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Abstract 

Identifying Configurations of Plus-energy Curtain Walls for the perimeter zone using the 

Analysis of Variance (ANOVA) approach 

Angel LAM Tze Chun 

 

Curtain walls are believed to be “energy sinks” because of their low thermal performance, 

however, the integration of energy generating technologies such as photovoltaic (PV) panels may 

enable converting curtain walls to “plus-energy” curtain walls. The “plus-energy” curtain wall is 

defined as the energy generated by the curtain wall façade exceeds the energy consumption of a 

perimeter zone office. To design plus-energy curtain walls, design parameters of curtain walls are 

prioritized by sensitivity analysis and the most critical design parameters corresponding to specific 

energy efficient measures that bring major energy benefits with minor modifications are identified.  

An office unit with five adiabatic faces and one exterior façade completed with curtain walls is 

developed as the energy model in EnergyPlus. The indoor environmental parameters are set based 

on ASHRAE energy standard.  

In this study, global sensitivity analysis is conducted to prioritize the energy impact of ten design 

parameters, U-value of glazing, solar heat gain coefficient of glazing, visible transmittance of 

glazing, U-value of spandrel panel, U-value of frame, window wall ratio, infiltration, depth of 

overhang, inclination of overhang, and effective efficiency of photovoltaic panels. The three most 

significant design parameters are identified for four orientations. Plus-energy curtain wall 

configurations at different window-to-wall ratio (WWR) and orientations are identified according 

to the total sensitivity indices.  The significance of this study is to provide design recommendations 

of plus-energy curtain wall configurations under different WWRs and orientations, which are not 

covered in the current design guidelines.  
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Chapter 1 Introduction  

1.1 Background 

The Net Zero Energy Building (NZEB) is a complex concept lacking commonly agreed NZEB 

definition (Marszal et al., 2011; Torcellini et al., 2006) or consistently confirmed type of energy 

balance. The most favoured definition is the balance between the energy demand or consumption 

and the renewable energy generation (Noguchi et al., 2008; Torcellini et al., 2006; Gilijamse, 1995; 

Rosta et al., 2008). The greatest challenge of NZEB is to strive to fulfil the energy balance of a 

building equipped with on-site renewable energy generation systems.  To design NZEB is not an 

easy task at the design stage during which the building information is still being devised, such as 

building forms, building envelope design, orientation, and geometry, mechanical and electrical 

systems. These are important parameters in ascertaining building energy performance, which are 

most crucial attributes to achieve the NZEB goals. 

Building envelope, including fenestration, opaque elements and shadings, has strong impact on 

heating, cooling and electric lighting energy demands as well as on daylight. Building envelope 

design is a key factor in enhancing the energy efficiency in the perimeter zone of buildings because 

building envelopes play an important role in regulating the indoor conditions of perimeter zone by 

filtering the unwanted heat and retaining useful heat. Typically, the interior zone of buildings is 

subjected to the high cooling demand due to the internal gains such as artificial lighting, occupancy 

and electrical appliances while the perimeter zone of buildings is subjected to both cooling and 

heating demand due to the variation of climatic conditions (Gutherz & Schiler, 1991). Therefore 

high performance building envelope deign is an essential step in reducing the energy consumption 

in the perimeter zone of buildings.  

Building envelopes, which can greatly reduce the energy consumption, integrated with energy 

generation, such as Building Integrated Photovoltaic Panels (BIPV), provide means to achieve 

NZEB goals. There is abundant research on the optimal tilt for fixed photovoltaic technologies. 

(Duffie & Beckman, 1994; Gopinathan, 1991; Gunerhan & Hepbasli, 2007; Lewis, 1987; Lorenzo, 

2011; Prasad & Snow, 2014; Roberts & Guariento, 2009). Without optimized building envelope 

and BIPV design, the energy demand of perimeter zone of buildings is typically higher than the 
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energy yield from the BIPV despite the advances in photovoltaic technologies. It implies that 

thorough careful building envelope and BIPV design with optimized performance is significant 

for the NZEB design. 

Curtain wall is one of the commonly used building envelopes in office buildings. An important 

element of curtain walls is the glazing portion. The aesthetic effect offered by a high portion of 

glazing in curtain walls is popular for most of office building design. While the glazing units 

provide the same functions as the rest of the curtain walls such as insulation, glazing units also 

allow daylight and solar heat gains to pass through, which can help offset lighting and heating 

energy demand of the perimeter zone. Despite the aesthetic and the energy benefits, glazing units 

are typically the worst insulation compared to the spandrel part of the curtain walls and are 

subjected to high unwanted solar heat gain during warm periods and high heat loss during cold 

periods. Therefore glazing units have a significant impact on the heating, cooling, and lighting 

energy demand of the perimeter zone.  Given the typical large glazing area in curtain walls and the 

relatively low thermal performance of metal and glass, the energy consumption of buildings with 

curtain walls, especially the perimeter zone, is more sensitive to the climatic conditions and the 

variation of façade design (Poirazis et al., 2008) and less sensitive to the occupancy usage (Hoes 

et al., 2009) compared to buildings with opaque insulated façade. To reduce the energy 

consumption of office buildings, it is necessary to have careful design of the curtain wall 

configurations.  

The advancement of technologies in the thermal and optic properties of glazing can help improve 

the overall performance of curtain walls.  Many high performance curtain walls can be achieved 

by integrating advanced glazing units, better insulated mullion and applying shading and 

daylighting control strategies (Jelle et al., 2012; Dussault et al., 2012; Ge, 2002; West, 2001; Kim 

& Kim, 2010; Lee & Tavil, 2007; Geoffrey et al., 2007; Tzempelikos & Athienitis, 2007; Nielsen 

et al., 2011; Shen & Tzempelikos, 2012; Silva et al., 2012). The significance of different energy 

saving measures for curtain walls is altered by the interaction among the parameters which affect 

the building performance. Carmody et al., (2004) compared the annual energy consumption of a 

perimeter office space and a school classroom located in Chicago with six different window 

systems. Due to a higher internal heat gain generated by computers in the office space in 

comparison to the school classroom, a lower SHGC (0.27 v.s.0.34) resulted in slightly greater 



Page | 3  

 

energy savings in the office space.  The results indicated that to reduce the energy consumption of 

perimeter zones through effective curtain walls design, the design process should be able to take 

into account both the individual impact and the combined impact of variables, such as façade 

design parameters, climatic conditions and the building operation parameters. 

With the high solar potential in cold climate zone and the advancements in curtain wall component 

to enhance the thermal properties, curtain walls integrated with photovoltaic modules are highly 

possible to become “plus-energy” curtain walls for NZEB. The “plus-energy” curtain wall is 

defined as a curtain wall with energy generation on the façade exceeds energy consumption of the 

perimeter zone of buildings enclosed by the façade. The key is to minimize energy consumption 

and maximize energy generation by proper façade design. 

1.2 Motivation 

Most of building design solutions can be identified by optimization process. The state of the art of 

simulation-based building performance optimization has been summarized in the study (Attia et 

al., 2013). Although optimization is capable of figuring out a proper “plus-energy” curtain walls 

design, it still remains a research subject and has yet to evolve into common industry practice due 

to the lack of expertise in properly carrying out optimization process (Roy et al., 2008). Simulation-

based building performance optimization tools can identify the optimal parameter values for the 

best performance under the studied conditions, but optimal parameter values do not hold true when 

the studied conditions change.  Repeated analyses of the simulation under new studied conditions 

are necessary to seek new sets of optimal parameters values. An optimum solution is a point in the 

search-space that satisfies an optimality condition. The design variables determine the search-

space. Design variables can be quantitative such as temperature or U-values and qualitative such 

as aesthetics. In the optimization process, the quantitative design variables are given a minimum 

and maximum value, are called the bounds of the variable. Therefore the effectiveness in searching 

the optimal solutions is controlled by the bounds of the variables. However, the results from 

simulation-optimization tools cannot provide the insights of how much the performance deteriorate 

or improve due to the alterations of design parameters. Furthermore, the quantification of specific 

improvement or deterioration due to alterations of design values is not consistent, specific 

improvement appeared to be significant under prescribed conditions may not appear to be 
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significant under other conditions. To quantify the efficacy of specific improvement, it is necessary 

to investigate the impact of specific improvement within the bounds of the variables.  

To study the individual impact of curtain wall design parameters on the building energy 

performance, parametric analysis of different fenestration configurations can be employed 

(CIBSE, 2004; Hausladen, 2008). The impact of design parameters is studied by generating many 

potential design alternatives and comparing their impact on the building energy performance. The 

process can be a valuable tool to assess the performance of different curtain wall configurations at 

early stages, however, the exploration of the design space cannot be complete, that is, not all the 

potential design alternatives can be extracted and therefore, it is impossible to determine the 

optimum solution. With the increasing number and complexity of design options, evaluating the 

impact of individual building parameters on building energy performance becomes more arduous 

by solely parametric analysis. The process becomes time-consuming and requires high 

computational cost. In addition, parametric study cannot capture the complex interaction among 

all the design parameters. Hence, to effectively apprehend the impact of parameters, a different 

approach should be sought.  

Proper “plus-energy” curtain wall design at the early design stage is critical to achieve NZEB. 

Curtain wall design parameters, such as window wall ratio (WWR), types of glazing units, types 

of spandrel panels, types of mullions, configurations of PV modules, are involved in the design 

process, while other building parameters, such as building form, orientations, mechanical and 

electrical systems and occupancy usage pattern are not yet confirmed at the early design stage. 

Currently there is no systematic methodology for performing the analysis to quantify the impact 

of curtain wall designs on the energy consumption of the perimeter zone, or to quantify the 

influence of specific curtain wall design parameters on the building energy performance. A general 

integrated methodology that could provide curtain wall designers with a process and guidelines 

for selection of curtain walls properties without case by case evaluation is necessary. 
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1.3 Objectives and scope 

The objective of this study are: 

 To develop a methodology to quantify the impact of curtain wall’s design variations on the 

energy performance of the perimeter zone of curtain wall buildings; 

 To quantify the impact of particular façade design parameters on the energy performance 

of the perimeter zone of curtain wall buildings; 

 To develop a methodology to identify curtain wall configurations that can achieve energy 

balance in the perimeter zone of buildings in cold climates; 

 To develop general design recommendation on the “plus-energy” curtain walls that can be 

used at the conceptual design stage. 

The developed design methodology to identify plus-energy curtain wall configurations was applied 

in highly energy efficient office buildings in the cold climate. Although some of the criteria used 

for selecting design options can be similar to the other types of commercial buildings with curtain 

wall façades such as hotels and institutions, the developed methodology was not intended to those 

commercial buildings which have different mechanical and electrical systems, occupant pattern 

and indoor condition requirements. There may exist variations in the resultant configurations of 

“plus-energy” curtain walls when the developed methodology is employed in other types of 

commercial buildings.  

The generic energy model used in this study is a 4m (Length) x 4m (Width) x 3.6m (Depth) typical 

office unit in perimeter zone. It is modeled in the whole building performance simulation tool, 

EnergyPlus (DOE, 2013a; DOE, 2013b). This generic energy model, known as “Perimeter Zone 

Optimization Method” (ASHRAE, 2011a) is simulated in a series of permutations on different 

“Plus-energy “curtain walls configurations. This method provides consistent results between early 

design stage and the whole-building energy modeling at later construction stage. 

Finally, this study is not intended to produce a database of office building energy consumption. 

The generated results of energy consumption are not intended for the comparison of energy 

performance of perimeter office spaces. Instead, this work aims to provide a methodology for 

evaluating the impact of varying curtain wall configurations, assessing the influence of individual 
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curtain wall design parameters, and developing the recommendations on selecting the 

configurations of “plus-energy” curtain walls at the early design stage. 

1.4 Outline of the thesis 

Chapter 2 presents a review of related literature. The state of the art curtain wall components and 

photovoltaic technologies are presented. Methods for identifying configurations of “plus-energy” 

curtain walls are discussed. Methods for quantifying the impact of varying configurations and the 

influence of individual curtain wall design parameters are discussed. The need for investigating 

the impact is justified and limitations of using existing tools are analyzed, followed by the 

identification of research needs.  

Chapter 3 presents the developed methodology. The workflow of performing iterative simulation 

for design is discussed and theoretical basis for the methodology is presented. The detailed 

description of sampling procedure is provided. By investigating the combined impact of design 

parameters, a means for selecting specific design solutions is provided. The configurations of 

“plus-energy” curtain walls is identified. 

The uncertainty and sensitivity results of the proposed methodology for perimeter zone of office 

buildings in Montreal are presented in Chapter 4. Different design solutions for the “plus-energy” 

curtain walls are given. Finally, recommendation of designing “plus-energy” curtain walls is 

presented. 

Chapter 5 demonstrates a new design tool which is developed from the database of the simulation 

results.  

Chapter 6 provides a conclusion of the study, presents its limitation on applications, and identifies 

the future research opportunities.
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Chapter 2 Literature review 

While curtain walls have the advantages of providing occupants with better visual connection 

between indoor space and outdoor environment, they often introduce greater heat loss and cold 

draft compared to well-insulated opaque envelopes (Ge, 2002). The large area of glazing and the 

metal mullion bear much of the blame. However, from the energy point of view, the large portion 

of glazing area could become beneficial by introducing solar heat gain and daylight indoors. A 

high performance curtain wall system is expected to harvest passive and active solar energy and 

to lower artificial lighting demand.  Over recent decades, a lot research effort was made to improve 

the performance of curtain walls in terms of thermal, optical and energy aspects. The “plus-energy” 

curtain wall is defined as the energy generated by the curtain wall façade exceeds the energy 

consumption of a perimeter zone office enclosed by this curtain wall façade.  Building Integrated 

Photovoltaic Panels (BIPV), provides means of harvesting active solar energy to facilitate the 

“plus-energy” curtain wall design.  

Section 2.1 provides a market review of the state of the art curtain walls and photovoltaic 

technologies and their contribution to improving building energy performance is summarized. 

Efficacy of energy saving measures are discussed.  A summary of optimized design of façades for 

different design objectives is also presented. The first section explains the importance of 

quantifying the impact of curtain walls design and also the impact of individual parameters.  

Section 2.2 reviews different design support tools that are commonly used. Simulations programs 

and statistical tools are presented. This section highlights the needs of formulating a systematic 

workflow for designing façades.  

2.1  Design aspects 

2.1.1 Advancements in curtain walls 

Glazing is one of the most important components of curtain walls. Improvement in thermal and 

optics properties of glazing can significantly improve the energy performance of curtain walls.  
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Multilayer glazing is the most popular commercially available glazing because of its low U-value 

(0.49 - 0.64 W/m2K) (Jelle et al., 2012).  Basically a gas, either argon or krypton is filled in a 

multilayer glazing. The multilayer glazing filled with krypton has lower U-values and krypton 

filled glazing enables compact gas cavity. The compact gas filling cavity reduces the overall 

weight of the window because thinner frames can be employed due to the reduced cavity thickness. 

A similar product to multilayer glazing is suspended coated film glazing. The suspended films can 

be installed in between the outer and inner panes. These films are often regarded as a third or fourth 

glass pane in glazing units. The idea of using films instead of adopting glass panes not only reduces 

the overall weight of the window but also allows a larger gas cavity thickness in the same volume 

of window cavity as ordinary multilayer glazing because the films are normally thinner than glass 

panes. The U-values can range from 0.28 – 0.62 W/m2K (Jelle et al., 2012).  

Vacuum glazing units also offer thinner overall thickness of glazing unit. Basically vacuum 

glazing units consists of double panes with a narrow vacuum space. An array of support pillars in 

the vacuum space is used to separate the two panes and keep the two panes evenly apart. Low-e 

coated glass panes can be adopted in the vacuum glazing unit to produce glazing units with very 

low U-values (0.7W/m2K). However, compared to low-e triple glazing units, the thickness of 

vacuum glazing units can be almost half of that of low-e triple glazing units.  

The previous research shows that the trend of improvement in glazing units is mainly to reduce 

the U-value because highly glazed curtain walls are commonly used. In cold climate zone, glazing 

units with high solar heat gain coefficient are also popular since such glazing units can provide the 

energy benefit in heating energy consumption in perimeter zone of buildings in winter. However, 

glazing units with low U-values always come along with low solar heat gain coefficient (Manz & 

Menti, 2012). Figure 2.1 shows the U-values and solar heat gain coefficients of different glazing 

units. The single glazing units have relatively high U-values and high solar heat gain coefficients 

while the triple glazing units have relatively low U-values and low solar heat gain coefficients. 

