
Dynamic Formation and Strategic Management of Web

Services Communities

Ehsan Khosrowshahi-Asl

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montréal, Québec, Canada

July 2015

c© Ehsan Khosrowshahi-Asl, 2015

CONCORDIA UNIVERSITY

Division of Graduate Studies

This is to certify that the thesis prepared

By: Ehsan Khosrowshahi-Asl

Entitled: Dynamic Formation and Strategic Management of Web Services

Communities

and submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Christian Moreau

Dr. Muhammad Younas

Dr. Peter Grogono

Dr. Ferhat Khendek

Dr. Joey Paquet

Dr. Jamal Bentahar

Dr. Hadi Otrok

Approved by

Chair of the CSE Department

2015

Dean of Engineering

ABSTRACT

Dynamic Formation and Strategic Management of Web Services Communities

Ehsan Khosrowshahi-Asl, Ph.D.

Concordia University, 2015

In the last few years, communities of services have been studied in a certain num-

bers of proposals as virtual pockets of similar expertise. The motivation is to provide these

services with high chance of discovery through better visibility, and to enhance their ca-

pabilities when it comes to provide requested functionalities. There are some proposed

mechanisms and models on aggregating web services and making them cooperate within

their communities. However, forming optimal and stable communities as coalitions to max-

imize individual and group efficiency and income for all the involved parties has not been

addressed yet. Moreover, in the proposed frameworks of these communities, a common as-

sumption is that residing services, which are supposed to be autonomous and intelligent, are

competing over received requests. However, those services can also exhibit cooperative be-

haviors, for instance in terms of substituting each other. When competitive and cooperative

behaviors and strategies are combined, autonomous services are said to be “coopetitive”.

Deciding to compete or cooperate inside communities is a problem yet to be investigated.

In this thesis, we first identify the problem of defining efficient algorithms for coali-

tion formation mechanisms. We study the community formation problem in two different

settings: 1) communities with centralized manager having complete information using co-

operative game-theoretic techniques; and 2) communities with distributed decision making

mechanisms having incomplete information using training methods. We propose mecha-

nisms for community membership requests and selections of web services in the scenarios

iii

where there is interaction between one community and many web services and scenarios

where web services can join multiple established communities. Then in order to address

the coopetitive relation within communities of web services, we propose a decision making

mechanism for our web services to efficiently choose competition or cooperation strategies

to maximize their payoffs. We prove that the proposed decision mechanism is efficient

and can be implemented in time linear in the length of the time period considered for the

analysis and the number of services in the community. Moreover, we conduct extensive

simulations, analyze various scenarios, and confirm the obtained theoretical results using

parameters from a real web services dataset.

iv

ACKNOWLEDGEMENTS

I would never have been able to finish my dissertation without the guidance of my

committee members, help from friends, and support from my family.

I would like to thank my supervisors, Prof. Jamal Bentahar and Prof. Hadi Otrok

for giving me the opportunity to work under their supervision. I am very grateful to them

for their valuable suggestions and guidance throughout the preparation of this thesis. I

learned a lot of valuable lessons which will be useful for me beyond the scope of this thesis

throughout my lifetime. I also would like to thank Prof. Rabeb Mizouni for her significant

help during my research work.

I would like to thank my examiner committee Professors Peter Grogono, Ferhat

Khendek, Joey Paquet and Muhammad Younas for giving me the honor by being in my

PhD committee. Their time and effort are greatly appreciated.

I would like to thank my colleague Babak Khosravifar who was always willing to help

and give his best suggestions. Also, I would like to thank my friends and lab colleagues

Omar Marey, Faisal Al-Saqqar and Khalid Sultan for their help and support.

Finally, I am very grateful to my fiance and colleague Atieh Saberi and my parents

for their understanding, encouragement and their endless support.

v

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ACRONYMS . xiv

1 Introduction 1

1.1 Context of Research . 1

1.2 Motivating Scenario . 2

1.3 Problem and Research Questions . 4

1.4 Contributions . 7

1.4.1 Contribution 1: Efficient Coalition Formation for Web Services . . 7

1.4.2 Contribution 2: Distributed Decision Making for Dynamic Forma-

tion of Web Services Communities 8

1.4.3 Contribution 3: Analyzing Coopetition Strategies of Services within

Communities . 10

1.5 Thesis Organization . 12

2 Background 14

2.1 Community of Web Services . 14

2.1.1 Web Services . 14

2.1.2 Web Services Communities . 16

2.2 Cooperative Game Theory and Multi-Agent Systems 17

2.2.1 Cooperative Game Concepts . 18

2.2.2 Stability of Coalitions . 22

2.2.3 Representation and Complexity Issues 23

vi

2.3 Related Work . 24

2.3.1 Communities of Web Services . 24

2.3.2 Web Services Community Formation 27

2.3.3 Coopetitive Behavior Within Communities of Web Services 29

2.4 Conclusive Remarks . 31

3 Coalition Formation for Autonomous Web Services 33

3.1 Preliminaries . 33

3.1.1 Architecture . 33

3.1.2 Web Service Parameters . 34

3.1.3 Web Services Communities . 35

3.2 Problem Formulation and Modeling . 36

3.2.1 Task Distribution . 36

3.2.2 Community Revenue . 37

3.2.3 Case Study . 38

3.3 Web Service Cooperative Games . 42

3.3.1 Web Services and One Community 42

3.3.2 Web Services and Many Communities 46

3.3.3 Taxation, Subsidizing and Community Stability 48

3.4 Experimental Results and Analysis . 49

3.5 Summary . 60

4 Distributed Decision Making for Dynamic Formation of Web Services Com-

munities 61

4.1 Introduction . 61

4.2 Challenging Issues . 65

vii

4.2.1 The Join Challenge . 65

4.2.2 Join Consequences . 66

4.3 Model Components . 67

4.3.1 Internal Features . 67

4.3.2 External Features . 69

4.3.3 Task Distribution . 70

4.3.4 Community Revenue . 71

4.4 Decision Making Mechanism . 72

4.4.1 Data Extraction and Solution Engineering 73

4.4.2 Decision Profile Generation . 77

4.5 Experiments . 80

4.6 Summary . 88

5 Coopetitive Behavior of Services within Communities 90

5.1 Introduction . 90

5.2 Architecture . 92

5.3 System Parameters . 92

5.4 Service Interactive Strategies . 97

5.5 Theoretical Results . 98

5.5.1 Service Decision Making Procedure 98

5.5.2 Coopetition Threshold . 105

5.6 Experimental Results and Analysis . 109

5.7 Summary . 112

6 Conclusion and Future Work 114

6.1 Conclusion . 114

viii

6.2 Future Work . 116

Bibliography 120

ix

LIST OF TABLES

3.1 List of web service QoS parameters. 35

3.2 Case Study: Example 1 . 38

3.3 Case Study: Example 2 . 39

3.4 Case Study: Example 3 . 40

4.1 An example of gain matrix for 3 different communities and their combina-

tions. 75

4.2 Utility gain of web services after making collaborative groups based on

DDM algorithm with different r rates. 81

4.3 Number of communities that misses the optimal decision, out of 1,000 com-

munities. 85

5.1 List of abbreviations. 97

x

LIST OF FIGURES

1.1 The Proposed Framework. 12

2.1 Communities of Web Services Architecture as Proposed in [53]. 17

2.2 Core of the 2-player game of example 1. 21

3.1 Architecture of Web Services communities. 36

3.2 Web Services and A Grand Community. 43

3.3 Web Services and Many Communities. 46

3.4 Part (a): Cumulative number of requests successfully done. Part (b): Aver-

age QoS of requests performed. 51

3.5 Analysis of ε-core set non-emptiness, for different values of ε 52

3.6 Part (a): Cumulative number of tasks succesfully done. Part (b): Average

QoS of tasks performed. 53

3.7 Analysis of community subsidizing coefficient λ on average community

size (a), cost (b), number of tasks performed (c), and average quality of

service of tasks performed (d). 54

3.8 Analysis of community subsidizing coefficient λ having web service dif-

ferent stability levels of τ on average community size, number of tasks per-

formed, average quality of service, and average cost/income of communities. 56

3.9 Part (a): Cumulative number of tasks successfully done. Part (b): Average

QoS of tasks performed. 57

xi

3.10 A comparison between our community model and the High Availability

Coalition model from [48]. Part (a): Cumulative number of tasks success-

fully done. Part (b): Average QoS of tasks performed. Part (c): Average

community service availability. 59

4.1 A summary of DDM decision profile generation steps. 73

4.2 Communities with different properties of web services actively looking for

other communities to collaborate with. 74

4.3 A partial view of a decision tree created by DDM. 79

4.4 DDM against Rational: utility gain. 82

4.5 DDM against Rational: ratio of utility gain. 83

4.6 RoC Curve. 86

4.7 Overall utility of all the communities. 87

4.8 Utility gain over time. 87

4.9 Average community size. 88

5.1 Services are partitioned into competitive and cooperative sets. Competitive

services may get tasks directly from the master agent and they can share it

with other cooperative services in their collaborative networks within the

same community. 91

5.2 Decision making process over competitive and cooperative strategies. . . . 99

5.3 Part (a): Cumulative community budget comparison. Part (b): Average

community reputation comparison over different strategic decisions. 110

5.4 Overall performance from community’s point of view. Part (a) Total num-

ber of tasks successfully done. Part (b) Ratio of tasks satisfied with required

QoS. Part (c) Average QoS of performed tasks. 111

xii

5.5 Utility loss while deviating from our coopetitive decision process. Part (a)

Overall budget when deviating from our model in 0, 10, 20, 30, 40, and 50

percent of decisions. Part (b) Ratio of getting earning utility (budget) when

deviating from our coopetitive strategy in 1 to 10 decisions. 113

xiii

LIST OF ACRONYMS

AI Artificial Intelligence

API Application Program Interface

BSV Bilateral Shapley Value

C Community of Web Service

CFV Community Feature Vector

CFVS Community Feature Vector Set

CS Coalition Structure

DDM Distributed Decision Making

IT Information Technology

NP Nondeterministic Polynomial time

OSC Open Software Connectivity

PO Potential Output

QoS Quality of Service

QWS Quality of Web Service

REST REpresentational State Transfer

ROC Receiver Operating Characteristic

SOAP Simple Object Access protocol

UDDI Universal Description, Discovery and Integration

W3C World Wide Web Consortium

WS Web Service

WSDL Web Service Definition Language

XML EXtensible Markup Language

xiv

Chapter 1

Introduction

In this chapter, we introduce the context of this research, which is about communities of

web services abstracted as autonomous agents. Those agent-based web services use intelli-

gent decision making mechanisms to improve their performance in multi-agent setting. We

discuss the motivations of this work and briefly review the literature to identify the problems

we aim to solve in this thesis. Moreover, we discuss our objectives and contributions.

1.1 Context of Research

Over the past years, online services have become part of many scalable business applica-

tions. The increasing reliance on web-based applications has significantly influenced the

way web services are engineered. Web services provide a set of online software functions

accessible at a network address over the web. The recent developments are shifting web

services from passive and individual components to autonomous and group-based compo-

nents where interaction, composition, and cooperation are the key challenges [69, 16]. The

main objective is to achieve a seamless integration of business processes, applications and

web services. Delivering high quality services considering the dynamic and unpredictable

1

nature of the Internet is still a very critical and challenging issue.

Typically, web services are business applications deployed as autonomous and inter-

operable agents [49]. In fact, the W3C consortium defines a web service as “an abstract

notion that must be implemented by a concrete agent”. However, the web is stocked with

agent-based services that offer similar business functionalities, which leads to service con-

sumers having difficulties in choosing the most appropriate agents to interact with.

The need for highly available and responsive services has called for grouping and col-

laborative mechanisms of loosely-coupled web services, particularly in business settings.

The idea of grouping web services within communities and the way those communities are

engineered so that web services can better collaborate have been proposed and investigated

in [53, 14, 71]. Communities are virtual groups of web services having similar functionali-

ties [89, 66, 59, 52], but probably different non-functional quality attributes, which form the

QoS parameters. Communities aim to provide higher service availability and performance

than what individual web services can provide.

1.2 Motivating Scenario

In this section, we present a scenario and demonstrate why there is need for communities of

services. We first propose an example of a real world scenario, focusing on user experience.

There are a plethora of options available to people in today’s society, including weather

forecasting, ticketing services, map services, local places guides and so on. Most mobile or

web applications cannot independently satisfy users requests and should rely on different

online services. The high competition within the services industry requires applications to

use reliable and high quality online services.

If the user were to check a web site or run an application on her mobile device upon

having downtime, or having high response delay or encountering any non-satisfying quality

2

metric, she will instantly remove the application, which is a huge business concern for ap-

plication providers. For example, if a user installs a ticketing application on her mobile de-

vice and the application is not using high quality service providers, the user would instantly

uninstall the application, which has an extremely negative impact on the visibility of the

application. Thus, end user satisfaction is the main goal for competitive online providers.

Communities of web service, by providing services with higher quality, higher uptime and

reliability for end users, aim to reach this goal. To this end, community management de-

cisions should capitalize on important QoS parameters while forming the community and

during membership management.

High demand on online services has created a massive business competition. For ex-

ample, nowadays users are provided with multiple choices of web services offering local

places information such as coffees, venues, and shops nearby a geographic position. It is

hard for new web services to find their customers and be visible for end users amongst hun-

dreds or thousands of other available services, even if they provide a high quality of service.

Hence, the concept of communities of web services provides them with the chance of join-

ing a platform with an established market share and reputation. However, it is crucial for

a community manager to consider many factors when inviting or accepting new members.

For example, if the market share is not big enough, bringing new web services can cause

revenue drop for the already residing members. This may encourage other web services to

collude, leave, or join other communities, hurting the community stability. This is an impor-

tant issue which has not been addressed previously in the relevant literature. On the other

hand, if communities bound the number of web services to ensure higher revenue, availabil-

ity and response time could be negatively affected if some members encounter problems.

This is because alternative web services for substitution will be limited. This has also not

3

been efficiently addressed in the related work. Consequently, community formation algo-

rithms satisfying some desirable properties such as community stability and overall revenue

are yet to be defined considering end users, community managers and service providers.

1.3 Problem and Research Questions

Web services communities are dynamic by design [53]. In these communities, web services

are modeled as intelligent autonomous agents, where they can adopt a strategy maximizing

their payoff at any time. A web service can ask joining a community and has the right to

leave it. Community managers can invite or ask a web service to leave in order to maxi-

mize the community profit. Users can simply stop sending requests to a web service which

is not providing satisfactory services. Thus, it is important to consider all the parties in-

volved in the decision making process about the community formation and management.

Most of the recent work on communities of services are either user-centric and focus on

user satisfaction [23] or system-centric and focus on the whole system throughput, perfor-

mance and utilization. There are many contributions in distributed, grid, cluster and cloud

services which are system-centric. However, in real world environments and applications,

both users and service providers are self-interested agents, aiming to maximize their own

profit. In those environments, both parties (users and services) will collaborate as long as

they are getting more benefits and profit. Our initial research question is:

How can we model the community of agent-based services in order to maximize the profit

of involved users, web services and community organizers? [R1]

In order to address this problem, recently [46, 41, 48] proposed mechanisms to help

users and services maximize their gain. A two-player non-cooperative game between web

4

services and community master (i.e., manager) was introduced in [41]. In [46], a 3-way

satisfaction approach for selecting web services has been proposed. In this approach, the

authors proposed a web service selection process that the community masters can use. The

approach considers the efficiency of all the three involved parties, namely users, web ser-

vices and communities. The issue with these solution concepts is that they consider com-

munity as a whole and model it as one entity in their formulations. A community master

decides on behalf of all the members using an aggregated function of parameters. This can

hurt the overall revenue for some individual web services, or even a subset of web services.

Those services can collude and form their own community to increase their payoff, instead

of having to adjust and share their resources with other members. Another important issue

which needs to be considered is the community stability. In community of web services,

the members and community organizers collaborate to perform tasks. Having jointly com-

pleted a task and generated revenue, they need to agree on some reasonable method of

dividing profits (or tasks) among themselves. This is a key issue for the group stability still

to be investigated. If the revenue sharing mechanism is not fair enough for any subset of

web services working in the community, these agents, as profit maximizing entities, would

deviate and make their own group. Thus, an important an important research question that

we would like to address is:

How can we model fair and stable communities as coalitions of agent-based web services?

[R2]

In [48], a cooperative scheme among autonomous web services based on coalitional

game theory has been introduced. The authors have proposed an algorithm to reach individ-

ually stable coalition partition for web services in order to maximize their efficiency. The

5

communities choose new web services on the promise that it would benefit the community

without decreasing any other web service’s income. In their model, the worth of community

is evaluated with high emphasis on the availability metric and considering price and cost

values only. The community structure is based on a coordination chain, where a web ser-

vice is assigned as a primary web service and the community task distribution method will

initially invoke the primary web service. Only if the primary web service is unavailable,

the next backup web services in the ordered coordination chain will be invoked. However,

in cooperative models, it is preferred to have a real and active cooperative activity engaging

all agents to perform the tasks more efficiently. Thus, the final research question we aim to

investigate is:

How can we model and analyze the cooperation among the community members in re-

alistic, applicable and practical settings? [R3]

In most of the recent work on communities of web service, the solutions consider the

architecture of centralized management for communities where most of the decisions are

made by the centralized coordinator. However, in real world scenarios, decisions made by

independent service providers are highly distributed.

How can we model a distributed decision making process for the problem of forming com-

munities of services? [R4]

Also in all of the mentioned proposals, the community manager as a centralized en-

tity, has complete information of all the web services and their quality. However, centrality

and complete information are strong assumptions, which are not fully compatible with real

6

business scenarios.

How can we make web services operate efficiently based on limited information? [R5]

Within communities, services can exhibit competitive behavior as they provide the

same functionalities and the number of users requests is finite. However, for the same rea-

son of being functionally similar, services can cooperate with each other, for example to

substitute each other in order to perform some sub-tasks. For instance, services can opt for

performing tasks if they feel they are capable enough or decide to cooperate by showing the

availability to perform some sub-tasks. The relevant question to be addressed is:

How can we design a community model where both competitive and cooperative behav-

iors exist? [R6]

1.4 Contributions

1.4.1 Contribution 1: Efficient Coalition Formation for Web Services

In this research work1, our first objective is to propose a cooperative model as game for the

aggregation of web services within communities. The solution concepts of our cooperative

game seeks to find efficient ways of forming coalitions (teams) of web services so that they

can maximize their gain and payoff, and distribute the gain in a fair way among all the

member services. Achieving fairness when the gain is distributed among the community

members is the main factor to keep the coalition stable as no web service will expect to

gain better by deviating from the community. In other words, the coalition is made efficient

1This contribution was published in [8]

7

if all the members are satisfied. We first propose a representation function for communi-

ties of web services based on their QoS attributes. By using this function, we can evaluate

the worth of each community of web services. When facing new membership requests, a

typical community master checks whether the new coalition having the old and new set of

web services will keep the community stable or not. The community master will reject the

membership requests if it finds out that the new coalition would be unstable, preventing any

subset of web services from gaining significantly more by deviating from the community

and joining other communities or forming new ones. The computation of solutions for co-

operative games is combinatorial in nature and proven to be NP-complete [27], making this

computation impractical in scalable real world applications. However, using the concepts

of coalition stability, the second objective is to investigate approximation algorithms run-

ning in polynomial time providing web services and community masters with applicable

and near-optimal decision making mechanisms.

1.4.2 Contribution 2: Distributed Decision Making for Dynamic For-

mation of Web Services Communities

In order to address the centralized decision making process limitations and adopt a dis-

tributed decision making approach, we introduce DDM2, a Distributed Decision Making

model for community formation. DDM regulates web service agents’ decision making pro-

cess in terms of cooperating and deciding which group to join and which service to invite

for joining. Unlike existing work on community formation, our decision model is extracted

from a data model in the form of information obtained from a large number of web services

regarding their single and cooperative utilities as well as environmental parameters such as

demand, service quality, etc. The generated decision tree improves agents’ understanding

2This contribution is submitted to International Journal of Decision Support Systems

8

of the environment and and helps them select actions that lead towards maximizing their

utilities. The advantage of this approach is that the tree, which is initially created from

the past data, reflects a comprehensive vision about agents’ attitudes in terms of their ac-

tion selection based on their past experiences. Moreover, the tree is getting continuously

updated based on both new received feedback and the outcome of chosen actions. This

continuous update makes the approach adaptable to any change in the environment. The

decision model provides web services with enough information which helps those services

efficiently decide and predict the outcome of their different possible collaborations. This

model works in a distributed manner in which services are self-sufficient in their decision

making and do not rely on a centralized decision making process. Our findings show that

communities of web services can efficiently find the appropriate web service to invite for

cooperation as well as allowing a single web service to find the best communities to join.

The proposed model can be seen as a recommneder system that suggests beneficial actions

for both communities and single services. Communities can consider the decision model

and analyze the characteristics of different individual web services and make prudent deci-

sions when inviting a web service to join or accepting a join inquiry initiated from a web

service. In general, DDM equips web services with efficient methods for foreseeing how

their choices will impact both their short-term and long-term goals; therefore, opting for

the best decision available.

To effectively generate the decision model for web services, we used a real dataset to

extract web services’ individual characteristics and used them to measure outcomes when

these services cooperate with one another. The dataset has been extracted from real-world

QoS evaluation results from 142 users on 4,532 Web services during 64 different time slots.

Combining the available data based on each web service point of view on different time

slots, we acquired 5 different unique features for those 4,532 web services. By engineering

9

and extracting these features, we gathered functional and cooperative features for both in-

dividual web services and communities in different time slots. We were able to investigate

the path a web service might take to achieve the best utility out of effective interactions

with others. All the paths and outcomes are labeled to be utilized in the training model.

Using cross validation sets, web services are able to compute the optimal hypothesis func-

tion (using logistic regression) that can be used to predict outcomes of cooperative work

with other individual web services or communities. Our findings show that web services

equipped with DDM have by far better outcomes than the ones that either do not cooperate

or randomly find communities to join.

1.4.3 Contribution 3: Analyzing Coopetition Strategies of Services within

Communities

In the previous contributions, our focus was on community formation and we emphasized

cooperative behavior of the web services as agents. In our next contribution3 our focus is on

the internal management affairs of communities of web services. Within communities, the

web services, selfish and utility maximizers by nature, can follow two different strategies,

namely cooperation and competition in order to increase their payoffs when they provide

services to consumers [50]. When competitive and cooperative behaviors and strategies are

combined, autonomous services are said to be “coopetitive”. In typical business settings,

services are used to compete within communities as they provide the same functionalities

and the number of users requests is finite. However, the same reason of providing similar

functionalities can lead services to cooperate because they can replace each other in case

of failure or unavailability, and services can do better in a coalition structure. Analyzing

3This contribution was published in [7]

10

services competition and cooperation strategies within communities is still an open prob-

lem that motivates the research described in this section. we propose a mechanism within

which service agents in the community could choose either to compete for an announced

task4, or to cooperate with other competing services in the same community to accomplish

some subtasks of the announced task. We equip intelligent web services to follow a reason-

ing technique to choose best interactive strategy (Coopetitive attitude, which is categorized

to compete and cooperate). In the proposed system, We explore details behind the strate-

gic decision making procedures and enable service agents to apply different techniques to

constrain high efficiency and obtain the maximum utility. We investigate services’ expected

payoffs and the involved probabilities that are used to choose over the two interacting strate-

gies.

