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Abstract

Prediction of Indel Flanking Regions and Its Application in

the Alignment of Multiple Protein Sequences

Mufleh Saleh Al-Shatnawi, Ph.D.

Concordia University, 2015

Proteins are the most important molecules in living organism, and they are

involved in every function of the cells, such as signal transmission, metabolic regula-

tion, transportation of molecules, and defense mechanism. As new protein sequences

are discovered on an everyday basis and protein databases continue to grow expo-

nentially with time, analysis of protein families, understanding their evolutionary

trends and detection of remote homologues have become extremely important. The

traditional laboratory techniques of studying these proteins are very slow and time

consuming. Therefore, biologists have turned to automated methods that are fast

and capable of analyzing large amounts of data and determining relationships be-

tween proteins that would be difficult, if not impossible, for humans to identify

through the traditional techniques.

Insertion/deletion (indel) and substitution of an amino acid are two common

events that lead to the evolution of and variations in protein sequences. Further,

many of the human diseases and functional divergence between homologous proteins

are related more to the indel mutations than to the substitution mutations, even

though the former occurs less often than the latter. A reliable detection of indels and

their flanking regions is a major challenge in research related to protein evolution,

structures and functions.
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The first and most important step in studying a newly discovered protein se-

quence is to search protein databases for proteins that are similar or closely–related

to the new protein, and then to align the new protein sequence to these proteins.

Thus, the alignment of multiple protein sequences is one of the most commonly per-

formed tasks in bioinformatics analyses, and has been used in many applications,

including sequence annotation, phylogenetic tree estimation, evolutionary analysis,

secondary structure prediction and protein database search. In spite of considerable

research and efforts that have been recently deployed for improving the performance

of multiple sequence alignment (MSA) algorithms, finding a highly accurate align-

ment between multiple protein sequences still remains a challenging problem.

The objectives of this thesis are to develop a novel scheme to predict indel flank-

ing regions (IndelFRs) in a protein sequence and to develop an efficient algorithm

for the alignment of multiple protein sequences incorporating the information on the

predicted IndelFRs.

In the first part of the thesis, a variable–order Markov model–based scheme

to predict indel flanking regions in a protein sequence for a given protein fold is

proposed. In this scheme, two predictors, referred to as the PPM IndelFR and

PST IndelFR predictors, are designed based on prediction by partial match and

probabilistic suffix tree, respectively. The performance of the proposed IndelFR

predictors is evaluated in terms of the commonly used metrics, namely, accuracy of

prediction and F1–measure. It is shown through extensive performance evaluation

that the proposed predictors are able to predict IndelFRs in the protein sequences

with high values of accuracy and F1–measure. It is also shown that if one is interested

only in predicting IndelFRs in protein sequences, it would be preferable to use the

proposed predictors instead of HMMER 3.0 in view of the substantially superior

performance of the former.

In the second part of the thesis, a novel and efficient algorithm incorporating
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the information on the predicted IndelFRs for the alignment of multiple protein

sequences is proposed. A new variable gap penalty function is introduced, which

makes the gap placement in protein sequences more accurate for the protein align-

ment. The performance of the proposed alignment algorithm, named as MSAIn-

delFR algorithm, is evaluated in terms of the so called metrics, sum-of-pairs (SP)

and total columns (TC). It is shown through extensive performance evaluation using

four popular benchmarks, BAliBASE 3.0, OXBENCH, PREFAB 4.0, and SABmark

1.65, that the performance of MSAIndelFR is superior to that of the six most–

widely used alignment algorithms, namely, Clustal W2, Clustal Omega, MSAProbs,

Kalign2, MAFFT and MUSCLE.

Through the study undertaken in this thesis it is shown that a reliable detection

of indels and their flanking regions can be achieved by using the proposed IndelFR

predictors, and a substantial improvement in the protein alignment accuracy can be

achieved by using the proposed variable gap penalty function. Thus, it is anticipated

that this investigation will not only facilitate future studies on the modeling of

indel mutations and protein sequence alignment, but will also open up new avenues

for research concerning protein evolution, structures, and functions as well as for

research concerning protein sequence alignment.
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Chapter 1

Introduction

1.1 General

Proteins are the most important molecules inside every living organism, and they

are actively involved in almost all of the cell functions, such as signal transmission,

metabolic regulation, transportation of molecules, and defense mechanism. As the

number of protein sequences in the protein databases is growing exponentially with

time, analysis of protein families, understanding their evolutionary trends and detec-

tion of remote homologues1 have become extremely important.A protein molecule is

created in a cell as a chain of amino acids, called the polypeptide chain. A polypep-

tide chain can be represented as a string of characters by using the letter code of each

amino acid. This string of characters is called the primary structure of a protein [1].

It is known that insertion/deletion (indel) and substitution of an amino acid

are two common mutational events that lead to the evolution of and variations

in protein sequences. It has been found that new proteins have evolved mainly

through indel mutations [2, 3]. It should be noted that the insertion or deletion

of an entire subsequence of amino acids often occurs as a single mutational event,

1The proteins that evolve from the same ancestor protein are called homologous proteins
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and such single mutational event often affects several consecutive amino acids in

a protein sequence [1]. Further, it has been found that differences among species,

as well as many of the human diseases, are related more to the indel mutations

than to the substitution mutations, even though the former occurs less often than

the latter [4–6]. Therefore, developing methods that can efficiently detect indels and

their flanking regions is extremely important in research related to protein evolution,

structures and functions.

The alignment of multiple protein sequences is one of the most commonly per-

formed tasks in bioinformatics analyses, and has been used in many applications,

including sequence annotation, phylogenetic tree estimation, evolutionary analysis,

secondary structure prediction and protein database search [7, 8]. In recent years,

considerable effort has been devoted to the development of protein sequence align-

ment algorithms that can efficiently detect mutations and generate highly accurate

alignment. Some of the most–widely used algorithms are Clustal W2 [9], Clustal

Omega [10], Kalign2 [11], MSAProbs [12], MAFFT [13,14] and MUSCLE [15]. From

the biological point of view, the alignment of protein sequences is motivated by the

following facts: (i) all living organisms are related by evolution, (ii) every protein

sequence has an evolutionary history, and (iii) every protein sequence contains bi-

ologically important regions that are less likely to mutate than others, and thus,

finding protein conserved regions might be a strong indication to a functionally im-

portant region. Therefore, the proteins that are closely related should have higher

similarity than those which are not closely related. In the other words, the sequence

similarity implies functional similarity which, in turn, is likely to indicate a common

ancestor. As a consequence, biologists can transfer all information (structure and

function) known about a given protein to the newly discovered protein, if a high

similarity between them is found.

Multiple sequence alignment (MSA) allows us to identify parts of the protein
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Figure 1.1: Indel and the flanking regions.

sequences that are similar to one another with gaps (spaces) inserted in such a way

that similar parts of these sequences can be easily identified [16]. The concept of

a gap in an alignment is important, since the gap locations indicate the locations

of indel mutations in protein sequences. It should be noted that the insertion or

deletion of an entire subsequence often occurs as a single mutational event, and such

single mutational events can create gaps of varying sizes [1]. When a pair of protein

sequences is aligned, a gap in any of the two sequences is defined as an indel region.

Segments of protein sequence immediately before and after an indel region are called

flanking regions as shown in Figure 1.1. It has been found that there exists a strong

relationship between indels and their flanking regions [3,5,17–19]. In this thesis, an

indel along with its left and right flanking regions is referred to as an indel flanking

region (IndelFR).

Normally, an alignment between protein sequences is intended to reflect the cost

of mutational events needed to transform one sequence to another [7,20]. Therefore,

MSA algorithms use an objective function (OF) to measure the quality of an align-

ment by assigning a quality score to every possible alignment of the input sequences.

Defining a proper OF is a non–trivial task and has been a subject of active research.
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In theory, an OF should incorporates information about the sequences, such as their

secondary structures, solvent accessibility, hydrophobic indices, function and evolu-

tionary history. Information regarding the above is not always available and difficult

to use, even if available. Hence, the MSA algorithms use a simple OF consisting of

a gap penalty function to score the gaps and substitution matrices to measure the

similarity of amino acid pairs. The score of a given alignment is then defined as

the sum of the similarity scores of the aligned amino acids minus the corresponding

penalty for every gap.

The most popular substitution matrices are BLOSUM [21], GONNET [22] and

PAM [23]. The substitution matrices assign a positive value if similar amino acids are

aligned, and a negative value if dissimilar amino acids are aligned. It has been shown

in [24] that the selection of a particular substitution matrix does not noticeably affect

the alignment accuracy, and that there is little difference in the alignment accuracy

using BLOSUM, PAM or GONNET as the substitution matrix. Therefore, there

has been a growing interest to propose an appropriate gap penalty function that can

improve both the objective function and the alignment accuracy.

The most widely used gap penalty function is the affine gap penalty (AGP),

given by g(k) = go + kge for a gap of length k. The function g(k) involves two

parameters go and ge, representing a gap opening penalty at a specific position in

the protein sequence and representing an extension penalty for extending the gap,

respectively. This linear AGP function has the advantage of simplicity and ease of

use in MSA algorithms. However, this penalty function is restrictive in the sense

that the two parameters remain fixed for aligning different positions in the protein

sequence. There are a few strategies that have been proposed for improving the gap

penalty functions. In the past two decades, several groups have attempted to find

the distribution of indel lengths for a more effective gap penalty function [25] or to

empirically estimate the parameters for AGP [26,27]. Although there is no consensus
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as to the distribution of indel lengths to determine the optimal form of gap penalty, a

few gap penalty functions have been proposed for improving the alignment accuracy,

including the generalized AGP [28, 29], a long indel model [30], and a logarithmic

gap penalty [31]. It should be noted that these gap penalty functions have not

been used widely, since they are difficult to implement and provide only a limited

improvement to the alignment accuracy.

MSAProbs and Kalign2 are MSA algorithms for which an AGP function is used.

In MSAprobs, fixed parameters are used for the AGP function, wherein a gap open-

ing penalty of 22 and a gap extension penalty of 1 are used by default [12]. In

Kalign2, an AGP function is used to align sequences/profiles, and the users are

allowed to specify two additional parameters, a terminal gap penalty that is used

to penalize N/C–terminal gaps in protein sequences, and a gap inc that is used to

increase the gap opening and extension penalties depending on the number of exist-

ing gaps in a given profile. It should be noted that Kalign2 determines the default

gap penalties for protein alignments by training on a BAliBASE 3.0 benchmark [32]

in order to obtain optimal alignment results. In the MAFFT, MUSCLE, Clustal

W2 and Clustal Omega MSA algorithms, a gap opening penalty (GPO) and a gap

extension penalty (GPE) values are initially specified; then, these algorithms au-

tomatically attempt to choose appropriate gap penalties according to some specific

rules. The algorithms MAFFT and MUSCLE use an AGP function, wherein the

default values are modified depending on the number of existing gaps at a particu-

lar position for a given profile [14,15]. Clustal W2 and Clustal Omega use an AGP

function, wherein a gap opening penalty (GPO) and a gap extension penalty (GPE)

are initially set by the user from a menu, and then, these algorithms automatically

attempt to choose appropriate gap penalties for each sequence alignment according

to the features of the input sequences, such as sequence divergence, length, and local

hydrophobic amino acids. It should be noted that the choice of the AGP parame-
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ters has a substantial effect on the alignment accuracy [33–35], and the widely–used

AGP works well for closely related or similar sequences, but they are less effective

for highly diverged or dissimilar sequences. As a consequence, there has been a

growing interest in conducting multiple sequence alignment with more general and

flexible gap penalty functions.

1.2 Motivation and Objectives of the Thesis

As discussed in the previous section, developing methods that can efficiently predict

IndelFRs is a major challenge in research related to protein evolution, structures

and functions, especially with the rapid growth in the number of protein sequences

in the protein databases. In the protein alignment, the gap regions are introduced

to indicate the locations of IndelFRs in protein sequences. It is known that the

accuracy of the protein alignment algorithm in introducing gap regions is extremely

sensitive to the choice of the gap penalty function. There are a few strategies

that have been proposed to improve the gap penalty functions (See section 1.1);

however, none of these take advantage of the strong relationship that exists between

indels and their flanking regions as has been shown in [3, 5, 17–19]. Therefore, it

is extremely important to develop new methods that can predict IndelFRs in the

protein sequences without relying on the protein sequence alignment and to propose

new gap penalty functions taking advantage of the relationship between indels and

their flanking regions.

The objectives of this thesis are two–fold: (i) to develop an efficient and reliable

method to predict IndelFRs that takes advantage of the strong relationship that exist

between indels and their flanking regions, and (ii) to develop an efficient algorithm

for the alignment of multiple protein sequences incorporating the information on the

predicted IndelFRs. In order to achieve these objectives, the thesis is divided into

two parts.
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In the first part of the thesis, a variable-order Markov model–based scheme to

predict indel flanking regions in a protein sequence for a given protein fold is pro-

posed [36]. In this scheme, two predictors, referred to as the PPM IndelFR and

PST IndelFR predictors, based on prediction by partial match [37] and probabilistic

suffix tree [38], respectively, are designed. The proposed IndelFR predictors are

trained using the flanking regions that are listed in the IndelFR database [17]. In

order to demonstrate the effectiveness of the proposed IndelFR predictors in predict-

ing IndelFRs for a given protein fold, extensive experiments are carried out using

the IndelFR database and the sequence alignment benchmark (SABmark 1.65) [39].

Furthermore, the performance of the two proposed predictors is compared with that

using the latest version of the alignment software HMMER, HMMER 3.0 [40]. The

HMMER algorithms are considered to be the most accurate algorithms in term of

detecting indel mutations in protein sequences. It is shown through extensive per-

formance evaluation that the proposed predictors are able to predict IndelFRs in

the protein sequences with high values of accuracy and F1–measure. It is shown

that if one is interested only in predicting IndelFRs in protein sequences, it would

be preferable to use the proposed predictors instead of HMMER 3.0 in view of the

substantially superior performance of the former.

In the second part of the thesis, a novel and efficient algorithm incorporating

the information on the predicted IndelFRs for the alignment of multiple protein

sequences is proposed. The key innovation in the proposed algorithm, referred to as

MSAIndelFR algorithm, is the use of the predicted information about IndelFRs to

propose a new variable gap penalty (VGP) function, wherein the gap opening penalty

is position–specific and the gap extension penalty is region–specific. It should be

noted that the predicted IndelFRs are the most likely regions for the gaps to be

introduced in the protein sequence alignment, since they are strongly related to indel

mutations [3,5,17–19]. Therefore, it is expected that more accurate alignments can
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be achieved by integrating the predicted information about IndelFRs into the gap

penalty function. Extensive experiments are conducted on four popular alignment

benchmarks, namely, BAliBASE 3.0 [32], OXBENCH [41], PREFAB 4.0 [15], and

SABmark 1.65 [39], to show the effectiveness of the proposed MSAIndelFR algorithm

in generating protein alignment. It is shown that the performance of MSAIndelFR is

superior to that of the six most–widely used alignment algorithms, namely, Clustal

W2 [9], Clustal Omega [10], Kalign2 [11], MSAProbs [12], MAFFT [13, 14] and

MUSCLE [15].

1.3 Thesis Organization

The thesis is organized as follows.

In Chapter 2, the background material necessary for the research work under-

taken in this thesis is given. The chapter begins with an introduction to protein

sequences. This is followed by a brief introduction to variable–order Markov model

(VOMM) and profile hidden Markov model (pHMM), and the related notations and

concepts. Finally, a brief review for some of the most-widely used multiple sequence

alignment (MSA) algorithms and popular alignment benchmarks is given. This re-

view is intended to facilitate the understanding of the development of the algorithm

presented in the thesis.

In Chapter 3, a variable-order Markov model–based scheme to predict indel

flanking regions in a protein sequence for a given protein fold is proposed [36]. In

this scheme, two predictors, referred to as the PPM IndelFR and PST IndelFR

predictors, are designed based on prediction by partial match [37] and probabilistic

suffix tree [38], respectively. Simulation results showing that the best choice for

the memory length D is 4 for all the selected protein folds, and that the proposed

predictors are able to predict IndelFRs in the protein sequences with high values of

accuracy and F1–measure are presented. It is also shown that the proposed IndelFR
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predictor predicts the indel flanking regions more accurately than the HMMER 3.0

does.

In Chapter 4, a novel and efficient algorithm that incorporates the information on

the predicted IndelFRs for the alignment of multiple protein sequences is proposed.

The performance of the proposed algorithm is studied using four popular alignment

benchmarks, namely, BAliBASE 3.0 [32], OXBENCH [41], PREFAB 4.0 [15], and

SABmark 1.65 [39]. Its performance is also compared with the six most–widely used

alignment algorithms in terms of the sum–of–pairs and total column metrics.

Finally, some concluding remarks highlighting the contributions of the thesis and

some suggestions for future work based on the schemes developed in this thesis are

provided in Chapter 5.
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Chapter 2

Background Material

In this chapter, some background material necessary for the understanding and de-

velopment of the work undertaken in this thesis is presented. A brief introduction to

protein sequences, notations and concepts that are related to variable–order Markov

model (VOMM) and profile hidden Markov model (pHMM) are given. Some of

the important sequence alignment algorithms and the four most popular alignment

benchmarks are briefly reviewed.

2.1 Proteins

Proteins are the most important molecules in living organism, and they are involved

in every function of the cells, such as signal transmission, metabolic regulation,

transportation of molecules, and defense mechanisms. A protein molecule is a chain

of amino acids, also known as the polypeptide chain. There are 20 different amino

acids that are involved in building any protein molecule. The names of these amino

acids and their one–letter codes are listed in Table 2.1. A polypeptide chain can

be represented as a string of characters by writing down the one–letter code for

each amino acid. This string represents the primary structure of the protein [1]. In
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Table 2.1

Names and one–letter codes of twenty different amino acids

Amino acid name code Amino acid name code

Alanine A Tryptophan W

Valine V Tyrosine Y

Leucine L Asparagine N

Isoleucine I Glutamine Q

Phenylalanine F Aspartic acid D

Proline P Glutamic acid E

Methionine M Lysine K

Serine S Arginine R

Threonine T Histidine H

Cysteine C Glycine G

addition to the primary structure, a protein has secondary and tertiary structures [1].

Secondary structure of a protein refers to well–determined local sequence elements,

such as an alpha helix, a beta strand or any other local sequence elements that are

neither a helix nor a strand. These other local sequences, usually called loops or coils,

may have a large variety of shapes. These secondary structure elements of a protein

can be combined together to create a motif, which is a simple combination of a few

consecutive secondary structure elements with a specific geometric arrangement,

such as helix-loop-helix or strand-loop-helix. Some, but not all, motifs are associated

with specific biological functions. The tertiary structure of a protein refers to the

three–dimensional structure of the protein, where the secondary structure elements

form the physical core of the three–dimensional structure, and loops are located on

the surface of the tertiary structure. A domain refers to a combination of several

secondary elements and motifs, which may not necessarily be contiguous and which

are usually packed in a compact structure. A protein may contain a single domain or

several different domains, or several copies of the same domain. It should be noted

that the proteins that evolve from the same ancestor protein are called homologous

proteins, and they usually have similar structural and functional properties [1,7,8].
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Normally, the proteins are classified into families based on the existence of a

specific motif or domain in their structure, where the existence of such a motif or

domain has a major indication about the biological role of the protein. The structural

classification of proteins (SCOP) database contains a comprehensive classification

of all the proteins of the known structures, according to their evolutionary and

structural relationships [42]. In this database, the proteins have been classified into

families, superfamilies, common fold and, finally, into classes at the top level of the

structural hierarchy.

As new protein sequences are discovered on an everyday basis and protein data–

bases continue to grow exponentially with time, analysis of protein families, under-

standing their evolutionary trends and detection of remote homologues have become

extremely important. It is known that insertion/deletion (indel) and substitution of

an amino acid are two common mutational events that lead to the evolution of and

variations in protein sequences. It has been found that new proteins have evolved

mainly through indel mutations [2,3]. It should be noted that the insertion or dele-

tion of an entire subsequence of amino acids often occurs as a single mutational

event, and such single mutational event often affects several adjacent amino acids

in a protein sequence [1]. Indel mutations have been found to occur more often in

the loop regions [43,44], and mainly in essential proteins and in those proteins that

interact highly with others [45]. The functional divergence between homologous

proteins may also be caused by indel mutations that occur in the regions between

secondary structures of a protein [46]. Further, it has been found that differences

among species, as well as many of the human diseases, are related to indel mutations,

which occur less often than substitution mutations do [4–6]. Therefore, developing

methods that can efficiently predict indel mutations is extremely important in re-

search related to protein evolution, structures and functions.
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2.2 Variable-Order Markov Model (VOMM)

In this section, we introduce some preliminary notations and definitions that are

used to build the theory of variable–order Markov model (VOMM). Let Ψ be a finite

alphabet set, and Sn
= s1s2s3 · · · sn be a discrete sequence of length n, where si,

1 ≤ i ≤ n, can be one of the characters that exist in the finite alphabet set Ψ (i.e.,

si ∈ Ψ). VOMM provides the conditional probabilities of observing a particular

character at a certain position in the sequence given contexts of varying lengths.

