally observed 

(very) minor enantiomer. The rates associated with TS1 and any Pathway 2 transition state (TS2-

TS4) produce a ratio (k1/kP1 or k2/kP1) between 99 % and 100 % with all three functionals which 
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matches the experimental enantiomeric excess (97 %) of this reaction using the diphenyl 

substituted CBS catalyst. 

 

Table 4.11: Calculated rate constants k (s
–1

) and relative rates k/kP1 for the hydride transfer 

reaction, using the 6-31+G(2d,2p) basis set. 

  B3LYP 

  k1 k1/kP1
a
 k2

b
 k2/P1

c
 

Pathway 1 TS1 1.58∙10
-02d

 1.00 1.63∙10
+04

 1.00 

      

Pathway 2 TS2 1.56∙10
-05d

 0.00 1.61∙10
+01

 0.00 

 TS3 8.42∙10
-05d

 0.01 8.69∙10
+01

 0.01 

 TS4 5.31∙10
-07d

 0.00 5.48∙10
-01

 0.00 

      

Pathway 3 TS5 1.65∙10
-37e

 0.00 9.20∙10
-31

 0.00 

 TS6 9.93∙10
-38e 

0.00 5.55∙10
-31

 0.00 

  PBE0 

  k1 k1/kP1
a
 k2

b
 k2/P1

c
 

Pathway 1 TS1 3.91∙10
-01e

 1.00 1.30∙10
+14

 1.00 

      

Pathway 2 TS2 1.49∙10
-03e

 0.00 4.93∙10
+11

 0.00 

 TS3 7.11∙10
-0.5e

 0.00 1.28∙10
+11

 0.00 

 TS4 9.37∙10
-06e

 0.00 2.63∙10
+09

 0.00 

      

Pathway 3 TS5 2.08∙10
-36e

 0.00 5.81∙10
-22

 0.00 

 TS6 1.25∙10
-36e 

0.00 3.50∙10
-22

 0.00 

  B97X-D 

  k1 k1/kP1
a
 k2

b
 k2/P1

c
 

Pathway 1 TS1 2.88∙10
+05d

 1.00 1.24∙10
+16

 1.00 

      

Pathway 2 TS2 4.70∙10
+02d

 0.00 2.02∙10
+13

 0.00 

 TS3 5.24∙10
+01d

 0.00 2.25∙10
+12

 0.00 

 TS4 5.83∙10
+00d

 0.00 2.12∙10
+11

 0.00 

      

Pathway 3 TS5 1.35∙10
-32e

 0.00 7.78∙10
-20

 0.00 

 TS6 1.78∙10
-33e 

0.00 1.03∙10
-20

 0.00 
a 

Relative rate referenced to that for Pathway 1. 
b
 Calculated from the reactants (sum of free 

energies for CBS, BH3, ketone). 
c
 Relative rate referenced to that for Pathway 1. 

d
 Calculated 

from the sum of free energies for the CBS-BH3 complex and the ketone. 
e
 Calculated from the 

sum of free energies for the CBS-dBH3 complex and the ketone. 
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4.3.4.2.1. Pathway 1. B···O complexation – Si-face attack 

With the reactive BH3 group “under” the CBS framework, in order for the Si-face attack on 

the ketone to occur, the ketone must approach the catalyst-borane adduct with the t-butyl group 

under the catalyst framework. For the transition state to reached, the CBK complex tightens, 

bringing the sp
2
 carbon closer to one of the BH3 hydrides. This requires a rotation around the N3-

BBH3 bond and is accompanied by a slight change in catalyst framework conformation. 

 

Table 4.12: QTAIM oxygen charge (au) and electron density (e·Å
–3

) at the bond critical point of 

selected interactions of transition states TS1-TS6, from B3LYP/6-31+G(2d,2p). 

 qO OC=O-CC=O BBH2-H CC=O-H H···H C-H···O1 

TS1 -1.244 2.532 0.986 0.253 0.078  

       

TS2 -1.263 2.477 0.976 0.275  0.122 

TS3 -1.261 2.490 0.973 0.291  0.118 

TS4 -1.246 2.525 0.993 0.234 0.093  

       

TS5 -1.200 2.216 0.410 1.423   

TS6 -1.198 2.218 0.413 1.421   

 

Figure 4.16 depicts this Pathway 1 for pre-reaction complexes 1 and 2. The two complexes 

are rather similar in geometry (Table 4.4), with the main differences localized within the 

pyrrolidine ring, and it proved impossible to located different transition states for each. Complex 

