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Abstract

Multivariate Risk Measures and a Consistent Estimator for the Orthant

Based Tail Value-at-Risk

Nicholas Beck

Multivariate risk measures is a rapidly growing field of research. The advancement of

dependence modelling has lent itself to this progress. Presently, a variety of parametric

methods have spawned from these developments, extending univariate measures such as

Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) to the multivariate context. With the

inception of these measures comes the requirement to estimate them. In particular, the

development of consistent estimators is crucial for applications in financial and actuarial

industries alike. For adequate sample sizes, consistent estimation allows for accurate

evaluation of the underlying risks without pre-imposition of a statistical model.

In this thesis, several risk measures are presented in the univariate case and extended

to the multivariate framework. Quantifying the dependence between risks is accomplished

through the use of copulas. Several families of copulas, elliptical, Archimedean and ex-

treme value, and examples of each are presented along with properties. With these de-

pendence relations in place, multivariate extensions of VaR, TVaR and Conditional Tail

Expectation (CTE) are all presented. Much of the focus is given to the bivariate lower and

upper orthant TVaR. In particular, we are interested in developing consistent estimators

for these two measures. In fact, it will be shown that the presented estimators are strongly

consistent for the true parametric value. To accomplish this, the strong consistency of the

orthant based VaR curve, which can be shown in two ways, is used in tandem with the

dominated convergence theorem. With strong consistency established, some numerical

examples are then presented demonstrating the strength of these estimators.
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INTRODUCTION

Evaluation of risk is of utmost importance in various applications, for instance insurance

and reinsurance. Managing the risks associated to a company’s assets and liabilities is

paramount to its success. On the one hand, among an institution’s main goals is to

produce profit and growth. Accurately assessing their risks allows them to pursue their

desired goals while insuring satisfactory protection from sources of potential loss. On the

other hand, an institution is also accountable for the interests of its shareholders. To this

end, minimum capital allocation requirements are established by external regulators to

protect these shareholders. Documentation stating these requirements can be found in

OSFI (2015) or Solvency II (2014). To evaluate their risks and establish certain solvency

levels, risk measures are a crucial tool. Many measures, such as VaR, TVaR and CTE

have been comprehensively studied in the univariate context. In application however,

there are limitations, such as the capability of these measures to capture dependence.

Companies have a multitude of risks they must consider. Assuming that these risks act

independently of one another provides computational simplicity. However, it also makes

one susceptible to inaccurate evaluation. In reality, competing risks have very intricate

dependence relations. Therefore, being able to accurately capture this dependence is a

priority for many institutions. For instance, catastrophe insurance deals with the risks of

large scale disasters such as floods which can affect several thousand individuals.

An important class of functions that models dependence between variables are copulas.

Extensive discussion of the statistical properties of copulas are detailed in Joe (1997)

whereas the discussion of copulas from an actuarial perspective can be found in McNeil

et al. (2010). Copulas provide a countless number of uses when dealing with modelling

dependence between a large number of risks. Discussion of these functions is conducted
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in Chapter 2.

In recent years, the development of multivariate risk measures has served to accurately

evaluate these dependent risks. A key issue with multivariate risk measures is the task of

ordering random vectors. Several methods for the ordering of bivariate data and subse-

quent risk measures were introduced in Barnett (1976). Multivariate extensions of VaR

as a curve are examined in Serfling (2002), and the multivariate upper and lower orthant

VaR curves are defined in Embrechts and Puccetti (2006). Properties of the orthant based

VaR curves are discussed in Cossette et al. (2013) and a vectorized version of the orthant

based VaR is developed in Cousin and Di Bernardino (2013). Seeing as the VaR provides

no information on the expected loss at a given significance level, many researchers have

been focused on the development of multivariate extensions to measures of tail thickness,

such as TVaR and CTE. See for instance the copula based CTE presented in Brahimi

(2012). Multivariate extensions of CTE and TVaR built from the orthant based vec-

torized VaR and orthant based VaR curves are developed in Cousin and Di Bernardino

(2014) and Cossette et al. (2015), respectively. The multivariate CVaR is presented by

Di Bernardino et al. (2015).

Consistency

Being able to properly estimate these measures is also of great importance. In particular,

consistent estimation is crucial because it allows for accurate estimation of these risks for

large enough samples without the pre-imposition of a statistical model, which could in

fact be mispecified. Formally, an estimator θ̂n, based on a random sample of size n, is

(weakly) consistent for a parameter θ if

θ̂n
P−→

n→∞
θ,

where
P→ defines ’convergence in probability’. A random sequence {Xn} converges in

probability to a random variable (rv) X if for all ϵ > 0,

lim
n→∞

P (|Xn −X| ≥ ϵ) = 0.

2
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This definition states that for a large enough sample, a consistent estimator will almost

always be arbitrarily close to the true parameter. Alternatively, one has that an estimator

θ̂n is strongly consistent for a parameter θ if

θ̂n
wp1−→
n→∞

θ,

where
wp1−→ defines ’convergence with probability 1’ (wp1), also known as convergence

almost surely (a.s.). A random sequence {Xn} converges wp1 to a rv X if

P
(
lim
n→∞

Xn = X
)
= 1

or equivalenty,

lim
n→∞

P (|Xm −X| < ϵ, all m ≥ n) = 1, for all ϵ > 0.

In fact, it can be shown that convergence wp1 implies convergence in probability. See for

instance Serfling (2009).

In Chapter 1, univariate risk measures are discussed as well as classifications of these

measures. Chapter 2 introduces the concept of multivariate distributions and dependence

structures built with copulas. In Chapter 3, bivariate risk measures are introduced, in-

cluding the bivariate VaR and TVaR. In Chapter 4, estimation of some of these measures

is presented and a new estimator for the bivariate lower and upper orthant TVaR is in-

troduced along with arguments demonstrating the strong consistency of this estimator.

Finally, Chapter 5 concludes this thesis.

3



1. UNIVARIATE RISK MEASURES

In many industries, risk measures are a crucial tool used in managing the risks associ-

ated to a company’s assets and liabilities. Whether it be in finance, insurance or other

industries, being able to properly allocate capital is paramount to a companies success.

Risk measures are important tools used to this end, giving pricing experts and regula-

tors an idea on how they can protect themselves, their investors or their customers from

catastrophic situations. Being able to accurately do so reduces the risks of insolvency or

of allocating excessive capital and exposing the company to a potential loss of profits.

We begin by focusing on univariate risk measures that are common in actuarial science

and risk management. Moreover, we will present in later sections these measures in the

multivariate, specifically bivariate, case.

1.1 Classifying Risk Measures

Before listing measures of interest, we first discuss the notion of classifying risk measures.

We list three classifications each with its own set of axioms. The families we will discuss

are the coherent risk measures, natural risk statistics and insurance risk measures.

1.1.1 Coherent Risk Measures

The first family we present is the family of coherent risk measures. These risk measures

were first introduced in Artzner et al. (1999). The motivation was to have a family of risk

measures that had desirable and intuitive properties relative to certain industry standards.

For random variables X and Y, we call measure ρ a coherent risk measure if it satisfies

the following four axioms,
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A1. Translation invariance:

ρ(X + c) = ρ(X) + c, ∀ c ∈ R.

A2. Positive homogeneity:

ρ(aX) = aρ(X), ∀ a ≥ 0.

A3. Monotonicity:

ρ(X) ≤ ρ(Y ), X ≤ Y.

A4. Subadditivity:

ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

In addition to axioms A1 − A4, risk measures that follow the following fifth axiom are

known as law invariant coherent risk measures.

A5. Law Invariance: If X and Y have the same distribution then,

ρ(X) = ρ(Y ).

These axioms state that for a random loss X, the addition of a constant loss will increase

the corresponding risk measure by the same constant (A1). The scaling of the loss will

scale the risk measure in an equivalent manner (A2). Additionally, for a random loss

X that is always less than a loss Y the corresponding risk of X will always be less than

that of Y (A3) and the aggregation of losses will always reduce risk when compared to

considering the losses individually (A4). The most well recognized coherent risk measure

is the Tail Value-at-Risk (TVaR) or the Conditional Tail Expectation (CTE), which are

equivalent in the case of continuous univariate rv’s, though they differ in the multivariate

and discrete cases. These measures will be discussed later.

1.1.2 Insurance Risk Measures

Next, the set of axioms used for insurance risk measures are presented in Wang et al.

(1997). For rv’s X1 and X2, ρ is said to be a insurance risk measure if it follows the

following five axioms.
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B1. Law invariance: Same as A5.

B2. Monotonicity: Same as A3.

B3. Comonotonic Additivity:

ρ(X + Y ) = ρ(X) + ρ(Y ),

if X and Y are comonotonic. Random variables X and Y are said to be comonotonic

if (X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0, ∀ ω1, ω2 ∈ Ω, where Ω represents the set

of all outcomes.

B4. Continuity:

lim
d→0

ρ(X − d)+ = ρ(X+), lim
d→∞

ρ(min(X, d)) = ρ(X), lim
d→−∞

ρ(max(X, d)) = ρ(X).

B5. Scale Normalization:

ρ(1) = 1.

For more details on insurance risk measures, see Wang et al. (1997).

1.1.3 Natural Risk Statistics

The final classification of risk measures discussed here were introduced in Kou et al.

(2013). These are known as the natural risk statistics and are viewed as data based

risk measures which do not require a statistical model. For a random variable X with

observations x̃ = (x1, . . . , xn) we say that the risk measure ρ̂ : Rn → R is a natural risk

statistic if it follows the following axioms.

C1. Positive Homogeneity:

ρ̂(ax̃+ b) = aρ̂(x̃) + b, ∀ x̃, b ∈ Rn, a ≥ 0 ∈ R.

C2. Monotonicity:

ρ̂(x̃) ≤ ρ̂(ỹ), if x̃ ≤ ỹ where we define ≤ component-wise, i.e.

xi ≤ yi, ∀ i = 1, . . . , n.
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C3. Comonotonic subadditivity:

ρ̂(x̃+ ỹ) ≤ ρ̂(x̃) + ρ̂(ỹ), if x̃ and ỹ are comonotonic,

where here we define x̃ and ỹ as comonotonic if and only if (xi − xj)(yi − yj) ≥ 0,

for any i ̸= j.

C4. Permutation invariance:

ρ̂((x1, . . . , xn)) = ρ̂((xi1 , . . . , xin)), for any permutation (i1, . . . , in).

In particular, these axioms allow for risk measures to be constructed from weighted sums

of order statistics.

Kou et al. (2013) consider these axioms as they believe there are crucial flaws in the

two previous characterizations of coherent risk measures and insurance risk measures.

While VaR, which will be presented later in Chapter 1, is the most widely used risk

measure in regulating capital allocation, it does not satisfy subadditivity (A4), therefore

it is not a coherent risk measure. While VaR does satisfy axioms B1-B5, the issue with

insurance risk measures is that it does incorporate scenario analysis with VaR. Scenario

analysis, as outlined by Basel 2 (BCBS II (2006)) or Basel 3 (BCBS III (2013)), involves

the calculation and comparison of VaR under a variety of scenarios, each pertaining to

a specific economic regime. Examples include financial crisis or economic boom. This

process allows for capital allocation to be approached from multiple perspectives but will

in turn violate the comonotonic additivity axiom B3.

Next, subadditivity is considered mostly in the case where random losses take on fi-

nite second moments, their distributions having moderately sized tails. In this case, the

diversification of a set of risks may be preferable and VaR does satisfy it. However, often

times in actuarial science and finance, distributions with extremely large tails, and subse-

quently infinite second moment, are considered. In this situation, it has been shown that

diversification is perhaps not the best approach. Here, VaR will not satisfy subadditivity.

Finally, the importance of robustness is emphasized in risk measures, which CTE

and TVaR do not satisfy. This is considered from an insurer vs. regulator or internal
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vs. external issue. The goal of these axioms is to establish a family of statistics that

can be used across all businesses, thereby eliminating any internal differences companies

may exhibit in operation. For a complete discussion, including the introduction of Tail

Conditional Median, a robust natural risk statistic, see Kou et al. (2013). For a further

discussion on subadditivity and coherence see Dhaene et al. (2008).

1.2 Theoretical Measures

With the three families of risk measures established above, key examples from these

families are stated.

1.2.1 Value at Risk

The Value-at-Risk (VaR) is a widely used risk measure in industry. It is used to calculate

quantiles of a distribution to give companies an amount that will cover the risk 100α% of

the time.

Definition 1.2.1. For random variable X with cumulative distribution function (cdf) FX

we define the VaR at significance level α by

VaRα(X) = inf{x : FX(x) ≥ α}, α ∈ [0, 1].

It should be noted that for a continuous rv X with cdf FX , VaRα(X) = F−1
X (α), where

F−1
X is the inversed cdf, also called the quantile function. Note that VaR is not a coherent

risk measure as it does not satisfy A4, subadditivity.

1.2.2 Tail Value-at-Risk

While intuitive and straightforward in applications, one problem with VaR is that it

fails to give any specific information on the amount of the loss, given that it surpasses

VaRα(X). VaR simply represents the lower bound of the amounts that are greater than

100α% of the possible losses. This is where both Tail Value-at-Risk and Conditional Tail
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Expection are introduced. Both measures quantify the magnitude of loss given that it

exceeds the VaRα(X). The TVaR is defined as follows:

Definition 1.2.2. For a rv X with cdf FX and quantile function VaRα(X) defined as in

Definition 1.2.1, we define the TVaR as:

TVaRα(X) =
1

1− α

∫ 1

α

VaRu(X)du, α ∈ [0, 1] (1.2.1)

As we can see, TVaR unlike VaR, measures the risk in the entire tail, past level α. It

can be viewed as the average of the VaR’s past a certain level α. One may rewrite TVaR

to consider the case where there is a probability mass at VaRα(X),

TVaRα(X) =
E
[
X · 1{X>VaRα(X)}

]
+VaRα(X)(FX(VaRα(X))− α)

1− α
. (1.2.2)

For X continuous, FX(VaRα(X))− α = 0. In this case (1.2.2) can be written

TVaRα(X) =
E
[
X · 1{X>VaRα(X)}

]
1− α

.

It can be shown that TVaR satisfies all the axioms of a coherent risk measure when the

underlying rv X is continuous, see Acerbi and Tasche (2002).

1.2.3 Conditional Tail Expectation

As mentioned, there is a second measure of tail expectation, know as the CTE.

Definition 1.2.3. The CTE of a rv X at significance level α is defined as

CTEα(X) = E [X|X > VaRα(X)] , α ∈ [0, 1].

The CTE can be rewritten as follows,

CTEα(X) = E [X|X > VaRα(X)]

=
E
[
X · 1{X>VaRα(X)}

]
P(X > VaRα(X))

=
E
[
X · 1{X>VaRα(X)}

]
1− α

for X continuous,

= TVaRα(X).

In the multivariate context, TVaR and CTE differ even in the continuous case.



2. MULTIVARIATE DISTRIBUTIONS AND DEPENDENCE

RELATIONS

To best understand multivariate risk measures, one must grasp the relationship between

the risks in question. To this end, multivariate distributions are crucial. This chapter

defines and presents some fundamental properties of multivariate distribution functions.

Most importantly, the link between multivariate cdf’s and copulas is presented as well

as some classic copulas. For comprehensive discussions of copulas and their properties

applied in statistics or actuarial science and finance, see for instance Joe (1997) and

McNeil et al. (2010) respectively.

2.1 Multivariate Cumulative Distribution Functions

The multivariate cdf F for rv’s X1, ..., Xd is defined for points (x1, ..., xd) ∈ Rn as

F (x1, ..., xd) = P (X1 ≤ x1, ..., Xd ≤ xd)

=

∫ x1

−∞
· · ·
∫ xd

−∞
f(x1, ..., xd)dx1...dxd,

where f(x1, ..., xd) is the multivariate probability density function (pdf). We know that

f(x1, ..., xd) =
∂n

∂x1 · · · ∂xd
F (x1, ..., xd).

Every multivariate cdf follows the following properties:

(1) Monotonically non-decreasing for each of its variables. That is,

F [i](x) = F (x1, ..., xi−1, x, xi+1, ..., xd)

is monotone non-decreasing, ∀ i = 1, ..., d. This can be understood as if we fix d− 1

of the random variables, the cdf is monotone non-decreasing as the remaining free rv

increases.
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(2) Right-continuous for each of its variables. That is, lim
xi→a+

F [i](x) = F i(a), ∀ i = 1, ..., n.

(3) F : Rn ↦→ [0, 1], F takes real valued vectors into the interval [0, 1].

(4) lim
x1,...,xd→∞

F (x1, ..., xd) = 1 and lim
xi→−∞

F (x1, ..., xd) = 0, ∀ i = 1, ..., d. The cdf is equal

to one if all of components approach infinity, and zero if at least one of the components

approach negative infinity.

In the bivariate setting, denoting Fi and fi the marginal cdf and pdf, respectively, for Xi

i = 1, 2, we also note the following

lim
x1→∞

F (x1, x2) =

∫ x2

−∞

∫ ∞

−∞
f(x1, x2)dx1dx2

=

∫ x2

−∞
f2(x2)dx2

= F2(x2), (x1, x2) ∈ R2

A similar argument exists for X1. Equivalently, we denote the multivariate survival func-

tion (sf) F̄ such that

F̄ (x1, ..., xd) = P(X1 > x1, ..., Xd > xd), (x1, . . . , xd) ∈ Rn

We specify the relation for n=2 random variables:

F̄ (x1, x2) = 1− F1(x1)− F2(x2) + F (x1, x2).

2.2 Copulas

When discussing multivariate cdf’s, one can represent them as copulas. This section

begins with the definition of copula and its relation to multivariate distribution functions

through Sklar’s theorem. Properties of the copula are established and special copulas as

well as various families of copulas will be presented.

