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ABSTRACT 

 

Algorithms for Induction Motor Efficiency Determination 

 

Maher Al-Badri, Ph.D. 

Concordia University, 2015 

Induction motors are the most predominant motors used in the industry. They use two-

thirds of the total electrical energy generated in the industrialized countries. Motors fail due to 

many reasons and many are rewound two or more times during their lifetimes. It is generally 

assumed that a rewound motor is not as efficient as the original motor. Precise estimation of 

efficiency of a refurbished motor or any existing motor is crucial in industries for energy savings, 

auditing and management. Full-load and partial load efficiency can be determined by using the 

dynamometer procedure which is a highly expensive way and available only in well-equipped 

laboratories. An inexpensive and easily applied procedure for efficiency estimation is therefore a 

target of researchers and engineers in the field. In this Ph.D. work, two novel methods for 

estimating repaired, refurbished, or any existing induction motors’ efficiency are proposed. The 

two methods (named Method A and Method B) require only a DC test (including temperature 

measurement), nameplate details, and RMS readings of no-load input power, input voltage, and 

input current. Experimental and field results of testing a total of 196 induction motors by using 

Method A are presented and the degree of accuracy is shown by comparing the estimated 

efficiencies to the measured values. Method B was validated by testing 8 induction motors with 

acceptable accuracy. To provide the necessary credits to the proposed techniques, an error 

analysis study is conducted to investigate the level of uncertainty through testing three induction 

motors, and the results of uncertainty of the direct measurements and no-load measurements 

using the proposed technique are declared. 

Derating is a necessary procedure to protect induction motors from overheating which is 

the main reason of motor failures. The overheating is caused by operating induction motors with 

unbalanced voltages, over or undervoltage, or harmonics rich power supplies. To derate a 

machine, its full-load efficiency with balanced undistorted voltages and with unbalanced or 
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distorted voltages must be measured.  

In many situations in industry and due to critical processes, it is not allowed to interrupt 

induction machines operation. Hence, an in situ efficiency estimation technique is most required. 

In this thesis, three novel in situ efficiency estimation algorithms are proposed. The first 

algorithm is to estimate the full-load and partial loads efficiency of induction motors operating 

with balanced undistorted voltages. The algorithm is validated by testing 30 induction motors 

with acceptable accuracy. 

The second proposed algorithm is for full-load efficiency estimation of induction motors 

operating with unbalanced voltages. The technique is evaluated by testing 2 induction motors 

with different levels of voltage unbalance. The results showed an acceptable accuracy. 

The third proposed algorithm is for full-load efficiency estimation of induction motors 

operating with distorted unbalanced voltages where the harmonics effect is added. The technique 

is evaluated by testing 2 induction motors with different levels of voltage unbalance. The results 

showed an acceptable accuracy. 

The three novel algorithms are designed by using Genetic Algorithm, pre-tested data, and 

IEEE Method F1 calculations. 
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CHAPTER ONE 

 

1. Introduction 

In the industrialized countries, electric motors utilize nearly two-thirds of the electricity 

generated [1], and hence, contribute to the global environmental problem which is represented by 

the emission of greenhouse gases [2]. Several Canadian and U.S. utilities took serious steps in 

implementing demand side management programs [3] to reduce both greenhouse gas effects and 

the cost of power that feeds the tremendous population of electric motors. 

Almost the same situation can be encountered in the developing countries, where a 

significant portion of the generated power is utilized by those motors. Taking South Africa as an 

example, motorized systems account for up to 60% of the total electricity utilization [4]. 

The advantages of the induction motor, namely, ruggedness, easy maintenance, and low 

cost, have made it the workhorse of industry [5]. In industry, only motors above 500 hp are 

usually monitored because of their high costs. However, motors below 500 hp make up 99.7% of 

the motors in service. These motors operate at approximately 60% of their rated load because of 

oversized installations or under-load conditions, and hence, they work at reduced efficiency 

which results in wasted energy [6]. Motor losses can represent a considerable cost over a long 

period due to high load factor [7].    

Power costs are constantly rising at a rate that is even faster than both material and 

producer goods prices [8], many companies have hired energy managers whose sole purpose is to 

find practical ways to reduce power costs. These managers noticed that motors and other process 

components have been ignored, and they can present a major potential for cost reduction [9]. As 

an example, and according to the U.S. Department of Energy’s (DOE) Office of Energy 

Efficiency and Renewable Energy (EERE), a large size paper mill could save an average of 

$659,000 a year through motor system efficiency [10]. In today’s economy, it is more important 

than ever to optimize motor losses and keep the operating cost under control [8]. Efficient 

operation of electric motors can provide significant energy savings with benefits for both 

consumers and power utilities [11].  
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One approach to efficiently reduce wasted energy in the industrial sector and control the 

cost of utilized power is by retrofitting standard efficient (SE) motors with energy efficient (EE) 

motors [3]. The Energy Act of 1992 mandates that most types of commonly used electric motors 

manufactured as of October 1997 or later must be energy efficient designs [12].  

