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Abstract 

Multiple-inlet Building Integrated Photovoltaics: Modeling and Design including Wind Effects 

Efstratios Dimitrios Rounis 

Air-based, open loop Building Integrated Photovoltaic/Thermal (BIPV/T) systems have proven 

to be an efficient means for generating renewable energy. They produce electrical energy, 

converting part of the incident solar radiation, and recover part of that radiation that turns to heat, 

while acting as the outer shell of the building. However, for the typical BIPV/T design with air 

entering at the bottom of the installation, flowing within a continuous air channel and exiting at 

the outlet of the system high PV temperatures may still occur. This is due to the fact that as air 

moves inside the air channel it accumulates heat and the heat exchange efficiency between the 

PV panels and the flowing air drops along the flow path of the air channel. In large building 

integrated PV installations, high PV temperatures may lead to quicker PV panel degradation, as 

well as lower electrical efficiency. 

A multiple-inlet BIPV/T system aims to increased heat extraction from the PV panels, with the 

introduction of several intakes of fresh air along the height of the installation. This may lead to 

lower and more uniform PV temperatures, enhanced PV panel durability and higher electrical 

and thermal performance. 

This study presents the development of a methodology for the modelling and design of multiple-

inlet systems, as well as a numerical study of such a system. The modelling component consists 

of two aspects, namely, the fluid mechanics and the energy balance of the system. A flow model 

was developed, based on flow networking techniques, in order to assess the inlet flow 

distributions. The flow model incorporates wind effects in the form of exterior pressures, 

acquired through wind tunnel testing. The inlet flow distributions were used in a modified energy 

balance model that accounts for the flow conditions of the inlets and the air channels of the 

system. This was an improvement on the assumption of uniform flow from all the openings of 

the system, which has been common in the limited number of studies of multiple-inlet systems so 

far. 

The developed models were applied for the numerical investigation of variations of multiple-

inlet BIPV/T systems for a potential retrofit project on an office building in Montreal. The 



iv 
 

investigation was carried out assuming summer and winter conditions, as well as several cases of 

wind direction and velocity. A multiple-inlet system with optimized geometric features of the 

inlets was found have up to 1% higher electrical efficiency and 14% to 25% higher thermal 

efficiency than that of a single-inlet system, also resulting in lower and more uniform PV 

operating temperatures. The latter can be a crucial factor for the durability of large building 

integrated PV installations. 

  



v 
 

Acknowledgements 

I would like to express my utmost gratitude to my supervisors, Dr. Andreas Athienitis and Dr. 

Theodore Stathopoulos, first of all for giving me the opportunity to work with them and for their 

expert guidance throughout this effort. 

I made great friends of my office colleagues, from whom I had great help during various stages 

of my time at Concordia. Dear tenants of EV.16.117, thank you all. A special thanks to my friend 

Sam Yip, who took the time and effort to review my thesis. 

I would like to acknowledge the financial support from the NSERC/Hydro Quebec Research 

Chair and the faculty of Engineering, as well as the scholarship awarded by Concordia 

University. I would also like to thank Joe Hrib for his technical support and sharp wit in times of 

distress. 

Starting my graduate studies at Concordia University would not have been possible without the 

support from my family in Greece. I also owe a lot to my exquisite Professors from Democritus 

University of Thrace, Dr. Minas Papadopoulos and Dr. Konstantinos Chalioris for their 

encouragement and support. 

Most importantly, I would like to thank my wonderful Christina for her endless love and 

motivation. This one goes to you. 

  



vi 
 

Table of Contents 
List of Figures ............................................................................................................................................. viii 

List of Tables ................................................................................................................................................ xi 

Nomenclature ............................................................................................................................................. xii 

1. Introduction .............................................................................................................................................. 1 

1.1 Overview ............................................................................................................................................. 1 

1.2 Solar technologies ............................................................................................................................... 2 

1.3 Building-integrated solar technologies ............................................................................................... 2 

1.4 Multiple-inlet Building-Integrated Photovoltaic/Thermal systems..................................................... 3 

1.5 Purpose of this investigation ............................................................................................................... 4 

1.6 Thesis Outline ..................................................................................................................................... 4 

2. Literature review ....................................................................................................................................... 6 

2.1 BIPV/T ................................................................................................................................................ 6 

2.2 BIPV/T modelling ............................................................................................................................... 9 

2.3 Thermal efficiency enhancement ...................................................................................................... 14 

2.4 Multiple-inlet BIPV/T ....................................................................................................................... 17 

2.5 Flow modelling ................................................................................................................................. 22 

2.5.1 Forced flow in single inlet systems ............................................................................................ 22 

2.5.2 Natural ventilation in single inlet systems ................................................................................. 23 

2.6 Multiple-inlet flow network modelling ............................................................................................. 25 

2.6.1 Flow networks ............................................................................................................................ 26 

2.6.2 Resistance approach and the Hardy Cross method .................................................................... 28 

2.7 Wind effects on solar collectors ........................................................................................................ 35 

3. Experimental procedure ......................................................................................................................... 39 

3.1 Multiple-inlet BIPV/T concept and initial design ............................................................................. 39 

3.2 Solar Simulator testing ...................................................................................................................... 40 

3.3 Wind tunnel testing ........................................................................................................................... 41 

3.3.1 Concordia University Boundary Layer Wind Tunnel ................................................................ 42 

3.3.2 Wind tunnel model ..................................................................................................................... 43 

3.3.3 Experimental results and discussion .......................................................................................... 45 

4. Multiple-inlet BIPV/T modelling.............................................................................................................. 49 

4.1 Flow distribution model .................................................................................................................... 49 



vii 
 

4.1.1 Pressure drops ............................................................................................................................ 51 

4.1.2 Frictional and secondary losses .................................................................................................. 52 

4.1.3 Electrical analogy ....................................................................................................................... 53 

4.1.4 Solution matrix ........................................................................................................................... 54 

4.2 Wind effects and energy balance ...................................................................................................... 56 

4.2.1 Flow distributions due to wind effects ....................................................................................... 56 

4.2.2 Measured and simulated results ................................................................................................. 57 

4.3 Modified energy balance model ........................................................................................................ 58 

4.3.1. Positive channel flow (towards the air collector) ...................................................................... 60 

4.3.2. Negative channel flow (reversed flow) ..................................................................................... 62 

4.4 Modelling assumptions ..................................................................................................................... 64 

5. Simulations and results ........................................................................................................................... 66 

5.1 Systems considered ........................................................................................................................... 66 

5.2 Numerical procedure ......................................................................................................................... 69 

5.3 Results and discussion ...................................................................................................................... 71 

5.3.1 Flow modelling ........................................................................................................................... 71 

5.3.2 Energy balance ........................................................................................................................... 77 

6. Summary and conclusions ...................................................................................................................... 91 

6.1 Contributions..................................................................................................................................... 92 

6.2 Future work ....................................................................................................................................... 93 

REFERENCES ................................................................................................................................................ 94 

APPENDIX I Flow distribution and PV temperatures of the optimized multiple-inlet systems (Systems V 

and VI) ....................................................................................................................................................... 100 

 

  



viii 
 

List of Figures 
Figure  2.1: The Eco Terra house (Chen, 2009).  ......................................................................................................... 8 

Figure  2.2: BIPV/T system of the JMSB Building, Concordia University.  ............................................................... 9 

Figure  2.3: Air based BIPV/T basic components: PV layer, air channel and back wall with insulation.  ................ 10 

Figure  2.4: BIPV/T energy balance.  ........................................................................................................................ 10 

Figure  2.5: Single pass PV/T configurations (Hegazy, 1999).  ................................................................................ 14 

Figure  2.6: Double pass PV/T configurations (Hegazy, 1999). ...............................................................................  15 

Figure  2.7: Plot of daily overall collector efficiency with respect to mass flow rate of the PV/T configurations 

studied by Hegazy (1999).  .......................................................................................................................................... 16 

Figure  2.8: Cross sectional view of PVT/Air collector models studied by Tonui & Tripanagnostopoulos (2006).  16 

Figure  2.9: Hybrid UTC-PV/T system installed at Concordia University (Athienitis et al, 2010).  ......................... 18 

Figure  2.10: UTC and BIPV/T equivalent efficiency versus mass flow rate (Athienitis et al, 2010).  ..................... 19 

Figure  2.11: Two-inlet BIPV/T system connected in series with glazed air collector (Yang et al, 2014).  .............. 20 

Figure  2.12: Stepped roof BIPV/T configuration studied by Mizraei (2014).  ......................................................... 21 

Figure  2.13: Box double-skin façade with multiple openings (Lou et al, 2012).  ..................................................... 27 

Figure  2.14: Strip type DSF with multiple venting holes in the zonal approach (Lou et al, 2012).  ......................... 28 

Figure  2.15: Typical loop formation analyzed by the Hardy Cross method.  ........................................................... 30 

Figure  2.16: Example of a 3 x 3 set of pipe junctions connected to form a pipe network (Dymond & Kutscher, 

1996).   ....................................................................................................................................................................... 32 

Figure  2.17: Example of a loop of the pipe network (Dymond & Kutscher, 1996).  ................................................ 34 

Figure  2.18: Convective heat transfer-wind velocity relations for vertical building surfaces (Vasan, 2014).  ......... 36 

Figure  2.19: Wind tunnel mean pressure coefficients (Cpmean) distribution over a solar panel scaled 1:20 (Aly & 

Bitsuamlak, 2013).  ........................................................................................................................................................ 7 

Figure  3.1: 3-inlet BIPV/T prototype tested at Concordia University Solar Simulator.  .......................................... 40 

Figure  3.2: 3-inlet BIPV/T prototype tested at Concordia University Solar Simulator (dimensions in mm).  ......... 40 

Figure 3.3: The Montreal Courthouse (left) and its orientation (right).  ................................................................... 42 

Figure  3.4: Schematic of the boundary layer wind tunnel at Concordia University (Stathopoulos, 1984).  ............. 43 

Figure  3.5: 1:400 scale model of the Courthouse building made by 3D printer.  ..................................................... 43 

Figure  3.6: Face with pressure taps of the wind tunnel model.  ................................................................................ 44 



ix 
 

Figure  3.7: Building orientation, wind diagram for Montreal and wind directions tested.  ...................................... 44 

Figure  3.8: Mean pressure coefficient (CP_mean) for 0
o
 wind direction (top) and wind tunnel model placement 

(bottom).  ..................................................................................................................................................................... 45 

Figure  3.9: Mean pressure coefficient (CP_mean) for 45
o
 wind direction (top) and wind tunnel model placement 

(bottom).  ..................................................................................................................................................................... 46 

Figure  3.10: Mean pressure coefficient (CP_mean) for 90
o
 wind direction (top) and wind tunnel model placement 

(bottom).  ..................................................................................................................................................................... 46 

Figure  3.11: Mean pressure coefficient (CP_mean) for 135
o
 wind direction (top) and wind tunnel model placement 

(bottom).  ..................................................................................................................................................................... 46 

Figure  3.12: Mean pressure coefficient (CP_mean) for 180
o
 wind direction (top) and wind tunnel model placement 

(bottom).  ..................................................................................................................................................................... 47 

Figure  4.1: Resistance-circuit representation of the flow network of the multiple-inlet system.  ............................. 50 

Figure  4.2: Possible flow paths for the inlets and channels of the multiple-inlet system.  ....................................... 57 

Figure  4.3: Normalized mass flows at the back of each panel of the 3-inlet prototype, for three angles of placement 

in the solar simulator.  ................................................................................................................................................. 58 

Figure  4.4: BIPV/T control volume energy balance.  ............................................................................................... 59 

Figure  4.5: Multiple-inlet BIPV/T control volume energy balance.  ........................................................................ 60 

Figure  4.6: Positive channel flow with positive flow from the previous channel and positive inlet flow.  .............. 60 

Figure  4.7: Positive channel flow with negative (reverse) flow from the previous channel and positive inlet      

flow.   ....................................................................................................................................................................... 61 

Figure 4.8: Positive channel flow with positive flow from the previous channel and negative inlet flow       

(outflow).  .................................................................................................................................................................... 62 

Figure  4.9: Negative (reverse) channel flow with negative (reverse) flow from the next channel and positive flow 

from the next inlet. ...................................................................................................................................................... 63 

Figure  4.10: Negative (reverse) channel flow with positive flow from the next channel and positive flow from the 

next inlet.  .................................................................................................................................................................... 63 

Figure  4.11: Negative (reverse) channel flow with negative flow from the next channel and negative flow from the 

next inlet (outflow).  .................................................................................................................................................... 64 

Figure  5.1: System I: Single inlet system with channel gap size: 0.1m.  .................................................................. 67 

Figure  5.2: System II: Single inlet system with channel gap size: 0.15m.  ............................................................... 67 

Figure  5.3: System III: Multiple-inlet system with equally sized inlets (1% of the PV module area) and channel 

gap size of 0.1m.  ......................................................................................................................................................... 67 

Figure  5.4: System IV: Multiple-inlet system with equally sized inlets (1% of the PV module area) and channel 

gap size of 0.15m.  ....................................................................................................................................................... 68 



x 
 

Figure  5.5: System V: Multiple-inlet system with optimized inlets (porosities as shown in Table 5.1) and channel 

gap size of 0.1m.  ......................................................................................................................................................... 68 

Figure  5.6: System VI: Multiple-inlet system with optimized inlets (porosities as shown in Table 5.1) and channel 

gap size of 0.15m.  ....................................................................................................................................................... 68 

Figure  5.7: Maximum daily PV temperatures for Systems I and II (single inlet) for summer conditions at total air 

mass flow rate of 400 kg/h and 800 kg/h.  ................................................................................................................... 78 

Figure  5.8: Maximum daily PV temperatures for Systems I and II (single inlet) for winter conditions at total air 

mass flow rate of 400 kg/h and 800 kg/h.  ................................................................................................................... 79 

Figure  5.9: Maximum daily PV temperatures for Systems III and IV (multiple-inlet, equal inlets) for summer 

conditions at total air mass flow rate of 400 kg/h and 800 kg/h.  ................................................................................ 80 

Figure  5.10: Maximum daily PV temperatures for Systems III and IV (multiple-inlet, equal inlets) for winter 

conditions at total air mass flow rate of 400 kg/h and 800 kg/h.  ................................................................................ 81 

Figure  5.11: mum daily PV temperatures for Systems III and IV (multiple-inlet, optimized inlets) for summer 

conditions at total air mass flow rate of 400 kg/h and 800 kg/h.  ................................................................................ 82 

Figure  5.12: Maximum daily PV temperatures for Systems III and IV (multiple-inlet, optimized inlets) for winter 

conditions at total air mass flow rate of 400kg/h and 800 kg/h.  ................................................................................. 83 

Figure  5.13: Maximum daily PV temperatures comparison for all systems, for summer conditions and 0m/s, 1m/s 

and 2m/s wind velocities at total air mass flow rate of 400kg/h and 800kg/h.  ........................................................... 85 

Figure  5.14: Maximum daily PV temperatures comparison for all systems, for winter conditions and 0m/s, 1m/s 

and 2m/s wind velocities at total air mass flow rate of 400 kg/h and 800kg/h.  .......................................................... 86 

Figure  5.15: Electrical efficiency of the six systems for summer and winter conditions, with or without wind and at 

total air mass flow rate of 400 kg/h and 800 kg/h.  ...................................................................................................... 88 

Figure  5.16: Combined electrical and thermal efficiency of the six systems for summer and winter conditions, with 

or without wind and at total air mass flow rate of 400 kg/h and 800 kg/h. .................................................................  89 

  



xi 
 

List of Tables 
Table  5.1:  Inlet porosities for the optimized multiple-inlet systems.  ....................................................................... 69 

Table 5.2: Flow distributions of the multiple-inlet systems at no wind conditions, for total mass flow rates of 

400kg/h and 800kg/h.  ................................................................................................................................................. 71 

Table  5.3: Inlet flow rate distributions for System III (equal inlets, gap: 0.1m), with or without wind.  ................... 73 

Table  5.4: Inlet flow rate distributions for System IV (equal inlets, gap: 0.15m), with or without wind.  ................. 73 

Table  5.5: Inlet flow rate distributions for System IV (optimized inlets, gap: 0.1m), with or without wind.  ........... 74 

Table  5.6: Inlet flow rate distributions for System VI (optimized inlets, gap: 0.15m), with or without wind.  ......... 74 

Table  5.7: Flow distributions and PV temperatures for 45
o
, 2m/s wind for windward edge PV string of           

System V.  ................................................................................................................................................................... 76 

Table 5.8: Flow distributions and PV temperatures for 45
o
, 2m/s wind for windward edge PV string of           

System VI .................................................................................................................................................................... 76 

  



xii 
 

Nomenclature 
 

Symbols 

A Orifice area (m
2
) 

AI cross-sectional area of the DSF cavity (m
2
) 

AE effective flow area of the opening (m
2
) 

Aface collector section area (m
2
) 

cp Specific heat of air (J/kg.
o
C) 

C Flow coefficient (m
3
/s Pa

n
) 

CD Discharge coefficient for the orifice 

Cp Pressure coefficient 

Cpe External pressure coefficient  

CPEj External pressure coefficient of the j-th cell 

Cpe Internal pressure coefficient 

CPIj Internal pressure coefficient of the j-th cell 

CPmean Mean pressure coefficient 

D BIPV/T air channel depth (m) 

Dh Hydraulic diameter (m) 

f The Darcy friction factor 

g Gravitational constant (9.81 m/s
2
) 

h Convective heat transfer coefficient (W/m
2
.
o
C) 

hc1 Convective heat transfer coefficient for the PV layer (W/m
2
.
o
C) 

hc2 Convective heat transfer coefficient for the insulation layer (W/m
2
.
o
C) 

hf Head loss (m) 

ho Exterior film coefficient (combined radiation and convection) (W/m
2
.
o
C) 



xiii 
 

hrad Radiative heat transfer coefficient (W/m
2
.
o
C) 

hy_pipe Length of y-directional pipe (m) 

hw Wind induced heat transfer coefficient (W/m
2
.
o
C) 

I Electric current (A) 

Iincident Solar radiation incident on the BIPV/T surface (W) 

k Thermal conductivity of air (W/(m.
o
C)) 

k’ Head loss per unit flow (s
n
/m

3n-1
) 

K Local loss coefficient for flow through an orifice 

K’ Coefficient for pressure drop (kg/m
4
.s) 

K’absorber Coefficient for pressure drop across the absorber (kg/m
4
.s) 

L Characteristic length of the flow (m) 

m Mass flow rate (kg/h) 

M Mass flow rate of the air collector (kg/h) 

n Flow exponent 

Nu Nusselt number 

Nutop Nusselt number for the top part of the air collector 

Nubottom Nusselt number for the bottom part of the air collector 

P Pressure (Pa) 

Pe Wind induced external static pressure (Pa) 

Pi Wind induced internal static pressure (Pa) 

Pp Fan power (W) 

Pr Prandtl number 

Ps Surface pressure (Pa) 

Q Volumetric flow rate (m
3
/s) 

Qchannel Air channel volumetric flow (m
3
/s) 



xiv 
 

qextracted Thermal energy extracted from the PV panels (W) 

Qface Flow through the collector (m
3
/s) 

Qi Flow through the i-th branch (m
3
/s) 

Qinlet Inlet volumetric flow (m
3
/s) 

Qj
E 

Flow through the j-th hole (m
3
/s) 

Qj
I 

Flow through the j-th cell (m
3
/s) 

Qj,j+1
I 

Flow from j-th cell  to (j+1)-th cell (m
3
/s) 

R Electrical resistance (Ω) 

R’ Airflow resistance (kg/m
7
) 

Rchannel Channel flow resistance (kg/(m
4
.s)) 

Re Reynolds number 

Req Equivalent resistance (Ω) 

Rinlet Inlet flow resistance (kg/(m
4
.s)) 

SPV Radiation absorbed by the PV layer (W) 

Ti Entrance air temperature (
o
C) 

Tins Temperature of the insulation on the back wall of the BIPV/T (
o
C) 

Tma Temperature of air inside the BIPV/T air channel (
o
C) 

To External temperature (
o
C) 

TPV Temperature of the PV module (
o
C) 

TR Temperature of the adjacent room to the BIPV/T (
o
C) 

TSTC PV module cell temperature at standard testing conditions (
o
C) 

V Fluid average velocity (m/s) 

VG Wind velocity at gradient height (m/s) 

Vloc Wind velocity at the height of measurements (m/s) 

VZ Mean wind velocity at height Z (m/s) 



xv 
 

Z Reference height for wind velocity (m) 

ZG Gradient height (m) 

 

Greek Letters 

βPV PV module temperature coefficient 

δ absorber porosity  

Δρ Density difference (kg/m
3
) 

ΔP Pressure drop (Pa) 

ΔPabsorber Pressure drop across the absorber (Pa) 

ΔPbuoyancy Pressure drop due to buoyancy (Pa) 

ΔT Temperature difference (
o
C) 

ηPV_theo PV module theoretical electrical efficiency (%) 

ηstc PV module efficiency at standard test conditions (%) 

ηthermal Thermal efficiency of the collector (%) 

μ Air dynamic viscosity (kg/(m.s)) 

ν Air kinematic viscosity (m
2
/s)  

ρ Air density (kg/m
3
) 

ρambient Ambient air density (kg/m
3
) 

ρy_pipe Air density in the y-directional pipe (kg/m
3
) 

 

Abbreviations  

BIPV Building Integrated Photovoltaic 

BIPV/T Building Integrated Photovoltaic/Thermal 

CFD Computational Fluid Dynamics 

CHTC Convective Heat Transfer Coefficient 



xvi 
 

COP Coefficient of Performance for heat pump 

DSF Double Skin Façade 

HVAC Heating, Ventilation and Air Conditioning 

PV Photovoltaic 

STC Standard Testing Conditions 

STPV Semi Transparent Photovoltaic 

UTC Unglazed Transpired Collector 

 

 

 

 

 



1 
 

1. Introduction 

1.1 Overview  

The need for sustainable technologies has become more than a reality in recent years. The 

established methods of energy production are based on limited resources (fossil fuels, nuclear) 

and have byproducts that are hazardous for the environment and human health. A pursuit to 

replace these methods with resources that are “cleaner” as well as limitless has been ongoing 

during the last decades and is most prominent nowadays. 

Resources such as solar and wind energy, hydropower and geothermal energy are essentially 

inexhaustible, while posing minimal environmental or health threat. According to the Global 

Status Report for Renewables of 2014, a growing number of cities, states and regions, such as 

Djibouti, Scotland, have set goals for 100% transition to renewable energy by the year 2020, 

while many regions in Germany have already achieved this goal. Denmark banned the use of 

fossil fuel-fired boilers in 2013 with an aim for renewables to provide approximately 40% of the 

total heat supply by 2020. 

Buildings are high energy consumers. In Canada residential and commercial buildings account 

for 30% of total energy consumption (NRCan, 2015), while in the United States and Europe the 

corresponding percentage exceeds 40% (US Energy Information Administration, Balaras et al, 

2007). In all cases, the amount of energy used for space heating is about half of the total building 

energy requirements. 

Building codes started including energy efficiency standards in late ‘60s, however, in recent 

years these have become stricter, lowering the threshold of power consumption per unit area, 

while providing incentives for energy efficiency through characterization and certification of the 

buildings. Most energy efficiency requirements in building codes have followed local, state or 

national standards, however, according to the IEA information paper on energy efficiency 

requirements and policies in building codes, during the past decade, there has been a trend for 

international collaboration for the development of energy efficiency requirements and standards. 

The United States of America and Canada follow the IECC and ASHRAE standards, while in the 

European Union standards are established according to the European Energy Performance in 

Buildings Directive. 



2 
 

1.2 Solar technologies 

Of the total global energy production of 2011, about 19% was produced by renewables, 9% 

being from biomass and 10% from modern renewables, with renewable energy development 

being mainly positive for Europe and the United States. Hydropower is the driving force in 

renewable energy production, followed by wind power. Solar energy accounts for only 0.9% of 

the total energy production, although there has been significant development in its application in 

recent years, with an ever growing rate, mainly due to the ever decreasing cost of solar 

technologies. 

Solar energy, reaching the earth in the form of radiation, is an unlimited source of clean energy 

which may be gathered by photovoltaic (PV) systems and solar collectors and be converted to 

electricity and heat respectively, or both with photovoltaic/thermal systems. These technologies 

have been successfully applied to buildings for many decades and in various forms. Closed-loop, 

water-based flat plate solar collectors are widely used in Europe as a heat source for domestic hot 

water, or in conjunction with heat storage tanks, while air-based unglazed transpired collectors 

(UTC) are widespread in North America and can be combined with the heating, ventilation and 

air conditioning (HVAC) system of the building for space conditioning or in other formations, 

such as in combination with heat pumps. The latter is an example of a building integrated solar 

technology. PV panels have also been used in buildings, mainly as an independent element of the 

building, most often racked on roofs, forming either a stand-alone system, or a grid-connected 

one. 

1.3 Building-integrated solar technologies 

Experience and technological development, as well as the ongoing requirement for energy 

efficient buildings have dictated that a highly efficient way of employing sustainable 

technologies is by integration with the building itself. Buildings can this way include efficiency 

measures from their original design, while making optimal use of the technologies employed, 

which now comprise a part of the building itself, rather than an added external feature. 

Building-Integrated Photovoltaic/Thermal systems (BIPV/T) are an example of the above 

concept, which combines the features of a solar collector and a PV system, while acting as the 

exterior layer of a building. There are numerous application of such a system, such as roof 

BIPV/T, especially for residential cases, wall-mounted or double skin facades that can be 
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extensively applied on commercial buildings, as well as use of semi-transparent PV windows 

(STPV) for the incorporation of natural illumination and shading control. The main concept is 

that the PV panels form the external layer, also acting as a rain screen cladding, while a channel 

is formed between the PV layer and the internal skin of the building. In that channel a liquid 

medium (water, glycol, air) may circulate in an open or closed-loop formation, extracting excess 

heat from the PV panels via convection and part of this heat can be recovered and used through 

various means. Moreover, this has a positive effect on the PVs, since their electrical efficiency is 

affected by their temperature. 

A main advantage of BIPV/T over solar collectors, apart from the energy generation along with 

useful heat, is that in moderate climates, during the summer season, heating is not required. 

Unless the collector is used for hot water or some application other than space heating, it is 

essentially obsolete during the hot season. 

1.4 Multiple-inlet Building-Integrated Photovoltaic/Thermal systems 

Water-based closed-loop BIPV/T systems have generally higher heat exchange efficiency 

between the PV panels and the liquid medium, however they are more expensive, have higher 

installation cost and cannot have extensive application due to weight and maintenance issues. On 

the other hand air-based systems are more easily installed and can be used in larger applications; 

however they have lower heat exchange efficiency that can lead to PV overheating issues, as 

well as lower efficiency-to-cost ratios. In order to counter that, several techniques have been 

adopted, such as double-pass BIPV/T or the use of fins. This study focuses on the introduction of 

multiple inlets along the PV surface for the intake of fresh air as a means to enhance the heat 

extraction from the PV layer to the air channel. Without the use of any means other than PV 

panel spacing, or use of inlets on the PV frames, this method aims to break the thermal boundary 

layer formed on the PV layer and increase the heat exchange efficiency with the introduction of 

several air streams with a much lower temperature than air circulating in a long continuous 

channel as is the case of typical BIPV/T installations.  

The aim of a multiple-inlet BIPV/T system is the uniform, or near uniform, heat extraction from 

all the PV modules that comprise a PV string, so that the PV panels may operate at a lower 

temperature, while the heat extraction from them will be maximized. In typical single inlet 

BIPV/T systems, the part of internal convection can be modified by the air channel flow rate, as 
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well as the channel width to height ratio. However, as air moves through the continuous channel, 

it accumulates heat resulting to higher PV temperatures of the higher PV modules, as well as 

decreasing heat exchange efficiency along the air channel.  

With the introduction of multiple inlets, the internal convection part of the energy balance can be 

further modified by the amount of air entering each PV module in combination with the fact that 

an additional air stream is introduced per module at exterior air temperature. Apart from the 

flow, the entrance air temperature is accordingly modified, depending on the flow conditions, as 

described later on. 

1.5 Purpose of this investigation 

The purpose of this investigation is the development of a flow model that can calculate the 

inflow through each opening of a multiple-inlet BIPV/T system, given the total air collection rate 

of the system, the channel and opening geometry and wind effects in the form of exterior 

pressures over the area of interest. This flow model will be integrated with a modified energy 

balance model, where the flows calculated will be used as inputs and relationships for convection 

given in literature will be used.  

The modelling procedure described in this study comprises the first attempt for performance 

assessment of multiple-inlet BIPV/T systems. Furthermore, the inclusion of wind effects on the 

inlet flow distributions will provide design insight for such systems, especially for large-scale 

installation. 

The above tool will be used for the performance investigation of multiple-inlet system variations 

compared to a single inlet system, for a potential retrofit project at the Montreal Courthouse, as a 

theoretical case study. 

1.6 Thesis Outline 

This study consists of six chapters, the first being the introduction. The rest of the chapters are 

summarized as follows: 

Chapter 2: Review of BIPV/T technology and thermal efficiency enhancement methods. 

Multiple-inlet BIPV/T systems are introduced and the background theory and studies, upon 

which the modelling of such systems is based, are presented. 
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Chapter 3: The experimental procedure carried out for this research in a solar simulator and a 

boundary layer wind tunnel is described. The experimental results have to do with the flow 

distributions of a 3-inlet BIPV/T prototype tested in a solar simulator facility and the external 

pressure distributions caused by wind over the potential retrofit area of a multi-storey 

institutional building, studied in a scaled version of the building in a boundary layer wind tunnel 

facility. 

Chapter 4: In this chapter the development of a flow distribution model for multiple-inlet 

systems is described, as well as how it is integrated with a modified energy balance model. 

Chapter 5: The models developed in the previous chapter are used for the simulation of several 

versions of multiple-inlet systems to be compared with single inlet designs in terms of electrical 

and thermal performance and PV temperature uniformity, for summer and winter design days 

with and without wind. 

Chapter 6: In the final chapter, the main findings and contributions of this research are presented. 
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2. Literature review 
This chapter reviews the main literature on BIPV/T technology, concerning design 

considerations and limitations, as well as methods that have been adopted in order to enhance its 

performance, and the theory that may lead to the appropriate modelling of multiple-inlet BIPV/T. 

Flow and internal convection inside the air channel of a BIPV/T system is addressed while the 

concept of a multiple-inlet BIPV/T system, as a means of heat exchange enhancement, is 

introduced. A large part of this chapter is dedicated to the flow modelling of a BIPV/T system, 

the focus being on the use of flow networking techniques and resistance-circuit analogy to create 

a flow distribution model of a multiple-inlet system. Finally, there is a review of the research on 

wind effects on PV/T systems and wind tunnel experimentation, as well as on the combination of 

experimental data and mathematical models. 

2.1 BIPV/T 

Building-Integrated Photovoltaic/Thermal systems are created by the architectural integration of 

the PV panels into the building envelope (roof, walls and windows). By doing so, the PV system 

becomes an integral element of the building rather than a stand-alone system. A BIPV/T system 

has a twofold role: electricity production, making use of the photovoltaic effect of the PV panels, 

and recovery of part of the excess heat from the radiation that is absorbed by the PV panels and 

is not converted to electricity or reflected back to the environment. To remove the excess heat 

from the PV panels, a channel is formed behind the PV layer, where a fluid medium circulates 

and extracts the heat from the panels via convection. 

Depending on the fluid medium, BIPV/T systems are divided into air-based and water-based 

(combination of water with an anti-freezing medium), while depending on the fluid circulation, 

there are open and closed-loop systems. Most water based systems are closed-loop, while air-

based systems can be both open and closed-loop. Due to high specific heat capacity and 

circulating fluid density, water-based BIPV/T systems have higher heat exchange efficiency in 

general. The amount of heat transferred to the moving fluid is given by: 

thermal pq m c T    (2.1) 

where: 
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 qthermal: the thermal energy transferred to the moving fluid (J) 

 m: the mas flow rate inside the channel (kg/s) 

 cp: the specific heat capacity of the moving fluid (J/kg/
o
C) 

 ΔT: the temperature difference between the collector and the fluid (
o
C)  

Air-based systems suffer from a low heat exchange efficiency (Yadav and Bhagoria, 2014), due 

to the much lower density of air. However, air-based systems have structural and maintenance 

advantages over water-based systems: 

 There are no leakage issues through ducts and joints, as well as the resulting corrosion 

effects 

 There is no need for addition of anti-freezing fluids in order to withstand freezing 

conditions 

 They are lighter, easier to install and to maintain, while far less complicated (Bambara, 

2010) 

There is a double benefit from the extraction of excess heat from the PV panels; one being the 

useful heat gained and the other is the enhancement of the electrical performance of the system, 

since the electrical efficiency of a PV module is related to its surface temperature as follows 

(Florschuetz, 1979): 

_theo (1 ( ))PV stc PV PV STCT T        (2.2) 

where: 

 βPV: the PV module temperature coefficient (%/
o
C) 

 ηstc: the PV module efficiency at standard test conditions (%) 

 TSTC: the PV module cel temperature at standard test conditions (25
o
C) 

Several values have been calculated experimentally for βpv, 0.006 (Tonui & 

Tripanagnosotpoulos, 2006), 0.005 (Anderson et al, 2008; Green, 1998), 0.004 (Hegazy, 1999; 

Bergene et al, 1996), 0.004-0.005 (Skoplaki & Palyvos, 2009). 
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It becomes clear that a low operating PV temperature can be crucial for the performance of the 

systems, especially in large installations. 