To summarize, the main problem we aim to tackle in this thesis is the formation of

stable and efficient coalitions maximizing web services and community revenue. The main

objectives are:

• To propose a cooperative model and analyze its solution concepts in order to address

the problem of optimizing coalition formation for a stable community.

• To reduce the complexity of computing the solution concepts of the cooperative

model tailored to the problem of communities of agent-based web services in order

to make these solutions applicable in real world scenarios.

• To analyze the effect of different membership and taxation models that the master

can apply to the members on the stability of the community.

• To investigate the impact of learning on individual and group decision making within

the cooperative model of the community.

4Requests and tasks are used in this thesis interchangeably.

11

‘

Figure 1.1: The Proposed Framework.

• To design the community decision making process in a distributed manner and train

agents so they can operate efficiently when information is incomplete.

• To validate the proposed methods by extensive simulations and comparison with other

similar proposals.

Figure 1.1 highlights our contributions and proposed model for communities of web

services formation and management.

1.5 Thesis Organization

The rest of the proposal is organized as follows: We present in Chapter 2 the background

needed for our research along with relevant related work. We introduce the web services and

the concept of communities of web services and the theoretical background used throughout

the these. Chapter 3 provides an efficient method of coalition formation for web services.

In this chapter we have addressed [R1], [R2], [R3] research questions on efficient ways

12

of community formation. Chapter 4 presents a distributed method of formation of web

services communities. In this chapter we address [R4], [R5] research questions by proposing

DDM, a distributed decision making mechanism for our web services which can perform in

distributed manner and when information is incomplete. In Chapter 5 we delve into internal

management of communities of web services and we address the [R6] research question by

analyzing the cooperative behavior within the communities of web services. Finally in

Chapter 6, we present our conclusion and future plan.

13

Chapter 2

Background

In this chapter, we briefly review web services, then we introduce the concept of com-

munities of web services, their architecture and applications and the benefits of forming

communities. Thereafter, we discuss the cooperative game theory concepts used through-

out the thesis. Finally, we discuss relevant related work on web service communities and

games in the literature of service oriented computing.

2.1 Community of Web Services

In this section, we present web services and discuss the concept of their communities from

architectural and operations perspectives.

2.1.1 Web Services

Over the past years, online services have become part of standard daily life of people around

the globe. Many modern applications rely on web services from different providers. For

instance, many mobile and tablet applications which have limited storage and processing

14

power are merely interfaces aggregating different information from online services. Ex-

amples are vast, weather forecasting, ticket selling, shopping apps, local maps and places

searching are some of them.

The World Wide Web Consortium (W3C) defines web services as follows: “soft-

ware system designed to support interpretable machine-to-machine interaction over a net-

work. It has an interface described in a machine-processable format (specifically WSDL).

Other systems interact with the web service in a manner prescribed by its description using

SOAP messages, typically conveyed using HTTP with XML serialization in conjunction

with other Web-related standards”. When developers declare a new web service, it will be

discovered based on its description that fully discloses its functionalities. Developers also

have to declare a public interface and a readable documentation to help other developers

when integrating different services [22]. Nowadays, web API standards which do not re-

quire XML-based web service protocols like SOAP and WSDL are also emerging. They

are also called REST (representational state transfer) services which are moving towards

simpler communication protocols.

We are not going to delve into engineering details of online web service implemen-

tation and its protocols in this thesis. We are interested in web services from their business

model perspective. Service providers usually charge end users for services they provide.

For example, Google has listed their pricing and plans for wide range of services they pro-

vide on their web service console page1.

In our research work, we abstract web services as rational agents2 providing services

to end users. They aim to maximize their individual income by receiving enough requests

from end users. In order to increase their revenue, web services seek for more tasks if they

have the capacity and throughput to do so. Web services can join communities to have

1https://code.google.com/apis/console
2The term rational is used here in the sense that web services are utility maximizers

15

better efficiency by collaborating with others, to have access to broad market share, and

to have opportunity of receiving a bigger task pool from end users. Furthermore, the high

reliance on web services has increased quality expectations from end users. Communities

of web services can provide higher availability, performance, reliability, and recovery for

end users.

2.1.2 Web Services Communities

Community refers to “the condition of sharing or having certain attitudes and interests in

common” or “a group of people living in the same place or having a particular characteristic

in common”3. In [14, 89], the authors introduce community of web services as collection of

cooperative web services with common functionalitiers but different QoS metrics. There-

fore communities are differentiated from composition types of web service cooperation in

which web services with different functionalities work together to generate a new service

with composite functionality.

Maamar et al. initially in [51] and then comprehensively in [53] proposed an architec-

ture utilizing Contract-Net protocol for engineering task distribution within communities.

This architecture has been further developed in [15, 43, 45, 54]. Two types of roles have

been distinguished for community members: masters and slaves. Master web services lead

communities and are responsible for membership management. They can invite and con-

vince slave web services to join the community, and attract new slave web services to their

communities by awarding them better payoff. Moreover, they can eject some slave members

from the community to improve its overall reputation if these members are misbehaving or

cannot provide the promised QoS [53].

Figure 1 depicts the basic architecture of communities of web services. The main

3Oxford Dictionaries

16

Figure 2.1: Communities of Web Services Architecture as Proposed in [53].

components of the architecture are: 1) the providers of web services; 2) UDDI registries;

and 3) communities platform. Communities abstract the same model of defining, announc-

ing and invoking web services. They also adopt the same protocols that standard web

services use with UDDI registries. UDDI is a platform-independent XML based registry

list which facilitates worldwide web service discovery.

2.2 Cooperative Game Theory and Multi-Agent Systems

The theory of cooperative games is a branch of game theory that is a branch of game theory

that studies strategies of self-interested entities or agents in a setting where those agents can

increase their payoff by binding agreements and cooperating in groups. We let N be a set of

players which can form a group called a coalition. A coalitional game is a pair G = (N,v),

where v is called a characteristic function v : 2N → R, mapping the set of players of the

coalition to a real number v(N), the worth of N. This number usually represents the output

or payoff or again the performance of these players working together as coalition. If a

17

coalition S is formed, then it can divide its worth, v(N) in any possible way among its

members. The payoff vector x ∈ R
N is the amount of payoff being distributed among the

members of the coalition N. The payoff vector satisfies two conditions:

• xi ≥ 0 for all i ∈ N, and

• ∑i∈N xi ≤ v(N)

The second criterion is called the feasibility condition, according to which, the pay-

off for each agent cannot be more than the coalition total gain. A payoff vector is also

efficient if the payoff obtained by a coalition is distributed amongst the coalition members:

∑i∈N xi = v(N). This definition of the characteristic function works in transferable utility

(TU) settings, where utility (i.e., payoff) is transferable from one player to another, or in

other words, players have common currency and a unit of income that is worth the same for

all players [62].

When dealing with cooperative games, two issues need to be addressed:

1. Which coalitions among all possible coalitions to form?

2. How to reward each member when a task is completed?

The following sections help address these two issues.

2.2.1 Cooperative Game Concepts

Definition 1 (Shapley value) Given a cooperative game (N,v), the Shapley value of player

i is given by [78]:

φi(N,v) = ∑
S⊆N\{i}

|S|!(|N|− |S|−1)!

|N|!
(v(S∪{i})− v(S)) (2.1)

18

Shapley value is a unique and fair solution concept for payoff distribution among

the members of the coalition. It basically rewards members with the amount of marginal

contribution they have to the coalition. It checks the contribution of member i by adding

the agent, to all possible subsets of coalitions S, where S ⊆ N\{i}. If he is added to the

set S, his contribution to the coalition is v(S∪{i})− v(S). Average marginal contribution

of agent i’s is calculated by averaging this value over all possible subsets of N, in Shapley

value equation (2.1).

Definition 2 (Core) A payoff vector x is in the core of a coalitional game (N,v) if

and only if[64]:

∀S⊆ N, ∑
xi∈S

xi ≥ v(S) (2.2)

The core is basically a set of payoff vectors where no subset of players S′ could gain

more than their current payoff by deviating and making their own coalition ∑i∈S′ xi ≥ v(S′).

The sum of payoffs of the players in any sub-coalition S is at least as large as the amount

that these players could earn by forming a coalition by their own. In a sense, it is analogue

to Nash equilibrium, except that core is about deviations from groups of entities. The core

is the strongest and most popular solution concept in cooperative game theory. However, its

computation is a combinatorial problem and becomes intractable as the number of players

increases. The core of some real-world problem games may be empty, which means having

the characteristic function of the game (N,v), there might be no possible distribution of

payoff assuring stability of subgroups.

Definition 3 (Convex cooperative games) A game (N,v) with characteristic function

v(S) is convex if:

v(S)+ v(T)≤ v(S∪T)+ v(S∩T),∀S,T ⊆ N. (2.3)

According to a classic result by Shapley [77], convex games always have a non-empty

core. We will use a variation of convexity condition in our algorithm to check whether our

19

coalitions are stable.

ε-core

When the core set of a game is empty, it means no coalition of players can gain anything by

deviating. An outcome would be unstable if a coalition can benefit even by a small amount

from deviating, which is a strong requirement. In fact, in some situations, deviations can

be costly, or players may have loyalty to their coalitions, or even it can be computationally

intractable to find those small benefits. It would only make sense for a coalition to deviate if

the gain from a deviation exceeds the cost of performing the deviation. ε-core[79] relaxes

the notion of the core, and only requires that no coalition would benefit significantly, or

within a constant amount(ε) by deviating (see Equation 2.4).

∀S⊆ N, ∑
xi∈S

xi ≥ v(S)− ε (2.4)

Coalition Structure Formation

Coalition structure formation is the problem of finding the best partition of web services

into teams. In these settings, the performance of an individual service is less important

than the social welfare of the whole system, which is the sum of the values of all teams.

Having the game (N,v), a coalition structure (CS) is socially optimal if CS belongs to set

argmaxCS v(CS) where v(CS) is the sum of the values of all coalitions inside CS. v(CS) =

∑C∈CS v(C).

Example 1. Consider a game G = (N,v), with two players where N = 1,2. Each of these

players can produce 5 units of output working alone and by collaborating they can produce

20 units worth of output. Therefore we have: v(1) = 5,v(2) = 5,v(1,2) = 20. The core of

the game, which is the set of all possible distribution of gain among players guaranteeing

20

Figure 2.2: Core of the 2-player game of example 1.

stability is: core(N,v) = {(x1,x2) ∈ R2|x1 >= 5,x2 >= 5,x1 + x2 = 20}, as illustrated in

Figure 2. Distributing the 20 units of income, among these two players, for all the points

in the line will make outcome stable, since none of these players can gain more than 5 by

working alone. However although they have same qualities, the core can suggest a stable

outcome where one agent can earn three times more than the other agent: {5,15}. As

mentioned in previous section, core result may not be fair, the core only considers stability.

However, Shapley value considers fairness. According to Equation 2.1, the two workers

should each share 10 units of income, since they have the same marginal contribution to all

subsets of the coalition. As you can see the distribution vector of {10,10} is also a member

in core set. Later we are going to show if core of a coalition game is not empty, and game

is convex, the shapley value lies within core set.

Example 2. In this example, we want to analyse games under conditions which core can be

empty. Consider a game G= (N,v), where N = 1,2,3 and v({i}) = 0, v({Ci}) =α f or|C|=

2 and v({N}) = 1. The (x1,x2,x3) distribution vector according to Equation 2.2, is in core

21

if xi ≥ 0 which implies each player will get more than 0 which they would when working

alone and ∀i,∀ j,xi + x j ≥ α which implied any pair of players will get more than α which

they would earn if they worked in pair without the third player and finally ∑i∈N xi = 1 which

implied all the gain is distributed among the three players. Based on these three equations

we have, ∀i ∈ N0 6 1−α and ∑i∈N xi = 1. By summing first equation for all three platers,

we conclude Core(N,v) is nonempty iff α 6 2
3
. When alpha is more than 2

3
, the contribution

of third player is not good enough to justify the group of three players working together.

The third player will increase the revenue with less then 1
3
, and the other two players, both

can get better share of revenue if they work together. This is why the group of three players

working together when α > 2
3

is not stable.

2.2.2 Stability of Coalitions

Core stability is a highly desirable property. However, in many problems this property is

not achievable. It would be more ideal to maintain a set of quasi-stable payoffs when the

core is empty. There are several approaches to achieve this goal. One may drop the stability

requirement and focus on other types of solutions for which a payoff division is guaranteed

to exist. Two well known solution concepts in this category are nucleolus [76] and the

bargaining set [25]. They try to minimize some measure of unhappiness in the game for

the agents.

Another approach to stabilize the game can be achieved via external subsidies. When

Core is empty it means the game is not stable since the coalition is unable to generate

enough revenue to satisfy the demands of each subset of agents. An external party that is

interested in stabilizing the game provides a subsidy to the agents if they form the grand

coalition, and thus a value of λv(C) is divided among them, where λ ≥ 1. Clearly any game

can be stabilized using a large enough λ , however the external party would be interested in

22

the minimal subsidy required in order to stabilize the game.

A community can also be stabilized by relaxing the core constraints. According to

Core, an outcome is unstable if a coalition can benefit even by a small amount from deviat-

ing, which is a strong requirement. In fact, in some situations, deviations can be costly, or

players may have loyalty to their coalitions, or even it can be computationally intractable

to find those small benefits. It would only make sense for a coalition to deviate if the gain

from a deviation exceeds the cost of performing the deviation. ε-core relaxes the notion of

the core, and only requires that no coalition would benefit significantly, or within a constant

amount (ε) by deviating (see Equation 2.5).

∀S⊆ N, ∑
xi∈S

xi ≥ v(S)− ε (2.5)

Alternatively, ε can be thought of as a tax imposed on a coalition should it choose

to deviate. This can again be seen as an external party, trying to stabilize the coalition

by imposing some tax on deviation. Taxation and subsidizing as methods of stabilizing

cooperative games have been studied in [13, 11, 60].

2.2.3 Representation and Complexity Issues

Shapley value is the unique “fair” way to distribute the total surplus generated by the coali-

tion, among all the players. The nature of the Shapley value is combinatorial, as all possible

orderings to form a coalition needs to be considered. This computational complexity can

sometimes be an advantage as agents cannot benefit from manipulation. For example, it

is NP-complete to determine whether for a bunch of agents to collude and make their own

coalition and guarantee an increase in payoff of all participants [88]. There are some repre-

sentations that allow us to compute the Shapley value efficiently by reducing the input size

of the problem. One example is Induced subgraph games which was introduced by Deng

23

and Papadimitriou [28]. In this representation, players are represented by graph nodes, and

their valuation function should be the sum of weights of all edges between the node and all

its neighbors. It is a succinct representation, using an adjacency matrix, which needs only

O(n2) space to store all the input, which is a major improvement from O(2n) because if

weights of all the edges in graph are all positive, the Shapley value can be computed in time

O(n2). However, this representation is not complete, some games cannot be represented by

a induced subgraph game [88].

Ketchpel introduces the Bilateral Shapley Value (BSV) [39] for coalition games with

general valaution functions. It reduces the combinatorial complexity of the computation

of the Shapley value, breaking the community to multiple disjoint set. With backtracking

and dynamic programming like methods, they merge and store the marginal contribution of

disjoint coalitions, reducing the overall complexity of the algorithm. However, the solution

is still NP-Complete and BSV time and space complexity grows exponentially.

In order to make cooperative game concepts practical in real world application, we

have proposed an approximation multi-layer algorithm useful for service orinted comput-

ing settings. Our excrements illustrate, these algorithms can provide applicable and near

optimal solutions for real world applications.

2.3 Related Work

2.3.1 Communities of Web Services

Here we introduce the related research work regarding the engineering and formation of

communities of web services. In [14], Benatallah et al. defined communities as Service

Containers that aggregate substitutable web services providing a common functionality

24

(same set of operations). They abstracted Service Containers as web services that are cre-

ated, advertised, discovered and invoked just as elementary web services. The Container

is considered as a manager that is responsible for web service selection upon receiving a

request on run-time. The authors have proposed a scoring service based on non-functional

requirements of the request and web service capabilities to dynamically chose the web ser-

vice to perform the requested task. A similar concept was proposed by Maamar et al. in

[53]. The authors introduced web services communities as a collection of web services with

a common functionality but different QoS properties. A community manager, upon receiv-

ing a request, delegates the request to one of its current members. The choice is based on the

performance history and quality metrics of each web service. The authors have proposed an

efficient global web service selection algorithm in order to approach quality constraints and

preferences for composite services which require aggregation of different types of services

to satisfy the user.

Benslimane et al. [17] have proposed a multi-layer approach grouping similar Web

services into communities and having an interface implemented as an abstract web service

for accessing the community on top of the community layer. The interactions between

composite, management and community layers and the bindings are performed by a generic

driver called Open Software Connectivity (OSC).

In [47], Limam and Akaichi have proposed web service communities with centralized

access across distributed web services. They have proposed a framework for web service

management, query resolution among communities and a query caching mechanism exe-

cuted by the manager to improve the performance of query resolution process among many

distributed communities. The key idea is to cache previous computed results for answering

future queries.

25

Maamar et al. initially in [51] and then comprehensively in [53] proposed an archi-

tecture utilizing Contract-Net protocol for engineering task distribution within communities

of web services. The protocol is centrally executed by the community manager. This ar-

chitecture has been further developed in [54, 15, 43, 45]. Two types of roles have been

distinguished for community members: masters and slaves. Master web services and com-

munity managers that lead communities and are responsible for membership management.

They can invite and convince slave web services to join the community, and attract new

slave web services to their communities by awarding them better payoff. Moreover, they

can eject some slave members from the community to improve its overall reputation if these

members are misbehaving or cannot provide the promised QoS.

In [59], Medjahed and Bouguettaya have developed a community as a “cluster” that

groups Web services based on a specific area of interest. All web services in a given commu-

nity share the same functionality. These communities are created by third party community

providers which use the community ontology as a template and define a set of operations

that all web services within a community should provide. Using semantic analysis on web

service operations, web services either find and join a community with similar functionality

or create a new operation description for a new community. The authors have described the

concept of community agents associated to community providers. A community agent is

responsible, among other things, of the registration of services with the community. An

example of a community that provides health care services to senior citizens has been used.

In this example, a governmental entity is needed to check the health care standards used by

the members before authorizing them to be part of the community. Such a central entity

is represented by the community agent. Thus, community agents are playing the role of

community managers. In a close work [89], Zeng et al. have described a global planning

26

selection algorithm and a delegation algorithm to be run when a request to execute an op-

eration is received by the community. This needs a central entity to run those algorithms.

Such entity plays the same role as the community coordinator or manager.

2.3.2 Web Services Community Formation

Most of the recent work on communities of services are either user-centric and focus on user

satisfaction [23] or system-centric and focus on the whole system throughput, performance

and utilization. There are many contributions in distributed, grid, cluster and cloud services

which are system-centric. However, in real world environments and applications, both

users and service providers are self-interested agents, aiming to maximize their own profit.

In those environments, both parties (users and services) will collaborate as long as they are

getting more benefits and payoff.

In this direction, recently [46, 41, 48] proposed mechanisms to help users and ser-

vices maximize their gain. A two-player non-cooperative game between web services and

community master was introduced in [41]. In this game-theoretic model, the strategies

available to a web service when facing a new community are requesting to join the commu-

nity, accepting the master’s invitation to join the community, or refusing the invitation to

join. The set of strategies for communities are inviting the web service or refusing the web

service’s join request. Based on their capacity, market share and reputation, the two players

have different sets of utilities over the strategy profiles of the game. The main limits of

this game model are: 1) its consideration of only three quality parameters, while the other

factors are simply ignored; and 2) the non-consideration of the web services already resid-

ing within the community. The game is only between the community master and the new

web service, and the inputs from all the other members and their influence on the master’s

decision are simply ignored. The consideration of those inputs and this influence factor

27

is a significant issue as existing web services can lose utility or payoff because of the new

member, which can result in an unhealthy and unstable group. The problem comes from the

fact that the existing members should collaborate with the new web services, so probably

their performance as a group can suffer. Existing members may even deviate and try to

join other communities if they are unsatisfied. Those considerations of forming stable and

efficient coalitions are the main contributions of our research work.

In [46], a 3-way satisfaction approach for selecting web services has been proposed.

In this approach, the authors proposed a web service selection process that the community

masters can use. The approach considers the efficiency of all the three involved parties,

namely users, web services and communities. In this work, it is shown how the gains of

these parties are coupled together using a linear optimization process. However, the opti-

mization problem in this solution tends to optimize some parameters considering all web

services regardless of their efficiency and contribution to the community’s welfare. More-

over, there are no clear thresholds for accepting or rejecting new web services. The solu-

tion of the optimization problem could, for instance, suggest web services already residing

within the community to increase or decrease their capacity to cover up the weakness of

other parties in the system. However, a high performing web service could deviate anytime

it finds itself unsatisfied within the community instead of adjusting its service parameters.

In [48], a cooperative scheme among autonomous web services based on coalitional

game theory has been introduced. The authors have proposed an interesting algorithm to

reach individually stable coalition partition for web services in order to maximize their ef-

ficiency. The communities choose new web services on the promise that it would benefit

the community without decreasing any other web service’s income. In the proposed model,

the worth of community is evaluated with high emphasis on the availability metric and con-

sidering price and cost values only. The community structure is based on a coordination

28

chain, where a web service is considered as a primary web service and the community task-

distribution method initially invokes the primary web service and only if the primary web

service is unavailable, the method invokes the next backup web services as they are ordered

in the coordination chain. We believe that this coordination chain limits the cooperation

power as it introduces a sort of hierarchy. However, in pure and open cooperative models,

such as the one we propose in this thesis, active cooperation activities engaging simulta-

neously many agents so that they can perform the tasks more efficiently are being used.

Moreover, if the availability is high, which is the case nowadays with the recent advance-

ments in cloud and hardware infrastructures, the backup web services will end-up having a

very low chance of getting jobs, especially the ones further in the chain. This will results in

a considerable waste of web services capabilities.

2.3.3 Coopetitive Behavior Within Communities of Web Services

At the best of our knowledge, there is no work in the literature of service and agent com-

puting addressing the issue of coopetition strategies and when to cooperate or to compete.

