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Abstract

Adaptive Traffic Control System: Design and Simulation

Duy Nhat Nguyen

Traditional traffic control infrastructures have not changed much in the last several decades,

while the volume of traffic has increased disproportionably to infrastructure improvement.

A solution to mobility cannot be addressed by simply improving the technology of a single

vehicle any further. A solution is to enable people to reach their destinations safely and in

optimal time, given the topology of road networks. This thesis offers such a solution based on

an adaptive traffic control algorithm which takes the road network topology and dynamically

varying traffic streams as input, and guarantees dependable and optimal mobility for vehicles.

The algorithm calculates dependable passages for vehicles to cross road intersections, and

enables point-to-point travel by minimizing travel time and maximizing fuel consumption.

The adaptive algorithm is embedded in the Arbiter, managed by an Intersection Manager

at every road intersection. A distributed traffic management architecture, consisting of a

hierarchy of road managers, is proposed in the thesis. Extensions to the adaptive algorithm

and the architecture are given. The extended algorithm will efficiently function under

exceptional situations, such as bad weather, road repairs, and emergency vehicle mobility.

The extended architecture is expected to have autonomic computing properties, such as

self-healing, self-recovery, and self-protection, and Cyber-physical system properties, such as

tightly-coupled feed-back loops with all entities in its environment. A simulator has been

implemented, and simulated results reveal that the adaptive algorithm is far superior in

performance to fixed-time control systems.
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Chapter 1

Introduction

For more than a century, automobile and other motorized vehicles have been used to efficiently

transport people and products across a network of roads in the world. The demands for

mobility have been increasing ever since urbanization happened after the industrial revolution.

In modern times, the technology used to develop vehicles, which was mainly based on the

laws of mechanics and chemistry, has become more sophisticated because of the embedding

of electronic components and automated control systems. However, the topology of road

networks and their infrastructure for regulating the traffic of modern day vehicles has not

improved in most of the large urban areas in the world. Thus, the original traditional

traffic control infrastructures are becoming awfully inadequate to handle the modern-day

vehicular traffic which can be characterized by density of vehicles, speed of individual vehicles,

timeliness constraints of human drivers, and the traffic regulation policies laid down by urban

administrators. In reality, these aspects are not well coordinated. Consequently, traffic

congestion occurs frequently in large metropolitan cities, even in developed countries such

as United States, Canada and in many countries in Europe. INRIX [29] reports that in

2013 traffic congestion has cost Americans $124 billion in direct and indirect losses, and

this amount is estimated to rise 50% percent by 2030. The cumulative loss over the 17-year

period from 2014 to 2030 will be $2.8 trillion, which roughly equals the taxes paid in USA

in 2013. Traffic congestion not only damages the lifeline of the economy, but also increases

environmental pollution. It is estimated [10] that in 2004, transportation congestion would

contribute approximately 33% of carbon dioxide emissions in the United States, which will
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create serious health and safety problems. Thus, congestion avoidance is an absolute necessity

for improving urban traffic system. It is needed now more than ever. It is in this context this

thesis makes a significant contribution.

City planners and researchers have proposed two kinds of solutions to reduce traffic

congestion. One solution is expanding road infrastructure and another solution is optimizing

Traffic Control System(TCS). The first solution is either inapplicable in many cities, due to

physical constraints, or unaffordable in many places, due to its huge cost overhead. Moreover,

a simple extension of existing physical network of roads and their infrastructures will not yield

optimal results unless sophisticated control algorithms are embedded in TCS. So, the second

solution has been preferred by urban planners and actively researched recently. However,

most of the current TCSs have many drawbacks. These include the following:

1. They are not reactive to traffic flow, and adaptive to dynamic changes in the traf-

fic. Consequently there is no fairness in traffic distribution, especially across road

intersections.

2. In general, current TCS design favors vehicular traffic, with little consideration for

pedestrian mobility. Consequently, pedestrians might get frustrated and indulge in

unsafe behavior [36].

3. Control mechanisms in current TCSs neither use context information nor driven by

traffic control policies.

4. Feedback loop that is necessary to factor the dynamic changes in traffic flow is absent

in most of current traffic control systems.

This thesis is a contribution to the development of a new resilient traffic control system in

which (1) traffic control policies, governing pedestrian mobility and vehicular traffic will be

enforced equitably in order to optimize the overall flow of vehicular and human traffic, (2)

dynamic feedback loop will be realized at every road intersection, and (3) context-dependent

policies will be used to regulate traffic flow. The TCS thus realized in this thesis is called

Adaptive Traffic Control System (ATCS). The ATCS design and algorithmic features have

been chosen in a judicious manner with the grand vision that the ATCS can be easily

2



extended and deployed in any future development of a dependable Transportation Cyber

Physical System, which will enable vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V)

cyber communications, and advanced assistance to driverless vehicles.

In order to identify a set of requirements and craft a design for ATCS, it is necessary to

understand the basic concepts related to Transportation Domain (TDM), and these are given

next.

1.1 Basic Concepts of TDM

Basic concepts of traffic system and traffic control system are explained in this section. These

concepts, taken from TDM, were defined and used by many traffic experts and researchers

for decades.

1.1.1 Control Variables

Some of the common control variables [1] that are used to estimate and evaluate the

characteristics of traffic conditions are explained below. These are essentially the input

parameters that ATCS will need for making traffic control decisions, both on a road as well

as at any intersection.

Vehicle Presence

Vehicle Presence is a boolean variable that indicates the presence or absence of a vehicle at

a certain point in a roadway. The presence of vehicle is detected through sensors, such as

induction loop or camera.

Flow rate

Flow rate Q is number of vehicles N passing through a specific point on a roadway during a

time period T . It is defined as

Q = N/T, (1)
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Occupancy

Occupancy is defined as the percentage of time that a specific point on the road is occupied

by a vehicle.

Traffic Flow Speed

In traffic management, speed of traffic flow is defined as average speeds of the sampling of

vehicles either over a period of time or over space.

• Time mean speed is an average of speeds of vehicles passing a specific point on

roadway over a period of time.

Vt = 1
N

N∑
i=1

vn (2)

where N is a total number of vehicles passing, vn is the speed of vehicle n when passing.

• Space mean speed is a harmonic mean of speeds of vehicles passing a roadway

segment.

Vs = N
N∑

i=1
(1/vn)

(3)

where N is a total number of vehicles passing segment of road, vn is the speed of vehicle

n when passing.

Headway

Figure 1 depicts a headway, which is measured at any instant as the distance between the

fronts of two consecutive vehicles in the same lane on a roadway.

Figure 1: Headway, Gap and Vehicle Length
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Queue Length

Queue Length is the number of vehicles that are waiting to cross an intersection on a specific

lane on a roadway.

Flow Rate & Capacity

Flow Rate (throughput) is defined as the number of vehicles able to cross a specific point on

a roadway during a given time period. Capacity is essentially synonymous to the maximum

throughput.

Density

Density K is defined as the number of vehicles per unit distance.

Q = K × Vs (4)

where K is the density, Q is the volume of traffic flow (measured as number of vehicles /

hour), and Vs is space-mean speed (measured in km / hour). In practice, density K can be

computed by the following equation.

K =
( 1

T

) N∑
i=1

( 1
vi

)
(5)

where N is the number of vehicles detected during time T , vi is the speed of ith vehicle

crossing a detector in a lane, and K is the density of detected lane.

Fundamental diagram of traffic flow

Figure 2 is the fundamental diagram of traffic flow which illustrates the relation between flow

rate and traffic density. The relation is changed over four different ranges of value of density.

These ranges are outlined as below.

1. 0 ≤ k < kc

When density is less than the critical density(kc), flow rate increases monotonically over
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Figure 2: Relation between Flow Rate and Density [1]

density. In this range, vehicles can travel with the free-flow speed vf (without braking)

which principally equals to the desired speed.

2. k = kc

When density reaches the critical density(kc), flow rate also reaches the peak or the

maximum value of flow rate. Vehicles are still able to travel with the free-flow speed vf .

3. kc < kc < kj

When density is greater than the critical density, both flow rate and the speed of flow

decrease. Vehicles in the network are no longer to drive with the free-flow speed vf but

with a wave speed vw which is lower than vf .

4. kc = kj

When density reaches to the jam density (kj), both flow rate and speed of the flow

reach to zero. In other words, traffic jam happens when density reaches to the jam

density value.
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1.1.2 Signal Parameters for Traffic at an Intersection

Phase

Phase is a set of combination of movements or scenarios at an intersection in which vehicles

and pedestrians can cross without conflict. Some traffic control systems allow partial-conflict

movements. Figure 3 shows an intersection with two partial-conflict phases.

Figure 3: Partial-conflict phases

Cycle Length

Cycle Length is total length of time taken by a traffic light to repeat a complete sequence of

phases at an intersection. In many modern traffic control systems, some phases are either

skipped or repeated. That is, cycles are never formed. An adaptive traffic control system

may not exhibit cyclic behavior.

Split

Split is the amount of ‘green time’ that a traffic control system allocates to a specific phase

during one cycle in order that vehicles and pedestrians may cross an intersection.
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Offset

Offset is green phase difference between consecutive intersections.

Platoon Dispersion

A group of vehicles that travel together (as a group) is called a ‘Platoon of Vehicles’. Platoon

Dispersion Model is employed in some traffic control systems to estimate the traffic flow

profile at a downstream, based on the traffic flow that detected at its upstream. The behavior

and pattern of a platoon of vehicles are identified according to the following parameters:

• Total number of vehicles in a platoon.

• The average headway of all vehicles in the same platoon.

• The average speed of vehicles in the same platoon.

• Inter-headway, which is defined as headway between the last vehicle and the first vehicle

of two consecutive platoons.

Platoon Dispersion phenomenon happens when vehicles are moving together as a group

from upstream to downstream, and then ‘disperse’ or spread out because of parking need,

difference in speeds or lane changing. The primary purpose of studying of platoons is to

estimate the arrival time of a platoon at an intersection in advance, which can potentially

increase the ability to optimize the traffic flow along arterial roads.

Figure 4: Platoon of Vehicles
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Lost Time

Lost Time is the duration of non-utilization or unused time within the total time allocated

by the traffic control system for vehicles or pedestrians to cross an intersection. There are

three scenarios.

• Scenario 1: Two kinds of lost time occurs when phases are being switched from red to

green or from green to red.

– Switch from Green to Red: Lost time occurs when remaining time is too short

for vehicles or pedestrians to fully cross the intersection. When a vehicle or a

pedestrian starts to cross or in the middle of crossing an intersection, it may be

that the remaining time for the light to turn red is too short. Hence, for safety

reason the vehicle or pedestrian will decide not to cross the intersection.

– Switch from Red to Green: Lost time occurs when vehicles are waiting at a red

phase. When the traffic light switches to green, vehicles have to start up or increase

its speed. During the first few moments no vehicles is crossing.

• Scenario 2: Lost time occurs when the traffic control system allocates green time to a

lane but no vehicle is on that lane.

• Scenario 3: Lost time occurs when the traffic control system allocates green time to

a combination of movements but the system allows partial conflict movement such

as allowing left turn. Therefore vehicles from two lanes are attempting to cross each

other at the same time using the same intersection space at the intersection. In this

scenario, the drivers of the two vehicles have to agree on a protocol to solve the conflict.

This delay is considered as lost time which reduces the intersection capacity. Figure 3

illustrates an intersection with two partial-conflict phases which can lead to Scenario 3.

In summary, lost time is the primary reason for the capacity at an intersection to be reduced

and the total delay time at an intersection to be increased.
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Figure 5: Green wave occurs when vehicle crossing intersections

Green Wave

Green wave is a coordination mechanism that traffic control systems at multiple intersections

use to synchronize ‘green times’ to allow a platoon of vehicles traveling continuously and

smoothly without stopping which can reduce lost time in ‘Scenario 1’. The sequence of

movements in Figure5 illustrates how green wave occurs when the vehicle is moving from the

intersection 1 to intersection 4. Figure 6 depicts the time, distance and phase coordination of

this sequence of moves.

Figure 6: Time, distance and green phase coordination in Green wave
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1.2 Contributions and Outline of Thesis

The thesis introduces a hierarchical architecture of traffic managers for regulating traffic

flow along roads and intersections of roads. At each intersection, a feed-back control system

enforces the safe passage of vehicles across the intersection. The control system at an

intersection is managed by the Intersection Manager at the intersection. The behavior of the

feed-back controller at an intersection is supported by formal mathematical models and the

context-dependent traffic policies enforced by the Intersection Manager at that intersection.

Collectively, the controllers and Intersection Managers at the intersections in an urban area

fulfill the dependability and optimization properties stated in Chapter 3. The thesis includes

an implementation of the ATCS and its simulation. The rest of the thesis, in seven chapters,

describes the details regarding these results and a comparison with related works. The

contributions are organized as follows.

The flowchart in Figure 7 depicts the organization of thesis contributions and how they

are related to each other. Chapter 2 reviews the traditional traffic control strategies and

the current operational systems based on them. The discussion on related work is restricted

to only those works that deal with urban traffic management. A conceptual architectural

design of ATCS is given in Chapter 3. The set of dependability and optimization properties

to be realized through the detailed design based on this architecture are stated. The roles

of the architectural elements are described to suggest how the satisfaction of the stated

objectives in the architecture is met by their collective behaviors. Chapter 4 gives a detailed

discussion on the design of Arbiter, which is the central piece of ATCS for an intersection.

The rationale for choosing its parameters are stated and supported by formal mathematical

models studied by transportation domain experts. The new features in the Arbiter design

are (1) the concept of cliques, and collision-free traffic flow discharge algorithm based on it,

(2) the definition of vehicle scores and aging function, which are crucial design decisions that

facilitate fairness and liveness, and (3) the Rolling Horizon Streams (RHS) algorithm which

adapts dynamically to changes in the traffic streams. An analysis of the algorithm is given

to assert its satisfaction of the dependability and optimization objectives, and establish its

polynomial-time complexity. Chapter 5 describes a presentation model for road networks
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Figure 7: Outline of Thesis

and the preprocessing of network topology descriptions. Transformation tools necessary for

the preprocessing tasks have been implemented. Chapter 6 discusses a Vehicle Behavior

Model, which is necessary to simulate the Arbiter algorithm. Without such a model the traffic

scenario necessary for Arbiter control cannot be realistic. Chapter 7 describes the simulator

functionalities, and shows the simulation results on many data sets. Each dataset is created

by combining different demand rates and road network topologies. The simulated results

are compared on four criteria, chosen as measures to reflect the optimization properties.

Chapter 8 concludes the thesis with a summary of contributions, their significance, and future

work related to the contributions.
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Chapter 2

Related Works

The current research trend pertaining to the development of Intelligent Transportation

Systems(ITS) can be roughly classified into “driverless vehicles”, “vehicles with human

drivers”, and “a hybrid of both”. Research in the first kind focuses in creating autonomous

vehicles (AVs, also called automated or self-driving vehicles) that can drive themselves on

existing roads and can navigate many types of roadways and environmental contexts with

almost no direct human input. Research in the third kind exploits wireless access for vehicular

environments (WAVE) in order to enable vehicles exchange information with other vehicles on

the road (called V2V) or exchange information with infrastructure mediums (called V2I) such

as RSUs (Road Side Units). AV, V2V and V2I rely on continuous broadcast of self-information

by all vehicles (or RSUs), which allows each vehicle to track all its neighboring cars in real

time. The degree of precision, synchrony, and control vary across these three systems. The

most pressing challenge in such systems is to maintain acceptable tracking accuracy in

real-time while overcoming communication congestion (and failures). The acceptance of these

technologies by policy makers, the inherent complexity in proving the safety and predictability,

and the cost of integrating WAVE in vehicles are some of the major impediments in realizing

the dream of either driverless or hybrid systems on the road. In this thesis, the focus is

on maximizing the infrastructure facilities to minimize traffic congestion for “vehicles with

human drivers”. The TCS that is engineered in this thesis is expected to increase throughput,

optimize human safety, enhance environmental sustainability, and improve human pleasure in

driving. So, the discussion in this chapter is restricted to the current strategies and systems
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that are in use with respect to vehicles with drivers.

2.1 Traffic Control Strategies

Current traffic control systems that regulate traffic can be classified into the three categories

Fixed-time, Traffic-responsive, and Traffic-adaptive [41].

• Fixed-time

Fixed-time strategy defines a set of traffic control parameters for each intersection for

each period during a day such as morning peak, noon or midnight. These control

parameters usually are determined after a statistical analysis of traffic flow patterns.

The primary drawback of this strategy is its assumption that the traffic demand will be

constant during a period of time, such as an hour or 30 minutes.

• Traffic-responsive

Like Fixed-time strategy, Traffic-responsive strategy explicitly defines values of control

parameters such as Cycle, Split and Offset. However, instead of using historical traffic

data, this strategy uses real-time traffic data obtained from sensors. Thus, the control

parameters remain valid over a short period in horizon.

• Traffic-adaptive

Unlike Fixed-time and Traffic-responsive, Traffic-adaptive strategy does not use Cycle,

Split and Offset. Instead, this strategy selects phase and its green time according to

the real-time traffic data received from the sensors. The task of selecting traffic phase

and its green time is called decision which can be implemented by an Optimization

Approach, such as Dynamic Programming or Stochastic Programming.