Definition 2.2.1. Let (X1, ..., Xd) be a random vector from cdf F . Set Ui = Fi(Xi) ∼

U(0, 1), i = 1, . . . , d, then the copula C : [0, 1]d → [0, 1] of F is given by

C(u1, ..., ud) = P(U1 ≤ u1, ..., Ud ≤ ud), ui ∈ [0, 1], i = 1, ..., n.
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Copulas have the following properties

(1) C(u1, ..., ud) is non-decreasing in each of its components.

(2) C(u1, ..., ui−1, 0, ui+1, ..., ud) = 0, if one of the arguments is zero, the copula is zero.

(3) C(1, ..., 1, u, 1, ..., 1) = u, if all entries are 1 except for one being u, then the copula is

equal to u.

(4) C is d-increasing. That is, ∀ (a1, ..., ad), (b1, ..., bd) ∈ [0, 1]d with ai ≤ bi ∀ i = 1, ..., d,

2∑
i1

· · ·
2∑
id

(−1)i1+...+idC(u1i1 , ..., udid) ≥ 0,

where uj1 = aj and uj2 = bj ∀ j ∈ 1, ..., d.

The fourth property can be understood as such: for a random vector (U1, ...., Ud) with cdf

C, then P(a1 ≤ U1 ≤ b1, ..., ad ≤ Ud ≤ bd) is non negative. From Sklar (1959) we have the

following theorem which links copulas to multivariate cdf’s,

Theorem 2.2.1 (Sklar’s Theorem). Let F be a n-dimensional distribution function with

marginals F1, ..., Fn, then there exists a copula C such that

F (x1, ..., xd) = C(F1(x1), ..., Fn(xd)).

Conversely, for any univariate distributions F1, ..., Fn and any copula C, the function F is

a n-dimensional distribution function with marginals F1, ..., Fn. Additionally, if F1, ..., Fn

are continuous, then C is unique.

Proof. By the probability integral transform (PIT) it is known that Fi(Xi) = Ui ∼ U(0, 1)

for i = 1, ..., d. Then, using Definition 2.2.1 one has that

C(u1, ..., ud) = P(F1(X1) ≤ u1, ..., Fd(Xd) ≤ ud)

= P(X1 ≤ F−1
1 (u1), ..., Xd ≤ F−1

d (ud))

= F (F−1
1 (u1), ..., F

−1
d (ud)).
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Denoting xi = F−1
i (ui) one has

C(F1(x1), ..., Fn(xd)) = F (x1, ..., xd).

Conversely,

F (x1, ..., xd) = P(X1 ≤ x1, ..., Xd ≤ xd)

= P(F1(X1) ≤ F1(x1), ..., Fn(Xd) ≤ Fd(xd))

= C(F1(x1), ..., Fn(xd))

Therefore, discussing the properties of multivariate cdf’s is analogous to discussing

the properties of copulas. Presented with detailed information on the marginal cdf’s of

our random variables but little on their multivariate cdf, one may use a copula to explain

their dependence structure. The remainder of this thesis is restricted to the discussion of

the bivariate case of two random variables. Consider X1 and X2 with marginal cdf’s F1

and F2, respectively. The density of a copula in two dimensions is given by

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
, (u1, u2) ∈ [0, 1]2.

then the joint density of (X1, X2) can be written as

f(x1, x2) =
∂F (x1, x2)

∂x1∂x2

=
∂2C(F1(x1), F2(x2))

∂x1∂x2

=
∂2C(F1(x1), F2(x2))

∂F1(x1)∂F2(x2)

∂F1(x1)

∂x1

∂F2(x2)

∂x2

= c(u1, u2)f1(x1)f2(x2), (x1, x2) ∈ R2, ui = Fi(xi).

For what follows, define the survival copula

C̄(u1, u2) = P(U1 > u1, U2 > u2)

= 1− P(U1 ≤ u1)− P(U2 ≤ u2) + P(U1 ≤ u1, U2 ≤ u2)

= 1− u1 − u2 + C(u1, u2), (u1, u2) ∈ [0, 1]2
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Finally, we establish an empirical estimator for copulas that will be of use in Chapters 3

and 4. For a random sample (Xi1, Xi2), i = 1, ..., n define the empirical copula Cn as

Cn(u1, u2) =
1

n

n∑
i=1

1{Fn1(Xi1)≤u1,Fn2(Xi2)≤u2}, (2.2.1)

where Fnj is the univariate empirical cdf of Xj = (X1j, . . . , Xnj), j = 1, 2. Now, we

proceed with listing some well known copulas and families of copulas.

2.2.1 Families of Copulas

The first copula presented is the independence copula

Π(u1, u2) = u1u2, (u1, u2) ∈ [0, 1]2.

It is noted that in the case of independent random variables X and Y this is equivalent

to

F (x1, x2) = F1(x1)F2(x2), (x1, x2) ∈ R2

Another well known copula is the Farlie-Gumbel-Morgenstern (FGM) copula

Cθ(u1, u2) = u1u2 + θu1u2(1− u1)(1− u2), (u1, u2) ∈ [0, 1]2,

where the parameter θ ∈ [−1, 1] governs the dependence between U1 and U2.

Frechet Hoeffding Bounds

Before examining some families of copulas, the Fréchet-Hoeffding bounds for copulas, and

all multivariate cdf’s, are established. The upper and lower Fréchet-Hoeffding bounds are

denoted

M(u1, u2) = min(u1, u2) and W (u1, u2) = max(0, u1 + u2 − 1),

(u1, u2) ∈ [0, 1]2, respectively.

Remark 2.2.2. In the bivariate cases both M and W satisfy the properties of copulas.

However, for d > 2 only M can still be considered a copula.
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Theorem 2.2.3. For an arbitrary bivariate copula C : [0, 1]2 → [0, 1] and any (u1, u2) ∈

[0, 1]2,

W (u1, u2) ≤ C(u1, u2) ≤M(u1, u2)

Proof. If (U1, U2) has distribution C, then

C(u1, u2) = P(U1 ≤ u1, U2 ≤ u2)

≤ lim
u2→1

P(U1 ≤ u1, U2 ≤ u2)

= P(U1 ≤ u1)

= u1.

Similar arguments hold to show that C(u1, u2) ≤ u2, proving C(u1, u2) ≤ M(u1, u2).

Next,

P(U1 > u1, U2 > u2) = 1− P(U1 ≤ u1)− P(U2 ≤ u2) + C(u1, u2)

= 1− u1 − u2 + C(u1, u2),

which gives the inequality C(u1, u2) ≥ u1 + u2 − 1, thus showing

C(u1, u2) ≥ max(0, u1 + u2 − 1) = W (u1, u2)

as required.

M(u1, u2) and W (u1, u2) can be viewed as copulas representing comonotonic (perfect

positive dependence) and countermonotonic (perfect negative dependence) random vari-

ables, respectively. This will be seen later after discussing dependence relations in Section

2.3.

Elliptical Copulas

Elliptical copulas are generalizations of the normal copula, given by

C(u1, u2) = Φr

(
Φ−1(u1),Φ

−1(u2)
)

=
1

2π
√
1− r2

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
e
−x2+y2−2rxy

2(1−r2) dydx, (2.2.2)
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where Φr is the distribution of a bivariate normal rv with mean zero and correlation

r ∈ [−1, 1]. Similarly Φ denotes the distribution of a standard univariate normal rv. An

elliptical copula is generalized by

X = µ+RAU ,

with µ ∈ R2 where R is a positive random variable, AAT is a Cholesky decomposition of

the variance-covariance matrix Σ and U is uniformly distributed on S2 = {u ∈ R2 : ∥u∥ =

1}. Elliptically distributed vectors have densities of the form

h(x) =
1

|Σ|1/2
g
(
(x− µ)TΣ−1(x− µ)

)
,

for x ∈ R2 where g determines the copula. We will take µ = 0 for simplicity. For instance

in (2.2.2),

g(t) =
1

(2π)−1/2
e−

t
2 .

The bivariate student t-copula has

g(t) =
Γ(2+ν

2
)

πνΓ(ν
2
)

(
1 +

t

ν

)− 2+ν
2

,

where
Γ( 2+ν

2
)

πνΓ( ν
2
)
= 1

2π
, leading to

C(u1, u2) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1

2π(1− r2)1/2

(
1 +

x2 + y2 − 2rxy

ν(1− r2)

)
dydx,

where t−1
ν is the quantile function of the univariate student t-distribution with ν degrees

of freedom. Similar to the Gaussian copula the parameter r ∈ [0, 1] determines the cor-

relation between the random variables. They are also both symmetric and can exhibit

both positive and negative dependence. Additionally, for the student t-copula, the de-

grees of freedom ν determine the thickness of the tails: the fewer degrees of freedom, the

heavier the tails. Elliptical copulas are useful because they provide an easy to understand

analogue to their univariate counterparts (the Gaussian copula and Gaussian distribution

for instance). Additionally, simulations from these copula’s can be conducted quite eas-

ily. However, elliptical copula cdfs do not have closed form expressions. Moreover, the

Gaussian copula does not exhibit any tail dependence, this can be very problematic when
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considering the type of potentially catastrophic losses that risk measures are intended

to quantify. Plots of the densities of the normal and t-copula are presented in Figure

2.1. While they both exhibit dependence in both tails, the tails of the t-distribution are

slightly heavier, and can be modified with a change in ν. When dealing with potentially

catastrophic risks, t-copulas would provide more flexibility in modelling when compared

to the Gaussian copula.
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Fig. 2.1: Densities of the normal and t-copula with r = 0.707107 for each. Here, the t-copula

has 4 degrees of freedom.

Archimedean Copulas

Unlike elliptical copulas, Archimedean copulas have closed form expressions. A bivariate

Archimedean copula is of the the form

C(u1, u2; θ) = ψ−1(ψ(u1; θ) + ψ(u2; θ); θ), (u1, u2) ∈ [0, 1]2, θ ∈ Θ (2.2.3)

where ψ : [0, 1]×Θ → [0,∞) is called the generator function with parameter θ dictating

the dependence between the random variables U1 and U2. For ψ to be a generator for an

Archimedean copula, it must have the following properties,

(1) ψ(0) = ∞ and ψ(1) = 0,
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(2) ψ′(t) < 0,

(3) ψ′′(t) > 0.

Therefore, ψ is a convex decreasing function. Below is a list of several Archimedean cop-

ulas including those that will be used throughout this thesis.

(1) Gumbel Copula

Defining the generator ψ(t; θ) = (− ln(t))θ, and subsequently the inverse generator ψ−1(t; θ) =

e−t
1
θ we have the Gumbel copula, given by

C(u1, u2; θ) = e−{[− ln(u1)]θ+[− ln(u2)]θ}
1
θ

,

for θ ∈ [1,∞). It is noted that for θ = 1

C(u1, u2) = e−[(− ln(u1))+(− ln(u2))]

= u1u2

= Π(u1, u2),

the independence copula.

(2) Frank Copula

Setting ψ(t; θ) = − ln
(
e−θt−1
e−θ−1

)
gives ψ−1(t; θ) = −1

θ
ln
[
1 + e−t

(
e−θ − 1

)]
and defines the

Frank copula,

C(u1, u2; θ) = −1

θ
ln

(
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)
,

for θ ∈ R \ {0}.

(3) Clayton Copula

The last example presented is the Clayton copula. Given the generator ψ(t; θ) = 1
θ
(t−θ−1)

and inverse ψ−1(t; θ) = (1 + θt)−
1
θ , one has

C(u1, u2; θ) =
(
u−θ1 + u−θ2 − 1

)− 1
θ ,

for θ ∈ [−1,∞)\{0}. Here, one can see that Π(u1, u2) is attained for θ = 0. Additionally,

W (u1, u2) and M(u1, u2) are attained for θ = −1 (only in the bivariate case) and θ → ∞

(in any dimension) respectively.
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While Archimedean copulas are quite flexible and provide closed form expressions for

their distributions, they are not without flaws. For one, the arguments are exchangeable.

In the the bivariate case this gives C(u1, u2) = C(u2, u1) for u1, u2 ∈ [0, 1], therefore

these copulas cannot demonstrate asymmetric dependence relations. In higher dimension

this gives that all marginal distributions will be the identical with the same dependence

structure. In Figure 2.2, examples of each copula are presented. One may see that the

Frank copula is relatively symmetric in both tails, whereas the Clayton and Gumbel

copulas show very strong dependence in the lower and upper tails, respectively.
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Fig. 2.2: Copula densities for Frank, Clayton and Gumbel copula with θ parameter 5.736, 2 and

2 respectively.

Extreme Value Copulas

The final family presented is that of extreme value copulas. They are of the form

CA(u1, u2) = e
ln(u1u2)A

(
ln(u2)

ln(u1u2)

)
,

where A : [0, 1] → [1
2
, 1] is some convex mapping such that

max(t, 1− t) ≤ A(t) ≤ 1.

A is known as the Pickands dependence function from Pickands (1981). Three extreme

value copulas are listed below.

(1) Gumbel-Hougaard Copula
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Also known as Gumbel’s first asymmetric model. This is a generalized form of the Gumbel

copula from the Archimedean family. We have the Pickands function

A(t) = (1− α)t+ (1− β)(1− t) +
[
(αt)θ + (β(1− t))θ

] 1
θ , t ∈ [0, 1],

θ ≥ 1, α, β ∈ [0, 1]. The corresponding copula is

C(u1, u2) = u1−β1 u1−α2 e−{[−β ln(u1)]θ+[−α ln(u2)]θ}
1
θ

,

notice for α = β = 1 one has the Gumbel copula from the Archimedean family.

(2) Gumbel’s Second Model

A second copula from Gumbel uses the dependence function

A(t) = θt2 − θt+ 1, t ∈ [0, 1]

θ ∈ [0, 1], resulting in

C(u1, u2) = u1u2e
−θ

(
lnu1 lnu2
lnu1+lnu2

)
.

(3) Asymmetric Galambos Copula

Finally, there is the Galambos copula which has Pickands function of the form:

A(t) = 1−
(
(αt)−θ + (β(1− t))−θ

)− 1
θ
, t ∈ [0, 1]

θ ∈ [0,∞) α, β ∈ [0, 1]. The Galambos copula takes the form

C(u1, u2) = u1u2e
((−β ln(u1))−θ+(−α lnu2)−θ)

− 1
θ

.

Figure 2.3 presents the case of the symmetric Galambos copula, that is, for a = b = 1. As

we can see, the Galambos copula demonstrates strong levels of dependence in the upper

tail. Additionally, extreme value copulas exhibit positive quadrant dependence, that is,

if E denotes an extreme value copula then

Π(u1, u2) = u1u2 ≤ E(u1, u2) ≤M(u1, u2),

since if max(t, 1− t) ≤ A(t) ≤ 1 then for u1, u2 ∈ [0, 1] one has ln(u1u2) ≤ ln(u1u2)A(t) ≤

ln(u1u2)max(t, 1− t). Then,

E(u1, u2) = e
ln(u1u2)A

(
ln(u2)

ln(u1u2)

)
≥ eln(u1u2) = u1u2.
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Fig. 2.3: Galambos copula density with θ = 1.2848.

2.3 Dependence Relations

One of the many advantages of copulas is the versatility they provide in modelling. They

allow for the marginals to be established individually before modelling the dependence.

Many copulas have a single parameter θ which models the dependence and while the

value of θ describes a different level of dependence for each individual copula, there are

dependence relations linked to copulas that provide a comparable measure of association.

First, we recall the standard definition for the association between two random variables,

the Pearson correlation.

Definition 2.3.1. For two random variables X1 and X2, define Pearson’s correlation

r(X1, X2) =
cov(X1, X2)

σX1σX2

,

where we recall that σX1, σX2 are the standard deviations of X1 and X2, respectively and

cov(X1, X2) = E(X1X2)−E(X1)E(X2). Equivalently for a series of random observations

X11, X21, ..., Xn1 of X1 and X12, X22, ..., Xn2 of X2, we define the estimator for Pearson’s

correlation by

r̂(X1, X2) =

∑n
i=1

(
Xi1 − X̄1

) (
Xi2 − X̄2

)√∑n
i=1

(
Xi1 − X̄1

)2∑n
i=1

(
Xi2 − X̄2

)2 .
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Some issues with Pearson’s correlation include its inability to detect nonlinear correla-

tion. Moreover, when considering the parametric definition certain distributions will have

undefined moments which will yield no value for Pearson’s correlation when a dependence

relation may in fact exist. The empirical estimator is also not very robust, susceptible

to outliers in the data and the parametric value is dependent on the choice of margins.

With these flaws, many have begun considering other measures of association. We will

show how both these measures can be related to the copulas.

2.3.1 Spearman’s ρ

The first measure is Spearman’s ρ, introduced in Spearman (1904).

Definition 2.3.2. For a random sample (Xi1, Xi2), i = 1, ...n from the random pair

(X1, X2) consider ranks of the data Ri = #{j : Xj1 ≤ Xi1} and Qi = #{j : Xj2 ≤ Xi2}.

Define the estimator for Spearman’s ρ as the Pearson correlation of the ranks, that is

ρ̂(X1, X2) =

∑n
i=1(Ri − R̄)(Qi − Q̄)√∑n

i=1(Ri − R̄)2
∑n

i=1(Qi − Q̄)2
. (2.3.1)

The parametric value of Spearman’s ρ can we expressed as

ρ(X1, X2) = −3 + 12

∫ ∫
F1(x1)F2(x2)dF (x1, x2)

= −3 + 12

∫ 1

0

∫ 1

0

u1u2dC(u1, u2) = −3 + 12E[U1U2]

= −3 + 12

∫ 1

0

∫ 1

0

u1u2c(u1, u2)du1du2

= −3 + 12

∫ 1

0

∫ 1

0

C(u1, u2)du1du2, (2.3.2)

where F1, F2 and F are the cdf’s of X1, X2 and (X1, X2) respectively, C is the copula

joining X1 and X2 and c is the corresponding bivariate density. The last equality (2.3.2)

was established by Hoeffding (1940). Now one may see how the Fréchet-Hoeffding bounds

represent the comonotonic and countermonotonic cases. When C = M one has that

U1 = U2 and

ρ = −3 + 12E [U1U2]
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= −3 + 12E
[
U2
1

]
= −3 + 12

(
1

3

)
= 1.

