On lacunary polynomials and a generalization of Schinzel's conjecture

Daniele Dona

A Thesis
in
the Department
of
Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements for the Degree of Master of Arts (Mathematics) at Concordia University
Montréal, Québec, Canada

July 2015
© Daniele Dona, 2015

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared
By:
Daniele Dona

Entitled: On lacunary polynomials and a generalization of Schinzel's conjecture
and submitted in partial fulfillment of the requirements for the degree of
Master of Science (Mathematics)
complies with the regulations of the University and meets the accepted standards with respect to originality and quality.

Signed by the final Examining Committee:

Prof. P. Stevenhagen Examiner
Prof. M. A. Garuti Examiner
Prof. Y. Bilu Examiner
Prof. C. Bachoc Examiner
Prof. C. Mazza Examiner
Prof. A. Iovita Supervisor
Approved by
Chair of Department or Graduate Program Director
\qquad 2015

ABSTRACT

On lacunary polynomials and a generalization of Schinzel's conjecture

Daniele Dona

Some interesting questions can be posed regarding the maximum number of terms of a polynomial when dealing with particular operations: for example, Rényi and Erdős asked whether there is a bound on the number of terms of $h(x)$ depending only on the number of terms of $h(x)^{2}$. In the last decade, positive answers have been found for very general situations: a conjecture by Schinzel on the case of $g(h(x))$ having few terms for some complex polynomial g has been proven in [8], and an even more general case where $h(x)$ satisfies $F(x, h(x))=0$ for some complex polynomial F in two variables has been proven in [2]; moreover, the bounds obtained are dependent very poorly on g and F.

We are exposing here the proof of Schinzel's conjecture contained in [8] and of its aforementioned generalized form contained in [2]; we also give explicit formulas and procedures to calculate the bounds themselves, which were lacking in the original papers.

Contents

Introduction 1
1 Schinzel's conjecture 3
1.1 Historical background 3
1.2 Introduction to the proof 4
1.3 Proof of Theorem 1.3 5
1.4 Proof of Theorem 1.1 8
2 General case 9
2.1 Introduction to the proof 9
2.2 Theorem 2.2: Puiseux expansion 10
2.3 Theorem 2.2: linear dependence 12
3 Explicit bounds 15
3.1 Bound for Theorem 1.3 15
3.2 Bound for Theorem 1.1 17
3.3 Bound for Theorem 2.2: preliminary lemmas 18
3.4 Bound for Theorem 2.2: bound expressions 22
3.5 Bound for Theorem 2.2 and Theorem 2.1 27
4 Further generalizations 31
Bibliography 33

Introduction

A lacunary polynomial (also called sparse polynomial or fewnomial) is a polynomial where the number of its terms is considered fixed, while the degrees and coefficients of its terms may vary. For example we can write $f(x)=a_{1} x^{n_{1}}+\ldots+a_{l} x^{n_{l}}$ for a lacunary polynomial with at most l terms, with no control whatsoever on the actual value of the degrees n_{i} and the coefficients a_{i}.

The focus on the number of terms of a polynomial rather than on the other data leads to some interesting questions regarding in particular the behaviour of lacunary polynomials under the operation of composition, or in even more general algebraic expressions. The first conjecture that appeared in this direction was raised independently by Erdős and Rényi: given a polynomial $h(x)$, if its square $h(x)^{2}$ has at most l terms then also $h(x)$ has a bounded number of terms dependent only on l [1]. This was proven by Schinzel [4] in the more general case of $h(x)^{d}$ being lacunary: he then posed an even more general question, in the case of $g(h(x))$ being lacunary where g is another non-constant polynomial; he also stated that his method was not powerful enough to tackle this new problem, so we don't follow his procedure here.

Schinzel's conjecture has then been solved by Zannier [8]: Zannier's proof will be discussed in Chapter 1. Although it yields an explicit bound $B(l)$ on the number of terms of $h(x)$ (when $g(h(x))$ has at most l non-constant terms), the author didn't bother himself with the actual calculation of this bound, observing only that it should be very large and weaker than the one for the case $h(x)^{d}$ solved by Schinzel: in Chapter 3 we'll calculate $B(l)$ following his method and discover that he was right in both cases.

Chapter 2 will treat an even more general case: given a polynomial $F(x, y)$ with at most l terms in x and monic of degree d in y, any $h(x)$ such that $F(x, h(x))=0$ has at most $\beta(d, l)$ terms. This was solved by Fuchs, Mantova and Zannier [2] adapting the proof contained in [8] to the new situation; as before, also in this case the bounds are explicit but have not been actually calculated: this will be done again to a certain degree in Chapter 3, again confirming the opinion of the authors who considered it to be a highly iterated exponentiation.

Chapter 1

Schinzel's conjecture

1.1 Historical background

As said in the introduction, a lacunary polynomial is a polynomial where the number of its terms is considered fixed, while the degrees and coefficients of its terms may vary. Kalmár, Rédei and Rényi started considering the problem of lacunarity in the case of the square of a polynomial, although formulating it the other way around. Call $Q(k)$ the minimum possible number of terms of the square of a polynomial with k terms: it has been proven by them that $\liminf _{k \rightarrow \infty} \frac{Q(k)}{k}=0$ and Rényi [3] conjectured that $\lim _{k \rightarrow \infty} \frac{Q(k)}{k}=0$, which was proven two years later by Erdős [1]; these and other results were answering questions about the dimension of $Q(k)$ establishing upper limits to it, but in the same paper Erdős said that Rényi told him to have also conjectured something in the other direction:

$$
\lim _{k \rightarrow \infty} Q(k)=\infty
$$

This last assertion means that, given any polynomial with a number of terms k big enough, its square has to have a certain number $Q(k)$ of terms that can be made as big as desired if k is chosen appropriately; in other words this is equivalent to say that if the square of a polynomial $h(x)$ has a bounded number of terms then $h(x)$ itself can't have a number of terms that is too big.

This issue was solved by Schinzel [4], who gave also an explicit bound in a broader case. Consider a polynomial $h(x)$ with $k \geq 2$ terms and a positive integer d, then the number of terms of $h(x)^{d}$ is at least:

$$
d+1+\frac{\ln \left(1+\frac{\ln (k-1)}{d \ln 4 d-\ln d}\right)}{\ln 2}
$$

This again can be read the other way around. Given any polynomial $h(x)$ and positive integer d, if $h(x)^{d}$ has at most l terms then there is an upper bound $T(d, l)$ on the number of terms of $h(x)$ which is:

$$
\begin{equation*}
T(d, l) \leq \max \left\{2,1+e^{\left(2^{l-d-1}-1\right)(d \ln 4 d-\ln d)}\right\} \tag{1.1}
\end{equation*}
$$

This result holds also for a somewhat generic field instead of just for \mathbb{C}, making reasonable assumptions about its characteristic; on the other hand, the method that Schinzel uses is
in his own words insufficient to prove the more general case of what is called Schinzel's conjecture, i.e. the same question with the hypothesis that $g(h(x))$ has at most l terms for a certain polynomial g. This is what Zannier proved in [8], and this is what we are going to show in the following sections.

1.2 Introduction to the proof

We want to prove the following theorem ([8, Thm 1]):
Theorem 1.1. Take any three non-constant polynomials $f, g, h \in \mathbb{C}[x]$: if $f(x)=g(h(x))$ and f has at most l non-constant terms, then $h(x)$ has at most $B(l)$ terms.

We observe that the bound $B(l)$ is not only independent from the degrees and coefficients of the lacunary $f(x)$ but is also independent from any datum whatsoever about the polynomial $g(x)$. The original conjecture formulated by Erdős and Rényi is the particular case $g(y)=y^{2}$ and the theorem proven by Schinzel is the case $g(y)=y^{d}$.

We first say also that what Zannier proves is a dependence also on the degree d of the polynomial $g(x)$; he uses then another independent result (also by Zannier) to control d itself ([7, Thm 1]):

Proposition 1.2. Take any three non-constant polynomials $f, g, h \in \mathbb{C}[x]:$ if $f(x)=g(h(x))$ and f has at most l non-constant terms, then either $h(x)$ is of the form $a x^{n}+b$ or the bound $\operatorname{deg} g \leq 2 l(l-1)$ holds.

We now explain in a general way the strategy of the proof given in [8], before going into more detail. First we give an intermediate result, from which Theorem 1.1 can be deduced ([8, Prop 2]):

Theorem 1.3. Take any three non-constant polynomials $f, g, h \in \mathbb{C}[x]$: if $f(x)=g(h(x))$ and f has at most l non-constant terms, then $h(x)$ can be written as the ratio of two polynomials with at most $B_{1}(l)$ terms.

To prove Theorem 1.3 we work by induction on l. We consider the equation $f=g(h)$ from a purely formal point of view; the first thing is obtain the Puiseux expansion for h :

$$
\begin{equation*}
h=c_{-1} f^{1 / d}+c_{0}+c_{1} f^{-1 / d}+c_{2} f^{-2 / d}+\ldots=\sum_{i=-1}^{\infty} c_{i} f^{-i / d} \tag{1.2}
\end{equation*}
$$

and after a reparametrisation $y=1 / x$, using the multinomial theorem on the terms $f^{-i / d}$ we can write $\tilde{h}(y)=y^{n_{l} / d} h(1 / y)$ as sum of terms in y with only non-negative exponents. Therefore we must have a bound on these exponents:

$$
(1+i) \frac{n_{l}}{d}+h_{1} n_{1}+h_{2} n_{2}+\ldots h_{l} n_{l} \leq \operatorname{deg}_{y} \tilde{h}=\operatorname{deg}_{x} h=\frac{n_{l}}{d}
$$

and then a bound on i and h_{j} (which means a bound on the number of terms); if we had a condition of the form $n_{1} \geq \varepsilon n_{l}$ then this last bound would be independent from the exponents n_{j} and could be expressed only in terms of l, d and ε. This is clearly not always the case, but we can use a trick to reconduct ourselves to this situation.

We divide the exponents n_{j} into two groups, the "small" ones $\left(n_{1}, \ldots, n_{p}\right)$ and the "large" ones $\left(n_{p+1}, \ldots, n_{l}\right)$ in a suitable way. Doing this we can consider the small ones as part of the coefficients and the large ones as satisfying the condition mentioned above: in this way we have a control on the number of terms as explained before, with the downside that now the coefficients are not anymore in \mathbb{C} but in a function field $K \supseteq \mathbb{C}(x)$; at this point though we can use the inductive hypothesis, as these new coefficients are algebraic expressions containing a truncated f which will be a lacunary polynomial with at most $p<l$ terms.

This was the outline of the proof for Theorem 1.3: the reason why we have to use first this form of the result, where we allow ratios of polynomials, is that in the last mentioned step negative exponents might appear inside the coefficients containing the truncated f. Notice that deducing Theorem 1.1 from Theorem 1.3 is not immediate, as shown by this elementary example:

$$
\frac{1-x^{n}}{1-x}=1+x+x^{2}+\ldots+x^{n-1}
$$

where the ratio of two polynomials with two terms each can have an arbitrarily large number of terms.

1.3 Proof of Theorem 1.3

Now we go into more details, keeping in mind the outline of the previous section.
As we said, we work by induction on l. Suppose $l=1$, i.e. $f(x)$ has only one nonconstant term: we can then subtract the eventual constant term from f and g without loss of generality and therefore suppose $g(h(x))=a_{1} x^{n_{1}}$; in this situation it's obvious that g can't have two distinct roots, hence $g(x)=b(x-\xi)^{d}$. Now $h(x)=\xi+(a / b)^{1 / d} x^{n_{1} / d}$ is the only possible solution: in fact if any other solution not of this form existed then by Proposition 1.2 we would have $\operatorname{deg} g \leq 0$ which is absurd; so we obtain $B_{1}(1)=2$.

