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Abstract

Collection and classification of Services and their context

Arash Khodadadi

SOA provides new means for interoperability of business logic and flexible

integration of independent systems by introducing and promoting Web Services. Since

its introduction in the previous decade, it has gained a lot of attraction through

industry and researchers. However, there are many problems which this novel idea

of SOA encounters. One of the initial problems is finding Web Services by the

service consumers. Initial design of SOA proposed a service registry between service

consumers and service providers but in practice, it was not respected and accepted

in the industry and service providers are not registering their services. Many SOA

researches assume that such registry exists but, a repository of services is preliminary

to the research. The Internet is filled with many Web Services which are being

published everyday by different entities and individuals such as companies, public

institutions, universities and private developers. Due to the nature of search engines

to support all kinds of information, it is difficult for the service consumers to employ

them to find their desired services fast and to restrict search results to Web Services.

Vertical search engines which focus on Web Services are proposed to be specialized in

searching Web Services. Another solution proposed is to use the notion of Brokerage

in order to assist the service consumers to find and choose their desired services. A

main requirement in both of these solutions is to have a repository of Web Services. In

this thesis we exploit methodologies to find services and to create this repository. We

survey and harvest three main type of service descriptions: WSDL, WADL, and Web

pages describing RESTful services. In this effort, we extract the data from previous

known repositories, we query search engines and we use Web Crawlers to find these

descriptions.
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In order to increase the effectiveness and speed up the task of finding compatible

Web Services in the Brokerage when performing service composition or suggesting

Web Services to the requests, high-level functionality of the service needs to be

determined. Due to the lack of structured support for specifying such functionality,

classification of services into a set of abstract categories is necessary. In this thesis

we exploit automatic classification of the Web Service descriptions which we harvest.

We employ a wide range of Machine Learning and Signal Processing algorithms and

techniques in order to find the highest precision achievable in the scope of this thesis

for classification of each type of service description. In addition, we complement

our approach by showing the importance and effect of contextual information on the

classification of the service descriptions and show that it improves the precision. In

order to achieve this goal, we gather and store contextual information related to the

service descriptions from the sources to the extent of this thesis. Finally, the result

of this effort is a repository of classified service descriptions.
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Chapter 1

Introduction

Since SOA was introduced in the previous decade, Web Services have gained an

enormous trend in industry and research [10], [11], [12], [13], [14], [15], [16], [17].

SOA paradigm promotes the idea that functionality can be exposed through Web

Services. This enables flexible integration of independent systems and applications

(e.g., desktop applications as well as Web applications). This way Web Services

provide new means for interoperability of business logic. However, it still encounters

many problems. Creating and publishing a Web Service is only the first step in the

whole Web Service life cycle. The next step for the service consumers is to find the

service.

The SOA triangle shown in Figure 1 was suggested to be used to publish Web

Services to solve the Web Service location problem. According to the theoretical SOA

triangle, service provider would register the service it is offering in a registry exposing

a repository of all services. Then, a service consumer would search the service registry

to find its desired service.

A standard describing protocol bindings and message formats which are required

to interact with a Web Service registry called UDDI (Universal Description, Discovery

and Integration) [18] was proposed in 2002 by major companies such as Microsoft,

IBM, SAP, Oracle and Intel to implement this model. UDDI defines a universal

method for enterprises to dynamically discover and invoke Web Services. Although

it was targeted to fill the gap between service consumers and service providers
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Figure 1: Basic SOA Model - Theory vs. Practice [1]

and provide a universal registry, this standard has not prevailed in the domain of

publicly available Web Services and was not accepted by industry mainly because of

unsatisfactory quality of data as mentioned in [19]. The authors in [19] surveyed

that approximately 67 percent of the registrations were not valid and many of

the downloaded WSDL files omitted mandatory elements or contained other syntax

errors. As a result, all major UDDI Business registry (UBR) nodes that have once

been set up by companies such as IBM, Microsoft and SAP have been discontinued

already in 2006 [20]. As a result, as the authors in [1] describe and shown in Figure 1,

in practice this approach did not work as intended. The model used in most of

today’s SOA applications consists of only the service consumer and service provider

and service providers do not register their services anymore. As a result, service

consumers cannot rely on the data provided by the service registry. Many SOA

researches assume that such registry exists but, a repository of services is preliminary

to the research.

Nowadays, there are two main ways to publish a Web Service in the Web which

will be available for users to find them [20]:

Publishing it in a portal

There are different private and public portals available which are specialized
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in listing Web Services, e.g., ProgrammableWeb1, XMethods2 or Service-

Repository3. These are usually Web pages which hold references and

descriptions for Web Services and offer search interfaces to retrieve the desired

Web Services.

Providing access to Web Service description

The other way is to provide access to the service description and describe the the

features of the service using Web pages or other documents. This information

can then be found by the Web Crawlers (Section 3.2.1) of standard search

engines.

According to [21] and [22], the portals only cover small portions of the actually

available services and suffer furthermore from the problem of missing or outdated

information. Furthermore, this approach needs the service providers to manually

register their services.

Using standard search engines with keyword search makes it difficult to find a

desired service fast because their nature is to support all kinds of information and it

is hard to restrict a search to Web Services.

The authors in [23] and [22] show that general-purpose search engines provide a

big coverage of services, but at the same time have drawbacks and are not highly

efficient in terms of recall and precision. This is mainly due to the fact that keyword

search is done on a pure document level and not on a service level.

To solve this problem, a vertical (semantic, focused, or topic driven) search engine

which is specialized in Web Services is suggested. According to [24] and [25], vertical

search engines focus on particular predefined topics, find Web pages related to them

and allow the users to search for information related to those topics.

The Brokerage notion was introduced between service providers and service

consumers to assist the consumers to find the service which suits their needs and

for integrating and deploying services. These search engines can be included inside of

1http://www.programmableweb.com/
2http://www.xmethods.com/
3http://www.service-repository.com/
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a service Broker to be used by the Broker to perform service discovery and eventually

abstracting services and sending back the result or to be offered as an interface to

the user for finding Web Services. However, Broker can serve multiple purposes

besides that. On behalf of consumer, the Broker performs service negotiation. In such

circumstances, the Broker can have the power of distributing services across multiple

providers for the cost effective solutions and offering the best one to the user. In

addition, the Broker can fulfill the considerable need for automatic composition of

Web Services to make composed functionality from existing services.

Figure 2 shows the proposed architecture of Brokerage which shows the proposed

components inside of a Broker [2]:

Figure 2: Brokerage Architecture [2]

Whether it is a Broker or a vertical search engine, a repository of Web Services

needs to be created automatically. Due to the changing world of Web Services and

because Web is changing all the time and Web pages are being added, modified or

deleted, to keep the repository updated and fresh, an updatable design is required.

The Broker can perform the task of service composition however, according to

[26], interoperability issues arise when composing heterogeneous systems at run-

time. The first step in composing such systems is to determine whether, and

to what degree, the systems are compatible. As the authors in [6] mentioned,

traditional solutions to determine compatibility between systems are rather expensive
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in terms of computational cost, especially when these are applied to systems

in unrelated domains. When two systems (Web Services) want to interact, a

compatibility assessment which requires in-depth analysis considering the interface

and conversational protocol of them needs to take place. As the authors in [6] argue,

one way to speed up the assessment above is to apply Machine Learning methods to

automatically classify high-level functionality of a system’s interface description, i.e,

the highest level of abstraction of what the system does. This will result in restricting

the scope of compatibility checks and consequently providing an overall performance

gain when looking for matches between systems. There is however no structured

support for specifying the abstract class to which the service belongs [6].

Web Service tags are the terms annotated by the users to describe the functionality

or quality of Web Services. According to [27], since user tagging is inherently

uncontrolled, ambiguous, and overly personalized, and as [28] reveals, many tags

provided by the users are imprecise and there are only around 50 percent of the tags

actually related to the target object. As a result, these tags can be only treated

as collective user knowledge and as a contextual information (will be defined in

Section 1.1) which needs purification for the Web Services.

In addition to increasing performance of compatibility assessment, the authors

in [29] argue that classifying Web Services into different sets based on the tags

(clustering) facilitates the task of Service Discovery. Moreover, the result of Service

Classification can be very useful to the end-users when selecting services.

There two main approaches towards Service Classification: manual classification

and automatic classification. According to [30], the former methods are very

expensive, both in time, effort and consequently financially. The latter methods

however are quite inaccurate and do not in general provide quality annotations but

cheaper than the former. Although the authors in [30] try to decrease the cost of

manual classification by applying crowd sourcing techniques, it is still more expensive

than the automatic methods.
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1.1 Thesis Overview

Due to the fact that cost plays an important role and because of the resources available

to us, although we are aware that the annotations in many cases are inaccurate

and the automatic classification may not be as accurate as manual methods, we use

automatic classification approach as our primary methodology. Accordingly, we try

to find the highest accuracy achievable in the scope of this thesis by employing a

wide range of Machine Learning and Signal Processing algorithms and techniques

and putting the context into practice. Context, in the Web Services environment is

any information about the service consumer, service provider, and communication

protocols. Hence, content of the service descriptions and any information related

to them is considered as a context for the service. However, due to the problems

with the current repositories available to us (Section 1.3), we first exploit methods to

harvest three main kinds of Web Service descriptions (WSDL, WADL, and Web pages

describing RESTful services) from the World Wide Web with respect to updatability

of the design. In this effort, we extract the data from previous known repositories,

we query search engines and we use Web Crawlers to find the documents describing

Web Services (descriptions). In addition, during this process, we gather and store

contextual information related to these descriptions to the extend of this thesis to use

as a complement to the descriptions for the classification. We show the importance

and effect of this context on the classification and show that it improves the accuracy

of the results.

The architecture of this thesis is illustrated in Figure 3. Each block will be

discussed in details in the next chapters which are outlined in Section 1.6.

1.2 Scope

The scope of this thesis is finding and classification of main three types of Web Service

descriptions (WSDL, WADL, and Web pages describing RESTful services) and their

contextual information. We use Web Crawlers, previous known repositories, and

6



Figure 3: Thesis Architecture

search engines to collect services and their context. However, Web pages describing

services, are much more complex to detect and validate. As a result, for simplicity,

finding them using Web Crawlers is out of the crawling scope and also, validation of

these description pages is out of the validation scope of this thesis. Also, extraction

and validation of service endpoints are out of the scope of this thesis.

The scope of the Service Classification in this thesis is to classify the service

descriptions and to survey the effect of context using Signal processing and Machine

Learning techniques. However, validation and determining the quality of context,

context ontology based matching, and also adaptation of the classification process

based on the new upcoming services is out of scope of this thesis.
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1.3 Problem Statement

As discussed previously, from different perspectives a repository of Web Services

which is updated regularly is needed particularly in the proposed Broker. However,

according to our results in Chapter 6, the current repositories available are not

satisfactory to work with. These repositories contain many Web Services which

are already outdated and not available anymore, focus on a particular type of Web

Service, are not comprehensive and sufficient from both services and context point of

view, and/or do not respect the inconsistent nature of Web Services and contain only

the actual descriptions and not the source.

On the other hand, we discussed the importance of Service Classification and how

it is used in many applications. However, there is no structured support for specifying

the abstract class to which the service belongs [6]. An extensive amount of research

has been carried out on the topic of automatic classification of a text document which

is usually performed by employing Machine Learning methods. However, there is still

much research that needs to be done in this area to improve the process specially

on combining Signal Processing algorithms and techniques with Machine Learning in

the scope of Service Classification. Also, the context of the service descriptions was

not considered as a separate entity to prove the importance of it.

1.4 Goals and Motivations

Our goal in the service collecting part is to construct a reliable and fresh repository

of main kinds of Web Service descriptions and their contextual information with

respect to the changing nature of the servers and the services. In addition, our

goal in the Service Classification part is to find the best combination(s) (accuracy,

recall, and time) of algorithms and options for classification of each type of Web

Service description. Moreover, our goal is to show the effect of context on Service

Classification and to demonstrate that it improves the accuracy.

Eventually, our goal is to construct a classified repository of Web Service
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descriptions to serve the need in a Broker or a vertical search engine. This will fill the

first step for creating the Broker illustrated in Figure 2 to serve multiple purposes.

1.5 Contributions

Firstly, we designed and implemented Web Service collecting tools to find main three

type of Web Service descriptions (WSDL, WADL, and Web pages describing RESTful

services) and their contextual information and stored them with respect to changing

nature of Web Services by keeping both sources and actual files based on time:

• Web crawling (except for REST description Web pages)

• Extracting data from known repositories and verification of them

• Using search engines

• Creating the repository with respect to updatability

In this effort we found 72,454 unique service description URLs including 39,288

WSDL URLs, 1,830 WADL URLs, and 31,336 HTML page URLs describing

RESTful services. From these URLs we stored 48,161 actual service description files

including 16,096 WSDL descriptions, 450 WADL descriptions, and 31,615 HTML files

describing RESTful services.

Secondly, we survey a wide range of Machine Learning and Signal Processing

algorithms and techniques by designing and implementing a classification method to

find the best combination(s) of algorithms and options from the viewpoint of accuracy,

recall, and time achievable in the scope of this thesis:

• Analyzing main three types of service descriptions

• Extracting and analyzing only text from Web pages describing services

• Survey the effect of context on each set (training and testing)

• Studying different clustering and frequency options in the classification process

9



• Showing that context improves the accuracy

• Classification of 48,161 service descriptions

In this effort we surveyed 72 different cases based on the sample types, clustering

options, and contextual information (Section 4.4). We tested 864 algorithm

permutations in the Signal Processing pipeline for each of these cases.

1.6 Outline

In this thesis to begin in Chapter 2 we mention the related and background work.

Thereafter, in Chapter 3 we discuss the service collecting approach and procedure and

in Chapter 4 we argue the Service Classification process and methodology. Thereafter,

in Chapter 5 we discuss the design and implementation of both parts. Finally, in

Chapter 6 we illustrate the results and evaluate our work and in Section 7 we conclude

our effort and mention the future work.
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Chapter 2

Background and Related Work

As discussed in the previous chapter, the first step and requirement for creating a

Broker or a Vertical search engine specialized in finding Web Services is to have a

comprehensive and updated repository of Web Services which brings the notion of

collecting services. Furthermore, to facilitate the compatibility assessment between

Web Services during composition, Service Discovery, Service Selection, and generally

to present more satisfactory results to the end-user, the aforementioned repository

needs to be classified. This classification can be leveraged from Machine Learning

techniques. In addition, in order to increase the precision of classification, contextual

information can be added to the repository. In this chapter we discuss the related

work to these areas of research.

2.1 SOA, Cloud and Broker

Service-Oriented Architecture (SOA) has been a popular research topic from

the time it was introduced in the previous decade. There are many papers published

in this area specially [10], [12], [14], [11], [13], [31], [32], which focus on the concept.

Many definitions were given for SOA.