A context represents all the previously observed characters before the particular

character in question is observed at that position. The context length varies from

zero to the memory length of the VOMM.

In VOMM, the conditional probability Pk(σ|si−k · · · si−1) of observing a particu-

lar character σ at position i, given a context s = si−k · · · si−1 of length k, where the

context s = si−k · · · si−1 represents all the previously observed characters before σ is

observed at position i, each sj, j ∈ i− 1, · · · , i− k, representing one of the possible

characters that exist in the alphabet set Ψ. The context length k varies from zero

to D, where D is the memory length of the VOMM. For VOMM, P (Sn
) is used to

denote the probability of the sequence Sn
= s1s2s3 · · · sn. If VOMM has a memory

length D, P (Sn
) is given by

P (Sn
) = P0(s1)P1(s2|s1) · · ·PD(sD+1|s1s2 · · · sD) · · ·PD(sn|sn−D · · · sn−1) (2.1)

Maximizing the probability P (Sn
) is equivalent to minimizing the average log–

loss function defined as [1]
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loglossP (Sn
) = −

1

n

(
logP0(s1) + logP1(s2|s1) + · · ·+

logPD(sD+1|s1s2 · · · sD) + · · ·+

logPD(sn|sn−D · · · sn−1

)
(2.2)

where the logarithm taken with a base of 2.

Over the years, many VOMM structures, such as Lampel-Ziv compression [47],

context tree weighting [48], prediction by partial match (PPM) [37] and probabilistic

suffix tree (PST) [38,49], have been proposed to efficiently minimize the average log–

loss function given by (2.2) . In the next chapter, we will discuss only two of them,

namely, PPM and PST, to propose two predictors that can predict indel flanking

regions in a protein sequence. It should be noted that PPM and PST are among the

most commonly–employed structures in prediction applications. The effectiveness of

PPM and PST for prediction of sequences in various applications has been examined

in [50]. PST has also been used to model DNA sequences in [38]. Further, it has

been used in modeling and prediction of protein families in [51].

2.3 Profile Hidden Markov Model (pHMM)

Normally, proteins are classified into families based on the existence of a specific

motif or domain in their structure, where the existence of a specific motif or domain

has a major indication about the biological role of the protein. Once all the protein

members of a given protein family are aligned, it is seen that some regions are

more conserved than others, whereas some are more prone to indel mutations than

others. This variation among the protein members of a given protein family can

be described by using the profile hidden Markov model (pHMM) [20, 52, 53]. The

pHMM encodes position–specific information about the frequency of a particular
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amino acid as well as the frequency of an insertion or deletion at a specific position

for a given protein family. The goal of the pHMM is to model each protein family

in such a way that unique patterns are presented with high probability, whereas

variation is allowed with low probability. By using position–variant probability

to score indel mutations, the pHMM is able to utilize the fact that indel mutations

occur more frequently in some parts of a protein sequence than in others (e.g., in loop

regions) [43, 44]. Therefore, the pHMM–based alignment algorithms are considered

to be the most accurate algorithms in detecting indel mutations in protein sequences.

Several available software packages, such as HMMER [40] and SAM [54,55] have

implemented pHMM–based alignment algorithms. Among these packages, HMMER

is the most–commonly used software package in protein database search and com-

parison. HMMER produces a pHMM that describes the probabilities of occurrence

of different amino acids at a given position of the aligned sequences. A new protein

sequence can then be aligned to this profile model rather than aligning it directly

with the sequences used to produce the pHMM. A sequence–to–pHMM alignment

is more accurate than a sequence–to–sequence alignment, since the pHMM is built

from a high–quality multiple sequence alignment of protein sequences belonging to

a family. Moreover, the model estimates the likelihood that the new sequence is

a member in the protein family used to produce the model. A collection of pH-

MMs covering many protein families have been generated using HMMER and they

are available in the Pfam database [56]. The disadvantage of using pHMM–based

alignment algorithms for detecting mutations is that they assume the occurrence of

mutations in the protein sequence to follow the first-order Markov chain. Example

1 given below illustrates how pHMM can be constructed from MSA of protein se-

quences.
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Example 1.

A pHMM can be constructed from existing multiple alignments of homolo-

gous protein sequences. The pHMM contains three kinds of states represented

by three different shapes: squares, diamonds, and circles. Squares represent

match states, and amino acids emitted from the match states form the con-

served characteristics of aligned protein sequences, such as motifs. The dia-

mond shapes represent insert states, and amino acids emitted from the insert

states model insertion mutations. Circles represent delete states (silent states),

and these states model deletion mutations. It should be noted that transitions

from state to state progress from left to right through the model, with the

exception of the self-loops on the insertion states. Hence, certain paths allow

us to insert amino acids in the alignment.

Given the protein sequence alignment shown in Figure 2.1, it is seen that

these three sequences have many features in common. They all start with the

same four amino acids, VIVA, and they have a position where various choices

are possible, then they have another conserved position, A. After a variable

number of positions, more or less rigidly specified, they all have the symbol S

at the end. The pHMM can be constructed as shown in Figure 2.2.

We write only the dominant amino acid symbols in the match state. It should

be clear that, in general, any amino acid is possible to be emitted with different

probabilities. Transitions with low probability are denoted by dotted lines

and those with high probability by solid lines. The beginning and end states

are added to pHMM to specify the boundaries of the pHMM, and they are

indicated by B and E, respectively. Every path between the beginning and end

states represents a possible alignment of any protein sequence with pHMM.

�
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V I V A L A S V E G A S

V I V A D A – V I - - S

V I V A D A L L - - A S

Figure 2.1: A part of protein multiple sequence alignment containing twelve posi-

tions.

B V I V A L/D A V/L

-

E/I S

G/A

-

S/L E

Figure 2.2: A pHMM corresponding to the protein multiple alignments shown in

Figure 2.1.

2.4 Multiple Sequence Alignment Algorithms

For a given set of protein sequences, the overall goal of multiple sequence alignment

(MSA) is to identify parts of these sequences that are similar to one another. It

should be noted that the similarity at the protein primary structure may indicate

that these sequences originated from a common ancestor by indel and (or) substitu-

tion mutations [7,8]. Therefore, MSA is a crucial step in bioinformatic analyses, and

is used in many applications including sequence annotation, phylogenetic tree esti-

mation, evolutionary analysis, secondary structure prediction and protein database

search [7, 33, 57]. MSA allows us to identify parts of the protein sequences that are

similar to one another with gaps (spaces) inserted in such a way that similar parts of

these sequences can be easily identified [16]. The concept of a gap in an alignment

is important, since the gap locations indicate the locations of indel mutation events
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in protein sequences. It should be noted that the insertion or deletion of an entire

subsequence often occurs as a single mutational event, and such single mutational

events can create gaps of varying sizes [1].

To find the globally optimum alignment for a given set of protein sequences,

a dynamic programming technique can be used. There are two major challenges

related to finding an optimum MSA. First, finding an optimum alignment for n

sequences using the dynamic programming approach is an NP–complete problem.

Therefore, many MSA algorithms are based on a heuristic search for the optimum

MSA. Second, a perfect objective function (OF) does not yet exist. In theory, an OF

should incorporate information about the sequences, such as their secondary struc-

tures, solvent accessibility, hydrophobic indices, function and evolutionary history.

Information regarding the above is not always available and difficult to use even if

available.

In order to meet the first challenge, considerable effort has been devoted to the

development of MSA algorithms that can efficiently detect mutations and generate

highly accurate alignments. Some of the significant algorithms are Clustal W2 [9],

Clustal Omega [10], MSAProbs [12], Kalign2 [11], MAFFT [13,14,58] and MUSCLE

[59].

In order to meet the second challenge, many of the MSA algorithms use an objec-

tive function consisting of a gap penalty function to score the gaps and substitution

matrices to measure the similarity of amino acid pairs. The most popular substi-

tution matrices are BLOSUM [21], PAM [23] and GONNET [22]. These matrices

present a measurement of how probable it is that a certain amino acid will mutate

to other amino acids. The substitution matrices assign a positive value if similar

amino acids are aligned, and a negative value if dissimilar amino acids are aligned.

It has been shown in [24] that the selection of a particular substitution matrix does

not noticeably affect the alignment accuracy, and that there is little difference in
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the alignment accuracy using BLOSUM, PAM or GONNET as the substitution

matrix. Therefore, a considerable amount of effort has been directed to propose

an appropriate gap penalty function that can improve both OF and the alignment

accuracy.

The most widely used gap penalty function is the affine gap penalty (AGP), given

by g(k) = go+ kge for a gap of length k. The function g(k) involves two parameters

go and ge, representing, respectively, a gap opening penalty at a specific position in

the protein sequence and an extension penalty for extending the gap. This linear

AGP function has the advantage of simplicity and ease of use in MSA algorithms.

However, this penalty function is restrictive in the sense that the two parameters

remain fixed for aligning different positions in the protein sequence. There are a few

strategies that have been proposed for improving the gap penalty functions. In the

past two decades, several groups have attempted to find the distribution of indel

lengths for a more effective gap penalty function [25] or to empirically estimate the

parameters for AGP [26, 27]. Although there is no consensus as to the distribution

of indel lengths to determine the optimal form of gap penalty, a few gap penalty

functions have been proposed for improving the alignment accuracy, including the

generalized AGP [28,29], a long indel model [30], and a logarithmic gap penalty [31].

However, these penalty functions have not been used widely by others, since they

are difficult to implement and they provide only limited improvement in alignment

accuracy.

Now, we will review the significant MSA algorithms that we have mentioned

earlier. Clustal W2, Clustal Omega, Kalign2, and MSAProbs are progressive align-

ment algorithms, while MAFFT and MUSCLE generate an initial alignment using

the progressive alignment algorithm and then, iteratively refine this alignment to

achieve higher alignment accuracy. A progressive alignment algorithm involves three

steps: (i) calculation of the pairwise distances between all pairs of sequences to de-
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termine the similarity of each pair of sequences, (ii) construction of a guide tree

based on the distance matrix, and finally, (iii) alignment of the sequences according

to an order determined by the guide tree [1, 60]. In the final step, the algorithm

follows the guide tree to add the sequences one by one into MSA from the leaves

(sequences) toward the root. Hence, each node in the tree will contain an alignment

resulting from the pairwise alignment of its two children. The pairwise sequence

alignment algorithm used in the progressive alignment algorithm must be able to

align two sequences, a sequence to an alignment (profile), and pairs of profiles.

Clustal W2 and Clustal Omega are derived from Clustal W [61]. Clustal W

is historically one of the most popular MSA algorithms, wherein the sequences or

profiles are added to the alignment according to the order indicated by the pre-

computed guide tree. Clustal W calculates the pairwise distances between all the

pairs of sequences using the k–tuple method [62], and then constructs the guide tree

using the neighbor–joining method [63]. In Clustal W, a memory–efficient dynamic

programming algorithm proposed in [64] is used to align the sequences or profiles.

Clustal W2 uses the unweighted pair group method with arithmetic mean (UPGMA)

[65] to construct the guide tree. This helps in increasing the speed of the alignment

over that of Clustal W for a large number of protein sequences. Clustal Omega

is the latest MSA algorithm in the Clustal family, and the main improvements of

Clustal Omega over Clustal W2 are as follows: (i) it can align any number of protein

sequences, and (ii) it allows the use of a profile hidden Markov model, derived from

an alignment of protein sequences related to the input sequences. Further, Clustal

Omega is the most accurate and scalable MSA algorithm amongst the Clustal family.

Kalign2 [11] is an enhanced version of Kalign [66], which is a progressive align-

ment algorithm, wherein the pairwise distances between all pairs of sequences are

estimated based on the Wu–Manber approximate string matching algorithm [67] and

the guide tree constructed using UPGMA. Kalign uses the dynamic programming
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algorithm proposed in [64] to align sequences/profiles. In Kalign 2, the Wu–Manber

algorithm is replaced by the faster Muth–Manber string matching algorithm [68].

This helps in increasing the speed of calculating the pairwise distances between all

the pairs of sequences. MSAProbs [12] is based on combining a pair hidden Markov

model with partition functions to calculate the posterior probabilities, which are

used in estimating the pairwise distance matrix. In MSAProbs, the guide tree con-

structed using UPGMA and the sequences or profiles are aligned using the standard

dynamic programming approach.

The alignment algorithms MAFFT and MUSCLE are not fully progressive.

MAFFT uses the fast Fourier transform for a rapid identification of similar re-

gions in the protein sequences. It then iteratively refines the alignment results after

performing an initial progressive alignment. In MAFFT, the protein sequences are

converted to a sequence composed of volume and polarity values of each amino

acid, and the guide tree constructed using UPGMA. MUSCLE works by iteratively

refining the alignment results with progressive alignment at the core. MUSCLE

constructs an initial guide tree and produces an initial alignment, then uses this

alignment to construct a new guide tree. The newly constructed guide tree is finally

used to produce a new alignment. This process is repeated for a fixed number of it-

erations or until the alignment converges. In MUSCLE, the guide trees are produced

using UPGMA. It should be noted that MAFTT and MUSCLE use the standard

dynamic programming approach to align the sequences or profiles.

MSAProbs and Kalign2 are MSA algorithms for which an AGP function is used.

In MSAprobs, fixed parameters are used for the AGP function, wherein a gap open-

ing penalty of 22 and a gap extension penalty of 1 are used by default [12]. In

Kalign2, an AGP function is used to align sequences/profiles, and the users are al-

lowed to specify two additional parameters, a terminal gap penalty and a gap inc;

the terminal gap penalty is used to penalize N/C–terminal gaps in protein sequences,
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and the gap inc is used to increase the gap opening and extension penalties depend-

ing on the number of existing gaps in a given profile. It should be noted that Kalign

2 determines the default gap penalties for protein alignments by training on a BAl-

iBASE 3.0 benchmark [32] in order to obtain optimal alignment results. In the

MAFFT, MUSCLE, Clustal W2 and Clustal Omega MSA algorithms, a gap open-

ing penalty (GPO) and a gap extension penalty (GPE) values are initially specified;

then, these algorithms automatically attempt to choose appropriate gap penalties

according to some specific rules. The algorithms MAFFT and MUSCLE use an

AGP function, wherein the default values are modified depending on the number

of existing gaps at a particular position for a given profile [14, 15]. Clustal W2

and Clustal Omega use an AGP function, wherein a gap opening penalty (GPO)

and a gap extension penalty (GPE) are initially set by the user from a menu, and

then, these algorithms automatically attempt to choose appropriate gap penalties

for each sequence alignment according to the features of the input sequences, such as

sequence divergence, length, and local hydrophobic amino acids. It should be noted

that the choice of the AGP parameters has a substantial effect on the alignment

accuracy [33–35], and the widely–used AGP works well for closely related or similar

sequences, but they are less effective for highly diverged or dissimilar sequences. As

a consequence, there has been a growing interest in conducting multiple sequence

alignment with more general and flexible gap penalty functions.

2.5 Alignment Benchmarks

The performance of MSA algorithms are usually evaluated and compared to each

other based on alignment benchmarks containing reference alignments. The four

most popular benchmarks are BAliBASE 3.0 [32], OXBENCH [41], PREFAB 4.0 [59]

and SABmark 1.65 [39]. It has been found that the homologous proteins often

retain similar 3D structures, even though their primary structures do not show
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a significant similarity [7, 8]. Therefore, structure–based alignment is considered

to be more correct from an evolutionary point of view than its sequence–based

counterpart. In view of this, the above four benchmarks mainly contain structure–

based alignments. It should be noted that these benchmarks define core blocks

for each reference alignment, where core blocks in the reference alignment refer to

regions for which reliable alignments are known to exist. These core blocks are used

to evaluate and compare the performance of the various MSA algorithms.

2.5.1 BAliBASE 3.0

BAliBASE 3.0 Benchmark is the most widely used benchmark for evaluating multi-

ple protein sequence alignment algorithms. Each reference alignment is constructed

using 3D structural alignment algorithm SSAP [69], and then manually verified to

ensure that the secondary structure elements are aligned correctly. It should be

noted that for each reference alignment, core blocks are determined to exclude the

regions for which the 3D structure is unreliable, for example, the borders of sec-

ondary structure elements or in loop regions.

BAliBASE 3.0 contains 218 reference alignments, where 168 reference alignments

are provided in two versions, one where protein sequences are described as truncated

to homologous regions and one where protein are described as full-length sequences

(untrimmed). Hence, we have 386 reference alignments in BAliBASE 3.0. These

reference alignments are organized into reference sets that are designed to represent

real multiple alignment problems. Each reference set represents some characteristics

such as long or short sequences, high or low sequence identity, large N/C terminal

extensions or large internal insertions.
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2.5.2 OXBENCH

OXBENCH benchmark is a set of structure–based alignments generated using mul-

tiple structure alignment algorithm STAMP [70], where the protein structures are

taken from the 3Dee database [71]. 3Dee contains 3-dimensional structure of pro-

teins that are experimentally determined. The OXBENCH benchmark uses 218

distinct protein families to generate 395 reference alignments, where the number of

protein sequences in each alignment varies from 2 to 122 .

2.5.3 PREFAB 4.0

PREFAB 4.0 benchmark is a fully automatically generated benchmark containing

1681 reference alignments. Pairs of sequences with known 3D structures have been

selected and aligned using two different 3D structure alignment algorithms, FSSP

[72] and CE [73], and then the set of regions on which the two structural alignments

agree are retained. Each sequence in the aligned pair is then used to query a database

using PSI-BLAST [74], from which high–scoring hits are collected. Finally, the

queries and their hits are combined to make test sets of 50 sequences.

2.5.4 SABmark 1.65

SABmark 1.65 is a very challenging benchmark for multiple sequence alignment

according to a comprehensive study [75]. This benchmark is divided into two sub-

sets: Twilight zone and Superfamilies. The similarity level between any two protein

sequences is less than 50% in the Superfamily set, while it is at most 25% in the

Twilight set. The pairwise reference alignments are constructed using two different

3D structure alignment algorithms, SOFI [76] and CE [73]. In [77], the author has

argued that the pairwise reference alignments in SABmark 1.65 are not suitable to

evaluate the MSA algorithms, and hence, has constructed the SABRE benchmark
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(http://www.drive5.com/bench) containing 423 out of the 634 SABmark groups.

2.6 Summary

In this chapter, the background material necessary for the research work under-

taken in this this has been presented. A brief introduction to protein sequences,

and concepts that are related to variable–order Markov model (VOMM) and profile

hidden Markov model (pHMM) have been reviewed. An example of constructing

pHMM from multiple protein sequence alignment has been presented. The advan-

tages and disadvantages of using pHMM in protein sequence alignment have also

been discussed.

Some of the most-widely used MSA algorithms have been briefly reviewed, and

their alignment strategies to generate MSA have been discussed. These algorithms

are seen to follow essentially the progressive alignment scheme to find MSA, and

they depend on the dynamic programming approach to generate pairwise alignment

between sequences/profiles. It has been noted that these MSA algorithms have

selected the affine gap penalty function to score gaps. Finally, the most popular

alignment benchmarks that are used to measure the performance of MSA algorithms

have been briefly discussed.
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Chapter 3

Prediction of Indel Flanking

Regions in Protein Sequences

using a Variable-Order Markov

Model

3.1 Introduction

In this chapter, we propose a variable-order Markov model–based scheme to predict

indel flanking regions (IndelFRs) in a protein sequence for a given protein fold [36].

It is recalled that we refer to an indel along with its left and right flanking regions

as an indel flanking region. In this proposed scheme, two predictors, referred to as

the PPM IndelFR and PST IndelFR predictors, are designed based on prediction by

partial match (PPM) [37] and probabilistic suffix tree (PST) [38], respectively.

This chapter starts by classifying the indel flanking regions according to the

number of amino acids in their flanking regions in Section 3.2. In Section 3.3, a

variable-order Markov model–based predictors are designed to detect the locations

of IndelFRs in a protein sequence for a given protein fold. In Section 3.4, using

the proposed predictors, an algorithm is then developed to identify the locations of

IndelFRs in a protein sequence. In Section refsec:ch3results, experiments are carried
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out to study the performance of the proposed predictors by employing them on

IndelFR database and using the sequence alignment benchmark (SABmark 1.65) as

reference for determining the locations of IndelFRs. Finally, Section 3.6 summarizes

the work of this chapter along with some concluding remarks on the features of the

proposed predictors.