For C = W , U1 = 1−U2 then E[U1U2] = E[U1−U2
1 ] =

1
6
and τ = −1+12

(
1
6

)
= −1. Here

we see how Spearman’s ρ is uniquely determined by the dependence structure defined in

the copula C. In fact, it was shown by Kruskal (1958) for Gaussian copulas that

ρ(X1, X2) =
6

π
arcsin

(r
2

)
.

In Figure 2.4 the relationship is plotted. As one can see there is a near linear relationship

between Pearson’s correlation and Spearman’s ρ and that Gaussian copulas can take on

all values of ρ ∈ [−1, 1].
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Fig. 2.4: Relation between Spearman’s ρ and Pearson correlation for Gaussian copulas.

Similarly, Ghoudi et al. (1998) showed that for extreme value copulas with Pickands

function A that ρ can we expressed as

ρ(X1, X2) = −3 + 12

∫ 1

0

1

(A(t) + 1)2
dt.

2.3.2 Kendall’s τ

Next, we review Kendall’s τ , established in Kendall.
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Definition 2.3.3. For a random sample (Xi1, Xi2), i = 1, ..., n from the random pair

(X1, X2) we define the estimator of Kendall’s τ as

τ̂ = 2
# {(Xi1, Xi2), (Xj1, Xj2) : (Xi1 −Xj1)(Xi2 −Xj2) > 0}(

n
2

) − 1.

Parametrically, one has for a random pair (X ′
1, X

′
2) from the same distribution as (X1, X2)

τ = 2P ((X1 −X ′
1)(X2 −X ′

2) > 0)− 1

= −1 + 4

∫ ∫
H(x1, x2)dH(x1, x2)

= −1 + 4

∫ 1

0

∫ 1

0

C(u1, u2)c(u1, u2)du1du2

= −1 + 4E[C(U1, U2)].

Again, we see how the value of τ is uniquely determined by the choice of copula C.

Similar to Spearman’s ρ, formulas directly linking θ to τ have been established for certain

families of copulas. For instance, it was shown by Genest and MacKay (1986) that for

Archimedean copulas, Kendall’s τ could be written as

τ(X1, X2) = 1 + 4

∫ 1

0

ψ(t; θ)

ψ′(t; θ)
dt.

The dependence of the random pair is determined by the choice of generator function ψ.

For example, in the cases of the Clayton and Gumbel copulas, one has tractable equations

relating θ to τ . For Clayton, the expression simplifies to

τ(X1, X2) =
θ

θ + 2

and for Gumbel, one has

τ(X1, X2) = 1− 1

θ
.

Similarly, it was shown by Kruskal (1958) that for Gaussian copulas that

τ(X1, X2) =
2

π
arcsin(r).

It was later shown by Hult et al. (2002) that this relationship holds for all elliptical copulas,

independent of the choice of generator g. In Figure 2.5 the relationship is plotted. Similar
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Fig. 2.5: Relationship between Kendall’s τ and Pearson’s correlation for elliptical copulas.

to Spearman’s ρ, τ can take on all possible values of dependence in [-1,1], however the

relationship is noticeably less linear. Finally, Ghoudi et al. (1998) showed that for extreme

value copulas with Pickands function A that, similar for ρ, τ can we expressed as

τ(X1, X2) =

∫ 1

0

t(1− t)

A(t)
dA′(t).

Note that these relationships can be used to show that for each plot in Figures 2.2, 2.1

and 2.3 that Kendall’s τ = 0.5 for each copula. Similar to Spearman’s ρ, it can be seen

that τM = 1 and τW = −1.

Kendall’s Distribution Function

An interesting function relating to Kendall’s τ is Kendall’s distribution. By defining the

random variable W = C(U1, U2) for a copula C we have a bivariate extension to the PIT

and denote Kendall’s distribution

K(w) = P(W ≤ w)

= P(C(U1, U2) ≤ w).

From the definition of Kendall’s τ we can see that

E(W ) = E(C(U1, U2)) =
τ + 1

4
.
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For Archimedean copulas it was shown that this distribution takes the form

K(w) = w − ψ(w; θ)

ψ′(w; θ)
, w ∈ (0, 1),

and for extreme value copulas, one has

K(w) = w − (1− τ)w ln(w), w ∈ (0, 1).

Kendall’s distribution can be estimated by considering the pseudo-observations of a ran-

dom sample (Xi1, Xi2), i = 1, ..., n, that is

Wi =
1

n− 1

∑
j ̸=i

1{Xj1<Xi1,Xj2<Xi2}.

The estimate of the the random variable W is then the cumulative distribution of the Zi.

More precisely, it can be defined

Kn(w) =
1

n

n∑
i=1

1{Fn(Xi1,Xi2)≤w},

for some estimator Fn of the cdf F for the random pair (X1, X2). This function will be

of use in later chapters when estimating multivariate risk measures.

As can be seen, both Spearman’s ρ and Kendall’s τ provide a much more versatile

notion of dependence when compared to Pearson’s correlation. They are able to capture

dependence of the non-linear variety and parametrically there is no risk of these measures

are always defined.

2.3.3 Tail Dependence

The following measures of dependence are useful when considering how a pair of rv’s

X = (X1, X2) act in the upper and lower tails of a distribution. In this sense, they can be

seen as measures of extremal dependence. These measures, the coefficients of upper and

lower tail dependence, are defined in terms of limiting conditional probabilities. For upper

tail dependence, one examines the probability that X1 (X2) exceeds its α level quantile

given that X2 (X1) exceeds its α level quantile, and letting α approach 1. Formally, one

has the following definition.
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Definition 2.3.4. For two random variables X1 and X2, the coefficient of upper tail

dependence can be defined as

λU = lim
α→1−

P [X1 > VaRα(X1)|X2 > VaRα(X2)] ,

provided a limit λU ∈ [0, 1] exists. When X1 and X2 have continuous marginal cdf ’s F1

and F2, respectively, joined by a copula C, this expression simplifies to

λU = lim
α→1−

P [X1 > VaRα(X1), X2 > VaRα(X2)]

P[X2 > VaRα(X2)]

= lim
α→1−

1− 2α + C(α, α)

1− α
(2.3.3)

= lim
α→1−

C̄(α, α)

1− α
.

From (2.3.3), upper tail dependence may also be written

λU = 2− lim
α→1−

1− C(α, α)

1− α
.

Analogously, the coefficient of lower tail dependence is defined as follows.

Definition 2.3.5. For two random variables X1 and X2, the coefficient of lower tail

dependence can be defined as

λL = lim
α→0+

P [X1 ≤ VaRα(X1)|X2 ≤ VaRα(X2)]

provided a limit λL ∈ [0, 1] exists. When X1 and X2 have continuous marginal cdf ’s F1

and F2, respectively, joined by a copula C, this expression simplifies to

λL = lim
α→0+

P [X1 ≤ VaRα(X1), X2 ≤ VaRα(X2)]

P[X2 ≤ VaRα(X2)]

= lim
α→0+

C(α, α)

α
.

For λU (λL) ∈ (0, 1], the rv’s are said to display upper (lower) tail dependence and

for λU (λL) = 0 one has that the random variables are asymptotically independent in the

upper (lower) tail. For symmetric copulas, such as the normal copula and t-copula, one

has that λ = λU = λL. Specifically, one has for normal copulas that λ = 0 and for the

t-copula

λ = 2tν+1

[
−
(
(1− ρ)(ν + 1)

1 + ρ

) 1
2

]
,
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where tν+1 denotes the cdf of a student-t distribution with ν+1 degrees of freedom. When

considering Archimedean copulas, one may describe upper and lower tail dependence in

terms of the generator function ψ. More specifically,

λU = 2− lim
α→1−

1− ψ−1(2ψ(α; θ); θ)

1− α

= 2− lim
x→0+

1− ψ−1(2x; θ)

1− ψ−1(x; θ)

and

λL = lim
α→0+

ψ−1(2ψ(α; θ); θ)

α

= lim
x→∞

ψ−1(2x; θ)

ψ−1(x; θ)
.

To end this chapter, Tables 2.1 and 2.2 summarize some of the results for the copulas

mentioned above.
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Family Copula C(u1, u2) (and generator) θ Spearman’s ρ Kendall’s τ

Elliptical - No closed form See below 6
π

arcsin
(
r
2

)
2
π

arcsin(r)

Normal 1

2π

√
1−r2

∫Φ−1(u1)
−∞

∫Φ−1(u2)
−∞ e

− x2+y2−2rxy

2(1−r2) dydx [-1,1] [-1,1] [-1,1]

Student t
∫ t−1
ν (u1)

−∞
∫ t−1
ν (u2)

−∞
1

2π(1−r2)1/2

(
1 + x2+y2−2rxy

ν(1−r2)

)
dydx [-1,1] [-1,1] [-1,1]

Archimedean - ψ−1 (ψ(u1; θ) + ψ(u2; θ); θ) See below No closed form 1 + 4
∫ 1
0
ψ(t;θ)

ψ′(t;θ) dt

Gumbel
ψ(t; θ) = (− ln(t))θ

e
−
{
[− ln(u1)]θ+[− ln(u2)]θ

} 1
θ

[1,∞) No closed form ∈ [0, 1)∗ 1 − 1
θ

∈ [0, 1]

Frank

ψ(t; θ) = − ln

(
e−θt−1

e−θ−1

)
− 1
θ

ln

(
1 +

(
e−θu1−1

)(
e−θu2−1

)
e−θ−1

) R \ {0}
1 + 12

θ
(D2(θ) −D1(θ))

∈ (−1, 1)∗
1 + 4

θ
(D1(θ) − 1) ∈ (−1, 1)∗

Clayton
ψ(t; θ) = 1

θ
(t−θ − 1)(

u−θ
1 + u−θ

2 − 1
)− 1

θ
[−1,∞) \ {0} Complicated form ∈ (−1, 1)∗ θ

θ+2
∈ [−1, 1]

Extreme Value - e
ln(u1u2)A

(
ln(u2)

ln(u1u2)

)
See below −3 + 12

∫ 1
0

1
(A(t)+1)2

dt
∫ 1
0
t(1−t)
A(t)

dA′(t)

Gumbel-Hougaard
A(t) = (1 − α)t + (1 − β)(1 − t) +

[
(αt)θ + (β(1 − t))θ

] 1
θ

u
1−β
1 u1−α

2 e
−
{
[−β ln(u1)]θ+[−α ln(u2)]θ

} 1
θ

[1,∞) No closed form ∈ [0, 1)∗,† 1 − 1
θ

∈ [0, 1]†

Gumbel type 2
A(t) = θt2 − θt + 1

u1u2e
θ

lnu1 lnu2
lnu1+lnu2

[0,1] Complicated form
8 arctan

√
θ

4−θ√
θ(4−θ)

− 2 ∈ (0, 0.42)∗

Asymmetric Galambos
A(t) = 1 − [(αt)−θ + (β(1 − t))−θ ]−

1
θ

u1u2e

(
(−β ln(u1))−θ+(−α lnu2)−θ

)− 1
θ

[0,∞) No closed form ∈ [0, 1)∗,† No closed form ∈ [0, 1)∗,†

Tab. 2.1: Summary of information for the presented copulas.

∗:Bounds which were estimated in R using the copula package by Hofert et al. (2014).

†:Evaluation was completed for the symmetric cases, where α = β = 1.

Dk(x) =
k
xk

∫ x
0

tk

et−1dt, k = 1, 2 is known as the Debye function.
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Family Copula Tail Dependence K(w) Comments

Elliptical - - No closed form Displays a full range of dependence in both ρ and τ . However, elliptical

copulas lack closed form expressions for their distributions. These copulas

are easy to simulate from.

Normal λ = 0 No closed form While analogous to the univariate and multivariate normal which are

widely used, lack of tail dependence can be an issue in actuarial appli-

cations.

Student t λ = 2tν+1

[
−
(

(1−ρ)(ν+1)
1+ρ

) 1
2

]
No closed form Modifying ν allows one to control the thickness of the tails, giving more

flexibility in modelling compared to the normal copula.

Archimedean -
λU = 2 − lim

x→0+

1−ψ−1(2x;θ)

1−ψ−1(x;θ)

λL = lim
x→∞

ψ−1(2x;θ)

ψ−1(x;θ)

w − ψ(w;θ)

ψ′(w;θ)
Functions are tractable and easy to work with. However, exchangeability

of entries limits flexibility of family.

Gumbel
λU = 2 − 2

1
θ

λL = 0
w
(
1 − ln(w)

θ

)
Displays only positive dependence in both τ and ρ, therefore it is PQD.

Exhibits strong right tail dependence, good when considering extreme risks

that tend to act together.

Frank
λU = 0

λL = 0
w +

ln

(
e−θw−1

e−θ−1

)
(e−θw−1)

θe−θw
Exhibits strong dependence in the center of the distribution, but weak tail

dependence.

Clayton
λU = 0

λL = 2 − 2
1
θ

−w
θ
(wθ − θ − 1) The Clayton copula can account for a complete range of dependence ρ, τ ∈

(−1, 1), however, it demonstrates asymptotic independence in the right tail

but strong left tail dependence.

Extreme value - - w − (1 − τ)w ln(w) As the name indicates, copulas of this family are beneficial when consid-

ering random variables who display extremal tail dependence.

Gumbel-Hougaard
λU = α + β −

(
αθ + βθ

) 1
θ

λL = 0
w
(
1 − ln(w)

θ

)†
Provides the possibility of asymmetric dependence relations. In the case

of symmetry, we have the Archimedean Gumbel copula.

Gumbel type 2
λU = 1

2
θ

λL = 0
w −

⎛⎜⎝3 −
8 arctan

√
θ

4−θ√
θ(4−θ)

⎞⎟⎠w ln(w) Provides a small range of possible values of τ limiting it’s usefulness in

application.

Assymetric Galambos
λU =

(
αθβθ

αθ+βθ

) 1
θ

λL = 0

No closed form Similar to the Gumbel-Hougaard, can capture asymmetric forms of depen-

dence and exhibits strong right tail dependence.

Tab. 2.2: (Cont) Summary of information for the presented copulas.

†:Evaluation was completed for the symmetric cases, where α = β = 1.



3. MULTIVARIATE RISK MEASURES

We have examined the properties of multivariate distribution functions (specifically per-

taining to copulas). Now, we can begin to examine some already established risk mea-

sures in dimension n ≥ 2. While many of the measures presented below can be extended

to dimension higher than two, we will focus on the bivariate case for a random vector

X = (X1,X2). In this chapter we present several multivariate extensions to the measures

mentioned in Chapter 1, VaR, CTE and TVaR, as well as some of their properties. While

our focus will be on the bivariate VaR and TVaR as presented by Cossette et al. (2013,

2015), other measures will be mentioned as well as some of their properties which are

considered ideal.

3.1 Value-at-Risk

3.1.1 Orthant Based Value-at-Risk

The first measure we look at is the multivariate extension of VaR. We recall that for a

continuous cdf FX the univariate VaR at level α for a random variable X can be written

VaRα(X) = inf {x ∈ R : FX(x) ≥ α} = F−1
X (α)

= inf
{
x ∈ R : F̄X(x) ≤ 1− α

}
= F̄−1

X (1− α),

where F−1
X is the inverse cdf (F̄−1

X being the inverse sf), also known as the quantile function.

We have this result because of the relationship between the univariate cdf and sf, namely

FX(x) = 1 − F̄X(x). Seeing as this relation does not exist in the multivariate setting,

Embrechts and Puccetti (2006) introduced two VaR measurements in the bivariate setting,

the upper and lower orthant VaR. Denoting the boundary of a set A as ∂A and the level
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sets for bivariate cdf F and bivariate sf F̄ as

LF (α) =
{
(x1, x2) ∈ R2 : F (x1, x2) ≥ α

}
and (3.1.1)

LF̄ (α) =
{
(x1, x2) ∈ R2 : F̄ (x1, x2) ≤ 1− α

}
, (3.1.2)

respectively, the lower and upper orthant VaR are defined as follows.

Definition 3.1.1. For a random vector X = (X1, X2) with joint cdf F we define the lower

orthant Value-at-Risk at level α as

VaRα(X) = ∂
{
(x1, x2) ∈ R2 : F (x1, x2) ≥ α

}
= ∂LF (α).

Alternatively, we define the upper orthant Value-at-Risk for a random vector X = (X1, X2)

with joint sf F̄ at level α as

VaRα(X) = ∂
{
(x1, x2) ∈ R2 : F̄ (x1, x2) ≤ 1− α

}
= ∂LF̄ (α).

In the case of continuous X we have that the lower and upper orthant VaR become

VaRα(X) =
{
(x1, x2) ∈ R2 : F (x1, x2) = α

}
, and,

VaRα(X) =
{
(x1, x2) ∈ R2 : F̄ (x1, x2) = 1− α

}
.

Unlike in the univariate case, VaR is no longer a single point. Both the upper and lower

orthant VaR are sets of infinite points. Provided in Figure 3.1 we have a side by side

comparison of the upper and lower orthant VaR for exponential marginals linked by a

Gumbel copula for various levels of dependence.