The Open Group (a vendor and technology-neutral industry consortium,

currently with over four hundred member organizations [33]) defines Service-Oriented

Architecture, Service-Orientation, and service as [34]:
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Service-Oriented Architecture (SOA) is an architectural style that supports

service-oriented development (i.e., developing software by reusing existing services

as development building blocks).

Service-orientation is a way of thinking in terms of services and service-based

development and the outcomes of services.

A service is a logical representation of a repeatable business activity that has

a specified outcome (e.g., check customer credit, provide weather data, consolidate

drilling reports), is self-contained, may be composed of other services, and is a black

box to consumers of the service.

The OASIS group (Organization for the Advancement of Structured Information

Standards) defines service-oriented architecture as [35]:

A paradigm for organizing and utilizing distributed capabilities that may be under

the control of different ownership domains. It provides a uniform means to offer,

discover, interact with and use capabilities to produce desired effects consistent with

measurable preconditions and expectations.

Cloud Computing was defined by NIST (The National Institute of Standards

and Technology of USA) [36] as [37]: A model for enabling convenient, on demand

network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction.

The authors in [38] approach Cloud Computing as an extension of Service-Oriented

Architecture and compared the two paradigms. Accordingly, SOA proposes business

solutions to create, manage and reuse the computing components using services where

Cloud Computing offers a set of technologies and infrastructure that serves a bigger,

more flexible platform for enterprise applications to build their SOA-based solutions.

To sum up, SOA and Cloud Computing will co-exist to complement and support each

other.

According to [37] and [38], a typical Cloud environment incorporates services in

three levels:
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Infrastructure as a Service (IaaS)

Provides services of virtual computers, operating systems, data centers, and

network connectivity.

Platform as a Service (PaaS)

Offers computing platforms for designing and developing applications and

application-hosting environment without the concern of hardware and storage.

Software as a Service (SaaS)

Provides services for software deployment and maintenance. The applications

are accessible from various client devices through either a thin client interface,

such as a web browser (e.g., web-based email), or a program interface.

However, in this thesis we do not distinguish between the services which we find and

store and classify all three level services.

A Cloud Broker is introduced by the authors in [39] and [40] between Cloud

providers in order to assist the service consumers to choose the platform which

suits their needs and for integrating and deploying services from multiple Clouds.

According to [39], it is time-consuming for consumers to collect the necessary

information and analyze all service providers to find their desired service. In

addition, from a computational perspective, Broker can be useful because the same

computations may be conducted repeatedly by multiple consumers who have similar

requirements. A Broker has multiple functionality such as Provider Information

Publishing, Ranking, Selection, Composition, and On-Demand Provision Model.

According to the MarketsandMarkets (world’s No. 2 firm in terms of annually

published premium market research reports [41]), the global Cloud service Brokerage

market is expected to grow from $5.24 Billion in 2015 to $19.16 Billion by 2020, at a

Compound Annual Growth Rate (CAGR) of 29.6% [42].

The authors in [43] and [3] propose a framework for SaaS provisioning, which relies

on brokered SLAs (Service Level Agreements), between consumers and providers.

SLA is the agreement between service consumer and service provider which describes

13



agreed service functionality, cost, and qualities [44]. Figure 4 illustrates the proposed

Broker architecture. Service consumers request the Broker for providers that can

fulfill their functional and non-functional requirements and the Broker ranks potential

providers by matching their offerings against the requirements of the service consumer.

Furthermore, the Broker will perform SLA negotiation with the selected SaaS

providers, on behalf of service consumers, and perform SLA compliance monitoring.

Figure 4: Cloud service Broker [3]

2.2 Service Discovery

Service Discovery is the process of detecting a suitable service to fulfill the

functional and non-functional requirements which essentially requires a set of service

descriptions. Common approaches in Service Discovery mostly work on top of

restricted sets of services including either the actual service descriptions as published

in the Web or semantic service descriptions that describe the service in terms of its
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non-functional properties with the aid of Web Ontology Language (OWL-S) [45] and

Web Service Modeling Ontology (WSMO) [46].

Semantic Service Discovery focuses on the discovery of semantic service

descriptions and it has been an ongoing research topic [47], [48], [49], [50], [51], [52],

[53], [54], [55], [56] etc. According to [20], Semantic Service Discovery achieves a high

precision, if precise and rather complex descriptions are available for the services.

However, such descriptions are presently not available at large scale, but only for

restricted sets of services. Semantic Service Discovery needs often complex reasoning

methods in the background that are not yet efficient enough to work on top of a real

large number of services on Web scale [20].

On the other hand, there are a number of approaches proposed for Non-Semantic

Service Discovery. The authors in [57] proposed a clustering algorithm that groups

names of parameters of Web Service operations into semantically meaningful concepts

which determine similarity of inputs (or outputs) of Web Service operations. Based on

their approach they developed a search engine called Woogle which supports similarity

search for a set of 1500 Web Services in addition to simple keyword-based retrieval.

The authors in [58] clustered services based on search sessions instead of individual

queries to take advantage of similar queries by different users. The authors in [59] tried

to reflect the underlying semantics of Web Services by fully utilizing the terms within

WSDL files. In their approach, the similarity between two services was measured upon

the the semantic distance of terms from two compared services. service Clustering

and Service Discovery are tightly coupled in the literature which will be mentioned

in Section 2.4.

2.3 Service Crawling

Preliminary to Service Discovery methods, a populated repository of services is

necessary. In order to find the actual service descriptions which are published

in the World Wide Web, different approaches are used. The authors in [60] and

[61] introduce the Web Service Crawler Engine (WSCE) which is a Web Crawler
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designed to crawl Web Service repositories and search engines to collect Web Service

information. The proposed solution was targeting problems that the centralized

service repositories were suffering from, such as single point of failure, bottlenecks

and outdated data. In their approach, they automatically collected 5,077 WSDL files

from other repositories, search engines and portals to form a new portal. However,

Web Services that were not entered to repositories and not available in search engines,

remained out of reach for WSCE.

Another Web Service crawler was proposed by [62] based on Pica-Pica Web

Service description crawler to search for WSDL files and descriptive data in existing

repositories which was able to find 4,148 WSDL files from different repositories.

However, the extracting of service related data was done by implementing algorithms

explicit to each registry. This approach created a dependency to the existing Web

Service repositories and the same problem as in WSCE which would miss services

that are not present in repositories.

Some researchers focused on Heritrix1 which is an open-source archival Web

Crawler designed for periodic snapshots of a large portion of the Web. The authors in

[20] and its related publications [63], [64] concentrated on methods for automated Web

Service crawling based on this crawler and then creation of semantic annotations for

the found services. They describe the methodologies for enabling Service Discovery

on Web scale and by crawling the Web for WSDL files and related documents,

and building unique service objects from multiple Web resources and subsequently

enrich the resulting services with simple annotations from basic service information.

At the end, they employ semantic-based techniques and aggregating the various

real-world information (information that is available about services by analyzing

their description, their hyperlink relations, and monitoring information) to rank

the services. This work emerged to Seekda2 Web Service search engine (currently

inoperative) with around 28,000 service endpoints extracted from WSDL files from

8,000 service providers. The authors in [65] also followed a similar approach and

1http://crawler.archive.org/
2http://webservices.seekda.com/
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used Heritrix to crawl and collect 463 WSDL files and then deduced the semantic

information from the crawled Web pages and created annotations for each service.

Subsequently, these annotations were used to derive a classification for each Web

Service into different application domains. The authors in [66] took advantage of the

heuristics which were proposed in these papers and improved the performance of the

focused crawling (loading only relevant Web pages and discard those out of concern).

The authors in [67] and [68] crawled 21,358 WSDL URL addresses and obtained

16,514 WSDL files from different Web Service portals and search engines such as

Seekda for the purpose of Quality of service evaluation and prediction.

The authors in [69], [70], [29], and [27] also introduced a new Web Service

search engine named Titan3 with 15,968 WSDL files which was crawled from Seekda.

However, the focus of these papers is more on the tags associated to the services

which will be mentioned in the next section.

To conclude, these papers focused mostly on WSDL files and one specific method

to find the services and also kept only the actual description files without the source

of the data.

2.4 Service Clustering and Classification

Service Clustering is an effective solution to boost the performance of Service

Discovery and many researchers focused on this task. There are two main approaches

towards service clustering which are widely employed.

Semantic service Clustering focuses on clustering of semantic Web Service

descriptions. The authors in [71], [72], [73], [74], and [75] particularly focused on

semantic service clustering by employing ontology-based approaches. However, as

mentioned earlier in Section 2.2, semantic Web Service descriptions are not widely

used and supported by the industry circle.

Many researches leveraged from the structure of WSDL files to measure the

similarity between Web Services [57], [76], [77], [78], [58], [59]. [76] and [77] proposed

3http://ccnt.zju.edu.cn:8080/
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to extract and focus on 4 features including content, context, host name, and service

name from WSDL files and suggest to put the service Clustering as the pre-processor

to Service Discovery. In contrast, the authors in [78], [69], and [29] proposed to

extract 5 features including content, types, messages, ports, and service name from

WSDL documents to perform service Clustering and Discovery.

In order to facilitate clustering, the authors in [79] allowed users to express their

perception on service functionality (after testing or using them). The authors in [30]

focused on easing and thus reducing the cost of manual annotations by utilizing crowd

sourcing. The authors in [80] proposed to employ Machine Learning techniques and

WordNet4 to automatically annotate tags to services. In order to automate tagging

services and make services easily accessible and attractive to the users, the authors

in [81] modeled tag prediction problem as a multi-label classification problem. The

authors in [69] utilized on both WSDL documents and tags associated to them to

recommend tags to the Web Services with few tags according to the tag co-occurrence.

Later in [29] the authors proposed a hybrid tag recommendation strategy which

employs tag co-occurrence, tag mining, and semantic relevance measurement in order

to handle the clustering performance limitation caused by uneven tag distribution

and noisy tags. In addition, in [27] they proposed a hybrid mechanism by using

WSDL documents and tag network information to compute the relevance scores of

tags by employing semantic computation and Hyperlink-Induced Topic Search model,

respectively. From another perspective, The authors in [6] argued that the automatic

classification of Web Service descriptions into a predefined can considerably speed up

the task of finding compatible Web Services due to restriction of computationally-

expensive compatibility assessments to systems within the same domain category. In

their effort, they employed Machine Learning techniques and developed a method to

extract the features from WSDL files to exploit the characteristics of them and infer

the categorization function.

Overall, the authors in these papers mostly focused on WSDL files only as one

type of service to perform the classification. In addition, there is not much research on

4http://wordnet.princeton.edu/
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employing Machine Learning techniques and also combining the actual descriptions

and their contextual information in the classification process.
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Chapter 3

Service Collecting

The World Wide Web, or simply Web, can be divided into two varieties: Surface

Web also known as the Visible Web or Indexable Web [82], and Deep Web also

known as Invisible Web [83], Deepnet [84] or Hidden Web [85]. Surface Web is data

on the Web that is available to the general public and has been crawled and indexed

by general-purpose search engines whereas Deep Web can be defined as that part of

Web that is not part of the Surface Web.

Search engines construct a repository of the Internet by using programs called

Spiders or Web Crawlers that begin with a list of known Web pages called seeds

which will be discussed further in Section 3.2.1. For various reasons some pages can

not be reached by the Web Crawlers which consists mainly of pages that do not

exist until they are created dynamically, password-protected pages or the data that

is accessible only via Web Service method calls. These Web pages are referred to as

the Deep Web.

In 2001, the authors in [86] estimated that information stored in Deep Web is

400 to 550 times larger than the commonly defined World Wide Web. In 2005, the

authors in [87] queried search engines with search terms from 75 different languages

and stated that there were over 11.5 billion Web pages in the publicly indexable World

Wide Web. As of January 2015, [88] determines that the Surface Web contains at

least 46 billion pages.

When the SOA (Service-Oriented Architecture) paradigm was introduced in
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the previous decade, the amount of Web Services available on the Web increased.

It started promoting the idea that independent systems and applications should

communicate with each other by exposing and using services [89]. ManyWeb Services,

or simply services, are being published in the Internet by different entities and

individuals such as companies, public institutions, universities and private developers,

using either the WSDL (Web Service Description Language) [7] standard or following

a RESTful (Representational State Transfer) [90] approach.

However, creating and publishing a Web Service is only the first step in the whole

Web Service life cycle. The whole Web Service life cycle includes all relevant topics

such as Creation, Finding, Discovery, Selection, Ranking and Composition. The next

step is to find the location of Web Services.

As discussed in Chapter 1, the initial UDDI model for publishing Web Services was

not accepted by industry and service consumers cannot rely on the data provided by

the UDDI service registries. Precise and rather complex descriptions are not available

at large scale to employ Semantic Service Discovery approaches. Web Service portals

need the service providers to manually register and update their services and they

suffer from the problem of missing or outdated information. Furthermore, using

standard search engines with keyword search makes it difficult to find a desired service

fast because their nature is to support all kinds of information and working on a

document level rather than a service level.

As mentioned in Chapter 1, whether it is a Broker or a vertical search engine

(focused on a particular predefined topic) searching for desired Web Services, a

repository of Web Services which would update its services automatically is needed.

Our goal is to combine these methods to provide a comprehensive repository of both

kinds of Web Services (WSDL and RESTful) found from the Web with an efficient

design with respect to updatability of the repository.

In our effort, as illustrated in Figure 5, we extract the data from previous known

repositories (Section 3.2.3), we query Google1 to find the services from the Surface

Web (Section 3.2.2) and we use Web Crawlers to find Web Services which are missed

1http://www.google.com
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(Section 3.2.1). Instead of using Semantic Service Discovery because of the lack of

rich descriptions, our approach rather focuses on the descriptions which are currently

used for the numerous already available services and tries to gather related contextual

information (Section 3.1.4). This contextual information will also play a big role in

Service Classification later which will be discussed in Chapter 4.

This chapter will form the collecting block in Figure 3.

Figure 5: Abstract Service Collecting
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3.1 Collecting Data

In this section we discuss different kinds of service descriptions and contextual

information which we collect using collecting sources which will be discussed in

Section 3.2.

3.1.1 WSDL Collecting

The SOA paradigm promoted the idea that independent systems and applications

should communicate with each other by exposing and using services, the amount of

Web Services in the Internet increased [89] and it became increasingly important

to standardized and describe communications protocols and message formats in

some structured way. Web Service Description Language, or simply WSDL,

addresses this need by defining an XML grammar for describing services as collections

of communication endpoints capable of exchanging messages containing either

document-oriented or procedure-oriented information. The operations and messages

are described abstractly, and then bound to a concrete network protocol and message

format to define an endpoint. Related concrete endpoints are combined into abstract

endpoints (services) [7]. In other words, WSDL is a contract between service provider

and service consumer for describing Web Services provided. WSDL enables the service

provider to separate the description of the abstract functionality offered by a service

from concrete details of a service description such as how and where that functionality

is offered [8]. It is platform and language independent and also extensible, to allow

description of endpoints and their messages regardless of what message formats or

network protocols are used to communicate. However, it is highly used in conjunction

with SOAP (Simple Object Access Protocol). There are currently two main versions

of WSDL used world wide: WSDL 1.1 [7] and WSDL 2.0 [8]. To see the difference

and examples of both files refer to Appendix A.1.