If a replacement decision of a low efficient motor is taken as a result of the calculation of 

energy savings and payback periods that are based on nameplate motor efficiency or 

manufacturer's data only, this could lead to large errors [1], as will be explained later. To make a 

correct decision and select the optimal retrofit scenario, an engineering staff should be able to 

estimate the efficiency values of the motors under test with the least possible error. This demand 

from industry, drives practical work and research on the development and enhancement of 

methods for induction motors efficiency estimation [1].      

A significant amount of research work have been conducted on the subject of induction 

motor efficiency estimation. The major research works are introduced in sections that follow this 

research objectives section. 

 

1.1. Objectives 

This Ph.D. work is initiated based on practical objectives proposed by the advisor, 

Professor P. Pillay. 

The first goal of this work is to design a useful and reliable industrial tools that can help 

North America’s electric motor service centers to have their repaired, rewound, or any existing 

induction motor tested for efficiency before delivering them back to the customer as the 

efficiency of electric motors is a serious concern of customers especially after a rewind or repair 

process and as the cost of power is continuously increasing. It was found that there were many 

trials from the engineers and researchers to design such a tool, but they ended up with proposed 

algorithms that are only applicable in well-equipped laboratories and not in those electric motor 

centers due to the complexity of the algorithms and their requirements of sophisticated measuring 

devices and software.  

In this Ph.D. work, it is decided that technical visits to electric motor workshops is the 

first necessary step to be taken. Hence, technical visits have been made to some of electric motor 
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service centers in Canada (Montréal area) to investigate the technical environment in such 

workshops (Figure  1-1). 

To turn any proposed algorithm into a practical tool, a user-friendly and affordable 

software should be designed and developed. Hence, the second goal of this Ph.D. work is to 

develop a software based on spreadsheets that can be applicable in any electric motor workshop. 

The third goal of this Ph.D. work is to design an in-situ algorithm that has the potential to 

replace the expensive dynamometer procedure for the efficiency determination and can be used 

on site without the need to move the machine to a testing site. 

The fourth goal is to design algorithms that can be used in derating induction machines 

operating under unbalanced and distorted voltages as both voltage unbalance and harmonic have 

severe ill effect on the performance of induction motors. 

In the following sections, the major induction motors efficiency estimation research 

works are reviewed.   

 

Figure  1-1. Professor P. Pillay of Concordia University with his team in one of the technical visits to an electric motor 

service center in Montréal area. 

Photo is with permission of Moteurs Électriques Laval Ltée. 
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1.2. Nameplate Method  

This method requires obtaining the information by only reading the nameplate details. In 

the nameplate method, it is assumed that the efficiency of the motor is constant and always equal 

to the value which appears on the nameplate [13]. This method is inaccurate and could lead to 

large errors since the nameplate data is approximated [14], for example, the nameplate rated 

speed is allowed a deviation of as much as 20% by standard NEMA MG1 [15] and IEC 34-2-1, 

which could lead to a significant errors on the estimation technique [16]. The real efficiency of a 

motor is usually different from the number mentioned on its nameplate, as efficiency may 

decrease significantly due to aging or rewinding [17], or it might not be given according to IEEE 

Std 112
TM

 Method B [18]. 

 

1.3. Slip Method  

Other researchers have proposed the slip method as an approach to determine the 

efficiency of a motor. This method is based on the assumption that the percentage of load is 

linearly proportional to the percentage of the ratio of measured slip to full-load slip [13]. The 

formula to approximate the mechanical output power is: 

Po=
Ns-Nm

Ns-Nr

.Po, r (1.1)  

where,  Ns  is synchronous speed; Nm is motor measured speed; Nr  is motor rated speed; Po  is 

measured mechanical output power; Po,r is rated mechanical output power; 

The slip method can be considered as an improvement over the nameplate method, but it 

has been proven that it is not very accurate or useful due to the variations in motor nameplate 

data, line voltage unbalance, and temperature variation of the rotor [19]. 

  

1.4. Current Method 

This method is based on the assumption that the percentage of load is proportional to the 

percentage of the ratio of measured current to full-load current. The mechanical shaft output 

power might be approximated as in (1.2).     
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Po=
Ifl, m

Ifl, r
.Po, r (1.2) 

where, Ifl, m is measured current; Ifl, r is rated full-load current. 

