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Abstract

Automatic Segmentation and Classification of Red and White Blood

cells in Thin Blood Smear Slides

Mehdi Habibzadeh Motlagh, Ph.D.

Concordia University, 2015

In this work we develop a system for automatic detection and classification of cy-

tological images which plays an increasing important role in medical diagnosis. A

primary aim of this work is the accurate segmentation of cytological images of blood

smears and subsequent feature extraction, along with studying related classification

problems such as the identification and counting of peripheral blood smear particles,

and classification of white blood cell into types five. Our proposed approach benefits

from powerful image processing techniques to perform complete blood count (CBC)

without human intervention. The general framework in this blood smear analysis

research is as follows. Firstly, a digital blood smear image is de-noised using opti-

mized Bayesian non-local means filter to design a dependable cell counting system

that may be used under different image capture conditions. Then an edge preserva-

tion technique with Kuwahara filter is used to recover degraded and blurred white

blood cell boundaries in blood smear images while reducing the residual negative

effect of noise in images. After denoising and edge enhancement, the next step is

binarization using combination of Otsu and Niblack to separate the cells and stained

background. Cells separation and counting is achieved by granulometry, advanced ac-

tive contours without edges, and morphological operators with watershed algorithm.

Following this is the recognition of different types of white blood cells (WBCs), and

also red blood cells (RBCs) segmentation. Using three main types of features: shape,

intensity, and texture invariant features in combination with a variety of classifiers

is next step. The following features are used in this work: intensity histogram fea-

tures, invariant moments, the relative area, co-occurrence and run-length matrices,

dual tree complex wavelet transform features, Haralick and Tamura features. Next,

different statistical approaches involving correlation, distribution and redundancy are

used to measure of the dependency between a set of features and to select feature
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variables on the white blood cell classification. A global sensitivity analysis with ran-

dom sampling-high dimensional model representation (RS-HDMR) which can deal

with independent and dependent input feature variables is used to assess dominate

discriminatory power and the reliability of feature which leads to an efficient feature

selection. These feature selection results are compared in experiments with branch

and bound method and with sequential forward selection (SFS), respectively. This

work examines support vector machine (SVM) and Convolutional Neural Networks

(LeNet5) in connection with white blood cell classification. Finally, white blood cell

classification system is validated in experiments conducted on cytological images of

normal poor quality blood smears. These experimental results are also assessed with

ground truth manually obtained from medical experts.
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Chapter 1

Thesis Introduction

1.1 Introduction

The examination of peripheral blood smears represents the cornerstone of hematologic

diagnosis. Plainly, the examination of the peripheral blood smear is an important

indicator of haematological and other abnormal conditions that affect the body of

an organism. Blood cells are classified as erythrocytes (Red Blood Cells), leukocytes

(White Blood Cells) or platelets (not considered real cells). The resultant count is

the total number of erythrocytes and leukocytes expressed in a volume of blood.

Expressing the number of white blood cells (WBC) carries many quantitative and

informative clues. For example, the increase or decrease of leukocytes is very critical

and may prompt detailed medical attention.

Automatic counting systems have been available in the medical laboratories for

the last 30 years. The instruments used for performing cell counts are based on mix of

mechanical, electronic and chemical approaches. The commonly used approach across

biological disciplines and the ground truth is manual WBC counting and type sorting

by a trained pathologist, looking at the shape, e.g, nucleus and cytoplasm, occlusion,

and degree of contact between cells. Although the manual inspection method is

adequate, it has three inevitable types of error: statistical, distributional and also

human error [24] such as may happen in poor quality, low magnification view of the

slides. Poor magnification and distribution of leukocytes adversely affect the accuracy

of the differential count in manual counting.

1



Accordingly, since haematology is a visual science, machine learning and digi-

tal image processing have great potential to develop ways to improve haematology

research. Computerized techniques are the best potential choices to carry out and

moderate the load of these regular clinical activities for more efficiency and also to

describe the frequency, spatial distribution, and portion of blood smear particles.

Computer-aided diagnosis (CAD) also establish methods for accurate, robust and re-

producible measurements of blood smear particles status while reducing human error

and diminishing the cost of instruments and material used.

1.2 Introduction to Clinical Haematology

Haematology [139], a branch of pathology study, includes clinical laboratory, internal

medicine, the blood-forming organs, coagulation and blood abnormalities that are

summarized into blood studies. Bone marrow in the skull, ribs, sternum (breast

bone), vertebral column (backbone), and bony pelvis is responsible to produce these

micro bio-cells. White blood cells in bone marrow leukocytes are much denser than

those in peripheral blood and just a small proportion of the produced white blood

cells is circulated in blood vessels.

The main duty of red blood cells is to carry oxygen (O) to the body biological

structures and absorb the carbon dioxide (CO2) to exhale from the body using the

respiratory system. Red blood cell transports nutritive significance, hormones, en-

zymes and vitamins through the body organs. Furthermore, one the other hand, white

blood cells defend of the body organs using phagocytic activity mechanism to remove

viruses, bacteria, cell debris (the dead or damaged tissue) and so on that cause disor-

der and damage in biological structures. In all mammals species including humans,

normal erythrocytes posses biconcave disc shape without nucleus and are much less

numerous than erythrocytes which predominate in blood. Leukocytes can be divided

in two main categories: granulocytes and lymphoid cells. Neutrophil, Eosinophil (or

acidophil) and Basophil are Granulocytes because of the presence of granules in the

cytoplasm of WBC cells. So, granulocytes types are Neutrophil, Eosinophil (or aci-

dophil) and Basophil. The lymphoid cells, consist of Lymphocytes and Monocytes

(see Fig. 1).

In addition to RBCs & WBCs we have also platelets (PLT), or thrombocytes, that
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enable clotting to stop the loss of blood from wounds. The platelets are round and

small. Platelets are thin disks, 2-4 µm in diameter and 5-7 fL (fluid ounce that it is

equivalent to 30 millilitres) in citrated blood volume. They play role in hemostasis,

protect vascular integrity and they provide blood coagulation. Platelet counts are not

often requested in a CBC test except for spontaneous bleeding where platelets play a

key role in the blood test. In normal human blood, there are 4, 000, 000− 6, 000, 000,

4, 000−11, 000, 150, 000−450, 000 per microliter of RBC, WBC, and normal platelet,

respectively, with platelets usually present in complexes rather than singularly.

To detect abnormal cells, CBC test is undertaken, which can detect abnormal

immature blood cells (blasts), abnormal lymphocyte, immature granulocyte (IG) flags

and nucleated RBC (nRBC) (see Fig. 4). Abnormal immature white blood cells

are produced in the bone marrow and circulated into the bloodstream. These cells

reproduce very rapidly and they are not considered as healthy white blood cells.

Presence of these cells causes blood disorders such as acute myeloid leukaemia (AML)

which is a cancer of blood-forming cells in the bone marrow. This is quite a serious

health problem and prompt diagnosis and treatment are required.

Figure 1: (Left to right): Neutrophil, Monocyte, Lymphocyte, Eosinophil, Basophil

1.2.1 Peripheral Blood Smear Examination

One of the highlighted areas of haematology research is the problem of determining

blood cells (CBC) count and leukocyte (white blood cell) differential count (LDC).

Complete blood count (CBC) is an informative comprehensive metabolic evaluation

medical test which helps doctor and medical experts to check any symptoms and indi-

cating a condition of disorders, such as weakness, fatigue, or, internal body problem,

infection and many other diseases you may have.

A CBC test reports five key parameters: white blood cell (WBC) count, red blood

cell (RBC) count, hemoglobin (HGB) value which gives color to red blood cells,

hematocrit (Hct) value and platelet count in a pre-defined given volume of blood.
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Figure 2: Cell types found in smears of Peripheral blood A)Erythrocyte;
B)Lymphocyte; C)Neutrophil; D)Eosinophil; E)Neutrophil; F)Monocyte;
G)Thrombocytes; H)Lymphocyte; I)Neutrophil; and J)Basophil.

a b c d

Figure 3: Disorders: a) Malaria(P.f) b) Rouleaux, c) Pappenheimer and d) Sickle
Cell-Anemia

The CBC measures the volume percentage (%) of red blood cells in blood, known

as hematocrit (Hct) which is independent of body size in all mammal species. This

Hct ratio may be expressed as a percentage or as a decimal fraction (SI units). Mean

Cell Volume (MCV), is consequently calculated from the Hct and the erythrocyte

count. MCV = Hct × 1000
RBC

(in millions per µL), expressed in femtoliters or cubic

micrometers.

Another piece of information on the CBC result is red cell distribution width

(RDW). The RDW is an expression of the RBC size distribution. It is computed

and derived from the histogram and is the coefficient of variation, declared in percent

of the red blood cell size distribution. When there is a large variation is size of red

blood cells, two blood disorders may occur. Anisocytosis is a medical term meaning
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Figure 4: Different abnormal cells: a) blast, b) abnormal lymphocyte, c) immature
granulocyte (IG) and d) nucleated RBC (nRBC) [158,236].

that RBCs are of unequal size. They are referred to as microcytes when red blood

cells are abnormally small, and macrocytes when red cells are larger than normal.

Significantly, in 95% of cases with iron deficiency, an incremental increase of RDW is

observed.

The other medical concept that may be reported in CBC result is a significant

variation in shape of red blood cells called Poikilocytosis. Any unusual shaped cell is a

poikilocyte. Pear-shaped, oval, saddle-shaped, tear drop-shaped, and other irregular

shaped cells may be seen in different blood disorders.

White blood cell counting and classification is an important result is CBC medical

test. The number of WBCs many be indicative of many conditions. The leukocyte

differential is the total number of WBCs expressed as thousands/µL in a volume

of blood. There are five normal mature types of WBCs (with typical percentage of

occurrence in normal blood): Basophil (<1%); Eosinophil (<5%); Monocyte (3-9%);

Lymphocyte (25-35%); and Neutrophil (40- 75%) [183] (see Fig. 1). Other cell types

observed in certain diseases are metamyelocyte, myelocyte, promyelocyte, myeloblast

and erythroblast [183]. As a result, all the literature and studies mentioned have noted

the importance of cell counting system to accomplish and achieve medical goals.

1.3 The Problem

The original benefit of this research lies in the development of an analysis software

for CBC, as a tool for medical blood testing, which enables high quality tests and

provides the capability of automatic processing of blood slide images to produce data

necessary for diagnosis. This work focuses on normal blood smear samples. The

objectives of this research are to determine whether the proposed image processing

techniques are efficient in managing CBC test, particularly in presence of low quality
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samples. We particularly interested in the classification of the five main types of

white blood cells (leukocytes) and counting of normal red blood cells (erythrocytes)

in a clinical setting.

For many medical topics, studies usually suffer from the fact that it is not easy

to access large amounts of samples. Blood samples in this work were obtained from

normal healthy patients. A total of 140 samples were obtained in cooperation with

J.D. MacLean Centre for Tropical Diseases at McGill University in Montréal, Québec

and also Ghods polyclinic medical center in Tehran, Iran. All samples are validated by

MD Hematologist Doctor, Parvaneh Saberian and medical specialist, microbiologist,

Aida Habibzadeh from Ghods polyclinic medical center in Tehran, Iran. Despite a

small sample size, the dataset is generally representative of different conditions that

may exist in a blood smear.

1.4 Thesis Structure

We discuss implementations of color conversion, de-noising, edge preserving and

counting red blood cells as well as white blood cell classification. This work begins

by laying out the theoretical dimensions of the research, and looks at how each step

is involved in framework. Chapters describe the design, synthesis, characterization

and evaluation of all details. The performance of proposed method is also compared

with the state-of-the-art work.

The framework begins with interpretation of the peripheral blood smear (chapter

1, section 1.2. Next, this work gives a comprehensive overview of the recent history of

red and white blood cell classification where each has its advantages and drawbacks.

Background information were gathered from multiple sources between 1972 and 2014

(chapter 2). Chapters (3 - 7) begin by laying out the theoretical dimensions of the

research step, and looks at how these methods are good at the complete blood count

(CBC) results and interpretation. It describes the design, synthesis, characterization

and evaluation of proposed framework. The section 8.1, in chapter 8 summarizes novel

contributions of this thesis in the area of normal blood segmentation and classification.

Also all parameters that should be manually set for each component are clarified in

individual final section in each step. This clarification gives the reader a clear idea

how this framework and could be applied successfully to a different data set. Chapter
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8 includes conclusion and suggestion for future work. Some blood smear samples in

different conditions are shown in the appendix (chapter 9).

This thesis made research contributions in five areas: pre-processing, binarization,

cell separation, and feature extraction, and finally feature selection and classification.

Figures 5 and 6 demonstrate pipeline of the framework indicating what is the

step used for each part. Figures 7 and 8 indicate the methodology used in each part.

1.4.1 Methodologies Used

On continuing discussion concerning the methodologies used (see Figures 7 and 8),

the normal blood images are saved in JPEG format. Then a key step is to choose a

proper gray scale channel to maintain the high and low frequency of components in

a given blood image and white blood cells with special characteristics in particular.

Distribution behaviours statistical approaches such as semi-IQR and variance are ad-

dressed to convert the blood smear images to a proper gray scale . In current dataset

G channel rather than the other channels is selected (section 3.1). It also should

be noted that other combination of channels such as Y and G might be even result

better in Semi-IQR calculation and future work by other researcher could investigate

in this matter. Secondly, the method used for denoising is based on the Bayesian non

local mean. In a comparative study with other state-of-the art work Bayesian non

local mean brings the highest PSNR value in presence of additive Gaussian noise (see

Table 7). Thirdly, to build better boundaries for white blood cells and also to replace

white blood cell internal heterogeneous parts by homogeneous neighbours, Kuwahara

filter is addressed (see Fig. 16). Then, a binarization technique is introduced by

merging the Otsu and Niblack methods (section 4). Area-Granulometry is used to

estimate RBC size (see Fig. 23). Afterwards, the proposed Cell separation algorithm

in an iterative mechanism based on morphological theory, saturation amount, RBC

size, edged images and modified Chan-Vese active contours without edges is applied

(section 4.3.3). A primary aim of this work is to introduce an accurate mechanism

for RBCs counting. This is accomplished by using the immersion-based watershed

algorithm which counts red cells separately (section 4.3.4). Next, white blood cells

(leukocytes) classification into five major categories using invariant features such as

shape, intensity and texture is addressed. Although diverse algorithms have been de-

veloped using well established mathematical theory, it remains comparably marginal

7



in computer-aided diagnosis (CAD) in medical imaging. In this work, features such

as orthogonal invariant moments, dual-tree complex wavelet transform, run length

are investigated (section 5). Before going further in feature selection a process can

be considered as data compression that minimizes redundancy and preserves maxi-

mum relevance between features. The evaluation procedure deals with distribution

functions in which method such as Kolmogorov - Smirnov, Wilcoxon- Mann-Whitney

tests and also Pearson, Spearman and Kendall rank are addressed (section 5.6).

Further, to find a way to determine which of the features are actually worth

extracting. The three different feature selection methods including global sensitivity

analysis using Sobol index in random sampling-high dimensional model representation

(RS-HDMR) expansion (section 6.1), forward sequential feature selection (section 6.2)

with classifier interaction and also a branch and bound technique (section 6.3) us-

ing minimizing regression problem between features and WBC classes are addressed

respectively. This work gives strong evidence that RS-HDMR merging Sobol global

sensitivity analysis (section 6.1) is superior to other options in presence of different

feature combination in varying datasets (see Table 21). Finally white blood cells

recognition with a Support Vector Machine and initial appropriate settings for small

dataset size (just only 28 samples per class) is addressed (section 7.2). This work

also addresses Convolution Neural Networks to extract topological and receptive field

properties from a given raw WBC image (section 7.1). The objective of CNN re-

search in this case-study is to determine whether CNNs can be good predictors in

blood classification with few available sample data. The results obtained from the

preliminary analysis of white blood cell classification are presented in confusion ma-

trices where this computerized framework is validated with experiments conducted

on manual ground truth (sub-section 7.2.3).

Figure 5: Framework Pipeline: RBC segmentation and counting
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Figure 6: Framework Pipeline: White Blood Cell classification

Figure 7: Framework Methods: RBC segmentation and counting
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Figure 8: Framework Methods: White Blood Cell classification
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Chapter 2

Literature Review on Detection of

RBC and WBC

This chapter reviews CBC medical system and the literature concerning the usefulness

of image processing and computer vision in connection with blood cells detection and

haematology studies. This work first addresses modern CBC haematology systems

and their history, and then reviews the research conducted on normal and abnormal

blood samples. The objectives of this review are to gain insight into the state of the

current work and to identify its shortfalls. The discussions and analyses of blood

image processing that have been going on over the years give an overall sense that

the generalizability of much of the published research on this issue is problematic.

Although extensive research has been carried out in blood cell detection, too little

attention has been paid to adequately cover different conditions and to quantify and

qualify the association between image processing techniques and blood cell detection.

2.1 CBC Haematology Systems

Cell detection and segmentation in peripheral blood smear for clinical purpose goes

back to more than one century ago in 1850 decades where professor Karl Vierordt,

from the university of Tübingen in Germany who investigated and developed meth-

ods to monitor of blood circulation [238]. He introduced a Haemotachometer as an

instrument to estimate the blood flow speed in main blood vessels which are called as

arteries. Blood counting technique was addressed in his medical note series [238,241].
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Briefly, this research served as the base for future studies where obviously Vierordt

work and findings added substantially to our understanding of blood circulation and

haematology basic.

The design of the counting blood cells further developed based on research work by

Cramer [37,238], Potain and Malassez and the other [134] in the middle 19th century.

The research during the late 19th and early 20th century from different studies by

Hayem [85] as a known French hematologist, and also the technique introduced by

Oliver [159] an English physician made several contributions to the current literature.

A rapid change is made in the twenties, as a result of the development in pho-

toelectric methods. During years, different electronic counting systems with flow of

electrical current and based on conduction were introduced [238]. Since the last 25

years automatic counting system have been available in the medical laboratories with

the less and more similar structure [24]. The instruments used to perform cell counts

are based on mix of mechanical, electronic and chemical approaches. They are made

on the principles of electrical impedance, radio-frequency conductivity, light scatter-

ing, and/or cytochemistry. With electrical impedance, blood cells passing through an

valve and aperture which a current is flowing cause changes in electrical resistance to

provide voltage pulses. In an updated electrical impedance technique red blood cell

size distributions automatically will be plotted. In radio-frequency conductivity tech-

nique, using a high-frequency electromagnetic probe information on the cell internal

structure will be provided by spreading or flowing throughout the fat layer of a blood

cells membrane. In the electro-optical method, size of the particle (WBC, RBC, or

platelet) is determined by light scattering. Forward angle scatter of a light determines

cell surface characteristics and measurement of beam scatter at multiple light angles

to differentiate of cell types. In cytochemistry analysis, cytochemical reaction used to

detect white blood cells. This method usually works along with electro-optical and

data derived from light scattered to aid white blood cell differentiation [24].

2.1.1 Current CBC Systems

Current hematology analyzers used routinely in modern medical laboratories are such

as Sysmex XE-series [197] and also Abbott CELL-DYN [69]. The Abbott Cell-Dyn

4000 hematology analyzer integrates four measurement sub-system to accomplish

almost a complete CBC medical test. This system works with fluorescence flow
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cytometry technique, where argon ion lasers with emitting at 13 wavelengths through

the visible, ultraviolet, and near-visible spectrum are also used for nucleated immature

RBCs. Hemoglobin (HGB) value is determined using spectrophotometry in which

RBC and platelet counts are done by impedance and optical methods, respectively.

Product information is available in table 1.

a b

Figure 9: Hematology analyzers: a) Abbott Cell-Dyn 4000, b) Sysmex XE-2100

Sysmex XE-2100 is based on fluorescent flow cytometry and hydrodynamic focus-

ing methodologies to manage CBC test procedure when multiple flows with signifi-

cantly different flow rates come into contact. Sysmex XE-2100 is enable differentiate

normal red blood cell, white blood cell and platelet populations with minimum man-

ual interventions. Generic system specifications is in table 2.

These known systems in white blood cell differential count reveal good correlation

with the manual ground truth reference analysis for Neutrophils, Lymphocytes, and

Eosinophils (r =0.925, 0.922, and 0.877, respectively) and enough fair for Monocytes

and Basophils (r =0.756 and 0.763, respectively). Commonly used approach across

biological disciplines and ground truth includes manual WBC counting and type

sorting by a trained pathologist and skilled haematology expert, looking at the shape,

e.g, nucleus and cytoplasm, occlusion and degree of contact. This manual WBC

counting method is based on the count of 100 cells by moving back and forth across

the blood smear in a pattern to cover different angle view under the microscope.

Poor magnification and distribution of leukocytes adversely affect the accuracy

of the differential count in manual counting. These medical conventional method,
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therefore, suffer from imprecision, and poor clinical setting. In other hand, the ery-

throcytes and leukocyte types that the current equipments are able to manage are

restricted to some classes where always update of these systems are based on expensive

chemicals and mechanical process [175]. As mentioned, the microscope inspection of

blood slides provides important qualitative and quantitative information concerning

the presence of hematic pathologies [173], however the number of different sub-cell

types that can come out especially for WBC count is relatively large and typically

more than 20 [175]. A systematic method and meticulous technique to derive all

accurate and consistent cell information from each blood smear examine is highly

required. These comprehensive blood studies increase the difficulty in building a

feasible hardware based system. Overall, it can be seen that the majority of blood

diseases can be detected using image processing and computer vision techniques.

Table 1: Abbott Cell-Dyn 4000: Generic specifications and availability [69]

Abbott Cell-Dyn 4000 Hematology Analyzer

Manufacturer: Abbott Diagnostics
Type Hematology Analyzer

Parameters: 41: 5-pt Differential
Throughput: 106 samples/hour

Method: Volume Impedance
Open system: Open
W × D × H: 43× 32× 29 inches / 109× 81× 74 cm

Weight: 326 lbs / 148 kilos

Table 2: Sysmex XE-2100 Specifications

Sysmex XE-2100 Hematology Analyzer

Manufacturer: Sysmex Corporation
Type Hematology System

Parameters: 31: 5-pt Differential
Throughput: 150 samples/hour

Method: Fluorescent Flow Cytometry:
Configuration: Standalone Sysmex HST-N, AlphaN Automation
W × D × H: 27.8 × 35.9 × 28 inches / 178 lbs

Weight: 178 lbs / 80.7 kilos
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2.2 The Literature on Image Processing in CBC

CBC process can be automated by computerized techniques which are more reliable

and economic. Therefore there is always a need for the development of systems to pro-

vide assistance to haematologists and to relieve the physician of drudgery or repetitive

work. Computer-aided diagnosis (CAD) will establish methods for precise, accurate,

robust and reproducible measurements of blood smear particles status while reducing

human error and diminish the cost of instruments and material used. Afterwards,

software provides the capabilities of upgrading and measurement variability without

major changes and extra burdens.

The computerized steps into automated blood examination refers to a work done

by Bentley and Lewis [14] in 1975. In this early work, authors used of colour in-

formation analysis to obtain integrated data on erythrocytes size in a numbers of

normal and abnormal red blood cells. This paper went after to address the correla-

tion between MCV (mean corpuscular volume) refers to the size of erythrocyte and

MCH (mean corpuscular hemoglobin) refers to the concentration of hemoglobin in

red blood cells. One decade after, the first fully automated processing of blood smear

slides was introduced by Rowan [195] in 1986. Further related references are listed in

below sections.

2.2.1 Literature Review on Segmentation

Initial success on segmentation of medical imaging and blood segmentation was ob-

tained with graph theory (Martelli [138], Osowski et al. [163], Fleagle et al. [58, 59])

which was used to navigate around edge pixels in an available image. However this

approach has involved images of single objects manually located in an image. Fur-

ther, it does not address the problems of multiple objects in the image. Therefore,

object location, removal of extraneous edges (internal to the cell), or the selection of

suitable starting and ending points for the graph search are the initial steps which

are should considered. These arguments rely too heavily on quantitative analysis of

manual aforementioned pre-processing steps where it is always an inconsistency with

this argument. There is no consensus among researchers regarding what method can

be applied for different conditions, and there is no general agreement about these

initial steps.
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Due to complexity of the problem at hand some of the papers are limited to

image-based comparisons based on red cells segmented either manually, see Bentley

& Lewis [14], Albertini et al. [3], or semi-automatically, see Robinson et al. [192],

Costin et al. [35] and Gering & Atkinson [66]. Dong et al. [48] proposed a frame-

work with three steps to identify rolling leukocytes in microscopic images. This work

profits gradient inverse coefficients of variation (GICOV) to discriminate leukocytes

in-vivo environment. Authors first build a set of arbitrary number of ellipses by vary-

ing radii and orientation. Local maximum in gradient inverse coefficients of varying

value denote presence of white blood cell in a close-by ellipse area where ellipses cor-

responding to locally maximum GICOV will be relaxed to flexible contours by active

B-spline curves. Rathore et al. [184] used a method to estimate circularity ratio of

cells. Counting is also done using watershed segmentation and Pixcavator student

edition software. Lepcha et al. [122] segmented and counted number of red blood cells

using integration of marker controlled watershed segmentation and morphological op-

erations. Khajehpour et al. [71] introduced a line operator and watershed algorithm

to segment red blood cells. The line operator with 20 line segments in various di-

rections over a global Otsu threshold image has been applied. Wei et al. [246] first

employed a K-means classification to detect of leukocyte and then counting RBC was

addressed using watershed.

Literature Review on Thresholding

Adjouadi et al. [1] used eight-directional scanning to detect the red blood cell bound-

aries over the thresholded binarized input images. This work examined clustering-

based image thresholding to segment cells. One major criticism of Adjouadi’s work is

that it relies heavily on initial conditions in a given blood smear slide. It used global

thresholding and then the existing framework fails to resolve the thresholding prob-

lem in presence of different possible staining. There is no general agreement about

all possible cells.

2.2.2 Literature Review on White Blood Cell Detection

To go further in discussion and to interpret health changes accurately, practitioners

must get knowledge of a complete white blood cell five-part differential. The back-

ground on white blood cell classification using computer vision concepts is very vast

16



and it involves feature extractors, classifiers, quantitative and qualitative process,

e.g., [51, 183, 189, 208, 228]. The first paper on blood processing is leukocyte pattern

recognition by Bacusmber and Gose in 1972 [11]. In this primary work, classification

of white blood cells using shape features and a multivariate Gaussian classifier into

their categories are presented. In 1986, the first fully automated processing of blood

smear slides was introduced by Rowan [195] .

Active contour model background

Active contour model, or snake is an another common method of boundary detec-

tion [99]. In 2001, Ongun et al. published a paper [160,162] in which they described

how active contour models facilitate white blood cell edge and boundaries detection.

In other work [160], active contours were also used to track the boundaries of white

blood cell where occluded cells were not accurately handled. A computerized sys-

tem where cells are segmented using active contour models was introduced in [161]

using shape features and textures for classification. WBC classification in 2009 by

Hamghalam et al. [80] utilizes Otsu’s thresholding method to nuclei segmentation.

The results are claimed independent of the intensity differences in Giemsa-stained

images of peripheral blood smear and active contours are used to extract precise

boundary of cytoplasm but in simulation it failed in different condition. Mukherjee

et al. [148] proposed a leukocyte detection framework with image-level sets computed

via threshold decomposition. An evolution of a level-set curve that maximizes image

gradient along homogeneous region was considered as cell boundaries. In general,

despite active contour model efficacy in deformed cells, this method is not fully au-

tomatic. This method relies on initial positioning for snake algorithms and to date,

little evidence has been found associating active contour model with full automated

system. It is very obvious that with wrong initial model positioning, boundaries are

also tracked negatively.