In general, a traffic control system can regulate a traffic flow at an intersection with or

without coordination with its adjacent intersections. An Isolated-Intersection system solely

uses its own traffic data gathered at its intersection to regulate traffic flow at its intersection.

Coordinated-Intersection system at an intersection cooperates with the traffic regulators at

its adjacent intersections and make traffic control decisions at its intersection. With the

availability of traffic data from the traffic regulators at its adjacent intersections, the traffic
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control system can support Green wave or Oversaturated situations. Our proposed system

supports both green wave and oversaturated situation.

2.2 A Review of Existing Traffic Control Strategies

This section briefly reviews some notable traffic control systems which have received attention

from town planners and researchers. These are listed in Table 1.

System Strategy

SIGSET Fixed-time

TRANSYT Fixed-time

SCOOT Traffic-Responsive

RHODES Traffic-Adaptive

Table 1: Notable traffic control systems

2.2.1 SIGSET

SIGSET is a traffic analysis software which was proposed in 1971 by Allsop [6]. The primary

purpose of the tool is to generate a set of control parameters for an intersection in a road

network. The approach is a well-known example of isolated and fixed-time traffic control

system. The input to the tool consists of an intersection E with m phases, a set of values di

(1 ≤ i ≤ n) denoting demand at each phase, and total lost time for each cycle λ0. These input

values are determined in advance through experiments. The output of the system consists of

the length of the traffic light cycle L and a set of split values λi (1 ≤ i ≤ n) for phases which

minimize the total waiting time of vehicles at the intersection. Formally,

λ0 + λ1 + · · · + λm = L, (6)

sj

m∑
i=1

αijλi ≥ dj ∀j (7)
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Where λ0 is the total lost time per cycle length, λi is split or amount of green time for phase

i, L is the cycle length, j is a link at the intersection, aij = 1 if link j has right of way in

phase i, otherwise aij = 0, and dj is the demand at link j of the intersection.

2.2.2 TRANSYT

TRANSYT (Traffic Network Study Tool) is a traffic simulation and analysis software which

was developed in 1968 by Robertson of the UK Transport and Road Research Laboratory

(TRRL) [44]. Currently, two main versions of TRANSYT are being researched and developed

in United Kingdom and United States. In United States, McTrans Center of University of

Florida has released the latest of version TRANSYT-7F for Federal Highway Administration

(FHWA). The primary purpose of TRANSYT is to help town planners or traffic experts

to analysis traffic network and define a set of optimal control parameters for intersections

inside a road network. Theoretically, the TRANSYT control mechanism is based on ‘Platoon

Dispersion Model’ which also was originally developed by Robertson [20]. Formally,

q′t+T = F × qt + [(1 − F ) × q′(t+T −1)] (8)

where q′t+T is the “Predicted flow rate” in time interval (t + T ) of the predicted platoon, qt is

the “Flow rate” of the interval platoon during interval t, T is 0.8× “the cruise travel time on

the link”, and F is “smoothing factor” defined below. In the equation below α is “Platoon

Dispersion Factor (PDF)”, selected by traffic experts.

F = 1
1 + αT

(9)

The TRANSYT control mechanism works in an iterative manner [41]. First, the ‘initial

policy’ will be loaded into the system and that policy will be used for the next traffic light

cycle. For each interval t, the system will estimate the traffic flow profile at stop line by

Platoon Dispersion Model, then will calculate a Performance Index (PI) in monetary terms

(based primarily on delays and stops). An optimization algorithms such as ‘Hill Climb’ [44] or

‘Simulated Annealing’ [44] will be selected to find optimal control parameters which minimizes
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Performance Index but respects to defined constraints. The new optimal control parameters

will be applied into the next cycle. Over time, the optimal traffic control parameters will be

generated and these values can be used in real traffic control system. Over-saturation is not

included in the first versions but added in the recent versions.

Both SIGSET & TRANSYT work on historical data instead of real-time data and assume

that demand on each link is a constant during a period of time. However, this assumption is

not accurate in real traffic systems. Because the policies selected by both strategies may not

be appropriate for certain periods of time, traffic congestion might result in the road network

or traffic capacity may be reduced.

2.2.3 SCOOT

SCOOT (Split Cycle Offset Optimization Technique) [41] is considered to be a traffic-responsive

version of TRANSYT. SCOOT was also developed by Robertson of the UK Transport and

Road Research Laboratory (TRRL). Currently, more than 200 SCOOT systems are being

used in more than 150 cities [47] all over the world, including London, Southampton, Toronto,

Beijing, and Sao Paulo. The mechanism of SCOOT is very similar to TRANSYT as both

are based on ‘Platoon Dispersion Model’ to estimate the ‘Cycle flow profiles’ in advance.

The main difference is that SCOOT obtains real-time traffic data through detectors to build

‘Cycle flow profiles’, whereas in TRANSYT historical data is used.

Figure 8 illustrates the SCOOT mechanism. When vehicles pass through a detector,

SCOOT system continuously synthesizes this information to current state of system and

builds platoon of vehicles. Based on this, it predicts the state of signal as the platoon arrives

at the next traffic light. With this prediction, the system will try to optimize the signal

control parameters to minimize the lost time at intersections, and reduce number of stops and

delays by synchronizing sets of signals between adjacent intersections. Three key optimizers

will be executed in SCOOT system. These are explained below.

1. Split Optimizer

For each phase at every intersection, the split optimizer is executed several seconds
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Figure 8: How SCOOT works [47]

before switching phase from green to red. The traffic controller will decide independently

from other intersection controllers whether to switch phase earlier or later or as due.

The purpose of this optimization is to minimize the maximization degree of saturation

flow at all approaches of an intersection. In order to avoid large change, amount of

changed time must be small. In practice, the value is in the range [-4,+4] seconds.

2. Offset Optimizer

For each cycle at every intersection, the offset optimizer is executed several seconds

before a cycle completes. The traffic controller will decide either to keep or alter the
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scheduled phases at that intersection. The output of this decision will affect offset

values between that intersection and its adjacent intersections. The purpose of this

optimization is to minimize the sum of Performance Index on all adjacent roads with

offset as scheduled or earlier or later. Like the split optimizer, the amount of change

time must be small to avoid a sudden transition.

3. Cycle optimizer

For 2 - 5 minutes, the SCOOT system will make a cycle optimizer at a region (global)

level which consists of many intersections. First, the SCOOT identifies the critical

nodes whose saturation levels are over the defined threshold (usually 80%), then adjusts

the cycle time for those intersections. Like previous types of optimizer, the cycle time

will be adjusted with small change.

Although the system is very successful and being used by many cities, SCOOT system

has received many criticisms. According to the BBC News Report [36], data pertaining to

pedestrian traffic do not have any real effect on SCOOT controller. Pedestrians in cities

where SCOOT is being used, call the pedestrian signal button as ‘Placebo buttons’. The

problem can be that the SCOOT mechanism gives more importance to vehicular traffic than

pedestrian traffic. Another issue of SCOOT is its centralized architecture. All optimizations

will be processed at a central computer. Consequently, there is a single point of failure and

no support for load balance.

2.2.4 RHODES

RHODES [35] (Real-Time Hierarchical Optimized Distributed Effective System) is a typical

example of traffic-adaptive control which does not have explicit values of control parameters

(see Section 1.1) such as Cycle, Split, and Offset. Only Phase is defined explicitly. In general,

the RHODES system consists of two main processes. One process, called Decision Process

(DP), builds a current and horizon traffic profile, based on traffic data from detectors and

other sources. Another process, called Estimation Process (EP), produces a sequence of

phases and their lengths continuously over the time according to the traffic profile of the

previous process. Both DP and EP are situated at three aggregation levels of RHODES
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hierarchy, as shown in Figure 9.

Figure 9: The RHODES hierarchical architecture [34]

1. Dynamic Network Loading

Dynamic Network Loading is the highest level in system hierarchy which continuously

and slowly captures macroscopic information of the current traffic. Based on this

information it estimates a load or demand on each particular road segment for each

direction in terms of the number of vehicle per hour. With these estimates, RHODES

system can allocate green times for phases in advance for each intersection in the

network.

2. Network Flow Control

Network Flow Control is the middle level in system hierarchy. It combines the estimated

result received from the higher level with current traffic flow in terms of platoon or

individual vehicle to optimize the movement of platoon or vehicle individually. Figure

10 illustrates how the mechanism of this layer works. In Figure 10a, it is predicted that

4 platoons may arrive at the same intersection and request to cross. These requests

create some conflict movements. The RHODES will solve the conflicts by making a
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tree-based decision on the predicted movement of platoons over horizon as in Figure

10b.

(a) Platoons request conflict movements (b) RHODES’s decision tree

Figure 10: How RHODES works

3. Intersection Control

Intersection Control is the lowest level in the system hierarchy. At this level, the system

is dealing with each vehicle at microscopic level. Based on the presence of a vehicle

in each lane and decisions communicated by Dynamic Network Loading and Network

Flow Control, the Intersection Control uses a Dynamic Programming [34] algorithm to

select phase and assign length of time for that phase.

Although Dynamic Programming helps RHODES system to optimize traffic flow by

minimizing average delay and number of stops and maximizing network throughput, Dynamic

Programming has its own limitations in optimizing real-time traffic flow problem. Powell

explains the “Three Curses of Dimensionality of Dynamic Programming” [43], of which

computation demand of Bellman’s recursive equation [13] is exponential to the size of state

space, information space and action space. So, when the volume of traffic is high and the

traffic controller has to synchronize with physical entities (such as sensors and actuators), it

is hard to guarantee a solution in an optimal time.
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2.2.5 Summary and Comparison

This section provides a brief comparison of the features between our proposed system and

the reviewed systems. Our new system not only fulfills many advanced features of existing

systems, but also introduces novel features such as supporting pedestrians, emergency vehicles,

and green wave. Table 2 outlines this comparison in detail.

SIGSET TRAN-
SYT

SCOOT RHODES ATCS(Ours)

Strategy Fixed-time Fixed-time Responsive Adaptive Adaptive

Coordination Isolated Coordi-
nated

Coordi-
nated

Coordi-
nated

Coordinated

Architecture Centralized Centralized Centralized Distributed Distributed

Optimized
Parameters

Cycle, Split Cycle, Split,
Offset

Cycle, Split,
Offset

Split Clique

Pedestrian No No No No Supported

Emergency No No No No Supported

Green wave No No No No Supported

Oversatu-
rated

No Yes No No Yes

Weather
Condition

No No No No Considered

Public Event No No No No Considered

Lane Closure No No No No Considered

Traffic Zone No No No No Considered

Table 2: Comparison between ATCS and notable traffic control systems
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Chapter 3

Architectural Design

The architecture that is presented in this chapter is a hierarchical network of traffic managers

in a zone. The root of the hierarchy is the Zone Manager(ZM), which manages a peer-to-peer

network of Intersection Managers(IM). Figure 11 depicts this hierarchy. Each Intersection

Manager(IM) manages a single intersection in a road network with a feed-back loop. The

proposed architecture can serve as an essential foundation to develop traffic management

systems to achieve several other objectives, such as providing advanced driver assistance,

instituting autonomic functioning, and enabling vehicle-to-vehicle communication.

Figure 11: Hierarchy of ATCS
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3.1 Objectives of ATCS

The components in different levels of the ATCS hierarchy share the same set of objectives,

with varying degrees of emphasis imposed by context constraints. However, their common

goal is to ensure dependability and optimize the performance, as described below.

3.1.1 Dependability Objectives: Safety, Liveness, and Fairness

1. Ensuring safety for vehicles and pedestrians

Informally, safety means nothing bad ever happens in the system. Ensuring safety for

vehicles and pedestrians at intersections is an important objective of the system. A

system which meets all other objectives but fails to ensure safety must not be deployed

at all.

2. Ensuring liveness for traffic participants

Liveness means something good eventually happens in the system. In [5] liveness property

for a traffic control system is defined as “every traffic participant at an intersection

eventually obtains a right of way to cross the intersection within a finite amount of

time”. That is, no vehicle or pedestrian waits for ever. If the system does not ensure

liveness property, safety property cannot be assured because traffic participants can

lose their patience and cross intersections before getting a right of way.

3. Ensuring fairness between traffic participants

Fairness is a constraint imposed on the scheduler of the system that it fairly selects

the process to be executed next. Technically, a fairness constraint is a condition on

executions of the system model. These constraints are not properties to be verified,

rather these conditions are assumed to be enforced by the implementation. Our ATCS

system will ensure fairness constraints when allocating ‘right of way’ to vehicles or

pedestrians that are competing to cross intersections. That is, by implementing fairness

constraints liveness property is achieved.
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3.1.2 Optimization Objectives

1. Minimizing total delays for emergency vehicles

Emergency vehicles need to deliver services with minimal delay, preferably with no

delay, because human lives depend on their services. That is, enabling the smooth flow

of emergency vehicles even during traffic congestion will contribute towards enhancing

the safety property. Therefore, the ATCS should minimize traveling time of emergency

vehicles in the traffic network.

2. Minimizing total traveling time

Total traveling time for a vehicle is the time taken to travel the distance between the

origin and destination points in the road network. The ATCS system will minimize

this total traveling time of pedestrians and vehicles. The interpretation of “minimizing

the time” is as follows: “if the normal driving time (under specified speed limits and

smooth flow of traffic) from point A to point B is x hours, then the ATCS system

should facilitate the trip to be completed in x ± ϵ time almost always”.

3. Minimizing total delays of vehicles in network

Total delays of vehicles at intersections and in network is the primary reason that cost

people time and money. It also increases the emission of Carbon dioxide (CO2) to the

environment. Therefore, the ATCS system should minimize the total delays of vehicles

at intersections, as well as in the entire network.

4. Minimizing total delays of pedestrians at intersections

Most of urban traffic control systems have not factored pedestrian traffic in their design.

Some systems give only a minimum amount of importance to pedestrian traffic when

making control decisions. This unfair treatment has made the pedestrians unhappy.

Therefore, it has been decided to introduce the requirement that the ATCS should

minimize total delays of pedestrians at intersections.

5. Maximizing capacity and throughput

Maximizing the capacity and the throughput can make a traffic system serve more

people without the necessity to expand physical infrastructure.
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6. Minimizing wasted energy & environmental effects

Amount of CO2 emission depends on the pattern of travel of vehicles. It is known [3, 10]

that when vehicles travel as smoothly (steadily) as possible, without too many “stop

and go”, the CO2 emission is least. Therefore, the ATCS system will maximize the

probability of a vehicle traveling smoothly, without stopping.

The efficiency of the ATCS system is to be evaluated from the number of objectives

achieved, and the level of achievement of each objective. Not all the objectives mentioned are

mutually exclusive. For example, minimizing total delays of a vehicle also means minimizing

its traveling time and increasing throughput. The arbiter is designed and implemented to meet

these objectives. The combined behavior of all arbiters effectively determine the efficiency

level of the ATCS . The simulated experiments are analyzed to evaluate the efficiency level

achieved for a number of different traffic scenarios.

3.2 Architecture

The distributed architecture proposed in this section emphasizes the above objectives. Figure

12 depicts the main components of the ATCS architecture. The functionality of components

are discussed in the following subsections.

3.2.1 Traffic Detector

Traffic Detector component is responsible for capturing traffic data at an intersection in

real-time manner. The traffic data includes the presence, speed, position, and direction of

vehicles. It also includes the presence and direction of pedestrians. The traffic data will be

gathered and synthesized by Flow Builder component. At each intersection, one or more of

the following traffic detector types can be used.

Inductive Loop

Inductive loop is the most common traffic detector utilized in traffic control systems. In theory,

when vehicles pass over or stop at detection area of the inductive loop [2], the inductance of
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Figure 12: Conceptual Architecture of ATCS

detector decreases. This in turn triggers the detector to send a pulse signal, which indicates

either the presence or passing of a vehicle to controller.

Video Image Processor

Video Image Processor technology uses camera to capture images of traffic from which a

traffic flow profile is built. This procedure includes the following three steps.

1. A camera captures traffic and stores the digitized images.

2. The traffic data is extracted from the digitized images.

3. The extracted data is synthesized to build a traffic flow profile.

Nowadays, video image processor technology is able to detect not only vehicles but also

pedestrians. Figure 13 shows FLIR’s SafeWalk [22] which is able to detect the presence of

pedestrians who are either waiting or approaching or crossing an intersection.
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Figure 13: Pedestrian detector using video image processor [22]

Vehicle to Infrastructure (V2I) Interaction

In V2I, the infrastructure plays a coordination role by gathering global or local information

on traffic patterns and road conditions and then suggesting or imposing certain behaviors on

a group of vehicles. Information and service exchanges in V2I communication use wireless

technology, as shown in Figure 14. Most of the recent V2I deployments use Dedicated Short

Range Communications (DSRC), Infrared or Wireless LAN. Through V2I, ATCS systems

can detect the presence, speed, direction and identifier of vehicles accurately.

Other types of traffic detectors

Other types of traffic detectors include microwave radar, active infrared and passive infrared

detectors. Special traffic detectors are deployed to detect special kind of vehicles, such as

public transportations and emergency.