However, some relevant proposals to our proposed model are the ones that address service

selection and task allocation mechanisms. In many frameworks proposed in the litera-

ture, service selection and task allocation are regulated based on the reputation parameter

[18, 72, 74, 85]. In [35], the authors propose a framework to match potential benefits of

services while cooperating with one another. The interesting idea is to consider the benefits

under four categories: innovation and learning, internal business process, customer, and fi-

nancial benefits. Innovation and learning perspective focuses on the knowledge, skills, and

systems needed to improve the business continually. Necessary factors to build strategic

capabilities and efficiency in addressed in internal business process. Values that customers

seek are considered in customer perspective and financial performance to maximize the

29

shareholder value are analyzed in financial perspective. Their goal is to design the frame-

work for cooperating web services, inline with business strategy of firms in IT industry. In

[3], the authors present a dependable framework for cooperative service agents that is based

on the tuple space coordination model. The intrusion-tolerant perspective is emphasized in

the paper where several security mechanisms are developed to enable a reliable coordina-

tion system. The proposed frameworks mostly aim to facilitate the coordination mechanism

between services. However, the opposite strategy of competing is not analyzed where ser-

vices might be more successful when competing within the same group. In fact, services

are not always willing to cooperate even if they have some common goals, particularly

when they operate within groups such as communities. In such a context, service agents

can follow different interacting strategies and have to decide when to compete and when

to cooperate so that their ultimate goal, maximizing their incomes, can be better achieved.

In our framework, we analyze those different strategies to help services in their decision

making process when these agents function within communities. We enable service agents

to reasonably evaluate and decide over their coopetition strategies, which means deciding

when to compete and when to cooperate.

Furthermore, there are a number of related proposals that take into account the corre-

lation between (web) services and the ways these services coordinate their actions to accom-

plish the required tasks. In [38, 37, 56, 58, 85], the authors propose to rank services based

on their reputation in the system and to use this ranking as a means to facilitate cooperation

of services. In those models, services rely on one another on the basis of the reputation

ranking system, using, among other parameters, the QoS [81]. There are other models that

facilitate cooperation mechanisms among services using various techniques. Examples of

those techniques include 1) coordination between two types of behaviors associated with

component services: operational and control behaviors [86]; 2) Services-based workflows

30

[83]; 3) transaction-based approaches [32, 70]; 4) agent coordination mechanisms [21, 34];

5) logical techniques [63, 80]; and 6) community models, which are virtual structures that

aim at increasing the visibility of services and facilitating their discovery and composi-

tion by hosting and gathering services having similar or complementary functionalities but

different QoS parameters [44]. However, deciding about which strategy to choose when

services are competing but still need to cooperate to accomplish complex tasks has not

been addressed and kept as open issue in all these proposals as faithfully argued in [55, 40].

2.4 Conclusive Remarks

In this thesis, as the first contribution, we will tackle the issue of community formation in an

efficient way for all the web services and communities involved. We will use game theory

to propose a cooperative game model for the aggregation of web services within communi-

ties. The solution concepts of our cooperative game seeks to find efficient ways of forming

coalitions (teams) of web services so that they can maximize their gain and payoff, and

distribute the gain in a fair way among all the web services. Achieving fairness when the

gain is distributed among the community members is the main factor to keep the coalition

stable as no web service will expect to gain better by deviating from the community. In

other words, the coalition is made efficient if all the members are satisfied. We first propose

a representation function for communities of web services based on their QoS attributes.

By using this function, we can evaluate the worth of each community of web services.

When facing new membership requests, a typical community master checks whether the

new coalition having the old and new set of web services will keep the community stable or

not. The community master will reject the membership requests if it finds out that the new

coalition would be unstable, preventing any subset of web services from gaining signifi-

cantly more by deviating from the community and joining other communities or forming

31

new ones. The computation of solutions for cooperative game theory problems is combina-

torial in nature and proven to be NP-complete [27], making this computation impractical in

real world applications. However, using the concepts of coalition stability, we proposed ap-

proximation algorithms running in polynomial time providing web services and community

masters with applicable and near-optimal decision making mechanisms.

Next, we will tackle the issue of distributed model of web services and propose a

decision model for scenarios where information is incomplete. We will propose a train-

ing model for the problem of membership management of communities of web services.

Using the traning model we aim to create a decision making profile for each community

and web service involved which provides them with a set of feasible and utility increasing

moves. This will equip our web services with efficient methods of foreseeing how their

choices of actions would impact their long-term and short-term goals, therefore they opted

for best decision available. The ultimate goal is to choose the best decision when it comes

to communities formation, among many possible short-term rational and utility increasing

choices.

In our last contribution, the focus is on internal community management. We will

introduce a game-theoretic based model to analyze the efficiency characteristics for the ac-

tive services in open networks. The proposed framework will consider the chances of web

services in joining a community in different cases with truthful and lying information ser-

vice agents. The proposed game will analyze the existing Nash equilibrium and situations

where the maximum payoff is obtained.

32

Chapter 3

Coalition Formation for Autonomous

Web Services

In this chapter, we present our coalition model of agent-based web services within com-

munities [9]. We start by describing the general architecture and considered parameters for

web services. Thereafter, problem modeling and formulation will be introduced in terms

of task distribution and community revenue. Web service cooperative games in different

settings will follow along with simulation results.

3.1 Preliminaries

In this section, we discuss the parameters and preliminary concepts that we use in the rest

of the chapter.

3.1.1 Architecture

Our system consists of three main types of entities working together:

1) Web services are rational entities that aim to maximize their utilities by providing

33

high quality services to end users. They aim to maximize their individual income by re-

ceiving enough requests from end users. In order to increase their revenue, web services

seek for more tasks if they have the capacity and throughput to do so. Web services can

join communities to have better efficiency by collaborating with others, to have access to

higher market share, and to have opportunity of receiving a bigger task pool from end users.

Throughout this thesis, in our equations, we refer to web services as ws and to the set of

web services hosted by a given community as C. To simplify the notation, sometimes we

simply write ws instead of ws ∈C to go through the elements ws of the set C.

2) Master Web Services or the community coordinators, are representatives of the

communities of web services and responsible for their management. Communities receive

requests from users and aim to host a healthy set of web services to perform the required

tasks. They seek to maximize user satisfaction by having tasks accomplished according to

the desired QoS. In fact, higher user satisfaction will bring more user requests and increase

the market share and revenue of the community.

3) Users generate requests and try to find the best available services. User satisfaction

is abstracted as function of quantity and quality of tasks accomplished by a given service.

Higher user satisfaction leads to higher trust of the community by users hence directing

more requests towards that service provider.

3.1.2 Web Service Parameters

Web services come with different quality of service parameters. These parameters with a

short description are listed in Table 3.1.

We adopted a real world dataset [2] which has aggregated and normalized each of

these parameters to a real value between 0 and 1. Since requests are not shared among web

services and are distributed among all of them inside a community, each one of them comes

34

Table 3.1: List of web service QoS parameters.

Parameter Definition

Availability Probability of being available during

a time frame

Reliability Probability of successfully handling

requests during a timeframe

Successability Rate of successfully handled requests

T hroughput Average rate of handling requests

Latency The average latency of services

Capacity Amount of resources available

Cost Mean service fee

Regulatory Compliance with standards, law and rules

Security Quality of confidentiality

and non-repudiation

with a given QoS denoted by (QoSws). We assume that (QoSws) is obtained by a certain

aggregation function of the parameters considered in Table 3.1. We use this quality output

later in evaluating the community worth or payoff function.

3.1.3 Web Services Communities

Figure 3.1 represents our revised architecture of web service communities where tasks are

to be distributed among the members that are interested in forming stable coalitions. As dis-

cussed in Chapter 2, communities are essentially virtual platforms aggregating web services

having similar and complementary functionalities and communicate with other entities such

as UDDI registries and users using particular protocols. Web services join communities to

increase their utility by having larger market share and task pool. Community coordinators

or master web services are responsible for community development, managing member-

ship requests from web services and distributing user tasks among the community mem-

bers. Community coordinators try to attract quality web services and keep the community

as stable and productive as possible to gain better reputation and user satisfaction, which

results in having higher revenue.

35

Figure 3.1: Architecture of Web Services communities.

3.2 Problem Formulation and Modeling

In this section, we present web services and community coordinator’s interactions, the task

distribution process and revenue models in web services communities.

3.2.1 Task Distribution

As mentioned in Section 3.1, communities are robust service providers with well estab-

lished market share and reputation. By maintaining their reputation and performance, they

attract end users which choose them as service providers to perform their tasks. The com-

munity master is characterized by a request rate (RC) from users. Each web service comes

with a given QoS (QoSws) from which the throughput T hws is excluded. Throughput is the

average rate of tasks a web service can perform per time unit. Its exclusion from QoSws

allows us to build our analysis on the particular value of T hws. Thus, web services perform

tasks with an average output quality of QoSws and a throughput rate of T hws.

The community master uses a slightly modified weighted fair queuing method to

distribute tasks among its members. The goal is to allocate incoming tasks to web services

with a rate matching the throughput value of T hws. In weighted fair queuing method all the

36

input flow is multiplexed along different paths, however in our case if the input rate (RC)

of the community is more than the summation of throughput values of the web services in

the community, some of the input tasks will be queued and served with delay. Thus, the

amount of tasks performed by community is ∑ws∈C (T hws) when ∑ws T hws ≤ RC. However,

when the input rate (RC) of the community is less than the summation of throughput values

of the web services in the community, (RC) the weighted fair queuing algorithm assigns

a weighted task rate of RC×
T hws

∑ws T hws
for each web service (ws) and the total rate of tasks

being performed is RC, the community’s receiving request rate.

While distributing tasks, the community master can verify the performance, through-

put and quality of service of tasks being performed by web services. It can recognize if

web services are capable of doing the amount of tasks they advertised. If for any reason

there is a decline in quality metrics or throughput, the community master will announce the

new parameters and community masters and members can consider those values as bench-

mark for future performance calculations. Web services that got their quality declined are

penalized, and in this way, players have incentive to reveal their real capabilities to profit

best from the community and to avoid being penalized. In addition, the system should be

dynamic enough to detect and react to web services quality metrics variation as over time

web service metrics may degrade or improve, a change that the community should adjust

to.

3.2.2 Community Revenue

The communities and web services earn revenue by performing tasks. The total gain is func-

tion of quality (QoSws) and throughput (T hws) of tasks being performed. We have adopted

a linear equal weight average over the QoS parameters excluding the T hroughput and Cost

parameters. A community has the option to weigh specific QoS parameters depending on

37

Table 3.2: Case Study: Example 1

WS QoSws T hws T hws×QoSws

1 0.8 4 3.2

2 0.8 5 4.0

3 0.8 3 2.4

the expectations of their clients.

The maximum potential output of a community (PO(C)) is an aggregation of number

of tasks, times their quality, for each web service member of the community:

PO(C) = ∑
ws∈C

(Tws×QoSws) (3.1)

If the summation of throughput values (T hws) of community members exceeds the

input task rate of the community (RC) the community cannot perform at its maximum po-

tential. It denotes the case when the community has more web services than it needs to

perform the input task load. The actual output has to be normalized to the amount of tasks

being performed.

Out(C) =











PO(C) if ∑ws T hws ≤ RC

PO(C)× RC

∑ws T hws
if ∑ws T hws > RC

(3.2)

The revenue function of the web services community is a linear function of Out(C)

with a positive constant multiplier.

3.2.3 Case Study

In this section, we analyze three numerical examples and discuss the motivation of web

services and community interactions and the strategies they can adopt and the revenue they

can earn adopting these different strategies.

38

Community Worth Community Worth

{1} 3.2 {1,2} 7.2

{2} 4.0 {1,3} 5.6

{3} 2.4 {2,3} 6.4

{1,2,3} 8.0

Community RC: 10

Table 3.3: Case Study: Example 2

WS QoSws T hws T hws×QoSws

1 0.8 5 4.0

2 0.7 6 4.2

3 0.7 4 2.8

In the first example, we present the case of a community with RC = 10, and three

web services, each having different QoSws and T hws values as listed in Table 3.2. The

worth of a community is calculated based on Out(C) Equation (3.2) which is the amount

of output being generated by the community. The first table lists the web services with

their aggregated QoSws parameters, their task input rate while working alone, and also their

throughput value T hws. The second table shows all the possible communities and their

respective worth. The obtained values suggest that communities having more web services

have better gain and output. However each community needs to distribute the gain between

web services. Sometimes it is impossible to share the gain between all web services in a way

that no subset of them would individually gain more if they form their own group. In this

example, the value community of ws1 and ws2 is 7.2, With ws3 joining the community the

worth increases to 8.0. However there is no way to distribute the value among web services

to have ws1 and ws2 earning 7.2, and ws3 earning at least 2.4, the gain they could earn

before joining the community. This fact makes the group unstable. In the second example,

shown in Table 3.3, we even have situations where a web service (ws3) joining a community

39

Community Worth Community Worth

{1} 4.0 {1,2} 7.4

{2} 4.2 {1,3} 6.8

{3} 2.8 {2,3} 7.0

{1,2,3} 7.3

Community RC: 10

Table 3.4: Case Study: Example 3

WS QoSws T hws Input Task Rate

1 0.8 10 5

2 0.8 20 5

3 0.8 30 5

({ws1,ws2}) decreases the value of community. The reason is, the community is already

full and all tasks are almost being distributed and new community with bad quality can

degrade the average quality of tasks being done by the community. In both examples, the

request of joining of web service ws3 should be rejected by the community.

In Example 3, we consider the case of having different communities with different

market share, RC values. Web services also have a small share of market independently,

providing them with a small task pull. In these kind of scenarios, the solution considers

individual maximization of payoff and also the total worth of all communities which rep-

resents the social welfare. In this example the most efficient partition of web services is

earned by having two coalitions of {Cmaster1
,ws2} and {Cmaster2

,ws1,ws3}, which yields a

total value of 32+16 = 48. In these types of scenarios, the goal is to reach stability, adopt-

ing a distributed approach where all players have the power of choice on the decision of

whether or not they join a coalition. The communities usually start the game having some

established members, encountering new web services, the communities may exchange web

services and new web services would join them having at least one player gaining utility,

40

Community Worth Community Worth

{Cms1
} 0 {Cms2

} 0

{Cms1
,ws1} 8 {Cms2

,ws1} 8

{Cms1
,ws2} 16 {Cms2

,ws2} 16

{Cms1
,ws3} 16 {Cms2

,ws3} 24

{Cms1
,ws1,ws2} 16 {Cms2

,ws1,ws2} 24

{Cms1
,ws1,ws3} 16 {Cms2

,ws1,ws3} 32

{Cms1
,ws2,ws3} 16 {Cms2

,ws2,ws3} 32

{Cms1
,ws1,ws2,ws3} 16 {Cms2

,ws1,ws2,ws3} 32

{Cms1
,Cms2

, ...} 0 {ws1} 6.8

{ws2} 4.2 {ws3} 6.8

Community RC1
: 20

Community RC2
: 40

without hurting any other participant. In this example if we initially having two coalitions

of {Cmaster1
,ws2} and {Cmaster2

,ws1} and a ws3 as new web service, ws3 joining Cmaster1

would hurt at least itself or ws2, however ws3 joining Cmaster2
would not hurt any partici-

pants and ws3 would earn more within the community and the community will have enough

web services performing the incoming tasks from users.

The first two examples illustrate the fact that a community cannot simply increase

its revenue by adding more web services. The web services and even community owners

are autonomous agents and would deviate and be displeased about the community if new

members cause a drop in their profit. The job of the community master is to attract as many

quality web services it can and keep them satisfied; hence the group stability is guaranteed.

The third example highlights another type of problem we would like to address, which

is how to form best possible groups of communities, and allocate web services among

communities in a way which would maximize payoff for of our agents and members already

residing in the communities. In next section, we provide collaborative game theory based

algorithms for our autonomous agents, to tackle these problems and find applicable and

41

efficient strategies for communities and web services to maximize their profit.

3.3 Web Service Cooperative Games

In this section, we present different web services community models and focus on the prob-

lem of how both web services and community masters as rational entities would adopt

strategies to maximize their payoff.

3.3.1 Web Services and One Community

In this scenario, we assume the existence of a typical community managed by its master,

and web services need to join it to be able to get requests from the master. The community

master is characterized by a requests rate (RC) from users. Each web service comes with

a given QoS (QoSws). The worth of a community v(C) is set to Out(C) based on Equation

3.2.

As mentioned in previous section, the worth and output of a community is a function

of the throughput and provided QoS of its web service members. If the throughput rate is

more than the master’s input request rate, it means the web services inside the community

are capable of serving more requests than the demand. Considering this factor, the valu-

ation function is designed to balance the output performance so that it matches the exact

throughput rate and QoS the web service can provide within the particular community.

In this first scenario, we only consider one grand coalition and analyze the system

from the point of view of one single master web service and a collection of web services.

The master web service decides which members can join the community and distributes the

requests and income among its community members (see Figure 3.2).

The membership decision is made based on throughput and QoS of the considered

42

‘

Figure 3.2: Web Services and A Grand Community.

web service. The goal is to have quality web services in the community so it stays stable and

no other web services would have incentives to deviate and leave the coalition C. Therefore,

a basic method would be to check the core of the coalition C considering all the current

community members (all web services already residing within the community) and the new

web service. This algorithm uses the Shapley value distribution method as described in

Equation 2.1 to distribute the gain of v(C) among all the members and then checks if the

Shapley value payoff vector for this community having the characteristic function v(C) is

in the core. In the Shapley value payoff vector, the payoff for each web service wsi is

calculated based on its marginal contribution v(C∪ i)− v(C) over all the possible different

permutations in which the coalition can be formed, which makes the payoff distribution

fair. Because of going through all the possible permutations of subsets of N, the nature

of the Shapley value is combinatorial, which makes it impractical to use as the size of our

coalitions grows. However, it is proven that in convex games, the Shapley value lies in the

core [33, 62]. Thus, if the Core is non-empty, the payoff vector is a member of the Core.

The following proposition is important to make our algorithm tractable.

Theorem 3.1. A game with a characteristic function v is convex if and only if for all S, T ,

and i where S⊆ T ⊆ N\{i} ,∀i ∈ N,

v(S∪{i})− v(S)≤ v(T ∪{i})− v(T) (3.3)

43

Proof. We first prove the “only if” direction:

1. “only if” direction:

Assume:

v(S∪{i})− v(S)≤ v(T ∪{i})− v(T)

→ v(S∪{i})+ v(T)≤ v(T ∪{i})+ v(S)

Considering S⊆ T :

T ∪{i}= (S∪{i})∪T

S = (S∪{i})∩T

By setting A = S∪{i} and B = T we have:

v(S∪{i})+ v(T)≤ v(T ∪{i})+ v(S)

→ v(S∪{i})+ v(T)≤

v((S∪{i})∪T)+ v((S∪{i})∩T)

→ v(A)+ v(B)≤ v(A∪B)+ v(A∩B)

Consequently, the game is convex.

2. “if” direction:

Assume the game is convex. Thus, for all A,B⊂ N, we have:

v(A)− v(A∩B)≤ v(A∪B)− v(B)

44

By setting S∪{i}= A and T = B where S⊆ T :

v(S∪{i})− v((S∪{i})∩T)≤ v(T ∪ (S∪{i}))− v(T)

→ v(S∪{i})− v(S)≤ v(T ∪{i})− v(T)

Thus, in order to keep the characteristic function convex, new web services should

have more marginal contribution as the coalition size grows.

Our algorithm works as follows. Given an established community with a master and

some member web services, a web service would send a join request to join the community.

Ideally, the core or ε-core stability of the group having this new member should be ana-

lyzed. As the normal core membership algorithm is computationally intractable, we exploit

Proposition 3.1 and Equation 3.3 to check the convexity of our game having characteristic

function where the new member is added. In the equation, let C be our community members

before having the new web service join the community. Let i be the new web service, and

then verify the equation for S, setting S = T/W1 where W1 is the set of all possible subsets

of the set N having the size 1. We can relax the equation a bit by adding a constant ε to the

left side of the equation. We call this method Depth-1 Convex-Checker algorithm. If the

equation is satisfied for all W1, we let the new web service join our community, since the

web service will contribute positively enough to make our new community stable. Since

only subsets of size 1 are checked, the following Proposition holds.

Theorem 3.2. The run time complexity of Depth-1 Convex-Checker algorithm is O(n).

By this result, we obtain a significant reduction from O(2n), which is the complexity

of checking all possible subsets of N. In our second method, we use the same algorithm,

but this time we set W2 to be the set of all possible subsets of size two and one of the

45

Figure 3.3: Web Services and Many Communities.

community C. We call this method Depth-2 Convex-Checker and its run time complexity is

still linear:

Theorem 3.3. The run time complexity of Depth-2 Convex-Checker algorithm is O(n2).

It is possible to develop an algorithm that continues the verification of this condition

against subsets of size 3, 4, etc. until the algorithm gets interrupted.

3.3.2 Web Services and Many Communities

In this scenario, we consider multiple communities managed by multiple master web ser-

vices, each of which is providing independent request pools (see Figure 3.3). Identical to

the first scenario, master web services form coalitions with web services. We use coali-

tion structure formation methods to partition web services into non-empty disjoint coalition

structures. As mentioned in Section 2.2.1, the used algorithms in [75, 33, 67] try to solve

key fundamental problems of what coalitions to form, and how to divide the payoffs among

the collaborators.

In coalition-formation games, formation of the coalitions is the most important as-

pect. The solutions focus on maximizing the social welfare. For any coalition structure

π , let vcs(π) denote the total worth ∑C∈π v(C), which represents the social welfare. The

46

solution concepts in this area deal with finding the maximum value for the social welfare

over all the possible coalition structures π . There are centralized algorithms for this end,

but these approaches are generally NP-complete. The reason is that the number of all pos-

sible partitions of the set N grows exponentially with the number of players in N, and the

centralized algorithms need to iterate through all these partitions. In our model, we propose

using a distributed algorithm where each community master and web service can be a de-

cision maker and decide for its own good. The aim is to find less complex and distributed

algorithms for forming web services coalitions [5, 29, 68]. The distributed merge-and-split

algorithm in [5] suits our application very well. It keeps splitting and merging coalitions to

partitions which are preferred by all the players inside those coalitions.

This merge-and-split algorithm is designed to be adaptable to different applications.

One major ingredient to use such an algorithm is a preference relation or well-defined orders

proper for comparing collections of different coalition partitions of the same set of players.

Having two partition sets of players, namely P = P1, ...,Pk and Q = Q1, ...Ql , one example

would be to use the social welfare comparison ∑
k
i=1 v(Pi) > ∑

l
j=1 v(Q j). For our scenario,

we use Pareto order comparison, which is an individual-value order appropriate for our

self-interest web services. In the Pareto order, an allocation or partition P is preferred over

another Q if at least one player improves its payoff in the new allocation and all the other

players still maintain their payoff (pi ≥ qi with at least one element pi > qi).