The potential of full scale applications of BIPV/T systems has been studied in both residential 

and commercial/institutional buildings, as well as experimentally. Chen et al (2010) studied an 

air-based open-loop BIPV/T system installed in a prefabricated low-energy residential 

construction in Quebec, Canada (Figure 2.1). The system was coupled with a ventilated concrete 

slab, so that the warm air coming from the air channel of the BIPV/T system could be passed 

through a tubing system formed inside the slab thus preheating it and making use of the thermal 

storage properties of concrete. A finite difference model was developed for this system and 

validated through field experiments.  It was found that the PV panels’ temperature was 

significantly lower, while the system had the potential to greatly assist in space heating. 

 

Figure 2.1: The EcoTerra house (Chen, 2009). 

Athienitis et al (2010) developed a hybrid prototype PV/T system coupled with an unglazed 

transpired collector (UTC). This system consisted of a layer of UTC 70% of the area of which 

was covered with PV panels. Taking into account that electric energy is about 4 times more 

valuable than heat (considering the average COP of a heat pump), it was found the this prototype 

system could generate 7%-17% more energy than a typical UTC installation covering the same 
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area. This prototype BIPV/T was realized as a demonstration project at the JMSB building of 

Concordia University in Montreal, Canada, as shown in Figure 2.2: 

 

Figure 2.2: BIPV/T system of the JMSB Building, Concordia University. 

The prototype BIPV/T system is architecturally integrated in the building’s south-west façade 

and it can produce 25 kW of electricity and 75 kW of heat which can be used for preheating 

ventilation fresh air. 

There have been various studies, including full scale (Chen, 2010; Athienitis, 2010), 

experimental (Bambara, 2013; Yang, 2014), numerical (Charron & Athienitis, 2005) and 

computational fluid dynamics (CFD) (Yadav & Bhagoria, 2013), dealing with the modelling of 

the performance of BIPV/T systems. However, for the time being, there is a lack of standards 

and specifications on the design of BIPV/T systems, the choice of system per case, their 

maintenance, as well as design issues such as mechanical stresses due to live loads and structural 

capacity of a building to carry such a system (Yang, 2014). 

2.2 BIPV/T modelling 

As previously mentioned, open-loop air-based BIPV/T systems suffer from low heat exchange 

efficiency due to the low specific heat capacity of air, as well as the low density of the fluid 

medium. Typically, BIPV/T systems consist of the PV layer, the air channel, or plenum where 

air circulates, structural attachments to link the PV to the insulation and the interior wall layers 

(Candanedo et al, 2011) as shown in Figure 2.3. 
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Figure 2.3: Air based BIPV/T basic components: PV layer, air channel and back wall with insulation. 

The energy balance of such a system, using the method of finite control volumes is shown in 

Figure 2.4: 

TPV
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Figure 2.4: BIPV/T energy balance. 

where: 

 To: the external temperature (
o
C). 

 ho: the exterior film coefficient (combined radiation and convection, W/m
2
.
o
C). 

 TPV, Tma, Tins and TR: the temperatures of the PV (average), the air inside the air channel, 

the surface of the insulation and the adjacent room respectively (
o
C). 

 hc1, hc2: the convective heat transfer coefficients from the PV and the insulation surface to 

the flowing air respectively (W/m
2
.
o
C). 
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 hrad: the radiative heat transfer between the PV and the insulation surfaces (W/m
2
.
o
C). 

 SPV: the net heat absorbed by the PV layer (total absorbed-electric produced) (W/m
2
) 

 ρ: the density of air (assumed constant), 1.2kg/m
3
 

 cp: the specific heat capacity of air (assumed constant), 1000j/kg/
o
C 

 M: the mass flow rate inside the collector (kg/hr) 

The above is a simplified energy balance model, where the long wave radiative heat exchange 

between the PV layer and the environment (sky, ground) is included in an external combined 

heat transfer coefficient. 

The system consists of a continuous air channel, typically with an inlet at the bottom of the 

installation and a fan placed on top, which draws the warm air to a manifold, to be either used 

directly in the HVAC system or driven to a heat pump. As the air moves inside the air channel, it 

accumulates heat and its temperature rises along the flow path. This leads to a decreasing heat 

exchange efficiency, as well as an increasing PV temperatures, which can be as high as 70
o
C 

(Yang, 2014), as it reaches the outlet. 

The internal convection part of the above energy balance is affected by two main parameters; the 

temperature difference between the PV panels and the circulating air, and the local Nusselt 

number, which defines the convective heat transfer coefficient. The above can be summarized as 

follows: 

Convection= f (ΔT, Nu) 

where: 

 ΔT: the temperature difference between the PV panels and the circulating air 

 Nu: the Nusselt number of the local flow 

The Nusselt number is a dimensionless number which gives the ratio of convective to conductive 

heat transfer across the boundary of the flow. It is defined as follows: 
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h L
Nu

k


  (2.3) 

where: 

 h: the convective heat transfer coefficient (W/(m
2
 K)) 

 L: a characteristic length of the flow, namely the length of the flow path (m) 

 k: the thermal conductivity of air (W/(m K)) 

In the case of forced convection, the Nusselt number is empirically expressed as a function of the 

Reynolds and the Prandtl number: 

Nu = f (Re, Pr) 

The Reynolds number of the flow is the ratio of viscous over inertia forces of the flow and is 

defined as: 

Re hV D



 
  (2.4) 

where: 

 ρ: the air density (kg/m
3
) 

 V: the fluid average velocity (m/s) 

 Dh: the hydraulic diameter of the duct, defined as four times the flow area over the wetted 

perimeter (m) 

 μ: the dynamic viscosity of the fluid (air) (kg/m/s) 

The Prandtl number is defined as the ratio of momentum over thermal diffusivity and is given as: 

Pr
pCv

k






   (2.5) 

where: 

 v: the kinematic viscosity (m
2
/s) 

 α: the thermal diffusivity of air (m
2
/s) 
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 Cp: the specific heat capacity of air (J/(kg K)) 

 μ: the dynamic viscosity of the fluid (air) (kg/m/s) 

 k: the thermal conductivity of air (W/(m K)) 

The most common empirical relationship for the Nusselt number is the Dittus-Boelter 

Correlation for developed turbulent flow (Re>10000): 

0.80.023 Re PrnNu     (2.6) 

with n=0.4 when the surface temperature is higher than the medium temperature and 0.6 < Pr < 

160 

However, depending on experimental measurements for various system configurations, as well 

as the flow regime, several correlations have been developed (Warren et al, 1998; Tonui & 

Tripanagnostopoulos, 2006; Ghani et al, 2012, Candanedo, 2011) 

The Nusselt number, and as a result the convective heat transfer coefficient (CHTC), is affected 

by the aspect ratio of the air channel, while the CHTC is highly affected by the air stream 

velocity. Several studies have shown that increased air flow rate inside the air channel result in 

higher heat extraction and lower PV temperatures, though lower outlet air temperatures (Hegazy, 

1999). A very high air collection rate may result in very effective PV panel cooling; however, it 

may result in increased fan consumption and to a lower net electricity production. 

Several common assumptions adopted in order to simplify BIPV/T thermal modeling are the 

following: 

1. The heat flow is one-dimensional. For each control volume of the energy balance, the 

heat path is assumed perpendicular to the layers comprising the control volume and not 

parallel in the horizontal or vertical sense, along the plane of each layer. This results in an 

average temperature for each layer of the control volume. However, Ghani (2012) 

showed that due to the non-uniform flow distribution of the medium circulating within 

the channel, hot spots may form over the area of a PV panel. 
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2. The fluid medium is assumed to have a uniform velocity profile and an average fluid 

velocity is assumed throughout the channel. Therefore, in most numerical and CFD 

studies (Yadav & Bhagoria, 2013), a two-dimensional model of the system is assumed. 

3. Since the PV layer, as well as the back insulation layer, is considered to have no thermal 

storage capacity, it is common to assume a steady state analysis. There have also been 

studies where transient modelling is adopted (Candanedo et al, 2011), especially for cases 

of combined BIPV/T and phase changing materials (PCM) (Aelenei et al, 2013). 

2.3 Thermal efficiency enhancement 

A common definition of the thermal efficiency of a solar system is given as the total thermal 

energy extracted from the absorber layer and transferred to the fluid medium over the total 

incident solar radiation on the absorber: 

/thermal extracted incidentq I   (2.7) 

In order to enhance the system’s thermal performance, either the thermal losses from the front 

and the back of the system must be controlled, or the internal convection and resulting heat 

extraction needs to be boosted, or a combination of both can be adopted.  

Thermal losses from the front part of the system, namely the one affected by the climatic 

conditions, may be regulated with the use of a glazing part installed over the PV layer. Hegazy 

(1999) studied variations of a glazed system, two of which are shown in Figure 2.5: 

 

Figure 2.5: Single pass PV/T configurations (Hegazy, 1999). 
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The concept was to set the PV layer behind a glazing in order to minimize the external 

convection, resulting in a system much less susceptible to wind effects. In the first design, the 

PV layer was set on the back surface with the air stream moving on top of it and on the second 

design it was set in the middle, with air circulating behind it. Although both variations led to a 

higher thermal efficiency, the second variation performing better, they also resulted in a much 

higher PV temperature and a decreased electrical efficiency. By increasing the air mass flow rate, 

the PV temperature dropped, however, the fan energy consumption was greatly increased, 

resulting only to a slight increase in electrical efficiency. 

Two other designs studied included a case where the PV panels are set in the middle of the air 

channel and air passes both in front of and behind them, to be collected at the outlet, or a 

continuous channel was formed, creating a double pass configuration, thus doubling the length of 

the flow path, as shown in Figure 2.6 

 

Figure 2.6: Double pass PV/T configurations (Hegazy, 1999). 

Model III was found to have the best overall performance, followed by model IV. However, it 

was found that for each model type, there exists a critical mass flow rate, beyond which, the 

overall collector performance decreases. This can be seen in Figure 2.7: 



16 
 

 

Figure 2.7: Plot of daily overall collector efficiency with respect to mass flow rate of the PV/T configurations 

studied by Hegazy (1999). 

Tonui and Tripanagnostopoulos (2006) studied experimentally similar design variations, adding 

two cases: one where fins were installed along the flow path in order to induce turbulence and 

thus enhance convection inside the air channel and another where a thin metal sheet is placed 

behind the PV layer, within the air channel. The variations studied are shown in Figure 2.8: 

 

Figure 2.8: Cross sectional view of PVT/Air collector models studied by Tonui & Tripanagnostopoulos (2006). 

It was shown that both the thin metal sheet and the fins highly increased the performance of the 

system, both for buoyancy driven flow and for forced flow, the fin system being superior. It was 
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also observed that the optimum channel depth was between 5 and 10cm and that the thermal 

efficiency increases with increasing exit area of the air channel. 

A system combining BIPV and PCM was studied by Aelenei et al (2013). The system has been 

installed on the main façade of Solar XXI office building in Lisbon and was found to have a 

thermal efficiency of 10% and a combined electrical and thermal efficiency of about 20%. 

2.4 Multiple-inlet BIPV/T 

The methods referred to in section 2.3, aim to improve the thermal efficiency of a BIPV/T 

system by modification of the flow in a continuous air channel, that is, improvement of the 

Nusselt number of the flow. However, even if the heat extraction is enhanced, the issue of 

accumulated heat and temperature stratification over the PV layer along the collector remains. 

PV panels operating at considerably varying temperatures, especially along the height of large 

installations may result in failure of the attachment with the supporting structure due to 

differential expansion, as well as quicker degradation of the top panels operating at higher 

temperatures (Yang, 2014). Also, depending on the strings and arrays’ configurations (in series 

or in parallel), the electrical efficiency of the panels operating at higher temperatures could 

undermine that of the whole system. 

The introduction of more than one opening, namely one per PV module, along the height of a PV 

string aims to the combined regulation of the two factors affecting the internal convection in the 

air channel: 

 The flow rate of each control volume and 

 The temperature difference between the PV panels and the circulating fluid 

The goal is to achieve uniform heat extraction, as well as uniform temperature distribution for 

the whole system. This can be achieved by studying and modelling the flow distributions, 

namely the inflow from each inlet of the system, the regulation of which can be achieved by the 

geometric modification of the inlets. The flow modelling and the expected effects of the 

regulation of the flow distributions are discussed in detail in Chapter 4. 
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A multiple-inlet BIPV/T is a rather new concept and there are few references in literature. 

Athienitis et al (2010) designed a prototype PV/T combined with unglazed transpired collector 

(UTC) which is shown in Figure 2.9: 

 

Figure 2.9: Hybrid UTC-PV/T system installed at Concordia University (Athienitis et al, 2010). 

This hybrid PV/T-UTC prototype consisted of a layer of UTC upon which custom made PV 

modules were fixed with supports, covering 70% of the total UTC area. The concept of the 

system was that the solar collector could also produce electrical energy, increasing its cost-

effectiveness, especially in the summer months, during which space heating is not needed 

(except for domestic water heating use). UTC is a proven efficient solar collector and the system 

would benefit from heat extraction from both the UTC and the PV covered area, the latter 

resulting in an increased electrical efficiency of the PV system. 

The overall thermal performance of the hybrid system was lower than that of a UTC, however, if 

the electrical energy produced was expressed in terms of equivalent thermal energy, the overall 

efficiency of the hybrid system was found to be 7-17% higher than that of the UTC (Athienitis et 

al, 2010; Bambara et al, 2012). The term “equivalent thermal energy” was developed for that 

specific study in order to be able to compare different systems, with the assumption that one unit 

of electrical energy equals to four units of thermal energy, if the average COP of a heat pump (4) 

is taken into account. 
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For the comparison, a UTC and a hybrid prototype of the same area were studied experimentally 

side by side under the same climatic conditions. The performance of the two systems in respect 

to the air collection rate measured is shown in Figure 2.10: 

 

Figure 2.10: UTC and BIPV/T equivalent efficiency versus mass flow rate (Athienitis et al, 2010). 

The above is a form of a multiple-inlet system, since air is entering from the pores of the UTC 

from the whole installation area, while for each PV module, the stream of air passing under is at 

ambient temperature and not preheated inside the air channel. 

The system was modelled assuming uniform suction from the UTC perforations, according to 

Kutscher (1994), considering the mass flow entering the exposed UTC area and the PV covered 

area for the energy balance. 

Yang et al (2014) studied experimentally a BIPV/T prototype, previously studied outdoors by 

Candanedo et al (2011), in the Solar Simulator facility of Concordia University. The single-inlet 

prototype was a scaled version of the system installed in EcoTerra (Chen, 2010) and an explicit 

finite difference control volume model was developed for its modelling. The flow rate inside the 

air channel was controlled by an air collection unit, while the Reynolds number was kept bellow 

10,000 in order to keep frictional losses low. The following Nusselt number correlations were 

developed for the PV layer and the back insulation, for the turbulent and the laminar region: 

 In the turbulent region (2300 < Re < 9500): 
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 In the laminar region (1190 < Re < 2300) 
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An improved design with two inlets, intended for inclined roof applications, was studied and 

modelled according to the developed mathematical model. The original single-inlet prototype, 

which was 2.8m long, was divided into two equal length sections. In order to further enhance the 

thermal performance of the system, a vertical glazed solar collector part added to the BIPV/T 

system was also modelled. The combination of the two-inlet system and the vertical glazed 

collector part are shown in Figure 2.11: 

 

Figure 2.11: Two-inlet BIPV/T system connected in series with glazed air collector (Yang et al, 2014). 

The Nusselt number for the second section was calculated based on the assumption that the 

thermal boundary layer that forms over the PV surface restarts at the second inlet. For the 
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modelling part, it was also assumed that the inflow through the two inlets was equal.  It was 

found that the thermal efficiency of the two inlet system was 5% higher than that of the single-

inlet prototype. Furthermore, there was a 1.5
o
C decrease in the peak PV temperature, as well as a 

marginal increase in the electrical efficiency of the system. It was expected that for larger roof 

installations of 5-6m the temperature decrease would be from 5-10
o
C, depending on the flow rate 

and the wind conditions. Such a reduction in peak PV temperature would also mean slower PV 

degradation. 

Mirzaei et all (2014) investigated experimentally the role of cavity flow on the performance of 

BIPV/T panels placed on inclined roofs. A scaled building model was developed with BIPV/T 

set on the roof section and the model was tested inside a closed loop atmospheric wind tunnel. A 

small scale solar simulator was also placed inside the wind tunnel, while a part of the coating at 

the center of the BIPV/T was scraped in order to facilitate a Particle Image Velocimetry (PIV) 

test arrangement. 

An infra-red camera was used for the assessment of the temperature field on the PV area. The 

purpose of this novel experimental set-up was to simultaneously assess the effects of flow over 

and below the PV panels on their temperature, while investigating the flow field. 

For the experiments, the configurations considered consisted of a flat and a stepped PV 

arrangement, with open and closed cavity settings, as shown in Figure 2.12 and for three 

upstream wind velocities. 

 

Figure 2.12: Stepped roof BIPV/T configuration studied by Mizraei (2014).  
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The stepped configuration is essentially a multiple-inlet system. However, the designs of the 

BIPV/T air channel did not include an air collector and only focused on wind induced air flow. 

For the cases with the closed cavity, the wind effects on exterior convection were investigated, 

while with the open cavity cases, the ratio of flow over and flow below the PV panels was 

measured. It was assumed that the mean flow was two-dimensional due to the shape of the cavity 

and the nature of the air flow. 

From the experimental findings, it was shown that: 

 For the cases of closed cavity, the temperature distribution over the PV area, for both the 

flat and stepped configurations, was similar, indicating that the effect of wind on the 

external convection was approximately the same. 

 When the cavity was open, the air velocity below the PV panels was found to be higher 

than that over the PV panels, mainly due to the flow resistance caused by separation at 

the edges of the system. However, it was also found that the airflow at the top of the PV 

was similar to that of the closed cavity cases. This would mean that the presence of 

openings does not highly affect the external flow field over the PV plane. 

 It was found that the PV temperatures were much lower for the cases with open cavity, 

and most importantly, they were considerably lower for the case of stepped configuration, 

namely the multiple-inlet configuration. 

 

2.5 Flow modelling 

2.5.1 Forced flow in single inlet systems 

The flow inside the air channel is the factor that determines the internal convection. In order to 

regulate internal convection, the flow has to be properly modelled. In almost all literature on 

BIPV/T, airflow modelling is done in the same manner. Since in almost all cases air enters from 

a single inlet and exits at the outlet, in a single continuous channel, the flow is essentially known 

and regulated by the fan. If the flow is known, one can obtain experimentally correlations for the 

Nusselt number, by measuring the temperature of the PV surface and the air channel. In addition, 

the pressure drop along the air collector due to the frictional losses can be calculated according to 

the Darcy-Weisbach equation: 



23 
 

2

2h

L V
P f

D

 
     (2.12) 

where: 

 ΔP: the pressure drop across the air collector (Pa) 

 f: the Darcy friction factor (dimensionless 

 L: the length of the air collector (m) 

 Dh: the hydraulic diameter of the air channel, defined as four times the cross sectional 

area over the wetted perimeter of the duct (m) 

 ρ: the air density (kg/m
3
) 

 V: the average air velocity inside the air channel (m/s) 

The above pressure drop is used for the calculation of the fan power consumption according to 

the following: 

p

m P
P




  (2.13) 

where: 

 Pp: the fan power (W) 

 m: the mass flow rate of the air collector (kg/s) 

 ΔP: the pressure drop along the collector 

 ρ: the density of the fluid (kg/m
3
) 

A common assumption in BIPV/T modelling is the two-dimensional nature of the flow, which 

means that the flow changes along the height and the length of the air collector, but not along the 

width of the PV module. This is most common within CFD studies on the performance of 

BIPV/T and flow and CHTC relations (Yadav & Bhagoria, 2013, Getu et al, 2014). 

2.5.2 Natural ventilation in single inlet systems 

On the other hand, the case is not the same when dealing with natural ventilation, which may be 

wind driven or due to buoyancy. In this case, the flow is not known and has to be calculated 
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based on pressure measurements for the case of wind-driven ventilation, or according to 

temperature differences in the case of buoyancy. 

When dealing with wind driven flow, in most cases a flow network is formed making use of the 

pressure drop across the opening of the collector, the pressure drop along the air channel and the 

measured discharge coefficients, or flow coefficients. The general equation of flow through an 

opening, as a function of the pressure difference across the opening is the following: 

( )nQ C P    (2.14) 

where: 

 Q: the flow rate  (m
3
/s) 

 C: the flow coefficient (m
3
/s Pa

n
) 

 ΔP: the pressure drop across the opening (Pa) 

 n: the flow exponent of the opening (dimensionless) 

The most commonly used form of the above is the orifice equation: 

0.5(2 / )DQ C A P      (2.15) 

which is derived from the pressure drop across an orifice equation: 

2 20.5 /P K Q A      (2.16) 

where: 

 Q: the flow rate  (m
3
/s) 

 ΔP: the pressure drop across the orifice (Pa) 

 A: the orifice area (m
2
) 

 ρ: the density of the fluid (kg/m
3
) 

 CD: the discharge coefficient for the orifice (dimensionless) 

 K: the loss coefficient for flow through an orifice (dimensionless) 

The relationship between the discharge and the loss coefficient is the following: 
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0.5(1/ )DC K  (2.17) 

The pressure difference across the opening due to wind driven flow is given by the following: 

20.5 ( )e i pe pi locP P P C C V         (2.18) 

where: 

 Pe, Pi: the external and internal static pressure respectively due to wind (Pa) 

 Cpe: the external pressure coefficient 

 Cpi: the internal pressure coefficient 

 Vloc: the wind velocity at the height of measurements 

The pressure coefficients show the ratio of the static pressure measured at a specific location 

over the dynamic pressure of wind at the height of that location. 

2.6 Multiple-inlet flow network modelling 

Throughout most studies of systems with more than one opening, such as UTC and multiple-inlet 

systems, the main assumption is that of uniform flow through all the openings of the system. 

However, this may not be the case for multiple-inlet systems, as the resistance to the flow is not 

the same for all the openings of the system and as a consequence the amount of air entering 

through each inlet. This can be even more complicated when wind effects are taken into account. 

Wind induced pressure on the openings of a large installation will not be uniform, resulting in 

different pressure differences between the openings and the fan, again resulting in different 

intakes of air. The actual inflow distributions for multiple-inlet systems have not been modelled 

yet and no standard exists for the time being. 

However, there are several concepts such as the orifice flow, wind induced flow and flow 

networks, as well as numerical methods used for calculation of flow distributions in pipe 

networks, such as the Hardy-Cross method, which can be used for the development of a model 

that describes the flow distributions of a multiple-inlet system. These concepts are presented 

below. 
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2.6.1 Flow networks 

Flow networks are created with the nodal representation of the flow path. The pressure is 

evaluated at each node and the branches linking each node represent the segments of the airflow 

between nodes. Branch flows merge at the nodes and if more than 2 branches are connected to a 

node, these nodes are referred to as junctions. For each node the summation of flows entering 

and those exiting is equal to zero, according to the mass conservation principle. Flow networks 

make use of the known correlations linking flow and pressure drop, such as the orifice equation, 

the Darcy-Weisbach frictional pressure drop equation, as well as other secondary loss 

relationships.  

Asfour & Gadi (2006) compared the predictions of CFD and flow network models for cases of 

natural cross ventilation in a generic rectangular building with two openings. The flow network 

model was based upon the orifice flow equation, using wind tunnel measurements for external 

and internal pressure coefficients. It was found that there was a good agreement between the 

CFD and the flow network model results, the maximum discrepancy being around 11%. 

Karava (2003) studied the validity of the orifice equation in the full scale experimental 

investigation of trickle ventilators. Two types of ventilator were installed in an outdoor test 

room. An exhaust fan was used to create negative pressure and expel air from the room to the 

outside, with a valve installed to control the exhaust air flow rate. Differential pressure was 

applied across the building envelope and the total air leakage of the room was measured. 

Subsequently, the ventilators were sealed and thus, the envelope leakage was determined. The 

difference between the total flow and the envelope air leakage gave the flow at a specific 

differential pressure from the trickle ventilator. 

Comparing the measured and the predicted air flow, it was found that the orifice equation 

overestimated the flow by a factor near 2. The actual CD value that should be used for openings 

such as trickle ventilators (the two cases tested had opening area of 19 and 40 cm
2
 respectively) 

was calculated to be approximately 0.34. 

Lou et al (2012) applied a zonal approach for the modelling of the inner gap pressures for 

various double-skin façade (DSF) layouts in tall rectangular buildings. One of the layouts studied 

consisted of a strip type DSF with multiple venting holes, as shown in Figure 2.13: 
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Figure 2.13: Box double-skin façade with multiple openings (Lou et al, 2012). 

A model of a generic rectangular building was created and tested in a boundary layer wind tunnel 

and pressure coefficients were obtained for three surfaces: the outer and inner surface of the 

external skin and the surface of the internal skin. A zonal model was developed according to the 

measurements to describe the relation between wind pressure distribution and the volumetric 

flow rates through all the openings of the DSF. The model was validated against the wind tunnel 

results. 

For the zonal flow model, the flows through the ventilating holes were described by the general 

equation for flow through an opening (2.14), which for wind driven flow takes the form of: 

2
10

, , , ,( ) ( ) ( )
2

E n n

j E pe j pi j pe j pi j

v
Q C A C C C C

 
        (2.19) 

with Qj
E
 the flow through the j-th hole, C the flow coefficient, vo, the wind speed at the datum 

level and CPEj, CPI,j, the external and internal pressure coefficient of the j-th hole and AE the 

effective flow area of the opening. 

The frictional pressure drop along the cavity was calculated by the Darcy-Weisbach equation 

(2.12), according to which the airflow inside the DSF from the (j+1)-th cell to the j-th cell was 

expressed as: 

0.50
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f L
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
 (2.20) 
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where AI is the cross sectional area of the cavity of the DSF. The mass conservation equation for 

incompressible flow, for the j-th cell was expressed as: 

1, , 1 0E I I

j j j j j jQ Q Q Q      (2.21) 

where: Qj the flow through the j-th cell (m3/s), Qj
E
 the flow through the opening of the j-th cell, 

Qj-1,j the flow from the (j-1)-th cell to the j-th cell andQj,j-1 the flow from the j-th cell to the (j+1)-

th cell. 

By solving the mass equation for the first cell, the wind driven flow across the opening should 

equal the flow within the cavity from the first to the second cell. That way the pressure 

coefficient for the internal skin of the second cell could be evaluated and so on and so forth for 

the rest of the cells. Thus, a zonal flow network was created, relating the wind pressure and flow 

to the frictional pressure drop and flow inside the DSF as shown in Figure 2.14: 

 

Figure 2.14: Strip type DSF with multiple venting holes in the zonal approach (Lou et al, 2012). 

The flow coefficient used was K=1 and the flow exponent n=1 according to Inculet (1994). 

2.6.2 Resistance approach and the Hardy Cross method 

A useful representation of flow networks is with the electrical analogy, especially when dealing 

with complex flows with multiple inlet and outlet openings which are interconnected through a 

network of alternating branch flows (Aynsley, 1997). Pressure drop is related through a 

proportionality constant, or flow resistance, to the flow in an equivalent manner as voltage is 

linked to electrical current.  

When flow passes through a number of resistances in series, as i.e. a sequence of openings, an 

equivalent resistance, Req, equal to the sum of the resistances, R1, R2,…Rn, can be used in exactly 

the same manner as in electric circuits: 
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1 2 ...eq nR R R R     (2.22) 

When the flow passes through a number of parallel branches, the equivalent resistance can be 

calculated as: 

1 21/ 1/ 1/ ... 1/eq nR R R R     (2.23) 

From the known equations relating pressure drop to the volumetric flow (2.11, 2.14, 2.15, 2.16) 

it is clear that the relationship between the flow and the pressure drop is non-linear. The pressure 

drop is actually proportional to the square of the flow and, conversely, flow is proportional to the 

square root of the pressure drop. 

Flows in networks with parallel or in series branches can be analyzed directly using the electrical 

analogy (or resistance–circuit analogy). However there might be cases where flow branches 

overlap, or are interconnected, forming a complex flow network, the direct solution of which 

may be impossible.  

A well-established method for solving complex flow networks, the branches of which form 

closed loops, is the Hardy Cross method, or moment-distribution method, which was originally 

proposed by Hardy Cross for framed structure analysis, but has since found extensive application 

in flow and pipe networking problems. The method has been found to converge for all known 

examples and was afterwards proven to be a Jacobi iterative scheme (Volokh, 2001). The Hardy-

Cross method can calculate the flow through an infinite number of loops, number of nodes or 

number of input nodes (Brkic, 2008). The first two laws of Kirchoff are used: 

 The quantity of air entering a junction must be equal to the quantity of air exiting the 

junction (mass continuity) 

 The summation of pressure drops around any closed path is zero (potential/energy 

continuity) 

The method is based upon the relation between head loss and flow: 

' n

fh k Q   (2.24) 

where: 
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 hf: the loss of head (m), from the relationship  

fP h g     (2.25) 

ρ being the air density (kg/m
3
) and g the gravitational acceleration (9.81m/s

2
) 

 k’: the head loss per unit flow (s
n
/m

3n-1
) 

 n: the flow exponent (dimensionless) 

The factors k’ and n can be defined according to the appropriate relationship between flow and 

pressure drop or head (Darcy-Weisbach, orifice flow etc.). The Hardy Cross method assumes 

that the flow entering and exiting the system is known, as well as the geometric and roughness 

features of the branches, according to which the k factors may be calculated. 

There are two ways of applying the Hardy Cross method: 

 The method of balancing heads, where there is an initial guess of branch flows that 

satisfies continuity at each junction of the system and then iteratively balances the flows 

until continuity of potential is reached. 

 The method of balancing flows, which uses an initial guess that satisfies continuity of 

potential over each loop of the system and then balances the flows, until continuity of 

flow is achieved in each junction. 

A typical form of a flow network set in loops solved by the Hardy Cross method is shown in 

Figure 2.15: 

 

Figure 2.15: Typical loop formation analyzed by the Hardy Cross method. 
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Aynsley (1997) used a resistance approach for the analysis of natural ventilation air-flow 

networks in buildings with a limited number of openings in series. This approach made use of 

the orifice flow, based on estimates of pressure differences and discharge coefficients of 

openings. The Hardy-Cross method was used for the iterative calculation of flows through the 

nodes of the network. The orifice equation used employs a discharge coefficient of CD=0.65 for 

flow through sharp edged rectangular objects. For the case of flow through wall openings on 

buildings it would be between the total pressure at the windward opening and the static pressure 

near the wall beside the leeward opening. The kinetic energy represented by the dynamic 

pressure of the air jet issuing from the leeward opening would be dissipated downstream of the 

building and therefore would not contribute to the head loss between windward and leeward 

opening. 

Since the study dealt with multiple inlet and outlet openings, as well as internal flows, an 

electrical circuit analogy was used, according to Atkinson’s equation which relates the pressure 

drop to the square of the discharge Q (m
3
/s), with a constant of proportionality, R’, which is the 

equivalent of an electrical resistance: 

2'P R Q    (2.26) 

The airflow resistance through the wall openings was expressed in terms of their discharge 

coefficients, the air density and the area of the opening: 

2 2' ( / 2) / ( )DR C A   (2.27) 

The Hardy-Cross method, along with the resistance analogy was used as simple flow modelling 

approach as opposed to three dimensional CFD calculations. This method did not provide 

detailed information on airflow outside the main air streams, it could, however, produce adequate 

estimation in terms of the flow through the openings of the system. 

Dymond & Kutscher (1997) used pipe networking methods to develop a simple computer 

algorithm for the calculation of the flow distributions in transpired solar collectors, in an effort to 

create a design guideline to counter the poor flow distribution occurring in large building 

installations.  
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Addressing it as a flow distribution problem, pipe networking techniques were adopted instead of 

developing a CFD case, since it was noted that the Navier-Stokes equations need not be solved, 

as long as the pressure drop across the absorber and in the plenum were known empirically.  

The absorber was modelled with a three-dimensional set of fictitious pipes, the x and y-

dimensional pipes representing flow within the plenum and the z-directional pipes flow across 

the absorber, as shown in Figure 2.16: 

 

Figure 2.16: Example of a 3 x 3 set of pipe junctions connected to form a pipe network (Dymond & Kutscher, 

1996). 

The model consisted of M horizontal nodes and N vertical nodes. This resulted in M N  z-

directional pipes representing flow across the absorber, ( 1)M N  horizontal, x-directional 

pipes and (N 1) M  vertical, y-directional pipes. The model also assumed one outlet for the 

flow placed at the top right corner and that, due to that, the flow could move only to the right and 

upwards. 

The flow distribution problem consisted, thus, of a total ( 1) ( 1)M N M N N M      

pipes with unknown flows. Modelling was based upon the principles of mass continuity and 

conservation of mechanical energy for each loop of the system.  

Mass continuity was applied to the M N  nodes/junctions of the system, expressed with the 

following equation: 
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1

( ) 0
Noofflows

i

i

Q


   (2.28) 

Conservation of mechanical energy was applied to the (N 1) M  x-directional and ( 1)M N 

y-directional loops of the system by setting the sum of pressured drops around any closed loop to 

zero, assuming steady state incompressible flow. 