3.1.2 Reparameterization of Orthant Based Value-at-Risk

To further discuss the orthant based VaR, including properties and capital allocation,

an alternative representation developed by Cossette et al. (2013) is presented. Denote

Fx1(x2) = F (x1, x2) (similarly F̄x1(x2) = F̄ (x1, x2)) and Fx2(x1) = F (x1, x2) (similarly

F̄x2(x1) = F̄ (x1, x2)). Then we define their inverses by

F−1
x1

(α) = VaRα,x1
(X) = inf {x2 ∈ R : Fx1(x2) ≥ α}
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Fig. 3.1: Lower (left) and Upper (right) orthant VaR for X1 ∼ EXP(5) and X2 ∼ EXP(15)

joined by a Gumbel copula.

and

F̄−1
x1

(α) = VaRα,x2(X) = inf
{
x2 ∈ R : F̄x1(x2) ≤ α

}
.

Notice that for continuous X one has that

F (x1,VaRα,x1
(X)) = α and F̄ (x1,VaRα,x1(X)) = 1− α.

Define the alternative representation of the lower orthant VaR as

VaRα(X) =
{
(x1,VaRα,x1

(X)), x1 ≥ VaRα(X1)
}

=
{
(VaRα,x2

(X), x2), x2 ≥ VaRα(X2)
}
,

and the upper orthant VaR as

VaRα(X) =
{
(x1,VaRα,x1(X)), x1 ≤ VaRα(X1)

}
=
{
(VaRα,x2(X), x2), x2 ≤ VaRα(X2)

}
.

With this definition of the orthant VaR, we may state many useful properties. First, the

asymptotics of VaRα,x1
(X) and VaRα,x1(X) are examined. To this end, denote by supp(X)

the support of a rv X. Additionally, let lX and uX define the infimum and and supremum

of supp(X), that is lX = inf{x : x ∈ supp(X)} and uX = sup{x : x ∈ supp(X)}. Then

the following results holds.
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Proposition 3.1.1. Let X = (X1, X2) be a random vector with cdf F and marginals F1

and F2. Then the α-level curves

x1 ↦→ VaRα,x1
(X) and x1 ↦→ VaRα,x1(X)

are decreasing functions. Moreover, if F is strictly increasing,

(1) lim
x1→uX1

VaRα,x1
(X) = VaRα(X2) and lim

x1→VaRα(X1)
VaRα,x1

(X) = uX2 , (3.1.3)

(2) lim
x1→lX1

VaRα,x1(X) = VaRα(X1) and lim
x1→VaRα(X1)

VaRα,x1(X) = lX2 . (3.1.4)

Proof. For continuous F one has

F (x1,VaRα,x1
(X)) = α and F̄ (x1,VaRα,x1(X)) = 1− α. (3.1.5)

Now, given that F (respectively F̄ ) is increasing (respectively decreasing) one necessarily

has from (3.1.5) that x1 ↦→ VaRα,x1
(X) and x1 ↦→ VaRα,x1(X) are decreasing func-

tions of x1. If not, one would have for x1 > x2, that VaRα,x1
(X) > VaRα,x2

(X) then

α = F (x1,VaRα,x1
(X)) > F (x2,VaRα,x2

(X)) but F (x2,VaRα,x2
(X)) = α, leading to a

contradiction (there is a similar argument for VaRα(X)). Next, since F is continuous,

lim
x1→uX1

VaRα,x1
(X) = lim

x1→uX1

inf
{
x2 ∈ R2 : Fx1(x2) ≥ α

}
= inf

{
x2 ∈ R2 : F2(x2) ≥ α

}
= F−1

2 (α)

= VaRα(X2).

Finally,

lim
x1→VaRα(X1)

VaRα,x1
(X) = lim

x1→VaRα(X1)
inf
{
x2 ∈ R2 : Fx1(x2) ≥ α

}
= inf

{
x2 ∈ R2 : F (VaRα(X1), x2) = α

}
= uX2 ,

since F (VaRα(X1), uX2) = F1(VaRα(X1)) = α, proving (3.1.3). An analogous argument

proves (3.1.4).
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It follows from Proposition 3.1.1 that

VaRα(X) ⊂ [VaRα(X1), uX1)× [VaRα(X2), uX2) , (3.1.6)

VaRα(X) ⊂ (lX1 ,VaRα(X1)]× (lX2 ,VaRα(X2)] . (3.1.7)

The next property will be of use when discussing properties analogous to those of the

univariate VaR.

Proposition 3.1.2. Let X = (X1, X2) be a continuous random vector and define

φ(X) = (φ1(X1), φ2(X2)),

where φ1 and φ2 are real functions defined on the supports of X1 and X2, respectively.

(1) For increasing functions φi and φj, i, j = 1, 2, i ̸= j,

VaRα,φj(xj)
(φ(X)) = φi(VaRα,xj

(X)) and VaRα,φj(xj)(φ(X)) = φi(VaRα,xj(X)).

(2) For decreasing functions φi and φj, i, j = 1, 2, i ̸= j,

VaRα,φj(xj)
(φ(X)) = φi(VaR1−α,xj(X)) and VaRα,φj(xj)(φ(X)) = φi(VaR1−α,xj(X)).

Proof. (1) We will prove the case of the lower orthant VaR, where similar arguments

exist for the upper orthant VaR. Let us condition on X2 = x2 and consider increasing

functions φi, i = 1, 2. Then, one has that

α = F (VaRα,x2
(X), x2)

= P(X1 ≤ VaRα,x2
(X), X2 ≤ x2)

= P
[
φ1(X1) ≤ φ1(VaRα,x2

(X)), φ2(X2) ≤ φ2(x2)
]

∵ φ1, φ2 are increasing.

Equivalently,

α = Fφ(X)(VaRα,φ2(x2)
(φ(X)), φ2(x2))

= P(φ1(X1) ≤ VaRα,φ2(x2)
(φ(X)), φ2(X2) ≤ φ2(x2)).

Finally, since F is continuous and strictly increasing, we have φ1(VaRα,x2
(X)) =

VaRα,φ2(x2)
(φ(X)).
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(2) Again, we consider the case of the lower orthant VaR and we condition on X2 = x2.

Take φi, i = 1, 2 to be decreasing functions. Then,

1− α = F (VaR1−α,x2(X), x2)

= P(X1 ≤ VaR1−α,x2(X), X2 ≤ x2)

= P
[
φ1(X1) > φ1(VaR1−α,x2(X)), φ2(X2) > φ2(x2)

]
∵ φ1, φ2 are decreasing.

Equivalently,

1− α = F̄φ(X)(VaRα,φ2(x2)(φ(X)), φ(x2))

= P(φ1(X1) > VaRα,φ2(x2)(φ(X)), φ2(X2) > φ2(x2)).

Finally, since F is continuous and strictly increasing, we have VaRα,φ2(x2)(φ(X)) =

φ1(VaR1−α,x2(X)).

Directly from Proposition 3.1.2, we have the following properties of the orthant VaR.

Corollary 3.1.3. For a continuous random vector X = (X1, X2), we have the following

(1) Translation Invariance. For all c = (c1, c2) ∈ R2
+ and i, j = 1, 2 i ̸= j, that

VaRα,xj+cj
(X+ c) = VaRα,xj

(X) + ci and VaRα,xj+cj(X+ c) = VaRα,xj(X) + ci.

(2) Positive Homogeneity. For all c = (c1, c2) ∈ R2
+ and i, j = 1, 2 i ̸= j, that

VaRα,cjxj
(cX) = ciVaRα,xj

(X) and VaRα,cjxj(cX) = ciVaRα,xj(X).

(3) Negative Transformations. For all c = (c1, c2) ∈ R2
− and i, j = 1, 2 i ̸= j, that

VaRα,cjxj
(cX) = ciVaR1−α,xj(X) and VaRα,cjxj(cX) = ciVaR1−α,xj(X).

Convexity of the bivariate orthant VaR

We begin this section with an example. Consider a random pair X = (X1, X2) joined

by a FGM copula. Below, in Figure 3.2 we present the lower and upper orthant VaR
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Fig. 3.2: Lower and upper orthant VaR at level 99% for a random pair joined by a FGM copula

for two levels of dependence

for two sets of margins and two levels of dependence. As we can see in Figure 3.2a, the

value of the dependence parameter can affect the shape of the orthant VaR. Additionally,

in Figure 3.2b it is seen that the choice of margins also plays a role. Figure 3.2 also

demonstrates how the change in dependence is felt more in the case of the upper orthant

VaR. In the following sections several propositions and corollaries are listed which aim to

explain the roles of dependence and margins on the orthant VaR pertaining to convexity

and other factors.

Proposition 3.1.4. Let X = (X1, X2) be a continuous random vector with joint cdf F

and sf F̄ .

(1) If F is concave (respectively convex) then x1 ↦→ VaRα,x1
(X) is convex (respectively

concave).

(2) If F̄ is convex (respectively concave) then x1 ↦→ VaRα,x1(X) is convex (respectively

concave).
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Proof. To show (1), suppose that F is a concave function and recall the α level set for F

LF (α) =
{
(x1, x2) ∈ R2 : F (x1, x2) ≥ α

}
.

Let x = (x1, x2), y = (y1, y2) ∈ LF (α) and k ∈ [0, 1]. Then, one has

F (kx+ (1− k)y) ≥ kF (x) + (1− k)F (y) ≥ kα+ (1− k)α = α.

Thus kx + (1 − k)y ∈ LF (α) and LF (α) is a convex set, thus its boundary ∂LF (α) is

convex. Next, if F is convex, then the complement of LF (α) is a convex set, therefore the

boundary of LF (α) is concave and the theorem holds. Similar arguments yield (2).

The next proposition provides a convenient method for ensuring the convexity of the

orthant VaR.

Proposition 3.1.5. Let X = (X1, X2) be a random vector with joint cdf F and sf F̄ . De-

note F1 and F2 the marginal cdf ’s of X1 and X2. Assuming that F is twice differentiable,

one has that:

(1) If ∂2

∂x2i
F (x1, x2) ≤ 0, ∀ xi ≥ VaRα(Xi), then x1 ↦→ VaRα,x1

(X) is convex.

(2) If ∂2

∂x2i
F̄ (x1, x2) ≥ 0, ∀ xi ≤ VaRα(Xi), then x1 ↦→ VaRα,x1(X) is concave.

Proof. One can deduce that VaRα,x1
(X) is twice differentiable from the fact F is twice

differentiable and F (x1,VaRα,x1
(X)) = α. Then from the bivariate chain rule:

d2

dx21
F (x1,VaRα,x1

(X)) = 0

d

dx1
F (x1,VaRα,x1

(X)) =
d

dx1
F (x1,VaRα,x1

(X)) +
d

dx2
F (x1,VaRα,x1

(X))
d

dx1
VaRα,x1

(X), and

d2

dx21
F (x1,VaRα,x1

(X)) =
d2

dx21
F (x1,VaRα,x1

(X)) + 2
d2

dx1dx2
F (x1,VaRα,x1

(X))
d

dx1
VaRα,x1

(X)

+
d2

dx22
F (x1,VaRα,x1

(X))

[
d

dx1
VaRα,x1

(X)

]2
(3.1.8)

+
d

dx2
F (x1,VaRα,x1

(X))
d2

dx21
VaRα,x1

(X).

We can rearrange (3.1.8) to get

− d

dx2
F (x1,VaRα,x1

(X))
d2

dx21
VaRα,x1

(X) = 2
d2

dx1dx2
F (x1,VaRα,x1

(X))
d

dx1
VaRα,x1

(X)
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+
d2

dx22
F (x1,VaRα,x1

(X))

[
d

dx1
VaRα,x1

(X)

]2
.

Statement (1) of the proposition follows from the fact that

d2

dx1dx2
F (x1, x2) = f(x1, x2) ≥ 0,

d

dx2
F (x1, x2) ≥ 0, and

d

dx1
VaRα(X) ≤ 0.

The same argument follows for x2 and the statement for (2) is obtained in a similar

manner.

From the relationship between copulas and marginal cdf’s, Proposition 3.1.5 can be

modified to consider copulas.

Corollary 3.1.6. For a random pair X = (X1, X2) with joint cdf F and marginal cdf ’s

F1 and F2 linked by a copula C. Let C and Fi, i = 1, 2, be twice differentiable:

(1) If ∂2

∂u2i
C(u1, u2) ≤ 0, ∀ u1, u2 ∈ [α, 1] and Fi(xi) is concave for xi ≥ VaRα(Xi),

i = 1, 2, then x1 ↦→ VaRα,x1
(X) is convex.

(2) If ∂2

∂u2i
C(u1, u2) ≤ 0, ∀ u1, u2 ∈ [α, 1] and Fi(xi) is convex for xi ≤ VaRα(Xi),

i = 1, 2, then x1 ↦→ VaRα,x1(X) is concave.

Proof. As a direct result from Sklar’s theorem, one has

∂2

∂x2i
F (x1, x2) =

∂2

∂F 2
i (xi)

C(F1(x1), F2(x2))(F
′
i (xi))

2

+
∂2

∂F 2
i (xi)

C(F1(x1), F2(x2))F
′′
i (xi), i = 1, 2,

then from (1) in Proposition 3.1.5 one has that ∂2

∂x2i
F (x1, x2) ≤ 0 and therefore (1) holds.

An analogous argument can be given for (2).

The two following propositions give useful convexity criteria when dealing with Archimedean

copulas. These are useful because Archimedean copulas provide tractable formulas for

simulation and other applications. In the case of VaRα,x1
(X), i = 1, 2, it is the margins

that govern the convexity.

Proposition 3.1.7. Let X = (X1, X2) be a random pair with joint cdf F and marginals

F1 and F2 joined by Archimedean copula C with generator ψ. If Fi(xi) is concave for all

xi ≥ VaRα(Xi), = i = 1, 2 then x1 ↦→ VaRα,x1
(X) is convex.
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Proof. Consider the random pair U = (F1(X1), F2(X2)), then denote u1 ↦→ VaRα,u1
(U)

the α-level for copula C. From the definition of an Archimedean copula (2.2.3) it is easily

seen that

VaRα,u1
(U) = ψ−1(ψ(α; θ)− ψ(u1; θ); θ).

Nelsen (2007) states u1 ↦→ VaRα,u1
(U) is convex for all Archimedean copulas. One may

see that for gα(u1) = VaRα,u1
(U) one has

VaRα,x1
(X) = F−1

2 ◦ gα ◦ F1(x1),

where for functions k and h k ◦ h(x) = k(h(x)) represents composition. If F1 and F2 are

concave x1 ↦→ VaRα,x1
(X) is convex.

The following proposition provides the concavity criterion for the upper orthant VaR

in relation to the generator ψ.

Proposition 3.1.8. Let X = (X1, X2) be a random pair with joint cdf F and marginal

cdf ’s F1 and F2 connected by Archimedean copula C with generator ψ. Assume that ψ,

F1, and F2 are all twice differentiable. If Fi is convex for all xi ≤ VaRα(X1), i = 1, 2, and

the mapping t ↦→ ψ′′(t;θ)
(ψ′(t;θ))2

is increasing for t ∈ [0, α], then x1 ↦→ VaRα,x1(X) is concave.

Proof. Refer to (2) in Corollary 3.1.6. For concavity, ∂2

∂u2i
C(u1, u2) ≤ 0 and convex

marginals are required. For Archimedean copulas with generator ψ, C(u1, u2) = ψ−1(ψ(u1)+

ψ(u2)) so one may write

ψ(C(u1, u2)) = ψ(u1) + ψ(u2).

Denoting w = C(u, v) and deriving each side with respect to ui gives

ψ′(ui) = ψ′(w)
∂

∂ui
C(u1, u2), or,

∂

∂ui
C(u1, u2) =

ψ′(ui)

ψ′(w)
, i = 1, 2.

Deriving with respect to ui once more gives

ψ′′(ui) = ψ′′(w)

[
∂

∂ui
C(u1, u2)

]2
+ ψ′(w)

∂2

∂u2i
C(u1, u2)
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= ψ′′(w)

[
ψ′(ui)

ψ′(w)

]2
+ ψ′(w)

∂2

∂u2i
C(u1, u2), i = 1, 2.

Solving for ∂2

∂u2i
C(u1, u2) yields

∂2

∂u2i
C(u1, u2) =

ψ′′(ui)

ψ′(w)
− ψ′′(w)

(ψ′(w))3
(ψ′(ui))

2, i = 1, 2,

therefore,
∂2

∂u2i
C(u1, u2) ≤ 0 ⇐⇒ ψ′′(w)

(ψ′(w))2
≤ ψ′′(ui)

(ψ′(ui))2
, i = 1, 2.

Now, since w = C(u1, u2) ≤ M(u1, u2) = min(u1, u2) ≤ ui i = 1, 2 we have that

ψ′′(w)
(ψ′(w))2

≤ ψ′′(ui)
(ψ′(ui))2

if t ↦→ ψ′′(t)
(ψ′(t))2

is increasing and the result follows.

One may notice that for these propositions, the concavity of the marginals F1 and F2

is satisfied for many univariate distributions often used in actuarial science, such as the

Pareto and gamma distributions.

Impact of Marginals and Dependence

The last properties examined are those of the marginals and the dependence between

these marginals and how they affect the bivariate orthant VaR. Firstly, one must define

concepts of stochastic ordering.

Definition 3.1.2. Let X = (X1, X2) and X′ = (X ′
1, X

′
2) be two random pairs with joint

cdf ’s F and F ′ respectively. Then, VaRα(X) is smaller than VaRα(X
′), denoted

VaRα(X) ≺ VaRα(X
′), if LF ′(α) ⊂ LF (α).

An equivalent statement is that VaRα,x1
(X) ≤ VaRα,x1

(X′) for all x1 ∈ R. Similarly

VaRα(X) is smaller than VaRα(X
′), denoted

VaRα(X) ≺ VaRα(X
′), if LF̄ ′(α) ⊂ LF̄ (α).