The valuation function v(C) for this scenario is the same as “Web Services and One

Community” scenario. However, in order to prevent master web services joining the same

community, we set v(C) = 0 when C has either none, or more than one master web service

as member.

In this scenario, as new web services are discovered and get ready to join communi-

ties, our algorithm keeps merging and splitting partitions based on the preference function.

47

The decision to merge or split is based on the fact that all players must benefit. The new web

services will merge with communities if all the players are able to improve their individual

payoff, and some web services may split from old communities, if splitting does not de-

crease the payoff of any web service of the community. According to [4], this sequence of

merging and splitting will converge to a final partition, where web services cannot improve

their payoff. More details of this algorithm and analysis of generic solutions on coalition

formation games are described in [5].

3.3.3 Taxation, Subsidizing and Community Stability

We discussed core as one of the prominent solution concepts in cooperative games. Work-

ing together, completing tasks and generating revenue, agents need to distribute the gain in

a way no agents would gain more by forming their own group. However, in most cases,

the core of a game is empty, so we introduced the ε-core concept, where agents would only

earn a minimal amount of ε by deviating from the coalition. Stability is an attractive prop-

erty for communities. In addition, communities would benefit by having slightly more web

services than the exact number of web services needed to satisfy the task rate cap. This is

because there is always a possibility that the web services may leave the community or they

may under perform and degrade the quality values they were initially performing with.

The solution we propose for communities to ensure stability is applying a tax ε ,

which is an amount of cost for those web services that decide to change communities (let

us say from C to C′), which would make deviation a costly act. However, this would require

all the community coordinators to agree on a same amount of taxation, being governed by

some external entities; otherwise, web services would join communities charging the lowest

amount of tax. Before deciding to change the community, each web service i has to be sure

that the gain gi(C→C′) calculated in Equation 3.4 based on the Shapley values of i in the

48

previous and new communities and the tax ε is positive, which means, what the web service

would gain in C′ is greater than what it gains in C and the tax it would pay if moving all

together:

gi(C→C′) = φi(C
′,v)−φi(C,v)− ε (3.4)

Another viable solution we introduce to our scenario is to stabilize the game using

external subsidies. The reason a game is not stable is that the community is not making

enough revenue to allocate enough gain to the players. A community coordinator can sub-

sidize its community with a constant coefficient value of λ . Obviously, with a big value

for λ , it is always possible to stabilize the community. However, this can be a costly act

for the community coordinators, so they are interested in the minimum subsidize value

of λ making the community stable. This can be achieved by solving the following linear

program:

min λ

s.t. λv(C)> v(C′) for all C′ ⊂C

Subsidizing or taxing in order to reduce the bargaining power of sub coalitions are

called taxation [92] methods. We evaluate the effectiveness of these two methods experi-

mentally through extensive implementations in the next section.

3.4 Experimental Results and Analysis

In this section, we discuss the experiments we performed for our scenarios to validate the

applicability and performance of our proposed methods in realistic environments. An XML

49

SOAP based messaging system was implemented. We created a pool of web services and

populated most of their QoS parameters from a real world web service dataset [2]1. To

test our methods, we formed around 10,000 random coalitions consisting of 3 to 160 web

services. In average, the communities were populated by 60 web services. We implemented

the scenarios using Java and executed the experiments on an Intel Xeon X3450 machine

with 6GBs of memory.

One of the key criteria reflecting the performance of web service coalitions is the user

satisfaction. User satisfaction can be measured in terms of quality and quantity of requests

(or tasks) successfully answered by the communities. We initiated the communities with

few web services, then let rejecting and accepting random web services go for a short

number of iterations. After that, we started the request distribution for the communities

and let them allocate requests among member web services. Thereafter, we measured the

average output performance of tasks in communities following different methods.

Figure 3.4 depicts the results of optimal ε-core, Depth-1 Convex-Checker, Depth-2

Convex-Checker, 3-Way Satisfaction [46], and 2 Player Non-Cooperative [41] methods in

one grand community with many web services scenario.

For the optimal core method we have used the well known ε-core method as the

taxtation method to relax the core condition to help communities, attract web services. We

have assigned ε to 15% of total community worth, ε = 0.15× v(C), which allows subsets

of the coalition to gain maximum 15% of v(C). In the optimal ε-core method, we capped

the coalition size to 25 web services, since the method is computationally intractable as

number of web services increase and anything more than that would make it impractical to

run in our simulations. In the other methods, there were no cap on size of the community

and we had communities of size 60 web services at some points. In this scenario our

1The implemented environment includes the QWS dataset by Eyhab Al-Masri and Qusay H. Mahmoud

freely available at: http://www.uoguelph.ca/~qmahmoud/qws/.

50

1 11 21 31 41 50
 0

 200

 400

 600

 800

1000

1200

1400

1600

Iterations
(a)

N
u

m
b

e
r

o
f

ta
s
k
s
 s

u
c
c
e

s
s
fu

lly
 d

o
n

e

Optimal epsilon−core

Our depth−2 Convex

Our depth−1 Convex

3−Way Sat

2−Player Game

1 11 21 31 41 50
0.72

0.74

0.76

0.78

 0.8

0.82

0.84

Iterations
(b)

A
v
e

ra
g

e
 Q

o
S

 o
f

T
a

s
k
s
 P

e
rf

o
rm

e
d

Optimal epsilon−core

Our depth−2 Convex

Our depth−1 Convex

3−Way Sat

2−Player Game

Figure 3.4: Part (a): Cumulative number of requests successfully done. Part (b): Average

QoS of requests performed.

community receives 30 tasks on average per iteration, from users. The community, after the

task distribution process on each iteration, will reevaluate QoS metrics of its members and

can check for new membership requests. Web services may join or leave the community

between iterations. The results show that our depth-2 convex checker method is performing

better compared to the other methods and its performance is close to optimal ε-core method.

Our depth-1 convex checker and the 3-Way Satisfaction method, are also performing well.

As mentioned in Section 3.1, the concept of core, assumes no coalition of players can

gain anything by deviating, which is a fairly strong requirement, and that is why the notion

of ε-core was introduced. Least-Core e(G) of a game G, is the minimum amount of ε so

51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

Maximum allowed deviation gain

L
e

a
s
t−

C
o

re
 N

o
n

−
E

m
p

ty

Figure 3.5: Analysis of ε-core set non-emptiness, for different values of ε .

that the core is not empty. We evaluated the non-emptiness of ε-core set using the valuation

function and a set of web services. We picked random number of web services from the

dataset and formed around 10,000 random coalitions consisting of 3 to 26 web services. We

choose 26 as the maximum number of members in our coalition since it is computationally

very complex for larger coalitions to verify whether ε-core set is empty or not. Also instead

of considering ε amount of constant deviation in ε-core definition (Equation 2.4), we simi-

larly defined relative ε-core concept where no coalition would benefit more than ε × v(C)

by deviating. We set ε between 0 and 1 and verify the relative ε-core set non-emptiness.

The results in Figure 3.5 illustrates that almost 10% of our random web service coalitions

have non-empty core solution and ε-core solution is always non-empty when we let agents

gain only 30% more of v(C) by deviating.

One of the properties of coalition structure formation algorithms in our second sce-

nario is that they partition web services with low throughput rate so that they usually join

coalitions with less request rate. Since the characteristic function v(C) and the fair Shap-

ley payoff vector is proportional to web services’ contribution, the web services with small

contribution will get paid much less in communities having web services with high through-

put. On the other hand, according to the valuation function v(C), web services with high

52

1 11 21 31 41 50
 0

1000

2000

3000

4000

5000

6000

7000

Iterations
(a)

N
u

m
b

e
r

o
f

ta
s
k
s
 s

u
c
c
e

s
s
fu

lly
 d

o
n

e

Dynamic Coalition Formation

Random Formation

1 11 21 31 41 50
0.5

0.6

0.7

0.8

0.9

Iterations
(b)

A
v
e

ra
g

e
 Q

o
S

 o
f

T
a

s
k
s
 P

e
rf

o
rm

e
d

Dynamic Coalition Formation

Random Formation

Figure 3.6: Part (a): Cumulative number of tasks succesfully done. Part (b): Average QoS

of tasks performed.

throughput will not contribute well to communities with low amount of user requests (low

market share). The strong web services are likely to deviate from weak coalitions, joining

a stronger one, which makes the initial coalition unstable.

In Figure 3.9, we compare our Web Services and many Communities scenario with

a method which ignores QoS parameters and forms coalitions by allowing web services

to join only if they have enough requests for themselves. In other words, web services

can join a community when the request rate is less than the throughput of all the member

53

1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

λ

S
iz

e

(a)

1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

λ

S
u
b
s
id

y
 C

o
s
t

(b)

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

λ

|t
a
s
k
s
 p

e
rf

o
rm

e
d
|

(c)

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

λ

Q
u
a
lit

y

(d)

Figure 3.7: Analysis of community subsidizing coefficient λ on average community size

(a), cost (b), number of tasks performed (c), and average quality of service of tasks per-

formed (d).

web services. We name this method Random Formation and use it as a benchmark for our

QoS-aware coalition formation process. In this scenario, each user individually generates

randomly between 0 to 10 number of tasks per iteration, then the users target a community

and direct their requests to the chosen community. As the results illustrate, our method

forms better coalitions of web services improving performance and satisfaction for both

web services and coalitions.

As mentioned in Section 3.3.3, a solution to help the community stabilize is to sub-

sidize the community by a relative coefficient (λ) so the value of λv(C) is divided among

the community members. We have analyzed the effect of subsidizing and the cost it incurs

to our web services communities. Figure 3.7 shows the results. In this experiment, we have

54

set a community with input task rate RC of 100 and having web services throughput rate

T hws values from a normal distribution with average 10 tasks per iteration and standard de-

viation 2. Part (a) shows the community size increases in a linear fashion as (λ) increases.

However, the cost (Part (b)) is having a slight exponential growth rate since, not only (λ)

increases, but also the size of the community is increasing slowly. Therefore, subsidizing

can be costly for larger number of λ values. Part (c) depicts the number of tasks done by

the community per iteration. It is obvious that with λ value of 1.3, which is 30% of the

community valuation, the number of tasks done almost reaches the input task rate cap of

100 tasks per iteration. The average quality of tasks also has a slight increase since the com-

munity will be able to afford better and more web services to join the community (Part (d)).

These results show the effectiveness of our subsidizing method and its impact on the QoS.

In fact, using more than 30% of the community valuation as subsidy is not very effective

and is costly to perform.

In our next scenario, we have introduced the new instability variable τ ranging from 0

to 1, 0 meaning web services having no instability issues and will perform as they claimed

until the end of the experiment, and 1 meaning very unstable web services, which will stop

functioning on the first iteration of the community distributing tasks. Figure 3.8 illustrates

the results of our experiment having web services with average instability values of 0 to 0.5

and having relative subsidy value λ of 1, 1.3, 1.6, and 2. The Cost/Income charts on the

right column show that having subsidy value of 1.3 incurs the least cost and increases the

community income significantly. Subsidy values of 1.6 and 2 yield high cost to the commu-

nity and only slightly increase the community revenue. Moreover, the role of subsidizing

is much more obvious when we have unstable web services. In scenarios where web ser-

vices are 100% stable, the subsidizing cost will hardly be compensated by the community

revenue.

55

web services are stable, will not leave the group, and will fulfill their promised QoS for

a good period of time. However, in real world scenarios of web services, this is not al-

ways the case. This is the reason why the community coordinator would be interested in

paying web services in order to keep the group reliable from the end user’s point of view.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

τ

S
iz

e

λ = 1

0 0.1 0.2 0.3 0.4 0.5
0

50

100

τ

|T
a
s
k
s
 P

e
rf

o
rm

e
d
|

λ = 1

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

τ

Q
o
S

λ = 1

0 0.1 0.2 0.3 0.4 0.5
0

50

100

τ

C
o
s
t
/
In

c
o
m

e

λ = 1

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

τ

S
iz

e

λ = 1.3

0 0.1 0.2 0.3 0.4 0.5
0

50

100

τ

|t
a
s
k
s
 p

e
rf

o
rm

e
d
|

λ = 1.3

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

τ

Q
o
S

λ = 1.3

0 0.1 0.2 0.3 0.4 0.5
0

50

100

τ

C
o
s
t
/
In

c
o
m

e

λ = 1.3

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

τ

S
iz

e

λ = 1.6

0 0.1 0.2 0.3 0.4 0.5
0

50

100

τ

|t
a
s
k
s
 p

e
rf

o
rm

e
d
|

λ = 1.6

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

τ

Q
o
S

λ = 1.6

0 0.1 0.2 0.3 0.4 0.5
0

50

100

τ

C
o
s
t
/
In

c
o
m

e

λ = 1.6

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

τ

S
iz

e

λ = 2

0 0.1 0.2 0.3 0.4 0.5
0

50

100

τ

|t
a
s
k
s
 p

e
rf

o
rm

e
d
|

λ = 2

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

τ

Q
o
S

λ = 2

0 0.1 0.2 0.3 0.4 0.5
0

50

100

τ

C
o
s
t
/
In

c
o
m

e

λ = 2

Figure 3.8: Analysis of community subsidizing coefficient λ having web service different

stability levels of τ on average community size, number of tasks performed, average quality

of service, and average cost/income of communities.

56

1 11 21 31 41 50
 0

1000

2000

3000

4000

5000

6000

7000

Iterations
(a)

N
u

m
b

e
r

o
f

ta
s
k
s
 s

u
c
c
e

s
s
fu

lly
 d

o
n

e

Dynamic Coalition Formation

Random Formation

1 11 21 31 41 50
0.5

0.6

0.7

0.8

0.9

Iterations
(b)

A
v
e

ra
g

e
 Q

o
S

 o
f

T
a

s
k
s
 P

e
rf

o
rm

e
d

Dynamic Coalition Formation

Random Formation

Figure 3.9: Part (a): Cumulative number of tasks successfully done. Part (b): Average QoS

of tasks performed.

57

In Figure 3.9, we consider Web Services and many Communities scenario and we

compare our dynamic coalition formation solution with a method which ignores QoS pa-

rameters and forms communities by allowing web services to join only if they have enough

requests for themselves. In other words, web services can join a community when the re-

quest rate is less than the throughput of all the member web services. We name this method

Random Formation and use it as a benchmark for our QoS-aware community formation

process. In this scenario, each user individually generates randomly between 0 to 10 num-

ber of tasks per iteration, then the users target a community and direct their requests to the

chosen community. As the results illustrate, our method forms better communities of web

services improving performance and satisfaction for both web services and communities.

Finally, in our last experiment, we compare our model with the solution proposed

in [48], which we call High Availability Coalition model. In this method, the community

valuation function focuses on the community availability as main consideration. The com-

munity formation model used in this method is very different from ours, but we have been

very careful to make the experiment environment as fair and similar to ours as possible.

We limited our maximum community size to 5 in order to have communities with almost

the same size as in [48]. In the High Availability Coalition model, the authors have used

web services as backups rather than active collaborative players, and those web services

only get a task when the first web service in an ordered chain fails to perform that task.

Part(a) of Figure 3.10 shows that with our method, the number of tasks successfully done

is higher with a rate of three times more than the High Availability Coalition model thanks

to the cooperative behavior of web services and the task distribution process of our algo-

rithm. This result shows that using web services as backups, and not as real collaborative

players results in a considerable waste of web services capability since services have very

low chance of getting jobs and its the primary web service (the first in the coordination

58

1 11 21 31 41 50
 0

1000

2000

3000

4000

5000

6000

7000

Iterations
(a)

N
u

m
b

e
r

o
f

ta
s
k
s
 s

u
c
c
e

s
s
fu

lly
 d

o
n

e

Our Task Destribution

Availability Based Task Distribution

1 11 21 31 41 50
 0.5

0.55

 0.6

0.65

 0.7

0.75

 0.8

0.85

 0.9

Iterations
(b)

A
v
e

ra
g

e
 Q

o
S

 o
f

T
a

s
k
s
 P

e
rf

o
rm

e
d

Our Method

High Availability Coalition Method

1 11 21 31 41 50
 0.5

0.55

 0.6

0.65

 0.7

0.75

 0.8

0.85

 0.9

0.95

 1

Iterations
(c)

A
v
e

ra
g

e
 A

v
a

ila
b

ili
ty

Our Method (Without Subsidizing)

High Availability Coalition Method

Figure 3.10: A comparison between our community model and the High Availability Coali-

tion model from [48]. Part (a): Cumulative number of tasks successfully done. Part (b):

Average QoS of tasks performed. Part (c): Average community service availability.

59

chain) which does most of the work. As shown in Part (b), the average quality of service

of tasks performed using our solution is also higher since our method considers all quality

of service metrics used. Part(c) shows the availability of communities from the end user’s

point of view. The High Availability Coalition model has almost 100% uptime since web

services are used as backups, so the chance of job failing is getting reduced significantly as

community members increase. In our method, we have more chance of failure for each web

service. However, with some subsidies and by hiring a few more web services, the chance

of failure of web services in our communities can be lowered.

3.5 Summary

In this chapter, we proposed a cooperative game theory-based model for the aggregation of

web services within communities. The goal of our services is to maximize efficiency by

collaborating and forming stable coalitions. Our method considers stability and fairness for

all web services within a community and offers an applicable mechanism for membership

requests and selection of web services. The ultimate goal is to increase revenue by improv-

ing user satisfaction, which comes from the ability to perform more tasks with high quality.

Simulation results show that our, polynomial in complexity, approximation algorithms pro-

vide web services and community owners with practical and near-optimal decision making

mechanisms.

In this chapter, we addressed the research questions R1, R2 and R3 that were in-

troduced in section 1.3. We assumed our web services and communities have complete

knowledge of all the other web services and their parameters. In the next chapter, we pro-

pose distributed decision making model which can perform in scenarios where information

is incomplete.

60

Chapter 4

Distributed Decision Making for

Dynamic Formation of Web Services

Communities

4.1 Introduction

Given the dynamic and unpredictable nature of the Internet, delivering high quality services

is a critical and challenging issue. One practical solution towards delivering such quality

services is utilizing intelligent decision making agents. These agents aim at maximizing

their gain by exploring the best ways to provide services that satisfy end users [89, 52,

26, 91, 36]. However, agent-based web services are functionally limited in the sense that

they cannot handle a large number of requests at the same time without compromising the

quality of service provided. Recent developments have attempted to shift web services from

simple models, consisting of individual components, to models made up of autonomous

and group-based components that share common goals. In group-based models, interaction,

composition, and cooperation are the key challenges that directly impact the group’s overall

61

performance in achieving common goals [69, 16, 12, 20]. To that end, we see the emergence

of web service communities, which consist of grouping services with similar functionalities

but distinct nonfunctional properties [89, 52, 66, 59]. A community of web services runs

continuous performance assessment functions that regulate web services’ interactions and

manage their composition and cooperation.

Web Services communities have the advantages of facilitating web service discov-

ery and providing better quality of service compared to individual services. Communities

act as abstract web services, communicating with external entities via the same standard

protocols that a normal web service employs. The difference is that communities regulate

the service process via sophisticated internal communication protocols, thereby providing

services based on the combined efforts of a number of web services. The downside to

communities is the complexity of management involved in finding and inviting adequate

individual services and managing the overall quality of the combined work of several ser-

vices. When interacting with a community of web services, users send their requests to the

coordinator of the community, which plays the role of community representative or access

point. The community coordinator is responsible of receiving tasks and delivering services.

Moreover, as community representative, it verifies the credentials of new web services be-

fore accepting them into the community and kicks services that could harm the value of the

community.

Challenges and Problem Statement. In recent work, communities of web services

have been proposed in order to facilitate discovery of web services, improve the Quality

of Service (QoS), and help individual services find better market share and opportunities

[89, 52, 66, 59]. However, two important challenges are to be addressed: 1) choice of the

best web services during community development from the community perspective; and

2) choice of the best community to join from the web service perspective. The advocated

62

solutions [52, 51, 84, 48, 47, 41, 46] have attempted to address these challenges. However,

those solutions have two main limits:

1. The solutions consider the architecture of centralized management for communities

where most of the decisions are made by the centralized coordinator. The problem

is that in real world scenarios, decisions made by independent service providers are

highly distributed.

2. The solutions either propose complex algorithms [48, 46, 8] to find the optimal strat-

egy to follow, or oversimplify the problem by eliminating important parameters and

using approximation techniques to make the algorithms tractable [48].

These approximation methods sometimes negatively influence the outcome because sim-

plifying the constraints may cause important aspects of the problem to be ignored. For in-

stance, instead of calculating the gain distribution using the adequate, but complex shapley-

value method, the authors is [48] propose a simple egalitarian way of distributing gain,

which completely ignores the gain generated from collaborative work of sub-communities.

Other categories of related work, for instance [48, 41, 53], restrict the decision process

within the community coordinator, so other members of the community are not effectively

involved. In [8], we proposed a cooperative game-theory-based model for aggregating web

services in communities. A centralized decision maker in communities, based on a com-

plete knowledge of available web service quality metrics and performance, has been used

to form optimal and stable communities that maximize individual and group income. How-

ever, centrality and complete information are strong assumptions, which are not very com-

patible with real business scenarios.

Contributions. In this chapter, we introduce DDM, a Distributed Decision Making

model for community formation that regulates web service agents’ decision making process

in terms of cooperating and deciding which group to join and which service to invite for

63

joining. Unlike existing work on community formation, our decision model is extracted

from a data model in the form of information obtained from a large number of web services

regarding their single and cooperative utilities as well as environmental parameters such as

demand, service quality, etc. The generated decision tree improves agents’ understanding of

the environment and how to select actions that lead towards maximizing their utilities. The

advantage of this approach is that the tree, which is initially created from the past data, re-

flects a comprehensive vision about agents’ attitudes in terms of their action selection based

on their past experiences. Moreover, the tree is getting continuously updated based on both

new received feedback and the outcome of chosen actions. This continuous update makes

the approach adapted to any change in the environment. The decision model provides web

services with enough information which helps those services efficiently decide and predict

the outcome of their different possible collaborations. This model works in a distributed

manner in which services are self-sufficient in their decision making and do not rely on a

centralized decision making process. Our findings show that communities of web services

can efficiently find the appropriate web service to invite for cooperation as well as allowing

a single web service to find the best communities to join. The proposed model can be seen

as a recommneder system that suggests beneficial actions for both communities and single

services. Communities can consider the decision model and analyze the characteristics of

different individual web services and make prudent decisions when inviting a web service

to join or accepting a join inquiry initiated from a web service. In general, DDM equips

web services with efficient methods for foreseeing how their choices will impact both their

short-term and long-term goals; therefore, opting for the best decision available.