We suppose now that the theorem is proven for $1, \ldots, l-1$. As we said, the first passage is to obtain an expression of the form (1.2) starting from the formal equation $f=g(h)$. Let's work concretely with an example to show the passages involved: suppose we have $f=h^{2}-h($ with $d=2)$. We start finding a solution of the form $h=c f^{1 / 2}+o\left(f^{1 / 2}\right)$, substituting inside we see pretty easily that we can take $c=1$ in order to obtain the cancellation of the highest powers of f in the expression; at this point we substitute inside the original equation $h=f^{1 / 2}+f^{1 / 2} h^{\prime}$ (we precise that here h^{\prime} is not the derivative of h, it's just a new formal variable):

$$
\begin{aligned}
0 & =h^{2}-h-f=\left(f^{1 / 2}+f^{1 / 2} h^{\prime}\right)^{2}-\left(f^{1 / 2}+f^{1 / 2} h^{\prime}\right)-f \\
& =f^{1 / 2}\left(f^{1 / 2} h^{\prime 2}+2 f^{1 / 2} h^{\prime}-h^{\prime}-1\right)
\end{aligned}
$$

thus obtaining a new equation $f^{1 / 2} h^{\prime 2}+2 f^{1 / 2} h^{\prime}-h^{\prime}-1=0$. Now we repeat the above steps: we find a solution of the form $h^{\prime}=c f^{-1 / 2}+o\left(f^{-1 / 2}\right)$ to eliminate the highest powers of f, we can choose $c=\frac{1}{2}$ for this purpose, then we substitute $h^{\prime}=\frac{1}{2} f^{-1 / 2}+f^{-1 / 2} h^{\prime \prime}$ (again,
$h^{\prime \prime}$ is not the derivative of $\left.h^{\prime}\right)$:

$$
\begin{aligned}
0 & =f^{1 / 2} h^{2}+2 f^{1 / 2} h^{\prime}-h^{\prime}-1 \\
& =f^{1 / 2}\left(\frac{1}{2} f^{-1 / 2}+f^{-1 / 2} h^{\prime \prime}\right)^{2}+2 f^{1 / 2}\left(\frac{1}{2} f^{-1 / 2}+f^{-1 / 2} h^{\prime \prime}\right)-\left(\frac{1}{2} f^{-1 / 2}+f^{-1 / 2} h^{\prime \prime}\right)-1 \\
& =f^{-1 / 2} h^{\prime \prime 2}+2 h^{\prime \prime}-\frac{1}{4} f^{-1 / 2}
\end{aligned}
$$

At this point going back to the original h we have already obtained a solution of the form $h=f^{1 / 2}+\frac{1}{2}+o\left(f^{-1 / 2}\right)$; clearly we only need to go on with this process and we'll obtain an expression of the form (1.2) for h.

Now we have obtained an expansion of h as a formal series in f starting from the original equation $f=g(h)$. As anticipated, we operate the substitution $y=1 / x$, and we define:

$$
\begin{aligned}
\tilde{h}(y) & :=x^{-n_{l} / d} h(x)=y^{n_{l} / d} h(1 / y) \\
\tilde{f}(y) & :=\frac{f(x)}{a_{l} x^{n_{l}}}=: 1+b_{1} y^{n_{1}}+\ldots+b_{l} y^{n_{l}}
\end{aligned}
$$

In the first definition notice that $\operatorname{deg}_{x} h=\operatorname{deg}_{y} \tilde{h}=n_{l} / d$ so that in fact \tilde{h} is still a polynomial, and it has also the same number of terms as h, so it will suffice to prove the thesis for \tilde{h}; in the second definition notice that we have renominated both the coefficients and the exponents, but it won't matter (in accordance with the spirit of the theorem itself that doesn't care about the degrees of the terms of f).

At this point we introduce the (for the moment arbitrary) distinction between "small" and "large" exponents n_{j}. We fix an integer p between 0 and $l-1$ and we define:

$$
\delta_{p}(y):=1+b_{1} y^{n_{1}}+\ldots+b_{p} y^{n_{p}}
$$

obtaining therefore:

$$
\begin{align*}
\tilde{f}(y) & =\delta_{p}(y)\left(1+\frac{b_{p+1}}{\delta_{p}(y)} y^{n_{p+1}}+\ldots+\frac{b_{l}}{\delta_{p}(y)} y^{n_{l}}\right) \\
\tilde{f}(y)^{s / d} & =\delta_{p}(y)^{s / d}\left(1+\frac{b_{p+1}}{\delta_{p}(y)} y^{n_{p+1}}+\ldots+\frac{b_{l}}{\delta_{p}(y)} y^{n_{l}}\right)^{s / d} \\
& =\sum_{h_{p+1}, \ldots, h_{l} \in \mathbb{N}} C_{s, d, h_{p+1}, \ldots, h_{l}} \delta_{p}(y)^{\frac{s}{d}-h_{p+1}-\ldots-h_{l}} b_{p+1}^{h_{p+1}} \ldots b_{l}^{h_{l}} y^{h_{p+1} n_{p+1}+\ldots+h_{l} n_{l}} \tag{1.3}
\end{align*}
$$

where the last passage uses the multinomial theorem. We substitute the definitions of \tilde{h} and \tilde{f} and the expression (1.3) inside (1.2); the result is that now $\tilde{h}(y)$ is a sum of terms of the form:

$$
\begin{equation*}
C \delta_{p}(y)^{\frac{s}{d}-h_{p+1}-\ldots-h_{l}} y^{\frac{1}{d}(1-s) n_{l}+h_{p+1} n_{p+1}+\ldots+h_{l} n_{l}} \tag{1.4}
\end{equation*}
$$

Hence at this point we can collect all "too big" terms (with regards to the exponent of y) in an error term and write:

$$
\begin{equation*}
\tilde{h}(y)=t_{1}+t_{2}+\ldots+t_{L}+O\left(y^{2 n_{l}}\right) \tag{1.5}
\end{equation*}
$$

where the t_{i} are the terms (1.4) having exponent $<2 n_{l}$ for y.

Now let's stop for a moment and think about what we have obtained and what we still have to find. The last equation is a good result but it has some issues that must be solved in order to prove Theorem 1.3 as we would like to: the first problem is that the number of terms L is bounded by something that depends not only on l (and possibly d) but also on the ratio n_{l} / n_{p+1}; we can say in fact that:

$$
\begin{array}{lr}
1-2 d \leq s \leq 1, & 0 \leq h_{i} \leq \frac{2 n_{l}}{n_{i}} \\
L \leq(2 d+1)\left(1+\frac{2 n_{l}}{n_{i}}\right)^{l-p} \leq(2 l-1)^{2}\left(1+\frac{2 n_{l}}{n_{p+1}}\right)^{l} \tag{1.6}
\end{array}
$$

but for now we still have to show how to control n_{l} / n_{p+1} only in terms of l (this will obviously have something to do with our choice of p). The other problem is that we have y also in the coefficients δ_{p}, so it's not obvious at all that we can just ignore the error term $O\left(y^{2 n_{l}}\right)$ as the $2 n_{l}$ refers only to the exponent of y and nothing is known about the contribution of the coefficient.

Let's see how to solve these issues. In (1.5) we can suppose the t_{i} to be linearly independent by possibly substituting them with multiples; we can then distinguish two cases: $\tilde{h}, t_{1}, \ldots, t_{L}$ being linearly dependent or independent over \mathbb{C}.

In the first case what we basically obtain is the elimination of the error term in (1.5). Also, all the terms t_{i} where we have some $\delta_{p}^{j / d}$ not being a polynomial must cancel each other out in the equation, thus leaving \tilde{h} expressed as the sum of terms of the form:

$$
\begin{equation*}
C \eta_{p}(y)^{\frac{1}{e}\left(s-\left(h_{p+1}+\ldots+h_{l}\right) d\right)} y^{\frac{1}{d}(1-s) n_{l}+h_{p+1} n_{p+1}+\ldots+h_{l} n_{l}} \tag{1.7}
\end{equation*}
$$

where e is the smallest divisor of d such that $\eta_{p}(y)=\delta_{p}(y)^{e / d}$ is still a polynomial. At this point though $\eta_{p}(y)^{d / e}=\delta_{p}(y)$ and the right hand side is a lacunary polynomial of $p<l$ non-constant terms, so by inductive hypothesis $\eta_{p}(y)$ is ratio of polynomials with at most $B_{1}(p) \leq B_{1}(l-1)$ terms, and combining this with the information about the number of terms t_{i} we get a certain bound $B_{2}\left(l, n_{l} / n_{p+1}\right)$.

In the second case we use the following lemma ([8, Prop 1]):
Lemma 1.4. Let K / \mathbb{C} be a function field in one variable of genus \mathfrak{g}, let $\varphi_{1}, \ldots, \varphi_{n} \in K$ be linearly independent over \mathbb{C} and let $\sigma=\sum_{i=1}^{n} \varphi_{i}$; take $0 \leq r \leq n$ and call S a finite set of places of K containing all the poles of $\varphi_{1}, \ldots, \varphi_{n}$ and all the zeros of $\varphi_{1}, \ldots, \varphi_{r}$. We have then:

$$
\sum_{v \in S}\left(v(\sigma)-\min _{i=1}^{n} v\left(\varphi_{i}\right)\right) \leq\binom{ n}{2}(\# S+2 \mathfrak{g}-2)+\sum_{i=r+1}^{n} \operatorname{deg} \varphi_{i}
$$

This lemma controls the valuation of the sum σ in terms of the valuations and the degrees of its addenda (and of the data about the field, too). We use it in our situation in the following way:

$$
r=L, \quad n=L+1, \quad \varphi_{i}=-t_{i}(1 \leq i \leq L), \quad \varphi_{L+1}=\tilde{h}
$$

The set S containing the poles and zeros of the t_{i} and the poles of \tilde{h} has at most $d\left(n_{p}+2\right)$ places, while $2 \mathfrak{g}-2 \leq d n_{p}$; here we have that the sum σ is the error term in (1.5) with $v_{0}(\sigma) \geq 2 n_{l}$, where v_{0} is a place above 0 and belongs to S. Using Lemma 1.4 we obtain:

$$
2 n_{l} \leq\binom{ L+1}{2}\left(d\left(n_{p}+2\right)+d n_{p}\right)+n_{l}
$$

and then:

$$
\begin{equation*}
n_{l} / n_{p} \leq 2^{4 l+5} d^{3}\left(n_{l} / n_{p+1}\right)^{2 l} \leq 2^{4(l+2)} l^{3}(l-1)^{3}\left(n_{l} / n_{p+1}\right)^{2 l} \tag{1.8}
\end{equation*}
$$

At this point we are done: in fact for each p (and each version of (1.5)) we either have a bound $B_{2}\left(l, n_{l} / n_{p+1}\right)$ or an estimate (1.8). Therefore we consider the biggest p such that the first alternative occurs and we have the bound B_{2}, but iterating (1.8) for the p^{\prime} between $p+1$ and l we can reconduct ourselves to $n_{l} / n_{l}=1$ and get a bound $B_{1}(l)$ depending only on l; if the first alternative never occurs then we can use (1.8) from n_{l} / n_{1} to $n_{l} / n_{l}=1$, and find a bound $B_{1}(l)$ as described in the outline.

1.4 Proof of Theorem 1.1

Finally we can deduce Theorem 1.1 from Theorem 1.3. Suppose we have $f(x)=g(h(x))$ with $h(x)$ not of the form $a x^{n}+b$ (so that $\operatorname{deg} g \leq 2 l(l-1)$ by Proposition 1.2); from the previous result we have that $h(x)$ is a ratio $h_{1}(x) / h_{2}(x)$ of two polynomials with at most $B_{1}(l)$ terms. We multiply $f(x)-g(h(x))=0$ by a suitable power of $h_{2}(x)$ so as to obtain an equation in $\mathbb{C}[x]$: now, since the whole left hand side must vanish, necessarily there must be equalities involving the exponents of the resulting monomials, which give a linear system of the exponents of f, h_{1}, h_{2}; since the number of monomials is bounded dependently only on l, also the number of possible linear systems is bounded only in terms of l.

We solve the linear system, so that the exponents of f, h_{1}, h_{2} are now combinations of some variables u_{j} : the number J of these variables and the resulting coefficients in the combinations depend only on the linear system, therefore they're all bounded by a certain function of l only. At this point we consider f, h_{1}, h_{2} in a different way, i.e. as functions depending on the u_{j} in the following way:

$$
f(x)=F\left(x^{u_{1}}, \ldots, x^{u_{J}}\right), \quad h_{1,2}(x)=H_{1,2}\left(x^{u_{1}}, \ldots, x^{u_{J}}\right)
$$

where $F, H_{1}, H_{2} \in \mathbb{C}\left[z_{1}^{ \pm 1}, \ldots, z_{J}^{ \pm 1}\right]$. The u_{j} can be chosen arbitrarily in \mathbb{Z}, so the equality $f=g\left(h_{1} / h_{2}\right)$ (which holds for every choice of the u_{j}) gives in fact $F=g\left(H_{1} / H_{2}\right)$; but then H_{1} / H_{2} must also be in $\mathbb{C}\left[z_{1}^{ \pm 1}, \ldots, z_{J}^{ \pm 1}\right]$ as this is integrally closed. Moreover, its degree is limited by the sum of the degrees of H_{1}, H_{2}, thus giving us a limitation on the number of terms of H_{1} / H_{2} which is bounded by $\left(1+2 \operatorname{deg} H_{1}+2 \operatorname{deg} H_{2}\right)^{J}$: all these can be bounded by functions of l as they depend only on the linear system, so that we have finally the same bound $B(l)$ for the number of terms of $h(x)$ too.

Chapter 2

General case

2.1 Introduction to the proof

We want now to prove the more general theorem ([2, Thm 1.1]):
Theorem 2.1. Take any polynomial $F(x, y) \in \mathbb{C}[x, y]$ monic of degree d in y and having at most l terms in x : if there is $h(x) \in \mathbb{C}[x]$ such that $F(x, h(x))=0$, then $h(x)$ has at most $\beta(d, l)$ terms.

As we notice the dependence of the bound by d reappears, since Proposition 1.2 can't be applied in this situation, but $\beta(d, l)$ is still independent from the degrees of the terms in x and from any coefficient appearing in the polynomial F. Theorem 2.1 contains Theorem 1.1 as a special case, when $F(x, y)=g(y)-f(x)$.