3.2.2 Flow Builders

Flow Builder is responsible for building the traffic flow profile at an intersection according

to information received from traffic detectors. In the architecture, flow builders are able to
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Figure 14: V2V and V2I Communication

gather and synthesize traffic data from different types of traffic detectors through different

kinds of connections and communications. Two types of traffic flow profiles are defined, one

for vehicles and another for pedestrians. These two types of traffic flow profiles are used by

the Arbiter to make control decisions. The structure of these profiles are described below.

• Vehicular traffic flow profile is constructed for each inbound/outbound vehicular lane

at an intersection. This profile is a ‘queue’ in which each element is a vehicle in that

lane accompanied with the following information.

– The time that a vehicle entered to the observed area,

– The up to date position and direction of a vehicle,

– And the current speed of the vehicle

• Pedestrian traffic flow profile is constructed for each crosswalk at an intersection. Like

vehicular profile, a pedestrian profile is a queue in which each element is a pedestrian

at an intersection accompanied with the following information.

– The time that a pedestrian approached to the observed area,

– The approximate position and direction of a pedestrian.
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3.2.3 Traffic Actuator

A Traffic Actuator component is responsible for either displaying or transmitting traffic

control decisions to vehicles and pedestrians. Most of traffic control systems use a traffic light

to display traffic commands such as ‘Stop’ and ‘Go’ to traffic participants through ‘Red’ and

‘Green’ signals. Some others use a barrier or a text-panel to present traffic commands and

additional information. A traffic actuator can be a software component instead of a hardware

device. For example, a traffic control system can use a software-component to transmit its

decisions directly to vehicles which support Vehicle to Infrastructure (V2I) communication.

3.2.4 Controller

At an intersection one arbiter will interact with many flow builders and one controller. In

principle, it should be possible to plug-in any actuator type in the system, depending upon the

specific context governing the intersection. So, in the ATCS architecture one or more different

types of actuators are allowed. The arbiter functionality, as described later, is complex

and crucial for enforcing the safety, liveness, fairness, and other objectives described earlier.

Therefore, it is essential to relieve the arbiter from the low-level tasks related to management

of traffic actuators. In order to support the diversity and multiplicity of actuators and at

the same time relieve the arbiter from managing them, controllers are introduced in the

architecture. A controller component receives control commands from the arbiter with which

it interacts, communicates them to traffic actuators that it manages in the most appropriate

fashion. The addition/deletion of actuators will not affect the arbiter functionality, because

a controller is enabled to deal with them and communicate through different interfaces. In

order that the ATCS may provide a high level of safety, a controller should be able to monitor

the status of its actuators to make sure that they are working correctly. In our architecture,

every controller will perform this task in both passive and active way.

In summary, every controller at an intersection is responsible for the following actions.

• Managing traffic actuators at the intersection

• Receiving traffic commands from the arbiter at the intersection
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• Controlling traffic actuators to execute traffic commands

• Monitoring the status of each traffic actuator

• Reporting the abnormal status of a traffic actuator, if detected, to the Intersection

Manager

3.2.5 Arbiter

At every intersection of the road network an arbiter exists. Essentially, an arbiter at an

intersection is responsible for making traffic control decisions that are consistent with the

objectives (listed earlier). The ultimate purpose of an arbiter at an intersection is to achieve

safe optimized traffic flow, not only at the intersection it manages but also in the entire

network. In order to achieve this goal, both local and global traffic information must be given

to every arbiter. For a given intersection, the traffic information at its adjacent intersections

are considered as important sources of the global traffic information. In our architecture, IM

gathers the global traffic information and transfers it to the arbiter connected to it. The

local traffic information is received from flow builders. Based on the traffic policies related to

local and global traffic flows, an arbiter instructs the controller associated with it.

Figure 12 illustrates this three-fold interaction of arbiter at every intersection with IM,

Flow Builder, and Controller. The local and global traffic information constitute a time-

varying quantity over the physical entities “humans” and “vehicles”, expressed in space-time

dimension. In order to factor this dynamically changing behavior in ATCS, every arbiter is

designed as a closed-loop system with feedback loop. In control theory, a closed-loop control

system with feedback loop takes external inputs and the current output of the system to

produce decisions. This approach provides self-correction capability to the proposed system.

Self-correction can be a key for the system to obtain the optimal traffic flows at an intersection.

Figure 15 illustrates the input-output and the feedback loop at an intersection.

31



Figure 15: Feedback loop at an intersection

3.2.6 Context Manager

Context Manager(CM) is responsible for collecting and referring context information at the

intersection. Collected contexts will be taken into account in selecting an appropriate traffic

control policy by the Intersection Manager. The following context dimensions [4] will be

collected by the CM.

• Traffic Zone

Whereas Location may be defined by the coordinates (longitude, latitude), a Traffic

Zone may include a collection of locations. Traffic zones can be classified into school,

hospital or commercial zones. For each zone, different traffic control policies will be

necessary to optimize the objectives of ATCS. For example, if a traffic zone is a school

zone, pedestrians should be given higher priority than vehicles in that zone.

• Weather Condition

Weather Condition impacts the movement of both vehicles and pedestrians. Under good

weather condition, it may be that pedestrians can cross an intersection within 3 seconds
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but under snowy condition it may take more than 5 seconds for pedestrians to cross it.

Thus, weather condition should be taken into account for selecting the traffic policy.

• Public Event

When Public Events happen traffic flow is drastically altered. For example, a parade can

interrupt movement of vehicles. If that disruption is not handled well, traffic congestion

will result. Hence, different kinds of public events should be considered in formulating

traffic policy.

Time has great influence on traffic policy, either directly or indirectly through the mentioned

contexts. However, time can be retrieved directly by Intersection Manager with minimal effort.

Thus, time dimension is not collected by Context Manager but is collected by Intersection

Manager. Figure 16 illustrates factors that determine the selection of appropriate traffic

policy.

Figure 16: Factors determining traffic policy

3.2.7 Intersection Manager

An Intersection Manager(IM) communicates with its adjacent IMs and Zone Manager (ZM).

It receives traffic policies from ZM and information on traffic patterns from its adjacent IMs.

A traffic policy for an intersection defines the structure of linkage lanes and parameters for
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control algorithms. It uses this global information for managing components at its intersection.

The functionalities of an IM are listed as below.

1. Managing and monitoring components at its intersection

2. Selecting appropriate traffic policy according to current context

3. Exchanging traffic information with its adjacent IMs

4. Reporting the traffic status at its intersection to ZM. The status report includes states

of software and hardware components, inflow and outflow traffic information and the

current context at its intersection.

5. Receiving current policy from ZM and update its database of policy.

3.2.8 Zone Manager

Zone Manager(ZM) is responsible for managing the entire network of IMs in a specific region

such as a district or a city. The functionalities of ZM are listed as below.

1. Defines the traffic control policy the zone managed by it

2. Remotely monitors the network of IMs

3. Receiving and logging reports from IMs for analyzing traffic flow patterns

4. Propagating the changes in road network topology due to road closure or introduction

of new roads to the IMs

5. Propagating changes in traffic policy to the IMs
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Chapter 4

Arbiter - Algorithm Design

As discussed in Chapter 2, most of adaptive traffic systems are implemented by using dynamic

programming which involves Bellman’s dynamic programming algorithm [13]. It is well

known that algorithms that use Bellman’s dynamic programming algorithm will have memory

and computation requirements that are exponential in the size of state space, information

space and action space. So, when the volume of traffic is high, it is hard to guarantee an

optimized solution. It is necessary to overcome this complexity so that the arbiter functions

optimally under stressful situations. The adaptive algorithm proposed in this chapter requires

memory resource that is directly proportional to the traffic volume at an intersection, and

computational resource that is quadratic in the size of the traffic volume at an intersection.

The proposed algorithm is called Rolling Horizon Streams(RHS). Informally stated, the

algorithm has four steps, as shown in Figure 23 during every cycle. RHS algorithm rolls

horizon flows at the intersection, then allocates right of ways to a set of lanes that is expected

to optimize the traffic flow at the intersection. Allocating right of ways revolves around safety,

liveness and fairness properties. Consequently, RHS optimizes while preserving dependable

behavior.

The algorithm will be discussed in this chapter as follows. Section 4.1 discusses the

structure of an intersection and terminologies that are used in the algorithm. In Section 4.2

the concepts “compatibility of traffic flow” and “clique” are defined. These are fundamental

to the RHS algorithm’s performance. Section 4.3 discusses the concept “score” that will be

assigned to each vehicle when approaching the intersection. Section 4.4 explains the core
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steps of the RHS algorithm. Extensions of RHS to deal with the presence of emergency

vehicles and pedestrians are discussed in Section 4.5. The influence of contexts on road traffic

are considered in Section 4.6 and methods to integrate them in RHS are proposed. The

correctness of the algorithm, given in Section 4.7, explains how the objectives of ATCS in

Chapter 3 are achieved in RHS. The simulation results and a comparison with the fixed-time

algorithm appear in Chapter 7.

4.1 Intersection Structure

Figure 17 depicts the structure of a road at an intersection which is governed by the adaptive

arbiter. For the sake of clarity in explaining the algorithm, we illustrate in the figures one-way

traffic situations. Thus, our figures show ‘North-South’ and ‘East-West’ traffic flows. However

the algorithm will work for two-way traffic flows, where in each direction many lanes can

exist. The following sections explain the terminologies used in RHS algorithm.

Figure 17: Queues at an intersection

4.1.1 Inbound Queue

The Inbound queue in an inbound lane captures vehicles approaching the intersection. The

length l of the inbound queue in a lane must be neither too short nor too long. If the queue
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is too short, the result of planning will reflect only a part, not the whole state, of the current

traffic flow. It must be long enough to allow the execution of the algorithm to be completed

and allow planning process to produce a reliable result. However, if l is too long, the accuracy

of the algorithm can be downgraded. The reason is vehicles that are far from the stop-line

(at the intersection) have a high probability to change lanes which makes the result and

the planning process to become invalid. In order that vehicles can travel smoothly without

braking in perfect situations l must not be chosen short. A “perfect situation” is the scenario

when there is no vehicle at an intersection while only one platoon of vehicles flows through

the intersection. In this situation the arbiter will turn on “green” so that all vehicles can

go through the intersection without braking. Technically, vehicles can only travel through

intersections without braking if green waves occur. In particular, at a moment drivers consider

decelerating if the traffic light is red, the arbiter should also consider switching the traffic

light to green if possible. Based on these observations the queue length l is calculated to

satisfy the inequality in Equation 10.

l > s ≥ v2
0

2dc

(10)

In this equation s is the distance from the stop-line at which vehicles start decelerating if the

approaching traffic light is red, v0 is the desire speed, which is the minimum of “the limit

speed on the inbound lane” and “the maximum speed that the vehicle can reach”, and dc is

the comfortable deceleration that drivers can deliver.

4.1.2 Waiting Queue

An initial segment of the inbound queue, called Waiting Queue, is defined so that vehicles

in this queue can be given priority to cross the intersection over vehicles outside this queue.

The front of the Waiting Queue is at the intersection stop line, as illustrated in Figure 17.

The priority mechanism for vehicles in this queue is explained below.

1. The size of waiting queue is to be chosen so that all vehicles in the waiting queue

should be able to cross the intersection when the inbound lane receives a new right

of way. In other words, the arbiter will allocate a sufficient amount of green time for
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‘each switching’ to the inbound lane to discharge all the waiting vehicles in Waiting

Queue. The reason behind this strategy is to minimize the total amount of lost time by

reducing the number of switchings of traffic lights. When the traffic light is turned to

green, drivers usually need 1-2 seconds to react to the change and vehicles also need

several seconds to accelerate to a good speed. During these delays, the utility of the

intersection is very low, may even be nothing.

2. If a vehicle has been waiting in the waiting queue for θt time, depending on the value of

θt the vehicle is given a higher chance to cross the intersection. The tactic to determine

a score based on θt will be discussed in Section 4.3

4.1.3 Linkage Lane

An inbound lane at an intersection may or may not be allowed to make a turn at the

intersection. Traffic policy for an intersection defines which lanes in a traffic direction are

allowed to make turns into which lanes in other traffic directions. Based upon this policy we

define Linkage as a connection (relation) between a pair of an inbound and outbound lanes

at the intersection. The linkage connecting two lanes is called a linkage lane. Each linkage is

designated for a single and unique pair of inbound and outbound lanes. A set of linkages

define all the permitted turns at the intersection. Figure 18a illustrates a set of linkages at

an intersection. The set includes N1W1, N1S1, N2S2, N3S3, E1W1, E2W2, E3W3, and E3S3. A

linkage lane is compatible to another linkage lane if vehicles can pass through both of them

simultaneously without collision. Compatibility property can be evaluated by the following

rules:

1. If both linkage lanes start from the same inbound lane, they are compatible to one

another. For example, in Figure 18a, N1W1 and N1S1 are compatible to one another.

2. If both linkage lanes end at the same outbound lane, they are incompatible to one

another. For example, in Figure 18a, E3S3 and N3S3 are incompatible to one another.

3. If two linkage lanes intersect, they are incompatible to one another. For example, in

Figure 18a, E1W1 and N1S1 are incompatible to one another.
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Turn Prediction

At an intersection it is likely that an inbound lane is connected (through linkage relation)

to several outbound lanes. In Figure 18a, the inbound lane N1 is related by linkage to two

outbound lanes W1 and S1. It means vehicles approaching the intersection on lane N1 can

either go straight to the lane S1 or turn right to the lane W1. An estimation of the ratio

between the linkages at an intersection is called Turn prediction. Because turn prediction

is only an estimate based on “observations or hypotheses”, applying turn prediction to

regulating the traffic at an intersection can introduce inconsistencies. For example, when the

destination of the leading vehicle on lane N1 is W1, and the ratio of the link N1S1 is much

higher than the link N1W1 the planning process in Arbiter might favor the link N1S1. There

will be no progress for vehicles on that lane if the arbiter gives a right of way to only the

link N1S1 as the leading vehicle needs to be cleared first. This situation can be avoided if

every inbound lane is bound to have only one linkage. The road network topology at the

intersection needs to be modified to satisfy this restriction. Figure 18 illustrates two versions

of an intersection, one without turn restriction and one with turn restriction.

(a) Without turn restriction (b) With turn restriction

Figure 18: Linkages and turn restriction

In many situations, it is necessary to use turn prediction. In particular, when the number

of lanes on an inbound road is less than the number of outbound roads at an intersection
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many turns are possible. For example, in Figure 19, both inbound roads from East and South

have only one lane but are connected to two different outbound roads (West and North). In

this scenario, turn prediction must be used to estimate flows on each linkage. However, in

order to allow traffic flow without blocking, all linkages which started from the same inbound

lane must be assigned right of ways simultaneously.

Figure 19: Single Lane Intersection

4.2 Clique

The term Clique is introduced to define “a maximal subset of the set of linkage lanes at each

intersection in which all members are compatible to one another”. In other words, all the

members of a clique can be assigned right of ways to cross the intersection at the same time.

In general, clique holds these important properties.

• Compatibility property: All linkage lanes of a clique are compatible to one another.

• Maximality property: If any other linkage lane is included in that set the compatibility

property will be violated.

• Completeness property: The set of cliques form a cover for the set of lanes. Hence,

the union of all cliques is a set that contains all linkage lanes at an intersection. That
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means each linkage lane must be in at least one clique. The completeness property

makes sure any movement direction will eventually lead to a right of way.

• Non-exclusiveness property: A linkage lane is not required to be in a unique clique

exclusively. That means a linkage lane can be in several cliques. Figure 20 shows an

example in which linkage lane E3S3 belongs to three distinct cliques, whereas cliques

C1 and C3 have no common linkage.

4.2.1 Constructing a Set of Cliques

Constructing cliques at an intersection is equivalent to the problem [15] of finding a set

of maximal complete subgraphs in a graph. The set of cliques can be constructed by the

following steps.

1. Create an undirected graph G = (V, E) with V is a set of all linkage lanes of an

intersection. For each pair of two distinct linkage lanes a and b, edge ab ∈ E if only if

a and b are compatible to one another.

2. Use Bron Kerbosch algorithm [18] with G as the input to find S, the set of maximal

complete subgraphs of graph G.

3. For each complete subgraph Gs = (Vs, Es), Gs ∈ S, create a clique C = (Vs) (Vs is a

set of linkage lanes).

Although Bron Kerbosch algorithm requires exponential execution time, the process of

constructing cliques does not downgrade the performance of the system. The reasons are:

• The set of cliques is statically constructed, once for each intersection. Since each arbiter

manages only one intersection the cliques are built once over the lifetime of an arbiter,

provided no exceptional situations, such as accidents, cause road closure.

• The number of linkage lanes at each intersection is small. For example, in Figure 20,

the number of linkage lanes is only 6.
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4.2.2 Example of Clique

Figure 20 shows an example of an intersection which has the four cliques (N1W1, N2S2,

N3S3), (N1W1, N2S2, E3S3), (E1W1, E2W2, E3S3), and (N1W1, E2W2, E3S3). In our Arbiter

algorithm, at any moment, only the “best clique, chosen from the set of cliques” is favored to

receive the right of ways. The “best” clique is one which has the highest “score”, a concept

that is defined in the following section.