The graph indicates that glazing units with higher U-values have higher solar heat gain coefficients 

or glazing units with lower U-values have lower solar heat gain coefficients. Glazing units with 

low U-values and high solar heat gain are rarely available in the current market. At first glance, 

installing glazing units with high solar heat gain is an obvious choice in heating dominated areas. 
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However, with the high cooling energy consumption and high peak cooling loads during hot 

summer afternoons in buildings, glazing units with lower solar heat gain coefficients also provide 

the benefits in reducing cooling energy consumptions. It is always challenging to choose glazing 

units with higher solar heat gain coefficients to reduce heating energy consumption in winter or 

glazing units with lower solar heat gain coefficient to benefits from the cooling energy reduction 

in summer. This will be discussed in section 2.1.3.  

 

Figure 2.1. The U-value and the solar heat gain coefficient of different glazing units (Manz & 

Menti, 2012). 

2.1.2 Advancement in solar photovoltaic technologies 

Photovoltaic systems and some other renewable energy systems are excellent choices to achieve 

the net-zero energy building design. The major attraction of the photovoltaic systems is that the 

process of producing electric power brings relatively less damage to the environment, by directly 

converting a free source of energy, from the solar energy into electricity without any heat engine 

to interfere. Photovoltaic systems require relatively less maintenance. The output of photovoltaic 

systems can range from microwatts to megawatts. Van der Zwaan, (2003) presented current 

photovoltaic cell production cost ranges including the single crystalline silicon, multi-crystalline 

silicon, amorphous silicon and other thin film technologies according to the learning-curve 
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methodology. The decreasing cost of photovoltaic panels and increasing efficiency in the 

photovoltaic technologies imply a promising role for renewable energy systems in the building 

sector in the near future. Compared to the grid-tied photovoltaic systems, the price of an energy 

unit generated from a grid-tied photovoltaic system is much higher than that from off-grid 

photovoltaic system (Singh, 2013).  

The basis of the photovoltaic effect is to convert lighting energy into electricity in solar cells. The 

light absorbing materials in all solar cells absorb photons and generate free electrons via the 

photovoltaic effect. The sunlight striking on the photovoltaic cells imparts the energy to some 

negatively charged electrons to raise their energy level and thus the electrons become mobile. 

Voltage is created by a built-in-potential barrier in the cell, and the voltage is used to drive a current 

through a circuit.  

Silicon is the dominant material for the supply of power modules into photovoltaic applications. 

The proportion of silicon in multi-crystalline silicon and monocrystalline silicon is currently 

increasing to produce high-efficiency solar cells.  

Amorphous (uncrystallized) silicon is one of the most popular materials in thin-film technology. 

Amorphous silicon can produce the cell efficiencies of 5-7% and the double and triple junction 

designs of amorphous silicon cell can have cell efficiencies up to 8-10%. However, the amorphous 

silicon cell are prone to degradation. The varieties of amorphous silicon are amorphous silicon 

carbide, amorphous silicon germanium, microcrystalline silicon, and amorphous silicon-nitride (a-

SiN). 

Yang et al., (2003) summarized the development and the advantages of amorphous-silicon 

photovoltaic technology. The essence of the roll-to-roll manufacturing process and the advantages 

of solar panels on flexible substrates are discussed. The cell efficiency can be achieved to 13%. 

Tawada & Yamagishi, (2001) developed a series of production technologies for stable 8% 

efficiency direct-super-straight-type modules along with large area monolithic amorphous-silicon 

pin single-junction cell on glass substrate. The modules are proved by the detailed designing, 

actual installation and the performance evaluation to be suitable for roofing purpose. Figure 2.2 

shows the photovoltaic cell made from amorphous (uncrystallized) silicon.  
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Figure 2.2. A photovoltaic cell made from amorphous (uncrystallized) silicon. Source: 

www.pveducation.org 

Polycrystalline silicon photovoltaic cell are produced from cast square ingots which is made from 

being cooled and solidified large blocks of molten silicon. Compared to single crystal silicon cells, 

polycrystalline silicon photovoltaic cells are normally less expensive to produce than, but are 

usually less efficient. They often come on larger frames than the monocrystalline. Crystalline 

silicon provides higher cell efficiency when compared to amorphous silicon cell, however, only a 

small amount of material is used. The commercially available polycrystalline silicon solar cells 

can achieve an efficiency around 14-19% (Parida et al., 2011). Polycrystalline silicon thin film 

solar cells are cost-effective among the solar cell production technologies and they retain the 

advantages of thin film technology and crystalline silicon. Figure 2.3 shows the photovoltaic cell 

made from amorphous (polycrystalline) silicon.  

 

Figure 2.3. The photovoltaic cell made from amorphous (polycrystalline) silicon. Source: 

http://www.solarpanelbuyersguide.co.uk 

http://www.pveducation.org/
http://www.solarpanelbuyersguide.co.uk/
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Thin-film solar cells are basically thin layers of semiconductor materials applied to a solid backing 

material. Thin films solar cells play an important role in photovoltaic market because the thin films 

technology can reduce the amount of semiconductor material required for each cell when 

compared to silicon wafers and hence lowers the cost of production of solar cells. Gallium 

arsenide, copper, cadmium telluride indium di-selenide and titanium dioxide are those materials 

that have been mostly used for thin film photovoltaic cells. However, a primarily unavoidable 

drawback of a thin-film solar cell is its poor optical absorption, which is caused by the thinner 

active layer and limits the power conversion efficiency of this type of solar cells. Temperature 

affects the performance of thin-film solar cells through two possible approaches: one is affecting 

the optical and electrical parameters of semiconductor material and the other is altering the 

geometric parameters of the structures. To increase the optical absorption, different light trapping 

technologies have been extensively used to enhance the light absorption. Barnett et al., (2001) 

investigated that solar cells utilizing thin-film polycrystalline silicon can achieve photovoltaic 

power conversion efficiencies greater than 19% as a result of light trapping and back surface 

passivation with optimum silicon thickness. 

 

Figure 2.4. The photovoltaic cell made from thin-film. Source: http://topdiysolarpanels.com 

The previous research shows that the trend of improvement in solar photovoltaic technology is 

mainly changing the types of materials composited the cell in order to increase the cell efficiency. 

Since the energy yield from the photovoltaic array depends on not only the cell efficiency of the 

photovoltaic panels, but also the wiring of the cells, the array pattern, the inclination of the arrays 

and the outdoor conditions. The evaluation of potential yield from the photovoltaic panels in this 

study is based on the effective efficiency of the whole array. This is discussed in the chapter 3.  

http://topdiysolarpanels.com/
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2.1.3 Efficacy of energy saving measures  

A lot of research has been carried out on the energy performance of fenestration (Manz & Menti, 

2012; Chaiyapinunt et al., 2005; T. R. Nielsen et al., 2000; Chow et al., 2010). Manz & Menti, ( 

2012) compared the energy flow of four types of glazing, four façade orientations in eight case 

study locations in Europe namely Bucharest, London, Madrid, Moscow, Rome, Stockholm, 

Warsaw and Zurich. The result showed that modern triple glazings perform the best and enable 

net energy gains at south façades in December even in Moscow and Stockholm.  

Chaiyapinunt et al.,(2005) studied different types of windows with clear glass, tinted glass, 

reflective glass, double pane glass, and low-e glass in the aspect of heat flow. The analysis 

indicated that the values of heat gain due to solar radiation effect were larger than the values of 

heat gain due to conduction effect for all glass windows and glass windows with films. Adhered 

film to the glass windows resulted in lowering the heat gain due to solar radiation in the amount 

corresponding to the film properties. However, the film shows little effect on the relative heat gain 

due to conduction. The heat gain values were varied linearly with the total transmittances of the 

glass windows with and without films. The relative heat gain values were also varied inversely 

with the absorptance of glass windows with and without with films linearly. 

Nielsen et al., (2000) simplified the comparison of the energy performance of different glazing 

because it is difficult to select the glazings or windows in terms of energy performance in a 

particular case without detailed evaluation. A number of diagrams were produced to provide the 

net energy gain with respect to the orientation, the tilt, the U-value and the solar heat gain factor 

of the glazing or windows. A single diagram showing the net energy gain in a one-family house 

was produced according to the orientation of the windows in the building. By using the diagrams 

the best glazings can be chosen in particular case. 

Chow et al., (2010) introduced the concept of water-flow window and their potential areas of 

application were discussed. Their research showed that this new design was able to support hot 

water supply system, reduced air-conditioning load and enhanced thermal and visual comfort. 

Lee, (2010) compared the trade-off in different façades design options by examining the impact of 

typical and high performance windows on the energy performance of perimeter offices in a high-
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rise commercial building located in Southern Ontario. His results showed that window properties 

had insignificant impact on the building energy performance of the perimeter zone with high 

internal heat gain. Windows with low U-values and high solar heat gain coefficient (SHGC) were 

preferred over the windows with similar U-values but low SHGC. Low U-values contributed to a 

significant energy saving in commercial buildings with mid to low internal heat gain in all window 

wall ratio. Static and dynamic shading had very little effect on energy performance of mid to low 

internal heat gain offices. 

Previous research focused on comparing the energy performance of different fenestration 

technologies, however, the impact of the geometrical and thermophysical characteristics of 

fenestration on the energy demand of buildings under different conditions has neither been 

thoroughly analyzed, nor quantified. Without a quantification scheme, it is always difficult for the 

façade designers to choose a fenestration product among the wide variety of technologies.  

2.1.4 Optimized design of façades 

In the study by Thalfeldt et al., (2013), the design parameters of curtain walls influencing the 

energy performance of a building, such as window type, wall insulation, window wall ratio and 

shading devices were optimized in the case of a generic office floor model for the lowest life cycle 

cost and alternatively for the best achievable energy performance. The results show that the 

window sizes resulting in the best energy performance for double and triple glazing were 22 and 

24% respectively as small as daylight requirements allowed. For quadruple and hypothetical 

quintuple glazing, the optimal window-to-wall ratios were larger, about 40% and 60% 

respectively, because of daylight utilization and better solar factor naturally provided by multi 

panes. The cost optimal façade solution was highly transparent triple low emissivity glazing with 

window-to-wall ratios of about 25% and external wall insulation thickness of 200 mm (U = 

0.16W/m2K). 

Kasinalis et al., (2014) presents a method for quantifying the impact of seasonal façade adaptation 

on building performance, based on coupled building energy and daylight simulations, which were 

conducted under multi-objective optimization scenarios with genetic algorithms with respect to 

the building energy performance and the indoor environmental quality. Window wall ratio as well 
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as thermophysical and optical material properties were determined by optimization. The results 

showed that a south facing office zone with a monthly adaptive façade in the Dutch climate can 

have up to 15% energy savings and largely improve thermal comfort requirements in comparison 

with the best performing non-adaptive façade. 

Previous research shows the challenges of the optimization, which requires high computational 

time for the façade designers to undergo iterative optimization process before obtaining the 

direction of the design trend. The optimization approach requires comprehensive knowledge of 

what needs to be optimized and what algorithm needs to be adopted. Another issue is that the 

resulting optimized design solutions only work for the defined design objectives. If a design 

objective is changed or more additional objectives are the subject of interest, then another vigorous 

optimization process has to be performed.  

2.1.5 Summary  

Based on the previous research, curtain walls theoretically have high potential to act as a positive 

energy source for buildings when they are integrated with photovoltaic technology. In reality, the 

selection of design options that strikes the balance between energy harvesting and energy 

conservation increases the complexity in decision making among a wide variety of design options. 

Therefore, it is necessary to seek the design trend without undergoing the repeated case-by case 

simulation or iterative optimization process.  

2.2  Design support tools  

2.2.1 Curtain wall performance simulations 

With the large portion of glazing in curtain walls, the selection of assessment method of glazing 

performance becomes critical.  The pre-evaluation of glazing unit designs with the help of 

simulation programs can facilitate identifying more energy efficient options.  

Most of the building energy performance simulation programs, such as EnergyPlus, ESP-r and 

TRNSYS, provide different approaches to model glazing portion in fenestration. Those approaches 

allow different ways to specify the glazing properties and present different restrictions on certain 
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configurations of glazing units. All approaches differ in terms of level of detail and applicability. 

Detailed models require a considerable amount of detailed information as the input parameters. 

Increasing the level of detail increases the difficulty in performing the simulations. Decreasing the 

level of details degrades the model fidelity, which may lead to greater uncertainty in the modelling 

results. 

An appropriate modelling approach should be able to reproduce predictions which fit with the 

experimental data regardless of unforeseen errors and uncertainties (Van Buren et al., 2014); 

however, the norm tends to steer the approach selection towards the detailed approach which fits 

better with the experimental data. The approach selection strategy loses ground when the 

experimental data is not available at the early design phase.  

One previous study by Peter et al., (2010) compared the discrepancies in the predicted energy 

consumption by using different glazing modeling approaches. They concluded that the energy 

consumption predicted using the Simple Window Model, in which simplified window 

performance indices including U-value of glazing (Ugl), solar heat gain coefficient (SHGC), and 

the optional input, visible transmittance (Tv), are used to specify the glazing properties, agreed 

well with the results from the Full Spectral Method, which is the only recommended model in 

EnergyPlus (DOE, 2013b; DOE, 2013a). Due to lack of literature support, users typically choose 

the glazing modeling approach based on subjective judgement or the availability of input 

parameters. 

One study by Lam et al., (2013) discussed the advantages and limitations of each glazing modelling 

approach and suggested selecting an appropriate approach based on three criteria: computational 

cost, ability to reproduce consistent results and uncertainty. The paper concluded that the Average 

Spectral Method, in which the transmittance and reflectance of glazing are weighted over the 

spectrum, can produce consistent results as the Full Spectral Method. In this study, Simple 

Window Model is found to have higher variation in predicting the cooling and the total energy 

consumptions. 
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It is clear that there is no specific glazing modeling approach that is absolutely superior to others. 

All methods have their own requirements in terms of the level of expertise manipulating those 

programs, the key assumptions and the limitations.  

2.2.2 Building performance simulation 

The building energy performance simulation tools do not take into account all the complex 

interactions of energy transfer such as thermal bridge within a building system, however, by 

comparing the performance indices that the user specified, the designers can still make decision 

based on the performance.  

Computer simulations are also able to provide inexpensive and quick results that allow designers 

and researchers to easily make changes to the building design and compare the relative differences 

in performance, making them suitable tools for design and research. While full field tests or 

experiments may provide better results, they are often very expensive and time intensive. Many of 

these building simulation programs are developed with validation from laboratory measurements. 

With the advancement of computer technology and further understanding of energy transfer in 

buildings, building simulation programs continue to evolve and improve with greater accuracy, 

making them ideal for such applications. In the past, designers and researchers have used computer 

programs such as EnergyPlus, ESP-r, and TRNSYS. Crawley et al., 2008 provide a comprehensive 

comparison of the features and capabilities of twenty major building energy simulation programs.  

EnergyPlus is an energy analysis and thermal load simulation program. Based on a user’s 

description of a building from the perspective of the building construction, associated mechanical 

systems, etc., EnergyPlus developed from two programs BLAST (Building Loads Analysis and 

System Thermodynamics) and DOE-2 programs in 1996 by Department of Energy (DOE) from 

the United States of America (USA). There is no user interface in EnergyPlus. It is a simulation 

engine in which the inputs and outputs are in simple ASCII text format.  EnergyPlus allows 

external GUI (graphical user interface) such as Sketchup, AutoCAD for building geometry and 

Simergy for HVAC mechanical systems.  

ESP-r is another building performance simulation. ESP-r uses a finite volume conservation 

approach in which all problems with inputs (specified in terms of geometry, construction, 
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operation, leakage distribution, etc.) are converted into a set of conservation equations (for energy, 

mass, momentum, etc.), which are then integrated at successive time-steps in response to climate, 

occupant and control system influences. ESP-r comprises a central Project Manager and the 

support databases, a simulator, various performance assessment tools and a variety of third party 

applications for CAD, visualisation and report generation.  

TRNSYS is made up of two parts. The first is an engine (called the kernel) that reads and processes 

the input file, iteratively solves the system, determines the convergence, and plots system 

variables. The kernel provides the functions that determine thermophysical properties of building 

materials, invert matrices, perform linear regressions, and interpolate external data files. The 

second part of TRNSYS is an extensive library of components for building systems performances. 

The standard library includes approximately 150 models such as building system components, 

wind turbines, weather data, basic HVAC equipment, some cutting edge emerging technologies 

and also some multizone building examples. Users can modify existing components or create their 

own, or extend the capabilities of the simulated scenarios. 