The types of pressure drop considered are the following: 

 Pressure drop across the absorber (z-directional pipes), defined according to Kutscher 

(1994) as: 

2

0.236

2

1
0.5 [6.82 ( ) Re ]

face

absorber

face

Q
P

A







        (2.29) 

δ being the porosity of the absorber. 

 Frictional pressure drop inside the collector plenum (Darcy-Weisbach, eq. 2.11) 

 Pressure drop due to buoyancy: 

( ) ( )buoyancy ambient y pipe y pipe y pipeP g h g h              (2.30) 

 

Δρ being the difference between external and internal air density due to the temperature 

difference. It was assumed that the local variation of temperature resulted in a vertical 

buoyancy force positive in the y-direction and, thus, zero for the x-direction. 

 Acceleration pressure drop, due to mass addition and geometric convergence as the flow 

reaches the outlet.  

A loop of the system had the form shown in Figure 2.17: 
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Figure 2.17: Example of a loop of the pipe network (Dymond & Kutscher, 1996). 

For the loop of Figure 2.16, the mechanical energy conservation equation yields: 

8 2 9 0P P P     (2.31) 

where ΔP8 and ΔP9 were the pressure drops across the absorber for two consecutive z-directional 

pipes, the negative sign for ΔP9 indicating that the flow in pipe 9  was in the opposite direction of 

the loop path and ΔP2 consisted of the pressure drop due to friction, buoyancy and acceleration. 

The relationships for pressure drop due to friction in a turbulent regime as well as for flow across 

the absorber and acceleration friction were linearized in the form of: 

'P K Q    (2.32) 

For example, the coefficient for pressure drop across the absorber was the following: 

0.236

2

1
' 0.5 [6.82 ( ) Re ]

face

absorber

face

Q
K

A







       (2.33) 

so that: 

' 'absorber absorber face absorber z pipeP K Q K Q       (2.34) 

The continuity equations and the linearized pressure drop equations were set in a matrix solution 

form for the flow distribution calculation: 
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'K Q C   (2.35) 

where K is the coefficient matrix, Q the matrix containing the unknown flows and C the solution 

vector. After the iterative solution of the flow distributions, the flows were then used to calculate 

the temperature distribution over the UTC area. The energy balance included radiation losses to 

the sky and to the ground and convectional losses due to external wind. The solutions of the 

temperature distributions were then again used as initial values for the flow model and the 

procedure was repeated until a defined convergence threshold was reached. 

A major assumption of the model was that wind effects were considered insignificant and were 

not modeled based on the fact that if the pressure difference across the absorber is more than 25 

Pa, wind does not affect the flow across the absorber. 

2.7 Wind effects on solar collectors 

Although the effect of wind on the flow distributions through the multiple-openings of such 

systems has been poorly addressed, such an investigation can benefit from parts of studies 

dealing with velocity and pressure distributions over an area of interest, as well as studies dealing 

with combination of wind tunnel exterior pressure results used as boundary conditions for CFD 

simulations. This will form the basis for the part of this investigation dealing with wind effects 

on the flow distribution over a multiple-inlet BIPV/T system, where the external pressures 

measured in a boundary layer wind tunnel over the BIPV/T area will be used as input to the 

mathematical flow model. 

Wind effects have been studied extensively in terms of wind-induced convection on solar 

applications such as solar collectors, PV racks and BIPV/T, as well as in terms of wind loads 

concerning the structural stability of such systems. Wind forms a velocity boundary layer over 

the earth’s surface, the velocity being lower near the earth’s surface due to ground friction. After 

a specific height, called the gradient height, wind has its maximum velocity, termed gradient 

speed, which for all practical purposes is assumed constant after this height (Simiu & Scanlan, 

1996). The in-between values of wind speed are calculated according to the following power 

law: 

( )aZ

G G

V Z

V Z
  (2.36) 
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where: 

 VZ: the mean wind velocity at a given height, below the gradient height (m/s) 

 VG: the gradient wind speed (m/s) 

 Z: the height of interest (m) 

 ZG: the gradient height of the boundary layer (m) 

 a: a power law exponent, which depends on the type of upstream exposure (open field, 

suburban, urban) (dimensionless) 

Wind determines the external convective part of the collector’s energy balance and thus the 

convective losses. In literature the external convective heat transfer coefficient, hw, has been 

related linearly to the wind speed at a reference height, Vloc, depending on the direction of wind, 

the exposure settings and the geometric features of the test subject. There are considerable 

differences throughout these relationships, which makes it very difficult to have a general 

approach to include wind in the energy balance (Kaldellis et al, 2013). The relationship between 

hw and Vloc is of the following format: 

w loch a V b    (2.37) 

with a and b constants. 

Vasan (2014) performed an extensive literature review of the above correlations, some of which 

are presented in Figure 2.18: 

 

Figure 2.18: Convective heat transfer-wind velocity relations for vertical building surfaces (Vasan, 2014). 
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Vasan investigated the effect of using the actual velocity distributions over a UTC installation 

versus assuming a uniform wind velocity over the whole area, on the estimation of the UTC 

performance. It was found that assuming that wind acts uniformly over the whole area lead to an 

overestimation of the heat exchange effectiveness of the collector up to 50%, as well an 

underestimation of the wind induced convective heat transfer coefficient by up to 20%. In a 

similar study concerning wind velocity distributions on roofs, Ladas (2014) found that there were 

considerable differences between wind velocities in the windward and the leeward part of the 

roof and that reflected upon the performance of solar collectors placed on each location. 

Similarly, wind induced pressure over a large vertical surface is not distributed evenly, especially 

with varying wind direction. Aly & Bitsuamlak (2013) performed a sensitivity analysis on wind 

tunnel model scaling for ground-mounted solar panels. It was found that mean pressure 

coefficients were not affected by the size of the model, while for peak pressure coefficients the 

results were very consistent for scales 1:20 and 1:30.  From the measurements over a PV 

installation with full scale dimensions 1.336m x 9.144m, a considerable variation of pressure 

coefficients was found over the test area, as shown in Figure 2.19: 

 

Figure 2.19: Wind tunnel mean pressure coefficients (Cpmean) distribution over a solar panel scaled 1:20 (Aly & 

Bitsuamlak, 2013). 

The study also suggested the combined use of wind tunnel measurements and CFD, with which, 

a full scale model could be simulated. 

Kato et al (1997) introduced a hybrid approach combining wind tunnel measurements and CFD 

for the estimation of cross ventilation. A wind tunnel was used to simulate the external airflow 
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and CFD was used for the internal airflow distributions. This method aimed to reduce the 

computational cost of CFD for simulation of the outdoor wind while still providing detailed 

indoor air distribution. Lo et al (2013) improved on Kato’s hybrid method with the inclusion of 

wind fluctuations, as well as change in wind directionality.  

The aforementioned hybrid approach consisted of wind tunnel pressure measurements conducted 

on the façade of the building, specifically by placing sets of pressure taps at the locations where 

the openings were supposed to be and averaging the measurements. The acquired pressure 

measurements could afterwards be used as pressure boundary conditions for the CFD model. 

This method was based upon the note that since the façade openings were of less than 2% wall 

porosity, pressure driven flows could be assumed. It was found that although the flow 

distribution predictions in the interior were not that accurate, the coupled wind tunnel-CFD 

method could provide more accurate predictions of the total cross ventilation flow rates. 
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3. Experimental procedure 

3.1 Multiple-inlet BIPV/T concept and initial design 

The concept of a multiple-inlet BIPV/T system has its origins in the hybrid PV/T-UTC design 

developed by Athienitis  (2010), as a project of the Solar Buildings Research (SBRN), and was 

applied to the JMSB building of Concordia University as a demonstration project. As described 

in the previous chapter, this prototype consisted of a layer of UTC of 1% porosity, with PV 

panels placed on 70% of its surface area. With this configuration, this system was able to 

produce energy, while heat was extracted from both the absorber plate of the UTC and the PV 

panels. 

An evolution of the above was to make maximum use of the given area with 100% PV coverage, 

but assigning inlets to the frames of each PV, the area of each inlet being 1% of the total PV 

area. The UTC would not be needed as a racking system, as the framed PV panels could be set 

directly on the side bearing elements. 

An experimental design of a multiple-inlet BIPV/T prototype was developed by Bigaila and 

Athienitis (Bigaila et al, 2015), while the author of this thesis assisted in its construction and the 

experimental measurements out carried upon it, focusing on the flow measurements. The 

prototype, which can be seen in Figure 3.1, consisted of three PV panels, two opaque and a semi-

transparent module. The PV panels were set within frames, while holes were cut on the front part 

of the frame of each panel. The framed panels were set in an overlapping configuration, the cross 

section of which can be seen in Figure 3.2 

Two side buffer zones were created with use of aluminum plates painted black, to represent 

adjacent PV strings and eliminate heat transfer to the sides of the PV set-up. The back part of the 

PV frame protruded by 4cm into the air channel, leaving an opening of 0.04m x 1m for the air to 

pass through. 
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Figure 3.1: 3-inlet BIPV/T prototype tested at the Concordia University Solar Simulator. 

 

Figure 3.2: 3-inlet BIPV/T prototype tested at the Concordia University Solar Simulator (dimensions in mm). 

3.2 Solar Simulator testing 

The experimental prototype was tested at the Concordia University Solar Simulator. This 

research facility is designed to simulate solar radiation and wind-induced convection at ambient 

temperature of 20-25
o
, thus providing controlled environmental testing conditions. The solar 

simulator consists of a test platform, upon which test specimens may be mounted and a lamp 
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field that can emulate the sun light. The test platform may be tilted at any angle between the 

horizontal and the vertical position (Bambara et al, 2012).  

The lamp field consists of a set of 8 metal halide global lamps which can be moved individually 

on a 2-axis system to provide an irradiance uniformity of up to ±5% on test surfaces of different 

sizes. The irradiance intensity may vary from 700 W/m
2
 to 1100 W/m

2
. To eliminate the infra-

red radiation from the hot lamps, an artificial sky is placed in front of the lamp field, which also 

simulates sky temperature. 

In order to simulate wind-induced convection, a centrifugal fan is set at the bottom edge of the 

platform blowing wind parallel to the test specimen.  

When testing air-based systems such as BIPV/T, an air collector unit can be connected to the test 

specimen in an open- or closed-loop formation to cause the circulation of air with use of a 

multiple speed fan creating negative pressure (suction). An orifice plate is set within the air 

collector, for which the relationship between pressure drop across the plate and air flow is known 

and thus the air collection rate can be set manually. 

The three-inlet prototype was tested for its electrical and thermal performance and flow 

measurements were carried out with a hot wire flow meter. The flow measurements were taken 

at the back part of the frames of each PV panel. The various flow rates were set by the air 

collector and for three angles of placement of the test specimen (horizontal, 45
o
 and vertical). 

From the measurements it was found that the inclination of the subject did not affect the flow 

distributions of the three inlets. However, the flow measurements were limited due to the 

available equipment and were performed at one single location for each panel, namely, in the 

middle of the gap created by the back part of the frame of each panel and the back insulation, 

where the air flow was expected to converge. The results of the measurements and the 

comparison to the numerical model for the inlet flow distributions are presented in Chapter 4. 

3.3 Wind tunnel testing 

The multiple-inlet prototype tested in the Solar Simulator would form the base for a potential 

BIPV/T retrofit project, for an institutional office building application, namely the Montreal 

Courthouse. This particular building is located in the Old Port location of Montreal, Canada, 

facing 58
o
 east of south (azimuth -58

o
), as shown in Figure 3.3: 
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Figure 3.3: The Montreal Courthouse with potential BIPV/T installation in yellow (left) and its orientation (right). 

The highlighted area in Figure 3.3 (left) shows the top part of the south east façade where the 

BIPV/T system could be installed. 

In order to account for the wind effects on the flow distributions of a multiple-inlet system 

installed over such a large area (81.2m x 11m), the pressure distributions over the BIPV/T area 

needed to be assessed. These pressures would be used as inputs in the flow distribution model, 

described in detail in Chapter 4. 

These pressure distributions were studied experimentally at the Boundary Layer Wind Tunnel 

facility of Concordia University, on a 1:400 scale model of the actual building. 

3.3.1 Concordia University Boundary Layer Wind Tunnel 

The BLWT of Concordia University is an open loop wind tunnel with a width of 1.8 m, height 

ranging from 1.4-1.8m due to an adjustable ceiling and a length of 12.2 m. It can produce wind 

velocities from 3 m/s to 14 m/s, while test specimens can be placed on a turntable located at the 

test section, which allows them to be tested for various wind directions (Vasan, 2013). A 

schematic of the facility is shown in Figure 3.4: 
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Figure 3.4: Schematic of the boundary layer wind tunnel at Concordia University (Stathopoulos, 1984). 

3.3.2 Wind tunnel model 

Stathopoulos (1984) found that based on the wind tunnel dimensions and flow characteristics, a 

model scale of 1:400 resulted in the best agreement for the actual and modelled spectrum of wind 

and thus provided the best measurement results. A model of the Courthouse building was 

designed and built to that scale by using 3D printers. The model, shown in Figure 3.5, was 

designed as a 3mm thick shell and was printed out of a rigid polymer. 

 

Figure 3.5: 1:400 scale model of the Courthouse building made by 3D printer.  
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A 203 mm x 27.5 mm Plexiglas face was created to represent the retrofit area. 28 pressure taps 

were embedded in that face as shown in Figure 3.6: 

 

Figure 3.6: Face with pressure taps of the wind tunnel model.  

It is the author’s opinion that wind measurements cannot be generalized and that for each 

particular building an exact representation of the surroundings should be employed for accurate 

measurements of either the velocity or the pressure field over the test area. 

However, a general assessment of pressure distributions over a retrofit area, for various angles of 

incidence of oncoming wind, may provide input on the expected performance of a multiple-inlet 

system, as well as design insight concerning the amount and placement of the inlets, based on the 

prevailing local winds. 

The model was, therefore, tested in an open field exposure, with a flow exponent of α=0.23, and 

for 5 directions of oncoming wind, as shown in Figure 3.7: 

 

Figure 3.7: Building orientation, wind diagram for Montreal and wind directions tested.  
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A pitot tube was placed at the simulated gradient height (60 cm), from which the dynamic 

pressure of wind was acquired. The static pressures over the retrofit area were measured for the 

five wind directions. Finally, the ratios of the static pressures measured over the dynamic 

pressure of wind were calculated in order to form the dimensionless pressure coefficients, Cp. 

These coefficients are independent of the wind velocity, but vary according to the wind direction 

over the given surface, and can be used to calculate surface pressures as follows: 

21

2
s P locP C V     (3.1) 

where: 

 Ps: the surface pressure (Pa) 

 Cp: the pressure coefficient for a given wind direction (dimensionless) 

 ρ: the air density (kg/m
3
) 

 Vloc: the velocity of wind at the height of measurement (m/s) 

3.3.3 Experimental results and discussion 

The results of the measurements are presented in the form of contours of the mean pressure 

coefficients over the retrofit surface. Each case, classified according to the angle of incidence of 

oncoming wind to the test area, is presented in Figures 3.8 through 3.12: 

 

 

 

Figure 3.8: Mean pressure coefficient (CP_mean) for 0
o
 wind direction (top) and wind tunnel model placement 

(bottom). 
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Figure 3.9: Mean pressure coefficient (CP_mean) for 45
o
 wind direction (top) and wind tunnel model placement 

(bottom).  

 

 

Figure 3.10: Mean pressure coefficient (CP_mean) for 90
o
 wind direction (top) and wind tunnel model placement 

(bottom).  

 

 

Figure 3.11: Mean pressure coefficient (CP_mean) for 135
o
 wind direction (top) and wind tunnel model placement 

(bottom).  
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Figure 3.12: Mean pressure coefficient (CP_mean) for 180
o
 wind direction (top) and wind tunnel model placement 

(bottom).  

Negative pressure coefficients mean that suction occurs at the specific location. In order for the 

results to be more visual, scales of red were used to signify positive pressure, the darker shades 

denoting the highest values and vice versa for negative pressure, for which shades of blue were 

used, white implying zero pressure. 

As expected, for the first case of 0
o
 wind, the pressure distribution is almost symmetric about the 

y-axis of the retrofit area. Highest positive pressure coefficients occur at the central bottom part 

of the surface, while suction is present at the top edge where the airflow separates and 

accelerates, creating a negative pressure zone. 

The first and the second case, that of 45
o
 wind, seem to create the highest pressure coefficient 

distributions in the vertical sense. For a PV string, placed along the installation height, this would 

mean highly varying pressure values at each inlet of the system which could lead to outflow at 

the locations under suction for an improperly designed system. 

For the case of 90
o
 wind, regions under the same pressure coefficient are almost vertically 

discretized. This means that PV strings would lie under the same pressure regime along the 

height of the string and the flow distributions would be affected the same way as in no wind 

conditions. The negative pressure, however, would reflect upon the fan consumption by 

increasing it to achieve the same air collection rate. In this case, the BIPV/T surface is parallel to 

the oncoming wind and with separation occurring at the building’s edge, it is under extreme 

suction regime. The highest suction occurs at the windward part, within the separation zone. 
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For the cases of 135
o
 and 180

o
 wind, the BIPV/T surface is essentially located at the wake of the 

airflow. For both cases, the BIPV/T area is under suction which is approximately uniform 

throughout.  
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4. Multiple-inlet BIPV/T modelling 
As stated in section 2.2, heat transfer via convection from the PV layer to the air stream is mainly 

dependent upon two factors: the air flow rate inside the air channel and the temperature 

difference between the circulating air and the PV panels. 

The purpose of a multiple-inlet system is the regulation of both of the above parameters. With 

the introduction of more openings for the intake of fresh air, the temperature difference between 

circulating air and the PV panels is increased for the upper PV modules, due to the addition of an 

air stream that is cooler than the preheated air coming from the previous control volume below. 

The temperature of air entering each control volume is determined by the nature of the flow 

through the corresponding inlet, as well as by that of the previous control volume, as described in 

section 4.2.1. 

The amount of flow coming from each inlet and as a result the weighted air temperature and the 

flow rate of each control volume is regulated according to the geometric features of the openings 

and the air channel. These geometric features determine the resistance to the flow and as a 

consequence the flow distributions from the inlets of the system. 

The modelling of a multiple-inlet BIPV/T consists of two parts; one is the flow model, dealing 

with the amount of air entering from each opening of the system, and the other is the energy 

model which uses the flow rates calculated from the flow model for the internal convection part.  

4.1 Flow distribution model 

Flow distributions in a multiple-inlet system result in a complex flow network that could be 

described with an electrical analogy, as discussed in section 2.6.1. A set of exterior sources, 

outside the system’s openings, or inlets, represents the exterior pressures over the BIPV/T area, 

while the interior nodes represent the internal pressure of the air channel. The branches 

connecting exterior sources to interior nodes show the flow through the inlets, while the branches 

connecting interior nodes, the flow through the air channel. A schematic of the general flow 

network of multiple-inlet BIPV/T is shown in Figure 4.1: 
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Figure 4.1: Resistance-circuit representation of the flow network of the multiple-inlet system. 

The exterior sources and interior nodes of two consecutive inlets form a closed loop, similar to 

the ones of pipe networks, also adopted by Dymond and Kutscher (1996) for the modelling of 

UTC flow distributions. 

The main principles upon which the flow modelling is based are mass continuity and 

conservation of mechanical energy.  

Mass continuity is expressed as follows: 

( )

1

n

opening i tot

i

Q Q


  (4.1) 

where: 

 Qopening(i): the flow through the i-th opening of the system (m
3
/s) 

 Qtot: the total air collection rate from the system’s fan (m
3
/s) 

Conservation of mechanical energy is applied to each of the closed loops formed in the flow 

network in the form of pressure drop. The sum of pressure drops in a closed loop should be equal 

to zero, as expressed by the following relationship: 

( ) channel( ) ( 1) ( 1) ( ) 0opening i i opening i i iP P P P P        (4.2) 

where: 

 ΔPopening(i): Pressure drop from flow across the i-th inlet (flow through an orifice) (Pa) 

 ΔPchannel(i): Frictional pressure drop from flow within the i-th air channel, as well as from 

flow through the back frame of the PV panels (Pa) 
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 P(i): Pressure exterior to the i-th inlet, defined by the local wind effects (Pa) 

4.1.1 Pressure drops 

-  Flow across the inlet 

The system’s inlets will be less than 2% of the BIPV/T area, therefore, according to Lo et al 

(2012), pressure driven flow may be assumed. The flow through an orifice (equation 2.16) could 

be employed to describe the pressure drop from flow across the system’s inlets. 

-  Flow through the air channel 

The flow through the air collector is not continuous, since new air streams, entering through the 

inlets, interfere with the internal stream, interrupting its continuous flow. For practical purposes, 

it can be assumed that between openings, separate channels are formed for each module, which 

are interconnected. The flow of these channels is a sum of the air entering from the previous 

channel and that from the inlet, resulting to a different Reynolds number for each channel and 

different frictional losses. 

The pressure drop from flow within the air channel is a combination of frictional losses, as well 

as pressure drop from flow across the back part of the air channel, due to the resistance caused 

by the frame of the PV panels, in case of a framed configuration. 

The relationship used to describe the frictional losses of these channels is the Darcy-Weisbach 

equation (2.12), which can be replaced by equation 4.3 as follows: 

2 21
( / ) ( / A )

2
hP f L D Q       (4.3) 

where Q and A are the volumetric flow rate inside the air channel and the cross sectional area of 

the air channel respectively.  

The pressure drop due to flow across the back part of the air channel is also described by this 

orifice equation. 
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-  External pressure 

The local pressure exterior to the inlets of the system is a result of the local wind effects. The 

pressure caused by wind on the BIPV/T area, depending on its direction and velocity, was 

measured at the Boundary Layer Wind Tunnel of Concordia University for a test model of the 

Montreal Courthouse building, as described in sections 3.3.2 and 3.3.3. In order to acquire the 

external pressure distribution, the dynamic pressure of wind needs to be calculated as: 

21

2
wind locP V    (4.4) 

where Vloc is the wind velocity at the installation height. Then the dynamic pressure will be 

multiplied by the measured pressure coefficients, depending on the direction of oncoming wind 

and thus provide the local pressure distribution. When acquired, these pressures can be used as 

input in the mechanical energy conservation equations of the flow loops described above, in a 

similar way as Lo et al (2012). 

4.1.2 Frictional and secondary losses 

The friction factor f, used in the Darcy-Weisbach equation (2012) for the calculation of the 

frictional pressure drop in a pipe, is calculated from the Moody chart, according to the Reynolds 

number of the flow and the relative roughness of the material of the pipe walls. In the case of 

laminar flow (Re<2300) an empirical formula used is: 

64 / Ref   (4.5) 

For the turbulent regime, several empirical relationships have been suggested (Hegazy, 1999 

Balocco, 2001; Ghani et al, 2012). The one used in this study is the one also used by Ghani 

(2012), as it also has good agreement of results with equation 4.5 for the laminar region: 

2(0.79 ln(Re) 1.64)f     (4.6) 

The flow factors of secondary, or local, losses due to flow across the inlets and the opening 

formed by the back frame of the PV and the back wall, namely the Kinlet and the Kb.frame were 

calculated according to the Duct Design section (Ch.21) of the ASHRAE Fundamentals. For 

each opening the local losses are due to flow through a sharp opening with a K=0.5 and a sudden 
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expansion of the flow, or exit loss, with a K=1. As a result both the Kinlet and the Kb.frame were 

assumed equal to 1.5. This was an approximation to be used in the numerical procedure; 

however, further experiments should be carried out to establish more accurate coefficients from 

the measured relationship between the flow through the designed openings and the pressure drop 

across them. 

4.1.3 Electrical analogy 

The complex flow network of a multiple-inlet BIPV/T is modelled in this study employing an 

electrical circuit analogy, in accordance with Aynsley (1997). In an electrical circuit the 

relationship linking the voltage, V, the current, I, and the electrical resistance R is: 

V I R   (4.7) 

For the flow network, the volumetric flow rate Q (m
3
/s) is the equivalent to current, the pressure 

drop (Pa) between two nodes is the equivalent to voltage and the resistance to the flow is defined 

according to the geometric features of the flow path. The equivalent relationship to equation 

(4.57 is the following: 

P Q R    (4.8) 

There are two types of resistances formed from the linearization of equations (2.16) and (4.3) in 

order for them to take the form of equation (4.8): 

 Inlet Resistance 

2
( )

2

inlet inlet
inlet

inlet

K Q
R

A
    (4.9) 

 Channel resistance 

. 2

.

(f )
2

channel
channel b frame

h b frame

QL
R K

D A
    

  (4.10) 

where: 

 Ropening, Rchannel: the resistances of the inlet and the air channel respectively (kg/(m
4
 s)) 
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 Kinlet, Kb.frame: the K factors of the inlet and the back part of the PV frame, as defined in 

section 4.1.2 

 Ainlet, Achannel: the cross sectional area of the inlet and the air channel respectively (m
2
) 

 L: the length of the air channel (m) 

 Dh: the hydraulic diameter of the air channel (m) 

 f: the friction factor as defined in 4.1.2 

 Qinlet, Qchannel: the volumetric flow rate through the inlet and the air channel respectively 

 ρ: the air density (kg/m
3
) 

The pressure drops due to flow across an inlet and through an air channel can now be written as 

follows: 

 Inlet pressure drop: 

inlet inlet inletP Q R    (4.11) 

 Channel pressure drop: 

channel channel channelP Q R    (4.12) 

By substituting (4.9) and (4.10) into (4.2), it becomes: 

inlet( ) inlet( ) channel( ) channel( ) inlet( 1) inlet( 1) ( 1) ( ) 0i i i i i i i iQ R Q R Q R P P           (4.13) 

4.1.4 Solution matrix 

A system with n-inlets will consist of n-1 loops. This system will be described by a set of n-1 

equations of conservation of mechanical energy in the form of (4.13), one per loop, as well as 

one mass conservation equation. This results in a system of n-equations with n-unknown flows 

through the inlets. 

The resulting equations are of the following form: 

Mechanical energy conservation: 

 First loop: 
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inlet(1) inlet(1) (1) (1) inlet(2) inlet(2) 2 1 0channel channelQ R Q R Q R P P       
 (4.14) 

 Second loop: 

inlet(2) inlet(2) (2) (2) inlet(3) inlet(3) 3 2 0channel channelQ R Q R Q R P P         (4.15) 

 (n-1)-th loop: 

inlet(n 1) inlet(n 1) (n 1) (n 1) inlet(n) inlet(n) 1 0channel channel n nQ R Q R Q R P P           

 (4.16) 

Mass continuity equation: 

inlet(1) inlet(2) inlet(n)... totalQ Q Q Q   
 (4.17) 

The flow of each channel equals to the sum of the flow from the previous channel and the flow 

through the module’s inlet: 

channel(i 1) ( ) ( 1)channel i inlet iQ Q Q    (4.18) 

Given the equations (4.17) and (4.18), the mechanical energy conservation equations (4.14) 

through (4.16) may be transformed as follows: 

 First loop: 

inlet(1) (1) (1) inlet(2) inlet(2) 1 2( )inlet channelQ R R Q R P P     
 (4.19) 

 Second loop: 

inlet(1) channel(2) inlet(2) (2) (2) inlet(3) inlet(3) 2 3( )inlet channelQ R Q R R Q R P P       

 (4.20) 

 (n-1)-th loop: 
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inlet(1) channel(n 1) inlet(n 2) (n 1) inlet(n 1) ( 1) channel(n 1) inlet(n) inlet(n) 1... ( )channel inlet n n nQ R Q R Q R R Q R P P                

 (4.21) 

All the above equations can be rewritten in a matrix form as follows: 

[ ] { } [ ]R Q P   (4.22) 

where: 

 [R]: the matrix containing the coefficients of the flows; the resistances for the mechanical 

energy conservation equations and those for the continuity of mass equation 

 {Q}: the vector with the unknown inlet flows 

 [P]: the vector containing the constants of the right part of the equations; the external 

pressure differences and the total air collector volumetric flow 

It is clear that the relationship between pressure difference and flow is non-linear. Inlet and 

channel flows are used within the resistances in order to produce a system of equations with a 

linear form for the matrix solution.  

4.2 Wind effects and energy balance 

4.2.1 Flow distributions due to wind effects 

The following modelling part, dealing with flow distributions due to wind effects and the energy 

balance, is done with the assumption that the total outflow, through each PV string’s outlet to the 

manifold, is the same. 

Investigation of flow distributions of the manifold is not an object of the current study. It is also 

assumed that the fan provides a constant suction rate. This means that if the pressure difference 

is higher, the fan will provide the desired total flow rate, but at higher consumption. 

Furthermore, if in case of wind, there are differential external pressures along a PV string, the 

outflow due to suction at some of the inlets of the system will be compensated for by increased 

flow through some other inlets. 

As shown in section 3.3.3, wind may cause varying pressure distributions over the BIPV/T area, 

depending on its direction. The angles of incidence of 0
o
 (perpendicular wind) and 45

o
 may cause 

the most varying differential pressures along the height of a PV string. For the rest of the cases 
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(angles of incidence 90
o
, 135

o
 and 180

o
), due to the nature of the pressure distributions, it could 

be assumed that areas are formed with the same pressure regime along the PV string height. 

For the first two cases (see Figures 3.8 and 3.9) varying pressures may cause both compression 

and suction through the system inlets. In Figure 4.2 the possible flow paths through the inlets and 

within the air channels are shown: 

 

Figure 4.2: Possible flow paths for the inlets and channels of the multiple-inlet system. 

The convention for the flow paths is as follows: The flow within the channel is considered 

positive if it is directed towards the fan and negative otherwise. The flow through the inlets is 

considered positive if it is entering the collector and negative otherwise. The flow distributions 

of the multiple-inlet system are of utmost importance for its energy balance, since the flows 

within each channel define the internal convection, while the direction of the inlet and the 

channel flow determines the entrance temperature of air, as will be shown in detail in the energy 

balance part. 

4.2.2 Measured and simulated results 

The flow distribution model was applied to the three inlet prototype described in sections 3.1 and 

3.2. The measured and simulated results are shown in Figure 4.3. The flow distribution model 

was applied for the experimental case of the three-panel BIPV/T described in sections 3.1 and 

3.2. The results of the model were compared to the measurements taken with the hot wire 

velocity meter at three flow points, at the back part of each panel. The measured and simulated 

results are shown in Figure 4.3. All measured flows are normalized by the total outflow of the air 

collector. 
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Figure 4.3: Normalized mass flows at the back of each panel of the 3-inlet prototype, for three angles of placement 

in the solar simulator. 

The specific results were for cases where no external wind and no irradiation were involved, as 

the representation of wind effects in the Solar Simulator is not accurate, while the effects of fan 

induced suction and the plenum’s geometry were under investigation. The measurements were 

carried out for three total mass flow rates 100kg/h, 200kg/h and 300kg/h for each angle of 

placement. The model requires further calibration, however, the results of the simulations were 

within a 25% error range from the measured results, which would be a reasonable threshold for 

flow measurements (Rounis et al, 2015) 

 

4.3 Modified energy balance model 

The energy balance for a BIPV/T, assuming that each PV module comprises a control volume 

(CV), is shown in Figure 4.4: 
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Figure 4.4: BIPV/T control volume energy balance. 

where: 

 To: the external temperature (
o
C) 

 ho: the exterior film coefficient (W/m
2 o

C) 

 TPV, Tma, Tins and TR: the temperatures of the PV the air inside the air channel, the surface 

of the insulation and the adjacent room respectively 

 hc1, hc2: the convective heat transfer coefficients from the PV and the insulation surface to 

the flowing air respectively (W/m
2 o

C) 

 hrad: the radiative heat transfer between the PV and the insulation surfaces (W/m
2 o

C) 

 SPV: the net heat absorbed by the PV layer (total absorbed-electric produced) (W/m
2
) 

 ρ: the density of air (assumed constant), (1.2kg/m
3
) 

 Cp: the specific heat capacity of air, assumed constant (1000j/kg 
o
C) 

 M: the mass flow rate inside the collector, assumed constant (kg/s) 

The flow rate within the air channel is constant and therefore so is Reynolds number. As the air 

enters from a single opening, the temperature of air at the entrance of the first control volume 

(CV) is assumed equal to the ambient air temperature and for each new CV, the entering air 

temperature is assumed the same as that of air exiting the previous CV. 
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The energy balance for a multiple-inlet BIPV/T is very similar and is shown in Figure 4.5: 

 

Figure 4.5: Multiple-inlet BIPV/T control volume energy balance. 

The main difference is that each CV has a different air flow rate and Reynolds number, and there 

are various cases concerning the entrance temperature of air entering a CV. For the case of no 

wind, the flow rate of the n-th control volume is the sum of the flows from the previous CV and 

that of the n-th inlet, while the entrance air temperature is a weighted temperature of the exterior 

air and that exiting the previous CV. 

For the instances of varying exterior pressure as discussed in 4.3.1 the following cases are 

created concerning inlet and channel flows and how these are going to be used in the energy 

balance: 

4.3.1. Positive channel flow (towards the air collector) 

I.  Positive flow from previous CV and positive inlet flow 

QnQn-1

Qinlet_n

Tair

Tn-1
TnTi To

 

Figure 4.6: Positive channel flow with positive flow from the previous channel and positive inlet flow. 
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where: 

 Qinlet_n: the flow through the n-th inlet (m
3
/s) 

 Qn-1: the flow from the (n-1)-th CV (m
3
/s) 

 Qn: the flow of the n-th CV (under investigation) (m
3
/s) 

 Tair: the ambient air temperature (
o
C) 

 Tn-1: the temperature of air from the (n-1)-th channel (
o
C) 

 Ti, To: the air temperature at the entrance and at the exit of the air channel respectively 

(
o
C) 

For each channel/CV, the subscript I denotes the end of the n-th CV closer to the n-th inlet, while 

the subscript o, the end closer to the system’s outlet. In the case of reversed flow, as will be seen 

later on, these subscripts are not reversed. 

