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ABSTRACT 

Integrated Production-Distribution Planning under Congestion and Carbon Emission 

Constraints  

 

Alireza Samiee Daluie 

 

The global warming, which is caused by increasing concentrations of carbon emissions, mainly results 

from human activities such as fossil fuel burning and deforestation. In order to alleviate global 

warming and its adverse effects, many countries including the United States and the European Union 

members have attempted to enact legislation or design market-based carbon trading mechanism for 

controlling carbon emission. Analyzing the impact of such governmental legislations on supply chain 

operations has particularly been noticed both in theory and practice. This implies that firms need to 

incorporate the governmental regulations into their decision making process. This thesis presents an 

integrated model of production-distribution planning in supply chains considering congestion and 

carbon emission capacity constraints. The objective of the model is to minimize the sum of 

production, inventory, and transportation cost subject to emission capacity constraints. Our model 

adopts a Carbon Cap regulation policy that requires the total carbon emission resulting from 

production and distribution of commodities from facilities to demand points to be constrained. 

Considering congestion at the production facilities for work in process (WIP) inventory, which may 

increase nonlinearly after a certain level of utilization (i.e. critical utilization), leads to a nonlinear multi-

period mixed integer program. We then develop a robust approach that captures the uncertainty in 

estimating the emission of each of the logistic activities. We propose a Lagrangian relaxation approach 

and a heuristic to build feasible solutions which solves large instances. Finally, computational results 

on a set of instances are reported to assess the performance of the proposed MIP formulation and of 

our algorithmic approach. 
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Chapter 1 

Introduction 
 

1.1. Foreword 

It is widely reported that global warming, which has a direct relationship with the emission of carbon 

and other greenhouse gases (GHG), poses a grave threat to the worldõs ecological system and the 

human race. As global warming is expected to have fatal consequences at economic, ecologic, and 

social levels, it is necessary to reduce GHG emissions so as to prevent or at least reduce global 

warming. Public awareness toward the destructive impacts of GHGs has been growing significantly 

over the last few decades. For instance, in a study in European Union, 75% of respondents were 

willing to pay more for environmental friendly products and 17% had already done so (Eurobarometer 

2008). This puts the governments under growing pressure in order to legitimate regulations to control 

the amount of these emissions. One of the first carbon emission control attempts was made in Kyoto 

Protocol, launched in 1997, with the aim of reducing GHG emissions caused by industrialized 

countries. The members of the Protocol has agreed to reduce their emission levels by five percent in 

the first commitment period, started from 2008 and ended in 2012, with further reduction of 18 

percent from 2013 to 2020 compared to their emission level in 1990. The Protocol also obligates the 

members to report their annual emission inventory to UN Climate Change Secretariat (UNFCCC 

1997). 

The public awareness toward the destructive effects of GHGs along with the government regulations 

and the pressure from media force the manufacturers to take actions in pollution control, prevention 

and resource efficiently, and reduction of their carbon footprint (Carlson and Rafinejad 2011). These 

actions include investing in green manufacturing technology, reducing the supply chain waste, and 

increasing the efficiency of the green supply chain. For example, Walmart decreased its carbon 

emission by 400,000 tons with a small investment in reducing the fuel efficiency in its supply chain 

(Plambeck 2012). Walmart has also announced its goal to eliminate 20 million metric tons of GHG 

emissions from its global supply chain by 2015. Hewlett-Packard (HP) announced that it will decrease 

carbon content of its products by 40% in 2020 compared to its level in 2010 (Hewlett-Packard 2014). 

IBM has also decreased its emission by 59% from 1990 to 2013 (IBM 2014).  
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The new environmental friendly regulations may limit the total amount of carbon emitted by the 

industries. Specifically, it can be in the forms of (i) a strict cap, (ii) carbon tax, and (iii) cap-and-trade 

(Benjaafar et al. 2013). According to strict cap policy, the firms cannot produce more than a certain 

amount; this is also called carbon cap. In a carbon tax policy, firms pay for their emission in terms of a 

tax. In Norway, for example, the government has implemented carbon taxes based on the tons of 

carbon emission produced since 1991 (Bruvoll and Larsen 2004). In a cap-and-trade policy, although 

there is a cap on emission of firms, the firms are allowed to sell or buy the carbon allowances. 

Consequently, firms are subject to heavy fines if they do not fulfill the carbon allowances. If a firm 

emit less than its carbon allowance, it can either sell it through the carbon markets or save its allowance 

for future production. A cap-and-trade system called European Union Emissions Trading System (EU 

ETS) was initiated in 2005 which is known as the largest cap and trade system in the world. Around 

11,000 power stations and manufacturing industry companies responsible for more than 45% of 

GHGs in Europe are now operating under the EU ETS. As a consequence of this action, emission 

produced by these firms will be reduced by 21% in 2020 compared to its level in 2005 (European 

Commission 2005).  

Green Supply Chain Management (GSCM) deals with incorporating such regulations into the 

decision-making process of firmsõ managers and policy makers. In response to the carbon regulation 

firms usually choose one of the following options: (i) designing new products which need less emission 

for production, (ii) investing in energy efficient machinery and processes, or (iii) modifying the existent 

production processes. The first two options require strategic and long-term decisions as well as 

significant investment. With the uncertainty about future of environmental regulations, the first two 

options may seem less interesting, leading the firms to look for appropriate strategies to modify their 

operational decisions (Heindl and Löschel 2012). This explains why we can find a growing body of 

research focused in operational level of the green supply chain management (ArĔkan and Jammernegg 

2014, Battini et al. 2014, Cholette and Venkat 2009, Zhang and Xu 2013). The main focus is to explore 

the impact of government regulations, i.e., strict cap, carbon tax, and cap-and-trade, on firmsõ 

operational decisions, such as determining lot size, lead-time, and production planning.  

 

1.2.  Goal of the study 

The goal of this study is to explore the impact of a strict cap policy on different operational decisions 

of a production-distribution system. Specifically, we study a production-distribution planning problem 
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where we decide on the demand allocated to each facility and its level of production over a planning 

horizon. Regarding environmental concerns, we consider emissions produced by the supply chain as 

a result of manufacturing and distribution activities. Among the three types of environmental 

regulations that were mentioned earlier, we consider strict cap on total emission of the supply chain. 

Strict cap can also be a self-imposed emission target that the managers set to limit the firmõs emission 

and decrease it over a period of time. This approach is a common one that already applied by many 

firms (Battini et al. 2014, Hoen et al. 2013). One of the interesting features of this research is to consider 

the congestion that may form in production facility. This enables us to study the effect of congestion 

levels on carbon emissions.  

Another important aspect of this study is the way that we capture the uncertainty in the amount of 

emission. In reality, having an accurate estimation of the emission is a key factor for the production 

decision. The methods applied to measure the emission from different production-distribution 

activities may come with errors. It necessitates the decision makers to develop robust approaches to 

enable them to obtain solutions that work under different carbon-emission scenarios. Therefore, we 

consider uncertainty in measuring the emission associated with each activity and develop robust 

solutions that enable the managers to make their decisions with more confidence.  

Including the aforementioned features in our model, there are a few issues that need to be addressed 

in terms of solution methodology. Considering congestion in our model results in a nonlinear mixed-

integer programming. To deal with this, we use a linearization approach by approximating the function 

that relates work in process and the throughput through adding lines tangent to this function at 

different points. Furthermore, in order to minimize the error cause by this approximation, we employ 

an outer approximation algorithm that limits the error at the optimal solution. 

In order to be able to solve large size instances, a Lagrangian relaxation approach is proposed. Since 

we are dealing with a minimization problem, the Lagrangian relaxation provides a lower bound on the 

optimal solutions. By relaxing two sets of constraints, we are able to decompose the problem into a 

number of single-facility production planning problems. The optimal solution from the Lagrangian 

relaxation is then used to build a feasible solution.  

1.3.  Research contributions 

The key considerations in this study that contribute to the existing literature are summarized as 

follows: 
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¶ A strict cap on the total emission of the supply chain is considered in an integrated tactical 

planning model in the context of production-distribution planning while congestion at the 

production facilities is being considered.  

¶ Uncertainty in estimating the emission of the supply chain is considered that enables us to 

account for the possible scenarios of uncertainty in emission estimation. 

¶ A solution methodology based on Lagrangian relaxation approach is proposed to deal with 

large size instances. 

 

1.4.  Thesis outline 

The remainder of this thesis is organized as follows. In the following chapter, we review the related 

literature. Chapter 3 provides the model formulation and solution methodology. We first explain the 

deterministic model and then discuss how we incorporate robustness into our stochastic version of 

our problem. The Lagrangian relaxation followed by a heuristic approach has been proposed to build 

a feasible solution. Numerical examples are provided in chapter 4. An illustrative numerical example 

is first developed to examine the effect of uncertainty on the operational decisions in our problem. 

We also solve instances with different sizes and parameters to examine the performance of our 

proposed solution algorithm. Finally, Chapter 5 provides concluding remarks and future research 

avenues.      



5 
 

Chapter 2  

Literature Review 

 

The literature in the green supply chain management include many different types of problems, from 

economic to operational and marketing perspectives (See Brandenburg et al. (2014), Dekker et al. 

(2012), Tang and Zhou (2012), and Wei et al. (2014) for an overview of articles in green supply chain 

management). The effect of environmental regulations on supply chain management can be discussed 

either from the firmsõ or policy makersõ perspective.  

 

2.1.  Policy Makerõs Perspective in GSCM 

While the objective in most of studies is to minimize the total costs or maximize total profit of a firm 

under carbon regulations, there are studies which discuss the effect of environmental regulations on 

decision making of policy makers and governments. The objective function in these studies usually 

include maximizing social welfare, which can be measured by economic surplus, total carbon emission, 

or tax revenue (Brännlund and Nordström 2004, Eyland and Zaccour 2014, Huang et al. 2013, Krass 

et al. 2013). Brännlund and Nordström (2004) study the effect of environmental policies on the 

consumer response using a simulation method. They compare two scenarios where the revenues from 

doubling the carbon taxes is spent on either decreasing value added tax or subsidising the public 

transport. They show that the tax burden is distributed less even among households in the first 

scenario since household which live in a less urbanised area will have to pay the same amount as those 

who live in the urban areas while the first group take less advantage of subsidized transport. Krass et 

al.  (2013)  examine how the environmental taxes would motivate the choice of innovative and ògreen" 

manufacturing together. Moreover, they study the effect of subsidies and consumer rebates on this 

issue. To this end, they consider a problem where there is a leader-follower Stackelberg game between 

the firms and the regulator (government). They consider two settings in their analysis: (1) decentralized 

model, where the regulator and the firms act independently, and (2) a situation where the regulator 

has control over the prices and technology choice (centralized model). They show that the 

environmental taxes alone may be insufficient to coordinate the system. Instead, they explain that it 

would better to add other policy tools, such as fixed cost subsidies and consumer rebates, to increase 
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its efficiency. Huang et al. (2013) examines subsidizing electric vehicles (EA) which have significantly 

less adverse impact on the environment compared to fuel vehicles (FA). EAs are currently being 

subsidized in many countries such United States, Canada, China, etc. in order to promote the use of 

such vehicles. Considering a duopoly where two automobile supply chains are competing, they show 

that such incentives are effective in promoting the EAs. Moreover, they compare this setting with one 

in which there is a centralized control with no subsidy and conclude that subsidizing EAs is more 

effective in decreasing the environmental impacts.   

At the manufacturer level, the literature can be divided into two sub-categories: (i) strategic level and 

(ii) tactical and operational level. 

2.2.  Manufacturerõs Perspective in GSCM 

Manufacturers take environmental concerns into their decision making process with the aim of either 

regulation compliance or promoting their products through advertising on the greenness of them. 

Studies in this area can be divided into two categories: (1) Strategic Level, and (2) Operational Level.   

aŀƴǳŦŀŎǘǳǊŜǊΩǎ 
Perspective in GSCM

Strategical 
Level

Tactical &
Operational Level

Reverse  
Logistic

Network 
Design

Technology 
Selection

 

Figure 1. Overview of the literature from the manufacturerõs perspective in GSCM 

 

2.2.1. Strategic Level in GSCM 

Decision making at the strategic level deals more with fundamental changes such as the choice of 

cleaner sources of energy, more sustainable production equipment, green machinery or raw materials, 

and greener transportation means (Debo et al. 2005, Drake 2012, Drake et al. 2012, Liu et al. 2012, 
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Nouira et al. 2014, Walsh et al. 2014). These studies include problems that deal with technology 

selection, reverse logistic, and network design (Tang and Zhou 2012). 

Nouira et al. (2014) study the technology (manufacturing process) and input material selection under 

the new environmental regulation. They assume that customers are environmental-sensitive, which 

means that customers are willing to pay more for green products. To this end, they introduce a factor 

to measure the greenness level of a product. The greenness level of a product is determined by the 

environmental impact of inputs and manufacturing processes. It increases as greener inputs and 

processes are chosen. They assume that demand has an inverse relationship with price and the price 

increases with greenness level of the product (Chen 2001). Using a numerical example in textile 

industry, they show that the price should be greater than a certain threshold, otherwise the firms would 

not invest in green products. They also discuss that how considering the relationship between 

environmental awareness of consumers and the demand can increase the total profit of a firm by 

offering green products to the customers. While most of the studies in the literature consider a linear 

relationship between amount technology investment and environmental improvement, (Liu et al. 2012) 

considers a nonlinear relationship. They argue that the environmental improvement should increase 

with declining rate as eco-friendly investment increases. Drake (2012) studies the eco-friendly 

investment decisions in the presence of foreign competitors under carbon tax policy. Unlike the 

previous studies, he assumes that the demand is exogenous and independent of product greenness. 

He considers domestic firm facing a decision on whether to invest on greener production or moving 

the production facilities to countries where there is no environmental regulations, e.g. China, where 

they may also benefit from lower production cost, although they also need to pay for the 

transportation. He also discuss the effect of putting carbon tariff on the carbon content of imported 

goods and see how this will affect firmsõ decisions. Carbon tariff are proposed to prevent carbon 

leakage which refers to the phenomenon of moving of production facilities to other countries because 

of asymmetric environmental regulations. He shows that putting carbon tariffs does not necessarily 

prevent firms from moving their firms to countries with no regulations and they may do so even in 

the presence of carbon tariff. In fact, they would just invest in cleaner products while they are 

producing outside the country to decrease the carbon tariff.  

A number of studies discuss carbon abatement through reverse logistics (Beamon and Fernandes 

2004, Diabat et al. 2013, Li et al. 2009, Lu and Bostel 2007, Shi et al. 2011). Reverse logistics can be 

done by either remanufacturing or recycling the products. Diabat et al. (2013) consider a facility 
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location problem under cap-and-trade regulations and introduce numerical examples to draw some 

observations. For instance, they show that remanufacturing will become more interesting as the supply 

chain activities produces significant amount of carbon emission.  

Firms can also achieve abatement in carbon emission by considering it into decisions such as plant 

location and network design problems (Altmann 2014, Chaabane et al. 2012, Ji et al. 2014, Ramudhin 

et al. 2010). A number of authors have developed multi-objective models that aim to minimize both 

cost and emission (Mallidis et al. 2012, Smith et al. 2014). Mallidis et al. (2012) study the effect of 

considering transportation emission on a supply chain network in a region, specifically in south-eastern 

Europe. The decisions include port of entry, transportation mode (truck, rail, or ship) and whether or 

not to use shared warehouses and transportation. They incorporate environmental concerns using a 

multi-objective modeling, where total cost and emission are being minimized. They show that using 

shared warehouse and transportation is efficient in terms of emission reduction, but it will increase 

the total cost. Wang et al. (2011) discuss a network design problem where environmental investment 

decisions are made through a multi-objective model. There is a trade-off between environmental 

investment and carbon emission such that as firms invest more in carbon efficient technologies, their 

associated carbon emission will decrease in the long-term. A multi-objective facility location problem 

is developed by Xifeng et al. (2013) with the aim of minimizing economic cost and transportation 

emissions while the minimum service reliability is being maximized. Transportation is the only source 

of emission that is affected by number of products being shipped and the distance between the facility 

and the customer. Service reliability is affected by the time needed to deliver goods. Therefore as the 

number of facilities increases, transportation emission decreases while the total cost and service 

reliability increases.  

The benefits of the tactical level decisions can be observed after a relatively long period of time with 

the needs of significant initial investment. For recouping benefits within a short time period, it may 

be more effective to discuss changing operational decisions, such as determining lot size, lead-time, 

production planning. It has been shown that reducing carbon emission is also achievable through 

operational decisions as well (Benjaafar et al. 2013). 
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2.2.2. Operational Level in GSCM 

A number of authors have incorporated environmental regulation in simple operational models and 

derive some important conclusions showing the effect of considering such regulations (Bonney and 

Jaber 2011, Bouchery et al. 2012, Hua et al. 2011, Wahab et al. 2011).  