Again, an equivalent statement would be that VaRα,x1(X) ≤ VaRα,x1(X
′) for all x1 ∈ R.

The next definition establishes the concordance of two random pairs.
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Definition 3.1.3. For two random vectors X and X′, one may say that X is more

concordant that X′, denoted X ≺co X
′ if F (x1, x2) ≤ F ′(x1, x2) for all (x1, x2) ∈ R2.

A relation may be established with the level sets of F and F ′, where if X ≺co X′

then LF (α) ⊂ LF ′(α) and LF̄ ′(α) ⊂ LF̄ (α). The following notions are also applicable

to the copulas C and C ′ linking the marginals of X and X′, respectively. One has that

X ≺co X
′ ⇐⇒ C(u1, u2) ≤ C ′(u1, u2) for all (u1, u2) ∈ [0, 1]2. By considering the set of

all joint cdf’s F with marginals F1 and F2, denoted Γ(F1, F2), known as the Fréchet class,

the following relation may be introduced.

Lemma 3.1.9 (Impact of dependence on orthant VaR). Let X = (X1, X2) and X′ =

(X ′
1, X

′
2) random pairs with joint cdf ’s F, F ′ ∈ Γ(F1, F2). One has

X ≺co X
′ ⇒ VaRα(X

′) ≺ VaRα(X), ∀ α ∈ [0, 1],

X ≺co X
′ ⇒ VaRα(X) ≺ VaRα(X

′), ∀ α ∈ [0, 1].

Proof. This follows almost directly from Definition 3.1.2 and the definition of concordant

order. If X ≺co X′ then by definition F (x1, x2) ≤ F ′(x1, x2), ∀ (x1, x2) ∈ R2, and

subsequently this means that VaRα,x1
(X) ≥ VaRα,x1

(X′) which is the requirement for ≺

ordering. A similar argument is used for the upper orthant VaR.

This covers the impact that the dependence structure within a random pair effects both

VaRα(X) and VaRα(X). The impact of the marginals is seen in the following lemma.

Lemma 3.1.10 (Impact of marginals on orthant VaR). Let X = (X1, X2) and X′ =

(X ′
1, X

′
2) be random pairs whose dependence is governed by the same copula C, with joint

cdf ’s F ∈ Γ(F1, F2) and F
′ ∈ Γ(G1, G2). Then, for fixed α ∈ (0, 1),

VaRα(Xi) ≤ VaRα(X
′
i), i = 1, 2 ⇐⇒ VaRα(X) ≺ VaRα(X

′), (3.1.9)

VaRα(Xi) ≤ VaRα(X
′
i), i = 1, 2 ⇐⇒ VaRα(X) ≺ VaRα(X

′). (3.1.10)

Proof. First (⇒) is shown. If VaRα(Xi) ≤ VaRα(X
′
i), i = 1, 2, then LF ′(α) ⊂ LF (α) and

LF̄ ′(α) and the result follows. To show (⇐) consider VaR−1
α,x2

(X) the inverse on the curve

x1 → VaRα,x1
(X). One can see that

lim
x1→∞

VaRα,x1
(X) = VaRα(X2), lim

x1→∞
VaRα,x1

(X′) = VaRα(X
′
2),
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lim
x2→∞

VaR−1
α,x2

(X) = VaRα(X1), lim
x2→∞

VaR−1
α,x2

(X′) = VaRα(X
′
1).

Next, VaRα,x1
(X) ≺ VaRα,x1

(X′) implies VaRα,x1
(X) ≤ VaRα,x1

(X′) and VaR−1
α,x2

(X) ≤

VaR−1
α,x2

(X′). Combining this result with (3.1.9) and (3.1.10) gives that VaRα(Xi) ≤

VaRα(X
′
i), i = 1, 2, and the result follows. A similar argument yields the result for the

upper orthant VaR.

In addition to these listed properties, Cossette et al. (2013) discuss the bivariate lower

and upper orthant VaR with respect to sums of random pairs. Denoting Xi = (Xi1, Xi2)

random pairs with joint cdf’s Fi and marginals Fij, i = 1, . . . , n and j = 1, 2, then one

may exam the bivariate orthant VaR on

S =

⎛⎝ S1

S2

⎞⎠ = X1 + · · ·+Xn

=

⎛⎝ X11

X12

⎞⎠+ · · ·+

⎛⎝ Xn1

Xn2

⎞⎠ .

Properties showing the decomposition of VaRα,sj
(S) into the sum of orthant VaR’s of its

underlying risks are shown. That is, for random pairs Xi = (X1i, X2i), i = 1, ..., n and

Sj =
∑n

i=1Xij, j = 1, 2,

VaRα,sj
(S) =

n∑
k=1

VaRα,xk,j
(Xk), sj ≥ VaRα(Sj), and

VaRα,sj(S) =
n∑
k=1

VaRα,xk,j(Xk), sj ≤ VaRα(Sj),

where
∑n

k=1 xk,j = sj. Bounds on these random sums are also discussed as well as

applications within industry; since the bivariate lower and upper orthant VaR each provide

sets of infinite points to choose from, a criteria is required for choosing a optimal allocation

of capital across dependent business lines. To this end two methods are presented.

(1) Orthogonal Projection

This method consists of finding the point (x∗1,VaRα,x∗1
(X)) (or (VaRα,x∗2

(X), x∗2)) closest
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to the intersection of the unviariate VaRs (VaRα(X1),VaRα(X2)). This comes down to

solving the following minimization problem,

min
x1>VaRα(X1)

{
(VaRα(X1)− x1)

2 + (VaRα(X2)− VaRα,x1
(X))2

}
, or (3.1.11)

min
x1<VaRα(X1)

{
(VaRα(X1)− x1)

2 + (VaRα(X2)− VaRα,x1(X))2
}
. (3.1.12)

Analogous arguments exist for fixed X2 = x2. This method gives the smallest sum

S = X1+X2 that meets the allocation requirement. This would be beneficial in instances

where the company is not particularly conservative. In other scenarios, the following

method allows for more flexibility.

(2) Proportional Allocation

This approach attempts to preserve the ratio of the univariate VaRs, that is to find the

pair (x∗1,VaRα,x∗1
(X)) (or (VaRα,x∗2

(X), x∗2)) that solves

min
x1>VaRα(X1)

{(
x1 −

VaRα(X1)

VaRα(X2)
VaRα,x∗1

(X)

)2
}
, or

min
x1<VaRα(X1)

{(
x1 −

VaRα(X1)

VaRα(X2)
VaRα,x∗1

(X)

)2
}
.

Again, analogous arguments for fixed X2 = x2 exist. For further discussion on these

topics, we refer the interested reader to Sections 3 and 4 of Cossette et al. (2013).

3.1.3 Vectorized Value-at-Risk

Cousin and Di Bernardino (2013) developed an alternative method for calculating the

multivariate lower and upper orthant VaR. They decide to define the orthant VaR by

taking the expectation across the sets of point contained in the boundary of the α-level

sets LF (α) and LF̄ (α) as defined in Equations (3.1.1) and (3.1.2), respectively. In doing

so, their VaR measure gives a vector valued output equal in dimension to the random

vector initially considered, thereby eliminating the need of capital allocation methods.

For the development of this measure as well as later in this thesis, use of the Lebesgue

measure is required. For a small review of Lebesgue measure and some related concepts,

we refer the reader to Appendix A. With this in mind, they define the vectorized bivariate

lower and upper orthant vectorized VaR may as follows,
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Definition 3.1.4. Consider a random vector X = (X1, X2) with cdf F and sf F̄ satisfying

regularity conditions (X is nonnegative and absolutely continuous with respect to Lebesgue

measure λ with E(Xi) < ∞, i = 1, 2). For α ∈ (0, 1) one defines the bivariate lower

orthant vectorized VaR and bivariate upper orthant vectorized VaR by

vVaRα(X) = E [X|X ∈ ∂LF (α)] =

⎛⎝ E [X1|X ∈ ∂LF (α)]

E [X2|X ∈ ∂LF (α)]

⎞⎠ (3.1.13)

and

vVaRα(X) = E [X|X ∈ ∂LF̄ (α)] =

⎛⎝ E [X1|X ∈ ∂LF̄ (α)]

E [X2|X ∈ ∂LF̄ (α)]

⎞⎠ , (3.1.14)

respectively.

Here we can see that vVaRα(X)α is considering the most likely point given that the

point is on the boundary of the α-level set for F or F̄ . Since the random pair is absolutely

continuous, one has that the boundaries of these sets are

∂LF (α) = {(x1, x2) ∈ R2 : F (x1, x2) = α}

and

∂LF̄ (α) = {(x1, x2) ∈ R2 : F̄ (x1, x2) = 1− α}.

With the above in mind, (3.1.13) and (3.1.14) may be rewritten as

vVaRα(X)α = E [X|F (X) = α] =

⎛⎝ E [X1|F (X) = α]

E [X2|F (X) = α]

⎞⎠
and

vVaRα(X) = E
[
X|F̄ (X) = 1− α

]
=

⎛⎝ E
[
X1|F̄ (X) = 1− α

]
E
[
X2|F̄ (X) = 1− α

]
⎞⎠ ,

respectively. For simplicity, vVaRi
α(X) and vVaR

i

α(X) will be used to denote the ith

component of vVaRα(X) and vVaRα(X) respectively. It is noted that both ∂LF (α) and

∂LF̄ (α) have Lebesgue measure zero, making use of Feller’s limit procedure from Feller

(2008) one may rewrite, for example,

vVaRi
α(X) = lim

h→0
E(Xi|α < F (X) ≤ α + h)
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= lim
h→0

∫∞
VaRα(Xi)

x
(∫ α+h

α
fXi,F (X)(x, y)dy

)
dx∫ α+h

α
fXi(y)dy

.

Recall that the distribution of F (X) is the Kendall’s function K(w). Therefore, by divid-

ing numerator and denominator by h one has

vVaRi
α(X) = lim

h→0

∫∞
VaRα(Xi)

x(
∫ α+h
α fXi,F (X)(x,y)dy)dx

h
K(α+h)−K(α)

h

=

∫∞
VaRα(Xi)

xfXi,F (X)(x, α)dx

K ′(α)
.

A similar expression may be derived for vVaR
i

α(X). It is also noted that for a univariate

random variable vVaRα(X) = vVaRα(X) = VaRα(X).

Similar to Cossette et al. (2013), one may show that vVaRα(X) and vVaRα(X) display

invariance properties.

Proposition 3.1.11. Define a function φ on X such that φ(X) = (φ1(X1), φ2(X2)), then

(1) If φi are non-decreasing functions, i = 1, 2, then

vVaRi
α(φ(X)) = E[φi(Xi)|F (X) = α], i = 1, 2.

(2) If φi are non-increasing functions, i = 1, 2, then

vVaRi
α(φ(X)) = E[φi(Xi)|F̄ (X) = α], i = 1, 2.

Proof. From Definition 3.1.4, vVaRi
α(φ(X)) = E[φi(Xi)|Fφ(X)(φ(X)) = α]. Results (1)

and (2) follow trivially from the fact

Fφ(X)(y1, y2) =

⎧⎨⎩ F (φ−1
1 (y1), φ

−1
2 (y2)), if φ1, φ2 are non-decreasing functions,

F̄ (φ−1
1 (y1), φ

−1
2 (y2)), if φ1, φ2 are non-increasing functions,

Where yi = φi(xi), i = 1, 2.

From Proposition 3.1.11, it is obvious that vVaRα(φ(X)) = E[φ(X)|F (X = α)] and

vVaRα(φ(X)) = E[φ(X)|F̄ (X = α)] for φi non-decreasing and non-increasing, respec-

tively, i = 1, 2. Moreover, one may derive the following property which links vVaRα(X)

and vVaRα(X) for linear functions.
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Corollary 3.1.12. Define φ a linear function on X such that φ(X) = (φ1(X1), φ2(X2)),

then

(1) If are φi non-decreasing linear functions, i = 1, 2, then

vVaRα(φ(X)) = φ(vVaRα(X)) and vVaRα(φ(X)) = φ(vVaRα(X)).

(2) If are φi non-increasing linear functions, i = 1, 2, then

vVaRα(φ(X)) = φ(vVaR1−α(X)) and vVaRα(φ(X)) = φ(vVaR1−α(X)).

Proof. This follows trivially from Corollary 3.1.11 and the fact that for a linear function

φ and rv X that E[φ(X)] = φ (E[X]). One has for (1)

φ(vVaRα(X)) = φ
(
E[X|F̄ (X) = 1− α)]

)
= E[φ(X)|F̄ (X) = 1− α)]

= vVaRα(φ(X)),

which can be shown similarly for vVaRα(X). For (2), one has

φ(vVaR1−α(X)) = φ
(
E[X|F̄ (X) = α)]

)
= E[φ(X)|F̄ (X) = 1− α)]

= vVaRα(φ(X)),

which again, may also be shown for vVaR1−α(X).

One may now see that the properties of positive homogeneity and translation invari-

ance follow.

Proposition 3.1.13. Consider a random pair X = (X1, X2) satisfying the regularity

conditions stated in Definition 3.1.4. Then, for α ∈ (0, 1) the bivariate vectorized lower

orthant and upper orthant VaR satisfy the following properties:

(1) Positive Homogeneity: For all c ∈ R2
+,

vVaRα(cX) = cvVaRα(X) and vVaRα(cX) = cvVaRα(X).
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(2) Translation Invariance: For all c ∈ R2
+,

vVaRα(c+X) = c+ vVaRα(X) and vVaRα(c+X) = c+ vVaRα(X).

Proof. This follows directly from Corollary 3.1.12.

It may also be shown that for any d-dimensional random vector X joined by an

Archimedean copula, vVaRα(X) and vVaRα(X) will have closed form expressions. Proper-

ties of the vectorized VaR with respect to concordance order and the dependence structure

may also be derived. We refer the interested reader to Cousin and Di Bernardino (2013).

3.2 Bivariate Orthant Based Tail Value-at-Risk

While bivariate VaR is useful in that it allows for the dependence structure between

two random variables to be taken into account, like the univariate VaR, it provides no

information on the amount of the loss, given that it occurs at at least the given α-

level severity. To this end, using the representation of VaR from Cossette et al. (2013),

Cossette et al. (2015) developed the following measure for a bivariate TVaR. Similarly to

the bivariate VaR, we have a upper and lower orthant TVaR.

3.2.1 Lower Orthant Tail Value-at-Risk

The lower orthant TVaR is presented first. Unlike the orthant VaR, we note the impor-

tance of considering both X1 and X2 as fixed.

Definition 3.2.1. Let X = (X1, X2) be a random vector with bivariate cdf F . We define

the lower orthant Tail Value-at-Risk at level α with the curves

TVaRα(X) =
{
TVaRα,x(X), xi ≥ VaRα(Xi), i = 1, 2

}
,

where

TVaRα,x(X) = ((x1,TVaRα,x1
(X)), (TVaRα,x2

(X), x2)),

and

TVaRα,xi
(X) = E

[
Xj|Xj > VaRα,xi

(X), Xi ≤ xi
]
, xi ≥ VaRα(Xi),

for i, j = 1, 2, i ̸= j.
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The following proposition provides an interesting parallel for TVaRα,xi
(X) to the uni-

variate TVaR presented in Definition 1.2.1.

Proposition 3.2.1. For all xi ≥ VaRα(Xi), i = 1, 2, we have

TVaRα,xi
(X) =

1

Fi(xi)− α

∫ Fi(xi)

α

VaRu,xi
(X)du, i = 1, 2. (3.2.1)

Proof. Consider the random variable Xj|Xi ≤ xi with cdf Fj|xi(xj), i, j = 1, 2, i ̸= j, we

see that for VaRα,xj
(X) we get

P(Xj ≤ VaRα,xi
(X)|Xi ≤ xi) =

P(Xj ≤ VaRα,xi
(X), Xi ≤ xi)

P(Xi ≤ xi)

=
α

Fi(xi)
.

Clearly, one has that VaRα,xi
(X) corresponds to the VaR at level α

Fi(xi)
for Xj|Xi ≤ xi.

Then, one has

TVaRα,xi
(X) = E

[
Xj|Xj > VaRα,xi

(X), Xi ≤ xi
]

=

∫ ∞

VaRα,xi
(X)

xjdFj|xi(xj)

1− α
Fi(xi)

, substituting xj = F−1
j|xi(v) one gets,

=
1

1− α
Fi(xi)

∫ 1

α
Fi(xi)

F−1
j|xi(v)dv, setting v =

u

Fi(xi)
we are left with

=
1

Fi(xi)− α

∫ Fi(xi)

α

F−1
j|xi

(
u

Fi(xi)

)
du

=
1

Fi(xi)− α

∫ Fi(xi)

α

VaRu,xi
(X)du.

The next proposition provides a similar asymptotic property to that of the lower

orthant VaR.

Proposition 3.2.2. Let X = (X1, X2) be a random vector with cdf F and marginals F1

and F2. For F continuous and strictly increasing, one has

lim
xi→uXi

TVaRα,xi
(X) = TVaRα(Xj) and lim

xi→VaRα(Xi)
TVaRα,xi

(X) = uXj . (3.2.2)
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Proof. From Proposition 3.1.1 and knowing Fi(uXi) = 1 one gets

lim
xi→uXi

1

Fi(xi)− α

∫ Fi(xi)

α

VaRu,xi
(X) =

1

1− α

∫ 1

α

VaRu(Xj)

= TVaRα(Xj),

proving the first part of (3.2.2). Next, knowing limxi→VaRα(Xi) VaRu,xi
(X) = uXj , it follows

that limxi→VaRα(xi) TVaRα,xi
(X) = uXj , i, j = 1, 2, i ̸= j.