WSDL files are generated using tools by different service providers and published

through the Web. Our goal is to find and store them in a repository with respect

to updatability. We also store the URLs which point to the WSDL file instead of
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retrieving and storing WSDL directly. Then from these URLs we retrieve the actual

WSDL file and store its snapshot in another repository. We will discuss about this

further in Section 3.3.2.

For achieving this goal, we extract the data from previous known repositories

(Section 3.2.3), we query Google (Section 3.2.2) and we use Web Crawlers to find

WSDL files which are missed (Section 3.2.1).

3.1.2 REST Collecting

Representational State Transfer , or simply REST , was first introduced in 2000 by Roy

Thomas Fielding at the University of California, Irvine, in his academic dissertation

[90] which analyzes a set of software architecture principles that use the Web as a

platform for distributed computing. Now, years after its introduction, REST has

gained widespread acceptance across the Web as a simpler alternative to SOAP and

WSDL-based Web Services. Key evidence of this shift in interface design is the

adoption of REST by mainstream Web 2.0 service providers such as Yahoo, Google,

and Facebook who have deprecated SOAP and WSDL-based interfaces in favor of

RESTful services [91].

While REST is a software architecture style consisting of guidelines and best

practices for networked hypermedia applications, it is primarily used to build Web

Services that are lightweight, maintainable, and scalable [92]. It relies on a stateless,

client-server, cache-able communications protocol and in virtually all cases, the HTTP

(Hyper Text Transfer Protocol) is used. To see an example of a REST resource refer

to Appendix A.3.

Whereas WSDL descriptions are well-structured by using XML meta-language

standards and allow an easy recognition, RESTful services do not follow any strict

structured description rules. Therefore, they are described in different formats and

most of the time, in different Web pages by different service providers. As a result,

RESTful services are much harder to detect and validate hence, using Web Crawlers

to discover REST services (except WADL-based ones) are out of the scope of this

thesis and will not be discussed. However, our goal is to find and store different kinds
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of Web Services in the repository, therefore we extract the data from previous known

repositories (Section 3.2.3) and we query Google (Section 3.2.2) to find RESTful

services. Similar to WSDL approach, we store each step’s results separately. We also

store the URLs which point to the description of RESTful service and from these

URLs we retrieve the description and store its snapshot in another repository. We

will discuss about this further in Section 3.3.2.

3.1.3 WADL Collecting

Web Application Description Language, or simply WADL, was introduced by SUN

Microsystems Inc. on 31 August 2009 as a structured description for REST Web

Services. WADL allows the description of HTTP-based Web applications (typically

REST Web Services), putting the emphasis on the basic description of those services

from the HTTP interaction standpoint, while allowing different grammars and

formalizations to describe the payloads and parameters used during the interaction

[93] [9]. Similar to WSDL, WADL is platform and language independent and aims to

be machine readable and well-structured using XML standards. To see an example

of a WADL file refer to Appendix A.2.

In contrast, in some respects, WADL is not as flexible as WSDL (e.g., WADL

cannot express binding to SMTP servers), but it is sufficient for any REST service

and much less verbose and following the REST approach. WADL is lightweight, easier

to understand and easier to write than WSDL. However, it is still not very popular

through service providers and there are no current plans to standardize it [93]. As

a result, REST services are not widely described using WADL in the Web and no

specific portals are dedicated to it. We query Google (Section 3.2.2) and use Web

Crawlers to find this kind of RESTful descriptions. Similar to the other types, we

also store the URLs which point to WADL files and from these URLs we retrieve

the service description and store its snapshot in another repository. We will discuss

about this further in Section 3.3.2.
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3.1.4 Context Collecting

It is a challenging task to define the word context as many researchers tried to find

their own definition for what context actually includes. In literature, the term context-

aware appeared in [94] for the first time where the authors described context as

location, identities of nearby people, objects and changes to those objects. Many

researchers and developers consider only physical context in contrast with logical

context. Physical or external context refers to context that can be measured by

hardware sensors, e.g., location, light, sound, movement, touch, temperature or air

pressure. On the other hand, the logical or internal context is mostly specified by

the user or captured by monitoring user interactions, e.g., the user’s goals, tasks,

work context, business processes, or the user’s emotional state [95] [96]. According to

[97], in general, context can be defined as any vital information that can be used to

characterize the situational state of entities (i.e., whether a person, place, or object)

that are considered relevant to the interaction between a user and an application,

including the user and the application themselves.

Accordingly, we define context as shared information that can enhance the

comprehension and awareness of a system and help the system to enhance the

operation. More specifically, in the Web Services environment it could be any

information about the service consumer, service provider, and communication

protocols. Hence, any information and description related to a specific Web Service is

considered as contextual information which will be also used in Service Classification

in Chapter 4. We find the following contextual information for the Web Services in

addition to their description files:

• The domain of the URL which the service description is found from (service

provider domain)

• Annotations, categories or tags assigned to the service

• Text describing the service

• Name of the service
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3.2 Collecting Sources

In this section we discuss different kinds of sources and approaches which we use to

collect different kinds of service descriptions and contextual information which was

discussed in Section 3.1.

3.2.1 Web Crawling

A Web Crawler , also called Spider [98] or Automatic Indexer [99] is a software

program that systematically browses the World Wide Web and visits Web pages.

Search engines make the most widespread use of Web Crawlers when they collect

Web pages on the Web to build their indexes [20]. The most well-known crawler is

called Googlebot which is used by Google [100]. A Web Crawler starts with a set of

URLs called seeds, fetches the documents (e.g., HTML pages, service descriptions,

images and audio files) available at those pages, identifies and extracts all URLs from

the documents fetched in the previous step and adds them to the list of URLs to

visit which is called the Crawl Frontier. Thereafter, it starts over the same process

recursively to move from one page to another [101] [20] [100]. Different crawling

strategies are used to perform this process. Crawler types are thus related to the

different intentions they pursue when crawling the Web. The main crawl types are

[20]:

Broad or Universal Crawling

Large crawling where the Web Crawler fetches a large number of Web pages

and goes as well into a high depth on each crawled site which results in a high

bandwidth usage.

Focused or Topical Crawling

Scope of crawling is limited by a number of criteria such as domain, number or

topic of the pages which are loaded, i.e., a focused crawler is oriented to cover

information corresponding to a specific domain.

Continuous Crawling
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Web Crawler continuously visits all URLs in its frontier, i.e., the frontier cannot

grow fast and the crawl should be scoped.

A Web Crawler usually implements a set of policies to apply these strategies and

to define its behavior [102]:

Selection Policy States which pages to retrieve.

Re-Visit Policy States when to check for changes in a previously visited page.

Politeness Policy States the delay between each request to avoid overloading

servers.

Parallelization Policy States how to distribute the crawling among Web Crawlers.

Our goal is to develop a crawling strategy for Web Services. We do not want to

crawl through the whole World Wide Web. Instead, we need to focus our crawl for the

Web Service domain thus, we apply Focused Crawling technique and during a crawl,

we apply methods to identify the service descriptions. However, as mentioned before

in Section 3.1.2, RESTful services which are not defined using WADL, are much

harder to detect and validate when using Web Crawlers and it is out of the scope of

this thesis. Therefore, we only focus our crawling task on WSDL and WADL files

because, they are well-structured and can be identified and validated. For applying

such strategy, we define Selection Policy in our focused crawl to reject a lot of content

by default especially binary files such as images, audio or video files and to just fetch

HTML pages, XML files and other text documents, i.e., all types of files that could

be either a service description or lead to a service description. When a result is found

by the Web Crawler, we validate it through WSDL and WADL definitions. If it is a

valid description, we store its URL in the service repository and create a copy of the

file as its snapshot in the snapshot repository. Moreover, we define Politeness Policy

using Politeness Delay to make delays between the requests to avoid overloading the

servers while performing the crawling and Number of Crawlers to define the number

of crawler threads which will be created simultaneously as Parallelization Policy.
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This criteria and algorithm will be discussed later in Section 5.3.1 and elaborated in

Algorithm 1.

Crawling Seeds

As defined above, Web Crawlers start the search from a pre-defined set of URLs

which are called seeds . These seeds play a very important role in every crawling task

particularly when it has a focused scope. To be able to focus our crawls on Web

Services, we need to start with a good set of seeds. These seeds ideally need to direct

the Web Crawler to the Web pages where the Web Services are published in fewer

iterations. Therefore, in our case, we start from the Web pages where we know that

Web Services are published by analyzing the results of our other approaches, i.e.,

we analyze the results from Google Search (Section 3.2.2) and known repositories

(Section 3.2.3). Initially, we analyze the results to find the service providers and

then we analyze them to find the most common ones to start the crawling from. In

other words, the seeds will become a set of provider domain URLs from which a high

number of Web Services has been found.

3.2.2 Search Engines

Search engines are web-based software systems which crawl the Web and index them

in a repository to provide search results more efficiently for users. Whenever a user

submits a query, it is compared with indexed pages and related pages are loaded as

a result. Search engines index many Web pages involving a comparable number of

distinct terms and they answer many queries every day. The success of search engines

is highly dependent on innovative and effective solutions for Web crawling. Search

engines make the most widespread use of Web Crawlers when they collect Web pages

on the Web to build their indexes [20].

eBizMBA2 reports the top 15 most popular search engines in [103] which are the

results from a continually updated average of each website’s Alexa Global Traffic

2http://www.ebizmba.com/
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Rank3, and U.S. Traffic Rank from both Compete4 and Quantcast5. Google 6 holds

the first place in search with an enormous difference of more than 40 percent from

second in place Bing7. According to the latest comScore8 report [104], Google led the

explicit core search market in with more than 65 percent of search queries conducted.

We use Google as our search engine to query and to find the Web Services from.

Google provides two important factors to restrict the search in each request: query

and file type. Query determines the keywords for the search and for the index

matching and file type determines the type of the results. For providing the keywords

in each query to find the Web Services, we use the previously assigned annotations

and tags which we find from known repositories in Section 3.2.3, the categories that

we use in Service Classification in Chapter 4, and also we provide many keywords

manually which are related to Web Services from semantic, business or technology

point of view. Each of these keywords will shape a different request with query

specified to them and also, they will become contextual information for the resulting

services as discussed in Section 3.1.4.

In file type to find the SOAP-based services, we use WSDL to find the results and

for the few REST services which use WADL, we use WADL as the file type in the

request. However, as discussed in Section 3.1.2, the most of RESTful services do not

follow any well-structured format and thus, there is no file type which we can use to

restrict the search and we only use the query. We follow the Politeness Policy between

each request to Google. Each of these requests, will return a set of results including

the URL of the result and the information which Google provides. This information

includes a title and a description about the result which will become extra context in

addition to the query for the resulting services. We store all of these URLs and their

context in our repository without any validation in this step to follow our goal and

to respect the updatability.

3http://www.alexa.com/
4https://siteanalytics.compete.com/
5https://www.quantcast.com/
6http://www.google.com
7http://www.bing.com/
8http://www.comscore.com/
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3.2.3 Known Repositories

Different portals and registries are available on the Internet which are specialized

on listing Web Services. service providers register and introduce their Web Services

through these portals to be used by service consumers. These portals are usually

Web pages which hold references and descriptions for Web Services and offer search

interfaces to retrieve the desired Web Services. The main difference between these

portals and general-purpose search engines is that the search engines center their

information around the service description document such as WSDL similar to any

HTML document while service registries use the services and their providers as central

notions, not the underlying documents [20].

In addition to these portals, some researchers made their crawling and

classification results available in the Web. These portals and previous results

hold valuable services and information about them, therefore we extract the data

from them to build our initial repository. These services will help us to find the

starting points of our crawling (seeds) as discussed in Section 3.2.1. In addition,

the information describing them and the tags, annotations and categories assigned

to them are contextual information which help us to do Service Classification in

Chapter 4 as discussed in Section 3.1.4.

We extract the data from three different service portals. These portals contain

services which are registered manually by the service providers:

• ProgrammableWeb9

• XMethods10

• Service-Repository11

We also extract the data from the repositories available at http://www.zjujason.

com/data.html which is used in [69], [70], [29], and [27] with 15,968 WSDL files

which was crawled from Seekda (Section 2.3). In addition, we extract the repository

9http://www.programmableweb.com/
10http://www.xmethods.com/
11http://www.service-repository.com/
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available at http://www.wsdream.net/dataset.html which is used in [67] and [68]

containing 16,514 WSDL files from different Web Service portals and search engines

such as Seekda (Section 2.3).

However, these portals and repositories contain services which are not available

anymore or changed (Section 6.1). We validate them during snapshots creation

(Section 3.3.2).

3.3 Collecting Strategies

In Section 3.2 we discussed different kinds of sources and approaches which we use to

collect different kinds of service descriptions and contextual information which was

discussed in Section 3.1. In this section we discuss different strategies concerning this

collecting process and how we process the collected information.

3.3.1 Duplications

In our approach as discussed, we find the service description URLs and store them in

the service repository. However, there are many duplications from different sources

of the data. Therefore, in each step of crawling, searching and extracting we need to

check whether the URL which is found is a duplicate. In addition, we do not want

to discard the duplications because their context may be useful, if they are from a

different source. As a result, each time a service description URL is found, we first

check whether it is already available in the repository. If it already exists in the

repository, we update the context and the source of the data otherwise, we store

it as a new service. For instance, a service description which is found from Google

Search, may be already added to the repository from a known repository. However,

its context such as the description could be different and needs to be merged to the

previous description. This approach’s algorithm will be discussed in Section 5.3.2 and

elaborated in Algorithm 2.
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3.3.2 Snapshots

In the previous sections we argued our approach to find and store service description

URLs and their related context. For the Service Classification, we need the actual

descriptions to analyze their content. Therefore, we request the URLs and retrieve

the description and archive a copy of the file in a file repository. However, as our goal

is to keep the results with respect to changing nature of services, each time we start to

create snapshots, we send the request and retrieve the file for all URLs in the service

repository and tag the result with the time because at the time of request the services

may change. In other words, each snapshot is a copy of the service description at

the time of snapping and it is the information we have at that time. Accordingly,

when we receive the result, it is first validated and then if it is a valid result, we

compare it with the last snapshot to check whether it is updated. If it is updated,

this will be a new snapshot for the service otherwise, we just update the availability

of the service. On the other hand, if a URL does not respond or returns a result

which is not a valid result, we still keep the URL in the service repository for further

requests because, the service provider server may not be working at that specific

time. Another reason for keeping these snapshots is that, they can be analyzed to

find the service availability and to find the changes of a service to report and also

to notify the Broker, if it is already using the service in different demands. In the

WSDL and WADL case we retrieve the XML file and save a copy of it as a snapshot

however, as discussed before in Section 3.1.2, REST services do not follow any well-

structured format besides WADL. As a result, we retrieve the document or HTML

page that the URL is pointing at and store it as a snapshot. In order to keep these

results, the snapshot repository consists of a file archive which holds the actual files

and another repository which contains the file addresses, the time of the snapping

and some extra information which algorithm will be discussed in Section 5.3.3 and

elaborated in Algorithm 3.
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3.4 Summary

As discussed in Chapter 1, a repository of Web Services which updates its services

automatically is necessary inside a Broker or a vertical search engine focused on Web

Services. In this chapter we discussed our methodology of collecting both kinds of Web

Services (WSDL and RESTful) from the Web and storing them in a comprehensive

and updatable repository. This chapter formed the collecting block in Figure 3.

