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Abstract

The search for the compactified Kerr solution

Borislav Mavrin

Due to the complexity of the Einstein equations the general solution to these equations remains

unknown. Currently there exist quite a few special solutions, which were obtained by assuming

some symmetries of the solution, which allows one to reduce the complexity of these equations.

That is one of the reasons why any exact solution is important. It may shed some light on the

general problem.

There is also demand from string theories for a special type of solutions - compactified solu-

tions. String theories use more than 4 dimensions and in order for these theories to make physical

sense the extra dimensions must be compactified. Therefore the search for the compactified analogs

of the known solutions became an important task.

The well known and widely used in physics non compactified solutions are the Schwarzschild

[15] and Kerr [11] solutions, which are discussed in detail in Chapter 2 of this thesis. Chapter

2 also provides a description of the compactified analog of the Schwarzschild solution obtained

independently by Korotkin and Nicolai [12] and by Myers [14]. However the compactified analog

of the Kerr solution remains unknown.

In Chapter 3 the asymptotic behaviour of the compactified analog of the Kerr solution is inves-

tigated. Two possible ways of solving this problem are discussed.
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Chapter 1

Introduction

Special Theory of Relativity was originated by Albert Einstein in [5] in 1905. Ten years later he

generalized his result and established General Theory of Relativity in [6]. Einstein’s equations are

a system of coupled nonlinear equations, which in general cannot be solved explicitly. After one

hundred years the search for physically meaningful solutions is still under way. Surprisingly, the

Einstein’s equations in vacuum have a very simple form

Rμν = 0 (1.1)

which is to say that the Ricci tensor vanishes.

1.1 Problem statement and research objectives

Some solutions are more important from a mathematical point of view and some are more phys-

ically significant. Furthermore, some solutions (like the Gowdy model, discussed in Subsection

2.2.3) are important in verifying the methodology of numerical relativity.

Probably the most famous and physically relevant solutions are due to Schwarzschild and the

Kerr. Compactified (in one or more dimensions) analogs of the classical solutions are interesting

from the point of view of higher-dimensional theories, in particular string theory.

The periodic analog of the Schwarzschild solution was constructed in [14], [12]. The problem

of constructing the periodic analog of Kerr solution was suggested in [12]. However the con-

struction of the general solution to this problem is rather complicated due to nonlinearities of the

1



corresponding equations as stated in [12]. As a first step toward understanding the periodic Kerr

solution it is reasonable to study its asymptotic behaviour at infinity.

The Kerr metric is a stationary axisymmetric solution; the general form of a metric possessing

this symmetry looks as follows (in the Weyl-Papapetrou coordinates form):

ds2 = f−1[e2k(dx2 +dρ2)+ρ2dφ 2]− f (dt +Adφ)2 (1.2)

where (x,ρ) are Weyl-Papapetrou canonical coordinates: x measures the distance along the sym-

metry axis; ρ is the distance from the symmetry axis; t is the timelike variable as long as f > 0,

and φ is the azimuthal angle.

The Einstein’s equations can be restated in the following equivalent form using Ernst potential

[7] E (x,ρ):

(E + Ē )(Exx +
1

ρ
Eρ +Eρρ) = 2(E 2

x +E
2

ρ ) (1.3)

where

f = ReE Aξ = 2ρ
(E −E )ξ

(E +E )2
kξ = 2iρ

Eξ E ξ

(E +E )2
(1.4)

with ξ = x+ iρ .

Let us denote the {t,φ} block of the metric by g. Then from (1.2) it can be seen that

g =

⎛
⎝ − f − f A

− f A − f A2 +ρ2/ f

⎞
⎠ (1.5)

The complete metric (1.2) can be constructed either from the Ernst potential E or from g

through (1.4). In term of the matrix g the Einstein’s equations reduce to the following matrix

equation:

(ρgxg−1)x +(ρgρg−1)ρ = 0 (1.6)

Therefore two equivalent formulations of the Einstein’s equations are obtained, i.e. (1.3) and (1.6).

Asymptotically, as ρ → ∞, the periodic Kerr solution should coincide with a solution which is

translationally invariant in the x-direction.

Since there are two equivalent forms of the same equations: (1.3) and (1.6), the problem of

finding such an x-independent solution can be approached in two different ways:
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1. Assuming that the Ernst potential is independent of x reduces (1.6) to:

(E + Ē )(
1

ρ
Eρ +Eρρ) = 2E

2
ρ (1.7)

2. Assuming that the metric is independent of x reduces (1.6) to:

(ρgρg−1)ρ = 0 (1.8)

The objective of the current thesis was to analyze the possible asymptotic behaviour of the

hypothetic periodic analog of the Kerr solution by solving (1.7) and (1.6). Since the asymptotic

behaviour of the periodic analog of the Schwarzschild solution is described by the Kasner metric

[12], it is natural to expect that asymptotically the periodic analog of the Kerr solution should be a

rotating analog of the Kasner solution [10].

1.2 Organization of thesis

The thesis is structured as follows: in Section 2 the solutions of the Einstein’s equations relevant

to the present research are discussed; in Section 3 the solutions which can be regarded as possible

asymptotic behaviour of the periodic analog of the Kerr solution are presented, and finally in

Section 4 the results of the thesis are summarized and some related issues are discussed.
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Chapter 2

Background

2.1 Classical solutions

Mathematically, the Einstein equations represent a system of coupled nonlinear partial differential

equations. That makes the construction of exact solutions very hard. Several important classical

solutions are discussed below.

2.1.1 Schwarzschild metric

The Schwarzschild metric [15] is a spherically symmetric static vacuum solution. It describes

the gravitational field created by a spherically symmetric non-rotating black hole. In spherical

coordinates the metric has the following form:

ds2 =−
(

1− 2GM

r

)
dt2+

(
1− 2GM

r

)−1

dr2 + r2dΩ2 (2.1)

where dΩ2 is the metric on a unit two-dimensional sphere,

dΩ2 = dθ 2 + sinθ 2dφ 2 (2.2)

and the constant M has a physical meaning of the mass of the black hole. [4]

A rather simple derivation of the Schwarzschild metric can be found in [4], which is outlined

below.
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The metric outside the black hole satisfies the Einstein’s equations in vacuum:

Rμν = 0. (2.3)

Let us assume the source of gravity to be static (i.e. non-rotating) and spherically symmetric.

Static implies that: (i) the components of the metric are time independent (ii) all time-space cross

terms are zero. Equivalently, the property of the metric being static can be restated as invariance

of the metric under time reversal, t → −t. Under time inversion the term dt2 won’t change, but

time-space terms will, hence the corresponding metric components must vanish.

Let us first rewrite the ordinary Minkowski metric in spherical coordinates (t,r,θ ,φ) as follows:

ds2
M =−dt2 +dr2 + r2dΩ2 (2.4)

with dΩ as in (2.2) .

The general form of the metric with spherical symmetry has the following form:

ds2 =−e2α(r)dt2+ e2β (r)dr2 + r2dΩ2. (2.5)

The exponential function is used here to keep the signature of the metric.

It is possible to find the unknown functions α(r) and β (r) by using the Einstein’s equations.

First step is to compute the Christoffel symbols. The non-vanishing Christoffel symbols are:

Γt
tr = ∂rα, Γr

tt = e2(α−β )∂rα, Γr
rr = ∂rβ ,

Γθ
rθ =

1

r
, Γr

θθ =−re−2β , Γ
φ
rφ =

1

r
,

Γr
φφ =−re−2β sin2 θ , Γθ

φφ =−sinθ cosθ , Γ
φ
θφ =

cosθ

sinθ
.