This method was proven impractical and inaccurate in [18], [13], and [20] due to the 

nonlinear relationship between the load and current which contradicts the assumption that the 

method based on. 

 

1.5. Segregated Loss Method 

In this method, each loss component is segregated (estimated). The IEEE StdTM-112 

method E1 is the standard segregated loss method [21]. It assumes value for the stray load loss at 

rated load for different rated motors as shown in Table  1-I. 

The procedure of this method is straightforward, the magnitudes of the five losses of 

induction motor, namely, stator copper loss, rotor copper loss, core loss, stray load loss, and 

friction and windage loss are estimated and then summed up and subtracted from the input power 

to determine the output power and hence the efficiency [20]. This method is modified by Ontario 

Hydro through assuming the combined FW and core loss to be 3.5 to 4.2% of rated input power 

[22]. The accuracy of the modified method is within ±2% to 3% error [18]. 

 

1.6. Equivalent Circuit Method 

In the IEEE Std 112
TM

-2004, the equivalent circuit methods F/F1 are presented [21]. In 

these methods, the test procedure is as follows: 

 Measure cold resistance. 

Table  1-I. Assumed Values for Stray Load Loss [21] 

Machine Rating 

(kW) 

Stray Load Loss Percent 

of Rated Load 

1 - 90 1.8% 

91 - 375 1.5% 

376 - 1850 1.2% 
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 Perform the no-load test. 

 Conduct the impedance test. 

 Determine the friction and windage losses. 

 Determine the core loss. 

 Extract the six parameters of the motor. 

 Measure or assume the stray load loss. 

 Estimate the efficiency. 

The degree of the accuracy of this approach depends on how close the assumed hot 

temperature and stray load loss are to the real values. The wider the difference, the larger the 

error obtained in estimating the efficiency.  

Ontario Hydro proposed a modified version of the IEEE Std 112TM Method F1 [22]. A 

no-load test and a full-load test, both at rated voltage have to be conducted. This method 

eliminates the need for a variable-voltage required by IEEE Std 112TM Method F1 [20]. 

 

1.7. The Air gap Torque Method  

The well-known air-gap equations are utilized for determining motor efficiency by a 

procedure called the air-gap torque method. In this method, the negative rotating torque caused 

by unbalance voltages and harmonics is considered. Once the air gap torque is obtained, the 

efficiency can be estimated according to (1.3): 

η=
(Air gap torque).2π (

rpm
60

) -PFW-Ph-PSLL

Pi

 (1.3) 

where, η is efficiency; PFW is friction & windage losses; Ph is core loss; PSLL is stray load loss; Pi 

is input power. 

The major disadvantage of this method is that current and voltage waveforms are required 

as input data, besides software is required to analyze the field measurements [20]. 

Most, if not all, of those methods in the literature have been designed to work properly in 
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only well-equipped laboratories environment, where the required instrumentation and software 

are available to handle the tests. The authors of those works did not pay close attention to make 

their proposed methods applicable in the electric motor service centers where there is a need to 

have the repaired and rewound motors tested for efficiency before delivering them back in 

service. In [11], although the author intended to make his procedure applicable to motor repair 

workshops, but the required instrumentation and the need for sophisticated software to analyze 

the measured values made the procedure not applicable in those workshops.  

 

1.8. Motor Repair Industry’s Market in North America 

Most motor failures are due to mechanical reasons, and it is found that the largest 

percentage are associated with bearing failures [23], but typically, there are four interacting 

factors that contribute to motor failure; these factors are: mechanical fatigue; thermal fatigue; 

power supply pollution; and electrical stress. Any of these factors alone or in combination can 

bring a motor to a standstill [24].  

When a motor fails, the basic decision of whether to rewind or replace, the owner might 

take, depends on many factors. Those factors are: the availability; the costs related to the size of 

the motor; the type of design; some special mechanical features; the operating costs; and the 

availability of funds are all factors that affect the replace/rewind decision [8]. Some utility 

surveys show that, in a given region, the total horsepower repaired is approximately equivalent to 

the total of new motors installed [25], but in general, more motor horsepower is repaired than 

sold each year [26]. In a study conducted by the U.S. Department of Energy’s (DOE) Office of 

Energy Efficiency and Renewable Energy (EERE) in December 1998, it is found that there are 

roughly 12.4 million electric motors of more than 1 horsepower in service in the U.S. 

manufacturing plants [10]. Thousands of those motors fail and sent for rewind workshops for 

repair.  