In fact, building simulation models can accurately quantify building energy loads, but are not 

amenable to the early design stages when architects need an assessment tool that can provide rapid 

feedback by altering the design parameters.  

2.2.3 Application of cloud simulation 

OpenStudio is a free, open source Software Development Kit (SDK) and application suite to 

conduct building energy modeling and analysis. The OpenStudio Parametric Analysis Tool (PAT) 

was extended to allow cloud-based simulation for iterative parametric study. Multiple building 

parameters can be varied over multiple iterations to model simulation results, as calculated and 

visualized in the GUI. Simulations are performed in parallel using the Amazon Elastic Compute 

Cloud service. OpenStudio highlights model measures used for parametric study and design 

optimizations. 

The cloud supplements the manual process with more automated, optimization-based processes 

that are used with data visualization to help modelers have fast comparison of results whose 

impacts on the model are visualised in GUI. 
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2.2.4 Application of parametric study 

The influence of particular parameters and their interacting effects among them is not easily 

determined unless full design space exploration is investigated. The number of design options is 

enlarged by vast number of design parameters. Identifying the design alternatives can be achieved 

by parametric study or comparing the outcomes. Typically, parametric study is performed by one-

at-a-time method, it can never cover the entre design parameter range. Any design options 

identified by the parametric study can be only valid for the investigated range of parameters. The 

process involves high computational cost. Especially, evaluating all design options with large 

number of design parameters is not a viable approach.  

2.2.5 Application of optimization  

Façade design is quite a complicated task with the design team trying to counterbalance various 

antagonistic parameters, which in turn are subject to various constraints and design objectives. 

Simulation-optimization tool is an efficient way to seek the design options with global minima or 

maxima with the help of appropriate optimal algorithm subject to a number of constraints. Design 

options are sought by the building performance simulation programs integrated with optimization 

methods which act as a decision aid.  Summary of building design optimization methods is 

conducted to explain the selection of optimization algorithms (Machairas et al., 2014).  

Most of the building design problems face the difficulties in decision making, which are in fact 

multi-objective optimization problems, characterized by the existence of multiple and competing 

objectives. The methods for solving multi-objective optimization problems are (1) enumerative 

algorithms, (2) deterministic algorithms, and (3) stochastic algorithms. Limitations of different 

algorithms are discussed (Attia et al., 2013). Since the building simulations can sometimes be time-

consuming, abundant research are focusing on investigation of boosting rapid optimal solutions. 

The best optimal design options are not always guaranteed to be found by any one of these 

algorithms. The optimal solutions obtained from the optimization methods are often showed in the 

decision space, which consists of a set of feasible solutions that are not predefined but are 

implicitly defined by a set of parameters and constraints that should be taken into account, 

however, the interdependent relationship among the parameters are not explicitly indicated.  Due 
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to the lack of information of interdependent relationship, it is difficult to compare the near-optimal 

design options. 

Simulation-optimization tools identify the optimal parameter values for best performance under 

the prescribed conditions, but optimal parameter values do not hold true when the prescribed 

conditions changes.  Repeated analyses of the simulation with new prescribed conditions are 

necessary for seeking new sets of optimal parameters values. The results from simulation-

optimization tools cannot provide the insight of how much the performance deterioration or 

improvement due to the ad hoc changes to the design parameters. Furthermore, the performance 

of specific improvement or deterioration due to the ad hoc changes to design values does not keep 

consistent, specific improvement appeared to be significant under prescribed conditions may not 

appear to be significant under other conditions. To quantify the efficacy of specific improvements, 

it is necessary to ensure the complete design space exploration such that the impact of specific 

improvements are investigated. 

2.2.6 Application of sensitivity analysis 

Sensitivity analysis has long been used to derive diagnostic insights from building performance 

models by identifying the key input factors controlling building performance (Tian, 2013). It helps 

to identify the influence of input parameters in relation to the outputs. It can also be used as a tool 

to understand the behavior of the model and can then facilitate its development. Their applications 

include the following (Saltelli et al., 2008; Spitz et al., 2012). 

Implication of model quality - Sensitivity analysis indicates the appropriate setting of the base 

model. For example, dramatic discrepancy may occur in output variables when one influential 

input is kept at fixed values in the model and the influential input is changed to another value. 

Such information is important when the computational cost is high. 

Factor fixing - A fixed value can be assigned to the insensitive inputs for simplifying the 

optimization problems.  

Factor mapping- The regions of the whole input space where a particular input is most sensitive 

are identified. 
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Factor prioritization - The input parameters are ranked according to their importance. 

Increase the robustness of the model - The output uncertainty is minimized when the uncertainty 

of the influential parameters are reduced.  

Investigation of interaction between parameters - Influential parameters can be attested as 

important in local sensitivity analyse but it may appear to be non-influential when their effect are 

cancelled by the effect of other parameters. The cancellation occurs when the influence of 

parameters is not superimpose together.  

The methods for sensitivity analyses can be classified into screening methods, local and global 

methods.  

Screening methods is OAT approach (one parameter at each time) in which each design parameters 

is evaluated individually. The standard values of the design parameters are used as control. Two 

extreme values on both sides of standard values of the individual design parameters are chosen 

such that the different results from the control and the two extreme values are compared. The larger 

the range of difference, the more sensitive. 

The local method, OAT approach, also evaluates the variability of the model output by one 

changing parameter and keeping the other parameters fixed at a nominal value.  Local methods 

provide the sensitivity indices of parameters relative to a single point (or base case) in the 

multivariate space of a model. The interaction effect between the design parameters is isolated. 

Therefore local sensitivity analysis does not quantify the influence of individual parameters under 

the changing impact by other parameters. Local sensitivity analysis cannot measure the interaction 

among the parameters.  

Global methods can evaluate the importance of a parameter throughout the entire multivariate 

space of a model. The global method is regarded as a more superior method. There are many 

techniques in global methods, include sampling-based methods such as Partial Correlation 

Coefficients (PCC), Standardized Regression Coefficient (SRC), Reliability algorithms such as 

First-Order Reliability Method (FORM) and Second-Order Reliability Method (SORM), and 

variance-based methods.   
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The variance-based methods are the analysis of variance, known as ANOVA (Archer et al., 1997), 

such as Sobol’, First Amplitude Sensitivity Test (FAST) (Saltelli et al., 2000) and later extended-

FAST. The ANOVA is to portion the variance of an output over the different input variables. Two 

attractions of ANOVA are to provide quantitative insight of (1) the contributions of design 

parameters to the variation of building energy performance (2) the interacting effects among the 

design parameters on the variation of output. Therefore the sensitivity of individual design 

parameters can be prioritized.  

Parameters are concluded to be significant according to its ability to contribute large variation in 

outputs. Parameters are altering the variation in outputs by two ways. (1) large possible range in 

which the input parameter is propagated throughout all the model evaluations; (2) output results 

are highly correlated to the parameters so slightly alternating the input values result in major 

variation in the output values. There is difference between “importance” and “sensitivity”, 

important parameters are always sensitive so that important parameters can produce large 

variations in outputs. Sensitive parameters are defined as parameters that can produce significant 

variation in outputs for small alternations in inputs (Hamby, 1994), but sensitive parameters are 

not always important. In the case of sensitive parameters with small possible range throughout all 

model evaluations may not easily detected in the output variation. Therefore the range and 

distribution pattern affect the sensitivity results and they are defined with great care in order to 

ensure the reliability of the resulted sensitivity index.   

The first step of conducting global sensitivity analysis is sampling. There are various sampling 

procedures that are commonly used. They are (i) random sampling, (ii) stratified sampling and (iii) 

quasi-random sampling. The selection of the sampling procedures is subjected to the types of 

global sensitivity analysis to be implemented, nature of parameters, computational cost and 

accuracy. Table 2.1 shows the comparison of these three methods.  

In random sampling, random numbers are generated. In stratified sampling, the sample space of 

input parameters is partitioned into N disjoint strata.  One particular stratified sampling method, 

Latin hypercube sampling, is widely used in the global sensitivity analysis. Various types of quasi-

random samplings were reviewed by (Bratley & Fox, 1988). The superiority of quasi-random 
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samplings is due to its enhanced rate of convergence. Table 2.1 lists the advantages and 

disadvantages of three sampling methods. 

Table 2.1. Comparison of three sampling methods. 

  Advantages Disadvantages 

Random sampling  produce unbiased mean and 

variance 

 suitable for large sample size 

 easy to implement 

 clumps of samples in certain 

regions 

 poor representation for small 

samples 

 not suitable for model with 

high computational cost 

Stratified 

sampling  

 better coverage of sample space 

 produce unbiased means and 

distribution function for LHS 

 suitable for situations that large 

samples are not computational 

feasible 

 

 convergent rate of  1/√N 

Quasi-random 

sampling 

 suitable for large samples are not 

computational feasible 

 Sobol' sequence are suitable for 

monotonic relationship 

 fewer simulations are 

needed 

  

2.2.7 Application of uncertainty analysis 

As discussed in the previous section, the sensitivity analysis can quantify the contribution of 

individual parameters to the variation of the models, in other words, the sensitivity analysis 

quantify the impact of individual parameters on the studied systems.  
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Uncertainty analysis can quantify the variation of outputs due to the variation of input parameter 

set, in other words, the uncertainty analysis quantify the impact of whole set of input parameters 

on the models. The larger the variation, the more significant the whole set of input parameters.  

The application of uncertainty analysis in this study is different from the common application in 

engineering systems. In general application, the term “uncertainty “defined as the lack of perfect 

information concerning the phenomena, process, or the resulted data.  

Uncertainty can be broadly divided into two groups, epistemic uncertainty and aleatory 

uncertainty.  

The word aleatory derives from the Latin alea, which means the rolling of dice. Thus, an aleatory 

uncertainty is one that is presumed to be the intrinsic randomness of a phenomenon. Interestingly, 

the word is also used in the context of music, film and other arts, where a randomness or 

improvisation in the performance is implied.  

The word epistemic derives from the Greek επιστηµη (episteme), which means knowledge. Thus, 

an epistemic uncertainty is one that is presumed as being caused by lack of knowledge (or data). 

The reason that it is convenient to have this distinction within an engineering analysis model is 

that the lack-of-knowledge-part of the uncertainty can be represented in the model by introducing 

auxiliary non-physical variables. These variables capture information obtained through the 

gathering of more data or use of more advanced scientific principles. An uttermost important point 

is that these auxiliary variables define statistical dependencies (correlations) in a clear and 

transparent way (Kiureghian & Ditlevsen, 2009). 

Epistemic uncertainty refers to lack of knowledge about phenomena and usually translates into 

uncertainty about the parameters of a model used to describe random variation. Whereas epistemic 

uncertainty can be reduced, aleatory uncertainty cannot be reduced and for this reason it is 

sometimes called irreducible uncertainty (Helton & Burmaster, 1996). Table 2.3 summarizes two 

types of uncertainty, epistemic uncertainty and aleatory uncertainty (Apostolakis, 1990; Hanna, 

1993). 
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Table 2.2. Summary of two types of uncertainty, epistemic uncertainty and aleatory uncertainty. 

Epistemic Aleatory 

 Subjective probability 

function 

 Knowledge-related 

 Reducible 

 Lack of knowledge about 

the phenomenon 

 Lack of data 

 Limiting relative 

frequency probability 

 Stochastic 

 Irreducible 

 Variation of population 

Uncertainty exists when knowledge about specific factors, parameters (inputs), or models are 

incomplete. Models have two fundamental types of uncertainty:  

Model framework uncertainty, results from the underlying assumptions and simplifications. Those 

assumptions and simplifications originate from mitigating the lack-of-knowledge for the 

complicated phenomenon interaction and reducing the computational cost. Since model 

formulation varies over a wide spectrum, ranging from simple empirical equation to sophisticated 

partial differential equations with computer simulations. A model is only an abstract of reality, 

which generally involves certain degrees of simplifications and idealizations. Therefore model 

uncertainty reflects the inability of the model to represent the system’s true physical behavior.  

Two types of uncertainty are associated with the model framework uncertainty. The first type 

results from the use of an inadequate model with correct parameter values. The second type results 

from the use of a perfect model with parameters subject to uncertainty.  

Parameters uncertainty results from the inability to accurately quantify model inputs and 

parameters. All models involve physical or empirical parameters that cannot be quantified 

accurately. In building problems, parameters uncertainty could be caused by changes in the 

operation conditions of buildings in building design problems, the inherent variability of building 

materials properties in time and spatial domain and a lack of sufficient data.  
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Data uncertainty includes the measurement errors, analytical imprecision, inconsistency and non-

homogeneity of data, and limited sample size during collection and treatment of the data used to 

characterize the model parameters. 

Operational uncertainty includes those associated with the construction, manufacture, procedure, 

deterioration, maintenance and workmanship.  

 

Figure 2.5. The relationship between the Data (Parameters) uncertainty and Model Uncertainty 

(Hanna, 1993). 

These two types of uncertainty have a reciprocal relationship, with one increasing as the other 

decreases. Thus, as illustrated in Figure 2.5, an optimal level of complexity (the “point of minimum 

uncertainty”) exists for every model. 

All simulation programs are subjected to model uncertainty and parameter uncertainty 

(Macdonald, 2002). Model uncertainty is the assumption and parameter uncertainty can be 

physical uncertainty due to the irregularity and workmanship of building materials, can be scenario 

uncertainty due to variation of outdoor climate or indoor occupancy, and can be design uncertainty 

due to alternations in planning phases (Hopfe & Hensen, 2011).  
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2.2.8 Summary  

In most building design problems, it is almost impossible for the designers to make decision based 

on a single simulation result. In some cases, iterative simulation process are involved. Early design 

decisions may not require a detailed simulation program to deal with mass data. It is necessary to 

adopt a suite of tools integrate with the simulation programs, which would support the decision 

making process.  

2.3  Conclusion 

Based on the previous research, curtain walls theoretically have high potential to act as a positive 

energy source for buildings when they are integrated with photovoltaic. In reality, the selection of 

design option that strikes the balance between energy harvesting and energy conservation increases 

the complexity in decision making among a wide variety of design options. 

There is no single design support tool that is clearly superior to all others. Each design support tool 

has its own key assumptions and limitations, its own demands regarding the time and effort to 

apply the method and interpret the results and has strengths and limitations regarding the type of 

insight that it can provide. 

Due to the lack of systematic approach for seeking rapid design solutions by changing design 

parameters, it is necessary to develop an assessment methodology to identify the configurations of 

“plus-energy” curtain walls.  

In order to derive the design alternatives of “plus-energy” curtain walls, it is essential to investigate 

the impact of varying curtain walls configurations on the building energy performance in perimeter 

zone, the impact of individual design parameters and also the interdependency relationship among 

the design parameters.  

Since the uncertainty analysis provides the insight of the impact of variations in inputs on the 

variations in outputs, it is used to investigate the impact of curtain walls configurations on the 

building energy performance in perimeter zone. Global sensitivity analysis assists to quantify the 

impact of particular inputs on the variations in outputs. It is employed to quantify the impact of 
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individual design parameters on energy performance. Appropriate global sensitivity analysis 

methods can illustrate the interdependency relationship among the design parameters. 

  



Page | 29  

 

Chapter 3 Methodology 

The energy performance of the perimeter space of buildings is heavily dependent on façade 

configurations including the fenestration. In this chapter, the influence of curtain wall 

configurations and the impact of individual parameters on the energy performance of perimeter 

spaces of office buildings is examined. This discussion is divided into five sections: 1) work flow 

of the analysis; 2) input parameters and their range selected; 3) description of the generic energy 

model created in EnergyPlus and modeling approach; 4) sampling procedure; and 5) procedure for 

sensitivity analysis.   

3.1. Overview of the workflow 

Figure 3.1 and Figure 3.2 show the flow chart of the analysis.  

1. Simlab 2.2 (Simulation Laboratory for Uncertainty and Sensitivity Analysis) (Bieda, 2010) is 

used to generate samples. Simlab is a software designed for Monte Carlo analysis that is based 

on performing multiple model evaluations with selected model inputs.  

2. A generic energy model is built in EnergyPlus. The sample files are stored as text files that are 

input to the base model in EnergyPlus.  

3. The outputs from EnergyPlus in terms of annual heating, cooling, lighting, total energy 

consumption and energy generation for four orientations are consolidated using Excel.  