2, being slightly higher in energy (Table 4.5), exhibits the larger rate constant and was used for 

the Pathway 1 rates. As expected, in TS1, the molecular graph shows the hydride being 

transferred (Fig. 4.15), with interactions from the hydride to both boron and carbon atoms. As 

would be expected, formation of the transition state is also accompanied by a further decrease in 

electron density at the carbonyl bond critical point (Table 4.6 and Table 4.12 and an increase in 

charge, q, on the carbonyl oxygen (QTAIM qO: –1.196 au in 1 and –1.198 au in 2 to –1.244 au 

in TS1). This pathway depicts an early transition state, which is substantiated by the decrease in 
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B-H density and in the forming of the C-H bond (a fully formed methyl C-H bond of the 

secondary alcohol has a  value of 1.908 e·Å–3
 using B3LYP/6-31+G(2d,2p)) as well as the 

largely sp
2
 character of the carbonyl carbon as given through the sum of the three bond angles on 

carbon, R-C-R, without considering the newly forming C-H (357.2°). Importantly, while these 

changes occur as the reaction progresses, the transition state maintains the H∙∙∙H interaction 

between methyl proton and B2 hydride already present in (1 and 2).  

 
Figure 4.16: Molecular graphs for Pathway 1, leading to the experimentally observed 

enantiomer: pre-reaction complexes 1 and 2 and transition state TS1, from B3LYP/6-

31+G(2d,2p). See text for the two conformations of the pre-reaction complex. 
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4.3.4.2.2. Pathway 2. B···O complexation – Re-face attack 

In order for the Re-face attack to occur, the ketone must approach the catalyst-borane adduct 

with the t-butyl group away from the catalyst framework, limiting steric interference from the 

bulky group. Overall, the changes observed in going from a pre-reaction complex to its transition 

state are similar to those for Pathway 1. Again the CBK complex tightens, bringing the sp
2
 

carbon closer to one of the BH3 hydrides. A slight change in the conformation of the catalyst 

framework arises as well as a rotation about the N3-BBH3 bond. 

Figure 4.17 depicts this Pathway 2 for pre-reaction complexes 4, 5 and 6. In contrast to 

Pathway 1, each complex is associated with its discreet transition state (TS2, TS3 and TS4, 

respectively). Changes in geometry between TS2 and TS3 are largely restricted to the catalyst 

framework; TS4 differs in that its ketone orientation follows that in 6 with its close-to-zero H-

B2-OC=O-CC=O dihedral (Table 4.4), rather than the transoid conformation in 4 and 5. The 

molecular graphs of the three transitions states again display the hydride being transferred from 

BH3 to the carbonyl carbon. Just like in Pathway 1, a decrease in the electron density at the 

carbonyl bond critical point and an increase in charge on its oxygen atom are observed (Table 

4.12). These pathways also depicts an early transition state which is substantiated by the decrease 

in B-H density (approximately 1.151 e·Å–3
 in pre-reaction complexes) and in the forming of the 

C-H bond. However, with a somewhat greater density decrease at the B-H bond critical point, the 

transition states of Pathway 2, TS2, TS3, and TS4, have progressed slightly further in the 

reaction than TS1. This can also be seen with a slightly further decrease in the sum of the three 

bond angles on carbon, R-C-R, without considering the newly forming C-H (TS2 356.4°; TS3 

356.1°; TS4 356.9°). Finally, as was found for TS1, TS2 and TS3 maintain the Cmethyl-H∙∙∙O 

interaction (Table 4.12) with the catalyst framework already present in 4 and 5, and TS4 
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maintains one of the two proton-hydride interactions from 6. The Re-face attacks are slower than 

the Si-face attacks due to the greater displacement necessary to obtain the transition state. As 

previously mentioned (Section 4.3.4.2), TS7 reduces the carbonyl by the creation of an 

unfavourable 4-memembered ring. While it does undergo a Re-face attack, the reaction barrier is 

too high and so the H on the catalyst framework is an un-reactive hydride.  
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Figure 4.17: Molecular graphs for Pathway 2, leading to the experimentally unobserved 

enantiomer: pre-reaction complexes 4, 5 and 6 and their respective transition states TS2-TS4, 

from B3LYP/6-31+G(2d,2p). Cage critical points, indicating structural cage features, are shown 

by small green spheres. 
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4.3.4.2.3. Pathway 3. C-H···O complexation 

For Pathway 3, C-H∙∙∙O pre-reaction complexes were evaluated, and both Si- and Re-face 

attacks were considered (Fig. 4.18), although with activation barriers greater than 60 kcal·mol
–1

 

that translate into rate constants on the order of 10
–33

 s
–1

, this pathway is unlikely to occur. 