To effectively generate the decision model for web services, we used a real dataset to

extract web services’ individual characteristics and used them to measure outcomes when

these services cooperate with one another. The dataset has been extracted from real-world

64

QoS evaluation results from 142 users on 4,532 Web services during 64 different time slots.

Combining the available data based on each web service point of view on different time

slots, we acquired 5 different unique features for those 4,532 web services. By engineering

and extracting these features, we gathered functional and cooperative features for both in-

dividual web services and communities in different time slots. We were able to investigate

the path a web service might take to achieve the best utility out of effective interactions

with others. All the paths and outcomes are labeled to be utilized in the training model.

Using cross validation sets, web services are able to compute the optimal hypothesis func-

tion (using logistic regression) that can be used to predict outcomes of cooperative work

with other individual web services or communities. Our findings show that web services

equipped with DDM have by far better outcomes than the ones that either do not cooperate

or randomly find communities to join.

4.2 Challenging Issues

In this section, we introduce the challenges behind community formation.

4.2.1 The Join Challenge

It has been showed in [52, 48, 8] that web services can increase their overall utility by col-

laborating with other web services within communities. This collaboration provides them

with better ways of sharing resources and having higher reputation, greater market share

and wider visibility. Web services and communities come with different quality metrics,

and the long-term outcome depends on these metrics.

The goal of all parties involved in the community is to maximize their long-term out-

come while they are operating as part of the community. Web services need to be equipped

65

with a selection strategy to choose from the different possible collaboration groups they can

form as well as an estimation method for evaluating the long-term gain of joining different

possible communities. Web services need to experiment with different possible collabora-

tive groups in order to estimate their gain over time. However, with a high number of pos-

sible communities, it is not possible to test collaboration with random web services. Even

if a linear approximate function for estimating utility based on community web services’

parameters is adopted, the exponential 1 growth rate of the possible number of partitions

of web services into communities would make any brute-force type algorithm for the best

community selection strategy intractable and impractical in real-world application settings.

4.2.2 Join Consequences

It is worth mentioning that a join event takes place as a result of interaction between two

parties that are looking to expand their collaborations. All actions are chosen in an attempt

to enhance the overall outcome. However, the selected action may result in decreasing the

overall utility in the long run. This is the case when a single web service joins a community,

but the complex process of task allocation eliminates the visibility of that service, which

stays idle within the community. This makes the join action of that service a bad decision.

The same event might be beneficial for the community, as it hosts a new web service that

can engage in performing a new coming task. But overall, in this particular case, if the new

web service stays idle for a long period of time, neither side will benefit from collaborating

with the other and the join event will result in negative consequences for at least one side’s

utility.

The more common scenario is when both parties benefit from the joining of a web

service to a community. This joining action is then rational as both the web service and

1Bell number: http://en.wikipedia.org/wiki/Bell_number

66

community enhance their utilities. However, the community may not be the best choice

for the web service. In other words, the web service could have joined a better community

if it had enough and accurate knowledge about the surrounding environment. Since the

community does enhance its utility, the web service could stay with that community, which

results in a non-optimal increase in web service’s utility. In the following section, the

proposed model provides solutions that effectively address the aforementioned challenges.

4.3 Model Components

In this section, we discuss the parameters that we use in the rest of the chapter. Then, we

present the task distribution and revenue model of our distributed web services communi-

ties.

4.3.1 Internal Features

With a group of web services having identical or similar functionalities, QoS metrics pro-

vide nonfunctional characteristics for optimal candidate selection. Web services quality

metrics have been studied and analyzed in various proposals, for instance in in [6, 61, 90].

In this chapter, we adopt the most representative QoS properties of those services that highly

influence their utility.

Let C = {ws1,ws2, ...,wsn} be a community with n web services. We define the

following features for the group of web services based on their functional parameters:

• Throughput is the rate at which a service can process requests. QoS measures can

include the maximum throughput or a function that describes how throughput varies

with load intensity. Throughput is a positive real number. For a given community C,

67

the expected throughput value (T hC) can be estimated as the summation of through-

put of all the service members T hw (w ∈C):

T hC = ∑
w∈C

(T hw) (4.1)

• Availability is the percentage of time that a service is operating. It is computed as the

probability that the service operation is accessible. Availability of a web service Aw

is a real number in the range [0,1]. For a community C, the expected availability (AC)

considering the members operate in parallel (independently from each other) can be

estimated as:

AC = 1−∏
w∈C

(1−Aw) (4.2)

• Execution Time is the time a service takes to respond to various types of requests.

Execution time is usually measured in milliseconds and can be affected by load in-

tensity, which can be measured in terms of arrival rates (such as requests per second)

or number of concurrent requests. This internal feature is a positive integer. For a

typical community C, the expected execution time EtC can be estimated as the exe-

cution time of the bottleneck service which is the service with the slowest execution

time Etw:

EtC = maxw∈C(Etw) (4.3)

We normalize the range of these features so that each feature contributes proportion-

ally to the final utility outcome value. We adopt the standardization method consisting of

subtracting the mean from each feature, then dividing the subtraction result by the standard

68

deviation.

4.3.2 External Features

The quantitative values of quality metrics need some benchmark values to represent their

goodness. In fact, without some benchmark values, it would be difficult for web services

to identify their performance quality at any specific value of these metrics. Therefore, we

introduce two external features for assessing web services’ estimate with regard to their

standing among other web services.

• External Parameter 1 (Exp1i where i is a community or a web service) is an estimate

of how close the community’s or the web service’s execution time is to the best ex-

ecution time in the whole system. It is the difference between a community’s or a

web service’s execution time metric and the minimum value of execution time of all

the other communities or web services. The smaller the value the better the external

feature compared to other peers. In other words, small value of Exp1i means i is

among the best communities or services in the system.

Exp1i = Eti−Etmin (4.4)

• External Parameter 2 (Exp2i where i is a community or a web service) is a compari-

son of the community’s or the web service’s rate of performing tasks to the best rate

in the system. It is the difference between a community’s or a web service’s through-

put metric and the maximum value of throughput in the system. As for Exp1i, the

smaller the value the better the external feature.

Exp2i = T hmax−T hi (4.5)

69

4.3.3 Task Distribution

Communities of web services usually employ an implementation of Contract-Net protocol

for task distribution, in which services bid on incoming tasks, and receive some of the tasks

for which they bid [53, 30]. In our model, our community members would try to distribute

tasks based on their capabilities and the QoS parameters provided by the web services. We

use a slightly modified weighted fair queuing method to distribute tasks among community

members. The goal is to allocate incoming tasks to web services with a rate matching the

throughput value of T hw for each web service w. In the weighted fair queuing method,

the input flow is multiplexed along different paths. However, in our model, if the rate of

incoming tasks is less than the community’s total throughput (T hC), which is the summation

of throughput values of the web services in the community, some of the input tasks will be

queued and served with a delay. When the incoming task rate is less than the throughput

of the community, the weighted fair queuing algorithm assigns a weighted task rate of

Itr× T hw

∑w T hw
for each web service w within the community, where Itr is the input task rate.

While distributing tasks, the community can verify the performance, throughput and

quality of service of tasks being performed by web services. The community can assess if

those web services are capable of performing the number of tasks they advertised. If for any

reason, there is a decline in the quality metric or throughput, the community can consider

the new values as a benchmark for future performance calculations, and penalize the suspi-

cious web services. This way, players will have incentive to truthfully disclose their actual

capabilities in order to maximize profit from the community and to avoid being penalized.

In addition, the system should be dynamic enough to detect and react to web services’ qual-

ity metrics variation, as over time, web service metrics may degrade or improve, changes

to which the community should adjust.

70

4.3.4 Community Revenue

Communities and web services earn revenue by performing tasks. The total gain is a func-

tion of the quality and rate of performing tasks. The utility of a collaborative group of

services UC (i.e., the revenue of the community) is a function of internal and external pa-

rameters:

UC = f (AC,EtC,Exp1C,Exp2C,T hC) (4.6)

where f is increasing in AC and T hC and decreasing in EtC,Exp1C and Exp2C. An example

of this function is given in Equation 4.7:

UC =
(

(α× (AC−EtC)−β × (exp1C + exp2C)
)

×T hC (4.7)

The α and β parameters are internal and external weight coefficients. Small values

for execution time and external parameters ensure better performance, which justifies their

negative coefficients. The result is then multiplied by the throughput value T hC, since

communities are performing tasks with T hC rate.

Theorem 4.1. The function given in Equation 4.7 satisfies the properties of f .

The proof of this theorem is straightforward by simply calculating the partial deriva-

tive ∂ f with respect to the different variables.

The estimation of the utility can be improved, especially in cases where the input

task rate is high and services are experiencing high task loads. The weighted fair queu-

ing method of task distribution would distribute tasks based on the individual throughput

(T hw) value of services within community. In fact, services having higher throughput af-

fect strongly the overall utility of the community because they would take on proportionality

more tasks. The improved utility is given as a function of individual internal and external

71

parameters:

UC = gw∈C(Aw,Etw,Exp1w,Exp2w,T hw) (4.8)

where gw∈C is increasing in Aw and T hw and decreasing in Etw,Exp1w and Exp2w. An

example of this function is given in Equation 4.9:

UC = ∑
w∈C

(

(

α× (Aw−Etw)

−β × (Exp1w +Exp2w)
)

×T hw

)
(4.9)

The following theorem holds:

Theorem 4.2. The function given in Equation 4.9 satisfies the properties of gw∈C.

4.4 Decision Making Mechanism

In this section, we describe our data extraction process and the methodology used to equip

web services and communities with a decision making mechanism. In this methodology, we

first present the data extraction and engineering process and then we evaluate the decision

making mechanism for web services in community settings. Figure 4.1 summarizes the

steps performed in DDM from the input data to the generation of decision making profiles

for web services and communities. The objective is to use the input data to build a decision

tree for each service and community included in the data set, which will be be served as a

benchmark for other services and communities in their decision making mechanism. The

decision tree is made up by training the real data obtained from operating web services

and extracting features related to their performance, either alone or as part of a joint effort

72

Figure 4.1: A summary of DDM decision profile generation steps.

with other web services. The ultimate objective is to propose for each web service and

community the best joint decision about forming a group that maximizes every one’s utility.

The DDM’s steps are explained in the following sections.

4.4.1 Data Extraction and Solution Engineering

A. Input Web Services Data

Each web service is associated with a number of quality metrics that reflect its non

functional parameters. These web services operate in an online environment and are con-

tinuously assigned tasks to handle. We used the web services data set provided in [90].

The raw data provides real-world QoS evaluation results from several users on 5,825 web

services over 64 different time frames2. Using this data, we built a synthetic data set that

contains features of a large number of web services and communities in different time inter-

vals. The goal is to use the data set to train a decision-making model that adopts the trend

of joining a community and use the model to predict/find the appropriate community for

other web services.

2http://www.wsdream.net/

73

Figure 4.2: Communities with different properties of web services actively looking for other

communities to collaborate with.

B. Feature Extraction

By processing the data provided for each web service over different time slots, we

obtain the three internal quality features introduced in Section 4.3.1: throughput, availabil-

ity and execution time and the two external features discussed in Section 4.3.2. In fact, web

services and communities are represented using feature vectors of these five internal and

external features.

We formulate a Community Feature Vector (CFV) as CFV<C> = [f1, ... f5] having

a community of k web services (C = {ws1, ...wsk}, k ≥ 1)3. The features f1 through f5

3A web service is considered as a community of one web service.

74

represent the execution time, throughput, availability and the external parameters 1 and

2 respectively. A set of communities, with their feature vectors and utilities evaluated,

provides our algorithm with a raw training data set. We call this set of communities the

template vector CS, and the set of feature vectors associated with the template vector is

referred to as the community feature vector set (CFVS). Figure 4.2 depicts web services and

communities looking to form new groups in order to improve their utility gain.

C. Feature Engineering

Let CFV S = {CFV<C1>, . . . ,CFV<CN>} be the community feature vector set with N

communities. Based on the CFV S set, we create an |N ×N| gain matrix gaint for each

time slot t. Each entry gaint
n,m corresponds to a utility gain of community Cn when it joins

community Cm. This gain is computed as follows: gaint
n,m = U t

Cn∪Cm
−U t

Cn
where U t

Cn∪Cm

and U t
Cn

are the utilities at time t computed using Equation 4.9. Evaluating the utility gain

for all entries of the gaint matrix is a computationally heavy process when N, the size of

the feature vector set, is large. Therefore, this size should be chosen carefully.

Table 4.1: An example of gain matrix for 3 different communities and their combinations.

<348> <1934> <2117> <348, 1934> <1934, 2117> <348, 1934, 2117>

<348> - 0.282708 1.027081 0.282708 18.027081 18.027081

<1934> -2.637483 - 6.969072 -2.637483 5.509583 4.387725

<2117> 5.027081 2.969072 - 5.509583 2.969072 5.509583

<348, 1934> 0.0 0.0 -3.851432 - -3.851432 -3.851432

<1934, 2117> 2.969072 0.0 0.0 2.969072 - 2.969072

<348, 1934, 2117> 0.0 0.0 0.0 0.0 0.0 -

Each community is provided with the corresponding row of data from the gaint ma-

trix. Basically, Ci is provided with the data in row i of this matrix, which reports all the

possible utility values Ci can gain by joining different communities. By ordering the utility

gain values of the row, each community is equipped with an ordered set of preferences over

other communities it can join. We define ≥t
i as the preference order of community i at time

75

t.

Let C1 ≥
t
i C2 ≥

t
i . . . Ci−1 ≥

t
i Ci+1 ≥

t
i . . . Cn be an ordered sequence of preferences

for community Ci at time t. Based on this sequence, we define Kt(Ci,k) as a set of the k

most preferred communities of community i at time t.

Kt(Ci,0) = /0

Kt(Ci,k) =
{

Cx|Cx ≥
t
i Cy ∀Cy ∈CS ∧ Cx 6=Cy ∧ Cy /∈ Kt(Ci,k−1)

}

(4.10)

Based on Kt(Ci,k), we define a set of communities C j for Ci which are the k most preferred

communities for Ci and Ci belongs to the k most preferred communities of C j. This basically

yields the preference in both sides.

Lt(Ci,k) =
{

C j|C j ∈ Kt(Ci,k) ∧ Ci ∈ Kt(C j,k)
}

(4.11)

Table 4.1 illustrates an example of a gain matrix for 3 different communities and their

combinations. Each row shows the gain the community can achieve by collaborating with

other 5 communities. In this example, for community < 348 > we have:

K(< 348 >,1) = {< 1934,2117 >} and

K(< 348 >,2) = {< 1934,2117 >,< 1934 >}

Since < 348 > is the best preferred community of < 1934,2117 > and vice versa, therefore

L(< 348 >,1) is not empty and contains the community < 1934,2117 >.

Using the gain matrix and the mentioned preference ordering relations, we are able

to build a decision tree where the list of possible communities to join and their expected

utilities are set. In addition to the best choice, web services have access to other ordered

choices and can look for the second best or third best if their first try is rejected by the

target community. This aspect is analyzed in more detail in the following section, in which

76

we launch experiments and investigate the effectiveness of the use of a decision tree with

different decision layers in joining other communities and enhancing the overall utility.

4.4.2 Decision Profile Generation

Our goal is to create a decision making profile for each community in the CFV S set. We are

creating an environment where the communities can experience the outcomes of different

strategies. The result will be a decision tree of the feasible and utility-increasing moves

over time. The root of the decision tree represents a community in the CFV S set, and the

other nodes represent the communities resulting from the parent node’s action of joining

them along with their feature values and expected utility.

We let communities pick the best communities maximizing their utilities over differ-

ent time frames. At time t = 1, we let each community in the CFV S set choose the best

community, which is a single community in the set {C j}= Kt(Ci,1). If community C j also

ranks Ci to be the highest preferred community to join, meaning the set Lt(Ci,k = 1) is not

empty, they would join each other. Having set k = 1 is a very strict and hardly satisfiable

condition. In order to relax the requirement, we increase the value of k by a rate r propor-

tional to time slot t: k = 1+ |r× t|. On early steps of the training process, web services and

communities are more strict, but as time goes on, we let them choose second and then third

best options too. However, increasing k increases the time complexity as well.

When communities Ci and C j are in each other’s top k preference set, the new com-

bined community, i.e., Ci ∪C j is added to the list of possible communities that can join

others at time t +1. Moreover, for each community Ci in our initial CFV S set, we maintain

a tree with the community Ci as its root. Its children are all the communities that Ci de-

cided to join. As the scenario progresses over time, the merged communities may decide to

join other communities. When communities Ci and C j decide to join each other and create

77

community Ck, the new community Ck will be added as a child to both Ci and C j nodes.

At the end of the process, each community is utilized with a tree representing all possible

combinations of communities it can join. Algorithm 1 illustrates the DDM tree creation

procedure as pseudo-code.

Algorithm 1: DDM DECISION TREE ALGORITHM.

Input: 〈r,gaint
n,n,CFV S〉 learning rate r, |N×N×T | gain matrix, community

feature vector

Output: A set of root nodes of the decision trees

1 k← 1

2 nodes[N]← initialize N tree nodes representing each community in CFVS

3 for t← 1 to T do

4 k← 1+ round(r× t)
5 for all Ci ∈CFV S do

6 for all C j ∈ Lt(Ci,k) do

7 if Ci ∈ Lt(C j,k) then

8 Ck←Ci∪C j

9 add Ck to CFV S set

10 initiate nodek, representing Ck

11 nodesi.addChild(nodek)
12 nodes j.addChild(nodek)

13 return nodes

Having created |n| trees, one per community, our communities are utilized with the

different possible paths they can take to maximize their utilities. Using a distance function4,

communities and web services outside the training set can find the community that closely

resembles their parameters within the CFV S set. Those new communities can use the trees

of the closest communities in the training set to have an estimation of the outcome of all

possible joining actions they can take. By so doing, new communities can request to join

the best communities which will maximize their gain. Such a request is most likely to be

accepted as the decision considers the preferences and utility gain of the other side as well.

4See Section 4.5 for an example of this function.

78

Figure 4.3: A partial view of a decision tree created by DDM.

As a real scenario example from the used data set, Figure 4.3 depicts a snapshot from

a decision tree created by the DDM algorithm for a particular singleton community C1273.

This tree shows the different communities that C1273 has experienced with during the train-

ing process. Each line shows the web services list within a community, the community’s

feature vector and the last value on each line is the overall gained utility of the community.

Complexity. Here we analyze the computational complexity of the DDM decision

tree creation algorithm on each time iteration t. Computing top k preferred communities

for Ci in Kt(Ci,k) requires O(n.log(n)) sort time. The size of Kt(Ci,k) is k, and for each

of those k communities, we need to check against their k top preferred communities, which

needs O(k2). Line 5 iterates through n communities, Line 6 takes O(n.log(n)) to compute

and iterates k times, and considering we already have the list sorted, Line 7 can reuse the

sorted preferences. Thus, Line 7 takes O(k) time to check if Ci is member of Kt(Ci,k).

Multiplying these iterations, the order of complexity of the algorithm with regard to n and

k for each time slot is: O(k2× n2.log(n)). Since the whole algorithm runs T times, the

overall complexity is O(T × k2×n2.log(n)).

79

4.5 Experiments

We implemented DDM in Java5. We recall that we have extracted the set of features for

4532 web services in 64 different time slots through a data set provided in [90]. By ran-

domly choosing 86 web services out of this data set for each run, and selecting a subset

of all possible combinations of sizes 2, 3, and 4 of these 86 web services, we have been

able to create 10,000 communities and evaluated the feature vectors and utilities they can

have in the 64 time slots. This provides us with the initial training feature set of size

|CFV S| = 10,000 communities. Based on Equation 4.9, the utilities of these communities

are estimated, and then the gain matrix of size |10,000× 10,000| of all possible ways of

merging these 10,000 communities is generated6. Based on the gain matrix, each commu-

nity has an ordered preference among other communities in the set.

We let communities and web services adopt their strategies based on our DDM de-

cision making mechanism. Based on the decisions adopted, each community will generate

a decision tree profile. We let DDM run four times with different r rates of 0.05, 0.07,

0.10 and 0.20. With the slow rate of r = 0.05, we increase k in Equation 4.7 for every 20

time frames, which will happen only three times in our 64-step experiment. In the case of

r = 0.20, k increases much faster, at a rate of once every 5 time frames, which increases the

complexity of the Lt(Ci,k) search for each community in the CFV S set.

Table 4.2 depicts the average utility gain value of the communities in each of the

four runs. The utility gain is the increase of utility the communities gain by cooperating

and joining other communities. The utility gain ratio is the ratio of their final utility over

initial utility. Comparing the different search rates, we can see that increasing the value

of r from 0.05 to 0.10 results in a significant performance boost. However, higher rates

5Source code of implementation and data is available at: https://github.com/Marooned202/DDM
6The template vector and gain matrix generated are available at https://github.com/Marooned202/

DDM/tree/master/wsds/data/run

80

of r (r > 0.10) are not increasing the chance of finding better collaborative groups for our

communities while unnecessarily increasing the search complexity.

Table 4.2: Utility gain of web services after making collaborative groups based on DDM

algorithm with different r rates.

Search Rate r Utility Gain Value Utility Gain Ratio

r=0.20 176.1499 6.9690

r=0.10 174.6541 6.9182

r=0.07 159.9462 6.2834

r=0.05 136.0768 5.1032

The closest related work [48, 46, 41] and our previous work [8] regarding the commu-

nity formation problem have considered a centralized approach where a community man-

ager has complete information of all the web services and their quality metric and param-

eters. Those proposals run complex algorithms through all the space of solutions in order

to find the optimal answer. However, in this research work, we have considered an unex-

plored and more realistic situation where information is incomplete and a decision profile is

generated based on a smaller set of web services. Our solution helps communities and web

services select actions that lead towards maximizing their utilities. Therefore, consider-

ing the different settings, we cannot experimentally compare our work with the mentioned

related work.

To compare our work against a benchmark, we utilize the same communities and

web services with a simple rational decision making mechanism in which a community

will choose to join another one if it increases its utility by any amount, without aiming to be

optimal. We call this method the rational method. We have chosen 10 random web services

and compared the results with web services which adopted our DDM model. Figure 4.4

shows the comparison of the end result of utility gain values. In 18 out of 40 tries, rational

agents were not able to improve their utility at all because the communities they chose

81

1 5 10 15 20
0

50

100

150

200

250

300

350

400

DDM WS Rational WS

U
ti
lit

y
 G

a
in

 V
a

lu
e

R=0.2 (a)

Trained Rational

1 5 10 15 20
0

50

100

150

200

250

300

350

400

DDM WS Rational WS

U
ti
lit

y
 G

a
in

 V
a

lu
e

R=0.1 (b)

Trained Rational

1 5 10 15 20
0

50

100

150

200

250

300

350

400

DDM WS Rational WS

U
ti
lit

y
 G

a
in

 V
a

lu
e

R=0.07 (c)

Trained Rational

1 5 10 15 20
0

50

100

150

200

250

300

350

400

DDM WS Rational WS

U
ti
lit

y
 G

a
in

 V
a

lu
e

R=0.05 (d)

Trained Rational

Figure 4.4: DDM against Rational: utility gain.

rejected their request, most likely because they would not have increased the utility of the

other communities if they had joined them. The results show that a long-term strategic

decision mechanism is needed to satisfy all the services within communities. Figure 4.5

shows the same results in terms of ratio of utility gain.