Accordingly, in Section 3.1, we discussed different kinds of service descriptions

(WSDL, WADL, and Web pages describing RESTful services) and their contextual

information which we collect using different collecting sources. In Section 3.2 we

discussed different kinds of sources and approaches which we use to collect these

descriptions and their contextual information. We discussed our methodology to

extract the data from previous known repositories, to query Google, and to use Web

Crawlers to find Web Services which are missed. Finally, in Section 3.3 we discussed

different strategies concerning the collecting process and how we process the collected

information and store it in the repository.

In the next chapter we will discuss our Service Classification methodology and

how we classify the service descriptions and their contextual information which we

find.
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Chapter 4

Service Classification

In the previous chapter we discussed harvesting and storing Web Service descriptions

and their contextual information from different sources. In this chapter we argue

the next step, automatic Service Classification . Service Classification or

Categorization is the task of associating Web Service descriptions to a predefined

set of categories which can considerably speed up and increase the effectiveness of the

task of finding compatible Web Services in Brokerage or suggesting Web Services to

the requests [6].

Categories or classes specify the purpose of the service and what it does at a high

level. However, there is no structured support for specifying the abstract category to

which the service belongs [6]. As a result, this classification task needs to be done

manually or automatically.

As argued in [30], human intervention provides more quality annotations which

requires more effort. The authors in [30] present the idea of crowd sourcing to

decrease the costs and effort. However, it is still much more expensive than automatic

classification even though the precision is considerably higher.

In this thesis due to the high number of service descriptions (Section 6.1) and

the lack of resources, we use automatic classification. We build on the considerable

amount of research that has been carried out on the topic of automatic classification

of a text document which has many practical applications [105].

The task of automatic classification of documents is usually tackled by applying

35



Machine Learning techniques. These techniques use classifiers that have been

automatically induced by estimation on a collection of documents which is called

the training set [106]. Machine Learning methods can be divided into two broad

categories:

Supervised Learning

Each document in the training set is already associated with a category by a

human supervisor.

Unsupervised Learning

Documents are not associated with a category prior to the learning process and

the Machine Learning method must find a meaningful division into categories.

In this thesis we focus on the former method, which has generally been much more

successful in most studies as pointed out in [6].

We use the open-source MARF framework and its MARFCAT application because

they are designed as an input media type-independent investigation platform to

execute a considerable number of experiments in a short amount of time and to assist

selecting the best combinations of different available algorithms. In this application,

we use signal processing techniques which use character-level (bi-grams) processing

rather than syntax and semantic levels and we treat the descriptions as a signal which

will be discussed in details in Section 4.1. In Section 4.1.3 and Section 4.1.4 we discuss

different algorithms and options available in MARFCAT.

Using MARFCAT as our investigation platform, we systematically test and

select the best (a tradeoff between accuracy, recall, and speed) combination(s) of

algorithm implementations (configuration) available to us for each type of service

descriptions (Section 4.2) and then use only those for the final classification of all

service descriptions based on the classes defined in Section 4.3. We will discuss our

methodology in Section 4.4.

This chapter forms the classification block in Figure 3.
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4.1 MARF and MARFCAT

Modular Audio Recognition Framework [107], or short termed as MARF , is an

open-source collection of pattern recognition APIs and their implementation for

unsupervised and supervised Machine Learning and classification. MARF was

designed to act as a testbed to verify and test common and novel algorithms found

in literature for sample loading, pre-processing, feature extraction, and training and

classification, which constitute a typical pattern recognition pipeline [4]. During the

years that MARF was introduced, it accumulated a fair number of implementations

for each of the pipeline stages which allows us to execute reasonably comprehensive

comparative studies of algorithm combinations for the Service Classification purpose.

The conceptual pattern recognition pipeline shown in Figure 6 depicts the core of

the data flow and transformation between the stages of the pipeline in MARF.

Figure 6: MARF pattern recognition pipeline [4]

The pattern recognition process starts by loading a sample (e.g., an audio

recording, a text, or image file), removing noisy and/or silent data and other unwanted
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elements (pre-processing), then extracting the most prominent features from it

(feature extraction), and finally either training the system such that the system

learns a new set of features of a given subject or classifying what the subject is. The

outcome of the training process is either a collection of some form of feature vectors

or their mean or median clusters, which are stored for every subject learned. The

outcome of classification is the class that the system believes the subject belongs to

[4] and a score attached to it.

MARF and its application MARFCAT’s design is independent on the input media

being analyzed. The input is treated as a signal, equivalent to binary, where each

n-gram (n = 2 by default, i.e., two consecutive characters or, more generally, bytes)

are used to construct a sample amplitude value in the signal.

4.1.1 Signal Pipeline

The loading in MARF starts with the interpretation of the files being scanned in

terms of bytes forming amplitude values in a signal using either unigram, bi-gram,

or tri-gram approach. Then, the pre-processing allows to be none-at-all (raw, or

the fastest), normalization, traditional frequency domain filters, wavelet-based filters,

etc. Feature extraction involves reducing an arbitrary length signal to a fixed length

feature vector of what is thought to be the most relevant features in the signal, e.g.,

spectral features in FFT, LPC, min-max amplitudes, etc. The classification stage

is then separated either to train by learning the incoming feature vectors (usually

k-means clusters, median clusters, or plain feature vector collection, combined with

neural network training) or testing them against the previously learned models [108].

MARFCAT is a MARF-based Code Analysis Tool, which was first exhibited at the

Static Analysis Tool Exposition (SATE) workshop in 2010 [109, 110]. MARFCAT,

as any MARF application, can be used for a wide array of recognition tasks, not only

applicable to audio, but rather to general pattern recognition for various applications,

such as in digital forensic analysis, writer identification, natural language processing

(NLP) [111], and others. In particular, MARFCAT was used to analyze source and

byte code to fingerprint, detect, and classify vulnerabilities and weaknesses in [112,
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113, 114] and do the same for network packet traces [115]. The authors point out

MARFCAT’s advantages and shortcomings:

• Advantages

– Relatively fast (e.g., 2400 files to train and test in about 3 minutes) on a

now-commodity 7-year old desktop or a laptop.

– Input data type-independent (e.g., sound files, binary and source code,

images, and natural language text)

– Can automatically learn a large knowledge-base to test on known and

unknown cases.

– A wide range of algorithms and their combinations can be investigated to

select the best ones for a particular task.

• Shortcomings

– Interpreting a signal is less intuitive by humans in the output.

– Accuracy depends on the quality of the knowledge-base (training sets)

collected. Some of this collection and annotation is manual; hence, error-

prone and a subject to over-fitting.

– No nice GUI. Presently the application is script/command-line based

(however, a scalable web service-based UI development is in progress).

4.1.2 Motivation to Use MARFCAT

The following are primary motivations justifying the use of MARFCAT in this work:

1. MARFCAT was successfully used in related source code and text analysis

tasks, for specific vulnerabilities and defects as well as more general weakness

categories as referenced earlier. At its introduction in 2010, it was arguably the

first time such an approach was applied to text analysis and was deemed novel

in these types of tasks. The most significant advantage of it was the processing

speed compared to other code analysis tools.
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By extension this applied it to Web Services descriptions in various formats.

2. MARFCAT supports both signal processing and NLP pipelines. However, the

signal pipeline was found by an order of magnitude faster than most parsing

and NLP approaches [114, 113].

Thus, spectral analysis was proven beneficial in code analysis, source, and

binary as well as network packet traces, and natural language processing. It

is analogous to analyze the signal from a distant star, breaking it down into

spectrum of emitted light in order to classify the chemical composition in terms

of elements present in the star, i.e., to fingerprint them. MARFCAT similarly

fingerprints a spectrum of text or any other media into bins related to different

categories it was shown to learn from.

3. MARFCAT is very easy to quickly setup and do preliminary testing in search for

good algorithms. It can also be used as a front-end for semantic- and ontology-

based parsing classifiers to prioritize their work [112].

4. MARFCAT author was readily available to consult on issues of its uses and

operation.

4.1.3 Algorithms Used by MARFCAT

The specific algorithms come from the classical literature and other sources and are

detailed in [4], [107], [115]. The below is a summary of some algorithms corresponding

to Figure 6 with a brief description:

Fast Fourier Transform (FFT)

A version of the Discrete Fourier Transform used in FFT-based filtering as well

as feature extraction [116]. It is also used in FFT-based filters (both forward

and inverse FFT to reconstruct the signal after filtering). Uses 512 frequencies

by default (empirically determined by the MARF project).

Linear Predictive Coding (LPC)

Used in feature extraction, which evaluates windowed sections of signals and
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determines a set of coefficients approximating the amplitude vs. frequency

function. Uses 20 poles by default.

Distance Classifiers

Various distance classifiers (Chebyshev, Euclidean, and Minkowski [117],

Mahalanobis [118], Diff (internally developed within MARF, roughly similar

in behavior to the UNIX/Linux diff utility [119]), and Hamming [120]).

Cosine Similarity Measure

Cosine similarity measure [121], [122] was thoroughly discussed in [123] and

often produces the best or near best accuracy in MARF in many configurations.

4.1.4 MARFCAT Options

As we mentioned before, the loading in MARF starts with the interpretation of the

files being scanned in terms of 2-byte sequences (bi-grams) forming amplitude values

in a signal over time. All mentioned algorithms are selected as options in a scripted

manner exhaustively at the first stage in order to select the candidate best options

for subsequent classification. Not all combinations are necessarily optimal or have

effect together (e.g., noise removal uses low pass filter at pre-pre-processing and then

if low pass filter is applied, it doubles the work, without additional filtering effect),

but they are easy to automate and there is no dependency assumptions between

algorithms at different stages keeping them decoupled and re-usable. Other options,

such as clustering type, choice of signal or NLP pipeline, loaders, are also selected.

We survey some of these options to find the best configuration for each type of service

description which will be discussed in Section 4.4.

In order to be able to classify samples into different classes, an automatic classifier

determines the salient properties of the samples and puts them into different feature

vectors. This process is called feature extraction [6]. In MARF there are different

ways of storing and matching feature vectors that MARFCAT takes advantages of

from a specific class. These are referred to as clustering options in MARFCAT and

can be customized:
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• k-means clusters (mean option)

• median clusters (median option)

• plain feature vector collection (no clustering option)

We report our results with all three clustering options to find the best configuration

for each type of service description which will be discussed in Section 4.4.

In terms of some most prominent algorithms producing the best results in the

algorithm selection stage include, but not limited to:

Preparation

• -noise does noise removal by applying as an FFT (Fast Fourier Transform)

low-pass filter effectively removing high-frequency occurring material.

• -silence removes near-zero gaps from the data. It is important to apply

silence removal after the noise removal since noise filtering may produce

more silence gaps. The gaps are removed by compression of the input data

into a smaller sized array by cutting out and concatenating non-silent

portions.

• -silence-noise combines the noise and silence removal. It helped

selecting best low-frequency non-zero local minimums and maximum

features in classification of less structured samples such as REST

descriptions.

Preprocessing

• -endp is endpointing which collects all local minimums and maximums

from the signal. It worked best with -minmax.

• -low FFT filter that removes approximately the upper 1/3 band of

frequency spectrum by applying a zero frequency response on that portion

effectively removing most high-frequency bigram material.
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It is redundant to apply -low and -noise together under the current

implementation of -noise, but scripting facilities do not make such

intelligent guesses.

• -bandstop keeps approximately the lowest and highest 1/3 bands of the

spectrum and removing the middle third. Combined together with the

low-pass filter this effectively means 2/3 upper frequencies are removed

keeping 1/3 of the lower-frequency band.

Feature Extraction

• -minmax picks a hundred features from the vector, where 50 are minimums

and 50 are maximums. If there are less than 100 values, the gap is filled

with zeros. Worked best with -endp to select the 100 local minimum and

maximums.

• -lpc is Linear Predictive Coding which works on a spectral envelope of

coefficients representing the spectrum curve. In MARF, the empirical

default is 20 coefficients. It works well with compressed form of signal, such

as with local minimums and maximums with silence removed. The feature

vectors are as a result small – 20 features making distance calculation faster

(as opposed to -fft’s 512 features).

Classification

• -cheb is Chebyshev distance classifier which appears to work best with the

-endp and -minmax selected local extremes due to their block nature that

provides enough discriminatory power for highly varied and overlapping

data sets such as REST descriptions. It is also the fastest classifier.

• -eucl is Euclidean distance which works better with less varied 20-sized

vectors, such as produced by LPC combined with endpointing. -silence,

-endp, -lpc with Euclidean distance appear to produce one of the best

configurations during search for algorithms to use for WSDL descriptions.
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Other options and their algorithms, and their complexity are discussed in [4, 115]

and related and are omitted here for brevity.

4.2 Data Samples

In Chapter 3 we discussed different types of Web Service descriptions and their

contextual information. We stored each type’s description and their context

separately. Due to the nature of each type’s description’s characteristics and features,

and to compare and analyze the results separately, we survey each type’s classification

process independently.

For WSDL and WADL files we use the descriptions directly which we found from

the previous step. On the other hand, for HTML files, descriptions regarding to REST

services, we take an additional step before feeding them to MARFCAT because of

the nature of these files which contain too much noise, e.g., script codes.

In this step we remove all the HTML tags and unnecessary sections and only keep

the raw text inside and store it in a separate text file and consider it as a new type of

sample. Likewise, this step can be applied to WSDL and WADL files to remove all

their tags. However, they do not contain much noise and MARFCAT will take care

of noise removal in the pre-processing step. Therefore, this task were postponed to

the future work because it will multiply the number of the tests to be applied.

As a result, our repository will contain four general types of samples:

• WSDL files (.wsdl)

• WADL files (.wadl)

• HTML files (.html)

• Tags-Filtered description files (.txt)

Another dimension which is added to each of these types is their contextual

information. In order to show the effect of context on the classification and to find
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the best configuration, we define three type of samples with respect to the contextual

information for each of general types defined above:

• Plain files (description files without any context added to them)

• Combined with context files (plain descriptions + context)

• Only context files (files containing only the contextual information of service

descriptions)

Figure 7 illustrates abstract data model of the samples:

Figure 7: Abstract Snapshots Data Model

The concrete data model is shown in Figure 13. These samples will be loaded into

MARF in the data flow shown in Figure 14.