Fuzzy logic background

Sobrevilla et al. [215] used fuzzy logic to segment white blood cells from a digital blood

smear image. In that proposed fuzzy logic two regions were segmented; one was the

interest region, which contained leukocytes and other part included stained back-

grounds with light gray level homogeneous texture, erythrocytes with light-medium
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gray level and lastly, it also included the contours of white blood cells in correspon-

dence with heterogeneous areas. In this way both intensity level, homogeneity and

heterogeneity taken into account to distinguish between white blood cells and other

particles in digital image. However, in both TSMM [252] and fuzzy logic [215], pa-

rameter settings were needed to set by statistics and experience. Also, it was limited

to very obvious differences among backgrounds, red blood cells, and white blood cells

in correspondence with homogeneous areas. Hence, both frameworks fail in different

conditions such as color conversion and varying illumination staining inconsistency.

Afterwards, Shitong et al. [208] proposed white blood cell detection based on fuzzy

cellular neural networks (FCNN). FCNN is a hybrid system of fuzzy logic and neural

networks (NNs). Experimental results showed that the mentioned detailed approach

performance was more efficient than the other comparative methods in paper includ-

ing TSMM [252] and fuzzy logic approach [215]. This method [208] took advantage of

neural network classification and regression performance, combination of Neural Net-

work and fuzzy logic facilitated Classification in uncertain condition in cell pattern

recognition.

Morphological changes background

Lezoray [123] introduced region-based white blood cells segmentation using extracted

markers (or seeds). However, this method required prior knowledge of color infor-

mation for proper seed extraction. Kumar [114] applied a novel cell edge detector

while trying to perfectly determine the boundary of the nucleus. Furthermore, in

other work, WBC segmentation was achieved by means of mean-shift-based color

segmentation in Comaniciu and Meer research work [34] while in [95] Jiang et al.

used watershed segmentation. In other work, in order to improve the segmentation

of touching or adjacent blood cells, conventional and typical wavelet transformation

combined with morphological operations was proposed in Chan and his co-authors

work [28]. Yang et al. [255] used a combination of RGB and HSI to describe color

space in white blood cell. This work detect white blood cell with gathering color

information in Saturation (from HSI) and Blue (from RGB) channels.
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Feature Extraction background

Ramoser et al. [183] used hue, saturation and luminance values to locate WBCs.

Then it goes on classification using a 26-dimensional color feature vector and a poly-

nomial support vector machine (SVM). However, this proposed framework [183] did

not address different conditions in camera settings, magnification, varying inconsis-

tent illumination and blood staining. It also ignored texture features that they may

produce appropriate space and proper meaningful output to object recognition due

to authors false assumption about size and texture feature computation. Xiao-min

et al. [252] introduced method based on threshold segmentation followed by math-

ematical morphology (TSMM). In that work binary threshold segmentation was in

the first step. The individual white blood cells were detected using the average gray

value of cytoplasm as the threshold and then binary segmentation was done; also it

was calibrated with erosion and dilation applied to the binary image, where number

of morphological operations was assigned by experience. Following that, the WBC

nuclei was located with the shape features in correspondence with area and roundness.

Bikhet et al. [18] used 10 features from cytoplasm region to classify five main white

blood cell types. This work extracts features after initial edge detection that surround

white blood cell nucleus and its cytoplasm. Following that, there is an inconsistency

with this argument. It suffers from different issues such as using median filter as a de-

noising is not a reliable selection. In addition, edge information and image contours

are very problematic in varying dataset.

Other than that, Theera-Umpon et al. [228] used four white blood cell nucleus

features and Bayes and artificial neural network were also proposed as classifiers.

The first two features were first and second granulometric moments of the pattern

spectrum in which the area of the nucleus and the location of its pattern spectrum

peak were the other two candidate features. In that work, Bayesian classifiers is based

on normal conditional probability density with equal prior class probabilities P (Ck)

for each class. Neural Networks empirically set one hidden layer including five hidden

neurons in order to satisfy the fast convergence.

Sinha and Ramakrishnan [213] suggested a two-step segmentation framework us-

ing k-means clustering of the data mapped to HSV color space and a neural network

classifier using shape, color and texture features. Ramesh et al. [38] proposed a

two-step framework; segmentation and classification of normal white blood cells in
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peripheral blood smears. Colour information and morphological processing were ba-

sis functions for segmentation part which was almost close to already our published

paper in [78]. Latter, WBC classification followed using 19 features such as area,

perimeter, convex area, and so on. To lessen the computational burden, fishers linear

discriminant (FLD) to trim multi-dimensional set to six dimensions was also applied.

Following that, linear discriminant analysis (LDA) to separate these five classes of

WBCs was used.

Ko et al. [106] addressed a combination of shape, intensity, and texture features

with 71 dimensions over a segmented nucleus. These descriptors are variant such as

area, perimeter, the number of nuclei. This argument relies too heavily on qualitative

analysis of blood slides and the existing accounts fail to resolve cell discrimination

with different quality.

Rezatofighi et al. [189] described the blood segmentation, feature extraction and

evaluation of five main white blood cell classification. This work assessed segmenta-

tion using GramSchmidt orthogonalization method along with a snake algorithm to

segment cells elements into nucleus and cytoplasm. Next, feature vector was made of

nucleus and cytoplasm area, nucleus perimeter, number of separated parts of nucleus,

mean, variance of nucleus and cytoplasm boundaries, co-occurrence matrix and also

local binary patterns (LBP) measures. Finally, this paper begun by feature selection

using sequential forward selection (SFS). It then went on to compare performances of

two classifiers; multi-layer perceptron (MLP) and support vector machine (SVM) with

Gaussian kernel function. In more recent work (2012) Dorini et al. [51] introduced

automatic differential cell system in two levels to segment WBC nucleus and identify

the cytoplasm region. The image pre-processing with self-dual multi-scale morpho-

logical toggle (SMMT) filter along with scaled erosion and dilation morphological

operations to improve the correctness and performance of two known segmentation

approaches using watershed transformation and level sets was applied. In addition,

further, cell cytoplasm region was separated by using gray scale mathematical mor-

phology granulometry. In that work five mature WBC types were classified using

a K-Nearest Neighbor (K-NN) classifier with geometrical shape features and a rea-

sonable accuracy (78% performance vs 85% classified manually by a specialist) was

achieved.

20



2.3 Motivation for a Computerized System

As a result, despite its long history in cell classification (see Section 2.2), questions

have been raised about the reliability, generality and steps selection in an appropriate

blood cell classification system. On the other hand, one major drawback of these

aforementioned approaches is that no general attempt was made to quantify the

association between low resolution cell appearance and their classification. Therefore,

this current work would have been more convincing if the framework considers these

concerns.

This work represents an effort towards automating the blood testing system, with

general steps concerning color selection, de-noising, edge preserving, and binariza-

tion. This work seeks to take advantage of invariant features to maintain better local

characteristics. Moreover, it seeks to address the redundancy and the distribution

behaviour of features. It also investigates better feature selection strategy to enable

a smaller effective feature vector. It assess the degree of importance and the relia-

bility of each individual feature in presence of high dimensional data. More details

concerning the contribution to the body of knowledge are found in section 8.1.
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Chapter 3

Blood Smear Image Enhancement

Image quality can interfere with the cell border tracking and local information. There-

fore, image pre-processing is an important phase of the segmentation procedure. It

includes steps to capture a digital image and then remove Gaussian noise of blood

smear. It also includes enhancement techniques of image smoothing, edge preserving,

and background subtraction, which allow more efficient data analysis. In this chap-

ter, the importance of each pre-processing procedure is highlighted through in-depth

analysis.

3.1 Blood Image Pre-Processing

Image acquisition is the action of retrieving raw images from a capturing source,

usually a digital camera. Storing raw files into computerized image format as we

have all experienced, is an inseparable part of camera shots. Different electronic file

formats are available for images. Each format stores the image in a specific way. The

most common image file formats found are: Graphics Interchange Format(.GIF), Joint

Photographic Experts Group (.JPG), Portable Network Graphics (.PNG) Bit-Map

(.BMP), Tagged Image File Format (.TIFF or .TIF). Digital images can be converted

to different computer graphics color spaces where there is a number of ways including

such as RGB (Red Green Blue), CMY(K)(Cyan Magenta Yellow (Black)), HSL (Hue

Saturation and Lightness), YIQ (Luminance (Y), In-phase Quadrature (NTSC color

space)), YUV (Luminance (Y), blue luminance (U), red luminance (V) (SECAM and

PAL color spaces)), YCbCr (Luminance(Y), Chrominance information for blue and
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red components (Cb and Cr)), YCC (Luminance - Chrominance) and CIE (CIELuv

and CIELab). Further details regarding file format differences are beyond the scope

of this research.

Today, cutting-edge digital microscopy cameras equipped with image sensors are

available in few modern medical research centres. However, the objective of this

research is to enable analysis of relatively small, low resolution degraded images and

to provide a frame work which can be effective in different circumstances, including

inexpensive, basic digital cameras. It should also be noted that, even with professional

digital camera, improper camera set-up may result in very low quality images, and this

research is aimed at enabling analysis of such images. Our framework should address

image enhancement such as de-noising and edge preserving to maintain local required

information to detect cells. Our work operates with single-frame blood images, where

single shots can be joined together to closely stimulate all observations through a

microscope.

3.1.1 Problem Statement

To design a reliable system that may be used under different conditions such as dif-

ferent blood staining techniques, types of chemical materials used, microscope types,

illumination conditions, human factor, a pre-processing step is required.

Colour map conversion is a key step, especially in presence of white blood cells

where their shapes are not entirely convex. White blood cell includes cytoplasm

whose texture; membrane, nucleus is non-uniform staining and it is found in granular.

According to staining, different types of image acquisition, illumination, position of

blood cells (overlapping and very closely positioned particles), intrinsic properties of

cells (e.g., Leukocytes characterized by the presence of cytoplasm when viewed under

light microscopy) and other conditions such these, it is very common that acquired

images have blood cells which are close to background color and cells separation is

always questionable.

Secondly, noise removal helps to stabilize the next steps to achieve accurate local-

izations or parametric estimations [168]. All medical and clinical images may contain

some visual noise from a variety of sources however noise is much more prevalent

in certain types of imaging than others such as magnetic resonance imaging (MRI),
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computerized tomography (CT), and ultrasound imaging (sonography), while radio-

graphy produces images with the least amount of noise [217].

Thirdly, pre-processing is continued by edge enhancement in presence of white

blood cell. Edge preserving maintains better white blood cell boundaries appearance.

So, therefore edge sharpening with an enhancement filter that moderates and lessens

these effects will yield superior segmentation results. On the other hand, all minor

visible color spectrum are not required even though they are burden to system and

increase complexity. Providing an overall painting-style look removes internal color

spectrum detail as well as it increases sharpness of cell edges as compared to photo

realistic images. It facilitates to get an effective visual appearance and it would be a

proper step prior feature extraction. Consequently, on completion of pre-processing,

the process of edge preserving and image abstraction from white blood cell blood

images is achieved using edge-preserving filters.

3.1.2 Literature Review

Colour Selection:

Some previous published work used the green channel of the RGB color encoding to

analysis blood image data [45, 107, 133, 141]. Also it can be seen that white blood

cell granular cytoplasm pixels can be highlighted better in the image histogram of

the green channel [242]. A number of other color spaces rather than RGB have been

addressed in literature for different specific purposes. Several attempts have been

made to use gray scale intensity of colourful JPEG blood smear images [71,144,173,

198, 262]. For example, authors in [144] suggested to use L⋆ a⋆ b⋆ color model for

reduced color feature. In addition, in study [81] using HSI color space is recommended

to extracting leukocyte nucleus. Authors in [263] used combining B from RGB and

Y component from CMYK color spaces to have more contrast in presence of white

blood cells.

Noise Removal:

Many efforts have been devoted to reducing this undesired effect. Wavelet shrinkage is

a signal de-noising technique based on the idea of thresholding the wavelet coefficients

of an image. One of the most practical and widely used de-noising technique is wavelet
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shrinkage approach which thresholds the wavelet coefficients of an image. Removing

the small coefficients and then reconstructing the signal could produce signal with

lesser amount of noise. The biggest challenge in the wavelet shrinkage approach is

finding an appropriate threshold value [60].

Sendur et al. [204,205] introduced Bivariate wavelet shrinkage functions. Authors

used Bivariate shrinkage function based on Daubechies wavelets. In most non-linear

thresholding wavelet-based methods it is supposed that the wavelet coefficients are

independent when coefficients of natural images have significant dependencies. The

bivariate shrinkage functions consider the dependencies between the coefficients and

their parents in detail of wavelet function. The bivariate estimates of wavelet coef-

ficients with non-gaussian Bayesian models to characterize the dependency between

parent points and their children at the same spatial position.

In paper [177], a speckle noise reduction algorithm using wavelet approach over

the logarithm of various medical ultrasound images is used. Yu et al. [259] proposed

an algorithm for Gaussian noise reduction from degraded medical images using a

wavelet-based trivariate shrinkage filter with a spatial-based joint bilateral filter.

Chen et al. [31] developed wavelet de-noising method with neighbor dependency.

This method used a modified thresholding in a given windows size for different wavelet

coefficient sub-bands independently. This method could maintain minor important

details for a given small windows (i,e. 3×3). Pizurica et al. [174] proposed a wavelet

domain de-noising method using estimation of the probability that a given wavelet

coefficient is a significant noise-free component. This method introduced a novel

threshold function, which shrinks each coefficient according to probability that it

presents a signal of interest which is free of noise.

Fischer et al. [57] proposed a de-noising method with combination of localized

oriented Gabor filters, Fourier and wavelet transforms. This combination preserves

local details in poor orientations by such multi resolution wavelet transforms.

Coupè et al. [36] introduced an improved non-local means filter for image de-

noising. This method changes a noisy pixel value by the weighted average of other

local neighbourhood pixels with weights reflecting the similarity between this pixel

and the other pixels. This approach updates Bayesian parameters directly by the

noise variance given the patch size.

Dengwen et al. [42] introduced an optimal threshold for every sub band by Steins
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unbiased risk estimate (SURE) in a given neighboring window size. This method

profits from dual-tree complex wavelet transform (DT-CWT) as a shrinkage function

to alleviate redundant problem in typical wavelet.

In [265], Gaussian process regression (GPR), to detect edges with more detailed

information is addressed. In paper [17] computed tomography (CT) images have been

de-noised with combination of total variation (TV) and curve-let based methods. The

edged image is extracted from the left noise of TV algorithm by processing it through

curve-let transform.

Manjón et al. [136] first decomposes the signal into the local principal compo-

nents, then it shrinks the less relevant components, and lastly signal is reconstructed

as a free noise signal. The intuitive idea is that image can be represented as a linear

combination of a small number of basis images while the noise, being not sparse will

be spread over all available components. In a similar work image de-noising with

patch based PCA (local versus global) is also investigated. Deledalle et al. [27] intro-

duced three patch based de-noising algorithms which applied hard thresholding on

the coefficients. The algorithms differ by the methodology of learning the dictionary:

local PCA, hierarchical PCA and global PCA. Salmon et al. [199] takes advantage of

over-complete dictionaries combined with sparse learning techniques. This method

adapts a generalization of the PCA for de-noising degraded images by Poisson noise.

In terms of blood cell detection, in work [44] median filter is used to de-noise

blood microscopic images. Other work [135] proposed de-noising and blood image

enhancement by inter-scale orthogonal wavelet based threshold which is based on

stains unbiased risk estimator (SURE) approach.

Edge Preserving:

Further, concerning edge enhancement, as mentioned in the literature review [72] (see

Fig. 16), linear and non-linear filters which are appropriate candidates to smooth

heterogeneous white blood cell areas.

Edge preserving is achieved by applying the following filters: convolution kernel

filter [10], symmetrical nearest neighbour filter [84], bilateral filter [231] and Kuwahara

filter [115,167].

Bilateral filtering [231] is a simple, non-iterative and non-linear combination of

nearby image values to perform edge-preserving smoothing. As it can been seen
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from Bilateral filtering, two points are closeby pixels in which they are neighbours

in a spatial location, or they are close to one another in intensity values. This filter

considers similarity in geometric and photometric locality. This filter replaces the

value at x location with an average of similar pixel values. As a consequence, when

the bilateral filter is applied of the boundary, the bright pixel is replaced at the center

by an average of the bright pixels in its adjacent and nearby region, and it ignores

the dark pixels. It also reversely centred on a dark pixel then the bright pixels are

ignored instead. Finally, with using these steps image edges are preserved in some

extent. Symmetrical nearest neighbour (SNN) is based on distance measurement.

This filter compares symmetric 4-connected surrounded pixels in four directions (N-

S, W-E, NW-SE and NE-SW) with the center pixel and it only considers the pixel

from each paired set which is the closest to the center pixel value.

3.2 Research & Experimental Results

The prepared database (140 samples of five types) includes images of different con-

ditions for a sample referring to fig. 10. When images of blood smear have been

capturing, they are saved in JPEG (less computational requirements)format with 512

× 512 resolution. The calculation (see sub-section 3.2.1) shows that using the G

(green) channel is the best choice for converting the current blood smear images to

gray scale. Furthermore, the study examines the efficiency of Bayesian non local mean

de-noising technique in order to enhance cytological input images. After extensive

experimenting, the Kuwahara filter as a non-linear smoothing filter is chosen in this

study to smooth and preserve the white blood cell edges.

3.2.1 Colour Scale Channel

Computational outcomes have shown the adequate discrimination is achieved using

the ”Green” color channel [72]. It is obvious that Y channel is also an appropri-

ate alternative in case (see Table 4). Green encoding is better at maintaining high

frequency feature information [72].

Experiments on a set of 10 sample (different image characteristic (see Table 13)

blood smear images show that the green channel has a wider range of gray-level

values in the intensity histogram than the red and blue channels and thus keeps more
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Figure 10: Normal blood smear images with different characteristics (N0–N9)

Figure 11: (Left to right): Blue, Red, and Green channels.

feature detail. The G channel generally has the highest contrast between structures

even in the presence of different backgrounds (e.g., different staining and/or different

techniques for capturing images) as compared to the red and blue channels. Gray-level

distributions of three RGB channels for a sample image are shown in fig. 12.

The variance of a data set corresponds to how far the values are spread out

from each other. We can validate better resolution of G channel by considering the

variance of the different three RGB channels over the 10 sample images with different

noise characteristics. Table 5 shows the details of the images and their corresponding

variances. Clearly, the variance is the highest for the G channel. Other than that we

could also test the efficiency of color encoding by some other statistical approaches.

In blood smear images there are particles such as white blood cells which include

granular cytoplasm which contain very high frequency components in very narrow

and close-by range in blood smear histogram.

It means the spread and dispersion of skewed distributed variables can play a great

role to keep the details of image characteristics. The quality of different color encoding
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Table 3: Percentile range for different color map in different conditions: (top to down:
a, b, c); a) total over 10 regular images (N0–N9, whose characteristics are described
in figure 10); b) total over same 10 images with moderate noise and c) same 10 images
with high noise

10 Normal images
Channel 25th Percentile 75th Percentile Semi-IQR

Red 166 234 34
Green 159 237 34
Blue 178 215 19

10 Additive medium noisy images
Channel 25th Percentile 75th Percentile Semi-IQR

Red 210 251 21
Green 168 241 21
Blue 193 248 18

10 Additive high noisy images
Channel 25th Percentile 75th Percentile Semi-IQR

Red 188 255 34
Green 155 252 34
Blue 195 255 30

can be measured by percentile ranges along with mean and standard deviation. The

most common of these is the interquartile range, which is a measure of variability

and computed as one half the difference between the 75th percentile (Q3) and the

25th percentile (Q1). As we expect to have more details and variety in high frequency

range we can use the formula for semi-interquartile range (Q3 − Q1)/2 as a good

measure of spread for skewed distributions.

Besides the RGB and HSI color space, we also consider the YIQ color space. YIQ

encods two kinds of information: luminance (Y) and color information (I and Q).

The main reason for using YIQ is the sensitivity of human visual system which is

more aware of changes in luminance than to changes in hue or saturation and thus

a wider bandwidth should be dedicated to luminance than to color information. So,

we compare the Y channel with the G channel of the RGB color space. Since with

Y IQ encoding wide bandwidth is dedicated to Y , opacity and clearance of object in

Y channel is expected to be comparable with G channel (see Fig. 13). As a result,

calculations prove that the best choice for converting the blood smear images to gray

scale is to use the G (green) channel of the RGB encoding, or the (Y) channel of YIQ

channel encoding. Figure. 14 and table 6 show that higher semi-interquartile range
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Table 4: Percentile range for Y (YIQ) and G (RGB) color map in different conditions:
(top to down: a, b, c); a) total over 10 regular images (N0–N9, whose characteristics
are described in figure 10); b) total over same 10 images with moderate noise and c)
same 10 images with high noise

10 Normal images
Channel 25th Percentile 75th Percentile Semi-IQR

Y 159 235 33
G 159 237 34

10 Additive medium noisy images
Channel 25th Percentile 75th Percentile Semi-IQR

Y 168 241 21
G 168 241 21

10 Additive high noisy images
Channel 25th Percentile 75th Percentile Semi-IQR

Y 155 252 34
G 155 252 34

belongs to (green) channel in RGB color-map.

Figure 13: Left to right: G channel (RGB encoding), Y Channel (YIQ encoding)

Experiments with the same 10 sample blood smear images again show that the

G channel has a wider range of gray-level values in comparison with Y Channel

outcome, see Fig. 14. In addition, the variance is highest for the G channel (see Table

6). However, combination of different channels may result higher variance as well and

of-course user could profit varying combinations.
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a b

Figure 12: a) Gray scale distribution (top to bottom (image from fig. 11)): Red,
Green, and Blue channels. b)Zooming in on left side of distributions in fig. 12 (top
to bottom): Red and Green channels.

Table 5: Variance of individual color channels (RGB color space) over 10 blood smear
images with different noise characteristics.

Color Channel Image Characteristics Variance
Red Normal images 1.2395 ∗ 1008
Green Normal images 1.4088 ∗ 1008
Blue Normal images 0.94807 ∗ 1008
Red Additive medium noisy images 2.19 ∗ 1008
Green Additive medium noisy images 2.99 ∗ 1008
Blue Additive medium noisy images 1.75 ∗ 1008
Red Additive high noisy images 1.14 ∗ 1009
Green Additive high noisy images 1.41 ∗ 1009
Blue Additive high noisy images 0.82 ∗ 1009

a b

Figure 14: a) Gray scale distribution (top to bottom (image from fig. 11)): a) Green

(RGB) and Y (YIQ) channels. b) Zooming in distribution (top to bottom): G (RGB),

Y (YIQ).
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Table 6: Variance of G (RGB color space) and Y (YIQ color space) over 10 blood

smear images with different noise characteristics.

Color Channel Image Characteristics Variance

G normal images 1.4088 ∗ 1008

Y normal images 1.2707 ∗ 1008

G additive medium noisy images 2.99 ∗ 1008

Y additive medium noisy images 1.47 ∗ 1008

G additive high noisy images 1.41 ∗ 1009

Y additive high noisy images 0.98 ∗ 1009

3.2.2 Image De-Noising

This section briefly compares some work that are non-linear thresholds in image de-

noising. In particular, we implement twelve leading de-noising algorithms in terms of

blood smear de-noising. Two types of multiplicative noise are often found in micro-

scopic imaging: thermal and shot noise. Random fluctuations of amplified electrons

from a photo-sensor cause thermal noise. Thermal noise becomes more highlighted

especially in low-light situations with more required amplification. Thermal noise is

interpreted as a Gaussian random value where it has mean zero and non-zero variance.

The noise level (Gaussian) is equal at all pixels. Also, photons hitting the sensor is

a random process that causes shot noise. Shot noise is modelled as a Poisson distri-

bution. In general, a Gaussian, or normal distribution with mean and variance is the

most possible important distribution in these microscopic imaging. Following that,

to do a comprehensive comparative study, the original images have been corrupted

synthetically by additive Gaussian noise of zero mean and an arbitrary variance to

stimulate the poor scenarios.

The non-linear threshold methods (for more details see Section 3.1.2) such as

phase preserving de-noising [109], wavelet neighboring sub-band SURE shrinkage [42],

Gabor wavelets [57], Bayesian non-local means filter [36], local PCA decomposition

[136], hierarchical PCA and global PCA [27], Wavelet SURE shrink [50], wavelet

Bayes shrink [30], wavelet Visu (soft and Hard) shrink [49] and also Bivariate wavelet

shrinkage functions [205] are investigated in this framework.

Thereby, to compare performance peak signal-to-noise ratio (PSNR) measure is
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applied. PSNR(dB) = −10× log10

∑n
ij=0|(Bij−Aij)|
n2×MaxAij

computes the peak signal-to-noise

ratio, between two original and additive noisy blood smear images where Bij and Aij

are noisy and original intensity value in gray-scale imaging with MaxAij = 255.

Table 7 presents PSNR results for both moderate and high additive Gaussian

noise with standard deviation 30 (medium level) and 100 (high noisy level), respec-

tively. In fig. 15 visual appearance of using different de-noising techniques are shown.

This experiment compares the performance of the Bayesian non-local means algo-

rithm and the other de-noising techniques under different initializations: original or

degraded (additive noise) blood smear image. Bayesian non-local means filter yields

better performance than the other image de-noising techniques (see Table. 7). From

the experimental results it can be concluded that for moderate noise the Bayesian

non-local means filter produces the best results. It produces the maximum PSNR for

the output image compared to the other filters. However, other algorithms namely,

wavelet neighbouring sub-band SURE shrinkage that uses dual-tree complex wavelet

transform to lessen redundancy problem, self-invertible Gabor wavelets that main-

tains poor orientation resolution details and also Bivariate that preserves dependency

between pixels in different scales are also appropriate alternatives to be considered.

The neighbouring wavelet shrinkage output is somehow blurred and post-processing

steps involving de-blurring and edge preserving may be needed.

It can also be observed that for Gaussian noise these named methods produces

better results than the classical median filter may cited in previous blood smear

detection work [44]. The median filter output is very blurred in presence of Poisson

and Gaussian noise that may lose main details in a given blood image (see Fig. 15).

It can also be observed that SURE shrink cited in blood smear detection work [135]

has PSNR = 11.62 where other techniques such as Bayesian non-local means filter,

self-invertible Gabor wavelets, Wavelet neighbouring sub-band SURE shrinkage and

Bivariate have higher PSNR (see Table. 7).

Further, in presence of high noise level, wavelet neighbouring sub-band SURE

shrinkage produces better results than the other. Also it should be noted that presence

of such as this high Gaussian noise (N(µ = 0, σ2 = 100)) is almost impossible in

practice.

To sum up, experimental results with average noise level and the quantitative

PSNR measure in a comparative study indicate that Bayesian Non-local means, self
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invertible Gabor wavelets, neighbouring sub-band SURE shrinkage function, and bi-

variate are as efficient methods to de noise digital images in presence of additive

Gaussian noise in microscopic imaging.

Table 7: Non-linear de-noising techniques for blood smear samples using PSNR levels
with moderate and high Gaussian noise (N(µ = 0, σ2 = 30, 100)).