We end this section with an example of the lower orthant TVaR, provided in Figure

3.3.
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Fig. 3.3: Lower orthant TVaR at level α = 0.99 for Weibull margins joined by a Frank copula

with Kendall’s τ = 0.5.

3.2.2 Upper Orthant Tail Value-at-Risk

While the lower orthant TVaR (and VaR) has useful applications in insurance because of

its focus in the upper tails of a random pair, thereby allowing one to deal with extremely

large, and possibly catastrophic claims, the upper orthant TVaR has similar applications
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in finance. For instance, the upper orthant TVaR allows one to monitor returns on stocks

or other assets, aiding in the prevention of poor returns, or even losses. The bivariate

upper orthant TVaR is discussed below.

Definition 3.2.2. Let X = (X1, X2) be a random vector with bivariate cdf F . We define

the lower orthant Tail Value-at-Risk at level α with the curves

TVaRα(X) =
{
TVaRα,x(X), xi ≤ VaRα(Xi), i = 1, 2

}
,

where

TVaRα,x(X) = ((x1,TVaRα,x1(X)), (TVaRα,x2(X), x2)),

and

TVaRα,xi(X) = E
[
Xj|Xj > VaRα,xi(X), Xi ≥ xi

]
, xi ≥ VaRα(Xi),

for i, j = 1, 2, i ̸= j.

Similar to the lower orthant TVaR, an alternative representation of Definition 3.2.2

may be derived.

Proposition 3.2.3. For all xi ≤ VaRα(Xi),

TVaRα,xi(X) =
1

1− α

∫ 1

α

VaRu,xi(X)du, i = 1, 2.

Proof. Consider the random variable Xj|Xi ≥ xi with cdf Fj|x̄i for i, j = 1, 2, i ̸= j.

Knowing that P(Xj ≥ VaRα,xi(X), Xi ≥ xi) = 1− α and

P(Xj ≤ VaRα,xi(X)|Xi ≥ xi) = 1− P(Xj > VaRα,xi |Xi ≥ xi)

P(Xi ≥ xi)

= 1− 1− α

1− Fi(xi)
,

it is seen that VaRα,xi(X) corresponds to the α−Fi(xi)
1−Fi(xi) level VaR of Xj|Xi ≥ xi. Then, one

has that

TVaRα,xi(X) = E[Xj|Xj > VaRα,xi(X), Xi ≥ xi]

=
1− Fi(xi)

1− α

∫ 1

VaRα,xi (X)

xjdFj|x̄i , substituting xj = F−1
j|x̄i(v) gives
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=
1− Fi(xi)

1− α

∫ 1

α−Fi(xi)
1−Fi(xi)

F−1
j|x̄i(u)dv, setting v =

u− Fi(xi)

1− Fi(xi)
gives

=
1

1− α

∫ 1

α

F−1
j|x̄i

(
u− Fi(xi)

1− Fi(xi)

)
du

=
1

1− α

∫ 1

α

VaRα,xi(X)du, i, j = 1, 2, i ̸= j.

The asymptotics of TVaRα(X) are established in the following proposition.

Proposition 3.2.4. Let X = (X1, X2) be a random vector with cdf F and marginals F1

and F2. For F continuous and strictly increasing, one has

lim
xi→lXi

TVaRα,xi(X) = TVaRα(Xj) and lim
xi→VaRα(xi)

TVaRα,xi(X) = lXj . (3.2.3)

Proof. Obtained similarly to Proposition 3.2.2 using the results of Proposition 3.1.1.

In Figure 3.4 plots of the upper orthant TVaR are provided.
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Fig. 3.4: Upper orthant TVaR at level α = 0.99 for Weibull margins joined by a Frank copula

with Kendall’s τ = 0.5.
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3.2.3 Properties of Orthant TVaR

The orthant based TVaR shares many properties with the Orthant based VaR, for instance

the following proposition demonstrates that homogeneity and translation invariance of

both the lower and upper orthant TVaR.

Proposition 3.2.5. Let X = (X1, X2) be a random pair. Then

(1) For all c ∈ R2,

TVaRα,x+c(X+ c) = TVaRα,x(X) + c and TVaRα,x+c(X+ c) = TVaRα,x(X) + c.

(2) If a ≥ 0,

TVaRα,ax(aX) = aTVaRα,x(X) and TVaRα,ax(aX) = aTVaRα,x(X).

Proof. Direct result from Corollary 3.1.3, Proposition 3.1.2 and the property of expecta-

tions which states for linear functions g that E[g(X)] = g (E(X)).

Proposition 3.2.5 shows that, similar to the univariate TVaR, both the bivariate lower

and upper orthant TVaR are homogeneous and translation invariant. Recall that the

univariate TVaR is also subadditive. That is, for sums S1 =
∑n

i=1Xi1 and S2 =
∑n

i=1Xi2

with Fij represents the cdf of Xij and FSj the cdf of Sj, i = 1, ..., n, j = 1, 2. Subadditivity

states that

TVaRα(Sj) ≤
n∑
i=1

TVaRα(Xij), j = 1, 2.

We will show a similar property for the lower and upper orthant TVaR, subadditivity in

distributions. First, consider couples composed of a component Xi1 (respectively Xi2) and

a replica X ′
i2 (respectively X ′

i1) of Xi2 (respectively Xi1), i = 1, ..., n. We have that X ′
i1

(respectively X ′
i2) has the same distribution as Xi1 (respectively Xi2), denoted X

′
ij =d Xij,

i = 1, ..., n, j = 1, 2. Note that the pairs (X ′
i1, Xi2) has the same dependence structure as

(S1, Xi2), i = 1, ..., n. To establish subadditivity in distribution we introduce the following

lemma.
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Lemma 3.2.6. Let X be a rv with sf F̄X , and let A be an event such P(A) = F̄X(x).

Then,

E(X|A) ≤ E(X|X > x).

Proof. We refer the interested reader to Rüschendorf (1982)

Proposition 3.2.7. Define the rv’s X ′
ij = F−1

ij ◦ FSj(Sj). The upper and lower orhant

TVaR are subadditive in distribution, that is,

TVaRα,sj
(S) ≤

n∑
i=1

TVaRα,x′ij
(X′

j) (3.2.4)

and

TVaRα,sj(S) ≤
n∑
i=1

TVaRα,x′ij
(X′

j) (3.2.5)

where X′
1 = (X ′

i1, Xi2), X
′
2 = (Xi1, X

′
i2) and sj =

∑n
i=1 x

′
ij =

∑n
i=1 F

−1
ij ◦ FSj(sj).

Proof. We consider the proof of (3.2.4) for j = 1. Since (X ′
i1, Xi2) has the same depen-

dence structure as (S1, Xi2),

TVaRα,s1
(S) = E(S2|S2 > VaRα,s1

(S), S1 ≤ s1)

=
n∑
i=1

E(Xi2|S2 > VaRα,s1
(S), X ′

i1 ≤ x′i1).

Additionally,

P(S2 > VaRα,s1
(S)|S1 ≤ s1) =

P(Xi2 > VaRα,x′i1
(X′

1), X
′
i1 ≤ x′i1)

FS1(s1)

= 1− α

FS1(s1)
.

Therefore, from Lemma 3.2.6, one has

E(Xi2|S2 > VaRα,s1
(S), X ′

i1 ≤ x′i1) ≤ E(Xi2|Xi2 > VaRα,x′i1
(S), X ′

i1 ≤ x′i1)

= TVaRα,x′i1
(X′

1).

Analogously, one can prove the same for (3.2.5).

Proposition 3.2.8 and Proposition 3.2.9 discuss the cases where one of the random

vectors are comonotonic or both are comonotonic, respectively.
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Proposition 3.2.8. If (X1j, ..., Xnj) is comonotonic and no assumption is made on the

dependence structure of (X1k, ..., Xnk), then

TVaRα,sj
(S) ≤

n∑
i=1

TVaRα,xij
(Xi1, Xi2) and TVaRα,sj(S) ≤

n∑
i=1

TVaRα,xij(Xi1, Xi2),

for j, k = 1, 2 j ̸= k

Proof. This is a direct result from Dhaene et al. (2002), which states that for a comono-

tonic vector (X1, ..., X2) and U ∼ U(0, 1), Xi = F−1
i (U). It follows that X ′

ij =

F−1
i (FSj(Sj)) = Xij, i = 1, ..., n, j = 1, 2.

Proposition 3.2.9. Let X1 = (X11, ..., X1n) and X2 = (X12, ..., Xn2) be comonotonic

random vectors with no assumption on the dependence structure of (X1,X2). Then,

TVaRα,sj
(S) =

n∑
i=1

TVaRα,xij
(Xi1, Xi2) and TVaRα,sj(S) =

n∑
i=1

TVaRα,xij(Xi1, Xi2),

for j, k = 1, 2, j ̸= k, where sj =
∑n

i=1 x
′
ij =

∑n
i=1 F

−1
ij ◦ FSj(sj).

Proof. Begin by defining FSj(u) =
∑n

i=1 F
−1
ij (u), j = 1, 2. Since X1 and X2 are comono-

tonic, then there exists a uniform random vector (U1, U2), Uj ∼ U(0, 1), such that

Sj = F−1
Sj

(Uj) j = 1, 2. Given that Fij are increasing functions i = 1, ..., n, j = 1, 2

and given Lemma 3.2.6,

TVaRα,sj
(S) =

1

FSj(sj)− α

∫ FSj (sj)

α

VaRu,sj

(
F−1
S1

(U1), F
−1
S2

(U2)
)
du

=
1

FSj(sj)− α

∫ FSj (sj)

α

F−1
Sk

(
VaRu,FSj (sj)

(U1, U2)
)
du

=
1

FSj(sj)− α

∫ FSj (sj)

α

n∑
i=1

F−1
ik

(
VaRu,FSj (sj)

(U1, U2)
)
du

=
n∑
i=1

1

Fij(xij)− α

∫ Fij(xij)

α

VaRu,xij

(
F−1
i1 (U1), F

−1
i2 (U2)

)
du

=
n∑
i=1

1

Fij(xij)− α

∫ Fij(xij)

α

VaRu,xij
(Xi1, Xi2)

=
∑

TVaRα,xij
(Xi1, Xi2),

j, k = 1, 2, j ̸= k.
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Proposition 3.2.9 states that for a pair of comonotonic random vectors, the sum of all

the individual lower and upper orthant TVaR curves for each pair of risks is equal to the

lower and upper orthant VaR for the pair of the sums of risks. Similarly to VaRα(X) and

VaRα(X), it can be seen that TVaRα(X) and TVaRα(X) are monotone with respect to

concordance, that is, for two random pairs X = (X1, X2) and X′ = (X ′
1, X

′
2) with cdf’s F

and F ′ respectively.

TVaRα(X1) ≺ TVaRα(X2) ⇐⇒ TVaRα,xi
(X1) ≤ TVaRα,xi

(X2), xi ≥ VaRα(Xi),

TVaRα(X1) ≺ TVaRα(X2) ⇐⇒ TVaRα,xi(X1) ≤ TVaRα,xi(X2), xi ≤ VaRα(Xi),

i = 1, 2. The following corollary provides analogous properties for TVaRα(X) and

TVaRα(X) with respect to VaRα(X) and VaRα(X) respectively.

Corollary 3.2.10. For two random pairs X = (X1, X2), X
′ = (X ′

1, X
′
2) with cdf ’s F, F ′ ∈

Γ(F1, F2),

X ≺co X
′ ⇒ TVaRα(X

′) ≺ TVaRα(X), and

X ≺co X
′ ⇒ TVaRα(X) ≺ TVaRα(X

′).

Proof. The result follows directly from Lemma 3.1.9.

One may also obtain bounds on the TVaRα(X) and TVaRα(X), described in the

following corollary,

Corollary 3.2.11. Let X be a pair of risks with cdf F ∈ Γ(F1, F2). Denote XM , XW and

XΠ random variables demonstrating comonotonicity, counter monotonicity and indepen-

dence, respectively. Then

TVaRα(XM) ≺ TVaRα(X) ≺ TVaRα(XW ), and

TVaRα(XW ) ≺ TVaRα(X) ≺ TVaRα(XM).

Moreover, if X exhibits positive quadrant dependence then

TVaRα(XM) ≺ TVaRα(X) ≺ TVaRα(XΠ), and

TVaRα(XΠ) ≺ TVaRα(X) ≺ TVaRα(XM).

Proof. Since XW ≺ XΠ ≺ XM , the result follows directly from Corollary 3.2.10.



3. Multivariate Risk Measures 57

3.2.4 Capital Allocation

Just as in the case of VaRα(X) and VaRα(X), allocation methods exist for TVaRα(X)

and TVaRα(X) with useful applications in actuarial science and finance. These methods

can be used to allocate capital and meet capital requirements set forth by regulators.

Two methods are considered. The first method involves finding the optimal value x∗ =

(x∗1, x
∗
2) through orthogonal projections, as described in (3.1.11), and then computing the

corresponding components of TVaRα,x(X), giving

TVaRα,x∗(X) =
(
TVaRα,x∗1

(X),TVaRα,x∗2
(X)

)
.

Similar methods exists for TVaRα,x(X) using (3.1.12).

The second method involves applying the orthogonal projection method directly to the

curves generated by TVaRα,x1
(X) and TVaRα,x2

(X). Here, the optimal x′1 minimizes the

distance from the curve generated by TVaRα,x1
(X) to the pair (VaRα(X1),TVaRα(X2))

(recall these represent the limits of TVaRα,x1
(X)). Similarly, x′2 minimizes the distance

from the curve generated by TVaRα,x2(X) and (TVaRα(X1),VaRα(X2)). Therefore, one

must solve the equation

min
xi>VaRα(Xi)

{
(VaRα(Xi)− xi)

2 + (TVaRα(Xj)− TVaRα,xi
(X))2

}
,

i, j = 1, 2, i ̸= j and the optimal couple is then given by

TVaRα,x′(X) =
(
TVaRα,x′1

(X),TVaRα,x′2
(X)

)
.

Again, similar methods exist for TVaRα,x(X). For a detailed description as well as exam-

ples, we refer the interested reader to Cossette et al. (2015).

3.3 Conditional Tail Expectation

As mentioned, even in the continuous case, the multivariate CTE and TVaR will differ.

In this section, some multivariate extensions of CTE are presented. The first of which is

the CTE based on the vectorized VaR.
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3.3.1 Based on Vectorized Value-at-Risk

By considering the entire level sets LF (α) and LF̄ (α), Cousin and Di Bernardino (2014)

establish the bivariate CTE based on the vectorized VaR.

Definition 3.3.1. Consider a random vector X = (X1, X2) with cdf F and sf F̄ satisfying

regularity conditions established at the beginning of Section 3.1.4. For α ∈ (0, 1) we define

the bivariate lower orthant CTE and bivariate upper orthant CTE by

CTEα(X) = E [X|X ∈ LF (α)] =

⎛⎝ E [X1|X ∈ LF (α)]

E [X2|X ∈ LF (α)]

⎞⎠ (3.3.1)

and

CTEα(X) = E [X|X ∈ LF̄ (α)] =

⎛⎝ E [X1|X ∈ LF̄ (α)]

E [X2|X ∈ LF̄ (α)]

⎞⎠ , (3.3.2)

respectively.

Denoting CTEiα(X) and CTE
i

α(X) the ith component of CTEα(X) and CTEα(X),

respectively and under these same regularity conditions, the orthant CTE can be written

in terms of the ith component of the orthant vectorized VaR. That is,

CTEiα(X) =
1

1−K(α)

∫ 1

α

vVaRi
u(X)K ′(u)du

and

CTEiα(X) =
1

K̂(1− α)

∫ 1

α

vVaR
i

u(X)K̂ ′(1− u)du,

respectively, where K is the Kendall distribution of F and K̂ is the Kendall distribu-

tion on F̄ , i.e. K̂(x) = P
[
F̄ (X ≤ x)

]
. It may be shown that the orthant based CTE

demonstrates positive homogeneity, translation invariance, comonotonic additivity and

other properties. For discussion of these properties, and examples in the cases of certain

copulas and families, see Cousin and Di Bernardino (2014).
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In this chapter, estimation methods for measures introduced in Chapter 3 are established.

The main goal is to develop a consistent estimator for the orthant based TVaR. First,

estimators of VaRα(X) and VaRα(X), denoted VaRn
α(X) and VaR

n

α(X) respectively, are

provided. The consistency of these estimators will be presented using techniques devel-

oped by Di Bernardino et al. (2013). With the consistency of the estimator of the entire

lower and upper orthant VaR curves proven, the pointwise convergence of estimators

VaRn
α,x1

(X) and VaR
n

α,x1
(X) to VaRα,x1

(X) and VaRα,x1(X) will be established. Finally,

an estimator for the orthant based TVaR is introduced and its strong consistency is proven

from the pointwise convergence of the estimators VaRn
α(X) and VaR

n

α(X) and the dom-

inated convergence theorem. As we are often interested in evaluating risks associated

with claims and losses, the results presented hereafter will be restricted to random pairs

X = (X1, X2) in R2
+. However, the results are adaptable to R2.

4.1 Orthant Value-at-Risk

The estimator for the bivariate lower and upper orthant VaR as formulated by Embrechts

and Puccetti (2006) is introduced first. The consistency of this estimator will be shown

in two ways. The first method will be by considering the Hausdorff distance between

the boundaries of the α level VaR and empirical VaR sets VaRα(X) and VaRn
α(X) (re-

spectively VaRα(X) and VaR
n

α(X)), showing that this distance approaches zero for a

sufficient amount of data. The second method will be to consider the Lebesgue measure

of the symmetric difference of the entire α level sets LF (α) and LFn(α) (respectively LF̄ (α)

and LF̄n(α)). That is, to show that the set of points distinct to each set has measure zero

for sufficiently large n. Both these proofs were first established by Di Bernardino et al.
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(2013) and are fully detailed in this thesis. First, one must define empirical bivariate

lower and upper orthant VaR.