For this case, the stream from the inlet joins the stream from the previous channel resulting in an 

entrance air temperature weighted by the respective flows: 

_n 1 1

1_n

air inlet n n

i

inlet n

T Q T Q
T

Q Q

 



  


  (4.23) 

II. Positive inlet flow, negative flow from previous CV 

QnQn-1

Qinlet_n

Tair

Tn-1
TnTi To

 

Figure 4.7: Positive channel flow with negative (reverse) flow from the previous channel and positive inlet flow. 
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In this case, flow reversal occurs in the previous channel, so, part of the flow entering from the 

n-th inlet is directed there and part enters the n-th CV. This means that the air circulating in the 

n-th CV enters at ambient temperature: 

i airT T  (4.24) 

III. Negative inlet flow, positive flow from the previous CV 

QnQn-1

Qinlet_n

Tair

Tn-1
TnTi To

 

Figure 4.8: Positive channel flow with positive flow from the previous channel and negative inlet flow (outflow). 

In this case, part of the flow from the previous channel escapes from the inlet and as a 

consequence the air entering the new air channel is at the same temperature as air leaving the 

previous channel: 

1i nT T   (4.25) 

4.3.2. Negative channel flow (reversed flow) 

In the case of reversed flow within a channel, the heat extracted from the PV panels is released to 

the atmosphere. The flow may exit from the corresponding inlet of that particular CV, or from a 

previous one, denoting reversed flow in the previous CV as well.  Although the heat escapes to 

the exterior, the modelling must be done properly in order to assess the PV temperature of that 

particular CV/module. The following are the possible cases for the instance of reverse flow. 

Here, the air enters the CV at point “o”: 

 

 



63 
 

I. Positive flow from the (n+1)-th inlet, negative flow from the (n+1)-th channel: 

Qn Qn+1

Qinlet_n+1

Tair

Tn+1TnTi To
 

Figure 4.9: Negative (reverse) channel flow with negative (reverse) flow from the next channel and positive flow 

from the next inlet. 

 

This is the exact reverse of the first case of positive channel flow. In this case, flow reversal 

occurs also at the (n+1)-th CV and that air stream is joined with that from the (n+1)-th inlet and 

passes through the n-th channel. The entrance air temperature (at point “o”) is: 

_n+1

_n

1

1+1

1air inlet n n

o

inlet n

T Q T Q
T

Q Q

 



  


  (4.26) 

II. Positive flow from the (n+1)-th inlet and positive flow from the (n+1)-th channel: 

Qn Qn+1

Qinlet_n+1

Tair

Tn+1TnTi To
 

Figure 4.10: Negative (reverse) channel flow with positive flow from the next channel and positive flow from the 

next inlet. 

This is the reverse of the second case of positive flow. Part of the air entering from the (n+1)-th 

inlet goes to the (n=1)-th channel and part in reverse to the n-th channel. The entrance air 

temperature at point “o” is equal to the ambient: 
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o airT T  (4.27) 

III. Negative flow from the (n+1)-th inlet and positive flow from the (n+1)-th channel: 

Qn Qn+1

Qinlet_n+1

Tair

Tn+1TnTi To
 

Figure 4.11: Negative (reverse) channel flow with negative flow from the next channel and negative flow from the 

next inlet (outflow). 

 

This is the reverse of the third case of positive channel flow. Part of the reverse flow of the 

(n+1)-th channel exits from the (n+1)-th inlet and the rest enters the n-th CV at point “o”, the 

result being that the entrance air temperature is that of the air channel of the (n+1)-th CV: 

1o nT T   (4.28) 

4.4 Modelling assumptions 

Several assumptions have been made in this numerical study for simplicity purposes, since its 

main purpose is the introduction of a methodology for multiple-inlet BIPV/T modelling. Several 

of these assumptions have either been the subject of previous studies or could be further 

investigated in the future, as suggested in Chapter 6. 

As mentioned in section 4.1.2, the secondary loss factors (K) used in the flow distribution model 

were assumed from the literature on duct design. Furthermore, the Nusselt number correlation 

used in this study were those developed by Yang (2014), who studied a similar system with 2 

inlets and performed a numerical study on a four-inlet system. 

The wind effects investigated in this study concerned the effect of wind induced pressure 

distributions on the inlet flow distributions and not wind induced convection on the exterior of 
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the BIPV/T. An average relationship connecting local wind velocity and external convection was 

used, similar to the ones developed by Liu & Harris (2007): 

6 4wind loch V    (4.29) 

For simplicity, only one wind reference speed is considered and not the actual velocity 

distributions over the BIPV/T area. This, according to Vasan (2014) may lead to overestimation 

of the heat exchange efficiency and underestimation of the wind-induced losses. 
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5. Simulations and results 
The models developed in the previous chapter were used for the numerical investigation of the 

performance of several single and multiple-inlet BIPV/T systems considered for an office 

building application, namely the Montreal Courthouse, which was described in section 3.3. The 

available 80 m x 10 m retrofit area was assumed to be covered by 2 m x 1 m PV modules, thus 

forming 40 PV strings of 10 modules each. 

The electrical and thermal performance of six BIPV/T systems, described in section 5.1, were 

investigated for a typical summer and a typical winter day, for two total mass flow rates and for 

three different wind directions and two wind velocities per direction. 

The goal of these simulations was twofold:  

1. Investigate the flow distributions of the multiple-inlet systems in relation to the system’s 

geometry, total flow rate and wind effects.  

2. Investigate the performance of a multiple-inlet system against a single-inlet, for typical 

Montreal weather conditions, as well as study the potential of optimizing its performance 

by modifying the flow distributions of the inlets. The systems were compared in terms of 

electrical and combined electrical-thermal efficiency, as well as PV temperature 

uniformity, which is a major factor of consideration for the durability of large PV 

installations. 

5.1 Systems considered 

In total six different systems were compared, every two had the same inlet opening geometry but 

varied in the distance between the PV layer and the back wall, or gap size. The main features of 

these systems are the following: 

 All the systems are based on framed PV modules 2m wide and 1m long along the flow 

path of air inside the air channel. This means that the PV strings created have a width of 2 

m and a total length of 10 m. 

 Systems I and II (Figures 5.1 and 5.2) are single inlet systems, with a gap size of 0.10 m 

and 0.15m respectively and a bottom opening of 2 m x 0.1 m and 2 m x 0.15 m, for each 

PV string. 
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Figure 5.1: System I: Single inlet system with channel gap size: 0.1 m. 

 

Figure 5.2: System II: Single inlet system with channel gap size: 0.15 m. 

 Systems III and IV (Figures 5.3 and 5.4) are multiple-inlet systems with equally sized 

inlets and of the same gap sizes as above. The inlet areas for these systems were 0.02 m
2
 

corresponding to a porosity of 1% of the PV module area, same as the system described 

in Athienitis et al (2010). The inlet area could be modified by either PV spacing or with 

adjustable covers. It is also assumed that the part of the frame protruding from the PV 

inside the air channel is 4 cm long. The latter is used for the flow model calculations. 

 

Figure 5.3: System III: Multiple-inlet system with equally sized inlets (1% of the PV module area) and channel 

gap size of 0.1 m. 
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Figure 5.4: System IV: Multiple-inlet system with equally sized inlets (1% of the PV module area) and channel 

gap size of 0.15 m. 

 

 Systems V and VI (Figures 5.5 and 5.6) are multiple-inlet systems, again with 0.10 m and 

0.15 m respective gap sizes. The inlet areas, given in the form of PV module area 

porosities are presented in Table 5.1: 

 

Figure 5.5: System V: Multiple-inlet system with optimized inlets (porosities as shown in Table 5.1) and 

channel gap size of 0.1 m. 

 

Figure 5.6: System VI: Multiple-inlet system with optimized inlets (porosities as shown in Table 5.1) and 

channel gap size of 0.15 m. 
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Table 5.1:  Inlet porosities of the optimized multiple-inlet systems. 

Inlet Porosity (%) 

1 10 

2 1 

3 0.5 

4 0.5 

5 0.3 

6 0.2 

7 0.1 

8 0.01 

9 0.01 

10 0.01 

 

The porosities shown in Table 5.1 were the result of a trial and error procedure. This is described 

in more detail in section 5.2. 

5.2 Numerical procedure 

The steps of the numerical procedure are summarized as follows: 

1. The first step was the investigation of flow distributions for the multiple-inlet systems 

with equally sized inlets. First, a no wind case was tested, in order to study the effect of 

the total air collector mass flow on the inlet flow distribution. Following, two wind 

directions were considered, based on the prevailing wind conditions for Montreal, as 

shown in Figure 3.7, in order to investigate the effect of wind on the flow distribution. 

All cases were studied for two air collector flow rates, 400 kg/h and 800 kg/h and all 

cases with wind were studied for two typical wind velocities, 1m/s and 2m/s. 

2. The energy balance model was used for the assessment of the performance of the above 

systems for every case. The results for each system include the daily electrical and 

combined efficiency for the summer and winter days assumed, as well as the maximum 

PV temperatures for each day. An average temperature was calculated for each PV 

module of the string. 

3. The multiple-inlet system was optimized through a trial and error procedure as follows: 

In the energy balance model, several flow distributions were assumed until the maximum 

PV temperature distributions along the PV string were near uniform. This was done 
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assuming no wind conditions, since wind would result in further uniform temperature 

distributions, with external convection dominating, as well as summer conditions, as the 

highest PV temperatures would be expected then. It is noted that the systems could be 

further optimized, however, for the frame of this study, the results achieved were 

considered satisfactory. 

4. Given the required flows for optimized performance, the flow model was used in order to 

size the inlets, or inlet porosities to achieve these flows. Again a trial and error method 

was followed until the resulting flows were sufficiently close enough to the required 

ones. 

5. Finally, the modified multiple-inlet systems were investigated for the wind cases 

mentioned above, plus an additional wind direction, that of 45
o
, since it was found to 

produce the highest variations of pressure coefficients and would be expected to cause 

the most significant effect in the flow distributions and as a result on the energy 

performance. 
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5.3 Results and discussion 

5.3.1 Flow modelling 

 

- Effect of flow rate 

The flow distributions of the multiple-inlet systems at no-wind conditions and for the two flow 

rates considered are shown in Table 5.2: 

Table 5.2: Flow distributions of the multiple-inlet systems at no wind conditions, for total mass 

flow rates of 400kg/h and 800kg/h. 

 

System III  

  

System IV  

  

System V  

  

System VI  

  

Inlet 

flows 

(kg/h) 400 kg/h 800 kg/h 400 kg/h 800 kg/h 400 kg/h 800 kg/h 400 kg/h 800 kg/h 

1 20.0 40.2 29.0 58.1 215.4 431.7 260.5 521.5 

2 20.3 40.8 29.1 58.4 42.7 85.3 37.2 74.4 

3 21.5 43.2 29.7 59.6 30.7 61.3 24.1 48.0 

4 24.0 48.2 31.1 62.3 39.5 78.8 29.2 58.3 

5 28.2 56.5 33.4 66.9 28.0 55.9 20.0 39.8 

6 34.3 68.8 36.9 73.8 23.6 47.0 16.0 31.8 

7 42.9 85.5 41.7 83.3 17.7 35.2 11.5 22.9 

8 54.2 107.7 48.0 95.6 0.6 1.1 0.4 0.8 

9 67.2 136.0 55.7 111.6 0.9 1.8 0.6 1.2 

10 87.4 173.0 65.4 130.4 0.9 1.9 0.6 1.3 

 

Table 5.2 shows clearly that the ratios of the inlet flows, over the total air collector flow rate, 

remain the same when the latter is varied. For example, if the total flow rate of the air collector is 

doubled, the flows of each inlet are doubled as well. This is consistent for both equal-sized inlet 

and modified-inlet configurations, as well as for both gap sizes of each configuration. 

- Effect of gap size 

Table 5.2 also demonstrates that the reduced gap size increases the resistance to the flow both in 

terms of increased friction, as well as reduced flow area, since the opening created by the back 

part of the PV frame and the back wall becomes smaller. For both multiple-inlet system 

configurations, equal-sized and modified inlets, the inlets have the same geometric features and 
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the reduced gap size results in reduced inflow from the inlets that are farther away from the 

outlet. 

- Effect of wind velocity and direction 

As described in section 5.2, two wind directions were investigated, based on the prevailing wind 

conditions for Montreal, those of 90
o
 and 135

o
 angle of incidence. Additionally, the direction of 

45
o
 was also investigated for the optimized system, since it was expected to create the highest 

differences in the flow distributions. Each direction was tested at 1m/s and 2m/s wind velocities. 

Tables 5.3 to 5.6 show the results for the flow distributions of an average PV string. This means 

that the flow of each inlet is the weighted average of the 40 PV modules comprising a horizontal 

array. This was done in order to show the average effect of wind on the system’s flow 

distributions. The extreme cases of individual PV strings are also presented separately. The flow 

distributions of the entire system, containing all 40 PV strings per case, are included in Appendix 

I. 
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Table 5.3: Inlet flow rate distributions for System III (equal inlets, gap: 0.1m), with or without 

wind. 

Total flow rate 400 kg/h 800 kg/h 

Wind direction  - 90
o 

135
o 

 - 90
o 

135
o 

Wind velocity 

(m/s) 0 1 2 1 2 0 1 2 1 2 

In
le

t 
fl

o
w

 r
a
te

s 
(k

g
/s

) 

1 20.0 20.1 17.1 20.4 20.9 40.2 40.2 39.8 40.5 41.2 

2 20.3 19.5 15.0 20.2 19.5 40.8 40.2 38.6 40.8 40.7 

3 21.5 21.0 25.1 21.9 23.1 43.2 43.5 44.8 43.3 43.9 

4 24.0 24.9 27.6 24.2 25.0 48.2 48.5 49.7 48.2 48.5 

5 28.2 29.0 31.6 28.0 27.3 56.5 56.8 57.9 56.4 56.1 

6 34.3 35.2 37.7 33.8 32.2 68.8 69.1 70.1 68.4 67.5 

7 42.9 42.2 40.1 42.4 41.6 85.5 85.2 84.2 85.3 84.7 

8 54.2 53.7 53.1 53.8 53.8 107.7 107.5 107.1 107.6 107.4 

9 67.2 68.0 67.3 68.4 68.9 136.0 136.1 135.6 136.3 136.4 

10 87.4 86.4 85.3 87.0 87.7 173.0 172.8 172.2 173.1 173.4 

 

Table 5.4: Inlet flow rate distributions for System IV (equal inlets, gap: 0.15m), with or without 

wind. 

Total flow rate 400 kg/h 800 kg/h 

Wind direction  - 90
o 

135
o 

 - 90
o 

135
o 

Wind velocity 

(m/s) 0 1 2 1 2 0 1 2 1 2 

In
le

t 
fl

o
w

 r
a
te

s 
(k

g
/s

) 

1 29.0 29.2 28.5 29.2 28.5 58.1 58.3 58.6 58.3 58.6 

2 29.1 28.7 27.2 29.2 28.8 58.4 58.2 57.5 58.5 58.6 

3 29.7 29.5 28.8 29.9 30.6 59.6 59.5 59.2 59.7 60.0 

4 31.1 31.9 34.8 31.3 32.3 62.3 62.7 64.0 62.4 62.7 

5 33.4 34.2 37.1 33.3 33.1 66.9 67.3 68.5 66.8 66.6 

6 36.9 37.7 40.5 36.4 35.2 73.8 74.2 75.4 73.6 72.9 

7 41.7 41.1 38.9 41.3 40.5 83.3 83.0 82.1 83.1 82.6 

8 48.0 47.6 46.8 47.9 48.0 95.6 95.6 95.1 95.7 95.6 

9 55.7 55.3 54.3 55.8 56.3 111.6 111.1 110.4 111.3 111.4 

10 65.4 64.8 63.1 65.6 66.5 130.4 130.2 129.2 130.6 131.0 
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Table 5.5: Inlet flow rate distributions for System V (optimized inlets, gap: 0.1m), with or without wind. 

Total flow rate 400 kg/h 800 kg/h 

Wind direction  - 45
o 

90
o 

135
o 

 - 45
o 

90
o 

135
o 

Wind velocity 

(m/s) 0 1 2 1 2 1 2 0 1 2 1 2 1 2 

In
le

t 
fl

o
w

 r
a
te

s 
(k

g
/s

) 1 215.4 218.3 227.4 215.7 217.3 215.7 217.4 431.7 433.1 437.5 437.5 432.4 431.6 432.6 

2 42.7 42.6 42.8 42.1 39.9 42.5 41.6 85.3 85.3 85.2 85.2 84.1 85.2 84.8 

3 30.7 30.6 29.9 30.8 31.1 30.7 30.6 61.3 61.3 61.0 61.0 61.6 61.1 61.3 

4 39.5 39.0 37.6 39.5 39.7 39.4 39.3 78.8 78.5 77.6 77.6 78.9 78.6 78.7 

5 28.0 27.5 26.2 28.1 28.2 28.0 27.9 55.9 55.7 55.0 55.0 56.0 56.1 55.8 

6 23.6 22.8 20.3 23.8 23.8 23.7 23.4 47.0 46.6 45.8 45.8 47.1 47.6 46.9 

7 17.7 16.8 12.9 17.6 17.6 17.6 17.5 35.2 34.8 33.4 33.4 35.1 35.2 35.2 

8 0.6 0.5 0.7 0.6 0.6 0.6 0.6 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

9 0.9 0.9 1.0 0.9 0.9 0.9 0.9 1.8 1.8 1.7 1.7 1.8 1.7 1.8 

10 0.9 0.9 1.1 0.9 0.9 0.9 0.9 1.9 1.9 1.8 1.8 1.9 1.8 1.9 

 

Table 5.6: Inlet flow rate distributions for System VI (optimized inlets, gap: 0.15m), with or without wind. 

Total flow rate 400 kg/h 800 kg/h 

Wind direction  - 45
o 

90
o 

135
o 

 - 45
o 

90
o 

135
o 

Wind velocity 

(m/s) 0 1 2 1 2 1 2 0 1 2 1 2 1 2 

In
le

t 

1 260.5 265.3 283.3 260.9 264.3 261.0 263.9 521.5 523.8 521.7 522.7 432.4 521.8 522.8 

2 37.2 37.2 37.8 36.5 32.5 36.9 35.4 74.4 74.5 74.1 72.7 84.1 74.3 73.8 

3 24.1 23.8 22.7 24.2 24.4 24.0 23.8 48.0 47.9 48.1 48.3 61.6 48.0 47.9 

4 29.2 28.4 25.2 29.3 29.6 29.1 28.7 58.3 57.9 58.3 58.5 78.9 58.2 58.1 

5 20.0 19.2 15.7 20.0 20.4 19.9 19.8 39.8 39.4 39.9 40.0 56.0 39.8 39.6 

6 16.0 14.7 10.4 16.0 15.8 15.9 15.3 31.8 31.2 31.8 31.7 47.1 31.7 31.6 

7 11.5 9.9 4.6 11.5 11.3 11.6 11.3 22.9 22.2 22.9 22.7 35.1 22.9 22.8 

8 0.4 0.4 0.2 0.4 0.4 0.4 0.4 0.8 0.7 0.8 0.8 1.1 0.8 0.8 

9 0.6 0.6 0.5 0.6 0.6 0.6 0.6 1.2 1.2 1.2 1.2 1.8 1.2 1.2 

10 0.6 0.7 -0.4 0.6 0.7 0.6 0.7 1.3 1.3 1.3 1.3 1.9 1.3 1.3 
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From these results, as well as from the full results of systems V and VI, presented in Appendix I, 

the following comments are noted: 

 If the pressure distributions along a PV string are uniform (the pressure outside each inlet 

is the same) the flow distributions of the PV string are identical with the no-wind 

condition case, regardless of the wind velocity. 

 For the cases of parallel wind (90
o
) and wind approaching at an angle from the back side 

of the BIPV/T installation (135
o
) the PV string flow distributions are of similar 

magnitude as for the no-wind case. For the first case, this happens because the pressure 

coefficients form vertical zones and most PV strings are under the same external pressure 

conditions. This also happens for most part of the 130
o
 case, aided by the fact that the 

pressure coefficients vary by 0.1 or 0.2, creating very uniform external pressure 

conditions. 

 Higher wind velocity results in higher differences of the string flow distributions than the 

no-wind distributions, while the higher the total mass flow rate of the air collector the less 

wind affects the flow distributions. However, these differences for the wind velocities 

considered are still quite low. 

In order to understand the end result of the wind effects on the flow distributions of the system, 

which is the final effect on the PV temperatures and efficiency, the following extreme cases have 

been considered. These are the cases of 45
o
 wind with 2m/s velocity, which was found to create 

the highest differences in the flow distributions, as compared to the no-wind case. These effects 

are localized to the PV strings located in the windward edge.  

Tables 5.7 and 5.8 contain the flow distributions for the no-wind case (uniform external pressure) 

and those caused by the aforementioned wind conditions. They also contain the PV temperatures 

that would be expected on the PV string for the uniform pressure distribution and that caused by 

the localized uneven pressure distribution for a 2m/s wind velocity. 
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Table 5.7: Flow distributions and PV temperatures for 45
o
, 2m/s wind for windward edge PV 

string of System V. 

System V, 2m/s wind 

400 kg/h total mass flow 800 kg/h total mass flow 

Flow distributions 

(kg/h) 

PV temperatures 

(
o
C) 

Flow distributions 

(kg/h) 

PV temperatures 

(
o
C) 

Uniform 

pressure 

45
o
wind 

pressures 

Uniform 

pressure 

45
o
wind 

pressures 

Uniform 

pressure 

45
o
wind 

pressures 

Uniform 

pressure 

45
o
wind 

pressures 

215.4 273.4 39.2 38.2 431.7 459.1 36.1 35.8 

42.7 29.2 38.5 37.8 85.2 78.4 35.2 35.1 

30.7 19.0 37.0 36.6 61.3 55.8 34.2 34.1 

39.5 24.4 37.4 37.1 78.8 71.8 34.1 34.0 

28.0 23.0 37.0 36.9 55.9 52.9 33.7 33.6 

23.6 17.6 36.7 36.6 47.0 44.6 33.3 33.3 

17.7 10.0 36.5 36.5 35.3 33.0 33.1 33.1 

0.6 1.1 36.9 36.7 1.1 1.0 33.5 33.5 

0.9 1.0 36.8 36.7 1.8 1.6 33.4 33.4 

0.9 1.1 36.8 36.7 1.9 1.7 33.3 33.4 

 

Table 5.8: Flow distributions and PV temperatures for 45
o
, 2m/s wind for windward edge PV 

string of System VI. 

System VI, 2m/s wind 

400 kg/h total mass flow 800 kg/h total mass flow 

Flow distributions 

(kg/h) 

PV temperatures 

(
o
C) 

Flow distributions 

(kg/h) 

PV temperatures 

(
o
C) 

Uniform 

pressure 

45
o
wind 

pressures 

Uniform 

pressure 

45
o
wind 

pressures 

Uniform 

pressure 

45
o
wind 

pressures 

Uniform 

pressure 

45
o
wind 

pressures 

260.3 364.1 39.3 38.0 521.5 563.4 36.4 36.0 

37.2 25.1 38.8 37.7 74.4 66.2 35.7 35.5 

24.0 5.7 37.4 36.7 48.0 40.0 34.7 34.6 

29.2 -9.0 38.1 39.1 58.3 47.3 35.0 34.9 

19.9 10.5 37.9 37.6 39.8 35.9 34.7 34.6 

15.9 5.3 37.7 37.6 31.8 26.7 34.5 34.5 

11.8 2.6 37.6 37.6 22.9 15.8 34.4 34.4 

0.4 0.0 38.1 40.4 0.8 0.9 34.8 34.8 

0.6 -1.5 38.0 42.2 1.2 1.9 34.7 34.6 

0.6 -2.6 37.9 43.4 1.3 1.9 34.7 34.6 
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From these results, the following are noted: 

 Although this particular wind direction may result in considerable deviation of the inlet 

flows from the designed distribution, the final effect on the PV temperatures is very 

small. This is attributed to the fact that with increasing wind speed, the external (and not 

the internal) convection dominates. Also, the effect of wind on the PV electrical 

efficiency is insignificant. 

 The increased inflow from the bottom inlet and the outflow from the top inlets is due to 

the pressure distributions for this particular case. For the bottom part there is considerable 

pressure, whereas for the top part there is suction. 

 The higher PV temperatures that occur for the top panels are due to the suction 

mentioned above. The outflow from the top inlets results in only warm air from the 

preceding air channel entering the new one, without the mixing of fresh air. 

 As previously mentioned, increased total mass flow of the air collector results in wind 

affecting less the inlet flow distributions. 

It is clear that a system properly designed for uniform pressure conditions will behave similarly 

for all wind conditions. Although wind may cause considerable deviations of the flow 

distributions from the designed values, increasing wind velocity also results to more uniform 

temperature distributions. The results of the cases considered on the temperatures and the 

performance of the systems considered are investigated in more detail in the following section. 

5.3.2 Energy balance 

 

- Temperatures 

The PV temperatures for the average string of each system studied and each case tested are 

displayed in Figures 5.7 through 5.12. The full results for all the PV strings are presented in 

Appendix I. The variations of temperature of the extreme cases of PV string flow distributions 

due to wind were shown in Tables 5.7 and 5.8. 

The temperatures are plotted per system, for summer and winter conditions and for every wind 

direction and velocity: 
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Figure 5.7: Maximum daily PV temperatures for Systems I and II (single inlet) for summer conditions at total 

air mass flow rate of 400 kg/h and 800 kg/h. 
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Figure 5.8: Maximum daily PV temperatures for Systems I and II (single inlet) for winter conditions at total air 

mass flow rate of 400 kg/h and 800 kg/h. 
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Figure 5.9: Maximum daily PV temperatures for Systems III and IV (multiple-inlet, equal inlets) for summer 

conditions at total air mass flow rate of 400 kg/h and 800 kg/h. 
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Figure 5.10: Maximum daily PV temperatures for Systems III and IV (multiple-inlet, equal inlets) for winter 

conditions at total air mass flow rate of 400 kg/h and 800 kg/h. 
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Figure 5.11: mum daily PV temperatures for Systems III and IV (multiple-inlet, optimized inlets) for summer 

conditions at total air mass flow rate of 400 kg/h and 800 kg/h. 
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Figure 5.12: Maximum daily PV temperatures for Systems III and IV (multiple-inlet, optimized inlets) for 

winter conditions at total air mass flow rate of 400kg/h and 800 kg/h. 
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In order to compare the PV temperature uniformity for each system, the plots shown in 

Figures 5.13 and 5.14 were produced, each plot including the results of all six systems 

considered, at a specific total mass flow rate, at summer and winter and for all wind 

conditions. From the previous Figures (5.7 through 5.12), it is clear that wind direction has 

insignificant effect on the PV temperature distributions of the multiple inlet systems. 

Therefore, for the subsequent comparisons only a single wind direction was considered. For 

the optimized multiple-inlet system, the wind direction of 45
o
 was assumed, since it produced 

the least uniform temperature distributions. 
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Figure 5.13: Maximum daily PV temperatures comparison for all systems, for summer conditions and 0m/s, 

1m/s and 2m/s wind velocities at total air mass flow rate of 400kg/h and 800kg/h. 
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Figure 5.14: Maximum daily PV temperatures comparison for all systems, for winter conditions and 0m/s, 1m/s 

and 2m/s wind velocities at total air mass flow rate of 400 kg/h and 800kg/h. 
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Figures 5.13 and 5.14 show: 

 Increase of the total air mass flow of the air collector results in lower PV temperatures, 

the differences being more prominent at conditions with no wind. However, with 

increasing wind velocity, external convection dominates and the differences are lower. 

 Increasing wind velocity results in lower PV temperature distributions along the same 

string. 

 The PV temperatures for the multiple inlet systems with equally sized inlets are in 

general slightly lower than for the single inlet system. The main difference is that the 

highest temperatures occur at the PV panels placed on the bottom, for which the inflow 

and resulting channel air flow is the smallest. 

 In all cases, the optimized multiple-inlet systems result in uniform PV temperature 

distributions, with small temperature differences between panels and with the lowest 

overall PV temperatures. 

- Electrical and combined electrical & thermal efficiency 

Figures 5.15 and 5.16 present plots of the electrical and combined efficiencies of the systems, for 

the assumed cases of weather conditions. These efficiencies are daily, meaning that they are 

calculated according to the total electrical and thermal production of the systems and on the total 

solar irradiation incident on the installations. 

The above efficiencies are defined as follows: 

 Daily electrical efficiency: Total electrical energy produced over the total daily solar 

irradiation incident on the BIPV/T surface. 

 Daily combined efficiency: The sum of the total daily electrical energy produced and 

thermal energy extracted and transferred to the air flowing inside the air channel over the 

total daily solar irradiation incident on the BIPV/T surface. 
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Figure 5.15: Electrical efficiency of the six systems for summer and winter conditions, with and without wind 

and at total air mass flow rate of 400 kg/h and 800 kg/h. 
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Figure 5.16: Combined electrical and thermal efficiency of the six systems for summer and winter conditions, 

with and without wind and at total air mass flow rate of 400 kg/h and 800 kg/h. 
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Based on these results, the following can be noted concerning the electrical and combined 

efficiencies of the assumed systems: 

 The single inlet systems have the lowest overall performance, both electrically and 

thermally. The multiple-inlet systems with equally sized inlets perform slightly better 

than the single inlet systems, while the optimized multiple-inlet systems perform the best. 

 Depending on the weather conditions, wind velocity and air collection rate, an optimized 

multiple-inlet system may have a marginally higher electrical efficiency of 0.3% - 1% 

and a considerably higher combined efficiency by 14% - 25%, primarily due to increase 

in the thermal efficiency. It should be noted that the fan consumption has not been 

addressed in this investigation and the net electrical production should be looked into for 

a more accurate comparison. 

 The differences in the electrical efficiency of the systems are lower for increasing wind 

velocity and air collection rate. 

 In accordance with previous studies, higher air collection rates results in higher thermal 

and therefore combined efficiencies. This is also the case for each system configuration, 

with the gap size of the air channel reduced, which results to higher air velocity inside the 

air channel and higher internal convection. 

The optimized multiple-inlet system performs better both electrically and thermally in 

comparison to the single inlet system, under all the weather conditions assumed for these 

simulations, while maintaining the lowest PV temperatures and the least differences between the 

hottest and the coolest panels. The latter can be of major importance for large installation, since 

an optimized multiple-inlet system may lead to high system durability, while reducing issues 

such as differential expansion. 

As was concluded from the previous part, a system optimized for uniform pressure conditions 

should perform well under all wind conditions. The localized compression or suction effects 

have an insignificant effect on the overall performance of the system. 
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6. Summary and conclusions 
This thesis presents the development of a methodology for the modelling of multiple-inlet 

BIPV/T systems. These systems are expected to result in lower PV temperatures, as well as 

higher combined electrical and thermal efficiency, as compared to a single inlet system, due to 

the introduction of more than one intakes of fresh air. A flow model was created based on flow 

networking techniques for the modelling of inlet flows of a multiple-inlet system. This was 

partially validated by experimental flow measurements of a three-inlet prototype BIPV/T 

specimen. The flow model also considered the wind effects in the form of exterior pressures. A 

simple energy balance model was also developed, based on BIPV/T energy modelling, to 

account for the various cases of flow conditions for the inlets and the air channels of the system. 

It uses the results of the flow model as inputs for the flow of each control volume of the system. 

These models were applied for the numerical investigation of variations of multiple-inlet BIPV/T 

systems considered for a potential retrofit project of an office building. These were compared 

with single inlet system designs for the same environmental conditions. The simulation results 

showed the following: 

 A multiple-inlet system, the inlet flows of which have been optimized in order to achieve 

the highest heat extraction from all the PV modules of the system for no wind conditions, 

outperforms a single inlet system in terms of PV temperature uniformity, electrical 

efficiency and combined electrical and thermal efficiency, under all types of weather 

conditions assumed for this study. 

 The temperature difference between the warmest and the coolest PV panels for the single 

inlet system may vary from 8 to 26
o
C, for a 2m/s wind and no wind conditions 

respectively, while the temperature of the warmest panel may exceed 70
o
C. The 

corresponding temperature difference for the optimized multiple-inlet system is 3 to 7
o
C, 

and the maximum PV temperature is 53
o
C. The much lower operating temperatures of an 

optimized system may be of significant importance for the durability and maintenance of 

large PV installations.  

 A marginal increase of up to 1% in electrical efficiency was observed for the optimized 

system, as well as 14% to 25% higher combined electrical and thermal efficiency, in 

comparison to the single inlet system, depending on the weather conditions. The 
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difference in the combined efficiency is essentially due to the higher thermal efficiency 

of the optimized system. The thermal energy may not be all usable, except for fresh air 

heating in winter; however electricity is more useful than heat by a factor of about 3-4, as 

well as the expected higher durability of the system. 