Using the EOQ model, Hua et al. (2011) develop a model based on a cap-and-trade system that 

determines the optimal ordering size. Regarding the sources of emission, they consider those emission 

caused by transportation and warehousing activities. They derive the optimal order quantity and 

compare it with the order quantity of the classical EOQ model. They conclude that total emission 

under a cap-and-trade system does not change as the cap changes and is only affected by the carbon 

price. Bouchery et al. (2012) also solve a multi-objective EOQ model called sustainable order quantity 

model where they show that environmental improvement are possible through relatively small changes 

in the total cost through operational adjustment. Benjaafar et al. (2013) model carbon emission in a 

supply chain in forms of strict cap, carbon tax, and cap-and-trade schemes. They model strict cap in 

form of a constraint and carbon price by adding a carbon cost term to the objective function. One 

insight from these models suggests that with a strict carbon cap, the amount of emission can be 

reduced significantly at a reasonable cost. In another observation, it is noticed that emission reduction 

by changing operational decisions could be reached at lower cost than those achieved by investing in 

more sustainable technologies. They also compare the benefits of collaboration in a supply chain under 

different regulations. Chen et al. (2013) implement environmental aspects by adding carbon cap as a 

constraint to a basic EOQ model. In order to calculate the total carbon emissions, they consider the 

emissions associated with ordering, holding, and production. A newsvendor model is discussed in 

Arikan and Jammernegg (2014), where there is a strict cap on carbon footprint of the product.  

A number of studies model different types of regulations in the same model and compare their effect 

(Zakeri et al. 2014, Zhang and Xu 2013). Zhang and Xu (2013) incorporate cap and trade system into 

a multi-item production planning problem and derived an optimal policy for production planning. 

Comparing cap and trade policy with taxation policy, they conclude that if the carbon price and the 

carbon tax are equal, both policies have the same effect in terms of emission reduction. While one of 

the major components of operational decisions is transportation, it is not included in the 

aforementioned studies. Transportation is one of the important factors that needs to be incorporated 

along with production and warehousing as a factor that significantly affects carbon emission 

measurement of supply chain. 
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According to Inventory of U.S. GHG emissions and sinks: 1990-2012, transportation is the second 

largest source of GHG emissions after electricity (EPA 2014). Colman and Paster (2007) study the 

different sources of emission in winery industry in five regions of the world and show that the highest 

emission amount was due to shipping activities. Soysal et al. (2014) develop a multi-objective model 

that minimizes total costs of a food supply chain and its associated transportation emission. The model 

use the e-constraint method to solve the model by keeping total cost as the objective function and the 

transportation emission objective is reformulated as a constraint. Based on the real data gathered from 

a beef supply chain where beef is being imported into European Union from Brazil, they show that 

carbon taxes can even lead to improvement in both economic and environmental aspects. Bauer et al. 

(2010) study an intermodal freight transport problem where they minimize carbon emission. Cachon 

(2014) model the layout of a supply chain and examine its effect on total emission caused by the supply 

chain and customer travel. He show that putting a carbon tax on emission does not result in significant 

emission reduction. Instead, increasing the fuel efficiency of customersõ cars can save a significant 

amount of emission. Hoen et al. (2013) model a setting where a producer is deciding to reduce its 

transportation emission by putting a cap on total emission of outbound transportation. The objective 

function is to reduce total emission through using different transportation modes. They argue that 

significant emission abatement can be achieved with relatively small increases in the total costs. For 

instance, they show for a bulk liquid producer 10% reduction in emission can be obtained by only 

0.7% increase in total cost.  

Measuring the emission associated with logistic activities may not always be accurate (Monni et al. 

2004). For example, in measuring the emission of production, the average time it takes to produce a 

unit and the energy consumption rate of the production machines may be considered in estimating 

the production emission. In reality, the production time may change based on different factors. 

Unexpected down time, failure of the machine, and parts failure are examples of events that may 

increase the production time and, therefore, energy consumption. Some of the transportation means 

produce more emission than others depending on the quality of the fuel, maintenance of the 

transportation means. Moreover, natural factors such as weather temperature may also play a role in 

the resulting emission level of the supply chain activities, for instance, heating emission will increase 

when the environment temperature is lower (Pulles and Meijer 2000). Hence, we need to consider 

uncertainty in measuring the emission of each source. We employ the robust optimization theory to 

deal with uncertainty in our problem. Robust optimization theory, presented by Mulvey et al. (1995), 
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has been widely used in recent years to cope with problems under uncertainty (Gabrel et al. 2014). 

Uncertainty may appear in different coefficients, such as demand (Alem and Morabito 2012), cost 

coefficients (Wei et al. 2011), availability of raw material supply (Varas et al. 2014), etc. Uncertainty 

may affect the problem in two manners: (i) uncertainty on the feasibility of the solution (infeasibility), 

(ii) uncertainty on the optimality of the solution (sub-optimality). In the first case, we are looking for 

solutions which are feasible for any realization of the input data. In the latter case, the solution will be 

optimal for the worst-case-scenario. It is obvious that the solution obtained from robust optimization 

(robust solution) will be worse than the one obtained from a problem without uncertainty (nominal 

solution); however, the difference between the robust solution and the nominal solution depends on 

the risk aversion level of the manager. The more risk averse the decision maker is, the worse the robust 

solution will be with respect to the nominal solution.  

Bertsimas and Sim (2003) propose a robust approach to deal with uncertainty when the distribution 

of uncertain coefficients is not known. In such problems, it is assumed that they change only within a 

certain range. The middle point of the range is called the nominal value. For an overview of other 

approaches in robust optimization the reader is referred to Ben-Tal and Nemirovski (2000), Ben-Tal 

et al. (2009), and Fischetti and Monaci (2009). This approach has been used in many production 

planning and network design problems (Alem and Morabito 2012, Bertsimas and Thiele 2006). Alem 

and Morabito (2012) implement this approach in a furniture setting where there is uncertainty on 

objective function parameters (cost parameters) and demand parameters separately. They first show 

that the uncertainty on cost parameters have no significant effect on the optimal solution while the 

demand uncertainty had more significant effects. They also show that choosing the budget of 

uncertainty is a very important factor in analyzing the effect of uncertainty. Therefore, choosing it 

correctly will become a matter of importance. They compare the robust optimization and worst-case 

deterministic approach and suggested using the robust approach with less conservative situations. 

Following Bertsimas and Thiele (2006), we consider uncertainty on estimated emission of each of the 

supply chain activities.  

 

2.3  Conclusion 

While previous studies on operational decisions with GHG emissions are considered as a 

transportation or production planning decision independently, we provide an integrated model to 

incorporate the effects of integrated production and transportation decisions. As mentioned earlier, 
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transportation is very important in measuring the carbon footprint of the supply chain which needs 

to be considered along with the production activities. In our study, we consider a demand allocations 

and production planning problem with environmental concerns that appear in the form of a constraint 

on total periodic carbon emissions produced by the supply chain. Furthermore, uncertainty on the 

estimated emission of the supply chain activities are included in this study. To best our knowledge, no 

study in green supply chain management has considered uncertainty on estimating the emission of the 

supply chain to date.  

In the following section, first, the problem is defined and then the solution methodology proposed to 

solve our problem is explained.    
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Chapter 3 

Problem Statement and 

Methodology 

 

In this study, we model a multi-period demand allocation and production planning problem for a 

multi-facility network. There are several demand regions and several facilities which are available to 

satisfy the demand of each region. There is no restriction on the number of facilities that can supply 

a region as well as number of regions that a facility can supply. The objective is to minimize the sum 

of costs associated with production, holding, transportation, and selecting a facility in all periods. 

Demand is assumed to be deterministic and might change from period to period. Backorder is not 

allowed and all demand should be satisfied in each period. There is also a limit on the total emission 

originated from production, holding inventory, transportation of goods, and selecting a facility in a 

period.  

1

2

I

1 1jt ta l

2
2jt
t

a
l

Ijt
It

a
l

Facility (j)
Demand 

Region (i)

 

Figure 2. Overview of the problem 
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We use the following notation in formulating the problem:  

Sets  

 i  Index for demand regions, 1,2,..., 'i i=  

j  Index for facilities, 1,2,..., 'j j=  

t  Index for time periods, 1,2,..., 't t=  

 

Parameters  

 

jtc  Unit production cost of producing one product at facility j in period t ($/unit) 

jth  Cost of holding one raw material in facility j in period t ($/unit) 

jtt  Cost of holding one product at facility j in period t ($/unit) 

jtr  Cost of raw material at facility j in period t ($/unit) 

k Cost of fuel ($/litre) 

jts  Setup cost of using facility j in period t ($/facility) 

'

jtc  Emission of producing one product at facility j in period t (kg CO2/uni t) 

'

jth  Emission of holding one raw material at facility j in period t (kg CO2/unit) 

'

jtt  Emission of holding one product at facility j in period t (kg CO2/unit) 

'

jtr  Emission of raw material at facility j in period t (kg CO2/unit) 

'

fc  Emission of per liter of fuel consumption (kg CO2/unit) 

'

jts  Fixed emission of selecting facility j in period t (kg CO2/facility) 

l  Fuel consumption for each unit of product (litre/km.unit) 

 

The decision variables are as follows:  

 

jtX  Number of items produced at facility j in period t 
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jtW  Number of raw materials at facility j at the end of period t 

jtI  Number of finished goods at facility j at the end of period t 

jtR  Number of raw material released to facility j at the beginning of period t 

jtZ  Binary variable that is equal to one if facility j at the beginning of period t is used and  

zero otherwise 

ijta  Fraction of demand of region i allocated to facility j in period t 

 

The fixed cost of allocating demand to a facility in a given period include the cost of setting up the 

production line, ordering cost, etc. A fixed emission is also considered for a facility selected for 

production. The fixed emission for selecting a facility can be equal to the emission due to the 

maintenance activities or other systems that are not used directly in the production process, such as 

cooling systems. Hence, we are dealing with two decisions for each facility. First decision would be 

whether to choose a facility for production in a period or not, which directly causes a fixed cost and 

emission. The second decision includes determining the fraction of demand from each district that 

the facility should satisfy (demand allocation). Based on the allocated demand in different periods, 

each facilityõs WIP level and production quantity is determined. In order to formulate the production 

planning and demand distribution (PD1) problem we use the following model:  

 ( )( )[ 1]: min jt jt jt jt jt jt jt jt ijt it ij jt jtt T j J i I
PD X c I W h R r D l Z st a l k

Í Í Í
+ + + + +ä ä ä  (1) 

  Subject to  

 ( )( )' ' ' ' ' '

jt jt jt jt jt jt jt jt ijt it ij jt jtt T j J i I
X c I W h R r D l Z s CCt a l k

Í Í Í
+ + + + + ¢ä ä ä  (2) 

 , 1 , ,jt j t jt jtW W R X for all j t-= + -  (3) 

 , 1 , ,jt j t jt ijt iti I
I I X for all j ta l- Í
= + -ä  (4) 

 ( ), 1 max, , , , ,jt j t jtX f W R X for all i j t-¢  (5) 

 1, ,ijtj J
for all i ta

Í
=ä  (6) 

 , ,jt jtX Z M for all j t¢  (7) 
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 { }, , , , 0, 0,1 , , ,jt jt jt jt ijt jtX W I R Z for all i j ta ² Í  (8) 

 

In the objective function (1), the first and the second terms represent production and finished good 

inventory (FGI) holding costs, respectively. The term 
jt jtW h  denotes the cost of holding WIP at 

period t, which may include warehousing costs, opportunity costs of capital, insurance expenses, etc. 

This is an important factor since it increases nonlinearly with the production rate increase. Here, we 

only consider the amount of WIP that is carried over to the next period identified as end of period 

WIP. The term 
jt jtR r  is the raw material release (RMR) cost. RMR cost might include cost of 

procurement, shipment of raw material from supplier to the production facility, and preparation of 

stored material to the shop floor, etc.  

Another factor that affects the objective function is the shipping cost that results from shipping the 

products from each facility to the customers. This factor may play an important role when cost of 

transportation increases as a result of either transporting goods to a customer located farther from the 

facility, e.g. a foreign country, or using an expensive means of transportation. In the first case the cost 

of transportation increases because of increased distance. In the latter case, an expensive means of 

transportation can happen when using fast transportation (air freight) or when the final product 

requires special care during transportation, e.g. in the case of perishable items. The total fuel 

consumption for each facility and in each period is calculated and then multiplied by the fuel cost. 

Finally, 
jt jtZ s  is equal to the fixed cost of selecting facility j, where 

jtZ  is a binary variable and is equal 

to one when the facility j is in the production mode at period t.  

Total amount of carbon emission produced should not exceed a fixed amount, called Carbon Cap 

(CC), and is shown in constraint (2). We consider the emission associated with production, holding of 

WIP and FGI, raw material releases, shipping, and fixed emission of a facility. The same sources were 

considered in Sundarakani et al. (2010) and Lee (2011), where they develop models to measure carbon 

footprint across supply chain. 

Constraints (3) and (4) represent WIP and FGI balance equations. We assume that both throughput 

(TH) and WIP are measured the same unit. This means that each unit of WIP will be processed into 

one unit of product. The fraction of demand in region i that is assigned to facility j in period t is shown 

by 
ijta , varying between 0 and 1. 
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The fifth constraint define the maximum throughput (TH) as a function of the WIP carried over from 

the previous period and the amount of raw material released at the beginning of a period represented 

by the term ( ), 1 max, ,j t jtf W R X- . Note that the decision here is to determine WIP rather than TH. 

Once WIP level is decided, the TH is computed accordingly. In order to ensure that all demand is 

fulfilled, constraint (6) is added. Constraint (7) will set the binary variable, 
jtZ , to one if the facility is 

in the production mode. Big M is large enough such that it does not limit the production quantity. 

Using a number equal to or larger than maximum capacity of the facility would serve this purpose.   

In the following, we first explain how we implement the congestion effect in our model.  We then 

illustrate how we deal with the nonlinearity in the model due to considering congestion using an outer 

approximation approach. We then use an exact algorithm to minimize the error of outer 

approximation approach. Using this exact algorithm, we also develop the uncertain model for this 

problem. Finally, we propose Lagrangian relaxation and a heuristic to build a feasible solution. 

 

3.1.  Modeling the congestion effect 

The throughput function defined in (5) is a nonlinear function and should be expressed explicitly. In 

order to accomplish this, we incorporate the idea of clearing functions (CF). CF was first proposed 

by Graves (1986) where he considers a linear relationship between throughput and WIP. Further 

studies on the real data from industries revealed that there is a nonlinear relationship between 

throughput and WIP (Karmarkar 1989, Srinivasan et al. 1988). A significant number of studies have 

incorporated the idea of CF in the inventory and production planning literature. Missbauer (2011) 

model an order release planning problem using a new CF to define the clearing function and show 

that utilization increases nonlinearly as the WIP level increases. Benjaafar (1996) and Benjaafar and 

Gupta (1999) show how batch sizing will affect the clearing function. Selcuk et al. (2008)  define four 

different CFs and compare them in order to find which one would best represent the capabilities of a 

shop. They concluded that CFs based on the short-term probabilistic behavior of a production model 

can better represent the relationship between WIP and TH of a shop than those CFs based on long-

term average shop behavior. A number of authors have also incorporated congestion in production 

planning problems with multiple product (Asmundsson et al. 2006, Asmundsson et al. 2009). They first 

develop a multi-product single-period production planning problem and then extend it to a multi-

period problem. They show that, if the CFs are estimated accurately, models with CFs reflect the 
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production system performance better than those model that do not consider congestion effect. 

Another example of such CFs can be found in Albey et al. (2014) where they introduce multi-

dimensional CF (MDCF) to be used in settings where a single machine is producing multiple products.  

In this study, we use Equations (9) to express the CFs as proposed by Karmarkar (1989).  

 
WIP

TH C
WIP K

=
+

 (9) 

This approach uses the load to the system at the beginning of the period (jtW ), which is equal to total 

number of items that are ready to be processed at the beginning of the period in the CF.  

 
, 1jt j t jtW W R-= +  (10) 

 ( ) '

jt
jt

jt

W
f W C

W K
=

+
 (11) 

Karmarkar (1989) uses (11) to show the relationship between beginning WIP and maximum 

throughput. Parameter 'K  is the curvature of the CF and is estimated by ( )1 cLC h- , where L  is the 

average lead time, 
ch is the critical utilization point, and C is the maximum throughput (Aouam and 

Brahimi 2013). It is assumed that the CF has no effect before a certain utilization, called critical 

utilization. In simple words, before reaching this level of utilization, the facility works in a low 

utilization mode and the congestion effect does not appear. Critical utilization point and lead time are 

assumed to be 0.8ch=  and 1L=  period, respectively. This implies that for a utilization level below 

80%, all the raw material released to the facility will be processed without congestion effects. We 

replace ( ), 1 max, ,j t jtf W R X-  with the right hand side of equation (11) in our model, which gives a 

nonlinear constraint. In the following, we explain how to deal with the nonlinear constraint using an 

outer linearization approach. This approximation will lead to error in computing WIP and TH level. 

We then propose an algorithm on how to minimize this error.  

 

3.1.1. Linearization of the CF 

In order to linearize the CF constraint, an outer linearization approach is used in the following form 

(Asmundsson et al. 2009, Kacar et al. 2012, Vidyarthi et al. 2009):  
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 ( ) { }min :h h
jt jtf W a W b h H¢ + " Í (12) 

Where ha  and hb  are the slope and intercept of the line, respectively, and H is the set of lines.  

 
( )jt

h

jt

df W
a

dW
=  (13) 

  ( )h h
jt jtb f W a W= -  

(14) 

A set of points on the CF is chosen for approximating the CF. The closest approximate line h , which 

is the one that gives the minimum value ( )( )( )' '' 'argmin min :h h
jth h a W b h H= + " Í , can be used 

to determine the TH (Figure 3).  