 

 
Figure 4.18: Molecular graphs for Pathway 3: pre-reaction complex 11 (12) and corresponding 

TS5 (TS6) (leading to the experimentally (un)observed enantiomer), from B3LYP/6-

31+G(2d,2p). 
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In contrast with Pathways 1 and 2, and in agreement with the much larger activation energies 

in Pathway 3, TS5 and TS6 are late transition states in which the sp
2
-hybridized carbon of the 

ketone has more than halfway completed its re-hybridization into an sp
3
 carbon with tetrahedral 

geometry as seen in the sum of the three bond angles on carbon, R-C-R, without considering 

the newly forming C-H (TS5 341.4°; TS6 341.3°). The density at the B-H bond critical point has 

decreased substantially and the C-H bond is almost completely formed (Table 4.12). As 

expected, the complexation tightens as the borane breaks its diborane-like character and swings 

towards the ketone, increasing the B2-N3-BBH3 angle while rotating the N3-BBH3 bond for 

optimal hydride orientation. As the hydride shift nears completion, the negatively charged 

oxygen interacts with the now partially positive charged boron atom, forming a borinate 

intermediate. This simultaneous action produces a much larger imaginary frequency from those 

describing TS1-TS4 where only the hydride is being transferred with minimal further motions, 

and is likely responsible for the very high activation energy (see S10 of Appendix B for TS5 

IRC). 

 

4.4. Conclusions 

In the reduction of t-butyl methyl ketone, using an unsubstituted, pyrrolidine-fused, S-

configured oxazaborolidine catalyst with borane, the calculated enantiomeric excess by transition 

state theory lies in favour of the R-product. The excess is 99 % or greater, depending on whether 

the activation free energies are determined from B3LYP/6-31+G(2d,2p), PBE0/6-31+G(2d,2p) 

or B97X-D/6-31+G(2d,2p). This is nicely in accord with experimental observations where a 

substituted S-configured oxazaborolidine catalyst will produce the R-product through a Si-face 

attack onto the ketone. The catalytic effect was evaluated in comparison to the uncatalyzed 
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reaction of t-butyl methyl ketone with borane, and the higher activation barrier demonstrates that 

the chiral oxazaborolidine does act as a catalyst by decreasing the activation energy.  

The unsubstituted catalyst proved to be much more flexible than originally anticipated 

causing deformation energies far greater than those contributed by any weak interaction in the 

pre-reaction complexes. Consequently, the source of enantioselectivity cannot be attributed to 

changes in anchoring interactions of the ketones within the catalytic system as the energy 

differences are dominated by the conformational changes of the catalyst framework. 

In future work, with the addition of aromatic substitution on the catalyst as well as the use of 

acetophenone, the potential emergence of C-H∙∙∙ or -stacking interactions would hopefully 

decrease the flexibility of the catalytic framework sufficiently to properly evaluate the weak 

interactions involved in the enantioselectivity of this reduction reaction. 
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Chapter 5.  

 

Conclusions and future work 

 

The incentive for carrying out this computational study was to determine the source of facial 

selectivity of the enantioselective reduction of prochiral ketones using a chiral oxazaborolidine 

catalyst with borane. 

Previous experimental and computational work on this reaction served as a validation and 

complimentary reasoning to the new findings in this study. While the previous work was 

extensive, it failed to answer the fundamental question of the source of facial selectivity at the 

molecular level. Not much had been done in exploring borane-ketone complexation, however, 

previous studies involving aldehyde provided a basis of exploration and understanding on how to 

proceed further. 

The first aspect of this work dealt with the complexation of substituted boranes to a prochiral 

ketone, acetophenone, in order to better understand the modes of complexation during the 

reduction reaction. It was confirmed that these complexes, with their general B···O binding 

scheme, can adopt different conformations with further weak interactions, such as C-H···F and 

C-H···O. 

A selection of -electron donating along with non--electron donating groups exposed 

boron’s electron deficiency. NBO and NRT calculations corroborate Lewis structures that 

attempt to satisfy the electron demand on B. Boranes substituted with -electron donating groups 

fill the empty 2pz orbital through the presence of adjacent electron lone pairs. In contrast, 
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substituted boranes lacking these electron lone pairs supply electrons through hyperconjugation, 

but the stabilizing effect is necessarily smaller. 

A -on-
2
 approach was developed to estimate the electron density of the B 2pz orbital 

using QTAIM, serving as a comparative to the NBO analysis. While values of the 
2
 isosurface 

remained similar for the substituted boranes, the observed -on-
2
 values pointed to clear 

differences between substituents that provide -electron donation and those that do not. -

electron donating groups increased the density values of the B 2pz orbital, but -on-
2
 values 

for all boranes exceeded that of borane itself. 

All substitution patterns studied here allow for the formation of gas-phase complexes. 

However, an increased electron demand on boron escalates the strength of the B···O interaction 

and therefore binding energy. The quantification of a binding cut-off was determined by 

evaluating the relation between the binding energy and the estimated -electron density for B 

2pz. It was found that substituted boranes with -on-
2
 less than 0.19 e·Å

–3
 bind through a 

B···O interaction with according boron re-hybridization, whereas those with values greater do 

not exhibit re-hybridization and only form van der Waals-type assemblies. 