4.3 Classes and Training Sets

We use 5 classes for the classification with respect to previous research [70], [27], [67],

the most popular categories in ProgrammableWeb1 and more importantly the nature

of Web Service descriptions in the repository and their intersections:

• Weather

• Social

1http://www.programmableweb.com/
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• Tourism

• Entertainment

• Financial

As mentioned in Section 4.1, in order to classify the service descriptions which are

stored in the repository, we need training sets for each of these classes. These sets

need to be chosen with minimal intersections to be definite candidates for the class. In

addition, for the testing purposes to find the best combination of configurations which

will be discussed in Section 4.4, we need testing sets for each of the classes. Therefore,

we manually classify 500 instances (100 per each class) for WSDL and REST files.

However, for WADL files because of the inadequacy of the files in the repository as

discussed in Section 3.1.3, only for weather, social and financial 10 definite matches

can be found. For tourism 3 candidates and for entertainment only 2 candidates are

chosen.

4.4 Testing Methodology

As discussed before in Section 4.1, we use MARF and its application MARFCAT to

find the best algorithm combinations for each service description types which were

mentioned in Section 4.2. In order to perform this task, MARFCAT defines two

processes which were discussed in Section 4.1:

Learning Process

In this process the feature vectors are extracted and the system learns the classes

from the training set.

Testing or Classification Process

In this process the testing set is classified based on the previously learned

models.

In order to evaluate the performance of the classifiers, we compute different

evaluation measures. These measures are usually presented as percentages. Consider
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for a given class C, nt samples are expected, i.e., are labeled with C. The classification

system classifies (labels) ns samples as C including nc correct samples (true positives)

and nn incorrect samples (false positives).

Total Accuracy

Total accuracy is defined as the fraction of the samples which were classified in

the same class as expected in total:

∑
nc

∑
nt

Precision

Precision is defined for each class as the fraction of classified items which are

relevant, i.e., expected in that class:

nc

ns

We also compute the macro precision which is the average of precision over all

classes.

Recall

Recall (also called sensitivity) is defined for each class as the fraction of relevant

items which are classified:
nc

nt

We also compute the macro recall which is the average of recall over all classes.

F-Measure

F-Measure is defined for each class as the harmonic mean of precision and recall:

2 ∗ precision ∗ recall
precision+ recall

We also compute the macro F-Measure which is the average of f-measure over

all classes.
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Classification Time

Classification time is the execution time of the classification process.

Appendix B contains examples of the reports.

In our methodology, initially we survey each description type (Section 4.2)

independently in order to find the best algorithm combinations considering the

measurements.

In addition, there are also other options which MARFCAT provides and were

referred in Section 4.1.4 as clustering and frequency options. We test all three

clustering options in all cases to find the best algorithm combinations. On the other

hand, because the frequency change did not have any effect on the precision (see

Chapter 6) when tested in the best case, we ignored it for the other cases.

Therefore, we find the best configuration of MARFCAT for each sample types

which consists of an algorithm combination using a specific clustering method.

As argued in Section 4.3, we chose 5 classes and we manually classified 500

instances (100 per class) for each service description type. As discussed in Section 4.2,

contextual information adds another dimension to the samples and adds 2 more

sample types (plain + context, and only context) for each of the service description

types.

In order to completely survey the possible cases and find the best configuration(s),

we train and test on all type of samples exhaustively.

Figure 8 illustrates our methodology which forms 72 different cases based on the

sample types and clustering options. Each case consists of one row from each of the

blocks; one description type, training and testing on which type of file considering

contextual information. We test 864 algorithm permutations in the Signal Processing

pipeline for each case which will be discussed in Section 5.3.4 and illustrated in

Figure 14.

In this exhaustive test process we choose randomly a smaller set of the manually

classified instances in order to keep the tests simple and applicable in a shorter amount

of time (62,208 runs).
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Figure 8: Testing Methodology

After finding the best cases, we increase the sets and use all 500 instances for each

of service description types. Using these sets we perform another exhaustive search

on the algorithm combinations in order to find the best algorithm combination.

Using the best case and the best algorithm combination, we perform a 10-fold

cross-validation in order to give an insight on how the model will generalize to an

independent dataset and to reduce variability. In this procedure, we split the data

randomly into 10 pieces and run the classification 10 times using one of the pieces

(10%) as the testing set and the rest (90%) as the training set in a way that each

sample is present once and only once in the testing set among the runs and then,

average all the results.

In order to show the effect of the use of context on the classification, we study

the best configuration without any contextual information added, and the best one

through all other cases with context. As a result, we perform the 10-fold cross-

validation for each of these cases and compare the results in order to illustrate the

effect of context.

At the end, after finding the best configuration for each sample type, we create

the sets from all the service descriptions in the repository which are not classified yet

and perform the classification for them and store the results in the repository.

4.5 Summary

As discussed in Chapter 1, Service Classification can considerably speed up and

increase the effectiveness of the task of finding compatible Web Services in Brokerage

or suggesting Web Services to the requests. In this chapter we discussed our

49



methodology of combining Machine Learning and Signal Processing techniques and

employing contextual information in order to automatically classify Web Service

descriptions. This chapter formed the classification block in Figure 3. Accordingly,

in Section 4.1 we introduced the open-source MARF framework and its MARFCAT

application which we use as our investigation platform in order to execute a

considerable number of experiments in a short amount of time and to assist selecting

the best combinations of different algorithms. In Section 4.2 we discussed different

type of samples which we use for the classification including the service descriptions

and tags-filtered version of them. We argued adding another dimension to the

descriptions and defining samples with respect to the contextual information. In

Section 4.3 we discussed choosing the classes and the training and testing sets for

the classification. Finally, in Section 4.4 we discussed our methodology to find the

best combinations of algorithms and options from the viewpoint of accuracy, recall,

and time achievable in the scope of this thesis and to survey the effect of context on

the Service Classification. We defined 72 different cases based on the sample types,

clustering options, and the contextual information which we survey 864 combinations

of algorithms and techniques in each.

In the next chapter we will discuss the architecture, models, and the

implementation of this thesis.
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Chapter 5

Prototype

In Chapter 3 we discussed the concepts involved in how we collect Web Service

descriptions and their contextual information. In Chapter 4 we argued our

methodology to find the best classification configuration and classifying the

repository. In this chapter we discuss the architecture, models, and the

implementation of these processes.

5.1 Architecture

Figure 3 illustrates the whole architecture and how the two steps of service collecting

and Service Classification are connected.

5.1.1 Service Collecting Architecture

Figure 9 demonstrates the service collecting concrete architecture and components.

As discussed in Chapter 3, we collect service descriptions from three sources. For

each of these sources we define independent components:

Known Repositories Extractor

This component extracts service description URLs, tags, annotations,

categories, descriptions and titles from the result of previous research and service

portals available in the Web as discussed in Section 3.2.3.
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Google Search

This component employs Google Search using a query based on keywords and

different file types which were discussed in Section 3.2.2. Accordingly, it extracts

URLs, descriptions and titles from Google results.

Web Crawler

This component crawls the Internet in order to find Web Service descriptions.

As discussed in Section 3.2.1, it starts from the crawling seeds which are

populated with a set of provider domain URLs from which a high number of

Web Services has been found.

In addition, the Service Descriptions Merger is responsible to merge the results

of each of these components and store them in the service descriptions repository.

This component prevents duplications in the repository and aggregates contextual

information from different sources as discussed in Section 3.3.1.

The Provider Extractor extracts service provider domain URLs from service

description URLs and stores them based on the number services which they offer.

The Snapshots Creator sends a request to each of the service description URLs

and as discussed in Section 3.3.2, if the result is valid, it archives a copy of the file in

the snapshots repository and stores the accessed time and the reference to the file in

the snapshots info part of the service descriptions repository.

5.1.2 Service Classification Architecture

Figure 10 depicts the Service Classification concrete architecture and components. As

discussed in Section 4.4, initially we test each sample type (Section 4.2) independently

in order to find the best configuration of MARFCAT for that sample type.

At the end, after finding the best configuration for each sample type, we create

the testing sets for each type from all the service descriptions in the repository which

are not classified yet. Then we perform the final classification for each type based

on the best configurations (algorithm combination + clustering method) found from
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Figure 9: Concrete Service Collecting Architecture
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the previous step and store the resulting classes associated with each snapshot in the

snapshots info part of the service descriptions repository.

Figure 10: Concrete Service Classification Architecture

5.2 Data Model

Our service repository consists of two main repositories:

Service Descriptions Repository
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Stores service description URLs, providers, contextual information, and

snapshots information and references. This repository is implemented as a SQL

database. The main characteristics of this repository is illustrated in Figure 11

and the concrete entity relationship diagram is illustrated in Figure 12.

Snapshots Repository

This repository is a file-based repository which stores snapshots of service

descriptions, context files, and snapshots of service descriptions combined with

their context files. Each snapshot is stored in a folder named with its service

provider URL and linked to Snapshots Info in service descriptions repository.

The abstract illustration of this repository is shown in Figure 7 and the concrete

data model is illustrated in Figure 13.

Figure 11: Abstract Entity Relationship Diagram
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Figure 12: Entity Relationship Diagram
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Figure 13: Concrete Snapshots Data Model

5.3 Implementation

All of the components are implemented in Java. The Service Descriptions Repository

was created using MySQL and Hibernate as its ORM (Object-Relational Mapping)

framework. In this section we go further into the details of the components which

need more discussion.

5.3.1 Web Crawling

Our Web crawling methodology was discussed in Section 3.2.1. In order to perform

this task, we use Crawler4j1, an open-source Web Crawler for Java which provides a

simple interface for crawling the Web. This crawler is easy to setup and customize

and supports all of our crawling policies defined in Section 3.2.1.

In order to define the Politeness Policy and Parallelization Policy, we set the

configuration of Crawler4j with a specific Politeness Delay and Number of Crawlers.

This crawler offers different methods to be overridden in order to inject the policies

of crawling. In this section we discuss two of main functions and the algorithms

implemented in them.

Should Visit

1https://github.com/yasserg/crawler4j
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This function decides whether the given URL should be crawled or not. In

this function we define our Selection Policy to reject a lot of content by default

especially binary files such as images, audio or video files and to just fetch

HTML pages, XML files and other text documents, i.e., all types of files that

could be either a service description or lead to a service description (WADL or

WSDL).

Visit

This function is called after the content of a URL is downloaded successfully.

In this function we first determine whether the downloaded content is a valid

XML and then validate it through WSDL and WADL schema definitions. If

it is a valid description and not already stored in the repository, we store its

URL in the service descriptions part of the repository or update its context and

availability as illustrated in Algorithm 2.

Algorithm 1 elaborates a simplified abstraction of these crawling algorithms.

Algorithm 1 Crawling Algorithm

Require: url, filters
1: if url matches filters then
2: Discard url
3: else
4: content ← Download url Content
5: if content type is xml then
6: if content is a valid wsdl or content is a valid wadl then
7: call Algorithm 2 with url
8: end if
9: end if
10: end if

5.3.2 Merging and Duplications

As defined in Section 5.1.1, the Service Descriptions Merger is responsible to merge

the results of the three different collector components. We discussed how we prevent

duplications and how we aggregate contextual information from different sources in
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Section 3.3.1. In order to achieve this goal, Algorithm 2 is defined to handle saving

or updating a URLs and its context. This algorithm is also used during merge and

migration of repositories created by each collector, if they were running in a different

environment, i.e., in a different server or with a different version of repository.

Algorithm 2 Saving or Updating Service Descriptions Algorithm

Require: newUrl, newContext
1: if newUrl ∈ Service Descriptions Repository then
2: existingContext ← context of newUrl in Service Descriptions Repository
3: if newContext ≡ existingContext then
4: Discard newUrl
5: else
6: existingContext ← newContext ∪ existingContext
7: end if
8: else
9: Save newUrl with newContext in Service Descriptions Repository
10: end if

5.3.3 Creating Snapshots

As defined in Section 5.1.1, the Snapshots Creator is responsible to create and

update snapshots from the URLs saved in the repository. Algorithm 3 elaborates

a simplified abstraction of the algorithm which is used to create or update snapshots

and availability.

5.3.4 Service Classification

As mentioned in Chapter 4, we use MARF and its application MARFCAT to find

the best algorithm combinations for each sample type which were mentioned in

Section 4.2. We use the fast script of MARFCAT which performs the algorithms

illustrated in Figure 14 in each step of its pipeline: 1 Loader, 4 techniques in the

Preparation stage, 9 algorithms in the Pre-processing stage, 4 algorithms in the

Feature Extraction stage, and 6 Distance Classifier algorithms. The combination

of these algorithms will result in 864 permutations which we test in each of our cases

as discussed in Section 4.4.
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Figure 14: Service Classification Data Flow in MARF
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Algorithm 3 Creating Snapshots Algorithm

1: for all url ∈ Service Descriptions Repository do
2: content ← Download url Content
3: if content is valid then
4: lastAvailableT ime of url ← now
5: infos ← Sort Snapshot Infos based on accessedT ime
6: lastInfo ← First of infos
7: lastContent ← Load Content from address of lastInfo from Snapshots

Repository
8: if lastContent �= content or ¬ (∃ lastContent) then
9: newInfo ← Create new Snapshot Info
10: accessedT ime of newInfo ← now
11: newFile ← Create file with content in Snapshots Repository
12: address of newInfo ← Address of newFile
13: Save newInfo in Service Descriptions Repository
14: else
15: accessedT ime of lastInfo ← now
16: end if
17: else
18: lastUnavailableT ime of url ← now
19: end if
20: end for

5.4 Summary

In this chapter we discussed how we implement the prototype of Service Collecting

which was discussed in Chapter 3 and Service Classification which was discussed in

Chapter 4. Accordingly, in Section 5.1 we proposed the architecture of collecting

and classification parts. We defined different components which are used in the

architecture and illustrated the relationship and connection between them. In

Section 5.2 we proposed the data model and the structure of the service repository

which consists of two main repositories: Service Descriptions Repository and

SnapshotsRepository. In Section 5.3 we discussed the details of the implementation

and proposed different algorithms in order to implement the components.

In the next chapter we will present the results of Service Collecting and Service

Classification and evaluate them.
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Chapter 6

Results and Evaluation

In this chapter we present the results of Service Collection discussed in Chapter 3 and

the Service Classification results discussed in Chapter 4 using the prototype which

was implemented using the concepts argued in Chapter 5. Accordingly, in Section 6.1

we measure and illustrate the number of Web Service descriptions and their providers

which we found and stored in the repository in total and based on each source. As

discussed in Chapter 3, our first hypothesis is:

Hypothesis 1

By using different sources and combining the techniques, we shall create a

comprehensive repository from all three main types of service descriptions

and find more available service descriptions in comparison with the current

repositories accessible.