Figure 20: Set of cliques at an intersection
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4.3 Vehicle Score

The calculation of route score for a vehicle is explained with respect to an arbitrary intersection

Ix shown in Figure 21. Every vehicle approaching Ix in every lane will be assigned a score

when entering the inbound queue of that lane in the intersection Ix. This score will be

increased monotonically over time as the vehicle keeps approaching the waiting queue (inside

the inbound queue). The score s(t) of a vehicle at time t is calculated from the ‘base score’,

‘route score of the vehicle’, and ‘its aging function’.

Figure 21: Routes at an intersection

4.3.1 Route Score

A vehicle approaching Ix may come along a lane from any one of the neighboring intersections

of Ix. We call this segment of trip the “route” taken by the vehicle. We define Route score

sr for a vehicle as a value that depends on this route r. In Figure 21, vehicles vwe, vws, and

vne are shown to approach the intersection Ix and their respective trips are “from Iw to Ie”,

from “Iw to Is”, and from “In to Ie”. The assignment of route score at intersection Ix can be

explained informally as follows:

• If a vehicle comes from a congested intersection Ii, it is favored to receive right of

way than a vehicle that comes from non-congested intersection Ij. The reason is that

43



assigning a higher priority clearance to vehicles from congested area than to vehicles

from a non-congested area we can expect to relieve traffic congestion. That is, we assign

six > sjx.

• If a vehicle that goes through Ix is traveling towards a congested intersection Ij, it is

assigned lower priority to receive right of way than a vehicle that is traveling towards

a non-congested intersection Ii. The intention is to prevent a congested area from

continuing to build up more congestion. That is we assign sxj < sxi.

The primary idea behind the calculation of route score is to let the Arbiter at an

intersection cooperate with its neighbor intersections to minimize the maximum values of

‘intersection densities’ in the network. The reasons to minimize the maximum value of density

at an intersection are explained below.

• The relation between flow rate and density (see Section 1.1.1) states that both flow

speed and flow rate decrease when density increases (when k > kc). That means if we

minimize the density, we can maximize the flow rate and flow speed.

• Traffic jam happens when density of an area reaches to the jam density value kjam.

If we can minimize the maximum of density, the traffic system can handle a higher

volume of vehicles without causing traffic congestions.

We define the mathematical expression in Equation 11 and use it to define the score swe

for a vehicle at intersection Ix as it takes the route from Iw to Ie crossing the intersection

Ix. Let there be n “inbound” lanes and m “outbound” lanes at Ix. The “inbound value” in

Equation 11 is the proportion of inbound density of vehicles that flow into Ix from Iw, and

the “outbound value” is the proportion of outbound density of vehicles that flow out from

Ix to Ie. Every density value in Equation 11 is chosen to be “the maximum of {the critical

density and the real density value}”. In other words, if the real density at an intersection is

less than the critical density, the critical value is selected.

swe = β × kw
n∑

i=1
ki  

inbound value

− γ × ke
m∑

j=1
kj  

outbound value

(11)
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where:

• β is a parameter assigned to the inbound traffic flows,

• γ is a parameter assigned to the outbound traffic flows,

• swe is the route score for a vehicle taking the route Iw to Ie,

• kw is the density at intersection Iw,

• ke is the density at intersection Ie,

• ki is a density at Ii, an intersection which feeds traffic into Ix,

• kj is a density at Ij, an intersection to which traffic flows out from Ix,

• n is the number of inbound lanes at intersection Ix, and

• m is the number of outbound lanes at intersection Ix

] The values for β and γ are chosen by the TMs depending upon the contexts, such as

accidents and road closure. If β is greater than γ, the inflow traffic is favored. This implies

that the congestion at the source from which the traffic flows into the intersection will be

cleared. If γ is greater than β, the outflow traffic is favored at the intersection. This implies

that the congestion at the destination to which the traffic flows out will be reduced.

4.3.2 Aging Function

The primary purpose of the aging function is to guarantee liveness property or prevent

starvation from happening. That is, every vehicle eventually passes the intersection. Consider

the scenario when many vehicles keep approaching an intersection in the direction NS, and

a single vehicle is waiting at the intersection on the direction WE. If Arbiter emphasizes

only “traffic density” and “route scoring” it may not allocate the right of way for the vehicle

in the direction WE. This will lead to “starvation” of that vehicle. The aging function is

introduced to solve this problem. Aging function gradually increases the score of vehicles

in the waiting queue as time passes in order to increase the opportunity for vehicles to be
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granted a right of way. Hence liveness property is ensured. Using the aging function, the

arbiter ensures fairness property that every vehicle in a lane will have a chance to cross

the intersection within a finite amount of time. Therefore, the aging function should be a

monotonically increasing function of time.

However, if the aging function is not appropriately defined there is a chance that the

efficiency of the arbiter to optimize traffic flow is reduced significantly. For example, If the

aging function increases too fast with (waiting) time, the arbiter will tend to favor a lane with

longer waiting vehicles than a lane with more number of vehicles. On the other hand, if the

aging function increases only too slowly it may not create any significant change for the score

of a vehicle in a waiting queue. For example, if aging function increases only too slowly the

score after waiting for 10 seconds and 60 seconds may not be different, thus making vehicles to

wait longer. Furthermore, the aging function should not be a simple linear function, because

the slope of the function should also increase over time especially when the waiting time is

greater than the defined threshold. Based on these considerations, in our algorithm we have

selected the aging function as a parabolic function g = at2 + bt + c. Figure 22 shows the plot

of our selected function with a = 1/900, b = 0 and c = 1, and compares the region governed

by it with linear functions that correspond respectively “fast” and “slow” growth rates.

4.3.3 Definition of Vehicle Score s(t)

This score s(t) at time t for a vehicle in a lane at an intersection is calculated by the following

equation.

s(t) =

⎧⎪⎪⎨⎪⎪⎩
(sb + sr) × g(t − t0) if the vehicle is in the waiting queue

sb + sr otherwise
(12)

where t0 is the time when the vehicle entered the waiting queue, sb is the base score of the

vehicle assigned when entering the inbound queue, sr is the route score for route r taken by

the vehicle in arriving at the intersection, and g is the aging function. Without bias and for

the sake of simplicity the base score sb for every regular vehicle can be chosen as 1 under

normal circumstances. For other vehicles such as ambulances, firetrucks, and diplomatic cars,
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Figure 22: Aging function: g = t2/900 + 1

the value of sb, assigned by the TMs, will be greater than 1.

4.4 Rolling Horizon Streams(RHS)

The centerpiece of Arbiter algorithm, called RHS algorithm, is explained in this section.

In traffic prediction studies “forecasting horizon” refers to a time window T , such that for

a starting observation time t0 and for i ≥ 0, the traffic flow for the duration [ti, ti + T ] is

predicted with a step size δt = (ti+1 − ti). The general idea of RHS algorithm is to “roll

horizon flows” at the intersection, then allocate right of ways to a set of lanes in order to

optimize the performance. The optimization is done for those parameters that are selected for

optimization at the intersection. Figure 23 outlines the four main steps Rolling flows, Ranking
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cliques, Deactivating non-member lanes, and Activating member lanes of RHS algorithm.

Figure 23: Four steps of RHS

4.4.1 Rolling Flows

Process Rolling Flows is responsible for predicting locations of approaching vehicles in the

next K intervals if its inbound lane was given a right of way. This process uses an instance

of microscopic traffic simulation roll of every vehicle in flows from the FlowBuilder. Rolling

vehicle means updating the speed and location of the vehicle in the next interval with respect

to its current speed and location, and driver behaviors. This feature of the simulation can be

implemented by using Car Following models such as GIPPS [23] and IDM [52]. The detail of

this model will be discussed in Section 6.1, as part of the simulation study. The output of

this process is L rolling tables with size N × K, where L is the number of inbound lanes, N

is the number of vehicles in inbound queue l, and K is the number of rolling steps. Each row

of the table illustrates the locations of a vehicle through the current time t to t + K × δt,
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where δt is the interval of each rolling step. The window time for observing the horizon is

K × δt. Hence the choice of K and δt are to be chosen based upon the window time.

4.4.2 Ranking Clique

Ranking Clique process is responsible for selecting the clique that is expected to produce the

highest accumulated discharge rate in the next K intervals. It relates the rolling tables in

the previous process to evaluate the mean values of the accumulated discharge rate for each

lane (MDRPL) and for each clique (MDRPC).

Mean Discharge Rate Per Lane (MDRPL)

We calculate lk(n), the Mean of discharge rate per lane (MDRPL) of lane k at the rolling

step n, by the following formula.

lk(n) =

∑
vi∈qk

ui

n
(13)

where vi is a vehicle in the inbound queue qk of lane k, ui is an utility that vehicle vi can

produce at the step n. This utility function ui(n) for vehicle i at the rolling step n is measured

by the expression

ui(n) =

⎧⎪⎪⎨⎪⎪⎩
si if vi is expected to cross the intersection at step n

0 otherwise
(14)

where si is the score of vehicle vi. The formula states that a vehicle score at step n is

contributed to MDRPL if and only if the vehicle is expected to cross the intersection. The

values of MDRPL can be presented in a table of size L×K, where L is the number of inbound

lanes and K is the number of rolling steps. Each row of this table demonstrates the values of

MDPRL throughout the N rolling steps.

Mean Discharge Rate Per Clique (MDRPC)

The Mean of discharge rate per clique ck(n) is the mean of discharge rate of clique qk at the

rolling step n, calculated as the sum of the MDRPL of all the members of clique qk at step n
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by the following equation.

ck(n) =
∑
i∈qk

li(n) (15)

where li is an inbound lane is a member of clique qk, and li(n) is MDRPL of lane li at step

n. The result of this step is a table with size C × K with C is the number of cliques at the

intersection and K is the number of rolling steps. Each row of the table shows the values of

MDRPC throughout N rolling steps.

Best Clique and Periods

The best clique is the one that has the highest MDRPC value throughout the rolling steps.

The moment when the selected candidate reaches the highest rate is called the peek period

(tp), and the moment when the MDRPC value of the selected candidate falls below other

cliques is end period (te). If there is more than one peak, the earliest peak will be selected.

End period is the end of rolling time when the values of MDRPC of the selected candidate

are always greater than values of other cliques at the same step. The output of this process

is a 3-tuple of (c, tp, te) where c is the best candidate clique, and tp and te are respectively

the peek period and the end period of the selected clique.

4.4.3 Deactivating Non-member Lanes

Process Deactivating non-member lanes is responsible for efficiently and safely terminating

running lanes (changing a traffic light from green to red) which are not members of the

selected clique. Figure 24 shows the flowchart of this process.

Termination Conditions

Switching to RED in a lane is safe if and only if all the following conditions are satisfied:

1. The green time that the lane has used is greater than the minimum green time that

the arbiter allocated when the lane was switched from red to green, or all vehicles in

the waiting queue (at the moment switching happened) crossed the intersection.
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Figure 24: Flowchart of deactivating non-member lanes

2. All the remaining amount of green time will be wasted time because no vehicle can use

that time to cross the intersection.

3. The leading vehicle must be able to stop safely without any hard braking. This condition

can be checked with this inequality d > δt × vc + (v2
c /2db), where d is the distance of

the leading vehicle from the stop line, δt is a reaction time of drivers, vc is the current

speed of the leading vehicle, db the minimum value of deceleration that is considered as

hard braking.

Adjust Green Duration

Adjust Green Duration is a correctness process that adjusts the remaining amount of green

time that the arbiter has allocated to a lane. If the remaining green time is used wholly, the

arbiter will leave the value without any update. However, if the arbiter detects a wasted time

it will shorten the remaining green time. This strategy is an explicit feedback loop which

helps to improve the performance by minimizing the total amount of Wasted time, a leftover
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amount of green time after the last vehicle can utilize. Figure 25 indicates that the amount

after vehicle v3 crosses the green light is a wasted time. The last utilizing vehicle can be

found by iterating over the rolling table which is produced in the Rolling Flows process.

Figure 25: Detecting wasted Time

4.4.4 Activating Member Lanes

Process Activating member lanes is responsible for activating lanes which are members of the

selected clique safely and efficiently. Figure 26 depicts the flowchart of this process which is

described as below.

• If a linkage lane is in inactive status, the arbiter will assign it a right of way if and only

if that linkage lane is fully compatible to all other active linkage lanes. If it is safe to

turn on the traffic light to GREEN, the arbiter will assign that linkage lane an amount

of green time via ‘Turn On’ procedure, explained below.

• If a linkage lane is in active status, the arbiter will maintain and adjust its green time

duration via ‘Maintain Green’ procedure, explained below. Since the linkage lane is

active already, there is no need to check the compatibility condition.

Turn On Procedure

The procedure Turn On is used to allocate a new green time for inactive lanes. The amount

of green time should be at least sufficient to clear all vehicles that are waiting in the waiting

queue of that lane. Technically, this amount tl allocated to lane l is calculated by the equation

tl = max(te, tc
l ) (16)
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Figure 26: Flowchart of activating member lanes

where te is the ‘end period’ of the selected clique, and tc
l is the clearance time for lane l.

Clearance time is defined as the minimum amount of green time that is long enough to

discharge all vehicles in the waiting queue. It can be calculated by iterating over the rolling

table to find a moment when the last vehicle in the waiting queue crossed the intersection.

Maintain Green

The procedure Maintain Green is used to maintain or extend the remaining amount of green

time. This procedure is only applied to a lane which is in active status and is a member of

the selected clique. The new amount of green time tl for lane l is calculated according to the

expression

tl = max(te, tr
l ) (17)

where te is the ‘end period’ of the selected clique, and tr
l is the remaining amount of green

time of lane l.
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4.4.5 Update Interval

Update Interval(∆t) is an amount of time between two successive executions of the algorithm.

This update interval should not be too long because the current control decisions can be

invalid over a long period. In our algorithm, we select the update interval to be 0.5 seconds

which equals to the recommended interval step of IDM model [52].

4.5 Extended RHS

The RHS version of the arbiter described in the previous section will manage only regular

vehicles. In this section, we consider two exceptional situations, namely those caused by

emergency vehicles in the traffic and pedestrians in crossings.

4.5.1 Emergency Vehicles

The arbiter can support emergency vehicles seamlessly if the infrastructure is able to dis-

tinguish them from regular vehicles in captured traffic flows. Emergency vehicles can be

detected by hardware sensors or through V2I communication. The following two simple

modifications to the algorithm RHS will prioritize the right of way of emergency vehicles in

the traffic flows.

1. Car Following with Emergency Vehicles

Emergency vehicles often do not follow another vehicle as regular vehicles do. Strictly

speaking if a priority vehicle, such as ambulance or police car, is following regular

vehicles, then the regular vehicles will eventually be forced to make way for the priority

ones to by pass them. Car Following models that are used to roll vehicles in RHS do

not consider this special scenario. Therefore, the car following models in RHS should

be extended to include the factors described below.

• Regular vehicles make way for emergency vehicles. Instead of keep moving up the

regular vehicles the emergency vehicles may be allowed to bypass them.

• Emergency vehicles are not restricted by the speed limit imposed on the lanes.
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• Emergency vehicles should be assigned a higher acceleration value, but a lower

time-headway value (reaction time) than those assigned for regular vehicles.

2. Emergency Vehicle Score

Emergency vehicles should be assigned a much higher base score (sb) than a regular

vehicle. The base score of an emergency vehicle will be set by the TMS so that when it

enters an inbound queue, the arbiter at that intersection immediately favors that lane to

receive a right of way. This allows emergency vehicles cross an intersection without any

‘delay’. The route score of an emergency vehicle can be chosen as 0. Finally, RHS can

prioritize different kinds of emergency vehicle such as fire-fighting engines, ambulances

and police cars by assigning them different base score values.

With these modifications in RHS, the arbiter can fully preempt traffic signals to allow

emergency vehicles to cross an intersection with a minimum delay, while maintaining traffic

safety and smooth traffic flow without any significant halt and go interruptions.

4.5.2 Pedestrians

Like emergency vehicles, in order to support pedestrians, the traffic infrastructure system

must be able to collect the presence of pedestrians at intersections. Pedestrians can be

detected through camera detectors [16], although the direction of their crossings can be

approximately predicted. The RHS algorithm will be extended to include the following factors

in order to support safe crossing for pedestrians.

1. Crosswalk

Crosswalk is defined as a place designated for pedestrians to cross a road. In this extended

model, a crosswalk is considered as a regular linkage. Thus, a clique may contain

both regular linkages and crosswalks, or just only linkages, or just only crosswalks (see

Figure 27).

2. Pedestrian Crossing Model

The way people cross a road on a crosswalk at an intersection is completely different

from the way a vehicle follows another vehicle on a road. That is, a pedestrian need

55



(a) A clique contains both link-
ages and crosswalks

(b) A clique contains linkages
only

(c) A clique contains cross-
walks only

Figure 27: Cliques in the extended RHS

not follow another pedestrian while crossing. Therefore, we can not use a car following

model to estimate ‘pedestrian crossings’. Pedestrian crossing model such as [45] should

be used to ‘roll’ pedestrians in the rolling procedure of RHS.