Now, we evaluate the performance of the decision profiles generated based on our

data set for other communities.We create 1,000 communities from the web services in the

data set that were not involved in the training process of our decision model. We define

82

1 5 10 15 20
0

5

10

15

20

DDM WS Rational WS

U
ti
lit

y
 G

a
in

 R
a

ti
o

R=0.2 (a)

Trained

Rational

1 5 10 15 20
0

5

10

15

20

DDM WS Rational WS

U
ti
lit

y
 G

a
in

 R
a

ti
o

R=0.1 (b)

Trained

Rational

1 5 10 15 20
0

5

10

15

20

DDM WS Rational WS

U
ti
lit

y
 G

a
in

 R
a

ti
o

R=0.07 (c)

Trained

Rational

1 5 10 15 20
0

5

10

15

20

DDM WS Rational WS

U
ti
lit

y
 G

a
in

 R
a

ti
o

R=0.05 (d)

Trained

Rational

Figure 4.5: DDM against Rational: ratio of utility gain.

83

a distance function that measures the difference between basic features of communities,

which measures the similarity among communities.

distance(C1,C2) = |T hC1
−T hC2

|

+ |AC1
−AC2

|+ |EtC1
−EtC2

|

(4.12)

Now, each community tries to find the closest community within the trained CFV S

set. Following its decision profile, the community can get a good estimate of the possible

strategic decisions it can adopt. Basically, the trained profiles benefit the new communities

in two ways. First, they provide the communities with a set of viable communities to join.

Second, they provide an estimation of long-term utility gain for each available decision.

In this experiment, we let communities follow the best decision within the decision tree

provided to them.

In order to evaluate the performance of the mechanism, we used Receiver Operating

Characteristic (ROC) curve, which is a graphical plot illustrating the true negative rate

against the false positive rate at various threshold settings in classifier systems. In order to

classify our communities’ selection strategies correctly, for each community, we evaluated

the training process by replacing the community in the set with the closest one, from which

it gets the strategy profile. If the actions are the same and the same utility levels are gained,

we classify the decision as correct. Otherwise, it is classified as a wrong decision. AUC, the

area under the ROC curve, is equal to the probability that a classifier will rank a randomly

chosen positive instance higher than a randomly chosen negative one, and the higher the

number the better the solution, which reflects better performance. Figure 4.6 illustrates

the ROC curve evaluation of the DDM decision making mechanism. As benchmark, we

compare our method with two other methods: the rational method and the greedy method.

84

The greedy method only looks up the available list of communities and simply joins the

community that maximizes its utility without considering any long-term strategy or other

communities’ acceptance scenarios. It is a greedy algorithm that focuses on choosing a

locally optimal choice.

• Rational Method: Communities would send a join request to any available commu-

nity, which will increase the utility. The other community would accept the join offer

if its own utility gain is positive as well.

• Greedy Method: Communities do a linear search among all the available communi-

ties and send a join request to the community which results in maximum utility. The

other community would accept the join offer if its own utility gain is positive and the

utility gain does not need to be the maximum for the community receiving the join

request.

Figure 4.6 compares the results for all the methods. The rational and greedy methods

have very high failure rates compared to our method. Table 4.3 illustrates the number of

communities that failed to find the optimal collaboration group. The results support the

need for a long-term training model in a successful decision making process.

Table 4.3: Number of communities that misses the optimal decision, out of 1,000 commu-

nities.

Method Miss

DDM r=0.05 375

DDM r=0.07 137

DDM r=0.10 6

DDM r=0.20 6

Rational Method 717

Greedy Method 828

Now, we evaluate the system-specific results from users’ and communities’ perspec-

tives. By distributing tasks among the communities over the 64 time frames, we evaluate

85

0 0.2 0.4 0.6 0.8 1
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

False Positive Rate

C
o
rr

e
c
t
D

e
c
is

io
n
 R

a
te

R=0.20, AUC =0.94974

R=0.10, AUC =0.94735

R=0.07, AUC =0.9469

R=0.05, AUC =0.94348

Greedy, AUC =0.38328

Rational, AUC =0.2117

Figure 4.6: RoC Curve.

the revenue for each community. Figure 4.7 shows the overall revenue gain of communities

using our method. Figure 4.8 shows the momentarily revenue gain for each community

in each time slot compared to the previous time. These results show that the run with the

higher learning rate of r = 0.20 starts discovering better communities to join much earlier.

The runs with slow rates seem to find some communities to join initially, but then they slow

down until later, when they start discovering new communities to join.

Figure 4.9 depicts the average community size over time, which essentially represents

the number of new communities being formed. The results show once again the communi-

ties using DDM with higher search rates grow faster in size, implying that the communities

find appropriate web services to join with faster.

86

1 11 21 31 41 51 63
 0

 5000

10000

15000

20000

25000

30000

Time
(a)

O
v
e
ra

ll
U

ti
lit

y

R=0.05

R=0.07

R=0.10

R=0.20

Figure 4.7: Overall utility of all the communities.

1 11 21 31 41 51 63
 0

100

200

300

400

500

600

700

800

Time

U
ti
lit

y
 G

a
in

R=0.05

R=0.07

R=0.10

R=0.20

Figure 4.8: Utility gain over time.

87

1 11 21 31 41 51 63
 1

1.2

1.4

1.6

1.8

 2

2.2

Time

C
o
m

m
u
n
it
y
 S

iz
e

R=0.05

R=0.07

R=0.10

R=0.20

Figure 4.9: Average community size.

4.6 Summary

In this research work, we proposed a training model for the problem of membership man-

agement of communities of web services. Using the training model, we created a decision

making profile for each community and web service involved which provides them with a

set of feasible and utility increasing moves. This utilized our web services with efficient

methods of foreseeing how their choices of actions would impact their long-term and short-

term goals, which allowed them to make better decisions. The ultimate goal is to choose the

best decision when it comes to communities formation, among many possible short-term

rational and utility increasing choices. The experimental results show that our algorithms

provide web services and community owners, in real-world-like environments, with ap-

plicable and near-perfect decision making mechanisms. The results of experiments using

real data samples support the need for a long-term training model in a successful decision

making process.

88

In this chapter, we addressed the research questions R4 and R5 that were introduced

in section 1.3. In the next chapter, we analyse the internal community behavior of web ser-

vices, and propose a model for competing and cooperating agents within the communities

of web services.

89

Chapter 5

Coopetitive Behavior of Services within

Communities

5.1 Introduction

In the previous chapter, our focus was on community formation and we emphasized cooper-

ative behavior of the web services as agents. Within communities, the web services, selfish

and utility maximizers by nature, can follow two different strategies, namely cooperation

and competition in order to increase their payoffs when they provide services to consumers

[50]. In typical business settings, services are used to compete within communities as they

provide the same functionalities and the number of users requests is finite. However, the

same reason of providing similar functionalities can lead services to cooperate because they

can replace each other in case of failure or unavailability, and services can do better in a

coalition structure. Analyzing services competition and cooperation strategies within com-

munities is still an open problem that motivates the research described in this section. We

propose a mechanism within which service agents in the community could choose either

90

to compete for an announced task1, or to cooperate with other competing services in the

same community to accomplish some subtasks of the announced task. We equip intelligent

web services to follow a reasoning technique to choose best interactive strategy (Coopeti-

tive attitude, which is categorized to compete and cooperate). In the proposed system, we

explore details behind the strategic decision making procedures and enable service agents

to apply different techniques to constrain high efficiency and obtain the maximum utility.

We investigate services’ expected payoffs and the involved probabilities that are used to

choose over the two interacting strategies.

Here, we first present the architecture of the proposed model. We explore the char-

acteristics of intelligent service agents and their network. We link this architecture to the

implemented system where we investigate the services’ coopetitive attitudes. We compute

the involved system parameters and explain the services’ interactive strategy profiles by

highlighting their coopetitive choices.

Competitive

web services

Cooperative

web services
Web services not

involved in any

collaboration

Figure 5.1: Services are partitioned into competitive and cooperative sets. Competitive

services may get tasks directly from the master agent and they can share it with other coop-

erative services in their collaborative networks within the same community.

1Requests and tasks are used in this report interchangeably.

91

5.2 Architecture

Figure 5.1 illustrates the architecture of a typical community aggregating a number of ser-

vices with different interactive strategies. Some of them compete for the task where they

directly deal with the master. Some others cooperate in the associated task where they

only deal with the competed service as the task leader and do not directly interact with

the master (the master deals only with the service that has bid for the task, which is re-

sponsible of choosing its collaborative network). In both sets, some service agents are for

certain moments out of any collaboration network. Upon allocation of the task, the service

is responsible for offering the required QoS that is stated in the task being generated by a

consumer. Afterwards, the master rewards or penalizes the competing service by upgrading

or degrading its reputation according to the offered QoS compared with the required one.

This comparison influences the sorting mechanism used by the master to allocate the tasks

in further task allocation rounds.

5.3 System Parameters

In this section, we demonstrate the parameters involved and their corresponding formula-

tions and explanations.

Task QoS (T r
QoS) is the required QoS metric for a specific task r. Users define tasks

with specific QoS requirements such as response time, availability, and successability (or

accuracy). We aggregate and normalize these metrics to a value between 0 and 1.

Service QoS (QoSr
w) is the QoS provided by the service w after performing the task

r. Again, the metrics that contribute in computing this QoS are aggregated and normalized

to a value between 0 and 1. The offered quality might or might not meet the required

task quality T r
QoS. In the latter case, the service user would be disappointed and a negative

92

satisfaction feedback is expected. In our proposed system, both cases are considered when

calculating the services’ reputation.

Budget (Bt
w) is the amount of money the service agent w has in its disposal during the

window time t (i.e., [0, t]), which helps pay for the community membership fees (ε) and is

one of the parameters that the service agent considers when deciding about getting involved

in a competition or not.

Reputation (Rept
w) is a significant factor in any online community [31]. Without

a reputation enabling mechanism, users cannot differentiate among services, specially the

ones which offer the same type of service. Reputation mechanisms usually aggregate users’

experiences and in our case it strongly depends on QoS that each service provides. Users

define tasks, each one with specific quality T r
QoS, so that after performing a certain number

of tasks, each one with QoSr
w, during a window time t, the reputation of w gets evaluated

by the master agent. Rept
w refers to the reputation of w during that window time t.

In Equation 5.1, we compute the reward that the master computes considering the

task r’s QoS T r
QoS compared with the service offered quality QoSr

w. In case the offered

quality meets user expectations, the reward value would be positive. In this system, we

consider a small value as default rewards η which the master considers together with the

proportional level of satisfaction as a weighted value (by υ). In this case, the higher the

offered quality, the more weighted reward. In case the offered quality did not meet the

user expectations, the reward would be negative. A default penalty value ρ (where ρ > η)

together with the weighted proportional difference are therefore considered. The idea is

to harshly penalize the services rather than rewarding them. To this end, rational service

agents should carefully analyze their capabilities once the available tasks are announced.

Equation 5.2 computes the obtained reward by w during the window time t considering the

set taskt
w of tasks performed by w during the window time t. In our proposal, service agents

93

have the goal of increasing their budget, which is directly related to their reputation. Thus,

they have to decide strategically how to maximize this value.

rewardr
w =















η +υ
QoSr

w

T r
QoS+QoSr

w
if T r

QoS ≤ QoSr
w;

−(ρ +υ
T r

QoS

T r
QoS+QoSr

w
) otherwise.

(5.1)

rewardt
w =















∑r∈taskt
w

rewardr
w

|taskt
w|

if taskt
w 6= /0;

0 otherwise.

(5.2)

The assigned reputation value is updated by the computed reward value. The com-

puted reputation of services is bounded by the minimum and maximum reputation values 0

and 1. Let Γ = Rept
w+rewardt

w. The updated reputation value is then computed as follows:

Rept+1
w =































Γ if 0≤ Γ≤ 1;

0 if Γ < 0;

1 if Γ > 1.

(5.3)

For new services with no previous reputation value, we use the bootstrapping trust technique

proposed in [87]. This technique consists in giving the new services a chance and observe

their behaviors for a period of testing time. The observation sequence is modeled as a

hidden Markov model that is used to detect the behavior of the service by comparing the

observation behavior against pre-defined trust patterns. Based on the matching result, an

initial value is assigned to the service. Using this initial reputation value, services quickly

converge to their actual and stable values using the update function.

Proposition 5.1. Rept
w can be computed in time O(|t|), i.e., in time linear in the size of the

window t.

94

Proof. 2 The function Rept
w is recursive on t, but the algorithm works by storing the last

calculated reputation value in a variable, so it will not be recalculated again at each itera-

tion. However, the calculation of rewardt
w is needed. Since the function rewardt

w can be

computed in time linear in the number of tasks (see Equations 5.1 and 5.2), which in turn is

linear in the size of the window time, the result follows. �

Growth Factor (Gt
w) is a parameter which declares services’ performance based on

their recent strategies and activities. Growth factor is relative to services’ reputation Rept
w,

QoS during the window time t QoSt
w, and budget Bt

w. This factor is the main variable

a typical service uses to decide about which strategy to adopt. We use Equation 5.4 to

compute the growth factor Gt
w of the service w during the window time t as the average of

the three aforementioned parameters, where nt is the total number of offered tasks to the

whole community during the window time t, µw is the mean received service fee, and ε is

the cost of community membership.

Gt
w =

Rept
w +QoSt

w +
Bt

w

nt µw−ε

3
(5.4)

µw ∈ {µw,CM,µw,CO}, QoSt
w =















∑r∈taskt
w

QoSr
w

|taskt
w|

if taskt
w 6= /0;

0 otherwise.

This equation is designed so that it satisfies the following desirable properties:

1. The growth factor function should be monotonically increasing in the offered quality

of service QoSt
w.

2. The growth factor function should be monotonically increasing in the service’s repu-

tation Rept
w.

2In this work, we assume that the common arithmetic and elementary functions, such as multiplication,

division and trigonometric functions can be computed in time O(1) as they operate on inputs of fixed sizes.

95

3. The growth factor function should be monotonically increasing in the budget Bt
w if

the maximum possible profit is positive and monotonically decreasing in Bt
w if the

maximum possible profit is negative. This property reflects the idea that the budget

contributes in the increase of the growth factor as far as there is a chance to make

profit. In fact, the contribution of the budget Bt
w in the calculation of the growth

factor should be proportional to the maximum possible profit nt µw− ε where the

service w receives all the offered tasks during the window time t.

It is easy to show that Equation 5.4 satisfies the three aforementioned properties by

calculating the partial derivatives ∂Gt
w of this function in 1) QoSt

w (
∂Gt

w

∂QoSt
w
= 1

3
); 2) Rept

w

(
∂Gt

w

∂Rept
w
= 1

3
); and 3) Bt

w (
∂Gt

w

∂Bt
w
= 1

3(nt µw−ε)). Thus, the sign of the two first partial deriva-

tives is positive and the sign of
∂Gt

w

∂Bt
w

depends on the sign of the maximum profit nt µw− ε ,

so we are done. The mean service fee depends on the strategy adopted by the service be-

cause a competitive service receives higher fees µw,CM compared to a cooperative one µw,CO

(µw,CM > µw,CO). The motivation behind this is that a competitive service for a given task

is the leader for that task while other cooperative services are performing specific subtasks

as asked by the leader.

Proposition 5.2. Gt
w can be computed in time linear in the size of the window t.

Proof. As shown in the second part of Equation 5.4, the function QoSt
w can be computed

in time linear in the number of tasks, which in turn is linear in the size of the window time.

Since Bt
w is constant, the result follows from Proposition 5.1. �

The above explained parameters and other additional parameters which will be used

in the rest of this chapter are listed and self explained in Table 5.1.

96

Table 5.1: List of abbreviations.

Notation Definition Notation Definition

T r
QoS Required task QoS for the task r T t

QoS Mean required task QoS during t

QoSr
w Service w QoS for the task r QoSt

w w QoS during the window time t

Rewardr
w Reward obtained by w w.r.t. r Rewardt

w Reward to update the reputation

Rept
w Reputation assigned for w Bt

w Budget associated to service w

Gt
w Growth factor of w during t ε Community membership fee

πt
w,CM Competition payoff of w πt

w,CO Cooperation payoff of w

pt
w,CM Competition probability of w pt

w,CO Cooperation probability of w

COF t
w Cooperation fee of w βw Profit of w

µw,CM Mean service fee for competing w µw,CO Mean service fee for cooperating w

τ t
w Coopetitive threshold of w Pt

w Probability of competing for w

U t
w Utility of w Et

w Expected number of tasks

5.4 Service Interactive Strategies

The main goal of each individual service agent is to increase its income (payoff). This in-

come can be earned from tasks (or requests) done by this service. In our model, services

can decide to compete to get a task from the master agent or to cooperate with other services

within a given collaborative network (the way a collaborative network is set by a leader is

based on the cooperative services reputation and their QoS parameters that should coincide

with the required QoS). Therefore we define two types of service strategies. First, when a

service has higher level of confidence based on its growth factor, it can compete to get a

task from the master and adopts the competitive strategy. Second, when the service agent

has a lower level of confidence that it does not feel capable to compete, it waits for some

other services to cooperate with to perform some tasks 3, and thus it adopts the cooperative

strategy. Services estimate the outcome of all the strategies and choose one of them ac-

cordingly. This decision is not static but can change over time so service agents can switch

from one strategy to the other, and this dynamic attitude is referred to as coopetition. The

underlying decision making process is presented in the next section.

3Through the report, requests or tasks are supposed to be decomposable.

97

5.5 Theoretical Results

5.5.1 Service Decision Making Procedure

In this section, we explore in details the interaction strategies and the outcome of each strat-

egy in terms of services’ utilities. The main part of services’ decision making procedure

falls into their growth factor analysis. In fact, the comparison of the growth factor to a

particular threshold is the main reason that influences the service’s decision to follow ei-

ther competitive or cooperative behavior. service agents initially compute this value and

compare it with their computed threshold. Generally the main challenge is the threshold

computation and we cope with this issue in the rest of this section. We additionally use

the obtained results in the implemented environment and analyze their effectiveness on ser-

vices’ strategic decision making procedures.

Figure 5.2 shows the decision making process that is followed by a typical service. In

case the service agent is ready to compete, there is a chance that it bids for a task if it has the

required capabilities to accomplish that task, or stays silent and returns to the cooperative

status. But in case the service agent is willing to cooperate, it has to wait for a cooperation

opportunity that could be triggered by another service agent that competed and obtained

the task, so both services will be part of the same collaborative network. In the decision

making process presented in Figure 5.2, we assume that the competing service might get the

task (denoted as Bid/obtainedTask) or not in case of being rejected by the master agent,

or do not even bid for the task (denoted as Silent/re jectedTask). For simplicity reasons

and without loss of generality, we group the two cases of Bids and obtainedTask together

as well as Silent and re jectedTask. The rational behind this aggregation is the fact that our

main concentration is services’ status (competitive or cooperative) over different decision

making rounds, which could be caused by internal factors (the services) or by the external

98

factor (the master agent).

Figure 5.2: Decision making process over competitive and cooperative strategies.

Consider a service w that is willing to compete for the period of time t (that means

the computed growth factor is more than the analyzed threshold). This service can esti-

mate the expected payoff associated to this decision, called competition payoff. Equation

5.5 computes this expected payoff for the competing service w (πt
w,CM) considering the

Bid/obtainedTask probability of pt
w,CM and Silent/re jectedTask probability of 1− pt

w,CM.

πt
w,CM = pt

w,CM(µw,CMEt
w−COF t

wEt
w− ε)+(1− pt

w,CM)(−ε) (5.5)

In Equation 5.5, Et
w is the number of tasks that w expects during the window time t,

and µw,CM is the mean service fee that is assigned by the master agent to w. This means that

a competing service directly obtains this fee from the master agent. Moreover, the com-

peting service w expects a cooperation fee (COF t
w) that it gives to its collaborators in case

w needs to cooperate with other services (cooperative service agents in its collaboration

network). In any case, the competing or cooperating service agent pays a fixed amount of

membership (ε) to the master agent, which plays the role of the community’s coordinator.

This fee would be taken into account when a service decides to leave to a cheaper commu-

nity or act alone. But to concentrate on the main concerns of this thesis, we skip these small

details.

99

From Equation 5.5, the following proposition is straightforward.

Proposition 5.3. The complexity of computing the competition payoff πt
w,CM is linear in the

competition probability pt
w,CM, the expected number of tasks Et

w, and the cooperation fee

COF t
w.

The arrival of requests for service w during the time unit t (denoted here by mw(t))

can be modeled as a nonhomogeneous Poisson process [42, 73], which means as a Poisson

process with dynamic arrival rate λw(x) where x belongs to the time unit t. The arrival rate

is thus a function of time and typically varies significantly from moment to moment. In

nonhomogeneous Poisson process, mw(t) is expressed as follows:

mw(t) =
∫ t

0
λw(x) dx

And the probability of having exactly n requests during the window t is computed as fol-

lows:

p(mw(t) = n) =
(mw(t))

n

n! emw(t)

Let Maxt
w be the maximum number of requests that w can receive during t. The number of

expected requests Et
w is given by the parameter λw(t) as follows:

Et
w = λw(t) =

Maxt
w

∑
n=1

n p(mw(t) = n) (5.6)

The parameter λw(t) is usually estimated from data samples using the least squares, iterative

least squares, or maximum likelihood [57].

Proposition 5.4. The complexity of computing the expected number of requests Et
w is linear

in the size of the window time t.

100

Proof. For a fixed function λw(x), mw(t) can be computed in O(1). Thus, from Equation

5.6, it follows that Et
w can be computed in time linear in Maxt

w. As Maxt
w is linear in t, the

result follows. �

Similar to the competitive service case, if a service w declares cooperative status,

its expected cooperation payoff (πt
w,CO) is computed in Equation 5.7. In this equation,

pt
w,CO is the probability of getting involved in a cooperative task with other services and

1− pt
w,CO is the probability of failure to find such a cooperation opportunity. These two

probabilities are set when w decides to compete. We recall that µw,CO denotes the mean

cooperation fee that is directly obtained from the leader (i.e., the competitive) service of

the underlying collaborative network. Compared to µw,CM, µw,CO is relatively smaller since

the competitive service generally dedicates a portion of its obtained income to pay other

cooperative services.