Again we make use of an intermediate result ([2, Prop 2.5]):
Theorem 2.2. Take any polynomial $F\left(v_{1}, \ldots, v_{l}, y\right) \in \mathbb{C}\left[v_{1}, \ldots, v_{l}, y\right]$ monic in y and of degree at most d in each variable: if there is $h(x) \in \mathbb{C}[x]$ and there are $n_{1}, \ldots, n_{l} \in \mathbb{N}$ such that $F\left(x^{n_{1}}, \ldots, x^{n_{l}}, h(x)\right)=0$, then $h(x)$ can be written as the ratio of two polynomials with at most $\beta_{1}(d, l)$ terms.

The technique used to prove Theorem 2.2 follows a very similar path to that used for Theorem 1.3, although filled with many more annoying details. We divide the exponents n_{j} in "small" ones and "big" ones and we still obtain a Puiseux expansion for h as (1.2) (although with a different procedure): notice that once this is done in a suitable way we are approximately in the same situation as in the previous chapter, because while working with the Puiseux expansion we didn't use any information about its origin (i.e. the polynomial $g(x))$ except for its degree d which appeared in fact in the expansion itself; therefore a very similar reasoning can be used to treat the Puiseux expansion that we are going to obtain from $F(x, y)$.

As before, we write h as the sum of a certain (bounded) number of "small" terms with coefficients in a function field $K \supseteq \mathbb{C}(x)$ and a "big" error term as in (1.5): Lemma 1.4 still holds, so again we have either a bound like (1.8) that links n_{p} to n_{p+1} or a bound coming from the elimination of the big error term, the information about the number of the small terms and the inductive hypothesis that provides a β_{1} depending on $p<l$. The annoying details that render the proof of Theorem 2.2 more than just a mere rewriting of the previous
one are concentrated mostly in the process of obtaining the Puiseux expansion; moreover, we won't be able to have nice terms of the form (1.4) where the $\delta_{p}(x)$ containing the small exponents appears just as a power in the coefficients, but in general the dependence from δ_{p} would be more complicated, leading to other technical difficulties.

We'll focus on these two issues, observing that the rest of the proof will use the same framework as in Theorem 1.3.

2.2 Theorem 2.2: Puiseux expansion

Let's start with the Puiseux expansion. Remember that in the previous situation we were constructing the expansion by requiring the cancellation of the highest powers and then performing a change of variables at the end to obtain an error term that collects the terms with high exponents (that would have been low exponents in the original variable): now we use a more direct approach and require the elimination of the smallest powers from the beginning.

Consider again a concrete example: suppose that $F(x, y)=x^{2}+2 y x+y^{2}+y^{2} x^{2}$ (we always suppose for simplicity that $x \nmid F(x, y))$. In Theorem 1.3 we always start with a solution of the form $h=c f^{1 / d}+o\left(f^{1 / d}\right)$, while in this situation we just require that there will be some form of cancellation of the lowest terms, leaving freedom also in the choice of the exponent. Let's say we take $y=-x+o(x)$, that leads to cancellations in the first three terms of F; the next step is to obtain a new expression with a new y^{\prime} and continue the expansion of y term by term, and this will be done in two different ways according to the nature of the solution chosen. If the solution $y=c x^{e}+o\left(x^{e}\right)$ is such that the lowest terms of F (where the cancellation occurs) are of the form $s x^{t}\left(y-c x^{e}\right)^{u}$ for suitable s, t, u, we follow the strategy called (S1) in [2]: the next expression will be $F(x, y)=F\left(x, c x^{e}+y^{\prime}\right)$; our example satisfies this condition, as $x^{2}+2 y x+y^{2}=(y+x)^{2}$, so to obtain the next term of the expansion we will work with $F\left(x,-x+y^{\prime}\right)=x^{4}-2 y^{\prime} x^{3}+y^{\prime 2}+y^{\prime 2} x^{2}$. If the condition is not satisfied then we use the strategy (S2): the new expression will be then $x^{-t} F\left(x, c x^{e}+x^{e} y^{\prime}\right)$ with a suitable t such that x does not divide everything; given for example $F(x, y)=x^{2}+3 y x+2 y^{2}+y^{2} x^{2}$ we still have the possible solution $y=-x+o(x)$ but we'll have to adopt (S2) in this case, giving us $x^{-2} F\left(x,-x+x y^{\prime}\right)=x^{2}-y-2 y x^{2}+2 y^{2}+y^{2} x^{2}$. Notice that (S2) is basically the strategy always adopted in the analogous situation of Theorem 1.3.

The two strategies don't produce different solutions, but only different ways of writing the same solution. Considering the first example we made, using always (S1) or always (S2) regardless of the aforementioned condition, choosing appropriately c and e at every step we obtain the same result:

$$
\begin{aligned}
& y_{(S 1)}=-x+i x^{2}+x^{3}-i x^{4}-x^{5}+\ldots \\
& y_{(S 2)}=-x+x(i x+x(x+x(-i x+x(-x+\ldots))))
\end{aligned}
$$

The same would happen using any random sequence of choices between (S1) and (S2), altering only the placement of the parentheses but not the nature of the solution.

So why do we adopt such a technique to find the Puiseux expansion if it's the same in any case? The reason is in the behaviour of the error term in the more general case when the number p of small exponents is positive, and then the field K of the coefficients of the variable y is bigger than \mathbb{C}. Consider a polynomial $F(x, y) \in K[x, y]$ with $K \supseteq \mathbb{C}(x)$: the variable x is present both in the expression F and its coefficients, so a way to find a

Puiseux expansion is to consider formally $F(z, y) \in K[z, y]$ with $K \supseteq \mathbb{C}(x)$, then extract an expansion of y with respect to z and at the end substitute again $z=x$; this is what happened in Theorem 1.3 where we treated δ_{p} as a coefficient disregarding the x hidden inside it. Unfortunately the situation is not as nice as before: in fact $\delta_{p}(x)^{s} x^{t}=O\left(x^{t}\right)$ for any $s \in \mathbb{Z}$ since $\delta_{p}(x)=1+b_{1} x^{n_{1}}+\ldots+b_{p} x^{n_{p}}$, but for a more arbitrary $a(x) \in K$ even if we have $a(x) z^{t}=O\left(z^{t}\right)$ we don't have also $a(x) x^{t}=O\left(x^{t}\right)$; this means that even if using the formal variable z we get a sufficiently big error term (with respect to z) it's not guaranteed that the error term remains big when seen with respect to x, leading ultimately to the impossibility of using Lemma 1.4. The alternation between (S1) and (S2) becomes useful for the following reason: it turns out that the final substitution $z=x$ is relatively painless when (S1) is used, while it's possible to make it work in the (S2) case at the cost of a modification of the meaning of "small" and "large" exponents; however, with the condition provided, it is possible to prove that (S2) occurs only in a finite number of steps, thus saving the whole argument.

We will be more explicit in the next chapter, where the details will be important to work out the actual bound; for now we just expose things to have a better understanding of the situation. Let $F(z, y)$ be of the form:

$$
\begin{equation*}
F(z, y)=\sum_{i=0}^{d} y^{i} \sum_{j=0}^{s_{i}} a_{i j} z^{r_{i j}} \tag{2.1}
\end{equation*}
$$

with $a_{i j} \in K \supseteq \mathbb{C}(x)$ coefficients collecting the small exponents (which we express by bounding the height of the $a_{i j}$ by a certain m) and with $r_{i j}$ being the large exponents (which we express by saying that the smallest of the nonzero $r_{i j}$ is at least ε times the biggest one, for a certain $\varepsilon)$; then the following facts are true:

- (S2) is used at most $d+1$ times ([2, Prop 4.5]).
- Suppose we have an expansion:

$$
y=c_{1} z^{e_{1}}+c_{2} z^{e_{2}}+\ldots+c_{j} z^{e_{j}}+O\left(z^{e_{j+1}}\right)
$$

obtained using at all steps always the strategy (S 1), and suppose that m is small enough, i.e. not comparable to the smallest nonzero $r_{i j}$; then for $F(x, y)$ we also have an expansion:

$$
y=c_{1} x^{e_{1}}+c_{2} x^{e_{2}}+\ldots+c_{j} x^{e_{j}}+O\left(x^{e_{j}-\delta_{j}}\right)
$$

where δ_{j} is small, in the sense that it's linearly bounded by m ([2, Prop 5.2]). Since we always use (S1) it can be seen that the coefficients c_{1}, \ldots, c_{j} still belong to K and their height is still linearly bounded by m; also the exponents e_{1}, \ldots, e_{j} are positive linear combinations of the $r_{i j}$: these facts imply that we can continue the expansion without changing the initial data m, ε that regulate the meaning of "small" and "large", which is why we consider (S 1) to be the reasonable one between the two strategies and we want to use it in all but finitely many steps.

- Suppose now that we are not in the nice situation described above: this means that either we are starting already with (S2) or that the first term of the expansion is not large enough; in fact previously e_{1} was a positive combination of the $r_{i j}$, which means at least as big as the smallest of them (if nonzero): this is not always the case, and the conditions above don't take care of this situation.

It's at this point that the use of the less intuitive writing of the polynomial $F(x, y)$ as $F\left(x^{n_{1}}, \ldots, x^{n_{l}}, y\right)$ becomes important. At the beginning clearly the idea is that the n_{i} (more precisely the "large" ones among the n_{i}) and the $r_{i j}$ are chosen to be the same thing, which we express by the concept that every $r_{i j}$ is $\vec{e}_{k} \cdot \vec{n}$ for the vector $\vec{n}=\left(n_{p+1}, \ldots, n_{l}\right)$ and some $\vec{e}_{k}=(0, \ldots, 0,1,0, \ldots, 0)$. However, we can change the meaning of the n_{i} in such a way that we still have $r_{i j}=\vec{q}_{k} \cdot \vec{n}$ for some \vec{q}_{k} with bounded integer values and at the same time satisfy the condition that the linear combinations of the $r_{i j}$ that will appear while working with the Puiseux expansion are at least $\varepsilon|\vec{n}|_{\infty}$ (which is the same nice condition that we had in the previous point); this operation obviously comes at a certain cost: namely, some of the new n_{i} may turn out to be "small" in the new situation, which in general changes the value of p, m, ε.
With this technical condition fulfilled, we can use (S2) without much pain; if m is small enough (in the sense already described in the previous case) we find an expansion:

$$
y=c x^{e}+x^{e} O\left(x^{\delta}\right)
$$

where δ is big (i.e. linearly bounded from below by $\varepsilon|\vec{n}|_{\infty}$), e is a rational combination of the $r_{i j}$ and $c \in \bar{K}$ with height bounded in terms of m ([2, Prop 5.3]). Notice that this time the field K must be enlarged to $K(c)$ at the next step but the genus (fundamental datum when using Lemma 1.4) can still be controlled: the change of the field is another good reason to use (S2) only finitely many times; also, even if the expansion features rational exponents it's easy to see that we can suppose them to be integers: taking a new variable x^{\prime} with $x^{\prime n}=x$ for a suitable n does not change the proof, since if $h\left(x^{n}\right)$ is the ratio of two polynomials with at most β terms then the same can be said about $h(x)$ (with the same β, [2, Lemma 2.8]).
Following the results above, we manage then to expand y in the polynomial $F(x, y)$ as:

$$
\begin{equation*}
y=\sum_{\vec{q}} c_{\vec{q}} x^{\vec{q} \cdot \vec{n}}+\sigma \tag{2.2}
\end{equation*}
$$

where σ can be taken big enough to use effectively Lemma 1.4; we find ourselves in the same situation as in the proof of Theorem 1.3: $\{\vec{q}\}$ is a bounded collection, the field K has a well-bounded genus, the entries n_{i} of \vec{n} are considered large (i.e. $n_{i} \geq \varepsilon|\vec{n}|_{\infty}$ for a certain independent ε).

2.3 Theorem 2.2: linear dependence

As said before, the other important issue that distinguishes Theorem 2.2 from Theorem 1.3 is the way the coefficients $c_{\vec{q}}$ in (2.2) depend on the small exponents n_{i} : in (1.5) the terms t_{i} simply contained a rational power of $\delta_{p}(y)$ (the polynomial made of the small monomials), but in this case it's not as easy.

In the previous chapter we distinguished the two cases of $\tilde{h}, t_{1}, \ldots, t_{L}$ being linearly dependent or independent, and we're doing the same also here. If we suppose $y, c_{\vec{q}} x^{\vec{q} \cdot \vec{n}}$ to be independent we apply Lemma 1.4 obtaining an estimate of the type $m \geq \varepsilon^{\prime}|\vec{n}|_{\infty}$: this ideally corresponds to the bound (1.8), as the indicator of "small" quantities (m here, n_{p} before) is in both cases chained to the indicator of "large" quantities $\left(\varepsilon|\vec{n}|_{\infty}\right.$ here, n_{p+1} before); if we
suppose them to be dependent we practically obtain the elimination of the σ in (2.2): this is the case we examine now.