The second aspect of this work dealt with the enantioselective reduction of a prochiral 

ketone, t-butyl methyl ketone, using borane and a chiral oxazaborolidine catalytic framework, 

with the goal of elucidating the molecular source of the experimentally observed 

enantioselectivity. Even though experimental details for the particular unsubstituted 

oxazaborolidine employed in this study were not available, it was chosen here for computational 

efficiency. 

In the reduction of t-butyl methyl ketone, using an S-configured oxazaborolidine catalyst and 

borane, the calculated enantiomeric excess by transition state theory lies in favour of the R-
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product. The excess is 99.5 % or greater, depending on the activation free energies and the 

functional from which these were determined. This is nicely in accord with experimental 

observations where a substituted S-configured oxazaborolidine catalyst will produce the R-

product through a Si-face attack onto the ketone. 

The catalytic effect was evaluated in comparison to the uncatalyzed reaction of t-butyl 

methyl ketone with borane, and the higher activation barrier demonstrates that the chiral 

oxazaborolidine does act as a catalyst by decreasing the activation energy. 

The unsubstituted catalyst proved to be much more flexible than originally anticipated, in 

that the oxazaborolidine and pyrrolidine rings change conformation depending on the orientation 

and mode of complexation of the ketone. The potential energy landscape is thus fairly pocketed. 

The free energy values for B···O complexes show a much larger range and a distinct 

destabilization compared to those of the C-H···O complexes. This effect is likely attributed to 

the larger conformational changes in the catalytic framework upon B···O complexation and to 

entropic differences. 

To prevent the ketone to rotate freely in the catalytic complex, as this would lead to loss of 

enantioselectivity, it needs to be anchored through two interactions. In the B∙∙∙O complexes, the 

second anchoring point differs for the Si- and Re-face attacks. Whereas a ketone offering its Si-

face is anchored through an H∙∙∙H interaction that results in a twisted chair six-membered ring, a 

ketone offering its Re-face prefers a C-H∙∙∙O anchoring interaction to the catalyst framework that 

results in a boat-like six-membered ring.  

In contrast to C-H∙∙∙O complexation, B∙∙∙O complexation activates the carbonyl group, which 

results in an energetically more favourable hydride shift. The C-H∙∙∙O complexes, while lower in 
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complexation energy, lead to transition states that are immensely high in energy and therefore 

preclude reaction. 

Any change in the conformation of the catalytic framework upon B∙∙∙O complexation 

requires substantial energy, which nicely reduces the number of complexes in final consideration 

to two, one for Si- and one for Re-face attack, with the former energetically more stable. The 

activation free energies from either of these pre-reaction complexes are more or less the same, 

and thus the source for the enantioselectivity can be sought, in principle, in either differences in 

interactions in the two transition states or in the two pre-reaction complexes. Unfortunately, the 

energy differences are dominated by changes in conformation of the catalyst framework, rather 

than by changes in anchoring interactions of the ketones within the catalytic system. 

 

Future work will focus on CBS catalysts as they are used in the reduction experiments. For 

example, diphenyl substitution on the oxazaborolidine ring and methyl substitution on its boron 

atom should be employed. While this increases the computational demand, it is also expected to 

increases the rigidity of the catalyst and to reduce the number of potential pre-reaction 

complexes, and therefore transition states for hydride transfer. Once aryl substitution on the 

catalyst is considered, the choice of ketone will also fall on aromatic rather than aliphatic 

substitution. With acetophenone as ketone, C-H··· and - interactions can be expected, which 

may lead to additional complexes and which may be responsible for the enantioselectivity. 

Additionally, as the CBS reduction is performed in THF (and the results presented so far are gas 

phase calculations), it will be important to investigate solvation effects, through implicit or 

explicit inclusion of the solvent. 
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Appendix A 

 

Chapter 3 supplementary information 

 

S 1. Total energies, zero-point corrected electronic energies and free energies (Hartree) of 

acetophenone and substituted boranes.
a
 

 PBE0 MP2 

 E E + ZPVE G E 

Acetophenone -384.549291 -384.411142 -384.443917 -383.947469 

     

BH3 -26.564389 -26.538270 -26.555824 -26.499494 

     

BH2F -125.827868 -125.805399 -125.827458 -125.688245 

BH2Cl -486.092180 -486.071097 -486.093734 -485.636588 

BH2Br -2599.839709 -2599.819122 -2599.843001 -2598.459164 

BF3 -324.353231 -324.340820 -324.366965 -324.065447 

     

BH2CH3 -65.862692 -65.807141 -65.830425 -65.721197 

BH(CH3)2 -105.159713 -105.075405 -105.102313 -104.943151 

B(CH3)3 -144.454490 -144.342038 -144.374339 -144.164697 

     