Additive Noise Deviation

PSNR(σ2 = 30) PSNR(σ2 = 100)

Methods

Bayes Shrink 11.0760 10.0183
Bayesian Non-local means 19.9736 11.2937

Bivariate 14.5495 11.3376
Log Gabor wavelet 15.5730 13.1074
Neigh SURE shrink 15.2426 15.4017

Patch based Local PCA 13.2424 10.8443
Patch based Global PCA 13.1923 10.8587

Patch based Hierarchical PCA 13.0809 10.8745
Phase Preserving 14.2682 10.5320
SURE shrink 11.6209 11.4432

VisuShrink(Hard) 12.2455 14.7936
VisuShrink(Soft) 14.3215 14.5921

3.2.3 Image Edge Preserving

An appropriate filter to removes details in a high contrast region, and preserves

boundaries even in low-contrast areas is Kuwahara filter. As a result, to recover

degraded and blurred boundaries in white blood cell while reducing the negative effect

of noise in images, edge preservation, Kuwahara as a non-linear smoothing filter is

applied. This filter takes a square window (sizelength = 2× l) around a pixel I(x, y) in

the blood image. This square is divided into four smaller square regions Qi=1···4 for a

given point. It computes the mean (µ) and variance (σ) for four sub-quadrants, and

then it assigns the mean of the pixels with lowest variance to other sub-quadrants

regions [115,167]. Thereby, Kuwahara as a noise-reduction filter that preserves whitr

blood edges is performed to compensate for blurring side-effect and also a painterly

look is achieved by preserving and enhancing directional image features.
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d e f

Figure 15: De-noising by different methods for blood smear images corrupted by
Gaussian noise (N(µ = 0, σ2 = 30)) : a) Noisy Image, b) Bayesian Non-local means,
c) Gabor Wavelet, d) Neigh SURE Shrink, e) Bivariate and f) Median filter.

a b c d e

Figure 16: Edge-preserving for a given white blood cell image: a) Original b) Con-
volution kernel, c) Symmetrical Nearest Neighbour filter, d) Bilateral filter and e)
Kuwahara filter.
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3.2.4 Pre-Processing Settings

This section gives a brief overview of initial settings with regard to image enhance-

ment and pre processing steps (see Figs. 5,6). This section briefly explains how each

parameter is set. There are many challenging problems in setting these parameters in

an ideal efficient way and some changes are inevitable to apply for different dataset.

However, the most parameters could be kept unchangeable.

Colormap Selection

This study uses JPEG format (see Section 3.1). Following that, to choose a proper

gray scale channel statistical approaches such as variance and semi interquartile are

addressed. These two measures determine whether local details are enough kept (see

Tables 4, 5). There is no parameter that should be set manually.

Denoising Selection

This framework uses Bayesian non-local mean [36], Gabor wavelet [57], Bivariate [205]

and neighbouring SURE shrink function [42] (see Table 7). These candidates require

initialization and setting before going further to use them. These settings are in

table 8.

Image Abstraction

As for white blood cell detection, edge preserving and image abstraction is addressed

using Kuwahara filter (see Fig. 16). Kuwahara filter is by a sliding windows with where

its parameters namely, mean and standard deviation are automatically calculated in

four sub-regions in a defined sliding windows. This size should be enough small to

cover all details. To sum up, only windows size is manually set (15× 15). Of course,

it is obvious smaller windows just only increase running time and there is no more

burden than increasing computational time.
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Table 8: De-noising: Settings and Parametrization

Bayesian Non-local Mean
Parameter Value Comment

M 7 Search area size (2 × M + 1) That is a window with
15× 15 pixels.

α 3 Patch size (2× α + 1).
h 0.1 To control how to maintain local structures as well as

noise removal.

Self Invertible Gabor wavelets
Parameter Value Comment

Nf 5 Number of scales of log-Gabor transform.
No 8 Number of orientations of log-Gabor transform.
Dec 1 Gabor domain will be decimated (dec=1) or non-

decimated (dec=0)
Type Soft Denoising thresholding function (Hard Vs Soft).
f 1 Parameter that tunes the denoising strength (> 0).

Neighbouring SURE Shrink
Parameter Value Comment

Wavelet Function DT CWT DT CWT (section 5.3.3)reduces uncertainty, minimizes
redundancy in the output.

 L 3 The number of wavelet decomposition level.

Bivariate Denoising
Parameter Value Comment

Wavelet Function Daubechies More coefficients both in low pass and high pass.
L 3 The number of wavelet decomposition level.

3.3 Comparison of the Proposed Approach to the

State-of-the-Art

This section concerns color channel selection, de-noising and edge preserving that

presents a comparison of the proposed approach to state-of-the-art pre-processing

techniques for analyzing blood smear images .

3.3.1 Colormap Selection

Authors in other works [18, 44, 46] proposed different channels due to the nature of

their data. However, the experimental data are rather controversial, and there is no

general agreement about color space selection. This thesis examines mono-chromic

channel in different color spaces (see Section. 3.2.1). The green channel selection

is supported by the calculation results in normal blood smear slides (see Table 3).
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The green channel is better at maintaining high frequency feature information and

contrasts in gray scale intensity that are more easily distinguished in the G channel.

The high frequency information is essential to preserve white blood cells structure in

particular (see Fig. 11). However, combination of different channels with weighting

of individual channels to achieve a desired appearance is not addressed in this thesis

and will be in the future.

3.3.2 Denoising Selection

As for blood cell detection, there is a considerable volume of published studies de-

scribing the role of median filter in blood samples de-noising. In work [18, 44, 46]

and also in malaria research [224, 225, 226] median filter is used to de-noise blood

microscopic images.

Median filter is an appropriate technique to remove salt-and-pepper noise where

pixel looks much different from its neighbours. Median filtering often fails to pro-

vide agreeable smoothing of non-impulsive noise where the underlying object has

edges [25,152] and its result could be unpredictable for different dataset. Perhaps the

most serious disadvantage of this median method is that there is no way to address

correlation and dependency between pixels and then it adversely reduces the visibility

of certain features within the image. Moreover, the median filtering approach is not

efficient for the images with large amounts of Gaussian noise or speckle noise [152].

Median filter depends on sliding windows size and once intensity values are nearly

small compared to the size of the pre-determined neighbourhood, it will adversely

change the median value and then eventually the median filter cannot sort out image

detail from undesirable noise. As a result, median filter is not an appropriate can-

didate for blood smear images with these nature of noise that may address in blood

smear imaging (see Section. 3.2.2).

Other work in 2011 [135] explored wavelet de-noising by inter-scale orthogonal

wavelet which is based on stains unbiased risk estimator (SURE) approach. In this

method, as it can be seen from literature review, it is assumed that the wavelet

coefficients are independent and there is no connection in different wavelet scales.

However, independence assumption may not be satisfied for natural images and blood

smear samples.

In conclusion, as it can be seen from results, Bayesian non local mean, optimal
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threshold using SURE shrinkage function with dual tree complex wavelet and neigh-

bouring window, self-invertible 2D Log-Gabor wavelets and Bivariate filter bring ben-

efit in blood smear de-noising (see Table 7) in presence of different Gaussian noise

level.

3.3.3 Image Abstraction

Previous studies of white blood cell segmentation have not dealt with this possible

adverse condition in blood smear slides where boundaries are messy, granular and in

low faded conditions. Experimental results show that Kuwahara and Bilateral filters

are proper candidates to build better outcome close to the expected boundaries. In

general, Kuwahara is superior to Bilateral in this application (see Fig. 16). Kuwahara

filter brings two benefits together. It expands homogeneous region in cytoplasm to

its heterogeneous neighbours using a sliding windows. This approach thus removes

unwanted color details in cytoplasm that they are not needed in this low resolution

images. Secondly, as mentioned before white blood cells do not have determined edges.

This filter makes a sharp pixels next to non-obvious edges. As a result, existing sharp

pixels close to possible edge and also removing unnecessary details bring benefits for

next steps in white blood cell segmentation (see Section. 4.4.2) and also in feature

extraction (see Section. 5.5).

3.4 Pre-Processing Findings and Contributions

One of the contributions is the pre-processing, for enhancing the appearance of the

shape. It includes color channel selection, de-noising and edge preserving that are

explained in details as follow. Colour space selection would be automated using

distribution behaviour calculations to keep local and global details. This De-noising

algorithm is a significant development as the most commonly used approaches, i.e.

Median filter, can not be used when the nature of noise is either Gaussian or unknown.

And also the results of the edge preserving are found to be promising when the white

blood cells having degraded internal structure and almost invisible boundaries.
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3.4.1 Colormap Selection

This work proposed a statistical calculation for analyzing the color map selection in

presence of different possible color spaces (see Section. 3.1.1). The method is based

on a variance and semi interquartile that enables us to test how low and high fre-

quency information can be accumulated. These details are very critical in presenting

white blood cells where boundaries and their internal structure are very fragile and of

course inappropriate selection leads inevitable problems in next framework step. For

example, blue channel in current dataset is unable to maintain intensity details sep-

arately (see Fig. 11). Authors in other works proposed different channels due to the

nature of their data. Comparative study and discussion is addressed in section 3.4.1.

However, combination of different channels with weighting of individual channels to

achieve desired appearance is left for future study.

3.4.2 Denoising

This work has empirically tested different de-noising mechanisms for a given intensity

blood image. As for blood cell detection, there is a considerable volume of published

studies describing the role of median filter in blood samples de-noising. In addition,

few work used SURE wavelet shrinkage as well. Discussion will be found in sec-

tion 3.3.2. In conclusion, as it can be seen from presented results that Bayesian non

local mean, optimal threshold using SURE shrinkage function with dual tree complex

wavelet and neighboring window, self-invertible 2D Log-Gabor wavelets and Bivari-

ate filter bring benefit in blood smear de-noising (see Table 7) in presence of different

Gaussian noise level produce the best results.

3.4.3 Image Abstraction

Third, in terms of blood cell detection, white blood cell is with low contrast boundaries

and weak edges. The Kuwahara edge preserving is highly suited to enhance poor

visibility conditions (see Fig. 32). Experimental results and discussion is found in

section 3.3.3 and figure 16. As a result, existing sharp pixels close to possible edge

and also removing unnecessary details bring benefits for next steps in white blood

cell segmentation (see Section 4.4.2) and also in feature extraction (see Section 5.5).
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Chapter 4

Blood Binarization & Cell

Separation

After de-noising and artistic edge enhancement, binarization is the third step which

allows to extract some features, having sub images and get ready to apply techniques

for different purpose over the images. This work proposes a modified binarization

method that reduces limitations and drawbacks of each local and global thresholding.

Binarization and some post-processing to enhance the quality of binary image is

followed by cell size estimation which helps to differentiate various types of particles in

the blood smear image. The size estimation approach is chosen in this step because it

identifies several advantages of the case study. Normal red blood cells in particular are

found with an average size distribution in healthy people. Moreover, cell separation

into two sub-groups including white blood cells and red blood cells is followed also

on using size parameter.

Further, a key step in many experimental blood smear analysis involves counting

of red blood cells and white blood cell differential (see Section 1.2.1). A simple

counting of cells brings different benefits for health system and provides a great help

in detecting problems at early stages.

4.1 Problem Statement

After pre-processing (denoising and edge enhancement), binarization is the third step

which allows to extract WBCs and RBCs sub-images, compute the RBCs size and
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count them. The aim of this section is to determine which algorithm is the most

reliable and robust for binarization of medical images, specifically used in blood cells.

Generally, binarization can be applied with either global or local thresholding

where both have intrinsic problems. For the global approach, a constant intensity

threshold value T (between 0 and 255) is chosen. If the intensity value of any pixel

(in the grey scale) of an input image is greater than T, then pixel is set to white

otherwise it is set to black. A global threshold (T) which maximizes the variance

between the means of the histogram classes on each side of the threshold is selected.

On the other side, a local thresholding technique depends on the window size moving

over the image that it separates background with local statistics measures.

Global binarization argument relies heavily on quantitative analysis of one unique

threshold value in which most local approaches use adaptive local values. Uniform

contrast distribution in most cases leads to global thresholding unlike in presence of

degraded images, complex scene images, variation in contrast and illumination. In

these aforementioned conditions, global thresholding may fail to resolve the contra-

diction between background and foreground.

Different algorithms have already introduced to improve both local and global

thresholding of digital images. In general, no identical binarization algorithm is supe-

rior to others. However, some methods are better than others for specific applications.

The goal in this study is to obtain a robust binarization method to allow for further

blood image content clarification. Binarization is the last step before computing cell

sizes and their enumeration.

Further, a normal blood cell is one of two major particles: a RBC with a normal

probability distribution function (PDF) with average size around 6.0-8.5 µm or a

WBC with average size around 7-18 µm which includes a nucleus and cytoplasm.

Mature WBC is about equal normal RBC size (i.e, Basophil) up to 3 times bigger

than normal and mature RBCs (see Section. 1.2).

As mentioned in medical background (see Section 1.2.1), size is a key parameter

to identify the blood sample health. Also, as mentioned earlier (see Section 1.2.1),

the red cell distribution width (RDW) is an expression of the red blood cell (RBC)

size distribution in complete blood count (CBC) report.

We use size characteristics as an effective factor to distinguish between the two

main types of cells that are RBCs and WBCs. Red blood cells size estimation is
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an essential task at various stages of blood slide processing to go further in cell

segmentation. We aim to have two sub-images containing individual white blood

cells and red blood cells are separated in order to count cells in CBC medical test.

The aim of segmentation is to isolate each individual blood cells, especially when they

are close and overlapping in the viewing of the microscope.

It locates and recognizes the cell contours to distinguish amongst them. An inac-

curate segmentation leads to ulterior quantification and parameter measurement. The

goal of our CBC segmentation and counting research is to find methods partitioning

the digital blood smear image into non-intersecting regions; RBCs and WBCs.

Finally, thus far, after cell separation we have two individual sub-images for RBCs

and WBCs and have localized the WBCs. A complete medical CBC reports number

of cells to properly understand a patients health. In particular, the distribution of

the different subtypes and proportional rate in a blood sample is CBC interest.

4.2 Literature Review

To the author’s best knowledge, there are no comparative evaluations of the efficiency

of binarization algorithms at binarizing medical blood smear images.

4.2.1 Global Thresholding

A considerable amount of literature has been published on global binarization. Ridler

and Calvard (1978) [190] developed a binarization algorithm while retaining the ap-

propriate possible illumination of the image. In 1979 Otsu [164] classified foreground

and background with a global threshold. The optimum threshold in Otsu method is

selected automatically by using the probability terms whereas it maximizes variance

between-class and minimizes variance within-class. Other than Otsu algorithm, there

is a large and growing body of global thresholding schemes have been proposed such

as algorithm of Kapur et al. [97]; Fan et al. [55]; Portes de Albuquerque et al. [40];

and also Xiao et al. [251]. It should be noted that among all these global binarization

studies, Otsu [164] is frequently cited.
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4.2.2 Local Thresholding

Locally adaptive binarization methods compute a threshold for each pixel in the im-

age on the basis of information appeared in a neighbourhood of a given pixel. During

the two last decades, a lot of information has become available on local threshold-

ing. The first discussion and analyse of local thresholding backs to 1972 with Chow

and Kaneko algorithm [32]. In that method, original image is divided into a set

of regions. Intensity histograms are computed for all sub-divided sections and then

thresholding value will be selected for these histograms. All predefined local thresh-

olding values are interpolated twice times first region-wise and then point-wise to

obtain a threshold for the original image. Numerous studies have been attempted to

reach better performance in different applications. They are more promising locally

adaptive binarization methods that we could mention in the literature.

Bernsen [16] in 1986, introduced a method which is based on a given contrast

threshold in a sliding window. The pixel is set at the mean of the minimum and

maximum grey values in the sliding window if local contrast is above the predefined

contrast. Otherwise, it is set to background. The contrast value is arbitrary where

default value is recommended to be set at 15.

Niblack [155] in 1990, introduced a binarization algorithm using two values that

are mean and standard variation in a sliding window. The size of the window must

be large enough to suppress the noise amount in the image as well as be also small

enough to maintain local details. In practice, a window size of 15-by-15 could be an

appropriate selection. This method can work roughly without user intervention as it

requires only a coefficient value that helps to separate and adjust the percentage of

pixels that belong to foreground (especially in the boundaries). The default value is

0.2 for bright objects and -0.2 for dark objects. In Current application as cells (see

Fig. 10) are almost darker than background we could use k = −0.2.

Sauvola [201] in 2000, also introduced a local thresholding method using means

and standard variation in a sliding window. Sauvola is almost considered as a vari-

ation of Niblack’s method. However, the formulation has a little difference and it

has two parameters to be adjusted. Parameter (k) that default value is 0.5 and (r)

that usually is 128. These two value are very questionable and the existing default

fail to resolve the contradiction between foreground and background with different

conditions. Overall, these setting are almost arbitrary and could be changed with
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different dataset and user interference is addressed to some extent.

Feng et al. in 2004, introduced a local thresholding method [56] with using many

parameter settings. Feng method is an appropriate candidate to maintain informa-

tion from a given image, especially for poor quality, non-uniform illumination, low

contrast samples. This method can qualitatively outperform the other threshold-

ing methods. However, the Feng method contains many parameters. This method

used two sliding windows with different size to preserve the details. The thresh-

old value is calculated where α, γ, K1 and K2 are positive constants that they rely

on the nature of dataset. Padding parameter should be also set which are circular,

replicate and symmetric. Feng argument relies heavily on quantitative analysis of

image parametrization. This method requires calibration through different iterations

of testing and retuning. One of the limitations with this explanation is that it does

not explain how parameters could be set automatically to some extent. The optimum

window size and other parameters can be adjusted using different experimental results

and this system requires user surveillance. Hence, this method is not recommended

widely for an semi-automated system without user intervention.

Gatos et al. in 2006, [65] introduced a two-step approach to build a local threshold-

ing method. First Sauvola’s method is applied and then local threshold values based

on the estimated background are computed. This method could be an appropriate

option in presence of degraded and complex background. However, background esti-

mation can be addressed in different ways [64,142] and there is no superior identical

method that can be used for different backgrounds with varying conditions.

Bradley et al. in 2007, [22] introduced a local thresholding method that a given

pixel is considered as a foreground if its brightness value is lower than the average

brightness of the surrounding pixels in a given sliding window. The amount of differ-

ence is calibrated using a percentage value (T) and should be adjusted empirically.

This manual settings can be changed for different circumstance and dataset. However,

the advantage of this method is its low computational time and only on T param-

eter adjustment. Bradley method is two times faster than Sauvola’s method [201].

Local mean and variance are computed in Sauvolas method, while Bradleys method

calculates just local mean and variance can be calculated using expected value.

Su et al. [219] in 2010 proposed an edge-based local threshold method that it

computes image contrast. Their approach profits combination of canny as an edge
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detector and Otsu to Binarize images. This method is good at removing heterogeneous

background noise but it may fails to detect the degraded, low resolution and close-by

objects.

Hedjam et al. [86] in 2011 used a prior information and the spatial relationship

on the image. This method used Gaussian distribution to model foreground and

background where as the first step, Sauvolas method is used to Binarize original

image. This method is based on known local prior information of the background

and foreground. However, there is an inconsistency with this argument.

Ntirogiannis et al. in 2014 proposed [157] proposed a combination of a global and

a local thresholding binarization method at connected component level to reach better

performance in presence of variety of degraded handwritten document images. The

method profits combination of Niblack and Otsu algorithm on normalized images.

This combination and discussion is very close to already our published paper in 2011

and 2012 [72,78].

4.2.3 Blood Smear Binarization

To date, the blood smear researches are more about on global thresholding methods

rather than local thresholding methods. Some papers on blood segmentation such

as [15], [242] and also one of frequently cited work [46] all tried global thresholding

method using the well known Otsu method. The existing global Otsu thresholding

value fails to resolve different conditions that exist in blood slide images. A serious

weakness with this argument, however, is that known but also it does not manage

binarization with nearby background and foreground intensity values range [78].

No research has been found concerning combination of global and local thresh-

olding in microscopic imagery systems. This research discusses the challenges and

strategies to manage binarization in presence of different unfavourable conditions in

a typical blood smear image.

4.2.4 RBC Size Estimation

There is a considerable volume of published studies describing the role of Granu-

lometry for size estimation in mathematical imaging and vision. Granulometry is a

known method to extract blood smear size characteristics. Automatic thresholding
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using Granulometry and regional maxima in image pattern spectrum are addressed

in some blood studies such as [14,41,46,194,226]. Granulometry and its applications

will be explained in the section. 4.3.2.

4.2.5 RBCs & WBCs separation

A serious attempt to segment in order to count backs to Vincent et al. work with mor-

phological filter to reconstruct segmentation in image analysis in 1993 [239]. Svensson

et al. described a decomposition scheme by a fuzzy distance transform to separate ob-

jects into sub-parts [221]. Li et al. [125] introduced a framework to segment nuclei in

images where their framework is based on three steps including a gradient approach,

flow tracking and grouping, and finally local adaptive thresholding.

Hoover et al. [88] described an automated framework to locate blood vessels using

match filter and thresholding algorithms. Jelen et al. [94] addressed nuclei segmen-

tation on breast cancer malignancy classification with level set, fuzzy cmeans seg-

mentation. Quelhas et al. [176] introduced sliding band filter to locate cell nuclei

and cytoplasm with evaluation for two datasets of cell culture images. Sadeghian et

al. [198] introduced a frame work to segment white blood cells using image gradients,

edge detection algorithms. Dorini et al. [51] introduced nucleus and the cytoplasm

segmentation with self-dual multi-scale morphological toggle (SMMT) filter along

with scaled erosion and dilation morphological operations to improve the correctness

and performance of two known watershed transformation and level sets segmentation

approaches. In an important work Di Ruberto et al. [46] used classical area opening

(see Fig. 26) morphology technique to separate between WBCs and RBCs. Authors

claimed to isolate the white cells by a morphological erosion with a disk-shaped struc-

turing element whose size is achieved by the granulometric analysis (RBC size). This

approach has some drawbacks. It just neglected overlapping phenomena among cells.

It is not also efficient for all possible five WBCs types where Basophil (fig. 1) can be

possible found the RBC size. Some previous studies have focused on the implementa-

tion of active contours to extract blood cell boundaries in white blood cell study [80].

Blood vessel segmentation using active contours is also addressed in [43]. Active con-

tours [191] require initialization and additional regularizers and therefore, the active

contour using a level set adjustment in some cases is costly and also makes unwanted

extra spurious regions as fake boundaries.
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4.2.6 RBC Counting

Watershed is frequently used for an automatic contour detection and cell segmenta-

tion [131, 240]. First idea of watershed comes from geography topographic concepts

where water divides lines of the domains of attraction of rain falling over the region

(Tobbogan method). An alternative approach is where landscape being immersed in

a water, with holes pierced in local minima that are called Basins. These two ap-

proaches [131] are interpreted as follow. Immersion starts from low altitude to high

altitude while Toboggan approach starts from high altitude to low altitude. Water-

shed in image processing isolates objects from the background into disjoint regions

(see Fig. 28).

4.3 Research & Experimental Results

4.3.1 Blood Binarization

To separate blood particles (foreground) from background the binarization step is ap-

plied. In this study , the foreground objects are RBCs and WBCs while the remaining

objects such as platelets, artefacts in peripheral blood smear and stained plasma are

declared as background.

In the blood smear images slides, because of different kinds of image acquisition,

illumination, staining and when the intensity variations between the cells and stained

plasma are low, and since there are frequently overlapping and very closely positioned

particles, finding a global value T (Thresholding) to separate the image into two ideal

regions of blood particles and background is not always simple and perhaps not even

possible (closely positioned pairs of particles will be merged into single particles,

regardless of any fine tuning of the value of T ). After pre-processing which are

denoising and edge enhancement; several binarization algorithms including Niblack

[102], Bernsen [16], Sauvola [201], Feng algorithm [56], Wolf & Jolion [247], Bradley

[22] and Otsu [164] to enable foreground background separation improvement of blood

smear microscopic images (see Fig. 17) can be candidates where in practice we have a

variety of intensities of grey in the blood smear images. This contribution is directed

toward a robust binarization method in blood smear digital diagnosis. In Niblack

[102], the local thresholding is based on T (x, y) = m(x, y)+ k ∗ s(x, y), where m(x, y)
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and s(x, y) are the average and the standard deviation of a local area for which the

size of the window must be large enough to suppress noise in the image while at the

same time it has to be small enough to maintain local details. The value of k decides

how much of the total print object boundary is taken as a part of the given object.

Coefficient k helps to separate and adjust the percentage of pixels that belong to

foreground (especially in the boundaries).

In experiments over different samples with different initial conditions (see an ex-

ample in fig. 17) showed that Niblack is the most reliable method to maintain disjoint

components which is crucial in avoiding over or under segmentation. However, This

local binarization tends to produces a considerable amount of spurious foreground

regions in non-cell particle regions.

After comparison study between the various algorithms for pixel segmentation a

merged binarization algorithm on blood smear images with different characteristics

and staining conditions is proposed. To overcome the problem of unwanted made

foreground spots, this work takes advantage of merging Niblack local thresholding

with Otsu global algorithm. Otsu global thresholding is not an appropriate binariza-

tion individually where this method tends to result in overlapping objects that are

too close to one another which in turn leads to false results after segmentation.

In particular, we aim at more accuracy in terms of minimizing the number of close

pairs of particles that are merged into single particles during binarization process. In

the modified version, pixels are labelled as backgrounds pixels if they are labelled

as either background pixel in Niblack or in Otsu and the remaining points are kept

as foreground (objects). Using this merging process, we mitigate the problem of

extra small spurious regions produced by the Niblack algorithm. In the experiment

involving Niblack algorithm 15 × 15 neighbourhood and k = −0.2 regarding to this

image size and cell magnification are selected.

a) b) c) d)

Figure 17: Binarization methods: a) Bernsen; b) Sauvola; c) Otsu; and d) Niblack
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a b c

Figure 18: Local Binarization Methods: a)Bradley b)Feng and c)Wolf

a b c

d e f

Figure 19: Binarization for low quality image: a, d) Original images b, e) Otsu, c, f)
Niblack

Statistical Measures & Experimental Results

To determine the best binarization algorithm, we determine the statistical significance

between the algorithms by using the normalized cross-correlation (NCC) approach

Υ(u, v) (see Eq. 1) which is often used in template matching and pattern recognition

problems for determining the degree of similarly between two images A and B (as

a template matching using green channel output of each image) [20]. If A exactly

matches B then γ (the array of correlation coefficients) is equal to 1 while in cases

of exact dissimilarity result in γ = 0. In general, the coefficients in γ typically vary

between (−1) and (+1) [72].

This comparison with normalized cross-correlation (NCC) approach is limited to
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only four appropriate candidates (see Fig. 17) in this experiment. The experimen-

tal data in other cases are rather controversial, and there is no general agreement

about their usefulness (see discussion in section. 4.2.2). In some cases, like Feng algo-

rithm [56], many parameters adjustments are necessary, which, in turn, requires user

intervention for different conditions due to overload.

γ(υ, ν) =

∑
x,y

[A(x, y)− Āυ,ν ][B(x− υ, y − ν)− B̄]

{∑
x,y

[A(x, y)− Āυ,ν ]
2
∑
x,y

[B(x− υ, y − ν)− B̄]2

}1/2
(1)

The resulting coefficients in the matrix of normalized cross-correlation (NCC)

cannot all be needed and then the measurement of performance and efficiency are

subjected to a comparison using the average (expressed as the mean, median, and

mode), standard deviation and range to show how much variation or dispersion there

is between existing values.

In our experimentation to study the effect of noise on binarization results, we

degrade the objects (foreground) in samples by adding noise including Gaussian and

speckle noise to simulate worst cases that may appear in image capturing. Also to

simulate dirty slides or camera lens a 2, 3 pixel Gaussian blur to the samples is

applied.

The following tables present the results obtained from the preliminary analysis of

normalized cross-correlation (NCC). The result has been divided into three parts.

The first part (see Table 9) deals with all 10 sample blood images (see Fig. 10). Then

it goes for for separated white blood cell images (table 10). Finally, the last table

investigated the impact of binarization on red blood cells (table 11). In terms of

NCC value the largest means are generated by Otsu as a global thresholding and the

dispersion and variation is low which prove the acceptable degree of similarity between

image and its template. However, in WBC segmentation and discrimination between

WBCs and RBCs this approach may fail and also this algorithm merges disjoint close

by objects as it uses global thresholding over all slides and then local details are not

kept. WBCs nucleus and cytoplasm intensity vary from the intensity of dominant of

RBCs and as the number of RBCs is about 100 times more than WBCs then global

thresholding is influenced by RBCs rather than WBCs. Therefore, WBC boundary

and its components are degraded and damaged based on Otsu global thresholding in
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spite of having higher template matching.