(2.6)
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Hence the non vanishing components of the Riemann tensor are:

Rt
rtr = ∂rα∂rβ −∂ 2

r α − (∂rα)2

Rt
θ tθ =−r−2β ∂rα

Rt
φtφ =−r−2β sin2 θ∂rα

Rr
θ rθ = re−2β ∂rβ

Rφrφ = re−2β sin2 θ∂rβ

Rθ
φθφ = (1− e−2β )sin2 θ

(2.7)

The Ricci tensor is obtained by contracting the Riemann tensor:

Rtt = e2(α−β )
[
∂ 2

r α +(∂rα)2 −∂rα∂rβ +
2

r
∂rα

]
Rrr =−∂ 2

r α − (∂rα)2 +∂rα∂rβ +
2

r
∂rβ

Rθθ = e−2β [r(∂rβ −∂rα)−1]+1

Rφφ = sin2 (θ)Rθθ

(2.8)

and the curvature scalar is

R =−2e−2β
[
∂ 2

r α +(∂rα)2 +∂rα∂rβ +
2

r
(∂rα −∂rβ )+

1

r2
(1− e2β )

]
(2.9)

By the Einstein’s equations the Ricci tensor must vanish. Therefore:

0 = e2(β−α)Rtt +Rrr =
2

r
(∂rα +∂rβ ) (2.10)

Hence α +β = c, where c is a constant of integration. By rescaling the time coordinate by trans-

formation t → e−ct we can assume c = 0, i.e.

α =−β (2.11)

The condition Rθθ = 0 now implies

e2α(2r∂rα +1) = 1, (2.12)
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or, equivalently,

∂r(re2α) = 1 (2.13)

Integration of (2.13) yields:

e2α = 1− RS

r
(2.14)

where RS is a constant of integration.

As a result of this derivation we arrive at the following metric:

ds2 =−
(

1− RS

r

)
dt2+

(
1− RS

r

)−1

dr2 + r2dΩ2 (2.15)

describing the gravitational field outside a spherically symmetric black hole.

The only two remaining Einstein’s equations are Rtt = 0 and Rrr = 0; they are automatically

satisfied by the metric (2.15) for any value of RS.

To understand the physical meaning of the constant RS let us look at the Newtonian limit,

which is based on three assumptions: the particles’ speed is small compared to the speed of light;

the gravitational field is weak; the field is static. In that case the gtt component of the metric around

the point mass particle is:

gtt =−
(

1− 2GM

r

)
. (2.16)

As r → ∞ the spherically symmetric black hole can be assumed to behave as a point mass

particle and the gravitational tug of the black hole becomes small. Therefore in order to make

physical sense the metric (2.15) must reduce to the Newtonian limit and the gtt component of the

metric (2.15) should coincide with (2.16). Hence we can make the identification RS = 2GM, where

M is the mass of the black hole.

It is easily seen that as M → 0 the metric reduces to the Minkowski flat space metric [13] as

expected.

According to Birkhoff’s theorem the Schwarzschild metric is the unique spherically symmetric

asymptotically flat static solution of the Einstein’s equations in vacuum [4].

The components of the metric (2.1) become infinite at two points: r = 0 and r = RS = 2GM. To

find out whether these are intrinsic singularities of the manifold consider the Kretschmann scalar

invariant:

W = Rμνρσ Rμνρσ (2.17)
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If W diverges at a point, this point is an intrinsic singularity of a manifold (the converse is not

true in general since one can construct several invariants of the Riemann tensor).

For the Schwarzschild metric

W = Rμνρσ Rμνρσ =
48G2M2

r6
; (2.18)

thus r = 0 is indeed an intrinsic singularity. As for the surface r = 2GM, the scalar W is well

behaved there. Thus in order to show that r = 2GM is not a singularity it is necessary to find some

coordinate system where this singularity disappears.

Such a coordinate system was found by Kruskal and Szekeres; it consists of coordinates

{T,R,θ ,φ} defined as follows:

T =
( r

2GM
−1

)1/2

er/4GM sinh
( t

4GM

)
(2.19)

R =
( r

2GM
−1

)1/2

er/4GM cosh
( t

4GM

)
(2.20)

for r > 2GM, and:

T =−
( r

2GM
−1

)1/2

er/4GM cosh
( t

4GM

)
(2.21)

R =−
( r

2GM
−1

)1/2

er/4GM sinh
( t

4GM

)
(2.22)

for 0 < r < 2GM. In these coordinates the metric (2.1) looks as follows:

ds2 =
32G3M3

r
e−r/2GM(−dT 2 +dR2)+ r2dΩ2 (2.23)

where r is defined implicitly as

T 2 −R2 =
(

1− r

2GM

)
er/2GM (2.24)

In {T,R,θ ,φ} coordinates point r = 2GM corresponds to T = 0, R = 0, which is a regular point.

Hence r = 2GM is just a coordinate singularity. However the value r = 2GM is special in some

other way: it corresponds to the so-called event horizon.

The (compact) event horizon is a null hypersurface, which separates the points of the Pseudo-
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Riemannian manifold that are connected to spatial infinity by a timelike path from those that are

not [4]. Since it is a global characteristic of the pseudo manifold, it can be a rather complicated

task to derive the event horizon from a given metric. But in the case of stationary asymptotically

flat metrics which contain event horizons with spherical topology (i.e. Schwarzschild and Kerr

solutions), the situation is much simpler. It can be shown (see [4]) that in this case there exists a

coordinate system with the property that the event horizon is described by the following condition:

grr(rH) = 0 (2.25)

where r is the radial spherical coordinate and rH is a certain value. In this thesis these specially

chosen coordinates for the Schwarzschild and Kerr solutions are used. Thus in the case of the

Schwarzschild metric the event horizon is described by r = 2GM. The value rH corresponding to

the Kerr metric is discussed in the next subsection.

2.1.2 Kerr metric

The Kerr metric [11] is an axially symmetric static vacuum solution which describes the gravita-

tional field created by an axially symmetric rotating black hole.

In Boyer-Lindquist (t,r,θ ,φ) coordinates the metric has the following form:

ds2 =−
(

1− 2GMr

ρ2

)
dt2− 2GMar sin2 θ

ρ2
(dtdφ +dφdt)+

ρ2

Δ
dr2 +ρ2dθ 2+

sin2 θ

ρ2
[(r2+a2)2 −a2Δsin2 θ ]dφ 2 (2.26)

where

Δ = r2 −2GMr+a2 (2.27)

and

ρ2 = r2 +a2 cos2 θ (2.28)

Here M and a are constants. Physically M is the mass of the rotating black hole and a = J/M is

the angular momentum per unit mass.

The Boyer-Lindquist spatial coordinates {r,θ ,φ} (ellipsoidal coordinates) are related to Carte-
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sian coordinates {x,y,z} by:

x =
√

r2 +a2 sinθ cosφ

y =
√

r2 +a2 sinθ sinφ

z = r cosθ

(2.29)

Checking that the Kerr metric satisfies the Einstein equations is much more complicated than in

the case of the Schwarzschild solution; the complexity stems from the off-diagonal terms of the

metric.

If the black hole is not rotating, i.e. a → 0 the Kerr metric reduces to the Schwarzschild metric.

On the other hand if a is kept constant and M → 0 the result is:

ds2 =−dt2 +
(r2 +a2 cos2 θ)

r2 +a2
dr2

(r2 +a2 cos2 θ)dθ 2 +(r2 +a2)sin2 θdφ 2

(2.30)

In order for the metric to make physical sense this limit must represent flat spacetime. In-

deed, using (2.29) the metric (2.30) represents Minkowski flat spacetime in Cartesian coordinates

{t,x,y,z}.

If a metric is independent of some coordinate x, then the vector ∂x is a Killing vector. Since the

metric components in (2.26) are independent of t and φ the vectors

K = ∂t R = ∂φ (2.31)

are Killing vectors. In other words those two Killing vectors tell us that the metric is axially

symmetric (R) and stationary (K). It is worth noting that the metric is stationary since the black

hole is spinning at a constant rate.