3.2 Segments of Indel Flanking Regions

In the IndelFR database, indels and their flanking regions are extracted from align-

ments by dividing equally the region between two adjacent indels, and by taking 10

amino acids as the upper limit for the flanking regions. It has been shown in [3] that

the impact of an indel on its flanking regions reduces dramatically as we move away

from the indel, and this impact is negligible after 10 amino acids. In the present

study, we classify the indel regions stored in the IndelFR database according to the

number of amino acids in the flanking regions as follows.

i. If the number of amino acids between two indels is greater than 20, then we

consider each of the two flanking regions between them to have exactly 10

amino acids.

ii. If the number of amino acids between two indels is less than or equal 20, but

greater than or equal 2, we still consider these two indels as two separate

indels, and the region between them split equally or as equally as possible to

define the flanking regions between the two indels.

iii. If the number of amino acids between two adjacent indels in the same sequence

is unity, then we combine the two indels along with the single amino acid in

between to treat the combination as a single indel.

iv. If the number of amino acids between two adjacent indels that are not in the
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same sequence is unity, then we treat these two indels as distinct. Thus, the

right (left) flanking region of one of the indels and the left (right) flanking

region of the other indel would each have only one amino acid.

We refer to an indel along with its left and right flanking regions as an indel flanking

region (IndelFR). Figure 3.1 shows an example illustrating each of the above situa-

tions. It is noted that there are 3 IndelFRs for each of the two alignments shown in

Figure 3.1.

Indel 1LFR1 RFR2R
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RFR: Right flanking region

LFR: Left flanking region
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F

R
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L
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Indel 3 RFR3
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Figure 3.1: Indel regions classified according to the number of amino acids in the

flanking regions.

It is to be recalled that in the IndelFR database, a given protein sequence has

been aligned with a large number of protein sequences that belong to the same

superfamily. For example, consider the protein d1allb . In the IndelFR database,

87 pairwise alignments have been carried out for this protein, and the list of protein

names that have been aligned to the protein d1allb are given in Table 3.1. From

these alignments, we now identify all the IndelFRs for the protein d1allb , and mark

off IndelFR segments, which are the segments of the protein sequence to which all
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Figure 3.2: IndelFR segments where flanking regions may exist for some selected

protein sequences. The segments are indicated by thick lines.

the identified IndelFRs collectively belong to. For the protein sequence d1allb , these

segments are observed to be from position 88 to 97 and from 100 to 115, and no

indel is located outside these segments. This process can be applied to any of the

protein sequences available in the IndelFR database to obtain its IndelFR segments.

Figure 3.2 shows such segments for some of the protein sequences selected from the

Globin-like superfamily, the segments being marked by thick lines.

The results in Figure 3.2 strongly suggest that the IndelFRs for a given protein

sequence are conserved within only the IndelFR segments. This is a significant

finding, which we will use in Section 3.3 in training the model for the proposed

IndelFR predictor.
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Table 3.1

Names of proteins that have been aligned to the protein sequence d1allb

d1a4fa d1ch4a d1g08a d1hlma d1jl7a d1oj6a d1spga

d1a4fb d1cqxa1 d1gcva d1i3da d1la6b d1or4a d1spgb

d1a6ma d1d8ua d1gcvb d1idra d1lhta d1outa d1tu9a

d1a9we d1dlwa d1gvha1 d1irda d1liaa d1outb d1uc3a

d1asha d1dlya d1h97a d1irdb d1liab d1q1fa d1urva

d1b0ba d1ecaa d1hbra d1it2a d1mbaa d1qpwa d1ux8a

d1b33a d1emya d1hbrb d1itha d1mbsa d1qpwb d1v4wa

d1b8da d1eyxa d1hdsa d1jeba d1mwca d1s69a d1v4wb

d1cg5a d1fhja d1hdsb d1jebb d1myta d1scta d1vhba

d1cg5b d1fhjb d1hlba d1jl6a d1ngka d1sctb d1wmua

d1wmub d1x9fa d1x9fb d1x9fc d1x9fd d1xq5a d1xq5b

d2d5xa1 d2d5xb1 d2gdma d2h8fa1 d2h8fb1 d2hbga d2lhba

d2mm1a d2v1fa1 d3sdha

3.3 A Variable–Order Markov Model for Predict-

ing Indel Flanking Reginos

In this section, we present a technique to build an IndelFR predictor for a given

protein fold. For this purpose, the protein folds are selected from the following

protein classes: All–α proteins, All–β proteins and α and β proteins (a/b). The

selected protein folds from All–α proteins, All–β proteins, and α and β proteins

(a/b) are listed in Tables 3.2, 3.3 and 3.4, respectively. More information about

the selected protein folds from All–α proteins, All–β proteins and α and β proteins

(a/b) are given in Appendix (see Tables A.1, A.2 and A.3). It should be noted

that this selection is confined to those protein folds that have indel flanking regions

listed in the IndelFR database. It is to be noted that each protein fold contains one

or more superfamilies and each superfamily contains one or more protein families.

Therefore, the proposed IndelFR predictor for a given protein fold can be used to

predict IndelFRs in protein sequences that belong to different protein families within

the same fold.
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Table 3.2

Protein folds from the All–α proteins class that are listed in the IndelFR database

Label Number of Protein

sequences folds

A1 109 a.1: Globin–like

A3 50 a.3: Cytochrome c

A4 209 a.4: DNA/RNA–binding

3–helical bundle

A22 29 a.22: Histone–fold

A25 60 a.25: Ferritin–like

A26 11 a.26: 4-helical cytokines

A35 33 a.35: lambda repressor–like

DNA–binding domains

A39 102 a.39: EF Hand-like

A45 42 a.45: Glutathione S–transferase

(GST), C–terminal domain

A118 68 a.118: alpha–alpha superhelix

A133 47 a.133: Phospholipase A2, PLA2

Since we already know how to obtain the locations of the IndelFR segments

for a protein sequence, we build our proposed model for the IndelFR predictor by

confining only to the IndelFR segments of each of the protein sequences in a given

fold. We extract the flanking regions of all the sequences in the fold and divide

them into two sets, the left and right sets. The left set contains all the left flanking

regions, whereas the right set contains all the right flanking regions. The flanking

regions in either of the two sets have, in general, different lengths, since these lengths,

according to our earlier assumption, can vary between one and ten.

The proposed IndelFR predictor for a given protein fold contains two variable–

order Markov models (VOMMs) [38,78], one for the left set and the other for the right

set. These models learn the conditional probability Pk(σ|si−k · · · si−1) of observing

a particular amino acid σ ∈ Ψprotein at position i, given a context s = si−k · · · si−1 of

length k, where the context s = si−k · · · si−1 represents all the previously observed

amino acids before σ is observed at position i, each sj , j ∈ {i− 1, · · · , i− k},
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Table 3.3

Protein folds from the All–β proteins class that are listed in the IndelFR database

Label Number of Protein

sequences folds

B6 62 b.6: Cupredoxin–like

B18 38 b.18: Galactose–binding domain-like

B29 104 b.29: Concanavalin A–like

lectins/glucanases

B34 72 b.34: SH3–like barrel

B35 34 Fold b.35: GroES–like

B36 57 b.36: PDZ domain–like

B40 104 b.40: OB–fold

B42 35 b.42: beta–Trefoil

B47 87 b.47: Trypsin–like

serine proteases

B50 38 b.50: Acid proteases

B55 63 b.55: PH domain–like

B60 68 b.60: Lipocalins

B82 77 b.82: Double–stranded beta–helix

B121 94 b.121: Nucleoplasmin–like/VP

(viral coat and capsid proteins)

representing one of the possible twenty amino acids. The context length k could

vary depending on the size and nature of the string of amino acids in a flanking

region, and Ψprotein is the alphabet set containing all the amino acid symbols:

Ψprotein = {A,C,D,E, F,G,H, I,K, L,M,N, P,Q,R, S, T, V,W, Y }

We select a variable–order Markov model instead of a fixed-order one in view of

the following reasons: (i) the chosen model should take into consideration varying

sizes of the flanking regions in a set, and (ii) it should take care of situations, where

a flanking region in which a particular amino acid σ ∈ Ψprotein does not exist for a

given context of length m. In the latter case, a VOMM would allow us to reduce

the length of the context to be less than m.
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In next subsections, we will propose PPM IndelFR predictor using prediction by

partial match (PPM) [37], and PST IndelFR predictor using probabilistic suffix tree

(PST) [38].

Table 3.4

Protein folds from the α and β proteins (a/b) class that are listed in the IndelFR

database

Label Number of Protein

sequences folds

C1 485 c.1: TIM beta/alpha–barrel

C2 288 c.2: NAD(P)–binding

Rossmann-fold domains

C3 61 c.3: FAD/NAD(P)–binding domain

C14 29 c.14: ClpP/crotonase

C23 117 c.23: Flavodoxin–like

C26 69 c.26: Adenine nucleotide

alpha hydrolase–like

C36 29 c.36: Thiamin diphosphate–binding

fold (THDP–binding)

C37 340 c.37: P-loop containing nucleoside

triphosphate hydrolases

C47 158 c.47: Thioredoxin fold

C55 122 c.55: Ribonuclease H–like motif

C56 59 c.56: Phosphorylase/hydrolase-like

C61 36 c.61: PRTase–like

C67 89 c.67: PLP–dependent transferase–like

C68 38 c.68: Nucleotide-diphospho-sugar

transferases

C69 100 c.69: alpha/beta–Hydrolases

C94 71 c.94: Periplasmic binding protein–like II

C95 24 c.95: Thiolase–like

C108 54 c.108: HAD–like
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3.3.1 PPM IndelFR Predictor

In PPM, in order to build a VOMM for the left (right) set of flanking regions, we

start by analyzing a subset of the left (right) flanking regions as the training set

and counting the number of occurrences of the amino acid σ immediately after the

context s, that is, counting the number of occurrences of the pattern sσ in the

training set for each amino acid σ ∈ Ψprotein and for each context s = si−k · · · si−1 of

length k, where each sj, j ∈ {i− 1, · · · , i− k}, represents one of the twenty possible

amino acids. The context length k varies from zero to D, where D is the memory

length of the VOMM. Hence, for each value of k, we can compute the conditional

empirical probability P̃k(σ|s) [1] as

P̃k(σ|s) =
Nsσ∑

sj∈Ψprotein

Nssj

(3.1)

where Nsσ is the number of occurrences of the pattern sσ in the training set. For k =

0, we can calculate the conditional empirical probability, P̃ (σ|ǫ), where ǫ represents

an empty context. PPM handles the zero frequency problem by going through the

mechanisms of escape and exclusion [1]. In the escape mechanism, for each context

s = si−k · · · si−1 of length k, we make use of a probability mass Pk(escape|s) for all

the amino acids that do not appear after the context s = si−k · · · si−1 in the training

set. There are different ways of defining the escape probabilities for a context.

These definitions are generally based on intuition and experience, and not on any

underlying theory. For example, in [79], this escape probability has been defined as

Pk(escape|s) =
|Ψs|

|Ψs|+
∑

sj∈Ψs

Nssj

(3.2)

where Ψs is a set of amino acids appearing after the context s = si−k · · · si−1, i.e.,

Ψs = {σ : Nsσ > 0}, and |Ψs| denotes the number of elements in Ψs. Accordingly,
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the conditional probability is modified as

Pk(σ|s) =




Pk(σ|s) if σ ∈ Ψs

Pk(escape|s)Pk−1(σ|si−k+1 · · · si−1) otherwise

(3.3)

where

Pk(σ|s) =
Nsσ

|Ψs|+
∑

sj∈Ψprotein

Nssj

(3.4)

In the above equation, if Pk−1(σ|si−k+1 · · · si−1) is zero, then Equation (3.3) is re-

cursively modified by using contexts of shorter lengths:

Pk−1(σ|si−k+1 · · · si−1) =

(
Pk−1(escape|si−k+1 · · · si−1)

Pk−2(σ|si−k+2 · · · si−1)

) (3.5)

In the exclusion mechanism, if a prediction fails for a certain context, then

the unseen amino acid cannot be one of the amino acids that has been observed

after that context, and the relevant alphabet set for all the shorter contexts should

be reduced by eliminating these observed amino acids. Hence, every amino acid

σ ∈ Ψs observed after context s = si−k · · · si−1 is excluded, when we calculate

the conditional probability for all contexts shorter than s = si−k · · · si−1. For the

purpose of illustration, an example showing how the PPM structure of VOMM can

be constructed from the set of flanking regions is given below.
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Example 2.

Given the training set {ABEACADABE, ACAABED, ADACADED, EDABAC,

CACAED, DABACAE, ABADEDCC, ABAC} of flanking regions, the PPM

structure with D = 2, and alphabet set Ψprotein = {A,B,C,D,E} can be

contracted as given by Table 3.5. This table lists the frequencies of different

characters following the different contexts including the empty context.

Table 3.5

PPM using the training set of flanking regions {ABEACADABE, ACAABED,

ADACADED, EDABAC, CACAED, DABACAE, ABADEDCC, ABAC}, with

D = 2, and alphabet set Ψprotein ={A,B,C,D,E}.

Order k Context Character frequencies Total Escape counts

A B C D E

2 ED 1 1 2 2

2 EA 1 1 1

2 DE 2 2 1

2 DC 1 1 1

2 DA 3 1 4 2

2 CA 1 1 2 2 6 4

2 BE 1 1 2 2

2 BA 3 1 4 2

2 AE 1 1 1

2 AD 2 2 4 2

2 AC 5 5 1

2 AB 4 3 7 2

2 AA 2 2 1

1 E 1 5 6 2

1 D 4 1 2 7 3

1 C 6 1 7 2

1 B 4 3 7 2

1 A 2 7 7 4 2 22 5

0 ǫ 22 7 10 10 8 57 5

�
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3.3.2 PST IndelFR Predictor

In the PST structure, a single tree with depth D is constructed to represent a

VOMM of memory length D. The nodes in the tree have different degrees varying

from zero (for leaves) to the size of the alphabet set Ψprotein (for the internal nodes

and the root). Each edge in the tree is labeled by a single amino acid from the set

Ψprotein. Each node in the tree is labeled by a unique context s = si−k · · · si−1, where

the context length varies from zero (for the root) to D. Also, each node is assigned

a conditional probability Pk(σ|s), where σ ∈ Ψprotein. It should be noted that the

context s = si−k · · · si−1 is generated by moving from the node to the root (i.e., in

PST, the father of the node labeled by s1s2s3 is the node s2s3, and not s1s2 as in a

regular suffix tree).

To build the PST structure T for the left or for the right flanking region, we

need to set the following four parameters:

i. The memory length parameter D of PST.

ii. The context threshold parameter NT , where NT = c ·m, c (0 < c < 1) being

a constant and m the total number of flanking regions in the left or right

set. The parameter NT determines as to which contexts would be included in

building the PST structure. If the number of occurrences of a context is less

than NT , then such a context is excluded in building the structure.

iii. The parameter r is used to determine whether the context s = si−k · · · si−1

contributes additional information in predicting the amino acid σ relative to

its “parent” or “suffix” context si−k+1 · · · si−1, denoted by suf(s). The ratio

Pk(σ|s)/Pk−1(σ|suf(s)) is chosen to be outside the interval (1/r, r). In order

to make the contribution of this context to be sensitive, r is chosen to be 1+δ,

δ being a small quantity.

iv. The parameter Bs is chosen to be Bs = 5 · |Ψs|, as suggested in [80], in order
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to ensure that for a given context the probability of an amino acid σ ∈ Ψprotein

does not become zero.

Let Ns be the number of occurrences of the context s = si−k · · · si−1 in the training

set of the left (right) flanking regions, Nsσ the number of occurrences of the pattern

sσ in the left (right) training set, and Pk(σ|s) the conditional probability associated

with the node labeled by the context s = si−k · · · si−1. The various steps to build

the PST structure for the left (right) training set are as follows.

Step 1: Create a tree T with a single root node labeled by an empty context ǫ, and

create an empty set setptr.

Step 2: Add to the set setptr all the contexts of length unity that have occurred

more number of times than NT , the context threshold (i.e., Ns > NT ).

setptr ← {s|Ns > NT}

Step 3: Select a context from setptr.

Step 4: Test if there is an amino acid σ ∈ Ψs that has a conditional empirical

probability P̃k(σ|s) given by Equation (3.1) satisfying the inequality:

P̃k(σ|s) >
1

|Ψprotein|

Step 5: Test if there is an amino acid σ (not necessarily the same amino acid as in

Step 4) from alphabet Ψs satisfying the condition

P̃k(σ|s)

P̃k−1(σ|suf(s))
=






≥ r

or

≤ 1
r

Step 6: If the conditions in Steps 4 and 5 are both satisfied, go to Step 7; otherwise
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(i.e. condition in Step 4 or Step 5 is not satisfied), go to Step 10.

Step 7: Test if the parent node of the context s, labelled by suf(s), already exists

in the tree T. If yes, add the node corresponding to this context s to the tree T.

Step 8: If the parent node for s in Step 7 does not exist, then create a node for this

context s and for its parent node. If the parent node of the latter does not exist,

then repeat this procedure until an existing parent node in the tree is reached.

As an example, to illustrate this step, assume a node labeled by context s = C

exists in the tree, and we are trying to add a node labeled by context s = ABDC to

the tree. In PST, the parent node for the context s = ABDC is a node labeled by

context BDC, which does not exist in the tree. Also, the parent node of the context

BDC is a node labeled by context DC, which also does not exist in the tree. But

the parent node of the context DC, namely, the node labeled C exists in the tree.

Hence, we have to add two more nodes labeled BDC and DC, in addition to the

node labeled ABDC to the tree. This is illustrated in the Figure 3.3.

Step 9: Adjust the conditional probability for each added node in Step 7 or 8, so

that the probability of an amino acid σ ∈ Ψprotein for a given context is given by

Pk(σ|s) =
Nsσ +

(
1

|Ψprotein|

)
Bs∑

sj∈Ψs

Nssj +Bs

Step 10: If the length of s < D, and there exists a pattern σs, which has occurred

more number of times than NT (i.e.,Nσs ≥ NT ), then add the pattern σs to setptr:

setptr ← {σs|σ ∈ Ψprotein andNσs ≥ NT}

Step 11: Remove the context s from setptr , and repeat Steps 3 to 11 until setptr

becomes empty.
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ABDC

(a) (b) (c) (d)

ABDC ABDC ABDC

BDCBDCBDC

DC DC

CCCC

Figure 3.3: An illustration for Step 8 of the procedure used to build the PST struc-

ture.

Example 3 given below illustrates how a PST structure with the parameters

D = 2, NT = 0.01 and r = 1.05 can be built from a set of flanking regions.
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Example 3.

Given the training set {ABEACADABE, ACAABED, ADACADED, EDABAC,

CACAED, DABACAE, ABADEDCC, ABAC} of flanking regions, the PST

structure with the parameters D = 2, NT = 0.01, r = 1.05 and the alphabet

set Ψprotein = {A,B,C,D,E} can be constructed as shown in Figure 3.4.

Figure 3.4: The PST structure using the training flanking regions {ABEACADABE,

ACAABED, ADACADED, EDABAC, CACAED, DABACAE, ABADEDCC,

ABAC}, with the parameters D = 2, NT = 0.01, r = 1.05 and the alphabet set

Ψprotein = {A,B,C,D,E}. Each node is labelled with a context s and has condi-

tional probability (P (A|s) , P (B|s) , P (C|s), P (D|s) , P (E|s)).

�
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3.4 Prediction of Indel flanking regions using

VOMM

Given a test protein sequence Sn
= s1s2s3 · · · sn of length n, we scan it using a

running window of length L moving it one amino acid at a time. To determine

whether or not the string of amino acids within a window contains a flanking region,

we compute the probability of this string using VOMM.

For a VOMM, we use P (wini) to denote the probability of the string segi =

sisi+1 · · · si+L−1 of length L. If VOMM has a memory length D < L, then P (wini),

which is also referred to as the likelihood of wini, is given by [1]

P (wini) =P0(si)P1(si+1|si) · · ·

PD(si+L−1|si+L−D · · · si+L−2)

(3.6)

We calculate the various probabilities on the right side of Equation (3.6) by using

PPM or PST. If the probability Pk(sj |sj−ksj−k+1 · · · sj−1) for sj, (i ≤ j ≤ i+L− 1)

does not exist, we proceed as follows.

a) In the case of PPM, we use the escape and exclusion mechanisms, in conjunc-

tion with Equation (3.3) to calculate each of the probabilities in Equation (3.6).

b) In the case of PST, we find the longest suffix of the context sj−ksj−k+1 · · · sj−1

that exists in the tree. Assuming the longest suffix of the context

sj−ksj−k+1 · · · sj−1 that exists in the tree to be sj−tsj−t+1 · · · sj−1, (0 ≤ t < k),

then

Pk(sj |sj−ksj−k+1 · · · sj−1) = Pt(sj |sj−tsj−t+1 · · · sj−1) (3.7)

Maximizing the likelihood P (wini) is equivalent to minimizing the average log-
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loss function [1] defined as

loglossP (wini) =−
1

L

(
logP0(si) + logP1(si+1|si)+

logP2(si+2|s1si+1) + · · ·+

logPD(si+L−1|si+L−1−D · · · si+L−2)

)
(3.8)

where the logarithm taken with a base of 2. Hence, wini contains a flanking region

if it has a low average log–loss value compared to that of its neighboring windows.