4. The dispersion of end-use energy consumption, annual heating, cooling, lighting, total energy 

consumption and the energy balance for four orientations indicate the impact of curtain walls 

configurations on the end-use energy consumption and the energy balance. The dispersions of 

end-use energy consumption are quantified by the coefficient of variation (i.e. the ratio of the 

standard deviation to the mean) using excel. 

5. An open-source statistical computing program R with a customized code is used to calculate 

the first-order and total sensitivity index of individual design parameters (Pace, 2012). The 

first order sensitivity indices quantify the impact of each individual input on the variation of 

outputs. The total sensitivity indices quantify the total contributions of each individual input 

on the output variances, which include both first order and higher-order effects due to the 

interaction among inputs. In this study, total sensitivity indices are used to quantify the impact 

of parameters by taking into account of the interacting effect of design parameters. 
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Figure 3.1. Flow chart of the analysis. 
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Figure 3.2. The flow chart of the analysis.  

Parameter files of design parameters

Sampling  in Simlab

Base Energy Model

\

Global Sensitivity Analysis

• Variance-based

• Sobol

Uncertainty Analysis

• Coefficient of 

variation

Simulation

Potential plus energy curtain walls

configurations



Page | 31  

 

3.2. Parameters affecting the building energy performance 

The evaluation of the impact of curtain wall configurations on building energy performance cannot 

be directly indicated by energy consumption since curtain walls are not energy consumers, 

however, the energy transfer processes take places through the curtain walls in buildings. As a 

result, the configurations of “Plus-energy” curtain walls can only be identified by comparing the 

building energy performance due to the variation of curtain wall configurations.  The building 

energy performance is influenced by the factors in Table 3.1. 

The selection of design parameters to be varied in the energy models is based on the subject of 

interests. For example, the building design problems are related to enhancing the COP of HVAC 

system, the user may need to select the types of systems, and the types of refrigerants as design 

parameters which are to be varied in order to investigate the impact of those parameters on the 

performance indices.  In this study, the subject to be investigated is the façade curtain wall.  

To run the generic energy simulation model, an extensive set of inputs such as building geometry, 

internal loads, outdoor environment, equipment, and occupancy schedules are required to define. 

For façade design, only a small subset of inputs related to the performance of façades are varied. 

The remaining inputs can be fixed at default values. The choice of input subsets and the associated 

ranges of their values determine the design space to be explored and they are summarized as in 

Table 3.2.   

The design parameters include window wall ratio, U-value of glazing, solar heat gain coefficient, 

visible transmittance, U-value of spandrel panel, U-value of mullion, infiltration rate, types of 

shadings and PV Modules efficiency. It is obvious that façade orientation has great impact on 

building performance (Nielsen et al., 2011; Shen & Tzempelikos, 2012). However, the orientation 

is not a factor that can be fully controlled. So the analysis is performed for each main orientation 

in this study. 
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Table 3.1. The parameters affecting the building energy performance. 

 Parameters 

Exterior environmental parameters  Solar radiation 

 Ambient temperatures 

 Wind direction and speed 

 Air humidity 

 Geographical locations 

Building information parameters  Orientation 

 Building shape 

 Building type 

Curtain walls design parameters  Window wall ratio 

 U-value of glazing 

 Solar heat gain coefficient 

 Visible transmittance 

 U-value of spandrel panel 

 U-value of mullion 

 Air tightness 

 Type of shading 

 PV Modules efficiency 

Indoor environmental parameters  Occupancy schedule 

 Occupancy consumption 
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3.2.1 Range and justification of design parameters 

The range and distribution of the ten design parameters studied are listed in Table 3.2. 

Table 3.2.  The range and distribution of ten design parameters. 

Design Variable Symbol Unit Distribution Range 

Types of glazing   -     

   i. U-value of glazing Ugl W/m2 ˑ K PDF 1.10 to 2.50 

   ii. Solar heat gain coefficient SHGC - PDF 0.33 to 0.70 

   iii. Visible transmittance Tv - PDF 0.16 to 0.79 

U-Value of frame Ufr W/m2 ˑ K Uniform  0.80 to 8.80 

U-Value of spandrel Usp W/m2 ˑ K Uniform 0.15 to 0.28 

Window wall ratio WWR - Uniform 0.10 to 0.90 

Infiltration Infil L/m2 ˑ s Uniform 0.01 to 0.22 

Depth of overhang Dh - Uniform 0.10 to 1.00 

Inclination of overhang Da degree Uniform 0.00 to 90.0 

Efficiency of modules PV - Uniform 0.09 to 0.19 

The three primary thermal and optic properties of glazing, U-value of glazing, solar heat gain 

coefficient and visible transmittance are often correlated. For example, glazing with a high solar 

heat gain coefficient might also have a high U-value (Figure 2.1.) Such properties are not 

completely independent and they cannot be combined together randomly. Given the fact that these 

three properties are interrelated, to assign a realistic distribution for their ranges, curtain wall 

products that are available in the commercial market are investigated.  

In the website of National Fenestration Rating Council (NFRC), there is a certified products 

directory. The properties of the certified curtain walls products can be found in this directory. A 

database is formed based on 40 manufactures and 2858 certified curtain walls. The ranges of U-

value of glazing, solar heat gain coefficient (SHGC) and visible transmittance (Tv) are set 

according to the distribution of these certified curtain walls.  
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Figure 3.3 shows the scattered plot of solar heat gain coefficient against U-value of glazing. The 

graph shows that the solar heat gain coefficient ranges from 0.1 to 0.5 when the U-value of glazing 

is under 2 W/m2·K, while the solar heat gain coefficient has a larger range (0.1-0.7) when the U-

value of glazing is over 2 W/m2·K. Figure 3.4 shows the scattered plot of visible transmittance 

against U-value of glazing. The graph shows that the visible transmittance ranges from 0.1 to 0.7 

when the U-value of glazing ranges from 1 to 3.5 W/m2·K. Figure 3.5 shows the scattered plot of 

visible transmittance against solar heat gain coefficient. The graph shows that in general the visible 

transmittance increases with the increasing solar heat gain coefficient.  

 

Figure 3.3. The scattered plot of solar heat gain coefficient against U-value of glazing. 
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Figure 3.4. The scattered plot of visible transmittance against U-value of glazing. 

 

 

Figure 3.5. The scattered plot of visible transmittance against solar heat gain coefficient. 
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The probability distribution functions of U-value, solar heat gain coefficient and visible 

transmittance should be sought to better reflect their distribution.  

 

Figure 3.6. The probability density function of U-value of glazing of certified products in NFRC. 

 

Figure 3.7. The probability density function of solar heat gain coefficient of certified products in 

NFRC. 
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Figure 3.8. The probability density function of visible transmittance of certified products in 

NFRC. 

Figure 3.6 – 3.8 show the probability density functions of U-value, solar heat gain coefficient and 

visible transmittance. Both U-value and solar heat gain coefficient follow a lognormal distribution 

(Equation 3.1). The distribution of visible transmittance follows a normal distribution (Equation 

3.2). 

Lognormal distribution 
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---------------------------------------------------- Equation 3.1 

where μ = 0.79  and σ = 0.19   , x=value of parameter for glazing U-value 

where  μ = -1.10 and σ = 0.32, , x=value of parameter for glazing SHGC 
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Normal distribution 

 
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1 1
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x
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

 
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       

--------------------------------------------------------- Equation 3.2 

Where μ = 0.45 and σ = 0.17, x=value of parameter 

The other seven parameters are assumed with a uniform distribution as follows:  

Uniform Distribution (rectangular distribution) is  

1
( )f x

n
 --------------------------------------------------------------------------------------- Equation 3.3 

Where n is the sample size 

The uniform distribution or rectangular distribution is a family of symmetric probability 

distributions such that for each member of the family, all intervals of the same length on the 

distribution's support are equally probable.  

The range of U-value for curtain wall mullion is determined as 0.8 W/m2K for a framing 

configuration made of wood (Jelle et al., 2012) and 8.8 W/m2K for a standard aluminum mullion 

with thermal break (Ge, 2002). The range for U-spandrel panel is determined as 0.15 W/m2ˑK for 

vacuum insulation panels as insulation (Alam et al., 2011) and 0.28 W/m2ˑK for mineral wool as 

insulation (Ge, 2002). The efficiency of commercially available multi-crystalline silicon solar cells 

is around 14–19% (Parida et al., 2011). The range of photovoltaic modules effective efficiency is 

set from 9% to represent amorphous (uncrystallized) silicon cells to 19% representing crystalline 

silicon cells (Parida et al., 2011). 

Retaining solar heat in heating season can be achieved by measures such as low U-value of glazing, 

U-value of spandrel panel and the mullion and high SHGC. Filtering unwanted solar heat gain in 

cooling seasons can be achieved by internal shading or exterior overhang. The operation of internal 

shading is stochastic in nature and it is not the focus in this paper. The width and the inclination 

of overhang are two controlling factors that affect the performance of overhang for cooling energy 

https://en.wikipedia.org/wiki/Symmetric_distribution
https://en.wikipedia.org/wiki/Probability_distributions
https://en.wikipedia.org/wiki/Probability_distributions
https://en.wikipedia.org/wiki/Interval_(mathematics)
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reduction, so these two parameters are included in the analysis. An overhang above the vision 

panel of the curtain wall is added as a fixed shading device. The range of depth is set as 0.1-1.0 m 

to represent a practical depth and the range of inclination is set between 0⁰ (horizontal) to 90⁰ 

(vertical).   

In order to convert a known leakage rate at a fixed building pressure to a corresponding input for 

the Energy Plus wind-driven infiltration model, it is necessary to figure out the baseline infiltration 

rate range.  

The actual wind-driven infiltration rates at different floors of the building calculated by EnergyPlus 

should sum to equal that calculated using a surface average pressure coefficient and the building 

roof height. For infiltration models, where the infiltration rate varies linearly with the wind speed, 

it is possible to apply an adjustment factor to the wind-driven infiltration component in EnergyPlus 

equal to the ratio of the wind speed (UH) at building roof height to the average wind speed 

impinging on the building face (Uavg). The latter can be found by integrating the wind profile with 

respect to height (up to the building roof height) and then dividing by the building roof height.  

The base wind profile used by EnergyPlus is of a power law form 

buildingmet

buildingmet
H met

met building

H
U U

H







  
     

   

------------------------------------------------------- Equation 3.4 

14.9metU ms (Climate, 2015)  

4.9 m/s anemometer wind speed for a height Hmet of 10 m at a nearby airport, so the wind speed 

UH at roof level H = 36 m for a 10-floor building located in a large city centers  

270met m  , 370building m   

10metH m , 36buildingH m  

0.14met  , 0.22building   
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HU ms

   
    
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To get the average wind speed, integrate the equation (Equation 3.5) and divide the height of 

building 

 
 

11 1 1

1

buildingmet

buildingavg met
building

met building met buildingbuilding
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 
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   
         

----------------- Equation 3.5 

While EnergyPlus calculates the wind speed at the centroid of each exterior surface, use of the 

average wind speed across the building height top to bottom is a simplifying assumption. 

 
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
--------------------------------------------------------------------------- Equation 3.6 

UH is greater than the average wind speed impinging on the surface. The infiltration rate referenced 

to the wind speed at roof height is multiplied by the  1building   for use  
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All building height-related impacts on wind speed and subsequent wind-driven infiltration in the 

building are handled within EnergyPlus simulation software based on the linear wind velocity 

coefficient. 

Therefore the range of infiltration is set from 0.01L/m2·s (75Pa) to 0.22 L/m2·s (300Pa) due to 

curtain walls being normally tested under 300Pa for high rise buildings (Ge, 2002). 

3.3. Modeling objectives and modelling approach 

3.3.1 Modeling objectives 

In order to fully assess the impact of curtain walls configurations on energy consumption in highly 

energy efficient building, building simulation models were developed and their results were 

analyzed.  

The objective of the building simulations is to quantify and understand the influence of curtain 

wall design parameters on building energy performance, such as annual heating, cooling, and 

artificial lighting consumption. The impact of these different curtain wall design parameters was 

evaluated for the four cardinal orientations. 

The results of these simulations should provide reference to designers for creating an energy-

efficient building enclosure for the office buildings in heating dominated region such as Montreal. 

These results are only used for quantifying the influence of varying curtain walls configurations 

and the influence of individual curtain wall design parameters, since the actual energy 

consumption will greatly depend on the mechanical and electrical systems in the building along 

with the different occupancy schedules and set-points. 

3.3.2 Generic energy model description 

A hypothetical office unit in Figure 3.9 represents a typical office space in the perimeter zone of a 

multi-storey office building in Montreal is set in EnergyPlus as a case study. Figure 3.10 shows 
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the layout of an office unit on a typical floor. The hypothetical office unit is 4m deep, 4m wide 

and 3.6 m high (floor to ceiling).  

One exterior façade is completed with the curtain walls with various configurations. The other 

three walls are regarded as internal walls. The adjacent spaces are all conditioned to the same 

temperature, therefore, the adiabatic boundary conditions are assumed at the three internal walls, 

floor and ceiling to ensure there is no heat exchange across these partitions. Gypsum board, 

acoustic tile and carpeted concrete are assigned as the interior finishing of internal walls, ceiling 

and floor, respectively. Realistic thermal, solar and optic properties are assigned for these surfacing 

materials so that radiative and convective heat transfer among surfaces and between the surface 

and indoor air can be taken into account properly. This set-up of the building model facilitates the 

comparison of potential energy saving due to different curtain wall system configurations. 

                                

Figure 3.9. The office unit in a typical multi-storey office building. 
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Figure 3.10. The layout of office unit in one of intermediate-level floors. 
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The façade is constructed by curtain wall with the building integrated photovoltaic conversion 

system (photovoltaic panel with crystalline silicon solar cells) mounted on the spandrel panels for 

the energy generating, as shown in Figure 3.10 and Figure 3.11. The curtain walls are popular in 

the office buildings but curtain walls integrated with photovoltaic panels on spandrel panels are 

still not common façades. An overhang is installed above the vision panel as the shading device. 

 

Figure 3.11. The configuration of curtain wall integrated with photovoltaic panels. 

The hypothetical office unit is constructed for a single occupant according to common building 

practices for commercial offices (ASHRAE, 2010). The internal loads in the office room is 

assumed as highly energy efficient design usage which consists of the heat generated by the 

occupant (90 W), one desktop computer (54W) and monitor (24 W) (ASHRAE, 2011a). The 

occupancy schedule is listed in Table 3.3. The plug load consumption schedule is listed in Table 

3.4. 
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Table 3.3. The office occupancy schedule. 

 Start 

(hour) 

End 

(hour) 

Number of 

occupants 

Internal heat gains 

from the occupant [W] 

Weekdays 0 8 0 0 

 8 18 1 90 

 18 24 0 0 

Saturdays 0 10 0 0 

 10 16 1 90 

 16 24 0 0 

Sunday 0 8 0 0 

 8 18 0 0 

 18 24 0 0 

Holidays 0 8 0 0 

 8 18 0 0 

 18 24 0 0 

Table 3.4. The plug load consumption schedule. 

 Start 

(hour) 

End 

(hour) 

Diversity 

factor 

Plug load 

consumption [W] 

Weekdays 0 8 0.4 0 

 8 18 0.9 70 

 18 24 0.5 0 

Saturdays 0 10 0.4 0 

 10 16 0.5 39 

 16 24 0.3 0 

Sunday 0 8 0.2 0 

 8 18 0.2 0 

 18 24 0.2 0 

Holidays 0 8 0.2 0 

 8 18 0.2 0 

 18 24 0.2 0 
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The artificial lighting is provided by four 32W T8 fluorescent tubes with a total load of 120W and 

a lighting power density (LPD) of 7.5 W/m2 (ASHRAE, 2011a). All of the lighting is set to operate 

on the lighting schedule as Table 3.5. 

Table 3.5. The lighting schedule. 

 Start 

(hour) 

End 

(hour) 

Diversity 

factor 

Lighting 

consumption [W] 

Weekdays 0 8 0.05 6 

 8 18 0.90 108 

 18 24 0.50 60 

Saturdays 0 10 0.05 6 

 10 16 0.50 60 

 16 24 0.30 36 

Sunday 0 8 0.05 6 

 8 18 0.20 24 

 18 24 0.05 6 

Holidays 0 8 0.05 6 

 8 18 0.20 24 

 18 24 0.05 6 

The occupancy, plug load and lighting load schedule represent an internal heat gain level that is 

comparable to common offices with normal occupant pattern. Offices with higher internal heat 

gain levels are typically older offices that uses less energy efficient equipment and lighting 

systems, or high-density offices which up to four occupants would occupy the same space in the 

office considered. In both cases the energy consumption intensity is higher. As technology 

improves, the energy consumption intensity is expected to decrease with more efficient office 

equipment and lighting, which gears to lower internal heat gains. 