As discussed in our methodology in Section 4.4, in order to classify the service

descriptions which we found, we first find the best configuration of MARFCAT (best

algorithm combination + clustering option) for each type of service description. In

addition, we add the contextual information to the classification and our second

hypothesis is:

Hypothesis 2

Adding contextual information to the files will improve the performance of the

classification.
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In Section 6.2 we measure and illustrate the resulting accuracies of 72 different

cases based on the clustering options and adding contextual information, cross-

validated results for the best cases, the effect of context on the classification, and

we compare our results with the literature where it is available.

6.1 Service Collecting Results

Table 1 depicts the total results of service collecting including all three types of

service descriptions (WSDL, WADL, and HTML pages describing REST services).

Table 2, Table 3, and Table 4 present the results for each type of service description

individually.

Unique URLs

This column contains the number of unique service description URLs which

were found from each source.

Available

This column includes the number of service description URLs from each source

to which we could send a request during snapshot creation and receive a valid

response, i.e., successfully validated against WADL schema definition, WSDL

schema definition, or a valid HTML page.

Snapshots

This column represents the number of snapshots which we stored from the URLs

found from each source.

Service providers

This columns depicts the number of service providers which we extracted from

the URLs found from each source.

The last row contains the total number of each column’s concept regardless of the

source of the data.
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Table 1: Total Service Collecting Results

Unique URLs Available Snapshots Service Providers
Known Repositories 23474 10080 10158 11250

Search Engines 43494 27969 32554 8073
Web Crawling 6634 6634 6634 31

Total 72454 43576 48161 18494

Table 2: WSDLs Collecting Results

Unique URLs Available Snapshots Service Providers
Known Repositories 16955 4988 4988 5507

Search Engines 16543 5299 5299 1383
Web Crawling 6622 6622 6622 29

Total 39288 16096 16096 6791

Table 3: WADLs Collecting Results

Unique URLs Available Snapshots Service Providers
Known Repositories 0 0 0 0

Search Engines 1828 448 448 244
Web Crawling 12 12 12 2

Total 1830 450 450 246

Table 4: RESTs Collecting Results

Unique URLs Available Snapshots Service Providers
Known Repositories 6519 5092 5170 5787

Search Engines 25123 22222 26807 6587
Web Crawling 0 0 0 0

Total 31336 27030 31615 11680

Table 5 illustrates top 20 service providers which was extracted from service

description URLs and the number of services each one offers.

6.1.1 Evaluation

There were 1,148 same URLs which were found from different sources due to the

intersections between the sources. As a result, the total number (last row) is not

equal to the sum of individual rows in some cases.

As discussed in Section 3.1.3, we were not able to find any known repositories

which lists WADL file and as discussed in Section 3.1.2, because RESTful services

are much harder to detect and validate, using Web Crawlers to discover HTML pages
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Table 5: Top 20 service providers

Provider Number Of Services
data.serviceplatform.org 6869

github.com 3888
code.google.com 2203
stackoverflow.com 1904

programmableweb.com 1101
biomoby.org 1048

generalinterface.org 1005
svn.wso2.org 505

wsembnet.vital-it.ch 484
svn.apache.org 456

msdn.microsoft.com 454
wso2.org 423

books.google.ca 355
docs.aws.amazon.com 315
developer.atlassian.com 303

docs.atlassian.com 282
slideshare.net 272

community.workday.com 267
phoebus.cs.man.ac.uk 242

describing REST services is out of the scope of this thesis. As a result, the Known

Repositories row in Table 3 and the Web Crawling row in Table 4 is empty.

As Table 1 depicts, only around half of service description URLs which were

found from known repositories were available and it shows that they are outdated.

Similarly, only approximately 64 percent of service description URLs which were found

from search engines were available and it shows that they are not guaranteed to find

currently working Web Services. On the other hand, as we discussed in Section 5.3.1,

as soon as we find a URL from Web crawling, we have to validate it to check whether

it is a valid description URL (by checking its content). As a result, the Unique URLs

column is the same as the Available column when Web Crawling is the source.

The task of storing snapshots as defined in Section 3.3.2, was performed at three

different instances of time. The content from WSDL and WADL URLs did not

change and as a result, there is no difference between the number of snapshots and

the available URLs for them. On the other hand, because the HTML pages tend to
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change a lot over time, the content from the URLs which were pointing to HTML

pages describing REST services changed in some cases and as a result, the number

of snapshots is higher than the number of available URLs for them.

6.2 Service Classification Results

As discussed in Section 4.4, in order to classify the service descriptions, we first

find the best configuration of MARFCAT (best algorithm combination + clustering

option). In this approach as illustrated in Figure 4.4, based on the sample types,

considering the contextual information, and the clustering options, we survey 72

different cases. As discussed in Section 5.3.4 and illustrated in Figure 14, we

exhaustively test 864 algorithm permutations for each case. As discussed in

Section 4.2, we classify and survey each service description type individually. For

each service type, as discussed in Section 4.4, we survey 18 different cases in order to

find the highest accuracy achievable without considering any contextual information

(training on Plain files and testing on Plain files) and with the contextual information

in effect (e.g., training on Plain + Context files and testing on Plain + Context files).

In each case we use MARFCAT to test 864 algorithm permutations in order to find the

highest accuracy. As mentioned in Section 4.4, after finding the best configuration, we

perform two 10-fold cross-validations; one with the best case without considering any

contextual information and one with the context added to the files. We compare the

evaluation measures (total accuracy, macro recall and precision, macro F-Measure,

and the classification time) in order to show the effect of context. In addition, we

compare the performance of our classification for WSDL files with the literature in

order to give an insight on how close our classification stands. However, we could not

find any related work for classification of REST descriptions to compare.

6.2.1 WSDLs Classification Results

Table 6 depicts the highest accuracy achievable by exhaustively testing 864 algorithm

permutations for each case of WSDL files using different clustering options which were
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mentioned in Section 4.1.4.

Table 6: The highest accuracy of the cases for WSDLs

TrainPlainCtx
TestPlainCtx

TrainPlain
TestPlain

TrainPlainCtx
TestPlain

TrainPlain
TestPlainCtx

TrainCtx
TestPlainCtx

TrainCtx
TestPlain

Mean 60 52 48 52 36 28
No Clustering 68 64 76 64 36 36

Median 56 56 52 52 28 32

The highest accuracy without considering context (Train on Plain-Test on Plain

column) is achieved by using the No Clustering option: 64 percent. The highest

accuracy with considering context (other columns) is achieved by using the No

Clustering option and using Plain + Context files in the training and Plain files

in the testing: 76 percent.

For these cases as discussed in Section 4.4, we change the frequency option of

MARFCAT which was mentioned in Section 4.1.4 in order to find better accuracy.

However, as the results depicted in Appendix B.1, there is no change in the accuracy

and we ignore this option for the types and cases.

As discussed in Section 4.4, after finding the best case which is using the No

Clustering option and using Plain + Context files in the training and Plain files in

the testing, we increase the sets and perform another exhaustive search in order to

find the best algorithm combination.

As the results depicted, the best result for the classification of WSDL files is

achieved by training on Plain + Context files and testing on Plain files using the

following configuration:

• No Clustering option (discussed in Section 4.1.4)

• -silence for preparation, -endp for pre-processing, -lpc for feature extraction,

-eucl for classification

As mentioned in Section 4.1.4, -silence option removes near-zero gaps from

the data. There are usually many white-spaces and empty parts in the WSDL files

that are normalized close to zero or silence gaps appear due to low-pass filtering.

As a result this preparation technique helped to improve the overall classification
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combination. Additionally, as mentioned in Section 4.1.4 from a theoretical point of

view, LPC works well with compressed form of signal, such as with local minimums

and maximums with silence removed. In addition, Euclidean distance (which is

sensitive to high-dimensional vectors) works better with less varied 20-sized vectors,

such as produced by LPC combined with endpointing.

As discussed in Section 4.4, we perform 10-fold cross-validation based on this

configuration in order to give an insight on how the model will generalize to an

independent dataset and to reduce variability. Table 7 depicts the cross-validated

results including the evaluation measures which were defined in Section 4.4. The

class-wise results are listed in Appendix B.1.

Table 7: WSDLs cross-validated results with context

Total Accuracy Macro Precision Macro Recall Macro F-Measure Classification Time (ms)
59.00 59.65 59.00 58.62 3432.80

We compare the performance of our classification for WSDL files with the

literature in order to give an insight on how close our classification process is to

the literature. However, most of the research has been carried out for semantically-

defined files (using Ontology Language (OWL-S) [45] and Web Service Modeling

Ontology (WSMO) [46]) which are not available at a large scale and are a small subset

of available service description files. The authors in [6] used different techniques for

feature extraction such as Bag of Words variances and different algorithms for machine

learning such as Support Vector Machines (SVM) variances and compared them in

order to find the best classification performance for WSDL files. Finally, the best

combination was the result of employing Support Vector Machines and use a feature

extractor that is tailored to the task of WSDL classification by using its structure, in

particular the identifiers. Table 8 depicts the results of their work including the same

evaluation measures except the classification time which is not presented.

Table 8: WSDLs literature results form [6]

Total Accuracy Macro Precision Macro Recall Macro F-Measure
59.40 58.00 52.80 55.30
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Although the data sets from which the tests are performed are different, we can

conclude that our classification accuracy is very close to the best result from the

literature without any customization on the preprocessing, feature extraction, and

classification based on the WSDL files. However, as the goal of this thesis was not

to find the best classification tool available, and as such improving the classification

accuracy is postponed to the future work. MARFCAT offers a good tradeoff between

precision and speed and helps us to validate the hypothesis on the positive effect of

context on classification results.

In order to show the effect of contextual information, as discussed in Section 4.4,

we perform another 10-fold cross-validation on the same configuration without

considering any contextual information and training on the Plain files and testing

on the Plain files. Table 9 depicts the cross-validated results including the evaluation

measures without considering any contextual information. The class-wise results are

listed in Appendix B.1.

Table 9: WSDLs cross-validated results without context

Total Accuracy Macro Precision Macro Recall Macro F-Measure Classification Time (ms)
54.60 56.02 54.60 54.37 1478.00

Figure 15 illustrates the effect of adding contextual information to the WSDL files

on total accuracy, macro precision, macro recall, macro F-Measure, and classification

time.

The results depicts that contextual information is improving the performance of

the classification even though it is increasing the classification time due to increase

in the file sizes because of the context which is added to them.

Finally, we use the best configuration (using contextual information) in order to

perform the final classification of all WSDL files which class is unknown. Table 10

depicts the number of instances which was classified inside of each class. These results

are based on the performance of the current classification tool. Currently, the results

cannot be verified because the actual classes are not known. In order to validate, all

the instances need be classified by human contribution by using approaches such as

crowd-sourcing.
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Figure 15: Effect of context on classification of WSDLs

Table 10: Final WSDL classification results

Category Name Number of Instances
Weather 2782
Social 2747

Tourism 3581
Financial 2376

Entertainment 4110

6.2.2 WADLs Classification Results

As discussed in Section 3.1.3, WADL descriptions are not popular through service

providers and REST services are not widely described using WADL in the Web. As

a result, as depicted in Table 3, we could not find as many instances for them as we

could for WSDL and REST descriptions. Consequently, as discussed in Section 4.3,

we could not find the same number of samples for WADL files. The scale of the

samples are not as much as the WSDL and REST samples and we discard the 10-fold

cross-validation for these files. However, for the sake of completeness we perform a

2-fold cross-validation (swapping training and testing set and averaging the results)

and we compare the results with the context and without considering any contextual

information. The results are depicted in Appendix B.2.

Table 11 depicts the highest accuracy achievable by testing algorithm
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permutations for each case of WADL files using different clustering options.

Table 11: The highest accuracy of the cases for WADLs

TrainPlainCtx
TestPlainCtx

TrainPlain
TestPlain

TrainPlainCtx
TestPlain

TrainPlain
TestPlainCtx

TrainCtx
TestPlainCtx

TrainCtx
TestPlain

Mean 64.71 58.82 64.71 58.82 58.82 52.94
No Clustering 76.47 64.71 58.82 52.94 58.82 47.06

Median 58.82 58.82 58.82 58.82 52.94 41.18

The highest accuracy without considering context (Train on Plain-Test on Plain

column) is achieved by using the No Clustering option: 64.71 percent. The highest

accuracy with considering context (other columns) is achieved by using the No

Clustering option and using Plain + Context files in both training and testing: 76.47

percent.

6.2.3 REST Files Classification Results

As discussed in Section 4.2, because HTML files contain too much noise, e.g., script

codes, we define a new type of sample for REST HTML files and remove all the tags

and unnecessary sections and only keep the raw text inside and store it in a separate

text file. We survey both sample types in order to find the best case for classification

of REST service descriptions and use the sample type with the highest accuracy in

the final classification.

REST HTML Files Classification Results

Table 12 depicts the highest accuracy achievable by testing algorithm permutations

for each case of HTML files describing RESTful services using different clustering

options.

Table 12: The highest accuracy of the cases for the REST HTML files

TrainPlainCtx
TestPlainCtx

TrainPlain
TestPlain

TrainPlainCtx
TestPlain

TrainPlain
TestPlainCtx

TrainCtx
TestPlainCtx

TrainCtx
TestPlain

Mean 40 40 40 40 32 40
No Clustering 40 44 48 36 40 36

Median 40 40 40 40 36 32

The highest accuracy without considering context (Train on Plain-Test on Plain
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column) is achieved by using the No Clustering option: 44 percent. The highest

accuracy with considering context (other columns) is achieved by using the No

Clustering option and using Plain + Context files in the training and Plain files

in the testing: 48 percent.

REST Tags-Filtered Files Classification Results

Table 13 depicts the highest accuracy achievable by testing algorithm permutations

for each case of tags-filtered files describing RESTful services using different clustering

options.

Table 13: The highest accuracy of the cases for the REST tags-filtered files

TrainPlainCtx
TestPlainCtx

TrainPlain
TestPlain

TrainPlainCtx
TestPlain

TrainPlain
TestPlainCtx

TrainCtx
TestPlainCtx

TrainCtx
TestPlain

Mean 48 40 36 40 48 40
No Clustering 44 48 52 44 48 40

Median 40 44 48 40 44 40

The highest accuracy without considering context (Train on Plain-Test on Plain

column) is achieved by using the No Clustering option: 48 percent. The highest

accuracy with considering context (other columns) is achieved by using the the No

Clustering option and using Plain + Context files in the training and Plain files in

the testing: 52 percent.

REST Files Best Configuration

As the results depicted, the best case for the classification of REST files is achieved by

using the tags-filtered sample type and training on Plain + Context files and testing

on Plain files and using the No Clustering option. As discussed in Section 4.4, after

finding the best case, we increase the sets and perform another exhaustive search in

order to find the best algorithm combination.