Next, this calculation has also been applied to separated regions composing of

a single WBC and few RBCs, with small gaps between these objects (see Fig. 17).

The NCC shows Niblack algorithm brings higher NCC performance. However, in

Niblack, because of using local thresholding, a minor background difference in in-

tensity value, makes spurious objects may results such as unwanted fake foreground

spots. As a result, after enough investigation the desired result is achieved with higher

NCC in a small windows (Niblack) including WBCs and few close by RBCs (better

segmentation in foreground) with along higher NCC value in global thresholding by

Otsu to avoid having spurious spots in background. Admittedly, merged these two

Niblack and Otsu develops a methodology for the selective binarization. The results

obtained from the preliminary analysis of NCC are shown in following tables (see Ta-

bles. 9,10,11). In the experiment involving Niblack algorithm 15×15 neighbourhood

and k = 0.1 regarding to this image size and cell magnification are selected. The

experimental results indicate that merged Niblack and Otsu is enough sufficient to

obtain foreground and background separation.

4.3.2 RBC Size Estimation

Granulometry [206] results size distribution in pattern spectrum diagram (output).

Granulometry algorithms involve sequences of openings (I ◦SE = (I⊖SE)⊕SE) or

closings ((I⊕−SE)⊖(−SE)) derived from the erosion and dilation of increasing size,

where I and SE are image and structure element. ⊖ and ⊕ also denote the erosion

and dilation, respectively. Granulometry is determined with ∀x ∈ I; x 7→ s+λs× x

where S is a homothetic center and λ is an expanding non - zero ratio. Granulome-

try is commonly interpreted to a maximum of morphological opening morphological

operation (or closings) with the homothetic transformation which is an increasing

affine transformation space of a simple convex structuring element (SE). Typically,

structuring element (SE) is a line segment, a circle, a square, or a hexagon.

Edge Fracture in Granulometry

In broadly speaking, Granulometry uses a series of morphological opening operations

to estimate a size distribution of particles in digital images. As a expected result,

in an ideal output, we should have only one peak for a single complete circle, but
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Figure 20: Granulometry over simple circle

an incomplete circular object shown in fig. 20 produces local maxima. We call this

undesirable effect an edge fracture [113]. We just observe that after applying the edge

detection and skeleton algorithms to real cell images which are typically not complete

curves the observed circular pieces are regarded as a new objects surrounded between

two ideal complete circles. Consequently we can expect in granulometric output at

least two local regional peaks. By this simple work, we find that blood smear particles

are not complete circular object and there are always discrete components on curve

tracer, which is another reason for undesirable local maxima.

Area-Granulometry

In literature review, Granulometry as a volume and mass distribution is found with

two variations (Granulometry vs Area-Granulometry). Area - Granulometry [140,143]

brings two benefits to size estimation in blood smear sample. Any patch and hole

inside the blood image objects (such as seen in fig. 21) leads to errors in pattern

spectrum computation with spurious regional maximum that are more in typical

method. Furthermore, area method introduces fast algorithm to be applied [140].

Finally, Area-Granulometry gives better performance than Granulometry with an

improved estimator of size distribution of image and it is an appropriate tool for size

distribution in presence of blood smear slides with different resolution.

According to normal blood probability density function (PDF) and since white

blood cells are very fewer in number than red blood cells, with a ratio of about 1

white blood cell to every 100 to 200 red blood cells. The maximum regional peak in

pattern spectrum diagram (Area - Granulometry output; see Fig. 23) refers to the

number of RBCs with an acceptable RBC radius size (in this sample is 10px). It is

not possible, though, to estimate the size of WBCs based on Granulometry because

of their intrinsic characteristics and the overlapping. WBCs are classified into five

main shape groups with varying degrees of non-convexity and Granulometry may fail
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Figure 21: Patches and holes inside the RBC image

to estimate white blood cells size.

In conclusion, Area-Granulometry over normal erythrocytes is an acceptable size

estimator as RBCs have:

• Uniform-Membrane.

• N-PDF(Normal PDF).

• Circular shape.

• High rate of density (The ratio of WBC to RBC is 1 or 2 : 100)

• The maximum peak (the most redundancy and amplitude) in pattern spectrum

(Granulometry result)

• Remarkable accuracy (based on Area - Granulometry)

This Area-Granulometry approach is not an efficient method for white blood cell

size estimation. When it is applied, it may result in false and true negative values for

both red and white blood cells. The following are the reasons that Area-Granulometry

is not suitable for WBC size measurement.

• Variation in shapes (circular, elliptical)

• Low density in blood smear slides (few samples are in a given blood volume)

• Edge fracture effect (see Fig. 20)

• Intrinsic characteristics (not solid membrane).

• Nucleus and granular area.

• Variation in size (1− 3 times of normal RBC)
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Figure 22: (Top to Bottom) a normal blood sample; an abnormal blood smear sample
(size detector)
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a b

Figure 23: (left to right): a) de-noised green channel of initial sample; b) Granulom-
etry over blood smear sample (RBC size detector)

• Overlapped and adjacent RBC cells may address false WBC.

Overall, applying Area - Granulometry to RBCs images in normal blood smear can

be reliable in determining and estimating their size. However, for abnormal samples

with different shapes or with extra overlapping between the particles Granulometric

approach may fail (see Fig. 22) [113].

4.3.3 RBCs & WBCs Separation

First, two sub-images composed of RBCs and WBCs are required. Size estimation

discussed in the previous section (see sub-section 4.3.2) is also used here to achieve

the accurate and precise cell separation. In normal blood smear images, all available

particles are approximately circular. Hence, we select (disk) shape as default and

basic structure element for Granulometric algorithm (previous section . 4.3.2).

A pipeline method for the accurate separation of leukocytes and erythrocytes in a

simultaneous and cooperative way is proposed. This is done in two main procedures

which are extracting a sub-image containing individual closed WBC regions, and also

separating WBCs from RBCs [78]. The proposed separation algorithm is an iterative

mechanism which is based on morphological theory, saturation amount and red blood
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cell size. The computational cost of the following process is primarily affected by

determining an effective mask to separate the WBCs from the RBCs.

• Extract sub-images containing individual closed WBC regions. The algorithm

approximately determines the location of WBCs nucleus and enhances WBC

boundaries.

• Use step-by-step iterative method based on RBC size estimation, circular mask,

saturation value and noise removal to separate WBCs and RBCs into two indi-

vidual sub-images to separate white blood cells from red blood cells.

Extracting a sub-image containing individual closed WBC regions: First,

a sub-image containing WBCs is separated from the image generated at the end of

step 5) of the framework. This is done in five steps: A) An approximate location of

nucleus is found by keeping 70% maximum (S) value in HSV channel module over

edge preserved image. B) A morphological dilation by RBC size (Granulometric pat-

tern spectrum output) is performed over the discontinuous extracted dots (equal or

greater than 70% maximum (S)) to estimate and close the entire possible connec-

tive WBC region. C) A square mask surrounding the center of mass of connective

regions (after dilation) with the size of 2 × diameter of mass region is applied over

whole image to extract sub-images including separated WBCs and somewhat near

RBCs. D) Since the boundaries of the WBCs in the image after merging binarization

and canny output may still be imprecise, a more accurate estimation of the WBC

boundaries can be obtained by applying an active contour using the Chan-Vese im-

plementation [29]. In this improved curve evolution method, cells and white blood

cells in particular whose boundaries are not completely defined by gradient are de-

tected and traced using active contour model where the stopping criteria term does

not depend on the gradient and edged images, as in the conventional active contour

models. On continuing work Canny edge detection to the resultant image is then

applied. This edge detected image is then merged with the image generated at the

end of step 5 and the interiors of the cells are filled pixel-wise in this merged image.

E) As a post-processing step some small spurious regions is cleaned up by using a

closing morphological transformation (SE size = 1 px).
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a b c

d e

Figure 24: Extracting a sub-image containing individual closed WBC regions: a, b)
Sub-images containing WBCs; c) Canny over Chan-Vese Active Contour Without
an Edge; d) Adding new edged image and enhanced filled object; e) Modified filled
object (closing SE=1px)
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Figure 25: Separating WBCs from RBCs: a) WBC indicator; b) Separated RBC
sub-image

Separating WBCs from RBCs: Thus far, an image is formed with solid ob-

jects; before counting, WBCs and RBCs should be separated into two sub-images.

This task could be done by a step-by-step iterative method: A) Apply granulometry

over the blood smear image (with the RBC interiors filled in) and saving approxi-

mate RBC size. B) Initialize the possible available WBC size from expected physical

characteristics and an acceptable marginal range: C1=80% *RBC size (as an initial

marginal value). C) Moving the circular mask over blood smear image and detecting

the exact matching objects of the same size. D) For those matched objects with

any pixel with an S value greater than 70% of the maximum value (which indicates

the presence of a nucleus here), all its pixel intensities are set to 0 (zero). E) Ap-

plying circular mask function in a closed loop by an initial radius value (C1=80%

× RBCsize) and then moving the mask over all image pixels. F) Save the WBC

indicator in a new image mask. G) Possible noisy remained region and speckles are

removed by deleting closed objects less than 1
3
RBC size. Two separated sub-images

are seen in fig. 25. Proposed method has a computational cost when it determines an

effective mask to disjoint all five main kinds of WBCs from the RBCs. In contrast,

similar approach [46, 226] suffers from the drawbacks such as inability to deal with

overlapping cells and also is not efficient for all possible five WBCs types including

Basophil (fig. 1) which has may similar size to the red blood cells. A comparative

results for two addressed methods are shown in fig. 26. As a result, it is obvious that

area-opening does not cover overlapped objects and then it fails to segment white

blood cells.

In another comparative study, authors in [80, 156, 160] proposed using typical
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a b c

Figure 26: Separating WBCs from RBCs: a) Sample slide; b) RBC separated using
this work ; c) Area- Opening [46]

a b c

Figure 27: Separating WBCs from RBCs: a) Low quality sample ; b) WBC separated
using active contour [80, 156, 160]; c) WBC separated using Active contours without
edges [29].

active contour to segment white blood cell boundaries. Active Contour relies too

heavily on presence of obvious gradient edge information. In this case, where because

of a lack of solid white blood cell curve, evolving curves surrounding leukocytes will

are be stopped out of the expected region like edges. Therefore this technique fails

to resolve white blood cell segmentation for all possible conditions (see Fig. 27).

4.3.4 RBC Counting

We applied watershed [131] as an efficient approach which can handle overlapping

cells (fig. 28) to count RBCs. The watershed is based on regions, which classifies

pixels according to their spatial proximity, gradient of gray levels and homogeneity

of textures. The accuracy and efficiency of segmentation over images is directly

related to the previous steps such as they are addressed in image pre - processing

60



and segment closed objects. Performance and feasibility of the computed blood cell

count results are compared with manual counts of RBCs and WBCs (the differences

between the computed counts and the manual counts). Also, a set of different blood

smear test images (see Fig. 2) with a variety of image characteristics were used to show

proposed framework accuracy and robustness for degraded images which are blurry

and/or noisy. In the last four rows (see Table 13), the images have had noise added

to the images to test the robustness of our framework under extreme conditions. The

results are compared with manual counts of the number of RBCs and WBCs, with

the difference between the computed counts and the manual counts indicated by the

numbers in parenthesis. The results show that our approach is closer to the actual

counts, especially in noisy images showing that our denoising techniques lead to better

results. In particular, WBC counts are much more accurate with our framework than

with Di Ruberto et al. [44, 46] and their extended work [224, 225, 226] (a total of 1

miscounted, over-counted, WBC versus 23 for previous studies), while on the other

hand, RBCs are frequently uncounted but to a smaller extent than the typical over-

counts of the other techniques (a total of 80 miscounted RBCs versus 182 for previous

work).

Figure 28: Watershed marker over blood smear image

4.3.5 Binarization & Cell Separation Settings

This section has been divided into two parts. The first part deals with binarization

and then it go on to cell segmentation to count separately.
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Figure 29: Watershed for RBC counting: a) Solid RBCs; b) Watershed markers

Binarization

As for binarization, this research uses combination of Otsu and Niblack (see Sec-

tion. 4.3.1). Niblack is a local threshold that uses a sliding windows with (15 × 15)

and default k. This k is an adjustable parameter to separate pixels that belong to

foreground. The default value is 0.2 for bright objects and −0.2 for dark objects. In

current application as cells are almost darker than background we could use k = −0.2.

Cell Separation

As for cell separation, this work uses combination of techniques namely, Granulom-

etry method, canny scheme and active contours without edges method, in order to

track boundaries. Granulometry uses consecutive morphological openings in which

minimum size is 1 pixel and end-point in this work is arbitrary set at 50. The initial-

ized guess value that could be 2 or 3 times more than this. This value is calibrated

using pattern spectrum outcome. In reality, end point first initialized from a larger

value and then it reduces to a smaller number that we have output in pattern spec-

trum diagram (for example see Fig. 23). In this framework after trial and practice

50 is an appropriate marginal end-point for current dataset. Of course, it is very

obvious larger number just only increase running time and there is no more burden

than increasing computational time. Following cell separation (see Section 4.3.3),

active contours without edges is addressed with following settings (see Table 12)
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Table 9: Summary of normalized cross-correlation (NCC) data for each binarization
algorithm performance in different conditions: (top to bottom) total over 10 regular
images (N0–N9);

10 Normal and regular images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu -0.0094 -0.0111 0 0.9410 ∗ 105 1.0803 -0.1866 0.8937
Bernsen -0.0096 -0.0101 0 1.16 ∗ 105 0.7935 -0.2882 0.5055
Sauvola -0.0111 -0.0150 0 1.53 ∗ 105 0.6727 -0.2754 0.3973
Niblack -0.0111 -0.0143 0 1.468 ∗ 105 0.7328 -0.2654 0.4674

10 moderate Gaussian Noisy images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu -0.0096 -0.0115 0 1.9166 ∗ 105 1.0385 -0.1862 0.8522
Bernsen -0.0098 -0.0107 0 1.1905 ∗ 105 0.7262 -0.2882 0.4379
Sauvola -0.01110 -0.0132 0 1.36 ∗ 105 0.5429 -0.2554 0.2875
Niblack -0.0107 -0.0112 0 1.27 ∗ 105 0.5676 -0.2399 0.3277

10 high Gaussian Noisy images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu -0.0100 -0.0110 0 4.1870 ∗ 105 0.7052 -0.1933 0.5119
Bernsen -0.0106 -0.0117 0 1.2897 ∗ 105 0.6793 -0.2882 0.3911
Sauvola -0.0103 -0.0113 0 1.2073 ∗ 105 0.3996 -0.2263 0.1732
Niblack -0.0102 -0.0110 0 1.1962 ∗ 105 0.3937 -0.2173 0.1764

10 moderate Speckle Noisy images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu -0.0094 -0.0112 0 1.1551 ∗ 105 1.0696 -0.1863 0.8833
Bernsen -0.0093 -0.0097 0 1.1605 ∗ 105 0.7315 -0.2882 0.4433
Sauvola -0.0111 -0.0144 0 1.4113 ∗ 105 0.5226 -0.2704 0.2522
Niblack -0.0107 -0.0124 0 1.2886 ∗ 105 0.5755 -0.2476 0.3279

10 high Speckle Noisy images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu -0.0089 -0.0103 0 0.1483 ∗ 105 0.7766 -0.1630 0.6136
Bernsen -0.0095 -0.0100 0 1.1701 ∗ 105 0.6337 -0.2882 0.3454
Sauvola -0.0103 -0.0115 0 1.2037 ∗ 105 0.3574 -0.2326 0.1248
Niblack -0.0100 -0.0109 0 1.1847 ∗ 105 0.3817 -0.2211 0.1605

10 blurry images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu -0.0093 -0.0109 0 0.8049 ∗ 105 1.0766 -0.1863 0.8902
Bernsen -0.0094 -0.0103 0 1.1626 ∗ 105 0.8632 -0.2882 0.5749
Sauvola -0.0111 -0.0155 0 1.5747 ∗ 105 0.6492 -0.2794 0.3698
Niblack -0.0111 -0.0147 0 1.4936 ∗ 105 0.7084 -0.2683 0.4401
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Table 10: Summary of normalized cross-correlation (NCC) data for each binarization
algorithm performance in different conditions for sample separated WBCs: (top to
bottom) total over 10 regular images (N0–N9); total over 10 moderate Gaussian Noise;
10 images with high Gaussian Noise; total over 10 moderate Speckle Noise; 10 images
with high Speckle Noise; total over 10 regular blurry images (N0–N9)

10 Normal and regular WBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0259 0.0459 0 3.0834 ∗ 105 1.2122 -0.3870 0.8252
Bernsen 0.0262 0.0437 0 0.3987 ∗ 105 1.1234 -0.4192 0.7042
Sauvola 0.0304 0.0390 0 0.5008 ∗ 105 1.0516 -0.4021 0.6495
Niblack 0.0310 0.0383 -0.4320 0.5222 ∗ 105 1.0942 -0.4320 0.6622

10 moderate Gaussian Noisy WBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0269 0.0425 0 2.7136 ∗ 105 1.2061 -0.4053 0.8008
Bernsen 0.0253 0.0424 0.1131 0.4044 ∗ 105 1.0541 -0.3945 0.6596
Sauvola 0.0304 0.0398 0.0318 0.4341 ∗ 105 0.8623 -0.3879 0.4744
Niblack 0.0310 0.0394 0.2240 0.4601 ∗ 105 0.9226 -0.4163 0.5063

10 high Gaussian Noisy WBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0255 0.0345 0 1.5675 ∗ 105 0.9911 -0.3685 0.6226
Bernsen 0.0256 0.0359 0.0062 0.4188 ∗ 105 0.9984 -0.3856 0.6129
Sauvola 0.0300 0.0381 0 0.4072 ∗ 105 0.7184 -0.3628 0.3556
Niblack 0.0300 0.0379 0.1400 0.4104 ∗ 105 0.7240 -0.3587 0.3653

10 moderate Speckle Noisy WBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0274 0.0459 0.0933 2.8116 ∗ 105 1.2477 -0.4250 0.8227
Bernsen 0.0254 0.0424 0 0.3972 ∗ 105 1.0728 -0.4085 0.6643
Sauvola 0.0303 0.0388 0 0.4386 ∗ 105 0.9395 -0.3915 0.5480
Niblack 0.0309 0.0377 0.2034 0.4798 ∗ 105 1.0064 -0.4154 0.5910

10 high Speckle Noisy WBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0243 0.0388 0 1.0496 ∗ 105 1.0946 -0.3688 0.7258
Bernsen 0.0234 0.0361 0.0193 0.3984 ∗ 105 0.9451 -0.3508 0.5944
Sauvola 0.0292 0.0357 0 0.4047 ∗ 105 0.7086 -0.3541 0.3545
Niblack 0.0300 0.0368 0.0045 0.4119 ∗ 105 0.7384 -0.3683 0.3701

10 blurry WBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0250 0.0429 0 2.8675 ∗ 105 1.2130 -0.4147 0.7983
Bernsen 0.0261 0.0438 0 0.3980 ∗ 105 1.0870 -0.4347 0.6523
Sauvola 0.0311 0.0399 0 0.5042 ∗ 105 1.1009 -0.4362 0.6647
Niblack 0.0319 0.0416 0.1646 0.5334 ∗ 105 1.1329 -0.4742 0.6587
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Table 11: Summary of normalized cross-correlation (NCC) data for each binariza-
tion algorithm performance in different conditions for windows sample including few
disjoint close by RBCs: (top to bottom) total over 10 regular images (N0–N9); total
over 10 moderate Gaussian Noise; 10 images with high Gaussian Noise; total over
10 moderate Speckle Noise; 10 images with high Speckle Noise; total over 10 regular
blurry images (N0–N9)

Normal and regular RBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0083 -0.0094 0 886.7119 1.1373 -0.2159 0.9214
Bernsen 0.0111 -0.0029 -0.0283 206.1605 0.9564 -0.2439 0.7125
Sauvola 0.0150 0.0114 0 216.3476 0.9460 -0.2852 0.6608
Niblack 0.0158 0.0153 0 227.5969 0.9023 -0.3206 0.5816

moderate Gaussian Noisy RBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0087 -0.0094 0 774.9890 1.1128 -0.2203 0.8925
Bernsen 0.0124 -0.0007 -0.2535 207.6752 0.9120 -0.2535 0.6585
Sauvola 0.0147 0.0084 0 212.8327 0.8623 -0.2497 0.6126
Niblack 0.0155 0.0112 0 221.0434 0.8402 -0.2777 0.5626

high Gaussian Noisy RBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0127 -0.0010 0 145.6640 0.7748 -0.2112 0.5636
Bernsen 0.0151 0.0057 -0.2599 226.7028 0.6677 -0.2599 0.4078
Sauvola 0.0146 0.0068 0 209.7879 0.6003 -0.2302 0.3701
Niblack 0.0149 0.0091 0 211.5264 0.6039 -0.2403 0.3636

moderate Speckle Noisy RBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0083 -0.0095 -0.0061 879.6408 1.1249 -0.2126 0.9123
Bernsen 0.0111 -0.0032 0 206.1431 0.9394 -0.2420 0.6974
Sauvola 0.0146 0.0091 0 212.3325 0.9249 -0.2798 0.6451
Niblack 0.0156 0.0140 0 223.6009 0.8827 -0.3049 0.5779

high Speckle Noisy RBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0093 -0.0050 0 958.8368 0.8862 -0.1965 0.6896
Bernsen 0.0122 -0.0017 -0.0307 206.7132 0.8003 -0.2375 0.5629
Sauvola 0.0146 0.0054 0 208.1570 0.6578 -0.2358 0.4220
Niblack 0.0149 0.0068 0 210.8861 0.6416 -0.2428 0.3988

blurry RBCs images
Algorithm Mean Median Mode StdDev Range Min Max

Otsu 0.0078 -0.0100 -0.0107 917.8296 1.1215 -0.2050 0.9165
Bernsen 0.0112 -0.0023 -0.0470 206.2240 0.9465 -0.2406 0.7059
Sauvola 0.0151 0.0111 0 218.9666 0.9408 -0.2918 0.6490
Niblack 0.0159 0.0155 0 233.7550 0.8839 -0.3247 0.5592
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Table 12: Boundaries detection: Settings

Active contours without edges
Parameter Value Comment

Mask Small Create a small circular mask to track gradient.
NumIter 1500 Total number of iterations that is a trade-off between

computational complexity and contour accuracy.
Mu 0.1 Weight of length term.

Method Multi phase 2-phase segmentation of the image is applied to detect
both contours with, or without gradient.
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4.4 Comparison of the Proposed Approach to the

State-of-the-Art

Comparative studies on state-of-the-art are divided into binarization and blood cell

segmentation.

4.4.1 Binarization

To date, the blood smear studies are more about global thresholding methods than

local thresholding methods. Published work on blood segmentation [15,44,46,224,225,

226,242] use well-known Otsu global thresholding approach. The existing global Otsu

thresholding value fails to resolve different conditions that exist in blood slide images.

Inconsistent initial conditions may cause an abrupt change in global thresholding

value and the binarization cannot construct a consistent system of foreground and

background separation. Finding a global value as thresholding to separate the image

into two separated regions of blood cells (RBCs in particular) and background (stained

plasma) is not always simple and perhaps not even possible. It may cause false

negative (FN) result in foreground detection (see Table 13). Global thresholding is

with a serious weakness, however, is that much known but also it does not manage

image binarization with nearby background and foreground intensity values range

(see Fig. 19). Closely positioned pairs of particles will be merged into single particles,

regardless of any fine tuning of the value of global thresholding. It is obvious that

merged cells may cause false negative (FN) in RBCs detection (see Fig. 19). Overall,

Otsu is a parameterless method to remove background details such as found in stained

plasma background. However, it is non-adaptive to retain cells as they are foreground.

This work suggests to use combination of global and local thresholding to reach

higher similarities between original and binarized converted images ( see Table. 11).

Merging Otsu and Niblack alleviates built-in problems in presence of adjacent cells

and background variety.

4.4.2 Cell Separation

In an important work Di Ruberto et al. [44,46] and their extended work [224,225,226]

authors addressed classical area opening morphology technique to separate between
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WBCs and RBCs. Authors claimed that white blood cells can be separated by a

morphological erosion with a disk-shaped structuring element whose size is achieved

by the granulometric analysis (RBC size). Despite the simplicity of implementation

and understanding, proposed method suffers from several major drawbacks. First, all

white blood cells are not always bigger than a normal RBC size as Basophil which

is about RBC size (see 4th image in top row in fig. 10). Secondly, overlapping phe-

nomena among cells is also possible and it is a normal incident in blood smear slides.

Therefore, these work findings cannot be extrapolated to all sample slides and these

results therefore need to be interpreted with caution. A generally accepted framework

of cell segmentation is lacking (see Fig. 26). Other work [80, 156, 160] addresses to

use nucleus and its surrounding active contour and level set to separate WBCs in

which generalization of these methods are very questionable in different conditions.

First and foremost weakness backs to regular nature of leukocyte boundaries, lack

of obvious edge for WBCs and low quality in nucleus presentation. In the classical

active contour models an edge-detector is highly used to stop the evolving curve on

the boundary of the desired white blood cell. However, WBC boundaries are not ide-

ally defined by gradient in low quality images and it easily make false segmentation

(see Fig. 27). Secondly, initial contour location is needed and should be close to the

white blood cell that is to be segmented. Authors in [208] proposed fuzzy cellular

neural networks (FCNN) to detect white blood cell. The principal are combination

of fuzzy logic, and neural networks. Neural network uses enough number of different

samples to give optimal generalization and update properties of back-propagation.

This approach is not practical with this limited available dataset, i.e. 28 samples per

each white blood cell class. In practice, having big data is not easy to address in

medical projects.

This research is dealing with blood smear images segmentation using a step-by-

step iterative method. More information is addressed in section 4.3.3. This frame-

work can be extrapolated to all five mature white blood cells including Basophils.

This step-by-step method managed faded white blood cell boundaries in this difficult

dataset with active contours without edges and canny detection on top of that. It

built a closed curve delineating a white blood cell despite of detecting these edges in

other work [80, 156, 160]. It also managed overlapping incident that is common be-

tween RBCs in particular. However, it should be noted that the method and results
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presented here in this work are only applicable for normal microscopic blood images.

This algorithm may fails in presence of abnormal conditions such as Malaria.

4.5 Binarization & Cell Separation Contributions

Another contribution is the procedure developed for obtaining optimum binary im-

ages from mono-chromic channel with inhomogeneous background regions by creating

a merged local and global binarization. This procedure is efficient and promising for

all types of captured blood images with different conditions. This binarization al-

gorithm is an important improvement as the previous work in this field used global

thresholding approaches, i.e. Otsu, that these global findings cannot be extrapolated

to all possible blood smear images (see Section 4.4.1). In addition, the study has

gone some way towards enhancing our understanding of faded boundaries problem

in white blood cell separation (see sub-section 4.3.3 and figure 27). Taken together,

these findings suggest a role for active contours without edges in white blood cell

segmentation for all classes.

4.5.1 Binarization

To date, the blood smear researches are more about on global thresholding methods

rather than local thresholding methods. This work addresses to use combination of

global and local thresholding to reach higher similarities between original and bina-

rized converted images. The missing cells in global approach is enhanced using this

merged technique, for which the local thresholding gives the required foreground as

cells. The method used for this blood smear study may be applied to other histopatho-

logical images also. Comparative study and discussion is found in section 4.4.1 and

figure 19.