Example 4 below illustrates the steps for calculating the probability of a particular

segment using PPM or PST.

Example 4.

For the training set {ABEACADABE, ACAABED, ADACADED, EDABAC,

CACAED, DABACAE, ABADEDCC, ABAC} of flanking regions, we con-

structed PPM and PST structures in Example 2 and Example 3, respectively.

Using Table 3.5 of Example 2, we can calculate P (BAABEDCA) as

P (BAABEDCA) =

(
P0(B|ǫ)P1(A|B)P2(A|BA)

P2(B|AA)P2(E|AB)P2(D|BE)

P2(C|ED)P2(A|DC)

)
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P (BAABEDCA) =

((
7

57 + 5

)(
4

7 + 2

)(( 2

4 + 2

)( 2

11 + 5

))

(
2

2 + 1

)(
3

7 + 2

)(
1

2 + 2

)

(
1

2 + 2

)(( 1

1 + 1

)( 6

6 + 2

))
)

= 1.089× 10
−5

and, we can calculate P (BAABEDCA) using Figure 3.4 of Example 3 as

P (BAABEDCA) =

(
P0(B|ǫ)P1(A|B)P2(A|BA)

P2(B|AA)P2(E|AB)P2(D|BE)

P2(C|ED)P2(A|DC)

)

P (BAABEDCA) =

((
0.146

)(
0.353

)(
0.143

)

(
0.429

)(
0.294

)(
0.25

)

(
0.25

)(
0.167

))

= 9.702× 10
−6

�

The proposed IndelFR predictor for a given protein fold can be built using PPM

or PST. We build the left PPM (LPPM) and the left PST (LPST) for the left set, and

build the right PPM (RPPM) and the right PST (RPST) for the right set. LPPM

and RPPM are combined together to form a PPM IndelFR predictor for memory

length D. Similarly, LPST and RPST are combined together to form a PST IndelFR

44



predictor for memory length D. Such IndelFR predictors are built for various values

of the memory length D, D ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, so that we can determine

the value of D that results in the best performance in predicting the locations of

IndelFRs. The procedure to extract the predicted locations of these regions in the

test protein sequence using PPM IndelFR predictor is given in Algorithm 1. A

similar procedure is applied for the proposed PST IndelFR predictor.

45



Algorithm 1: Procedure to extract the predicted locations of IndelFRs in a test

protein sequence using the proposed PPM IndelFR predictor with a memory length

D.

Step 1: Scan the test protein sequence Sn
= s1s2s3 · · · sn of length n using a running

window of length L = 10.

wini = sisi+1 · · · si+9, 1 ≤ i ≤ (n− 9)

Step 2: Compute and store the average log-loss values for each window using LPPM

and RPPM with a memory length D using Equation (3.8).

Step 3: From the LPPM average log-loss values, choose the mean of these values as

the threshold. Then, find the locations of the local minima that have values below

the threshold.

Step 4: Repeat Step 3 using the RPPM log-loss values and find the locations of

the local minima.

Step 5: Find the locations of IndelFRs in the test protein sequence by identifying

each of the LPPM minimum locations that is immediately followed by a RPPM

minimum location. The identified LPPM and the corresponding RPPM minimum

locations represent the start locations of the predicted left and right flanking regions,

respectively, and each flanking region (left or right) has a length of at most 10. For

each selected minimum location at ν, the predicted locations for this flanking region

(left or right) are limited to ν, ν + 1, ν + 2, · · · , ν + 9.

Step 6: For the test protein sequence, use the actual locations of IndelFRs and the

predicted locations to determine the accuracy and the F1-measure.
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3.5 Results and Discussion

In this section, we evaluate the performance of the proposed PPM and PST IndelFR

predictors. For this purpose, we select from SCOP database 11, 14 and 18 protein

folds from different protein classes: All-α proteins, All-β proteins, and α and β

proteins (a/b), respectively. The selected protein folds are listed in Tables 3.2, 3.3

and 3.4, respectively. This selection is confined to those protein folds that have

indel flanking regions listed in the IndelFR database. The proposed PPM and PST

IndelFR predictors are built for each of the selected protein folds. These predictors

are built for various values of the memory length D, D ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},

so that we can determine the value of D that provides the best performance.

We use the k-fold cross-validation method for training and testing the proposed

IndelFR predictors, where k = 10. Consequently, k iterations of training and testing

are performed for each predictor. In the training phase, we train the IndelFR pre-

dictor for a given protein fold using the indel flanking regions listed in the IndelFR

database. In the testing phase, we first test the trained predictors on the protein

sequences from the same protein fold belonging to the IndelFR database and next,

on the set of protein sequences from the same protein fold but belonging to the se-

quence alignment benchmark (SABmark 1.65) [39]. Finally, the performance of the

two proposed predictors is compared to that using the latest version of the alignment

software HMMER, HMMER 3.0 [40].

We evaluate the performance of the proposed predictors using the measures of

accuracy and F1–measure, which are the commonly–used metrics in the evaluation

of the performance of prediction techniques in bioinformatics [81–83].
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Actual

Predicted

TPTN FP TN FN TP FN TN

Figure 3.5: An illustration for determining the four quantities TP , FN , TN and

TN for a given protein sequence, where the thick lines indicate the various flanking

segments.

3.5.1 Performance evaluation using accuracy and the F1–

measure

The accuracy and F1–measure are the commonly–used metrics in the evaluation of

the performance of prediction techniques in bioinformatics [81–83]. The accuracy is

the ratio of correct predictions to the total number of predictions

Accuracy =
TP + TN

TP + FP + FN + TN
(3.9)

where

TP is the number of amino acids that are located in the various flanking segments

for a given protein sequence and have been so predicted,

FP the number of amino acids that are not located in any of the flanking segments,

but have been predicted to be in the flanking segments,

FN the number of amino acids that are located in the various flanking segments,

but have not been so predicted, and

FN the number of amino acids that are not located in any of the flanking segment

and have been so predicted.

An illustration as to how TP ,FN , TN and TN are determined is shown in Fig-

ure 3.5.
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The F1–measure is defined as [83]

F1 −measure =
2PR

P +R
(3.10)

where P is the precision (selectivity) and R is the recall given by

P =
TP

TP + FP

R =
TP

TP + FN

(3.11)

The F1–measure has a value in the range [0, 1] .

3.5.2 Prediction in IndelFR database

The average log–loss values for each test protein sequence is computed for each

of the two proposed predictors. For the purpose of illustration, the average log–

loss values using the two predictors for the protein sequence d1liab are shown in

Figure 3.6. It is seen from this figure that the average log–loss values around a

flanking region are very much less than those around the other regions. It should

be noted that for each of the test protein sequences, we follow the steps outlined in

Algorithm 1 to extract the predicted locations of IndelFRs, and to calculate both

the accuracy and the F1–measure. As seen from Figure 3.6(a), the PPM IndelFR

predictor predicts the locations (A, B), (C, D), (E, F), and (G, H) as the start

locations for IndelFRs (left and right, respectively), while this predictor ignores the

RPPM minimum location (I) as it is not preceded by an LPPM minimum location.

To compute the accuracy and the F1–measure, we use the actual IndelFRs shown

in Figure 3.6(c) taken from the IndelFR database, and the locations predicted by

the proposed PPM IndelFR predictor. The accuracy and F1–measure are found

to be 81% and 77%, respectively. In a similar manner, using the results shown
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Figure 3.6: Average log-loss values for the d1liab protein sequence using (a) PPM

IndelFR predictor, and (b) PST IndelFR predictor. (c) Ground truth for the In-

delFR taken from the IndelFR database [17]. Solid dots represent the start locations

of the predicted left flanking regions and the stars that of the predicted right flanking

regions.

in Figure 3.6(b), we determine the accuracy and F1–measure for the PST IndelFR

predictor to be 72% and 70%, respectively.
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The average accuracy and F1–measure values of the PPM predictor for various

values of the memory lengthD,D ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, are obtained for each of

the 11 chosen protein folds from the All-α protein class, and are shown in Figures 3.7

and 3.8, respectively. It is observed from these figures that the best choice for the

memory length D is 4. Further, the accuracy varies from 74% to 98% and the

F1–measure from 54% to 99% for the various folds. The average accuracy and

F1–measure values of the PPM predictor, with a memory length of 4, over the All-

α protein class are 91% and 92%, respectively. In a similar manner, the average

accuracy and F1–measure values of the PST predictor for various values of the

memory length D, D ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, are obtained for each the 11 chosen

protein folds from the All-α protein class , and are shown in Figures 3.9 and 3.10,

respectively. The results for the PST predictor strongly suggest that the best choice

for the memory length D is again 4. Further, the accuracy varies from 63% to 96%

and the F1–measure from 54% to 97% for the various folds. The average accuracy

and F1-measure values of the PST predictor, with a memory length of 4, over the

All-α protein class are 88% and 89%, respectively.
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Figure 3.7: Average values of accuracy for the PPM IndelFR predictor for different

protein folds selected from the All-α protein class for various values of the memory

length D.
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Figure 3.8: Average values of F1–measure for the PPM IndelFR predictor for dif-

ferent protein folds selected from the All-α protein class for various values of the

memory length D.
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Figure 3.9: Average values of accuracy for the PST IndelFR predictor for different

protein folds selected from the All-α protein class for various values of the memory

length D.
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Figure 3.10: Average values of F1–measure for the PST IndelFR predictor for dif-

ferent protein folds selected from the All-α protein class for various values of the

memory length D.
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The average accuracy and F1–measure values of the PPM predictor for various

values of the memory length D, D ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, are obtained for each

of the 14 chosen protein folds from the All-β protein class, and are shown in Fig-

ures 3.11 and 3.12, respectively. It is observed from these figures that the best

choice for the memory length D is 4. Further, the accuracy varies from 74% to 95%

and the F1–measure from 74% to 92% for the various folds. The average accuracy

and F1–measure values of the PPM predictor, with a memory length of 4, over the

All-β protein class are 86% and 85%, respectively. In a similar manner, the aver-

age accuracy and F1–measure values of the PST predictor for various values of the

memory length D, D ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, are obtained for each the 14 chosen

protein folds from the All-β protein class , and are shown in Figures 3.13 and 3.14,

respectively. The results for the PST predictor strongly suggest that the best choice

for the memory length D is again 4. Further, the accuracy varies from 74% to 97%

and the F1–measure from 76% to 97% for the various folds. The average accuracy

and F1-measure values of the PST predictor, with a memory length of 4, over the

All-β protein class are 84% and 86%, respectively.
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Figure 3.11: Average values of accuracy for the PPM IndelFR predictor for different

protein folds selected from the All-β protein class for various values of the memory

length D.
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folds given in Table 3.3.

Figure 3.12: Average values of F1–measure for the PPM IndelFR predictor for

different protein folds selected from the All-β protein class for various values of the

memory length D.
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Figure 3.13: Average values of accuracy for the PST IndelFR predictor for different

protein folds selected from the All-β protein class for various values of the memory

length D.
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folds given in Table 3.3.

Figure 3.14: Average values of F1–measure for the PST IndelFR predictor for dif-

ferent protein folds selected from the All-β protein class for various values of the

memory length D.
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The average accuracy and F1–measure values of the PPM predictor for various

values of the memory length D, D ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, are obtained for each

of the 18 chosen protein folds from the α and β protein (a/b) class, and are shown

in Figures 3.15 and 3.16, respectively. It is observed from these figures that the best

choice for the memory length D is 4. Further, the accuracy varies from 72% to 91%

and the F1–measure from 69% to 89% for the various folds. The average accuracy

and F1–measure values of the PPM predictor, with a memory length of 4, over the

α and β protein (a/b) class are 83% and 84%, respectively. In a similar manner,

the average accuracy and F1–measure values of the PST predictor for various values

of the memory length D, D ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, are obtained for each the

18 chosen protein folds from the α and β protein (a/b) class , and are shown in

Figures 3.17 and 3.18, respectively. The results for the PST predictor strongly

suggest that the best choice for the memory length D is again 4. Further, the

accuracy varies from 69% to 89% and the F1–measure from 66% to 91% for the

various folds. The average accuracy and F1-measure values of the PST predictor,

with a memory length of 4, over the α and β protein (a/b) class are 80% and 83%,

respectively.
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Figure 3.15: Average values of accuracy for the PPM IndelFR predictor for different

protein folds selected from the α and β protein (a/b) class for various values of the

memory length D.
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Figure 3.16: Average values of F1–measure for the PPM IndelFR predictor for

different protein folds selected from the α and β protein (a/b) class for various

values of the memory length D.
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Figure 3.17: Average values of accuracy for the PST IndelFR predictor for different

protein folds selected from the α and β protein (a/b) class for various values of the

memory length D.
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Figure 3.18: Average values of F1–measure for the PST IndelFR predictor for dif-

ferent protein folds selected from the α and β protein (a/b) class for various values

of the memory length D.
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Figure 3.19: Average values of accuracy for the proposed PPM and PST IndelFR

predictors with D = 4 for different protein folds selected from the All-α protein,
All-β protein, and α and β protein (a/b) protein classes for memory length D = 4.

The above results show that the best choice for the memory length D is 4 for

all the selected protein folds. In addition, the results indicate that the proposed

predictors perform better on those protein folds that have a large number of protein

sequences. The average accuracy and F1-measure values of the proposed PPM and

PST predictors with D = 4, for the selected 11, 14 and 18 protein folds from the

three protein classes are shown in Figures 3.19 and 3.20, respectively.

Average performances in terms of the accuracy and F1-measure, over all the pro-

tein sequences contained in the 11, 14 and 18 protein folds of the IndelFR database

belonging to the All-α protein, All-β protein, and α and β protein (a/b) classes,

respectively, for the two proposed predictors are given in Table 3.6. It is seen from

this table that the proposed PPM and PST predictors with D = 4 provide about

the same average performance.
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Figure 3.20: Average values of F1–measure for the proposed PPM and PST IndelFR

predictors with D = 4 for different protein folds selected from the All-α protein, All-
β protein, and α and β protein (a/b) protein classes for memory length D = 4.

67



Table 3.6

Average values of accuracy and F1–measure for the proposed PPM and PST

predictors with D = 4 and that obtained using HMMER 3.0 over all the protein

sequences contained in the selected 11, 14 and 18 protein folds from the All-α
protein, All-β protein, and α and β protein (a/b) classes, respectively, for (a)

IndelFR database, (b) SABmark-Superfamily set and (c) SABmark-Twilight set.

Protein (a) (b) (c)

classes Accuracy F1 Accuracy F1 Accuracy F1

PPM All-α 91% 92% 76% 79% 74% 76%

IndelFR All-β 86% 85% 74% 80% 75% 78%

Predictor α and β 83% 84% 77% 79% 74% 78%

PST All-α 88% 89% 76% 79% 71% 75%

IndelFR All-β 84% 86% 76% 83% 75% 81%

Predictor α and β 80% 83% 76% 80% 73% 77%

HMMER All-α 43% 49% 57% 64% 59% 66%

alignment All-β 43% 49% 61% 68% 61% 70%

software α and β 46% 56% 59% 69% 58% 68%

3.5.3 Prediction in SABmark 1.65

In order to have a more stringent assessment of the performance of the proposed

predictors, we now test the two predictors with D = 4 on the sequence alignment

benchmark (SABmark 1.65) [39]. It should be noted that the SABmark is generated

from the SCOP database, and covers the entire known protein fold space with two

sets, referred to as the Superfamily set and the Twilight set. The similarity level

between any two protein sequences is less than 50% in the Superfamily set, while it

is at most 25% in the Twilight set, in contrast to that in IndelFR database, which

contains protein sequences that have a similarity level which could be as high as

95%.

To evaluate the performance of the proposed PPM and PST predictors on the

Superfamily and Twilight sets, we select protein sequences from the protein folds

belonging to these sets; the folds chosen are only those for which the predictors have

already been designed using the IndelFR database. The average accuracy and F1–
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measure of the proposed predictors for each of the above protein folds are given in

Tables 3.7 and 3.8, respectively. The average performance of the proposed predictors

are also given in Table 3.6 for the Superfamily and Twilight sets. These results show

that the proposed predictors are still able to predict the IndelFRs in the selected

protein folds from both the sets with large values of accuracy and F1-measure, even

though the similarity level between any two protein sequences is at most 50% in the

case of the Superfamily set, and at most 25% in the case of the Twilight set. The

results show that the performances of the two proposed predictors are almost the

same for both the sets, the average accuracies being around 75% and the average

F1-measures being about 79%. The average accuracy values and average F1-measure

values for the proposed IndelFR predictors for the selected protein folds from the

three protein classes are shown in Figures 3.21 and 3.22 for the Superfamily and

Twilight sets, respectively. It is clear from these figures as well as from Tables 3.7

and 3.8 that the values of the performance metrics, accuracy and F1-measure, are

higher than their average values for those folds in which the number of protein

sequences are large (for example, for the protein folds A1, C1 and C23), and they

are lower than the average values for those folds in which the number of protein

sequences are smaller (for example, for the protein folds A26, B35 and C14).
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Table 3.7

Average values of accuracy and F1–measure of the proposed IndelFR predictors

with memory length D = 4 for the Superfamily set from the SABmark benchmark

for the selected protein folds from different protein classes (see Table 3.2, 3.3

and 3.4).

PPM IndelFR PST IndelFR

predictor predictor

Protein Number F1 Accuracy F1 Accuracy

fold label of sequences

A1 26 79% 75% 85% 80%

A3 22 90% 86% 79% 81%

A4 49 78% 75% 87% 78%

A22 10 80% 75% 80% 74%

A25 14 73% 76% 74% 80%

A26 13 53% 64% 55% 59%

A35 11 83% 83% 80% 80%

A39 22 79% 72% 71% 69%

A45 17 79% 81% 80% 79%

A118 20 81% 74% 79% 71%

A133 6 84% 72% 76% 77%

B6 15 66% 64% 75% 70%

B18 21 84% 77% 84% 78%

B29 14 82% 75% 82% 77%

B34 37 78% 65% 82% 69%

B35 1 49% 59% 50% 49%

B36 14 84% 75% 87% 78%

B40 47 84% 82% 80% 75%

(Continued on next page)
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Table 3.7 (Continued from previous page)

PPM IndelFR PST IndelFR

predictor predictor

Protein Number F1 Accuracy F1 Accuracy

fold label of sequences

B42 22 77% 66% 89% 81%

B47 21 85% 81% 84% 77%

B50 9 75% 71% 79% 69%

B55 18 70% 73% 84% 77%

B60 19 79% 72% 84% 82%

B82 18 75% 76% 79% 75%

B121 41 82% 77% 83% 78%

C1 84 81% 77% 84% 80%

C2 16 81% 78% 75% 72%

C3 19 62% 66% 59% 65%

C14 5 59% 70% 53% 63%

C23 32 90% 87% 83% 82%

C26 18 80% 80% 82% 70%

C36 9 78% 67% 76% 62%

C37 21 82% 83% 81% 79%

C47 22 79% 77% 85% 85%

C55 25 79% 76% 80% 72%

C56 9 73% 72% 82% 76%

C61 9 74% 70% 77% 69%

C67 20 82% 81% 85% 79%

C68 4 85% 77% 84% 76%

(Continued on next page)
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Table 3.7 (Continued from previous page)

PPM IndelFR PST IndelFR

predictor predictor

Protein Number F1 Accuracy F1 Accuracy

fold label of sequences

C69 19 80% 77% 84% 80%

C94 16 81% 75% 84% 83%

C95 13 64% 65% 77% 66%

C108 5 68% 64% 64% 64%
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Table 3.8

Average values of accuracy and F1–measure of the proposed IndelFR predictors

with memory length D = 4 for the Twilight set from the SABmark benchmark for

the selected protein folds from different protein classes (see Table 3.2, 3.3 and 3.4).