Daylighting controls are also incorporated into the model. The continuous dimming of the 

auxiliary lighting is assumed to maintain an illuminance level of 500 lux at the centre of the room 

at a work plane height of 0.8 m (2.5 ft). 
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Discomfort glare is also controlled with interior drapes, which are deployed once a glare index 

rating of 22 is reached in the model. The glare index is calculated from the centre of the room, at 

a 90o angle from the window, facing the glazed façade.  

Since the annual heating and cooling energy consumption are used as performance indicator for 

the analysis, a simplified packaged heat pump is specified to provide heating and cooling for this 

office unit. The COP for heating is set at 2.75 and the COP for heating is set at 3, to keep the air 

temperature between its heating and cooling set points.  

The thermostat settings are 20ºC for heating and 25ºC for cooling during working hours of 08:00 

to 18:00, with a night setback temperature of 13ºC in the winter and 30ºC in the summer 

(ASHRAE, 2011b). The heating and cooling set points schedule are listed in Table 3.6. 

Table 3.6. The Design values of building information. 

Building information Design value (SI units) 

Dimension of office unit 4m, 4m and 3.6m (D x W x H) 

Heat gain from occupant Single  90W 

Plug load One desktop computer and monitor (78 W) 

Lighting power density 7.5W/m2 

Dimming control setpoint 
500 lux setpoint by sensor located at room 

centre 

HVAC Type  

Package type Heat pump 

Heating COP=2.75 

Cooling COP=3 

Operating hours 
08:00-18:00 (weeksdays)  

09:00-13:00 (weekends) 

HVAC setpoints 
Heating 20ºC (set back temperature 13ºC)  

Cooling 25ºC (set-back temperature 30ºC)  

Spandrel panel 
Photovoltavaic panels  with insulation and 

backpan 
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The building is located in Montreal, and weather data of the same location from WYEC2 is used, 

as created by WATSUN Simulation Laboratory, which contains hourly weather observations 

representing an artificial one-year period specifically designed for building energy calculations. 

Montreal is chosen as a typical cold climate zone with temperatures ranging from approximately 

-25°C to +35°C. Table 3.6 shows the summary of the details of building and systems setting in the 

base case model.  

Exterior shading is designed to control the unwanted solar heat from the glazing. Two types of 

exterior shading are included in the energy model, including static external fixed overhang and 

dynamic interior shading. Static shading took the form of overhangs. The projecting depth and the 

inclination of the overhang is assigned as variables. The transparent portion composes two glazing 

panes whose width of the glazing is 1.95m, total 3.9m.  

 

 

 

 

 

 

 

 

Figure 3.12. The plan view of the curtain wall section. 

Dynamic interior shading is in the form of internal drapes, and has been programmed to block 

incident solar radiation when deployed once a glare index rating of 22 is reached. 

Spandrel Panels 

Glazing 

Spandrel Panels 
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3.3.3 Modeling approach 

Modeling approaching for glazing  

EnergyPlus provides six approaches to model glazing portion in fenestration, including the Full 

Spectral Method (FSM), the Aver-age Spectral Method (ASM), the WINDOW 5 Report Method 

(WRM), the Bi-directional Scattering Distribution Functions Method (BSDF), the Refraction 

Extinction Method (REM), and the Simple Window Model (SWM) (DOE, 2013a;DOE, 2013b). 

The six approaches allow different ways to specify the glazing properties but present different 

restrictions on certain configurations of glazing units. The six approaches differ in terms of level 

of detail and applicability. Detailed models require a considerable amount of detailed information 

as the input parameters. Increasing the level of detail increases the difficulty in performing the 

simulations. Decreasing the level of details degrades the model fidelity, which may lead to greater 

uncertainty in the modelling results.  

The FSM requires the wavelength-by-wavelength spectral data (transmittance, front reflectance, 

and back reflectance) covering the solar spectrum from about 0.25 to 2.5 microns as inputs. The 

ASM requires the inputs of transmittance, front and back reflectance of solar spectrum and visible 

light, infrared transmittance, front and back emissivity and conductivity of each layer of glazing. 

The WRM includes the U-value, the SHGC, and the calculated values of optical properties such 

as the transmittance, the absorptance, the front and back reflectance for the glazing unit at different 

incidence angles. BSDF, which consists of Bi-directional Reflectance Distribution Function or 

BRDF and Bi-directional Transmittance Distribution Function or BTDF, describes how light 

coming from a certain direction is transmitted and reflected in different directions. In REM, the 

index of refraction and extinction coefficient are used to specify glazing properties. In SWM, 

simplified window performance indices including U-value of glazing (Ugl), solar heat gain 

coefficient (SHGC), and the optional input, visible transmittance (Tv), are used to specify the 

glazing properties. 

An appropriate modelling approach should be able to reproduce predictions which fit with the 

experimental data (Van Buren et al., 2014); however, this norm tends to steer the approach 
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selection towards the detailed approach. The approach selection strategy loses ground when the 

experimental data is not available in early design phase. 

Although an appropriate approach should be selected based on three criteria: computational cost, 

ability to reproduce consistent results and uncertainty, simple window mode is used in this study 

because this is the only one modeling approach to vary the U-value, solar heat gain and visible 

transmittance in order to investigate the impact of these three design parameters on end-use energy 

consumption. However, the SWM has the largest variation in predicting cooling and the total 

energy consumption (Lam et al., 2014) 

Modeling approaching for spandrel panel 

To estimate the overall U-value of the curtain wall, the area and its corresponding U-value for 

mullion, center-of glass, and edge-of-glass (based on a 65 mm band around the perimeter of each 

glazing unit as shown in Figure 3.11) are determined. The area-weighted U-value is the overall U-

value of the curtain wall assembly. 

The change of U-value of spandrel panel is due to the range of insulation products that can be used 

in the spandrel panels. The U-value of spandrel panel is adjusted by changing the thickness of the 

insulation instead of changing the type of insulation to simplify the simulation process.  
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Figure 3.13. (a) The layout of glazing and spandrel panel. (b) The cross section of curtain wall. 

(c) The glazing panel. (d) The spandrel panel. 

  

(a) (b) 

(c) (d) 
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Modeling approach for photovoltaic panel  

In EnergyPlus, there are three PV performance models to evaluate the generation by the PV arrays, 

Simple Model, Equivalent One-diode and Sandia models.  

The simple model to calculate the electrical power produced by a photovoltaic surface in 

EnergyPlus is as following (DOE, 2013a; DOE, 2013b).  

In the Simple PV performance model, a constant efficiency assumed during whole range of solar 

irradiation and cell temperature effect is not taken into account. Here the constant efficiency is an 

effective efficiency.  

surf activ T cell invertP A f G        ------------------------------------------------------------ Equation 3.8 

Where    

P  Electrical power produced by photovoltaics [W] 

surfA  Net area of surface [m2] 

activf   Fraction of surface area with active solar cell [-] 

TG   Total solar radiation incident on PV array [W/m2] 

cell  Module conversion efficiency [%] 

invert  DC to AC conversion efficiency [%] 

The equivalent One-Diode model is known as four or five parameters TRNSYS (TRaNsient 

SYstem Simulation Program, an energy simulation program) model for photovoltaics in which 

modules are modeled using an equivalent one-diode circuit. The list of parameters in equivalent 

one-diode model of PV module includes short circuit current, open circuit voltage, voltage at 

maximum power, current at maximum power, temperature coefficient of short circuit current, 
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temperature coefficient of open circuit voltage, number of cells in series per module, cell 

temperature at NOCT (Nominal Operating Cell Temperature) condition, and module area.  

Sandia conducts detailed outdoor performance tests on about 500 commercially available modules, 

and a database of the associated module performance parameters is maintained on the Sandia 

website. The Sandia model incorporated in EnergyPlus is based on empirical coefficients 

assembled by Sandia National Laboratory for each specific type and brand of PV modules.  

The results of equivalent one-diode and Sandia models in EnergyPlus are validated with 

experimental data.  

To justify the application of simple PV model in this study, an investigation is performed. The 

same generic energy model and eleven types of photovoltaic (PV) modules on the south façade 

are simulated in EnergyPlus. Each PV modules are modelled repeatedly for seven WWR ranged 

from 0.1 to 0.7 with interval 0.1. Table 3.7 lists the eleven PV modules selected. The products 

chosen are all crystalline modules. It is confirmed to have good agreement between one-diode 

model and Sandia models when the crystalline modules are the subjects of interest. 

The annual energy yield of modules are predicted with three PV performance models and the 

annual solar radiation received by the modules is predicated in EnergyPlus. The effective 

efficiency obtained by the Simple PV model is compared to the other two validated PV 

performance models, the One-diode model and the Sandia model. 

The effective efficiency is calculated as follows: 

2

2

Generation (W/m )

Radiation (W/m )
effective  -------------------------------------------------------------- Equation 3.9 

The variation of simple PV model from the accredit approaches (One-diode and Sandia models) 

is quantified by the Coefficient of Variation of the Root Mean Square Error (CVRMSE) and 

Normalized Mean Bias Error (NMBE). The required values are dependent of data sampling 

frequency as listed in Table 3.8. 
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Table 3.7. Specifications of the eleven PV modules selected. 

Photovoltaic panels 
Peak efficiency 

[%] 

Area of modules 

[m2] 

Number of cells in 

series 

Photowatt PW1000 9 0.898 36 

AstroPower AP-100 10 0.974 36 

Solarex MSX-110 11 1.098 72 

AstroPower AP-120 12 0.974 36 

AstroPower AP-130 13 1.121 42 

BP Solar SX3140 14 1.018 36 

BP Solar BP2150S 15 1.260 72 

Kyocera Solar KC158G 16 1.277 48 

Sharp ND-167U1F 17 1.310 48 

Sanyo HIP-HO97 18 1.148 96 

BP Solar SX3190 19 1.406 50 

 

ASHRAE Guideline 14 (ASHRAE, 2002) is intended to be a guideline that provides a minimum 

acceptable level of performance in the measurement of energy and demand savings from energy 

management projects applied to residential, commercial or industrial buildings. In section 5.3.2.1 

requires that the calibration data such as energy consumption of baseline model shall meet the 

Coefficient of Variation of the Root Mean Square Error (CVRMSE) and Normalized Mean Bias 

Error (NMBE) requirement.  

The Normalized Mean Bias Error (NMBE) is computed from 

 

 
1 100

n

i ii
y y

NMBE
n p y




 
 


-------------------------------------------------------------- Equation 3.10 
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The Coefficient of Variation of the Root Mean Square Error (CVRMSE) indicates the uncertainty 

inherent in the model, which is computed from 

 

 

2

11
100

n

i ii
y y

CVRMSE
y n p




 



----------------------------------------------------- Equation 3.11 

iy  is the current value 

iy  is estimated value 

y   is mean value  

n   is number of observations 

p  is number of parameters in the regression model 

 

Table 3.8. Required value for baseline model from ASHRAE Guideline 14. 

 Hourly  

Coefficient of Variation of the Root Mean Square Error 30% 

Normalized Mean Bias Error 10% 

 

In Table 3.9, it lists the effective efficiency calculated by three PV models. The results shows that 

the effective efficiency is consistent in seven WWR.  

Since the one-diode model and the Sandia model are the validated PV modelling approach in 

EnergyPlus, the effective efficiencies obtained by Simple PV models are compared with respect 

to those obtained by the one-diode model and the Sandia model. Table 3.10 lists the Coefficient 

of Variation of the Root Mean Square Error (CVRMSE) and Normalized Mean Bias Error 

(NMBE) of Simple PV model compared to One-diode model. Table 3.11 lists the CVRMSE and 
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NMBE of Simple PV model compared to Sandia model.  The results shows that Simple PV model 

fulfils the requirements of ASHRAE Guideline 14. 

Table 3.9. Comparison of effective efficiency obtained by simple model to one-diode model. 

  Calculated effective efficiency [%] 

Photovoltaic panels Peak Efficiency [%] Simple PV One diode Sandia 

Photowatt PW1000 9 9.8 9.6 10.0 

AstroPower AP-100 10 10.5 10.7 10.3 

Solarex MSX-110 11 10.1 10.2 10.1 

AstroPower AP-120 12 12.3 11.9 12.7 

AstroPower AP-130 13 11.8 11.8 11.8 

BP Solar SX3140 14 13.7 13.4 13.7 

BP Solar BP2150S 15 11.7 11.3 12.1 

Kyocera Solar KC158G 16 12.3 11.8 12.8 

Sharp ND-167U1F 17 12.8 12.5 13.0 

Sanyo HIP-HO97 18 15.6 15.9 15.3 

BP Solar SX3190 19 13.5 13.2 13.7 

 

Table 3.10. Comparison of effective efficiency obtained by simple model to one-diode model. 

WWR CVRMSE [%] NMBE [%] 

0.1 2.50 -1.41 

0.2 2.50 -1.40 

0.3 2.49 -1.39 

0.4 2.49 -1.39 

0.5 2.49 -1.38 

0.6 2.48 -1.38 

0.7 2.48 -1.37 

 



Page | 56  

 

Table 3.11. Comparison of effective efficiency obtained by simple model to Sandia model. 

WWR CVRMSE [%] NMBE [%] 

0.1 2.50 1.41 

0.2 2.50 1.40 

0.3 2.49 1.39 

0.4 2.49 1.39 

0.5 2.49 1.38 

0.6 2.48 1.38 

0.7 2.48 1.37 

3.4. Sampling 

3.4.1 Sampling of glazing parameters 

As discussed in section 3.2.1, the glazing properties cannot be combined randomly in sampling, it 

is necessary to investigate the relationship among the U-value of glazing, solar heat gain 

coefficient and visible transmittance. The relationship is quantified by the correlation coefficient r 

which is a measure of the strength of the straight-line or linear relationship between two variables. 

Correlation is a statistical measure that indicates the extent to which two or more variables change 

together. If the relationship is known to be linear, or the observed pattern between the two variables 

appears to be linear, then the correlation coefficient provides a reliable measure of the strength of 

the linear relationship. If the relationship is known to be nonlinear, or the observed pattern appears 

to be nonlinear, then the correlation coefficient is not useful. 

 
1

1

i i

n

x y

i

z z

r
n









----------------------------------------------------------------------------- Equation 3.12 

where  n  is the sample size; 
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 ---------------------------------------------------------------------------------- Equation 3.13 

where  
x  is the mean of sample set x; 

x  is the standard deviation of sample set x  

i

i

i

y

y

y

x
z






 ---------------------------------------------------------------------------------- Equation 3.14 

where  
y  is the mean of sample y; 

 y  is the standard deviation of sample set y   

The correlation coefficient takes on values ranging between +1 and -1. The following points are 

for interpreting the correlation coefficient. 

 r = 0 indicates no linear relationship. 

 r = +1 indicates a perfect positive linear relationship: as one variable increases in its values, 

the other variable also increases in its values via an exact linear rule. 

 r = -1 indicates a perfect negative linear relationship: as one variable increases in its values, 

the other variable decreases in its values via an exact linear rule. 

 Values between 0 and 0.3 (0 and -0.3) indicate a weak positive (negative) linear relationship. 

 Values between 0.3 and 0.7 (0.3 and -0.7) indicate a moderate positive (negative) linear 

relationship. 

 Values between 0.7 and 1.0 (-0.7 and -1.0) indicate a strong positive (negative) linear 

relationship via a firm linear rule. 

The results in Table 3.12 show that the correlation between U-value and solar heat gain coefficient 

is moderate positive linear relationship while the correlation between U-value and visible 

transmittance is no linear relationship. 
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Table 3.12. The correlation among the U-value of glazing, solar heat gain coefficient and visible 

transmittance. 

Correlation  

U-value and solar heat gain coefficient 0.406 

U-value and visible transmittance -0.015 

Solar heat gain coefficient and visible 

transmittance 

0.5486 

In Simlab, there are three methods to induce correlations .(i) the dependence-tree/copula method 

(Meewissen & Cooke, 1994; Morris, 1987),  (ii) the Iman and Conover method (Iman, Ronald L., 

1982),  and (iii) the Stein method (Stein, 1987).  

The dependence-tree method is used for modelling the correlation between factors.  The Simlab 

user can specify correlations among input factors that form a tree structure. Whatever correlation 

values are imposed by the user in this way, it is guaranteed that a joint PDF exists. The joint PDF 

has minimum information amongst all those joint distributions which satisfy the criteria given by 

the users. 