Definition 4.1.1. Consider a random pair X = (X1, X2) with observations X1 = (x11, ..

., xn1) and X2 = (x12, ..., xn2). Additionally, we have xi = (xi1, xi2) ∈ R2, i = 1, ..., n and

denote Fn some bivariate empirical cdf with corresponding empirical sf F̄n and Fn1, Fn2

the marginal empirical cdf ’s and F̄n1 and F̄n2 the empirical sf ’s of X1 and X2 respectively.

We define an estimator for the lower and upper orthant VaRs at level α by

VaRn
α(X) = ∂

{
(x1, x2) ∈ R2

+ : Fn(x1, x2) ≥ α
}
, (4.1.1)

and

VaR
n

α(X) = ∂
{
(x1, x2) ∈ R2

+ : F̄n(x1, x2) ≤ 1− α
}
, (4.1.2)

respectively.

We first examine the consistency of the empirical lower orthant VaR (a similar, and

simpler argument for the upper orthant VaR exists) by observing its convergence in Haus-

dorff distance. To this end, consider the metric space (R2
+, d), where d represents the Eu-

clidean distance. Denote B(x, r) =
{
y ∈ R2

+ : d(x, y) ≤ r
}
, r > 0, the closed ball centered

at point x with radius r. For a closed set S ⊂ R2
+ we have B(S, r) = ∪x∈SB(x, r). With

this in mind, we define

E = B
({

(x1, x2) ∈ R2
+ : |F (x1, x2)− α| ≤ r

}
, ζ
)

the ball of radius ζ around the set of all points in R2
+ who differ by at most r from some

α ∈ (0, 1) in probability, for r, ζ > 0. We now define the Hausdorff distance

Definition 4.1.2. For A1, A2 compact sets in (R2
+, d), we define the Hausdorff distance

dH(A1, A2) = max

{
sup
x∈A1

d(x,A2), sup
x∈A2

d(x,A1)

}
= inf {ρ > 0 : A1 ⊂ B(A2, ρ), A2 ⊂ B(A1, ρ)} ,

where d(x,A1) = infy∈A2 ∥x− y∥.



4. Estimation 61

Since the Haussdorf distance requires compact sets and VaR can be infinite (for the

lower orthant, for the upper orthant this is not an issue), we introduce truncated versions

of the VaRα(X) and VaRn
α(X). For cdf F and empirical cdf Fn consider the truncated

level sets

VaRα(X)Tn = ∂
{
(x1, x2) ∈ [0, Tn]

2 : F (x1, x2) ≥ α
}
, and

VaRn
α(X)Tn = ∂

{
(x1, x2) ∈ [0, Tn]

2 : Fn(x1, x2) ≥ α
}
,

where {Tn}n∈N is an increasing sequence. Next, consider the infimum of the Euclidean

norm of the gradient vector evaluated at x for a twice differentiable function F ,

m∇ = inf
x∈E

∥(∇F )x∥.

Similarly, define

MH = sup
x∈E

∥(HFx)|

the matrix norm (induced by the Euclidean norm) of the hessian matrix evaluated at x.

Finally, let the symbols ∧ and ∨ denote the maximum and minimum of two elements.

That is, for x, y ∈ R, x ∧ y = max(x, y) and x ∨ y = min(x, y).

Now, setting {F = α}T = {(x1, x2) ∈ [0, T ]2 : F (x1, x2) = α} (whereby dropping the

exponent T one has (x1, x2) ∈ R2
+), consider the following assumption.

Assumption H. There exists γ > 0 and A > 0 such that if |α2 − α1| ≤ γ then ∀ T > 0

such that {F = α1}T ̸= ∅ and {F = α2}T ̸= ∅,

dH({F = α1}T , {F = α2}T ) ≤ A|α2 − α1|

is satisfied under mild regularity conditions. For details on these conditions, see Cuevas

et al. (2006).

The above assumption states that for probability levels close enough together, the

Hausdorff distance between corresponding sets {F = α1} and {F = α2} will be bounded

by the difference in probability up to a constant A. The following proposition gives

explicitly the value of A when certain conditions on F are met.
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Proposition 4.1.1. Let α1 ∈ (0, 1). Let F be twice differentiable on R2. Assume ∃ r > 0,

ζ > 0 � m∇ > 0 and MH <∞. Then F satisfies Assumption H, with A = 2
m∇ .

Proof. Take T > 0 such that ∀ α2 : |α2 − α1| ≤ r, {F = t}T ̸= ∅. Let x ∈ {z ∈ [0, T ]2 :

|F (z)− α1| ≤ r}. Define for λ ∈ R:

yλ ≡ yλ,x = x+ λ
(∇F )x

∥(∇F )x∥
.

Obviously, ∥yλ − x∥ =
⏐⏐λ⏐⏐. Next, for some

⏐⏐λ⏐⏐ < ζ and by Taylor’s theorem in multiple

dimensions:

F (yλ) = F (x) + (∇F )Tx (yλ − x) +
1

2
(yλ − x)T (HF )x̄(yλ − x), (4.1.3)

for some x̄ between x and yλ. One can rewrite (4.1.3) as

F (yλ) = F (x) + λ∥(∇F )x∥+
λ
2

2∥(∇F )x∥2
(∇F )Tx (HF )x̄(∇F )x. (4.1.4)

Now, by rearranging (4.1.4) and applying the Cauchy-Schwarz inequality, which states

for vectors u, v

|u · v| ≤ ∥u∥∥v∥,

one gets

|F (yλ)− F (x)− λ∥(∇F )x∥| = | λ
2

2∥(∇F )x∥2
(∇F )Tx (HF )x̄(∇F )x|

≤ λ
2

2∥(∇F )x∥
∥(HF )x̄(∇F )x∥.

This gives

F (yλ) ≥ F (x) + λ∥(∇F )x∥ −
λ
2

2∥(∇F )x∥
∥(HF )x̄(∇F )x∥

and

F (yλ) ≤ F (x) + λ∥(∇F )x∥+
λ
2

2∥(∇F )x∥
∥(HF )x̄(∇F )x∥.

Since ∥(HF )x̄(∇F )x∥ ≤ ∥(HF )x̄∥∥(∇F )x∥, which follows from Cauchy-Schwarz, we get

F (x) + λ∥(∇F )x∥ −
λ
2

2
∥(HF )x̄∥ ≤ F (yλ) ≤ F (x) + λ∥(∇F )x∥+

λ
2

2
∥(HF )x̄∥. (4.1.5)
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Seeing as x̄ ∈ E and MH <∞, (4.1.5) becomes

F (x) + λ∥(∇F )x∥ −
λ
2

2
MH ≤ F (yλ) ≤ F (x) + λ∥(∇F )x∥+

λ
2

2
MH . (4.1.6)

Taking, 0 < λ < ζ ∧ m∇

MH
and x ∈ E gives

F (yλ) ≥ F (x) + λm∇ − λ
2

2
MH

≥ F (x) + λm∇ − λ

2

m∇

MH

MH

= F (x) +
λ

2
m∇. (4.1.7)

Similarly, using the right side of (4.1.6), one has

F (y−λ) ≤ F (x)− λ

2
m∇. (4.1.8)

Now, define γ =
(
m∇

4

(
ζ ∧ m∇

MH

))
∧ r > 0. Suppose that α2 = α1 + ϵ, 0 ≤ ϵ ≤ γ. Let

x ∈ [0, T ]2 � F (x) = α2, then x ∈ E. Setting 0 < λ = 2ϵ
m∇ < m∇

MH
∧ ζ (4.1.8) becomes

F (y−λ) ≤ α1. (4.1.9)

Because F is continuous ∃ y between x and y−λ � F (y) = α1. This shows that

∥x− y∥ ≤ ∥x− y−λ∥ =
⏐⏐λ⏐⏐ = ⏐⏐⏐⏐ 2ϵm∇

⏐⏐⏐⏐ = 2

m∇ |α2 − α1| ,

which in turn shows that

sup
x∈{F=α2}T

d(x, {F = α1}T ) ≤
2

m∇ |α2 − α1|.

Now, take x ∈ [0, T ]2 � F (x) = α1 = α2 − ϵ, then (4.1.7) gives

F (yλ) ≥ α2.

Again, by continuity we have that there exists a y between x and yλ � F (y) = α2. This

gives

∥x− y∥ ≤ ∥x− yλ =
2

m∇ |α2 − α1|.

Which shows that supx∈{F=c}T d(x, {F = t}T ) ≤ 2
m∇ |α2 − α1|. Now, one sees that

dH({F = α1}T , {F = α2}T ) ≤
2

m∇ |α2 − α1|,

thus showing F satisfies Assumption H.
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As a result of the assumptions in Proposition 4.1.1 one can see that VaRα(X)T =

{F = α1}T = {F = α1}∩ [0, T ]2. The consistency of VaRα(X) in Hausdorff distance may

now be established. First, denote for a function f , L∞(R2
+) and L

∞([0, T ]2), the norms

given by

∥f∥∞ = sup
(x1,x2)∈R2

+

|f |,

and

∥f∥T∞ = sup
(x1,x2)∈[0,T ]2

|f |,

for T > 0, respectively. Finally, denote for functions f and g, that g is the asymptotic

upper bound of f , written f = O(g) if

lim
n→∞

⏐⏐⏐⏐f(x)g(x)

⏐⏐⏐⏐ <∞.

The convergence in Hausdorff distance is established in the following theorem.

Theorem 4.1.2. Let α1 ∈ (0, 1) and let F be twice differentiable on R2. Assume ∃

r > 0, ζ > 0 � m∇ > 0 and MH <∞. Let T1 > 0 � ∀ α2 : |α2 −α1| ≤ r, VaRα2
(X)T1 ̸= ∅.

Let (Tn)n∈N be an increasing sequence of positive values. Assume that, for each n and for

almost all samples of size n, Fn is a continuous function and that

∥F − Fn∥∞
wp1−→
n→∞

0.

Then

dH(VaRα1
(X)Tn ,VaRn

α1
(X)Tn) = O(∥F − Fn∥∞), wp1.

Proof. Under the theorem’s assumptions, we can always take T1 > 0 � ∀ α2 : |α2−α1| ≤ r,

VaRα2
(X)T1 ̸= ∅. Then for each n, ∀ α2 : |α2 − α1| ≤ r, VaRα2

(X)Tn ̸= ∅.

In each [0, Tn]
2, from Proposition 4.1.1, Assumption H is satisfied with γ =

(
m∇

4

(
ζ ∧ m∇

MH

))
∧

r and A = 2
m∇ . First we have to find a bound for supx∈VaRα2 (X)Tn d(x,VaRα1

(X)Tn). Take

x ∈ VaRα1
(X)Tn and define ϵn = 2∥F−Fn∥Tn∞ . Using the assumption that ∥F−Fn∥Tn∞ → 0

wp1 as n→ ∞, then ϵn → 0 wp1. So with probability one ∃ n0 � ∀ n ≥ n0, ϵn ≤ γ. Since

∀ α2 : |α2 − α1| ≤ r and VaRα1
(X)Tn ̸= ∅ from Assumption H, there exists un ≡ uϵnx and

ln ≡ lϵnx in [0, Tn]
2 such that

F (un) = α1 + ϵn; d(x, un) ≤ Aϵn
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F (ln) = α1 − ϵn; d(x, ln) ≤ Aϵn.

Suppose now that ∥F − Fn∥Tn∞ > 0 (the case where ∥F − Fn∥Tn∞ = 0 is trivial). In this

case,

Fn(un) = α1 + ϵn + Fn(un)− F (un)

≥ α1 + ϵn − ∥F − Fn∥Tn∞

= α1 + 2∥F − Fn∥Tn∞ − ∥F − Fn∥Tn∞

> α1.

We can show similarly that Fn(ln) < α1. Since Fn(ln) < α1 and Fn(un) > α1, with

un, ln ∈ [0, Tn]
2, ∃ zn ∈ VaRn

α1
(X)Tn ∩B(un, d(un, ln)) with

d(zn, x) ≤ d(zn, un) + d(un, x)

≤ d(un, ln) + d(un, x)

≤ d(un, x) + d(x, ln) + d(un, x)

≤ 3Aϵn

= 6A∥F − Fn∥Tn∞ .

So, for n ≥ n0

sup
x∈VaRα1 (X)Tn

d(x,VaRn
α1
(X)Tn) ≤ 6A∥F − Fn∥Tn∞ .

Next, we need to bound supx∈VaRnα1 (X) d(x,VaRα1
(X)Tn). Take x ∈ VaRn

α1
(X)Tn . From

the continuity wp1 of Fn, we have Fn(x) = α1. Therefore

|F (x)− α1| = |F (x)− Fn(x)| ≤ ∥F − Fn∥Tn∞ ≤ ϵn, wp1

Recall that ∀ n ≥ n0, ϵn ≤ γ wp1. Then, from Assumption H, we have

d(x,VaRα1
(X)Tn) ≤ A∥F − Fn∥Tn∞ .

Therefore, we have for n ≥ n0,

dH(VaRα1
(X)Tn ,VaRn

α1
(X)Tn) ≤ 6A∥F − Fn∥Tn∞ .
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It is noted that the quality of the estimator VaRn
α(X) is linked to the choice of Fn.

Moreover, we note that the empirical copula Cn, as defined in (2.2.1), does not meet the

conditions stipulated in Theorem 4.1.2. However, we will use it for the simplicity of its

implementation while still giving satisfactory results. However, Chaubey and Sen (2002)

defined a smoothed version of the standard empirical cdf Fn which would satisfy these

conditions. The next proof of consistency allows one to relax the condition on Fn. It

involves considering the Lebesgue measure λ of the symmetric difference of the truncated

α-level sets LF (α) and LFn(α), defined as

LF (α)
Tn =

{
(x1, x2) ∈ [0, Tn]

2 : F (x1, x2) ≥ α
}

and

LFn(α)
Tn =

{
(x1, x2) ∈ [0, Tn]

2 : Fn(x1, x2) ≥ α
}
.

Recall that VaRα(X) = ∂LF (α). The symmetric difference between two sets A1, A2 is

defined as

A1△A2 = (A1 ∪ A2) \ (A1 ∩ A2)

= (A1 \ A2) ∪ (A2 \ A1),

that is, the set of points unique to either A1 or A2. The Lebesgue measure of the symmetric

difference of two sets A1 and A2 is then denoted

dλ(A1, A2) = λ(A1△A2).

The following assumption will be of use when proving the convergence in dλ.

Assumption 4.1.3. There exist increasing positive sequences (νn)n∈N and (Tn)n∈N such

that

νn

∫
[0,Tn]2

|F − Fn|pλ(dx)
P→

n→∞
0,

for some 1 ≤ p <∞.

The assumption states that for the appropriate choice of of sequences νn and Tn, the

empirical cdf Fn converges in probability to F in the Lp([0, Tn]
2) norm.
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Theorem 4.1.4. Let α1 ∈ (0, 1) and let F ∈ f be twice differentiable on R2
+. Assume

that ∃ r > 0, ζ > 0 � m∇ > 0 and MH < ∞. Assume that for each n, with probability

one, Fn is measurable. Let (νn)n∈N∗ and (Tn)n∈N∗ be positive measurable sequences such

that Assumption 4.1.3 is satisfied and that ∀ α2 : |α2 − α1| ≤ r, ∂LF (α2)
T1 ̸= ∅. Then it

holds that

pndλ(LF (α1)
Tn , LFn(α1)

Tn)
P→

n→0
0,

where pn = o

(
ν

1
p+1
n

T
p
p+1
n

)
is an increasing sequence.

Proof. Under the assumptions of the theorem, we can always take T1 > 0 � ∀ α2 :

|α2 − α1| ≤ r, ∂LF (α1)
Tn is non empty (and compact) on R2

+. We consider a positive

sequence ϵn � ϵn → 0. For each n ≥ 1, the random sets LF (α1)
Tn△LFn(α1)

Tn , Qϵn =

{x ∈ [0, Tn]
2 : |Fn − F | ≤ ϵn} andQϵn = {x ∈ [0, Tn]

2 : |Fn − F | > ϵn} are measurable and

λ(LF (α1)
Tn△LFn(α1)

Tn) = λ(LF (α1)
Tn△LFn(α1)

Tn∩Qϵn)+λ(LF (α1)
Tn△LFn(α1)

Tn∩Qϵn).

Since LF (α1)
Tn△LFn(α1)

Tn ∩Qϵn ⊂ {x ∈ [0, Tn]
2 : α1 − ϵn < F < α1 + ϵn} we get

λ(LF (α1)
Tn , LFn(α1)

Tn) ≤ λ(
{
x ∈ [0, Tn]

2 : α1 − ϵn < F < α1 + ϵn
}
) + λ(Qϵn).

From Assumption H and Proposition 4.1.1 if 2ϵn ≤ γ we obtain

dH(∂LF (α1 + ϵn)
Tn , ∂LF (α1 − ϵn)

Tn) ≤ 2ϵnA.

By considering the convexity (or concavity) of the level set as proven in Cossette et al.

(2013) and the results of Proposition 3.1.1, namely (3.1.6), we get

λ(
{
x ∈ [0, Tn]

2 : α1 − ϵn ≤ F < α1 + ϵn
)
≤ 2ϵnA2Tn.