PPM IndelFR PST IndelFR

predictor predictor

Protein Number F1 Accuracy F1 Accuracy

fold label of sequences

A1 11 81% 73% 75% 80%

A3 15 72% 65% 73% 61%

A4 21 72% 73% 84% 79%

A22 8 80% 75% 73% 72%

A25 9 70% 73% 74% 72%

A26 9 54% 66% 55% 59%

A35 10 76% 82% 74% 69%

A39 12 84% 78% 72% 70%

A45 8 74% 68% 70% 68%

A118 20 87% 82% 82% 73%

A133 3 64% 69% 63% 72%

B6 12 74% 72% 80% 69%

B18 16 85% 78% 88% 84%

B29 10 81% 69% 77% 70%

B34 22 78% 82% 80% 75%

B35 3 80% 72% 77% 72%

B36 7 72% 68% 87% 78%

B40 23 84% 83% 74% 77%

B42 9 71% 65% 93% 87%

(Continued on next page)

73



Table 3.8 (Continued from previous page)

PPM IndelFR PST IndelFR

predictor predictor

Protein Number F1 Accuracy F1 Accuracy

fold label of sequences

B47 8 73% 66% 78% 64%

B55 11 69% 73% 74% 61%

B60 7 79% 71% 85% 76%

B82 14 71% 74% 79% 75%

B121 23 83% 78% 81% 80%

C1 17 83% 78% 86% 80%

C2 18 74% 70% 79% 74%

C3 6 62% 66% 59% 65%

C14 3 67% 73% 46% 49%

C23 15 79% 74% 73% 69%

C26 12 80% 76% 77% 76%

C36 3 78% 67% 67% 58%

C37 21 84% 82% 82% 80%

C47 22 82% 80% 80% 75%

C55 18 79% 75% 77% 72%

C56 7 65% 64% 61% 62%

C61 5 68% 66% 59% 55%

C67 6 79% 72% 87% 81%

C68 4 83% 72% 80% 72%

C69 20 80% 77% 84% 80%

C94 9 81% 75% 79% 78%

(Continued on next page)
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Table 3.8 (Continued from previous page)

PPM IndelFR PST IndelFR

predictor predictor

Protein Number F1 Accuracy F1 Accuracy

fold label of sequences

C95 7 53% 61% 68% 63%

C108 4 68% 55% 63% 64%
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Note: A1, A3, A4, A22, A25, A26, A35, A39, A45, A118, A133, B6, B18, B29, B34, B35, B36,

B40, B42, B47, B50, B55, B60, B82, B121, C1, C2, C3, C14, C23, C26, C36, C37, C47, C55, C56,

C61, C67, C68, C69, C94, C95, and C108 are the protein folds given in Tables 3.2, 3.3 and 3.4.

Figure 3.21: Average values of accuracy and F1–measure of the proposed IndelFR

predictors for the Superfamily set from the SABmark benchmark for the selected

protein folds from the All-α protein, All-β protein, and α and β protein (a/b) protein
classes.

3.5.4 Comparison with HMMER

The performance of the proposed predictors with D = 4 is now compared to that

obtained using the latest version of the alignment software HMMER, HMMER 3.0

[40]. HMMER 3.0 implements the alignment of a protein sequence with pHMM

representing a particular protein family. A collection of pHMMs covering many

protein families is available in the Pfam database [84]. In order to be able to make

this comparison, it is necessary to find the Pfam pHMMs for all the protein families

that belong to a protein fold for which the PPM and PST predictors have already

been designed using the IndelFR database. The protein families for the selected 11,

14, and 18 protein folds from All–α proteins, All–β proteins and α and β proteins
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B40, B42, B47, B50, B55, B60, B82, B121, C1, C2, C3, C14, C23, C26, C36, C37, C47, C55, C56,

C61, C67, C68, C69, C94, C95, and C108 are the protein folds given in Tables 3.2, 3.3 and 3.4.

Figure 3.22: Average values of accuracy and F1–measure of the proposed IndelFR

predictors for the Twilight set from the SABmark benchmark for the selected protein

folds from the All-α protein, All-β protein, and α and β protein (a/b) protein classes.
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(a/b) are given in Appendix (see Tables A.1, A.2 and A.3).

Prediction performance using HMMER 3.0 obtained on the IndelFR database

for the selected 11, 14, and 18 protein folds are shown in Tables 3.9, 3.10 and 3.11,

respectively. Furthermore, prediction performance using HMMER 3.0 obtained on

the Superfamily and Twilight sets for the selected 11, 14, and 18 protein folds

are shown in Tables 3.12, 3.13 and 3.14, respectively. The average performances

obtained using HMMER 3.0 on the IndelFR database and on the Superfamily and

Twilight sets, are also included in Table 3.6. These results indicate that the proposed

predictors significantly outperform that obtained using HMMER 3.0 in terms of both

accuracy and F1-measure.

It should be noted that the proposed IndelFR predictors are more general than

when HMMER 3.0 is used in that the proposed PPM or PST predictor for a given

protein fold is capable of predicting the indel flanking regions for any protein se-

quence from any protein family in that fold, whereas HMMER 3.0 has to use different

pHMMs depending on the family of the protein fold to which the protein sequence

belongs. For instance, we have to design only one IndelFR predictor for the Globin-

like fold, whereas HMMER 3.0 has to use 5 different pHMMs (see Table A.1 in

Appendix).
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Table 3.9

Average values of accuracy and F1–measure of HMMER alignment software for the

IndelFR database for different protein folds selected from All-α protein (see

Table A.1 in Appendix).

HMMER

Protein Pfam alignment software

fold label families F1–measure Accuracy

A1 Globin (PF00042) 40% 32%

Phycobilisome (PF00502) 75% 68%

FAD binding 2 (PF00890) 76% 64%

Bac globin (PF01152) 74% 62%

Dus (PF01207) 78% 66%

A3 Cytochrom B C (PF00032) 65% 52%

Cytochrom C (PF00034) 21% 38%

A4 Homeobox (PF00046) 60% 46%

TetR N (PF00440) 57% 43%

MarR (PF01047) 53% 40%

HxlR (PF01638) 55% 42%

TrmB (PF01978) 50% 37%

HTH 5 (PF01022) 56% 42%

HTH 8 (PF02954) 64% 50%

PadR (PF03551) 60% 46%

Myb DNA-bind 6 (PF13921) 64% 51%

A22 Histone (PF00125) 39% 50%

TBP (PF00352) 53% 38%

A25 Ferritin (PF00210) 30% 42%

Ribonuc red sm (PF00268) 47% 42%

(Continued on next page)
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Table 3.9 (Continued from previous page)

HMMER

Protein Pfam alignment software

fold label families F1–measure Accuracy

Phenol Hydrox (PF02332) 51% 40%

A26 Hormone 1 (PF00103) 40% 33%

IL10 (PF00726) 34% 43%

EPO TPO (PF00758) 39% 26%

LIF OSM (PF01291) 33% 34%

A35 HTH 3 (PF01381) 25% 21%

A39 efhand (PF00036) 63% 49%

A45 GST C (PF00043) 50% 71%

GST N (PF02798) 34% 25%

A118 14-3-3 (PF00244) 61% 47%

Arm (PF00514) 61% 47%

VHS (PF00790) 59% 49%

Sec7 (PF01369) 61% 51%

ENTH (PF01417) 61% 48%

TPR 2 (PF07719) 61% 47%

A133 Phospholip A2 1 (PF00068) 12% 28%
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Table 3.10

Average values of accuracy and F1–measure of HMMER alignment software for the

IndelFR database for different protein folds selected from All-β protein class (see

Table A.2 in Appendix).

HMMER

Protein Pfam alignment software

fold label families F1–measure Accuracy

B6 COX2 (PF00116) 48% 41%

Copper-bind (PF00127) 33% 38%

Cu-oxidase (PF00394) 51% 43%

B18 F5 F8 type C (PF00754) 47% 41%

CBM 6 (PF03422) 44% 38%

B29 Laminin G 1 (PF00054) 72% 62%

Lectin legB (PF00139) 56% 47%

Gal-bind lectin (PF00337) 68% 58%

Glyco hydro 11 (PF00457) 66% 53%

Glyco hydro 7 (PF00840) 73% 62%

Glyco hydro 12 (PF01670) 72% 60%

B34 SH3 1 (PF00018) 35% 25%

MBT (PF02820) 61% 48%

B35 Cpn10 (PF00166) 53% 40%

ADH zinc N (PF00107) 64% 49%

B36 PDZ (PF00595) 14% 18%

B40 tRNA-synt 2 (PF00152) 58% 46%

CSD (PF00313) 56% 42%

SSB (PF00436) 58% 46%

SNase (PF00565) 59% 46%

(Continued on next page)
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Table 3.10 (Continued from previous page)

HMMER

Protein Pfam alignment software

fold label families F1–measure Accuracy

Pyrophosphatase (PF00719) 58% 47%

tRNA bind (PF01588) 56% 44%

Stap Strp tox C (PF02876) 59% 46%

B42 FGF (PF00167) 45% 49%

Ricin B lectin (PF00652) 36% 35%

B47 Trypsin (PF00089) 17% 41%

Peptidase C3 (PF00548) 58% 46%

Trypsin 2 (PF13365) 47% 42%

B50 Asp (PF00026) 25% 39%

RVP (PF00077) 69% 60%

B55 PH (PF00169) 40% 39%

WH1 (PF00568) 57% 48%

PID (PF00640) 60% 51%

B60 Lipocalin (PF00061) 18% 30%

DUF1794 (PF08768) 72% 61%

B82 cNMP binding (PF00027) 48% 37%

Cupin 1 (PF00190) 42% 32%

dTDP sugar isom (PF00908) 49% 38%

Cupin 2 (PF07883) 44% 33%

B121 Rhv (PF00073) 43% 36%

Viral coat (PF00729) 53% 44%

Parvo coat (PF00740) 57% 48%

(Continued on next page)
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Table 3.10 (Continued from previous page)

HMMER

Protein Pfam alignment software

fold label families F1–measure Accuracy

Tymo coat (PF00983) 57% 45%

Peptidase A6 (PF01829) 57% 45%

Phage F (PF02305) 58% 47%
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Table 3.11

Average values of accuracy and F1–measure of HMMER alignment software for the

IndelFR database for different protein folds selected from α and β protein (a/b)
class (see Table A.3 in Appendix).

HMMER

Protein Pfam alignment software

fold label families F1–measure Accuracy

C1 TIM (PF00121) 59% 46%

Alpha-amylase (PF00128) 57% 45%

Cellulase (PF00150) 58% 45%

Glyco hydro 1 (PF00232) 59% 46%

Aldo ket red (PF00248) 58% 46%

Glycolytic (PF00274) 60% 47%

Glyco hydro 18 (PF00704) 59% 46%

Oxidored FMN (PF00724) 60% 47%

FMN dh (PF01070) 59% 47%

MR MLE (PF01188) 62% 48%

AP endonuc 2 (PF01261) 58% 46%

RuBisCO large N (PF02788) 61% 47%

Enolase N (PF03952) 61% 47%

Amidohydro 3 (PF07969) 60% 47%

C2 Gp dh N (PF00044) 63% 54%

Ldh 1 N (PF00056) 59% 52%

adh short (PF00106) 54% 45%

ADH zinc N (PF00107) 66% 59%

THF DHG CYH (PF00763) 70% 58%

NAD Gly3P dh N (PF01210) 64% 55%

(Continued on next page)
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Table 3.11 (Continued from previous page)

HMMER

Protein Pfam alignment software

fold label families F1–measure Accuracy

NAD binding 2 (PF03446) 62% 54%

C3 Pyr redox (PF00070) 41% 31%

FAD binding 2 (PF00890) 39% 34%

DAO (PF01266) 38% 33%

C14 ECH (PF00378) 31% 39%

CLP protease (PF00574) 68% 54%

Carboxyl trans (PF01039) 53% 47%

C23 Response reg (PF00072) 50% 39%

GATase (PF00117) 54% 43%

Flavodoxin 1 (PF00258) 55% 45%

DJ-1 PfpI (PF01965) 58% 46%

FMN red (PF03358) 59% 47%

Flavodoxin 2 (PF02525) 56% 46%

C26 tRNA-synt 1 (PF00133) 55% 41%

ETF (PF01012) 49% 39%

CTP transf 2 (PF01467) 48% 41%

NAD synthase (PF02540) 53% 42%

C36 TPP enzyme M (PF00205) 65% 51%

Transketolase N (PF00456) 50% 43%

E1 dh (PF00676) 61% 52%

TPP enzyme N (PF02776) 44% 36%

Transket pyr (PF02779) 51% 49%

(Continued on next page)
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Table 3.11 (Continued from previous page)

HMMER

Protein Pfam alignment software

fold label families F1–measure Accuracy

C37 AAA (PF00004) 62% 52%

ABC tran (PF00005) 65% 54%

GTP EFTU (PF00009) 54% 46%

Arf (PF00025) 55% 47%

RecA (PF00154) 67% 56%

Kinesin (PF00225) 67% 56%

DEAD (PF00270) 64% 52%

Helicase C (PF00271) 69% 56%

ADK (PF00406) 65% 53%

Sulfotransfer 1 (PF00685) 67% 55%

MMR HSR1 (PF01926) 60% 50%

AAA 2 (PF07724) 67% 55%

AAA 5 (PF07728) 65% 54%

C47 GST C (PF00043) 76% 64%

Thioredoxin (PF00085) 58% 50%

AhpC-TSA (PF00578) 57% 47%

GST N (PF02798) 57% 48%

Redoxin (PF08534) 55% 47%

Thioredoxin 2 (PF13098) 59% 50%

GST N 3 (PF13417) 56% 48%

Thioredoxin 8 (PF13905) 62% 51%

C55 HSP70 (PF00012) 49% 38%

(Continued on next page)
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Table 3.11 (Continued from previous page)

HMMER

Protein Pfam alignment software

fold label families F1–measure Accuracy

ROK (PF00480) 44% 36%

Peptidase M24 (PF00557) 50% 38%

rve (PF00665) 49% 39%

DNA pol B exo2 (PF10108) 49% 37%

C56 PNP UDP 1 (PF01048) 38% 38%

Peptidase M20 (PF01546) 50% 44%

Propep M14 (PF02244) 53% 39%

M20 dimer (PF07687) 54% 40%

C61 Pribosyltran (PF00156) 25% 34%

C67 Aminotran 1 2 (PF00155) 39% 35%

Cys Met Meta PP (PF01053) 62% 51%

Beta elim lyase (PF01212) 61% 50%

C68 Hexapep (PF00132) 58% 44%

NTP transferase (PF00483) 45% 34%

CTP transf 3 (PF02348) 47% 39%

C69 Abhydrolase 1 (PF00561) 47% 40%

Esterase (PF00756) 56% 45%

Abhydrolase 3 (PF07859) 54% 42%

Abhydrolase 5 (PF12695) 41% 33%

Abhydrolase 6 (PF12697) 35% 34%

C94 Transferrin (PF00405) 57% 47%

LysR substrate (PF03466) 59% 49%

(Continued on next page)
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Table 3.11 (Continued from previous page)

HMMER

Protein Pfam alignment software

fold label families F1–measure Accuracy

C95 Thiolase N (PF00108) 36% 34%

Chal sti synt N (PF00195) 41% 42%

Chal sti synt C (PF02797) 62% 47%

Thiolase C (PF02803) 60% 44%

C108 Hydrolase (PF00702) 35% 36%

Hydrolase 3 (PF08282) 46% 40%

HAD (PF12710) 45% 40%

HAD 2 (PF13419) 39% 39%
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Table 3.12

Average values of accuracy and F1–measure of HMMER alignment software for the

Superfamily and the Twilight from the SABmark for the selected protein folds

from the All-α protein class (see Table A.1 in Appendix).

HMMER alignment software

Protein Pfam Superfamily set Twilight set

fold label families F1 Accuracy F1 Accuracy

A1 Globin (PF00042) 52% 54% 65% 62%

Phycobilisome (PF00502) 55% 52% 66% 60%

FAD binding 2 (PF00890) 67% 54% 70% 58%

Bac globin (PF01152) 65% 54% 51% 50%

Dus (PF01207) 66% 54% 70% 60%

A3 Cytochrom B C (PF00032) 77% 64% 83% 73%

Cytochrom C (PF00034) 42% 45% 41% 37%

A4 Homeobox (PF00046) 76% 65% 79% 68%

TetR N (PF00440) 77% 66% 79% 67%

MarR (PF01047) 76% 64% 77% 65%

HxlR (PF01638) 73% 62% 72% 61%

TrmB (PF01978) 74% 64% 73% 62%

HTH 5 (PF01022) 72% 62% 71% 61%

HTH 8 (PF02954) 81% 69% 78% 66%

PadR (PF03551) 77% 66% 74% 63%

Myb DNA-bind 6 (PF13921) 78% 67% 78% 66%

A22 Histone (PF00125) 38% 50% 40% 51%

TBP (PF00352) 63% 48% 64% 48%

A25 Ferritin (PF00210) 44% 51% 48% 52%

Ribonuc red sm (PF00268) 54% 54% 56% 47%

(Continued on next page)
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Table 3.12 (Continued from previous page)

HMMER alignment software

Protein Pfam Superfamily set Twilight set

fold label families F1 Accuracy F1 Accuracy

Phenol Hydrox (PF02332) 63% 52% 62% 53%

A26 Hormone 1 (PF00103) 74% 65% 78% 75%

IL10 (PF00726) 59% 53% 68% 51%

EPO TPO (PF00758) 71% 55% 68% 53%

LIF OSM (PF01291) 73% 61% 75% 67%

A35 HTH 3 (PF01381) 60% 59% 72% 69%

A39 efhand (PF00036) 61% 50% 71% 60%

A45 GST C (PF00043) 65% 66% 55% 57%

GST N (PF02798) 77% 64% 69% 56%

A118 14-3-3 (PF00244) 71% 59% 73% 60%

Arm (PF00514) 69% 56% 73% 60%

VHS (PF00790) 51% 42% 61% 54%

Sec7 (PF01369) 68% 55% 73% 60%

ENTH (PF01417) 55% 43% 64% 56%

TPR 2 (PF07719) 71% 60% 70% 57%

A133 Phospholip A2 1 (PF00068) 25% 39% 33% 48%
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Table 3.13

Average values of accuracy and F1–measure of HMMER alignment software for the

Superfamily and the Twilight from the SABmark for the selected protein folds

from the All-β protein class (see Table A.2 in Appendix).

HMMER alignment software

Protein Pfam Superfamily set Twilight set

fold label families F1 Accuracy F1 Accuracy

B6 COX2 (PF00116) 76% 64% 79% 68%

Copper-bind (PF00127) 59% 52% 70% 59%

Cu-oxidase (PF00394) 67% 59% 78% 66%

B18 F5 F8 type C (PF00754) 69% 61% 73% 64%

CBM 6 (PF03422) 80% 69% 80% 69%

B29 Laminin G 1 (PF00054) 76% 66% 70% 61%

Lectin legB (PF00139) 72% 68% 84% 73%

Gal-bind lectin (PF00337) 70% 62% 71% 62%

Glyco hydro 11 (PF00457) 84% 73% 81% 70%

Glyco hydro 7 (PF00840) 86% 76% 85% 75%

Glyco hydro 12 (PF01670) 81% 72% 78% 71%

B34 SH3 1 (PF00018) 71% 65% 81% 71%

MBT (PF02820) 78% 68% 75% 66%

B35 Cpn10 (PF00166) 13% 19% 18% 54%

ADH zinc N (PF00107) 82% 70% 81% 71%

B36 PDZ (PF00595) 38% 47% 37% 44%

B40 tRNA-synt 2 (PF00152) 79% 68% 74% 61%

CSD (PF00313) 80% 68% 74% 61%

SSB (PF00436) 77% 65% 71% 57%

SNase (PF00565) 80% 68% 75% 62%

(Continued on next page)
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Table 3.13 (Continued from previous page)

HMMER alignment software

Protein Pfam Superfamily set Twilight set

fold label families F1 Accuracy F1 Accuracy

Pyrophosphatase (PF00719) 77% 67% 71% 61%

tRNA bind (PF01588) 71% 60% 70% 57%

Stap Strp tox C (PF02876) 79% 68% 75% 62%

B42 FGF (PF00167) 62% 63% 93% 88%

Ricin B lectin (PF00652) 60% 55% 32% 25%

B47 Trypsin (PF00089) 22% 38% 58% 55%

Peptidase C3 (PF00548) 79% 67% 75% 68%

Trypsin 2 (PF13365) 67% 57% 73% 62%

B50* Asp (PF00026) 56% 66%

RVP (PF00077) 41% 44%

B55 PH (PF00169) 63% 55% 56% 48%

WH1 (PF00568) 61% 59% 64% 61%

PID (PF00640) 71% 66% 76% 70%

B60 Lipocalin (PF00061) 31% 40% 44% 45%

DUF1794 (PF08768) 77% 65% 78% 65%

B82 cNMP binding (PF00027) 65% 54% 59% 47%

Cupin 1 (PF00190) 59% 51% 49% 42%

dTDP sugar isom (PF00908) 58% 56% 62% 54%

Cupin 2 (PF07883) 65% 54% 55% 44%

B121 Rhv (PF00073) 65% 56% 71% 61%

Viral coat (PF00729) 69% 58% 73% 62%

Parvo coat (PF00740) 75% 65% 75% 64%

(Continued on next page)
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Table 3.13 (Continued from previous page)

HMMER alignment software

Protein Pfam Superfamily set Twilight set

fold label families F1 Accuracy F1 Accuracy

Tymo coat (PF00983) 75% 63% 73% 62%

Peptidase A6 (PF01829) 77% 64% 78% 65%

Phage F (PF02305) 76% 65% 75% 67%

*Twilight set does not have any protein sequence belong to this protein fold (B50).
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Table 3.14

Average values of accuracy and F1–measure of HMMER alignment software for the

Superfamily and the Twilight from the SABmark for the selected protein folds

from the α and β protein (a/b) class (see Table A.3 in Appendix).