 The effect of wind direction on the flow distributions and as a result to the internal 

convection part of the energy balance was found to be insignificant for wind velocities  

up to 2m/s, regardless of the wind direction. Higher wind velocities would be expected to 

cause more considerable differences; however, with external convection dominating, the 

performance of all systems investigated would be similarly affected, in that the PV 

temperatures would be low and uniform, while the thermal gains would be minimal.  

6.1 Contributions 

1. A complete modelling procedure for the investigation of the performance of multiple 

inlet systems was developed for the first time. This could be used for any number of 

openings and PV strings and also lead to a standardised procedure for multiple-inlet 

BIPV/T modelling and design. 

2. Through the numerical investigation of such systems, their expected performance has 

been studied and compared to that of existing single-inlet systems. Multiple-inlet systems 

can be designed by using the developed flow model for the sizing of the openings. A 

procedure was also suggested for the optimization of such systems, which may lead to 

enhanced electrical and thermal performance. 

3. It is the first study that the actual flow distributions are used for such systems instead of 

the commonly assumed uniform inlet flow. Furthermore, the wind effects on these flow 

distributions were accounted for, for various wind directions and wind velocities. 
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6.2 Future work 

The following are recommended future work in the investigation of multiple-inlet BIPV/T 

systems: 

1. Full scale experimental investigation of multiple-inlet systems, under varying weather 

conditions, as well as varying geometric features of the inlets and the air channel of the 

system. This may help with further validation of the flow model, as well as the expected 

performance. 

2. Combined experimental and CFD investigation of inlet configurations of varying 

geometric features. This will lead to more accurate correlations between pressure drop 

and flow through the inlets, which could be used for the resistance part of the flow model. 

3. In conjunction with the previous steps, more accurate Nusselt number correlations could 

be developed for the energy modelling of the BIPV/T. 

4. A detailed experimental investigation could lead to a dimensional analysis of the system, 

providing a more generalized correlation between the performance of the system, its 

geometric features, the total mass flow rate, etc. Such an analysis could make more clear 

the potential applications and limitations of a multiple-inlet BIPV/T system. 
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APPENDIX I Flow distribution and PV temperatures of the 

optimized multiple-inlet systems (Systems V and VI) 
 

This section presents the complete results for inlet flow distributions and PV panel temperatures 

for summer and winter for the optimized multiple inlet systems (System V and VI), for wind 

directions of 45
o
, 90

o
 and 135

o
, and wind velocities 1m/s and 2m/s. Systems V and VI have 

decreasing inlet porosity, as presented in section 5.1 and shown in Figures 5.5 and 5.6. 

 

Figure 5.5: System V: Multiple-inlet system with optimized inlets (porosities as shown in Table 5.1) and 

channel gap size of 0.1m. 

 

Figure 5.6: System VI: Multiple-inlet system with optimized inlets (porosities as shown in Table 5.1) and 

channel gap size of 0.15m. 

Each of the following pages contains three tables, namely, the inlet flow distributions and the PV 

temperatures for summer and winter conditions, for a specific system, wind direction and 

velocity, and total mass flow rate. Each table presents the results for all 40 PV strings of the 

retrofit area. 
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System V, inlet flows for 1m/s wind, 45
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

 

1 229 220 220 226 220 219 227 227 227 220 220 220 220 220 218 218 216 216 216 216 216 216 209 209 213 214 214 214 214 217 218 220 224 218 218 218 216 216 216 216

2 39.3 43.7 43.6 38.7 43.7 43.4 38.7 38.7 38.7 43.7 43.7 43.7 43.7 43.7 43.2 43.2 42.8 42.8 42.8 42.8 42.8 42.8 47.2 47.2 42.2 42.3 42.4 42.4 42.4 42.9 43.2 43.5 38.2 43.2 43.2 43.2 42.9 42.9 42.8 42.7

3 28 29.3 29.2 29.8 29.3 31.2 29.9 29.9 29.9 29.3 29.3 29.3 29.3 29.3 31.1 31.1 30.8 30.8 30.8 30.8 30.8 30.8 32.2 32.2 32.5 32.5 32.6 32.6 32.6 30.9 31.1 29.2 29.5 31.1 31.1 31.1 30.9 30.9 30.8 30.8

4 36 38.6 38.5 37.4 38.6 38.5 37.5 37.5 37.5 38.6 38.6 38.6 38.6 38.6 38.3 38.3 39.6 39.6 39.6 39.6 39.6 39.6 40.6 40.6 40.8 40.9 40.9 40.9 40.9 39.7 38.3 38.5 38.7 38.3 38.3 38.3 39.7 39.7 39.6 39.5

5 26.5 27 27 26.4 27.1 27 26.5 26.5 26.4 27 27 27 27 27 27.7 27.7 28.2 28.2 28.2 28.2 28.2 28.2 28.7 28.7 28.8 28.1 28.1 28.1 28.1 27.5 27.6 26.9 26.9 27.6 27.5 26.8 27.4 27.4 28.1 28.1

6 22.4 22.4 22.8 22.6 22.4 22.3 22.2 22.2 22.2 22.4 22.4 22.4 22.4 22.4 22.8 22.8 23.1 23.1 23.1 23.1 23.1 23.1 23.2 23.2 23.3 23.3 22.9 22.9 22.9 23.1 22.7 22.9 23 22.7 22.8 22.9 23.1 23.2 23.1 23.5

7 16.6 16.5 16.6 16.4 16.3 16.3 16.2 16.3 16.4 16.5 16.5 16.5 16.5 16.5 16.6 16.6 16.9 16.9 16.9 16.9 16.9 16.9 17 17 17 16.9 16.9 16.9 16.9 16.8 16.9 17 17 17 17.1 17.1 17.2 17.3 17.3 17.5

8 0.5 0.53 0.52 0.53 0.53 0.55 0.54 0.54 0.53 0.53 0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.55 0.55 0.55 0.56 0.56 0.56 0.56 0.55 0.55 0.54 0.54 0.54 0.55 0.55 0.55 0.56 0.57 0.56

9 0.82 0.83 0.85 0.83 0.84 0.87 0.84 0.82 0.83 0.84 0.84 0.84 0.84 0.84 0.86 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.9 0.9 0.89 0.88 0.88 0.88 0.88 0.86 0.86 0.85 0.84 0.86 0.86 0.87 0.87 0.89 0.88 0.86

10 0.86 0.91 0.9 0.88 0.89 0.89 0.86 0.87 0.88 0.9 0.9 0.9 0.9 0.9 0.92 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.91 0.91 0.89 0.89 0.91 0.92 0.9 0.93 0.92 0.92 0.93

Inlet Fflows (kg/h)

In
le

t

1 43.6 43.8 43.8 43.7 43.8 43.9 43.7 43.7 43.7 43.8 43.8 43.8 43.8 43.8 43.9 43.9 44 44 44 44 44 44 44.2 44.2 44.1 44 44 44 44 43.9 43.9 43.9 43.7 43.9 43.9 43.9 43.9 44 44 44

2 42.6 42.7 42.7 42.6 42.7 42.7 42.6 42.6 42.6 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.8 42.8 42.8 42.8 42.8 42.8 42.9 42.9 42.9 42.9 42.9 42.9 42.9 42.8 42.7 42.7 42.7 42.7 42.7 42.7 42.8 42.8 42.8 42.8

3 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.7 40.6 40.6 40.6 40.6 40.6 40.5 40.5 40.5 40.6 40.6 40.5 40.6 40.6 40.6 40.6

4 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.2 41.2 41.2

5 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6

6 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2

7 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9

8 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5

9 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3

10 40.3 40.2 40.2 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.3 40.3 40.2 40.2 40.2 40.2 40.2 40.2 40.2

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 11 11.3 11.3 11.1 11.2 11.3 11.1 11.1 11.1 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.6 11.6 11.5 11.4 11.4 11.4 11.4 11.4 11.3 11.3 11.1 11.3 11.3 11.3 11.4 11.4 11.4 11.4

2 10 10.1 10.1 10.1 10.1 10.2 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.2 10.2 10.1 10.2 10.2 10.2 10.2 10.2 10.2 10.3 10.3

3 9.56 9.63 9.64 9.59 9.62 9.63 9.58 9.58 9.59 9.63 9.63 9.63 9.63 9.63 9.65 9.65 9.71 9.71 9.71 9.71 9.71 9.71 9.75 9.75 9.76 9.75 9.74 9.74 9.74 9.69 9.66 9.64 9.65 9.66 9.66 9.65 9.7 9.7 9.71 9.72

4 8.73 8.73 8.74 8.72 8.73 8.73 8.71 8.71 8.72 8.73 8.73 8.73 8.73 8.73 8.75 8.75 8.78 8.78 8.78 8.78 8.78 8.78 8.79 8.79 8.79 8.78 8.77 8.77 8.77 8.76 8.76 8.75 8.75 8.76 8.76 8.75 8.77 8.77 8.78 8.79

5 8.26 8.26 8.27 8.26 8.26 8.26 8.25 8.25 8.25 8.26 8.26 8.26 8.26 8.26 8.27 8.27 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.28 8.29 8.28 8.28 8.28 8.28 8.28 8.27 8.28 8.28 8.28 8.28 8.28 8.29 8.29 8.29 8.3

6 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.91 7.91 7.91 7.91

7 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64

8 8.2 8.18 8.19 8.18 8.18 8.16 8.17 8.17 8.18 8.18 8.18 8.18 8.18 8.18 8.17 8.17 8.17 8.17 8.17 8.17 8.17 8.17 8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.17 8.17 8.17 8.16 8.16 8.16 8.15 8.15 8.15

9 8.03 8.02 8.01 8.02 8.02 8 8.01 8.02 8.02 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8 8 8 8 8 8 7.99 7.99 7.99 8 8 8 8 8 8.01 8.01 8.01 8.01 8 8 8 7.99 8 8

10 7.98 7.96 7.96 7.98 7.97 7.97 7.98 7.98 7.98 7.97 7.97 7.97 7.97 7.97 7.96 7.96 7.95 7.95 7.95 7.95 7.95 7.95 7.94 7.94 7.94 7.94 7.94 7.94 7.94 7.96 7.96 7.97 7.97 7.96 7.96 7.96 7.96 7.96 7.96 7.95

P
V

 m
o

d
u

le

PV temperature (deg C), Winter
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System V, inlet flows for 2m/s wind, 45
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

 

1 273 236 235 262 237 230 264 263 263 236 236 236 236 236 226 226 218 218 218 218 218 218 190 190 206 209 210 210 218 221 226 234 234 218 225 227 220 219 218 217

2 29.2 46.8 46.5 25 46.9 45.6 25.5 25.3 25.4 46.8 46.8 46.8 46.8 46.8 44.9 44.9 43.3 43.3 43.3 43.3 43.3 43.3 59.1 59.1 40.9 41.4 41.6 41.6 43.3 43.8 44.7 46.4 46.4 43.2 44.7 45 43.7 43.5 43.2 43

3 19 24.8 24.5 27.7 24.9 32.7 27.8 27.7 27.7 24.7 24.7 24.7 24.7 24.7 32.3 32.3 31.1 31.1 31.1 31.1 31.1 31.1 36.4 36.4 37.2 37.5 37.6 37.6 31.1 31.5 32.2 24.3 24.3 31.1 32.1 32.4 31.4 31.3 31.1 30.9

4 24.4 36.1 35.8 30.6 36.2 35.3 31.4 31.2 31.4 36.1 36.1 36.1 36.1 36.1 34.6 34.6 40 40 40 40 40 40 43.9 43.9 44.5 44.9 45.1 45.1 40 40.4 34.5 35.6 35.6 38.3 34.5 34.7 40.2 40.2 39.9 39.7

5 23 24.3 24.1 22.9 24.4 23.9 22 21.9 21 24.2 24.2 24.2 24.2 24.2 26.6 26.6 28.8 28.8 28.8 28.8 28.8 28.8 30.8 30.8 31 28.3 28.4 28.4 28.8 25.9 26.1 23.9 23.9 27.6 26.2 22.7 26.4 25.4 29.3 29.2

6 17.6 18.4 20.6 18.2 18.4 18 17.1 16.9 19.7 18.2 18.2 18.2 18.2 18.2 20.2 20.2 21.6 21.6 21.6 21.6 21.6 21.6 22.4 22.4 22.7 22.7 21 21 21.5 21.4 20.4 19.8 19.8 22.7 20 20.5 21.9 21.9 20.8 22.5

7 10 10.4 9.09 10 9.61 11 9.79 10.4 7.95 11.4 11.4 11.4 11.4 11.4 12.9 12.9 14.4 14.4 14.4 14.4 14.4 14.4 14.7 14.7 14.9 14.2 14.2 14.2 14.7 14 14.4 13.1 13.1 17 14.9 15.4 9.78 16 14.3 14.5

8 1.13 1.04 3.04 1 0.75 0.46 0.91 0.27 1.06 0.51 0.51 0.51 0.51 0.51 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.5 0.5 0.48 0.52 0.53 0.53 0.5 0.51 0.47 0.63 0.63 0.54 0.47 0.52 2.9 0.54 0.79 0.75

9 1.03 1.1 0.95 1.28 1.13 0.34 0.89 2.11 1.43 0.99 0.99 0.99 0.99 0.99 0.83 0.83 0.84 0.84 0.84 0.84 0.84 0.84 0.96 0.96 0.92 0.84 0.85 0.85 0.78 0.83 0.74 1.11 1.11 0.86 0.8 0.87 1.76 0.92 1.3 1.26

10 1.07 0.99 0.91 0.86 0.91 2.88 1.06 1 0.98 1.18 1.18 1.18 1.18 1.18 1.02 1.02 1.07 1.07 1.07 1.07 1.07 1.07 1.22 1.22 1.17 1.11 1.12 1.12 1.02 0.87 0.78 1.19 1.19 0.91 0.88 0.81 1.75 0.88 1.34 1.5

Inlet Fflows (kg/h)

In
le

t

1 38.2 38.8 38.8 38.4 38.8 38.9 38.4 38.4 38.4 38.8 38.8 38.8 38.8 38.8 39 39 39.1 39.1 39.1 39.1 39.1 39.1 39.7 39.7 39.4 39.3 39.3 39.3 39.1 39.1 39 38.9 38.9 39.1 39 39 39.1 39.1 39.1 39.2

2 37.8 38.1 38.1 38 38 38.2 38 38 38 38.1 38.1 38.1 38.1 38.1 38.2 38.2 38.4 38.4 38.4 38.4 38.4 38.4 38.6 38.6 38.6 38.6 38.6 38.6 38.4 38.3 38.3 38.1 38.1 38.4 38.3 38.2 38.4 38.4 38.4 38.4

3 36.6 36.7 36.8 36.7 36.7 36.8 36.6 36.6 36.6 36.8 36.8 36.8 36.8 36.8 36.8 36.8 37 37 37 37 37 37 37.1 37.1 37.1 37.1 37 37 37 36.9 36.8 36.8 36.8 37 36.8 36.8 36.9 36.9 37 37

4 37.1 37.2 37.2 37.2 37.2 37.2 37.1 37.1 37.1 37.2 37.2 37.2 37.2 37.2 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.4 37.4 37.4 37.3 37.3 37.3 37.3 37.3 37.3 37.2 37.2 37.4 37.3 37.2 37.3 37.3 37.3 37.4

5 36.9 36.9 36.9 36.9 36.9 36.9 36.8 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 37 37 37 37 37 37 37 37 37 37 36.9 36.9 37 36.9 36.9 36.9 36.9 37 36.9 37 36.9 37 37 37

6 36.6 36.6 36.6 36.6 36.6 36.7 36.6 36.6 36.6 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7

7 36.5 36.5 36.6 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.6 36.5 36.5 36.5

8 36.7 36.7 36.6 36.7 36.8 37 36.8 37.3 36.7 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 36.9 36.9 36.9 37 37 37 36.9 36.9 36.9 37 36.9 36.6 36.9 36.8 36.8

9 36.7 36.7 36.7 36.7 36.7 37.2 36.8 36.6 36.7 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.7 36.7 36.8 36.8 36.8 36.6 36.8 36.7 36.7

10 36.7 36.7 36.8 36.8 36.8 36.6 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.8 36.8 36.7 36.7 36.8 36.8 36.8 36.6 36.8 36.7 36.6

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 6.18 6.71 6.73 6.33 6.7 6.8 6.31 6.32 6.32 6.71 6.71 6.71 6.71 6.71 6.86 6.86 6.98 6.98 6.98 6.98 6.98 6.98 7.46 7.46 7.18 7.14 7.12 7.12 6.99 6.95 6.87 6.74 6.74 6.99 6.87 6.85 6.95 6.97 6.99 7.01

2 5.8 6.06 6.08 6 6.05 6.16 5.98 5.99 5.98 6.06 6.06 6.06 6.06 6.06 6.21 6.21 6.35 6.35 6.35 6.35 6.35 6.35 6.52 6.52 6.55 6.51 6.49 6.49 6.35 6.31 6.22 6.09 6.09 6.35 6.23 6.2 6.31 6.33 6.35 6.37

3 5.63 5.81 5.84 5.73 5.8 5.83 5.71 5.72 5.71 5.82 5.82 5.82 5.82 5.82 5.89 5.89 6.03 6.03 6.03 6.03 6.03 6.03 6.14 6.14 6.16 6.12 6.1 6.1 6.03 5.99 5.9 5.85 5.85 6.04 5.91 5.88 5.99 6.01 6.03 6.05

4 5.29 5.31 5.34 5.29 5.3 5.31 5.26 5.27 5.27 5.31 5.31 5.31 5.31 5.31 5.38 5.38 5.44 5.44 5.44 5.44 5.44 5.44 5.48 5.48 5.48 5.44 5.42 5.42 5.44 5.39 5.39 5.35 5.35 5.47 5.39 5.36 5.4 5.42 5.44 5.47

5 5.03 5.04 5.07 5.04 5.03 5.05 5.02 5.03 5.04 5.05 5.05 5.05 5.05 5.05 5.08 5.08 5.11 5.11 5.11 5.11 5.11 5.11 5.13 5.13 5.13 5.12 5.11 5.11 5.12 5.11 5.1 5.09 5.09 5.15 5.1 5.11 5.11 5.13 5.12 5.14

6 4.85 4.85 4.85 4.85 4.84 4.86 4.84 4.85 4.83 4.86 4.86 4.86 4.86 4.86 4.87 4.87 4.88 4.88 4.88 4.88 4.88 4.88 4.89 4.89 4.89 4.88 4.88 4.88 4.89 4.88 4.88 4.88 4.88 4.91 4.89 4.89 4.88 4.9 4.89 4.9

7 4.76 4.76 4.78 4.76 4.76 4.76 4.76 4.76 4.77 4.75 4.75 4.75 4.75 4.75 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.75 4.75 4.75 4.74 4.75 4.75 4.74 4.74 4.74 4.75 4.75 4.74 4.74 4.74 4.79 4.74 4.75 4.76

8 4.91 4.93 4.8 4.94 5 5.16 4.96 5.38 4.93 5.11 5.11 5.11 5.11 5.11 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.12 5.12 5.13 5.1 5.1 5.1 5.12 5.11 5.13 5.05 5.05 5.09 5.14 5.1 4.81 5.09 4.99 5.01

9 4.93 4.92 4.94 4.89 4.91 5.33 4.96 4.84 4.87 4.95 4.95 4.95 4.95 4.95 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.96 4.96 4.97 4.99 4.98 4.98 5.01 4.99 5.02 4.92 4.92 4.98 5 4.98 4.85 4.96 4.89 4.9

10 4.91 4.93 4.95 4.96 4.95 4.79 4.92 4.92 4.93 4.9 4.9 4.9 4.9 4.9 4.93 4.93 4.92 4.92 4.92 4.92 4.92 4.92 4.89 4.89 4.9 4.91 4.91 4.91 4.93 4.96 4.99 4.89 4.89 4.95 4.96 4.98 4.83 4.96 4.87 4.85

P
V

 m
o

d
u

le

PV temperature (deg C), Winter
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System V, inlet flows for 1m/s wind, 45
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

 

1 438 434 434 437 434 434 437 437 437 434 434 434 434 434 433 433 432 432 432 432 432 432 428 428 431 431 431 431 432 432 433 434 434 433 433 433 432 432 432 432

2 83.5 85.7 85.7 83.3 85.7 85.6 83.3 83.3 83.3 85.7 85.7 85.7 85.7 85.7 85.5 85.5 85.3 85.3 85.3 85.3 85.3 85.3 87.6 87.6 85 85.1 85.1 85.1 85.3 85.4 85.5 85.7 85.7 85.5 85.5 85.5 85.4 85.3 85.3 85.3

3 60 60.6 60.6 60.9 60.6 61.6 60.9 60.9 60.9 60.6 60.6 60.6 60.6 60.6 61.5 61.5 61.4 61.4 61.4 61.4 61.4 61.4 62.1 62.1 62.2 62.3 62.3 62.3 61.4 61.4 61.5 60.6 60.6 61.5 61.5 61.5 61.4 61.4 61.4 61.4

4 77 78.3 78.3 77.7 78.3 78.3 77.7 77.7 77.7 78.3 78.3 78.3 78.3 78.3 78.2 78.2 78.8 78.8 78.8 78.8 78.8 78.8 79.3 79.3 79.4 79.5 79.5 79.5 78.8 78.9 78.2 78.3 78.3 78.2 78.1 78.2 78.9 78.8 78.8 78.8

5 55.2 55.4 55.4 55.1 55.5 55.4 55.2 55.2 55.2 55.4 55.4 55.4 55.4 55.4 55.8 55.8 56 56 56 56 56 56 56.3 56.3 56.3 56 56 56 56 55.7 55.7 55.4 55.4 55.7 55.7 55.3 55.6 55.6 56 56

6 46.4 46.4 46.6 46.5 46.4 46.3 46.3 46.3 46.3 46.4 46.4 46.4 46.4 46.4 46.6 46.6 46.7 46.7 46.7 46.7 46.7 46.7 46.8 46.8 46.8 46.8 46.6 46.6 46.7 46.7 46.6 46.6 46.6 46.6 46.6 46.6 46.7 46.8 46.7 46.9

7 34.7 34.6 34.7 34.6 34.5 34.5 34.5 34.5 34.6 34.6 34.6 34.6 34.6 34.6 34.7 34.7 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.9 34.8 34.8 34.8 34.9 34.8 34.8 34.8 34.8 34.9 34.9 34.9 35 35 35 35.1

8 1.1 1.12 1.11 1.11 1.12 1.13 1.12 1.12 1.11 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.12 1.12 1.12 1.13 1.13 1.13 1.13 1.14 1.13

9 1.73 1.74 1.75 1.74 1.75 1.76 1.75 1.74 1.74 1.75 1.75 1.75 1.75 1.75 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.78 1.78 1.77 1.77 1.77 1.77 1.76 1.76 1.76 1.75 1.75 1.76 1.76 1.76 1.76 1.77 1.77 1.76

10 1.84 1.86 1.86 1.84 1.85 1.85 1.83 1.84 1.84 1.85 1.85 1.85 1.85 1.85 1.86 1.86 1.87 1.87 1.87 1.87 1.87 1.87 1.89 1.89 1.89 1.88 1.88 1.88 1.87 1.86 1.86 1.85 1.85 1.86 1.86 1.86 1.87 1.87 1.87 1.87

Inlet Fflows (kg/h)

In
le

t

1 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.2 39.2 39.3 39.3 39.3 39.3 39.3 39.3 39.3

2 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38

3 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4

4 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.4 36.4 36.4

5 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8

6 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4

7 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1

8 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6

9 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4

10 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 7.03 7.09 7.09 7.04 7.09 7.1 7.04 7.04 7.04 7.09 7.09 7.09 7.09 7.09 7.1 7.1 7.12 7.12 7.12 7.12 7.12 7.12 7.17 7.17 7.14 7.13 7.13 7.13 7.12 7.11 7.1 7.09 7.09 7.1 7.1 7.1 7.11 7.11 7.12

2 5.98 6 6 6 6 6.01 5.99 5.99 5.99 6 6 6 6 6 6.02 6.02 6.03 6.03 6.03 6.03 6.03 6.03 6.05 6.05 6.05 6.05 6.05 6.05 6.03 6.03 6.02 6.01 6.01 6.02 6.02 6.02 6.03 6.03 6.03

3 5.45 5.47 5.47 5.46 5.47 5.47 5.46 5.46 5.46 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.49 5.49 5.49 5.49 5.49 5.49 5.5 5.5 5.5 5.5 5.49 5.49 5.49 5.48 5.47 5.47 5.47 5.48 5.48 5.47 5.48 5.49 5.49

4 4.6 4.6 4.61 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4.62 4.62 4.62 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4.61 4.62

5 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.14 4.15 4.15 4.15 4.15 4.15 4.15 4.15 4.15 4.15 4.15 4.14 4.14 4.15 4.15 4.14 4.14 4.14 4.14 4.15 4.15 4.15 4.15 4.15

6 3.79 3.79 3.79 3.79 3.78 3.79 3.78 3.78 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79

7 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54

8 3.94 3.94 3.94 3.94 3.93 3.93 3.93 3.93 3.94 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93

9 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.81 3.81 3.81 3.81 3.81 3.81 3.82 3.82 3.82 3.82 3.82 3.82 3.82 3.81 3.82 3.81 3.81

10 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.77 3.77 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78

P
V

 m
o

d
u

le

PV temperature (deg C), Winter
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System V, inlet flows for 2m/s wind, 45
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

 

1 459 442 441 454 442 439 455 455 454 439 442 442 442 442 437 437 433 433 433 433 433 433 418 418 427 428 429 429 433 437 437 440 450 437 436 432 434 434 433 432

2 78.4 87.2 87.1 77.2 87.2 86.7 77.3 77.3 77.3 86.6 87.2 87.2 87.2 87.2 86.3 86.3 85.5 85.5 85.5 85.5 85.5 85.5 94.2 94.2 84.3 84.5 84.6 84.6 85.5 86.3 86.3 87 76.2 86.2 86.2 86.8 85.7 85.6 85.4 85.3

3 55.8 58.4 58.3 59.5 58.5 62.3 59.6 59.6 59.6 62.3 58.4 58.4 58.4 58.4 62.1 62.1 61.5 61.5 61.5 61.5 61.5 61.5 64.3 64.3 64.8 64.9 65 65 61.5 62 62 58.3 58.9 62 62 57.7 61.6 61.6 61.5 61.4

4 71.8 77 76.9 74.6 77.1 76.8 74.7 74.7 74.7 76.7 77 77 77 77 76.4 76.4 79 79 79 79 79 79 80.8 80.8 81.4 81.6 81.7 81.7 79 76.3 76.3 76.8 77.2 76.3 76.3 73.7 79.2 79.1 78.9 78.8

5 52.9 53.9 53.8 52.7 54 53.8 52.8 52.8 52.7 53.8 53.8 53.8 53.8 53.8 55.2 55.2 56.3 56.3 56.3 56.3 56.3 56.3 56.9 56.9 57.5 56.1 56.1 56.1 56.3 55.1 55.1 53.6 53.8 55 55 56.5 54.7 54.7 56.1 56.1

6 44.6 44.7 45.5 45 44.5 44.4 44.2 44.2 44.2 44.4 44.7 44.7 44.7 44.7 45.3 45.3 46 46 46 46 46 46 47.4 47.4 46.4 46.4 45.6 45.6 46 45.3 45.3 45.6 45.8 45.3 45.4 57.6 46 46.2 46.1 46.9

7 33 32.7 33 32.6 32.3 32.4 32.3 32.3 32.6 32.6 32.8 32.8 32.8 32.8 33 33 33.6 33.6 33.6 33.6 33.6 33.6 34.4 34.4 33.8 33.6 33.6 33.6 33.8 33.6 33.6 33.8 33.9 33.9 34 33.6 34.2 34.4 34.5 34.7

8 1.01 1.06 1.04 1.05 1.06 1.1 1.08 1.08 1.05 1.08 1.07 1.07 1.07 1.07 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.03 1.03 1.11 1.12 1.12 1.12 1.1 1.1 1.1 1.09 1.08 1.09 1.1 0.62 1.1 1.12 1.14 1.12

9 1.64 1.67 1.71 1.66 1.69 1.75 1.69 1.69 1.66 1.72 1.69 1.69 1.69 1.69 1.73 1.73 1.75 1.75 1.75 1.75 1.75 1.75 1.62 1.62 1.79 1.76 1.76 1.76 1.73 1.73 1.73 1.7 1.69 1.72 1.74 0.79 1.75 1.78 1.76 1.74

10 1.74 1.84 1.82 1.76 1.79 1.79 1.73 1.73 1.76 1.83 1.81 1.81 1.81 1.81 1.85 1.85 1.89 1.89 1.89 1.89 1.89 1.89 1.75 1.75 1.95 1.92 1.92 1.92 1.89 1.83 1.83 1.8 1.79 1.83 1.84 0.81 1.86 1.85 1.85 1.88

Inlet Fflows (kg/h)

In
le

t

1 35.8 36 36 35.9 36 36 35.9 35.9 35.9 36 36 36 36 36 36 36 36.1 36.1 36.1 36.1 36.1 36.1 36.3 36.3 36.2 36.1 36.1 36.1 36.1 36.1 36.1 36 35.9 36.1 36.1 36.1 36.1 36.1 36.1 36.1

2 35.1 35.1 35.1 35.1 35.1 35.2 35.1 35.1 35.1 35.2 35.1 35.1 35.1 35.1 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.3 35.3 35.3 35.3 35.3 35.3 35.2 35.2 35.2 35.1 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2

3 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.1 34.1 34.1 34.1 34.1 34.1 34.2 34.2 34.2 34.2 34.2

4 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34.1 34.1 34.1 34 34 34 34 34 34 34 34 34 34 34.1 34 34 34 34.1

5 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.7 33.7 33.7 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.6 33.7 33.6 33.7 33.7 33.7

6 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3

7 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1

8 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.7 33.5 33.5 33.5 33.5

9 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.7 33.4 33.4 33.4 33.4

10 33.4 33.3 33.3 33.4 33.4 33.4 33.4 33.4 33.4 33.3 33.4 33.4 33.4 33.4 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.4 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.4 33.3 33.3 33.7 33.3 33.3 33.3 33.3

P
V

 m
o

d
u

le

PV temperature (deg C), Summer

1 4.14 4.3 4.31 4.19 4.3 4.33 4.18 4.18 4.19 4.33 4.3 4.3 4.3 4.3 4.34 4.34 4.38 4.38 4.38 4.38 4.38 4.38 4.53 4.53 4.44 4.43 4.42 4.42 4.38 4.35 4.35 4.31 4.23 4.35 4.35 4.39 4.37 4.38 4.38 4.39

2 3.5 3.57 3.58 3.55 3.57 3.6 3.55 3.55 3.55 3.6 3.57 3.57 3.57 3.57 3.61 3.61 3.65 3.65 3.65 3.65 3.65 3.65 3.7 3.7 3.71 3.7 3.69 3.69 3.65 3.62 3.62 3.58 3.59 3.62 3.62 3.65 3.64 3.65 3.65 3.66

3 3.17 3.22 3.23 3.2 3.22 3.22 3.19 3.19 3.19 3.22 3.22 3.22 3.22 3.22 3.24 3.24 3.28 3.28 3.28 3.28 3.28 3.28 3.31 3.31 3.31 3.3 3.3 3.3 3.28 3.24 3.24 3.23 3.24 3.24 3.24 3.3 3.27 3.27 3.28 3.29

4 2.63 2.63 2.64 2.63 2.63 2.63 2.62 2.62 2.62 2.63 2.63 2.63 2.63 2.63 2.65 2.65 2.66 2.66 2.66 2.66 2.66 2.66 2.68 2.68 2.68 2.67 2.66 2.66 2.67 2.65 2.65 2.65 2.65 2.65 2.65 2.72 2.66 2.66 2.67 2.68

5 2.32 2.32 2.32 2.32 2.31 2.31 2.31 2.31 2.31 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.33 2.33 2.33 2.33 2.33 2.33 2.34 2.34 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.33 2.38 2.33 2.34 2.34 2.34

6 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.07 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.06 2.08 2.08 2.08 2.08

7 1.9 1.91 1.91 1.9 1.91 1.91 1.9 1.9 1.9 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.9 1.9 1.91 1.91 1.91 1.91 1.91 1.91 1.91 1.9 1.9 1.91 1.91 1.89 1.91 1.91 1.91 1.91

8 2.22 2.21 2.21 2.21 2.2 2.2 2.2 2.2 2.21 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.21 2.21 2.2 2.19 2.19 2.19 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.37 2.2 2.19 2.19 2.19

9 2.12 2.12 2.11 2.12 2.11 2.11 2.11 2.11 2.12 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.12 2.12 2.1 2.1 2.1 2.1 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.35 2.11 2.1 2.1 2.11

10 2.09 2.08 2.08 2.09 2.09 2.09 2.09 2.09 2.09 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.09 2.09 2.07 2.07 2.07 2.07 2.08 2.08 2.08 2.09 2.09 2.08 2.08 2.34 2.08 2.08 2.08 2.08
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PV temperature (deg C), Winter
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System VI, inlet flows for 1m/s wind, 45
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

 

1 281.4 268.6 267.9 277.0 268.9 266.8 277.6 277.6 277.5 268.6 268.6 268.6 268.6 268.6 265.1 265.1 261.8 261.8 261.8 261.8 261.8 261.8 251.8 251.8 257.0 258.4 258.4 258.4 258.4 262.8 264.8 267.5 273.4 264.7 264.4 265.3 262.3 262.2 261.4 260.8