As discussed in Subsection 2.1.1 the coordinates in (2.26) are chosen so that the event horizon

is described by the equation grr = 0. Therefore, the condition for the event horizon is

Δ

ρ2
= 0 Δ(r) = r2 −2GM+a2 (2.32)

One can consider the following three cases: GM > a, GM = a and GM < a. The only case

10



which is physically important is the case GM > a, which corresponds to two solutions of the

equation grr = 0: [4]. Hence there are two values for r:

r± = GM±
√

G2M2 −a2 (2.33)

at which Δ = 0. These two values correspond to two event horizons; and the singularities at these

values of r are coordinate singularities which can be removed by a suitable change of coordinates.

Currently there exist several different coordinate systems used to study various properties of the

Kerr solution. [18].

Another related notion is the Killing horizon. The Killing horizon is the null hypersurface

along which the Killing vector field is null. In the case of the Schwarzschild solution the event

horizon coincides with the Killing horizon, since it is stationary asymptotically flat spacetime. But

for the Kerr metric the Killing horizon for K = ∂t does not coincide with the event horizon, since

the norm of Kμ is

KμKμ =− 1

ρ2
(Δ−a2 sin2 θ) (2.34)

which is non-zero at Δ = 0.

At r = r+

KμKμ =
a2

ρ2
sin2 θ (2.35)

which is to say that the Killing vector K is spacelike except at the points θ = 0,π .

The Killing horizon is determined by the condition KμKμ = 0, which is described by the fol-

lowing stationary limit surface (on which gtt = 0):

(r−GM)2 = G2M2 −a2 cos2 θ (2.36)

While the outer event horizon (r = r+) is the surface

(r+−GM)2 = G2M2 −a2. (2.37)

The region between those two surfaces is called the ergosphere; this is the region not present

in Schwarzschild spacetime. The characteristic feature of this region is the so-called inertial frame

dragging effect: the particle in this region must move in the same direction as the rotation of the
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black hole.

As a simple example let us consider a photon. The photon moves along light-like trajectories,

i.e. along its trajectory the line element has zero length: ds2 = 0. Let us assume that the photon

starts its trajectory in the plane θ = π
2

with initial dr = 0 and dθ = 0. There the equation describing

the trajectory is

ds2 = 0 = gttdt2+gtφ (dtdφ +dφdt)+gφφ dφ 2 (2.38)

Solving for the angular velocity yields:

dφ

dt
=− gtφ

gφφ
±
√( gtφ

gφφ

)2 − gtt

gφφ
(2.39)

On the stationary limit surface (gtt = 0) the equation takes one of the following two forms, de-

pending on the choice of the sign:

dφ

dt
= 0 or

dφ

dt
=

a

2G2M2 +a2
(2.40)

Therefore either the photon is not moving in the radial direction at all or spins about the axis

of symmetry in the same direction as the black hole does (the velocity has the same sign as a).

As in the case of the Schwarzschild solution, locating curvature singularities is non trivial.

Namely, consider the following scalar [18]:

Rμνρσ Rμνρσ =
48M2(r2 −a2 cos2 θ)[(r2 +a2 cos2 θ)2 −16r2a2 cos2 θ ]

(r2 +a2 cos2 θ)
(2.41)

Since both terms in the denominator are non negative the curvature singularity occurs when

r = 0, θ = π/2 (2.42)

which represents a ring. Hence the singularity in the case of the Kerr solution has the ring-like

geometry.

It is interesting to describe what happens if one analytically continues the metric inside of the

ring. Such an analytic continuation of the metric [4] shows that the spacetime inside the ring is

also asymptotically flat and is described by the Kerr metric with r < 0.
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There is another counterintuitive result associated with the Kerr metric, that is the existence of

closed timelike curves. Assume for simplicity that the trajectory starts in the spatial plane with

fixed r, θ , and t. Then for small negative values of r (inside the singularity ring)

ds2 ≈ a2
(

1+
2GM

r

)
dφ 2 (2.43)

the proper time is negative. By assumption this path is closed. Hence theoretically the particle

travels to the past.

2.1.3 Kasner solution

The 4-dimensional Kasner metric has the following form [10]:

ds2 =−dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2 (2.44)

with two conditions on constants pi:

p1 + p2 + p3 = 1 (p1)
2 +(p2)

2 +(p3)
2 = 1 (2.45)

A few physical observations can be drawn by directly studying the metric (2.44). Each time

slice (t = const) is flat 3-dimensional space. Another important conclusion is that the volume

element is time dependent:
√−g = t (2.46)

Therefore the universe described by (2.44) is expanding. And the rate of expansion is different

in different direction, i.e it is anisotropically expanding universe. Since there are two conditions,

only one of the pi is free. The case p1 = p2 = p3 is impossible. And the equality of the two

pi is possible only in the triples: (−1
3
, 2

3
, 2

3
) and (0,0,1). In the latter case (2.44) is reduced to

Minkowski flat-space by the coordinate transformation [2]:

t sinhz = ξ t coshz = τ (2.47)

13



In [2] the authors also show that pi can be parametrized in the following way:

p1 =
−u

1+u+u2
p2 =

1+u

1+u+u2
p3 =

u(1+u)

1+u+u2
(2.48)

where u ≥ 1. Hence

− 1

3
≤ p1 ≤ 0 0 ≤ p2 ≤ 2

3

2

3
≤ p3 ≤ 1 (2.49)

Physically it means that if the universe is expanding along two dimensions, then it must contract

in the remaining dimension.

The metric (2.44) obtained by Kasner in 1921 [10] was important as an exact solution of Ein-

stein’s equations. But its physical significance was not apparent at that time. Later, as for example

in [2] and [3], it was rediscovered as an asymptotic behaviour of a homogenous spacetime metric

as t → ∞.

In [2] the authors show that the asymptotic behaviour of (2.44) near the time singularity, i.e. at

t → ∞ is:

ds2 =−dt2 + t2p′1dx2 + t2p′2dy2 + t2p′3dz2 (2.50)

where

p′1 =
|p1|

1−2|p1| p′2 =−2|p1|− p2

1−2|p1| p′3 =
p3 −2|p1|
1−2|p1| (2.51)

That is if p1 < 0, then p′2 < 0. Physically this implies that the direction in which the universe is

contracting changes its direction. The authors call this process Kasner epoch switching. Paramet-

rically this result can be represented as

u′ = u−1 p′1 = p2(u
′) p′2 = p1(u

′) p′3 = p3(u
′) (2.52)

Consider (2.44) in a more general form with a slightly different notation more suitable for

further discussion:

ds2 =−t2p0dt2+ t2p1dρ2 + t2p2dx2 + t2p3dφ 2 (2.53)

where

p0 +1 = p1 + p2 + p3 (p0 +1)2 = (p1)
2 +(p2)

2 +(p3)
2 (2.54)
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Consider the following coordinate transformation called Wick rotation:

ρ →−it (2.55)

Under the Wick rotation the metric (2.54) becomes (with the adjusted signature):

ds2 =−ρ2p1dt2+ρ2p0dρ2 +ρ2p2dx2 +ρ2p3dφ 2 (2.56)

In this form the Kasner metric plays an important role in describing the asymptotic behaviour

of the periodic analog of the Schwarzschild solution as will be shown in 2.2.1.

2.1.4 van Stockum solution

Another axisymmetric stationary exact solution of Einstein’s equations is the van Stockum solution

[17]. The general metric is given by [16]:

ds2 = ρ−1/2(dρ2 +dx2)−2ρdφdt +ρΩdt2 (2.57)

where Ω is an arbitrary solution of the Euler-Darboux equation

Ωxx +
1

ρ
Ωρ +Ωρρ = 0 (2.58)

The source of gravity in this model is the infinite cylinder of pressureless fluid (dust) rotating

about an axis of symmetry. As it can be observed the metric has an off diagonal time-space cross

term which implies the presence of rotation.