HMMER alignment software

Protein Pfam Superfamily set Twilight set

fold label families F1 Accuracy F1 Accuracy

C1 TIM (PF00121) 77% 64% 81% 68%

Alpha-amylase (PF00128) 76% 65% 80% 69%

Cellulase (PF00150) 78% 66% 79% 67%

Glyco hydro 1 (PF00232) 75% 66% 75% 67%

Aldo ket red (PF00248) 76% 65% 81% 68%

Glycolytic (PF00274) 78% 66% 75% 65%

Glyco hydro 18 (PF00704) 79% 66% 80% 67%

Oxidored FMN (PF00724) 78% 66% 80% 68%

FMN dh (PF01070) 78% 65% 80% 68%

MR MLE (PF01188) 78% 66% 81% 68%

AP endonuc 2 (PF01261) 77% 65% 78% 66%

RuBisCO large N (PF02788) 79% 66% 81% 68%

Enolase N (PF03952) 79% 66% 81% 68%

Amidohydro 3 (PF07969) 77% 65% 79% 67%

C2 Gp dh N (PF00044) 71% 57% 72% 58%

Ldh 1 N (PF00056) 68% 56% 68% 58%

adh short (PF00106) 57% 55% 64% 54%

ADH zinc N (PF00107) 69% 56% 66% 55%

THF DHG CYH (PF00763) 72% 58% 73% 59%

NAD Gly3P dh N (PF01210) 69% 56% 67% 55%

(Continued on next page)
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Table 3.14 (Continued from previous page)

HMMER alignment software

Protein Pfam Superfamily set Twilight set

fold label families F1 Accuracy F1 Accuracy

NAD binding 2 (PF03446) 68% 55% 64% 53%

C14 ECH (PF00378) 38% 59% 37% 47%

CLP protease (PF00574) 57% 42% 58% 41%

Carboxyl trans (PF01039) 46% 46% 34% 47%

C23 Response reg (PF00072) 65% 58% 74% 60%

GATase (PF00117) 63% 55% 69% 62%

Flavodoxin 1 (PF00258) 66% 59% 63% 53%

DJ-1 PfpI (PF01965) 75% 62% 73% 59%

FMN red (PF03358) 74% 63% 69% 59%

Flavodoxin 2 (PF02525) 73% 61% 72% 58%

C26 tRNA-synt 1 (PF00133) 74% 60% 74% 60%

ETF (PF01012) 63% 57% 61% 54%

CTP transf 2 (PF01467) 65% 53% 65% 52%

NAD synthase (PF02540) 70% 59% 67% 57%

C36 TPP enzyme M (PF00205) 79% 67% 79% 66%

Transketolase N (PF00456) 59% 61% 42% 57%

E1 dh (PF00676) 76% 64% 72% 60%

TPP enzyme N (PF02776) 34% 46% 52% 55%

Transket pyr (PF02779) 77% 66% 79% 67%

C37 AAA (PF00004) 61% 48% 71% 58%

ABC tran (PF00005) 65% 52% 71% 59%

GTP EFTU (PF00009) 64% 51% 65% 56%

(Continued on next page)

95



Table 3.14 (Continued from previous page)

HMMER alignment software

Protein Pfam Superfamily set Twilight set

fold label families F1 Accuracy F1 Accuracy

Arf (PF00025) 67% 52% 69% 59%

RecA (PF00154) 66% 52% 72% 59%

Kinesin (PF00225) 67% 53% 73% 59%

DEAD (PF00270) 64% 51% 73% 60%

Helicase C (PF00271) 68% 52% 74% 60%

ADK (PF00406) 67% 52% 73% 60%

Sulfotransfer 1 (PF00685) 63% 52% 73% 60%

MMR HSR1 (PF01926) 64% 51% 71% 58%

AAA 2 (PF07724) 64% 50% 73% 60%

AAA 5 (PF07728) 62% 50% 70% 57%

C47 GST C (PF00043) 78% 67% 83% 73%

Thioredoxin (PF00085) 52% 53% 66% 60%

AhpC-TSA (PF00578) 63% 59% 73% 66%

GST N (PF02798) 74% 63% 62% 53%

Redoxin (PF08534) 63% 60% 70% 65%

Thioredoxin 2 (PF13098) 60% 57% 68% 62%

GST N 3 (PF13417) 74% 63% 63% 54%

Thioredoxin 8 (PF13905) 65% 58% 74% 66%

C55 HSP70 (PF00012) 62% 52% 64% 56%

ROK (PF00480) 67% 54% 69% 55%

Peptidase M24 (PF00557) 70% 56% 71% 57%

rve (PF00665) 64% 50% 68% 53%

(Continued on next page)
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Table 3.14 (Continued from previous page)

HMMER alignment software

Protein Pfam Superfamily set Twilight set

fold label families F1 Accuracy F1 Accuracy

DNA pol B exo2 (PF10108) 67% 53% 68% 54%

C56 PNP UDP 1 (PF01048) 77% 63% 68% 52%

Peptidase M20 (PF01546) 78% 65% 70% 54%

Propep M14 (PF02244) 78% 64% 68% 52%

M20 dimer (PF07687) 60% 57% 49% 53%

C61 Pribosyltran (PF00156) 54% 51% 53% 52%

C67 Aminotran 1 2 (PF00155) 52% 54% 45% 47%

Cys Met Meta PP (PF01053) 69% 64% 79% 67%

Beta elim lyase (PF01212) 74% 64% 76% 65%

C68 Hexapep (PF00132) 85% 75% 84% 74%

NTP transferase (PF00483) 67% 60% 65% 58%

CTP transf 3 (PF02348) 69% 63% 69% 64%

C69 Abhydrolase 1 (PF00561) 69% 60% 68% 60%

Esterase (PF00756) 74% 62% 71% 60%

Abhydrolase 3 (PF07859) 70% 59% 71% 59%

Abhydrolase 5 (PF12695) 64% 53% 54% 45%

Abhydrolase 6 (PF12697) 60% 54% 54% 50%

C94 Transferrin (PF00405) 76% 63% 75% 60%

LysR substrate (PF03466) 66% 58% 75% 61%

C95 Thiolase N (PF00108) 45% 49% 38% 50%

Chal sti synt N (PF00195) 51% 43% 47% 38%

Chal sti synt C (PF02797) 67% 51% 62% 46%

(Continued on next page)
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Table 3.14 (Continued from previous page)

HMMER alignment software

Protein Pfam Superfamily set Twilight set

fold label families F1 Accuracy F1 Accuracy

Thiolase C (PF02803) 65% 51% 59% 45%

C108 Hydrolase (PF00702) 49% 48% 52% 48%

Hydrolase 3 (PF08282) 56% 53% 52% 54%

HAD (PF12710) 56% 46% 56% 48%

HAD 2 (PF13419) 51% 49% 56% 49%
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3.6 Summary

In this chapter, a variable–order Markov model–based scheme to predict indel flank-

ing regions (IndelFRs) in a protein sequence for a given protein fold has been pro-

posed [36]. In this scheme, two predictors, referred to as the PPM IndelFR and

PST IndelFR predictors, have been designed based on prediction by partial match

(PPM) [37] and probabilistic suffix tree (PST) [38], respectively. The performance

of the proposed PPM and PST IndelFR predictors have been evaluated. For this

purpose, 43 protein folds from different protein classes have been selected. The

k-fold cross-validation method has been used for training and testing the proposed

IndelFR predictors, where k = 10. In the training phase, the IndelFR predictor

for a given protein fold has been trained using the indel flanking regions listed in

the IndelFR database. In the testing phase, the trained predictors have been tested

first on the protein sequences from the same protein fold belonging to the IndelFR

database and then, on the set of protein sequences from the same protein fold but

belonging to the sequence alignment benchmark (SABmark 1.65) [39]. Finally, the

performance of the two proposed predictors has been compared to that using the

latest version of the alignment software HMMER, HMMER 3.0 [40].

It has been shown through extensive performance evaluation that the best choice

for the memory length D is 4 for all the selected protein folds. This indicates

that increasing the length of the context beyond 4 does not seem to improve the

performance of the proposed predictors. This is because as the length of the context

becomes larger, the probability of appearance of any amino acid given this long

context becomes very small. Thus, the escape mechanism may be triggered a number

of times and the overall probability of the amino acids in the window would become

small. The results have shown that the proposed predictors are able to predict

the IndelFRs in the selected protein folds with large values for accuracy and F1-

measure. The results have also shown that if one is interested only in predicting
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the indel flanking regions in protein sequences, then it would be preferable to use

the proposed predictors instead of using HMMER 3.0 in view of the substantially

superior performance of the former. It should be noted that if HMMER 3.0 is used

for prediction, one would need as many pHMMs as the number of families in a given

fold, while only one proposed predictor is needed for a given fold. It should be noted

that the proposed IndelFR predictors have been built in a fully automated manner

without utilizing any prior assumption about the occurrence of mutations in the

protein sequences, as in the case of scoring schemes.

In the next chapter, the information on the predicted location of indel flanking

regions (IndelFRs) will be employed in introducing a new variable gap penalty (VGP)

function for the alignment of multiple protein sequences.
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Chapter 4

MSAIndelFR: Multiple Protein

Sequence Alignment

4.1 Introduction

In the preceding chapter, the two IndelFR predictors have been proposed. The

performance evaluation of these predictors have shown that they are able to predict

indel flanking regions (IndelFRs) with large values for accuracy and F1-measure.

The proposed IndelFR predictors compute the left and right average log–loss values

for each position in the protein sequence, and then uses Algorithm 1 in Section 3.4

to identify the predicted locations of IndelFRs in the protein sequence.

In this chapter, we propose a novel and efficient algorithm [85] for multiple

sequence alignment using the information on the predicted locations of IndelFRs

and the computed average log-loss values provided by the PPM IndelFR predictor

designed in Chapter 3. The key innovation of this algorithm, refer to as MSAIn-

delFR algorithm, is the use of this information in proposing a new variable gap

penalty (VGP) function, wherein the gap opening penalty is position–specific and

the gap extension penalty is region–specific. In [3, 5, 17–19], it has been reported

that there exists a strong relationship between indel mutations and their flanking re-

gions. Therefore, by integrating the information provided by the IndelFR predictors
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to the gap penalty function, a more accurate alignment can be expected.

This chapter starts by giving in Section 4.2 a brief overview of the PPM IndelFR

predictor proposed in the preceding chapter. In Section 4.3, the proposed algorithm

for multiple sequence alignment is developed. First, a variable gap penalty function

and FASTA format are introduced. Then, the alignment strategy and the generation

of alignment using dynamic programming with variable gap penalty are discussed.

Experimental results on the performance of the proposed algorithm as well as those

on the six most–widely used alignment algorithms are presented and compared in

Section 4.4. Finally, in Section 4.5, a summary of the chapter along with some

concluding remarks on the proposed MSAIndelFR algorithm is provided.

4.2 PPM IndelFR Predictor

In the preceding chapter, a technique for building the IndelFR predictor for a given

protein fold, based on the prediction by partial match (PPM) [37], was proposed.

This PPM IndelFR predictor for a given protein fold contains two variable–order

Markov models, one for predicting the left flanking and the other for predicting

the right flanking regions. The performance evaluation results of the PPM IndelFR

predictor have shown that the best choice for the memory length D is 4.

Given a test protein sequence Sn
= s1s2s3 · · · sn of length n, the PPM IndelFR

predictor scans it by moving a window of length L = 10, one amino acid at a time, to

determine whether the string of amino acids within a window contains an IndelFR

or not. It has been noted that the impact of an indel on its flanking regions reduces

dramatically as we move away from the indel, and that it is negligible after 10 amino

acids [3].

The PPM IndelFR predictor, with D = 4, computes the left and right average

log–loss values for each position in the protein sequence, and then uses Algorithm 1

of Section 3.4 to extract the predicted locations of IndelFRs in the protein sequence.
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As in Section 3.4, the average log–loss value for window of length L = 10 at position

i, wini = sisi+1 · · · si+9, in the sequence is defined as

loglossP (wini) =

−
1

L

(
logP0(si) + logP1(si+1|si)+

logP2(si+2|s1si+1) + · · ·+

logPD(si+L−1|si+L−1−D · · · si+L−2)

)

(4.1)

where the logarithm is taken to base 2. For the purpose of illustration, the left and

right average log–loss values for the protein sequence d1liab at different positions

are shown in Figure 4.1(a) and the corresponding predicted locations of IndelFRs

for d1liab are shown in Figure 4.1(b).

The PPM IndelFR predictors for 11, 14 and 18 protein folds from different protein

classes, All–α proteins, All–β proteins and α and β proteins (a/b), respectively, have

been constructed according to the technique that we developed in Subsection 3.3.1.

Hence, we have 43 different PPM IndelFR predictors. It should be noted that the

PPM IndelFR predictors were trained using the IndelFR database [17], which in turn

provided IndelFRs for some selected protein sequences belonging to certain selected

protein folds from the SCOP database [42]. In Chapter 3, it has been demonstrated

that once the PPM IndelFR predictor is built for a given protein fold, it can be used

to compute the average log–loss values for any protein sequence belonging to this

protein fold. Hence, we will be able to compute the average log–loss values, and

then use Algorithm 1 of Section 3.4 to predict the IndelFRs for protein sequences

that are available in the selected protein folds, even though the IndelFR database

did not provide IndelFRs for these protein sequences.
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Figure 4.1: (a) Average log-loss values for the d1liab using PPM IndelFR predictor.

(b) Predicted locations of IndelFRs using PPM IndelFR predictor. (c) Gap opening

penalties. In (a), the solid dots represent the start locations of the predicted left

flanking regions and the stars that of the predicted right flanking regions.

4.3 Proposed Algorithm

In this section, we propose an algorithm for MSA, referred to as MSAIndelFR al-

gorithm, that makes use of the computed average log–loss values and the predicted

IndelFRs from the PPM IndelFR predictor. The results of the PPM IndelFR predic-

tor proposed in Section 3.3.1 have shown that the computed average log–loss values

in and around an IndelFR are much smaller than that in other regions. In view of

this observation, we combine the left and right average log–loss values for any given

protein sequence Sn
= s1s2s3 · · · sn of length n to propose a position–specific gap
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opening penalty function. The proposed position–specific gap opening penalty at a

particular position i in the sequence is given by

GPOi =





min(LPPMi, RPPMi), 1 ≤ i ≤ (n− L+ 1)

GPO(n−L+1), (n− L+ 1) < i ≤ n

(4.2)

where LPPMi and RPPMi are, respectively, the left and right average log–loss

values at position i. It is seen from this equation that GPOi, for (n−L+1) < i ≤ n,

is chosen to be equal to the gap opening penalty at position i = n−L+1. The gap

opening penalties at different positions for d1liab are shown in Figure 4.1(c).

In addition to using the gap opening penalty functionGPOi, we use the predicted

IndelFRs to propose a region–specific gap extension penalty function. As mentioned

in Section 4.1, the predicted IndelFRs are the most likely regions for the gaps to be

introduced in the protein sequence, since they are strongly related to indel mutations

[3, 5, 17–19]. Moreover, a single indel mutation event often affects several adjacent

amino acids in a protein sequence [1]. This fact is taken into consideration in the

proposed definition of the gap extension penalty at position i in the protein sequence,

GPEi :

GPEi =





0, if position i ∈ IndelFRs

GPOi, otherwise

(4.3)

In other words, a zero value is assigned to GPEi, if the gap introduced at position

i is in an IndelFR, whereas it is equal to GPOi if i is not in an IndelFR.

4.3.1 A new FASTA format

We modify the standard FASTA format to include into it the information about

the position–specific gap opening penalty and the predicted locations of IndelFRs.
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Hence, the input protein sequences to the proposed MSAIndelFR algorithm should

be written using the modified version of FASTA format, where the position–specific

gap opening penalty and the predicted locations of IndelFRs are added after the

main list of amino acids of the protein sequence.

The modified version of FASTA format is the same as the standard FASTA

format except that the position–specific gap opening penalties and the predicted

IndelFRs are included after the main list of amino acids of a given protein sequence.

The position–specific gap opening penalties are enclosed by curly brackets {} and

indicated by the label “GPO”. The predicted IndelFRs are included in three separate

lines and enclosed by curly brackets {} : one for the start location of the left

flanking regions, one for the start location of the right flanking regions, and one

for the complete IndelFRs. The start locations of the left and right flanking regions

are indicated by LLOC and RLOC, respectively, and the complete IndelFRs by

IndelFRs. In the following example, the protein sequences, 1hjd A and 1pht of

lengths 101 and 83, respectively, are written using the modified version of FASTA.

Example 5.

Sequence 1hjd A

ADRKLCADQECSHPISMAVALQDYMAPDCRFLTIHRGQVVYVFSKLKGR

GRLFWGGSVQGDYYGDLAARLGYFPSSIVREDQTLKPGKVD

VKTDKWDFYCQ

{GPO: 8.555 8.788 8.345 7.982 7.448 8.230 8.003 8.146 7.328 7.101 7.772 7.211

7.486 6.681 5.500 4.650 3.804 3.095 2.076 3.393 3.481 4.052 4.703 5.419 4.775

3.749 2.838 1.802 2.633 3.924 4.803 5.259 5.987 5.221 4.348 3.465 2.354 1.475

3.059 4.008 4.953 4.942 5.388 7.387 6.451 5.501 4.468 4.721 4.445 3.684 3.545

4.444 5.085 4.599 4.323 3.972 3.883 5.886 6.325 5.669 4.973 5.349 5.418 4.978

4.826 4.952 5.250 5.545 6.498 6.273 6.104 6.729 7.094 7.917 7.465 7.379 7.841

6.890 6.547 6.711 7.057 7.263 7.778 7.959 8.226 8.271 8.558 8.752 8.449 8.714
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8.476 8.757 8.757 8.757 8.757 8.757 8.757 8.757 8.757 8.757 8.757}

{LLOC: 19 38 57}

{RLOC: 28 51 65}

{IndelFR: 19 76}

Sequence 1pht

AEGYQYRALYDYKKEREEDIDLHLGDILTVNKGSLVALGFSDGQEARPEEI

GWLNGYNETTGERGDFPGTYVEYIGRKKISPP

{GPO: 6.694 6.724 6.247 6.688 6.634 6.607 6.326 6.708 6.859 7.013 7.262 7.528

7.105 7.755 8.015 7.748 7.462 7.023 6.331 5.660 6.188 5.987 6.116 5.651 5.764

6.484 6.775 6.017 6.314 6.433 6.293 7.209 7.436 7.247 7.418 6.644 7.878 7.583

8.145 7.605 6.913 6.096 6.604 6.463 6.025 6.181 6.071 6.290 5.767 6.715 7.267

7.266 7.030 6.751 6.783 7.131 6.992 6.941 6.842 6.813 7.020 7.320 7.783 7.675

7.426 7.058 6.652 6.652 6.796 6.707 7.131 7.176 7.605 7.346 7.346 7.346 7.346

7.346 7.346 7.346 7.346 7.346 7.346 }

{LLOC: 24 60}

{RLOC: 31 67}

{IndelFRs: 24-41, 60-77}

�
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4.3.2 Alignment strategy

The alignment strategy is based on the standard progressive alignment method for

aligning multiple protein sequences [60]. First, pairwise distances between input

sequences are calculated to form a distance matrix. An accurate calculation of

pairwise distances can be accomplished by performing all the pairwise alignments

amongst the input sequences; however, this is not practical in view of time complex-

ity, especially when the number of sequences is large, since any pairwise alignment

requires quadratic time for completion [20]. Therefore, some of the existing MSA

algorithms have used the k–tuple method [62] to calculate the pairwise distances

approximately. It has been shown in [11] that the Muth–Manber string matching

algorithm proposed in [68] to calculate the pairwise distances is more accurate than

the k–tuple method; this algorithm finds the distance between two sequences by

matching patterns that contain at most one error. For example, consider two se-

quences ABCABCABC and ABDABDABD that are 67% identical. The k–tuple

method (with a pattern length of 3) reports that these two sequences are not iden-

tical (i.e., share no exact patterns), while the Muth–Manber algorithm reports that

these two sequences are 67% identical. In view of this, we employ the Muth–Manber

algorithm to calculate the pairwise distances between the input protein sequences.