4.5.2 Cell Separation

This research is dealing with blood smear images segmentation using a step-by-step

iterative method. White blood cells are localized and segmented with reference to

improved binarization, edge detection, saturation value, RBC size estimation, cir-

cular morphological mask, active contours without edges, and noise removal. More
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information is addressed in section. 4.3.3. This framework can be extrapolated to all

five mature white blood cells including Basophils. This step-by-step method man-

aged faded white blood cell boundaries in this difficult dataset with active contours

without edges and canny detection on top of that. It built a closed curve delineating

a white blood cell despite of detecting these edges in other work [80,156,160]. It also

managed overlapping incident that is common between RBCs in particular.

Comparative studies and discussion is addressed in section 4.4.2. In addition, it

should be noted that the method and results presented here in this work are only

applicable for normal microscopic blood images. This algorithm may fails in presence

of abnormal conditions such as Malaria.
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Chapter 5

Feature Extraction For WBC

Classification

Image feature extraction has been established for years and has been used in many

diverse pattern recognition and image processing fields. However, choosing efficient

features for the detection of white blood cell from pathological images is significant

problem. The main task of the feature extraction is to choose strongest connected

correlated with the recognized classes. The main goal of feature extraction is to

identify the strong features, i.e., the features with high discriminatory power. The

aforementioned features can be grouped into three categories: shape, intensity, and

texture features.

5.1 Problem Statement

This research aims to improve WBC type recognition even in presence of poor quality

or low magnification images (see Fig. 1). In order to distinguish among white blood

cells types, we need to extract features from the WBC sub-images and compute new

features that lead to better separability of classes by classifiers. Features should

be easily computed, robust, insensitive to various distortions and variations in the

images, and rotationally invariant.

Features Combination:

Combining all individual features together allows to compensate error rates and also

it increases their classification reliability to some extent. Features are generated using
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different transformation parameters and also are evaluated to select the set with best

discrimination power.

Features Reduction:

To reduce excessive dimensionality of different features, linear or non-linear combi-

nations of features are applied through projection of the high-dimensional data on

lower dimensional space to optimize the accuracy of classifier and it also reduces

computational cost. To maintain the optimal features and components, non-linear

dimensionality reduction methods under different names and algorithms have been

introduced. They include PCA [96], locally linear embedding (LLE) [196] and graph

embedding [254].

Numerous studies have attempted to explain these feature reduction techniques

However, limited work has been able to draw attention to feature selection algorithms.

In this study, we use feature selection algorithms described in section. 6.

5.2 Literature Review

The literature on automatic leukocyte segmentation and classification involves dif-

ferent descriptors and sub-class classification. Section 2.2.2 reviews the literature

concerning white blood cell in connection with different approaches. These stud-

ies are based on active contour, fuzzy logic, morphological operations and feature

extraction.

5.3 Research & Experimental Results

All invariant features are scaled between 0 and 1 to simplify computational complexity

and have consistent inputs for measurement. As a result the final features vector has

a total of 12104 coefficients for each white blood cell image with 28 × 28 low size.

We use feature vector based on three main group features that it includes different

invariant features such as four main intensity histogram calculations, the set of 11

invariant moments, the relative area, the co-occurrence, run-length matrices, the dual

tree complex wavelet transform, Haralick and Tamura features.
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5.3.1 Intensity Features

The Gray scale intensity values are used to extract efficient features for white blood

cell classification. This work examines the mean (µ), standard deviation (σ), skewness

(γ1), and kurtosis (K) of white blood cells intensities. These features are based only

on the absolute value of the intensity measurements in the segmented white blood

cell images. A histogram describes the occurrence relative frequency of the intensity

values of the pixels in a white blood cell image. The intensity features that we

will consider are the first four central moments of this histogram: Mean, Standard

deviation, Skewness, and Kurtosis [193]. The mean (µ) gives an estimate of the

average intensity level in the region of the cell and the standard deviation (σ) is

a measure of the dispersion of intensity. Skewness (γ1) is a measure of histogram

symmetry while kurtosis (K) is a measure of the tail of the histogram. Intensity

features may prove inadequate for specially low quality white blood cell data set. For

this dataset, other features such as the shape, and texture features may be useful for

improved white blood cell classification.

5.3.2 Shape Features

In image processing and pattern recognition, two types of shape descriptors are

used:contour-based and region-based. The former provides the objects external border

information where they ignore the shape of the interior content. The latter considers

both boundary and the interior of the digital shape.

Several studies investigating contour-based descriptors have been carried out on

different algorithm names. Examples to contour-based shape descriptors includes

chain code algorithm which is the first approach for representing connected external

curves [61]. Other option is Fourier descriptors which exploit shape signatures in

Fourier coefficients. It represents shape in a frequency domain [68,100,171].

The object boundary contours can be also extracted through curvature scale

space [145, 146]. B-spline curve approximation is sum of pixels under a given cri-

terion which optimally approximates the original object curve [70]. Polygon decom-

position is a structural shape representation where boundaries are first sub-divided

into line segments by polygon approximation [169, 202]. Furthermore, a number of

other investigations into the contour-based shape descriptors are also addressed such

as perimeter, compactness (perimeter2

area
), eccentricity (a measure of aspect ratio; length
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of major axis to minor axis), Hausdoff distance (a measure of similarity) [53], and

autoregressive (estimate the image model by prior knowledge) [52].

All these mentioned contour-based descriptors reviewed so far cannot represent

ideally white blood cell shapes for which the complete and continuous boundary

information is not ideally available with granular and non-uniform borders.

Also, questions have been raised about the validity and reliability under the con-

straints of translation, rotation and uniform-scaling invariance properties. Region-

based shape descriptors derive benefit from both boundaries and interior pixels and

that is why it would be an appropriate candidate for white blood cell detection at

low resolution.

Invariant Moment-based Features

In reviewing the literature, the current study found that among different various shape

features are often named, invariant moment as a region-based calculation which can

provide invariant characteristics under different conditions are likely occur. Although

moment algorithms and theory have been well established in mathematics, far too

little attention has been paid to use of invariant moment in computer-aided diagnosis

(CAD) in medical imaging and for blood smear analysis in particular. This research

has given an account the reasons for the widespread use of (11) different invariant

moments (are listed below) over white blood cells images with 28× 28 pixel size.

The Hu set of Invariant Moments:

In the decade 60, a set of seven invariant moments was given by Hu [91, 151].

Shape feature variables computed from normalized centralized non-orthogonal mo-

ments up to order three. Hu set moments are one of the most widely used groups

of invariant moments and have been extensively used for decades in pattern recog-

nition. However, a major problem with this application is information redundancy.

Mathematical terms are defined in [91,151].

These Hu set invariant moments (IM) are invariant to shape changes in rotation,

scaling and translation. It can be used for disjoint objects as well such as granular

white blood cell cytoplasm (non-continuous and discrete borders), 3-4 lobed nucleus

Eosinophil, bilobed nucleus Basophil, partially two lobes Lymphocyte; which are

available in joint or disjoint form and appearance in normal white blood cells. How-

ever, it should be noted that higher-order Hu set moments are sensitive to noise and
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they suffer from information redundancy.

The Orthogonal Polynomials Moments:

Discrete orthogonal moments (OM) are approaches to lessen information redun-

dancy drawback and shortcomings. Our work will review the research conducted on

the following orthogonal polynomials moments. In reviewing the literature, authors

carried out a number of investigations into using the following invariant moment in

pattern recognition. However, very little was found in the literature on the question

of using moment in medical imaging. Zernike [128], Generalized Pseudo-Zernike [250],

Fourier-Chebyshev [172], Fourier-Mellin [207], Radial Harmonic Fourier [187], Dual

Hahn which are a complex set of Tchebichef and Krawtchouk moments [108], Discrete

Chebyshev [150], Krawtchouk [256], Gegenbauer [89], Legendre [62, 261] are orthog-

onal moments investigated in our research. A brief comparative study of invariant

moment approaches is summarized in table 14.

Brief review of invariant orthogonal moments in image processing: This section re-

views the literature concerning the usefulness of using moment concepts in pattern

recognition. This review has been divided into eleven parts. The first part deals with

already published work in Zernike moment and then it looks at how other consecutive

ten moments are addressed in literature review.

In recent years, several studies investigating Zernike orthogonal moment have been

carried out on blood smear images. In 2006, Asadi et al. published a paper [9] in which

they described Zernike moments in correspondence with leukemia cell classification.

In 2011, Apostolopoulos et al. [6] pointed to some of the ways in which actual RBC

sizes is estimated using Zernike feature sets with repetition degree n = 6 and different

polynomial orders. In addition, in 2013, Das and co workers [39] demonstrated that

Zernike features propose shape-based red blood cells characterization in anaemia.

In the second part, to date several studies have produced estimates of Pseudo-

Zernike and Generalized Pseudo-Zernike, but there is still insufficient data for medical

images. In preliminary work on Pseudo-Zernike and Generalized Pseudo-Zernike mo-

ments, different authors have measured these moments in a variety of face recognition

methods. In 2003, Haddadnia et al. [79] published a paper in which they described

the effect of orders of Pseudo-Zernike moment invariant to recognize human faces
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with Radial Basis Function neural network. Three years later, Pang et al. [257] inves-

tigated the impact of Pseudo-Zernike moments to improve Fishers linear discriminant

functionality where both, Pseudo-Zernike moments and Fishers linear discriminant

are applied in sequence to derive a lower-dimensional feature vector to maximize the

between class scatter, while minimizing the within-class scatter. The results demon-

strated that this combination is an efficient way when there are inadequate samples in

face recognition task. In 2008, Nabatchian et al. [153] reported face recognition in con-

nection with Pseudo-Zernike moment invariant and different known k-nearest neigh-

bours (kNN), Support vector machine (SVM), and hidden Markov model (HMM)

classifiers for FERET face database. This dataset consists of 14051 grayscale face

images from 1209 people with different conditions in illuminations, and facial expres-

sions. In 2009, Rajwa et al. [180] pointed to some of the ways in which different

bio-particle types including Listeria, Salmonella, Vibrio, Staphylococcus, and E. coli

were classified using results obtained from pseudo-Zernike moments and classification

was done using support vector machines (SVM), Fisher linear discriminant (FLD)

and Bayesian maximum likelihood classifier (ML).

Rajwa and co-authors also performed a similar series of experiments in their own

work to prove that bio-particles classification accuracy and efficiency [181,182].

Few studies investigating Generalized Pseudo-Zernike orthogonal moment have

been carried out on image recognition. The research to date has tended to focus

on Pseudo-Zernike rather than Generalized Pseudo-Zernike. Analysis of General-

ized Pseudo-Zernike involved in face recognition was first carried out by Herman et

al. [87] in 2009. Authors proposed feature extraction based on Generalized Pseudo-

Zernike moment and then their framework was evaluated using radial basis function

neural network (RBF-NN) Classifier in which results showed that the Generalized

Pseudo-Zernike is superior to Zernike and Pseudo-Zernike moments. There are ar-

ticles [33, 209] which are survey work on Generalized Pseudo-Zernike moment and

other orthogonal moments in medical imaging application. However, using General-

ized Pseudo-Zernike moment and other alternative options still remain marginal in

medical pattern recognition tasks.

In the third review, to date there has been some published work on using Legendre

moment in pattern recognition terms and medical imaging. Preliminary known work

on Legendre moment was undertaken by Bailey et al. [12] which provides in-depth
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analysis of using Legendre moment showing its efficiency for handwritten Arabic

numerals. The study in 2011 [229] was to evaluate and validate noise robustness of

Legendre moments on medical X-Ray Images.

After that, various pieces of research using Radial Tchebichef moment in image

processing and pattern recognition are addressed. The study in 2013 [137] was to

compare and validate texture classification using discrete Tchebichef moments con-

ducted on three known databases: Brodatz, Outex, and VisTex. Discrete orthogonal

Tchebichef moments with combination of Fisher linear discriminant (FLD) analysis

are used as a face recognition method [230]. The study in [166] was to investigate

the performance of six orthogonal moments including Tchebichef moments in brain

and knee reconstruction for images captured under different views. In a comparative

study [92], an approach for the detection of global image modifications based on a set

of Tchebichef moments features in connection with different medical imaging (MRI,

X-Ray) was introduced.

Afterwards, several attempts have been made to use Krawtchouk moment in char-

acterizing image shapes for computer vision and medical image analysis applications.

Bing Hu et al. in 2013 [90] have recently developed a methodology for Chinese char-

acter recognition using Krawtchouk moment. Classification of benign and malign

masses in mammograms is followed using Zernike and Krawtchouk moments by a

k-nearest neighbour strategy where the results showed that Krawtchouk reached an

accuracy rate of 90.2% compared to 81% for Zernike moments [154]. A comparative

study of moments including Legendre, Zernike, Tchebichef and Krawtchouk for CT

liver tumor scan and prostate ultrasound image analysis is addressed in [248]. The ex-

perimental have shown that high performance can be achieved by using Krawtchouk

in comparison to other alternative approaches.

To date, there has been very little published work on using Fourier-Chebyshev

moment in pattern recognition terms. In 2002, Ping and his co-workers published a

paper [172] in which they described 26 English alphabet letters image reconstruction

using invariant Fourier-Chebyshev moment. Authors also conducted a series of trials

to assess sensitivity to noise robustness with using Fourier-Chebyshev in comparison

to performance of the FourierMellin moments. In reviewing the literature, no data

was on the question of using Fourier-Chebyshev in medical image processing.
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Some studies have attempted to explain the Fourier-Mellin moment pattern recog-

nition applications. Singh et al. (2001) [227] in analysis of face and non face binary

classification, have attempted to draw attention to usefulness of Fourier-Mellin mo-

ment with support vector machine to categorize all inputs into two face or non-face

classes. To achieve promising digital image edge location accuracy, Bin et al. exam-

ined Fourier-Mellin moments with different orders and degrees to detect the image

edges [19]. In Liu et al. work (2011) [132], Fourier-Mellin moment has been applied

to blurred color fish images to evaluate the efficiency and invariance performance of

the Fourier-Mellin moments for deformed gray scale images with respect to different

blurring distortions and additive noise levels. Wang et al. (2013) [243] have recently

developed a methodology for the selective introduction of mechanics to avoid redun-

dant data in full-field measurements such as image decomposition and reconstruction.

In spite of appropriate local and global characteristics of Fourier-Mellin polynomials,

previous studies of pattern recognition using Fourier-Mellin polynomials have not

dealt with medical imaging and computer aided diagnosis (CAD) framework and this

is the motivation for this work.

Although Gegenbauer polynomials have appropriate local and global built-in char-

acteristics, few studies exist which adequately cover different image processing appli-

cations. Liao et al. (2002) [130] analysed Chinese characters and concluded that,

in presence of much large and difficult Chinese characters with high similarity levels

in shape, two different characters are effectively distinguished by lower orders of (α)

invariant Gegenbauer moment. This work conducted a series of 6763 Chinese charac-

ters, saved in 24×24 pixels with the font of Song, as the testing images. Archibald et

al. (2003-2004) [7,8] reviewed the literature concerning the usefulness of Gegenbauer

image reconstruction method to improve the quality of segmentation in magnetic

resonance imaging (MRI). So far, there has been little discussion about Gegenbauer

moment implementation in medical pattern recognition terms and further research

should be done to investigate.

Furthermore, Ren et al. (2003) [187] reviewed the research conducted on recon-

structed images of the English letters with 64 Radial Harmonic Fourier moments with

different orders and with repetition factor (n = 8). Ren et al. [185] performed a simi-

lar series of experiments in 2007. It begins by laying out the theoretical aspects of the
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Radial Harmonic Fourier moment, and then it looks at how to investigate and com-

pare the properties of Radial Harmonic Fourier moment and Fourier-Mellin moment

in detection of a set of gray-scale four Chinese characters with real noises. both Ra-

dial Harmonic Fourier moment and Fourier-Mellin moment generally have the same

Fourier factor in angle direction (exp(ȷnθ)). However, the radial functions are differ-

ent. Singh et al.(2013) [211] reviewed recent research on the efficient water marking

scheme using Radial Harmonic Fourier moments. The proposed image watermark is

performed using Radial Harmonic Fourier moment magnitudes to minimize the added

host image spatial distortion.

In addition, very little research has been found that surveyed with Radial-Harmonic-

Fourier moments in medical imaging. Again, Ren et al. (2003) [186] gave an account

of Radial-Harmonic-Fourier moments in the recognition of cell smear images. This

Radial-Harmonic-Fourier moment makes several noteworthy contributions to image

analysis and further investigation and experimentation into medical image processing

is strongly recommended.

Following to literature review, this work reviewed the literature from the period

and found little evidence emerged for the role of Hahn or Dual Hahn moments in

image processing and pattern recognition. However, no attention has been paid to

medical imaging recognition. Ahmad et al. (2009) [2] studied the effects of Hahn

moment on image watermarking techniques. Their work was about to design an

effective and robust watermarking system that could lessen geometric-distortions as

well as different common watermark attacks. Ananth et al. (2012) [5] conducted a se-

ries of YALE and FERET human face database in which he examined the Dual Hahn

moment, Racah moment and Tchebicef moment with different available face condi-

tions expressed facial expressions, lighting conditions. Ananth Raj (2013) [179] used

discrete Dual Hahn moment to develop a contrast enhancement system in presence of

monochrome and color images. To compare performance evaluation of enhancement

techniques; three index; image entropy, coefficient information content and univer-

sal quality index were calculated where the results were extracted using Dual Hahn,

Kratchouk, Tchebichef moments and Alpha rooting.

Consequently, after reviewing the literature, several studies [8, 9, 12, 19, 33, 39, 79,

90, 92, 132, 137, 172, 182, 185, 187, 209, 211, 248] have produced estimates of invariant
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orthogonal moments in pattern recognition but there is still insufficient data for med-

ical imaging. This lack of a comprehensive study in medical imaging has existed for

years.

To date, it is apparent that very few works on blood smear detection use Zernike

[39] and Radial Harmonic Fourier [186] moments. This study sets out with the aim

of assessing the importance of invariant moment features in white blood cell classi-

fication in presence of very low quality dataset. Further data collection is required

to determine exactly how invariant moments affects feature extraction in microscopic

blood smear images.

Zernike Moment: Zernike moments [127] are given in the polar coordinates;

magnitude and phase. Rotating a digital image would not change the magnitude. Due

to this property, the magnitude of Zernike moments has been used as a shape feature

in image processing applications. It can be observed that accuracy and performance

rate would be improved significantly when the order (m) increases as it expected.

Generalized Pseudo-Zernike Moment: Generalized Pseudo-Zernike polyno-

mials [249, 250] are an expansion of the conventional pseudo-Zernike polynomials

where basis function is also along with a free α ≥ 1 parameter to adjust zero points

of real-valued radial polynomial.

Legendre Moment: This moment provides scale and translation invariant char-

acteristics and it could cover different angle capturing as well. Furthermore, we can

observe significant performance in analyzing small size images using Legendre mo-

ment [62,261,264].

Discrete Krawtchouk Moment: Studies addressed, in this work, so far suffer

from the fact that the Legendre and Zernik approaches fail to take digitalization error

into account. When the order (m) of the moments increases, this digitalization error

apparently occurs. Subsequently, this change makes a decrease in the exactness of

the computed components moments. Oh the other hand, Krawtchouk moment [256]

does not need a discretization because it is based on discrete Krawtchouk polyno-

mials. Following that, Krawtchouk moment has recursive and symmetry properties.

These properties lead to ease the computational cost [256]. kp1 and kp2 are varying

parameters associated with the Krawtchouk polynomials to extract local properties.

Radial Tchebichef Moment: Radial Tchebichef moment brings invariance and
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orthogonality characteristics. In this term, kernel is defined using Tchebichef polyno-

mials with radial-polar coordinate like to Zernike moments [149]. In general, radial

moments provide rotational invariance by considering only magnitude and ignoring

phase component.

Fourier-Chebyshev Moment: This combined set is based on the Fourier trans-

form and Chebyshev polynomials in a given orthogonal moment function. It brings

appropriative properties such as symmetry property, recurrence relation that can

be effectively used in image analysis, image reconstruction and computing efficiency

[124,172].

Fourier-Mellin Moment: This defined radial polynomials [207, 212, 244] bring

more zeros in the region of small radial distance and as a result it leads to present

small images in better representation.

Gegenbauer Moment: Gegenbauer (Gn(x;α)) or ultra-spherical polynomials

represent a large and growing body of orthogonal polynomials with a scaling factor

(α > −0.5) adjustment [89]. The most obvious finding [89] to emerge from this ultra-

spherical polynomials is that a global characteristic is determined with a small (α)

whereas local image features with large value of (α) is extracted. In this work, the

evidence from granular, complex and disjoint white blood cell membrane suggests

that a Gegenbauer moment implementation with low value of (α) should be carried

out on dataset to preserve global white blood cell information.

Radial Harmonic Fourier Moment: Initially, it is based on a polar coordinate

function, radial polynomial and Fourier transform. This method profits combination

of Mellin transfer order, and Fourier transfer. Therefore, Radial Harmonic Fourier

moment is rotational, scaling and intensity distortion invariant [187].

Discrete Dual Hahn Moment: Dual Hahn polynomials [266] bring minimal

information redundancy. In addition, discrete structure provides numerical stabil-

ity and it does not need for continuous to discrete numerical approximation. Dual

Hahn polynomials provide properties such as recurrence relation, symmetry, scale

and rotation invariant to facilitate the computation of moments. In general, the dual

Hahn polynomials are a set of orthogonal polynomials with more adjustable param-

eters (α1 ≥ 0, α2 > −1) than Tchebichef and Krawtchouk moments to provide more

flexibility in describing the digital image.
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Relative shape measurements vector:

In addition, relative area (Ar), is also considered in white blood cells classification in

our study. Shape feature vector includes invariant orthogonal moments and relative

area for each white blood cell image.

As a result, and after relevant and redundant feature analysis (see Section 5.6) this

suggests that moment implementation provides 332−36 = 296 features corresponding

to 11 − 1 = 10 different invariant moment approaches (all approaches listed above

excluding Legendre). In conclusion, the final shape feature vector consists of 297

feature coefficients for each white blood cell sample, composed of (296) invariant

moment coefficients and (1) measure for Ar.

5.3.3 Texture Features

The following features aim to quantify the overall local density variability inside the

object. It is often difficult to visualize textural features and associate feature values

with the appearance of cells.

The vector includes features associated with the Laplace transform, gradient-

based, flat texture features [193], and also co-occurrence matrix [82] which is defined

over a white blood cell image to be the distribution of co-occurring values at a given

offset. Various combinations of the matrix are taken to generate features called Har-

alick features [82] (namely, the angular second moment, contrast, correlation, sum

of squares: variance, inverse difference moment, energy, and entropy). Afterwards,

six parameters approximating visual perception is used based on the Tamura fea-

ture [222]. In addition, run-length is an another texture coarseness measurement at

typical directions such as 0, 45, 90, and 135 degrees [223]. 11 features for a given

gray-level for each individual white blood cell image are extracted. Dual-tree com-

plex wavelet is also examined in this research. It calculates coefficients along rows

and columns, and in six directions and angles at each individual pixel.

The setting, details and proposed framework using these textural features are ad-

dressed as follows. This section creates a high dimensional feature vector . These

features include gradient transformation features (▽f(x, y) = (∂f(x,y)
∂x

, ∂f(x,y)
∂y

)), lapla-

cian transformation features (▽2f(x, y) = ∂2f(x,y)
∂x2 + ∂2f(x,y)

∂y2
), flat texture features, and

also co-occurrence matrix [82] which is defined over an white blood cell image to be

the distribution of co-occurring values at a given offset. Let n×m be the size of the
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input image I. Also, let (△x,△y) be the parameters of an offset. Mathematically, a

primary co-occurrence matrix definition is given by:

C△x,△y(i, j) =
n∑

x=1

m∑
y=1

{
1 ; if I(x, y) = i & I(x+△x, y +△y) = j

0 otherwise
.

Each entry is therefore considered to be the probability that a pixel with value i will be

found adjacent to a pixel of value j. It estimates the probability that pixel I(k, l) has

intensity i and a pixel I(m,n) has intensity j. Various combinations of the matrix are

taken to generate features called Haralick features [82] (namely, the angular second

moment, contrast, correlation, sum of squares: variance, inverse difference moment,

energy, and entropy).

Afterwards, six parameters approximating visual perception is used based on the

Tamura feature [222]. Tamura textural features include namely, coarseness (coarse

versus fine), contrast (high versus low), directionality (directional versus non-directional),

linelikeness (line-like versus blob-like), regularity (regular versus irregular), and rough-

ness (rough vs. smooth). In addition, run-length [223] is an another texture coarse-

ness measurement in specified directions. Run is a series of consecutive pixels which

have the same intensity along with a specific direction. The dimension of run-length

matrix is M by N , where M is the number of gray levels and N is the maximum run

length at typical directions such as 0, 45, 90, and 135 degrees [223]. 11 features such

as short run emphasis (SRE), long run emphasis (LRE), gray-level non-uniformity

(GLN), run length non-uniformity (RLN), run percentage (RP), low gray-level run

emphasis (LGRE), high gray-level run emphasis (HGRE), and some other ones are

consequently extracted from run-length matrices R(ı, ȷ). For a given gray-level, in-

dividual white blood cell image, a run-length matrix R(ı, ȷ) quantifies the coarseness

of a white blood cell texture at 0, 45, 90, and 135 degrees defined as the number of

runs with pixels of gray level ı and run length ȷ. Further explanations and medical

imaging application on run-length features are also addressed in various articles such

as [103,188,232].

Initially, in this work gradient and laplacian transformation, flat texture with

r = 0, seven Haralick features, three Tamura features i.e., coarseness, contrast, and

directionality, eleven run length statistics and dual tree complex wavelet transform

in six directions are considered.
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Dual-Tree Complex Wavelet Transform (DT-CWT)

Wavelet transform analysis provides well-organized tools for capturing local image

structure and details, with powerful analysis performance and multi-resolution prop-

erties, which is suitable for image analysis although it has several inherent drawbacks.

The wavelet transform has four unsolved structural problems [203]: Oscillations (the

coefficients tend to oscillate positive and negative around singular points, thus wavelet

coefficient value tends to be exaggerated), Shift variance (a minor shift and rotation of

the signal leads to significant variations in the distribution of energy between wavelet

coefficients at different scales), Aliasing (since coefficients are quite extensive and

are computed via down-sampling with non-ideal low-pass and high-pass filters which

tends to alias the signals between one another and make them not to be identified as

different or distinct), and Lack of directionality (lack of directional selectivity particu-

larly makes difficult the analysis of geometric image features such as ridges and edges).

To overcome these four weaknesses Dual-Tree Complex Wavelet Transform [105,203]

were introduced. The dual-tree wavelet was introduced as an extended and enhanced

version of the typical discrete wavelet tree (DWT), with additive properties, shift in-

variance and directional selectivity in two and higher dimensions. DT-CWT is faster

compared with the traditional template matching method [237] and also overcomes

using wavelet thresholding [28] by having freedom degrees in variance and directional

selectivity.

In practice, DT-CWT combines two digital wavelet transforms, using even and

odd wavelets to provide complex coefficients. Each tree (α,β) contains purely real

filters, whereby the two trees produce the real and imaginary parts respectively of

each complex wavelet coefficients. For the tree (α,β) we need low pass filters with

group delays which differ by half a sample period. The Q-shift (quarter shift) filter

attains required group delays (see Fig. 30). This leads to low aliasing energy and

also good shift invariance. The DT-CWT analysis is applied in 1 − D, along rows

and columns, and six oriented 2−D complex wavelets are constructed from different

combinations of the outputs.