The original van Stockum metric in [17] admits closed timelike curves, which limits its appli-

cability as a physically realistic model.

In this work we rediscover a special case of the van Stockum metric during the investigation of

the asymptotic behaviour of the periodic analog of the Kerr solution.
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2.2 Periodic analogs of classical solutions

The periodic solutions of Einstein’s equations attracted attention due to the following reasons:

1. Any exact solution of the Einstein equations is important in its own right.

2. String theories need more than 4 dimensions. In order for those theories to make physical sense

the number of dimensions must be reduced by compactifying some of them.

3. In numerical relativity one of the active fields is black hole binaries. The nonlinearity of Ein-

steins’ equations make it hard to design stable numerical algorithms for the approximation of its

solutions. One of the popular test bed models to test the algorithms is the Gowdy [9] model, whose

space slices are three-dimensional tori. [1].

2.2.1 Periodic analog of Schwarzschild solution

The periodic analog of the Schwarzschild solution was found in works of R. Myers [14], and D.

Korotkin and H. Nicolai [12].

The present subsection is based on [12].

The authors start with a general form of a stationary axisymmetric spacetime with the following

metric:

ds2 = f−1[e2k(dx2 +dρ2)+ρ2dφ 2]− f (dt +Adφ)2 (2.59)

where (x,ρ) are Weyl canonical coordinates (cylindrical coordinates): x is measured along the

axis of symmetry and ρ is the distance from the axis of symmetry. The Einstein’s equations can be

restated in the following equivalent form using Ernst potential [7] E (x,ρ):

(E + Ē )(Exx +
1

ρ
Eρ +Eρρ) = 2(E 2

x +E
2

ρ ) (2.60)

such that the metric coefficients can be reproduced from the following equations:

f = ReE Aξ = 2ρ
(E −E )ξ

(E +E )2
kξ = 2iρ

Eξ E ξ

(E +E )2
(2.61)

with ξ = x+ iρ .

If E is real-valued then coefficient A in(2.61) is zero and the metric (2.59) is static, that is
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without rotation. By the change of variable:

w = lnE (2.62)

the equation (2.60) reduces to the Euler-Darboux equation:

wxx +
1

ρ
wρ +wρρ = 0, (2.63)

and the metric (2.59) reduces to

ds2 = e−w[e2k(dx2 +dρ2)+ρ2dφ 2]+ ewdt2 (2.64)

where

kξ =
iρ

2
(wξ )

2 (2.65)

or in real coordinates (x,ρ):

kρ =
ρ

4
(w2

ρ −w2
x) kx =

ρ

2
wxwρ (2.66)

In order to construct the periodic analogue of the Schwarzschild metric, the authors made use

of the standard averaging procedure used in particular in construction of meromorphic functions

on the torus T = C/{L1,L2}, where L1 and L2 are the periods. Namely, consider a meromorphic

function f0(ξ ), where ξ ∈ C. If there exist constants {amn}∞
m,n=−∞, such that the series:

f (ξ ) =
∞

∑
m,n=−∞

{ f0(ξ +mL1 +nL2)+amn} (2.67)

converges, then f (ξ ) is a meromorphic function on the torus T. Equivalently f (ξ ) is a doubly

periodic analog of f0(ξ ).

In a similar way it is possible to construct a doubly periodic analog of a real-valued harmonic

function w(ξ ,ξ ) = Re f (ξ ) for some locally holomorphic function f (ξ ). Therefore w(ξ ,ξ ) satis-

fies the Laplace equation:

w
ξξ

= 0 (2.68)
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Note that if there exists some solution w0(ξ ,ξ ) of (2.68), then (i) for any L ∈ C, w0(ξ +L) is also

a solution and (ii) any linear combination of solutions of (2.68) is also a solution. Therefore if the

following series:

∞

∑
m,n=−∞

{w0(ξ +mL1 +nL2)+bmn} (2.69)

converges for some {bmn} ∈ R, then it is also a solution of (2.68).

If we apply this idea to the Euler-Darboux equation (2.63) in complex coordinates (ξ ,ξ ) with

ξ = x+ iρ , we have

w
ξξ

−
wξ −w

ξ

2(ξ −ξ )
= 0 w(ξ ,ξ ) ∈ R (2.70)

Even though the Euler-Darboux looks more complicated it still satisfies the same two properties

as (2.68) does with one particularity: the invariance holds only under real translations, that is

ξ → ξ +L, for any L ∈ R.

This allows to construct a solution periodic along the x-direction. The authors prove the fol-

lowing result:

Theorem 1. Let w0(x,ρ) be any solution of the Euler-Darboux equation corresponding to an

asymptotically flat metric (2.64), i.e.

w0(x,ρ) =
β

r
+O(r−2) as r → ∞ (2.71)

where r =
√

x2 +ρ2; M =−1
2
β is the mass. Let

an =− β

L|n| , n 
= 0, a0 = 0 L ∈ R (2.72)

Then series

w(x,ρ) =
∞

∑
n=−∞

{w0(x+nL,ρ)+an} (2.73)

converges for all (x,ρ) except the points (x0 + nL,ρ0), where the function w0(x,ρ) is singular

(n ∈ Z), and defines a periodic function with period L.

It is worth noting that this central result of the paper [12] is quite general. Given an arbitrary

static asymptotically flat metric it is possible to construct its x-periodic analog.
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Since the Schwarzschild solution (2.1) satisfies the hypothesis of Theorem 1 the authors im-

mediately obtain its x-periodic analog.

The Ernst potential which corresponds to the Schwarzschild solution (2.1) has the following

form:

w0 = lnE0 E0(x,ρ) =

√
(x−M)2 +ρ2 +

√
(x+M)2 +ρ2 −2M√

(x−M)2 +ρ2 +
√

(x+M)2 +ρ2 +2M
(2.74)

where M ∈ R is a positive constant, the mass of the black hole.

Therefore by Theorem 1 the periodic analog of the Schwarzschild solution can be represented

in the form of the following infinite product:

E (x,ρ) = E0(x,ρ)
∞

∏
n=1

E0(x+nL,ρ)E0(x−nL,ρ)exp
(4M

nL

)
(2.75)

Here E0 is the Ernst potential corresponding to the Schwarzschild metric. And therefore M is the

mass or the spherically symmetric non rotating black hole, where L is the period. The infinite

product (2.75) converges since the corresponding series (2.73) converges.

The x-periodicity of the Ernst potential is not sufficient for the metric to be periodic in the

x-direction. The periodicity of the metric coefficient is guaranteed by the following result [12]:

Theorem 2. Let L > 2M. Then the function k(x,ρ) corresponding to the Ernst potential (2.75) is

periodic in x with period L, i.e.

k(x+L,ρ) = k(x,ρ) (2.76)

Hence the metric corresponding to the Ernst potential is indeed periodic in x. Since the Ernst

potential (2.75) is given by an infinite product obtaining the explicit form of the function k(x,ρ)

seems to be a rather complex task. To summarize, the periodic analog of the Schwarzschild solution

is given by (2.64), (2.66), (2.62), and (2.75).

Another important result of the paper [12] is the first-order asymptotic behaviour of the periodic

analog of the Schwarzschild metric.

Theorem 3. The asymptotic behaviour of the Ernst potential (2.75) is given by

E =Cρ4M/L
(
1+o(1)

)
as ρ → ∞ (2.77)

where C is some constant.
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Hence the metric (2.64) tends to

ds2 = C̃ρ
α2

2 −α(dx2 +dρ2)+C−1ρ2−αdφ 2 −Cραdt2 as ρ → ∞ (2.78)

where C̃ and C are constants of integration, and α = 4ML−1.