2 33.1 38.4 38.3 32.4 38.4 38.1 32.5 32.5 32.5 38.4 38.4 38.4 38.4 38.4 37.9 37.9 37.4 37.4 37.4 37.4 37.4 37.4 42.6 42.6 36.7 36.9 36.9 36.9 36.9 37.6 37.9 38.2 31.8 37.8 37.8 37.9 37.5 37.5 37.4 37.3

3 20.1 22.0 22.0 22.6 22.0 24.6 22.7 22.7 22.7 22.0 22.0 22.0 22.0 22.0 24.5 24.5 24.2 24.2 24.2 24.2 24.2 24.2 26.1 26.1 26.3 26.4 26.4 26.4 26.4 24.3 24.4 21.9 22.2 24.4 24.4 24.5 24.2 24.2 24.1 24.1

4 23.8 27.7 27.6 25.9 27.8 27.6 26.0 26.0 26.0 27.7 27.7 27.7 27.7 27.7 27.4 27.4 29.3 29.3 29.3 29.3 29.3 29.3 30.9 30.9 31.1 31.2 31.2 31.2 31.2 29.4 27.4 27.6 27.9 27.4 27.4 27.4 29.4 29.4 29.3 29.2

5 18.0 18.3 18.3 17.6 18.4 18.3 17.6 17.6 17.6 18.3 18.3 18.3 18.3 18.3 19.3 19.3 20.2 20.2 20.2 20.2 20.2 20.2 21.0 21.0 21.1 20.1 20.1 20.1 20.1 19.2 19.3 18.1 18.4 19.2 19.0 18.0 19.0 19.0 20.1 20.0

6 13.4 14.1 14.6 13.9 13.9 14.0 13.3 13.3 13.3 14.1 14.1 14.1 14.1 14.1 14.6 14.6 15.2 15.2 15.2 15.2 15.2 15.2 15.6 15.6 15.7 15.0 15.0 15.0 15.0 15.1 14.5 14.8 14.6 14.5 15.0 14.7 15.2 15.3 15.3 15.8

7 7.9 9.3 9.7 8.9 9.1 9.0 8.5 8.5 8.8 9.4 9.4 9.4 9.4 9.4 9.6 9.6 10.2 10.2 10.2 10.2 10.2 10.2 10.3 10.3 10.4 10.2 10.2 10.2 10.2 10.1 10.1 10.3 10.0 10.4 10.5 10.5 10.8 10.8 10.9 11.2

8 0.4 0.3 0.3 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.3 0.3 0.4 0.3 0.4 0.4 0.4

9 0.9 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

10 1.0 0.7 0.6 0.7 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 0.7

In
le

t

Inlet Fflows (kg/h)

1 43.7 44 44 43.8 44 44 43.8 43.8 43.8 44 44 44 44 44 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.1 44.4 44.4 44.3 44.2 44.2 44.2 44.2 44.1 44.1 44 43.9 44.1 44.1 44.1 44.1 44.1 44.2 44.2

2 43 43.2 43.2 43.1 43.2 43.2 43.1 43.1 43.1 43.2 43.2 43.2 43.2 43.2 43.2 43.2 43.3 43.3 43.3 43.3 43.3 43.3 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.3 43.3 43.2 43.2 43.3 43.3 43.2 43.3 43.3 43.3 43.3

3 41 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.1 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.2 41.2 41.1 41.1 41.2 41.2 41.2 41.2 41.2 41.2 41.2

4 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.3 42.3 42.3 42.3

5 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9

6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.6 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7

7 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5

8 42.2 42.4 42.5 42.3 42.4 42.3 42.2 42.2 42.3 42.4 42.4 42.4 42.4 42.4 42.3 42.3 42.4 42.4 42.4 42.4 42.4 42.4 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.2 42.3

9 41.9 42.2 42.1 42.1 42.1 42 42 42 42 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42 42 42 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42 42.1 42.1 42.1 42.1 42 42.1 42.1

10 41.8 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 41.9 41.9 41.9 42 42 42 42 42 42 42.1 42 42 42.1 42 42 42 42 42

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 11.1 11.4 11.4 11.2 11.4 11.5 11.2 11.2 11.2 11.4 11.4 11.4 11.4 11.4 11.5 11.5 11.6 11.6 11.6 11.6 11.6 11.6 11.8 11.8 11.7 11.6 11.6 11.6 11.6 11.5 11.5 11.4 11.3 11.5 11.5 11.5 11.6 11.6 11.6 11.6

2 10.5 10.6 10.6 10.6 10.6 10.7 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.8 10.8 10.8 10.8 10.8 10.8 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.8 10.7 10.6 10.7 10.7 10.7 10.7 10.8 10.8 10.8 10.8

3 10.2 10.3 10.3 10.2 10.3 10.3 10.2 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.4 10.4 10.4 10.4

4 9.68 9.7 9.71 9.68 9.69 9.69 9.67 9.67 9.67 9.7 9.7 9.7 9.7 9.7 9.73 9.73 9.77 9.77 9.77 9.77 9.77 9.77 9.79 9.79 9.79 9.76 9.76 9.76 9.76 9.74 9.74 9.72 9.72 9.74 9.75 9.73 9.75 9.76 9.77 9.79

5 9.39 9.42 9.43 9.41 9.41 9.41 9.39 9.39 9.4 9.42 9.42 9.42 9.42 9.42 9.43 9.43 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.45 9.46 9.44 9.44 9.44 9.44 9.44 9.43 9.44 9.44 9.44 9.45 9.44 9.45 9.46 9.46 9.47

6 9.2 9.2 9.21 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.21 9.21 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.22 9.21 9.21 9.22 9.22 9.22 9.22 9.22 9.22 9.23 9.23 9.23

7 9.1 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.07 9.08 9.07 9.07 9.07 9.07 9.07 9.07 9.07

8 9.68 9.88 9.94 9.8 9.86 9.76 9.72 9.72 9.79 9.86 9.86 9.86 9.86 9.86 9.81 9.81 9.83 9.83 9.83 9.83 9.83 9.83 9.8 9.8 9.81 9.78 9.78 9.78 9.78 9.79 9.78 9.82 9.76 9.81 9.82 9.77 9.81 9.77 9.73 9.77

9 9.4 9.66 9.61 9.56 9.63 9.54 9.5 9.5 9.55 9.62 9.62 9.62 9.62 9.62 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.58 9.55 9.55 9.56 9.59 9.59 9.59 9.59 9.59 9.58 9.62 9.56 9.59 9.62 9.56 9.6 9.56 9.57 9.6

10 9.36 9.5 9.53 9.49 9.55 9.56 9.53 9.53 9.48 9.54 9.54 9.54 9.54 9.54 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.49 9.45 9.45 9.46 9.48 9.48 9.48 9.48 9.54 9.53 9.57 9.5 9.52 9.57 9.55 9.53 9.54 9.54 9.52

P
V

 m
o

d
u

le

PV temperature (deg C), Winter
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System VI, inlet flows for 2m/s wind, 45
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

 

1 364 298 295 338 302 290 341 341 341 298 298 298 298 298 281 281 266 266 266 266 266 266 228 228 246 253 253 253 265 270 279 292 292 279 278 280 280 268 264 262

2 25.1 42.6 42.2 16 43.1 41.4 17.2 17.2 17.1 42.6 42.6 42.6 42.6 42.6 40.2 40.2 38.1 38.1 38.1 38.1 38.1 38.1 56 56 35.2 36.2 36.2 36.2 37.9 38.6 39.9 41.8 41.8 39.9 39.7 40.1 40.1 38.2 37.8 37.4

3 5.67 15.4 14.9 19.8 16 26.7 20.2 20.2 20.2 15.4 15.4 15.4 15.4 15.4 25.9 25.9 24.6 24.6 24.6 24.6 24.6 24.6 31.5 31.5 32.2 32.6 32.6 32.6 24.5 24.9 25.7 14.4 14.4 25.7 25.6 25.9 25.9 24.7 24.4 24.1

4 -9 23.8 23.3 15.3 24.4 23 16.1 16.1 16.1 23.8 23.8 23.8 23.8 23.8 21.6 21.6 29.7 29.7 29.7 29.7 29.7 29.7 35.4 35.4 36 36.5 36.5 36.5 29.6 30.1 21.3 22.9 22.9 21.2 21.1 21.5 21.5 29.9 29.6 29.3

5 10.5 12.4 11.9 6.22 12.9 11.8 7.24 7.24 7.18 12.4 12.4 12.4 12.4 12.4 17.2 17.2 21 21 21 21 21 21 23.7 23.7 24 20.3 20.3 20.3 20.9 16.6 17 11.4 11.4 17 16.9 10.2 10.2 16 20.4 20.4

6 5.25 6.9 11.2 9.05 7.58 6.66 2.63 2.63 2.55 6.87 6.87 6.87 6.87 6.87 10.5 10.5 13.2 13.2 13.2 13.2 13.2 13.2 15.1 15.1 15.4 12.7 12.7 12.7 13 12.6 10.3 10.9 10.9 10.2 10.2 10.7 10.7 13.2 13.2 15.4

7 2.56 2.97 2.42 -1.4 -3.4 2.21 -0.7 -0.7 -1.2 3.02 3.02 3.02 3.02 3.02 4.79 4.79 6.56 6.56 6.56 6.56 6.56 6.56 8.07 8.07 8.18 5.86 5.86 5.86 6.16 5.68 4.46 4.72 4.72 5.34 6.68 6.04 6.04 7.44 8.66 10.1

8 0 -0.1 1.08 -0.5 -0.6 -0.5 -1.1 -1.1 -0.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 -0.1 0.16 0.16 0.16 0.16 0.16 0.16 0.12 0.12 0.11 1.44 1.44 1.44 0.22 0.05 1.33 0.96 0.96 0.18 0.37 0.3 0.3 1.46 0.56 0.33

9 -1.5 -0.4 -0.8 -0.9 -0.8 -0.6 -1.4 -1.4 -0.8 -0.6 -0.6 -0.6 -0.6 -0.6 -0.4 -0.4 0.8 0.8 0.8 0.8 0.8 0.8 3.14 3.14 3.65 0.13 0.13 0.13 2.53 1.8 0.09 0.55 0.55 0.48 0.42 4.6 4.6 0.29 0.63 0.48

10 -2.6 -2 -1.2 -1.7 -0.7 -0.9 -1.1 -1.1 -1.5 -1.3 -1.3 -1.3 -1.3 -1.3 -0.9 -0.9 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.8 -0.8 -0.9 0.88 0.88 0.88 0.03 0.1 0.74 0.19 0.19 1.21 0.92 0.15 0.15 1.27 0.55 0.76

Inlet Fflows (kg/h)

In
le

t

1 38 38.8 38.8 38.3 38.7 38.9 38.2 38.2 38.2 38.8 38.8 38.8 38.8 38.8 39 39 39.2 39.2 39.2 39.2 39.2 39.2 39.8 39.8 39.5 39.4 39.4 39.4 39.2 39.2 39 38.9 38.9 39.1 39.1 39 39 39.2 39.3 39.3

2 37.7 38.2 38.3 38.1 38.2 38.4 38 38 38 38.2 38.2 38.2 38.2 38.2 38.5 38.5 38.7 38.7 38.7 38.7 38.7 38.7 39 39 39 38.9 38.9 38.9 38.7 38.7 38.5 38.3 38.3 38.5 38.5 38.5 38.5 38.7 38.7 38.8

3 36.7 37 37.1 36.9 37 37 36.8 36.8 36.8 37 37 37 37 37 37.1 37.1 37.3 37.3 37.3 37.3 37.3 37.3 37.5 37.5 37.5 37.4 37.4 37.4 37.4 37.3 37.2 37.1 37.1 37.2 37.2 37.2 37.2 37.3 37.4 37.4

4 39.1 37.8 37.8 37.7 37.7 37.8 37.6 37.6 37.6 37.8 37.8 37.8 37.8 37.8 37.9 37.9 38 38 38 38 38 38 38.1 38.1 38.1 38 38 38 38 38 37.9 37.9 37.9 37.9 38 37.9 37.9 38 38.1 38.1

5 37.6 37.7 37.7 37.6 37.6 37.7 37.6 37.6 37.6 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.8 37.8 37.8 37.8 37.8 37.8 37.9 37.9 37.9 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.9

6 37.6 37.6 37.6 37.5 37.5 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.6 37.6 37.6 37.7 37.7 37.7 37.7 37.7 37.7 37.7

7 37.6 37.6 37.6 40.3 40.3 37.6 40.4 40.4 40.4 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.7 37.7 37.6 37.6 37.6

8 40.4 40.4 37.8 42.1 42.2 40.4 42.2 42.2 42.2 40.4 40.4 40.4 40.4 40.4 40.4 40.4 38.6 38.6 38.6 38.6 38.6 38.6 38.8 38.8 38.9 37.7 37.7 37.7 38.4 39.4 37.7 37.8 37.8 38.5 38.1 38.3 38.3 37.7 38 38.2

9 42.2 42.2 40.5 43.3 43.3 42.2 43.3 43.3 43.3 42.2 42.2 42.2 42.2 42.2 42.2 42.2 37.9 37.9 37.9 37.9 37.9 37.9 37.6 37.6 37.6 38.7 38.7 38.7 37.7 37.7 39 38 38 38.1 38.1 37.6 37.6 38.3 37.9 38.1

10 43.4 43.4 42.3 44.1 44.1 43.4 44.1 44.1 44.1 43.4 43.4 43.4 43.4 43.4 43.3 43.3 40.6 40.6 40.6 40.6 40.6 40.6 40.4 40.4 40.4 37.9 37.9 37.9 39.7 38.9 38 38.6 38.6 37.8 37.8 38.6 38.6 37.8 38 37.9

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 5.98 6.69 6.73 6.25 6.65 6.78 6.22 6.22 6.22 6.69 6.69 6.69 6.69 6.69 6.89 6.89 7.07 7.07 7.07 7.07 7.07 7.07 7.58 7.58 7.33 7.24 7.24 7.24 7.09 7.03 6.92 6.76 6.76 6.92 6.93 6.9 6.9 7.06 7.1 7.13

2 5.74 6.22 6.26 6.09 6.18 6.32 6.05 6.05 6.05 6.22 6.22 6.22 6.22 6.22 6.43 6.43 6.62 6.62 6.62 6.62 6.62 6.62 6.86 6.86 6.89 6.8 6.8 6.8 6.64 6.58 6.46 6.3 6.3 6.46 6.47 6.44 6.44 6.61 6.65 6.68

3 5.73 6.1 6.15 5.93 6.06 6.11 5.89 5.89 5.89 6.11 6.11 6.11 6.11 6.11 6.22 6.22 6.41 6.41 6.41 6.41 6.41 6.41 6.58 6.58 6.6 6.51 6.51 6.51 6.43 6.37 6.24 6.19 6.19 6.25 6.26 6.23 6.23 6.4 6.44 6.48

4 8.12 5.83 5.87 5.75 5.78 5.82 5.7 5.7 5.7 5.83 5.83 5.83 5.83 5.83 5.94 5.94 6.04 6.04 6.04 6.04 6.04 6.04 6.12 6.12 6.13 6.04 6.04 6.04 6.06 5.99 5.97 5.92 5.92 5.97 5.98 5.95 5.95 6.02 6.07 6.1

5 5.7 5.72 5.77 5.71 5.67 5.71 5.64 5.64 5.65 5.72 5.72 5.72 5.72 5.72 5.77 5.77 5.84 5.84 5.84 5.84 5.84 5.84 5.88 5.88 5.89 5.84 5.84 5.84 5.85 5.84 5.8 5.81 5.81 5.81 5.82 5.86 5.86 5.87 5.87 5.9

6 5.65 5.66 5.66 5.61 5.61 5.66 5.67 5.67 5.68 5.67 5.67 5.67 5.67 5.67 5.68 5.68 5.71 5.71 5.71 5.71 5.71 5.71 5.74 5.74 5.75 5.72 5.72 5.72 5.73 5.72 5.71 5.71 5.71 5.72 5.73 5.75 5.75 5.74 5.74 5.75

7 5.67 5.68 5.71 7.96 7.97 5.71 8 8 8.01 5.68 5.68 5.68 5.68 5.68 5.66 5.66 5.67 5.67 5.67 5.67 5.67 5.67 5.68 5.68 5.68 5.69 5.69 5.69 5.69 5.69 5.7 5.69 5.69 5.69 5.68 5.71 5.71 5.69 5.67 5.67

8 8 8.01 5.8 9.52 9.52 8.03 9.54 9.54 9.55 8.01 8.01 8.01 8.01 8.01 8 8 6.49 6.49 6.49 6.49 6.49 6.49 6.68 6.68 6.74 5.78 5.78 5.78 6.35 7.15 5.79 5.84 5.84 6.44 6.11 6.22 6.22 5.78 5.97 6.15

9 9.54 9.55 8.1 10.6 10.6 9.57 10.6 10.6 10.6 9.55 9.55 9.55 9.55 9.55 9.55 9.55 5.92 5.92 5.92 5.92 5.92 5.92 5.71 5.71 5.69 6.63 6.63 6.63 5.73 5.79 6.86 5.98 5.98 6.09 6.11 5.68 5.68 6.22 5.96 6.06

10 10.6 10.6 9.61 11.3 11.3 10.6 11.3 11.3 11.3 10.6 10.6 10.6 10.6 10.6 10.6 10.6 8.18 8.18 8.18 8.18 8.18 8.18 8.04 8.04 8.03 5.91 5.91 5.91 7.41 6.78 5.97 6.47 6.47 5.81 5.87 6.53 6.53 5.81 5.99 5.91

P
V
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PV temperature (deg C), Winter
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System VI, inlet flows for 1m/s wind, 45
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

 

1 531 525 525 530 526 525 530 530 530 525 525 525 525 525 524 524 522 522 522 522 522 522 517 517 520 520 520 520 522 522 524 525 525 524 524 524 522 522 522 522

2 72.3 75 74.9 72 75 74.8 72.1 72.1 72.1 75 75 75 75 75 74.7 74.7 74.5 74.5 74.5 74.5 74.5 74.5 77.2 77.2 74.2 74.3 74.3 74.3 74.5 74.5 74.7 74.9 74.9 74.7 74.7 74.7 74.5 74.5 74.5 74.4

3 46.1 47 47 47.3 47 48.3 47.3 47.3 47.3 47 47 47 47 47 48.2 48.2 48.1 48.1 48.1 48.1 48.1 48.1 49 49 49.2 49.2 49.2 49.2 48.1 48.1 48.2 47 47 48.2 48.2 48.2 48.1 48.1 48.1 48

4 55.7 57.5 57.5 56.6 57.5 57.5 56.7 56.7 56.7 57.5 57.5 57.5 57.5 57.5 57.4 57.4 58.3 58.3 58.3 58.3 58.3 58.3 59.1 59.1 59.2 59.3 59.3 59.3 58.3 58.3 57.4 57.5 57.5 57.4 57.4 57.4 58.4 58.3 58.3 58.3

5 38.6 39 39 38.6 39 39 38.6 38.6 38.6 39 39 39 39 39 39.5 39.5 39.9 39.9 39.9 39.9 39.9 39.9 40.4 40.4 40.4 39.9 39.9 39.9 39.9 39.1 39.5 38.9 38.9 39.5 39.4 38.9 39.4 39.3 39.9 39.9

6 30.8 30.9 31.1 30.9 30.8 30.8 30.6 30.6 30.6 30.9 30.9 30.9 30.9 30.9 31.1 31.1 31.4 31.4 31.4 31.4 31.4 31.4 31.6 31.6 31.6 31.3 31.3 31.3 31.4 32 31.1 31.2 31.2 31.1 31.2 31.2 31.4 31.5 31.5 31.7

7 21.9 21.9 22 21.8 21.8 21.7 21.7 21.7 21.8 21.9 21.9 21.9 21.9 21.9 22 22 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.7 22.2 22.3 22.3 22.3 22.3 22.4 22.5 22.5 22.6 22.7

8 0.72 0.74 0.72 0.74 0.74 0.76 0.75 0.75 0.73 0.74 0.74 0.74 0.74 0.74 0.75 0.75 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.76 0.76 0.76 0.75 0.7 0.75 0.75 0.75 0.75 0.76 0.76 0.75 0.76 0.77 0.76

9 1.19 1.18 1.2 1.19 1.19 1.23 1.2 1.18 1.19 1.2 1.2 1.2 1.2 1.2 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.24 1.24 1.24 1.22 1.22 1.22 1.21 1.09 1.21 1.2 1.2 1.21 1.22 1.23 1.21 1.23 1.22 1.21

10 1.25 1.28 1.27 1.26 1.26 1.27 1.24 1.25 1.26 1.27 1.27 1.27 1.27 1.27 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.33 1.33 1.33 1.31 1.31 1.31 1.3 1.14 1.28 1.26 1.26 1.28 1.29 1.27 1.29 1.28 1.28 1.29

Inlet Fflows (kg/h)

In
le

t

1 39.5 39.6 39.6 39.5 39.6 39.6 39.5 39.5 39.5 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.7 39.7 39.7 39.7 39.7 39.7 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6

2 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.8 38.8 38.8 38.8 38.8 38.8 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7

3 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2

4 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6

5 37.2 37.2 37.3 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3

6 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37

7 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8

8 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.4 37.4

9 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3

10 37.2 37.2 37.2 37.2 37.2 37.2 37.3 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.3 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 7.34 7.4 7.41 7.36 7.4 7.41 7.36 7.36 7.36 7.4 7.4 7.4 7.4 7.4 7.42 7.42 7.44 7.44 7.44 7.44 7.44 7.44 7.5 7.5 7.47 7.46 7.46 7.46 7.44 7.44 7.42 7.41 7.41 7.43 7.43 7.42 7.44 7.44 7.44 7.45

2 6.59 6.62 6.62 6.61 6.62 6.63 6.61 6.61 6.61 6.62 6.62 6.62 6.62 6.62 6.64 6.64 6.66 6.66 6.66 6.66 6.66 6.66 6.68 6.68 6.69 6.68 6.68 6.68 6.66 6.66 6.64 6.63 6.63 6.64 6.64 6.64 6.66 6.66 6.66 6.66

3 6.24 6.26 6.26 6.25 6.26 6.26 6.24 6.24 6.24 6.26 6.26 6.26 6.26 6.26 6.27 6.27 6.29 6.29 6.29 6.29 6.29 6.29 6.3 6.3 6.3 6.29 6.29 6.29 6.29 6.28 6.27 6.26 6.26 6.27 6.27 6.27 6.28 6.28 6.29 6.29

4 5.68 5.68 5.69 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.69 5.69 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.71 5.7 5.7 5.7 5.7 5.7 5.69 5.69 5.69 5.69 5.69 5.69 5.7 5.7 5.7 5.7

5 5.37 5.38 5.38 5.38 5.37 5.37 5.37 5.37 5.37 5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.39 5.38 5.38 5.38 5.38 5.39 5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.39 5.39 5.39

6 5.15 5.14 5.15 5.14 5.14 5.14 5.14 5.14 5.14 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15

7 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99

8 5.57 5.56 5.57 5.56 5.56 5.54 5.55 5.55 5.56 5.56 5.56 5.56 5.56 5.56 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.54 5.54 5.54 5.55 5.58 5.55 5.55 5.55 5.55 5.54 5.54 5.55 5.54 5.54 5.54

9 5.42 5.42 5.41 5.41 5.41 5.4 5.41 5.42 5.41 5.41 5.41 5.41 5.41 5.41 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.41 5.45 5.4 5.41 5.41 5.41 5.4 5.4 5.41 5.4 5.4 5.41

10 5.37 5.36 5.36 5.37 5.37 5.37 5.37 5.37 5.37 5.37 5.37 5.37 5.37 5.37 5.36 5.36 5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.36 5.41 5.36 5.37 5.37 5.36 5.36 5.36 5.36 5.36 5.36 5.36

PV temperature (deg C), Winter

P
V

 m
o

d
u

le
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System VI, inlet flows for 2m/s wind, 45
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

 

1 563 538 537 555 538 534 556 556 556 538 538 538 538 538 531 531 524 524 524 524 524 524 504 515 515 517 517 517 524 526 530 536 547 530 530 531 525 525 523 522

2 66.2 76.7 76.5 64.7 76.8 76.2 64.9 64.9 64.9 76.7 76.7 76.7 76.7 76.7 75.7 75.7 74.8 74.8 74.8 74.8 74.8 74.8 85.1 73.4 73.4 73.8 73.8 73.8 74.8 75.1 75.6 76.4 63.4 75.6 75.6 75.8 74.9 74.9 74.7 74.5

3 40 43.9 43.8 45.1 44 49.1 45.3 45.3 45.2 43.9 43.9 43.9 43.9 43.9 48.8 48.8 48.2 48.2 48.2 48.2 48.2 48.2 52.1 52.5 52.5 52.8 52.8 52.8 48.2 48.4 48.8 43.7 44.4 48.8 48.7 48.9 48.3 48.3 48.2 48.1

4 47.3 55.3 55.2 51.7 55.4 55.1 51.8 51.8 51.8 55.3 55.3 55.3 55.3 55.3 54.7 54.7 58.6 58.6 58.6 58.6 58.6 58.6 61.6 62 62 62.3 62.3 62.3 58.6 58.7 54.7 55.1 55.6 54.6 54.6 54.7 58.6 58.6 58.5 58.3

5 35.9 36.5 36.5 35.1 36.7 36.5 35.2 35.2 35.1 36.5 36.5 36.5 36.5 36.5 38.5 38.5 40.3 40.3 40.3 40.3 40.3 40.3 42 42.1 42.1 40.1 40.1 40.1 40.3 38.3 38.4 36.2 36.8 38.4 38.3 36 38 37.9 40 40

6 26.7 28.1 29.2 27.7 27.8 27.8 26.5 26.5 26.4 28.1 28.1 28.1 28.1 28.1 29.2 29.2 30.3 30.3 30.3 30.3 30.3 30.3 31 31.2 31.2 29.9 29.9 29.9 30.3 30 29 29.4 29 28.9 29.3 29.3 30.3 30.6 30.5 31.5

7 15.8 18.6 19.3 17.7 18 17.9 16.9 17 17.4 18.7 18.7 18.7 18.7 18.7 19.2 19.2 20.3 20.3 20.3 20.3 20.3 20.3 20.6 20.7 20.7 20.3 20.3 20.3 20.6 20.2 20 20.5 19.9 20.6 20.6 20.9 21.4 21.5 21.6 22.2

8 0.88 0.63 0.57 0.71 0.64 0.74 0.81 0.88 0.72 0.65 0.65 0.65 0.65 0.65 0.68 0.68 0.67 0.67 0.67 0.67 0.67 0.67 0.71 0.7 0.7 0.73 0.73 0.73 0.71 0.71 0.72 0.68 0.75 0.69 0.73 0.73 0.69 0.74 0.79 0.74

9 1.86 1.04 1.18 1.26 1.11 1.29 1.44 1.21 1.29 1.12 1.12 1.12 1.12 1.12 1.18 1.18 1.21 1.21 1.21 1.21 1.21 1.21 1.3 1.27 1.27 1.19 1.19 1.19 1.15 1.17 1.2 1.11 1.27 1.18 1.21 1.24 1.17 1.26 1.22 1.16

10 1.9 1.39 1.29 1.39 1.22 1.17 1.27 1.38 1.43 1.25 1.25 1.25 1.25 1.25 1.34 1.34 1.41 1.41 1.41 1.41 1.41 1.41 1.53 1.5 1.5 1.43 1.43 1.43 1.38 1.25 1.28 1.17 1.36 1.29 1.31 1.21 1.29 1.24 1.25 1.32

In
le

t

Inlet Fflows (kg/h)

1 36 36.2 36.2 36.1 36.2 36.2 36.1 36.1 36.1 36.2 36.2 36.2 36.2 36.2 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.3 36.5 36.4 36.4 36.4 36.4 36.4 36.3 36.3 36.3 36.2 36.1 36.3 36.3 36.3 36.3 36.3 36.3 36.4

2 35.5 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.8 35.8 35.8 35.8 35.8 35.8 35.7 35.7 35.7 35.6 35.6 35.7 35.7 35.7 35.7 35.7 35.7 35.7

3 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.8 34.8 34.8 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

4 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 35 35 35 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 35

5 34.6 34.7 34.7 34.7 34.7 34.7 34.6 34.6 34.6 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

6 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5

7 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4

8 34.8 34.9 35 34.9 34.9 34.9 34.8 34.8 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.8 34.9 34.9 34.9 34.9 34.9 34.8 34.9

9 34.6 34.8 34.7 34.7 34.8 34.7 34.7 34.7 34.7 34.8 34.8 34.8 34.8 34.8 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.8 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

10 34.6 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.6 34.6 34.6 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 4.31 4.49 4.5 4.37 4.49 4.52 4.36 4.36 4.36 4.49 4.49 4.49 4.49 4.49 4.54 4.54 4.59 4.59 4.59 4.59 4.59 4.59 4.74 4.66 4.66 4.64 4.64 4.64 4.59 4.58 4.55 4.51 4.42 4.55 4.55 4.54 4.58 4.59 4.6 4.61

2 3.87 3.97 3.98 3.94 3.96 4 3.93 3.93 3.93 3.97 3.97 3.97 3.97 3.97 4.02 4.02 4.07 4.07 4.07 4.07 4.07 4.07 4.13 4.14 4.14 4.12 4.12 4.12 4.07 4.06 4.02 3.98 3.99 4.03 4.03 4.02 4.06 4.06 4.08 4.09

3 3.67 3.74 3.75 3.71 3.74 3.74 3.7 3.7 3.7 3.74 3.74 3.74 3.74 3.74 3.77 3.77 3.82 3.82 3.82 3.82 3.82 3.82 3.86 3.86 3.86 3.84 3.84 3.84 3.82 3.8 3.77 3.76 3.76 3.77 3.78 3.76 3.81 3.81 3.82 3.83

4 3.36 3.37 3.38 3.36 3.37 3.37 3.35 3.35 3.35 3.37 3.37 3.37 3.37 3.37 3.39 3.39 3.42 3.42 3.42 3.42 3.42 3.42 3.43 3.44 3.44 3.41 3.41 3.41 3.42 3.4 3.4 3.39 3.39 3.4 3.4 3.39 3.41 3.41 3.42 3.43

5 3.16 3.18 3.18 3.17 3.17 3.17 3.16 3.16 3.16 3.18 3.18 3.18 3.18 3.18 3.19 3.19 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.19 3.19 3.19 3.2 3.19 3.19 3.19 3.19 3.19 3.19 3.2 3.2 3.21 3.2 3.21

6 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05

7 2.96 2.94 2.94 2.95 2.94 2.95 2.95 2.95 2.95 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.94

8 3.29 3.39 3.43 3.35 3.38 3.34 3.31 3.28 3.35 3.38 3.38 3.38 3.38 3.38 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.35 3.36 3.36 3.34 3.34 3.34 3.35 3.35 3.34 3.36 3.33 3.36 3.34 3.34 3.36 3.33 3.31 3.33

9 3.13 3.28 3.25 3.22 3.26 3.21 3.18 3.23 3.21 3.26 3.26 3.26 3.26 3.26 3.24 3.24 3.23 3.23 3.23 3.23 3.23 3.23 3.21 3.22 3.22 3.24 3.24 3.24 3.25 3.24 3.23 3.26 3.22 3.24 3.23 3.22 3.24 3.22 3.23 3.24

10 3.1 3.18 3.2 3.18 3.22 3.22 3.2 3.18 3.17 3.21 3.21 3.21 3.21 3.21 3.19 3.19 3.18 3.18 3.18 3.18 3.18 3.18 3.16 3.16 3.16 3.17 3.17 3.17 3.18 3.21 3.2 3.22 3.18 3.2 3.19 3.21 3.2 3.21 3.21 3.19

PV temperature (deg C), Winter

P
V

 m
o

d
u

le
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System V, inlet flows for 1m/s wind, 90
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

1 215 215 215 215 215 215 215 215 215 215 215 215 215 215 215 215 212 212 212 212 212 208 212 215 216 215 216 216 216 216 216 223 223 223 223 220 215 215 215 215

2 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.1 42.1 42.1 42.1 42.1 47.1 42.1 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 38 38 38 38 38 42.7 42.7 42.7 42.7

3 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 32.4 32.4 32.4 32.4 32.4 32.1 32.4 30.7 30.8 30.7 30.8 30.8 30.8 30.8 30.8 29.4 29.4 29.4 29.4 27 30.7 30.7 30.7 30.7

4 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 40.7 40.7 40.7 40.7 40.7 40.5 40.7 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 38.5 38.5 38.5 38.5 37 39.5 39.5 39.5 39.5

5 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.1 28.1 28 28.1 28.1 28.1 28.1 28.1 27.6 27.6 27.6 27.6 29.4 28 28 28 28

6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.8 23.8 23.8 23.8 23.8 23.7 23.8 23.6 23.5 23.6 23.5 23.5 23.5 23.5 23.5 23.4 23.4 23.4 23.4 29.7 23.6 23.6 23.6 23.6

7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.9 17.7 17.7 17.7 17.7 17.7 17.7 17.8 17.8 17.8 17.8 17.8 17.7 17.6 17.6 17.5 17.7 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.3 17.7 17.7 17.7 17.7