πt
w,CO = pt

w,CO(µw,COEt
w− ε)+(1− pt

w,CO)(−ε) (5.7)

From Equation 5.7, the following proposition holds.

Proposition 5.5. The complexity of computing the cooperation payoff πt
w,CO is linear in the

cooperation probability pt
w,CO and the expected number of tasks Et

w.

To analyze the expected payoffs obtained from different strategies, services need

to compute the estimated probabilities that distinguish subcases in each behaviorial sta-

tus (pt
w,CM for competitive and pt

w,CO for cooperative). To estimate these probabilities, we

should notice that they are functions of services’ reputation values (Rept
w). Furthermore,

pt
w,CM is also function of the difference between the offered QoS (QoSt

w) and the mean

requested one considering the set of all tasks taskt (T t
QoS (see Equation 5.8)); and pt

w,CO is

function of the reputation of other services in the community because the leader is supposed

101

to be selective when it comes to choose the collaborators. To this end, we first discuss the

desirable properties of an estimation function of each of these probabilities, and show that

the proposed ones satisfy those properties.

T t
QoS =















∑r∈taskt T r
QoS

|taskt | if taskt 6= /0;

0 otherwise.

(5.8)

Proposition 5.6. T t
QoS can be computed in time linear in the size of the window t.

Proof. From Equation 5.8, T t
QoS can be computed in time linear in |taskt |, which in turn is

linear in the window size |t|. �

The desired properties of pt
w,CM are as follows:

Property 5.1. pt
w,CM is continuous with regard to Rept

w, QoSt
w, and T t

QoS.

Property 5.2. pt
w,CM is monotonically increasing in Rept

w and QoSt
w−T t

QoS while QoSt
w−

T t
QoS is positive.

Property 5.3. pt
w,CM is null if QoSt

w−T t
QoS is negative.

Property 5.4. The increase slope of pt
w,CM is higher when the reputation Rept

w increases in

the interval [0,0.5] than when it increases in the interval]0.5,1].

Property 1 simply says that the probability of success competition pt
w,CM can be always

estimated as far as Rept
w, QoSt

w, and T t
QoS are available. Property 2 says that the reputation

and QoS are two key factors that influence the value of pt
w,CM in the sense of positive

correlation. Property 3 indicates that the probability pt
w,CM is null if the offered QoS is less

than the expectation. Property 4 promotes the increase of the reputation for new comers and

102

imposes higher increase rate at the beginning of the reputation curve because it is always

hard to build the reputation, but once it is built, its maintenance is less challenging.

The desired properties of pt
w,CO are as follows:

Property 5.5. pt
w,CO is continuous with regard to Rept

w and the reputation of other services

in the community.

Property 5.6. pt
w,CO is monotonically increasing in Rept

w and monotonically decreasing in

the community average reputation.

Property 5.7. The increase slope of pt
w,CO is higher when the reputation Rept

w increases in

the interval [0,0.5] than when it increases in the interval]0.5,1].

Property 5 is similar to Property 1. Property 6 says that w has more chance to get involved

in a cooperation if it has high reputation compared to the other members. This chance

decreases if other services have higher reputation. Property 7 is similar to Property 4.

Equations 5.9 and 5.10 respectively compute the estimated success probability in

cases where service w is competing and cooperating. These values are computed con-

sidering service’s reputation value (Rept
w computed by the master), service’s offered QoS

(QoSt
w), the task required QoS (T t

QoS), which is the mean required QoS computed from pre-

vious tasks, the maximum offered QoS (QoSt
k, which is provided by another competitive

service k), and the cooperative factor CLt
w of service w during the window time t, which

is computed as the portion of service’s current reputation on the average reputation of the

community C .

pt
w,CM =















sin(Rept
w

π
2
)

QoSt
w−T t

QoS

Maxk(Qost
k
−T t

QoS)
if QoSt

w ≥ T t
QoS;

0 otherwise.

(5.9)

pt
w,CO = sin(Rept

w

π

2
)CLt

w (5.10)

103

CLt
w =

Rept
w

∑k∈C Rept
k/|C |

Theorem 5.1. Equation 5.9 satisfies Properties 1 to 4.

Proof. It is easy to show the continuity of Equation 5.9, which satisfies Property 1. The

partial derivative
∂ pt

w,CM

∂Rept
w
= π

2
cos(Rept

w
π
2
)

QoSt
w−T t

QoS

Maxk(Qost
k
−T t

QoS)
is positive as the function cos (the

derivative of sin) is positive on [0, π
2
], Rept

w ∈ [0,1], and QoSt
w ≥ T t

QoS. The partial deriva-

tive ∂ pt
w,CM with regard to QoSt

w− T t
QoS (

∂ pt
w,CM

∂ (QoSt
w−T t

QoS)
=

sin(Rept
w

π
2)

Maxk(Qost
k
−T t

QoS)
) is also positive

since Qost
k−T t

QoS > 0 and Rept
w

π
2
∈ [0, π

2
] and sin is positive on [0, π

2
], which proves the

satisfaction of Property 2. Property 3 is straightforward. Finally, the increase slope of the

function sin on [0, π
2
] proves Property 4. �

Theorem 5.2. Equation 5.10 satisfies Properties 5 to 7.

Proof. We can easily show the continuity of Equation 5.10 from which Property 5 fol-

lows. Property 6 can be shown by calculating the partial derivative ∂ pt
w,CO first with regard

to Rept
w and second with regard to the community C average reputation ∑k∈C Rept

k/|C |,

where |C | is the cardinality of the considered community C . The first partial derivative

(π
2

cos(Rept
w

π
2
)CLt

w) is positive and the second (
−sin(Rept

w
π
2)Rept

w

(∑k∈C Rept
k
/|C |)2) is negative, which proves

the satisfaction of Property 6. The proof of satisfaction of Property 7 is similar to the one

of Property 4. �

Proposition 5.7. pt
w,CM can be computed in time linear in the window size |t|.

Proof. The result follows directly from 1) Equation 5.9; 2) Proposition 5.1 (Complexity of

Rept
w is linear in the window size |t|); 3) second part of Equation 5.4 (the function QoSt

w

can be computed in time linear in the number of tasks, which in turn is linear in the size

of the window time); 4) Proposition 5.6 (Complexity of T t
QoS is linear in the size of the

window t); and 5) the fact that those functions are computed independently one from the

other. �

104

Proposition 5.8. pt
w,CO can be computed in time O(|t|.|C |), which means linear in both the

size of the window t and the size of the community C .

Proof. From Proposition 5.1, Rept
w can be computed in O(|t|). Consequently, the function

∑k∈C Rept
k can be computed in O(|t|.|C |), so it does the computation of the function CLt

w

as Rept
w will be computed just once and stored in a variable. The same variable will be used

to compute sin(Rept
w

π
2
). Thus, from Equation 5.10, the result follows. �

5.5.2 Coopetition Threshold

In this part, we compute the coopetition threshold that a typical service agent could use to

adopt reasonable interacting strategies and we empirically verify the effectiveness of the

obtained results in the next section. In fact, to decide which strategy to adopt, we let the

service agent w compare its growth factor Gt
w with the coopetition threshold τ t

w it holds

at current window time t and choose to compete with probability Pt
w that we compute in

Equation 5.11. Based on this probability, we calculate the total utility U t
w in Equation 5.12.

Pt
w =















Gt
w

τt
w

if Gt
w ≤ τ t

w;

1 otherwise.

(5.11)

U t
w = Pt

w(π
t
w,CM)+(1−Pt

w)(π
t
w,CO) (5.12)

The key factor in the computation of the probability Pt
w and the associated utility is

the threshold value. To compute the threshold, we use the game-theoretic best response

technique. A typical service agent w will follow the best response strategy to maximize its

expected aggregated payoff. The idea is to equalize the expected payoffs of the two acting

strategies: compete and cooperate. The objective behind equalizing payoffs is to explore

conditions under which service agent w could react with best response to further decision

105

making procedures. We use the obtained conditions to compute the threshold τ t
w during the

window time t. By equalizing πt
w,CM and πt

w,CO, we obtain:

πt
w,CM = πt

w,CO→

pt
w,CM(µw,CM−COF t

w− ε)+(1− pt
w,CM)(−ε) = pt

w,CO(µw,CO− ε)+(1− pt
w,CO)(−ε)

Which means:

pt
w,CM(µw,CM−COF t

w− ε) = pt
w,CO(µw,CO− ε)+(−ε)(pt

w,CM− pt
w,CO)

So, we obtain:

µw,CM−COF t
w− ε =

pt
w,CO µw,CO

pt
w,CM

− ε

Therefore:

µw,CM−COF t
w =

pt
w,CO µw,CO

pt
w,CM

From which, we derive:

COF t
w = µw,CM−

pt
w,CO µw,CO

pt
w,CM

Replacing pt
w,CM and pt

w,CO using Equations 5.9 and 5.10, we derive the following:

COF t
w = µw,CM−

sin(Rept
w

π
2
)CLt

w µw,CO

sin(Rept
w

π
2
)

QoSt
w−T t

QoS

Maxk(Qosk−T t
QoS)

By simplifying the sinus function from both the numerator and denominator sides and sub-

stituting the cooperation factor CLt
w of service w we obtain Equation 5.13:

COF t
w = µw,CM−

Rept
w |C |

∑k∈C Rept
k

µw,COMaxk(Qost
k−T t

QoS)

QoSt
w−T t

QoS

(5.13)

106

Equation 5.13 computes the cooperation fee COF t
w that is assigned by service w. This

fee represents the amount that w spends to cooperate with other service(s) to accomplish

the task. By so doing, we obtain the maximum amount of cooperation fee that service w

can use to constrain the positive payoff out of competing. Otherwise, the service stays as

cooperative entity.

Proposition 5.9. COF t
w can be computed in time O(|t|.|C |), which means linear in both the

size of the window t and the size of the community C .

Proof. From Proposition 5.1, Rept
w can be computed in O(|t|). Consequently, the function

∑k∈C Rept
k can be computed in O(|t|.|C |). Since QoSt

w and T t
QoS can be computed in time

O(t) (from the second part of Equation 5.4 and Proposition 5.6 respectively), we are done.

�

Lemma 5.1. The competition payoff πt
w,CM can be computed in time O(|t|.|C |).

Proof. The result follows directly from Propositions 5.3, 5.4, 5.7, and 5.9. �

Lemma 5.2. The cooperation payoff πt
w,CO can be computed in time O(|t|.|C |).

Proof. The result follows directly from Propositions 5.4, 5.5, and 5.8. �

We use the maximum cooperation fee that a service agent considers to constrain the

positive expected payoff when the competitive strategy is adopted to update the threshold

for the consequent time window (t + 1). We compare the maximum cooperation fee with

the required fee (ReqF t
w) that the service indicates to accomplish the task. The outcome

of this comparison is a factor that uses the current threshold τ t
w to compute the consequent

threshold τ t+1
w . As in online learning, the idea is to compute iteratively the threshold until

the fixed point is achieved, which indicates the threshold’s conversion, where the initial

value is randomly chosen (in the simulation different initial values are used). Equation 5.14

107

shows this computation. To investigate the effectiveness of this threshold on the outcomes

of the services that follow this reasoning technique, in the next section, we compare the

results of different agents with diverse strategic reasoning techniques.

τ t+1
w =































Θ if 0≤Θ≤ 1

1 if Θ > 1;

0 if Θ < 0.

(5.14)

Θ = τ t
w

COF t
w

ReqF t
w

Proposition 5.10. The threshold τ t
w can be computed in time O(|t|.|C |), which means linear

in both the size of the window t and the size of the community C .

Proof. From Equation 5.14, the computation of τ t
w is recursive on t, and the algorithm

works by keeping the last computed value in a variable, which saves the time of re-calculation.

Thus, the complexity of calculating τ t
w is determined by the complexity of calculating COF t

w

since ReqF t
w is constant during the period t. Consequently, the result follows from Proposi-

tion 5.9. �

Theorem 5.3. The time complexity of the proposed decision mechanism is O(|t|.|C |), which

means linear in both the size of the window t and the size of the community C .

Proof. The procedure mechanism is based on comparing the growth factor Gt
w with the

coopetition threshold τ t
w as shown in Equations 5.11 and 5.12. Thus, the result follows

from Propositions 5.2 and 5.10. �

108

5.6 Experimental Results and Analysis

In this section, we provide an empirical analysis over the theoretical results regarding the

characteristics of intelligent service agents hosted in different communities of services. In

the implemented system, we simulate the behaviors of service consumers as request gen-

erators, service agents as service providers, and master agents as community representa-

tives. The objective is to investigate the effectiveness of the proposed strategic system

on intelligent services’ overall budget and also the average quality and quantity of tasks

performed by the community of services, which directly affects user satisfaction. To verify

these objectives, we study the overall performance of the community hosting the reasoning-

empowered services compared to the ones hosting stochastic and purely competitive ser-

vices. By stochastic services, we mean services that adopt at each moment competitive or

cooperative strategies in an equally but random way. By equally, we mean the choices are

fairly divided between the two strategies.

The simulation application is written in C# using Visual Studio. We performed the

implementation on a single Intel Xeon X3450 machine with 6GBs of memory. Web ser-

vices were modeled as a class and using Await and Async models we initiated many web

services, each running as a thread. We implemented XML based messaging system (like

SOAP) with request parameters and a list of XML based responses. The request contains

the flight dates, the origin and destination, type of tickets, and number of guests. The re-

sponse contains different flights with different companies, prices, timing, etc. A pool of

services are initialized with values taken from a real dataset that includes 2507 real ser-

vices functioning on the web. The dataset records the QoS values of 9 parameters including

availability, throughput, and reliability [1].

We start our discussions with cumulative budget comparison regarding different com-

munities within which services follow different reasoning techniques. Figure 5.3 part (a)

109

1 11 21 31 41 50

 7000

 9000

11000

13000

15000

17000

Number of Runs
(a)

B
u

d
g

e
t

Coopetitive

Competitive

Random Coopetitive

1 11 21 31 41 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Runs
(b)

R
e

p
u

ta
ti
o

n

Coopetitive

Competitive

Random Coopetitive

Figure 5.3: Part (a): Cumulative community budget comparison. Part (b): Average com-

munity reputation comparison over different strategic decisions.

illustrates three graphs for three different communities. Each community hosts services

that follow different reasoning techniques: (1) a community that follows the interactive rea-

soning techniques presented in this report (referred to as coopetitive); (2) a community that

follows a stochastic reasoning technique so decisions about selecting competitive or cooper-

ative strategies are totally random (referred to as random coopetitive); and (3) a competitive

community where all services follow the competitive strategy (referred to as competitive).

The results illustrated in Figure 5.3 part (a) verify the importance of the strategic de-

cision making procedure to logically decide over the possible competitive and cooperative

choices. Figure 5.3 part (b) illustrates communities average reputation of involved services.

The graphs represent the influence of the rewards that the master agent uses to encourage

highly capable services to compete for a task. As for the cumulative budget, we observe

that the coopetitive community outperforms the random coopetitive and competitive com-

munities in terms of average reputation. The proposed model’s average reputation increases

because services follow optimal strategies where they can perform better so obtain higher

rewards. For the same reasons as for the cumulative budget, the average reputation of the

random coopetitive community outperforms the one of the competitive community.

In our model, services are managed by selfish agents in the sense they try to maximize

110

1 11 21 31 41 50
0

100

200

300

400

500

600

700

800

900

1000

Number of Runs
(a)

N
u

m
b

e
r

o
f

ta
s
k
s
 s

u
c
c
e

s
s
fu

lly
 d

o
n

e

Coopetitive

Competitive

Random Coopetitive

1 11 21 31 41 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Runs
(b)

T
a

s
k
 S

a
ti
s
fa

c
ti
o

n
 R

a
ti
o

Coopetitive

Competitive

Random Coopetitive

1 11 21 31 41 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Runs
(c)

A
v
e

ra
g

e
 Q

o
S

 o
f

T
a

s
k
s
 P

e
rf

o
rm

e
d

Coopetitive

Competitive

Random Coopetitive

Figure 5.4: Overall performance from community’s point of view. Part (a) Total number of

tasks successfully done. Part (b) Ratio of tasks satisfied with required QoS. Part (c) Average

QoS of performed tasks.

their own utilities. We analyze how their strategies affect the social welfare, and from user’s

and community’s point of view how good the tasks are being performed. This directly

impacts user’s satisfaction and community’s reputation in general. The Higher quality and

quantity of tasks performed leads to higher user’s satisfaction for the community which

results in better reputation for the community. The results in Figure 5.4 show the quality and

quantity of tasks being done successfully in three communities adopting the three different

aforementioned strategy decision algorithms. As clearly confirmed by the simulation, the

coopetitive community outperforms the stochastic and compete communities.

We conclude our analysis by discussing how effective our coopetitive decision mak-

ing model is by comparing the final utility (in terms of income) of services following our

111

model with other services deviating from that coopetitive model. In Figure 5.5 Part (a),

we made the services deviate from the suggested strategy. As the simulation shows, the

more services deviate from our coopetitive strategy the more they make less benefits. In

Part (b), we pick one random service and simulate the scenario with its default coopetitive

strategy and then we redo the simulation with exactly the same environment parameters

while gradually alternating the decisions. By alternating we mean adapting the opposite

of what our model does suggest. Thus, if the coopetitive model suggests to compete, the

service agent will cooperate and vice versa. We run this scenario 50 times and at the end we

check the service’s budget and see if it gains more by deviating or not. We did this for one

single deviation (i.e., alternating only one decision) to 10 different deviations (alternating

10 different decisions) during the 50 times run. As the results show, deviating from the

coopetitive strategy yields less income for the service.

5.7 Summary

In this chapter, we addressed the research questions R6 that was introduced in section 1.3.

We proposed a game-theoretic based model to analyze the efficiency characteristics for

the active services in open networks. The proposed framework considers the chances of

web services in joining a community in different cases with truthful and lying information

service agents. The proposed game analyzes the existing Nash equilibrium and situations

where the maximum payoff is obtained.

Our model has the advantage of being simple and taking into account three impor-

tant factors: (1) rational web services seek better status in the environment by joining the

community; (2) rational web services obtain higher payoff by truth telling; and (3) the com-

munity is obtaining more effective web services. These advantages are confirmed through

the conducted simulations.

112

1 11 21 31 41 50
 7000

 9000

11000

13000

15000

17000

Number of Runs
(a)

B
u
d
g
e
t

0% Deviation

10% Deviation

20% Deviation

30% Deviation

40% Deviation

50% Deviation

1 2 3 4 5 6 7 8 9 10
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of Deviations
(b)

R
a
ti
o

Figure 5.5: Utility loss while deviating from our coopetitive decision process. Part (a)

Overall budget when deviating from our model in 0, 10, 20, 30, 40, and 50 percent of deci-

sions. Part (b) Ratio of getting earning utility (budget) when deviating from our coopetitive

strategy in 1 to 10 decisions.

113

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed three models for aggregation of web services within communi-

ties. The goal of our models are to maximize efficiency by collaborating and forming stable

communities. In our first contribution, we focused on stability and fairness for all web

services within the communities. In this work, we addressed the shortcomings of commu-

nity formation in recent work such as considering best strategies which benefit all services

involved, making solutions practical in real-time settings and taking into account the fair-

ness and stability of communities. The proposed model offers an applicable mechanism for

membership requests and selection of web services. The ultimate goal is to increase revenue

by improving user satisfaction, which comes from the ability to perform more tasks with

high quality. The theoretical and extensive simulation results show that our algorithms pro-

vide web services and community owners, in real-world-like environments, with applicable

and near-optimal decision making mechanisms.

In our next step of research work, we proposed DDM, a strategic distributed deci-

sion making mechanism that regulates the community formation process and membership

114

management in communities of web services. In this work, we tried to tackle the issue of

autonomous web services not having a centralized architecture and complete information

of all the parameters of other web services. The proposed mechanism helps web services

and communities decide with whom to be grouped and cooperate. DDM first generates a

trained set of data based on information obtained from large number of web services re-

garding their single and cooperative utilities as well as environmental parameters such as

demand, service quality, etc. Communities and web services can use the trained model

and instantly choose best-response strategies considering their long-term gain. In fact, the

decision making mechanism is implemented as a decision tree of possible viable strategies

along with their long-term expected utility. The ultimate goal of our mechanism is to make

a better decision when it comes to community formation, which goes beyond short-term

utility increasing choices, usually considered in the literature. We performed experiments

using real date from 142 users on 4,532 web services during 64 different time slots. The

experimental results show that our approach allows web services and communities, in real-

world-like environments, to make near-perfect decisions. Moreover, the experiments using

real data samples support the need for a long-term training model in a successful decision

making process.

In our final step of the work, the focus was on inter-community interaction between

services involved within the community. The contribution of this model is the proposition of

a coopetitive strategic model to analyze the interacting behavior of intelligent services that

are active within communities. We considered two acting strategies where service agents

expect different sort of payoffs: (1) competitive strategy where the service claims that it

can accomplish a task and therefore can take the responsibility over the service consumer

satisfaction; and (2) cooperative strategy where the service does not take the responsibility

to accomplish the task and only cooperates with competitive peers. Our proposed model

115

advances the state-of-the-art in cooperative systems by enabling intelligent agent-based ser-

vices to effectively choose their interacting strategies that lead to optimal outcomes. The

proposed framework provides a reasoning technique that service agents can use to increase

their overall obtained utilities. The theoretical results presented in this thesis are also backed

by simulation results using a real services dataset. Moreover, we conducted extensive sim-

ulations, analyzed various scenarios, and confirmed the obtained theoretical results using

parameters from a real services dataset on the web. Those results showed that our model

outperforms existing competitive and random coopetitive strategies and the more services

deviate from the coopetitive strategy suggested by our decision-making mechanism the less

benefits they make.

This work has two main limitations. The first one is on the business side of the project.

The concept of communities is still theoretical and more efforts need to be done to convince

different web service providers, particularly major web service market players, to imple-

ment this concept and join different communities. However, as any new business model,

once the concept of communities is commercialized and the benefits are clear for different

providers, they will have enough incentive to join the communities. The other limitation is

on the implementation side, more precisely the difficulty to extract real information about

some quality metrics of web services and their communities. Communities of web services

have not been implemented yet in large scale and real-world settings. Therefore, we had to

estimate their parameters in various cases. A real-world data-set extracted from large scale

online communities will help improve our results.

6.2 Future Work

As future work, for the community formation in our first model, we would like to per-

form more analytical and theoretical analysis on the convexity condition and also minimal

116

ε values in ε-core solution concepts based on the characteristic function in web service

applications. From web service perspective, the work can be extended to consider web ser-

vices compositions where a group of web services having different set of skills cooperate to

perform composite tasks. Also bargaining theory from cooperative game theory concepts

[82] can be used to help web services resolve the instability and unfairness issues by side

payments.