The metric (2.78) is the Kasner metric [10], discussed in more detail in 2.1.3. It is important

to note that the periodic analog of the Schwarzschild metric asymptotically, as ρ → ∞, is non flat,

which is expected, since the solution is compactified along one of the spatial dimensions.

On the part ρ = 0, M ≤ |x| ≤ 1
2
L of the symmetry axis, the solution can be represented in terms

of the Γ-function:

E (x,ρ = 0) = exp
(4γM

L

)Γ
( |x|+M

L

)
Γ
(

1− |x|−M

L

)
Γ
( |x|−M

L

)
Γ
(

1− |x|+M

L

) (2.79)

where γ is Euler-Mascheroni constant. In the region ρ = 0, |x| ≤ M the Ernst potential vanishes,

E ≡ 0.

As expected, in the limit L → ∞ the metric (2.64) tends to the Schwarzschild metric.

The solution technique described above is applicable in the case of stationary axisymmetric

spacetime without rotation, since the Einstein equations in terms of Ernst potential can be lin-

earized. In the case of the metrics with rotation this procedure does not work anymore since in that

case the the Einstein equations are non linearizable anymore.

2.2.2 Some physical properties of the periodic analog of the Schwarzschild

solution

The authors of [12] suggest studying the solution (2.64) on and inside the event horizon. This idea

is developed in detail in [8], where the authors study the properties of the deformed (or distorted)

event horizon due to mass-period ratio. The content of this section is based on [8] unless stated

otherwise.

In [8] the metric for the periodic analog of the Schwarzschild solution from [12] is given in two

different forms: integral and series representations.

As well as in the paper [12], the metric in [8] is not given explicitly, but consists of the following

three components:
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1. function w(x,ρ)

2. function k(x,ρ):

kρ =
ρ

4
(w2

ρ −w2
x) kx =

ρ

2
wxwρ (2.80)

3. the general form of the static stationary axisymmetric line element:

ds2 = e−w[e2k(dx2 +dρ2)+ρ2dφ 2]+ ewdt2 (2.81)

Therefore the function w(x,ρ) completely describes the metric.

In order to obtain the integral representation the authors use the three-dimensional Green’s

function. The result they obtain is:

w(x,ρ) =− 2

π

∫ ∞

0
dy

(
U(β , x̃)

β
− μ√

β 2 +b2

)
+

μ

π
ln ρ̃2 +b2 (2.82)

where

ρ̃ = ρ/L x̃ = x/L β =
√

y2 + ρ̃2 μ = M/L (2.83)

U(β , x̃) =V (β , x̃)+V (β ,−x̃) (2.84)

V (β , x̃) = arctan
[coshβ +1

sinhβ
tan

(μ + x̃

2

)]
+πθ(μ + x̃−π), (2.85)

M is the mass of the black hole and L is the period of the metric in the x-direction. θ(.) is the

θ -function defined as

θ(z;τ) =
∞

∑
n=−∞

exp(πin2τ +2πinz). (2.86)

The authors choose L = 2π .

Similar computations lead to the following integral representation of the wS(x,ρ) (subscript S

here stands for Schwarzschild) function in the original Schwarzschild solution:

wS(x,ρ) =− 2

π

∫ ∞

0
dy

US(β , x̃)

β
(2.87)

where

US(β , x̃) =VS(β , x̃)+VS(β ,−x̃) (2.88)

VS(β , x̃) = arctan
(μ + x̃

β

)
. (2.89)
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Hence in order to study the properties of the event horizon it is convenient to define the follow-

ing difference (the convenience of this difference will be explained later):

ŵ(x) = w(x,ρ = 0)−wS(x,ρ = 0) =− 2

π

∫ ∞

0
dy
(U(y, x̃)−US(y, x̃)

y
− μ√

y2 +1

)
. (2.90)

The Fourier series for function w(x,ρ) looks as follows:

w(x,ρ) =
2μ

π
ln ρ̃ −4

∞

∑
k=1

sin(kμ)

πk
cos(kx̃)K0(kρ̃) (2.91)

where K0(.) is the MacDonald function (modified Bessel functions of the third kind). For small

values of ρ̃:

−K0(kρ̃)∼ ln
(kρ̃

2

)
+ γE (2.92)

where γE is the Euler’s constant.

Then as ρ → ∞ in the region |x̃| ≤ μ

w(x,ρ)∼ 2ln
ρ̃

π
+

2μ

π
ln4π

+ ln

∣∣∣ 1

π
sin

(μ + x̃

2

)
Γ2

(μ + x̃

2π

)∣∣∣
+ ln

∣∣∣ 1

π
sin

(μ − x̃

2

)
Γ2

(μ − x̃

2π

)∣∣∣
(2.93)

On the other hand, the asymptotic behaviour of ws(x,ρ) can be obtained from the representa-

tion:

wS(x,ρ) =− ln
[√(μ − x̃)2 + ρ̃2 − x̃+μ√

(μ + x̃)2 + ρ̃2 − x̃−μ

]
. (2.94)

Near the axis of symmetry in the region |x| ≤ μ the first term of the asymptotic expansion is

wS(x,ρ)∼ ln
ρ̃2

4(μ2 − x̃2)
|x̃| ≤ μ. (2.95)

Denoting ŵ(x) = limρ→0[w(ρ ,x)−wS(ρ ,x)] one gets the following asymptotics:

ŵ(x)∼ 2μ

π
ln(4π)+ ln

[
f
(μ + x̃

2

)
f
(μ − x̃

2

)]
(2.96)

22



where

f (y) =
1

π2
ysin(y)Γ2

( y

π

)
. (2.97)

For 0 ≤ y ≤ π it can be approximated by a linear function

f (y)∼ 1− y

π
. (2.98)

In order to obtain the large distance asymptotics (ρ → ∞) the integral representation (2.82) can

be used. The first term in this expansion is

w(x,ρ)∼ 2μ

π
ln ρ̃ . (2.99)

In the limit ρ → ∞ the metric has the following asymptotics

ds2 =−ρ2
μ
π dt2+ρ−2

μ
π (1− μ

π )(dρ2 +dx2)+ρ−2
μ
π ρ2dφ 2 (2.100)

which is exactly the Kasner metric (2.78) with α = 2
μ
π and L = 2π .

To see how the properties of the event horizon of (2.64) differ from those of the Schwarzschild

solution it is necessary to apply a suitable coordinate transformation.

It can be shown that

k̂(x,ρ = 0) = 4[
1

2
ŵ(x,ρ = 0)−u], −M ≤ x ≤ M (2.101)

for some constant u.

Consider the following coordinate transformation:

ρ = eu
√

r(r−2M0)sinθ ,

x = eu(r−M0)cosθ ,
(2.102)

where

M0 = Me−u. (2.103)
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Applying this transformation to (2.64) one obtains:

ds2 =− e−ŵ
(

1− 2M0

r

)
dt2+ ek̂−ŵ+2u

(
1− 2M0

r

)−1

dr2

+ ek̂−ŵ+2ur2(dθ 2 + e−k̂ sin2 θdφ 2)

(2.104)

Hence the event horizon is described by the coordinate singularity r = 2M0 and the 2-dimensional

metric on the surface of the event horizon is

dγ2 = 4M2
0

[
eŵ−2udθ 2 + e−ŵ+2u sin2 θdφ 2

]
(2.105)

The area of the event horizon can be computed to give

A = 16πM2
0 (2.106)

It is possible to use the approximations of ŵ from (2.96) to compute the constant u from (2.101):

u ∼ μ

π
ln4π +

1

2
ln f (μ) (2.107)

The shape function (used to compute the Gaussian curvature) is defined by

F (x) =
1

2
ŵ(x)−u (2.108)

Multiplication of (2.105) by (2μ0)
−2, where μ0 = μe−u, yields:

dσ 2 = e2F dx2

μ2 − x2
+ e−F (μ2 − x2)

dφ 2

μ2
. (2.109)

The Gaussian curvature of the event horizon K = 1
2
R, where R is the Ricci scalar curvature is:

K = e−2F (x)
[
1+(μ2 − x2)[F ′′ −2(F ′)2]−4xF ′]. (2.110)

The Gauss-Bonnet formula implies:

∫
d2x

√
σK = 4π (2.111)
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In the case of the original Schwarzschild solution K = 1. In the case of its periodic analog K > 1 at

z =±M and K < 1 at x = 0. The physical explanation to that result looks as follows: the variation

in K is due to the self-attraction of the black hole due to compactification along the x coordinate.