Since protein sequences are normally searched with short length patterns [11,15,

61,74], we search with patterns of length 3 of amino acids to calculate the pairwise

distances. Then, a guide tree is constructed from the distance matrix using the

unweighted pair group method with arithmetic mean (UPGMA) [65], which is the

most popular method for guide tree construction and used in many MSA algorithms

as the default option. Finally, sequences or profiles are aligned according to the order

prescribed by the guide tree. Hence, at each internal node of the guide tree, two

sequences, or two profiles or one sequence and one profile are aligned. The process

of aligning sequences/profiles continues until the highest level of the guide tree is
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reached. For this purpose, we use the dynamic programming (DP) approach along

with the proposed gap penalty functions, namely, the position–specific gap opening

penalty function and the region-specific gap extension penalty function, to align

sequences/profiles.

4.3.3 Dynamic programming with variable gap penalty

function

We assume that the input protein sequences are evolutionary related over their entire

lengths. Therefore, a global alignment of the input sequences will be obtained using

the DP approach. The optimal alignment in the DP approach is the alignment

which has the highest score, where the score of an alignment is found by using a

gap penalty function and the substitution matrix S. It should be noted that any

alignment between protein sequences is intended to reflect the cost of mutational

events needed to transform one sequence to the other [1, 20]. For this purpose, we

use a VGP function, which has two subfunctions: the position–specific gap opening

penalty functionGPOi and the region-specific gap extension penalty functionGPEi.

Let An
= a1a2a3 · · · an and Bm

= b1b2b3 · · · bm be two sequences of lengths n and

m, respectively. The DP approach finds the optimal alignment between A and B by

computing the optimal alignments between all prefixes ofA and B. The amino acids

in A and B are assigned to one of three possible states: aligned, gap in sequence A,

or gap in sequence B during the alignment process. These states are represented by

three matrices in the DP approach. Let A[1 : i] = a1a2 · · · ai be a prefix of sequence

A, B[1 : j] = b1b2 · · · bj be a prefix of sequence B, M(i, j) be the optimal score for

aligning A[1 : i] and B[1 : j] given that ai is aligned to bj , IA(i, j) be the optimal

score given that ai is aligned to a gap, and IB(i, j) be the optimal score given that

bj is aligned to a gap, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. The recursive equations

to find the various elements in the state matrices M(i, j), IA(i, j), and IB(i, j) are

109



given by

M(i, j) = max





M(i− 1, j − 1) + s(ai, bj), With ai−1 aligned to bj−1, align ai to bj

IA(i, j) + s(ai, bj), End a gap in A, align ai to bj

IB(i, j) + s(ai, bj), End a gap in B, align ai to bj

(4.4)

IA(i, j) = max





M(i − 1, j)− (GPOA
i +GPEA

i ), Open a new gap in A

IA(i− 1, j)−GPEA
i , Extend an old gap in A

(4.5)

IB(i, j) = max






M(i, j − 1)− (GPOB
j +GPEB

j ), Open a new gap in B

IB(i, j − 1)−GPEB
j , Extend an old gap in B

(4.6)

with

M(0, 0) = 0, M(0, j) = GPOB
1 +

m∑

j=1

GPEB
j ,

M(i, 0) = GPOA
1 +

n∑

i=1

GPEA
i

IA(0, j) = −∞, IB(i, 0) = −∞

(4.7)

where s(ai, bj) can be obtained directly from the substitution matrix S, GPOA
i and

GPEA
i are, respectively, the gap opening and extension penalty functions for the

sequence A, and GPOB
j and GPEB

j are the corresponding penalty functions for the

sequence B. Once the computation of M is completed, it contains the maximum
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alignment score, and a trace back procedure is used to retrieve the alignment between

A and B.

In this section, we implement the memory efficient DP algorithm proposed in [64],

which can align two sequences of lengths, say n and m (n ≥ m), with a time

complexity of O(mn) and a space complexity of O(n). Since it has been shown

in [24] that the selection of a particular substitution matrix does not noticeably affect

the alignment accuracy, and that there is little difference in the alignment accuracy

using BLOSUM [21], PAM [23] or GONNET [22] as the substitution matrix, we use

GONNET250 as the substitution matrix.

In order to continue aligning sequences/profiles until the highest level of the

guide tree is reached, we need the gap penalty functions, GPOi and GPEi, for each

profile. For example, consider the alignment of two sequences, say, A and B, at

the lowest level of the tree to produce profile C. The position–specific gap opening

penalty function for profile C is defined to be

GPOC
i =





GPOA
j +GPOB

k , if aj is aligned with bk at position i

GPOA
j , if there is a gap in B at position i

GPOB
k , if there is a gap in A at position i

(4.8)

where GPOA
j , GPOB

k and GPOC
i are the gap opening penalty functions at positions

j, k, and i for A, B and C, respectively. In a similar manner, we define the gap

extension penalty function for C. This makes a gap more likely to occur at a

position where a gap already exists. If there is no gap at a position i in C, then the

gap opening penalty is increased by adding to it both GPOA
j and GPOB

k to avoid

introducing gaps at the aligned positions.

As already mentioned, the internal nodes of the guide tree are visited in a

bottom–up order, and for each visited node a pairwise alignment of sequences/pro-
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files is computed using the DP approach along with the proposed VGP function.

The MSA associated with the root node is the final alignment.

4.4 Results and Discussion

The performance of MSA algorithms are usually evaluated on alignment bench-

marks containing reference alignments. In our experiments, we use four popular

benchmarks, namely, BAliBASE 3.0 [32], OXBENCH [41], PREFAB 4.0 [15] and

SABmark 1.65 [39] to evaluate the performance of the proposed MSAIndelFR algo-

rithm as well as that of the six top–performing MSA algorithms, namely, Clustal

W2 version 2.1, Clustal Omega version 1.2.0, MSAProbs version 0.9.7, Kalign2 ver-

sion 2.04, MAFFT version 7.184 and MUSCLE version 3.8.31. For MAFFT, auto

option is used with the maximum iterative refinement (maxiterate option) set to

1000, whereas the default options are used for all the other algorithms, including

the proposed MSAIndelFR.

We select the reference alignments from the above four benchmarks that have

protein sequences belonging to one of the 43 protein folds (see Tables A.1– A.3

in Appendix). In the preceding chapter, it has been shown that once the PPM

IndelFR predictor is built for a given protein fold, it can be used to compute the

average log–loss values for any protein sequence that belongs to this protein fold.

Hence, we are able to compute the average log–loss values, and then use Algorithm

1 of Section 3.4 to predict the IndelFRs for protein sequences that are available

in the alignment benchmarks, even though the IndelFR database does not contain

IndelFRs for these protein sequences. We would like to emphasize that no training

is needed in the proposed MSAIndelFR algorithm. Further, it does not make use

of the protein secondary information (alpha, beta or coil) as input. It makes use

of the computed average log–loss values and the predicted IndelFRs from the PPM

IndelFR predictor proposed in Section 3.3. It should be noted that the PPM IndelFR
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predictor does not use any of the above–mentioned four benchmarks for its training.

We use the measures, sum-of-pairs (SP) and total columns (TC) [34], which are

the most commonly used metrics, to evaluate and compare the performance of the

various MSA algorithms. The SP value is defined as the number of correctly aligned

amino acid pairs found in the test alignment divided by the total number of aligned

amino acid pairs in the core blocks of the reference alignment, where the core blocks

of the reference alignment refer to the regions for which reliable alignments are known

to exist. We use bench database (Edgar, R.C., http://www.drive5.com/bench) to

determine the core blocks in the selected benchmarks. It should be noted that the

quality (Q) metric used in [15] is equivalent to SP. The TC value is defined as the

number of correctly aligned columns found in the test alignment divided by the

total number of aligned columns in the core blocks of the reference alignment, and

hence, gives the proportion of the total alignment columns that is recovered in the

test alignment. A value of 1.0 for TC indicates perfect agreement between the test

and reference alignments. It should be noted that the TC value is equivalent to

the SP value in the case of pairwise alignment (as in the PREFAB benchmark).

The SP and TC values are calculated employing the QSCORE software available at

http://www.drive5.com/qscore/. Example 6 is given below illustrates how the SP

and TC values are calculated.
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Example 6.

In this example, we explain how the sum–of–pairs (SP) and the total column

(TC) values are computed.

Given the reference alignment:

Seq [0]: GKGDRKK

Seq [1]: MQ-DRVK

Seq [2]: MKKLKKH

Seq [3]: MHIK-PL

and the test alignment:

Seq [0]: GK-GDRKK

Seq [1]: MQ-DRVK-

Seq [2]: MKKLKKH-

Seq [3]: MHIK-PL-

the sum–of–pairs (SP) value is given by

SP =
The number of correclty aligned amino acid pairs found in the test alignment

The total number of aligned amino acid pairs in the reference alignment
(4.9)

and the total column (TC) value is given by

TC =
The number of correclty aligned columnsfound in the test alignment

The total number of aligned columns in the reference alignment
(4.10)
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Table 4.1

Step-by-step calculations of the intermediate values required for the computation

of SP and TC

Reference Aligned amino acids Correctly aligned Correctly aligned

alignment pair count in column count in amino acid pair

column reference alignment in test alignment count in test

alignment

1
4(4−1)

2
= 6 1

4(4−1)
2

= 6

2 6 +
4(4−1)

2
= 12 2 6 +

4(4−1)
2

= 12

3 12 +
3(3−1)

2
= 15 2 12 +

2(2−1)
2

= 13

4 15 +
4(4−1)

2
= 21 2 13 +

3(3−1)
2

= 16

5 21 +
3(3−1)

2
= 24 2 16 +

2(2−1)
2

= 17

6 24 +
4(4−1)

2
= 30 2 17 +

3(3−1)
2

= 20

7 30 +
4(4−1)

2
= 36 2 20 +

3(3−1)
2

= 23

SP and TC values can be computed by substituting the values given in the

last row of Table 4.1 in Equation 4.9 and 4.10

SP =
23

36
= 0.639

TC =
2

7
= 0.286

�
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4.4.1 Evaluation using BAliBASE 3.0

For evaluating multiple sequence alignment algorithms, BAliBASE [32] is the most

widely used benchmark. This benchmark contains 3D structure–based alignments

that are manually refined. Out of the 386 reference alignments in BAliBASE, there

are 186 alignments that have protein sequences which belong to one or the other of

the 43 selected protein folds.

The average SP and TC values of MSAIndelFR as well as those of the other

six algorithms using this benchmark as reference are shown in Table 4.2. The re-

sults show that MSAIndelFR achieves the highest SP and TC values. Specifically,

it provides an average SP value of 86.23% representing an improvement of 6.02%,

1.37%, 4.12%, 4.29%, 6.17% and 10.37% over that of MSAProbs, MAFFT, MUS-

CLE, Clustal Omega, Kalign2 and Clustal W2, respectively. Also, it provides an

average TC value of 57.56% representing an improvement of 2.62%, 3.06%, 10.15%,

7.20%, 13.87% and 18.19%, respectively, over that of the six alignment algorithms.
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Table 4.2

Average SP and TC values of MSAIndelFR and other multiple alignment algorithms for the benchmarks BAliBASE

3.0, OXBENCH, PREFAB 4.0 and SABmark 1.65

BAliBASE OXBENCH PREFAB SABmark

MSA algorithm SP(%) TC(%) SP(%) TC(%) SP(%) TC(%) SP(%) TC(%)

MSAIndelFR 86.23 57.56 91.88 83.83 59.35 59.35 53.59 34.38

MSAProbs 80.21 (54.93) (89.39) (79.78) (57.52) (57.52) (51.55) (25.21)

MAFFT (84.86) 54.50 88.22 77.98 53.93 53.93 50.14 24.33

MUSCLE 82.11 47.41 88.66 78.93 55.74 55.74 46.33 20.80

Clustal Omega 81.94 50.35 88.05 77.76 55.96 55.96 45.11 19.58

Kalign2 80.06 43.68 87.55 77.30 56.33 56.33 41.64 18.91

Clustal W2 75.86 39.37 87.94 77.00 56.05 56.05 40.38 15.98

Bold faced values indicate the best performance, while the values in parentheses indicate the second best

performance.

1
1
7



Boxplots would show more detailed information about the distribution of the SP

and TC values than that provided by Table 4.2. They indicate whether a distribution

is skewed or whether there are potential unusual observations (outliers) in the data

set. In addition, they are very useful when large numbers of test cases are involved

and when two or more methods are being compared. Finally, they can be used

to determine the first, second (median), and third quartiles as well as interquartile

range (IQR) values for various distributions. The width of a box indicates the IQR

value, which is the difference between the third and first quartile values.

In view of the above reasons, boxplots resulting from the distributions the SP

values of the various algorithms evaluated using BAliBASE 3.0 are shown in Fig-

ure 4.2. This figure clearly shows that MSAIndelFR performs better than the other

algorithms, since it has the lowest IQR value as well as the highest first quartile

value. It is noted that even though MSAIndelFR and MSAprobs have an almost

equal median value of 91%, the distribution of the SP values generated by MSAIn-

delFR is much narrower than that generated by MSAprobs, since the former has an

IQR value of 12%, whereas the latter a value of 20%. In addition, it is seen that 75%

of the MSAIndelFR alignments have an SP value of more than 84% (first quartile),

whereas 25% of the alignments have an SP value of more than 96% (third quartile).

Figure 4.3 shows the distributions of the TC values of MSAIndelFR and those of the

other six algorithms. It is seen from this figure that, just as the case with respect

to the SP values, MSAIndelFR performs better than the other algorithms.
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Figure 4.2: Boxplots for the distributions of the SP values of MSAIndelFR and

the other MSA multiple alignment algorithms using the BAliBASE 3.0 benchmark,

where the top and bottom of a box and the line in between represent the third

quartile, first quartile and median, respectively.
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Figure 4.3: Boxplots for the distributions of the TC values of MSAIndelFR and

the other MSA multiple alignment algorithms using the BAliBASE 3.0 benchmark,

where the top and bottom of a box and the line in between represent the third

quartile, first quartile and median, respectively.
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4.4.2 Evaluation using OXBENCH

The OXBENCH benchmark [41] is a set of structure-based alignments. Out of the

395 reference alignments in OXBENCH, there are 191 alignments that have protein

sequences which belong to one or the other of the 43 selected protein folds.

The average SP and TC values of MSAIndelFR as well as that of the other six

algorithms using this benchmark as reference are given in Table 4.2. The results

show that MSAIndelFR achieves the highest SP and TC values. Specifically, it

provides an average SP value of 91.88% representing an improvement of 2.49%,

3.65%, 3.22%, 3.83%, 4.33% and 3.94% over that of MSAProbs, MAFFT, MUSCLE,

Clustal Omega, Kalign2 and Clustal W2, respectively. Also, it provides an average

TC value of 83.83% representing an improvement of 4.05%, 5.85%, 4.90%, 6.07%,

6.53% and 6.83%, respectively, over that of the six alignment algorithms.

The boxplots for the distributions of the SP values of the various algorithms

evaluated using OXBENCH are shown in Figure 4.4. This figure clearly shows that

MSAIndelFR performs better than the other algorithms, since it has the lowest

IQR value as well as the highest first quartile value. It is noted that even though

MSAIndelFR and MSAprobs have an almost equal median value of 98%, the distri-

bution of the SP values generated by MSAIndelFR is narrower than that generated

by MSAprobs, since the former has an IQR value of 9%, whereas the latter an

IQR value of 12%. In addition, it is seen that 75% of the MSAIndelFR alignments

have an SP value of more than 91% (first quartile), whereas 25% of the alignments

have an SP value of 100% (third quartile). The boxplots for the distributions of

the TC values of MSAIndelFR and those of the other six algorithms are given in

Figure 4.5, which confirm the better performance of MSAIndelFR over the that of

other algorithms.
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Figure 4.4: Boxplots for the distributions of the SP values of MSAIndelFR and

the other MSA algorithms using the OXBENCH benchmark, where the top and

bottom of a box and the line in between represent the third quartile, first quartile

and median, respectively.
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Figure 4.5: Boxplots for the distributions of the TC values of MSAIndelFR and

the other MSA algorithms using the OXBENCH benchmark, where the top and

bottom of a box and the line in between represent the third quartile, first quartile

and median, respectively.
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4.4.3 Evaluation using PREFAB 4.0

The PREFAB 4.0 benchmark [15] is a fully automatically–generated benchmark

containing 1681 reference alignments. Out of the 1681 reference alignments in PRE-

FAB 4.0, there are 863 alignments that have protein sequences which belong to one

or the other of the 43 selected protein folds.

The average SP and TC values of MSAIndelFR as well as those of the other six

algorithms using this benchmark as reference are given in Table 4.2. The results

show that MSAIndelFR achieves the highest SP and TC values. Specifically, it

provides an average SP value of 59.35% representing an improvement of 1.83%,

5.42%, 3.61%, 3.39%, 3.02% and 3.30% over that of MSAProbs, MAFFT, MUSCLE,

Clustal Omega, Kalign2 and Clustal W2, respectively. Also, it provides similar

improvements in the TC values over that of the other six algorithms.

The boxplots for the distributions of the SP values of the various algorithms are

shown in Figure 4.6. This figure clearly shows that MSAIndelFR performs better

than the other algorithms, since it has the lowest IQR value as well as the highest

first quartile value. It is noted that even though MSAIndelFR, MSAprobs and

Clustal W2 have almost the same median value of 67%, the distribution of the SP

values generated by MSAIndelFR is narrower than that generated by MSAprobs,

since MSAIndelFR has an IQR value of 57%, whereas MSAprobs and Clustal W2

have an IQR value of 61% and 69%, respectively. In addition, it is seen that 75%

of the MSAIndelFR alignments have an SP value of more than 31% (first quartile),

whereas 25% of the alignments have an SP value of 88% (third quartile). The

boxplots for the distributions of the TC values of MSAIndelFR and those of the

other six algorithms are shown in Figure 4.7, which confirm the better performance

of MSAIndelFR over that of the other algorithms.
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Figure 4.6: Boxplots for the distributions of the SP values of MSAIndelFR and

the other MSA algorithms using the PREFAB 4.0 benchmark, where the top and

bottom of a box and the line in between represent the third quartile, first quartile

and median, respectively.
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Figure 4.7: Boxplots for the distributions of the TC values of MSAIndelFR and

the other MSA algorithms using the PREFAB 4.0 benchmark, where the top and

bottom of a box and the line in between represent the third quartile, first quartile

and median, respectively.
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4.4.4 Evaluation using SABRE (SABmark 1.65)

The SABmark 1.65 [39] is a very challenging benchmark for multiple sequence align-

ment. This benchmark is divided into two subsets: Twilight zone and Superfam-

ilies. The similarity level between any two protein sequences is less than 50% in

the Superfamily set, whereas it is at most 25% in the Twilight set. In [77], the

author argued that the pairwise reference alignments in SABmark are not suit-

able to evaluate MSA algorithms, and hence constructed the SABRE benchmark

(http://www.drive5.com/bench), containing 423 out of the 634 SABmark groups. In

this evaluation, we use SABRE instead of the original SABmark benchmark. Out

of the 423 reference alignments in the SABRE benchmark, there are 79 alignments

that have protein sequences which belong to one or the other of the 43 selected

protein folds.

The average SP and TC values of MSAIndelFR as well as those of the other six

algorithms using this benchmark as reference are given in Table 4.2. The results show

that MSAIndelFR achieves the highest SP and TC values. Specifically, it provides an

average SP value of 53.59% representing an improvement of 2.04%, 3.45%, 7.25%,

8.48%, 11.94% and 13.21% over that of MSAProbs, MAFFT, MUSCLE, Clustal

Omega, Kalign2 and Clustal W2, respectively. Also, it provides an average TC

value of 34.38% representing an improvement of 9.18%, 10.06%, 13.58%, 14.80%,

15.48% and 18.40%, respectively, over that of the six alignment algorithms.