3. Pedestrian Score

Pedestrian score should not include the route score because the route score is specified to

congestion rates of vehicles not related to pedestrians. The base score for a pedestrian is

assigned by the TM at that intersection. The value of the base score will be determined

by the traffic control policy for pedestrian crossing. In certain contexts, the base score

of a pedestrian may be chosen less than the base of a regular

4.6 Integrating Context Parameters in RHS

As stated in Chapter 3, context parameters such as weather conditions, public events, time,

traffic zone, and road closure can be taken into account in regulating traffic flows. In our

proposed architecture (see Chapter 3), when Intersection Manager(IM) receives the up to

date values of these parameters, it ‘transforms’ them to a traffic policy. From the perspective

of RHS algorithm, a traffic policy is just a 3-tuple consisting of (1) result of Car Following

model, (2) value of aging function, and (3) a set of allowed linkages. Table 3 outlines the

influences of the context parameters to arbiter parameters. These relations are explained as

follows.
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Context Parameter Arbiter Parameter

Weather Condition Car Following

Public Events Car Following

Time Aging Function

Traffic Zone Base Score

Lane Closure Clique

Table 3: Influences of the context parameters to RHS

• Weather Condition:

Weather condition affects directly the way people drive. In dry weather condition,

drivers usually keep the time headway to be around 1-2 seconds. However, in wet or

snowy condition, they prefer to keep a larger headway, say around 5-7 seconds. If

RHS algorithm fails to capture this value, the rolling produce procedure will produce

inaccurate rolling tables. Consequently, the performance of the algorithm can be

downgraded. Therefore, the parameters that match weather conditions are integrated

in Car Following model of RHS algorithm.

• Public Events:

When a public event, such as music festival or soccer game, ends, the cars will try to drive

out of that place as soon as possible. In this situation the drivers are willing to accept

a higher level of risk, which means “they may keep a smaller gap and time headway”

when following another vehicle. Consequently, the parameters in Car Following model

of RHS algorithm need to be adjusted.

• Time:

Although the proposed algorithm reacts efficiently to dynamic traffic flows, its perfor-

mance can be further improved if the “time factors on traffic patterns” is also factored

into it. For example, when the volume of traffic is low the performance of the algorithm

can be upgraded with a ‘fast increasing’ aging function, and when the traffic volume

is high, the algorithm will perform well with a ‘slow increasing’ aging function. From

traffic statistics gathered by traffic enforcing authorities, it is known that traffic volumes
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at a specific area “vary over time within a day” as well as “ vary over certain days in a

week”. By integrating time contexts and the traffic volumes in each time context in the

choice of aging function the performance of the algorithm can be improved.

• Traffic Zone:

Different traffic zones in a city have different vehicles-to-pedestrians ratios, which can

vary over time contexts. With a knowledge of these ratios in different time contexts, base

score values for vehicles and pedestrians can be computed in RHS. These scores, which

vary from context to context, can improve the efficiency of the green time allocation for

vehicles and pedestrians.

• Lane Closure:

Lane closure contexts are observed by sensors and communicated to the nearest IMs.

The IM that receives the lane closure information will select the traffic policy for

“turn” at the intersection and communicate to the module that computes the cliques.

This model recomputes the set of cliques and send it to the Arbiter managed by the

IM. In this manner, the set of cliques used by RHS algorithm will match the real-

world configuration of compatible lanes. Consequently, RHS algorithm will meet the

dependability objectives.

4.7 Correctness and Complexity of RHS

The two criteria for evaluating an algorithm are correctness and complexity. The correctness

problem is related to the presence of a stated property in the algorithm. Time complexity

refers to the worst case execution time taken by the algorithm to terminate, and is often

expressed as a function of the input size to the algorithm. Space complexity refers to the

maximum intermediate storage, measured as a function of input size, during the entire

execution of the algorithm.
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4.7.1 Correctness of RHS

The three core properties of the arbiter are safety, liveness and optimization. A formal

correctness proof, such as verification by model checking, is beyond the scope of this thesis,

because the arbiter interacts with physical processes in a dynamic environment and formally

modeling them is extremely hard [7]. However in this section, we outline how these properties

are achieved in the algorithm.

Safety

The arbiter guarantees the safety property at an intersection because it never grants right of

ways to two incompatible linkage lanes simultaneously. This ensures collision-free passage

of vehicles at an intersection. In the algorithm, this behavior is enforced in the following

procedures.

• The algorithm always grants right of ways to one and only one clique at any moment.

• The linkage lane can be switched from RED to GREEN if and only if all linkage lanes

that are incompatible to it are turned off and vehicles on those linkage lanes have

crossed.

• The linkage lane can be switched from GREEN to RED if and only if vehicles ap-

proaching it can safely stop.

Liveness

The liveness property is promoted by the introduction of the aging function. The principle of

the aging function emphasizes that the longer vehicle stays in the waiting queue, the more

likely it will be assigned the right of way. The two key characteristics of the aging function

that achieve liveness are the following:

• It is a monotonically increasing function of waiting time. That means the chance (of

vehicle in a waiting queue) to get a right of way will always increase over time.

• The slope of the aging function also increases over time especially when the waiting

time is greater than the defined thresholds. This prevents a vehicle from starvation.

59



Optimization

In the algorithm, the best clique is always selected to grant right of way to vehicles in it. The

best clique is expected to deliver the highest number of vehicles through the intersection in

the next interval of time. The best clique is more likely to

1. maximize the flow rate (throughput),

2. minimize the total waiting time at an intersection, and

3. minimize the total traveling time in network (inferred from (2))

Moreover, a clique that has vehicles traveling with high speed is favored to receive right of

ways than others. The reason is the algorithm estimates that the high speed group of vehicles

will complete crossing within a shorter amount of time, which leads to choosing that clique

as the best clique. Favoring the high speed group of vehicles will significantly reduce the

total number of “stop-and-wait”. It is known that the fuel consumption is [3] a monotonically

increasing function of a traveling time and a number of “stop-and-go”. Since the traveling

time and the number of “stop-and-go” are both minimized by the arbiter, it also minimizes

the total fuel consumption of vehicles while in the intersection as well as while traveling in

the network.

The route score in the algorithm minimizes the maximum value of density for road

segments in the network. This strategy leads the traffic system managed by the arbiter and

other managers to be able to serve a high traffic volume. However, in exceptional situations

when the density approaches “the jam density” in a large number of intersections, traffic flow

will be stalled at intersections which in turn will trigger deadlock situations.

4.7.2 Complexity of RHS

Algorithm RHS has a preprocessing state in which the cliques are computed. They are used

in all the cycles for regulating the traffic. The number of linkages at an intersection is a

constant, which is also the number of vertices in the graph to construct all the maximal

cliques. Although computing cliques is NP-complete, because the graph size is small and we

compute the cliques only once, this cost is still is a constant, not dependent on the volume of
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traffic flow. Therefore, in this section we focus only on the complexity of the dynamic part of

the algorithm.

Since the number of arithmetic operations dominate over the number of comparisons in

RHS, the complexity of RHS is measured in term of the number of multiplications required

in order to calculate the tables and selecting the best clique. The algorithm computes three

tables. The size of the first table is N × K, where N is number of vehicles observed in window

time T. Each entry in this table is calculated by using Equation 28. A computation of this

equation involves 10 multiplications and 1 square root (ignoring additions). Therefore, the

cost of computing this table is Θ(N × K). The second table computes only the column sums

of the first table, there is no multiplication involved. The size of the third table is C × K,

where C is the number of cliques. The calculation of each element in this table requires only

one division of each corresponding entry in the second table. Therefore, the multiplication

cost for constructing the third table is Θ(C × K). Hence, the total complexity to find the

clique to assign a right of way in one cycle is Θ(N ×K) + Θ(C ×K). In principle, the number

of cliques C is a constant because the number of linkages at an intersection is bounded.

Therefore, the total complexity is Θ(N × K). The number of vehicles N is bounded K/rt,

where rt is an average reaction time. Typically, reaction time is greater than 1 second, thus

we conclude N < K. Hence, the total complexity is Θ(K2). In transportation study, it is

found that the value of K should be small, otherwise inaccuracy is introduced in prediction.

The worst case complexity of our algorithm is polynomial in K(and hence polynomial in N ,

number of vehicles observed in window time T ). Compared to other approaches which are

based on Bellman’s Dynamic Programming approach which has exponential time complexity,

we have a quadric time algorithm.
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Chapter 5

Road Network Topology

The goal of this chapter is to introduce a formal model of road network topology and explain

how it is arrived at. This model is a necessary input to the microscopic simulation developed

as part of this thesis. The simulation environment provides a solid platform to implement,

verify, and evaluate a part of the ATCS presented in the thesis. The simulation environment

imitates the two important characteristics of Road Network Topology Model and Vehicle

Driver Behavior of the transportation system. In this chapter the modeling of road network

is discussed. The driver behavior model will be presented in Chapter 6.

5.1 Overview

The Road Network Topology (RNT) model that we introduce is a complete description of a

physical road network and this model is used as an input to the simulation platform. This

model provides a detailed presentation for the roads and the intersections in a physical road

network. Although the model is readable and editable, it is time-consuming for humans

to create this model from scratch. To reduce this complexity another model, called Road

Network Description (RND), is introduced. The RND model is more abstract than the RNT

model created from it. The tool ‘netbuild’ is constructed to generate the RNT corresponding

to the RND input by users. Moreover, RNT is designed so that importing real world data

from OpenStreetMap [40] will require only minimal effort. Figure 28 illustrates the different

modes of creating a RNT model for the simulator.
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Figure 28: Converting to RNT from RND and OSM

5.2 Road Network Description

Road Network Description (RND) is the descriptive model of a road network. Conceptually,

the skeleton of the model is a directed graph in which road segments are edges and intersections

are vertices. The primitive elements of the model are node, road, and lane.

5.2.1 Node in RND

In the descriptive model, a node typically represents a physical intersection. Each node

consists an identifier and a pair of coordinates. Table 4 outlines these attributes in detail.

Attribute Type Option Description

id String Required The identifier of an intersection

x Double Required The x-coordinate of an intersection

y Double Required The y-coordinate of an intersection

Table 4: Node attributes in RND model

5.2.2 Road in RND

In the descriptive model, a road represents a physical road segment between two successive

intersections. The description of a road segment is a 6-tuple consisting of “an identifier, an

origin node, a destination node, a road shape, lanes, and a control type”. Table 5 outlines

these attributes in detail.
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Attribute Type Option Description

id String Required It is the identifier of a road segment. If an id is
provided in the format of ‘α to β’, α and β can be
inferred as the identifiers of the origin and destination
nodes respectively.

from String Optional It is the identifier of the origin node of a road segment.
If an origin node is not provided, it can be inferred
from the identifier of the road.

to String Optional It is the identifier of the destination node of road
segment. If a destination node is not provided, it can
be inferred from the identifier of the road.

via Array Optional It is an array of intermediate points that a road seg-
ment gets through. Those points are used to construct
the shape and the length of a road segment. The value
of via attribute can be provided in string with the
format “x1, y1 x2, y2 xn, yn”.

shape Struc-
ture

Optional This attribute is used to specify the shape of a road
segment. The structure of the shape is discussed
later. If the shape is not provided explicitly, it is
assumed that the shape of the road is a polyline of
N +2 endpoints, where N is a number of intermediate
points.

lanes Array Optional This is an ordered list of lane specifications. The order
of lanes attribute is the rightmost order - it starts
from the rightmost lane and ends at the leftmost lane
(see Figure 29). If a value for this attribute is not
provided, the default value of lanes attribute is used.

control Enum Optional This attribute describes how a road segment operates
at the destination node. Possible values of control
attribute are signaled and unregulated. If this attribute
is not provided, the control type of the road segment
will be unregulated if there is no conflict in traffic flow
at the destination node; otherwise it will be signaled.

Table 5: Road attributes in RND model
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Figure 29: Lane Index

5.2.3 Lane in RND

In descriptive model, a lane is a specification for a physical lane segment of a road. Its

attributes are illustrated in Table 6.

Attribute Type Option Description

id String Required The identifier of a lane specification

width Double Required The width of a lane segment

speed Double Required The limited speed of a lane segment

Table 6: Lane attributes in RND model

5.2.4 Intersection in RND

In the descriptive model, each node represents an intersection. To keep the descriptive model

simple, other detailed attributes such as turns and shape of an intersection are not included

in the model. The ‘netbuild’ utility will generate the internal structure of intersections

automatically according to road segments defined in the network.

5.2.5 Road Network Description Model Example

YAML [14] has a human-readable data serialization format and it takes concepts from

programming languages such as C, Perl, Python, and XML. The syntax of YAML is designed

to be easily mapped to common data types such as list, associative array, and scalar. Figure 30
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demonstrates an example of the descriptive model in YAML format of the 16-nodes road

network shown in Figure 31. The network in the example is explained as follows:

• Line 1-2 defines an array of lane specifications which has only one element ‘r’ with its

width is 3.7 meters and allowed speed is 60 km/h.

• Line 3-4 defines default attributes for the network. By default, each road in the network

has 3 lanes of type ‘r’.

• Line 5-21 defines an array of 16 nodes. Each node is specified in format ‘id: x,y’.

• Line 22-49 defines a set of roads in the network. Each road is specified in format

‘road-id: road-attribute’. In YAML, character ‘∼’ means ‘NULL’, thus a road with ‘∼’

inherits the default attributes.

5.3 Road Network Topology

Road Network Topology (RNT) is a detailed presentation of a road network. Unlike the

descriptive model, every element in this model is defined explicitly without any assumption

or inference. The core elements are node, road, lane, and intersection.

5.3.1 Node in RNT

In RNT a node no longer represents a physical intersection, but it is an endpoint of the road

segment. The attributes of a node are given in Table 7.

Attribute Type Description

id String The identifier of an endpoint

x Double The x-coordinate of an endpoint

y Double The y-coordinate of an endpoint

Table 7: Node attributes in RNT model
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1 lanes:
2 r: { width: 3.7, speed: 60 }
3 defaults:
4 lanes: [r, r, r]
5 nodes:
6 1: 100,200
7 2: 500,200
8 3: 1000,200
9 4: 1500,200

10 5: 100,600
11 6: 500,600
12 7: 1000,600
13 8: 1500,600
14 9: 100,900
15 10: 500,900
16 11: 1000,900
17 12: 1500,900
18 13: 100,1200
19 14: 500,1200
20 15: 1000,1200
21 16: 1500,1200
22 roads:
23 5to2:
24 via: 100,200 # Node 1
25 2to3: ˜
26 3to8:
27 via: 1500,200 # Node 4
28 8to7: ˜
29 7to6: ˜
30 6to5: ˜
31 9to10: ˜
32 10to11: ˜
33 11to12: ˜
34 12to15:
35 via: 1500,1200 # Node 16
36 15to14: ˜
37 14to9:
38 via: 100,1200 # Node 13
39 9to5: ˜
40 2to6:
41 lanes: [r,r] # Two lanes
42 6to10:
43 lanes: [r,r] # Two lanes
44 10to14:
45 lanes: [r,r] # Two lanes
46 15to11: ˜
47 11to7: ˜
48 7to3: ˜
49 8to12: ˜

Figure 30: RND Model Example

Figure 31: Road Network of Figure 30

67



5.3.2 Road in RNT

In the detailed model, road still represents a physical road segment. The attributes of a road

segment are given in Table 8.

Attribute Type Description

id String The identifier of a road segment

from String The identifier of the origin node of a road segment

to String The identifier of the destination node of road segment

lanes Array The ordered list of lanes from the rightmost to the leftmost
(see Figure 29)

Table 8: Road attributes in RNT model

5.3.3 Lane in RNT

In the detailed model, each lane is assigned an index and accompanied with an ordered list

of segments. The attributes of a lane are outlined in Table 9.

Attribute Type Description

index Integer Lanes are ordered from right to left, with the rightmost lane
assigned 0 as the index and the leftmost lane assigned index
N − 1 if N is the number of lanes of the road segment. So,
index is the index of a lane in the above ordering.

segments Array It is the ordered list of lane segments of a lane.

Table 9: Lane attributes in RNT model

5.3.4 Lane Segment in RNT

Lane segment is a part of a lane along its driving direction. The length and the location of a

segment are calculated based on its shape attribute. The attributes of a segment are given in

Table 10.
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Attribute Type Description

width Double The width of a lane segment

speed Double The limited speed on a lane segment

shape Structure The shape of a lane segment

Table 10: Lane segment attributes in RNT model

5.3.5 Shape in RNT

The shape at an intersection is important to accurately calculate the position of vehicles in

the rolling tables. The syntax of the shape of a lane segment is borrowed from SVG [21].

Currently, the model supports the following kinds of shapes.

• Polyline with n endpoints p1 . . . pn can be specified in a string with syntax “Polyline

x1, x2 x2, y2 xn, yn”.

• Quadratic curve with endpoints e1 and e2 and control point c can be specified in a

string with syntax “Quad xe1 , ye1 xc, yc xe2 , ye2”.

• Cubic curve with endpoints e1 and e2 and control points c1 and c2 can be specified in a

string with syntax “Cubic xe1 , ye1 xc1 , yc1 xc2 , yc2 xe2 , ye2”.

5.3.6 Intersection in RNT

In the detailed model, an intersection is no longer represented by a single node but a graph.