Approximation (2.98) together with (2.96), (2.101) yield the following expressions for the

shape function, 2-dimensional metric on the surface of the event horizon and Gaussian curvature:

F =
1

2
ln

[
f
(μ+x̃

2

)
f
(μ−x̃

2

)
f (μ)

]
≈ 1

2
ln

[
1+

μ2 − x̃2

4π(π −μ)

]
(2.112)

dσ 2 = F(x)dx2 +
dφ 2

μ2F(x)
(2.113)

where

F(x)≈ 1

μ2 − x2
+

1

4π2(1−μ/π)
(2.114)

K ≈ 16π2(π −μ)2[(2π −μ)2 +3x2]

[(2π −μ)2 − x2]3
. (2.115)

The metric (2.113) can also be obtained as an induced geometry on a surface of revolution Σ

embedded in R3. Consider the euclidean line element in R3 written in cylindrical coordinates:

dl2 = dh2 +dr2 + r2dφ 2 (2.116)

Let h = h(r) be an equation which determines the surface Σ. Then the metric on this surface is

dσ 2 =
[
1+

(dh

dr

)2]
dr2 + r2dφ 2 (2.117)

which coincides with (2.113) after the identification

r =
1√
F(x)

(2.118)

(dh

dx

)2

+
(dr

dx

)2

= F(x) (2.119)
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Therefore the derivative of the function h(x) should be given by:

dh

dx
=

√
F − F ′2

4F3
(2.120)

In order to understand the general shape of the curve h(x) the authors use numerical approxi-

mations. For small values of μ = M/L (mass-period ratio) the shape tends to a circle and for large

values of μ the circle deforms into a cigar-like shape.

2.2.3 The Gowdy model

Since the research objective of this thesis was to study the periodic analog of the Kerr solution,

the discussion of the Gowdy model is relevant here. The Kerr and van Stockum solutions are

examples of solutions with rotation, but these solutions are non-periodic. On the other hand the

Gowdy solution is periodic in three dimensions. The discussion of this section is based on [1].

The line element corresponding to the Gowdy model has the following form

ds2 = e2a(−dt2 +dz2)+R(eP(dx+Qdy)2 + e−Pdy2) (2.121)

where a,R,P,Q are functions of t and z obeying the Einstein’s equations which are periodic with

respect to the space variables x, y and z.

By choosing

Q = 0 R = t a = ln t−1/4 +λ/4 (2.122)

the line element (2.121) reduces to

ds2 = t−1/2eλ/2(−dt2+dz2)+ t(ePdx2 + e−Pdy2). (2.123)

Then the Einstein’s equations reduce to

Ptt + t−1Pt −Pzz = 0 (2.124)

λt = t(P2
t +P2

z ) (2.125)
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and

λz = 2tPzPt . (2.126)

One can choose

P = J0(2π)cos2πz (2.127)

as the particular solution to (2.124), where J0 is the Bessel function. That is another simplifi-

cation, since the equation (2.124) admits series solutions, where each term is a combination of

trigonometric functions and Bessel functions:

λ =−2πtJ0(2πt)J1(2πt)cos2 (2πz)+2π2t2[J2
0(2πt)+ J2

1(2πt)]−
1

2
[(2π)2[J2

0(2π)+ J2
1(2π)]−2πJ0(2π)J1(2π)]

(2.128)

This shows that even a simplified ”linearized” version the Gowdy model is still quite non-trivial,

and, therefore, can be used as toy test model in numerical relativity.
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Chapter 3

Results

The goal of this thesis is inspired by the search of the periodic analogue of the Kerr solution with

periodicity along the x-coordinate (in Weyl canonical coordinates).

As it was discussed in Section 1.1 the study of the asymptotic behaviour of the hypothetical

periodic analog of the Kerr solution can be attempted by solving two equivalent formulations of

the Einstein’s equations for the stationary axisymmetric spacetime metric.

Let us denote the {t,φ} block of the metric by g. Then from (2.59) it can be seen that

g =

⎛
⎝ − f − f A

− f A − f A2 +ρ2/ f

⎞
⎠ . (3.1)

In terms of the matrix g the Einstein’s equations reduce to the following matrix equation:

(ρgxg−1)x +(ρgρg−1)ρ = 0. (3.2)

In the limit as ρ →∞ the period of the metric along the x coordinate becomes negligible and the

leading term of the asymptotics of matrix g as ρ → ∞ should be independent of x. Then, assuming

that the Ernst potential is independent of x, the Ernst equation (2.60) reduces to

(E + Ē )(
1

ρ
Eρ +Eρρ) = 2E

2
ρ ; (3.3)

the solution of this equation is discussed in 3.1.

On the other hand, if one alternatively assumes that the matrix g given by (3.1) is independent
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of x, the equation (3.2) turns into

(ρgρg−1)ρ = 0; (3.4)

solutions of this equation are discussed in 3.2

3.1 Equation in terms of Ernst potential

The Lax pair which corresponds to (2.60) is:

Ψz =
1

E +E

(⎛
⎝ 0 Ez

E z 0

⎞
⎠√

λ − z

λ − z
+

⎛
⎝Ez 0

0 E z

⎞
⎠
)

Ψ (3.5)

Ψz =
1

E +E

(⎛
⎝ 0 Ez

E z 0

⎞
⎠√

λ − z

λ − z
+

⎛
⎝Ez 0

0 E z

⎞
⎠
)

Ψ (3.6)

where z = x+ iρ . Observe also that

Ez =−Ez E z =−E z (3.7)

Hence equations (3.5) and (3.6) can be written as

Ψz =

(
A

√
λ − z

λ − z
+B

)
Ψ (3.8)

Ψz =

(
−A

√
λ − z

λ − z
−B

)
Ψ (3.9)

where

A =
1

E +E

⎛
⎝ 0 Ez

E z 0

⎞
⎠

B =
1

E +E

⎛
⎝Ez 0

0 E z

⎞
⎠

(3.10)
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Using the definition of z, the derivatives of Ψ with respect to x and ρ are:

Ψx = A

(√
λ − x+ iρ

λ − x− iρ
−
√

λ − x− iρ

λ − x+ iρ

)
Ψ (3.11)

Ψρ = i

(
A

(√
λ − x+ iρ

λ − x− iρ
+

√
λ − x− iρ

λ − x+ iρ

)
+2B

)
Ψ (3.12)

Assuming that matrices A and B are independent of x, we have that Ψx = −Ψλ . Then, setting

x = 0, the Lax pair simplifies to:

Ψλ = −A

(√
λ + iρ

λ − iρ
−
√

λ − iρ

λ + iρ

)
Ψ (3.13)

Ψρ = i

(
A

(√
λ + iρ

λ − iρ
+

√
λ − iρ

λ + iρ

)
+2B

)
Ψ. (3.14)

The change of variable (λ ,ρ) −→ (γ,ρ) defined by

γ =
1

iρ
(λ +

√
λ 2 +ρ2) (3.15)

simplifies the linear system (3.13), (3.14) to:

Ψγ =
1

γ

ρ

(E +E )

⎛
⎝ 0 Eρ

E ρ 0

⎞
⎠Ψ (3.16)

Ψρ =
1

E +E

⎛
⎝Eρ 0

0 E ρ

⎞
⎠Ψ (3.17)

To solve this system we observe that the quantity |a|2, where

a =
ρEρ

E +E
(3.18)
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is a constant of motion, namely differentiating |a|2 with respect to ρ yields:

d

dρ
|a|2 =

2ρEρE ρ +ρ2(EρρE ρ +EρE ρρ)

(E +E )2
− 2ρ2EρEρ(Eρ +E ρ)

(E +E )3
(3.19)

=
ρ2

(E +E )3

(
(E +E )(

1

ρ
Eρ +Eρρ)E ρ +(E +E )(

1

ρ
E ρ +E ρρ)Eρ (3.20)

− 2E
2
ρ E ρ −2E

2

ρEρ

)
(3.21)

=
ρ2

(E +E )3
(2E

2
ρ E ρ +2E

2

ρEρ −2E
2

ρ E ρ −2E
2

ρEρ) (3.22)

= 0 (3.23)

where the third equality is implied by (E +E )( 1
ρ Eρ +Eρρ) = 2E 2

ρ , (2.60) with Ex = 0.