The outcome of the DT-CWT is thus a set of complex coefficients as a suffi-

ciently rich representation of local structure at each pixel for six different orientations

(sub-bands) ± π
12
,±π

4
,±5π

12
, and for each of a number of scales by factor 2. For our

segmented cell images, DT-CWT is applied at 6 scales, the number of levels of wavelet
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decomposition and 14-tap Q-shift [105,203] filters to white blood cell images, with 6

scales (14∗14, 7∗7, 4∗4, 2∗2, 1∗1, 1∗1) × 6 sub-bands (± π
12
,±π

4
,±5π

12
) × 2 magnitude,

phase components for each 28×28 sample (low magnified images). Regarding using

the information in the feature vectors for SVM classification (see Section 7), the

complex values (real and imaginary) are converted to polar form (magnitude, phase)

to place alternating values into the feature vector (magnitude1, phase1, magnitude2,

phase2 and so on) give the best results in classifier.

Figure 30: Q-shift DT-CWT [104], giving real and imaginary parts of complex coeffi-
cients from two trees(α,β). The approximate delay for each filter is shown by brackets
in figures, where q = 1/4 sample period.

Taken together, these textural features indicates a total of 11019 feature coeffi-

cients for each white blood cell sample saved in 28× 28. This textural feature vector

may be divided into sevens aforementioned sub-groups and categories. The first part

deals with Gradient, Laplacian and flat texture features with 784 items for each of

them respectively. Then it will then go on to Haralick vector and also Tamura textu-

ral features with 13 and 6 elements respectively. Finally Gray-level run length matrix

in four orientations (0, 45, 90, and 135) provides 6296 coefficients where DT-CWT

gives a total of 2352 features for each 28×28 sample.
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5.3.4 Feature Extraction Settings

This section examines feature extraction settings. As for feature extraction, this

project examines three main different invariant feature sets (see Section 5.3). First, all

segmented white blood cells are resized to 28 × 28 to simulate a low resolution image.

Intensity features do not require parameters setting (see Section 5.3.1). However, with

reference to shape and texture features, parametrization and their own settings are

addressed as follow.

Shape Features

Hu set moments (see Section 5.3.2) are based on central moments of order up to

3. Hu set is calculated with different combination of order and repetition up to

3 (0, 1, 2, 3). It doesn’t require any settings. In invariant orthogonal moment

definition (see Section 5.3.2), low order captures general shape information and high

order moment gradually maintains high frequency information representing detail of

a given blood image. In this framework for all moments order and repetition are set

to be (5, 5). Next, most of these named invariant orthogonal moments do not require

initial settings. However, required parameters are set as it can be seen at following

table 15.

Table 15: Orthogonal Invariant Moments: Setting

GP-Zernike, Krawtchouk, Dual Hahn, Gegenbauer
Moment Parameter Value Comment

GP-Zernike α 1 A varying parameter that to adjust zero point to main-
tain details.

Krawtchouk kp1, kp2 0.75 Varying parameters to extract local properties (Max =
1).

Dual Hahn α1, α2 0.5 Varying parameters to extract local properties (Min=
0).

Gegenbauer α −0.5 A varying parameter to preserve global characters.

Texture Features

Textural features are covered in section 5.3.3. Most of these named invariant features

do not require initial settings. Run-length, Flat texture and Dual Tree Complex

Wavelet Transform (DT-CWT) require initial settings as follow.
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Run-length [103,188,232] as a texture coarseness measurement is applied at typical

directions such as 0, 45, 90, and 135 degrees. Next, flat texture [193] is applied with

r = 0 where r is the arbitrary window size of the median filter. Finally, For our

segmented cell images, DT-CWT [105, 203] is applied at 6 scales, the number of

levels of wavelet decomposition and 14-tap Q-shift filters to image samples, and in

6 directions. It also should be noted that wavelet complex coefficients are converted

into magnitude, phase components for each 28×28 sample (low magnified images) to

set in a feature vector.

5.4 Advantages of Features

This section reviews briefly the usefulness of the aforementioned features in white

blood cell classification. Each feature alone has certain important benefits for white

blood cell detection. This study uses a combination of features, selected based on

specific criteria, as depicted in table(see Table 21).

Intensity Histogram Features:

This measure describes globally the color change in a given white blood cell sample.

However, for the purpose of white blood cell detection, such findings are not always

sufficiently reliable to be extrapolated to all datasets. In addition, it was found that,

with low quality, or degraded images, results were not very encouraging (see Tables

24, 23).

Hu set of Invariant Moments:

These coefficients are invariant to shape changes in rotation, scaling and translation.

However, higher-order Hu set moments are sensitive to noise and they also include

redundant information.

Orthogonal Invariant Moment:

They are invariant in rotation, scaling and translation and they provide minimal infor-

mation redundancy. Some of these, like Dual Hahn, Fourier-Mellin, Radial Harmonic
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Fourier and Fourier Chebyshev are adequate for extraction of local details with their

own varying parameters (see Tables 14, 21).

Haralick Features:

It is based on a probability that a given pixel a has value of i while simultaneously

an adjacent pixel b has value of j. Thirteen features were extracted by Haralick

from the Gray-Level Co-Occurrence Matrix (GLCM). This provides a general view

of the distribution of co-occurring values in a given white blood cell. It represents a

statistical approach, which characterizes the amount of spread with regard to intensity

values in adjacent pixels. The colour feature alone is not enough to interpret a

small white blood cell image. However, the combination described provides a global

attribute with local information.

Dual Tree Complex Wavelet Transform:

It provides a local, invariant rich characterization, by using a dual tree of wavelet

filters along the rows and columns, and in six directions and angles at each individual

pixel. It brings non-redundant information, and it also overcomes the four major

weaknesses typical of Wavelet Transform.

Gray Level Run Length:

It is a coarseness measurement. Run detects a series of consecutive pixels which have

the same intensity along the typical directions such as 0, 45, 90, and 135 degrees.

Intensity histogram lacks detailed information. However, Run is a measure that can

be used to distinguish images with different local appearances, even though they have

similar histograms. It can efficiently describe the colors, directions and geometrical

shapes of the white blood cells in an image. Eleven features were extracted by Run

calculation.

Tamura Features:

It is a series of features that correspond to human visual perception. This is the great

advantage of the Tamura features. Six features were extracted by Tamura concept. It
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should be noted that the first three features: coarseness, contrast, and directionality,

which depict a white blood cell sample in accordance with visual perception, are

particularly important.

Gradient Feature:

It is a measure to describe the directional change of gray intensity values in a given

white blood cell image. Gradient feature is robust to lighting and camera changes. It

is a characteristic appropriate for WBC detection, of which this work takes advantage.

Laplacian Feature:

The Laplace transformation is a means to establish borders and boundaries of white

blood cells, via zero sum of the second partial derivatives. Essentially, this feature

examines the velocity of gradient changes in a given white blood cell, since a white

blood cell lacks strong edges and boundaries. Thus, a link between these features and

white blood cell detection is weak.

Flat Texture:

It represents the smoothing difference between the original white blood cell and a

median filtered image. The average value of a flat texture image describes the unbal-

ance in light and dark pixel distributions. The degree of smoothness is calculated by

varying the arbitrary parameter (r) as a multiple of the median calculated.

5.5 Comparison of the Proposed Approach to State-

of-the-Art

This section focuses on comparative studies on state-of-the-art feature extraction and

white blood cell detection. Authors in [160] used a feature set composed of shape

and color texture based features. The feature set are area of cell and nucleus, ratio

of nucleus area and perimeter length over cell, compactness and boundary, energy of

nucleus, and also from second and third-order central moments. As mentioned before,

varying capturing angles and different magnification cause non reliable variant cell
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appearance in correspondence with area, perimeters and roundness or other similar

measures like these. Also, second and third-order central moments as Hu set mo-

ments are also so sensitive to noise and it is with redundant information. Thus their

performance depends on their own dataset and the generalizability of this published

research is problematic.

Authors in [34] used chromatic feature sets that are very questionable in different

conditions (see Table 24). Authors in [213] examined shape features such as eccen-

tricity of the nucleus and cytoplasm contours, compactness of the nucleus, area-ratio

and the number of nucleus lobes. This article also used texture features such as gray-

level co-occurrence matrix(GLCM) and auto-correlation matrix to detect cells. The

key problem with this explanation is that separation nucleus and cytoplasm in low

resolution images is not easy as well as cytoplasm contours and number of nucleus

lobes is very problematic in different possible adverse conditions. However, gray-level

co-occurrence matrix(GLCM) provides several invariant statistics about the texture

of a white blood cell image that it brings appropriate characteristics even in low

resolution images (see Section. 5.3.3).

Authors in [183] used a 18 color, 8 shape dimensional feature vector and sup-

port vector machine (SVM). With reference to color characteristic, authors used

mean, standard deviation, and skewness calculation separately for hue, saturation,

and luminance. Furthermore, authors examined contour-based descriptors such as

convexity, perimeter, principal axis ratio, compactness, circular and elliptic variance.

All these contour-based descriptors reviewed so far cannot represent ideally white

blood cell shapes for which the complete and continuous boundary information is not

ideally available with granular and non-uniform borders. However, mean, standard

deviation, and skewness gives appropriate characteristic even in low quality image.

Authors in [228] used four white blood cell nucleus features. These features are

first and second Granulometric moments [200], area of the nucleus and the location of

its pattern spectrum’s peak. It is found that all these four shape features applied on

segmented nucleus where this segmentation is not very easy in all possible low quality

images. In addition, to obtain granulometric moments different structure elements

should be used to analyze morphological characteristics of white blood cell nucleus

where these settings are not reliable in presence of irregular messy nucleus shapes.

Furthermore, granulometric operation is sensitive to noise and false calculation will

92



be addressed in moment results.

Authors in [106] used 12 ensemble features such as shape, intensity, and texture

features with 71 dimensions. These features as shape descriptors are; area, perimeter,

eccentricity, first and second invariant moment, the number of nuclei. For the intensity

feature; average and standard deviation of each nucleus and lastly, for the texture

feature, 59 LBPs (local binary patterns) are used. This argument relies too heavily

on qualitative analysis of blood slides and the existing accounts fail to resolve cell

discrimination with different quality.

Authors in [189] used feature vector which was made of nucleus and cytoplasm

area, nucleus perimeter, number of separated parts of nucleus, mean, variance of nu-

cleus and cytoplasm boundaries, co-occurrence matrix and also local binary patterns

(LBP) measures. In a broadly speaking, questions have been raised about the nucleus

and cytoplasm area, nucleus perimeter, number of separated parts of nucleus and cy-

toplasm boundaries. However, co-occurrence matrix and also local binary patterns

(LBP) measures are appropriate candidates in different dataset.

Authors in [38] proposed a white blood cell classification with 19 features evaluated

for the nucleus and cytoplasm. These features are such as area, perimeter, convex

area, solidity, orientation, eccentricity, circularity, ratio of nucleus area to area of white

blood cell, entropy of the cytoplasm, and mean gray-level intensity of the cytoplasm.

Almost the same feature extraction strategy is addressed in other work [51] with

reference to geometrical shape features such as area, solidity, eccentricity, the area of

convex part of the nucleus and perimeter. As a result, in a low quality image using

these named shape features is questionable and the generalizability of only these

features on this issue is problematic.

Overall, the difficulties in detection and classification are further aggravated by

the fact that there is no definitive procedure exactly prescribing what features should

be generated, or what features should be used in each specific case. Previous work

as mentioned in detail used features that they are not always invariant and can be

changed in different conditions and resolutions. Shape features such as area, perimeter

and so on rely heavily on their own data set and of course these findings cannot be

extrapolated to all possible dataset. Previous researches did not investigate benefits

of local data preserving techniques such as dual-tree complex wavelet transform, Run

length and invariant orthogonal moments such as Fourier-Mellin, Radial Harmonic
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Fourier, Dual Hahn.

In reality, this work suggests some proper invariant features that maintain local

information even in presence of low quality images where internal details are not

easy to distinguish. These features can be named as orthogonal invariant moments

(i.e, Radial Harmonic Fourier, Dual Hahn, Fourier- Mellin), DT-CWT (Dual-Tree

Complex Wavelet Transform), run length and Tamura features. Experimental results

prove that these named invariant features bring benefits in presence of low quality

imaged.

5.6 Relevant and Redundant Features

In this section we obtain a set of relevant and least redundant features among all can-

didates. Intensity (see Section. 5.3.1) and texture features (see Section. 5.3.3) are not

correlated and thus they have negligible redundancy and large relevance. However,

shape features are based on invariant moment descriptors (see sub-section 5.3.2) in

which similar characteristics can be found to some extent (see Table 14). The eval-

uation procedure for shape features has been organised as follows. The first part

deals with distribution functions. In both Kolmogorov - Smirnov and Wilcoxon-

Mann-Whitney tests, all scaled feature data with primary matrix (140 rows = 28

samples per each five class) are used to evaluate distribution behaviour. In the next

step, Pearson and Spearman measure objectively linear correlation or/and monotonic

function behaviour while Kendall addresses the rankings of the correlation coefficients

for input data.

5.6.1 Kolmogorov - Smirnov (K-S)

Kolmogorov - Smirnov method provides a non-parametric measure test to determine

whether an empirical density function over available dataset can be mapped to a

particular known distribution model to describe the statistical properties of feature

vector [170]. It calculates the vertical distance (KSD) between the cumulative distri-

bution function (CDF ) of the reference hypothetical distribution and the empirical

distribution function EDF . Two sided (K-S) test is used to compare two sample sets

(two invariant moments in this case) without any particular distribution assumptions.

The (KSD) is defined by following equation:
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KSD = supn |CDF (x)− EDF (x)n|

The null hypothesis, meaning that two distributions are similar is accepted when

KSD is less than the 5% significance level.

Dataset and K-S interpreting: For all samples, the aforementioned shape feature

vector (see sub-section 5.3.2), the two-sided K-S test is used to calculate the sig-

nificance value of vertical distances (KSD) for all available pairs of feature moment

candidates. The values obtained by applying the null hypothesis tell us whether two

mutually independent feature sets are sufficiently close to each other to belong to the

same distribution. The experimental results are summarized in table 16.

The table 16 presents p-values obtained from the preliminary analysis of two

sided Kolmogorov-Smirnov test to evaluate distribution similarity among 11 invariant

moments. It can be seen from the data in table that all these moments are drawn from

the same distribution (null hypothesis is accepted). This tendency is also reflected

in the p-value. From this data, we can see that the lowest discriminatory power

is 0.42491, which occurs between Legendre and Gegenbauer moments. In contrast,

there is a clear trend of increasing p-values, 0.9762 between Krawtchouk and Legendre

moments and, 0.9906 between Radial Tchebichef and Zernike moments.

To make a firm determination, Mann-Whitney test is also used here (see. 5.6.2).

Both the Mann-Whitney and the Kolmogorov-Smirnov tests are non-parametric tests

to compare two groups of invariant moment data, and both methods calculate p-values

over the same null hypothesis but using different approach.

K-S test computes p-values after cumulative distribution comparison of the two

data moment sets and WMW test then computes p-values that depend on the dis-

crepancy between the mean ranks of the two moments after ranking all the moment

coefficient values from low to high. The K-S test is more sensitive to differences be-

tween any two feature moments, which are reflected in small p-values. In contrast,

the WMW test is mainly sensitive to changes in median value. The WMW test has

inherent and structural ability to handle tied values, whereas K-S test does not work

very well with ties. In presence of moment categories, many ties are possible. For

this reason, it is highly recommended to perform the WMW test,in addition to K-S

test.
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Table 16: P-values for Kolmogorov-Smirnov test, totals over 11 moment series (see
Section 5.3.2), different feature sets.

M1 M2 M3 M4 M5 M6

M1 0 0.84382 0.84382 0.84382 0.84382 0.84382
M2 0.84382 0 0.84382 0.84382 0.84382 0.84382
M3 0.84382 0.84382 0 0.84382 0.84382 0.84382
M4 0.84382 0.84382 0.84382 0 0.84382 0.84382
M5 0.84382 0.84382 0.84382 0.84382 0 0.84382
M6 0.84382 0.84382 0.84382 0.84382 0.84382 0
M7 0.84382 0.84382 0.84382 0.84382 0.84382 0.84382
M8 0.84382 0.84382 0.84382 0.84382 0.84382 0.84382
M9 0.84382 0.84382 0.84382 0.84382 0.84382 0.84382
M10 0.990623 0.42491 0.42491 0.42491 0.42491 0.42491
M11 1 0.42491 0.42491 0.42491 0.42491 0.42491
M12 1 0.990623 0.42491 0.42491 0.42491 0.42491

M7 M8 M9 M10 M11 M12

M1 0.84382 0.84382 0.84382 0.990623 1 1
M2 0.84382 0.84382 0.84382 0.42491 0.42491 0.990623
M3 0.84382 0.84382 0.84382 0.42491 0.42491 0.42491
M4 0.84382 0.84382 0.84382 0.42491 0.42491 0.42491
M5 0.84382 0.84382 0.84382 0.42491 0.42491 0.42491
M6 0.84382 0.84382 0.84382 0.42491 0.42491 0.42491
M7 0 0.84382 0.84382 0.42491 0.42491 0.42491
M8 0.84382 0 0.84382 0.42491 0.42491 0.42491
M9 0.84382 0.84382 0 0.42491 0.42491 0.42491
M10 0.42491 0.42491 0.42491 0 0.97621 0.97621
M11 0.42491 0.42491 0.42491 0.97621 0 0.97621
M12 0.42491 0.42491 0.42491 0.97621 0.97621 0
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5.6.2 Wilcoxon- Mann-Whitney (WMW) Test

Wilcoxon- Mann-Whitney - U test at the standard α = 0.05 significance level is ap-

plied to see whether the two distribution functions with no prior normal assumption

are shifted in some way from one another. Wilcoxon Mann-Whitney test is a non-

parametric measure often used in place of the two sample parametric t-test when the

normality assumption is questionable [165]. It assesses the similarity of two unpaired

independent sample groups, which is also called U statistics. In this statistical hy-

pothesis test, null hypothesisH0 is that the two samples are from identical populations

and an alternative hypothesis H1 is that two distributions differ in the median value.

The degree of similarity of both feature sequences is denoted using a probability term.

A higher value means greater similarity between two sample distributions, whereas

small value of p shows large variation and divergence between two populations.

Dataset and M-W interpreting: For all samples, aforementioned feature vector

(see sub-section 5.3), a two-sided M-W test is used to calculate the significance value

for vertical distance between any pair of feature candidates. The values obtained by

applying the null hypothesis show whether two mutually independent feature follow

the same distribution function. It should be noted that this technique has an advan-

tage over K-S technique, when tied values are found. The experimental results in this

work are summarized in Table 17.

Table 17: P-values for Mann-Whitney test, totals over 11 moment series (see. 5.3.2),
different feature sets.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

M1 0 1 1 1 1 1 1 1 1 1 1 1
M2 1 0 1 1 1 1 1 1 1 0.6 0.6 1
M3 1 1 0 1 1 1 1 1 1 0.6 0.6 0.6
M4 1 1 1 0 1 1 1 1 1 0.6 0.6 0.6
M5 1 1 1 1 0 1 1 1 1 0.6 0.6 0.6
M6 1 1 1 1 1 0 1 1 1 0.6 0.6 0.6
M7 1 1 1 1 1 1 0 1 1 0.6 0.6 0.6
M8 1 1 1 1 1 1 1 0 1 0.6 0.6 0.6
M9 1 1 1 1 1 1 1 1 0 0.6 0.6 0.6
M10 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0 1 0.8
M11 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1 0 1
M12 1 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.8 1 0
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As shown in Mann-Whitney test table . 17 there is a significant distribution sim-

ilarity between the aforementioned moment groups. The calculation indicates that

lowest discriminatory power is 0.6 which occurs among Legendre, Krawtchouk and

Radial Tchebichef, whereas p-values are high (0.8 and 1.00) for most other moment

pairs.

So far, it has conclusively been shown that named invariant moment features are

from similar distribution, and it has been demonstrated that a high similarity among

probability distributions exists. A question then arises whether these 11 invariant mo-

ments are redundant, related or totally independent. To address this question, meth-

ods such as Kruskal-Wallis H-Test, Pearson correlation analysis (PCA) and Spearman

Correlation Analysis (SCA) are available to analyse the correlation relationships be-

tween feature variables, and they have been applied as follows.

5.6.3 Kruskal-Wallis H-Test

The one-way analysis of variance (abbreviated one-way ANOVA) is a statistical mea-

sure to examine whether three or more independent input variables are significantly

different. Kruskal-Wallis H- test evaluates the behaviour of these unrelated groups

using variance parameter. In typical one-way ANOVA the assumptions are based on

approximately normally distributed variables and an equal interval scale randomly

drawn from the population, and inputs are normal random variables.

If one or more of the mentioned assumptions are violated, then the one-way

ANOVA may be inaccurate. To overcome this limitation Kruskal Wallis [165, 245]

performs one-way analysis of variance (abbreviated one-way ANOVA) without nor-

mal distribution assumption, by ranking 11 independent moment groups of possibly

unequal sizes (see Section 5.3.2). However, one of the limitations of Kruskal Wallis

(k) explanation is that it does not address where the dissimilarities take place or how

many differences really occur in a completely randomized design.

The returned p value (= 0.0669) from the preliminary analysis of Kruskal Wallis

test indicates a slight correlation between 11 different moments. However, a clear

degree of similarities or differences between groups of moments could not be identified

by this analysis. Further studies, which take the degree of correlation into account

need to be undertaken.
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5.6.4 Sensitivity Correlation Analysis

Pearson’s correlation: The degree of scatter among feature variables can be evaluated

using Pearson’s correlation measure. It is a measure to evaluate the linear correla-

tion (dependence) between two input feature variables. Pearson statistical approach

computes moment correlation coefficient between two variables x1 and x2. It consid-

ers the strength of a linear relationship between paired input moment feature data.

It is defined as the covariance of the two variables divided by the product of their

standard deviations, which gives values between +1 and −1, where +1 means totally

correlated inputs, 0 means no correlation, and −1 means negative correlation between

two inputs.

The experimental result is summarized in table. 18. As shown in table 18, there

is a significant linear similarity between some of the mentioned moment groups. The

calculation indicates that the highest correlation is between the Radial Tchebichef and

Legendre, and between Gegenbauer and Legendre moments with correlation rates of

0.99 and 0.95 respectively. In contrast, the lowest correlations values are between

Gegenbauer and Radial Harmonic Fourier, and between Fourier-Chebyshev and dual

Hahn moments (0.17 and 0.19 respectively).

Spearman’s correlation: is a non-parametric version of correlation that estimates

variables dependency. It calculates the power of association between two ranked input

feature variables. It is a statistical measure that evaluates how two variables can be

fitted using a monotonic function. A monotonic relationship is an essential primitive

hypothesis of referring the Spearman index correlation. A linear relationship is a firm

underlying assumption that has to be met by Pearson correlation measure. The value

of Spearman’s index ranges between +1 for a perfect monotonic function to −1 which

is furtherest from a mapped monotonic function.

As shown in Spearman test table. 19 there is a significant monotonic relation-

ships among few of the aforementioned moment groups. The calculation indicates

that highest dependency exists between Legendre and Gegenbauer moments, Radial

Tchebichef and Legendre moments, and Krawtchouk and Dual Hahn moments with

correlation rates of 0.9819, 0.9027 and 0.8355 respectively. In contrast, lowest corre-

lations are between Dual Hahn and Gegenbauer, Dual Hahn and Legendre, and Dual

Hahn and Generalized Pseudo-Zernike moments with minimum correlations values of

−0.1335,−0.1104 and 0.0005 respectively.
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Table 18: Correlation degree for Pearson test, totals over 11 moment series (see. 5.3.2),
different feature sets.

M1 M2 M3 M4 M5 M6

M1 1 0 0 0 0 0
M2 0 1 0.667934 0.94987 0.712445 0.730867
M3 0 0.667934 1 0.610314 0.732017 0.947971
M4 0 0.94987 0.610314 1 0.635324 0.650374
M5 0 0.712445 0.732017 0.635324 1 0.776434
M6 0 0.730867 0.947971 0.650374 0.776434 1
M7 0 0.623717 0.860916 0.632057 0.641255 0.849871
M8 0 0.330158 0.195434 0.1735 0.308071 0.256721
M9 0 0 0 0 0 0
M10 0 0.594213 0.309203 0.433271 0.488665 0.393357
M11 0 0.999855 0.667135 0.954899 0.709775 0.728852
M12 0 0 0 0 0 0

M7 M8 M9 M10 M11 M12

M1 0 0 0 0 0 0
M2 0.623717 0.330158 0 0.594213 0.999855 0
M3 0.860916 0.195434 0 0.309203 0.667135 0
M4 0.632057 0.1735 0 0.433271 0.954899 0
M5 0.641255 0.308071 0 0.488665 0.709775 0
M6 0.849871 0.256721 0 0.393357 0.728852 0
M7 1 0.208364 0 0.255141 0.625463 0
M8 0.208364 1 0 0.893279 0.32264 0
M9 0 0 1 0 0 0
M10 0.255141 0.893279 0 1 0.587171 0
M11 0.625463 0.32264 0 0.587171 1 0
M12 0 0 0 0 0 1
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Table 19: Correlation degree for Spearman test, totals over 11 moment se-
ries(see. 5.3.2), different feature sets.

M1 M2 M3 M4 M5 M6

M1 1 0 0 0 0 0
M2 0 1 0.306306 0.835521 0.350064 0.246075
M3 0 0.306306 1 0.145689 0.604633 0.743372
M4 0 0.835521 0.145689 1 0.171686 0.074131
M5 0 0.350064 0.604633 0.171686 1 0.702188
M6 0 0.246075 0.743372 0.074131 0.702188 1
M7 0 0.149103 0.431543 0.132001 0.651457 0.404288
M8 0 0.0713 0.088031 -0.13359 0.061776 0.003089
M9 0 0 0 0 0 0
M10 0 0.283319 0.169208 0.071026 0.201326 0.091393
M11 0 0.902703 0.166795 0.981982 0.210811 0.100129
M12 0 0 0 0 0 0

M7 M8 M9 M10 M11 M12

M1 0 0 0 0 0 0
M2 0.149103 0.0713 0 0.283319 0.902703 0
M3 0.431543 0.088031 0 0.169208 0.166795 0
M4 0.132001 -0.13359 0 0.071026 0.981982 0
M5 0.651457 0.061776 0 0.201326 0.210811 0
M6 0.404288 0.003089 0 0.091393 0.100129 0
M7 1 0.000534 0 0.074817 0.139483 0
M8 0.000534 1 0 0.837423 -0.11042 0
M9 0 0 1 0 0
M10 0.074817 0.837423 0 1 0.1115 0
M11 0.139483 -0.11042 0 0.1115 1 0
M12 0 0 0 0 0 1
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After investigation using the three named methods (Kruskal-Wallis H-Test, Spear-

man and Pearson) a very slight evidence of correlation among all the aforesaid invari-

ant moments is found when Kruskal Wallis test is applied. Then, it can be seen from

the data in tables. 18 and 19 that there are significant correlations between Legendre

and Gegenbauer and between Legendre and Radial Tchebichef. In contrast, a decreas-

ing monotonic trend and very low correlations between Dual Hahn and generalized

pseudo-Zernike moments are found.

As a result, the experimental results do not show any significant increase in re-

dundancy among the aforementioned moments. In this evaluation process, Legendre

was found to provide information redundant to Gegenbauer and Radial Tchebichef

to some extent. This suggests that Legendre may be removed from the moment list,

since, according to table 14, both Gegenbauer and Radial Tchebichef moments are

superior to Legendre moment in connection with feature extraction.

Thus, the findings would have been more original and convincing if the orthogonal

Legendre moments had been excluded from the above moment list of the feature vector

(see Section 5.3.2).