The internal structure of an intersection is illustrated explicitly in the RNT model. The

‘netbuild’ utility automatically generates the internal structure of an intersection according

to road segments sketched in the descriptive model. Figure 32 depicts the internal graph of

Intersection 7 of the road network in Figure 31. The attributes of an intersection in RNT are

illustrated in Table 11.

5.3.7 Linkage in RNT

Linkage is an extended lane segment whose purpose is to allow crossing at an intersection.

The attributes of linkage are outlined in Table 12.
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Figure 32: Internal structure of Intersection 7 of Road Network in Figure 31

Attribute Type Description

id String The identifier of an intersection

control Enum It is the control type of an intersection. Possible control values
are: signaled and unregulated.

center SVG It is the shape of an intersection. This attribute is solely used
in the Traffic Viewer.

links Set It is a set of linkages(which are described in Table 9) that
indicates all allowed movements at an intersection.

Table 11: Intersection attributes in RNT model

5.4 Shape of an intersection

The shape at the center of an intersection is generated automatically according to the number

of inbound/outbound lanes and their width and direction. The boundary of a shape is

composed by a combination of several Bezier quadratic curves and straight lines. For example,

the shape of Intersection 7 in Figure 31 is composed by a path of (L1, C1, L2, C2, L3, C3, L4,

C4) (see Figure 33). The path can be represented in SVG “M1012.0 605.45 L1012.0 594.55

Q1005.45,594.55 1005.45,588.0 L994.55 588.0 Q994.55,594.55 988.0,594.55 L988.0 605.45

Q994.55,605.45 994.55,612.0 L1005.45 612.0 Q1005.45,605.45 1012.0,605.45”. Our shape

representation in Figure 33 is sufficiently expressive to capture real-world intersections.

70



Attribute Type Description

fromRoad String The identifier of the inbound road of a linkage

toRoad String The identifier to the outbound road of a linkage

fromLane String The index of the inbound lane of a linkage

toLane String The index of the outbound lane o a linkage

segments Array An array of lane segments of a linkage (see Table 9)

peers Set A set of compatible linkages at an intersection

Table 12: Linkage attributes in RNT model

Figure 33: Shape of intersection
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Chapter 6

Vehicle Driver Behavior

A macroscopic traffic flow model is a mathematical model that formulates the relationships

among traffic flow characteristics like density, flow, and mean speed of a traffic stream.

Microscopic traffic flow models the behavior of vehicular traffic dynamics. That is, in

microscopic traffic flow the dynamic variables represent microscopic properties like the

position and velocity of single vehicles. The term ‘Vehicle Driver Unit (VDU)’ is defined as

the combined behavior of a vehicle and a driver driving that vehicle. While traveling, each

VDU keeps changing its dynamic variables over time including acceleration, speed, direction,

and location. These dynamic variables are explicitly determined by two core decisions of a

driver: accelerating and steering. Accelerating means adjusting the current speed of a vehicle.

Steering in the microscopic model refers to lane changing. Accelerating and steering decisions

are respectively formalized in Car Following and Lane Changing models.

6.1 Car Following Models

Car Following models describe the way a vehicle driver unit follows another unit on the

same lane while traveling. These models have been studied for more than 60 years [42] and

have played an extremely important role in traffic engineering studies such as microscopic

simulation, modern traffic flow theory, and autonomous cruise control(ACC) [17]. Figure 34

outlines the three main steps of Car Following models [46].

1. Perception
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Figure 34: Main steps of Car Following models

In this step, a driver collects relevant information including the current speed of his

vehicle, the leading vehicle’s speed, and the gap between the two vehicles.

2. Decision Making

A driver interprets the collected information, then decides a control command which

estimates the acceleration or the speed of the vehicle in the next interval. The decision

is influenced not only by the perceptive information, but also by the driver behavior,

driving experience, and the capacity of the vehicle.

3. Execution

In this step the driver is delivering the selected control command, while observing the

roadway and repeating these steps. Strictly speaking, Execution and Perception steps

happen simultaneously.

6.1.1 Elements of Car Following Models

The primary principle of Car Following models is to assume that a vehicle-driver unit, when

following another unit, always attempts to

• Keep up with the leading vehicle,

• Avoid collision with the leading vehicle.
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Mathematically, Car Following model is a function that estimates the speed of a vehicle in

the next interval according to its current states and the state of the leading vehicle. The

mathematical expression in Equation 18 demonstrates the general form of Car Following

models. Following the notation of Figure 35, the subscript n is associated with the vehicle

that follows the vehicle with subscript n − 1. The meanings of velocities, distance between

vehicles, and car lengths are also illustrated in this figure.

vn(t + ∆t) = F (vn(t), vn−1(t), sn(t)) (18)

Thus, vn(t + ∆t) denotes the estimated value of the speed of vehicle n at time t + ∆t, vn(t)

and vn−1(t) are respectively the speeds at time t of the “following” and “leading” vehicles,

and sn(t) is the gap between the two vehicles at time t.

Figure 35: Notations of Car Following models

6.1.2 Gipps’ Model

The Car Following model proposed by Gipps [23] in 1981 is considered as a major development

in modeling vehicle-driver behavior. This model is built upon the following assumptions.

• There is an apparent reaction time τ for all drivers. In other words, a driver may not

react to a change of the preceding vehicle at time t until t + τ .

• Drivers always maintain a safe speed so that they can stop their vehicle safely even

when the leading vehicle suddenly stops (the worst situation). To prevent collision,

Gipps requires the gap between two successive vehicles on the same lane must be greater
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than or equal to the minimum gap s0 (safe distance to avoid collision) even when those

vehicles are standing. This condition is called ‘safety condition’.

• When a driver of vehicle n executes braking, it is done with a constant value of

deceleration bn.

Safe speed

Safe speed is defined as the maximum speed that a following vehicle can maintain and with

which the safety condition is satisfied. Safety condition can be evaluated when the leading

vehicle suddenly stops. When that happens, the leading vehicle will be at position x∗
n−1 given

by

x∗
n−1 = xn−1(t) + v2

n−1(t)
2bn−1

, (19)

where x∗
n−1 is the expected position of the leading vehicle at time t + τ , xn−1(t) and vn−1(t)

are the position and speed of the leading vehicle respectively at time t, and bn−1 > 0 is the

constant deceleration of vehicle n − 1.

The following vehicle won’t react to the change of the leading vehicle until t + τ and it will

be at position x∗
n, given by

x∗
n = xn(t) +

(
(vn(t) + vn(t + τ)

)
τ

2 + v2
n(t + τ)

2bn

, (20)

where τ is the average reaction time for all drivers, and bn is the maximum deceleration that

the driver of vehicle n can execute. The other variables in the equation are as defined in

Figure 35.

However, this equation does not allow any margin of error from driver behavior. To ensure

safe reaction time, θ is introduced as the margin of error and the above equation is rewritten

as follows:

x∗
n = xn(t) +

(
vn(t) + vn(t + τ)

)
τ

2 + v2
n(t + τ)

2bn

+ vn(t + τ)θ  
margin error

(21)

The safety condition requires the gap between two vehicles must be equal to or greater than
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the minimum gap s0.

x∗
n−1 − ln−1 − x∗

n ≥ s0, (22)

where ln−1 is the length of the leading vehicle. Replacing the values of x∗
n−1 and x∗

n, in 22

we get the inequality

xn−1(t) + v2
n−1(t)
2bn−1

− ln−1 − xn(t) −
(

(vn(t) + vn(t + τ)
)

τ

2 − vn(t + τ)θ − v2
n(t + τ)

2bn

≥ s0 (23)

Referring to Figure 35, we write sn(t) = xn−1(t) − ln−1 − xn(t) which is the gap between two

vehicles at time t. Using this expression in inequality 23 we rewrite it as

sn(t) + v2
n−1(t)
2bn−1

−
(

(vn(t) + vn(t + τ)
)

τ

2 − vn(t + τ)θ − v2
n(t + τ)

2bn

≥ s0 (24)

In the perception stage, the driver following vehicle n − 1 can observe all parameter in

Equality 24, except the constant deceleration bn−1 of the leading vehicle. Thus an estimated

value b̂ is used. Substituting this estimated value b̂ for bn−1, the safety condition becomes

sn(t) + v2
n−1(t)
2b̂

−
(

(vn(t) + vn(t + τ)
)

τ

2 − vn(t + τ)θ − v2
n(t + τ)

2bn

− s0 ≥ 0 (25)

Safe speed of vehicle n at time t + τ written as vsafe
n (t + τ) is the maximum value that still

satisfies the inequality 25. In other words, vsafe
n (t + τ) is the maximum value of the solutions

of the equation when equality holds. If θ is equal to τ/2 and b̂ = bn, the safe speed of vehicle

n at time t + τ is given be the following equation.

vsafe
n (t + τ) = −bnτ +

√
b2

nτ 2 + 2bn

(
sn(t) − s0

)
+ v2

n−1(t) − bnvn(t)τ (26)

Gipps Formula

Besides the safety condition, the speed of a vehicle at the next interval must not exceed the

desired speed V 0
n and the amount of change caused by accelerating. The speed at time t + τ

is given by

vn(t + τ) = min
{

vsafe
n (t + τ), V o

n , vn(t) + aτ
}

(27)
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where vn(t + τ) is the expected speed of vehicle n at time t + τ , vsafe
n (t + τ) is the safe speed,

V o
n is the desired speed, which is the minimum of ‘the allowed speed on the current lane’ and

‘the maximum speed that vehicle n can reach’, and a is the maximum acceleration vehicle n

can execute.

Driver Behavior

In Gipps model, the driver behavior can be modeled by providing different values for

parameters θ and s0. Aggressive drivers usually have small values for both θ (the margin

error time) and s0 (the minimum gap), whereas careful drivers have bigger values for both θ

and s0.

6.1.3 Intelligent Driver Model

Intelligent Driver Model (IDM) [52] was developed by Treiber, Hennecke, and Helbing in

2000 with the aim to improve the realism of the braking manner. In Gipps’ model, the

driver of vehicle n is assumed to brake with the constant of deceleration bn. However, this

assumption is not true because in the real traffic, drivers usually execute a soft braking then

gradually increase the value of deceleration. IDM provides a function which helps to estimate

the acceleration for a following vehicle in the next interval. The speed in the next interval

can be calculated by using Runge - Kutta methods [19]. Equation 28 illustrates that the

acceleration in the next interval is the difference between ‘the desired acceleration’ (of the

vehicle n) and ‘the gap deceleration’ (which introduced by the leading vehicle n − 1 in order

to avoid collision). The desired acceleration indicates that drivers want to accelerate their

vehicle to the desired speed, however it is restricted by the gap deceleration.

an(t + ∆t) = An

⎛⎜⎜⎜⎜⎝ 1 −
(

vn(t)
Vn

)δ

  
desired acceleration

−
[

s⋆(vn(t), ∆vn(t)
sn(t)

]2

  
gap deceleration

⎞⎟⎟⎟⎟⎠ (28)

where:

• an(t + ∆t) is the estimated acceleration of vehicle n for the next interval,
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• An is the maximum acceleration vehicle n can execute,

• vn(t) is the current speed of vehicle n,

• Vn is the ‘desired speed of vehicle’ n on the current lane,

• s0 is the minimum gap,

• s⋆(vn(t), ∆vn(t)) is the desired dynamic distance of vehicle n at time t,

• sn(t) = xn−1(t) − ln−1 − x is the gap between vehicles n − 1 and n at time t,

• and ∆vn(t) = vn(t) − vn−1(t) is the difference between speeds of vehicles n and n − 1.

The desired dynamic distance can be calculated as follows:

s⋆(vn(t), ∆vn(t) = s0 + max

(
0, vn(t) T + vn(t) ∆vn(t)

2
√

Anbn

)
, (29)

where T is the ‘time gap’ that drivers usually keep, depending on road and weather conditions,

bn is the comfortable deceleration the driver of vehicle n can execute, and s0 is the minimum

gap between two successive vehicles.

Driver Behavior

IDM model does not require the reaction time explicitly, however it requires a ‘time gap’

between two successive vehicles. In IDM, the driver behavior can be modeled by providing

different values for parameters bn - comfortable deceleration, T - time gap, and s0 - the

minimum gap. Aggressive drivers usually use small values for T and s0 but a large value for

bn; whereas careful drivers usually use larger values for T and s0. Another advantage of IDM

model is that it can be easily used in Autonomous Cruise Control (ACC). The difference

between ACC and human driver only is the ‘time headway’. ACC requires a much smaller

value for T than human drivers.

78



6.1.4 Special Situations

Car Following models only discuss the regular situation in which a vehicle follows another

vehicle on the same lane. There are other special situations which are not mentioned, however

they can be easily transformed to the regular case.

• Vehicle without a leading vehicle:

When a vehicle is traveling without following another vehicle, we can use the regular

situation discussed above, by assuming that there is a vehicle at the horizon running

with the desired speed. The term horizon is used in Traffic Engineering to denote the

region that is visible while facing the traffic flow direction.

• Vehicle approaching a traffic light:

When a vehicle approaches a traffic light which is RED, we can use the regular situation

discussed above, by placing a standing (static) vehicle (speed = 0) at the position of

stop line at the minimum gap distance s0.

6.2 Lane Changing

Lane Changing is a process of transferring a vehicle from one lane to an adjacent lane. Like

Car Following model, Lane Changing is one of the cornerstones in the study of microscopic

traffic flow. According to the study [51], Mandatory lane change (MLC) and Discretion lane

change (DLC) are the two types of Lane Changing model. MLC happens in three scenarios,

namely (1) when the current lane is not connected to the next road segment, (2) the current

lane merges with another lane, and (3) the current lane is blocked due to accidents or lane

repairs. DLC takes place when a driver wants to improve driving condition, such as avoiding

to follow slow vehicles or gaining speed or enter a shorter queue.

In 1986, Gipps [24] introduced the first Lane Changing model which covers various urban

driving scenarios such as traffic signals, obstructions, and presence of slow vehicles. In Gipps

model, lane changing selections are influenced by a combination of necessity, desirability, and

safety. Necessity is governed by the reasons cited for MLC. Desirability is governed by DLC

criteria, which can be evaluated by driving condition. Safety means ‘Is it possible to change
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lane without collision?’ which is determined by a ‘gap acceptance’ criterion. Gap acceptance

will be discussed later in this section.

Gipps model is incomplete in the sense that it models only regular lane changes and

not forced lane changes. Although it is incomplete, it provided a starting point for the

development of most of modern lane changing models such as SITRAS [35], Integrated

Lane-changing Model [51], and MOBIL [31]. After analyzing these models, we have selected

SITRAS (Simulation of Intelligent TRAnsport Systems) to integrate into our traffic simulator

because the other two are less adequate. However, during the process of integrating SITRAS

model it was discovered that in many situations (1) safety can be violated, and (2) liveness

cannot be guaranteed in ‘forced change lane’. To remedy these two vital flaws, we corrected

the logic of lane change process and introduced Following Graph model. With this graph

model, liveness violations are detected. We discuss this improved SITRAS model next.

6.2.1 Improved Model of SITRAS

The improved version of SITRAS is developed to promote liveness and safety which are not

fully guaranteed in the original model. Figure 36 outlines the main flow chart of a lane

changing process.

Determine Lane Change Situation

Procedure Determine Lane Change Situation is defined, with the behavior explained below,

for determining the current lane change situation of a vehicle and target lanes. This procedure

evaluates the following conditions in the order of their importance.

1. Turning movement: If a vehicle is on intended lanes, a lane change is ‘Unnecessary’.

Otherwise, a lane change situation depends on the distance to the turning point. If the

distance to the turning point from the current position of vehicle is such that it requires

more than 50 seconds to reach it, then a lane change is ‘Unnecessary’. If the distance

to the turning point from current position of the vehicle is such that it will require

between 10 and 50 seconds to reach the turning point, a lane change is considered
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Figure 36: Flowchart of Lane Changing

‘Discretionary’. If the distance to the turning point from the current position is such

that it requires less than 10 seconds to reach it, the situation is ‘Mandatory’.

2. End of lane: If a vehicle is on a lane which is about to end (because of merger or

blocking), the lane change situation depends on the distance to the endpoint. This is

evaluated using the same criteria as in the ‘turning movement’ situation.

3. Speed advantage: If the current speed is less than the desired speed and other lanes can

provide a higher acceleration (which means higher speed), a lane change is ‘Discretionary’.

Moreover, to prevent a vehicle performing lane change many times within a short interval,

the difference of accelerations must be large enough to consider it as ‘Discretionary’.

4. Queue advantage: When approaching a waiting queue, a lane change is ‘Discretionary’
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if the queue in the target lane is at least 10 m shorter than the one in the current lane.

The target lane must be one of the intended lanes.

Evaluating Gap Acceptance

Gap acceptance is a safety criterion which determines whether or not a lane change process

should be executed in order to guarantee safety. In other words, a driver is allowed to

perform lane change only if a gap acceptance meets the safety requirement. Technically, a

gap acceptance is determined by a combination of acceptable accelerations as and af (see

Figure 37).

Figure 37: Notations for Gap Acceptance

• The subject vehicle S(the one that is trying to perform a lane change) must be able

to follow a new leader L on the target lane safely. Mathematically, the condition

is α = as/As < 1 where as is the acceleration of S when it follows L and As is the

maximum deceleration of the subject vehicle S.