If E (ρ) is real-valued then E (ρ) = ρκ , that is

|a|2 = κ2

4
. (3.24)

Now (2.60) can be rewritten as

aρ =− 1

ρ
aa+

1

ρ
a2. (3.25)

Representing a in polar form as a = κ
2

eiϕ(ρ) leads to a simplified form of (2.60):

ϕρ =
κ

ρ
sinϕ. (3.26)

Solution of this equation yields:

sinϕ =
2C0ρκ

1+C2
0ρ2κ

(3.27)

cosϕ =
1−C2

0ρ2κ

1+C2
0ρ2κ

(3.28)

where C0 is a constant of integration.

The definition of a (3.18) allows to rewrite one complex equation (3.3) as two real equations:

fρ =
κ

ρ
f cosϕ (3.29)

gρ =
κ

ρ
f sinϕ (3.30)
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where E = f + ig. Combining (3.29), (3.30) with (3.27), (3.28) yields:

f =
C1ρκ

1+C2
0ρ2κ

g =C2 − C1

C0(1+C2
0ρ2κ)

(3.31)

where C1 and C2 are constants of integration.

Therefore the complex-valued Ernst potential is given by:

E (ρ) =
C1ρκ

1+C2
0ρ2κ

+ i

(
C2 − C1

C0(1+C2
0ρ2κ)

)
(3.32)

By applying the sequence of the Euler’s group transformations [16] to (3.32):

E −→ E − iC2, E −→ 1

C1
E , E −→ E − 1

iC0
, E −→ E ,

1+ iC0ρκ
(3.33)

solution (3.32) can be transformed to E = ρκ is obtained.

Subtracting the constant iC2 from (3.32) and rescaling with 1/C1, one gets the simplest rotating

generalization of solution ρk:

E =
ρκ − i

C0

1+C2
0ρ2κ

(3.34)

As it was discussed in 2.2.1 the complex-valued Ernst potential is related to the axisymmetric

metric by

ds2 = f−1(e2k(dx2 +dρ2)+ρ2dφ 2)− f (dt +Adφ)2 (3.35)

where (x,ρ) are Weyl canonical coordinates and

f = ReE Az = 2ρ
(E −E )z

(E +E )2
kz = 2iρ

EzE z

(E +E )2
(3.36)

with z = x+ iρ . Substituting (3.34) into the first two expressions of (2.61) gives

f =
ρκ

1+C2
0ρ2κ

A = 2C0κx (3.37)
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Note that the equation

ρ2EρE ρ

(E +E )2
= |a|2 = κ2

4
(3.38)

leads to

kρ =
κ2

4ρ
(3.39)

Integrating (3.39)

k = lnρ
κ2

4 (3.40)

Therefore the corresponding metric is given by

ds2 = (1+C2
0ρ2κ)ρ

κ2

2 −κ(dx2 +dρ2)+(1+C2
0ρ2κ)ρ2−κ dφ 2

− ρκ

1+C2
0ρ2κ

(dt +2C0κxdφ)2
(3.41)

This metric has a non zero time-space off-diagonal term, which physically means that this metric

describes a spacetime with rotation.

If the constant of integration C0 is chosen to be 0, then

f = ρκ A = 0 (3.42)

and the metric in this case reduces to

ds2 = ρ
κ2

2 −κ(dx2 +dρ2)+ρ2−κ dφ 2 −ρκ dt2 (3.43)

which is the Kasner solution discussed in Subsection 2.1.3. Hence the obtained metric (3.41) can

be considered as a possible rotating analog of the Kasner solution.

3.2 Equation in terms of metric

On the other hand the Einstein’s equations in terms of the metric, which does not depend on x

reduce to:

(ρgρg−1)ρ = 0 (3.44)
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Since det(g) =−ρ2, relations Tr(gρg−1) =
∂

∂ ρ det(g)

det(g) and det(g) =−ρ2 imply that Tr(gρg−1) =

2
ρ and Tr(ρgρg−1) = 2.

Let

ρgρg−1 =C (3.45)

where C is a constant matrix of integration. Since Tr(C) = 2, it can be parametrized as follows

C =

⎛
⎝a b

c 2−a

⎞
⎠ . (3.46)

The eigenvalues of the matrix C are

λ1,2 = 1±
√

1−det(C) (3.47)

Let us consider three different cases: assuming that matrix C has 2 real eigenvalues, 2 complex

eigenvalues, or only one real eigenvalue.

3.2.1 The case of two real eigenvalues

The following result describes the solution of (3.44) in the case of 2 real eigenvalues.

Theorem 4. If C has 2 real eigenvalues, then the solution to (3.44) is

g =

⎛
⎝βρ1+α 0

0 − 1
β ρ1−α

⎞
⎠ (3.48)

with arbitrary constants β 
= 0 and α =
√

1−det(C).

Proof. Since C has 2 real eigenvalues, it is diagonalizable as C = PDP−1, where

P =

⎛
⎝ v u

−a−1−α
b

v −a−1+α
b

u

⎞
⎠

D =

⎛
⎝1+α 0

0 1−α

⎞
⎠
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and v,u are arbitrary non zero constants. Therefore (3.45) can be rewritten as ρgρ g−1 = PDP−1.

Defining g̃ = P−1gP, (3.45) is equivalent to ρ g̃ρ g̃−1 = D. The solution to this equation is

g̃ =

⎛
⎝c11ρ1+α c12ρ1+α

c21ρ1−α c22ρ1−α

⎞
⎠

where c11,c12,c21,c22 are constants of integration. By choosing symmetric g̃ with det(g̃) = −ρ2,

we get (3.48).

Since matrix g represents the {t,φ} block of the stationary antisymmetric metric, it defines

uniquely parameters f , A and k in (2.59), which leads to the Kasner solution.

3.2.2 The case of one real eigenvalue

In the case of one real eigenvalue the following result holds.

Theorem 5. If C has one real eigenvalue, then the general solution to (3.44) is given by

g =

⎛
⎝ρ lnρ +βρ ρ

ρ 0

⎞
⎠ (3.49)

with arbitrary β 
= 0.

Proof. Since C has one real eigenvalues, it has a Jordan normal form representation. That is

C = PJP−1 (3.50)

where

P =

⎛
⎝ u1(a−1)+u2b u1

− (a−1)
b

(u1(a−1)+u2b) u2

⎞
⎠ (3.51)

and

J =

⎛
⎝1 1

0 1

⎞
⎠ (3.52)

and u1,u2 are arbitrary constants, not simultaneously equal to zero.
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Therefore (3.45) can be rewritten as

ρgρ g−1 = PJP−1. (3.53)

Introducing

g̃ = P−1gP (3.54)

allows us to see that (3.45) is equivalent to

ρ g̃ρ g̃−1 = J. (3.55)

The solution to this equation reduces to solving first order linear differential equations with non

constant coefficients. The solution is

g̃ =

⎛
⎝c11ρ + c21ρ lnρ c12ρ + c22ρ lnρ

c21ρ c22ρ

⎞
⎠ .