BH2OCH3 -141.076062 -141.012305 -141.037513 -140.862783 

BH(OCH3)2 -255.577488 -255.478804 -255.509075 -255.217038 

B(OCH3)3 -370.074815 -369.941629 -369.977493 -369.570822 

     

BH2OH -101.818489 -101.783012 -101.805190 -101.655396 

BH(OH)2 -177.066343 -177.023510 -177.047981 -176.855374 

     

BH2NH2 -81.957672 -81.909617 -81.932018 -81.817829 

BH2NH3
+ -82.255650 -82.195313 -82.219748 -82.114969 

BH2CN -118.748235 -118.720340 -118.743642 -118.574292 

BH2NO2 -230.968587
b
 -230.935227 -230.961013 -230.687755 

     

BNO2OCH3N(CH3)2 -479.374663 -479.231469 -479.270018  

B(C6F5)3 -2206.769150 -2206.612189 -2206.673688  

B(cage) -981.636447 -981.357780 -981.400315  
a
 6-311++G(2d,p) basis set. 

b
 The total energy for the restrained optimization is -230.960887 au. 
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S 2. Total energies, counterpoise corrected electronic energies, zero-point corrected electronic 

energies and free energies (Hartree) of acetophenone-borane complexes.
a
 

 PBE0 MP2 

 E E+CP E +ZPVE G E 

1k -411.148740 -411.148073 -410.978608 -411.014062 -410.476539 

      

2k -510.3993368 -510.3980935 -510.234619 -510.271542 -509.6536314 

3k -870.6693027 -870.6679907 -870.505749 -870.54416 -869.6097313 

4k -2984.419408 -2984.418237 -2984.256456 -2984.296136 -2982.435476 

5k -708.924449 -708.921772 -708.771748 -708.812229 -708.034377 

      

6k -450.433766 -450.432997 -450.234918 -450.272868 -449.690970 

7k -489.717674 -489.716833 -489.490926 -489.531350 -488.904600 

8k -529.005834 -529.004862 -528.751450 -528.793746 -528.123215 

      

9k -525.629598 -525.628529 -525.425377 -525.465779 -524.816633 

10k -640.130560 -640.129701 -639.892997 -639.942465  

11k -754.626381 -754.625440 -754.354444 -754.408480  

      

12k -486.373837 -486.372658 -486.197114 -486.234643 -485.635071 

13k -561.619829 -561.619037 -561.437949 -561.481661  

      

14k -466.507707 -466.507538 -466.320967 -466.367715 -465.767963 

15k -466.908988 -466.9079004 -466.704561 -466.742791 -466.1602503 

16k -503.3420748 -503.3411821 -503.171048 -503.210044 -502.5629154 

17k -615.5588026 -615.5573698 -615.383401 -615.424106 -612.5695616 

      

18k -863.917190 -863.917190 -863.634565 -863.684992  

19k -2591.338207 -2591.338207 -2591.040735 -2591.112354  

20k -1366.202285 -1366.202285 -1365.784002 -1365.839411  
a
 6-311++G(2d,p) basis set. 
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S 3. Comparison of qB obtained from QTAIM and NBO. Symbols are borane (●), mono-

substituted boranes (○), di-substituted boranes (×) and tri-substituted boranes (). 
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S 4: -on-∇2
 isosurface proof of principle 

 

Concept: As the -electron density at C
+
 of a carboncation decreases, its 

13
C chemical shift will 

increase.  

 

 

S 4.1: Calculated -electron densities using Hückel theory in a linear relationship with 
13

C
+
. 

Reproduced from Olah, G. A.; White, A. M. J. Am. Chem. Soc. 1968, 90, 1884–1889 and 

Wentrup, C. Reaktive Zwischenstufen II. Carbokationen, Carbanionen, Zwitterionen, Thieme, 

Stuttgart, 1979. p. 291 

 

 

There are various ways that the -electron density can be estimated; in this case, we are 

testing whether determining  on a particular ∇2
 isosurface can replicate the aforementioned 

concept. QTAIM and NBO charges were tested as well, even though  and  effects from a 

substituent onto the atom in question, here C
+
, can be conflicting/opposed and render the charge 

as a monitor useless. 
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S 4.2: Electronic relationships for small molecules with partial (1 and 2) or formally full positive 

charge (3-6) on carbon: a) comparison of qC
+
 from QTAIM and NBO (the dashed line represents 

the 1:1 correspondance); b) NBO qC
+
 relation with 

13
C

+
; c) QTAIM qC

+
 relation with 

13
C

+
; d) 

-on-∇2
 relation with 

13
C

+
. Chemical shift values were calculated using OPBE/6-

311++(2df,pd)//PBE0/6-311++(2df,pd). 
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While obviously not perfect, and not expected to be the same, qC
+
 obtained from QTAIM and 

NBO are only somewhat comparable. The greater source of the scatter in S4.2a stems from the 

NBO charges, which are unable to replicate the relationship between qC
+ 

and 
13

C
+
 (S4.2b). 