• The new follower F on the target must be able to follow the subject vehicle S safely if

lane change occurs. The requirement is β = af/Af < 1 where af is the acceleration of

F and Af is the maximum deceleration of F .

The value of accelerations as and af are calculated using Car Following model. The values

of α and β indicate the risk level that the driver of a subject vehicle is willing to accept. If

either α or β is greater than 1, a gap acceptance is not satisfied for the safety requirement,

because collision is certain to occur. According to Gipps [24], these values depend on the

distance to the turning point and the driver behavior.
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Submit Lane Change Request

Submit Lane Change Request is a new procedure which is introduced into the improved model

in order to promote the safety property. In the improved model, a driver has to submit a

lane change request to a ‘navigation system’. If the request is approved then only the driver

executes a lane change. However, if the request is rejected, the driver has to reevaluate the

safety criterion. If it is satisfied then the driver can resubmit the lane change request to

the navigation system. However, if the safety condition is not satisfied the driver has to

stay on the current lane. The reason for enforcing this mechanism is to prevent a collision

that might happen when two vehicles switch to the same area of the same lane at the same

time. Figure 38 demonstrates that such a scenario might happen. In SITRAS model, both

vehicles L and R will eventually be on lane L1, which certainly leads to a collision. In our

improved model, only one of the vehicles (either L or R) will be on lane L1. Assume that the

request from vehicle L arrives to ‘navigation system’ earlier than the one from vehicle R, the

navigation will grant permission for vehicle L. However, when processing the request from

vehicle R, if the navigation detects a change in that lane area it refuses the request from

vehicle R. Our improved algorithm successfully handles this type of scenario, which might

happen frequently when many vehicles are approaching intersections.

Figure 38: Collision when two vehicles performing lane changes
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Lane Change Execution

In SITRAS model, lane change execution happens instantaneously. That is, when it occurs the

subject vehicle will be on the adjacent lane immediately (with no time lapse). However, in real

traffic a vehicle will be transferring gradually from the current lane to the adjacent lane. In

our improved model, a path of a vehicle when performing a lane change is a Quadratic Bezier

curve (see Figure 39) as suggested in [28]. Thus, lane change execution is not instantaneous,

and is smooth.

Figure 39: Path of vehicle when performing lane change

Request Courtesy on Target Lane

Procedure Requests Courtesy on Target Lane is defined for use in ‘forced lane change’ situation

in which a vehicle must perform a lane change but can not because the current gap does not

satisfy the safety condition. A driver sends a ‘courtesy’ request to subsequent vehicles on

the target lane. Those vehicles will evaluate the request with respect to the differences of

speed and distance with the requesting vehicle to determine whether to accept or reject the

signal. If a vehicle offers a courtesy to another vehicle, it will slow down so that it can follow

the requesting vehicle, and meanwhile the requesting vehicle also adjusts its speed so that it

can follow the potential leader. Once the gap is sufficient (eg. a gap acceptance is satisfied),

the subject vehicle performs lane change, then turns off the signal. Figure 40 illustrates the

forced lane changing situation. In that scenario, vehicle S signals a request of courtesy, and

vehicle F accepts that courtesy. Then F adjusts its speed so that it can follow S safely,

meanwhile S also adjusts its speed so that it can follow L safely. If everything happens as

explained, vehicle S will eventually change its lane to be in-between vehicles F and L on the

target lane.
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Figure 40: Forced lane changing model

6.2.2 Following Graph

We found that in SITRAS model, liveness cannot be fully guaranteed in the forced lane

changing mode. Figure 41 demonstrates an example of the forced lane change in which a

deadlock occurs. In the example, both vehicles A and B are signaling courtesies to change

lane and these courtesies are accepted by D and C respectively. Below we enumerate the

possible “follows” (→) relations in the example.

1. Vehicle C accepts a courtesy from B, therefore B “follows” D which is the leader of C.

2. Vehicle D accepts a courtesy from A, which means D “follows” A.

3. Vehicle A “follows” vehicle B on its current lane.

From 1, 2, and 3, we have ‘B → D → A → B’. This cyclic relation indicates a “deadlock”,

because it leads all vehicles A, B, and D to brake, then even stop completely.

Figure 41: Deadlock in forced lane changing
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In order to detect such deadlocks, we introduce the Following Graph model. It is a

directed graph in which the vertices are vehicles on a road segment and its edges are

“following” relations between vehicles. Three types of “following” relations are defined to label

the edge types in Following Graph. These are as follows:

• Regular Following (→r) is a relation between two successive vehicles on the same lane

when one follows another. In Figure 41, A →r B, C →r D, and D →r E are regular

following relations.

• Provider Following (→p) is a relation between a vehicle that accepts a courtesy and

another vehicle which requests that courtesy. In Figure 41, C →p B and D →p A are

provider following relations.

• Requester Following (→q) is a relation between vehicle R that requests a courtesy and

the leader(P̂ ) of a vehicle which accepts that courtesy. This following relation exists

because P̂ will be a leader of R when lane change happens. In Figure 41, A →q E and

B →q D are requester following relations.

Constructing Following Graph

A following graph for a given road segment at any moment can be constructed by the following

steps.

1. For each vehicle v in a road segment, creates a vertex called v.

2. For each lane of the road segment, for each pair of two consecutive vehicles f and l,

creates an edge f →r l. This step collects all regular following relations.

3. For each courtesy c requested by r, and accepted by p, create

• An edge p →p r which is a provider following relation

• An edge r →q p̂ if p →r p̂. This edge is a requester following relation.

Figure 42 illustrates the Following Graph which is constructed from the road segment

scenario in Figure 41.
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Figure 42: Following Graph of Figure 41.

Integrating “Following Graph” in the Improved Model

In the ‘forced lane change’ mode of the improved model, when a vehicle is willing to provide

a courtesy for another vehicle, it has to submit a request to the ‘navigation system’ and waits

for a feedback. The ‘navigation system’ will reject a proposal which can produce a deadlock

in the traffic flow. A deadlock is detected if the ‘following graph’ which is constructed from

the current snapshot of a road segment plus the proposed relation contains any cycle. The

cycle can include any type of following relations. If the proposal is approved, the requesting

and providing vehicles can form a courtesy relation.

By performing a depth-first search [50] on the Following Graph a cycle can be found in

time Θ(|V | + |E|) where V is the number of vehicles involved in lane changing and E is the

number of edges. In practice, both |V | and |E| are small numbers. Consequently, the cost of

dynamically finding cycles in a Following Graph will be small.
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Chapter 7

Implementation

We have developed CMTSim (Concurrent Microscopic Traffic Simulator) whose primary

objective is provide an environment to evaluate the performance of the traffic control system

(ATCS) proposed in this thesis. The simulator is implemented in Scala [38], a language

in which Object-Oriented and Functional Programming paradigms are integrated. Scala is

fully-compatible with Java, and interacts back and forth seamlessly with Java. Scala code of

the simulator is compiled to Java byte-code and then executed as a regular Java program on

JVM. Therefore the simulator will be able to run on most of the platforms, such as Windows,

OSX, and GNU/Linux. We use Akka Framework [53] which is a standard implementation of

the actor model on Scala. Akka supports the location transparency, thus actors in Akka can

be deployed either in the same process, or in different processes on the same host, or even on

different machines without changing the code.

7.1 Toolchain

The simulation process includes thee main stages. These are Preprocessing, Operating, and

Analyzing. Figure 43 and Table 13 describe a set of utilities that we have developed for the

simulation tool. We use the terms CLI and GUI in the table to respectively denote Command

Line Interface and Graphical User Interface.
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Figure 43: Toolchain of CMTSim

7.1.1 Preprocessing Stage

In Preprocessing inputs are prepared for the simulating process. These tasks, if manually

done, can consume a lot of time. The utilities in this stage free users from that burden.

• Topology Builder converts a road network description(RND) to a detailed internal

representation of road network topology(RNT) (see Chapter 5).

• Activity Generator generates traffic demands for a given network, according to specified

demand rate. We define demand rate as the number of cars that enter the network

every second.

7.1.2 Operating

Operating stage is the central piece of the simulation process. In this stage, an utility

‘Simulator’ simulates all scheduled vehicles with respect to vehicle driver behavior on the

roadway, road network topology and traffic control strategy. Different traffic control strategies

can be programmed into the utility. The output of the operating stage including states of

vehicles and arbiters is stored in a database.
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Utility Stage Type Description
Topology
Builder

Preprocessing CLI Converts a road network description to a
detailed presentation (RNT)

Activity
Generator

Preprocessing CLI Generates traffic activities(trips) for a
given road network and demand rate

Simulator Operating CLI Center-piece of CMTSim. It simulates
scheduled vehicles and stores the output
including vehicles and arbiter states to a
database

Viewer Analyzing GUI Displays road network and animates states
of vehicles and arbiters with data from the
database

Analyzer Analyzing CLI Provides statistics for all vehicles in the
macro level

Table 13: Set of utilities of CTMSim

7.1.3 Analyzing

Analyzing stage can be started anytime once Operating stage tasks are completed. Viewer

and Analyzer are two tools developed for this stage. They both query data from the database

to accomplish their tasks.

• Viewer is the only GUI application (uses JavaFX [39]) in the set of CMTSimutilities.

When users start Viewer, it first shows the selected road network topology, then animates

scheduled vehicles step by step according to their locations and direction. Traffic lights

are also displayed visually according to their states (eg. red, yellow and green). By

default, the progress of vehicles and states of arbiters will be displayed chronologically;

however users can control it. Playback controls such as ‘pause’, ‘resume’, ‘go next’, ‘go

previous’ and ‘goto to a specific time’ are fully supported in the Viewer. Users can also

zoom in and zoom out of selected areas of a road network without lost of image quality.

Figure 44 shows a snapshot of Viewer on OSX.

• Analyzer provides the statistics for all scheduled vehicles in the macro level. The details

on the statistic will be discussed in the last section of this chapter.
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Figure 44: Snapshot of Viewer on OSX

7.2 Features

In this section, we highlight two major advanced features of CMTSim when comparing with

other popular microscopic simulators such as SUMO [12], MITSIM [54], and SITRAS [27].

7.2.1 Nondeterministic

Most traffic simulators maintain an ordered list of vehicle-driver units (VDU) according

to their positions on a roadway. For each interval update, a simulator will process VDUs

with the order from the head to the last. Consequently, the simulation is a deterministic

process. Technically speaking, with the same traffic demands, these simulators always yield

the same output. However, this simulation behavior does not conform with realistic traffic

situations. The reason is in this approach, the ‘first vehicles’ always yield a favor to perform
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their decisions such as lane changing. This behavior also may also hide traffic problems which

may occur if the system is deployed in the real-world. In contrast, each VDU in our simulator

is modeled by an actor [26] which runs concurrently in its own execution context. Therefore,

our simulator resolves the nondeterministic behavior that arise in real world traffic situations.

7.2.2 Scalable System

In CMTSim, we use Akka as the implementation of Actor model. Akka allows scaling out

and scaling up easily by changing configuration file. Scaling up (vertically) means upgrading

the resources of the current computer including CPU and memory; whereas scaling out

(horizontally) means adding more nodes to the current system. Therefore, our simulator can

be easily deployed as a distributed system. This is a significant advantage when simulating a

large number of vehicles. A scaled distributed system can reduce a lot of running time.

7.3 Simulation Results

In this section, we provide the simulation results of the two control strategies Fixed Time

Signal Coordination (FTSC) and Rolling Horizon Streams (RHS). FTSC is the most popular

traffic control which is being used in most of traffic systems, while RHS is our proposed

adaptive algorithm. The simulation results involving a variety of data sets (number of vehicles,

network topology, number of tours) focus only on the macro level in terms of mean speed, low

speed ratio, and congestion. The network topology used in the simulation has 9700 meters of

road length and 12 intersections. Each road has either two or three lanes, each lane having

the standard width. We ignored roads with single lane because the structure of linkages at

each intersection is trivial. Therefore four main types of data sets can be constructed.

• FTSC-2 is constructed using FTSC, with each road in the network having two lanes.

• RHS-2 is constructed using RHS, with each road in the network having two lanes.

• FTSC-3 is constructed using FTSC, with each road in the network having three lanes.

• RHS-3 is constructed using RHS, with each road in the network having three lanes.
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The simulation computes “mean speed”, “low traveling speed ratio”, “fuel consumption”,

and “congestion rate” for each data set. In all simulated results we observe that there is a

‘sudden jump’ in the calculated values when the number of vehicles in the network increases

from 3000 to 3500. The most likely reason for this jump is that the density of the network

has reached the critical density level when the number of vehicles is around 3000. These

simulated results are explained next.

7.3.1 Mean Speed

Mean speed is the total traveling distance divided by total traveling time of all vehicles. Mean

speed is the most important factor that determines the performance of a traffic system. Higher

mean speed means lower traveling time and higher throughput. Figure 45, and Table 14

illustrate the simulation results for mean speed. From these results we conclude the following

results.

1. For each dataset, the mean speed of RHS is greater than the mean speed of FTSC

algorithm. When the number of vehicles is 1000, the mean speed for RHS-3 is 20%

higher than the mean speed for FTSC-3. At the number of vehicles increases, the

difference between the mean speeds calculated for the two datasets also increases.

Consequently, the RHS algorithm has higher throughput.

2. There is traffic congestion in FTS-2 dataset when the number of vehicles is 5000 or

higher. For FTS-3 dataset the congestion starts when the number of vehicles reaches

6000. However for RHS-2 dataset, the congestion starts at 6500 vehicles. For RHS-3

dataset, we are able to calculate the mean speed even when the number of vehicles is

9000, although as shown in Table 16, congestion starts when there are 8000 vehicles in

the network.

7.3.2 Low Traveling Speed Ratio (LTSR)

LTSR is the ratio x/y, where x is the number of vehicles with mean speed less than 30%

of the desired speed, and y is the total number of vehicles. The smaller this ratio is, the
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Figure 45: Simulation Result - Mean Speed

more reliable a traffic system in the sense that the number of trips in which the traveling

time exceeded the expected value of traveling time will be small. Thus, lower values of LTSR

mean ‘the probability of exceeding the expected time of travel is low’. Therefore, minimizing

this value is extremely important. Table 15 illustrates the simulation results for all data sets.

We make the following observations.

1. There is a big jump in LTSR values when the number of vehicles increases from 3000

to 3500 in all cases except for RHS-3. We believe that this jump is due to the fact that

the mean speed has to decrease at a faster rate once the density has reached the critical

level.

2. LTSR values increase at a much slower rate for RHS-3 when the number of vehicles

increases. We believe that this behavior is due to the combined effect of the efficiency

of RHS algorithm and the availability of more lanes in each direction.
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Vehicles Distance(km) FTSC-2(kph) RHS-2(kph) FTSC-3(kph) RHS-3(kph)
1000 1643.5 35.5 41.3 39.2 47.1
1500 2465.8 33.1 38.7 37.9 46.5
2000 3291.1 31.2 36.5 37.2 46.1
2500 4110.4 29.6 34.9 36.6 45.9
3000 4934.6 28 33.5 36.3 45.8
3500 5760.2 18.3 29.8 28.3 39
4000 6608.4 17 24.5 27.1 38.6
4500 7435.7 16 21.9 26.2 38
5000 8225.1 - 18.1 26.1 37.2
5500 9001.2 - 16.4 25.2 37.2
6000 9806.2 - 15.2 - 36.7
6500 10684.8 - - - 36.1
7000 11455.7 - - - 35.8
7500 12262.8 - - - 35.5
8000 13081.7 - - - 34.9
8500 13891.8 - - - 34.7
9000 14714.9 - - - 34.8

Table 14: Simulation Result - Mean Speed

7.3.3 Congestion Rate

Traffic congestion at an intersection is characterized by the length of waiting queue in each

direction and the amount of time that these vehicles wait. In between two consecutive

intersections, traffic congestion is characterized by slower moving vehicles, often braking to

avoid collision. For our simulation, we consider a road network to be congested if vehicles in

that network are unable to make a significant progress in more than 10 minutes. It is highly

desirable if a traffic system can manage a traffic flow without congestion. Traffic congestions

increase traveling time and fuel consumption, while decreasing throughput and reliability. So,

it is necessary to minimize, if not totally eliminate, traffic congestions in road networks. The

simulation results for traffic congestion rates for different data sets are shown in Table 16.

For each ‘entry’ of Table 16 we conducted 100 test cases, and observed the number of test

cases for which congestion occurred. We make the following observations.
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Vehicles Distance(km) FTSC-2(%) RHS-2(%) FTSC-3(%) RHS-3(%)
1000 1643.5 0.3 0.0 0.2 0.0
1500 2465.8 1.0 0.1 0.7 0.0
2000 3291.1 2.2 0.4 1.3 0.0
2500 4110.4 3.8 0.8 1.8 0.0
3000 4934.6 5.5 1.3 2.0 0.0
3500 5760.2 42.8 9.1 21.2 0.5
4000 6608.4 48.9 10.7 29.8 0.5
4500 7435.7 54.5 24.0 35.2 0.8
5000 8225.1 - 29.1 43.9 1.3
5500 9001.2 - 56.0 51.7 1.2
6000 9806.2 - 43.1 - 1.6
6500 10684.8 - - - 2.0
7000 11455.7 - - - 2.2
7500 12262.8 - - - 2.3
8000 13081.7 - - - 3.0
8500 13891.8 - - - 3.1
9000 14714.9 - - - 3.0

Table 15: Simulation Result - Low Traveling Speed Ratio

1. Traffic congestion happens more than 50% of the time for FTSC algorithm when 3500

or more vehicles travel in either two or three lanes.