5.7 Feature Extraction Contributions

Another contribution is the procedure developed for obtaining optimum invariant

feature set from a comprehensive literature review in mathematical concepts. The

current findings add substantially to our understanding of invariant global features

in preserving details even in presence of low degraded images. For this, an image,

segmented white blood cell, is characterized based on the information such of dual

tree complex wavelet transform, invariant orthogonal moments, Run length, and so

on. This is an approach to address global invariant characteristics and the results are

encouraging.

Feature Extraction

Overall, the difficulties in detection and classification are further aggravated by the

fact that there is no definitive procedure exactly prescribing what features should

be generated, or what features should be used in each specific case. Previous work

as mentioned in detail used features that they are not always invariant and can be
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changed in different conditions and resolutions. Shape features such as area, perimeter

and so on rely heavily on their own data set and of course these findings cannot be

extrapolated to all possible dataset. Previous researches did not investigate benefits

of local data preserving techniques such as dual-tree complex wavelet transform, Run

length and invariant orthogonal moments such as Fourier-Mellin, Radial Harmonic

Fourier, Dual Hahn. Comparative study and discussion is also found in section 5.5.
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Chapter 6

Feature Selection

The purpose of feature selection is to provide a smaller effective feature vector com-

pared to the starting data pool. The main objective is to find a way to identify the

features that are worth extracting for optimal accuracy and speed of operation. Fea-

ture selection is to trim a large number of input variables from a given data-set, based

on similarities and discrepancies. Then eventually, the low sensitivity and low cor-

relation between feature and desired classes means weak interaction between feature

and desired output and can be neglected. Feature discriminatory power is a criteria

for feature selection.

6.1 High Dimensional Model Representation

We look at the effect and contribution of multiple features (see Section. 5.3) on the su-

pervised white blood cell classification. Several studies investigating high-dimensional

model representation (HDMR) have been carried out on input and output relationship

analysis. In general, in the field of image processing and feature selection, HDMR has

not yet been investigated comprehensively. To overcome this gap, this work focuses

on the use of HDMR for image processing pattern recognition applications.

In reviewing the literature, several methods with various expansions of high di-

mensional model representations are found, such as factorized high dimensional model

representation (FHDMR) [4, 234], Cut-HDMR [4, 147], (ANOVA)-HDMR [4] as the

analysis of variance (ANOVA) decomposition, random sample(RS)-HDMR [4, 267],

multiple sub-domain random sampling HDMR [260], logarithmic HDMR [233] and
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hybrid function [235].

HDMR is an appropriate statistical approach to evaluate the input - output map-

ping of a manifold model with many input parameters and using high dimensional

interpolation [4]. High dimensional model representation (HDMR)can therefore eval-

uate the individual or cooperative contributions of the previously defined features

used for classification of white blood cell. Next, the degree of importance and inter-

action of input feature parameters (12104) with regard to white blood cell classes are

determined using sobol global sensitivity analysis.

Before a detailed description of the sensitivity analysis, we will provide a few

definitions related to HDMR. The HDMR output function f(x) utilizes a linear sum

of super - positions of low - dimensional functions, where a multivariate data is given

for a multivariate function f(x) = f(x1, ..., xn) in Rn domain. These sub-divided

terms are set of constant, univariate, bivariate and the other high-variate terms.

f (x) = f0 +
n∑

i=1

fi (xi) +
n∑

1≤i<j≤n

fij (xi, xj)+

n∑
1≤i<j<k≤n

fijk (xi, xj, xk) + · · ·+ f12...n (x1, x2, . . . , xn)

where f0 is the constant mean effect, fi(xi) is the effect of variable xi (each in-

dividual feature coefficient) independently upon the output f(x) (five primary cell

classes). Further, the function fij(xi, xj) is a second order term describing the inter-

action between two feature series (xi and xj) upon the output f(x). It is apparent

that if there is no interaction between the input feature variables, then higher or-

der terms will be zero, where only f0 order and fi(xi) will be written in the HDMR

expansion.

From the experimental results for many input-output systems, it can be seen

that a HDMR expansion up to second order fij(xi, xj) is sufficient to approximate

f(x) in which higher order feature correlations are weak and negligible [126]. In this

work, RS-HDMR approach with a random sample input over the entire domain is

used [4, 267]. The sums of RS-HDMR expansion can be rewritten in the following

form where determination of expansion components is based on shifted Legendre

polynomials approximation and Monte Carlo integration [126]. Input variables are

scaled between 0 and 1 (0 ≤ xinput ≤ 1) [178,267] to create scale - consistent coefficient
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values.

f (x) = f0 +
n∑

i=1

k1∑
r=1

αi
rφr(xi) +

n∑
1≤i<j≤n

k2∑
p=1

k3∑
q=1

βij
pqφpq(xi, xj).

Where k1, k2 and k3 are the order of the shifted Legendre polynomials expan-

sion. αi
r and βij

pq are constant coefficients which are determined using Monte Carlo

integration. Also, φr(xi), φpq(xi, xj) are the shifted Legendre polynomials basis func-

tions. To understand expansion calculation, let’s first define second-order Legendre’s

differential equation:

(
1− x2

) d2y
dx2

− 2x
dy

dx
+ n (n+ 1) y = 0

The solution, Legendre polynomial is denoted by Pn(x) which includes order n as

an integer, which provides either odd or even components that are either symmetric

or asymmetric polynomials (Pn (−x) = (−1)nPn (x)). To calculate shifted Legen-

dre polynomials where x 7→ 2x − 1; (P̃n (x) = Pn (2x− 1)), calculations are given

by recurrence relation, based on Bonnet’s recursion formula. Therefore, an explicit

representation is obtained:

P̃n (x) = (−1)n
n∑

c=0

(
n

c

)(
n+ c

c

)
× (−x)c.

Consequently, shifted Legendre polynomial are given in table 20.

Table 20: The first five shifted Legendre polynomial terms

n P̃n (x)

0 P̃0 (x) = 1

1 P̃1 (x) = 2x− 1

2 P̃2 (x) = 6x2 − 6x+ 1

3 P̃3 (x) = 20x3 − 30x2 + 12x− 1

4 P̃4 (x) = 70x4 − 140x3 + 90x2 − 20x

5 P̃5 (x) = 252x5 − 630x4 + 560x3 − 210x2 + 30x− 1

Legendre polynomials have the property of orthogonality, i.e. their components

are non-overlapping and non-redundant, and therefore their principal sums can be

obtained. ∫ 1

0

p̃k(x)p̃l(x)dx =

{
1

2n+1
k = l

0 k ̸= l

106



The theory of Legendre polynomials is found in book [110] section 5.2. The op-

timal order of shifted Legendre polynomials is used for approximation of the HDMR

expansion component functions.

Global Feature Sensitivity: The aim of this section is to measure the level of

influence (global sensitivity) of the input feature variable on the white blood cell clas-

sification using RS-HDMR implementation to identify the best feature set. Following

that, the influence of individual each input feature variable is computed using global

sensitivity approach, in which Monte Carlo is the basis function of calculation [214].

An integrable function is defined for an arbitrary monotonic function f(x) that pre-

serves the given order. It is denoted that for every sequence Dn of subsets on [a, b],

we have shown that {µ(Dn)} → 0. Sn is a sample of mentioned partition, which can

be expressed as follows.

{∑
(f,Dn, Sn)

}
→ K.

An integrable function could be written in the ANOVA - representation form [214]

where total number of sums is 2n. The general definition is

f(x) = f0 +
n∑

s=1

n∑
i1<...<is

fi1...is(xi1 ,...,xis )

where that the terms are orthogonal and can be expressed as∫ 1

0

fi1...is(xi1 , ..., xis)dxk = 0, k = i1, ..., is.

Above terms can be rewritten in following form :∫
f(x)dx = f0∫

f(x)
∏
k ̸=i

dxk = f0 + fixi∫
f(x)

∏
k ̸=i,j

dxk = f0 + fixi + fjxj + fijxi,xj .

Global sensitivity is defined by the following equations:

∫
f(x)2dx− f 2

0 =
n∑

s=1

n∑
i1<...<is

∫
f 2
i1...is(xi1 ,...,xis )dxi1 ,...dxis

.
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To simply notation, indices D and Di1 , ..., Dis are defined as follows :∫
f(x)2dx − f 2

0︸ ︷︷ ︸
D

=
n∑

s=1

n∑
i1<...<is

∫
f 2
i1...is(xi1 ,...,xis )dxi1 ,...dxis︸ ︷︷ ︸

Di1 ,...,Dis

Therefore, global sensitivity indices are denoted by: Si1,...,is =
Di1 ,...,Dis

D
where total

of the summation
∑n

s=1 si1 +
∑n

1<i<j6n Sij, ... + S1,2,...,n = 1. The first order index

Si is the fractional contribution of xi (each individual coefficient) to the variance of

f(x) (five main white blood cell classes), whereas the second order shows the effect of

interaction between xi and xj on the classification outcome. These sensitivity analysis

indices can be continued. Rabitz et al. [4] demonstrated that, often, the low order

interactions of input variables have the dominant impact on the output assignment.

It means that, quite often, the high ranked global sensitivity feature variable input in

mathematical models are first order terms. In the current study, first order Si for all

each individual intensity, shape and texture coefficients are calculated to reach the

most effective feature set.

To date, little evidence has been found associating HDMR with image processing

and pattern recognition. Kaya et al. [101] carried out a number of investigations into

the feature selection by high dimensional model representation, where the experiment

is conducted using a data set which includes 12 band multi spectral images taken over

Tippecanoe County. Article references were searched further for additional relevant

publications, and no other work pertaining to the question of HDMR efficiency in

feature selection for medical images and blood smear slides in particular was found.

A further study with more focus on selecting optimum feature set is suggested in this

work.

6.2 Sequential Feature Selection

Sequential feature selection applies an iterative method and an algorithm that learns

which feature from an initial set, without a transformation, is the most informative at

each step, when choosing the next feature depends on the already selected features.

The method removes unfavourable features but it preserves salient features to reach

the optimum subset combination of features by considering their predictive efficiency

for a given classifier. The method has two distinctive variants. Sequential forward
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selection (SFS) is a method that keeps adding features, until the criterion function

stops decreasing with new feature candidates. In contrast the process of sequential

backward selection (SBS) starts with a full feature set, and features are removed until

the removal action starts to increase the criterion function [93].

In SFS, new added feature x+ should maximize J(Yk + x+). In an iterative and

incremental procedure, new component is combined with already selected features

(Yk) to increase criterion function (x+ = argx/∈Yk max J(Yk + x+)). Both SFS and

SBS have some drawbacks in practice. Questions have been raised about the update

procedure used in sequential feature selection algorithm. SFS is unable to revise

an already selected a feature vector by removing feature variables after they have

been added. The main limitation of SBS is its inability to improve the efficiency by

restoring a feature variable after it has been abandoned in a previous step. It can

also be seen that without an appropriate criterion to determine a stop point, the SFS

or BSS may run an exhaustive number of combinations
(
F
N

)
considering (N) input

samples, which make the process impractical and infeasible because of its complexity.

To improve feature selection sustainability, it is necessary to develop a criterion to

avoid exhaustive comparison. An optimum criterion value means a minimum error

rate in supervised classification where each candidate feature is placed in the new

revised subset vector upon classifier feedback.

Next, 10-fold cross-validation by calling a criterion with different training and

testing subsets of xin and yout is performed. In practice, after computing the mean

criterion values for each candidate feature subset, SFS chooses the optimal feature

candidate that minimizes the mean criterion value. It measures the reduction in

distance between the predicted values and the output testing subset. This process

continues until adding or removing features results in no decrease in criterion.

To date, several studies investigating sequential forward selection (SFS) have been

carried out on medical imaging. Bouatmane et al. [21] used sequential forward se-

lection to assess various sets and to eliminate irrelevant features, in order to classify

prostatic tissue taken from needle biopsies images. Rezatofighi et al. [189] examined

the most discriminative features using sequential forward selection, artificial neural

network (ANN) and support vector machine (SVM) to classify five main types of

white blood cells. Because of a large amount of previous work in SFS, in this work,

SFS approach is applied to a high dimensional feature vector for a comparative study.
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6.3 Branch and Bound Algorithm

Preliminary work on branch and bound algorithm for selecting the optimal and the

most favourable subset of features in pattern recognition applications was undertaken

by Fukunaga, K (1992) [63]. Branch and bound algorithm relies on procedures that

select a reduced subset of Ds features from a primary larger set of Da inputs, where

a function (J) is used as evaluation criterion. This selects an optimal feature set

without exhaustively exploring the entire search space. It should be noted that,

for any branch & bound algorithm, the (J) function must meet the monotonicity

condition.

J(Xp) ≥ J(Xch); Xch ⊆ Xp.

In brief, branch and bound algorithm assembles a search tree, including end-point

leaves, with target subsets of (Ds) selected features. The start node (root) represents

all initial input features (Da). From this node follows a top-down tree structure,

with branch descendants that are evaluated and updated at nodes, based on criterion

function (J), and the process is called bound algorithm (the best updated evaluation

value). The branches are extended first based on the number of features (Da −Ds)

that should be cut-off. Simultaneously, the bound is updated, as the search tree is

growing and leaf nodes are reached. Afterwards, the sub-tree will be pruned, so that

the associated evaluation value is less or equal to the bound. Search and evaluation

theories typically suffer from certain drawbacks, and this method of analysis has a

number of limitations. Perhaps the most serious disadvantage of this method is that

the computation of criterion value is usually slow.

Different studies have been carried out on investigating branch and bound model,

and modifications have been made to improve the traditional performance.

In reviewing the literature, different methods have been found, including typical

and conventional branch and bound (BB) [63], efficient branch and bound (BB+)

[258], and fast branch and bound (FBB) [216].

Recently in 2013, a globally optimal selection framework has been proposed using

regression [98]. The results, as shown in [98] indicate computational efficiency and

effectiveness of that framework, while shortcomings of existing criterion function (J)

is overcome. In reviewing the literature, Stiglmayr et al. [218] conducted a series of

trials using Branch & Bound methods for medical image registration. Up to date, no
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work was found in the literature on the question of branch and bound efficiency in

feature selection for medical images, and for blood smear slides in particular. Our

study has the aim of assessing the effectiveness of branch and bound with evaluation

function using regression in feature selection to reach optimal feature subset.

6.4 Experimental Result on Feature Selection

HDMR approach: The initial configuration and setting for this experiment is based

on steps in [267]. All samples (140) are used for the RS-HDMR accuracy test. Also,

the maximum order for approximation of the first order {fi (xi)} terms is 5 where 3

is maximum assigned order for second order {fij (xi, xj)}. Also a ratio control variate

(see Section 2.1 in [267]) to supervise and regulate the Monte Carlo integration error

with 10 iterations is set for the first and second order RS-HDMR component functions.

It also should be noted that in the initial setting to ignore insignificant component

functions from the HDMR expansion where the current white blood cell classification

system has a high number of input features, a threshold mechanism set to 10% (see

Section 2.2 in [267]) is also used.

Global sensitivity analysis for all three feature sets are collected in table 21 where

intensity feature set (see Section 5.3.1) with 788 members composed of 1-784 raw gray

scale intensity value, 785 mean, 786 standard deviation, 787 skewness, and 788 kur-

tosis features and next, shape feature set (see Section 5.3.2) with 297 members com-

posed of 1-7 Hu set, 8 Zernike, 9-44 Hahn, 45-80 generalized pseudo-Zernike, 81-116

Chebyshev, 117-152 Krawtchouk, 153-188 Fourier-Mellin, 189-224 Radial Harmonic

Fourier , 225-260 Fourier-Chebyshev, 261-296 Gegenbauer and 297 for relative area

are considered. Then a texture feature vector with 11019 members (see Section 5.3.3)

composed of 1-784 gradient, 785-1568 Laplacian, 1569-2352 flat texture, 2352-2365

Haralick texture features, 2365-2371 Tamura, 2372-8667 Gray Level Run Length, and

8667-11019 for dual tree complex wavelet transform features is considered. To provide

in-depth analysis of the Sobol index calculation, each of above individual ranges of

features is used separately to estimate global sensitivity values

In this work based on above explanation 273 elements with exact addressed indices

among all 12104 coefficients (almost 2.25%) which are the most convincing set on

HDMR input - output relationship in current white blood cell classification system
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are selected (HDMRFV ).

In order to compare the performance on classification accuracy using sobol HDMR,

sequential forward selection (SFS) and downwards branch and bound [98] to select

subset with the exact number of (HDMRFV = 273) are also addressed. In connection

with these two approaches, many feature indices should be listed here but an exhaus-

tive review is beyond the scope of this current work. Eventually, to do a comparative

sensitivity analysis, two feature vectors (SFSFV ) and (BBFV ) are created.

Sequential feature selection: Sequential forward selection is initialized using

10-fold cross-validation by repeatedly calling a criterion based support vector machine

setting (see Section 7.2). It is also with different training and testing subsets of χin and

Yout where selected feature are saved into a logical matrix in which row (i) indicates

the features selected at step (i) with minimum criterion value.

Branch and bound: In following subset selection and in order to understand

how branch & bound regulates the best n-variable subset of invariant aforementioned

features, in this work downwards branch and bound to select subset for least squares

regression problems, Y = χ × K, is addressed. In this approach χ are independent

feature variables, Y are white blood cell classes and K is a parameter to minimize

regression error in approximating calling a criterion J = 0.5×(Y −A∗K)′×(Y −A∗K).

More details are addressed in Kariwala et al. work [98].

Therefore, this study may leads a difference between classification performance

rate (see Table 22) for these feature selection algorithms.

6.4.1 Feature Selection Settings

Feature selections are addressed in section. 6.1. This framework profits RS-HDMR

implementation to do a comprehensive global sensitivity among all features. RS-

HDMR requires initial setting to implement. All samples (140) are used for the

RS-HDMR accuracy test. Also, the maximum order for approximation of the first

order terms is 5 where 3 is maximum assigned value for second order. Also a ratio

control variate to regulate the Monte Carlo integration error with 10 iterations is set

for the first and second order RS-HDMR component functions. More details about

these settings is found in [267].

In a comparative study (see Section 6.4) sequential forward selection is initialized

using 10-fold cross-validation by repeatedly calling a criterion based SVM.
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6.5 Comparison of the Proposed Approach to State-

of-the-Art

To date, limited work with regard to blood classification has been able to draw at-

tention to feature selection algorithms. Few studies investigating sequential forward

selection (SFS) have been carried out on medical imaging. Bouatmane et al. [21]

used sequential forward selection to eliminate irrelevant features in a prostatic tissue

classification. In other work, Rezatofighi et al. [189] examined the most discrimina-

tive features using sequential forward selection and support vector machine (SVM) to

classify five main types of white blood cells. The key problem with this sequential for-

ward selection explanation is that sequential feature selection argument relies heavily

on qualitative analysis of classifier and its performance depends on classifier settings.

In these wrapper algorithms ( such as SFS) there is no way to revise feature vector to

remove or add feature variables after the addition or removal of other features. The

number of selected features is totally controlled by user intervention and there is no

automated way to control this stop number with reference to the nature of features.

In addition, there exist no procedure to look over to degree of sensitivity of features

to rank them for a specific dataset.

To sum up, in last studies so far there is no chance to rank and score candidate

features for an unknown dataset. This work addresses a formulation of a highly

discriminative score between different candidate features, and it should reflect the

confidence in choosing one feature set over others.

This work first applied sort of statistical approaches to maintain a set of relevant

and least redundant features among all candidates (see Section. 5.6). This procedure

ensures that these features are not redundant before any feature selection strategy.

Article references were searched further for additional relevant publications, and

no other work pertaining to the question of HDMR efficiency in feature selection for

medical images and blood smear slides in particular was found. RS-HDMR concepts

and practical implementation are borrowed from two articles [4,267] that are published

in journals of mathematical chemistry and environmental modelling & software.

RS-HDMR emerged as reliable input-output relationship where full feature sensi-

tivity analysis based on Sobol sequences is extracted. RS- HDMR gives a comprehen-

sive review of the importance and sensitivity rate for feature candidates. The number

113



of optimum features as well as the ranks are mentioned automatically without user

intervention. Once, these candidates are selected, only these high rank coefficients

will be applied for next coming data set with the same condition (see Table. 21). It

is obvious that results could be changed for a different dataset and RS- HDMR will

adjust input-output modelling with new conditions. Sobol -HDMR (see Section. 6.1)

works independently to classifier settings and this is another superiority of HDMR

over sequential feature selection argument.

6.6 Feature Selection Contributions

One of the convincing contributions is the Random sampling-high dimensional model

representation (RS-HDMR) in combination with global sensitivity analysis using

Sobol index, for feature selection. This algorithm is a significant development as the

most commonly used approaches, i.e. sequential feature selection, can not be used

without a typical classifier. The results of the these methods are changeable when the

the classification settings are variable. Sobol RS- HDMR overcomes these problems.

RS-HDMR ranks the features using a Sobol criterion for interactions between input

(individual features) and output (class) variables. A Sobol HDMR procedure is de-

veloped for extracting features rank for white blood cell detection without the need

for computing classification feedback criteria. This procedure is found to be simple,

accurate and more intuitive.

Feature Selection

To date, limited work with regard to blood classification has been able to draw at-

tention to feature selection algorithms. Few studies investigating sequential forward

selection (SFS) have been carried out on medical imaging. Furthermore, the current

existing work fail to resolve the feature importance rate and possible classification

outcome. They fail to take the degree of importance and global sensitivity features

into account. Also this work avoids redundant features using sort of statistical ap-

proaches. This procedure ensures that these features are not redundant before any

feature selection strategy. RS-HDMR emerged as reliable input-output relationship

where full feature sensitivity analysis based on Sobol sequences is extracted (see Ta-

ble. 21).

114



Table 21: Global sensitivity analysis (top to down: a, b) for RS-HDMR expansion,
in connection with total features over each white blood cell image

Sobol index: Assigned Intensity & Shape feature set
Feature Total Effective Sobol Comment
Intensity 788 38 0.38 Calculations indicate that in-

dices: 711, 443, 284, 191 and
456 (in range of gray scale inten-
sity value) and 785 (mean) have
the first five most discriminative
power.

Shape 297 18 0.82 Calculations indicate that in-
dices: 44 (Hahn coefficient),
155,156 (in range of Fourier-
Mellin), 189, 190 (in range of Ra-
dial Harmonic Fourier) and 254
(in range of Fourier Chebyshev)
have the first six most discrimi-
native power.

Sobol index: Assigned texture feature set
Feature Total Effective Sobol Comment
Gradient 784 43 0.44 Where first five indices including

589, 185, 266, 658 and 659 have
the most discriminatory power
with total Si = 0.41.

Laplacian 784 4 0.17 A weak link may exist between
Laplacian and desired cell classes.

Flat texture 784 13 0.17 A weak link may exist between
Flat texture and desired cell
classes.

Haralick 13 9 0.70 Almost majority of Haralick co-
efficients has effective impact on
classification.

Tamura 6 3 0.60 With considering half of Tamura
elements an acceptable sensitivity
index is accessible.

Run Length 6296 34 0.62 Just by selecting a very small sub-
sets of features a good predictor is
built.

DT-CWT 2353 111 0.64 With almost 4.7% of total ele-
ments convincing input- output
relationship is built.
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Chapter 7

Classification

Machine learning and pattern recognition play critical role in the digital medical

imaging field, including computer-aided diagnosis and medical image analysis. Medi-

cal pattern recognition essentially requires ”learning from samples”. Classification of

objects such as white blood cells into specific white blood cell classes based on input

features (e.g., shape, intensity, and texture) is obtained from segmented leukocyte

candidates. In white blood cell analysis, a well defined system is initially created as

an explanation of its features and then classifies the cell based on that after apply-

ing feature selection strategies such as sequential forward feature selection, improved

branch and bound algorithm and high dimensional model representation. The results

of white blood cell classification are not always perfect and numerous factors affect

the results. This work examines Convolutional Neural Networks (LeNet5) [117] and

support vector machine (SVM) [13] in connection with white blood cell classification.

7.1 Convolutional Neural Networks (LeNet5)

Traditional manual-designed feature extractors are typically computationally inten-

sive and need prior theoretical and practical knowledge of the problem at hand. They

often cannot process raw images directly, while in classification scenario, automatic

methods which can retrieve features directly from raw data are generally preferable.

These trainable automatic systems solve classification problems without prior knowl-

edge on the data and features. A convolutional neural network (CNN) is a multilayer

perception with a special topology containing more than one hidden layer. It allows
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for automatic feature extraction within its architecture and has as input the raw data.

7.1.1 The Standard CNN Formulation

We will investigate Convolution Neural Networks [117] which are sensitive to the

topology of the images being classified. An CNN uses a feed-forward method for

neurons feeding and back propagation for parameters training. The main advantage

of the CNN approach is its ability to extract topological properties from the raw

gray-scale image automatically and generate a prediction to classify high-dimensional

patterns. An CNN is composed of two distinct parts. The first part consists of

several layers that extract features from the input image pattern by a composition

of convolutional and sub-sampling layers. Conceptually, visual features from local

receptive fields [117] are extracted by an extended 2D convolution approach to gain

the appropriate spatially local correlation present in the input images. Since the

precise location of an extracted feature is in-consequent and dispensable, resolution

reduction by 2 of the features is followed through the sub-sampling layers. The second

distinct part categorizes the pattern into classes. In general, an CNN consists of three

different layers: convolution layer, sub-sampling (max-pooling) layer and an ensemble

of fully connected layers.

7.1.2 Literature Survey

There is a considerable amount of literature dedicated to using convolutional neural

network (CNN), starting with Lawrence et al. [118] in 1997 presenting a hybrid neural

network solution to automate facial feature detection. In last decade, CNN is very of-

ten used in different signal detection applications. The CNN has been used for object

recognition [121] and handwriting character recognition [117, 119, 210]. Simard [210]

examined various neural networks performance on visual handwriting recognition

tasks. Applications range from FAX documents, to analysis of scanned documents

and MNIST [120] data set.

Lauer et al. [117] introduced a trainable feature extractor based on convolutional

neural network to recognize handwritten digits. The results on the MNIST data set

showed that the system provided performances comparable in a black box data with-

out prior knowledge. Cecotti et al. [26] presented a model based on a convolutional
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neural network (CNN) to detect P300 waves as brain reflections in the time domain.

Krizhevsky et al. [112] used a deep convolutional neural network consisting of five

convolutional layers and three fully-connected layers to recognize and classify the 1.2

million high-resolution images into the 1000 different classes. The results on the test

data was a top-5 error rate of 17.0% which is better than the previous state-of-the-art

on the specific data set.

In medical images research on automatic feature extraction and using CNN in

particular is still an open research topic and this work addresses this subject.

7.1.3 Experimental Result with CNN

This section presents the white blood cells classification results obtained by the pro-

posed approaches on the existing database (115 learning samples and 25 testing ones)

using two types of classifiers: support vector machine with image feature intensity

values (see Section 5.3.1) and CNN. The confusion matrices and misclassification

error rates are shown in tables 22–24.

In the current study, we use an CNN with the architecture of LeNet5 [117](see

Fig. 31). In the first layers (properties extractors) convolutional filters in a 5×5 pix-

els window are applied over the image. It is highly recommended to add two blank

pixels at each four directions to avoid missing real data at each border in convolu-

tion computations. The number of alternative three main layers depends on input

database and can be varied between different input size to get better performance

and confidence. In this work a LeNet5 with eight layers is used (including first layer

as input gray-scale image and also output layer). Each convolution layer (C-layers)

has different feature maps, C1 is composed of 6 units while C3 has 16 and C5 has 120

units. Also because of convolution windows size (5×5) and input size (28×28), the

size of each convolution layer is defined as shown in fig. 31: C1 is 28×28, C3 10×10,

and C5 is 1×1, a single neuron.