If we choose

ϵn = o

(
1

pnTn

)
, (4.1.10)

we get for n large enough 2ϵn ≤ γ and

pnλ(
{
x ∈ [0, Tn]

2 : α1 − ϵn < F < α1 + ϵn
}
) → 0.
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Now we must show that pnλ(Qϵn)
P→

n→∞
0. We can write

pnλ(Qϵn) = pn

∫
1{x∈[0,Tn]2:|F−Fn|>ϵn}λ(dx)

≤ pn
ϵpn

∫
[0,Tn]2

|F − Fn|pλ(dx).

Take ϵn such that

ϵn =

(
pn
νn

) 1
p

. (4.1.11)

Then from Assumption 4.1.3 we have that pnλ(Q̃ϵn)
P→

n→0
0. Since pn = o

(
ν

1
p+1
n

T
p
p+1
n

)
we can

choose ϵn that satisfies (4.1.10) and (4.1.11) , thus proving the result.

In Figure 4.1, a simulation study is presented for the bivariate upper and lower orthant

VaR, demonstrating the consistency of the estimators VaRn
α(X) and VaR

n

α(X). A random

pair X = (X1, X2) joined by a Gumbel copula with τ = 0.5 with marginal distributions

X1 ∼ EXP(5) and X2 ∼ EXP(15). The simulation on the lower orthant VaR is run

100 times for samples of size n = 1000 and n = 4000 with 250 steps in the sum. The

simulation for the upper orthant VaR uses similar settings except the samples are of size

100 and 250. The reason for this is because VaRn
α(X) considers nα points to produce its

estimate (10 and 40 in the case of 1000 and 4000 pairs, respectively) whereas VaR
n

α(X)

considers n(1 − α) points to produce the estimates of VaRα(X) (99 and 247 in the case

of 100 and 250 pairs, respectively).

As we can see the estimation is quite good for samples of size 4000 and 250 for the

lower and upper orthant VaR, respectively. Note that while it seems the convergence is

occurring from below, this is merely a result of our particular simulations.

Other estimators for multivariate risk measures also exist. For instance, if one consid-

ers the bivariate lower orthant CTE for random pair X = (X1, X2)

CTEα(X) = E [X|X ∈ LF (α)]

=

⎛⎝ E [X1|X ∈ LF (α)]

E [X2|X ∈ LF (α)]

⎞⎠ ,
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Fig. 4.1: Simulation for bivariate lower and upper orthant VaR of a random pair with exponential

margins joined by a Gumbel copula with τ = 0.5

then a consistent estimator for this measure can be developed using indicators on the

empirical level sets. Formally, define the estimator

CTEnα(X) =

⎛⎜⎝
∑n
i=1Xi11{(Xi1,Xi2)∈LFn (α)}∑n
i=1 1{(Xi1,Xi2)∈LFn (α)}∑n

i=1Xi21{(Xi1,Xi2)∈LFn (α)}∑n
i=1 1{(Xi1,Xi2)∈LFn (α)}

⎞⎟⎠ .

For more details on this estimator see Di Bernardino et al. (2013). An estimator also

exists using Kendall’s process and the empirical Kendall’s function, the interested reader

is directed to Di Bernardino and Prieur (2014).

4.2 Empirical Estimators to Bivariate Lower and Upper Orthant Tail

Value-at-Risk

In this section, we present a new estimator for TVaRα,xi
(X) and TVaRα,xi(X) from Cos-

sette et al. (2015). We will show that this estimator is consistent for a sufficiently large

number of observations. We base the estimator on the representation of TVaRα,xi
(X) and

TVaRα,xi(X) given by Proposition 3.2.1 and 3.2.3, respectively.
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Definition 4.2.1. Consider a series of observations X = (X1, X2) with X1 = (x11, ..., xn1)

and X2 = (x12, ..., xn2). Additionally, we have xi = (xi1, xi2) ∈ R2, i = 1, ..., n and denote

Fn the bivariate empirical cdf and Fn1, Fn2 the marginal empirical cdf ’s of X1 and X2

respectively. We define the estimator for the lower orthant TVaR by

TVaRn
α,x1

(X) =
1

Fn1(x1)− α

∫ Fn1(x1)

α

VaRn
u,x1

(X)du (4.2.1)

=

∫
VaRn

u,x1
(X)χ[α,Fn1(x1)](u)

Fn1(x1)− α
du =

∫
hn(u)du (4.2.2)

=
m∑
i=1

VaRn
ui,x1

(X)χ[α,Fn1(x1)](ui) · s
Fn1(x1)− α

=
m∑
i=1

VaRn
ui,x1

(X) · s
Fn1(x1)− α

.

For m ∈ N, s = Fn1(x1)−α
m

and ui = α + i · s one has

TVaRn
α,x1

(X) =
m∑
i=1

VaRn
ui,x1

(X)

m
,

where VaRn
u,x1

(X) = inf {x2 ∈ R : Fn(x1, x2) ≥ α}. Similarly, define the empirical upper

orthant TVaR by

TVaR
n

α,x1
(X) =

1

1− α

∫ 1

α

VaR
n

u,x1
(X)du (4.2.3)

≈
m∑
i=1

VaR
n

ui,x1
(X)

m
,

where VaR
n

u,x1
(X) = inf

{
x2 ∈ R : F̄n(x1, x2) ≤ 1− α

}
.

Note that VaRn
α,x1

(X) and VaR
n

α,x1
(X) are the estimators for VaRα,x1

(X) and VaRα,x1(X),

respectively. We will show that (4.2.1) is consistent for TVaRα,x1
(X) and similarly that

(4.2.3) is consistent for TVaRα,x1(X). In fact, under the assumptions of Theorem 4.1.2

we have that they are strongly consistent, that is

TVaRn
α,xi

(X)
wp1−→
n→∞

TVaRα,x1
(X) and

TVaR
n

α,xi
(X)

wp1−→
n→∞

TVaRα,x1(X)

To accomplish this, we will apply the dominated convergence theorem.
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Theorem 4.2.1. (Dominated convergence theorem) Let {fn} be a sequence of real-valued

measurable functions on a measure space (S,Σ, µ). Suppose for some function f that

fn → f pointwise and that fn is dominated by some integrable function g, i.e.

|fn(x)| ≤ g(x),

for all numbers n in the index set of the sequence and all points x ∈ S. Then, f is

integrable and we have that

lim
n→∞

∫
S

fndµ =

∫
S

fdµ.

Proof. For a proof and more discussion on the dominated convergence theorem we refer

the interested reader to Royden and Fitzpatrick (1988).

In this case, we take µ to be the Lebesgue measure. Since the lower and upper orthant

VaR are Riemann integrable, the Lebesgue integral will exist and be equivalent to the

Riemann integral. From the dominated convergence theorem, the first step will be to

establish the pointwise convergence of VaRn
α,xi

(X) to VaRα,xi
(X). To do this, we first

examine the estimator of the entire level curve.

Based on the representation given in Cossette et al. (2013), one has estimator

VaRn
α(X) =

{
(x1,VaR

n
α,x1

(X))
}
, x1 > VaRn

α(X1),

=
{
(VaRn

α,x2
(X), x2)

}
, x2 > VaRn

α(X2).

From Theorem 4.1.2, one can see that{
(x1,VaR

n
α,x1

(X))
}Tn wp1−→

{
(x1,VaRα,x1

(X))
}Tn

in Hausdorff distance, for sufficiently large n. With this, the pointwise convergence

VaRn
α,x1

(X)
wp1−→ VaRα,x1

(X)

can be established with the following definition and lemma.

Definition 4.2.2. For M a compact metric space, we denote the convergence of sets

A,An ∈ M as An → A in 2M if for every ϵ > 0 we have that An ⊆ B(A, ϵ) and

A ⊆ B(An, ϵ) for all large enough n.
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Lemma 4.2.2. If An → A, then for x ∈ A there exists xn ∈ An with xn → x.

Proof. Suppose An → A. Let x ∈ A and let xn ∈ An denote the point minimizing the

distance from x to An. Since A ⊆ B(An, ϵ) for all large enough n we conclude that

d(x, xn) = d(x,An) is eventually smaller than ϵ ∀ ϵ > 0, so d(x, xn) → 0.

Now, denote

ρ = dH(VaRα(X)Tn ,VaRn
α(X)Tn)

= inf
{
ρ > 0 : VaRα(X)Tn ⊂ B(VaRn

α(X)Tn , ρ),VaRn
α(X)Tn ⊂ B(VaRα(X)Tn , ρ)

}
.

One has ρ
wp1−→ 0 from Theorem 4.1.2, then Definition 4.2.2 is satisfied for A ={

(x1,VaRα,x1
(X))

}Tn
and An =

{
(x1,VaR

n
α,x1

(X))
}Tn

. From Lemma 4.2.2, we have for

a given point (x,VaRα,x(X)) in A that there exists a corresponding point in An that

converges to it. Since each x corresponds to a unique VaRα,x(X) and VaRn
α,x(X) we

know that this point must be (x,VaRn
α,x(X)). Finally, we have that (x,VaRn

α,x(X)) →

(x,VaRα,x(X)) and therefore

VaRn
α,x(X)

wp1−→
n→∞

VaRα,x(X)

pointwise, as required. Next, examining the integrand of TVaRn
α,x1

(X) as given in (4.2.2),

one has that

Fn1
wp1−→ F1

by the strong law of large numbers. Then

χ[Fn1(x),α](u) =

⎧⎨⎩ 1, u ∈ [α, Fn1(x)]

0, otherwise

wp1−→
n→∞

⎧⎨⎩ 1, u ∈ [α, F1(x1)]

0, otherwise
.

Therefore, with the pointwise convergence of VaRn
α,x1

(X) wp1, one has

hn(u)
wp1−→

VaRu,x1
(X)χ[α,F1(x1)](u)

F1(x1)− α

pointwise. Next, consider for some b, ϵ > 0, α ∈ (0, 1) and x1 > VaRα(X1) the function

gϵ,α,x1(u) =
VaRu,x1

(X)χ[α,F1(x1)+ϵ](u)

|F1(x1)− α|
+ bχ[F1(x1)+ϵ,α](u).
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We then have that
VaRn

u,x1
(X)χ[α,Fn1(x1)](u)

Fn1(x1)− α
≤ gϵ,α,x1(u),

for all u ∈ (0, 1) and for n large enough. Since g is integrable, one has by the by the

dominated convergence theorem,

lim
n→∞

TVaRn
α,x1

(X) = lim
n→∞

∫
VaRn

u,x1
(X)χ[α,Fn1(x1)]

Fn1(x1)− α
du

=
1

F1(x1)− α

∫ F1(x1)

α

VaRu,x1
(X)du

= TVaRα,x1
(X),

giving

TVaRn
α,x1

(X)
wp1−→
n→∞

TVaRα,x1
(X).

Therefore, the empirical lower orthant TVaR is strongly consistent for the lower orhtant

TVaR. Similar arguments will establish the consistency of TVaRα,xi(X). In Figure 4.2, a

simulation study is presented demonstrating the consistency of this estimator. The study

is run for a random pair X = (X1, X2) with Weibull margins joined by a Frank copula

with Kendall’s τ set to 0.5. For TVaRn
α,x1

(X), 50 simulations of sample sizes n = 1000

and n = 4000 are run. For TVaR
n

α,x1
(X), 100 simulations of samples of size n = 100 and

n = 250 are conducted. The reasoning for the differing sample sizes is the same as is

outlined for the simulation study of VaRα(X) and VaRα(X). As can be seen, estimation

of the TVaRα(X) was quite accurate. Even for a samples of size n = 1000 the empirical

curve is quite close to the real curve. However, in the case of TVaR
n

α(X), it can seen

that there is still a noticeable difference between the true and estimated curves, for both

sample sizes. This result could be explained by the decision to use the empirical copula Cn

which, as previously mentioned, does not satisfy the continuity assumption of Theorem

4.1.2. Potential solutions to this issue are discussed in the conclusion.
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Fig. 4.2: Simulation study for lower and upper orthant TVaR of a random pair with Weibull

marginals joined by Frank Copula with τ = 0.5.



5. CONCLUDING REMARKS

In this thesis, the evaluation of dependent risks is addressed. Through examination of

dependence structures, specifically those generated by copulas, multivariate risk measures

for dependent risks are examined. VaR, TVaR and CTE are all discussed in the bivariate

setting as well as many of their properties. For example, coherence properties of the

orthant VaR and orthant TVaR are shown. Moreover, the consistency of the bivariate

lower and upper orthant VaR, VaRα(X) and VaRα(X), respectively is shown theoretically

with the techniques introduced by Di Bernardino et al. (2013). Simulation studies are

then conducted with several copulas, such as the Frank and Gumbel, showcasing these

consistency results.

The contribution of this project is the estimator of the bivariate lower and upper

orthant TVaR. By using the consistency of VaRα(X) and VaRα(X), we establish the

pointwise convergence of our estimators for VaRα,x1
(X) and VaRα,x1(X) introduced by

Cossette et al. (2013). With this pointwise convergence and the dominated convergence

theorem, the consistency of our estimators TVaRn
α,x1

(X) and TVaR
n

α,x1
(X) follows. This

result allows for accurate estimation of the bivariate lower and upper TVaR for large

enough sample sizes thereby eliminating the necessity of establishing a statistical model.

This result could be of great use for various institutions. For instance, as allocation of

capital is a top priority, consistent estimation of multivariate risk measures provides an

accurate evaluation method which can provide a more flexible and conservative result

when compared to, for example, the allocation on the aggregation of risks. While both

methods consider the interdependence of risks, aggregating risks often results in certain

risks compensating for others, leading to allocation totals that may not be apt in today’s

more conservative economic landscape. Additionally, the methods presented here could
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provide uses in operational risk management. As financial institutions can have vastly

different makeups and goals, the flexibility of these measures would prove beneficial. See

for instance OSFI (2015).

In future pursuits, we are interested in further improving our estimation of TVaRα(X)

and TVaRα(X) by implementing methods which utilize a stronger estimator to the bivari-

ate cdf. The strength of the estimators VaRn
α,x1

(X) and TVaRn
α,x1

(X) is directly tied to

the strength of an empirical cdf Fn, and while the empirical copula produced satisfactory

results in most cases, it was seen in the simulation of the upper orthant TVaR that it was

less desirable. A smooth empirical cdf which could improve the estimation is introduced

in Chaubey and Sen (2002). Techniques for accelerating the estimation process of the

lower and upper orthant TVaR are also of great interest. The simulation for these esti-

mators was conducted in statistical language R and for certain simulation studies took

several days to complete. The improvement of the code and transferring the code to a

more capable language, C or C++ for instance, may be explored. Extension of these esti-

mation methods for dimension n > 2 as well as estimation of other related risk measures,

the TVaR-based risk decomposition in particular, are currently being addressed. Finally,

exploring the issue of robustness in the multivariate framework is also of great interest.

Robust estimation methods are often just as important as consistent ones. Minimizing

the effect outliers have on evaluation of risk is crucial, especially when dealing with losses

than can be catastrophically large. While this area is still in development, methods do

exist. For instance, see Hubert et al. (2008) on a discussion of robust estimation of multi-

variate location and scatter. Robust statistics, with some extensions to the multivariate

case, are also discussed in Huber (2011).



APPENDIX



A. LEBESGUE MEASURE

Here we provide a small review of measures, specifically the Lebesgue measure, for a more

in depth review of these concepts, we refer the reader to Royden and Fitzpatrick (1988).

First, we begin with the definition of an outer measure. Recall for a set X, 2X denotes

the power set of X, the collection of all subsets of X.

Definition A.0.3. The function m∗ : 2X ↦→ [0,∞] is called a outer measure if it satisfies

the following properties,

(1) The empty set has measure zero. m∗ (∅) = 0

(2) Monotonicity. For sets A,B ∈ X with A ⊆ B, m∗(A) ≤ m∗(B).

(3) Countable subadditivity. For sets A1, A2, ... ∈ X, m∗ (∪∞
i=1Ai) ≤

∑∞
i=1m

∗(Ai).

Note that oftentimes X is chosen to be R, however, in this thesis we are interested in

X = R2
+. With the concept of outer measure, we define the Lebesgue outer measure, λ∗.

For a set E ∈ R,

λ∗(E) = inf

{∑
n

l(In) : E ⊂ ∪nIn, {In} is a countable collection of

open intervals whose union covers E

}
,

where for any interval (closed, open, semi-open) l([a, b]) = b− a denotes the length of the

interval. Note that this can be extended to higher dimensions, considering volumes and

boxes (and their higher dimensional counterparts) instead of lengths and intervals. Next,

we define measures. To this end, we must first define a σ-algebra.

Definition A.0.4. For a set X, we call a collection of subsets of X, denoted Σ, a σ-

algebra if it satisfies the following properties
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(1) X ∈ Σ.

(2) Σ is closed under countable unions. That is, if sets A1, A2, ... ∈ Σ, then A = ∪∞
i=1Ai ∈

Σ.

(3) Σ is closed under compliments. That is, if A ∈ Σ, then X \ A ∈ Σ.

From these properties, note that the smallest σ-algebra is {X, ∅}. The definition of a

measure m follows.

Definition A.0.5. Let X be a set with σ-algebra Σ. The function m : Σ ↦→ [0,∞] is

called a measure if it satisfies the following properties

1. Non-negativity. For all E ∈ Σ, m(E) ≥ 0.

2. Null empty set, m (∅) = 0

3. Countable additivity. For sets A1, A2, ... ∈ X, m (∪∞
i=1Ai) =

∑∞
i=1m(Ai).

Finally, one has that the Lebesgue measure λ(E) = λ∗(E) when E satisfies the fol-

lowing: if for all sets A ∈ X

λ∗(A) = λ∗(A ∩ E) + λ∗(A \ E).

Here we say that E is λ∗-measurable. One can be shown that the collection of λ∗-

measurable sets, denotedM form a σ-algebra. Therefore, λ∗ : M ↦→ [0,∞] is the Lebesgue

measure.
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