8 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.56 0.57 0.57 0.57 0.57 0.57 0.57 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.55 0.55 0.55 0.55 0.31 0.57 0.57 0.57 0.57

9 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.89 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.84 0.84 0.84 0.84 0.4 0.88 0.88 0.88 0.88

10 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.96 0.96 0.96 0.96 0.96 0.98 0.95 0.93 0.92 0.94 0.92 0.92 0.92 0.92 0.92 0.89 0.89 0.89 0.89 0.41 0.93 0.93 0.93 0.93

Inlet Fflows (kg/h)

In
le

t

1 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44.1 44.1 44.1 44.1 44.1 44.2 44.1 44 44 44 44 44 44 44 44 43.7 43.7 43.7 43.7 43.8 44 44 44 44

2 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.9 42.9 42.9 42.9 42.9 42.9 42.9 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.7 42.7 42.7 42.7 42.8 42.8 42.8 42.8 42.8

3 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.7 40.6 40.6 40.6 40.6

4 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.3 41.2 41.2 41.2 41.2

5 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.7 40.6 40.6 40.6 40.6

6 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2

7 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9

8 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.4 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.8 40.5 40.5 40.5 40.5

9 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.8 40.3 40.3 40.3 40.3

10 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.3 40.3 40.3 40.3 40.7 40.2 40.2 40.2 40.2

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.5 11.5 11.5 11.5 11.5 11.6 11.5 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.2 11.2 11.2 11.2 11.2 11.4 11.4 11.4 11.4

2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.4 10.4 10.4 10.4 10.4 10.3 10.4 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.2 10.2 10.2 10.2 10.3 10.3 10.3 10.3 10.3

3 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.8 9.7 9.7 9.7 9.7

4 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.9 8.8 8.8 8.8 8.8

5 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.4 8.3 8.3 8.3 8.3

6 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9

7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6

8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.5 8.1 8.1 8.1 8.1

9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.4 8.0 8.0 8.0 8.0

10 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.4 8.0 8.0 8.0 8.0

P
V

 m
o

d
u

le

PV temperature (deg C), Winter
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System V, inlet flows for 2m/s wind, 90
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

1 215 215 215 215 215 215 215 215 215 215 215 215 215 215 215 215 203 203 203 203 203 187 204 215 216 215 216 216 216 216 216 251 251 251 251 250 215 215 215 215

2 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.6 42.7 42.7 42.7 42.7 42.7 42.7 40.3 40.3 40.3 40.3 40.3 58.7 40.4 42.7 42.8 42.7 42.8 42.8 42.8 42.8 42.8 19.7 19.7 19.7 19.7 19.5 42.7 42.7 42.7 42.7

3 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 36.9 36.9 36.9 36.9 36.9 36.1 36.9 30.7 30.8 30.7 30.8 30.8 30.8 30.8 30.8 25.4 25.4 25.4 25.4 25.3 30.7 30.7 30.7 30.7

4 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.2 39.5 39.5 39.5 39.5 39.5 39.5 44.1 44.1 44.1 44.1 44.1 43.5 44.1 39.3 39.6 39.5 39.6 39.6 39.6 39.6 39.6 35 35 35 35 34.9 39.5 39.5 39.5 39.5

5 28 28 28 28 28 28 28 28 28 27.7 28 28 28 28 28 28 30.3 30.3 30.3 30.3 30.3 30.2 30.4 27.9 28.3 28.1 28.3 28.3 28.3 28.3 28.3 26.4 26.4 26.4 26.4 26.2 28 28 28 28

6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 24.4 23.6 23.6 23.6 23.6 23.6 23.6 24.6 24.6 24.6 24.6 24.6 24.2 24.6 24.3 23.3 23.6 23.3 23.3 23.3 23.3 23.3 23.9 23.9 23.9 23.9 24.4 23.6 23.6 23.6 23.6

7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 18.7 17.7 17.7 17.7 17.7 17.7 17.7 18 18 18 18 18 17.7 17.5 17.7 16.9 17.6 16.9 16.9 16.9 16.9 16.9 17.3 17.3 17.3 17.3 17.9 17.7 17.7 17.7 17.7

8 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.5 0.57 0.57 0.57 0.57 0.57 0.57 0.6 0.6 0.6 0.6 0.6 0.61 0.62 0.49 0.56 0.55 0.56 0.56 0.56 0.56 0.56 0.44 0.44 0.44 0.44 0.45 0.57 0.57 0.57 0.57

9 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.77 0.88 0.88 0.88 0.88 0.88 0.88 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.82 0.86 0.84 0.86 0.86 0.86 0.86 0.86 0.62 0.62 0.62 0.62 0.65 0.88 0.88 0.88 0.88

10 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.83 0.93 0.93 0.93 0.93 0.93 0.93 1.03 1.03 1.03 1.03 1.03 1.13 1.01 0.83 0.9 0.98 0.9 0.9 0.9 0.9 0.9 0.64 0.64 0.64 0.64 0.67 0.93 0.93 0.93 0.93

Inlet Fflows (kg/h)

In
le

t

1 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.4 39.4 39.4 39.4 39.4 39.7 39.4 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 38.6 38.6 38.6 38.6 38.6 39.2 39.2 39.2 39.2

2 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.5 38.4 38.5 38.4 38.4 38.4 38.4 38.4 38.3 38.3 38.3 38.3 38.3 38.5 38.5 38.5 38.5

3 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37.2 37.2 37.2 37.2 37.2 37.1 37.1 37 37 37 37 37 37 37 37 36.9 36.9 36.9 36.9 36.9 37 37 37 37

4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4

5 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37

6 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7

7 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5

8 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 37 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 37 36.9 36.9 36.9 36.9 36.9 36.9 36.9 37 37 37 37 37 36.9 36.9 36.9 36.9

9 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.9 36.9 36.9 36.9 36.9 36.8 36.8 36.8 36.8

10 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.8 36.8 36.7 36.8 36.8 36.8 36.8 36.8 36.9 36.9 36.9 36.9 36.9 36.8 36.8 36.8 36.8

P
V

 m
o

d
u

le

PV temperature (deg C), Summer

1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.2 7.2 7.2 7.2 7.2 7.5 7.2 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 7.0 7.0 7.0 7.0

2 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.2 6.2 6.2 6.2 6.2 6.4 6.4 6.4 6.4

3 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.0 6.0 6.0 6.0 6.0 6.1 6.1 6.1 6.1

4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2

6 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9

7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7

8 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.1 5.1 5.1 5.1 5.1

9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 5.1 5.1 5.1 5.1 5.0 5.0 5.0 5.0

10 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.0 5.0 4.9 5.0 5.0 5.0 5.0 5.0 5.1 5.1 5.1 5.1 5.0 4.9 4.9 4.9 4.9

P
V

 m
o

d
u

le

PV temperature (deg C), Winter
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System V, inlet flows for 1m/s wind, 90
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

1 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 430 430 430 430 430 428 430 432 432 432 432 432 432 432 432 436 436 436 436 436 432 432 432 432

2 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.2 85.3 85.3 85.3 85.3 85.3 85.3 84.9 84.9 84.9 84.9 84.9 87.5 85 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 83 83 83 83 82.9 85.3 85.3 85.3 85.3

3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 62.2 62.2 62.2 62.2 62.2 62 62.2 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 60.7 60.7 60.7 60.7 60.6 61.3 61.3 61.3 61.3

4 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 79.4 79.4 79.4 79.4 79.4 79.3 79.4 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.3 78.3 78.3 78.3 78.2 78.8 78.8 78.8 78.8

5 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 56.2 56.2 56.2 56.2 56.2 56.2 56.3 56 56 56 56 56 56 56 56 55.7 55.7 55.7 55.7 55.7 55.9 55.9 55.9 55.9

6 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47.1 47.1 47.1 47.1 47.1 47 47.1 47 46.9 47 46.9 46.9 46.9 46.9 46.9 46.9 46.9 46.9 46.9 46.9 47 47 47 47

7 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.3 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.1 35.2 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.2 35.2 35.2 35.2 35.2

8 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13

9 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.77 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.75 1.75 1.75 1.75 1.75 1.77 1.77 1.77 1.77

10 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.88 1.88 1.88 1.88 1.88 1.89 1.88 1.87 1.87 1.88 1.87 1.87 1.87 1.87 1.87 1.85 1.85 1.85 1.85 1.85 1.87 1.87 1.87 1.87

Inlet Fflows (kg/h)

In
le

t

1 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.2 39.2 39.2 39.2 39.2 39.3 39.3 39.3 39.3

2 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38

3 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4

4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4

5 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8

6 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4

7 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1

8 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6

9 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4

10 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1

2 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0

3 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

4 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6

5 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.1 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.2

6 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

7 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9

9 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

10 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

P
V

 m
o

d
u

le

PV temperature (deg C), Winter
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System V, inlet flows for 2m/s wind, 90
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

1 432 432 432 432 432 432 432 432 432 431 432 432 432 432 432 432 425 425 425 425 425 417 425 432 432 432 432 432 432 432 432 448 448 448 448 448 432 432 432 432

2 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.1 85.3 85.3 85.3 85.3 85.3 85.3 84 84 84 84 84 94.1 84 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 75.8 75.8 75.8 75.8 75.7 85.3 85.3 85.3 85.3

3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 64.6 64.6 64.6 64.6 64.6 64.1 64.6 61.3 61.4 61.3 61.4 61.4 61.4 61.4 61.4 58.6 58.6 58.6 58.6 58.5 61.3 61.3 61.3 61.3

4 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.4 78.8 78.8 78.8 78.8 78.8 78.8 81.1 81.1 81.1 81.1 81.1 80.8 80.9 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 76.8 76.8 76.8 76.8 76.7 78.8 78.8 78.8 78.8

5 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.4 55.9 55.9 55.9 55.9 55.9 55.9 57.1 57.1 57.1 57.1 57.1 57 56.7 56 56.1 56 56.1 56.1 56.1 56.1 56.1 55 55 55 55 54.9 55.9 55.9 55.9 55.9

6 47 47 47 47 47 47 47 47 47 48.4 47 47 47 47 47 47 47.4 47.4 47.4 47.4 47.4 47.3 48.8 47 46.9 47 46.9 46.9 46.9 46.9 46.9 46.6 46.6 46.6 46.6 46.7 47 47 47 47

7 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 36.2 35.2 35.2 35.2 35.2 35.2 35.2 35.4 35.4 35.4 35.4 35.4 35.2 35.7 35.1 34.8 35.1 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 35.2 35.2 35.2 35.2 35.2

8 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.03 1.13 1.13 1.13 1.13 1.13 1.13 1.15 1.15 1.15 1.15 1.15 1.15 1.07 1.12 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.1 1.1 1.1 1.1 1.11 1.13 1.13 1.13 1.13

9 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.56 1.77 1.77 1.77 1.77 1.77 1.77 1.81 1.81 1.81 1.81 1.81 1.81 1.62 1.79 1.76 1.75 1.76 1.76 1.76 1.76 1.76 1.7 1.7 1.7 1.7 1.71 1.77 1.77 1.77 1.77

10 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.66 1.87 1.87 1.87 1.87 1.87 1.87 1.93 1.93 1.93 1.93 1.93 1.96 1.7 1.87 1.85 1.89 1.85 1.85 1.85 1.85 1.85 1.79 1.79 1.79 1.79 1.8 1.87 1.87 1.87 1.87

Inlet Fflows (kg/h)

In
le

t

1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.2 36.2 36.2 36.2 36.2 36.3 36.2 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 35.9 35.9 35.9 35.9 35.9 36.1 36.1 36.1 36.1

2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.3 35.3 35.3 35.3 35.3 35.3 35.3 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2

3 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.1 34.1 34.1 34.1 34.1 34.2 34.2 34.2 34.2

4 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34 34 34 34 34 34.1 34.1 34.1 34.1

5 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7

6 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3

7 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1

8 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5

9 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4

10 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.4 33.4 33.4 33.4 33.3 33.3 33.3 33.3

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.2 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4

2 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.6 3.6 3.6 3.6 3.6 3.7 3.7 3.7 3.7

3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

4 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7

5 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3

6 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9

8 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2

9 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

10 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

P
V

 m
o

d
u

le

PV temperature (deg C), Winter
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System VI, inlet flows for 1m/s wind, 90
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

1 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 256 256 256 256 256 251 256 261 261 261 261 261 261 261 261 272 272 272 272 271 260 260 260

2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 36.5 36.5 36.5 36.5 36.5 42.4 36.6 37.2 37.3 37.2 37.3 37.3 37.3 37.3 37.3 31.4 31.4 31.4 31.4 31.4 37.2 37.2 37.2

3 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24 24.1 24.1 24.1 24.1 24.1 24.1 26.2 26.2 26.2 26.2 26.2 26 26.2 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 22 22 22 22 22 24.1 24.1 24.1

4 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 30.9 30.9 30.9 30.9 30.9 30.7 30.9 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 27.7 27.7 27.7 27.7 27.7 29.2 29.2 29.2

5 20 20 20 20 20 20 20 20 20 19.9 20 20 20 20 20 20 20.7 20.7 20.7 20.7 20.7 20.8 20.9 20 20 20 20 20 20 20 20 19.2 19.2 19.2 19.2 19.3 20 20 20

6 16 16 16 16 16 16 16 16 16 15.9 16 16 16 16 16 16 16.7 16.7 16.7 16.7 16.7 16.3 16.4 16 15.8 16 15.8 15.8 15.8 15.8 15.8 15.4 15.4 15.4 15.4 15.3 16 16 16

7 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.8 11.5 11.5 11.5 11.5 11.5 11.5 11.9 11.9 11.9 11.9 11.9 11.5 11.4 11.4 11.2 11.4 11.2 11.2 11.2 11.2 11.2 11.1 11.1 11.1 11.1 11.1 11.5 11.5 11.5

8 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.37 0.37 0.37 0.37 0.37 0.39 0.41 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.36 0.36 0.36 0.36 0.4 0.38 0.38 0.38

9 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.61 0.61 0.61 0.61 0.61 0.61 0.58 0.58 0.58 0.58 0.58 0.63 0.65 0.63 0.6 0.59 0.6 0.6 0.6 0.6 0.6 0.57 0.57 0.57 0.57 0.64 0.61 0.61 0.61

10 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.65 0.64 0.64 0.64 0.64 0.64 0.64 0.61 0.61 0.61 0.61 0.61 0.72 0.68 0.65 0.63 0.67 0.63 0.63 0.63 0.63 0.63 0.59 0.59 0.59 0.59 0.67 0.64 0.64 0.64

In
le

t

Inlet Fflows (kg/h)

1 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.3 44.3 44.3 44.3 44.3 44.4 44.3 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 43.9 43.9 43.9 43.9 43.9 44.2 44.2 44.2 44.2

2 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.5 43.5 43.5 43.5 43.5 43.5 43.5 43.4 43.3 43.4 43.3 43.3 43.3 43.3 43.3 43.2 43.2 43.2 43.2 43.3 43.4 43.4 43.4 43.4

3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.2 41.3 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.3 41.3 41.3 41.3

4 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3

5 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 42 42 42 42

6 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7

7 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5

8 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.2 42.2 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.2 42.3 42.3 42.3 42.3

9 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42 42 42 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42 42.1 42.1 42.1 42.1

10 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 41.9 42 42 42 42 42 42 42 42 42 42.1 42.1 42.1 42.1 42 42 42 42 42

P
V

 m
o

d
u

le

PV temperature (deg C), Summer

1 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.7 11.7 11.7 11.7 11.7 11.8 11.7 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.3 11.3 11.3 11.3 11.4 11.6 11.6 11.6 11.6

2 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.8 10.8

3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.3 10.3 10.3 10.3 10.3 10.4 10.4 10.4 10.4

4 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8

5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5

6 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2

7 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1

8 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.8 9.7 9.7 9.7 9.7 9.7 9.7 9.8 9.8 9.8 9.8 9.8 9.7 9.7 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.7 9.7 9.7 9.7 9.7

9 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.5 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.5 9.6 9.6 9.6 9.6

10 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.6 9.6 9.6 9.6 9.5 9.5 9.5 9.5 9.5

P
V

 m
o

d
u

le

PV temperature (deg C), Winter
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System VI, inlet flows for 2m/s wind, 90
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

1 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 242 242 242 242 242 224 243 261 262 261 262 262 262 262 262 319 319 319 319 319 260 260 260 260

2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.1 37.2 37.2 37.2 37.2 37.2 37.2 37.2 34.7 34.7 34.7 34.7 34.7 55.7 34.7 37.3 37.4 37.2 37.4 37.4 37.4 37.4 37.4 -1.3 -1.3 -1.3 -1.3 -1.5 37.2 37.2 37.2 37.2

3 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24 24.1 24.1 24.1 24.1 24.1 24.1 24.1 31.9 31.9 31.9 31.9 31.9 31.3 32 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 16.2 16.2 16.2 16.2 16.2 24.1 24.1 24.1 24.1

4 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.1 29.2 29.2 29.2 29.2 29.2 29.2 29.2 35.7 35.7 35.7 35.7 35.7 35.1 35.7 29.2 29.3 29.2 29.3 29.3 29.3 29.3 29.3 23.5 23.5 23.5 23.5 23.5 29.2 29.2 29.2 29.2

5 20 20 20 20 20 20 20 20 19.8 20 20 20 20 20 20 20 23.4 23.4 23.4 23.4 23.4 23.3 23.5 20 20.3 20 20.3 20.3 20.3 20.3 20.3 18.1 18.1 18.1 18.1 17.8 20 20 20 20

6 16 16 16 16 16 16 16 16 15.9 16 16 16 16 16 16 16 17.7 17.7 17.7 17.7 17.7 17.3 17.7 16 15.4 16 15.4 15.4 15.4 15.4 15.4 12.9 12.9 12.9 12.9 13.8 16 16 16 16

7 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 12.6 11.5 11.5 11.5 11.5 11.5 11.5 11.5 12.2 12.2 12.2 12.2 12.2 11.7 11.3 11 10.3 11.3 10.3 10.3 10.3 10.3 10.3 10.6 10.6 10.6 10.6 9.5 11.5 11.5 11.5 11.5

8 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.35 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.44 0.44 0.44 0.44 0.44 0.43 0.49 0.32 0.37 0.36 0.37 0.37 0.37 0.37 0.37 0.21 0.21 0.21 0.21 0.48 0.38 0.38 0.38 0.38

9 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.59 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.73 0.73 0.73 0.73 0.73 0.69 0.75 0.74 0.58 0.53 0.58 0.58 0.58 0.58 0.58 0.6 0.6 0.6 0.6 0.84 0.61 0.61 0.61 0.61

10 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.66 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.79 0.79 0.79 0.79 0.79 1.02 0.76 0.67 0.59 0.79 0.59 0.59 0.59 0.59 0.59 0.67 0.67 0.67 0.67 0.87 0.64 0.64 0.64 0.64

Inlet Fflows (kg/h)

In
le

t

1 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.6 39.6 39.6 39.6 39.6 39.9 39.6 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 38.5 38.5 38.5 38.5 38.5 39.3 39.3 39.3 39.3

2 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 39.1 39.1 39.1 39.1 39.1 39.1 39.1 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 41.3 41.3 41.3 41.3 41.3 38.8 38.8 38.8 38.8

3 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.3 37.3 37.3 37.3 37.3 37.4 37.4 37.4 37.4

4 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38 38 38 38 38 38.1 38.1 38.1 38.1

5 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.8 37.8 37.8 37.8 37.9 37.9 37.9 37.9 37.9

6 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7

7 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6

8 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38 38.2 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.4 38.4 38.4 38.4 38 38.1 38.1 38.1 38.1

9 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 38 38 38 38 38 38 38 38 38 38 38 37.9 38 38 38 38

10 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.8 37.9 37.9 38 37.9 38 38 38 38 38 37.9 37.9 37.9 37.9 37.8 37.9 37.9 37.9 37.9

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.4 7.4 7.4 7.4 7.4 7.6 7.4 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 6.5 6.5 6.5 6.5 6.5 7.1 7.1 7.1 7.1

2 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 8.8 8.8 8.8 8.8 8.8 6.7 6.7 6.7 6.7

3 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.7 6.7 6.7 6.7 6.7 6.6 6.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.4 6.4 6.4 6.4 6.4 6.5 6.5 6.5 6.5

4 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1

5 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9

6 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8

7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7

8 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.0 6.0 6.0 6.0 6.0 6.1 6.0 6.2 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.4 6.4 6.4 6.4 6.0 6.1 6.1 6.1 6.1

9 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.9 6.0 6.0 6.0 6.0

10 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.8 5.9 5.9 6.0 5.9 6.0 6.0 6.0 6.0 6.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9

P
V

 m
o

d
u

le

PV temperature (deg C), Winter
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System VI, inlet flows for 1m/s wind, 90
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

1 522 522 522 522 522 522 522 522 522 521 522 522 522 522 522 522 519 519 519 519 519 516 519 522 522 522 522 522 522 522 522 527 527 527 527 527 522 522 522 522

2 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.1 74.1 74.1 74.1 74.1 77.1 74.1 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 71.6 71.6 71.6 71.6 71.6 74.4 74.4 74.4 74.4

3 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 49.1 49.1 49.1 49.1 49.1 49 49.1 48 48 48 48 48 48 48 48 47 47 47 47 47 48 48 48 48

4 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 59.1 59.1 59.1 59.1 59.1 59 59.2 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 57.5 57.5 57.5 57.5 57.5 58.3 58.3 58.3 58.3

5 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 40.3 40.3 40.3 40.3 40.3 40.2 40.3 39.8 39.9 39.8 39.9 39.9 39.9 39.9 39.9 39.4 39.4 39.4 39.4 39.4 39.8 39.8 39.8 39.8

6 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 32 32 32 32 32 31.9 32 31.8 31.7 31.8 31.7 31.7 31.7 31.7 31.7 31.6 31.6 31.6 31.6 31.6 31.8 31.8 31.8 31.8

7 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 23 22.9 22.9 22.9 22.9 22.9 22.9 23 23 23 23 23 22.9 22.8 22.8 22.7 22.9 22.7 22.7 22.7 22.7 22.7 22.7 22.7 22.7 22.7 22.8 22.9 22.9 22.9 22.9

8 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.76 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.78 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.75 0.75 0.75 0.75 0.76 0.77 0.77 0.77 0.77

9 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.24 1.24 1.24 1.24 1.24 1.23 1.24 1.23 1.22 1.21 1.22 1.22 1.22 1.22 1.22 1.19 1.19 1.19 1.19 1.2 1.22 1.22 1.22 1.22

10 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.31 1.31 1.31 1.31 1.31 1.33 1.31 1.29 1.28 1.3 1.28 1.28 1.28 1.28 1.28 1.25 1.25 1.25 1.25 1.26 1.29 1.29 1.29 1.29

Inlet Fflows (kg/h)

In
le

t

1 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.7 39.7 39.7 39.7 39.7 39.7 39.7 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6

2 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7

3 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2

4 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6

5 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3

6 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37

7 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8

8 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.5 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.5 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.5 37.5 37.5 37.5 37.5 37.4 37.4 37.4 37.4

9 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3

10 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4

2 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.7 6.7 6.7 6.7

3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3

4 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7

5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4

6 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2

7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

8 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

9 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4

10 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.3 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4

PV temperature (deg C), Winter

P
V
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o
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le
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System VI, inlet flows for 2m/s wind, 90
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

1 522 522 522 522 522 522 522 522 522 521 522 522 522 522 522 522 512 512 512 512 512 512 512 522 522 522 522 522 522 522 522 544 544 544 544 543 522 522 522 522

2 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 73 73 73 73 73 73 73.1 74.4 74.5 74.4 74.5 74.5 74.5 74.5 74.5 62.8 62.8 62.8 62.8 62.7 74.4 74.4 74.4 74.4

3 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 52.3 52.3 52.3 52.3 52.3 52.3 52.4 48 48.1 48 48.1 48.1 48.1 48.1 48.1 44 44 44 44 44 48 48 48 48

4 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.2 58.3 58.3 58.3 58.3 58.3 58.3 61.7 61.7 61.7 61.7 61.7 61.7 61.8 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 55.3 55.3 55.3 55.3 55.2 58.3 58.3 58.3 58.3

5 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.7 39.8 39.8 39.8 39.8 39.8 39.8 41.6 41.6 41.6 41.6 41.6 41.6 41.7 39.9 40 39.8 40 40 40 40 40 38.5 38.5 38.5 38.5 38.5 39.8 39.8 39.8 39.8

6 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 32.6 32.6 32.6 32.6 32.6 32.6 32.6 31.8 31.5 31.8 31.5 31.5 31.5 31.5 31.5 30.5 30.5 30.5 30.5 30.5 31.8 31.8 31.8 31.8

7 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 23.4 22.9 22.9 22.9 22.9 22.9 22.9 23.2 23.2 23.2 23.2 23.2 23.2 22.7 22.6 22.3 22.8 22.3 22.3 22.3 22.3 22.3 21.9 21.9 21.9 21.9 22.1 22.9 22.9 22.9 22.9

8 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.74 0.77 0.77 0.77 0.77 0.77 0.77 0.8 0.8 0.8 0.8 0.8 0.8 0.82 0.73 0.76 0.75 0.76 0.76 0.76 0.76 0.76 0.75 0.75 0.75 0.75 0.79 0.77 0.77 0.77 0.77

9 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.21 1.22 1.22 1.22 1.22 1.22 1.22 1.29 1.29 1.29 1.29 1.29 1.29 1.3 1.27 1.21 1.18 1.21 1.21 1.21 1.21 1.21 1.2 1.2 1.2 1.2 1.29 1.22 1.22 1.22 1.22

10 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.3 1.29 1.29 1.29 1.29 1.29 1.29 1.37 1.37 1.37 1.37 1.37 1.37 1.36 1.3 1.26 1.34 1.26 1.26 1.26 1.26 1.26 1.24 1.24 1.24 1.24 1.35 1.29 1.29 1.29 1.29

Inlet Fflows (kg/h)

In
le

t

1 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.2 36.2 36.2 36.2 36.2 36.4 36.4 36.4 36.4

2 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7

3 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

4 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 34.9 34.9 34.9 34.9 34.9 35 35 35 35

5 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

6 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5

7 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4

8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.9 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.9 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8

9 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

10 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.4 4.4 4.4 4.4 4.4 4.6 4.6 4.6 4.6

2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.0 4.0 4.0 4.0 4.0 4.1 4.1 4.1 4.1

3 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

5 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

6 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.1 3.1 3.1 3.1

7 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9

8 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

9 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

10 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

P
V

 m
o

d
u

le

PV temperature (deg C), Winter
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System V, inlet flows for 1m/s wind, 135
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

 

1 215 215 219 215 215 217 215 224 216.2 216 215 215 215 215 215 215 215 215 215 212 212 212 215 215 215 215 215 215 216 216 216 216 219 220 215 215 215 215 215 215

2 42.7 42.7 43.3 42.7 42.7 43 42.7 38.1 42.85 42.8 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.5 42.1 42.1 42.1 42.7 42.7 42.7 42.7 42.7 42.7 42.8 42.8 42.9 42.9 43.3 38 42.7 42.7 42.7 42.6 42.7 42.7

3 30.7 30.7 29 30.7 30.7 31 30.7 29.4 30.86 30.8 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.6 32.4 32.4 32.4 30.7 30.7 30.7 30.7 30.7 30.7 30.8 30.8 30.9 30.9 29 27 30.7 30.7 30.7 30.7 30.7 30.7

4 39.5 39.5 38.3 39.5 39.5 38.1 39.5 38.6 39.64 39.6 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.3 40.7 40.7 40.7 39.5 39.5 39.5 39.5 39.5 39.5 39.6 39.6 39.6 39.6 38.3 37 39.5 39.5 39.5 39.3 39.5 39.5

5 28 28.1 27.5 28 28 27.4 28 28.6 27.34 28.1 28 28 28 28 28 28 28 28 28.7 28.6 28.6 28.6 28 28 28 28 28 28 28.1 28.1 27.4 27.4 27.5 29.4 28 28 28 27.8 28 28

6 23.6 23.6 23.4 23.6 23.6 23.3 23.6 22.2 23.18 23.1 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 24 23.8 23.8 23.8 23.6 23.6 23.6 23.6 23.6 23.6 23.1 23.1 23.2 23.2 23.4 29.7 23.6 23.6 23.6 24.3 23.6 23.6

7 17.7 17.6 17.6 17.7 17.7 17.6 17.7 15.2 17.58 17.6 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.9 17.8 17.8 17.8 17.7 17.7 17.7 17.7 17.7 17.7 17.5 17.5 17.5 17.5 17.6 17.3 17.7 17.7 17.7 18.1 17.9 17.9

8 0.56 0.56 0.55 0.57 0.57 0.56 0.57 0.79 0.572 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.56 0.58 0.58 0.58 0.57 0.57 0.57 0.57 0.57 0.57 0.56 0.56 0.56 0.56 0.55 0.31 0.57 0.57 0.57 0.53 0.56 0.56

9 0.87 0.89 0.85 0.88 0.88 0.88 0.89 1.41 0.864 0.86 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.9 0.9 0.9 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.87 0.87 0.87 0.85 0.4 0.88 0.88 0.89 0.77 0.88 0.88

10 0.94 0.93 0.9 0.93 0.93 0.9 0.92 1.47 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.95 0.96 0.96 0.96 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.9 0.41 0.93 0.93 0.92 0.82 0.93 0.93

Inlet Fflows (kg/h)

In
le

t

1 44 44 43.9 44 44 43.9 44 43.7 43.96 44 44 44 44 44 44 44 44 44 44 44.1 44.1 44.1 44 44 44 44 44 44 44 44 44 44 43.9 43.8 44 44 44 44 44 44

2 42.8 42.8 42.7 42.8 42.8 42.8 42.8 42.7 42.79 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.9 42.9 42.9 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.8 42.7 42.8 42.8 42.8 42.8 42.8 42.8 42.8

3 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.7 40.7 40.7 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.7 40.6 40.6 40.6 40.6 40.6 40.6

4 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.1 41.16 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.2 41.3 41.2 41.2 41.2 41.2 41.2 41.2

5 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.62 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 40.7 40.6 40.6 40.6 40.6 40.6 40.6

6 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.18 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2

7 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.88 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9

8 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.3 40.45 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.8 40.5 40.5 40.5 40.5 40.5 40.5

9 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.1 40.29 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.8 40.3 40.3 40.3 40.3 40.3 40.3

10 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.1 40.24 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.7 40.2 40.2 40.2 40.3 40.2 40.2

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 11.4 11.4 11.3 11.4 11.4 11.3 11.4 11.1 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.5 11.5 11.5 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.3 11.2 11.4 11.4 11.4 11.4 11.4 11.4

2 10.3 10.3 10.2 10.3 10.3 10.2 10.3 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.4 10.4 10.4 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.2 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3

3 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.8 9.8 9.8 9.8 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.8 9.7 9.7 9.7 9.7 9.7 9.7

4 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.9 8.8 8.8 8.8 8.8 8.8 8.8

5 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.4 8.3 8.3 8.3 8.3 8.3 8.3

6 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9

7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6

8 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.0 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.2 8.2 8.2 8.2 8.5 8.1 8.1 8.1 8.2 8.2 8.2

9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.4 8.0 8.0 8.0 8.0 8.0 8.0

10 7.9 8.0 8.0 8.0 8.0 8.0 8.0 7.8 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.4 8.0 8.0 8.0 8.0 8.0 8.0

PV temperature (deg C), Winter

P
V

 m
o

d
u

le
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System V, inlet flows for 2m/s wind, 135
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

 

1 215 215 230 215 215 223 215 250 219.6 217 215 215 215 215 215 215 215 215 212 203 203 203 215 215 215 215 215 215 217 217 219 219 230 250 215 215 215 215 215 215

2 42.7 42.7 45.5 42.7 42.7 44.2 42.7 19.4 43.54 43 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42.7 42 40.3 40.3 40.3 42.7 42.7 42.7 42.7 42.7 42.7 43 43 43.4 43.4 45.5 19.5 42.7 42.7 42.7 42.7 42.6 42.6

3 30.7 30.7 23.5 30.7 30.7 31.8 30.7 25.3 31.29 30.9 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.3 36.9 36.9 36.9 30.7 30.7 30.7 30.7 30.7 30.7 31 31 31.2 31.2 23.5 25.3 30.7 30.7 30.7 30.7 30.7 30.7

4 39.5 39.3 34.7 39.5 39.5 33.9 39.5 34.8 40.17 39.8 39.5 39.5 39.5 39.5 39.5 39.5 39.5 39.5 38.8 44.1 44.1 44.1 39.5 39.5 39.5 39.5 39.5 39.5 39.8 39.8 40.1 40.1 34.7 34.9 39.5 39.5 39.5 39.5 39.2 39.2

5 28.1 27.9 26.7 28 28 25.5 28 26.2 26.18 28.3 28 28 28 28 28 28 28 28 30.7 30.3 30.3 30.3 28 28 28 28 28 28 28.3 28.3 25.2 25.2 26.7 26.2 28 28 28 28 27.7 27.7

6 23.6 24.3 21.3 23.6 23.6 22.2 23.6 24.4 20.85 21.7 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 25.3 24.6 24.6 24.6 23.6 23.6 23.6 23.6 23.6 23.6 21.7 21.7 21.9 21.9 21.3 24.4 23.6 23.6 23.6 23.6 24.4 24.4