As the results depicted, the best result for the classification of REST files is

achieved by using the following configuration:

• No Clustering option (discussed in Section 4.1.4)
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• -silence-noise for preparation, -endp for pre-processing, -minmax for feature

extraction, -cheb for classification (discussed in Section 4.1)

As mentioned in Section 4.1.4, -noise removes noise (high-frequency occurring

material) by applying an FFT low-pass filter. It is important to apply silence removal

after the noise removal since noise filtering may produce more silence gaps. As a result,

-silence-noise which combines the noise and silence removal helped selecting best

low-frequency non-zero local minimums and maximum features in classification of

these non-uniformly structured files. Also, as mentioned in Section 4.1.4 from a

theoretical point of view, -minmax which picks a hundred features from the data,

where 50 are minimums and 50 are maximums, works best with -endp in order

to select the 100 local minimum and maximums. In addition, Chebyshev distance

classifier appears to work better with the higher-dimensionality of 100 features from

-endp and -minmax selected local extremes due to their nature that provides enough

discriminatory power for highly varied and overlapping RESTful services.

As discussed in Section 4.4 and similar to WSDL files, we perform 10-fold cross-

validation based on this configuration in order to give an insight on how the model

will generalize to an independent dataset and to reduce variability. Table 14 depicts

the cross-validated results including the evaluation measures which were defined in

Section 4.4. The class-wise results are listed in Appendix B.3.

Table 14: RESTs cross-validated results with context

Total Accuracy Macro Precision Macro Recall Macro F-Measure Classification Time (ms)
29.60 29.67 29.60 29.12 3807.8

The performance is lower in comparison with WSDL files due to the lack of

common structure and high variability of these pages that describe RESTful services

in different structures and terminologies and not in a structured format specific

to describing Web Services like WSDL files. However, the performance is still

significantly higher than the random baseline would have been. Unlike WSDL files,

we could not find any related work for classification of REST descriptions in the

literature in order to compare with. As far as we know, this work is the initial step
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towards the classification of REST descriptions. We discuss in Section 6.2.4 how the

performance of classification of REST descriptions could be improved.

In order to show the effect of contextual information, as discussed in Section 4.4,

we perform another 10-fold cross-validation on the same configuration without

considering any contextual information and training on the Plain files and testing on

the Plain files. Table 15 depicts the cross-validated results including the evaluation

measures without considering any contextual information. The class-wise results are

listed in Appendix B.3.

Table 15: RESTs cross-validated results without context

Total Accuracy Macro Precision Macro Recall Macro F-Measure Classification Time (ms)
28.00 28.46 28.00 27.67 1801.4

Figure 15 illustrates the effect of adding contextual information to the the REST

tags-filtered files on total accuracy, macro precision, macro recall, macro F-Measure,

and classification time.

Figure 16: Effect of context on classification of REST tags-filtered files

The results depict that contextual information improves the performance of the

classification even though it is increasing the classification time due to increase in

the file sizes because of the context which is added to them. However, for REST

tags-filtered files it is not improving the accuracy as much as for WSDL files due to
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the nature of these descriptions, which are not defined in a structured format specific

to describing Web Services. In other words, because they contain phrases which

are more similar to the contextual information phrases, context is not adding much

discriminant features to the REST description files.

As a result, we use this configuration to perform the final classification of all REST

files. We use the same training result which is the result of training on Plain + Context

REST tags-filtered files and the Plain REST tags-filtered files for the testing set to

be classified.

Finally, we use the best configuration (using contextual information) in order to

perform the final classification of all REST description files which class is unknown.

Table 16 depicts the number of instances, which were classified inside of each class.

Similar to the WSDL files as discussed in Section 6.2.1, these results are based

on the performance of the current classification tool. Currently, the full complete

classification results cannot be verified because the actual classes are not known. In

order to validate our complete data set, all the instances need be classified by human

contribution by using approaches such as crowd-sourcing.

Table 16: Final REST classification results

Category Name Number of Instances
Weather 6414
Social 6323

Tourism 5560
Financial 6047

Entertainment 6212

6.2.4 Evaluation

As discussed in Section 3.1.3, WADL descriptions are not popular on the Web and

REST services are not widely described using WADL descriptions. As a result, as

discussed in Section 4.3, because of the low number of WADL files in the repository,

we were not able to find the same number of samples for the classes in comparison with

other sample types. The scale of the samples are not as much as the WSDL and REST
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samples and we discard the 10-fold cross-validation for these files. However, for the

sake of completeness we performed a 2-fold cross-validation (swapping training and

testing set and averaging the results) and we compared the results with the context

and without considering any contextual information. Despite having to rely on limited

data sets, our results show that the use contextual information does increase the

effectiveness of WADL classification.

As the results depict, the accuracy is generally lower for REST HTML files in

comparison with WSDL files because they have more noise, e.g., JavaScript and

markup code, and natural language segments. However, after filtering the tags and

cleaning-up these files and storing the raw text inside in a separate text file, the

accuracy increased in general and it helped the classification accuracy. Although,

the performance for them is still generally lower in contrast with WSDL files due

to the nature of these descriptions which are not defined in a structure format

specific to describing Web Services and as a result, have high variability due to

using different structures and terminologies embedded in the HTML documents.

However, the resulting performance is still higher than the random baseline after

10-fold crossvalidation. Unlike WSDL files we could not find any related work for

classification of REST descriptions in the literature in order to compare with. As

far as we know, this work is the initial step towards the classification of REST

descriptions. The performance of the classification for these files can be improved

using an approach to extract the most prominent features specific to these files before

performing the classification. One way to achieve such goal is to extract all resource

URIs using a regular expression extraction process. However, because the URIs are

also defined in different structures, formats, and shortcuts and have variability in

the files, it requires significantly more experimentation to be done at the semantic-

level processing. On the other hand, as the goal of this thesis is not to find the

best classification tool for all file types, improving the classification performance is

postponed to the future work.

No Clustering option, which was mentioned in Section 4.1.4, is found as the best

clustering option in the best configurations of MARFCAT for all of the three types
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of service descriptions. This option disables clustering the training and testing sets’

individual class’s feature vectors in MARF, i.e., it uses all of the feature vectors of the

instances which we passed for a specific class in the training set and calculates their

distance to all of the feature vectors of the instances which we passed for a specific

class in the testing set instead of using only one feature vector (mean or median). As

a result, the space and the time complexity increases. However, because our priority

in finding the best configuration is the highest accuracy, we chose this option.

As the results depict, the algorithm combinations which are found as the best

combinations in the best configurations of MARFCAT vary throughout the different

types of service descriptions. The reason is that this experiment is data-driven and

the results is based on the input data. As a result, because the structure and nature

of each of these types is different and also due to the manual choosing of training and

testing sets for one type regardless of the other types, the aforementioned algorithm

combinations vary.

The effect of adding contextual information to the WSDL files, and the REST

tags-filtered files is illustrated in Figure 15, and Figure 16 respectively. The results

depicts that contextual information is improving the performance of the classification

for both cases even though it is increasing the classification time due to increase in

the file sizes because of the context which is added to them. The context has less

effect on the precision of REST tags-filtered files in comparison with WSDL files due

to the nature of these descriptions which are not defined in a structure format specific

to describing Web Services.

In other words, because they contain phrases which are more similar to the

contextual information phrases, context is not adding much discriminant features

to these files.

In order to perform the final classification of all description files which class

is unknown, we used the best configuration (using contextual information) which

we could find in the scope of this thesis for each service description type. As a

result, these results are based on the performance of the current classification tool.

Currently, the results cannot be verified because the actual classes are not known. In
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order to validate, all the instances need be classified by human contribution by using

approaches such as crowd-sourcing.

6.3 Summary

In this chapter we measured and illustrated the results of Service Collecting in

Section 6.1 including the number of Web Service descriptions and their providers

which we found and stored in the repository in total and based on each source.

We were able to find a considerable number of URLs which are potentially service

descriptions and also stored all three main types of service descriptions. In literature

as mentioned in Section 2.3, the researchers focused only on WSDL files. The most

number of WSDL URL addresses which was found is 21,358 and from them the most

number of WSDL files obtained is 16,514 WSDL files. However, as the results depicts

in this chapter, the known repositories are outdated and only around half of service

description URLs in them are available. In comparison, in this effort we found 72,454

unique service description URLs including 39,288 WSDL URLs, 1,830 WADL URLs,

and 31,336 HTML page URLs describing RESTful services. From these URLs we

stored 48,161 availanle service description files including 16,096 WSDL descriptions,

450 WADL descriptions, and 31,615 HTML files describing RESTful services. As a

result, we validated our hypothesis 1 which is defined in the beginning of this chapter.

In Section 6.2 we measured and illustrated the results of Service Classification

including the resulting accuracies of 72 different cases based on the clustering options

and adding contextual information, cross-validated results for the best cases, the effect

of adding contextual information to the samples on the classification. In addition, for

WSDL files we compared the same evaluation measures with the literature in order

to give an insight on how close our classification process is to the literature. Unlike

WSDL files we could not find any related work for classification of REST descriptions

in the literature in order to compare. As far as we know, this work is the initial step

towards the classification of REST descriptions.

We found and presented the best configuration of MARFCAT (best algorithm
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combination + clustering option) which will result in the highest precision for each

type of service description. In addition, we added the contextual information to the

classification and showed that it improves the performance of the classification and

validated our hypothesis 2 which is defined in the beginning of this chapter.

In the next chapter we will conclude our work and discuss the limitations and the

future work.
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Chapter 7

Conclusion and Future Work

In the scope of this thesis we have developed methodologies to first collect service

descriptions and their contextual information and to build a comprehensive repository

of them. Subsequently, we surveyed a wide range of Machine Learning and Signal

Processing algorithms and techniques in order to find the highest precision achievable

in the scope of this thesis for the classification of service descriptions. In this process

we exploited the contextual information and illustrated its effect on the Service

Classification. At the end, we classified all service descriptions by practicing the best

set of algorithms and options which we found. In the following we summarize the

contributions and achievements of this thesis and provide some insights to potential

future work in the addressed area.

7.1 Service Collecting

We discussed the importance of a repository of Web Service descriptions in Chapter 1

from different perspectives, particularly inside of a Broker and a vertical search engine.

As discussed in Section 2.3, in the literature, researchers focused on finding WSDL

files only. In most of the efforts, the researches only stored the snapshots of WSDL

files and did not store URL addresses which point to them. As a result, it is not

possible to evaluate these files to determine whether they are still available. The

highest number of WSDL URL addresses which was found in the literature is 21,358
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and from them the highest number of WSDL files obtained is 16,514. However, as

discussed in Section 1.3, the current repositories available are not usable in real-life

situation as, according to our results in Section 6.1, only half of service descriptions

inside of known repositories are still available.

In Chapter 3 we first exploited methods to harvest three main kinds of Web Service

descriptions (WSDL, WADL, and Web pages describing RESTful services) and their

context from the World Wide Web with respect to updatability of the design from

three different sources. We extracted the data from previous known repositories, we

queried search engines and we used Web Crawlers to find service descriptions. We

found 72,454 unique service description URLs including 39,288 WSDL URLs, 1,830

WADL URLs, and 31,336 HTML page URLs describing RESTful services.

From these URLs we stored 48,161 actual service description files including 16,096

WSDL descriptions, 450 WADL descriptions, and 31,615 HTML files describing

RESTful services. In addition, we extracted 18,494 provider domain URLs from

which the Web Service descriptions had been found in order to supply the seeds for

Web crawling as discussed in Section 3.2.1. These results exceed, by far, any other

similar solution for service collection.

Limitations and Future Work

We could not find any repositories which lists WADL descriptions and we only used

search engines and Web crawling in order to find this kind of descriptions. However,

as discussed in Section 3.1.3, REST services are not widely described using WADL

in the Web and as a result, the amount of WADLs in comparison with other type of

service descriptions which we could find, is much lower.

As discussed in Section 3.1.2, RESTful services do not follow any strict structured

description rules and they are described in different formats and most of the time,

in different Web pages by different service providers. As a result, RESTful services

are much harder to detect and validate hence, using Web Crawlers to find Web pages

describing REST services and also validating these pages which we could find from

other sources (known repositories and search engines) were not discussed in this thesis
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and is postponed to the future work.

7.2 Service Classification

We argued in Chapter 1 that the classification of high-level functionality of Web

Services into pre-defined set of classes, i.e, the highest level of abstraction of the kind

of service they perform, can assist and improve the task of compatibility assessment

when composing them in Brokerage. In addition, we discussed that it facilitates the

task of Service Discovery as well as suggesting Web Services to map to specific service

requests. As discussed in Section 1.3, there is currently no consensus on structured

support for specifying the abstract class to which the service belongs.

As discussed in Chapter 4, we built on the considerable amount of research that

has been carried out on the topic of automatic classification of text documents.

We leveraged from combining Machine Learning and Signal Processing techniques

and employed contextual information to classify Web Service descriptions. We first

surveyed 864 combinations of algorithms and techniques for each of 72 different cases

defined based on the sample types, clustering options, and the contextual information

(Section 4.4) in order to find the best combination(s) of algorithms and options from

the viewpoint of time, accuracy, precision and recall achievable in the scope of this

thesis. In this process we analyzed each service description type separately and found

the best combination for each of them.

After finding the best configuration, we performed two 10-fold cross-validations;

one with the best case without considering any contextual information and one with

the context added to the files. We compared the evaluation measures (total accuracy,

macro recall and precision, macro F-Measure, and the classification time) and showed

that contextual information always improves the performance of the classification.

In addition, we compared the performance of our classification for WSDL files and

showed that our classification performance is very close to the best combination from

the literature without any customization on the preprocessing, feature extraction,

and classification based on the WSDL files. At the end, we classified 48,161 service
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descriptions with the best combinations.

Limitations and Future Work

As discussed in Section 7.1, we could not find as many WADL files as we could for

WSDL and REST descriptions. Consequently, as discussed in Section 4.3, we could

not find the required number of samples for WADL files (i.e. 100 for each class). The

scale of the samples for these files were not as much as the WSDL and REST samples

and we had to discard the 10-fold cross-validation for these files. However, for the

sake of completeness we performed a 2-fold cross-validation (swapping training and

testing set and averaging the results) and we compared the results with the context

and without considering any contextual information. Even with these limitations, we

found that using contextual information did improve the quality of classification.

Due to the variety of the source of the data in the repository, the terminology

and the quality of the contextual information in the repository may vary through all

of the instances. Also as mentioned in Chapter 1, user tags which are part of the

contextual information, may not be accurate. As a result, before the classification

process, the context needs to be analyzed and purified. One way of achieving this goal

is to measure the relevance of the contextual information, i.e., determine whether and

how the context is related to the description. In [27] the authors discuss the modeling

and exploiting tag relevance which can be employed to validate the context. However,

it is out of the scope of this thesis and we use the raw contextual information as we

found.