Let then $h(x)$ be the sum of some $c_{\vec{q}} x^{\vec{q} \cdot \vec{n}}$ (a subset of the terms in (2.2); also the $c_{\vec{q}}$ now are possibly \mathbb{C}-multiples of the previous ones). K is constructed using the $c_{\vec{q}}$ which are coefficients of the Puiseux expansion, thus being algebraic expressions of the $x^{n_{i}}$ (the small ones); now we repeat in a more general context what happened in Theorem 1.3.

Consider elements $a_{\vec{q}} \in \overline{\mathbb{C}\left(v_{1}, \ldots, v_{p}\right)}$ which we think of as the $c_{\vec{q}}$ with v_{i} instead of $x^{n_{i}}$; the $a_{\vec{q}}$ will generate a field $K_{v} \supseteq \mathbb{C}\left(v_{1}, \ldots, v_{p}\right)$ and given a primitive element b in it we can write them as:

$$
\begin{equation*}
a_{\vec{q}}=\sum_{j=0}^{e-1} C_{\vec{q} j} j^{j} \tag{2.3}
\end{equation*}
$$

for some e and some $C_{\vec{q} j} \in \mathbb{C}\left(v_{1}, \ldots, v_{p}\right)$. We then take a valuation ring $\mathcal{O} \subseteq K_{v}$ and the projection map $\pi: \mathcal{O} \rightarrow \overline{\mathbb{C}(x)}$ defined in the intuitive way: we send v_{i} to $x^{n_{i}}$, so that $a_{\vec{q}}$ becomes $c_{\vec{q}}$ and K_{v} becomes K. Take as an example the case of Theorem 1.3: we have coefficients $c_{\vec{q}}$ of the form $C \delta_{p}(x)^{j / d}$ and K generated by $\delta_{p}(x)^{1 / d}$ over $\mathbb{C}(x)$, so we consider $a_{\vec{q}}=C\left(1+v_{1}+\ldots+v_{p}\right)^{j / d}$ and K_{v} generated by $b=\left(1+v_{1}+\ldots+v_{p}\right)^{1 / d}$ over $\mathbb{C}\left(v_{1}, \ldots, v_{p}\right)$ (e indicates the same thing in both cases).

In this specific example everything works smoothly: writing $h(x)$ as a combination of $\pi\left(a_{\vec{q}}\right)$ and using (2.3) we have that all terms with $j>0$ must cancel out, leaving us only some $C_{\vec{q} e j}=C b^{e j}=C \eta_{p}(x)^{j}$ with $C \in \mathbb{C}$; then the inductive hypothesis saves us and gives the bound on the terms of the ratio that we were longing for. This is not in general the case: in fact the $C_{\vec{q} j}$ could be outside \mathcal{O} and then $\pi\left(C_{\vec{q} j}\right)$ could be not well-defined; or the minimal polynomial for b could have coefficients outside \mathcal{O} and then $\pi(b)$ could in general be not an algebraic function.

This problem though is easily avoidable: in fact this means that we can find a polynomial at the denominator of the $C_{\vec{q} j}$ or of the coefficients of the minimal polynomial which goes to 0 through π; but then this implies a relation between the exponents n_{i} since at least two different monomials must specialize to something with the same degree, thus giving us:

$$
\begin{equation*}
k_{1} n_{1}+\ldots+k_{p} n_{p}=0 \tag{2.4}
\end{equation*}
$$

for some suitably bounded integers k_{i}. Thanks to this we can express n_{1} as combination of n_{2}, \ldots, n_{p} (assuming for example $k_{1} \neq 0$) and decrease the number of variables v_{i} we're dealing with: again, the inductive hypothesis concludes the job.

When everything is already inside \mathcal{O} we can follow the same path as in Theorem 1.3. The rest of the proof of Theorem 2.2 is pretty much a rewriting of the previous one, and the exact same procedure that proves Theorem 1.1 proves also Theorem 2.1.

Chapter 3

Explicit bounds

3.1 Bound for Theorem 1.3

We provide now explicit values for the bounds in the various theorems we have encountered before. We start with the bound for Theorem 1.3:
Proposition 3.1. Under the notation of Theorem 1.3 we have $B_{1}(l) \leq 2^{(2 l)^{16(2 l)^{l-1}} \text { for every }}$ integer $l \geq 1$.
Proof. We notice immediately that for $l=1$ we retrieve the easy bound $B_{1}(1)=2 \leq 2^{2^{16}}$; from now on we suppose $l \geq 2$.

We re-examine now the proof of Theorem 1.3. We defined p as the number of "small" non-constant terms in the polynomial $f(x)$, and for each $0 \leq p \leq l-1$ we had only two possibilities: either $\tilde{h}(y)$ (which has the same number of terms as $h(x)$) can be written as a ratio of two polynomials with at most $B_{2}\left(l, n_{l} / n_{p+1}\right)$ terms, or we can control n_{l} / n_{p} in terms of l and n_{l} / n_{p+1}.

Suppose that the first possibility is sometimes verified, and call p the biggest number for which this happens: in this case we have the bound $B_{2}\left(l, n_{l} / n_{p+1}\right)$, but at this point we can express n_{l} / n_{p+1} in terms of l and n_{l} / n_{p+2}, then again n_{l} / n_{p+2} in terms of l and n_{l} / n_{p+3} and so on until we reach $n_{l} / n_{l}=1$; in this way we would have established an absolute bound, depending only on l. Suppose instead that the first possibility never realizes: this means that with a similar process as before it's possible to control n_{l} / n_{1} only in terms of l; it's then possible to find an upper bound to the number of terms using the fact that $\varepsilon_{l} n_{l} \leq n_{1}<n_{2}<\ldots<n_{l}$, where ε_{l} depends only on l.

Let's begin with the bound B_{2}. We recall that in the considered situation $\tilde{h}(y)$ is the sum of terms of the following shape:

$$
\begin{equation*}
C \eta_{p}(y)^{\frac{1}{e}\left(s-\left(h_{p+1}+\ldots+h_{l}\right) d\right)} y^{\frac{1}{d}(1-s) n_{l}+h_{p+1} n_{p+1}+\ldots+h_{l} n_{l}} \tag{3.1}
\end{equation*}
$$

where we required that the exponent of y doesn't exceed $2 n_{l}$; the bound on the number L of such terms is the one provided in (1.6). Also we know by inductive hypothesis that $\eta_{p}(y)$ can be written as ratio of two polynomials with at most $B_{1}(p) \leq B_{1}(l-1)$ terms; finally its exponent E has absolute value at most:

$$
E \leq d\left(2+(l-p) 2 n_{l} / n_{p+1}\right) \leq 4 l(l-1)\left(1+l n_{l} / n_{p+1}\right)
$$

After bringing everything to common denominator we have L terms (3.1) each with at most $B_{1}(l-1)^{E+1}$ at the numerator and denominator, since the exponent of $\eta_{p}(y)$ ranges from 1 to $-E$; hence:

$$
\begin{equation*}
B_{2}\left(l, n_{l} / n_{p+1}\right) \leq(2 l-1)^{2}\left(1+2 n_{l} / n_{p+1}\right)^{l} B_{1}(l-1)^{4 l(l-1)\left(1+l n_{l} / n_{p+1}\right)+1} \tag{3.2}
\end{equation*}
$$

Now we estimate n_{l} / n_{p+1}. It's sufficient to iterate the estimate found in (1.8):

$$
\begin{align*}
n_{l} / n_{p+1} & \leq 2^{4(l+2)} l^{3}(l-1)^{3}\left(n_{l} / n_{p+2}\right)^{2 l} \\
& \leq\left[2^{4(l+2)} l^{3}(l-1)^{3}\right]^{1+2 l+\ldots+(2 l)^{l-p-2}} \\
& \leq\left[2^{4(l+2)} l^{3}(l-1)^{3}\right]^{2(2 l)^{l-2}} \tag{3.3}
\end{align*}
$$

Then we put this in (3.2). We work first with the exponent:

$$
\begin{aligned}
4 l(l-1)\left(1+l n_{l} / n_{p+1}\right)+1 & \leq 4 l(l-1)\left(1+l\left[2^{4(l+2)} l^{3}(l-1)^{3}\right]^{2(2 l)^{l-2}}\right)+1 \\
& \leq 8 l^{3}\left[2^{4(l+2)} l^{6}\right]^{2(2 l)^{l-2}}=2^{3+8(l+2)(2 l)^{l-2}} l^{3+12(2 l)^{l-2}} \\
& \leq 2^{2^{l+2} l^{l-1}} l^{l^{l+2} l^{l-2}}=: K(l)
\end{aligned}
$$

and then with the coefficient:

$$
\begin{aligned}
(2 l-1)^{2}\left(1+2 n_{l} / n_{p+1}\right)^{l} & \leq(2 l-1)^{2}\left(1+2\left[2^{4(l+2)} l^{3}(l-1)^{3}\right]^{2(2 l)^{l-2}}\right)^{l} \\
& \leq 4 l^{2} 2^{l}\left[2^{4(l+2)} l^{6}\right]^{(2 l)^{l-1}}=2^{2+l+4(l+2)(2 l)^{l-1}} l^{2+6(2 l)^{l-1}} \\
& \leq 2^{2^{l+2} l^{l}} l^{2^{l+2} l^{l-1}}=: H(l)
\end{aligned}
$$

thus obtaining $B_{1}(l) \leq H(l) B_{1}(l-1)^{K(l)}$.
We already observed at the beginning that the bound was verified for $l=1$. Supposing now the statement true for $l-1$, we want then to prove:

$$
\begin{equation*}
H(l) \cdot 2^{K(l) \cdot(2 l-2)^{16(2 l-2)^{l-2}}} \leq 2^{(2 l)^{16(2 l)^{l-1}}} \tag{3.4}
\end{equation*}
$$

We start working with the exponent on the left hand side:

$$
\begin{aligned}
K(l) \cdot(2 l-2)^{16(2 l-2)^{l-2}} & \leq 2^{2^{l+2} l^{l-1}} l^{2^{l+2} l^{l-2}}(2 l)^{16(2 l)^{l-2}} \\
& =2^{8(2 l)^{l-1}+16(2 l)^{l-2}} \cdot l^{16(2 l)^{l-2}+16(2 l)^{l-2}} \\
& \leq(2 l)^{16(2 l)^{l-1}-16(2 l)^{l-2}}
\end{aligned}
$$

Using this in (3.4) and passing to the logarithm we find:

$$
\begin{aligned}
\log _{2} H(l)+(2 l)^{16(2 l)^{l-1}-16(2 l)^{l-2}} & \leq 2^{l+2} l^{l}+2^{l+2} l^{l-1} \log _{2} l+(2 l)^{16(2 l)^{l-1}-16(2 l)^{l-2}} \\
& \leq 8(2 l)^{l}+(2 l)^{16(2 l)^{l-1}-16(2 l)^{l-2}} \\
& \leq\left(\frac{16(2 l)^{l-2}}{\left.(2 l)^{16(2 l)^{l-2}} \cdot 2 l^{2}+1\right)(2 l)^{16(2 l)^{l-1}-16(2 l)^{l-2}}}\right. \\
& \leq(2 l)^{2}(2 l)^{16(2 l)^{l-1}-16(2 l)^{l-2}} \leq(2 l)^{16(2 l)^{l-1}}
\end{aligned}
$$

thus proving the bound we were looking for.
The case when the bound B_{2} never realizes for any p is easy now. In fact n_{l} / n_{1} is controlled with the same bound as in (3.3) and $\tilde{h}(y)$ is the sum of $\gamma_{0} y^{n_{l} / d}$ and some terms with the exponent of y being $h_{1} n_{1}+\ldots+h_{l} n_{l} \leq n_{l} / d \leq n_{l}$; hence the number of terms is bounded by:

$$
1+\left(1+\left[2^{4(l+2)} l^{3}(l-1)^{3}\right]^{2(2 l)^{l-2}}\right)^{l}
$$

which is in turn already smaller than $H(l)$.

3.2 Bound for Theorem 1.1

The next bound the retrieve is the one in Theorem 1.1.
Proposition 3.2. Under the notation of Theorem 1.1 we have $B(l) \leq B_{1}(l)^{5 B_{1}(l)^{2}}$ for every integer $l \geq 1$, where $B_{1}(l)$ is the bound of Proposition 3.1.