The boxplots for the distributions of the SP values of the various algorithms are

shown in Figure 4.8. This figure clearly shows that even for this challenging bench-

mark, MSAIndelFR performs better than all the other algorithms in terms of the

median value (52%). In addition, it is seen that 75% of MSAIndelFR alignments

have an SP value of more than 29% (first quartile), whereas 25% of the alignments

have an SP value of more than 77% (third quartile). The boxplots for the distri-

butions of the TC values of MSAIndelFR and those of the other six algorithms are
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shown in Figure 4.9, which confirm the better performance of MSAIndelFR over

that of the other algorithms.
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Figure 4.8: Boxplots for the distributions of the SP values of MSAIndelFR and the

other algorithms using the SABmark 1.65 benchmark, where the top and bottom of

a box and the line in between represent the third quartile, first quartile and median,

respectively.
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Figure 4.9: Boxplots for the distributions of the TC values of MSAIndelFR and the

other algorithms using the SABmark 1.65 benchmark, where the top and bottom of

a box and the line in between represent the third quartile, first quartile and median,

respectively.
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4.5 Summary

In this chapter, a novel and efficient algorithm, called the MSAIndelFR algorithm,

has been proposed for multiple protein sequence alignment. In this algorithm, the

information on the locations of indel flanking regions and the computed average log–

loss values that are obtained from the PPM IndelFR predictor proposed in Chapter

3 have been incorporated. A new variable gap penalty function, wherein the gap

opening penalty is position–specific and the gap extension penalty is region–specific,

has been proposed. Further, in this algorithm, the so called progressive alignment

method for aligning multiple protein sequences has been employed, which in turn

has used the dynamic programming approach along with a new variable gap penalty

function to align sequences/profiles.

From extensive evaluation results on the four popular benchmarks, namely, BAl-

iBASE 3.0, OXBENCH, PREFAB 4.5, and SABRE (SABmark 1.65), it has been

shown that the performance of the proposed MSAIndelFR algorithm is superior to

that of the six most–widely used alignment algorithms, Clustal W2, Clustal Omega,

MSAProbs, Kalign2, MAFFT and MUSCLE, in terms of both the SP and TC met-

rics. It is to be pointed out that we have made a study and seen that the sequences

chosen from the benchmarks for testing have virtually not been used in the training

of the PPM IndelFR predictors [85]. It is also worth pointing out that the improve-

ments in terms of the SP and TC values provided by the proposed MSAIndelFR

algorithm have been found [85] to be, in general, statistically significant based the

Wilcoxon matched-pair signed-rank test [86]. This superior performance of the pro-

posed algorithm can be attributed to the introduction of the variable gap penalty

function, consisting of the position–specific gap opening penalty function and the

region-specific gap extension penalty function, in this algorithm.

Finally, we have demonstrated that integrating the information on the computed

average log–loss values and the predicted locations of IndelFRs into a multiple se-
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quence alignment scheme can substantially improve the accuracy of the alignment.
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Chapter 5

Conclusion

5.1 Concluding Remarks

Prediction of indel flanking regions in protein sequences has very important appli-

cations in research related to the evolution, structures and functions of proteins,

especially with the rapid growth in the number of protein sequences in the protein

databases. Generation of a highly accurate multiple protein sequence alignment

has important applications in research related to sequence annotation, phylogenetic

tree estimation, evolutionary analysis, secondary structure prediction and protein

database search. This thesis has been concerned with investigating new techniques

for predicting the indel flanking regions (IndelFRs) in protein sequences and with

devising a new algorithm for improving the accuracy of multiple protein sequence

alignments.

In the first part of this thesis, a novel scheme to predict indel flanking regions in

a protein sequence for a given protein fold has been proposed. The proposed indel

flanking region (IndelFR) predictors, referred to as the PPM IndelFR and PST

IndelFR predictors, have been designed based on the prediction by partial match

(PPM) and probabilistic suffix tree (PST), respectively. For the purpose of this
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design, the number of protein folds from each of the protein classes All–α proteins,

All–β proteins and α and β proteins (a/b) has been chosen for which their indel

flanking regions have been specified in the IndelFR database. The proposed IndelFR

predictors have been built for various values of the memory length. An algorithm,

using the proposed IndelFR predictors, has been developed to identify the locations

of IndelFRs in a protein sequence.

The performance of the two proposed IndelFR predictors for the prediction of

IndelFRs has been evaluated using the IndelFR database. The evaluation results on

this database have shown that the proposed predictors are able to predict IndelFRs

in the protein sequences with large values for accuracy and F1-measure. The results

have also shown that the best choice for the memory length is 4. In order to have a

more stringent assessment of the performance of the proposed predictors, they have

been tested using a very challenging sequence alignment benchmark, SABmark 1.65.

The performance results have shown that the proposed predictors are still able to

predict the IndelFRs in the selected protein folds with large values for accuracy

and F1-measure. The performance of the two proposed predictors have also been

compared to that of using the latest version of the alignment software HMMER,

HMMER 3.0. The results have shown that from the point of view of predicting

IndelFRs in protein sequences, it would be preferable to use the proposed predictors

instead of HMMER 3.0 because of the substantially superior performance of the

former. It should be noted that the proposed IndelFR predictors are more general

than using HMMER 3.0. These predictors for a given protein fold are capable of

predicting the indel flanking regions for any protein sequence from any protein family

in that fold, whereas HMMER 3.0 has to use different pHMMs depending on the

family of the protein fold to which the protein sequence belongs. For instance, for

the Globin-like, we need to design only one IndelFR predictor fold, while HMMER

3.0 has to use 5 different pHMMs.
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In the second part of this thesis, a novel and efficient algorithm, called the

MSAIndelFR algorithm, has been proposed for multiple protein sequence alignment.

In this algorithm, the information on the indel flanking regions that is obtained

from the PPM IndelFR predictor proposed in Chapter 3 has been incorporated.

A new variable gap penalty function has been introduced, wherein the computed

average log–loss values have been used to propose the position–specific gap opening

penalty function and the predicted IndelFRs have been used to propose the region–

specific gap extension penalty function. In the proposed algorithm, the progressive

alignment method for aligning multiple protein sequences has been employed. In

the progressive alignment, the new variable gap penalty function has been used in

the framework of dynamic programming to conduct a pairwise sequences/profiles

alignment.

The performance of the proposed alignment algorithm has been evaluated using

four popular benchmarks, BAliBASE 3.0, OXBENCH, PREFAB 4.0, and SABmark

1.65. The results have shown that the performance of MSAIndelFR is superior to

that of the six most–widely used alignment algorithms, Clustal W2, Clustal Omega,

MSAProbs, Kalign2, MAFFT and MUSCLE, in terms of both the sum-of-pairs

and total column metrics. The results have demonstrated that using the proposed

variable gap penalty function based on the computed average log–loss values and the

predicted IndelFRs into a multiple sequence alignment algorithm can substantially

improve the protein alignment accuracy.

The study undertaken in this thesis has shown that a reliable detection of indels

and their flanking regions can be achieved by using the proposed IndelFR predictors,

and a substantial improvement in the protein alignment accuracy can be obtained by

using the proposed variable gap penalty function that incorporates the information

obtained from the use of IndelFR predictors. Thus, we anticipate that our research

study will not only enable further studies on the modeling of indel mutations and
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on protein sequence alignment, but will also open up new avenues for research con-

cerning evolution, structures, and functions of proteins and their alignments.

5.2 Scope for Future Investigation

The present work can be extended in various ways. Further investigation can be

carried out to incorporate other possible characteristic properties of indel flank-

ing regions with a view to enhancing their prediction. For example, the secondary

structure information about the indel flanking regions could be incorporated in the

proposed IndelFR predictors to enhance its prediction performance. Further investi-

gations can be carried out to incorporate the proposed variable gap penalty function

into Hidden Markov Model (HMM) or FFT approach for the alignment of multiple

protein sequences.
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Table A.1

Protein folds from the All-α protein class that are listed in the IndelFR database, and their Pfam families

label Protein folds Protein superfamilies Pfam families

Globin (PF00042)

Phycobilisome (PF00502)

A1 a.1: Globin–like a.1.1: Globin–like FAD binding 2 (PF00890)

Bac globin (PF01152)

Dus (PF01207)

A3 a.3: Cytochrome c a.3.1: Cytochrome c Cytochrom B C (PF00032)

Cytochrom C (PF00034)

Homeobox (PF00046)

TetR N (PF00440)

MarR (PF01047)

a.4.1: Homeodomain–like HxlR (PF01638)

A4 a.4: DNA/RNAbinding a.4.5: “Winged helix” TrmB (PF01978)

3–helical bundle DNA-binding domain HTH 5 (PF01022)

HTH 8 (PF02954)

PadR (PF03551)

(Continued on next page)
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Table A.1 – (Continued from previous page)

label Protein folds Protein superfamilies Pfam families

Myb DNA–bind 6 (PF13921)

A22 a.22: Histone–fold a.22.1: Histone–fold Histone (PF00125)

TBP (PF00352)

Ferritin (PF00210)

A25 a.25: Ferritin–like a.25.1: Ferritin–like Ribonuc red sm (PF00268)

Phenol Hydrox (PF02332)

Hormone 1 (PF00103)

IL10 (PF00726)

A26 a.26: 4–helical cytokines a.26.1: 4–helical cytokines EPO TPO (PF00758)

LIF OSM (PF01291)

A35 a.35: lambda repressor–like a.35.1: lambda repressor– HTH 3 (PF01381)

DNA–binding domains like DNA-binding domains

A39 a.39: EF Hand–like a.39.1: EF–hand Efhand (PF00036)

A45 a.45: Glutathione S–transferase a.45.1: Glutathione S–transferase GST C (PF00043)

(GST), C–terminal domain (GST), C–terminal domain GST N (PF02798)

A118 a.118: alpha–alpha superhelix a.118.1: ARM repeat 14–3–3 (PF00244)

a.118.3: Sec7 domain Arm (PF00514)

(Continued on next page)
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Table A.1 – (Continued from previous page)

label Protein folds Protein superfamilies Pfam families

a.118.7: 14-3-3 protein VHS (PF00790)

a.118.9: ENTH/VHS domain Sec7 (PF01369)

a.118.8: TPR–like ENTH (PF01417)

TPR 2 (PF07719)

A133 a.133: Phospholipase A2, PLA2 a.133.1: Phospholipase A2, PLA2 Phospholip A2 1(PF00068)

1
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Table A.2

Protein folds from the All-β protein class that are listed in the IndelFR database, and their Pfam families

label Protein folds Protein superfamilies Pfam families

COX2 (PF00116)

B6 b.6: Cupredoxin–like b.6.1: Cupredoxins Copper–bind (PF00127)

Cu–oxidase (PF00394)

b.18.1: Galactose–binding

B18 b.18: Galactose–binding domain-like domain-like F5 F8 type C (PF00754)

CBM 6 (PF03422)

Laminin G 1 (PF00054)

Lectin legB (PF00139)

Gal–bind lectin (PF00337)

B29 b.29: Concanavalin A–like b.29.1: Concanavalin A–like Glyco hydro 11 (PF00457)

lectins/glucanases lectins/glucanases Glyco hydro 7 (PF00840)

Glyco hydro 12 (PF01670)

B34 b.34: SH3–like barrel b.34.2: SH3–domain SH3 1 (PF00018)

MBT (PF02820)

B35 b.35: GroES–like b.35.1: GroES–like Cpn10 (PF00166)

(Continued on next page)
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Table A.2 – (Continued from previous page)

label Protein folds Protein superfamilies Pfam families

ADH zinc N (PF00107)

B36 b.36: PDZ domain–like b.36.1: PDZ domain–like PDZ (PF00595)

b.40.5: Inorganic pyrophosphatase tRNA–synt 2 (PF00152)

b.40.1: Staphylococcal nuclease CSD (PF00313)

b.40.6: MOP–like SSB (PF00436)

B40 b.40: OB–fold SNase (PF00565)

Pyrophosphatase (PF00719)

tRNA bind (PF01588)

Stap Strp tox C (PF02876)

B42 b.42: beta–Trefoil b.42.1: Cytokine FGF (PF00167)

b.42.2: Ricin B–like lectins Ricin B lectin (PF00652)

B47 b.47: Trypsin–like b.47.1: Trypsin–like Trypsin (PF00089)

serine proteases serine proteases Peptidase C3 (PF00548)

Trypsin 2 (PF13365)

B50 b.50: Acid proteases b.50.1: Acid proteases Asp (PF00026)

RVP (PF00077)

B55 b.55: PH domain–like b.55.1: PH domain–like PH (PF00169)

(Continued on next page)
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Table A.2 – (Continued from previous page)

label Protein folds Protein superfamilies Pfam families

WH1 (PF00568)

PID (PF00640)

B60 b.60: Lipocalins b.60.1: Lipocalins Lipocalin (PF00061)

DUF1794 (PF08768)

b.82: Double–stranded b.82.1: RmlC–like cupins cNMP binding (PF00027)

B82 beta–helix b.82.3: cAMP–binding Cupin 1 (PF00190)

domain–like dTDP sugar isom (PF00908)

Cupin 2 (PF07883)

Rhv (PF00073)

b.121.2: Group II dsDNA

viruses VP Viral coat (PF00729)

b.121.4: Positive stranded

B121 b.121: Nucleoplasmin–like/VP ssRNA viruses Parvo coat (PF00740)

(viral coat and capsid proteins) Tymo coat (PF00983)

Peptidase A6 (PF01829)

Phage F (PF02305)

1
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Table A.3

Protein folds from the α and β proteins (a/b) class that are listed in the IndelFR database, and their Pfam families

label Protein folds Protein superfamilies Pfam families

c.1.1: Triosephosphate

isomerase (TIM) TIM (PF00121)

c.1.2: Ribulose–phoshate

binding barrel Alpha–amylase (PF00128)

c.1.3: Thiamin phosphate synthase Cellulase (PF00150)

c.1.4: FMN–linked oxidoreductases Glyco hydro 1 (PF00232)

c.1.5: Inosine monophosphate

dehydrogenase (IMPDH) Aldo ket red (PF00248)

c.1.6: PLP-binding barrel Glycolytic (PF00274)

C1 c.1: TIM beta/alpha-barrel c.1.7: NAD(P)-linked oxidoreductase Glyco hydro 18 (PF00704)

c.1.8: (Trans)glycosidases

c.1.9: Metallo-dependent hydrolases

c.1.10: Aldolase

c.1.11: Enolase C-terminal domain-like

c.1.12: Phosphoenolpyruvate

(Continued on next page)
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Table A.3 – (Continued from previous page)

label Protein folds Protein superfamilies Pfam families

/pyruvate domain

c.1.13: Malate synthase G

c.1.14: RuBisCo, C-terminal domain

c.1.15: Xylose isomerase-like

c.1.16: Bacterial luciferase-like Oxidored FMN (PF00724)

c.1.17: Nicotinate

/Quinolinate PRTase

C-terminal domain-like MR MLE (PF01188)

c.1.18: PLC-like phosphodiesterases AP endonuc 2 (PF01261)

c.1.19: Cobalamin (vitamin B12)

-dependent enzymes RuBisCO large N (PF02788)

c.1.20: tRNA-guanine transglycosylase Enolase N (PF03952)

c.1.21: Dihydropteroate synthetase

-like Amidohydro 3 (PF07969)

c.1.26: Homocysteine

S-methyltransferase

c.1.27: (2r)–phospho-3

(Continued on next page)
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Table A.3 – (Continued from previous page)

label Protein folds Protein superfamilies Pfam families

-sulfolactate synthase ComA FMN dh (PF01070)

Gp dh N (PF00044)

Ldh 1 N (PF00056)

c.2: NAD(P)–binding c.2.1: NAD(P)–binding adh short (PF00106)

C2 Rossmann-fold domains Rossmann–fold domains ADH zinc N (PF00107)

THF DHG CYH (PF00763)

NAD Gly3P dh N (PF01210)

NAD binding 2 (PF03446)

c.3: FAD/NAD(P) c.3.1: FAD/NAD(P) Pyr redox (PF00070)

C3 -binding domain -binding domain FAD binding 2 (PF00890)

DAO (PF01266)

ECH (PF00378)

C14 c.14: ClpP/crotonase c.14.1: ClpP/crotonase CLP protease (PF00574)

Carboxyl trans (PF01039)

c.23.1: CheY-like Response reg (PF00072)

c.23.5: Flavoproteins GATase (PF00117)

c.23.6: Cobalamin (vitamin B12)

(Continued on next page)
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Table A.3 – (Continued from previous page)

label Protein folds Protein superfamilies Pfam families

–binding domain Flavodoxin 1 (PF00258)

c.23.8: N5–CAIR mutase

(phosphoribosy–laminoimidazole

C23 c.23: Flavodoxin–like carboxylase, PurE) DJ-1 PfpI (PF01965)

c.23.12: Formate/glycerate

dehydrogenase catalytic domain-like FMN red (PF03358)

c.23.13: Type II 3–dehydroquinate

dehydratase Flavodoxin 2 (PF02525)

c.23.14: N–(deoxy)

ribosyltransferase–like

c.23.16: Class I glutamine

amidotransferase-like

c.26: Adenine nucleotide c.26.1: Nucleotidylyl transferase tRNA–synt 1 (PF00133)

C26 alpha hydrolase–like ETF (PF01012)

c.26.2: Adenine nucleotide CTP transf 2 (PF01467)

alpha hydrolases–like NAD synthase (PF02540)

TPP enzyme M (PF00205)

(Continued on next page)
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Table A.3 – (Continued from previous page)

label Protein folds Protein superfamilies Pfam families

c.36: Thiamin diphosphate c.36.1: Thiamin diphosphate Transketolase N (PF00456)

C36 -binding fold (THDP-binding) -binding fold (THDP-binding) E1 dh (PF00676)

TPP enzyme N (PF02776)

Transket pyr (PF02779)

AAA (PF00004)

ABC tran (PF00005)

GTP EFTU (PF00009)

Arf (PF00025)

c.37: P-loop containing c.37.1: P-loop containing RecA (PF00154)

nucleoside triphosphate nucleoside triphosphate Kinesin (PF00225)

C37 hydrolases hydrolases DEAD (PF00270)

Helicase C (PF00271)

ADK (PF00406)

Sulfotransfer 1 (PF00685)

MMR HSR1 (PF01926)

AAA 2 (PF07724)

(Continued on next page)
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Table A.3 – (Continued from previous page)

label Protein folds Protein superfamilies Pfam families

AAA 5 (PF07728)

GST C (PF00043)

Thioredoxin (PF00085)

AhpC–TSA (PF00578)

C47 c.47: Thioredoxin fold c.47.1: Thioredoxin–like GST N (PF02798)

Redoxin (PF08534)

Thioredoxin 2 (PF13098)

GST N 3 (PF13417)

Thioredoxin 8 (PF13905)

c.55.1: Actin-like ATPase domain HSP70 (PF00012)

c.55: Ribonuclease c.55.2: Creatinase/prolidase ROK (PF00480)

C55 H-like motif N-terminal domain Peptidase M24 (PF00557)

c.55.3: Ribonuclease H-like rve (PF00665)

DNA pol B exo2 (PF10108)

c.56.2: Purine and uridine PNP UDP 1 (PF01048)

C56 c.56: Phosphorylase/hydrolase-like phosphorylases Peptidase M20 (PF01546)

c.56.5: Zn-dependent Propep M14 (PF02244)

(Continued on next page)
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Table A.3 – (Continued from previous page)

label Protein folds Protein superfamilies Pfam families

exopeptidases M20 dimer (PF07687)

C61 c.61: PRTase–like c.61.1: PRTase–like Pribosyltran (PF00156)

c.67: PLP–dependent c.67.1: PLP-dependent Aminotran 1 2 (PF00155)

C67 transferase–like transferases Cys Met Meta PP (PF01053)

Beta elim lyase (PF01212)

c.68: Nucleotide–diphospho c.68.1: Nucleotide–diphospho Hexapep (PF00132)

C68 –sugar transferases –sugar transferases NTP transferase (PF00483)

CTP transf 3 (PF02348)

Abhydrolase 1 (PF00561)

Esterase (PF00756)

C69 c.69: alpha/beta–Hydrolases c.69.1: alpha/beta–Hydrolases Abhydrolase 3 (PF07859)

Abhydrolase 5 (PF12695)

Abhydrolase 6 (PF12697)

C94 c.94: Periplasmic binding c.94.1: Periplasmic binding Transferrin (PF00405)

protein-like II protein–like II LysR substrate (PF03466)

Thiolase N (PF00108)

c.95: Thiolase–like c.95.1: Thiolase–like Chal sti synt N (PF00195)

(Continued on next page)
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Table A.3 – (Continued from previous page)

label Protein folds Protein superfamilies Pfam families

C95 Chal sti synt C (PF02797)

Thiolase C (PF02803)

Hydrolase (PF00702)

C108 c.108: HAD-like c.108.1: HAD-like Hydrolase 3 (PF08282)

HAD (PF12710)

HAD 2 (PF13419)
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