The Iman-Conover method is used to induce a desired rank correlation on pairs of input factors. 

Its characteristics are: 

 rank correlations can be set independently on marginal distributions, 

 the original form of the marginal distributions is preserved, 

 may be used with many sample schemes,  

 if the correlations imposed are too strong, then the correlation matrix is not positive definite, 

and a message is displayed. 

Stein method is used in this study to sample the glazing properties because it allows the user to 

generate a correlated Latin Hypercube Sampling (LHS). The users must provide an ASCII file that 

contains a correlated sample (such as a random sample, or even an empirical sample generated by 

an experiment). The method generates an LHS sample with the same correlation of the sample 

provided by the user.   



Page | 59  

 

The database of available curtain wall products, which is formed based on 40 manufactures and 

2858 certified curtain walls in National Fenestration Rating Council (NFRC), is used to from the 

ASCII file for the Stein Method. Therefore, the correlated sample among U-value of glazing, solar 

heat gain coefficient (SHGC) and visible transmittance (Tv) is the same as the database formed by 

2858 certain walls in National Fenestration Rating Council (NFRC).  

Figure 3.13 and Figure 3.14 show the scattered plots of the sampled solar heat gain coefficient v.s. 

U-value, and sampled visible transmittance v.s. U-value. The samples generally have a good 

representation of the manufacturer data.  Figure 3.15 to Figure 3.17 show the comparison in 

distribution function between manufacturers’ data and the sampled data, which has generally good 

agreements. 

 

Figure 3.14. The scattered plots of the sampled solar heat gain coefficient vs. U-value. 
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Figure 3.15. The scattered plots of the sampled Tv vs. U-value. 

 

 

Figure 3.16. Comparison of PDF of glazing U-value between manufacturers’ (Lognormal: 

μ=0.79 and σ=0.19) and sampled data (Lognormal: μ=0.81 and σ=0.19. 
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Figure 3.17. Comparison of PDF of SHGC between manufacturers’ (Lognormal: μ=-1.10 and 

σ=0.32) and sampled data (Lognormal: μ=-1.08 and σ=0.31). 

 

Figure 3.18. Comparison of PDF of Tv between manufacturers’ (Normal: μ=0.45 and σ=0.17) 

and sampled data (Lognormal: μ=0.45 and σ=0.16). 
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In this study, Sobol’ is used for the sensitivity analysis and therefore the sampling method of 
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A sequence of sampling is generated by changing one input variable at a time. The new input 

variables are sampled in a fixed cyclic order. 

The output is evaluated after generating each input variables sampling, yielding a sequence of 

output variables.   

3.5. Uncertainty analysis 

The purpose of uncertainty analysis is to quantify the variations of end-use energy consumption as 

a result of the variation in curtain wall design parameters. After the sample has been generated and 

the corresponding simulations have been carried out, the primary computational portions of the 

uncertainty analysis component have been completed. 

There are two measures commonly used. The first is the results represented by single number 

(Scalar result) such as coefficient of variation. The second is the results represented by functions 

such as the probability density function and the cumulative density function. In this study, we 

adopted the scalar result. 

3.5.1 Measure of uncertainty 

The uncertainty is quantified by the coefficient of variation (ν), which is the ratio of the standard 

deviation (σ) to the mean value (μ) given by Equation 3.15 to Equation 3.16. is the number of 

data, is the exact data point. The coefficient of variation (ν) in Equation 3.17 indicates the 

dispersion of the outputs. The smaller the coefficient of variation, the less the deviation of the 

predicted value from the mean value.  

---------------------------------------------------------------------- Equation 3.15 
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------------------------------------------------------------------------------------- Equation 3.16 

 ------------------------------------------------------------------------------------------ Equation 3.17 

 

3.6. Sensitivity analysis 

3.6.1 Selection of global sensitivity analysis methods 

The methodology for sensitivity analysis is the same in different types of application in building 

energy analysis. The first step is to select the appropriate methods for sensitivity analysis. As in 

section 2.2.6, there are local and global sensitivity analysis. In this study, global sensitivity analysis 

is adopted. 

The selection of global sensitivity analysis approaches depends on the relationship between output 

values and the input values (dependency of model), nonlinearity,(non-monotonicity) and offset 

effect between the input values (non-additivity). The variance-based methods or Analysis of 

Variance (ANOVA) are strongly favoured in case that non-additivity of model is difficult to 

decided (A. Saltelli et al., 2000). Both variance-based methods Sobol’ and FAST are able to cope 

with non-linear and non-monotonic models. The capability of ANOVA is evident, however, the 

computational cost of ANOVA is high. Sobol’ method requires totally n(k+2) model evaluations 

while FAST method requires nk model evaluations where n is the sample size and k is the number 

of parameters. 

The variance-based method is based on the decomposition of the model variance. Variance is a 

measure of the dispersion of the output. Therefore, variance-based method is to decompose the 

(dispersion) uncertainty of outputs for the corresponding inputs. In ANOVA, F-test is commonly 

used to evaluate the significance of the output variations to variations in the inputs, while the Tukey 

test and Scheffé test are used to evaluate the effect of input value ranges (Frey & Patil, 2002; 

Montgomery, 2012; Hochberg & Tamhane, 2009). However, the results of the F-test may not be 
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appropriate for the study which contains correlated inputs (Frey & Patil, 2002). In this study, 

orientation is a factor which does not have correlated relationship with other parameters, therefore, 

F-test is used to assess the impact of orientations on the energy consumption. As mentioned in 

section 3.2.1, the three primary thermal and optic properties of glazing, U-value of glazing, solar 

heat gain coefficient and visible transmittance are often correlated. Therefore, other ANOVA 

sensitivity analysis methods such as Sobol’ or FAST should be used in order to address the 

vulnerability of F-test on correlated inputs. 

Single-factor F-test can be employed to investigate the effect of the particular factor on the output 

variable. F-test can also deal with two or more factors for determining the effect of interactions 

among factors. 

In this study, the effect of orientation is quantified by the F-value. 

The calculation of F-value is presented from Equation 3.18 – Equation 3.22 (Ott, 2008) 

mean square between samples explained variance
F-value=

mean square within samples unexplained variance
 ----------------------Equation 3.18 

variability between samples
mean square between samples

degree of freedom between samples
 ----------------Equation 3.19 

Variability between samples = Sum of square between samples (SSB) 

 
2

SSB= i i

i

n y y --------------------------------------------------------------------------- Equation 3.20 

SSB measures the variability of the sample means iy about the overall mean y  

variability within samples
mean square within samples

degree of freedom within samples
 --------------------Equation 3.21 

Variability within samples = Sum of square within samples (SSW) 



Page | 66  

 

       
2

2 2 2

1 1 2 21 1 1ij i t t

ij

SSW y y n s n s n s        ----------------------------Equation 3.22 

SSW measures variability of an observation 
ijy about the its sample mean iy  

The number of degrees of freedom is the number of values in the final calculation of a statistic that 

are free to vary. 

The magnitude of F-value is justified by comparing the F-value to critical values of F-distribution.  

In hypothesis testing, a critical value is a point on the test distribution that is compared to the test 

statistic to determine whether to reject the null hypothesis. If the absolute value of the test statistic 

is greater than the critical value, statistical significance can be declared and the null hypothesis 

should be rejected. In this study, the null hypothesis is that all group means are equal.  

Normally critical values of F-distribution is obtained in tabular form correspond to α (Probability 

of type I error) and the degree of freedom between groups and the degree of freedom within groups. 

Types I error is committed if the null hypothesis is rejected when it is true.  

The process of deriving the critical values of F-distributions was presented in Didonato & Morris, 

(1992). 

Although Sobol’ needs higher computational cost compared to FAST, Sobol’ method is used to 

evaluate the total sensitivity index in this study because sampling based on Sobol’ sequences is 

found to produce the most robust results relative to Latin Hypercube Sample (LHS) when dealing 

with building simulations (Burhenne, 2011).  

Ten parameters are investigated in Sobol’. With sample size of 2048, 24576 model evaluations are 

needed to evaluate the first order sensitivity index and the total sensitivity index. For four 

orientations, 98304 model evaluations are needed. For a more accurate model, larger sample size 

results in high computational cost (Saltelli et al., 2000). 

Sobol’s is one of the quasi-random sampling methods, which has the advantage of enhanced 

convergence rate (Bieda, 2010). The Sobol’ approach is to decompose the function f(x) into 

summands of increasing dimensionality (Pace, 2012). 

https://en.wikipedia.org/wiki/Statistic
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 --------------- Equation 3.23 

Where and are the design parameter and is the number of design parameters. 

The variance of function f(x1,……xk) can be represented as the sum of variances of first order and 

higher order functions.  

The variance of output (D) can then be decomposed as 

 ----------------------------------------------------- Equation 3.24 

Where are first order variances, and are higher order variances 

The sensitivity index is calculated using Equation 3.25 to Equation 3.27.  

The first order sensitivity index   

 --------------------------------------------------------------------------------------- Equation 3.25 

The second order sensitivity index   

 -------------------------------------------------------------------------------------- Equation 3.26 

The total sensitivity index (TSi) is defined as the sum of all the sensitivity indices involving the 

design parameters. We have ten design parameters, the total effect of design parameter 1 on the 

output variance, denoted by TSi (1), is determined by  

 1 12 1 123 12 123(1)i k k kTS S S S S S S         ------------------------------- Equation 3.27 

       1 0 1,2, 1

1 1

, , ,
k k

k i i ij i j k k

i i j k

f x x f f x f x x f x x
   

     

0 constantf  ix k

123

1

k k

i ij k

i j i

D D D D
 

    
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where S1 is the first-order sensitivity index for design parameter 1. S1j is the second-order 

sensitivity index for the two design parameters 1 and j(≠1), i.e. the interaction between design 

parameters 1 and j(≠1). 

When the model is additive, which means that the interacting effect is negligible i.e. the higher 

order values are negligible, the total sensitivity index is similar to the first-order sensitivity index. 
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3.6.2 Interpretation of F-values and sensitivity indices 

When the F-value is sufficiently large, it means that the explained variance or the mean square 

between samples is significant (Equation 3.18), it implied that the differences between the group 

means are significant too. Therefore it can conclude that the single factor contribute significantly 

to the variation of the output variables. In this study, significant impact of orientation on end-use 

energy consumption is represented by large F-value. The magnitude of F-value is justified by 

comparing the F-value to critical values of F-distribution.   

The critical value is the number that the F-value must exceed to reject the hypothesis. If the F-

value is greater than the critical value at α (Probability of type I error), that implies the results are 

significant at α % level of significance. 

First order sensitivity index represents the individual impact of the uncertainty of the input factor 

Xi on the output variation. Second order sensitivity index represents the interaction effect due to 

two parameters in non-additive relationship. Total sensitivity index is the sum of the first order 

sensitivity index of the factor and the higher sensitivity index involved in the investigated study.  

For additive models with no interaction between the factors, first order sensitivity index = total 

sensitivity index (Si=TSi) and summation of first order sensitivity indices = 1 (∑Si=1). The 

estimation of the pair Si and TSi is important to evaluate the difference in the impact of factor Xi 

alone on output Y and the overall impact of factor Xi through interactions  

The first order effects consider the main effects for the output variations due to the corresponding 

inputs. The total effects account for the total contributions to the output variance due to the 

corresponding inputs, which include both first order and higher-order effects because of 

interactions among inputs. 

Hence, the difference between the first order and total effects can show the effects of interactions 

between variables. The first order indices and the total indices are different, indicating factors are 

involved in significant interactions. If the objective of the research is to fix the factors which are 

not important in the output results, the total sensitivity effects should be used. In contrast, if the 

purpose is to prioritize the factors, the first order effects are a better choice (Tian, 2013).  
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The total effects are much more reliable than the first-order effects in order to investigate the 

overall effect of each single input on the output (Frey & Patil, 2002). Therefore, total sensitivity 

indices are used in this study. 

The significance of the impact can be classified (Chan et al., 1997, Frey & Patil, 2002). 

 very significant TSi > 0.8 

 significant  0.5< TSi < 0.8 

 insignificant 0.3< TSi < 0.5 

 irrelevant TSi < 0.3 
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Chapter 4 Result 

4.1 Uncertainty analysis  

Table 4.1 shows the coefficient of variation of end-use energy of the office unit with various 

curtain wall configurations at four cardinal orientations. The higher value of the coefficient of 

variation implies greater dispersion of the output data and greater variations of the end-use energy 

consumption due to random combinations of curtain wall design parameters.   

In general, the coefficient of variation is similar for all the four orientations for heating, lighting 

and total energy consumption, which is about 34-38%, 28%, and 16-20%, respectively. For the 

cooling energy consumption though, the dispersion is about 55% for the east and west, 65% for 

the south, and 42% for the north. These results indicate that the variation of curtain wall 

configurations has generally greater impact on the cooling followed by heating, lighting and total 

energy consumption. As for cooling, the variation of curtain wall configurations has much less 

impact on north façade than on the other three orientations while the south façade is the most 

sensitive to the curtain wall design parameters. The energy generation to energy consumption ratio 

has the largest coefficient of variation from 61% in the south facing façade to 66% in the west 

facing façade. Therefore, the variation of curtain wall configurations has more significant impact 

on the energy balance than on the energy consumption.  

Table 4.1. Coefficient of variation (υ) of the end-use energy of the office unit with various 

curtain wall configurations at four cardinal orientations. 

Cardinal 

Direction 
Heating Cooling Lighting Total 

Generation to 

Consumption Ratio 

East 0.339 0.550 0.280 0.186 0.645 

South 0.378 0.648 0.279 0.165 0.610 

West 0.342 0.564 0.283 0.201 0.660 

North 0.342 0.421 0.291 0.186 0.640 
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Figure 4.1. The boxplot of heating energy consumption and coefficient of variation in four 

cardinal orientations. 

 

Figure 4.2.  The boxplot of cooling energy consumption and coefficient of variation in four 

cardinal orientations. 
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Figure 4.3. The boxplot of lighting energy consumption and coefficient of variation in four 

cardinal orientations. 

 

Figure 4.4. The boxplot of lighting energy consumption and coefficient of variation in four 

cardinal orientations. 
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Table 4.2. Breakdown of the end-use energy over the total energy consumption for four cardinal 

orientations. 

  East South West North 

  Min Average Max Min Average Max Min Average Max Min Average Max 

Heating 18% 45% 67% 8% 39% 67% 19% 46% 68% 23% 55% 75% 

Cooling 3% 16% 47% 2% 17% 57% 3% 17% 49% 2% 8% 25% 

Lighting 7% 13% 33% 7% 14% 33% 6% 12% 33% 6% 13% 33% 

Fan power & plug load 17% 25% 40% 19% 29% 45% 16% 25% 40% 15% 24% 40% 

Figure 4.1 - 4.4 show the box plot of the heating, cooling, lighting and total energy consumption 

of this office unit for each cardinal orientation. Table 4.2 shows the breakdown of heating, cooling 

and lighting energy over the total energy consumption for the four cardinal orientations. On 

average, heating, cooling and lighting takes 45-55%, 8-17%, 13% of the total energy consumption, 

respectively.   

4.2 Sensitivity analysis 

4.2.1 The impact of orientations 

As shown in Table 4.3, there is a significant influence of orientations on end-use energy 

consumption and energy balance.  In all end-use energy consumption, F-values are greater than 

the critical values at 5% significance level with very small p-values which are close to 0. P-value 

is also called level of significance. It is defined as the probability of obtaining a value of the test 

statistic that is likely to reject null hypothesis.  

The null hypothesis in the case of heating energy consumption is that the average values of heating 

energy consumptions are the same among four orientations. By the same token, the null hypothesis 

in case of the rest of the end-use energy consumptions is that the average values of the energy 

consumptions are the same among four orientations. 

Since p-values in heating, cooling, lighting, annual total energy consumption and the energy 

balance are very small which is smaller than 0.0005, the null hypothesis that the average values of 

energy consumptions are the same among four orientations can be rejected.  
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The impact of orientations is quantified by the magnitude of F-values. A large value of F-value 

represents large variance of end-use energy consumptions among four orientations.  

Since the F-values of energy balance is the highest, the variance of energy balance among four 

orientations is the most significant. It explained the impact of orientation on energy balance is the 

greatest, followed by heating, total and cooling. The impact of orientation on lighting energy 

consumption is the least. The results agree with the study by Nasrollahi, (2013). 