 

X

Xô

WôW

TH

WIP

 

Figure 3. Piecewise Linearization of CF 

Hence, the fourth constraint will be rewritten in the following form.  

 ,   , ,h h
jtjtX a W b for all j t h¢ +  (15) 

Due to the concavity of the CF, the slope parameter, 
ha  , decreases as Ὤ gets larger and is set to zero 

at maximum TH. Also, 
1b  is set to zero in order to represent a zero TH when there is zero WIP.  

Formulation [PD1] along with constraint (15) will give the following formulation:  

( )[ 2]: min ( )jt jt jt jt jt jt jt jt ijt it ij jt jtt T j J i I
PD X c W h I R r D l Z st a l k

Í Í Í
+ + + + +ä ä ä  (16) 

s.t.  
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( )( )' ' ' ' ' '

jt jt jt jt jt jt jt jt ijt it ij jt jtt T j J i I
X c W h I R r D l Z s CCt a l k

Í Í Í
+ + + + + ¢ä ä ä  (17) 

, 1 , ,jt j t jt jtW W R X for all j t-= + -  (18) 

, 1 , ,jt j t jt ijt iti I
I I X for all j ta l- Í
= + -ä  (19) 

, , ,h h
jtjtX a W b for all j t h¢ +  (20) 

1, ,ijtj J
for all i ta

Í
=ä  (21) 

, ,jt jtX Z M for all j t¢  (22) 

{ }, , , , 0, 0,1 , ,jt jt jt jt ijt jtX W I R Z for all i j ta ² Í  (23) 

 

In order to have a zero error when using the outer approximation, an infinite number of lines tangent 

to the CF is needed. Since, having such a large set of lines is impossible, one needs to find a subset of 

tangent lines and dynamically update the constraints to make sure that nonlinear constraint is satisfied 

with a predetermined accuracy. In the following section, we provide an algorithm to minimize the 

error in finding an optimal solution to the problem.   

 

3.1.2. Exact algorithm to minimize the approximation error 

Suppose that ( ),X W  denotes the optimal beginning WIP and TH for a facility using outer 

linearization described in previous section as depicted in Figure 3. This means that X  units is planned 

to be produced during the period and in order to produce X  units, W  units are planned to be released 

at the beginning of the period. But according to the CF, only 'X  units will be produced during that 

period and as one can see in the graph 'X X¢ . Therefore, we wonõt be able to satisfy the demand as 

we have planned and the solution is infeasible. In fact, if we use the outer approximation, the given  

feasible solution will not be feasible unless ( ),X W  lies exactly on the clearing function, which happens 

only at points where the approximating line is tangent to the CF. Hence, as the number of lines in the 

outer linearization increases, the error decreases. 

Any line that is tangent to the CF at any point can be added to the outer linearization. This indicates 

that infinite number of lines can be added to the problem since there are infinite number of points on 
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the CF. Therefore, we need an algorithm that determines which points on the CF to be considered in 

the model in order to reduce the size of the problem. To this end, we first need to define the error 

between the actual TH and the linearization result. This error can affect the model in terms of (i) 

decision variables corresponding to primal solution, (e.g. 
jtX  and 

jtW ), (ii) objective function value 

(Kefeli 2011). We choose the error in approximating the beginning WIP that is derived by fixing the 

TH and finding the true beginning WIP needed.  

 
( )
( )

1

1

jtjt

jt

jt

f X W
e

f X

-

-

-
=  (24) 

In the following algorithm, we initially start with a set of lines and solve the problem to optimality. 

We then calculate the error in approximating each beginning WIP (Ὡ). If 
jte  is greater than a 

threshold value (‐), e.g. 10-3, a line tangent to CF at point ( ),jt jtX W  in the optimal solution will be 

added to the set of lines (Kefeli 2011). We do this by calculating the slope and intercept of the tangent 

line and adding these values to the current set of slope and intercepts. After doing this procedure for 

every j and t, we solve the problem again with the new set of lines. Again we repeat the mentioned 

procedure. We repeat the whole procedure until the error for all optimal points on the CF would be 

less than the threshold value which means 
jte e¢  for every j and t. To this end, we define 

jtj , which 

is equal to one if  
jte e¢  and zero otherwise. This way we would be able to count the number of 

converged point in the optimal solution. Therefore, the algorithm will stop if the summation of all 

these 
jtj  would be equal to the total number of points in the optimal solution. Assuming there are m 

potential facilities and p periods: 

 ()()
, jtj t

m pj
"

=ä  (25) 

which indicates all jtW  are converged. The convergence algorithm can be presented as follows: 
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Convergence Algorithm 

Start with an initial number of lines (H). 

• π   for all j and t 

While     { В •ᶰȟɴ ὐὝ ,  

                  Solve [PD2] and find error for every ὡ : 

Å
Ὢ 8 ὡ

Ὢ 8
 

                          for {every j and t, 

                                  if  {Ὡ ‐,  

                                                       • ρ    

                                   else,  

                                                        Add a new constraint (line) with the following properties: 

                                                        

( )

( )

'

' '

jt
h

jt

h h
jt jt

f W
a

W

b f W a W

µ
=
µ

= -

 

                                                         Add Ὤᴂ to the current set of lines H. 

                                                        
0jtj =  

                             End if } 

                End for } 

End while } 

 

Hence, we presented a production planning and demand distribution problem and explained how we 

incorporate the congestion effect in our model. In the following, we first discuss how we deal with 

uncertainty in our model and then discuss our solution methodology.  

 

3.2.  Robust model of PD2 

When facing uncertainty in a problem, there are two general approaches: (i) stochastic programming 

and (ii) robust optimization. The stochastic programming requires stochastic information of the 

uncertain factor in order to generate scenarios whereas the robust optimization needs no distributional 

information about it. Furthermore, in the stochastic programming, in order to accurately represent 
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the uncertainty in the problem, large number of scenarios may be needed. On the other hand, in the 

robust optimization, the structure of the problem remains the same and is no harder than the 

deterministic problem to solve which makes this approach more appealing.   

In this thesis, we assume that no information regarding the probability distribution of the emission of 

each activity is available. Hence, we develop a model based on the idea of robust optimization in order 

to incorporate uncertainty in our model. Following Bertsimas and Sim (2003), the model remains 

computationally tractable. 

Before we explain how we adopt this approach, we present a background on robust optimization. 

Consider the following problem: 

 [ ] :    j jj
RO Min c xä  (26) 

 s.t.  

 
1
a ,       `

J

ij j ij
x b i

=
¢ "ä       (27) 

where we are uncertain about the exact value of ὥ .  

For each ὥ , the nominal value and maximum deviation from the nominal value are represented by 

ὥ , ὥ , respectively. Let ′ be the ratio of ὥ  to ὥ . In order to show the deviation of the input from 

the nominal value we use ό  which belongs to ρȟρ. It is assumed that it is not realistic 

that all the parameters would take their worst value. Therefore, the budget of uncertainty was 

proposed by Bertsimas and Thiele (2006) which determines the risk aversion level of the decision 

maker and is shown by ɜ (ɜ for the above problem). Hence, ɜ is equal to zero when there is no 

uncertainty and is equal to ὐ at the worst case. Assuming all ὥ π,  

 Ĕmax ij j ijj
a x uä  (28) 

 s.t.  

 : ,       i ij ij J
u ib

Í
¢G "ä  (29) 

 : 0 1,             ,ij iju i jq ¢ ¢ " (30) 

here 
ib and 

ijqare the dual values associated with each constraint in the optimal solution. Thus, we 

have a maximization problem within minimization problem. In order to overcome this problem we 
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use the dual of above problem. In fact, since the above formulation is feasible and bounded, based on 

the strong duality, it can be replaced it with its dual problem which is also bounded and feasible. 

Hence, we will obtain a minimization problem. The above formulation can be replaced by its dual 

which gives:  

 ( )min i i ijj
b qG +ä  (31) 

 s.t.  

 Ĕ
i ij ij ja xb q+ ²  (32) 

 , 0i ijb q²  (33) 

Therefore, the robust counterpart of problem [RO] can be written as:  

   j jj
Min c xä  (34) 

 s.t.  

 ( )1
a ,       

J

ij j i i ij ij j
x b ib q

=
+ G + ¢ "ä ä  (35) 

 Ĕ
i ij ij ja xb q+ ²  (36) 

 , 0i ijb q²  (37) 

In this study we follow the same procedure to obtain the counterpart of [PD2]. As mentioned earlier, 

we are interested in studying the uncertainty in emission parameter associated with each of the decision 

variables. Since the decision variables of our problem are all positive we can ignore the absolute value. 

In the following formulation, symbols with a bar (e.g. '

jth ) and a hat (e.g. 
'Ĕ
jth ) represent the nominal 

and maximum deviations values, respectively.  

 ( )Ĕmax ' h

jt jt jt

t

W h uä  (38) 

 s.t.  

 :h h h

j jt j

j

ub ¢Gä  (39) 

 : 0 1,    ,h h

jt jtu j tq ¢ ¢ " (40) 

Hence, from the strong duality, we have:  
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 ( )' ' 'min h h h

jt t j

t

q b
å õ

+ Gæ ö
ç ÷
ä  

(41) 

 s.t.  

 ' ' Ĕ'h h

jt jt jt jtW hq b+ ²  (42) 

 ' ', 0h h

jtq b²  (43) 

Doing the same procedure or all parameters, the robust counterpart of the problem would be 

obtained. The notations we use in developing the robust counterpart are summarized below: 

'

jtc  Nominal emission of producing one product at facility j in period t (kg CO2/unit) 

'

jth  Nominal emission of holding one raw material at facility j in period t (kg CO2/unit) 

'

jtt  Nominal emission of holding one product at facility j in period t (kg CO2/unit) 

'

jtr  Nominal emission of raw material at facility j in period t (kg CO2/unit) 

'

k Nominal emission of per liter of fuel consumption (kg CO2/unit) 

'

jts  Nominal fixed emission of selecting facility j in period t (kg CO2/facility) 

'Ĕ
jtc  Maximum deviation from the nominal emission of producing one product at facility j in 

period t (kg CO2/unit) 

'Ĕ
jth  Maximum deviation from the nominal emission of holding one raw material at facility j 

in period t (kg CO2/unit) 

'Ĕ
jtt  Maximum deviation from the nominal emission of holding one product at facility j in 

period t (kg CO2/unit) 

'Ĕ
jtr  Maximum deviation from the nominal emission of raw material at facility j in period t 

(kg CO2/unit) 

'Ĕ
fc  Maximum deviation from the nominal emission of per liter of fuel consumption (kg 

CO2/unit) 

'Ĕ
jts  Maximum deviation from the nominal fixed emission of selecting facility j in period t (kg 

CO2/facility) 

ɜ Budget of uncertainty 

′ Ratio of  ὥ  to ὥ  

 

The robust counterpart is as follows:  
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 ( )'[ 2]:min jt jt jt jt jt jt jt jt it ij ijt jt jtt T j J i I
RPD X c W h I R r lD Z st l ka

Í Í Í
+ + + + +ä ä ä  (44) 

 . .s t   

  (18),(19),(20),(21),(22),(23) 
 

 

( )

( )

' '

'

'

' ' ' ' ' ' ' ' ' '

' ' ' ' '

' ' ' ' '

f

jt jt jt jt jt jt jt jt ij it ijt jt jt

j J t T i

c c h h r r s s

j j j j j j j j j j j j

j J

cc h r s

jt jt jt jt jt jt

j J t T

X c W h I R r D l Z s
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t t k k

t

t la k

b b b b b b

q q q q q q

Í Í

Í

Í Í

å õå õ
+ + + + + +æ öæ ö

ç ÷ç ÷

G + G + G + G + G + G +

+ + + + + ¢

ää ä

ä

ää

 

 

 

 

(45) 

 ' ' Ĕ' , ,c c

jt j jt jtX c for all j tq b+ ²  (46) 

 ' ' Ĕ' , ,h h

jt j jt jtW h for all j tq b+ ²  (47) 

 ' ' Ĕ' , ,jt j jt jtI for all j tt tq b t+ ²  (48) 

 ' Ĕ' , ,r r

jt j jt jtR r for all j tq b+ ²  (49) 

 ' '
'Ĕ  , ,f f

jt

c c

jt j ij it ijt f

i

D l c for all j tq b la+ ²ä  (50) 

 ' ' Ĕ'   , ,s s

jt j jt jtZ s for all j tq b+ ²  (51) 

 

Solving the model for large instances, we noticed that CPLEX could not find a feasible solution in a 

reasonable amount of time. Thus, we developed a Lagrangian relaxation approach to solve large 

instances of the problem which we explain in the following section. 

 

3.3.  Lagrangian Relaxation 

Considering the difficulty in solving [RPD2], we applied a Lagrangian relaxation approach for large 

instances. In Lagrangian relaxation approach, one or a set of constraints (complicating constraints) 

will be relaxed by taking them into the objective function using a penalty term. Complicating 

constraints are constraints that relaxing them would result in a problem that is easier to solve. Such 

constraints can be those which contain binary variables or those which link different sub-problems to 

each other. The reader is referred to Fisher (2004) for a comprehensive review of Lagrangian 

relaxation theory and its application.  
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Lagrangian relaxation has been used extensively in production planning problems (Jayaraman and 

Pirkul 2001, Kim and Kim 2000). Jayaraman and Pirkul (2001) study a locating production and 

distribution centers problem. Relaxing two linking constraints, the problem is decomposed into three 

sub-problems. They then propose heuristics to solve each of these sub-problems. Kim and Kim (2000) 

study a multi-period inventory/distribution problem. Similar to Jayaraman and Pirkul (2001), they 

employ Lagrangian relaxation by relaxing some constraints and decompose the problem into two sub-

problem, where the first sub-problem is to determine the schedule of vehicles (scheduling problem) 

and the second problem is a demand allocation and production planning problem. In green supply 

chain management, Elhedhli and Merrick (2012) use this method to solve a network design problem. 

Resulted model is decomposed into two sub-problem where the second sub-problem was itself 

decomposed into n knapsack problems. Each of these knapsacks could easily be solved using a 

heuristic for knapsack problem. The Lagrangian relaxation approach has been used successfully in all 

these problems in decreasing the computation time of the solving problems and providing a decent 

bound. We apply the same Lagrangian relaxation by relaxing two sets of constraints and, hence, 

decompose our multiple facility production planning problem into several single-facility production 

planning problem.  

Before we start explaining our solution methodology, the reader is provided with a brief review of 

Lagrangian relaxation based on Fisher (1985). 

Consider the following integer program:  

 *[ ]       Z = min P cx (52) 

          subject to Ax b²  ( complicating constraints) (53) 

  Dx d²     (nice constraints) (54) 

 

Let us relax the complicating constraints using Lagrangian multiplier.  The resulting sub-problem 

would be:  

 ( )*[ ]      = min   spSP Z cx u b Ax+ -  (55) 

          subject to Dx d²   (nice constraints) (56) 
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Where 0u² . Since, some of the constraint in [P] are relaxed, the solution to [SP] will provide a lower 

bound to optimal solution of [P]. However, the quality of the lower bound (LB) depends heavily on 

the Lagrangian multiplier ό. We need to solve the problem that finds the best Lagrangian multipliers 

by which the SP acquire its maximum value. Therefore, the best LB is 

( ){ }
0

 max   +  min  
Dx du

ub cx uAx
>>

-  (57) 

In order to find the best LB, an iterative procedure is proposed in which the value of the Lagrangian 

multipliers are updated at each iteration. Assume that 

{ }| , 1,2,...,kx x Dx d k K= ² =  (58) 

In the above formula, k  represents the iteration number.  

We now present the Master Problem (MP).  

( )*

1,2,...,0
[ ]      = max    min  k k

MP
k Ku

MP Z ub cx uAx
=>

+ -  (59) 

Let us define 

( )
1,...,

min  k k

k K
cx uAxh

=
= -  (60) 

Hence,  

*

0
[ ]      = max    MP

u
MP Z ub h

>
+  (61) 

. .    ,     1,2,...,k ks t cx uAx k Kh< - =  (62) 

 

The Lagrangian relaxation procedure is as follows:    

The LB and the UB for the Lagrangian relaxation are initially set to ( ), ( , )LB UB = -¤ ¤. In the first 

iteration, an initial set of multipliers are put into the SP. Then, we solve the SP and obtain the variables 

which gives the *
spZ  ( 1x ). Then, the LB is updated ( *max( , )spLB LB Z= ). In the next step, the following 

problem will be solved:  

*

0
[ 1]      = max    MP

u
MP Z ub h

>
+  (63) 

               1 1. .    s t cx uAxh< -  (64) 
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The Lagrangian multiplier u  which is obtained from solving MP is put as new Lagrangian multiplier 

in the SP in the next iteration. The new UB will be equal to *min( , )MPLB UB Z= .  In the next iteration, 

SP is solved using the new Lagrangian multipliers.  

In summary, at each iteration, first SP is solved and then, using the vector x  obtained from optimal 

solution, a new constraint will be added to the MP. This procedure is continued iteratively until a 

desirable gap (UB LB- ) is obtained.  

In order to able to verify the quality of the LB, an upper bound to the original problem is required. 

To this end, we need to develop a heuristic to build feasible solution which will be used as an upper 

bound. In the following, we first explain how we obtain the lower bound and then propose a heuristic 

to build a feasible solution based on the best lower bound solution. 