QTAIM charges seem to be more promising as the correlation (S4.2c) seems improved over that 

in S4.2.b. As discussed in Section 3.2.1, mapping  onto an appropriate ∇2
 isosurface is meant 

to provide an estimate of the 2pz occupancy (of B or here of C
+
), i.e., the -electron density at 

C
+
. As shown in S4.2d, these -on-∇2

 density values decrease as 
13

C
+
 increases, similar to the 

Hückel -electron densities (S4.1). The advantage of the -on-∇2
 over the Hückel approach lies 

in the quantum chemical derivation of the former. 
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S 5: Morse potential curve with various types of interactions in a diatomic system 

 

 

a) stabilizing-attractive interactions 

b) stabilizing-repulsive interactions 

c) destabilizing-repulsive interactions 

 

 

 

 

 

 

 

 

 

b) 

c) 

a) 
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Appendix B 

 

Chapter 4 supplementary information 

 

S 1: Total energies and free energies (Hartree).
 a

 

 B3LYP PBE0 B97X-D 

 E G E G E G 

BH3 -26.617764 -26.609032 -26.560641 -26.552023 -26.602603 -26.594030 

Ketone -311.133349 -310.998274 -310.756800 -310.620830 -311.038296 -310.902015 

CBS -351.484659 -351.361318 -351.069919 -350.945252 -351.376160 -351.250426 

       

CBS-BH3 -378.138503 -377.983442   -378.025082 -377.867526 

CBS-dBH3 -378.141901 -377.985079 -377.686978 -377.528774 -378.031400 -377.872224 

       

1 -689.271226 -688.958099 -688.441873 -688.125939 -689.077919 -688.758491 

2 -689.270298 -688.956159 -688.441000 -688.124386 -689.077232 -688.757971 

3 -689.267872 -688.953924 -688.438284 -688.122115 -689.072188 -688.753316 

4 -689.267422 -688.952986 -688.438104 -688.121553 -689.074343 -688.752403 

5 -689.266337 -688.951487 -688.437405 -688.120423 -689.073318 -688.751421 

6 -689.260699 -688.947503 -688.430396 -688.113744 -689.067335 -688.747131 

       

7 -689.276162 -688.970260 -688.449565 -688.140144 -689.083821 -688.767666 

8 -689.275490 -688.971067 -688.447495 -688.138720 -689.075807 -688.762435 

9 -689.277251 -688.972388 -688.449697 -688.139524 -689.078075 -688.763133 

10 -689.276519 -688.972497   -689.077778 -688.765474 

11 -689.279539 -688.973070 -688.449697 -688.139516 -689.084268 -688.766259 

12 -689.279489 -688.972773 -688.449565 -688.140146 -689.083822 -688.767693 

       

13 -689.276220 -688.971392 -688.448411 -688.139266 -689.076477 -688.760752 

14 -689.276558 -688.971283 -688.449706 -688.138431 -689.077889 -688.763151 

15 -689.275829 -688.972193 -688.449130 -688.138546 -689.084051 -688.767991 

       

TS 1 -689.266688 -688.950063 -688.439593 -688.120955 -689.075684 -688.753663 

TS 2 -689.261679 -688.945049 -688.434737 -688.115671 -689.069321 -688.747590 

TS 3 -689.259685 -688.943503 -688.432936 -688.114464 -689.068089 -688.745497 

TS 4 -689.257272 -688.940266 -688.429908 -688.110851 -689.066423 -688.743340 

TS 5 -689.225446 -688.911482 -688.402062 -688.086385 -689.035387 -688.716673 

TS 6 -689.188605 -688.875508 -688.359660 -688.044220 -688.995107 -688.677198 

TS 7 -689.188363 -688.875115 -688.359236 -688.043765 -688.994726 -688.675307 

       

Un-cat R -337.828104 -337.658881 -337.352842 -337.186463 -337.672944 -337.506304 

Un-cat TS -337.752399 -337.587390 -337.328208 -337.162987 -337.649789 -337.482506 

Un-cat P -337.778823 -337.613656 -337.402145 -337.232217 -337.724845 -337.553431 
a
 6-31+G(2d,2p) basis set. 
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S 2: Tabulated BSSE correction energies (kcal·mol
–1

) by counterpoise method.
a
  

  BSSE 

 

1 10 12 CBS-BH3 CBS-dBH3 

B3LYP/6-31+G(2d,2p) 1.2 (2.0) 0.3 0.4 0.9 1.1 

B3LYP/6-311++G(2d,p) 0.9 (1.4) 0.3 0.4 0.6 0.7 

      

PBE0/6-31+G(2d,2p) 1.2 0.3 0.3 

  PBE0/6-311++G(2d,p) 1.1 0.4 0.4 

    

     B97X-D/6-31+G(2d,2p) 1.2 0.5 0.5 

  B97X-D /6-311++G(2d,p) 1.1 0.7 0.5 

       

 a
 Calculations were performed using counterpoise=2, with the catalyst-borane adduct and the 

ketone as fragments. Values in parentheses are from counterpoise=3 calculations, with all three 

components as fragments (CBS, borane, ketone). 
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S 3: Borazine B3LYP/6-31+G(2d,2p) NBO partial output. 