Figure 31: LeNet-5 structure in modelling CNN for a 28×28 input image
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Confusion Matrices:

For all available 115 (training) and 25 (testing) samples the best scenario in confu-

sion matrices for CNN (recognition rate after 105 epoch) is summarized in table 22,

linear SVM with dimension reduction using K-PCA [253] with 2nd degree polyno-

mial is summarized in table 23, and linear SVM without dimensionality reduction is

summarized in table 24 below.

Table 22: Confusion matrices for CNN, total over testing images

CNN: Assigned WBC 5 classes
Known Basophil Eosinophil Lymphocyte Monocyte Neutrophil

Basophil 0.625 0.125 0.250 0.00 0.00
Eosinophil 0.00 0.95 0.05 0.00 0.00

Lymphocyte 0.125 0.00 0.875 0.00 0.00
Monocyte 0.00 0.00 0.00 0.80 0.20
Neutrophil 0.00 0.00 0.00 0.014 0.985

Table 23: Confusion matrices for Linear SVM with feature set dimensionality reduc-
tion using K-PCA, total over testing images

Linear SVM&K-PCA: Assigned WBC 5 classes
Known Basophil Eosinophil Lymphocyte Monocyte Neutrophil

Basophil 0.60 0.00 0.30 0.10 0.00
Eosinophil 0.00 1.00 0.00 0.00 0.00

Lymphocyte 0.30 0.10 0.60 0.00 0.00
Monocyte 0.00 0.00 0.20 0.80 0.00
Neutrophil 0.10 0.00 0.20 0.00 0.70

Table 24: Confusion matrices for Linear SVM without dimension reduction, total
over testing images

Linear SVM (without dimensionality reduction):
Assigned WBC 5 classes

Known Basophil Eosinophil Lymphocyte Monocyte Neutrophil
Basophil 0.30 0.00 0.70 0.00 0.00

Eosinophil 0.00 1.00 0.00 0.00 0.00
Lymphocyte 0.40 0.10 0.50 0.00 0.00
Monocyte 0.20 0.00 0.00 0.80 0.00
Neutrophil 0.00 0.00 0.10 0.20 0.70

In particular, for normal white blood cells using CNN 85% of known WBCs were

classified as such, with this classification rate decreasing to 74% for linear SVM using

dimensionally reduced features using K-PCA, and to 66% for linear SVM (without

K-PCA-based feature dimensionality reduction). So, based on the confusion matrices
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with five classes the proposed CNN classifier is much more reliable and accurate even

in presence of similarity among classes (specially between Basophil and Lymphocyte)

in this difficult database yielding acceptable accuracy when compared to SVM (com-

pare the third diagonal entries in confusion matrices with (Lymphocyte) classification

rate =87% versus 60%).

CNN yields a false positive rate (FPR) of 14%, i.e., the proportion of negatives

samples incorrectly classified as positive, with this FPR increasing to 23% for linear

SVM using dimensionally reduced features using K-PCA, and then to 31% for linear

SVM (without using feature dimensionality reduction via K-PCA). The FPR of CNN

is also smaller than the FPR of a SVM using kernel PCA and it again confirms the

effectiveness of automatic feature extraction by CNN.

The CNN classifier has the acceptable accuracy by optimizing the topological

features on a difficult database containing small WBCs with no restrictions on back-

ground or capturing conditions. Experimental results indicate that a system based

on an CNN offers an improved recognition accuracy even in presence of poor quality

samples and multiple classes. Another advantage of CNN it extracts features au-

tomatically while in most other classifiers the features are chosen by the designer.

It is expected that classification accuracy will be further improved by extending the

data set size (especially to avoid confusion between Basophil & Lymphocyte cells since

their shapes are very similar in small magnification images) and also by optimizing

the CNN structure to reach higher performance in training and testing. However,

CNN-based systems are very slow convergence of the loss during training particularly

when the number of iterations increases during the training. These systems can be

difficult to implement and are usually slower than typical classifiers.

It should be noted that in CNN the most common method to reduce over-fitting on

this limited image data and also to reach better performance is to artificially enlarge

the dataset using different transformations that can be addressed for future work.

7.2 Support Vector Machine(SVM)

Studies and results indicate that support vector machine analysis offers remarkable

recognition accuracy even in presence of low number of samples and multiple classes.

Advances in implementation result is the possibility of extending the use of this
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classifier to quantitatively measure the subtypes of cells (sub-differentiation) in the

entire field of haematology analysis.

7.2.1 The Standard SVM Formulation

Support vector machines are an example of a well-known linear/non-linear two-class

classifier. Let the notation xi (patterns) be the ith vector in a dataset sample (xi, yi)
n
i=1

where yi is the label associated with xi. A linear discriminant function is defined

implicitly by f(x) = ωTx + b. A simple and naive non-linear classifier is obtained

by mapping data from the input space using f(x) = ωTϕ(x) + b where ϕ is a kernel

mapping function. A linear combination of the training samples can be expressed

as the weight vector ω =
∑n

i αixi. The classifier in non-linear approach takes the

form: f(x) =
∑n

i αiϕ(xi)
Tϕ(x)+b. The maximum margin classifier in support vector

machine is the discriminant function that maximizes the geometric margin 1
∥ω∥ . To

allow errors and misclassified inputs, the optimization problem can be formulated as

a minimization over ω and b of the function 1
2
∥ω∥2+C

∑n
i=1 ζi, where C is a constant

value, subject to the inequality constraints yi(ω
Txi + b) > 1 − ζi, and ζi ≥ 0. This

optimization problem can be solved in dual form using the Lagrange multipliers as

follows [13]. More detailed mathematical treatment of SVM and its implementations

can be found in [13,117].

7.2.2 Literature review

There are increasing evidences that prove support vector machines are being advan-

taged and popular in image classification. It has long clinical classification success in

use. Numerous studies have attempted to explain SVM in medical imaging such as

found in [47,54,111,129,183,220].

7.2.3 Experimental Result with SVM

Support vector machine (SVM) as a popular classification can efficiently perform

non-linear with using kernel trick in biomedical and biological applications. Common

kernel functions addressed are sigmoidal, polynomial kernels and radial basis functions

(RBFs) where kernel parameters have a direct impact on the decision boundary of the

support vector machine [13]. The lowest degree polynomial (polynomial with D = 1)
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performed best in which several kernels of radial basis function (RBF) and polynomial

type were experimented. As in many other bio-informatics frameworks radial basis

function and polynomial kernels lead to over-fitting in our high dimensional problem

involving a large number of intensity, shape and texture features (12104) with a small

input data set (28 samples for each of five WBC classes) [13]. Further, to reach

an optimal hyperplane in this research Soft-Margin SVM which is more robust to

outliers tries to maintain misclassification points (slack variables = ξi) to minimum

while maximizing margin. Also to generalize the formulation to multi-class SVMs in

this work One-versus-all to train five classifiers, one for each class against all other

classes is used and the predicted category is the class of the most confident classifier.

Next, given a linear SVM classifier with 10 fold - cross validation is examined in

this work. 10 fold - cross validation is commonly used in presence of small size (140

samples) of the training and testing data set and with large number of parameters

(12104 = all feature coefficients) to avoid over fitting and to cover all observations

for both training and validation.

Three different sets of training and testing are introduced consisting of the fea-

ture vector using high dimensional model representation feature selection, sequential

feature selection, branch and bound (sections. 6.4, 7.2.3) separately.

In this section, a set of 140 8−bit gray scale poor images with low magnification

(28 ∗ 28)px in five balanced dataset (see Fig. 32) are used. We have randomly chosen

the data to construct the training set after removing almost 20% of the data to be

used for testing the SVM classifier.

Figure 32: WBC testing data, each row, top to bottom: Basophil(B), Lymphocyte(L),
Monocyte(M), Neutrophil(N), and Eosinophil(E).

Confusion Matrices

A 5×5 confusion matrix is used to represent the different possibilities of the set of in-

stances. The matrices are built on five rows and five columns: Neutrophil; Monocyte;
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Lymphocyte; Eosinophil; and Basophil representing the known WBC classes whereas

for each matrix, each row the values are normalized to sum to 1. Several standard

performance terms such as true positive rate or the recall (correctly identified- TP ),

false positive rate (incorrectly identified- FP ), true negative rate (correctly rejected-

TN), false negative rate (incorrectly rejected- FN), accuracy (proportion of the total

corrected predictions - AC), precision (proportion of the corrected predicted positive

cases -P ) have been extracted for the confusion matrix. This work addresses kappa

(κ) measure as it provides accuracy (AC) versus precision (P ) interpretation across

class categories [116]. Common Cohen’s un-weighted κ interpretation is:

≤ 0 ⇒ Poor

[0, 0.20] ⇒ Slight

[0.21, 0.40] ⇒ Fair

[0.41, 0.60] ⇒ Moderate

[0.61, 0.80] ⇒ Substantial

[0.81, 1.00] ⇒ AlmostPerfect

The experiments are categorized into set of named selected 273 out of 12140 features

(FVSFS, FVBB and FVHDMR) also with a total high dimensional feature vector with

12140 members (FVTotal).

Statistical performance measure is analyzed using analysis of confusion matrices

for each named feature & SVM summarized in tables 25a, 25b, 25c and 25d. Further

statistical tests revealed that given a small number of input samples (140) in high

dimensional feature sets (= 12140) using non-linear SVM kernels leads to over-fitting.

The result, as shown in table 25, indicates that for normal low resolution white

blood cells using linear SVM & all feature vector FVTotal 85% of known white blood

cells were classified as such, with this classification rate decreasing to 83.5% for FVBB

and 83% for (FVHDMR) (see Table 25 b,d) where the efficiency of (FVSFS) is also 81%

which is less than proposed Sobol - HDMR with 83%. RS-HDMR classification perfor-

mance with 273 elements is less and more similar where classification accuracy is also

found with all 12140 coefficients and with improved branch and bound method [98]

are selected. As confusion matrix tables illustrate, in this poor imaginary database

there is not a significant difference between for example the all high dimensional data

set and feature selected group with RS-HDMR expansion.
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However, in general RS-HDMR and ”improved branch and bound” are more effi-

cient than SFS; and RS-HDMR is superior to both of the above mentioned methods.

All these three methods conducted a series of trials where they are different in both

their basis functions and the way they find a solution for the problem.

First, RS-HDMR selected feature vector is based on sobol calculation where the

number of efficient principal coefficients are up (i.e, 273 in this work) to reach first

order of sensitivity index (Si) value close to zero (more comments in [4, 267]). Sec-

ondly, feature subset selection in improved downwards branch and bound [98] is based

on least squares regression between invariant features and dependent white blood cell

class where subset size to be selected is under user decision. Both these two aforemen-

tioned cases are total independent tasks before classifier involving. Following that,

SFS method is a combination technique where its result is dependent on different

initial setting for classifier and its scalar return value criterion. Also, it is appar-

ent that the number of selected futures are manually assigned by user where unlike

the RS-HDMR there is no way to look over to degree of sensitivity of all individual

features.

The results, as shown in confusion matrix tables indicate that also HDMR results

for almost each sub-group is more accurate than SFS method where also sequential

forward selection algorithm is too dependent to classifier feedback as well.

Also with compare with two ground truth groups, using machines Sysmex XE-

series and also Abbott CELL-DYN range (see Section 2.1) it can be seen from the

data in confusion matrix tables that global sensitivity with Sobol on RS-HDMR ex-

pansion reveals 91% accuracy for Neutrophil, 65% rate for Lymphocyte and also 100%

for Eosinophil while the expensive machines mentioned above provide 92.5%, 92.2%,

and 87.7%, respectively in an ideal performance. It also provides 81% classification

rate for Monocytes and 77% for Basophils where the results obtained from machines

are 75.6% and 76.3%. The following conclusions in regard to κ coefficient can be also

drawn from the present confusion matrices. The Cohen’s unweighted κ coefficient of

the FVTotal, FVSFS, FVBB also FVHDMR are acceptable (0.81= almost perfect and

0.77, 0.79 = substantial) in this low resolution WBC classification. Taken together,

the most obvious finding to emerge from feature selection and with RS- HDMR study

in particular is that all these two methods provide substantial performance where
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lessen computational time and improve model interpret-ability to enhance general-

ization by reducing over-fitting possibility as well.

Table 25: Confusion matrices (top to down: a,b,c,d) for SVM classifier, totals over
testing images in invariant features & linear SVM

Linear SVM (FVTotal): Assigned WBC classes
Known Basophil Eosinophil Lymphocyte Monocyte Neutrophil

Basophil 0.72 0 0.21 0.03 0.04
Eosinophil 0 1.00 0 0 0

Lymphocyte 0.17 0 0.68 0.13 0.02
Monocyte 0.01 0 0.04 0.90 0.05
Neutrophil 0 0 0 0.03 0.97

Linear SVM (FVBB): Assigned WBC classes
Known Basophil Eosinophil Lymphocyte Monocyte Neutrophil

Basophil 0.69 0.04 0.27 0.00 0.00
Eosinophil 0 1.00 0 0 0

Lymphocyte 0.13 0.00 0.70 0.13 0.04
Monocyte 0.01 0 .01 0.1 0.85 0.03
Neutrophil 0.00 0.02 0.04 0.01 0.93

Linear SVM (FVSFS): Assigned WBC classes
Known Basophil Eosinophil Lymphocyte Monocyte Neutrophil

Basophil 0.72 0 0.24 0.04 0
Eosinophil 0.00 1.00 0.00 0.00 0.00

Lymphocyte 0.17 0 0.62 0.14 0.07
Monocyte 0.02 0 0.18 0.80 0.0
Neutrophil 0.01 0 0.01 0.04 0.94

Linear SVM (FVHDMR): Assigned WBC classes
Known Basophil Eosinophil Lymphocyte Monocyte Neutrophil

Basophil 0.77 0.01 0.17 0.01 0.04
Eosinophil 0 1.00 0 0 0

Lymphocyte 0.16 0.01 0.65 0.1 0.08
Monocyte 0.04 0 0.13 0.81 0.02
Neutrophil 0.02 0.01 0.01 0.05 0.91

7.3 Classification Settings

In this framework, two classifiers namely, support vector machine and convolutional

neural network are used. Setting and parametrization of support vector machine is

addressed in following table (see Table 26). It should be said that SVM in this work

with limited data used linear kernel. However, it could be changed in other enough

large dataset.

As for the convolutional neural network, all the parameters including the structure,

number of layers and selection of fully connected network are varying for different
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Table 26: Support Vector Machine: Settings

SVM; supervised classifier
Parameter Value Comment

Kernel Linear The lowest degree polynomial performed best in high di-
mensional problem involving a large number of features
with a small input data set.

Margin Soft-Margin Robust to outliers to minimum misclassification points
while maximizing margin.

Multi-class One-versus-all One for each class against all other classes is used and
the predicted category is the class of the most confident
classifier.

Training 23 23 out of 28 samples in each cross validation step are
considered to build training set.

Validation 10 fold - cross validation To avoid over fitting and to cover all observations for
both training and validation.

Table 27: Convolutional neural network: Settings

CNN; Topological Features
Parameter Value Comment

Convolutional windows 5×5 pixels window It is highly recommended to add two blank pixels at
each four directions to avoid missing real data at each
border in convolution computations.

Convolution layers Different values C1 is composed of 6 units while C3 has 16 and C5 has
120 units.

Convolution size layers Different values C1 is 28×28, C3 10×10, and C5 is 1×1, a single neuron.
Sub-Sampling Max Pooling S2 is 6× 14 × 14, S4 is 16×5 × 5.

Validation 10 fold - cross validation To avoid over fitting and to cover all observations for
both training and validation.

dataset. Convolution Neural Network in this work is composed of convolution layers,

sub-sampling (max-pooling) and an ensemble of fully connected layers such as radial

basis function (RBF) networks (see Fig. 31). These CNN setting must be interpreted

with caution and these initialization cannot be extrapolated to all possible dataset

with different conditions. The CNN settings with respect to current dataset which is

only with 28 samples for each class in low resolution size (28 × 28) is addressed in

fig. 31 and table 27.
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Chapter 8

Conclusions and Future Work

There are many challenging problems in automatic processing of cytological of image

blood cells. The main problems include large variation of blood cells, occlusions,

low quality of images and difficulties in getting enough real data. These problems

are addressed in this work. In this work, a step-by-step efficient segmentation and

classification algorithm have been presented automatic detection and segmentation of

microscopic blood imagery. Experimental results indicate that our system offers good

segmentation and recognition accuracy with normal samples. The performance of the

proposed method has been evaluated by comparing the automatically extracted cells

with manual segmentations by a pathologist from GHODS polyclinic (Tehran, Iran).

In this work, a framework divided into four main stages: image pre-processing, feature

extraction, feature selection and classification is proposed. We provide literature

survey and point out new challenges.

First, a reliable pre-processing system that may be used under different conditions

(such as low quality, unfavourable resolution, varying inconsistent illumination condi-

tions and also the complexity staining techniques) is introduced. Next, separation of

different cells as well as the identification of RBC and WBC is resolved. An efficient

and highly accurate local binarization method is introduced here. Cell separation is

accomplished using cutting edge image segmentation and boundary detection tech-

niques in combination with morphological techniques with the goal of improving the

accuracy of complete blood count (CBC). The available data is poor quality and

therefore shape and inside structures are difficult to estimate. These conditions in-

clude noisy low resolution blood smear images. White blood cells texture, cytoplasm
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and membrane are non-uniform staining and granular white blood cell shapes are also

difficult to detect. As a result, we have introduced efficient invariant shape, intensity

and texture features for white blood cells classification in this difficult dataset with

low resolution images.

Statistical measures were used to investigate redundancy and relevance of features.

They include Kolmogorov - Smirnov (KS) and Wilcoxon- Mann-Whitney (WMW)

tests, Pearson, Spearman and Kendall rank correlation coefficients. These statical

tests show a low degree of redundancy among these features. Almost all aforemen-

tioned features (except for Legendre moments) are independent and there is no re-

dundant information in them. Furthermore, this work concentrates on usefulness of

feature selection in presence of big data with high dimensional invariant features in

connection with white blood cell classification. In our work on white blood cell classi-

fication features vectors have 12140 components and lot of effort is devoted to feature

selection. This work examines and presents the effectiveness of three methods such as

sequential feature selection (SFS) set, improved branch and bound (BB) and random

sample high-dimensional model representation (RS-HDMR). RS-HDMR using Sobol

rank calculation automatically detected 273 best features and then we used sequential

feature selection (SFS) set, improved branch and bound (BB) to select the best 273

features as well.

All these three SFS, RS-HDMR and ”improved branch and bound” substitute

large number of features (D12104) to subset of features (D273) to avoid curse of dimen-

sionality, reduce feature measurement and computational burden and then recall the

SVM classifier based on these selected features.

We subsequently tested the set of selected features using SVM and determined

that RS-HDMR produced the most discriminatory features. These findings suggest

that, in general, RS-HDMR emerged as a reliable input-output relationship predictor

of small distorted WBCs and their own classes to allow the full feature sensitivity

analysis based on Sobol sequences.

One of the more significant findings to emerge from this study is the possibility

of extending this framework to entire field of hematology analysis, stool examination

or other similar medical research. Furthermore, the introduced method being simple

and easy to implement is best suited for biomedical applications in clinical settings.

This work aims at development of publicly available software for complete blood
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count test for automatic processing of blood slide images. Of course with good recog-

nition accuracy even in presence of low resolution images and noise.

8.1 Original Contributions of the Thesis

The thesis addresses the problem of segmentation and counting red blood cells along

with classification of cytological images of white blood cells in peripheral blood smear

for complete blood count (CBC) test. In this concept, this study made an effort to

reach a framework to extract blood test parameters even in presence of low resolution

images. This work calculates main CBC test indices such as RBC count, red cell

distribution width (RDW), WBC Count and WBC differential (see Section. 1.2.1).

The main contribution of this study is in forming a complete framework of method-

ologies and procedures required for automatic processing of normal blood slide images

for complete blood count diagnosis test. The system is able to process the low reso-

lution and degraded images where manual analysis of microscopic blood slides which

is not only a tedious task and but also likely to fail or make human errors.

This section lists main achievements of the thesis. The finding of this work points

out some contributions to the literature in normal blood segmentation and classifica-

tion.

• More accurate white blood cells classification in presence of low quality images.

• The introduction of using semi-interquartile range, variance statistical approach

to reach channel color selection criteria in presence of different gray scale options

for blood smear microscopic images (see Section 3.2.1).

• Study and investigation of more accurate blood smear image pre-processing,

which it includes Bayesian Non-local means as image de-noising, utilizing Kauwahra

filter for white blood edge preserving (see Sections 3.2.2, 3.2.3).

• The introduction of an improved and more generalized binarization using merged

Niblack as local and Otsu as global techniques to improve foreground/background

segmentation of blood smear microscopic images (see Section 4.3.1).

• Study and investigation of white blood cell image separation using improved ac-

tive contour model without an edge, morphological operations and edged images
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for blood cells separation in presence of degraded images (see Section 4.3.1).

• A comprehensive study and introduction of a set of appropriate invariant high

dimensional feature coefficients such as invariant orthogonal moments, Dual-

Tree Complex Wavelet Transform, Run-length for classification of blood smear

microscopic images (see Section 5.3).

• Study and investigation of the redundancy and distribution behaviour of these

named invariant features with approaches such as Kolmogorov - Smirnov (KS),

Wilcoxon- Mann-Whitney (WMW) tests, Spearman and Kendall rank correla-

tion coefficients for blood smear microscopic images (see Section 5.6).

• Study and investigation of feature selection to provide effective reduction of fea-

ture vector size for classification of blood smear microscopic images. Global sen-

sitivity analysis with combination of random sampling-high dimensional model

representation (RS-HDMR) and Sobol sensitivity analysis to assess discrimi-

natory power and rank of each individual feature is addressed (section 6.1,

table 21).

• The comparison of set of classifiers such as support vector machine (SVM),

Convolutional Neural Networks (CNN) to evaluate their performance to distin-

guish between inter-classes for classification of white blood cells in blood smear

microscopic images. This work extracts topological features by Convolutional

Neural Networks (LeNet5) to separate white blood cell classes (see Sections 5.3,

7.1.3, 7.2.3).

Aforementioned sub-sections explain original contributions of this thesis in more

detail. Blood smear image pre-processing findings are addressed in section 3.4. The

original contribution emerges from Binarization & blood cell separation are found in

section 4.5.

Finally I applied feature extraction & selection algorithms to obtain good discrim-

inative features for white blood cells classification, see discussion in sections 5.7, 6.6.
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8.2 Publications of the Author

The aim of [78] was to introduce an accurate mechanism for counting blood smear

particles. This is accomplished by using the Immersion Watershed algorithm which

counts red and white blood cells separately. To evaluate the capability of the proposed

framework, experiments were conducted on noisy normal blood smear images. This

framework was compared to other published approaches and found to have lower

complexity and better performance in its constituent steps; hence, it has a better

overall performance.

In paper [113] we discuss applications of pattern recognition and image process-

ing to automatic processing and analysis of histopathological images. We focus on

two applications: counting of red and white blood cells using microscopic images of

blood smear samples and breast cancer malignancy grading from slides of fine needle

aspiration biopsies. We provide literature survey and point out new challenges.

In third article [72] we discuss improved binarization using merged Niblack and

Otsu techniques to improve foreground/background segmentation of blood smear mi-

croscopic images. We aim at more accuracy in terms of minimizing the number of

close pairs of cells that are merged into single cells during binarization process.

In conference work [75] a convolutional neural network (CNN) to extract topologi-

cal features is proposed. The proposed classifiers were compared through experiments

conducted on low resolution cytological images of normal blood smears

In [73] we particularly interested in classification and counting of the five main

types of white blood cells (leukocytes) in a clinical setting where the quality of micro-

scopic imagery may be poor. In this paper we implement a machine learning system

based on using extracting features by Dual-Tree Complex Wavelet and SVM as a

classifier.

In [74] we analyze the performance of white blood cell recognition system for three

different sets of features and these features are combined with the Support Vector

Machine (SVM) which classifies white blood cells into their five primary types. This

approach was validated with experiments conducted on digital normal blood smear

images with low resolution.

In conference work [76] we use a high dimensional vector addressing invariant

features. Global sensitivity analysis using Sobol RS-HDMR which can deal with

independent and dependent input variables is used to assess dominate discriminatory
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power and the reliability of feature models in presence of high dimensional input

feature data to build an efficient feature selection.

Paper [77] has been submitted to Computers in Biology and Medicine Journal -

Elsevier. It is about feature extraction and selection for White Blood Cell differential

counts in low resolution cytological images. These work focus on the development of

effective strategies for the understanding of invariant feature extraction and then opti-

mal selection based on different statistically measured approaches on high-dimensional

feature data in low resolution images.

8.3 Challenges & Future Work

Automatic CBC (complete blood count) is a challenging and unsolved problem. It

involves classification of white blood cells into five main categories such as basophils,

eosinophils, lymphocytes, monocytes and neutrophils, and detection and categoriza-

tion of blood pathologies such as anemias, leukaemias, lymphomas, cholera, malaria

and many others. As different white blood cell and pathologies may be differenti-

ated by shape, texture, color and other visual cues advanced image processing and

machine learning techniques need to be utilized to build reliable classification sys-

tems. An important problem to address is the separation of different white blood cell

classes(mature and immature) into 20 sub-classes ”information about cellular imma-

turity ” such as mentioned in [67, Chapter 170]. It may be used to help monitor

more sophisticated cases, as well as the identification of deformed RBC and white

blood cell shapes with diseases [67]. Some red blood cell abnormalities case are listed

here ( [67], figures 160-2 to 160-15) :

I Macrocytic anemia : cells are larger than normal and oval in shape(arrow).

II Sickle cells : a sickle or crescent shape.

III Teardrop poikilocytes : Teardrop-shaped red cells.

IV Rouleau formation : chain of overlapped red cells. and etc.

Further research should be done to investigate the different techniques to address

better improvement in segmentation step. This will be accomplished using cutting

edge image segmentation techniques in combination with advanced machine learning
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techniques for classification, with the goal of improving the accuracy of CBC reports

and to isolate cells in the individual sub images. The methods such as simultaneous

detection and segmentation [83] should be investigated. Feature selection is an im-

portant issue for future research. The findings are expected to be supported by future

work considering different underdeveloped HDMR variations, i.e., Sobol HDMR using

Quasi Monte Carlo, multiple sub-domain random sampling HDMR, or Cut-HDMR.

In this study it is assumed that the number of samples in each individual class is

identical and we have a balanced database in which in practice typical proportions

of the cell types are not the same in blood smear slides (e.g., neutrophil (40- 75%)

vs basophil granulocytes (0.5%)). In such cases, a Breiman Random Forest (BRF)

[23], deep belief networks and Restricted Boltzmann Machines classifiers may be

potentially useful. The BRF algorithm can deal with imbalanced data, can handle

more variables (features) than observations (large attributes, small sample), is robust

for data sets containing noisy samples, and has a good predictive ability without

over-fitting the data. Further, to extract a compact basis of discriminant training

samples, dictionary learning techniques and sparse coding to learn each species are

used. In particular, sparse coding and dictionary methods have proven to be efficient

at modeling complex structures and to be robust to noise, two essential abilities for

the target problem.
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Chapter 9

Appendix - Images

This section contains image information, links to normal, blood cell disorders and

mature white blood cell classes.

9.1 Blood with Different Characteristics

134



Figure 33: Glossary of human blood smear terms

135



Figure 34: Normal blood smear images with different characteristics (N0–N5)
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Figure 35: Normal blood smear images with different characteristics (N6–N9)

9.2 Disorders in Blood Smears

9.3 WBC classes in Blood Smears
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a b

c d

Figure 36: Red Blood Cell Disorders: a)Malaria(P.f) b)Pappenheimer c)Sickle Cell,
d)Rouleaux
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e

Figure 37: Samples of white blood cells : a)Basophils b)Eosinophil c)Lymphocyte
d)Monocyte and e)Neutrophil (8 samples for each in different actual size)
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