2. For RHS algorithm with two lanes, congestion occurs more than 50% of the time when

4000 or more vehicles travel.

3. For RHS with 3 lanes, there is no traffic congestion until the number of vehicles exceeds

7500. If the number of vehicles is 8000 or higher, congestion happens at a low rate.

4. RHS can handle a high traffic volume without causing traffic congestion.

7.3.4 Fuel Consumption

Fuel consumption is an estimate of the total amount of fuel that all scheduled vehicles

consumed to complete their trips. We could have used the fuel consumption model [3] to
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Vehicles Distance(km) FTSC-2(%) RHS-2(%) FTSC-3(%) RHS-3(%)
1000 1643.5 0.0 0.0 0.0 0.0
1500 2465.8 0.0 0.0 0.0 0.0
2000 3291.1 0.0 0.0 0.0 0.0
2500 4110.4 1.0 0.0 0.0 0.0
3000 4934.6 0.0 0.0 0.0 0.0
3500 5760.2 84.0 20.0 47.0 0.0
4000 6608.4 97.0 53.0 66.0 0.0
4500 7435.7 99.0 80.0 91.0 0.0
5000 8225.1 100.0 87.0 95.0 0.0
5500 9001.2 100.0 94.0 98.0 0.0
6000 9806.2 100.0 97.0 100.0 0.0
6500 10684.8 100.0 100.0 100.0 0.0
7000 11455.7 100.0 100.0 100.0 0.0
7500 12262.8 100.0 100.0 100.0 0.0
8000 13081.7 100.0 100.0 100.0 3.0
8500 13891.8 100.0 100.0 100.0 8.0
9000 14714.9 100.0 100.0 100.0 19.0

Table 16: Simulation Result - Congestion Rate

estimate this value in simulation. However, we argue that RHS algorithm optimizes the fuel

consumption, based on the simulated results on mean speed, LTSR, and congestion rate.

• RHS algorithm has a higher mean speed compared to FTS algorithm. Hence, the

throughput is increased in RHS algorithm. This implies that there will be less number

of ‘stop-and-go’ in the traffic. The amount of fuel consumed will be optimal because of

the smooth traffic flows.

• RHS algorithm has lower LTSR values than FTS algorithm. Thus, the probability

of exceeding the expected travel time is low. This implies most of the time, vehicles

complete their travel within the estimated time and only rarely the travel time will be

higher than the expected time. Hence, the total fuel consumption for all vehicles will

exceed the expected fuel consumption only by a small value.

• RHS algorithm has almost eliminated congestion. Thus, vehicles may not be stuck in
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the traffic and therefore fuel consumption will be low.

The above observations have a few limitations, because the fuel consumption model is

not explicitly used and only two road network topologies are used in this simulation.
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Chapter 8

Conclusions and Future Work

The primary objective of the thesis is to develop a traffic control system that optimizes the

performance of traffic flows in both macro and micro levels, while maintaining safety, liveness,

and fairness properties. In Chapter 4 we have explained how safety, liveness, and fairness

properties are achieved in RHS algorithm. The simulation results in Chapter 7 convincingly

demonstrate that the algorithm optimizes the traffic flow patterns in all simulated scenarios.

In the following summary we emphasize the major contributions in the thesis as well as its

limitations, provide some suggestions for future work, and comment on the challenges to

overcome in further extensions.

8.1 Contributions

Without an efficient traffic control algorithm that can dynamically adapt to time-varying

traffic scenarios the full benefits of ATCS cannot be realized. With this in mind, adaptive

traffic control algorithm was designed, analyzed, and implemented. The algorithm satisfies

the dependability and optimization properties. This major contribution is novel and new.

Below a summary of results achieved in the thesis are enumerated and their significance

emphasized.

1. Adaptive Traffic Control Algorithm for Arbiter

In Chapter 4, we have proposed Rolling Horizon Streams(RHS) algorithm, a new
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adaptive traffic control algorithm for the Arbiter. This algorithm is distinctly different

from all existing traffic control algorithms. It gathers inflow traffic volume, the path

information for each vehicle at an intersection, calculates compatible linkage lanes,

and discharges the out-flowing traffic without collision and without waiting for ever.

While the current well-known algorithms [47, 35, 44] did not consider “pedestrian

traffic”, and “context” the RHS algorithm design did consider pedestrian crossing

and context-dependent policies in the calculation of cliques and allocation of green

time. Context-dependent policies are formulated by the Zone Manager (ZM) and

communicated to Intersection Managers (IMs). The IM at an intersection calculates

the parameters for the Car Following model and Aging Function. It communicates

these parameters and the structure of linkage lanes to the Arbiter. Consequently, the

behavior of RHS algorithm is adaptive to contextual changes.

Safety property is ensured in the RHS algorithm, because only compatible linkage

lanes are allowed simultaneous crossing at an intersection. Both liveness and fairness

properties are also integrated in RHS design through judicious choices of parameters in

the design of “aging function” and in allocating “green time”. Thus, all dependability

requirements stated in Chapter 3 are fulfilled. Optimization properties of ATCS, stated

in Chapter 3 have been verified through simulation. The inflow traffic pattern was

simulated using “Car Following Model”. In Chapter 7 the performance of RHS algorithm

against the performance of FTCS (Fixed-Time Coordination Signal) algorithm was

compared, based on the four measures “mean speed”, “low traveling speed ratio”,

“fuel consumption”, and “congestion rate”. The RHS algorithm has performed much

better than FTCS algorithms in all simulated scenarios. These results convince us

that optimization properties are completely fulfilled by the adaptive algorithm for all

simulated data sets.

2. Improved Model for Lane Changing

We found that the original version of lane changing model in SITRAS [27] does not

guarantee safety and liveness properties. We have solved the safety issue by adding the

“two-phases lane change procedure” in our algorithm. This procedure avoids collision
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of vehicles during lane change. We introduced “Following Graph” model to detect

deadlock in the “lane change signaling process”. Consequently, liveness property is

enforced. We claim that our improved lane changing model and its implementation can

optimally detect deadlocks in real-life traffic situations.

3. Traffic Engineering Domain Knowledge

Although traffic domain knowledge is not claimed as a direct contribution in the thesis,

we identified the core concepts, such as platoon, green-wave, and fundamental relation

between density and flow, and integrated them in different phases of the construction

of the adaptive algorithm. A good understanding of traffic domain models helped

in creating new “lane change model”, and introduce the concept of “vehicle scores”

and “aging function” that contributed to the efficiency of RHS algorithm. The domain

knowledge integration plays a vital role in all aspects of the development of the thesis.

In particular, the “car following model” is crucial to develop the traffic simulator,

because the “dynamic traffic in-flow” cannot otherwise be captured.

4. Architectural Design for Traffic System

The architectural design, presented in Chapter 3, is a good starting point towards

achieving some of the future traffic management goals, as explained in Section 8.3.

In the current design, we have emphasized the importance of distributed property,

context integration, and feedback loop. Arbiter algorithm employs the feedback loop

(the out-flow is factored in) and context-aware monitoring. Arbiters that are under

the management of traffic managers are distributed across the intersections in a road

network, share “traffic flow information with adjacent intersections”, and efficiently

diffuse traffic congestions from occurring at the intersections.

5. Road Network Topology

Theoretically, a road network topology can be modeled as a directed graph. However, to

use the topology in an application requires an enormous amount of data processing. To

simplify this task we introduced two models for road network topology and an utility to

convert their abstract models to detailed concrete models. These models are explained

in Chapter 5. This approach is really handy as it lifts users and traffic engineers from
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the difficulty of defining a road network for an application.

6. Concurrent Microscopic Traffic Simulator

Although, there are several open source traffic simulators [12, 48], they can not be

adopted immediately for simulating the traffic arbiter designed in this thesis. It is

justified to claim the new traffic simulator discussed in Chapter 7 as an essential

contribution. Without this tool it is not possible to validate the optimization properties

stated in Chapter 3. The toolkit that has been developed to run the simulator and

view its output can be used with other existing control algorithms. A complete

implementation of the new simulator has been provided. Besides including the common

features of traffic simulators, our simulator includes two advanced features that are not

available in others. These are nondeterminism and scalability.

8.2 Limitations

In this section, we comment on the scope of current simulator and analysis of simulated

results, to bring out the limitations of current analysis as well as the features not part of the

current simulator implementation.

1. Studying special characteristics from the simulation results

Our analysis was narrowed down by our goal in simulation, which is to use it as a

benchmark to compare the performance between RHS and FTSC algorithms. For both

algorithms, there is a sudden big jump in observed values when the number of vehicles

increase from 3000 to 3500. Because of our goal, we did not scientifically analyze to

determine the cause for the sudden jump in values. We only speculate that the “critical

level” of the density of the network has been reached when the number of vehicles is

3000. This issue needs further analysis.

2. Simulating and analyzing over-saturated situations

In principle, in a road network many RHS arbiters will cooperate, using route scores,

to prevent high density areas from occurring. The simulation results indicate that

RHS algorithm can handle a large volume of traffic with a very low rate of congestion.
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However, we did not simulate and analyze traffic situations in which congestions occur

at multiple intersections, as shown in Figure 46.

Figure 46: Congestions occur at multiple intersections

3. Simulating with different types of road networks

Simulation results highlight that RHS algorithm provides better results (in terms of

mean speed, low speed ratio, congestion, and fuel consumption) than FTSC in all

simulated scenarios. However, the simulation scenarios are conducted in only one road

network. If the simulations are conducted with different road networks and traffic

control policies, the conclusion will be more convincing.

4. Supporting pedestrian and emergency vehicles

In Section 4.5, we explained how to extend RHS to support pedestrians and emergency

vehicles. Although the extension is quite straightforward, it requires a modified version

of car following model for emergency situations. The reason is that in emergency
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situations cars do not follow one another as in regular situations, but make ways for

emergency vehicles. Unfortunately, there is no car following model for emergency

situations available for us to use in our simulator. Consequently, we could not provide

this feature in our simulator.

5. Integrating with context

In section 4.6, we provide a guideline to integrate RHS with context information, such

as weather, special zone, and public events. However, this feature is not part of the

current version of simulator.

6. Extending netbuild to support different road networks

In Chapter 5, we introduced two models as representations of a physical road network.

These are Road Network Description(RND) and Road Network Topology (RNT).

In principle, both representations can be used to model any physical road network.

However, the current version of netbuild utility only supports one-way roads. That is,

a two-way road network must be defined directly in RNT.

8.3 Future Work

The two important directions for future work are (1) formal verification of RHS algorithm,

and (2) architecture extension for supporting any future development of a dependable

Transportation Cyber Physical System, in which vehicle-to-infrastructure (V2I), vehicle-to-

vehicle (V2V) cyber communications, and advanced assistance to driverless vehicles are

enabled.

8.3.1 Formal Verification

Formal verification is required to prove the safety property in a safety-critical system. The

adaptive traffic controller intimately interacts with its environment to determine in-flow

and out-flow of vehicles. A formal verification is necessary to verify the safety property “no

collision occurs at the intersection” while Arbiter and its controllers are monitoring and

actuators are executing their commands. The cyber objects, such as arbiter and controllers,
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operate under “discrete time”. The physical objects, such as vehicles and actuators, are

governed by “real-time” actions. Thus, a formal model of these cyber and physical objects will

require “a hybrid approach”, in which the objects interact in discrete as well as in real time.

The challenge is in formally modeling this hybrid behavior and choosing the appropriate

verification method for that model. Following the technical challenges succinctly brought out

by Alur [8] and several others [9, 7] it becomes clear that constructing a hybrid automata to

synthesize the discrete timing behavior of the controller and the continuous timing behavior

of the environment (vehicles) is an ongoing research problem. Moreover, it is known that

model checking such a hybrid model for safety property will necessarily lead to exponential

time (and space) complexity.

8.3.2 Architectural Extensions for Supporting Transportation Cy-

ber Physical System

In the current system, the interaction between infrastructure and vehicles (V2I) is rather

limited. Infrastructure facilities are used for only detecting the presence of vehicles. In

“Following Graph” model V2I support has been brought in for detecting deadlocks while

“lane changing”. V2I interaction in the thesis is allowed only in the presence of drivers. The

development of driverless vehicles, such as Google’s Self-Driving Car [25], opens a great

opportunity to build more ‘intelligent’ traffic control systems in which infrastructures can

interact to transmit driving suggestions or even enforce the vehicles to follow its instructions.

According to the recent news from BBC [11] “two robot cars (driverless vehicles), one made by

Delphi Automotive and one by Google, met on a Californian road in Palo Alto. The Google

car pulled in front of the Delphi vehicle making it abandon a planned lane change.”. This

article also reports “Delphi and Google’s autonomous vehicles have been involved in several

minor accidents and incidents during testing. However, before now all of those have involved

the robot cars and human-driven vehicles. In almost all cases, the firms have said, the fault

lay with human drivers”. Regardless of “who is responsible” it is most important to devise

mechanisms that ensure that such accidents do not occur. The arbiter implemented in this

thesis can be a plug-in for controlling “driverless vehicles either in the presence or absence of
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drivers in vehicles” in urban or in highway traffic. Below we explain a few extensions to our

ATCS architecture that will enable future transportation systems operate in a dependable

manner.

Although the algorithmic details used in controlling driverless vehicles are not made

public, it is safe to assume that the three pillars necessary to accommodate such a system of

vehicles are Context-awareness (CA), Autonomic Computing Principles (ACP) [30, 33, 49],

and Cyber-Physical System (CPS) [37, 32]. With context-awareness fully enforced in the

system, both V2I and V2V communications can be enabled. Since we have included context

as an element in our design, we need to extend the architecture to include features, such

as dynamic context builders and reasoners, to meet the full potential of context-awareness.

We already have feed-back loop in the architecture, although it is limited to sensing the

outflow (context-awareness involved here) at an intersection. The scope and functionality of

the feed-back mechanism can be extended to include “interaction with any physical device”

in the environment of an intersection. Such a physical device can be either a vehicle (with or

without driver) or radar or a “railway gate”. As stated in the NSF program description [37],

CPS is a large distributed network, typically including embedded computers that monitor

and control physical processes based upon local and remote computational models. A CPS

interacts directly with the physical world with feed-back loops. The current adaptive behavior

has to be scaled up by the introduction of “adaptation policies for events observed in the

environment”. With such an extension, the current intersection architecture will become a

CPS which adapts itself to changing environmental situations, as measured by the physical

devices in the proximity of the intersection. Both efficiency and faults can propagate only

upwards in the current architecture. Thus, by ensuring the correctness of the subsystem under

each intersection manager we can aim to achieve efficiency in traffic control even when some

IMs are faulty. The current architecture can be extended to empower the traffic managers

possess resources, knowledge, and skills they need in assisting themselves as well as in assisting

the subsystems they manage. In order to effectively deal with system deployment failures,

correct hardware and software issues, and avoid human errors that might be introduced by a

manual intervention of IT professionals, IBM [30] introduced ACP. The principles are the

following:
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• Self-configuring: This refers to the ability to dynamically adapt to changing environ-

ments, using policies defined by IT professionals. So, the system must be aware of the

changes happening both internally and externally. An adaptation can be the deployment

of new components or the removal of existing ones, consistent with component behavior

and safety/security policies.

• Self-healing: This refers to the ability to discover, diagnose and correct itself to

disruptions caused by either system components or through external attacks. Corrective

actions are adaptations to reactions triggered by the discovery of disruptions. Policy-

based corrective actions will ensure system dependability, without disrupting the IT

environment.

• Self-protection: This refers to the ability to anticipate, detect, identify and protect

against hostile attacks. The hostile attacks can include unauthorized access and use of

system resources, and denial-of-service attacks on some of its components that provide

vital services. The system will monitor itself and its environment to detect hostile

behaviors. Both prevention and corrective actions are done according to the security

and privacy policies instituted in the system.

• Self-optimization: This refers to the ability to monitor its resource utilization and tune

its resources automatically to meet end-user needs in providing timely services. Without

resource optimization, service denials might happen. The tuning of actions could mean

reallocating resources from contexts to contexts as well as from user to user in order

that all pending transactions are completed in a timely fashion. Self-optimization helps

to enhance service availability and hence system dependability.

The autonomic computing principles, which necessarily include context-awareness, can be

integrated in the current architecture, mainly in the design of traffic managers. Not all

principles of ACP are independent. For example, self-protection mechanism may need to

invoke self-healing, self-configuring, and self-optimization. The traffic managers at all levels

of the architecture must be empowered with mechanisms necessary to enforce ACP. As an

example, an IM can be given the ability to self-configure hardware/software components at
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an intersection. Both IM and ZM may have to coordinate their efforts for self-healing when a

disruption is observed at an intersection, because traffic policies may have to be re-formulated.

In general, a thorough investigation of methods and mechanisms to integrate ACS, CPS, and

context-awareness in different layers of the current architecture is required to find solutions

that can meet the challenges faced in creating a safe transportation system.
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