    

 
  

    5. (1.98305) BD ( 1) B   4 - N  10   

                ( 23.75%)   0.4873* B   4 s( 31.40%)p 2.18( 68.32%)d 0.01(  0.28%) 

                                            0.0002 -0.5600  0.0202  0.0040  0.0011 

                                           -0.0002 -0.6182  0.0024  0.0122  0.5464 

                                           -0.0485 -0.0096  0.0000  0.0000  0.0000 

                                            0.0460  0.0015  0.0000  0.0000  0.0000 

                                            0.0000 -0.0176 -0.0096  0.0116 -0.0125 

                ( 76.25%)   0.8732* N  10 s( 38.02%)p 1.63( 61.83%)d 0.00(  0.16%) 

                                            0.0001 -0.6165 -0.0098 -0.0022  0.0001 

                                            0.0000  0.6114 -0.0062 -0.0062 -0.4942 

                                           -0.0123  0.0076  0.0000  0.0000  0.0000 

                                            0.0319 -0.0006  0.0000  0.0000  0.0000 

                                            0.0000  0.0019 -0.0024  0.0234  0.0009 

     6. (1.98306) BD ( 1) B   4 - N  11   

                ( 23.75%)   0.4873* B   4 s( 31.40%)p 2.18( 68.32%)d 0.01(  0.28%) 

                                            0.0002 -0.5600  0.0202  0.0040  0.0010 

                                           -0.0002 -0.2049 -0.0252  0.0047 -0.7991 

                                            0.0416  0.0148  0.0000  0.0000  0.0000 

                                           -0.0334 -0.0095  0.0000  0.0000  0.0000 

                                            0.0000  0.0362 -0.0022  0.0116 -0.0125 

                ( 76.25%)   0.8732* N  11 s( 38.02%)p 1.63( 61.82%)d 0.00(  0.16%) 

                                            0.0001 -0.6165 -0.0098 -0.0022  0.0001 

                                            0.0000  0.2286 -0.0121 -0.0008  0.7521 

                                            0.0067 -0.0098  0.0000  0.0000  0.0000 

                                           -0.0100 -0.0020  0.0000  0.0000  0.0000 

                                            0.0000  0.0304 -0.0014  0.0234  0.0009 

     7. (1.82581) BD ( 2) B   4 - N  11   

                ( 11.27%)   0.3357* B   4 s(  0.00%)p 1.00( 99.73%)d 0.00(  0.27%) 

                                            0.0000  0.0000  0.0000  0.0000  0.0000 

                                            0.0000  0.0000  0.0000  0.0000  0.0000 

                                            0.0000  0.0000  0.9983  0.0135  0.0250 

                                            0.0000  0.0000  0.0149 -0.0012  0.0495 

                                            0.0007  0.0000  0.0000  0.0000  0.0000 

                ( 88.73%)   0.9420* N  11 s(  0.00%)p 1.00( 99.99%)d 0.00(  0.01%) 

                                            0.0000  0.0000  0.0000  0.0000  0.0000 

                                            0.0000  0.0000  0.0000  0.0000  0.0000 

                                            0.0000  0.0000  0.9998  0.0115  0.0165 

                                            0.0000  0.0000  0.0063 -0.0006 -0.0059 

                                           -0.0002  0.0000  0.0000  0.0000  0.0000 

B4 

N11 N10 



115 

 

S 4: CBS Catalyst B3LYP/6-31+G(2d,2p) NBO partial output. 

   17. (1.98135) BD ( 1) N  13 - B  14   

                ( 77.63%)   0.8811* N  13 s( 42.53%)p 1.35( 57.24%)d 0.01(  0.22%) 

                                           -0.0001  0.6521  0.0048 -0.0038  0.0025 

                                            0.0000  0.6090 -0.0130 -0.0117  0.3987 

                                            0.0116 -0.0025 -0.2050  0.0019  0.0060 

                                            0.0118  0.0013 -0.0375  0.0029 -0.0144 

                                           -0.0002  0.0207 -0.0009 -0.0073 -0.0002 

                ( 22.37%)   0.4729* B  14 s( 31.20%)p 2.20( 68.50%)d 0.01(  0.30%) 