We use the following notation in explaining the Lagrangian relaxation procedure: 

’ Lagrangian multiplier associated with constraint (22) 

‚ Lagrangian multiplier associated with constraint (27)  

kz  Total emission at iteration k 

kc  Total cost at iteration k 

  

3.3.1. Lower bound for RPD2 

In this thesis, we employ the Lagrangian relaxation approach proposed by Fisher (1985). We use 

Lagrangian multipliers ’  and ‚ to relax constraints (22) and (27). These two constraints are the only 

constraints that link different facilities. Therefore, by relaxing them we will be able to decompose the 

problem into different facilities. This way, instead of solving a multi-facility multi-period demand 

allocation problem we will be solving several single-facility production planning and demand allocation 

problems.  
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     . .s t   

      (18),(19),(20),(21),(23), (45),(46),(47),(48),(49),(50),(51) 
 

 

Let define ‰ᶻ as the optimal solution to the following sub problem (SP).  
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 . .s t   

  (18),(19),(20),(21),(23), (45),(46),(47),(48),(49),(50),(51) 
 

Hence, the lower bound to [RPD2] would be:  

 ( )*

,LR j itj i t
LB CCf n x= - -ä ä  (67) 

The quality of the LB provided by the Lagrangian relaxation depends heavily on the Lagrangian 

multipliers. In order to improve the quality of the Lagrangian multipliers, we solve the master problem 

(MP), where the Lagrangian multipliers are the decision variables of the MP and the decision variables 

of optimal solution of SP are the used to build constraints in MP. Let kz and kc be the total emission 

and total cost at iteration k.  
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And,  

 
k k k k k k k k

jt jt jt jt jt jt jt jt ij it ijt ijt jt jtt T j J
i

X c W h I R r D l Z sc t la ka
Í Í

å õ
= + + + + +æ ö

ç ÷
ä ä ä  (69) 

Hence, the MP would be 

 ( ) ( )
1,...,0

, ,

[ ] : max      min k k k

it it ijtj Jk K
i t i t

MP CC
x

x u xz c u a
Í=²

å õ
- - + + +æ ö

ç ÷
ä ä ä  

(70) 

Let us define 

 ( )
1,...,

,

min k k k

it ijtj Jk K
i t

h xz c u a
Í=

å õ
= + +æ ö

ç ÷
ä ä  (71) 

Which leads us to 

 ( )
0

,

[ ]:max      it

i t

MP CC
x

x u h
²

- - +ä  
(72) 

 s.t.  

 ( )
,

,        1,...,k k k

it ijtj J
i t

k Kh xz c u a
Í

¢ + + " =ä ä  (73) 

We start with an initial set of multipliers and solve the SP. Using the decision variables obtained from 

the optimal solution of SP, a new constraint ( )
,

k k k

it ijtj J
i t

h xz c u a
Í

å õ
¢ + +æ ö

ç ÷
ä ä will be added to MP. 

Solving MP, new multiplier will be provided to SP. Using the new multipliers, we solve the SP again 

and add another constraint to the MP. SP provides a LB for the [RPD2] and MP gives an UB on the 

LB. We continue doing this loop until a desirable gap (is reached; however, it is possible the LB (‫ 

would not improve after a certain point. In order to prevent getting stuck in the same loop, we define 

another stopping criterion which stops the procedure if the UB does not improve in the last m 

iterations. Here is summary of the Lagrangian procedure: 
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Lagrangian Relaxation Procedure 

Start with an initial set of multipliers. 

ὛὸέὴὴὭὲὫὅὶὭὸὩὶὭέὲπ 

While  {ὛὸέὴὴὭὲὫὅὶὭὸὩὶὭέὲρ, 

Solve SP and get an lower bound ὒὄ  

Update the ὒὄ ÍÁØ ὒὄȟὒὄ  

add constraint k to the MP 
,

k k k

it ijtj J
i t

h xz c u a
Í

å õ
¢ + +æ ö

ç ÷
ä ä   

Solve MP and get and a upper bound Ὗὄ  

Update the multipliers in the SP using solution to the MP 

Ὗὄ ÍÁØ ὟὄȟὟὄ  

if { Ὃὥὴȟ ‫ 

Stopping Criterion = 1 

End if }  

if { UB has not improved in the last n iterations, 

Stopping Criterion = 1 

End if }  

End while } 

 

The Lagrangian procedure will provide the LB to [RPD2] which may not be a feasible solution (unless 

it is the optimal solution). We need to develop a heuristic to find a decent feasible solution using the 

decision variables obtained from the LB. 

 

3.3.2. Heuristic to build a feasible solution 

We propose a two-step heuristic to build a feasible solution. In the first step, after the LB has been 

found, we check for used facilities and fix them in the heuristic problem. We do not fix the binary 

variables which are not used and let them be free. We then solve the [RPD2] which gives us a feasible 

solution. Based on the quality of the LB, the computation time will decrease due to the decrease in 

the number of binary variables. After doing so for a number of instances, we realized that some of the 

facilities that were set to be used in the first step are loaded very low (e.g. 10% or even lower). In the 

second step, we set those facilities that are loaded less than a certain value, ″, free and solve the 
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problem again. Since we are relaxing some of the constraints in the first step, the solution in the second 

step be either equal or better than the one obtained from the first step.  

Building a Feasible Solution Procedure 

For {every j and t,                              

                              if  { if the facility is used in the best LB,   

                                                                                           : ρ 

                                   }  

Solve RPD2 

Ὗὄ ὕὴὸὭάὥὰ ὠὥὰόὩ έὪ ὙὖὈς 

ɡᶻ Ὗὄ 

For {every j and t,                              

                              if  {
 

″,  

                                                          relax : ρ    

                                    }   

Solve RPD2 

Ὗὄ ὕὴὸὭάὥὰ ὠὥὰόὩ έὪ ὙὖὈς 

Ὗὄ ÍÉÎ ɡᶻȟὟὄ  

 

An overview of the whole solution methodology is brought here. 
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Figure 4. The Solution Methodology 

 

In this chapter, we developed the deterministic model and, then, explained how we incorporate 

different aspects of the model, such as congestion. Due to the nonlinearity in the model, we employed 

an outer approximation approach. Using an exact algorithm we minimized the error of approximation. 

We then developed a robust model to consider uncertainty on emission of different activities. Finally, 

we used a Lagrangian relaxation approach to solve large instances. In the following chapter, we will 

develop numerical examples to analyze the effect uncertainty on operational decisions and the 

performance of our proposed methodology.  
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Chapter 4 

Numerical Experiments 

 

In this chapter, we first present an illustrative example and conduct experiments to show the impact 

of uncertainty in estimating the emission associated with each activity of the supply chain on the 

optimal solution. We then develop larger instances of the proposed model in order to analyze the 

performance of the proposed solution algorithms. All the experiments have been implemented in 

GAMS 22.5 software using CPLEX 12.2 solver and run on a Dell Vostro 3460 station with an Intel 

Core i5-3230M processor at 2.60 GHz and 6 GB of RAM running Windows 7 operating system.  

 

4.1. Impact of uncertainty on operational decisions 

In this section, we present an illustrative example in order to analyze the effects of considering carbon 

emissions in production planning and distribution decisions. We first set up the problem and solve it 

considering certain amount of emissions. We then extend our analysis by defining uncertainty in 

estimating each source of emission. Consider the following setting. There are five potential production 

facilities that we can be used in order to satisfy the demand distributed in four regions (see Figure 5). 

All the facilities are identical in terms of production capacity, cost, and emission parameters. The 

planning horizon is 10 periods. 
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1

2

4

3
 

Figure 5. Overview of the numerical example 

 

The demand and distances between demand regions and production facilities have been generated 

based on uniform distribution with a range [270,310] and [10,70], respectively. The maximum 

production capacity in each facility is 350; equal to 1.2 times the average demand. Unit production 

and holding costs are set to 0.3 kg CO2 and 0.1 kg CO2, respectively. Other cost parameters are set as

1t= , 1.33( )r c= , 0.33( )fc c= , and 120S= . We set the emission associated with production,  holding 

WIP, and holding FGI equal to one, whereas 'r  equal to 0.1( ')c  since procurement has no significant 

emission. The emission of establishing a facility in a period is 30 kg CO2. Finally, the coefficient of 

variation in the robust model (′) is 0.2, and the critical utilization level is set to 80 percent of the 

maximum capacity of the facility. The latter assumption means that the congestion may be formed in 

production facility only if the utilization level of facility is at least 80 percent.  

Table 1. Input Parameters 

c  h  t r  k s  'c  'h  't 'r  
'k 's  l  ′ 

0.3 0.1 1 0.4 0.1 120 1 1 1 0.1 0.1 30 0.1 0.2 

 

To solve the model, we first provide the initial set of lines for piecewise linearization of the clearing 

function in Table 2. 

Table 2. Clearing function approximation 

Segment slope intercept 

1 5.00 0.00 
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2 0.20 224.00 

3 0.14 243.06 

4 0.08 269.31 

5 0.02 305.70 

 

Figure 6 examines the effect of changing CC on the total cost and average utilization level. Note that 

the average utilization level is equal to the average utilization level of all used facilities in all periods. 

 

 

Figure 6. Effect of CC on Total Cost and Average Utilization 

 

The first observation from Figure 6 is that decreasing the CC results in an increase in the total cost 

and a decrease in the average utilization level. The latter result indicates that when carbon cap 

decreases, the firm needs to use more facilities to serve the demand. This behavior is mainly due to 

the fact that using one more facility to avoid congestion would help us with reducing emission of 

holding WIP that has been produced because of highly loaded facilities. This claim is also supported 

by Table 3, where cost percentage of each activity is reported. As one can see in the table below, the 

percentage of WIP holding cost decreases monotonically as CC decreases. It can also be noticed that 

at some of CC values, e.g. from 20600 to 20200, the average utilization level does not change. Taking 

a look at the cost components percentage, one can see that although the average utilization level 

remains constant, the FGI holding cost percentage increases while fixed cost percentage does not 
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change noticeably. This means the model chooses to produce in advance rather than to use more 

facilities. The same behavior happens when CC decreases from 19800 to 19000 which can be explained 

in the same manner.    

Table 3. Cost Components under different CCs 

Carbon 
Cap 

Production Fixed 
Raw 

Material 
Release 

WIP 
Holding 

FGI 
Holding 

Trans 

18200 21.21% 30.90% 28.28% 0.43% 1.28% 17.91% 

18600 21.28% 31.00% 28.38% 0.74% 0.75% 17.85% 

19000 21.36% 30.39% 28.48% 0.99% 0.91% 17.88% 

19400 21.42% 30.48% 28.56% 1.29% 0.44% 17.82% 

19800 21.46% 30.53% 28.61% 1.58% 0.00% 17.82% 

20200 21.52% 29.89% 28.69% 1.81% 0.34% 17.76% 

20600 21.55% 29.94% 28.74% 2.05% 0.00% 17.72% 

21000 21.58% 29.24% 28.93% 2.34% 0.25% 17.67% 

21400 21.58% 29.24% 28.93% 2.34% 0.25% 17.67% 

21800 21.58% 29.24% 28.93% 2.34% 0.25% 17.67% 

22200 21.58% 29.24% 28.93% 2.34% 0.25% 17.67% 

 

In what follows, we examine the effects of uncertainty in estimating each source of emission by 

changing the budget of uncertainty under different CC values.  

  

Figure 7. The effect of Uncertainty in Production Emission on 

Average Utilization (7a) and Total Cost (7b) 
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Figure 8. The effect of Uncertainty in WIP Holding Emission on 

Average Utilization (Figure 8a) and Total Cost (Figure 8b) 

 

 

Figure 9. The effect of Uncertainty in Transportation Emission on 

Average Utilization (Figure 9a) and Total Cost (Figure 9b) 
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Figure 10. The effect of Uncertainty in Setup Emission on Average 

Utilization (Figure 10a) and Total Cost (Figure 10b) 

 

 

Figure 11. The effect of Uncertainty in Raw Material Procurement 

Emission on Average Utilization (Figure 11a) and Total Cost (Figure 

11b) 

 

The main takeaways from Figures 7-11 are summarized as follows: 

Á Increasing uncertainty has a similar effect as that of decreasing the CC. The rationale behind this 

observation is as follows. Note that when CC increases the production-distribution decisions 

would be taken with less sensitivity to the amount of emission, whereas with a tight CC, the 

decision maker has more concern not to exceed the CC, which results in more costly solutions. 
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The same rationale can explain the effect of uncertainty on the optimal decisions. Specifically, 

by increasing the budget of uncertainty we are capturing more uncertainty in the emissions of 

activities, and consequently, we have more conservative solutions. This means that we suspect 

the emission to be higher than the nominal emission and this situation gets worse as the risk 

aversion level of the decision maker (budget of uncertainty) increases. Therefore, the solution 

should work under any realization of the emission level based on a specific CC. Although 

having such conservative solutions guarantees that we will not exceed the CC, it comes at the 

cost of robustness; the more robust a solution is, the more the operational cost would be.  

Á The effect of uncertainty on cost monotonically increases as CC decreases. Note that, at one hand, the 

uncertainty is defined on the amount of emission resulted from different activities, and 

increasing the budget of uncertainty means that the emission may have higher perturbation 

than the nominal emission. On the other hand, this is not surprising that making production-

distribution decision should be with utmost care in order to meet the limit on a tight CC. 

Therefore, having robust solutions, which requires a high level of budget of uncertainty, under 

a tight CC may lead to costly solutions. Moreover, the total cost monotonically increases in 

budget of uncertainty when CC decreases. This can be also observed from the above figures. 

Specifically, from Figures 6b, 7b, 8b, 9b, 10b, and 11b, having more robust solutions is more 

costly when the CC decreases either from 22,000 to 20,000 or from 21,000 to 20,000. That 

said, one can distinguish non-monotone increase in cost when the CC decreases from 21,000 

to 20,000 as appeared in figures 8b and 9b. Observe that the total cost significantly increases 

when budget of uncertainty increases for CC equal to 21,000 comparing to a tighter CC, 

namely 20,000. 

Á The effect of uncertainty is highly dependent on the level of emission. By comparing Figure 7-Figure 11, it 

is straightforward to verify that the uncertainty in the amount of emission of production 

activities has higher impact on both average utilization and total cost compared to other 

activities, i.e., holding WIP, transportation, and setup emission. This comes from the 

difference in the level of emission resulted from different activities.  

 

Table 4. Emission of different sources of emission (%) 

Production Transportation 
WIP 
Hold. 

Setup 
Raw 

Material 
FGI 
Hold. 

56.2 18.3 13.8 5.7 5.6 0.2 
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Therefore, this observation can be explained based on the contribution of each kind of activity 

toward the total emission. As one can see in Table 4, production, which has the most 

significant effect among different activities, has also the biggest share in the total emission. On 

the other hand, FGI holding which has the smallest share in the total emission has the least 

effect on the total cost. Furthermore, the effect of uncertainty in setup emission and raw 

material emission, which both have very close emission levels, are very much similar to each 

other. This brings us to the conclusion that the effect of uncertainty increases with the share 

of emission of each activity. 

 

4.2. Computational Results and Discussion  

In this section, we present the results of computational experiments and analyze the performance of 

our proposed formulations and Lagrangian Relaxation approach using a wide variety of instances with 

different sizes and parameters.  

 

4.2.1. Designing Test Problems 

In order to analyze the performance of the solution algorithm, we develop four different scenarios; (i) 

base case scenario, (ii) dominant setup cost, (iii) dominant transportation cost, and (iv) very tight CC.  

In developing the base case scenario, the model parameters are assumed to be equal to the parameters 

in Table 1. The budget of uncertainty is assumed to be equal to 5 for all parameters to maintain a 

certain level of uncertainty. The coefficient of variation in the robust model (′) is set to 1%. The gaps 

for the lower bound derived from solving the LP model and the LR are equal to: 

ὒὖ Ὃὥὴ
ὄὩίὸ ὊὩὥίὭὦὰὩ ὛέὰόὸὭέὲὒὖᶻ

ὄὩίὸ ὊὩὥίὭὦὰὩ ὛέὰόὸὭέὲ
 

ὒὙ Ὃὥὴ
ὄὩίὸ ὊὩὥίὭὦὰὩ ὛέὰόὸὭέὲὒὙ

ὄὩίὸ ὊὩὥίὭὦὰὩ ὛέὰόὸὭέὲ
 

The optimality tolerance for the Lagrangian problem was set to 10-2. The LB improvement procedure 

will stop if the UB has not been improved in the last 50 iterations. In setting the initial values of 

Lagrangian multipliers, we use the dual values of the corresponding constraints in LP relaxation of the 

problem. If the feasible solution from the heuristic contains facilities which are loaded less than 50%, 
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the algorithm sets those facilities free and solve the problem again. In that case, the feasible solution 

that gives the minimum total cost would be the best feasible solution.  

In order to have a dominant setup cost, the value of setup cost in Scenario ii is doubled compared to 

its value in Scenario i. The cost of fuel is tripled to construct Scenario iii. We then multiply CC with 

0.97 to generate a very tight CC for Scenario iv. We choose 0.97 to maintain the similar carbon 

reduction amount in all problem instances since multiplying CC by a factor less than 0.97 would be 

infeasible for some of the instances. 