Proof. Again, we re-examine the proof of Theorem 1.1. We write explicitly the equation $f(x)-g\left(h_{1}(x) / h_{2}(x)\right)=0$:

$$
\begin{aligned}
& f(x)=\sum_{i=1}^{l} a_{i} x^{m_{i}}, \quad g(x)=\sum_{j=0}^{d} b_{j} x^{j}, \quad h_{r}(x)=\sum_{k=1}^{B_{1}(l)} c_{r k} x^{n_{r k}} \quad(r=1,2) \\
& 0=h_{2}(x)^{d}\left(f(x)-g\left(h_{1}(x) / h_{2}(x)\right)\right) \\
& =\left(\sum_{k=1}^{B_{1}(l)} c_{2 k} x^{n_{2 k}}\right)^{d}\left(\sum_{i=1}^{l} a_{i} x^{m_{i}}\right)-\sum_{j=0}^{d} b_{j}\left(\sum_{k=1}^{B_{1}(l)} c_{1 k} x^{n_{1 k}}\right)^{j}\left(\sum_{k=1}^{B_{1}(l)} c_{2 k} x^{n_{2 k}}\right)^{d-j}
\end{aligned}
$$

As we can observe, when we build the linear system of the exponents $m_{i}, n_{1 k}, n_{2 k}$ the coefficients that appear are all bounded by $d(\leq 2 l(l-1)$ by Proposition 1.2); also, if J is the number of independent parametres for the solution of the system, then it is limited by the total number of variables, i.e. $J \leq l+2 B_{1}(l)$. Solving the linear system we find that the coefficients $v_{j}^{(\cdot)}$ in the solution:

$$
m_{i}=\sum_{j=1}^{J} v_{j}^{(i)} u_{j}, \quad n_{1 k}=\sum_{j=1}^{J} v_{j}^{(1 k)} u_{j}, \quad n_{2 k}=\sum_{j=1}^{J} v_{j}^{(2 k)} u_{j}
$$

are determinants of square matrices of side $l+2 B_{1}(l)-J$ and entries bounded by d; this technically does not catch all the solutions, because we need the $v_{j}^{(\cdot)}$ to be integer, but what we have is sufficient as in the proof we need only to be able to choose the u_{j} arbitrarily in \mathbb{Z}. A bound on these determinants is given then by $\left(l+2 B_{1}(l)-J\right)!d^{l+2 B_{1}(l)-J}$, and we notice that they are also the degrees of the monomials appearing in H_{1}, H_{2}, so that in the end:

$$
\begin{aligned}
B(l) & \leq\left(1+4\left(l+2 B_{1}(l)-J\right)!d^{l+2 B_{1}(l)-J}\right)^{J} \leq\left(1+4\left(l+2 B_{1}(l)\right)!d^{l+2 B_{1}(l)}\right)^{l+2 B_{1}(l)} \\
& \leq 4^{l+2 B_{1}(l)}\left(l+2 B_{1}(l)\right)!^{l+2 B_{1}(l)}\left(2 l^{2}\right)^{\left(l+2 B_{1}(l)\right)^{2}} \\
& \leq 2^{\left(l+2 B_{1}(l)\right)^{2}+2\left(l+2 B_{1}(l)\right)} l^{2\left(l+2 B_{1}(l)\right)^{2}} e^{l+2 B_{1}(l)-\left(l+2 B_{1}(l)\right)^{2}}\left(l+2 B_{1}(l)\right)^{l+2 B_{1}(l)+\left(l+2 B_{1}(l)\right)^{2}}
\end{aligned}
$$

where the last inequality uses the fact that $x!\leq e x(x / e)^{x}$; also $2^{x^{2}+2 x} e^{x-x^{2}}<1$ when the condition $x \geq 1+2 \cdot 2^{2^{16}}$ is satisfied, therefore we obtain:

$$
\begin{aligned}
B(l) & \leq l^{2\left(l+2 B_{1}(l)\right)^{2}}\left(l+2 B_{1}(l)\right)^{l+2 B_{1}(l)+\left(l+2 B_{1}(l)\right)^{2}} \\
& \leq l^{18 B_{1}(l)^{2}}\left(3 B_{1}(l)\right)^{l+2 B_{1}(l)+l^{2}+4 l B_{1}(l)} 3^{4 B_{1}(l)^{2}} B_{1}(l)^{4 B_{1}(l)^{2}} \\
& \leq\left(l^{18} 3^{12}\right)^{B_{1}(l)^{2}} B_{1}(l)^{8 l B_{1}(l)} B_{1}(l)^{4 B_{1}(l)^{2}}
\end{aligned}
$$

We have also easily that $16 l \leq 3^{24} l^{36} \leq B_{1}(l)$, and this finally proves our thesis.
We can compare this bound with what Schinzel found in the special case of his conjecture. The bound $T(d, l)$ given in (1.1) (with the not very restrictive hypothesis that the maximum is not achieved by 2) combined with the bound on d given by Proposition 1.2 (be careful that l includes the constant term in the first case and it doesn't in the second) gives us:

$$
\begin{aligned}
T(d, l) & \leq 1+e^{\left(2^{l-d-1}-1\right)(d \ln 4 d-\ln d)} \leq e^{2^{l-1} d \ln 4 d}=(4 d)^{2^{l-1} d} \\
& \leq(8 l(l+1))^{2^{l} l(l+1)} \leq(4 l)^{2^{l+2} l^{2}}
\end{aligned}
$$

which, as Zannier thought, is a much stronger bound than $B(l)$ in this particular situation.
We add that in fact an even stronger bound exists, proven by Schinzel and Zannier [5], that reduces the double exponentiation of the original result by Schinzel to a single exponentiation; with the conditions already mentioned above we get:

$$
T(d, l) \leq 1+(4 d)^{l-2} \leq(4 l)^{2(l-2)}
$$

3.3 Bound for Theorem 2.2: preliminary lemmas

These last sections deal with explicit bounds for the general case, examined in Chapter 2. The discussion here follows closely the results and passages contained in [2], so in order to thoroughly understand the whole argument it is advised to read it. Also, it has to be understood that sometimes not optimal approximations have been made in order to simplify the writing of some quantities: this has been done mostly to make possible to work with expressions that so many times had to be nested one into the other.

We start with a series of preliminary lemmas that estimate other quantities used in the main argument that were left mostly implicit in the original paper.

Lemma 3.3. $C_{0}(C)=C(C+1)^{2}$.
Proof. In [2, Prop 5.1] we are considering a polynomial $F(z, y)$ as in (2.1) where $d, s_{i} \leq C$ and the height of the $a_{i j}$ is bounded by $C m$, and we want to find a bound $h(F) \leq C_{0} m$; but the height of F is trivially bounded by the sum of the heights of its coefficients, so:

$$
h(F) \leq \sum_{i, j} h\left(a_{i j}\right) \leq \#\left\{a_{i j}\right\}_{i, j} C m \leq(C+1)^{2} C m
$$

thus giving our result.
Lemma 3.4. $C_{1}(C)=2 C^{2}(C+1)^{2}$.

Proof. In [2, Prop 5.2] C_{1} is defined as $2 C C_{0}$, so we use Lemma 3.3.
Lemma 3.5. $C_{2}(C)=C+C^{2}(C+1)^{2}$.
Proof. In [2, Prop 5.4] we are starting with $F(z, y)$ as in (2.1) with bounds $d, s_{i} \leq C$ and $h\left(a_{i j}\right) \leq C m$; we also suppose that we are using the step (S2) to pass to a new polynomial $F_{n e w}(z, y)$:

$$
F_{n e w}(z, y)=z^{-t} F\left(z, c z^{e}+z^{e} y\right)=\sum_{i, j, k} a_{i j}\binom{i}{k} c^{k} y^{i-k} z^{r_{i j}+e i-t}
$$

where also $h(c) \leq C_{0} m$, and we are first looking for a bound $C^{\prime} m$ on the height of the coefficients of $F_{\text {new }}$. This is easy to find:

$$
h\left(a_{i j}\binom{i}{k} c^{k}\right) \leq h\left(a_{i j}\right)+k h(c) \leq C m+d C_{0} m \leq\left(C+C^{2}(C+1)^{2}\right) m
$$

and summing more of these terms together (to get the coefficients of $F_{n e w}$) gives the same bound, as height is in practice the degree with respect to x in this situation; therefore $C^{\prime}(C)=C+C^{2}(C+1)^{2}$. The quantity C_{2} has the purpose of allowing to reconduct ourselves to the original situation with the new polynomial $F_{\text {new }}: C_{2}$ is then defined as max $\left\{C^{2}, C^{\prime}\right\}$, where C^{2} accounts for the other conditions that must be satisfied, involving for instance the number of terms of $F_{\text {new }}$ and the degree of the extension $K(c)$; hence looking at the previous expression we clearly have $C_{2}=C^{\prime}$.
Lemma 3.6. $\varepsilon_{1}(C, \varepsilon)=\frac{\varepsilon}{C(C+2)}$.
Proof. By definition in [2, Prop 5.4].
Lemma 3.7. $C_{3}(C)=C^{2 C^{3}}$.
Proof. In [2, Prop 5.6] we are starting with a $q \times q$ square matrix $Q(q \leq C)$ with rational entries with height bounded by C (in the proposition we are considering the logarithmic height, but in the rest of the paper the absolute height is implicitly used, so here the latter is used): we are searching for a bound C_{3} on the height of $\operatorname{det}(Q)$ and of the entries of Q^{-1}. For the determinant we have:

$$
H_{\mathbb{Q}}(\operatorname{det}(Q))=H_{\mathbb{Q}}\left(\sum_{\sigma} \prod_{i=1}^{q} Q_{i \sigma(i)}\right) \leq q!C^{q^{3}} \leq C^{C^{3}+C}
$$

The entries of the adjoint matrix of Q are determinants of smaller $(q-1) \times(q-1)$ matrices with the same entries as Q, so for the inverse matrix:

$$
H_{\mathbb{Q}}\left(\left(Q^{-1}\right)_{i j}\right) \leq H_{\mathbb{Q}}(\operatorname{det}(Q)) H_{\mathbb{Q}}\left(\operatorname{adj}(Q)_{i j}\right) \leq C^{C^{3}+C} C^{(C-1)^{3}+C-1} \leq C^{2 C^{3}}
$$

the last inequality being true for all integers $C \geq 1$.
Lemma 3.8. $C_{4}(C)=C^{4 C^{3}+1}$.
Proof. In [2, Cor 5.9] C_{4} is defined as $C C_{3}\left(1+C_{3}\right)$: we can apply Lemma 3.7 to it with the slight improvement $1+C_{3} \leq C^{2 C^{3}}$ which is true for every integer $C \geq 2$ (we are going in fact to work always with at least $C \geq 4$).

Lemma 3.9. $\varepsilon_{2}(C, \varepsilon)=\frac{\varepsilon}{C^{2 C^{3}+1}}$.
Proof. In [2, Cor 5.9] ε_{2} is defined as $\frac{\varepsilon}{C C_{3}}$, so we just apply Lemma 3.7.
Lemma 3.10. $\varepsilon_{3}(C, \varepsilon)=\frac{\varepsilon^{3 C+4}}{2^{6 C+7} C^{6 C+8}}$.
Proof. In [2, Lemma 5.11] ε_{3} is defined as:

$$
\varepsilon_{3}=\frac{\varepsilon}{2 C\left(\frac{L(L+1)^{n}}{n!}+1\right)^{2}\left(C \frac{L(L+1)^{n}}{n!}+2\right)}
$$

with $L=\frac{4 C^{2}}{\varepsilon}+1$ and $n \leq C$; everywhere in our discussion we'll assume $C \geq 4$ and $\varepsilon \leq 1$, as this is what we will always work with. Since $L>C$ we have $\frac{(L+1)^{n}}{n!} \leq \frac{(L+1)^{C}}{C!}$; then we observe that with our conditions we get:

$$
C!(L-1)^{C+1}-L(L+1)^{C}>\left(C!-\left(\frac{3}{2}\right)^{C+1}\right)(L-1)^{C+1}>(L-1)^{C+1}>C!
$$

so that $\frac{L(L+1)^{C}}{C!}+1>(L-1)^{C+1}$, and consequently also $\frac{L(L+1)^{C}}{C!}+\frac{2}{C}>(L-1)^{C+1}$. Hence:

$$
\begin{aligned}
\varepsilon_{3} & \geq \frac{\varepsilon}{2 C\left(\frac{L(L+1)^{C}}{C!}+1\right)^{2}\left(C \frac{L(L+1)^{C}}{C!}+2\right)}>\frac{\varepsilon}{2 C(L-1)^{2(C+1)} C(L-1)^{C+1}} \\
& =\frac{\varepsilon}{2 C^{2}}\left(\frac{4 C^{2}}{\varepsilon}\right)^{-2(C+1)}\left(\frac{4 C^{2}}{\varepsilon}\right)^{-(C+1)}=\frac{\varepsilon^{3 C+4}}{2^{6 C+7} C^{6 C+8}}
\end{aligned}
$$

so we can give the last one as new definition of ε_{3}.
Lemma 3.11. $C_{5}(C)=C^{C+4}$.
Proof. By definition in [2, Lemma 5.13].
Lemma 3.12. $C_{6}(C)=2 C^{2 C^{C+2}}$.
Proof. In [2, Lemma 5.14] we are analyzing the situation of the linear dependence we discussed in Chapter 2. We are given elements $a_{\vec{q}} \in \overline{\mathbb{C}\left(v_{1}, \ldots, v_{p}\right)}$ roots of monic polynomials $p_{\vec{q}}(z) \in \mathbb{C}\left(v_{1}, \ldots, v_{p}\right)[z]$, a primitive element b of the field K_{v} generated by the $a_{\vec{q}}$ and relations as in (2.3): we ask that the number of $a_{\vec{q}}$ is at most $C+1$, that the degree in z of the $p_{\vec{q}}$ is at most C and that the degree in each v_{i} of all the coefficients of the $p_{\vec{q}}$ is at most C; what we want is to find a bound C_{6} on the degree in each v_{i} of all the $C_{\vec{q} j}$ and of the coefficients of the minimal polynomial for b.