7 17.6 17.7 15.6 17.7 17.7 17.2 17.8 18 14.84 17.1 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 18.3 18 18 18 17.7 17.7 17.7 17.7 17.7 17.7 16.8 16.8 17 17 15.6 17.9 17.7 17.7 17.8 18 18.7 18.7

8 0.55 0.49 0.71 0.57 0.57 0.56 0.58 0.47 0.825 0.59 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.56 0.6 0.6 0.6 0.57 0.57 0.57 0.57 0.57 0.57 0.56 0.56 0.55 0.55 0.71 0.45 0.57 0.57 0.58 0.6 0.5 0.5

9 0.84 0.82 1.2 0.88 0.88 0.88 0.92 0.68 1.283 0.82 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.86 0.96 0.96 0.96 0.88 0.88 0.88 0.88 0.88 0.88 0.86 0.86 0.85 0.85 1.2 0.65 0.88 0.88 0.92 0.85 0.77 0.77

10 0.98 0.83 1.27 0.93 0.93 0.84 0.89 0.65 1.42 0.89 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 1.01 1.03 1.03 1.03 0.93 0.93 0.93 0.93 0.93 0.93 0.9 0.9 0.89 0.89 1.27 0.67 0.93 0.93 0.89 0.92 0.83 0.83

Inlet Fflows (kg/h)

In
le

t

1 39.2 39.2 38.9 39.2 39.2 39.1 39.2 38.6 39.11 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.3 39.4 39.4 39.4 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.2 39.1 39.1 38.9 38.6 39.2 39.2 39.2 39.2 39.2 39.2

2 38.5 38.5 38.2 38.5 38.5 38.3 38.5 38.3 38.37 38.4 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.7 38.7 38.7 38.5 38.5 38.5 38.5 38.5 38.5 38.4 38.4 38.4 38.4 38.2 38.3 38.5 38.5 38.5 38.5 38.5 38.5

3 37 37 36.9 37 37 36.9 37 36.9 36.94 37 37 37 37 37 37 37 37 37 37.1 37.2 37.2 37.2 37 37 37 37 37 37 37 37 37 37 36.9 36.9 37 37 37 37 37 37

4 37.4 37.4 37.3 37.4 37.4 37.3 37.4 37.4 37.3 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.5 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.3 37.3 37.3 37.4 37.4 37.4 37.4 37.4 37.4 37.4

5 37 37 37 37 37 37 37 37 36.96 37 37 37 37 37 37 37 37 37 37.1 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37

6 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7 36.7

7 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.53 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5

8 36.9 37 36.8 36.9 36.9 36.9 36.9 37 36.8 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.8 37 36.9 36.9 36.9 36.9 37 37

9 36.8 36.8 36.7 36.8 36.8 36.8 36.8 36.9 36.7 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.7 36.9 36.8 36.8 36.8 36.8 36.8 36.8

10 36.7 36.8 36.7 36.8 36.8 36.8 36.8 36.9 36.66 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.7 36.7 36.7 36.7 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.7 36.9 36.8 36.8 36.8 36.8 36.8 36.8

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 7.0 7.0 6.8 7.0 7.0 6.9 7.0 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.1 7.2 7.2 7.2 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.8 6.5 7.0 7.0 7.0 7.0 7.0 7.0

2 6.4 6.4 6.2 6.4 6.4 6.3 6.4 6.2 6.3 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.5 6.6 6.6 6.6 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.3 6.3 6.2 6.2 6.4 6.4 6.4 6.4 6.4 6.4

3 6.1 6.1 5.9 6.1 6.1 5.9 6.1 6.0 6.0 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.2 6.2 6.2 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.0 6.0 5.9 6.0 6.1 6.1 6.1 6.1 6.1 6.1

4 5.5 5.5 5.4 5.5 5.5 5.4 5.5 5.5 5.4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.4 5.4 5.4 5.5 5.5 5.5 5.5 5.5 5.5 5.5

5 5.2 5.2 5.1 5.2 5.2 5.2 5.2 5.2 5.1 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.1 5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2

6 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9

7 4.7 4.7 4.8 4.7 4.7 4.7 4.7 4.7 4.8 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.8 4.7 4.7 4.7 4.7 4.7 4.7 4.7

8 5.1 5.1 5.0 5.1 5.1 5.1 5.1 5.1 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1

9 5.0 5.0 4.9 5.0 5.0 5.0 5.0 5.0 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.9 5.1 5.0 5.0 5.0 5.0 5.0 5.0

10 4.9 5.0 4.9 4.9 4.9 5.0 5.0 5.0 4.9 5.0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.0 5.0 5.0 5.0 4.9 5.0 4.9 4.9 5.0 4.9 5.0 5.0

PV temperature (deg C), Winter

P
V

 m
o

d
u

le
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System V, inlet flows for 1m/s wind, 135
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

 

1 432 432 427 432 432 433 432 436 432.1 432 432 432 432 432 432 432 432 432 431 430 430 430 432 432 432 432 432 432 432 432 432 432 427 436 432 432 432 432 432 432

2 85.3 85.3 86 85.3 85.3 85.4 85.3 82.9 85.34 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.2 84.9 84.9 84.9 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 86 82.9 85.3 85.3 85.3 85.3 85.2 85.2

3 61.3 61.3 55.8 61.3 61.3 61.5 61.3 60.6 61.4 61.4 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 62.2 62.2 62.2 61.3 61.3 61.3 61.3 61.3 61.3 61.4 61.4 61.4 61.4 55.8 60.6 61.3 61.3 61.3 61.3 61.3 61.3

4 78.8 78.8 75.5 78.8 78.8 78.1 78.8 78.2 78.84 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.7 79.4 79.4 79.4 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 75.5 78.2 78.8 78.8 78.8 78.8 78.8 78.8

5 56 56 59 55.9 55.9 55.6 55.9 55.7 55.6 56 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 56.3 56.2 56.2 56.2 55.9 55.9 55.9 55.9 55.9 55.9 56 56 55.6 55.6 59 55.7 55.9 55.9 55.9 55.9 55.9 55.9

6 47 47 59.3 47 47 46.8 47 46.9 46.76 46.7 47 47 47 47 47 47 47 47 47.2 47.1 47.1 47.1 47 47 47 47 47 47 46.7 46.7 46.8 46.8 59.3 46.9 47 47 47 47 47 47

7 35.2 35.2 34.7 35.2 35.2 35.1 35.2 35.2 35.14 35.1 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.3 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.1 35.1 35.1 35.1 34.7 35.2 35.2 35.2 35.2 35.2 35.3 35.3

8 1.13 1.13 0.63 1.13 1.13 1.13 1.14 1.13 1.137 1.14 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.14 1.14 1.14 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 0.63 1.13 1.13 1.13 1.14 1.14 1.13 1.13

9 1.76 1.77 0.8 1.77 1.77 1.77 1.77 1.76 1.759 1.76 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.76 1.78 1.78 1.78 1.77 1.77 1.77 1.77 1.77 1.77 1.76 1.76 1.76 1.76 0.8 1.75 1.77 1.77 1.77 1.76 1.77 1.77

10 1.88 1.87 0.84 1.87 1.87 1.86 1.87 1.85 1.866 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.88 1.88 1.88 1.88 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 0.84 1.85 1.87 1.87 1.87 1.87 1.87 1.87

Inlet Fflows (kg/h)

In
le

t

1 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.2 39.27 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.2 39.3 39.3 39.3 39.3 39.3 39.3

2 38 38 38.1 38 38 38 38 38 38.02 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38.1 38 38 38 38 38 38 38

3 36.4 36.4 36.5 36.4 36.4 36.4 36.4 36.4 36.41 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.5 36.4 36.4 36.4 36.4 36.4 36.4 36.4

4 36.4 36.4 36.5 36.4 36.4 36.4 36.4 36.4 36.35 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.5 36.4 36.4 36.4 36.4 36.4 36.4 36.4

5 35.8 35.8 35.9 35.8 35.8 35.8 35.8 35.8 35.81 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.8 35.9 35.8 35.8 35.8 35.8 35.8 35.8 35.8

6 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.38 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4

7 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.09 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1

8 35.6 35.6 35.8 35.6 35.6 35.6 35.6 35.6 35.55 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.8 35.6 35.6 35.6 35.6 35.6 35.6 35.6

9 35.4 35.4 35.8 35.4 35.4 35.4 35.4 35.4 35.42 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.8 35.4 35.4 35.4 35.4 35.4 35.4 35.4

10 35.4 35.4 35.8 35.4 35.4 35.4 35.4 35.4 35.37 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.4 35.8 35.4 35.4 35.4 35.4 35.4 35.4 35.4

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 7.1 7.1 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1

2 6.0 6.0 6.1 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.1 6.1 6.1 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.1 6.0 6.0 6.0 6.0 6.0 6.0 6.0

3 5.5 5.5 5.6 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.6 5.5 5.5 5.5 5.5 5.5 5.5 5.5

4 4.6 4.6 4.7 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.7 4.6 4.6 4.6 4.6 4.6 4.6 4.6

5 4.2 4.2 4.2 4.2 4.2 4.1 4.2 4.2 4.1 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.1 4.1 4.1 4.1 4.2 4.1 4.2 4.2 4.2 4.2 4.2 4.2

6 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

7 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

8 3.9 3.9 4.2 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 4.2 3.9 3.9 3.9 3.9 3.9 3.9 3.9

9 3.8 3.8 4.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 4.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8

10 3.8 3.8 4.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 4.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8

PV temperature (deg C), Winter

P
V

 m
o

d
u

le
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System V, inlet flows for 2m/s wind, 135
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

 

1 432 432 438 432 432 435 432 447 433.4 432 432 432 432 432 432 432 432 432 430 425 425 425 432 432 432 432 432 432 433 433 433 433 438 448 432 432 432 432 431 431

2 85.3 85.3 86.5 85.3 85.3 86 85.2 75.7 85.58 85.4 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 84.9 84 84 84 85.3 85.3 85.3 85.3 85.3 85.3 85.4 85.4 85.6 85.6 86.5 75.7 85.3 85.3 85.2 85.2 85.1 85.1

3 61.3 61.3 57.9 61.3 61.3 61.9 61.3 58.5 61.57 61.4 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.3 61.1 64.6 64.6 64.6 61.3 61.3 61.3 61.3 61.3 61.3 61.4 61.4 61.6 61.6 57.9 58.5 61.3 61.3 61.3 61.3 61.3 61.3

4 78.8 78.8 76.3 78.8 78.8 76.1 78.8 76.7 79.07 78.9 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.4 81.1 81.1 81.1 78.8 78.8 78.8 78.8 78.8 78.8 78.9 78.9 79.1 79.1 76.3 76.7 78.8 78.8 78.8 78.7 78.4 78.4

5 56 56 54.8 55.9 55.9 54.7 55.9 54.9 54.55 56.1 55.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9 57.3 57.1 57.1 57.1 55.9 55.9 55.9 55.9 55.9 55.9 56.1 56.1 54.6 54.6 54.8 54.9 55.9 55.9 55.9 55.9 55.4 55.4

6 47 47 46.5 47 47 46.3 47 46.7 46.12 46 47 47 47 47 47 47 47 47 47.8 47.4 47.4 47.4 47 47 47 47 47 47 46 46 46.1 46.1 46.5 46.7 47 47 47 47 48.4 48.4

7 35.1 35.1 35.1 35.2 35.2 35 35.3 35.2 34.97 34.9 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.5 35.4 35.4 35.4 35.2 35.2 35.2 35.2 35.2 35.2 34.8 34.8 34.8 34.8 35.1 35.2 35.2 35.2 35.3 35.3 36.2 36.2

8 1.13 1.12 1.11 1.13 1.13 1.13 1.14 1.11 1.146 1.15 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.15 1.15 1.15 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.11 1.11 1.13 1.13 1.14 1.15 1.03 1.03

9 1.75 1.79 1.72 1.77 1.77 1.76 1.79 1.73 1.737 1.74 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.77 1.76 1.81 1.81 1.81 1.77 1.77 1.77 1.77 1.77 1.77 1.76 1.76 1.76 1.76 1.72 1.71 1.77 1.77 1.79 1.75 1.56 1.56

10 1.89 1.87 1.81 1.87 1.87 1.82 1.85 1.78 1.85 1.85 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.91 1.93 1.93 1.93 1.87 1.87 1.87 1.87 1.87 1.87 1.86 1.86 1.85 1.85 1.81 1.8 1.87 1.87 1.85 1.87 1.66 1.66

Inlet Fflows (kg/h)

In
le

t

1 36.1 36.1 36 36.1 36.1 36.1 36.1 35.9 36.09 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.2 36.2 36.2 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36 35.9 36.1 36.1 36.1 36.1 36.1 36.1

2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.22 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.3 35.3 35.3 35.3 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2 35.2

3 34.2 34.2 34.1 34.2 34.2 34.1 34.2 34.1 34.16 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.2 34.1 34.1 34.2 34.2 34.2 34.2 34.2 34.2

4 34.1 34.1 34 34.1 34.1 34 34.1 34 34.04 34 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34.1 34 34 34 34 34 34 34.1 34.1 34.1 34.1 34.1 34.1

5 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.66 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7 33.7

6 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.3 33.35 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.4 33.4 33.4 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.4 33.4 33.4

7 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.13 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1 33.1

8 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.47 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5

9 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.38 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4

10 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.34 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.4 33.3 33.3 33.3 33.3 33.4 33.4

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 4.4 4.4 4.3 4.4 4.4 4.4 4.4 4.2 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.5 4.5 4.5 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.3 4.2 4.4 4.4 4.4 4.4 4.4 4.4

2 3.7 3.7 3.6 3.7 3.7 3.6 3.7 3.6 3.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.6 3.6 3.6 3.6 3.7 3.7 3.7 3.7 3.7 3.7

3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

4 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7

5 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.4

6 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9

8 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2

9 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

10 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

PV temperature (deg C), Winter

P
V

 m
o

d
u

le
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System VI, inlet flows for 1m/s wind, 135
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

 

1 261 261 265 260 260 264 260 271 261 261 260 260 260 260 260 260 260 260 259 256 256 256 260 260 260 260 260 260 261 261 262 262 265 271 260 260 260 260 260 260

2 37.2 37.2 37.9 37.2 37.2 37.7 37.2 31.4 37.3 37.3 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37 36.5 36.5 36.5 37.2 37.2 37.2 37.2 37.2 37.2 37.3 37.3 37.4 37.4 37.9 31.4 37.2 37.2 37.2 37.2 37.2 37.2

3 24.1 24.1 21.7 24 24 24.3 24.1 22 24.1 24.1 24 24 24 24 24 24 24 24 23.9 26.2 26.2 26.2 24 24 24 24 24 24 24.1 24.1 24.2 24.2 21.7 22 24 24 24.1 24 24 24

4 29.2 29.2 27.4 29.2 29.2 27.3 29.2 27.7 29.3 29.3 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29 30.9 30.9 30.9 29.2 29.2 29.2 29.2 29.2 29.2 29.3 29.3 29.3 29.3 27.4 27.7 29.2 29.2 29.2 29.2 29.2 29.2

5 20 20 19 19.9 19.9 19 19.9 19.3 20 20 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9 20.9 20.7 20.7 20.7 19.9 19.9 19.9 19.9 19.9 19.9 20 20 18.8 18.8 19 19.3 19.9 19.9 19.9 19.9 19.9 19.9

6 16 16 15.6 15.9 15.9 15.3 15.9 15.3 15.3 15.3 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 16.6 16.7 16.7 16.7 15.9 15.9 15.9 15.9 15.9 15.9 15.3 15.3 15.7 15.7 15.6 15.3 15.9 15.9 15.9 15.9 15.9 15.9

7 11.4 11.4 11.4 11.8 11.8 11.2 11.5 11.2 11.3 11.3 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.7 11.9 11.9 11.9 11.8 11.8 11.8 11.8 11.8 11.8 11.1 11.1 11.5 11.5 11.4 11.1 11.8 11.8 11.5 11.6 11.8 11.8

8 0.38 0.37 0.36 0.37 0.37 0.39 0.39 0.4 0.4 0.4 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.38 0.35 0.35 0.36 0.4 0.37 0.37 0.39 0.4 0.37 0.37

9 0.59 0.63 0.57 0.6 0.6 0.63 0.63 0.66 0.58 0.58 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.58 0.58 0.58 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.53 0.53 0.57 0.64 0.6 0.6 0.63 0.59 0.6 0.6

10 0.67 0.65 0.59 0.65 0.65 0.61 0.62 0.64 0.62 0.62 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.69 0.61 0.61 0.61 0.65 0.65 0.65 0.65 0.65 0.65 0.63 0.63 0.55 0.55 0.59 0.67 0.65 0.65 0.62 0.64 0.65 0.65

Inlet Fflows (kg/h)

In
le

t

1 44.2 44.2 44.1 44.2 44.2 44.1 44.2 43.9 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.3 44.3 44.3 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.2 44.1 44.1 44.1 43.9 44.2 44.2 44.2 44.2 44.2 44.2

2 43.4 43.4 43.2 43.4 43.4 43.3 43.4 43.3 43.3 43.3 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.5 43.5 43.5 43.4 43.4 43.4 43.4 43.4 43.4 43.3 43.3 43.3 43.3 43.2 43.3 43.4 43.4 43.4 43.4 43.4 43.4

3 41.3 41.3 41.2 41.3 41.3 41.2 41.3 41.2 41.2 41.2 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.2 41.2 41.2 41.2 41.2 41.2 41.3 41.3 41.3 41.3 41.3 41.3

4 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3

5 41.9 41.9 41.9 42 42 41.9 42 41.9 41.9 41.9 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 41.9 41.9 41.9 41.9 41.9 41.9 42 42 42 42 42 42

6 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7

7 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5

8 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.2 42.2 42.2 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.3 42.2 42.3 42.3 42.3 42.2 42.3 42.3

9 42.1 42 42.1 42.1 42.1 42 42 42 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42.1 42 42.1 42.1 42 42.1 42.1 42.1

10 42 42 42.1 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42.1 42.1 42.1 42 42 42 42 42 42 42

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 11.6 11.6 11.5 11.6 11.6 11.5 11.6 11.4 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.7 11.7 11.7 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.5 11.4 11.6 11.6 11.6 11.6 11.6 11.6

2 10.8 10.8 10.7 10.8 10.8 10.7 10.8 10.7 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.9 10.9 10.9 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.8 10.8 10.8 10.8 10.8 10.8

3 10.4 10.4 10.3 10.4 10.4 10.3 10.4 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.3 10.3 10.4 10.4 10.4 10.4 10.4 10.4

4 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8

5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5

6 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2

7 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1

8 9.8 9.8 9.8 9.8 9.8 9.7 9.7 9.7 9.7 9.7 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.7 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.7 9.8 9.8 9.7 9.7 9.8 9.8

9 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.5 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.5 9.6 9.6 9.6 9.6 9.6 9.6

10 9.5 9.5 9.6 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.6 9.6 9.6 9.5 9.5 9.5 9.5 9.5 9.5 9.5

PV temperature (deg C), Winter

P
V

 m
o

d
u

le
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System VI, inlet flows for 2m/s wind, 135
o
 and PV temperatures for summer and winter conditions at 400kg/h total air mass flow rate: 

 

 

 

 

 

1 261 261 284 260 260 274 260 319 263 263 260 260 260 260 260 260 260 260 255 242 242 242 260 260 260 260 260 260 264 264 266 266 284 319 260 260 260 260 260 260

2 37.2 37.3 40.5 37.2 37.2 39.2 37.2 -1.6 37.6 37.6 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 36.5 34.7 34.7 34.7 37.2 37.2 37.2 37.2 37.2 37.2 37.7 37.7 37.9 37.9 40.5 -1.7 37.2 37.2 37.2 37.2 37.1 37.1

3 24.1 24.1 12.9 24 24 25.3 24 16.2 24.3 24.3 24 24 24 24 24 24 24 24 23.6 31.9 31.9 31.9 24 24 24 24 24 24 24.3 24.3 25.3 25.3 12.9 16.1 24 24 24 24 24 24

4 29.2 29.2 21.5 29.2 29.2 20.5 29.2 23.5 29.6 29.6 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 28.6 35.7 35.7 35.7 29.2 29.2 29.2 29.2 29.2 29.2 29.6 29.6 27.9 27.9 21.5 23.5 29.2 29.2 29.1 29.2 29.1 29.1

5 20 20 16.9 19.9 19.9 16.5 19.9 17.8 20 20 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9 23.7 23.4 23.4 23.4 19.9 19.9 19.9 19.9 19.9 19.9 20.1 20.1 18.3 18.3 16.9 17.6 19.9 19.9 19.7 19.9 19.8 19.8

6 16 16 13.4 15.9 15.9 13.2 15.9 13.8 13.2 13.2 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 18.4 17.7 17.7 17.7 15.9 15.9 15.9 15.9 15.9 15.9 13.2 13.2 11.5 11.5 13.4 13.9 15.9 15.9 16.3 15.9 15.9 15.9

7 11.3 11 8.85 11.8 11.8 8.3 11.7 9.53 10.5 10.5 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 12.5 12.2 12.2 12.2 11.8 11.8 11.8 11.8 11.8 11.8 9.94 9.94 11.8 11.8 8.85 9.99 11.8 11.8 12 12 12.6 12.6

8 0.36 0.32 0.52 0.37 0.37 0.61 0.41 0.53 0.45 0.45 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.44 0.44 0.44 0.37 0.37 0.37 0.37 0.37 0.37 0.36 0.36 0.32 0.32 0.52 0.44 0.37 0.37 0.38 0.45 0.35 0.35

9 0.53 0.74 0.92 0.6 0.6 1.22 0.7 1.02 0.49 0.49 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.58 0.73 0.73 0.73 0.6 0.6 0.6 0.6 0.6 0.6 0.58 0.58 0.45 0.45 0.92 0.73 0.6 0.6 0.62 0.55 0.59 0.59

10 0.79 0.67 0.94 0.65 0.65 0.92 0.56 0.76 0.56 0.56 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.84 0.79 0.79 0.79 0.65 0.65 0.65 0.65 0.65 0.65 0.58 0.58 0.43 0.43 0.94 0.76 0.65 0.65 0.5 0.62 0.66 0.66

Inlet Fflows (kg/h)

In
le

t

1 39.3 39.3 39 39.3 39.3 39.1 39.3 38.5 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.4 39.6 39.6 39.6 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3 39.2 39.2 39 38.5 39.3 39.3 39.3 39.3 39.3 39.3

2 38.8 38.8 38.5 38.8 38.8 38.6 38.8 41.3 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.9 39.1 39.1 39.1 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.7 38.7 38.5 41.3 38.8 38.8 38.8 38.8 38.8 38.8

3 37.4 37.4 37.2 37.4 37.4 37.2 37.4 37.3 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.5 37.6 37.6 37.6 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.3 37.3 37.2 37.3 37.4 37.4 37.4 37.4 37.4 37.4

4 38.1 38.1 38 38.1 38.1 38 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.2 38.2 38.2 38.2 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38 38 38 38.1 38.1 38.1 38.1 38.1 38.1 38.1

5 37.9 37.9 37.8 37.9 37.9 37.8 37.9 37.9 37.8 37.8 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.8 37.8 37.8 37.8 37.8 37.9 37.9 37.9 37.9 37.9 37.9 37.9

6 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7

7 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6

8 38.1 38.2 38 38.1 38.1 37.9 38.1 38 38 38 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.2 38.2 38 38.1 38.1 38.1 38.1 38 38.1 38.1

9 38 37.9 37.8 38 38 37.8 37.9 37.8 38 38 38 38 38 38 38 38 38 38 38 37.9 37.9 37.9 38 38 38 38 38 38 38 38 38.1 38.1 37.8 37.9 38 38 38 38 38 38

10 37.9 37.9 37.8 37.9 37.9 37.8 38 37.9 38 38 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 38 38 38.1 38.1 37.8 37.9 37.9 37.9 38 37.9 37.9 37.9

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 7.1 7.1 6.9 7.1 7.1 7.0 7.1 6.5 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.2 7.4 7.4 7.4 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 6.9 6.5 7.1 7.1 7.2 7.2 7.2 7.2

2 6.7 6.7 6.4 6.7 6.7 6.5 6.7 8.8 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.8 6.9 6.9 6.9 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.6 6.6 6.4 8.8 6.7 6.7 6.7 6.7 6.7 6.7

3 6.5 6.5 6.3 6.5 6.5 6.3 6.5 6.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.6 6.7 6.7 6.7 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.4 6.4 6.3 6.4 6.5 6.5 6.5 6.5 6.5 6.5

4 6.1 6.1 6.0 6.1 6.1 6.0 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.2 6.2 6.2 6.2 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.0 6.1 6.1 6.1 6.1 6.1 6.1 6.1

5 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 6.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9

6 5.8 5.8 5.8 5.8 5.8 5.7 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8

7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7

8 6.1 6.2 6.0 6.1 6.1 6.0 6.1 6.0 6.0 6.0 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.0 6.0 6.0 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.2 6.2 6.0 6.0 6.1 6.1 6.1 6.0 6.1 6.1

9 6.0 5.9 5.9 6.0 6.0 5.8 5.9 5.8 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.9 5.9 5.9 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.1 6.1 5.9 5.9 6.0 6.0 6.0 6.0 6.0 6.0

10 5.9 5.9 5.8 5.9 5.9 5.9 6.0 5.9 6.0 6.0 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 6.0 6.0 6.1 6.1 5.8 5.9 5.9 5.9 6.0 6.0 5.9 5.9

PV temperature (deg C), Winter

P
V

 m
o

d
u

le
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System VI, inlet flows for 1m/s wind, 135
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

 

1 522 522 524 522 522 523 522 527 522 522 522 522 522 522 522 522 522 522 521 519 519 519 522 522 522 522 522 522 522 522 522 522 524 527 522 522 522 522 521 521

2 74.4 74.4 74.8 74.4 74.4 74.6 74.4 71.6 74.5 74.5 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.3 74.1 74.1 74.1 74.4 74.4 74.4 74.4 74.4 74.4 74.5 74.5 74.5 74.5 74.8 71.6 74.4 74.4 74.4 74.4 74.4 74.4

3 48 48 46.9 48 48 48.2 48 47 48.1 48.1 48 48 48 48 48 48 48 48 48 49.1 49.1 49.1 48 48 48 48 48 48 48 48 48.1 48.1 46.9 47 48 48 48 48 48 48

4 58.3 58.3 57.4 58.3 58.3 57.3 58.3 57.5 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.2 59.1 59.1 59.1 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 57.4 57.5 58.3 58.3 58.3 58.3 58.3 58.3

5 39.8 39.8 39.4 39.8 39.8 39.4 39.8 39.4 39.3 39.3 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 40.3 40.3 40.3 40.3 39.8 39.8 39.8 39.8 39.8 39.8 39.9 39.9 39.3 39.3 39.4 39.4 39.8 39.8 39.8 39.8 39.8 39.8

6 31.8 31.8 31.6 31.8 31.8 31.5 31.8 31.6 31.5 31.5 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 32.1 32 32 32 31.8 31.8 31.8 31.8 31.8 31.8 31.5 31.5 31.5 31.5 31.6 31.6 31.8 31.8 31.8 31.8 31.8 31.8

7 22.9 22.8 22.8 22.9 22.9 22.8 22.9 22.9 22.8 22.8 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 23 23 23 23 22.9 22.9 22.9 22.9 22.9 22.9 22.7 22.7 22.7 22.7 22.8 22.8 22.9 22.9 22.9 22.9 23 23

8 0.76 0.76 0.76 0.77 0.77 0.77 0.77 0.76 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.76 0.76 0.76 0.76 0.76 0.76 0.77 0.77 0.77 0.77 0.76 0.76

9 1.21 1.23 1.2 1.22 1.22 1.23 1.23 1.21 1.2 1.2 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.24 1.24 1.24 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.21 1.21 1.2 1.2 1.22 1.22 1.23 1.21 1.22 1.22

10 1.3 1.29 1.26 1.29 1.29 1.27 1.27 1.25 1.27 1.27 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.31 1.31 1.31 1.31 1.29 1.29 1.29 1.29 1.29 1.29 1.28 1.28 1.28 1.28 1.26 1.26 1.29 1.29 1.27 1.28 1.29 1.29

Inlet Fflows (kg/h)

In
le

t

1 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.7 39.7 39.7 39.7 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6

2 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.8 38.8 38.8 38.8 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7 38.7

3 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2

4 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6

5 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3

6 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37

7 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8 36.8

8 37.4 37.5 37.5 37.4 37.4 37.4 37.4 37.5 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.5 37.5 37.4 37.4 37.4 37.4 37.5 37.5

9 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37.3

10 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2 37.2

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.5

2 6.7 6.7 6.6 6.7 6.7 6.6 6.7 6.6 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.6 6.6 6.7 6.7 6.7 6.7 6.7 6.7

3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3

4 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7

5 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4

6 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2

7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

8 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

9 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4

10 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4
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System VI, inlet flows for 2m/s wind, 135
o
 and PV temperatures for summer and winter conditions at 800kg/h total air mass flow rate: 

 

 

 

 

 

1 522 522 532 522 522 528 521 543 524 524 522 522 522 522 522 522 522 522 519 512 512 512 522 522 522 522 522 522 523 523 524 524 532 543 522 522 521 521 521 521

2 74.4 74.4 75.8 74.4 74.4 75.3 74.3 62.7 74.8 74.8 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74 73 73 73 74.4 74.4 74.4 74.4 74.4 74.4 74.6 74.6 74.8 74.8 75.8 62.7 74.4 74.4 74.3 74.4 74.4 74.4

3 48 48 43.3 48 48 48.6 48 44 48.3 48.3 48 48 48 48 48 48 48 48 47.8 52.3 52.3 52.3 48 48 48 48 48 48 48.1 48.1 48.3 48.3 43.3 44 48 48 48 48 48 48

4 58.3 58.3 54.6 58.3 58.3 54.4 58.1 55.2 58.6 58.6 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58 61.7 61.7 61.7 58.3 58.3 58.3 58.3 58.3 58.3 58.5 58.5 58.6 58.6 54.6 55.2 58.3 58.3 58.1 58.3 58.2 58.2

5 39.8 39.9 37.9 39.8 39.8 38 39.5 38.5 37.7 37.7 39.8 39.8 39.8 39.8 39.8 39.8 39.8 39.8 41.8 41.6 41.6 41.6 39.8 39.8 39.8 39.8 39.8 39.8 39.9 39.9 37.8 37.8 37.9 38.5 39.8 39.8 39.5 39.8 39.7 39.7

6 31.8 31.8 31 31.8 31.8 30.5 32.5 30.5 30.5 30.5 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8 33 32.6 32.6 32.6 31.8 31.8 31.8 31.8 31.8 31.8 30.5 30.5 30.5 30.5 31 30.5 31.8 31.8 32.5 31.8 31.8 31.8

7 22.8 22.6 22.6 22.9 22.9 22.4 23.5 22.2 22.6 22.6 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 23.4 23.2 23.2 23.2 22.9 22.9 22.9 22.9 22.9 22.9 22.2 22.2 22.3 22.3 22.6 22.1 22.9 22.9 23.5 23.1 23.4 23.4

8 0.75 0.73 0.73 0.77 0.77 0.78 0.72 0.81 0.79 0.79 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.8 0.8 0.8 0.77 0.77 0.77 0.77 0.77 0.77 0.76 0.76 0.75 0.75 0.73 0.79 0.77 0.77 0.72 0.8 0.74 0.74

9 1.18 1.27 1.14 1.22 1.22 1.26 1.13 1.34 1.15 1.15 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.21 1.29 1.29 1.29 1.22 1.22 1.22 1.22 1.22 1.22 1.21 1.21 1.19 1.19 1.14 1.29 1.22 1.22 1.13 1.18 1.21 1.21

10 1.34 1.3 1.19 1.29 1.29 1.22 1.1 1.3 1.23 1.23 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.38 1.37 1.37 1.37 1.29 1.29 1.29 1.29 1.29 1.29 1.26 1.26 1.24 1.24 1.19 1.35 1.29 1.29 1.1 1.28 1.3 1.3

Inlet Fflows (kg/h)

In
le

t

1 36.4 36.4 36.3 36.4 36.4 36.3 36.4 36.2 36.3 36.3 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.4 36.3 36.3 36.3 36.3 36.3 36.2 36.4 36.4 36.4 36.4 36.4 36.4

2 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.8 35.8 35.8 35.8 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7 35.7

3 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.8 34.8 34.8 34.8 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

4 35 35 34.9 35 35 34.9 35 34.9 34.9 34.9 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 34.9 34.9 34.9 34.9 34.9 34.9 35 35 35 35 35 35

5 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

6 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5

7 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4 34.4

8 34.8 34.9 34.9 34.8 34.8 34.8 34.9 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.8 34.9 34.8 34.8 34.8 34.9 34.8 34.9 34.9

9 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

10 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7 34.7

PV temperature (deg C), Summer

P
V

 m
o

d
u

le

1 4.6 4.6 4.5 4.6 4.6 4.6 4.6 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.7 4.7 4.7 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.5 4.4 4.6 4.6 4.6 4.6 4.6 4.6

2 4.1 4.1 4.0 4.1 4.1 4.0 4.1 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.2 4.2 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.0 4.0 4.1 4.1 4.1 4.1 4.1 4.1

3 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.5 3.5 3.5 3.5 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

5 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

6 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.0 3.0 3.0 3.0 3.1 3.0 3.1 3.1 3.1 3.1 3.1 3.1

7 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9

8 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

9 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2

10 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2
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PV temperature (deg C), Winter