Each problem is denoted by ( ), ,j i t  wherej , i , and t  are the number of potential facilities, demand 

regions, and periods, respectively. We set the number of facilities to 5, 10, 15, 25, and 50, the number 

of demand regions to 0.4, 0.6, and 0.8 times the number of potential facilities (to keep enough 

additional facilities to avoid congestion), and the number of periods to 5 and 10. Note that for 

experiments number 25-27, the Lagrangian relaxation approach could not find a decent optimal gap 

in a reasonable time for the 10 period instance. Therefore, we did not report the information on these 

instances in the following tables. 

In Tables 5-8, we present the results regarding the comparisons of LP and LR solutions for theses 27 

problem instances. All the numbers reported in the following tables are rounded to the nearest tenth. 

Regarding the Carbon Cap, we first run the model without a cap and measure the nominal emission 

for each of the instances. Since we did not consider uncertainty in measuring this value, putting CC 

equal to this value will give a relatively tight cap.   
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Table 5. Comparison of the bounds and heuristic performance: Base-Case Scenario 

  Cost Component (%) 

 

Gap 

 

 

No J.I.T Production 
WIP 
Hold. 

FGI 
Hold. 

Procurement Trans Setup 

 

LP LR 
FS 

Impv 

 
CPU Time (sec) 

1 5.2.5 21.3 0.2 0 28.4 17.2 32.9   9.9 2.7 3.7 15 

2 5.2.10 21.2 1.5 0.7 28.4 17.2 30.8  7.9 2.4 5.0 70 

3 5.3.5 21.5 1.1 0 28.7 14.8 34  12 2.9 6.7 44 

4 5.3.10 22.6 1.3 0 30.1 13.6 32.3  7.1 1.3 1.9 135 

5 5.4.5 21.6 2.7 0 28.8 17.8 29  7.0 0.7 0.0 80 

6 5.4.10 21.6 2.3 0.3 28.9 17.7 29.2  6.8 1.1 0.6 222 

7 10.4.5 22.9 0.8 0.2 30.5 12.3 33.2  9.1 1.8 0.1 116 

8 10.4.10 22.8 1.4 0.3 30.7 12.4 33.3  5.9 1.7 2.8 447 

9 10.6.5 23.3 1.4 0.2 31.4 12.6 32.2  9.8 0.9 0.0 367 

10 10.6.10 22.4 0.9 0 29.9 15.2 31.6  7.9 1.1 0.9 658 

11 10.8.5 22.6 0.6 0 30.1 14 32.7  7.3 1.3 2.7 302 

12 10.8.10 22.5 1 0..3 30 14.7 31.5  7.1 1.3 0.9 1093 

13 15.6.5 23 0.6 0 30.7 12.4 33.1  8.9 1.9 0.8 524 

14 15.6.10 22.9 0.5 0.2 30.5 11.4 34.4  7.5 2.8 2.3 4525 

15 15.9.5 23.1 0.8 0 30.8 12.1 33.2  8.3 1.6 3.4 540 

16 15.9.10 22.9 0.7 0.2 30.5 12.4 33.3  9.2 2.3 3.1 2983 

17 15.12.5 23.2 0.6 0.4 30.8 12.4 32.5  7.5 1.0 1.7 750 

18 15.12.10 23.2 0.8 0.2 31 12.2 32.5  7.4 1.1 1.5 2838 

19 25.5.5 23.5 1.3 0.4 31.4 10 33.4  9.0 2.7 3.2 646 

20 25.5.10 23.4 1.9 0.2 31.2 10.7 32.6  9.5 3.4 1.7 2451 

21 25.15.5 23.5 0.2 0 31.4 10.6 34.4  8.8 2.3 0.0 2131 

22 25.15.10 22.9 0.6 0.2 30.4 10.3 35.5  10.1 5.4 4.2 6771 

23 25.20.5 23.8 0.9 0 31.7 10.2 33.4  7.9 1.1 1.8 2355 

24 25.20.10 23.5 0.8 0 31.4 11.3 33  7.5 3.9 2.0 6846 

25 50.10.5 23.6 0.8 0.3 31.3 10.2 33.7  10.6 3.3 3.0 4400 

26 50.30.5 23.7 0.6 0 31.6 8.8 35.2  8.9 4.8 7.6 10384 

27 50.40.5 24 1.2 0 31.4 8.9 34.7  9.5 3.4 2.2 9039 

            

Min  21.2 0.5 0.0 28.4 8.8 29.0  5.9 0.3 0.0 15 

Max 24.0 2.7 0.7 31.7 17.8 35.2  11.7 4.8 9.8 10384 

Average 22.9 1.2 0.1 30.5 12.8 32.4  8.3 1.9 2.8 2249 
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Table 6. Comparison of the bounds and heuristic performance: Dominant Setup Cost Scenario 

  Cost Component (%) 

 

GAP (%)  

N
o 

J.I.T Production 
WIP 
Hold 

FGI 
Hold 

Procurement Trans. Setup 

 

LP LR 
FS 

Impv 

CPU 
Time 
(sec) 

1 5.2.5 16.7 0.6 0 22.3 14.5 45.9  9.5 0.4 8.1 6 

2 5.2.10 16.3 0.9 0.4 21.9 13.4 47.2  10.8 3.3 2.2 92 

3 5.3.5 17 0.9 0 22.8 11.7 47.5  9.3 0.8 2.7 52 

4 5.3.10 17 0.8 0 22.8 10.4 48  10.6 1.6 1.5 147 

5 5.4.5 16.8 2.1 0 22.3 13.8 45  9.4 0.2 0.0 61 

6 5.4.10 16 1.7 0.2 21.5 13.2 47.2  8.8 0.8 0.0 284 

7 10.4.5 17.3 0.1 0.1 23.4 9.4 48.5  8.2 0.8 2.1 169 

8 10.4.10 17.5 1.2 0.2 23.4 9.5 48.1  7.9 1 1.2 642 

9 10.6.5 17.5 1 0.2 23.4 9.4 48.4  9.3 0.6 0.0 262 

10 10.6.10 17.1 0.8 0.1 22.8 11.6 47.4  8.9 1.1 0.5 1248 

11 10.8.5 17.3 1.1 0.5 22.6 10.6 48  9.5 0.9 0.9 392 

12 10.8.10 17.2 1.4 0.1 23 11.3 47  9.5 0.9 1.9 1182 

13 15.6.5 17 0.9 0.3 22.7 9 50.1  13 4.2 10.2 368 

14 15.6.10 17.6 0.9 0.1 23.5 9 48.9  8.8 1.9 0.8 1926 

15 15.9.5 17.5 1.2 0.4 23.4 9.4 48.1  10.3 1.3 6.3 645 

16 15.9.10 17.5 1 0.2 23.4 9.6 48.3  9.4 1.2 3.1 4111 

17 15.12.5 17.5 1 0.2 23.5 9 48.5  9.7 1 2.4 1549 

18 15.12.10 16.9 0.6 0 24.1 10.1 48.3  8.7 1.7 0.0 3678 

19 25.5.5 17.2 1.4 0 23 7.5 51  13.8 4.1 1.9 801 

20 25.5.10 17.7 1.7 0 23.6 8.6 48.3  9.5 2.3 3.7 3486 

21 25.15.5 17.8 0.8 0.2 23.8 7.7 50  11.1 1 2.2 2242 

22 25.15.10 16.8 0.1 0 22.4 7.5 53.2  15 4.2 9.9 7183 

23 25.20.5 17.9 0.9 0 23.8 7.7 49.6  9.9 0.9 0.0 5298 

24 25.20.10 17.7 1.1 0 23.6 8.5 49.1  10.2 4.1 4.3 6765 

25 50.10.5 17.3 0.5 0 23 7 52  14.2 5 14.7 5030 

26 50.30.5 17.7 0.3 0 23.6 6.5 51.8  11.9 3.7 8.1 8948 

27 50.40.5 16.6 0.8 0.2 23.2 8.7 50.5  9.7 3.1 2.1 10263 

            

Min  16.0 0.1 0.0 21.5 6.5 48.0  7.9 0.2 0.0 6 

Max 17.9 2.1 0.5 24.1 14.5 52.2  15.0 5.0 14.7 10263 

Average 17.2 1.0 0.1 23.0 9.8 48.7  10.3 1.9 3.4 2475 
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Table 7. Comparison of the bounds and heuristic performance: Dominant Trans. Cost Scenario 

  Cost Component (%) 

 

Gap 

  

 

No J.I.T Production 
WIP 
Hold. 

FGI 
Hold 

Procurement Trans. Setup 

 

LP LR 
FS  

Impv 

 CPU 
Time 
(sec) 

1 5.2.5 15.9 0.3 0 21.1 38.3 24.4  8.6 2 0  26 

2 5.2.10 15.7 1.1 0.4 21.1 37.7 24  8.4 3.3 0  73 

3 5.3.5 17.1 0.9 0.1 22.9 35.3 23.8  6.7 0.4 0  28 

4 5.3.10 17.9 1.2 0 23.9 32.1 24.8  5.9  0.2    0     210 

5 5.4.5 15.8 1.9 0 21.1 38.8 22.3  6.5 1.2 0  61 

6 5.4.10 16 1.9 0.2 21.4 38.8 21.7  5.7 0.5 0  455 

7 10.4.5 18.4 0.6 0.2 24.5 29.7 26.6  8.2 1.5 0  160 

8 10.4.10 18.5 1.2 0.2 24.9 29.8 25.4  5.4 0.7 0  623 

9 10.6.5 17.4 1 0 22.8 34.1 24.7  7.6 0.6 0.2  581 

10 10.6.10 17.2 0.8 0 22.9 34.9 24.3  6.1 0.9 1.7  878 

11 10.8.5 17.6 0.4 0.2 23.5 32.9 25.5  7.1 1.3 0.4  494 

12 10.8.10 17.4 0.8 0.2 23.2 34 24.3  6.9 1.2 0.3  1513 

13 15.6.5 18.8 0.9 0 25 28.6 26.7  8.4 1.4 3.1  478 

14 15.6.10 19 0.4 0.4 25.3 26.8 28.1  7.7 2.9 1.4  1224 

15 15.9.5 18.6 0.6 0 24.8 29.3 26.7  8.4 1.6 0.7  1070 

16 15.9.10 18.3 0.9 0.2 25.2 29.8 25.6  9.3 0.7 0  623 

17 15.12.5 18.7 0.3 0.6 24.8 29.3 26.2  7.4 0.9 1.2  1358 

18 15.12.10 18.7 0.7 0 24.9 29.3 26.4  6.7 1 0.6  3954 

19 25.5.5 20 1.4 0.1 26.6 23.5 28.3  9.6 2.4 4  622 

20 25.5.10 20.1 1.7 0.1 26.9 23.8 27.4  11.0 1.6 4.5  2749 

21 25.15.5 19.7 0.3 0 26.3 25.3 28.4  9.5 1.4 2.3  5173 

22 25.15.10 19.3 0.2 0 25.7 25.2 29.6  10.0 1.3 4.8  7098 

23 25.20.5 19.8 0.8 0 26.3 25.5 27.7  7.8 1.4 1.4  3586 

24 25.20.10 18.9 0.5 0.1 24.9 28.1 27.5  6.2 2.1 1.5  10294 

25 50.10.5 19.1 0.2 0 25.8 26.3 28.6  7.5 2.0 0.9  7412 

26 50.30.5 19.3 0.3 0.1 26.1 26.2 27.8  11.2 1.9 1.8  7108 

27 50.40.5 20.4 0.1 0 27.3 22.8 29.4  8.3 2.7 1.9  8702 

             

Min  15.7 0.1 0.0 3.9 22.8 2.3  5.4 0.2 0.0  26 

Max 20.4 1.9 0.6 27.3 38.8 29.6  11.2 3.3 4.8  10294 

Average 18.3 0.8 0.1 23.7 30.2 24.7  7.9 1.4 1.4  2464 
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Table 8. Comparison of the bounds and heuristic performance: Tight Carbon Cap Scenario 

  Cost Component (%) 

 

Gap 

  

 

No J.I.T Production 
WIP 
Hold. 

FGI 
Hold 

Procurement Trans. Setup 

 

LP LR 
FS  

Impv 

 CPU 
Time 
(sec) 

1 5.2.5 20.7 0 0 27.6 16.7 34.9  12.7 4.8 0.0  16 

2 5.2.10 17.7 0 1.7 29.5 15.8 35.1  8.8 5.9 1.6  55 

3 5.3.5 21.6  0 0 28.9 15.2 34.2  9.6 4.1 1.9  27 

4 5.3.10 22.2 0.4 0.5 29.6 13.6 33.7  8.9  1.3   2   122 

5 5.4.5 21.2  1 0.4  28.3 17.8 31.2  8 2.7 1.5  52 

6 5.4.10 21.3 0.7 0.9 28.4 17.7 31  7.9 2.4 0.0  162 

7 10.4.5 22.9  0.7 0.3  30.5 12.3 33.2  9.9 1.8 0.0  122 

8 10.4.10 22.5 0.2 1.6 30 12.2 33.3  7.2 1.4 0.6  338 

9 10.6.5 22 0.2 0.5 29.4 15.3 32.4  8 2.3 0.2  176 

10 10.6.10 22.3  0.6 0.2 29.7  15.2 31.9  7.3 1.5 0.9  813 

11 10.8.5 22.2 0 0.2 29.7 14 33.8  9 2.6 0.6  240 

12 10.8.10 22.5  0.9 0.4 30  14.7 31.5  8 1.4 1.0  1201 

13 15.6.5 22.7 0.1 0.7 30.3 11.7 34.5  9.6 3.4 2.7  289 

14 15.6.10 23.1  0.1 0.8 30.8 10.9 34.2  6.7 3.1 2.8  997 

15 15.9.5 23  0.3 0 30.7 12.1 33.7  9.1 2 3.1  646 

16 15.9.10 22.5  0.6 0.4 30  14.9 31.6  9.8 1.3 0.9  2422 

17 15.12.5 23.2  1 0 30.8 12.3 32.6  7.7 1 0.0  2100 

18 15.12.10 23.2  0.5 0.3  31 12.2 32.7  7 1.3 1.3  2482 

19 25.5.5 23.3 0.6 0.9 31 10 34.2  11.3 4.1 9.6  495 

20 25.5.10 23.4 1.2 0.2 21.2 10.8 33.1  9 2.4 4.3  7344 

21 25.15.5 23.6  0.2 0.1 31.5 10.4 34.1  8.4 1.6 1.1  1778 

22 25.15.10 23.4  0.5 0 30.7 12.1 33.3  10.1 1.5 0.4  4306 

23 25.20.5 23.7 0.6 0 31.7 10.2 33.6  7.2 1.3 1.8  2677 

24 25.20.10 23.8 0.9 0 27.2 11.9 36.2  11.1 3.1 2.5  5461 

25 50.10.5 23.7 0.7 0.2 31.8 9.2 34.2  8.8 1.8 6.4  3855 

26 50.30.5 23.4 0.3 0 31.9 10.2 34.2  9.2 2.3 6.1  8098 

27 50.40.5 24 0 0.1 32.1 8.9 34.9  8 4.9 1.3  8851 

             

Min  17.7 0.0 0.0 21.2 8.9 31.0  7.2 1.0 0.0  16 

Max 24.0 1.2 1.7 32.1 17.8 36.2  12.7 5.9 9.6  8851 

Average 22.4 0.4 0.3 29.6 13.3 33.3  9.2 2.7 1.9  2042 
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Based on the results from solving different instances in Tables 5-8, we make the following 

observations:  

Á The results indicate that the heuristic algorithm finds good feasible solution in a reasonable 

amount of time for all instances. Specifically, it can solve any instance in less than 10384 

seconds (2308 seconds on average for all 108 instances). The largest problem contains 40 

demand regions, 50 facilities, and 5 periods, which was solved in 9039 seconds with a 3.4% 

gap. When solving the problem for larger instances, we observed larger gap for the Lagrangian 

relaxation method and the heuristic. For example, for a problem with 40 demand regions, 50 

facilities, and 10 periods, the LR gap is equal to 22% which is obtained in 14292 seconds. We 

would like to note that a 22% gap on the feasible solution does not necessarily mean an 

inappropriate feasible solution, since such a large gap may be because of a worse lower bound 

obtained from the LR method. This implies that the real gap between the feasible and the 

optimal solution is less than 22%.  

Á The gap between the lower bound, obtained from the LR method, and the feasible solution 

obtained from the heuristic algorithm, varies between 0.2% and 5.1% with an average of 2.1% 

for all instances. In terms of the effectiveness of our proposed approach, the gap between the 

lower bound obtained from LP and the feasible solution obtained from our proposed heuristic 

can be up to 14.2% with an average of 10%. This confirms the efficiency of the Lagrangian 

relaxation method applied in our solution methodology. 

Á The time needed to obtain the feasible solution through heuristic is negligible; i.e., almost 

zero for any size of instance. It took nearly 1 to 2 seconds to solve the heuristic to build the 

feasible solution in most of the problem instances. The maximum computation time to obtain 

the feasible solution for a big problem is 6.2 seconds while the total CPU time is 10384 

seconds (less than 0.06%). Such a low computation time along with the really small gap shows 

that proposed heuristic has been successful in finding a good feasible solution in a reasonable 

amount of time.   