We used the open-source MARF framework and its MARFCAT application as

our investigation platform. MARF has a pipeline for character-level NLP processing

which we also surveyed for all service description types to find the best algorithm

combinations. However, because this pipeline is currently only working on character-

level and not lexeme-level and due to low precision, we discarded this pipeline and

did not present the results and methodology. In the future work NLP lexeme-level

processing can be added to MARF and surveyed to find best algorithm combinations

in that area of research.
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The performance of the classification for the REST descriptions is generally lower

in contrast with WSDL files due to the nature of these descriptions which are not

defined in a structured format specific to describing Web Services and as a result,

have high variability due to using different structures and terminologies. However,

the resulting classification performance is still higher than random. Unlike WSDL

files we could not find any related work for classification of REST descriptions in the

literature in order to compare. As far as we know, this work is the initial step towards

the classification of REST descriptions. The performance of the classification for

these files can be improved using an approach to extract the most prominent features

specific to these files before performing the classification. One way to achieve such

goal is to extract all resource URIs using a pattern recognition process. However,

because the URIs are also defined in different structures and have variability in the

files, it needs more research to be done on the semantic-level processing. On the other

hand, as the goal of this thesis is not to find the best classification tool for all file

types, improving the classification performance of REST descriptions is postponed to

the future work.

On another perspective, Web Services are being published every day and new

services will be found and added to the repository. Due to the changing world of

Web Services, the specific classifiers used arenot applicable to all cases in the real

world because the best configuration for each sample type was determined according

to the specific data set available in the repository. In order to deal with a changing

data set, a mechanism to measure the variation of the new incoming services with

regards to the existing ones can be applied to determine a threshold above which the

training needs to be re-done, or a new configuration for the classifier may need to be

found that is adapted to the evolution of the data set. This is also out of the scope

of this thesis and can be addressed in the future work.
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Appendix A

Examples

A.1 WSDL Examples

Listing A.1: WSDL 1.1 Example [7]

1 <?xml version=” 1 .0 ”?>

2 <d e f i n i t i o n s name=”StockQuote”

3

4 targetNamespace=” ht tp : // example . com/ stockquote . wsdl ”

5 xmlns : tns=” ht tp : // example . com/ stockquote . wsdl ”

6 xmlns:xsd1=” ht tp : // example . com/ stockquote . xsd”

7 xmlns:soap=” ht tp : // schemas . xmlsoap . org /wsdl / soap/”

8 xmlns=” ht tp : // schemas . xmlsoap . org /wsdl /”>

9

10 <types>

11 <schema targetNamespace=” ht tp : // example . com/ stockquote . xsd”

12 xmlns=” ht tp : //www.w3 . org /2000/10/XMLSchema”>

13 <element name=”TradePriceRequest ”>

14 <complexType>

15 <a l l>

16 <element name=” t ickerSymbol ” type=” s t r i n g ”/>

17 </ a l l>

18 </complexType>

19 </ element>

20 <element name=”TradePrice ”>
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21 <complexType>

22 <a l l>

23 <element name=” p r i c e ” type=” f l o a t ”/>

24 </ a l l>

25 </complexType>

26 </ element>

27 </schema>

28 </ types>

29

30 <message name=”GetLastTradePriceInput ”>

31 <part name=”body” element=” xsd1:TradePriceRequest ”/>

32 </message>

33

34 <message name=”GetLastTradePriceOutput”>

35 <part name=”body” element=” xsd1 :TradePr ice ”/>

36 </message>

37

38 <portType name=”StockQuotePortType”>

39 <opera t i on name=”GetLastTradePrice ”>

40 <input message=” tns :GetLastTradePr ice Input ”/>

41 <output message=” tns:GetLastTradePriceOutput ”/>

42 </ opera t i on>

43 </portType>

44

45 <binding name=”StockQuoteSoapBinding” type=”

tns:StockQuotePortType”>

46 <soap :b ind ing s t y l e=”document” t ranspo r t=” ht tp : // schemas .

xmlsoap . org / soap/http ”/>

47 <opera t i on name=”GetLastTradePrice ”>

48 <s oap : ope ra t i on soapAction=” ht tp : // example . com/

GetLastTradePrice ”/>

49 <input>

50 <soap:body use=” l i t e r a l ”/>

51 </ input>

52 <output>

53 <soap:body use=” l i t e r a l ”/>
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54 </output>

55 </ opera t i on>

56 </ binding>

57

58 <s e r v i c e name=”StockQuoteService ”>

59 <documentation>My f i r s t s e r v i c e</documentation>

60 <port name=”StockQuotePort ” binding=” tns :StockQuoteBinding ”>

61 <soap :addre s s l o c a t i o n=” ht tp : // example . com/ stockquote ”/>

62 </ port>

63 </ s e r v i c e>

64

65 </ d e f i n i t i o n s>

Listing A.2: WSDL 2.0 Example [8]

1 <?xml version=” 1 .0 ” encoding=”utf−8” ?>

2 <d e s c r i p t i o n

3 xmlns=” ht tp : //www.w3 . org /ns/wsdl ”

4 targetNamespace= ” ht tp : // greath . example . com/2004/wsdl / resSvc ”

5 xmlns : tns= ” ht tp : // greath . example . com/2004/wsdl / resSvc ”

6 xmlns:ghns = ” ht tp : // greath . example . com/2004/ schemas/ resSvc ”

7 xmlns:wsoap= ” ht tp : //www.w3 . org /ns/wsdl / soap”

8 xmlns:soap=” ht tp : //www.w3 . org /2003/05/ soap−enve lope ”

9 xmlns:wsdlx= ” ht tp : //www.w3 . org /ns/wsdl−ex t en s i on s ”>

10

11 <documentation>

12 This document d e s c r i b e s the GreatH Web s e r v i c e . Addi t iona l

13 app l i c a t i on− l e v e l requ i rements f o r use o f t h i s s e r v i c e −−
14 beyond what WSDL 2 .0 i s ab l e to d e s c r i b e −− are a v a i l a b l e

15 at h t tp : // greath . example . com/2004/ r e s e rva t i on−documentation . html

16 </documentation>

17

18 <types>

19 <xs:schema

20 xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”

21 targetNamespace=” ht tp : // greath . example . com/2004/ schemas/

resSvc ”
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22 xmlns=” ht tp : // greath . example . com/2004/ schemas/ resSvc ”>

23

24 <xs : e l ement name=” ch e ckAva i l a b i l i t y ” type=” tCheckAva i l ab i l i t y ”

/>

25 <xs:complexType name=” tCheckAva i l ab i l i t y ”>

26 <xs : s equence>

27 <xs : e l ement name=”checkInDate ” type=” xs : da t e ”/>

28 <xs : e l ement name=”checkOutDate” type=” xs : da t e ”/>

29 <xs : e l ement name=”roomType” type=” x s : s t r i n g ”/>

30 </ xs : s equence>

31 </xs:complexType>

32

33 <xs : e l ement name=” checkAva i l ab i l i t yResponse ” type=” xs :doub l e ”/

>

34

35 <xs : e l ement name=” inva l idDataError ” type=” x s : s t r i n g ”/>

36

37 </xs:schema>

38 </ types>

39

40 < i n t e r f a c e name = ” r e s e r v a t i o n I n t e r f a c e ” >

41

42 < f a u l t name = ” inva l idDataFau l t ”

43 element = ” ghns : inva l idDataError ”/>

44

45 <operat ion name=” opCheckAva i l ab i l i ty ”

46 pattern=” ht tp : //www.w3 . org /ns/wsdl / in−out”

47 s t y l e=” ht tp : //www.w3 . org /ns/wsdl / s t y l e / i r i ”

48 wsd l x : s a f e = ” true ”>

49 <input messageLabel=” In”

50 element=” ghn s : c h e ckAva i l a b i l i t y ” />

51 <output messageLabel=”Out”

52 element=” ghns : checkAva i l ab i l i t yResponse ” />

53 <ou t f au l t r e f=” tn s : i nva l i dDataFau l t ” messageLabel=”Out”/>

54 </ opera t i on>

55
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56 </ i n t e r f a c e>

57

58 <binding name=”reservationSOAPBinding”

59 i n t e r f a c e=” t n s : r e s e r v a t i o n I n t e r f a c e ”

60 type=” ht tp : //www.w3 . org /ns/wsdl / soap”

61 wsoap :protoco l=” ht tp : //www.w3 . org /2003/05/ soap/ b ind ings /

HTTP/”>

62

63 < f a u l t r e f=” tn s : i nva l i dDataFau l t ”

64 wsoap:code=” soap:Sender ”/>

65

66 <opera t i on r e f=” tn s : opCheckAva i l ab i l i t y ”

67 wsoap:mep=” ht tp : //www.w3 . org /2003/05/ soap/mep/soap−re sponse ”/>

68

69 </ binding>

70

71 <s e r v i c e name=” r e s e r v a t i o nS e r v i c e ”

72 i n t e r f a c e=” t n s : r e s e r v a t i o n I n t e r f a c e ”>

73

74 <endpoint name=” rese rvat ionEndpo int ”

75 binding=” tns :reservat ionSOAPBinding ”

76 address =” ht tp : // greath . example . com/2004/ r e s e r v a t i o n ”

/>

77

78 </ s e r v i c e>

79

80 </ d e s c r i p t i o n>

A.2 WADL Example

Listing A.3: WADL Example [9]

1 <?xml version=” 1 .0 ”?>

2 <app l i c a t i o n xmlns : x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

3 xs i : s chemaLocat ion=” ht tp : //wadl . dev . java . net /2009/02 wadl . xsd”
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4 xmlns : tns=”urn:yahoo:yn ”

5 xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”

6 xmlns:yn=”urn:yahoo:yn ”

7 xmlns:ya=” urn :yahoo :ap i ”

8 xmlns=” ht tp : //wadl . dev . java . net /2009/02”>

9 <grammars>

10 <i n c l ude

11 hr e f=”NewsSearchResponse . xsd”/>

12 <i n c l ude

13 hr e f=”Error . xsd”/>

14 </grammars>

15

16 <r e s ou r c e s base=” h t tp : // api . s earch . yahoo . com/NewsSearchService /V1/

”>

17 <r e s ou r c e path=”newsSearch”>

18 <method name=”GET” id=” search ”>

19 <r eque s t>

20 <param name=”appid” type=” x s d : s t r i n g ”

21 s t y l e=”query” r equ i r ed=” true ”/>

22 <param name=”query” type=” x s d : s t r i n g ”

23 s t y l e=”query” r equ i r ed=” true ”/>

24 <param name=”type” s t y l e=”query” default=” a l l ”>

25 <opt ion value=” a l l ”/>

26 <opt ion value=”any”/>

27 <opt ion value=”phrase ”/>

28 </param>

29 <param name=” r e s u l t s ” s t y l e=”query” type=” x sd : i n t ” default

=”10”/>

30 <param name=” s t a r t ” s t y l e=”query” type=” x s d : i n t ” default=”

1”/>

31 <param name=” so r t ” s t y l e=”query” default=”rank”>

32 <opt ion value=”rank”/>

33 <opt ion value=”date ”/>

34 </param>

35 <param name=” language ” s t y l e=”query” type=” x s d : s t r i n g ”/>

36 </ reque s t>
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37 <re sponse s t a tu s=”200”>

38 <r e p r e s en t a t i on mediaType=” app l i c a t i on /xml”

39 element=” yn :Resu l tSe t ”/>

40 </ response>

41 <re sponse s t a tu s=”400”>

42 <r e p r e s en t a t i on mediaType=” app l i c a t i on /xml”

43 element=” ya :Error ”/>

44 </ response>

45 </method>

46 </ r e sou r c e>

47 </ r e s ou r c e s>

48

49 </ app l i c a t i o n>

A.3 REST Example
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Figure 17: REST Example [5]
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Appendix B

Classification Results

B.1 WSDLs Results

Table 17: WSDLs cross-validated class-wise results with context

Category Name True Positives False Negatives False Positives Precision Recall F-Measure Classification Time
Weather 6.5 3.5 2.3 73.97 65.00 69.00 635.6
Social 5.5 4.5 3.8 59.23 55.00 56.60 636.8

Tourism 6.6 3.4 5.1 57.45 66.00 60.80 564.4
Financial 6.1 3.9 4.2 57.73 61.00 58.56 756.2

Entertainment 4.8 5.2 5.1 49.86 48.00 48.12 839.8

Table 18: WSDLs cross-validated class-wise results without context

Category Name True Positives False Negatives False Positives Precision Recall F-Measure Classification Time
Weather 4.7 5.3 3.8 57.05 47.00 51.26 221.8
Social 5.8 4.2 4.7 57.64 58.00 56.90 293.4

Tourism 6 4 5.7 51.44 60.00 54.60 289.2
Financial 5.9 4.1 3.4 63.68 59.00 59.88 252.8

Entertainment 4.9 5.1 5.1 50.30 49.00 49.20 420.8

Table 19: Effect of changing frequency on the accuracy

8kHz 16kHz 24kHz 44kHz
TrainPlain
TestPlain

No Clustering
64.00 64.00 64.00 64.00

TrainPlainCtx
TestPlain

No Clustering
76.00 76.00 76.00 76.00
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B.2 WADLs Results

We perform a two-fold cross-validation and average the results for the best cases

which are presented in Section 6.2.2 in order to reduce variability. Table 20 depicts

the average accuracies of the results of the best cases.

Table 20: WADLs best cases cross-validated results

TrainPlainCtx
TestPlainCtx

TrainPlain
TestPlain

No Clustering 63.235 62.91

As the results depicted, the best result for the classification of WADL files is

achieved by both training and testing on Plain + Context files using the following

MARFCAT configuration:

• No Clustering option (discussed in Section 4.1.4)

• -noise, -bandstop, -fft, -eucl (discussed in Section 4.1)

B.3 REST files Results

Table 21: RESTs cross-validated class-wise results with context

Category Name True Positives False Negatives False Positives Precision Recall F-Measure Classification Time
Weather 3.6 6.4 7.5 32.74 36.00 34.07 1011.2
Social 2.2 7.8 7.1 23.23 22.00 22.20 692.8

Tourism 2.9 7.1 7.6 28.06 29.00 28.31 707.6
Financial 3.4 6.6 6.3 33.99 34.00 33.20 791.2

Entertainment 2.7 7.3 6.7 30.31 27.00 27.81 605.0

Table 22: RESTs cross-validated class-wise results without context

Category Name True Positives False Negatives False Positives Precision Recall F-Measure Classification Time
Weather 3 7 6.2 32.98 30.00 30.42 605.8
Tourism 2.5 7.5 7.4 25.52 25.00 24.69 336.6

Entertainment 3.1 6.9 8.7 26.37 31.00 28.24 268.8
Financial 3.4 6.6 6.3 35.66 34.00 34.36 291.4
Social 2 8 7.4 21.78 20.00 20.62 298.8
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