The latter bound has already been found in [2, Lemma 5.13] as C_{5}, so we want $C_{6} \geq C_{5}$ (it will be easily satisfied anyway). Call b_{σ} the conjugates of b in $\overline{\mathbb{C}\left(v_{1}, \ldots, v_{p}\right)}$ and call $a_{\vec{q} \sigma}$ the conjugates of the $a_{\vec{q}}$; we have:

$$
a_{\vec{q} \sigma}=\sum_{j=0}^{e-1} C_{\vec{q} j} b_{\sigma}^{j}
$$

exactly as in (2.3). First of all, $e=\left[K_{v}: \mathbb{C}\left(v_{1}, \ldots, v_{p}\right)\right]$ and K_{v} is generated by the (at most) $C+1$ elements $a_{\vec{q}}$ whose minimal polynomials have degree (at most) C, thus $e \leq C^{C+1}$; also the height of the b_{σ} are bounded by C^{3}, being roots of the minimal polynomial of b; $\left(b_{\sigma}^{j}\right)_{j, \sigma}$ is an invertible $e \times e$ square matrix, so each $C_{\vec{q} j}$ can be expressed as the sum of e terms $a_{\vec{q} \sigma} b_{\sigma j}^{\prime}$ where the $b_{\sigma j}^{\prime}$ are entries of the inverse matrix. From all this, with respect to each v_{i} we obtain:

$$
\begin{aligned}
h\left(C_{\vec{q} j}\right) & \leq \sum_{\sigma} h\left(a_{\vec{q} \sigma}\right)+h\left(b_{\sigma j}^{\prime}\right) \leq e\left(C^{3}+2 e!\left(1+C^{3}+2 C^{3}+\ldots+(e-1) C^{3}\right)\right) \\
& =e\left(C^{3}+2 e!\left(1+C^{3} \frac{e(e-1)}{2}\right)\right) \leq e C^{3}\left(1+e^{e} e^{2}\right) \leq 2 C^{3} e^{e+3} \\
& \leq 2 C^{3} C^{(C+1)\left(C^{C+1}+3\right)}=2 C^{C^{C+2}+C^{C+1}+3 C+6} \leq 2 C^{2 C^{C+2}}
\end{aligned}
$$

which satisfies also $C_{6} \geq C_{5}$.
Lemma 3.13. $N_{1}(C, p)=C^{3 p C^{C+3}}$.
Proof. In [2, Prop 5.16] we are working in the linear dependence case, more specifically when everything is inside \mathcal{O}. We have a sum of at most $C+1$ elements $C_{\vec{q} j}$ which we project through the map π : each $C_{\vec{q} j}$ has degree at most C_{6} in each variable, thus being ratio of polynomials with at most $\left(C_{6}+1\right)^{p}$ terms (and the same will evidently be true after the projection, since monomials go to monomials); using Lemma 3.12 we obtain then a bound N_{1} on the number of terms for the sum:

$$
\begin{aligned}
N_{1} & \leq(C+1)\left(C_{6}+1\right)^{p(C+1)}=(C+1)\left(2 C^{2 C^{C+2}}+1\right)^{p(C+1)} \leq 3^{p(C+1)} C^{2 C^{C+2} p(C+1)+1} \\
& \leq C^{2 p C^{C+3}+2 p C^{C+2}+p C+C+1} \leq C^{3 p C^{C+3}}
\end{aligned}
$$

Lemma 3.14. $C_{7}(C)=C^{C^{5 C^{2 C+9}} .}$
Proof. We say immediately that in [2, Prop 5.17] $C_{7}(C, p)$ is actually defined depending also on p; in every application however we have the inequalities $p \leq l \leq 2^{l} \leq C$, therefore we can express C_{7} as dependent only on C.

We are again in the situation of linear dependence, and C_{7} is defined to be the maximum of three different bounds. The first is the bound C_{7}^{\prime} in $h\left(c_{\vec{q}}\right) \leq C_{7}^{\prime} n_{p}$: we already know that $a_{\vec{q}}$ has degree at most C^{3} in each variable, so after the substitutions $v_{i} \mapsto x^{n_{i}}$ the height of $c_{\vec{q}}$ in x is at most $p C^{3} n_{p}$; therefore $C_{7}^{\prime}=C^{4}$. To define the second and the third bound, consider the minimal polynomial p^{*} of b and two polynomials G_{1}, G_{2} such that:

$$
G_{1} p^{*}+G_{2} \frac{\partial p^{*}}{\partial z}=1
$$

then if $G_{1} \notin \mathcal{O}$ or $G_{2} \notin \mathcal{O}$ we get a linear relation (2.4) with $\left|k_{i}\right| \leq C_{7}^{\prime \prime}$, while if $G_{1}, G_{2} \in \mathcal{O}$ we get a bound $2 \mathfrak{g}-2 \leq C_{7}^{\prime \prime \prime} n_{p}$ on the genus of K.

The degrees of $p^{*}, \frac{\partial p^{*}}{\partial z}$ in z and the degrees of their coefficients in each v_{i} are all bounded by $C_{5}=C^{C+4}$: by Euclidean division G_{1}, G_{2} have degree less than C_{5} in z and their
coefficients have degree at most $2 C_{5}\left(C_{5}-1\right)$ in each v_{i}, so by [2, Prop 5.15] we have a bound:

$$
\begin{aligned}
C_{7}^{\prime \prime} & =2 C_{6}\left(2 C_{5}\left(C_{5}-1\right)\right) \leq 2 C_{6}\left(2 C_{5}^{2}\right)=2 \cdot 2\left(2 C^{2(C+4)}\right)^{2\left(2 C^{2(C+4)}\right)^{2 C^{2(C+4)}+2}} \\
& \leq C^{(2 C+9) 2\left(2 C^{2(C+4)}\right)^{2 C^{2(C+4)+2}} \leq C^{\left(2 C^{2(C+4)}\right)^{2 C^{2(C+4)}+3}}} \begin{aligned}
& \\
& \leq C^{C^{(2 C+9)\left(2 C^{2 C+8}+3\right)}}=C^{C^{4 C^{2 C+9}+18 C^{2 C+8}+6 C+27}} \leq C^{C^{2 C+9}}
\end{aligned}
\end{aligned}
$$

where the last one holds because we will use C_{7} only with $C \geq C_{4}(4)=2^{514}$. For the last bound we use Riemann-Hurwitz, so we need the ramification points which are the poles of $\pi\left(G_{1}\right)$ and $\pi\left(G_{2}\right)$; since the degree of each coefficient in each v_{i} is $\leq 2 C_{5}\left(C_{5}-1\right)$ and there are at most C_{5} coefficients, the poles of both functions after the projection π are at most $4 C_{5}^{2}\left(C_{5}-1\right) p n_{p}$. Also, each ramification point has ramification degree bounded by C, therefore using Riemann-Hurwitz:

$$
C_{7}^{\prime \prime \prime} \leq 4 C_{5}^{2}\left(C_{5}-1\right) p(C-1) \leq 4 C^{3(C+4)} C^{2}=4 C^{3 C+14}
$$

So in the end we get:

$$
C_{7}=\max \left\{C_{7}^{\prime}, C_{7}^{\prime \prime}, \frac{1}{2} C_{7}^{\prime \prime \prime}+\frac{1}{n_{p}}\right\} \leq \max \left\{C^{4}, C^{C^{5 C^{2 C+9}}}, 2 C^{3 C+14}+1\right\}=C^{C^{5 C^{2 C+9}}}
$$

3.4 Bound for Theorem 2.2: bound expressions

Now that we have the previous lemmas we can proceed to the next step. The proof of Theorem 2.2 contained in [2] makes use of a big intermediate proposition which contains most of the hardcore job for finding explicit bounds: we are going now to analyze the passages of this proposition in order to obtain bound expressions which depend on some initial data that are easily provided in the proof of the main theorem.

Here is the proposition ([2, Prop 5.18]):
Proposition 3.15. Consider two real numbers $C \geq 1$ and $0<\varepsilon \leq 1$ and an integer $m \geq 0$, consider a function field K over $\mathbb{C}(x)$ with $[K: \mathbb{C}(x)] \leq C$ and consider a height function h and a valuation v on \bar{K} such that $h(x)=v(x)=1$. Take a polynomial $P(x)$ (already a Puiseux expansion):

$$
P(x)=c_{0} x^{\vec{k}_{0} \cdot \vec{n}}+c_{1} x^{\vec{k}_{1} \cdot \vec{n}}+\ldots+c_{s} x^{\vec{k}_{s} \cdot \vec{n}}+x^{\vec{k}_{s+1} \cdot \vec{n}} \xi
$$

where the error term ξ is root of $a \phi(y)$ as follows:

$$
\phi(y)=\sum_{i=0}^{d} y^{i} \sum_{j=0}^{s_{i}} a_{i j} x^{\vec{q}_{i j} \cdot \vec{n}}
$$

and suppose the following conditions to be satisfied:

1. $0=n_{0}<n_{1} \leq \ldots \leq n_{p} \leq \ldots n_{l}$ with $0 \leq p<l, n_{p+1} \geq \varepsilon n_{l}$ and $m=n_{p}$, and we have also $\vec{n}=\left(n_{p+1}, \ldots, n_{l}\right)$ (so the exponents n_{1}, \ldots, n_{p} are the "small" ones and n_{p+1}, \ldots, n_{l} are the "large" ones);
2. $s, s_{i}, d \leq C$;
3. $c_{i}, a_{i j} \in K-\{0\}$ and $h\left(c_{i}\right), h\left(a_{i j}\right) \leq C m$;
4. if $p>0$ then the coefficients $c_{i}, a_{i j}$ are in the image of the map $\pi: v_{i} \mapsto x^{n_{i}}$ given in the previous chapter, they're roots of polynomials of degree $\leq C$ with coefficients of degree $\leq C$ in each v_{i}, and the field K is generated by them;
5. the genus \mathfrak{g} of K is at most $C m$;
6. $P(x)$ has degree at most $C^{2} n_{l}$;
7. $\vec{k}_{i}, \vec{q}_{i j} \in \mathbb{Z}^{l-p}$, also $H_{\mathbb{Q}}\left(\vec{k}_{i}\right), H_{\mathbb{Q}}\left(\vec{q}_{i j}\right) \leq C$ and $\vec{q}_{i j} \neq \vec{q}_{i k}$ for every $j \neq k$: we also define $r_{i j}=\vec{q}_{i j} \cdot \vec{n}$ and we call \vec{r} the vector of all the nonzero $r_{i j}$;
8. $v(\xi)>\varepsilon n_{l}$;
9. there is an integer $e \leq d$ such that $r_{e j}=0$ for some j : we suppose e to be the minimum with this property.

Finally say that Theorem 2.2 is true for all integers $<l$. Then there are three numbers $N_{2}, C_{8}, \varepsilon_{4}$ such that at least one of these three conclusions holds:
(C1) $P(x)$ is ratio of two polynomials with at most N_{2} terms;
(C2) there are integers k_{i} with $\left|k_{i}\right| \leq C_{8}$, not all zero, such that $k_{1} n_{1}+\ldots+k_{l} n_{l}=0$;
(C3) $m=n_{p} \geq \varepsilon_{4} n_{l}$.
We now follow the proof of this proposition in all its steps, so that we will be able to reconstruct at the end the three numbers. The proof is based on a double induction, on $l-p$ and on e.

Step 1: First, if $\left(\vec{q}_{i j}-\vec{q}_{i k}\right) \cdot \vec{n}=0$ for some $j \neq k$ then we get (C2) with some $\left|k_{i}\right| \leq 2 C$; therefore $C_{8} \geq 2 C$. From now on we suppose that this does not happen.

Step 2: We reparametrize the components of \vec{n} (thus changing the vectors $\vec{k}_{i}, \vec{q}_{i j}$ too, while leaving untouched the scalar products) in such a way that a suitable class of linear combinations of the $r_{i j}$ are now "not too small", i.e. at least $\varepsilon|\vec{n}|_{\infty}$ (up to a change of ε too): this procedure will not be described in detail here, concentrating only on the results; we remind that the nice condition above is a starting point for the use of the strategies (S1), (S2).
We obtain new large exponents $n_{p+1}^{\prime}, \ldots, n_{l}^{\prime}$ and we call p^{\prime} the minimum such that $n_{p^{\prime}+1}^{\prime} \geq n_{l}^{\prime}$ (in general $p \leq p^{\prime}<l$) and $m^{\prime}=\max \left\{m, n_{p^{\prime}}^{\prime}\right\}$; we can have two possibilities: either the procedure is successful and our nice condition is satisfied with C_{4} instead of C and ε_{2} instead of ε, or we get $m^{\prime} \geq \frac{\varepsilon_{2}}{4 C} n_{l}^{\prime}$. In the latter possibility we can substitute ε with $\frac{\varepsilon_{2}}{4 C}$ and have again the same two possibilities but with a smaller p^{\prime}, until eventually we fall into the first possibility (again with $p^{\prime} \geq p$).