Á The improvement achieved in the value of the objective function is reported in the òFS impvó 

column of the tables. It is obtained by dividing the difference between the first and second 

feasible solutions over the second heuristic. Note that the second solution usually dominates 

the first feasible solution since we may have relaxed some of the constraints in the second 

run. As one can verify from the results, the second-run solution tends to be a better than the 
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first-run solution in 88.9% of the instances with an average of 2.5% and the maximum of 

14.7% improvement in the objective value. 

In the tables above, we noticed that when the number of facilities are relatively large and the number 

of periods is 10, the gap increases significantly. For example, in experiment 27, when the number of 

periods was increased to 10, the LR gap and the heuristic bound are 19.6% and 22%. We would also 

be interested in exploring the performance of solution methodology on some problem instances of 

larger size. We develop these problem instances of interest by increasing the number of facilities in 

experiments 26 and 27 to 60 and 70 facilities. In Tables 9-12, we provide the results of same analysis 

on this new set of problem instances.  

We also solve the original problem without applying our solution methodology using CPLEX which 

helps us to verify how efficient our proposed approach is compared to that if CPLEX solves the 

problem. The gap between the lower and upper bounds obtained from CPLEX is shown as òCPLEX 

gapó. In order to have a fair comparison, we allow the CPLEX to run for a period of 14400 seconds 

(4 hours) and then compare the gap obtained from our methodology with the one obtained from 

CPLEX. 

 

Table 9. Comparison of the bounds and heuristic performance: Base-Case Scenario for large instances 

  

 

Gap (%) 

 

 

N
o 

J.I.T 

 

LP LR CPLEX 
FS 

Impv 

 
CPU 
Time 
(sec) 

1 25.15.5  8.8 2.3 0.7 1.5 2131 

2 25.15.10  10.1 5.4 NA 4.2 6771 

3 25.20.5  7.9 1.1 0.3 1.8 2355 

4 25.20.10  7.5 3.9 NA 2.0 6846 

5 50.10.5  10.6 3.3 1.5 3.0 4400 

6 50.30.5  8.9 4.8 1.9 7.6 10384 

7 50.40.5  9.5 3.4 NA 2.2 9039 

8 60.30.5  11.9 7 NA 5.6 9143 

9 60.40.5  9.8 5.8 NA 5.4 10278 

10 70.30.5  13.3 8.5 NA 5.2 13541 

11 70.40.5  14.7 11.1 NA 5.7 12648 
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Min   7.5 1.1 0.3 1.5 2131 

Max  14.7 11.1 NA 7.6 13541 

Average  10.3 5.1 NA 4.0 7958 

 

Table 10. Comparison of the bounds and heuristic performance: Dominant Setup Cost Scenario for large instances 

  

 

Gap 

 

 

No J.I.T 

 

LP LR CPLEX 
FS  

Impv 

CPU 
Time (sec) 

1 15.25.5  11.1 1 0.9 2.2 2242 

2 15.25.10  15 4.2 1.7 9.9 7183 

3 20.25.5  9.9 0.9 0.4 1.3 5298 

4 20.25.10  10.2 4.1 NA 4.3 6765 

5 10.50.5  14.2 5 0.8 14.7 5030 

6 30.50.5  11.9 3.7 NA 8.1 8948 

7 40.50.5  9.7 3.1 NA 2.1 10263 

8 30.60.5  14.4 5.9 NA 10.4 11344 

9 40.60.5  15.3 5.6 NA 3.7 10738 

10 30.70.5  12.2 7.4 NA 2.9 12872 

11 40.70.5  15.9 11.9 NA 4.1 13064 

       

Min   9.7 0.9 0.4 1.3 2242 

Max  15.9 11.9 NA 14.7 13064 

Average  12.7 4.8 NA 5.8 8522 

 

Table 11. Comparison of the bounds and heuristic performance: Dominant Trans. Cost Scenario for large instances 

  

 

Gap 

  

 

No J.I.T 

 

LP LR CPLEX 
FS  

Impv 

 
CPU  

Time (sec) 

1 15.25.5  9.5 1.4 0.6 2.3  5173 

2 15.25.10  10.0 1.3 0.3 4.8  7098 

3 20.25.5  7.8 1.4 0.3 1.4  3586 

4 20.25.10  6.2 2.1 0.7 1.5  10294 

5 10.50.5  7.5 2.0 0.7 0.9  7412 



51 
 

6 30.50.5  13.6 1.9 NA 1.8  7108 

7 40.50.5  8.1 2.7 NA 1.9  8702 

8 30.60.5  15.8 6.9 NA 4.8  9433 

9 40.60.5  17.2 10.2 NA 2.9  12169 

10 30.70.5  10.6 5.7 NA 2.1  16054 

11 40.70.5  13.2 15.6 NA 5.0  16581 

        

Min   6.2 1.3 0.3 0.9  3586 

Max  17.2 15.6 0.7 5.0  16581 

Average  10.9 4.7 0.5 2.7  9419 

 

Table 12. Comparison of the bounds and heuristic performance: Tight Carbon Cap Scenario for large instances 

  

 

Gap 

  

 

No J.I.T 

 

LP LR CPLEX 
FS  

Impv 

 
CPU  

Time (sec) 

1 15.25.5  8.4 1.6 0.3 1.1  1778 

2 15.25.10  10.1 1.5 NA 0.4  4306 

3 20.25.5  7.2 1.3 0.2 1.8  2677 

4 20.25.10  11.1 3.1 NA 2.5  5461 

5 10.50.5  8.8 1.8 0.9 6.4  3855 

6 30.50.5  9.2 2.3 NA 6.1  8098 

7 40.50.5  8  4.9 NA 1.3  8851 

8 30.60.5  12.9 4.8 NA 2.9  8694 

9 40.60.5  13.9 5.3 NA 4.8  9281 

10 30.70.5  14.6 6.3 NA 3.2  14052 

11 40.70.5  15.9 10.3 NA 1.9  12932 

        

Min   7.2 1.3 0.2 0.4  1778 

Max  15.9 10.3 NA 6.4  14052 

Average  10.9 3.9 NA 2.9  7271 

 

Based on the results from solving larger problem instances in tables 9-12, we make the following 

observations:  

Á The results provided in the tables 9-12 indicate that the heuristic succeeds in finding good 

feasible solution in a reasonable amount of time for all instances. Specifically, it can solve any 
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instances provided in less than 16581 seconds. The average LR gap and CPU time for all large 

instances was equal 4.6% and 8293 seconds, respectively. The largest gap is equal to 15.6 for 

experiment with 40 demand region, 70 facilities, and 5 periods in Scenario iii. When the 

number of facilities was increased to 80, it was noticed that the LR gap increased significantly 

and was equal to 18.3%.  We also run the model for larger instances and the gaps were 

deteriorating as we increased the size of the problem.  

Á Similar to the experiments in tables 5-8, the second solution dominates the first feasible 

solution for large instances as well. In particular, as one can verify from the results, the 

second-run solution tends to be a better one than the first-run solution in all of the instances 

with an average of 3.9% and the maximum of 14.7% improvement in the objective value. 

This observation confirms the effectiveness of our proposed heuristic.   

Á Finally, we used CPLEX to solve the original problem without applying our solution 

methodology. Note that in some cases CPLEX could not find a feasible solution, which are 

indicated by òNAó (Not Available) in the tables above. In most cases where CPLEX could 

not find even a feasible solution, our solution methodology could successfully find reasonable 

gaps.  

In summary, our solution methodology performs very well as it is able to obtain good solutions for 

all the instances of our numerical experiments. In order to explore the performance of our 

methodology, we compare the gap obtained from our approach to those obtained from the LP and 

CPLEX. The results suggest that our heuristic finds significantly better gaps than those has been found 

by the LP in a reasonable amount of time. We also show that our heuristic gives acceptable gaps for 

the large size instances of problem while the CPLEX could not obtain a feasible solution. The 

following chapter includes a summary of our study and provide some avenues for future work.  
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Chapter 5 

Conclusion and Future 

Research Avenues 

 

The objective of this thesis is to study a multi-period production distribution planning problem for a 

multiple facility network with GHG consideration. We modelled the GHG emissions generated by 

production, holding inventory, transportation, and establishing a facility by adding a constraint that 

puts an upper limit on the total emission produced. We also considered the impact of congestion on 

resource efficiency using nonðlinear CFs. To overcome the nonlinearity issue of CFs, we used a 

piecewise linearization approach, which, may generate some approximation errors. We then developed 

an algorithm to minimize the possible approximation error. To deal with the uncertainty that exists in 

estimating the real emission of supply chain activities, a robust optimization approach has been utilized 

that finds the best solution given all possible scenarios. We developed a Lagrangian relaxation 

approach to solve the large size problem instances. To illustrate the impact of including environmental 

concerns and uncertainty associated with the supply chain activities into our model, we conducted a 

numerical study. We further provided some examples to examine the performance of our proposed 

solution methodology.  

The results indicate that decreasing the CC would result in making decisions that contain producing 

less emission. Particularly, in our experiments, the optimal solutions suggest to use more facilities 

when the CC is decreased. Hence, there will be less congested facilities, and consequently, less WIP 

levels in the facilities. We then assessed the impact of uncertainty on the operational decisions by 

changing the budget of uncertainty. The main insights from these experiments are summarized below:  
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(i) Increasing uncertainty has a similar effect as decreasing the CC does.  

(ii) The effect of uncertainty on cost monotonically increases as CC decreases. 

(iii) The effect of uncertainty is highly dependent on the level of emission. 

Comparing the effect of changing CC and the budget of uncertainty on the operational decisions, we 

concluded that increasing the uncertainty in estimating the emission associated with each activity of 

the supply chain has a similar effect on the operational decisions. Moreover, our findings suggest that 

the effect of uncertainty increases when CC decreases. Note that this observation is completely in line 

with the first observation. In the final observation, we noticed that the effect of uncertainty increases 

as the emission level of an emission source increases. We noticed that the effect of uncertainty 

diminishes when the emission level of that source is relatively small compared to other sources.  

We compared the performance of our proposed solution methodology in terms of optimality gap and 

computation time with the one obtained from LP model and running CPLEX without using our 

solution algorithm. We found that our solution methodology performs very well as it is able to obtain 

good solutions for all the instances reported in the numerical experiment. Comparing the gap obtained 

from our approach to those obtained from the LP and CPLEX, we showed that the optimality gaps 

of our solutions are better than the gaps of those created by the LP in a reasonable amount of time. 

We showed that our heuristic yields good gaps for the big size instances while the CPLEX could not 

even obtain a feasible solution.  

This research can be extended in a number of directions. One direction for the future work can be 

related to the carbon regulations. Considering other types of environmental regulations, such as cap-

and-trade and carbon tax, and examining how these regulations will affect the optimal solution is 

subject to further investigation. Considering cap-and-trade system, the uncertainty in price of carbon 
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allowances, which has been studied in the Economics literature, can be an interesting extension of this 

study.  

Future studies might consider different features in the model such as allowing backorder or uncertainty 

in demand. Considering different setting in which different means of transportation (green and not green) 

or different raw materials with different impacts on the environment and different prices can be 

selected. In our model, we consider only one transportation mode. It is worthwhile to explore the role 

of transportation in cost structure and emissions abatement. For example, considering different type 

of transportation modes with different capacities and even different emission parameters could be 

another extension of this work. A wide variety of choices for the transportation means can complicate 

the problem even further. The decision maker may have multiple choices for raw material.  The raw 

materials could differ in terms of price and their environmental impacts, i.e. the greener the raw 

material, the more expensive it will get.  

Studying different heuristic methods to solve the problem would also be an extension of this thesis. 

The performance of other solution methodology such as, Subgradient optimization algorithm which 

is another approach to find the best LB, deserves further investigation.   

In closing, we provided some insights on considering congestion and uncertainty in emission of supply 

chain activities in a production planning and demand distribution problem subject to environmental 

regulations. We examined the impact of considering congestion and environmental constraints, which 

has not been simultaneously studied in the literature before, on the solution of this problem. We 

proposed a solution methodology based on Lagrangian relaxation approach that provided feasible 

solution in a reasonable amount of time.  
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Appendix 

GAMS Code: 

 

OPTION MIP = Cplex; 

OPTION LP = Cplex; 

OPTION optcr=0; 

OPTION ResLim = 120; 

option limrow=1; 

Set iter/1*3000/; 

 

sets 

i        regions / 1*I / 

j        Facilities /1*J/ 

t        periods /1*T/ 

p        Possible points /1*20000/; 

 

set 

DP(p)    Dynamic subset 

FP(p)    Future points  ; 

 

Parameters 

a(p)    slope of lines 

b(p)     intersection   ; 
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Set y/1*2000/; 

Set Dh(y); 

Set Fh(y); 

 

 

PARAMETER Sigma(i,j,t); 

PARAMETER Nu(j,t); 

 

 

 

**********SUB PROBLEM ******************  

****************************************  

 

a(p) = /Set of Initial Slopes/ 

; 

b(p)=   /Set of initial Intercepts/ 

; 

 

set  DP(p)   /1*19/; 

 

 

Table d(i,j)      Distance 
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         ; 

 

Table lambda(t,i)        Demand at period t in region i 

; 

*** Scalars declaration *** 

scalar c    cost of production // ; 

scalar h    holding cost of WIP // ; 

scalar tau  holding cost of FGI // ; 

scalar r    raw material cost // ; 

scalar cf   cost of fuel //; 

scalar co   cost of Selecting //; 

 

 

scalar cp   emission  of production "c prime" // ; 

scalar hp   holding emission of WIP //;  

scalar taup holding emission of FGI //; 

scalar rp   raw material emission //; 

scalar cfp  Emission of fuel //; 

scalar cop  Emission of Selecting //; 

 

scalar fcr  fuel consumption rate per product//; 

scalar GammaC    BO C //;  

scalar GammaH    BO C / /;  
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scalar GammaTAU  BO C //;  

scalar GammaR    BO C// ;  

scalar GammaCF   BO C // ;  

scalar GammaFixed BO C //;  

 

scalar SmallGamma    BO  //;  

 

 

scalar CC   Carbon Cap //;  

 

Parameter EpsilonMP//;  

Table vMPNeg(i,t) 

/initial multipliers/; 

 

Table vMPPlu(i,t) 

/initial multipliers/; 

 

Parameter Dist(i); 

scalar MaxiPro Max Production rate //;  

scalar DistancePar //;  

 

Variables 

zobj             Objective function 



67 
 

W(t)           WIP at the end of period t 

BegWIP(t)      Beginning WIP in period t 

F(t)           FGI at the end of period t 

M(t)           Raw material release 

X(t)           TH during period t 

alpha(i,t)     fraction of demand of i allocated to facility j at period t 

BinServ(t)     If used or not 

 

 

thetaC(t)      Dual for RO 

BetaC         Dual for RO 

thetaH(t)      Dual for RO 

BetaH         Dual for RO 

thetaTAU(t)    Dual for RO 

BetaTAU       Dual for RO 

thetaR(t)      Dual for RO 

BetaR        Dual for RO 

thetaCF(t)     Dual for RO 

BetaCF        Dual for RO 

thetaFixed(t)  Dual for RO 

BetaFixed     Dual for RO; 

 

Binary variable    BinServ(t) ; 
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positive variables BegWIP(t),n(i,t),W(t),F(t),M(t),X(t),alpha 

(i,t),TotalEmission(t),thetaC(t),BetaC,thetaH(t),BetaH,thetaTAU(t),BetaTAU,thetaR(t),BetaR,thetaC

F(t),BetaCF,thetaFixed(t),BetaFixed; 

 

alpha.up(i,t)=1; 

x.up(t) = 350 ; 

 

 

Equations 

cost          cost 

BWIP(t)     Balance Equation for WIP 

BFGI(t)     Balance Equation for FGI 

CPC(p,t)    Clearing Function 

BinCons(t)  For Binary Variable 

 

BegWIPCons(t) Begining WIP 

 

CRO(t)      Dual Constraint 

HRO(t)      Dual Constraint 

TAURO(t)    Dual Constraint 

RRO(t)      Dual Constraint 

CFRO(t)     Dual Constraint 

FixedRO(t)  Dual Constraint 
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; 

 

 

cost                    .. zobj =e= sum[(t), ( c*(x(t)) + W(t)*h + F(t)*tau + M(t)*r + 

sum(i,[fcr*alpha(i,t)*lambda(t,i)] *DistancePar*Dist(i)*cf)+ co*BinServ(t) )]+ 

EpsilonMP*( sum[ (t), [ cp*x(t) + W(t)*hp + F(t)*taup + M(t)*rp + 

sum(i,  [ fcr*alpha(i,t)*lambda(t,i)] *DistancePar *Dist(i)*cfp)+ cop*BinServ(t) ]  ] + 

sum[(t),thetaC(t)+thetaH(t)+thetaTau(t)+thetaR(t)+thetaCF(t)+thetaFixed(t)]+ 

[BetaC*GammaC+BetaH*GammaH+ BetaTAU*GammaTAU+BetaR*GammaR+ 

BetaCF*GammaCF+BetaFixed*GammaFixed  ] ) 

+ sum((i,t),vMPNeg(i,t)*((alpha(i,t)))) -sum((i,t),vMPPlu(i,t)*(alpha(i,t))) 

; 

 

 

BWIP(t)               .. W(t) - W(t-1) - M(t) + x(t) =e= 0  ; 

BFGI(t)               .. F(t)- F(t-1) - x(t) + sum(i,alpha(i,t)*lambda(t,i)) =e= 0 ; 