For the distributed model, our future plan is to advance further the learning process on

the training set we provided in our work by leveraging some game theoretical approaches.

Hedonic games and fractional hedonic games [19, 10] are of particular interest where the

utility of a player in a community depends on the identity of the other members of the

community and the value this player ascribes to those members. We intent to investigate

stability solution concepts such as Shapley value so that long-term decisions will be based

on the probability that the community will last for long period. The SVM machine learning

algorithm [65, 24] is suitable for classification of our training data set to better distinguish

decisions based on long-term utility, as data set outputs. This can further facilitate the

process of finding optimal cooperators which will result in enhancing web services’ overall

performance as service providers.

117

Publications in refereed journals and conferences

Journals

• E. Khosrowshahi Asl, J. Bentahar, H. Otrok, R. Mizouni, "Efficient Coalition Forma-

tion for Web Services", IEEE Transactions on Services Computing, 2015.

• E. Khosrowshahi Asl, J. Bentahar, H. Otrok, B. Khosravifar, R. Mizouni, "To com-

pete or cooperate? This is the question in communities of autonomous services",

Journal of Expert Systems with Applications, Elsevier, 2014.

Conferences

• E. Khosrowshahi Asl, J. Bentahar, H. Otrok, R. Mizouni, "Efficient Community For-

mation for Web Services", IEEE SCC, Santa Clara, CA, USA, 2013.

• B. Khoravifar, M. Alishahi, E. Khosrowshahi Asl, J. Bentahar, R. Mizouni, H. Otrok,

"Analyzing Coopetition Strategies of Services within Communities", ICSOC, Shang-

hai, China, 2012

• O. Marey, J. Bentahar, E. Khosrowshahi Asl, M. Mbarki, R. Dssouli, "Agents’ Un-

certainty in Argumentation-based Negotiation: Classification and Implementation",

ANT/SEIT, Hasselt, Belgium, 2014.

• H. Fallatah, J. Bentahar, E. Khosrowshahi Asl, "Social Network-Based Framework

for Web Services Discovery", IEEE FiCloud, Barcelona, Spain, 2014.

Articles in process for publication in refereed journals

• E. Khosrowshahi Asl, J. Bentahar, H. Otrok, R. Mizouni, "Distributed Decision Mak-

ing for Dynamic Formation of Web Services Communities", Decision Support Sys-

tems, Elsevier (Submitted: June, 2015).

118

Other collaborated works

• O. Marey, J. Bentahar, E. Khosrowshahi Asl, K. Soltan, R. Dssouli, "Decision making

under subjective uncertainty in argumentation-based agent negotiation", Journal of

Ambient Intelligence and Humanized Computing, 2015.

• F. Al-Saqqar, J. Bentahar, K. Sultan, W. Wan, E. Khosrowshahi Asl, "Model check-

ing temporal knowledge and commitments in multi-agent systems using reduction",

Journal of Simulation Modelling Practice and Theory, 2015.

119

Bibliography

[1] Eyhab Al-Masri and Qusay H. Mahmoud. Discovering the best web service. In Pro-

ceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff,

Alberta, Canada, May 8-12, 2007, pages 1257–1258, 2007.

[2] Eyhab Al-Masri and Qusay H. Mahmoud. Discovering the best web service: A neural

network-based solution. In SMC, pages 4250–4255, 2009.

[3] Eduardo Adilio Pelinson Alchieri, Alysson Neves Bessani, and Joni da Silva Fraga.

A dependable infrastructure for cooperative web services coordination. Int. J. Web

Service Res., pages 43–64, 2010.

[4] Krzysztof R. Apt and Tadeusz Radzik. Stable partitions in coalitional games. CoRR,

abs/cs/0605132, 2006.

[5] Krzysztof R. Apt and Andreas Witzel. A generic approach to coalition formation.

IGTR, 11(3):347–367, 2009.

[6] Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible pro-

cesses. IEEE Trans. Softw. Eng., 33(6):369–384, June 2007.

[7] Ehsan Khosrowshahi Asl, Jamal Bentahar, Rabeb Mizouni, Babak Khosravifar, and

Hadi Otrok. To compete or cooperate? this is the question in communities of au-

tonomous services. Expert Syst. Appl., 41(10):4878–4890, 2014.

120

[8] Ehsan Khosrowshahi Asl, Jamal Bentahar, Rabeb Mizouni, and Hadi Otrok. Efficient

community formation for web services. Services Computing, IEEE Transactions on,

8(4):586–600, July 2015.

[9] Ehsan Khosrowshahi Asl, Jamal Bentahar, Hadi Otrok, and Rabeb Mizouni. Efficient

coalition formation for web services. In IEEE SCC, pages 737–744, 2013.

[10] Haris Aziz, Serge Gaspers, (Hans) Joachim Gudmundsson, Julian Mestre, and Hanjo

Taubig. Welfare maximization in fractional hedonic games. In IJCAI 2015 : Interna-

tional Joint Conference on Artificial Intelligence, Buenos Aires, Argentina.

[11] Yoram Bachrach, Edith Elkind, Reshef Meir, Dmitrii Pasechnik, Michael Zuckerman,

Jörg Rothe, and Jeffrey S. Rosenschein. The cost of stability in coalitional games.

In Proceedings of the 2Nd International Symposium on Algorithmic Game Theory,

SAGT ’09, pages 122–134, Berlin, Heidelberg, 2009. Springer-Verlag.

[12] Matteo Baldoni, Cristina Baroglio, and Viviana Mascardi. Special issue: Agents, web

services and ontologies: Integrated methodologies. Multiagent and Grid Systems,

6(2):103–104, 2010.

[13] Camelia Bejan and Juan Camilo Gomez. Core extensions for non-balanced tu-games.

International Journal of Game Theory, 38(1):3–16, 2009.

[14] Boualem Benatallah, Quan Z. Sheng, and Marlon Dumas. The self-serv environment

for web services composition. IEEE Internet Computing, 7(1):40–48, 2003.

[15] Abdelghani Benharref, Mohamed Adel Serhani, Salah Bouktif, and Jamal Bentahar.

A new approach for quality enforcement in communities of web services. In Hans-

Arno Jacobsen, Yang Wang, and Patrick Hung, editors, IEEE SCC, pages 472–479.

IEEE, 2011.

121

[16] Karim Benouaret, Djamal Benslimane, Allel Hadjali, and Mahmoud Barhamgi. Top-k

web service compositions using fuzzy dominance relationship. In IEEE SCC, pages

144–151, 2011.

[17] Djamal Benslimane, Zakaria Maamar, Yehia Taher, Mohammmed Lahkim,

Marie Christine Fauvet, and Michael Mrissa. A Multi-Layer and Multi-Perspective

Approach to Compose Web Services. In AINA ’07: Proceedings of the 21st Inter-

national Conference on Advanced Networking and Applications, pages 31–37. IEEE

Computer Society, May 2007.

[18] Jamal Bentahar, Babak Khosravifar, Mohamed Adel Serhani, and Mahsa Alishahi.

On the analysis of reputation for agent-based web services. Expert Syst. Appl.,

39(16):12438–12450, November 2012.

[19] Florian Brandl, Felix Brandt, and Martin Strobel. Fractional hedonic games: Individ-

ual and group stability. In Proceedings of the 2015 International Conference on Au-

tonomous Agents and Multiagent Systems, AAMAS ’15, pages 1219–1227, Richland,

SC, 2015. International Foundation for Autonomous Agents and Multiagent Systems.

[20] Ruben Casado, Muhammad Younas, and Javier Tuya. Multi-dimensional criteria for

testing web services transactions. J. Comput. Syst. Sci., 79(7):1057–1076, 2013.

[21] Yasmine Charif and Nicolas Sabouret. Dynamic service composition enabled by intro-

spective agent coordination. Autonomous Agents and Multi-Agent Systems, 26(1):54–

85, 2013.

[22] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web

Service Definition Language (WSDL). Technical report, March 2001.

122

[23] Brent N. Chun and David E. Culler. User-centric performance analysis of market-

based cluster batch schedulers. In The 2nd IEEE/ACM International Symposium on

Cluster Computing and the Grid, page 30, 2002.

[24] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn.,

20(3):273–297, September 1995.

[25] Davis, Michael Maschler, and M. Maschler. Existence of stable payoff configurations

for cooperative. In Essays in Mathematical Economics in Honor of Oskar Morgen-

stern, pages 39–52. Princeton University Press, 1967.

[26] Haluk Demirkan and Dursun Delen. Leveraging the capabilities of service-oriented

decision support systems: Putting analytics and big data in cloud. Decision Support

Systems, 55(1):412 – 421, 2013.

[27] Xiaotie Deng and Qizhi Fang. Algorithmic cooperative game theory. Pareto Op-

timality, Game Theory And Equilibria. Springer Optimization and Its Applications,

17:159–185, 2008.

[28] Xiaotie Deng and Christos H. Papadimitriou. On the complexity of cooperative solu-

tion concepts. Math. Oper. Res., 19:257–266, May 1994.

[29] Tone Dieckmann and Ulrich Schwalbe. Dynamic coalition formation and the core.

Journal of Economic Behavior and Organization, 2002.

[30] Said Elnaffar, Zakaria Maamar, Hamdi Yahyaoui, Jamal Bentahar, and Philippe Thi-

ran. Reputation of communities of web services - preliminary investigation. In

22nd International Conference on Advanced Information Networking and Applica-

tions, AINA 2008, Workshops Proceedings, GinoWan, Okinawa, Japan, March 25-28,

2008, pages 1603–1608, 2008.

123

[31] Francois Fouss, Youssef Achbany, and Marco Saerens. A probabilistic reputation

model based on transaction ratings. Inf. Sci., 180(11):2095–2123, June 2010.

[32] Le Gao, Susan D. Urban, and Janani Ramachandran. A survey of transactional is-

sues for web service composition and recovery. Int. J. Web Grid Serv., 7(4):331–356,

January 2011.

[33] Gianluigi Greco, Enrico Malizia, Luigi Palopoli, and Francesco Scarcello. On the

complexity of the core over coalition structures. In IJCAI, pages 216–221, 2011.

[34] Javier Octavio Gutiérrez-García and Kwang Mong Sim. Agent-based cloud service

composition. Appl. Intell., 38(3):436–464, 2013.

[35] Derrick Huang and Qing Hu. Integrating web services with competitive strategies:

The balanced scored approach. volume 13, pages 57–80, 2004.

[36] Audun Josang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation sys-

tems for online service provision. Decis. Support Syst., 43(2):618–644, March 2007.

[37] Radu Jurca and Boi Faltings. Reputation-based service level agreements for web

services. In Service Oriented Computing (ICSOC - 2005), volume 3826 of Lecture

Notes in Computer Science, pages 396 – 409. 2005.

[38] Radu Jurca and Boi Faltings. Obtaining reliable feedback for sanctioning reputation

mechanisms. Journal of Artificial Intelligence Research (JAIR), 29:391–419, 2007.

[39] Steven P. Ketchpel. The formation of coalitions among self-interested agents. In

Barbara Hayes-Roth and Richard E. Korf, editors, AAAI, page 1467. AAAI Press /

The MIT Press, 1994.

124

[40] Babak Khosravifar, Mahsa Alishahi, Ehsan Khosrowshahi Asl, Jamal Bentahar, Rabeb

Mizouni, and Hadi Otrok. Analyzing coopetition strategies of services within commu-

nities. In Service-Oriented Computing - 10th International Conference, ICSOC 2012,

Shanghai, China, November 12-15, 2012. Proceedings, pages 656–663, 2012.

[41] Babak Khosravifar, Mahsa Alishahi, Jamal Bentahar, and Philippe Thiran. A game

theoretic approach for analyzing the efficiency of web services in collaborative net-

works. In IEEE SCC, pages 168–175, 2011.

[42] Babak Khosravifar, Jamal Bentahar, and Ahmad Moazin. Analyzing the relationships

between some parameters of web services reputation. In IEEE International Con-

ference on Web Services, ICWS 2010, Miami, Florida, USA, July 5-10, 2010, pages

329–336, 2010.

[43] Babak Khosravifar, Jamal Bentahar, Ahmad Moazin, Zakaria Maamar, and Philippe

Thiran. Analyzing communities vs. single agent-based web services: Trust perspec-

tives. In IEEE SCC, pages 194–201. IEEE Computer Society, 2010.

[44] Babak Khosravifar, Jamal Bentahar, Ahmad Moazin, and Philippe Thiran. Analyzing

communities of web services using incentives. Int. J. Web Service Res., 7(3):30–51,

2010.

[45] Erbin Lim, Philippe Thiran, and Zakaria Maamar. Towards defining and assessing the

non-functional properties of communities of web services. In AINA, pages 578–585.

IEEE Computer Society, 2011.

[46] Erbin Lim, Philippe Thiran, Zakaria Maamar, and Jamal Bentahar. On the analysis of

satisfaction for web services selection. In IEEE SCC, pages 122–129, 2012.

125

[47] Hela Limam and Jalel Akaichi. Managing web services communities: A cache for

queries optimisation. International Journal on Web Service Computing (IJWSC), 1(1),

2010.

[48] An Liu, Qing Li, Liusheng Huang, Shi Ying, and Mingjun Xiao. Coalitional game

for community-based autonomous web services cooperation. IEEE Transactions on

Services Computing, 99(PrePrints), 2012.

[49] Alessio Lomuscio, Hongyang Qu, and Monika Solanki. Towards verifying compli-

ance in agent-based web service compositions. In AAMAS(1), pages 265–272, 2008.

[50] Zakaria Maamar. Web services communities : from intra-community coopetition to

inter-community competition. E-business applications for product development and

competitive growth : emerging technologies., 2011.

[51] Zakaria Maamar, Mohammed Lahkim, Djamal Benslimane, Philippe Thiran, and Sat-

tanathan Subramanian. Web services communities - concepts and operations. In

Joaquim Filipe, Bruno Cordeiro, Jos?nd Encarnação, and Vitor Pedrosa, editors, WE-

BIST (1), pages 323–327. INSTICC Press, 2007.

[52] Zakaria Maamar, Quan Z. Sheng, and Djamal Benslimane. Sustaining web services

high-availability using communities. 2012 Seventh International Conference on Avail-

ability, Reliability and Security, 0:834–841, 2008.

[53] Zakaria Maamar, Sattanathan Subramanian, Philippe Thiran, Djamal Benslimane, and

Jamal Bentahar. An approach to engineer communities of web services: Concepts,

architecture, operation, and deployment. IJEBR, 5(4):1–21, 2009.

[54] Zakaria Maamar, Philip Thiran, and Jamal Bentahar. Web services communities:

From intra-community coopetition to inter-community competition. pages 333–343.

126

E-Business Application for Product Development and Competitive Growth: Emerging

Technologies, 2011.

[55] Zakaria Maamar, Philippe Thiran, and Jamal Bentahar. Web Services Communities:

from Intra-Community Coopetition to Inter-Community Competition, pages 333–344.

IGI Global, 2010.

[56] Zaki Malik and Athman Bouguettaya. Evaluating rater credibility for reputation as-

sessment of web services. In Web Information Systems Engineering - WISE 2007, 8th

International Conference on Web Information Systems Engineering, Nancy, France,

December 3-7, 2007, Proceedings, pages 38–49, 2007.

[57] William A. Massey, Geraldine A. Parker, and Ward Whitt. Estimating the parameters

of a nonhomogeneous poisson process with linear rate. Telecommunication Systems,

5(2):361–388, 1996.

[58] E. Michael Maximilien and Munindar P. Singh. Reputation and endorsement for web

services. SIGecom Exch., 3(1):24–31, December 2001.

[59] Brahim Medjahed. A dynamic foundational architecture for semantic web services.

Distributed And Parallel Databases, an International Journal, 17:179–206, 2005.

[60] Reshef Meir, Jeffrey S. Rosenschein, and Enrico Malizia. Subsidies, stability, and

restricted cooperation in coalitional games. In Toby Walsh, editor, IJCAI, pages 301–

306. IJCAI/AAAI, 2011.

[61] Daniel A. Menascé. QoS issues in web services. IEEE Internet Computing, 6(6):72–

75, November 2002.

[62] Roger B. Myerson. Game theory: analysis of conflict. Harvard University Press,

1991.

127

[63] Cagla Okutan and Nihan Kesim Cicekli. A monolithic approach to automated

composition of semantic web services with the event calculus. Know.-Based Syst.,

23(5):440–454, July 2010.

[64] Martin J. Osborne and Ariel Rubinstein. A course in game theory. The MIT Press,

Cambridge, USA, 1994. electronic edition.

[65] Edgar Osuna, Robert Freund, and Federico Girosi. Training support vector machines:

an application to face detection. pages 130–136, 1997.

[66] Hye-Young Paik, Boualem Benatallah, and Farouk Toumani. Toward self-organizing

service communities. Trans. Sys. Man Cyber. Part A, 35(3):408–419, May 2005.

[67] Talal Rahwan, Tomasz P. Michalak, and Nicholas R. Jennings. Minimum search to

establish worst-case guarantees in coalition structure generation. In IJCAI, pages 338–

343, 2011.

[68] Debraj Ray. A Game-Theoretic Perspective on Coalition Formation. OUP Oxford,

2007.

[69] Pablo Rodriguez-Mier. Automatic web service composition with a heuristic-based

search algorithm. In IEEE ICWS, pages 81–88, 2011.

[70] Sidney Rosario, Albert Benveniste, Stefan Haar, and Claude Jard. Probabilistic QoS

and soft contracts for transaction based web services. In 2007 IEEE International

Conference on Web Services (ICWS 2007), July 9-13, 2007, Salt Lake City, Utah,

USA, pages 126–133, 2007.

[71] Sidney Rosario, Albert Benveniste, Stefan Haar, and Claude Jard. Probabilistic QoS

and soft contracts for transaction-based web services orchestrations. IEEE Trans. Serv.

Comput., 1(4):187–200, October 2008.

128

[72] Sidney Rosario, Albert Benveniste, and Claude Jard. Flexible probabilistic QoS man-

agement of orchestrations. Int. J. Web Service Res., 7(2):21–42, 2010.

[73] Fabrizio Ruggeri and Siva Sivaganesan. On modeling change points in non-

homogeneous poisson processes. Statistical Inference for Stochastic Processes,

8(3):311–329, 2005.

[74] Michael E. Ruth and Shengru Tu. Concurrency Issues in Automating RTS for Web

Services. In Web Services, 2007. ICWS 2007. IEEE International Conference on,

pages 1142–1143. IEEE, July 2007.

[75] Tuomas Sandholm, Kate Larson, Martin Andersson, Onn Shehory, and Fernando

Tohmé. Coalition structure generation with worst case guarantees. Artif. Intell., 111(1-

2):209–238, July 1999.

[76] David Schmeidler. The nucleolus of a characteristic function game. SIAM Journal on

Applied Mathematics, pages 1163–1170, 1969.

[77] L. S. Shapley. Cores of convex games. International Journal of Game Theory, 1:11–

26, 1971.

[78] Lloyd S. Shapley. A value for n-person games. In Contributions to the Theory of

Games (Annals of Mathematical Studies), 2:307–317, 1953.

[79] Lloyd S. Shapley and Martin Shubik. Quasi-cores in a monetary economy with non-

convex preferences. Econometrica, 34(4):805–827, 1966.

[80] Xianfei Tang, Changjun Jiang, and Mengchu Zhou. Automatic web service compo-

sition based on horn clauses and petri nets. Expert Syst. Appl., pages 13024–13031,

2011.

129

[81] Qian Tao, Hui-you Chang, Chun-qin Gu, and Yang Yi. A novel prediction approach

for trustworthy QoS of web services. Expert Syst. Appl., 39(3):3676–3681, February

2012.

[82] William Thomson. Bargaining and the theory of cooperative games: John Nash and

beyond. RCER Working Papers 554, University of Rochester - Center for Economic

Research (RCER), September 2009.

[83] Lin Kuo-Chang Wu, Shiow-yang. Structured design, consistency analysis and failure

reasoning of business workflows with activity-control templates and causal ordering.

Expert Systems With Applications, 38(7):8000–8013, 2011.

[84] Kai Xu, Qi Yu, Qing Liu, Ji Zhang, and Athman Bouguettaya. Web service manage-

ment system for bioinformatics research: a case study. Service Oriented Computing

and Applications, 5(1):1–15, 2011.

[85] Hamdi Yahyaoui. A trust-based game theoretical model for web services collabora-

tion. Knowl.-Based Syst., 27:162–169, 2012.

[86] Hamdi Yahyaoui, Zakaria Maamar, and Khouloud Boukadi. A framework to coordi-

nate web services in composition scenarios. IJWGS, 6(2):95–123, 2010.

[87] Hamdi Yahyaoui and Sami Zhioua. Bootstrapping trust of web services through be-

havior observation. In Web Engineering - 11th International Conference, ICWE 2011,

Paphos, Cyprus, June 20-24, 2011, pages 319–330, 2011.

[88] Makoto Yokoo, Vincent Conitzer, Tuomas Sandholm, Naoki Ohta, and Atsushi

Iwasaki. Coalitional games in open anonymous environments. In Manuela M. Veloso

and Subbarao Kambhampati, editors, AAAI, pages 509–515. AAAI Press / The MIT

Press, 2005.

130

[89] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and

Quan Z. Sheng. Quality driven web services composition. In Proceedings of the

12th international conference on World Wide Web, WWW ’03, pages 411–421, New

York, NY, USA, 2003. ACM.

[90] Yilei Zhang, Zibin Zheng, and Michael R. Lyu.

[91] Huiyuan Zheng, Weiliang Zhao, Jian Yang, and Athman Bouguettaya. QoS analysis

for web service compositions with complex structures. IEEE T. Services Computing,

6(3):373–386, 2013.

[92] Yair Zick, Maria Polukarov, and Nicholas R. Jennings. Taxation and stability in co-

operative games. In Proc. 12th Int. Conf on Autonomous Agents and Multi-Agent

Systems, pages 523–530, 2013.

131

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS
	Introduction
	Context of Research
	Motivating Scenario
	Problem and Research Questions
	Contributions
	Thesis Organization

	Background
	Community of Web Services
	Cooperative Game Theory and Multi-Agent Systems
	Related Work
	Conclusive Remarks

	Coalition Formation for Autonomous Web Services
	Preliminaries
	Problem Formulation and Modeling
	Web Service Cooperative Games
	Experimental Results and Analysis
	Summary

	Distributed Decision Making for Dynamic Formation of Web Services Communities
	Introduction
	Challenging Issues
	Model Components
	Decision Making Mechanism
	Experiments
	Summary

	Coopetitive Behavior of Services within Communities
	Introduction
	Architecture
	System Parameters
	Service Interactive Strategies
	Theoretical Results
	Experimental Results and Analysis
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