Step 3: If after having reached the first alternative in the previous step we still have $p^{\prime}>p$ we are reduced to conditions 1-8 of the proposition being satisfied (and also 9 after an irrelevant division) for $l-p^{\prime}<l-p$ so we exit with $N_{2}, C_{8}, \varepsilon_{4}\left(l-p^{\prime}\right)$ or we have a condition $n_{p^{\prime}}^{\prime} \geq \varepsilon_{4} n_{l}^{\prime}$; in the latter case we start again with $p^{\prime}-1$ with Step 2 until repeating these two steps enough times we get $p^{\prime}=p$.
Let's stop for a moment and find a bound for what we have obtained until now. We have to decrease our p^{\prime} at most $l-p-1$ times: every time we decrease we can either have the substitution:

$$
\varepsilon \mapsto \frac{\varepsilon_{2}}{4 C}=\frac{\varepsilon}{4 C^{2 C^{3}+2}}
$$

or the substitutions:

$$
\begin{aligned}
& C \mapsto C_{4}=C^{4 C^{3}+1} \\
& \varepsilon \mapsto \varepsilon_{4}\left(C_{4}, \varepsilon_{2}, l-p^{\prime}\right)=\varepsilon_{4}\left(C^{4 C^{3}+1}, \frac{\varepsilon}{C^{2 C^{3}+1}}, l-p^{\prime}\right)
\end{aligned}
$$

and with the second there is also an exit case with $N_{2}, C_{8}, \varepsilon_{4}\left(C_{4}, \varepsilon_{2}, l-p^{\prime}\right)$. If we define ε_{4} in such a way that the second subsitution gives a smaller ε than the first one (which will trivially be the case: as we can expect, N_{2} and C_{8} are huge and ε_{4} is tiny), then we can suppose that the bounds when we finally arrive to $p^{\prime}=p$ are given by the repetition $l-p-1$ times of the second substitution.
Hence at the end of Step 3 (when finally $p^{\prime}=p$) we are working with $C^{\prime}=\mathcal{C}_{l-p-1}$ and $\varepsilon^{\prime}=\mathcal{E}_{l-p-1}$ where we are recursively defining:

$$
\begin{array}{ll}
\mathcal{C}_{0}=C^{4 C^{3}+1} & \mathcal{E}_{0}=\frac{\varepsilon}{C^{2 C^{3}+1}} \\
\mathcal{C}_{n}=\mathcal{C}_{n-1}^{4 \mathcal{C}_{n-1}^{3}+1} & \mathcal{E}_{n}=\frac{\varepsilon_{4}\left(\mathcal{C}_{n-1}, \mathcal{E}_{n-1}, n=l-p^{\prime}\right)}{\mathcal{C}_{n-1}^{2 \mathcal{C}_{n-1}^{3}+1}}
\end{array}
$$

and the current bounds on the unknown quantities, given by the exit values at the last step (which are obviously bigger than the ones from the previous passages), are:

$$
\begin{aligned}
N_{2} & \geq N_{2}\left(\mathcal{C}_{l-p-2}, \mathcal{E}_{l-p-2}, l-p-1\right) \\
C_{8} & \geq C_{8}\left(\mathcal{C}_{l-p-2}, \mathcal{E}_{l-p-2}, l-p-1\right) \\
\varepsilon_{4} & \leq \varepsilon_{4}\left(\mathcal{C}_{l-p-2}, \mathcal{E}_{l-p-2}, l-p-1\right)
\end{aligned}
$$

Step 4: At this point we really start expanding $P(x)$ according to our strategies. We begin supposing that we have to use (S2) (so that by the condition we gave in this case we must have $e>1$).
We expand $\xi=c^{\prime} x^{e}+x^{e} \xi^{\prime}:$ condition 4 is still satisfied with $\max \left\{C^{\prime}, C^{3}\right\}=C^{\prime}$ (since now the $a_{i j}$ appear in the polynomial that has c^{\prime} as a root and they have height $\leq C^{3}$) and for the new field $K^{\prime}=K\left(c^{\prime}\right)$ either we have $\mathfrak{g}^{\prime} \leq C_{7}\left(C^{3}\right) n_{p}^{\prime}$ and so condition 5 or we reach (C 2) with $C_{7}\left(C^{3}\right)$ (so $C_{8} \geq C_{7}\left(C^{3}\right)$). Finally we have either (C 3) with $\frac{\varepsilon_{2}^{\prime}}{4 C^{\prime}}$ or (C3) with $\frac{\varepsilon^{\prime 2}}{8 C^{\prime 4}}$ or all the conditions 1-9 satisfied
by the new extended expression with $e^{\prime}<e$; therefore we can work by induction on e and say that using (S2) we have also these conditions:

$$
\begin{aligned}
C_{8} & \geq C^{\prime \prime}=\max \left\{C_{7}\left(C^{3}\right), C^{\prime}\right\} \\
\varepsilon_{4} & \leq \varepsilon^{\prime \prime}=\min \left\{\frac{\varepsilon^{\prime}}{4 C^{\prime 2 C^{\prime 3}+2}}, \frac{\varepsilon^{\prime 2}}{8 C^{\prime 4}}\right\} \\
N_{2} & \geq N_{2}\left(C^{\prime \prime}, \varepsilon^{\prime \prime}, e-1\right) \\
C_{8} & \geq C_{8}\left(C^{\prime \prime}, \varepsilon^{\prime \prime}, e-1\right) \\
\varepsilon_{4} & \leq \varepsilon_{4}\left(C^{\prime \prime}, \varepsilon^{\prime \prime}, e-1\right)
\end{aligned}
$$

Step 5: Suppose now that we have to use the strategy (S1), i.e. we have an expansion $\xi=c_{0}^{\prime} x^{e_{0}}+c_{1}^{\prime} x^{e_{1}}+\ldots+c_{j}^{\prime} x^{e_{j}}+\xi^{\prime}$. First we call $j_{\text {max }}$ the maximum j that gives such an expansion using (S1) for every term (it could be possible that $j_{\max }=\infty$); then we call $j_{\text {min }}$ the minimum j such that we have:

$$
v\left(\xi^{\prime}\right) \geq\left(2 C^{2}+\frac{\varepsilon^{\prime}}{2}\right) n_{l}^{\prime}
$$

We find that we can suppose $j_{\text {min }}=\left(2 C^{\prime 2}+\frac{\varepsilon^{\prime}}{2}\right) \frac{l}{\varepsilon^{\prime}}$ or that $n_{l}^{\prime} \leq l$, so that we can reduce ourselves to a smaller l : this gives us by induction on l other bounds $N_{2}, C_{8}, \varepsilon_{4}\left(C^{\prime}, \varepsilon^{\prime}, l-1\right)$.
Now there are two possibilities: either $j_{\min }$ exists (which means that $j_{\max }$ is bigger than the expression above given for $j_{\text {min }}$; this is always the case when we have $e=1$, since in this situation $j_{\max }=\infty$) or it doesn't (which means $j_{\max }$ smaller than the same expression). Suppose that we are in the former case. First we calculate the new condition 4 in this situation: c_{0}^{\prime} is root again of a polynomial with coefficients having at most degree C in each v_{i}, so nothing changes for $j=0$; c_{0}^{\prime} itself has height $\leq C^{3}$, so the coefficients of the new $\phi\left(x, c_{0}^{\prime} x^{e_{0}}+y^{\prime}\right)$ have height $\leq C^{3 d}$, and the same can be said about the polynomial for c_{1}^{\prime}. Therefore the height for the even newer ϕ is at most $C^{(3 d)^{2}}$ and it's easy to see by induction that condition 4 is fulfilled with $C^{(3 d)^{j}}$ (calling j the expression for $j_{\text {min }}$); hence we fall into one of the three conclusions given in the thesis:

$$
\begin{aligned}
& N_{2} \geq N_{1}\left(C^{(3 d)^{j}}, p\right) \\
& C_{8} \geq 2 C_{6}\left(C^{(3 d)^{j}}\right) \\
& \varepsilon_{4} \geq \varepsilon^{\prime} \varepsilon_{3}\left(C^{(3 d)^{j}}, \varepsilon^{\prime}\right)
\end{aligned}
$$

Step 6: Suppose instead that there is no such $j_{\min }$; this means that we arrive to $j_{\max }=j$ expanding only with (S1) and that for the next step we are obliged to use (S2): so we just need to find which new C satisfies conditions 1-9 and then we can reapply the whole proposition from Step 1 without falling into (S1) anymore (thus avoiding Steps 5-6). As aforementioned we have condition 4 with $C^{(3 d)^{j}}$; condition 2 holds with $j+C+1$, condition 3 with $p C^{(3 d)^{j+1}}$. The exponent e_{0} is always a difference $r_{a b}-r_{c d}$, so the new exponents in the first new ϕ are of the form:

$$
e_{0} k+r_{e f}=k\left(\vec{q}_{a b}-\vec{q}_{c d}\right) \cdot \vec{n}+\vec{q}_{e f} \cdot \vec{n}
$$

and condition 7 would be respected for $C^{\prime}(2 d+1)$ instead of C^{\prime} (obviously $k \leq d$); iterating this process we get in the end condition 7 for $C^{\prime}(2 d+1)^{j+1}$, and using it we also get condition 6 for $l-p$ times the square root of the condition 7 . The maximum of all these is the bound for condition 3 (it's easy to see it if we suppose $C \geq(d+1)^{2}$, which again will always be the case), therefore we are repeating the proposition this time with ε^{\prime} instead of ε and with $p C^{(3 d)^{j+1}}$ instead of C.

At this point we know that the strategy (S2) can be used at most $e+1 \leq d+1$ times, and that actually the possibility of $e+1$ can be realized only when (S2) is the starting step ([2, Prop 4.5]). Therefore we get at most a succession of steps like:

$$
\overbrace{(\mathrm{S} 2)(\mathrm{S} 1)(\mathrm{S} 2)(\mathrm{S} 1) \ldots(\mathrm{S} 2)(\mathrm{S} 1)}^{2 d+2 \text { steps }}
$$

Call then $N_{2}^{[A]}, C_{8}^{[A]}, \varepsilon_{4}^{[A]}$ the bounds coming from the first part of the procedure, before the choice of the strategy (Steps 1-3), call $C_{8}^{[B]}, \varepsilon_{4}^{[B]}$ the bounds coming from the choice of (S2) (Step 4) and call $N_{2}^{[C]}, C_{8}^{[C]}, \varepsilon_{4}^{[C]}$ the bounds coming from the choice of (S1) (Steps 5-6); also define:

$$
\begin{aligned}
\theta_{1}(C) & =p C^{(3 d)^{j+1}} & \theta_{2}(C)=C^{\prime \prime} \\
\chi_{1}(\varepsilon) & =\varepsilon^{\prime} & \chi_{2}(\varepsilon)=\varepsilon^{\prime \prime}
\end{aligned}
$$

so that θ_{1}, χ_{1} tell us what to replace C, ε with after (S1) and θ_{2}, χ_{2} after (S2). Then:

$$
\begin{aligned}
N_{2}^{[A]} & =N_{2}\left(\mathcal{C}_{l-p-2}, \mathcal{E}_{l-p-2}, l-p-1\right) \\
C_{8}^{[A]} & =\max \left\{2 C, C_{8}\left(\mathcal{C}_{l-p-2}, \mathcal{E}_{l-p-2}, l-p-1\right)\right\} \\
\varepsilon_{4}^{[A]} & =\varepsilon_{4}\left(\mathcal{C}_{l-p-2}, \mathcal{E}_{l-p-2}, l-p-1\right) \\
C_{8}^{[B]} & =C^{\prime \prime} \\
\varepsilon_{4}^{[B]} & =\varepsilon^{\prime \prime} \\
N_{2}^{[C]} & =\max \left\{N_{2}\left(C^{\prime}, \varepsilon^{\prime}, l-1\right), N_{1}\left(C^{(3 d)^{j}}, p\right)\right\} \\
C_{8}^{[C]} & =\max \left\{C_{8}\left(C^{\prime}, \varepsilon^{\prime}, l-1\right), 2 C_{6}\left(C^{(3 d)^{j}}\right)\right\} \\
\varepsilon_{4}^{[C]} & =\min \left\{\varepsilon_{4}\left(C^{\prime}, \varepsilon^{\prime}, l-1\right), \varepsilon^{\prime} \varepsilon_{3}\left(C^{(3 d)^{j}}, \varepsilon^{\prime}\right)\right\}
\end{aligned}
$$

and the final bounds are coming from the $[\mathrm{B}]$ bounds at the $(2 d+1)$-th step and from the
[A] and $[\mathrm{C}]$ bounds at the $(2 d+2)$-th step:

$$
\begin{array}{r}
N_{2}=\max \left\{N_{2}^{[A]}\left(\left(\theta_{1} \theta_{2}\right)^{d+1}(C),\left(\chi_{1} \chi_{2}\right)^{d+1}(\varepsilon)\right),\right. \\
\left.N_{2}^{[C]}\left(\left(\theta_{1} \theta_{2}\right)^{d+1}(C),\left(\chi_{1} \chi_{2}\right)^{d+1}(\varepsilon)\right)\right\} \\
C_{8}=\max \left\{C_{8}^{[A]}\left(\left(\theta_{1} \theta_{2}\right)^{d+1}(C),\left(\chi_{1} \chi_{2}\right)^{d+1}(\varepsilon)\right),\right. \\
C_{8}^{[B]}\left(\theta_{2}\left(\theta_{1} \theta_{2}\right)^{d}(C), \chi_{2}\left(\chi_{1} \chi_{2}\right)^{d}(\varepsilon)\right), \\
\left.C_{8}^{[C]}\left(\left(\theta_{1} \theta_{2}\right)^{d+1}(C),\left(\chi_{1} \chi_{2}\right)^{d+1}(\varepsilon)\right)\right\} \\
\varepsilon_{4}=\min \left\{\varepsilon_{4}^{[A]}\left(\left(\theta_{1} \theta_{2}\right)^{d+1}(C),\left(\chi_{1} \chi_{2}\right)^{d+1}(\varepsilon)\right),\right. \\
\varepsilon_{4}^{[B]}\left(\theta_{2}\left(\theta_{1} \theta_{2}\right)^{d}(C), \chi_{2}\left(\chi_{1} \chi_{2}\right)^{d}(\varepsilon)\right), \\
\left.\varepsilon_{4}^{[C]}\left(\left(\theta_{1} \theta_{2}\right)^{d+1}(C),\left(\chi_{1} \chi_{2}\right)^{d+1}(\varepsilon)\right)\right\}
\end{array}
$$