By choosing symmetric g̃ with det(g̃) =−ρ2, the desired result is obtained.

In order to obtain all the elements of the metric the relation between the Ernst potential and the

metric coefficients can be used. The first equation from (2.61) yields:

f = ReE =−ρ(lnρ +β ). (3.56)

The second equation allows to find the imaginary part of the Ernst potential. Let E = f + ih.

Then:

Az =
1

2
Ax +

1

2i
Aρ

= 2ρ
(E −E )z

(E +E )2

=
hρ

2ρ(lnρ +β )2
+ i

hx

2ρ(lnρ +β )2
.

(3.57)
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On the other hand (2.59) and (2.61) imply

g12 =−A f A =
1

lnρ +β
. (3.58)

Therefore

0 = Ax =
hρ

2ρ(lnρ +β )2
(3.59)

− 1

ρ(lnρ +β )2
= Aρ =− hx

ρ(lnρ +β )2
. (3.60)

Hence h = x. The Ernst potential is

E (x,ρ) =−ρ(lnρ +β )+ ix. (3.61)

Given the general form of the Ernst potential E = f + ih the derivative with respect to z can be

written as follows:

Ez =
1

2
fx + i

(
−1

2
fρ +

1

2
hx +

1

2i
hρ

)
. (3.62)

In our case this reduces to

Ez =
1

2i
fρ + i

1

2
hx E z =

1

2i
fρ − i

1

2
hx. (3.63)

Thus

kz =
1

2
kx − i

1

2
kρ

= 2iρ
EzE z

(E +E )2

= 2iρ
1
4
(− f 2

ρ +h2
x)

4 f 2

=−i
1

8ρ

(
1+

2

lnρ +β

)
,

(3.64)

and

kx = 0 kρ =
1

4ρ

(
1+

2

lnρ +β

)
. (3.65)

Integration of (3.65) yields

k = ln(ρ
1
4 (β + lnρ)

1
2 ). (3.66)
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Thus the metric is:

ds2 =−ρ− 1
2 (dx2 +dρ2)+ρ(lnρ +β )dt2+2ρdtdφ ,

which is a special case of the van Stockum solution discussed in Subsection 2.1.4 where

Ω = lnρ +β . (3.67)

3.2.3 The case of two complex eigenvalues

Finally, in the case of two complex eigenvalues the solution is given by the following result.

Theorem 6. If C has 2 complex eigenvalues, then 2 linearly independent solutions of (3.44) are

−ρ

⎛
⎝ (a−1)

γ sin(γ lnρ)+ cos(γ lnρ) b
γ sin(γ lnρ)

b
γ sin(γ lnρ)

(1−a)
γ sin(γ lnρ)+ cos(γ lnρ)

⎞
⎠ (3.68)

−ρ

⎛
⎝ (a−1)

γ cos(γ lnρ)− sin(γ lnρ) b
γ cos(γ lnρ)

b
γ cos(γ lnρ)

(1−a)
γ cos(γ lnρ)− sin(γ lnρ)

⎞
⎠ , (3.69)

where

γ =
√

−1+det(C) (3.70)

Proof. Since C has 2 complex eigenvalues, it is diagonalizable in the following way:

C = PDP−1 (3.71)

where

P =

⎛
⎝ v u

−a−1−iγ
b

v −a−1+iγ
b

u

⎞
⎠ , (3.72)

D =

⎛
⎝1+ iγ 0

0 1− iγ

⎞
⎠ (3.73)

and v,u are arbitrary non zero constants.
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Therefore (3.45) can be rewritten as

ρgρg−1 = PDP−1 (3.74)

Defining

g̃ = P−1gP (3.75)

it can be seen that (3.45) is equivalent to

ρ g̃ρ g̃−1 = D. (3.76)

The solution to this equation is

g̃ =

⎛
⎝c11ρ1+iγ c12ρ1+iγ

c21ρ1−iγ c22ρ1−iγ

⎞
⎠

where c11,c12,c21,c22 are constants of integration.

Since g is symmetric, it is diagonalizable, that is

g = BD̃B−1 (3.77)

for some diagonal D̃. Hence

g̃ = P−1BD(P−1B)−1. (3.78)

Thus g̃ is symmetric.

The symmetry of g̃ implies that c12 = 0,c21 = 0. Choosing g̃ with det(g̃) = −ρ2 yields c22 =

− 1
c11

. Direct computation of g = Pg̃P−1 leads to the following complex solution of (3.45):

g =
1

2
(c11 − 1

c11
)ρ

⎛
⎝ (a−1)

γ sin(γ lnρ)+ cos(γ lnρ) b
γ sin(γ lnρ)

b
γ sin(γ lnρ) (1−a)

γ sin(γ lnρ)+ cos (γ lnρ)

⎞
⎠
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+i
1

2
(−c11 − 1

c11
)ρ

⎛
⎝ (a−1)

γ cos(γ lnρ)− sin(γ lnρ) b
γ cos(γ lnρ)

b
γ cos(γ lnρ)

(1−a)
γ cos(γ lnρ)− sin(γ lnρ)

⎞
⎠ .

Even though (3.44) is nonlinear, the real and imaginary parts of this solution satisfy (3.44) as

it can be seen from the following computation. The real part of the above complex solution can be

rewritten in the following way (omitting the constant scalar):

ℜ(g) = ρ
(1

γ
sin(γ lnρ)(C− I)+ cos(γ lnρ)I

)
.

Then

ρℜ(g)ρ −Cℜ(g) =−ρ
1

γ
sin(γ lnρ)

(
C2 −2C+(1+ γ2)I

)
+ρ cos(γ lnρ)

(
C−C

)

and

C2 −2C+(1+ γ2)I = P(D2 −2D)P−1 +(1+ γ2)I

=−(1+ γ2)PP−1 +(1+ γ2)I

= 0.

(3.79)

Hence

ρℜ(g)ρℜ(g)−1 =C (3.80)

and therefore (
ρℜ(g)ρℜ(g)−1

)
ρ
= 0. (3.81)

The computation for the ℑ(g) is similar.

As it was noted before, the g block of the metric determines uniquely the other components of

the metric via (2.61) and (3.1).
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Chapter 4

Conclusions

The main research objective described in details in Chapter 1 was to solve two equations: (1.7)

and (1.8). In this respect the objective was successfully achieved by obtaining the solutions to the

above mentioned equations discussed in depth in Chapter 3. Note that the solutions obtained do

not describe flat spacetime.

As for the more general question - the asymptotic behaviour of the periodic analog of the

Kerr solution - this question was not completely answered. One of the reasons is that our initial

assumption in Chapter 1 about neglecting the dependence of the Ernst potential and metric on x

might be too strong.

In the end of Section 1.1, it was noted that Dr. Korotkin expected the periodic analog of the

Kerr solution to behave asymptotically as some analog of the Kasner solution with rotation. Indeed

metric (3.41) has this property. That metric describes spacetime with rotation and if the constant

of integration is chosen to be 0, it reduces to the Kasner metric. Therefore, physically that constant

of integration might be a measure of angular momentum.

However metric (3.41) depends on x. This is an unexpected result, since by our assumption

the Ernst potential does not depend on x or the metric does not depend on x. It turns out there is

some symmetry in this case. Namely, if the metric does not depend on x as in Section 3.2, the

corresponding Ernst potential given by (3.61) does depend on x.

Therefore, further information on the periodic analog of the Kerr solution is needed to under-

stand the correct asymptotical behaviour of this solution and to decide whether the asymptotical

Ernst potential or the asymptotical metric itself must be translationally invariant in the x-direction.
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