                                            0.0003  0.5583 -0.0014 -0.0169 -0.0006 

                                            0.0004 -0.6507  0.0388  0.0063 -0.2170 

                                           -0.0150  0.0079  0.4610 -0.0147  0.0022 

                                            0.0330  0.0080 -0.0311  0.0046 -0.0126 

                                            0.0019  0.0234 -0.0024  0.0054  0.0084 

    18. (1.92986) BD ( 2) N  13 - B  14   

                ( 87.82%)   0.9371* N  13 s(  0.24%)p99.99( 99.70%)d 0.26(  0.06%) 

                                            0.0001  0.0422 -0.0239 -0.0057 -0.0006 

                                           -0.0002  0.1035 -0.0005  0.0054  0.2652 

                                           -0.0108  0.0064  0.9566 -0.0154  0.0207 

                                            0.0022 -0.0001  0.0114 -0.0010 -0.0128 

                                            0.0018  0.0039 -0.0004 -0.0174 -0.0001 

                ( 12.18%)   0.3490* B  14 s(  0.62%)p99.99( 99.03%)d 0.57(  0.35%) 

                                           -0.0005 -0.0764  0.0168  0.0034  0.0043 

                                           -0.0013  0.4112 -0.0167 -0.0045  0.3408 

                                            0.0109  0.0070  0.8370  0.0578  0.0255 

                                           -0.0295 -0.0022 -0.0281 -0.0083 -0.0084 

                                           -0.0044 -0.0102 -0.0007  0.0394  0.0054 
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S 5: Energy (kcal·mol
–1

) profiles of relaxed scans of catalyst-borane adducts. Profiles obtained 

using a double zeta basis set (6-31+G(2d,2p)) are shown with a solid line, those obtained using a 

triple zeta basis set (6-311++G(2d,2p)) with a dashed line. B3LYP (black), MP2 (red), B97X-D 

(blue) and PBE0 (magenta and olive green). The olive green line stems from a scan in which a 

different catalyst conformation was used (pyrrolidine ring in the catalyst framework with a half-

chair instead of an envelope conformation). The relative energies are referenced to the CBS-

dBH3 complexes of each functional, and the scans were performed by increasing the B(2)-N(3)-

BBH3 angle every degree for 50 degrees. 

 

 

 

 

 

 

 

 

 

 

 

B3LYP 

MP2 

B97X-D 

PBE0 
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S 6: Tabulated NRT structures of highest probability and their assigned weights for CBS, CBS-

BH3 and CBS-dBH3.  

 Resonance Structure weights (%) 

 B3LYP
a 

PBE0
a 

B97X-D
a 

MP2
b 

     

 

73.6 72.5 73.7 77.7 

 

8.9 9.1 8.7 6.6 

     

     

 

76.8 75.9
c
 77.2 80.9 

 

2.6 2.2
c
 2.1 1.4 

     

     

 

29.1 34.1 30.6 34.0 

 

22.3 18.2 19.8 24.9 

 

20.0 18.1 21.7 17.4 

 

2.5 2.1 2.5 1.6 

     
a
 6-31+G(2d,2p) basis set. 

b
 6-311++G(2d,p) basis set. 

c
 Obtained from a geometry optimization 

in which the N-B-N angle was fixed at the average value obtained using B3LYP/6-31+G(2d,2p), 

B97X-D/6-31+G(2d,2p) and MP2/6-311++G(2d,p). 
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S 7: Molecular graph of TS7 from B3LYP/6-31+G(2d,2p). Atoms are represented by large 

spheres: carbon (grey), hydrogen (white), oxygen (red), nitrogen (blue) and boron (pink). Bond 

critical points are indicated by small red spheres, ring critical points by small yellow spheres. 
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S 8: t-Butyl methyl ketone reduction reaction profile from reactants (ketone, CBS, BH3) at 

relative zero to the rate limiting step: the hydride transfer transition state. Relative free energies 

(kcal·mol
–1

) from B3LYP/6-31+G(2d,2p) in blue, B97X-D/6-31+G(2d,2p) in green and 

PBE0/6-31+G(2d,2p) in red.  
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S 9: t-Butyl methyl ketone reduction reaction profile from reactants (ketone, CBS, BH3) at 

relative zero to the rate limiting step: the hydride transfer transition state. Relative electronic 

energies (kcal·mol
–1

) from B3LYP/6-31+G(2d,2p) in blue, B97X-D/6-31+G(2d,2p) in green 

and PBE0/6-31+G(2d,2p) in red.  
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S 10: Intrinsic reaction coordinate for Pathway 3 TS5, B3LYP/6-31+G(2d,2p). The dashed lines 

(added using Gaussview software) indicate the carbonyl oxygen interaction with the catalyst 

framework as well as the bonds to the bridged hydrogen atom. 

 