BegWIPCons(t)         .. BegWIP(t) =e=  W(t-1)+M(t); 

 

CPC(DP,t)             .. x(t)-a(DP)*(BegWIP(t)) =l= b(DP); 

 

 

BinCons(t)            .. x(t) =l= MaxiPro*BinServ(t) ; 
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CRO(t)                .. BetaC+        thetaC(t)      =g= cp*x(t)*SmallGamma; 

HRO(t)                .. BetaH+        thetaH(t)      =g= W(t)*hp*SmallGamma; 

TAURO(t)              .. BetaTAU+      thetaTAU(t)    =g= F(t)*taup*SmallGamma; 

RRO(t)                .. BetaR+        thetaR(t)      =g= M(t)*rp*SmallGamma; 

CFRO(t)               .. BetaCF+       thetaCF(t)     =g= sum(i,  [ fcr*alpha(i,t)*lambda(t,i) ] *DistancePar 

*Dist(i)*cfp)*SmallGamma; 

FixedRO(t)            .. BetaFixed+    thetaFixed(t)  =g= cop*BinServ(t)*SmallGamma; 

 

 

 

Model DemandAllocation /cost, 

BWIP,BFGI,BegWIPcons,CPC,BinCons,CRO,HRo,TAURO,RRO,CFRO,FixedRO/; 

DemandAllocation.OptFile=1; 

 

 

****File opt Cpelx option file /cplex.opt/; 

**put opt; 

**put 'rhsrng Carboncap(t)'/; 

**putclose opt; 

 

****************************END OF SUB PROBLEM **************************  

************************Beginning OF Master PROBLEM ***********************  
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Parameter WMP(y,t,j)           WIP at the end of period t; 

Parameter BegWIPMP(y,t,j)      Begining WIP in period t 

Parameter FMP(y,t,j)           FGI at the end of period t 

Parameter MMP(y,t,j)           Raw material release 

Parameter XMP(y,t,j)           TH during period t 

Parameter alphaMP(y,i,j,t)     fraction of demand of i allocated to facility j at period t 

Parameter BinServMP(y,j,t)     If Servicing or not 

 

 

Parameter thetaCMP(y,j,t)      Dual for RO; 

Parameter BetaCMP(y,j)         Dual for RO ; 

Parameter thetaHMP(y,j,t)      Dual for RO  ; 

Parameter BetaHMP(y,j)         Dual for RO   ; 

Parameter thetaTAUMP(y,j,t)    Dual for RO    ; 

Parameter BetaTAUMP(y,j)       Dual for RO     ; 

Parameter thetaRMP(y,j,t)      Dual for RO       ; 

Parameter BetaRMP(y,j)         Dual for RO       ; 

Parameter thetaCFMP(y,j,t)     Dual for RO        ; 

Parameter BetaCFMP(y,j)        Dual for RO         ; 

Parameter thetaFixedMP(y,j,t)  Dual for RO            ; 

Parameter BetaFixedMP(y,j)     Dual for RO           ; 

parameter thetaFactor(y); 
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Set Dh(y) /1*1/; 

 

Variables 

ObjMP 

Epsilon 

Vneg(i,t) 

Vplu(i,t) 

thetaa; 

 

thetaa.up =   10000000; 

 

positive variables 

Epsilon,vplu(i,t),vneg(i,t); 

 

Vneg.up(i,t)= 10000000; 

Vplu.up(i,t)= 10000000; 

 

equation 

CostMP 

Constraint(y); 

 

 

CostMP    ..  ObjMP =e= -CC*Epsilon - sum((i,t), vneg(i,t)) +sum((i,t), vplu(i,t))+ thetaa; 
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Constraint(Dh)..  thetaa*thetaFactor(Dh) =l= thetaFactor(Dh)*( sum[(t,j), ( c*(xMP(Dh,t,j)) 

+ WMP(Dh,t,j)*h + FMP(Dh,t,j)*tau + MMP(Dh,t,j)*r + sum(i,[fcr*alphaMP(Dh,i,j,t)*lambda(t,i) 

] *DistancePar*D(i,j)*cf)+co*BinServMP(Dh,j,t) )] 

+Epsilon*( sum[ (t,j), [ cp*xMP(Dh,t,j) + WMP(Dh,t,j)*hp + FMP(Dh,t,j)*taup + MMP(Dh,t,j)*rp 

+sum(i,  [ fcr*alphaMP(Dh,i,j,t)*lambda(t,i) ] *DistancePar *D(i,j)*cfp)+ cop*BinServMP(Dh,j,t) ]  ]+ 

sum[(j,t),thetaCMP(Dh,j,t)+thetaHMP(Dh,j,t)+thetaTauMP(Dh,j,t)+thetaRMP(Dh,j,t)+thetaCFMP(

Dh,j,t)+thetaFixedMP(Dh,j,t)]+ sum[j,BetaCMP(Dh,j)*GammaC+BetaHMP(Dh,j)*GammaH+ 

BetaTAUMP(Dh,j)*GammaTAU+BetaRMP(Dh,j)*GammaR+ BetaCFMP(Dh,j)*GammaCF+ 

BetaFixedMP(Dh,j)*GammaFixed  ] ) 

 

+ sum((i,t),vneg(i,t)*(sum(j,alphaMP(Dh,i,j,t))))-sum((i,t),vplu(i,t)*(sum(j,alphaMP(Dh,i,j,t))))    ); 

 

Model MP /CostMP,Constraint/; 

 

 

***************End of MP**************************  

****** Parameter For COnvergence of LB ********* 

 

Set Iteration /1*200/; 

scalar Converged; 

Converged = 0; 

parameter Convrg; 

Convrg(t,j) = 0; 
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Parameter XLevel; 

Parameter BegWIPLevel; 

Parameter RealBegWIP; 

Parameter IterObjValue; 

Parameter error; 

Parameter best; 

Parameter NoOpenFacilty; 

Parameter UtilLevel; 

 

Parameter PeriodicAveUtil; 

 

Parameter TOtalWorkInProcess; 

Parameter Transportation; 

Parameter TOtalEmissionBudget; 

Parameter Rawtotal; 

Parameter Prototal; 

Parameter Fixtotal; 

 

*************Parameter for Convergence of LB*************** 

Scalar ConvergedLB; 

ConvergedLB = 0; 

Scalar LB/-10/; 

Parameter TempLB(iter); 
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Parameter  iterationLB(iter); 

 

Parameter TempUB(iter); 

Scalar UB/inf/; 

Parameter IterationUB(iter); 

Parameter  IterEpsilonMP(iter); 

Parameter  iterVMPPlu(iter,i,t); 

Parameter  iterVMPNeg(iter,i,t); 

Parameter thetapar; 

Parameter thetaIter; 

Parameter KSUB; 

Parameter EpsilonIter(iter); 

Parameter CX; 

 

 

 

Parameter           TempW(t,j)   ; 

Parameter           TempBegWIPMP(t,j)   ; 

Parameter           TempFMP(t,j) ; 

Parameter           TempMMP(t,j)  ; 

Parameter           TempXMP(t,j)  ; 

Parameter           TempalphaMP(i,j,t); 

Parameter           TempnMP(i,j,t)     ; 
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Parameter           TempBinServMP(j,t)  ; 

 

Parameter           TempthetaCMP(j,t)      ; 

Parameter           TempBetaCMP(j)         ; 

Parameter           TempthetaHMP(j,t)       ; 

Parameter           TempBetaHMP(j)      ; 

Parameter           TempthetaTAUMP(j,t)        ; 

Parameter           TempBetaTAUMP(j)          ; 

Parameter           TempthetaRMP(j,t)            ; 

Parameter           TempBetaRMP(j)           ; 

Parameter           TempthetaCFMP(j,t)          ; 

Parameter           TempBetaCFMP(j)            ; 

Parameter           TempthetaFixedMP(j,t)           ; 

Parameter           TempBetaFixedMP(j)               ; 

Parameter           GAP(iter); 

 

Parameter Zobject(j); 

 

Parameter CheckLoop(iter); 

CheckLoop(iter)=0; 

Parameter NoImprovement(iter); 

Parameter FinalGap; 

 Parameter CPUTime; 
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CPUTime=0; 

Parameter CPUTimeMP; 

CPUTimeMP=0; 

Parameter TotalCPUtime; 

Parameter TotalCPUtimeforFUB; 

Parameter TotalCPUtimeforSUB; 

Parameter CPUT(iter,j); 

 

 

Loop (iter$(not convergedLB), 

                                                      **************Solve SP ******************  

         loop (   iteration$(not converged), 

                 Loop(j, 

 

                  Dist(i)=D(i,j); 

 

 

                  solve DemandAllocation using mip minimizing zobj; 

                  abort$(DemandAllocation.modelstat=4) "SP Problem is infeasible"; 

                  abort$(DemandAllocation.modelstat=10) "SP Problem is integer infeasible"; 

                  abort$(DemandAllocation.modelstat=3) "SP Problem is unbounded"; 
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                  CPUTime=CPUTime+ DemandAllocation.resusd ; 

                  CPUT(iter,j)=DemandAllocation.resusd; 

 

                  XLevel(iteration,t,j) = X.l(t); 

                  BegWIPLevel(iteration,t,j) = BegWIP.l(t); 

                  RealBegWIP(iteration,t,j) = (70*XLevel(iteration,t,j))/(350-XLevel(iteration,t,j)); 

                  IterObjValue(iteration) =  zobj.l; 

                  error(iteration,t,j) =  (RealBegWIP(iteration,t,j) - BegWIPLevel(iteration,t,j))/    

(RealBegWIP(iteration,t,j)) ; 

 

 

                    loop(t, 

                           if(  (error(iteration,t,j) >= 10E-3) , 

 

                              FP(p) = DP(p-1)-DP(p); 

                              a(FP) = (MaxiPro*70) / [(70 + RealBegWIP(iteration,t,j))* (70 + 

RealBegWIP(iteration,t,j))]; 

                              b(FP) =  XLevel(iteration,t,j) - a(FP) * RealBegWIP(iteration,t,j); 

                              DP(p) = DP(p)+FP(p); 

                              Convrg(t,j) = 0; 

                           else 

                              Convrg(t,j)= 1; 

                              ); 
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                          ); 

 

 

          TempW(t,j)=W.l(t)   ; 

          TempBegWIPMP(t,j)= BegWIP.l(t)     ; 

          TempFMP(t,j)=F.l(t) ; 

          TempMMP(t,j)=M.l(t)  ; 

          TempXMP(t,j)= X.l(t)  ; 

          TempalphaMP(i,j,t)=alpha.l(i,t); 

         TempBinServMP(j,t)  =  BinServ.l(t); 

 

          TempthetaCMP(j,t) = thetaC.l(t)    ; 

          TempBetaCMP(j)    = BetaC.l     ; 

          TempthetaHMP(j,t) = thetaH.l(t)      ; 

          TempBetaHMP(j)     =  BetaH.l  ; 

          TempthetaTAUMP(j,t) = thetaTAU.l(t)      ; 

          TempBetaTAUMP(j)     = BetaTAU.l     ; 

          TempthetaRMP(j,t)     = thetaR.l(t)      ; 

          TempBetaRMP(j)         = BetaR.l   ; 

          TempthetaCFMP(j,t)      = thetaCF.l(t)    ; 

          TempBetaCFMP(j)         =  BetaCF.l    ; 

          TempthetaFixedMP(j,t)    =  thetaFixed.l(t)        ; 
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          TempBetaFixedMP(j)        = BetaFixed.l        ; 

          Zobject(j) =zobj.l; 

 

 

); 

***End of J**** 

 

 

converged$(sum[(t,j),Convrg(t,j)]>=10)=1; 

 

 

              ); 

****End of Small Loop & SP solved*** 

              converged=0; 

 

 

 

 

 

 

 

 

******Assiging Xh for the master problem 
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**          CX(iter) = sum[(t,j), ( c*(x.l(t,j)) + W.l(t,j)*h + F.l(t,j)*tau + M.l(t,j)*r + 

sum(i,[fcr*alpha.l(i,j,t)*lambda(t,i)] *DistancePar*D(i,j)*cf)+ co*BinServ.l(j,t) )]; 

 

          Fh(y)=Dh(y-1)-Dh(y); 

          WMP(Fh,t,j)=TempW(t,j)   ; 

          BegWIPMP(Fh,t,j)= TempBegWIPMP(t,j)     ; 

          FMP(Fh,t,j)= TempFMP(t,j) ; 

          MMP(Fh,t,j)=TempMMP(t,j)  ; 

          XMP(Fh,t,j)= TempXMP(t,j)  ; 

          alphaMP(Fh,i,j,t)=TempalphaMP(i,j,t); 

          BinServMP(Fh,j,t)  =  TempBinServMP(j,t); 

 

 

 

          thetaCMP(Fh,j,t) = TempthetaCMP(j,t)    ; 

          BetaCMP(Fh,j)    =  TempBetaCMP(j)     ; 

          thetaHMP(Fh,j,t) = TempthetaHMP(j,t)    ; 

          BetaHMP(Fh,j)     =   TempBetaHMP(j)  ; 

          thetaTAUMP(Fh,j,t) =  TempthetaTAUMP(j,t)     ; 

          BetaTAUMP(Fh,j)     =  TempBetaTAUMP(j)    ; 

          thetaRMP(Fh,j,t)     = TempthetaRMP(j,t)      ; 
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          BetaRMP(Fh,j)         = TempBetaRMP(j)   ; 

          thetaCFMP(Fh,j,t)      = TempthetaCFMP(j,t)    ; 

          BetaCFMP(Fh,j)         =  TempBetaCFMP(j)    ; 

          thetaFixedMP(Fh,j,t)    =   TempthetaFixedMP(j,t)        ; 

          BetaFixedMP(Fh,j)        = TempBetaFixedMP(j)       ; 

          Dh(y)=Dh(y)+Fh(y); 

 

*** ******End of Assigning Xh******** 

 

          TempLB(iter)= sum(j,zobject(j))- sum((i,t),vMPNeg(i,t)) +sum((i,t),vMPPlu(i,t))-

CC*EpsilonMP; 

 

          if (  TempLB(iter)>= LB, 

          Sigma(i,j,t)=TempalphaMP(i,j,t); 

          Nu(j,t)=TempBinServMP(j,t); 

         ); 

 

          LB=max(LB,TempLB(iter)); 

          iterationLB(iter)=LB; 

 

 

 

*********Solving Master******* 
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         Solve MP using mip maximizing ObjMP; 

 

         abort$(MP.modelstat=4) "MP Problem is infeasible"; 

         abort$(MP.modelstat=10) "MP Problem is integer infeasible"; 

         abort$(MP.modelstat=3) "MP Problem is unbounded"; 

*****Assigning U******** 

         EpsilonMP=Epsilon.l; 

         VMPPlu(i,t)=vPlu.l(i,t); 

         VMPNeg(i,t)=vneg.l(i,t); 

 

         IterEpsilonMP(iter)=Epsilon.l; 

         iterVMPPlu(iter,i,t)=vPlu.l(i,t); 

         iterVMPNeg(iter,i,t)=vneg.l(i,t); 

 

 

*         thetaPar =    sum(Dh,  [sum[(t,j), ( c*(xMP(Dh,t,j)) + WMP(Dh,t,j)*h +FMP(Dh,t,j)*tau + 

MMP(Dh,t,j)*r+ sum(i,[fcr*alphaMP(Dh,i,j,t)*lambda(t,i)] *DistancePar*D(i,j)*cf)+ 

co*BinServMP(Dh,j,t) )] + Epsilon.l*( sum[ (t,j), [ cp*xMP(Dh,t,j) + WMP(Dh,t,j)*hp + 

FMP(Dh,t,j)*taup + MMP(Dh,t,j)*rp +sum(i,  [ fcr*alphaMP(Dh,i,j,t)*lambda(t,i) ] *DistancePar 

*D(i,j)*cfp)+ cop*BinServMP(Dh,j,t) ]  ]+ 

sum[(j,t),thetaCMP(Dh,j,t)+thetaHMP(Dh,j,t)+thetaTauMP(Dh,j,t)+thetaRMP(Dh,j,t)+thetaCFMP(

Dh,j,t)+thetaFixedMP(Dh,j,t)]+ sum[j,BetaCMP(Dh,j)*GammaC+BetaHMP(Dh,j)*GammaH+ 

BetaTAUMP(Dh,j)*GammaTAU+BetaRMP(Dh,j)*GammaR+ BetaCFMP(Dh,j)*GammaCF+ 

BetaFixedMP(Dh,j)*GammaFixed  ] )+ sum((i,t),vneg.l(t,i)*((sum(j,alphaMP(Dh,i,j,t)))))-

sum((i,t),vplu.l(t,i)*(sum(j,alphaMP(Dh,i,j,t))))]); 
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         thetaIter(iter) = thetaa.l; 

         EpsilonIter(iter) = Epsilon.l; 

 

***********E nd of Assigning***********  

 

         TempUB(iter) = ObjMP.l; 

         UB=min(UB,TempUB(iter)); 

         iterationUB(iter)=UB; 

 

         CPUTimeMP=CPUTimeMP+MP.resusd ; 

**         KSUB=     Sum(Dh,   [      sum[(t,j), ( c*(xMP(Dh,t,j)) + WMP(Dh,t,j)*h + FMP(Dh,t,j)*tau 

+ MMP(Dh,t,j)*r +  sum(i,[fcr*alphaMP(Dh,i,j,t)*lambda(t,i)] *DistancePar*D(i,j)*cf)+ 

co*BinServMP(Dh,j,t) )]+Epsilon.l*( sum[ (t,j), [ cp*xMP(Dh,t,j) + WMP(Dh,t,j)*hp + 