Here we took some liberties in the notation for the sake of legibility. First of all, the internal multiplications and powers are to be intended as compositions; moreover, the arguments of these functions at every step of the composition are the values found at the previous step (which is not trivial to specify, since in the case of χ_{1}, χ_{2} the result depends on ε but also on C). For example:

$$
\begin{aligned}
\chi_{2}(\varepsilon) & :=\chi_{2}(\varepsilon, C) \\
\chi_{1} \chi_{2}(\varepsilon) & :=\chi_{1}\left(\chi_{2}(\varepsilon), \theta_{2}(C)\right) \\
\chi_{2} \chi_{1} \chi_{2}(\varepsilon) & :=\chi_{2}\left(\chi_{1} \chi_{2}(\varepsilon), \theta_{1} \theta_{2}(C)\right)
\end{aligned}
$$

and so on.

3.5 Bound for Theorem 2.2 and Theorem 2.1

With the expressions of the previous section it is finally possible to find the values of $\beta_{1}(d, l)$ and $\beta(d, l)$.

The base case $l=1$ is easy and does not need the heavy machinery that we developed in full generality. For $l=1$ we have the equation $F\left(x^{n_{1}}, h(x)\right)=0$, therefore we can expand $h(x)$ as:

$$
h(x)=\sum_{i=0}^{\infty} c_{i} x^{n_{1} e_{i}}
$$

Notice that we can suppose that the e_{i} are actually integers, up to a change of variables $x \mapsto x^{e}$ that gets rid of the common denominator; at this point, since the degree of $h(x)$ is bounded by $d n_{1}$, we have the condition $e_{i} \leq d^{2}$ and then $\beta(d, 1)=\beta_{1}(d, 1) \leq d^{2}+1$ (it's important to observe that the change of variables doesn't affect this bound).

Then we work by induction on l : what we want is to work on the original equation $F\left(x^{n_{1}}, \ldots, x^{n_{l}}, h(x)\right)=0$ so that we will be able to apply Proposition 3.15. Firstly, we already have all the conditions 2-7 and 9 satisfied with the choices:

$$
\phi(y)=F\left(x^{n_{1}}, \ldots, x^{n_{l}}, y\right), \quad C=(d+1)^{l}, \quad \varepsilon=1, \quad p=0, \quad \xi=h(x), \quad K=\mathbb{C}(x)
$$

Then we reparametrize (as in Step 2 of Proposition 3.15) in order to make condition 1 satisfied too: with this process we could get either $m^{\prime}=n_{p^{\prime}}^{\prime} \geq \frac{\varepsilon_{2}}{4 C} n_{l}^{\prime}$ (since $p=0$ implies
that $m=0$) or we could have condition 1 with C_{4} instead of C and ε_{2} instead of ε; in the former case we reobtain the same two possibilities with a lower p^{\prime} after substituting ε with $\frac{\varepsilon_{2}}{4 C}$, and eventually we will get condition 1 after at most $l-1$ iterations. Hence we have satisfied conditions 1-7 and 9 with the values:

$$
\begin{aligned}
C & =C_{4}\left((d+1)^{l}\right)=(d+1)^{4 l(d+1)^{3 l}+l} \\
\varepsilon & =\varepsilon_{2}\left(\frac{1}{4(d+1)^{l}} \varepsilon_{2}\left(\frac{1}{4(d+1)^{l}} \ldots \varepsilon_{2}\left((d+1)^{l}, 1\right) \ldots, 1\right), 1\right) \\
& =\frac{1}{(d+1)^{2 l(d+1)^{3 l}+l}\left(4(d+1)^{2 l(d+1)^{3 l}+2 l}\right)^{l-1}}=\frac{1}{2^{2 l-2}(d+1)^{2 l^{2}(d+1)^{3 l}+2 l^{2}-l}} \\
& \geq \frac{1}{2^{2 l}(d+1)^{3 l^{2}(d+1)^{3 l}}}
\end{aligned}
$$

Finally, to satisfy condition 8 , we start using (S2) to expand $h(x)$ (independently of whether it should be used or not): every time either we obtain conditions $1-9$ with C_{2} and ε_{1} or we decrease the value of p^{\prime} with $\frac{\varepsilon_{2}}{4 C}$ or $\frac{\varepsilon^{2}}{8 C^{4}}$; again, the first possibility will be certainly obtained after at most $l-1$ iterations of the second alternative. Working out the math we see easily that for the first iteration we would have $\frac{\varepsilon_{2}}{4 C} \leq \frac{\varepsilon^{2}}{8 C^{4}}$ while for all the following ones we would have the inequality in the other direction; so at the end we are left with the values:

$$
\begin{aligned}
C= & (d+1)^{4 l(d+1)^{3 l}+l}\left(1+(d+1)^{4 l(d+1)^{3 l}+l}\left(1+(d+1)^{4 l(d+1)^{3 l}+l}\right)^{2}\right) \\
\leq & 2(d+1)^{16 l(d+1)^{3 l}+4 l} \\
\varepsilon^{-1}= & {\left[2^{2 l}(d+1)^{3 l^{2}(d+1)^{3 l}}\right]^{2^{l-2}}\left[4(d+1)^{\left(4 l(d+1)^{3 l}+l\right)\left(2(d+1)^{12 l(d+1)^{3 l}+3 l}+2\right)}\right]^{2^{l-2}} . } \\
& \cdot\left[8(d+1)^{16 l(d+1)^{3 l}+4 l}\right]^{2^{l-2}-1}(d+1)^{4 l(d+1)^{3 l}+l}\left[(d+1)^{4 l(d+1)^{3 l}+l}+2\right] \\
\leq & 2^{2^{l-1}(l+4)-2}(d+1)^{2^{l+2} l(d+1)^{12 l(d+1)^{3 l}+6 l} \leq 2^{2^{l+1} l}(d+1)^{(d+1)^{12 l(d+1)^{3 l}+9 l}}} .
\end{aligned}
$$

At this point it is possible to apply Proposition 3.15 with the values above, reaching one of the three conclusions. If we reach $(\mathrm{C} 1)$ we are done; if we reach $(\mathrm{C} 2)$ then we can reduce to the previous step by induction applying the following lemma ([2, Lemma 2.9]):

Lemma 3.16. Suppose that we have proven Theorem 2.2 for $l-1$ and for every d, and suppose that we have integers k_{1}, \ldots, k_{l} (not all zero) with $\left|k_{i}\right| \leq C$ and $k_{1} n_{1}+\ldots+k_{l} n_{l}=0$. Then $h(x)$ can be written as the ratio of two polynomials with at most $\beta_{1}(2 d C, l-1)$ terms.

If we reach (C3), we substitute ε with the ε_{4} we obtained and reapply Proposition 3.15 with $p-1$ instead of p; in the end when $p=0$ it would be impossible to obtain (C3) again, so at most we reach (C1) or (C2) in $l-1$ steps. Therefore the bound β_{1} is:

$$
\beta_{1}(d, l)=\max \left\{N_{2}\left(C, \varepsilon_{4}^{l-1}(C, \varepsilon)\right), \beta_{1}\left(2 d C_{8}\left(C, \varepsilon_{4}^{l-1}(C, \varepsilon)\right), l-1\right)\right\}
$$

where C, ε are the ones given before and with ε_{4}^{l-1} we mean the composition $l-1$ times of ε_{4}, where in the argument we put every time the ε_{4} of the step before and always the same C.

The bound β is obtained in exactly the same way as the bound B in Proposition 3.2; the condition $3^{24} l^{36} \leq \beta_{1}(d, l)$ is still easily satisfied for $l>1$, hence:

$$
\begin{aligned}
& \beta(d, 1)=\beta_{1}(d, 1)=d^{2}+1 \\
& \beta(d, l)=\beta_{1}(d, l)^{5 \beta_{1}(d, l)^{2}} \quad(l>1)
\end{aligned}
$$

Chapter 4

Further generalizations

We reserve this last brief chapter to some conclusive remarks about possible generalizations of Theorem 2.1.

The first problem that comes to mind is likely whether the result holds for other fields than \mathbb{C}. Rényi [3] and Erdős [1] already asked questions in this direction: their papers deal in fact with the cases \mathbb{Q} and \mathbb{R} rather than \mathbb{C}, but their results are easily valid for \mathbb{C} too; in particular Rényi wondered if the function $Q(k)$ defined in the first section had the same value when working with rational, real or complex coefficients.

Also Schinzel [4] worked with more general fields than just \mathbb{C} to find the bound $T(d, l)$: his results in practice hold for $h(x) \in K[x]$ where K has either zero characteristic or characteristic big enough to avoid nasty reductions of the degree of the monomials of $h(x)^{d}$. As he himself wrote though, his method is not generalizable even in the case of Schinzel's conjecture, as it relies on the behaviour of the polynomial $x^{d}-y$ in the field K considered. On the other hand, the method used to prove Theorem 1.1 and Theorem 2.1 makes extensive use of the properties of the complex field: to construct the Puiseux expansion, and in particular to use the fact that there is a finite common denominator for all the exponents, we require to be in an algebraically closed field of zero characteristic; moreover Lemma 1.4, which is the heart of the second part of both proofs, requires a function field that is a finite extension of $\mathbb{C}(x)$. However, Zannier [6] gave a similar result for general algebraically closed fields of characteristic zero, so it could be possible with some carefulness to generalize Theorem 2.1 at least in this case.

Another direction that is worth exploring involves a generalization of the concept of lacunary polynomial, which is also most likely the reason why people tackling this problem started considering projections of $F\left(v_{1}, \ldots, v_{l}, y\right)$ through $\pi: v_{i} \mapsto x^{n_{i}}$ rather than the more simple-looking $F(x, y)$. We can consider in fact complex tori \mathbb{G}_{m}^{l} and then restrictions of regular functions to 1-parameter subgroups given by $\pi: v_{i} \mapsto x^{n_{i}}$, or even to 1-parameter cosets given by $\pi: v_{i} \mapsto \lambda_{i} x^{n_{i}}$: in this context a lacunary polynomial is simply such restriction of a regular function; it could then be of interest to generalize the definition of lacunary polynomial to the case of powers of algebraic varieties other than \mathbb{G}_{m} : the authors of [2] ask whether analogues of the various results here presented, from Schinzel's result to Theorem 1.1 to Theorem 2.1, can be found in this new situation, even with just an elliptic curve instead of \mathbb{G}_{m}. Here we limit ourselves to observe that the generalization described before from \mathbb{C} to a more generic K with $K=\bar{K}$ and char $K=0$ is more natural from the
viewpoint of algebraic geometry, thanks to the Lefschetz principle.

Bibliography

[1] Erdős P.: On the number of terms of the square of a polynomial, Nieuw Archief voor Wiskunde (2) 23 (1949), 63-65.
[2] Fuchs C., Mantova V., Zannier U.: On fewnomials, integral points and a toric version of Bertini's theorem, arXiv:1412.4548.
[3] Rényi A.: On the minimal number of terms of the square of a polynomial, Hungarica Acta Mathematica 1 (1947), 30-34.
[4] Schinzel A.: On the number of terms of a power of a polynomial, Acta Arithmetica XLIX (1987), 55-70.
[5] Schinzel A., Zannier U.: On the number of terms of a power of a polynomial, Rendiconti Lincei - Matematica e Applicazioni 20(1) (2009), 95-98.
[6] Zannier U.: Some remarks on the S-unit equation in function fields, Acta Arithmetica LXIV (1993), 87-98.
[7] Zannier U.: On the number of terms of a composite polynomial, Acta Arithmetica CXXVII (2007), 157-167.
[8] Zannier U.: On composite lacunary polynomials and the proof of a conjecture of Schinzel, Inventiones mathematicae 174 (2008), 127-138.