Table 4.3. F-test results on end-use energy consumption. 

 F-values Critical values 

Heating energy consumption  (F3,98300 = 7893 , p < .0005) 1.55 

Cooling energy consumption  (F3,98300 = 6763 , p < .0005) 1.55 

Lighting energy consumption  (F3,98300 = 192 ,   p < .0005) 1.55 

Total energy consumption  (F3,98300 = 5198 , p < .0005) 1.55 

Energy Balance  (F3,98300 = 8520 , p < .0005) 1.55 

4.2.2  The impact of ten parameters 

Ranking of the significance of each design parameter is obtained based on their total sensitivity 

index. As shown in Table 4.4 and Figure 4.5, the window wall ratio (WWR), U-value of glazing 

and infiltration are the three most significant parameters influencing the annual heating energy 

consumption in the perimeter zone of the office unit for all the four orientations. The WWR has 

the most significant impact for all orientations. The total sensitivity index of WWR ranges from 

0.63 for the south orientation to 0.8 for the north orientation. The influence of WWR and U-value 

of glazing is comparable for south orientation while the influence of WWR is twice greater than 

U-value in the north orientation. The total sensitivity index of U-value of glazing is about 1.7-2 

times greater than that of the third most significant parameter, i.e. infiltration. The fourth most 

significant parameter is SHGC. Other design parameters such as the overhang inclination and 

depth, U-value of frame and visible transmittance have comparable impact on the annual heating 

energy consumption for all four orientations. The influence of U-value of spandrel panel is the 

least for all four orientations. 
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Table 4.4. Ranking of the nine design parameters for annual heating energy consumption and 

their corresponding total sensitivity index for the four cardinal orientations. 

Rank East     South     West     North   

1 WWR 0.69  WWR 0.63  WWR 0.71  WWR 0.79 

2 Ugl  0.52  Ugl 0.55  Ugl  0.50  Ugl  0.41 

3 Infiltration 0.25  Infiltration 0.32  Infiltration 0.23  Infiltration 0.19 

4 SHGC  0.19  SHGC  0.29  SHGC  0.18  SHGC  0.14 

5 Depth 0.15  Depth 0.26  Depth 0.14  Ufr  0.11 

6 Inclination 0.14  Inclination 0.20  Inclination 0.14  Inclination 0.11 

7 Ufr  0.14  Ufr  0.19  Ufr  0.13  Depth 0.11 

8 Tv  0.14  Tv  0.18  Tv  0.13  Tv  0.11 

9 Usp  0.12   Usp  0.16   Usp  0.11   Usp  0.09 

 

Figure 4.5. Total sensitivity index of the nine design parameters for the annual heating energy 

consumption. 
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Table 4.5. Ranking of the nine design parameters for annual cooling energy consumption and 

their corresponding total sensitivity index for the four cardinal orientations. 

Rank East         South     West     North   

1 WWR 0.75  WWR 0.70  WWR 0.76  WWR 0.60 

2 SHGC  0.19  SHGC  0.25  SHGC  0.19  SHGC  0.39 

3 Depth 0.06  Depth 0.08  Depth 0.06  Ugl  0.06 

4 Ugl  0.03  Ugl  0.04  Ugl  0.02  Depth 0.03 

5 Inclination 7x10-3  Tv  0.01  Tv  6x10-3  Tv  0.02 

6 Tv  4x10-3  Infiltration 5x10-3  Inclination 6x10-3  Infiltration 7x10-3 

7 Infiltration 2x10-3  Inclination 2x10-3  Infiltration 1x10-3  Usp  7x10-3 

8 Usp  2x10-3  Usp  2x10-3   Usp  1x10-3  Inclination 6x10-3 

9 Ufr  2x10-4   Ufr  3x10-4   Ufr  1x10-4   Ufr  2x10-3 

 

Figure 4.6. Total sensitivity index of the nine design parameters for annual cooling energy 

consumption. 
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As shown in Table 4.5 and Figure 4.6, the WWR, SHGC, and the depth of overhang are the three 

most significant parameters influencing the annual cooling energy consumption in the perimeter 

zone of the office building. The WWR has the most significant impact with a total sensitivity index 

of 0.75, which is about 4 times greater than the second most significant parameter, i.e. SHGC on 

the east and west orientation. For the south façade, the total sensitivity index of WWR is about 

0.7, which is 2.8 times greater than SHGC, while on the north façade the total sensitivity index of 

WWR is 0.6, which is 1.5 times greater than SHGC. The depth of overhang ranks the third for the 

east, south and the west, however its influence is much smaller (total sensitivity index of about 

0.06-0.08) compared to WWR and SHGC. For the north façade, U-value of glazing ranks the 3rd 

with a total sensitivity index of 0.06. The influence of U-value of frame, infiltration, U-value of 

spandrel panel, and visible transmittance are negligible on the cooling energy consumption for all 

the four orientations.  

As shown in Table 4.6 and Figure 4.7, the WWR, depth of overhang (Depth) and inclination of 

overhang (Inclination) are the three most significant parameters influencing the annual lighting 

energy consumption in the perimeter zone of the office unit for east, south and west orientation. 

The WWR has the most significant impact with a total sensitivity index of about 0.88, which is 

about 4-5 times greater than the second most significant parameter, i.e. depth of overhang. The 

second most significant parameter, i.e. overhang depth, has a total sensitivity index of 0.16 to 0.23, 

which is about twice greater than the overhang inclination. The visible transmittance ranks the 4th 

and has similar total sensitivity indices as the overhang inclination. Other design parameters such 

as SHGC, U-value of glazing, U-value of frame, U-value of spandrel, and infiltration has little 

influence on the lighting energy consumption.  
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Table 4.6. Ranking of the nine design parameters for annual lighting energy consumption and 

their corresponding total sensitivity index for the four cardinal orientations. 

Rank East     South     West     North   

1 WWR 0.88  WWR 0.90  WWR 0.89  WWR 0.86 

2 Depth 0.19  Depth 0.23  Depth 0.20  Depth 0.16 

3 Inclination 0.09  Inclination 0.11  Inclination 0.10  Tv  0.10 

4 Tv  0.08  Tv  0.06  Tv  0.07  Inclination 0.08 

5 Ugl  2x10-3  SHGC  6x10-4  Ugl  1x10-4  SHGC  9x10-4 

6 SHGC  1x10-4         Ugl 7x10-5   SHGC  6x10-6   Ugl  4x10-4 

 

Figure 4.7. Total sensitivity index of the nine design parameters for annual lighting energy 

consumption. 
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Table 4.7. Ranking of the nine design parameters for annual energy consumption including 

heating, cooling and lighting and their corresponding total sensitivity index for the four cardinal 

orientations. 

Rank East     South     West     North   

1 WWR 0.96  WWR 0.93  WWR 0.95  WWR 0.90 

2 Ugl 0.31  Ugl  0.43  Ugl  0.28  Ugl  0.40 

3 Infiltration 0.17  Infiltration 0.25  Infiltration 0.15  Infiltration 0.20 

4 Inclination 0.11  Depth 0.22  Inclination 0.09  SHGC  0.12 

5 Depth 0.11  Inclination 0.19  Depth 0.09  Inclination 0.12 

6 Ufr 0.10  SHGC  0.18  SHGC  0.09  Depth 0.12 

7 Tv 0.10  Ufr  0.16  Ufr  0.09  Ufr  0.12 

8 SHGC 0.10  Tv  0.16  Tv  0.09  Tv  0.11 

9 Usp 0.08   Usp  0.13   Usp  0.07   Usp  0.09 

 

Figure 4.8. Total sensitivity index of the nine design parameters for annual lenergy consumption 

including heating, cooling and lighting. 
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As for the annual energy consumption for space conditioning and lighting in Table 4.7 and Figure 

4.8, similar to the annual heating energy consumption, the WWR, U-value of glazing, and 

infiltration are the three most significant parameters. The total sensitivity index of WWR is 0.90 

to 0.96, which is about 2-3 times greater than the second most significant parameter. Design 

parameters such as SHGC, the overhang inclination and depth, U-value of frame and visible 

transmittance have comparable impact on the annual energy for space conditioning and lighting in 

all four orientations. The influence of U-value of spandrel panel is the least. It seems that all the 

design parameters have slightly greater influence on the annual total energy consumption for south 

façade than on other orientations. Due to the lower solar radiation received, the influence of U-

value of glazing and infiltration on north façade is greater than that on the east and west façade.  

The difference between annual energy generation and annual energy consumption is the energy 

balance. As shown in Table 4.8 and Figure 4.9, WWR, PV efficiency, and glazing U-value are the 

three most significant parameters influencing the energy balance in the perimeter zone.  Again, the 

influence of WWR is the most significant with a total sensitivity index of about 0.90 to 0.96, which 

is about 4 to 11 times greater than the PV efficiency, the second most significant parameter. As 

shown in Figure 4.9, the WWR has the most significant influence on the annual energy 

consumption for space conditioning and lighting, in the meantime, the WWR directly determines 

the spandrel area available for PV integration since in this paper PV modules are assumed to be 

integrated within the spandrel panel. The influence of PV efficiency is about 1.8 times greater for 

the east and west façade, about 2.2 times greater for the south façade than the U-value of glazing 

and about the same as the U-value of glazing for the north façade. Other design parameters are not 

significant.  
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Table 4.8. Ranking of the ten design parameters for energy balance and their corresponding total 

sensitivity index for the four cardinal orientations. 

Rank East     South     West     North   

1 WWR 0.87  WWR 0.82  WWR 0.88  WWR 0.89 

2 PV 0.09  PV 0.09  PV 0.08  PV 0.18 

3 Ugl  0.05  Ugl  0.04  Ugl  0.05  Ugl  0.16 

4 Infiltration 0.03  Depth 0.03  Infiltration 0.03  Infiltration 0.08 

5 Depth 0.02  Infiltration 0.02  Depth 0.02  Depth 0.05 

6 Inclination 0.02  Inclination 0.02  Inclination 0.02  Inclination 0.05 

7 Ufr  0.02  SHGC  0.01  SHGC  0.02  SHGC  0.05 

8 SHGC  0.02  Usp  0.01  Ufr  0.02  Ufr  0.05 

9 Tv  0.02  Ufr  0.01  Tv  0.02  Tv  0.05 

10 Usp  0.02   Tv  0.01   Usp  0.01   Usp  0.04 

 

Figure 4.9. Total sensitivity index of the ten design parameters for the energy balance. 
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4.3 Plus-energy curtain wall configurations 

As discussed in section 4.2, WWR, PV efficiency and U-value of glazing are the three most 

significant parameters influencing the energy balance of the perimeter zone of the office building 

located in Montreal. The influence of the fourth parameter is comparable to the third design 

parameter. The influence of other design parameters is not significant.   

Among the 98,304 simulations, there are 4250 cases (17%) for the east façade, 9613 cases (39%) 

for the south façade, 4111 cases (17%) for the west façade, and zero case for the north façade that 

have achieved the annual energy balance. Table 4.9 shows the range of each of the ten design 

parameters for all plus-energy curtain wall configurations. Except for WWR, the range of the other 

nine parameters in plus-energy curtain wall configurations is the same as the original range of 

parameters propagated throughout all simulations for the east, south and west orientations. There 

are no configurations that can achieve energy balance for the north façade (Figure 4.10). This 

implies that WWR is the dominant factor that distinguishes plus-energy configurations and non 

plus-energy configurations. As shown in Figure 4.11, when the WWR is greater than 50%, no 

curtain wall configurations sampled can achieve the energy balance for the east façade. At a WWR 

of 60% for the south façade (Figure 4.12) and 50% for the west façade (Figure 4.13), respectively, 

no curtain wall configurations sampled can achieve the energy balance. Therefore it is necessary 

to investigate the range of other nine parameters in each bin of WWR.  
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Table 4.9. Range of the ten parameters of plus-energy curtain wall configurations. 

  East South West North 

Total no. of sampled cases 24576 24576 24576 24576 

No. of plus energy configuration 4250 9613 4111 0 

Percentage of plus-energy configuration 17% 39% 17% 0 

Range of WWR 0.10-0.47 0.10-0.61 10-47% n/a 

Range of PV 0.09-0.19 0.09-0.19 0.09-0.19 n/a 

Range of Ugl 1.10-2.40 1.10-2.40 1.10-2.40 n/a 

Range of SHGC 0.33-0.70 0.33-0.70 0.33-0.70 n/a 

Range of Tv 0.16-0.79 0.16-0.79 0.16-0.79 n/a 

Range of Ufr 0.80-8.80 0.80-8.80 0.80-8.80 n/a 

Range of Usp 0.15-0.28 0.15-0.28 0.15-0.28 n/a 

Range of Infiltration 0.01-0.22 0.01-0.22 0.01-0.22 n/a 

Range of Overhang Depth 0.10-1.00 0.10-1.00 0.10-1.00 n/a 

Range of Overhang Inclination 0-90 0-90 0-90 n/a 

 

Figure 4.10. Energy generation against energy consumption in north façade with various WWR. 
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Figure 4.11. Energy generation against energy consumption of east façade with various WWR. 

  

Figure 4.12. Energy generation against energy consumption in south façade with various WWR. 
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Figure 4.13. . Energy generation against energy consumption in west façade with various WWR. 

Table 4.10 shows the breakdown of the range of parameters for each bin of WWR. When WWR 

is smaller than 40%, the range of design parameters in the plus-energy configurations is similar to 

the original range for the east, south, and west façades, which implies that with the proper 

combination these façades can achieve the energy balance using products available. When the 

WWR increases, the configurations that can achieve energy balance decreases.  

To generalize the conclusions, the three most significant parameters, WWR, U-value of glazing 

and PV efficiency are further analyzed by setting these parameters at intervals with all the other 

parameters set at the mean values of their range. In total, 1000 configurations for each of the three 

orientations that have achieved energy balance are assembled and re-simulated. The results are 

presented in Figure 4.14 to Figure 4.17. The color bars shown in these figures are the differences 

between the energy generation and the total annual energy consumption. Positive value means that 

the energy generation is greater than the total annual energy consumption, i.e. plus energy.        
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Table 4.10. Breakdown of the range of design parameters for each bin of WWR of plus-energy 

configurations. 

East 

WWR 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.47    

Range of PV 0.09-0.19 0.10-0.19 0.13-0.19 0.17-0.19   

Range of Ugl 1.10-2.40 1.10-2.40 1.10-2.40 1.10-1.79   

Range of SHGC 0.33-0.70 0.33-0.70 0.33-0.70 0.33-0.70   

Range of Tv 0.16-0.79 0.16-0.79 0.16-0.79 0.21-0.79   

Range of Ufr 0.80-8.80 0.80-8.80 0.80-8.78 1.11-7.71   

Range of Usp 0.15-0.28 0.15-0.28 0.15-0.28 0.16-0.28   

Range of Infiltration 0.01-0.22 0.01-0.22 0.01-0.22 0.01-0.16   

Range of Overhang Depth 0.10-1.00 0.10-1.00 0.10-1.00 0.17-0.84   

Range of Overhang Inclination 0-90 0-90 0-90 5-88    

South 

WWR 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6 

Range of PV 0.09-0.19 0.09-0.19 0.09-0.19 0.11-0.19  0.14-0.19  0.18-0.19 

Range of Ugl 1.10-2.40 1.10-2.40 1.10-2.40 1.10-2.40 1.10-2.40  1.23-1.33 

Range of SHGC 0.33-0.70 0.33-0.70 0.33-0.70 0.33-0.70 0.33-0.70 0.39-0.42 

Range of Tv 0.16-0.79 0.16-0.79 0.16-0.79 0.16-0.79 0.17-0.79 0.47-0.68 

Range of Ufr 0.82-8.80 0.80-8.80 0.80-8.80 0.80-8.80 0.84-8.78 4.18-6.46 

Range of Usp 0.15-0.28 0.15-0.28 0.15-0.28 0.15-0.28 0.15-0.28 0.20-0.24 

Range of Infiltration 0.01-0.22 0.01-0.22 0.01-0.22 0.01-0.22 0.01-0.22 0.02-0.07 

Range of Overhang Depth 0.10-1.00 0.10-1.00 0.10-1.00 0.10-1.00 0.11-1.00 0.33-0.61 

Range of Overhang Inclination 0-90 0-90 0-90 0-90 0-86 33-35 

West 

WWR 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.47    

Range of PV 0.09-0.19 0.11-0.19 0.13-0.19 0.17-0.19   

Range of Ugl 1.10-2.40 1.10-2.40 1.10-2.40 1.11-1.79   

Range of SHGC 0.33-0.70 0.33-0.70 0.33-0.70 0.34-0.67   

Range of Tv 0.16-0.79 0.16-0.79 0.16-0.79 0.21-0.78   

Range of Ufr 0.80-8.80 0.80-8.80 0.80-8.80 1.20-7.71   

Range of Usp 0.15-0.28 0.15-0.28 0.15-0.28 0.16-0.27   

Range of Infiltration 0.01-0.22 0.01-0.22 0.01-0.22 0.01-0.14   

Range of Overhang Depth 0.10-1.00 0.10-1.00 0.10-1.00 0.17-0.82   

Range of Overhang Inclination 0-90 0-90 0-90 5-88    
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Figure 4.14 (a) shows the energy balance of all curtain wall configurations while Figure 4.14(b) 

shows plus-energy curtain wall configurations with respect to the three most significant parameters 

for the east façade. With the increase of WWR, to achieve the energy balance curtain wall design 

with lower glazing U-value and higher PV efficiency is required. At a WWR of 40%, if the PV 

efficiency is at the maximum of 19%, the glazing U-value can be any value within its range. 