FMP(Dh,t,j)*taup + MMP(Dh,t,j)*rp +   sum(i,  [ fcr*alphaMP(Dh,i,j,t)*lambda(t,i) ] *DistancePar 

*D(i,j)*cfp)+ cop*BinServMP(Dh,j,t) ]  ]  + 

sum[(j,t),thetaCMP(Dh,j,t)+thetaHMP(Dh,j,t)+thetaTauMP(Dh,j,t)+thetaRMP(Dh,j,t)+thetaCFMP(

Dh,j,t)+thetaFixedMP(Dh,j,t)]+ sum[j,BetaCMP(Dh,j)*GammaC+BetaHMP(Dh,j)*GammaH+ 

BetaTAUMP(Dh,j)*GammaTAU+BetaRMP(Dh,j)*GammaR+ BetaCFMP(Dh,j)*GammaCF+ 

BetaFixedMP(Dh,j)*GammaFixed  ] ) + sum((i,t),vneg.l(t,i)*(sum(j,alphaMP(Dh,i,j,t))))-

sum((i,t),vplu.l(t,i)*(sum(j,alphaMP(Dh,i,j,t))))    ]  ); 

 

 

*********End of SOlving Master Problem************ 

*************************************************  

         GAP(iter) = (UB-LB)/UB; 
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         if (( (UB-LB)/UB )< 0.001, 

         convergedLB=1; 

 

 

 

 

         else 

         ConvergedLB=0; 

         ); 

 

****** end if 

 

         if (      iterationUB(iter-1)-iterationUB(iter)     <1, 

 

         NoImprovement(iter)=1; 

         else 

         NoImprovement(iter)=0; 

         ); 

 

 

         CheckLoop(iter) =CheckLoop(iter-1)+NoImprovement(iter); 

 

         if (Checkloop(iter)=Checkloop(iter-1), 
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             Checkloop(iter)=0; 

         else 

 

                 if ( Checkloop(iter)>50, 

 

                 ConvergedLB=1; 

                 ); 

 

 

         ); 

 

 

 

 

); 

 

*end of BIG LOOOP******* 

***Assigning Fixed Varialbes** 

 

 

 

execute_unload "TempHeuristic2_5_Sec.gdx"; 
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Parameter ConsforAlpha(i,t); 

Parameter ConsforBin(j,t); 

 

      Loop((i,t), 

         if ( sum(j,Sigma(i,j,t))=1, 

 

          ConsforAlpha(i,t)=1 ; 

 

          else 

 

          ConsforAlpha(i,t)=0; 

 

             ); 

          ); 

 

 

 

           Loop((t,j), 

 

           if (    TempXMP(t,j)>250  , 

           ConsforBin(j,t)=1 ; 
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           else 

           ConsforBin(j,t)=0; 

 

               ); 

            ); 

 

**** ********MODEL FOR HEURISTIC*******************  

 

 

 

set 

DPH(p)    Dynamic subset 

FPH(p)    Future points  ; 

 

Parameters 

aH(p)    slope of lines 

bH(p)     intersection   ; 
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**********SUB PROBLEM ******************  

****************************************  

 

aH(p) = 

/ initial slopes/ ; 

 

bH(p)= 

     / initial intercepts/  

 ; 

 

set  DPH(p)   /1*19/; 

Variables 

zobjHeuristic             OBJ 

WH(t,j)           WIP at the end of period t 

BegWIPH(t,j)      Begining WIP in period t 

FHH(t,j)           FGI at the end of period t 

MH(t,j)           Raw material release 

XH(t,j)           TH during period t 

alphaH(i,j,t)     fraction of demand of i allocated to facility j at period t 

nH(i,j,t)         Number of truck from i to j 

BinServH(j,t)     If Servicing or not 

NoServH(t)        Total Number of Selected Fac. 
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thetaCH(j,t)      Dual for RO 

BetaCH(j)         Dual for RO 

thetaHH(j,t)      Dual for RO 

BetaHH(j)         Dual for RO 

thetaTAUH(j,t)    Dual for RO 

BetaTAUH(j)       Dual for RO 

thetaRH(j,t)      Dual for RO 

BetaRH(j)         Dual for RO 

thetaCFH(j,t)     Dual for RO 

BetaCFH(j)        Dual for RO 

thetaFixedH(j,t)  Dual for RO 

BetaFixedH(j)     Dual for RO 

CEmission 

 

; 

 

Binary variable    BinServH(j,t) ; 

positive variables BegWIPH(t,j),NoServH(t),WH(t,j),FHH(t,j),MH(t,j),XH(t,j),alphaH 

(i,j,t),thetaCH(j,t),BetaCH(j),thetaHH(j,t),BetaHH(j),thetaTAUH(j,t),BetaTAUH(j),thetaRH(j,t),Beta

RH(j),thetaCFH(j,t),BetaCFH(j),thetaFixedH(j,t),BetaFixedH(j); 

 

alphaH.up(i,j,t)=1; 

xH.up(t,j) = 350 ; 
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Equations 

costH          cost 

BWIPH(t,j)     Balance Equation for WIP 

BFGIH(t,j)     Balance Equation for FGI 

CPCH(p,t,j)    Clearing Function 

CarbonCapH     Carbon Cap Calc 

DemSatH(i,t)   Demand satisfaction of i at period t 

BinConsH(t,j)  For Binary Variable 

BegWIPConsH(j,t) Begining WIP 

CROH(j,t)      Dual Constraint 

HROH(j,t)      Dual Constraint 

TAUROH(j,t)    Dual Constraint 

RROH(j,t)      Dual Constraint 

CFROH(j,t)     Dual Constraint 

FixedROH(j,t)  Dual Constraint 

CarbonEmission 

*FixVarAlpha(i,j,t) 

FixVarBin(j,t) 

 

 

; 
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costH                    .. zobjHeuristic =e= sum[(t,j), ( c*(xH(t,j)) + WH(t,j)*h + FHH(t,j)*tau + MH(t,j)*r 

+ sum(i,[fcr*alphaH(i,j,t)*lambda(t,i)] *DistancePar*D(i,j)*cf)+ co*BinServH(j,t) )]; 

 

*FixVarAlpha(i,j,t)$(ConsforAlpha(i,t)=1)      .. alphaH(i,j,t)=e=Sigma(i,j,t)    ; 

FixVarBin(j,t)$(ConsforBin(j,t)=1)           .. BinServH(j,t) =e=1         ; 

 

BWIPH(t,j)               .. WH(t,j) - WH(t-1,j) - MH(t,j) + xH(t,j) =e= 0  ; 

BFGIH(t,j)               .. FHH(t,j)- FHH(t-1,j) - xH(t,j) + sum(i,alphaH(i,j,t)*lambda(t,i)) =e= 0 ; 

BegWIPConsH(j,t)         .. BegWIPH(t,j) =e=  WH(t-1,j)+MH(t,j); 

 

CPCH(DPH,t,j)             .. xH(t,j)-a(DPH)*(BegWIPH(t,j)) =l= b(DPH); 

 

DemSatH(i,t)             .. sum(j,alphaH(i,j,t))=e= 1; 

 

CarbonCapH               .. sum[ (t,j), [ cp*xH(t,j) + WH(t,j)*hp + FHH(t,j)*taup + MH(t,j)*rp + sum(i,  

[ fcr*alphaH(i,j,t)*lambda(t,i)] *DistancePar *D(i,j)*cfp)+ cop*BinServH(j,t) ]  ] + 

sum[(j,t),thetaCH(j,t)+thetaHH(j,t)+thetaTauH(j,t)+thetaRH(j,t)+thetaCFH(j,t)+thetaFixedH(j,t)]+ 

sum[j,BetaCH(j)*GammaC+BetaHH(j)*GammaH+ 

BetaTAUH(j)*GammaTAU+BetaRH(j)*GammaR+ 

BetaCFH(j)*GammaCF+BetaFixedH(j)*GammaFixed  ] =l= CC; 

CarbonEmission           .. CEmission=e= sum[ (t,j), [ cp*xH(t,j) + WH(t,j)*hp + FHH(t,j)*taup + 

MH(t,j)*rp + sum(i,  [ fcr*alphaH(i,j,t)*lambda(t,i)] *DistancePar *D(i,j)*cfp)+ cop*BinServH(j,t) ]  ] 

; 
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BinConsH(t,j)            .. xH(t,j) =l= MaxiPro*BinServH(j,t) ; 

CROH(j,t)                .. BetaCH(j)+        thetaCH(j,t)      =g= cp*xH(t,j)*SmallGamma; 

HROH(j,t)                .. BetaHH(j)+        thetaHH(j,t)      =g= WH(t,j)*hp*SmallGamma; 

TAUROH(j,t)              .. BetaTAUH(j)+      thetaTAUH(j,t)    =g= FHH(t,j)*taup*SmallGamma; 

RROH(j,t)                .. BetaRH(j)+        thetaRH(j,t)      =g= MH(t,j)*rp*SmallGamma; 

CFROH(j,t)               .. BetaCFH(j)+       thetaCFH(j,t)     =g= sum(i,  [ fcr*alphaH(i,j,t)*lambda(t,i) ] 

*DistancePar *D(i,j)*cfp)*SmallGamma; 

FixedROH(j,t)            .. BetaFixedH(j)+    thetaFixedH(j,t)  =g= cop*BinServH(j,t)*SmallGamma; 

 

Model HEURISTICFS 

/CostH,BWIPH,BFGIH,BegWIPConsH,CPCH,DemSatH,CarbonCapH,BinConsH,CROH,HROH

,TAUROH,RROH,CFROH,FIXEDROH,FixVarBin/; 

 

Set IterationH /1*200/; 

scalar ConvergedH; 

ConvergedH = 0; 

parameter ConvrgH; 

ConvrgH(t,j) = 0; 

 

 

 

 

Parameter XLevelH; 

Parameter BegWIPLevelH; 
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Parameter RealBegWIPH; 

Parameter IterObjValueH; 

Parameter errorH; 

Parameter bestH; 

Parameter NoOpenFaciltyH; 

Parameter UtilLevelH; 

 

 

 

                 loop (   iterationH$(not convergedH), 

 

                  solve HEURISTICFS using mip minimizing zobjHeuristic ; 

                  abort$(HEURISTICFS.modelstat=4) "HEURISTIC is infeasible"; 

                  abort$(HEURISTICFS.modelstat=10) "HEURISTIC is integer infeasible"; 

                  abort$(HEURISTICFS.modelstat=3) "HEURISTIC is unbounded"; 

 

 

                  TotalCPUtimeforFUB= HEURISTICFS.resusd; 

                  XLevelH(iterationH,t,j) = XH.l(t,j); 

                  BegWIPLevelH(iterationH,t,j) = BegWIPH.l(t,j); 

                  RealBegWIPH(iterationH,t,j) = (70*XLevelH(iterationH,t,j))/(350-

XLevelH(iterationH,t,j)); 

                  IterObjValueH(iterationH) =  zobjHeuristic.l; 
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                  errorH(iterationH,t,j) =  (RealBegWIPH(iterationH,t,j) - BegWIPLevelH(iterationH,t,j))/ 

(RealBegWIPH(iterationH,t,j)) ; 

 

                  loop( j, 

                    loop(t, 

                           if(  (errorH(iterationH,t,j) >= 10E-3) , 

 

                              FPH(p) = DPH(p-1)-DPH(p); 

                              aH(FP) = (MaxiPro*70) / [(70 + RealBegWIPH(iterationH,t,j))* (70 + 

RealBegWIPH(iterationH,t,j))]; 

                              bH(FP) =  XLevelH(iterationH,t,j) - a(FP) * RealBegWIPH(iterationH,t,j); 

                              DPH(p) = DPH(p)+FPH(p); 

                              ConvrgH(t,j) = 0; 

                           else 

                              ConvrgH(t,j)= 1; 

                              ); 

 

 

                          ); 

                       ); 

 

 

                  convergedH$(sum[(t,j),Convrgh(t,j)]>=10)=1; 
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              ); 

         convergedH=0; 

Parameter BinForFeasSol(j,t); 

BinForFeasSol(j,t)=BinServH.l(j,t); 

Parameter FUB; 

FUB=   zobjHeuristic.l; 

 

execute_unload "TempHeuristic2_5_third.gdx"; 

***********************************************  

 

Parameter XHH(t,j); 

XHH(t,j)=Xh.l(t,j); 

Parameter LowLoad(t,j); 

Parameter SecondFUB; 

Parameter BestFeasibleUB; 

 

Parameter ProdCost; 

Parameter WIPCost; 

Parameter FGICost; 

Parameter RawMCost; 

Parameter TransportationCost; 

Parameter SetupCost; 
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ProdCost=sum((j,t),XH.l(t,j))*c; 

WIPCost=sum((j,t),WH.l(t,j))*h; 

FGICost=sum((j,t),FHH.l(t,j))*tau; 

RawMCost=sum((j,t),MH.l(t,j))*r; 

 

SetupCost=sum((j,t),BinServH.l(j,t))*co; 

TransportationCost = zobjHeuristic.l-(ProdCost+WIPCost+FGICost+RawMCost+SetupCost); 

 

****Check for Low Loaded*** 

Loop((t,j), 

 

         if ( XHH(t,j)>0, 

                         if (  (XHH(t,j)/MaxiPro)<0.3, 

                                                         LowLoad(t,j)=1; 

                                                         ConsforBin(j,t)=0; 

 

                             ); 

 

             ); 

); 

****End of Checking***** 
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If ( sum(  (t,j),LowLoad(t,j)  )>0    , 

 

  loop (   iterationH$(not convergedH), 

 

 

                  solve HEURISTICFS using mip minimizing zobjHeuristic ; 

                  abort$(HEURISTICFS.modelstat=4) "HEURISTIC is infeasible"; 

                  abort$(HEURISTICFS.modelstat=10) "HEURISTIC is integer infeasible"; 

                  abort$(HEURISTICFS.modelstat=3) "HEURISTIC is unbounded"; 

 

 

                  TotalCPUtimeforSUB= HEURISTICFS.resusd; 

                  XLevelH(iterationH,t,j) = XH.l(t,j); 

                  BegWIPLevelH(iterationH,t,j) = BegWIPH.l(t,j); 

                  RealBegWIPH(iterationH,t,j) = (70*XLevelH(iterationH,t,j))/(350-

XLevelH(iterationH,t,j)); 

                  IterObjValueH(iterationH) =  zobjHeuristic.l; 

                  errorH(iterationH,t,j) =  (RealBegWIPH(iterationH,t,j) - BegWIPLevelH(iterationH,t,j))/ 

(RealBegWIPH(iterationH,t,j)) ; 

 

                  loop( j, 

                    loop(t, 

                           if(  (errorH(iterationH,t,j) >= 10E-1) , 
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                              FPH(p) = DPH(p-1)-DPH(p); 

                              aH(FP) = (MaxiPro*70) / [(70 + RealBegWIPH(iterationH,t,j))* (70 + 

RealBegWIPH(iterationH,t,j))]; 

                              bH(FP) =  XLevelH(iterationH,t,j) - a(FP) * RealBegWIPH(iterationH,t,j); 

                              DPH(p) = DPH(p)+FPH(p); 

                              ConvrgH(t,j) = 0; 

                           else 

                              ConvrgH(t,j)= 1; 

                              ); 

 

 

                          ); 

                       ); 

 

 

                  convergedH$(sum[(t,j),Convrgh(t,j)]>=10)=1; 

 

 

              ); 

         convergedH=0; 
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     SecondFUB= zobjHeuristic.l; 

 

 

 ); 

*****end of if*** 

 

Parameter EMision; 

Emision = sum[ (t,j), [ cp*xH.l(t,j) + WH.l(t,j)*hp + FHH.l(t,j)*taup + MH.l(t,j)*rp + sum(i,  [ 

fcr*alphaH.l(i,j,t)*lambda(t,i)] *DistancePar *D(i,j)*cfp)+ cop*BinServH.l(j,t) ]  ] ; 

 

 

 

BestFeasibleUB= min(FUB,SecondFUB); 

*FinalGap=  (BestFeasibleUB-LB)/BestFeasibleUB; 

 

 

Parameter ProdCost2; 

Parameter WIPCost2; 

Parameter FGICost2; 

Parameter RawMCost2; 

Parameter TransportationCost2; 

Parameter SetupCost2; 
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ProdCost2=sum((j,t),XH.l(t,j))*c/zobjHeuristic.l; 

WIPCost2=sum((j,t),WH.l(t,j))*h/zobjHeuristic.l; 

FGICost2=sum((j,t),FHH.l(t,j))*tau/zobjHeuristic.l; 

RawMCost2=sum((j,t),MH.l(t,j))*r/zobjHeuristic.l; 

 

SetupCost2=sum((j,t),BinServH.l(j,t))*co/zobjHeuristic.l; 

TransportationCost2  =  1-(ProdCost2+WIPCost2+FGICost2+RawMCost2+SetupCost2); 

TotalCPUtime=CPUTime+CPUtimeMP+TotalCPUtimeforSUB+TotalCPUtimeforFUB; 

 

execute_unload "TempHeuristic2_5_5.gdx"; 

 

 