Similarly as shown in Figure 4.15 for the west façade, when the WWR is higher than 40%, no 

configurations sampled can achieve the energy balance. For south façade (Figure 4.16), there are 

more configurations that can achieve the energy balance and the WWR can be generally increased 

up to 60%. At a WWR of 50%, if the PV efficiency is higher than 17%, the glazing U-value can 

be any value within its range.  

 

Figure 4.14. Voxel plot of energy performance with respect to the three most significant design 

parameters in the east façade (a) all curtain wall configurations (b) plus-energy curtain walls 

configurations. Color bars show the difference between energy generation and energy 

consumption in kWh/m2 per year. Positive means “plus energy”. 
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Figure 4.15. Voxel plot of energy performance with respect to the three most significant design 

parameters in the west façade (a) all curtain wall configurations (b) plus-energy curtain walls 

configurations. 

 

Figure 4.16. Voxel plot of energy performance with respect to the three most significant design 

parameters in the south façade (a) all curtain wall configurations (b) plus-energy curtain walls 

configurations. 
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Chapter 5 Plus-energy curtain wall configurations design tools 

5.1 Introduction 

Designing the plus-energy curtain wall is not an easy task because curtain walls are not energy 

consumers and therefore, there is no energy accounting at the curtain wall level. Designing plus-

energy curtain walls needs to take into account the interdependency relationship among the design 

parameters of curtain walls, the outdoor conditions and also the indoor conditions. The current 

building performance simulations tools can only provide the numerical values of building 

performance when a particular curtain wall configuration is specified; that is, these tools are 

evaluation tools based on user inputs, there is a one-to-one relationship between inputs and results.  

Solely using building simulations programs cannot easily assess the impact of decisions on 

building energy performance.  During the early design stages, comparing design alternatives is 

more important than evaluating absolute values of building performance. Most existing building 

performance simulations tools are only post-design evaluation (Attia et al., 2012).  It is difficult to 

reach the optimum plus-energy curtain walls configurations by going through repeated simulations 

processes, which can range from an ad-hoc parametric study with no guarantee of optimal 

solutions. On the other hand, there are solution-finding tools, such as optimization, that result in 

solutions based on user desired set of performance criteria. The solutions are optimal only with 

respect to the setting at the time of performing the optimization and therefore are highly 

constrained. 

The result of these processes is a set of solutions, which the designers can either accept or reject, 

but not interactively involve in the process and make their own choices.  This chapter proposes a 

design tool to generate the desired plus-energy curtain wall configurations and presents the results 

of the development of such tool.  The main objective is to enhance and facilitate the design 

processes for plus-energy curtain walls. The results demonstrate that the design tool is useful for 

curtain wall designers. The proposed design tool is currently a developing framework which needs 

more simulated results in different scenarios and climates zones before being adopted as 

commercial application.   
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5.2 Design tool overview 

This design tool is based on Microsoft Excel visual basic programming platform. It is meant to 

facilitate the design process of plus-energy curtain walls, and thus, the tool should offer a user-

friendly interface with reduced number of inputs such that the designers could take full control of 

the design process.   

5.3 Design tool workflow 

A database is formed based on the previous simulation results. Base on the sensitivity analysis 

results, the configurations of plus-energy curtain walls are determined by the most three sensitive 

parameters, the WWR, the efficiency of photovoltaic panels and the u-value of glazing. The impact 

of the forth and the later sensitivity parameters is little such that the values of them does not affect 

the performance of plus-energy curtain walls. The barrier to integrate building performance 

simulation programs during early design phases is too many user inputs in the programs. In such 

case, the design tool is developed to address this challenge by reducing input parameters. The 

design tool requires the user to input the values of three parameters only, the database will filter 

out the configurations from the database which are not belonging to the specified values of the 

three parameters. The design tool then generates the configurations of plus-energy curtain walls 

and also their associated energy performance. Figure 5.1 shows the workflow of the design tool. 
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Figure 5.1. The Workflow of the design tool. 

5.4 Design tool interface 

As suggested, the design tool should offer a user-friendly interface to facilitate the design process. 

The objective in providing such interface is to allow the designers to explore the design options 

freely without being constrained by the tool. By contrast, current tools only offer definitive 

solutions that preclude designers from exploring design alternatives that might offer similar energy 

performance level with drastically different designs. Figure 5.2 presents the graphical user 

interface of the proposed design tool.  
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Figure 5.2. The graphical user interface of the proposed design tool. 

As explained in previous section, WWR, the efficiency of photovoltaic panels and the U-value of 

glazing are found to be the most sensitive input parameters out of the ten parameters that have 

been investigated, which imply the alteration of any one of these three inputs will have a huge 

impact to the energy performance of the design. For this reason, it will be of interest to the 

designers to explore how these input parameters affect the energy performance individually (by 

changing one input parameter at a time) or collectively (by changing all three inputs at the same 

time over a range of values for each input).  

The primary steps are:  

1. Defining the values of Window Wall Ratio (WWR), Effective efficiency of Photovoltaic 

Panels (PV), and Glazing U-values (Ugl), 

2. Filtering the configurations. This is done by clicking the icon (Filter Data). All the curtain 

walls configurations including “plus-energy” and non- “plus-energy” are listed out.  

3. Comparing configurations of interest. The user can compare selected configurations side-

by-side by scrolling the scroll bar.  

Figure 5.3 highlights the interface that allows users to input the values to WWR, the effective 

efficiency of photovoltaic panels and the u-value of glazing individually. Table 5.1 list the range 

and the interval of the three parameters. 
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Figure 5.3. The Interface to input values for the three most sensitive parameters. 

 

 

Table 5.1. The range and the interval of the three parameters. 

 Description Range Interval 

WWR Window Wall Ratio 0.1-0.9 0.1 

PV Effective efficiency of photovoltaic panels 0.09-0.18 0.01 

Ugl Glazing U-value 1.1-2.4 0.01 

 

WWR is allowed to be inputted over a range from 0.1 to 0.9, whereas efficiency of photovoltaic 

panels and the u-value of glazing can vary from 0.09 to 0.18 and 1.1 to 2.4 respectively. Users can 

define these values as wish and explore the impact on the fly. 

Figure 5.4 highlights the “Filter Data” button which extracts the configurations from the database 

that correspond to the set of input values.  
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Figure 5.4. The “Filter Data” button. 

Figure 5.5 highlights the “Clear Data” button. To investigate the impact with another set of input 

values, the users only need to “Clear Data” and extract configurations again with “Filter Data”. 

 

 

Figure 5.5. The “Clear Data” button. 

 



Page | 96  

 

The configurations will be displayed six at a time in the result display area. To help users to 

navigate through all possible configurations, Figure 5.6 highlights the slide bar that allows users 

to switch from one screen to another, in which each contains six configurations at a time. 

 

Figure 5.6. The Slide Bar to navigate through configurations. 

Figure 5.7 highlights the result display area. The result includes the performance details of each 

configuration.  

 

 

 

 

Figure 5.7.  The result display area. 
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In the result display area, five different pieces of information are presented, namely: 

1. Bar chart that displays the heating energy consumption 

2. Bar chart that displays the cooling energy consumption 

3. Bar chart that displays the lighting energy consumption 

4. Bar chart that displays the total energy consumption and generation 

5. Dial that indicates the energy generation / consumption ratio. Value passes beyond 1 

(yellow to green region) represents a plus-energy configuration. 

On a separate spreadsheet in Figure 5.8, numerical values of performance details and specification 

of the configurations (values of other design parameters) of all filtered configurations are listed. 

 

Figure 5.8. The spreadsheet lists specification of the configurations (values of other design 

parameters) of all filtered configurations. 

This user interface promotes users to explore the impact of their design action (selecting different 

design options, in this case, the three most sensitive design parameters).  
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5.5 Design tool demonstration 

Step 1:  Defining the values of Window Wall Ratio (WWR), Effective efficiency of Photovoltaic 

Panels (PV), and Glazing U-values (Ugl). For example, WWR=0.3, PV=0.15, Ugl=1.8  

Step 2:  Filtering the configurations.  

Figure 5.9 shows all the configurations which fulfill the specified values of three parameters in 

step 1.  
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Figure 5.9. Thirty configurations which fulfill the specified values of three parameters 

(WWR=0.3, PV=0.15, Ugl=1.8). 

5.6 Conclusion 

As suggested, the design tool should offer a user-friendly interface to facilitate the design process. 

The objective in providing such interface is to allow the designers to explore the design options 

freely without being constrained by the tool.  

The proposed design tool presented here illustrates that the design process can indeed be an 

interactive one. Exploration through different sets of inputs promotes the designers to have a 

holistic understanding of the different design options.  

The tool at its present state returns all configurations correspond to the set of inputs. This design 

setup serves an educational purpose to the designers as it returns all filtered configurations, 

including both plus-energy and negative-energy one. By skimming through different sets of inputs, 

the designers could grasp a sense of how well a certain sets of inputs are doing (e.g. resulting in 

more plus-energy configurations). An improvement to the interface shall make it able to inform 

the users the energy performance of different set of inputs, which can be represented by a 

percentage that shows the proportion of plus-energy configurations over all filtered configurations. 
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Configurations can also be sorted in descending order from the most positive energy one to the 

most negative energy one.     

Another enhancement to the design tool is to include an optional button to filter out only the plus-

energy curtain wall configurations. In such case, some sets of inputs might return only a few 

potential design configurations (that achieve plus-energy curtain wall status) while some sets 

might return many possible configurations. The descriptive statistic of the energy performance can 

also be displayed. The designers will then be empowered with full knowledge of the energy 

performance potential of any set of inputs. In fact, it is not just about more or fewer configurations, 

but also the net energy generation potential. Certain sets of inputs might return fewer number of 

configurations with high net energy generation. This potentially higher energy generation 

capability introduces higher uncertainty, since fewer configurations can achieve this high energy 

generation potential. For example, a change in glazing U-value (one of the inputs) might readily 

turn a plus-energy configuration into a negative energy one. More about performance uncertainty 

was discussed in Chapter 4. 

An extra feature to the design tool is to allow the inputs to be set over a range (rather than a single 

value). The resulting filtered configurations will then represent the aggregated effect of changing 

the input parameters collectively. This feature is particularly useful to facilitate designers to take 

on an integrated design approach. In this chapter, the potential application of this design tool has 

been demonstrated. The exact setup and the set of features of the tool shall be determined under 

consultation with the end users. 
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Chapter 6 Conclusion 

With the advancement of technologies and the desire to improve building energy efficiency, there 

is a need to investigate the potential and opportunities to improve curtain walls from “energy sinks” 

to “plus-energy” façade. Given the typical large glazing area in curtain walls and the relatively low 

thermal performance of metal and glass, the energy performance of buildings with curtain walls, 

especially the perimeter zone, is more sensitive to the climatic conditions and the variation of 

façade design compared to buildings with opaque insulated façade. To account for the complex 

interacting effect of façade design parameters on the energy performance, the Analysis of Variance 

(ANOVA) approach is adopted for the global sensitivity analysis to identify the most significant 

façade design parameters and identify feasible curtain wall design configurations within available 

products that can achieve energy balance for the perimeter zone of office buildings.  

An office unit in the perimeter zone of a typical office building located in Montreal is modeled in 

EnergyPlus with various curtain wall configurations. Ten design parameters including glazing U-

value, solar heat gain coefficient (SHGC), and visible transmittance (Tv); U-value of the spandrel 

panel, U-value of the mullion, window wall ratio (WWR), infiltration rate, depth and inclination 

of the overhang, and efficiency of the PV modules, are studied. In total, 98,304 configurations of 

curtain walls are simulated for the four cardinal orientations.  

The uncertainty analysis shows that: 

 the variation of curtain wall configurations has generally greater impact on the cooling (=42-

65%) followed by heating (=34-38%), lighting(=28%) and total energy consumption (=16-

20%). The variation of curtain wall configurations has much less impact on the cooling energy 

consumption for north façade (=40%) than the other three orientations with the greatest 

impact on the south façade (=65%). 

 the energy generation to energy consumption ratio has the highest coefficient of variation about 

61-66%, which indicates the variation of curtain wall configurations has more significant 

impact on the energy balance.  
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The global sensitivity analysis shows that: 

WWR is the most significant design parameter influencing the heating, cooling, lighting and total 

energy consumption and the energy balance for the office unit in the perimeter zone. Typically the 

total sensitivity index of WWR is 1.5 to 5.0 times greater than the second significant parameter for 

the energy consumption.  

WWR, U-value of glazing and infiltration rate are the three most significant parameters 

influencing the annual heating energy consumption;  

WWR, SHGC, and depth of overhang are the three most significant parameters influencing the 

annual cooling energy consumption for the east, south and west orientation. For the North 

orientation, U-value of glazing is the 3rd most significant parameter; 

WWR, depth of overhang and inclination of overhang are the three most significant parameters 

influencing the annual lighting energy consumption for east, west and south orientations. For the 

north orientation, the visible transmittance Tv ranks the 3rd. The influence of inclination and Tv 

is comparable for all orientations.  

Given that Montreal is in a heating-dominated climate, similar to the heating energy consumption, 

WWR, U-value of glazing, and infiltration are the three most significant parameters influencing 

the total annual energy consumption.  

Given that WWR directly affects the spandrel surface area available for mounting PV modules, 

the WWR is the most significant parameter influencing the energy balance in the perimeter zone 

with a total sensitivity index about 8 to 13 times greater than the second most significant parameter, 

PV efficiency. The influence of PV efficiency is about 2 to 3.5 times greater than the third most 

significant parameter, i.e. U-value of glazing. 

Energy balance can be achieved with the proper combination of WWR, U-glazing and PV 

efficiency. In general, with the increase of WWR, the number of possible configurations that can 

achieve the energy balance decreases.  
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For the east and west façade, when the WWR is greater than 40%, it is very difficult to achieve 

the energy balance. For the south façade, the WWR can be generally increased up to 60%. For 

North façade, no curtain wall configurations within the ranges studied can achieve energy balance.  

A greater WWR may be specified in curtain wall design for each orientation, however, to achieve 

the energy balance, higher efficiency PV modules and better insulated glazing units need to be 

applied to offset the additional energy consumption due to the larger glazing area.  

5.1 Contribution of research 

 The methodology presented in this study helps facilitate the design process to resolve the issues 

with conflicting effects of design parameters.  

 The configuration of energy generating curtain walls which perform resiliently under a certain 

range of building operations are proposed in this study. 

 The energy impact of individual design parameters of curtain walls are investigated with 

considerations of all the interdependent relationship between the parameters. 

 A design tool is proposed to facilitate designers to explore impact on energy performance due 

to different design alternatives. 

5.2 Recommendation of future work 

The current study assumes PV modules integrated into spandrel area and only the electricity 

generated by the PV modules are considered as energy generation. The contribution of thermal 

energy that can be collected from the PV modules will contribute to further energy generation, 

which will have an influence on the façade design. The current study presents the development of 

the methodology and its application to a cold-climate with low internal gain (i.e. assumed highly 

energy efficient equipment). Future studies will investigate the influence of climatic conditions, 

internal gains, the integration of BIPV/T, building control strategies, daylight utilization and other 

advanced technologies such as automated shading control, etc.   
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using the Analysis of Variance (ANOVA) approach, Energy and Buildings. (under revision) 

3. Lam, T. C., Hua Ge, and Paul Fazio, 2015, Impact of curtain wall configurations on the 
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