To shed some light on the size of this industry in North America, a study showed that a 

size of a typical “rewind shop” or electric motor service center, employs from 2-200 persons in 

the U.S. [25], where there are approximately 4,100 motor shops, repairing between 1.8 and 2.9 

million motors per year. In 1993, these shops had annual revenue of $2 billion in gross, which is 

approximately two-thirds of the shops revenues from all sources [27]. Twenty-two hundreds of 
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motor repair shops in the U.S. are members of the Electrical Apparatus Service Association 

(EASA), the repair industry’s largest and non-profit trade association founded in 1933. Most 

shop managers in the U.S. would say that most motors of 5 hp and below are thrown away, while 

in Canada, thousands of such motors are still being repaired. The Electric Power Research 

Institute (EPRI) and the U.S. Department of Energy’s Bonneville Power Administration have 

contracted with the Washington State Energy (DOE) Office to conduct a Rewind Industry 

Assessment Project to determine the number of electric motors repaired, sorted by their power 

rating, in the U.S. 

 

1.9. Electric Motor Rewind Issues   

The cost of operating electric motors has become more expensive because of the rapid 

increase in the electrical power cost. This situation makes the question of how rewinding affects a 

motor’s efficiency more important [9]. Because of power cost issue, many customers would ask 

what happens to efficiency when a motor is rewound which can occur two to more times during a 

motor’s lifetime. The most probable answer would be “a rewound motor is never as efficient as 

the original”, but yet, a customer may hear that “a high quality rewound motor can have a higher 

efficiency than the original”. These two opposite answers to the same question is a clear 

indication that this is a complicated subject [8]. Many studies have been performed to measure 

the effect of rewinding on motor efficiency [10]. In a study conducted by General Electric, it has 

been shown that an average rewind increases motor losses by 40% [28]. Interesting finding have 

been published through significant studies conducted by Hydro-Québec, Ontario Hydro, and BC 

Hydro, to show the impact of rewound motors on the efficiency. The results are discussed 

thoroughly in [29].  

Rewinding a motor improperly will definitely change the amount of the five motor losses 

associated with the motor’s efficiency and defined in NEMA standard MG 1-2011 [15]. Those 

losses are: stator copper loss, rotor copper loss, core loss, stray load loss, and friction and 

windage loss [30]. The stator and rotor copper loss which are almost 50 percent of total losses 

can be dramatically changed in using different wire size or a different number of turns. Core loss 

can be increased in case of insulation damage. Friction and windage losses can be affected as 

well by a change in bearings or different grade of grease. Any damage to the frame, stator or 
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rotor cores, or endshields can increase stray load losses [8]. The efficiency of a motor can be 

decreased significantly if it is improperly repaired [26]. 

A 1 percent decrease in the efficiency may not have tangible consequences in some 

situations, but when taking into account the motor operating hours, the potential wasted energy 

could be significant. The operating efficiency of any motor is determined by its original design, 

the quality of the construction or rewind, how heavily it is loaded and the quality of the power 

supply [8]. However, efficiency decreases are not unavoidable or unexplainable consequences of 

repair or rewinding [26]. Research continues to try re-designing motors under repair and 

enhancing the efficiency and the performance. In [31], it has been shown that careful control of 

the stator winding design while maintaining the same number of turns can reduce stator copper 

loss and this reduction will offset the increase in core, friction and windage losses. 

Several organizations like IEEE (Institute of Electrical and Electronics Engineers), 

NEMA (National Electrical Manufacturers Association), and EASA (Electrical Apparatus 

Service Association) put a lot of effort to enhance and influence the motor repair practice. By 

working with the motor repair industry, these organizations can provide information and services 

critical to helping industrial and commercial customers manage their energy use and improve 

productivity [26]. Providing these types of services and education is essential for both energy 

savings and green house emission reduction. 

 

1.10. Impact of Unbalanced Power Supply    

Unbalance in a power supply is an important index in evaluating power system quality. A 

balanced three-phase voltage source is when the voltages are identical in magnitude, and shifted 

between each other by 120
o
 [32]. Any power supply is never perfectly balanced. Sometimes, even 

a small voltage unbalance can dramatically increase rotor losses which result in stator and rotor 

temperature rises. On the other hand, the level of unbalanced must be accounted for when it 

reaches certain level [33] that can cause serious ill effects on the three-phase induction motors, 

such as, reduction in output torque [34], vibration and overheating that leads to a reduction on 

insulation life of the machine [35]. The level of unbalance is considerably large in power systems 

which supply large single-phase loads [36]. According to ANSI/NEMA MG 1-2011, it is not 

recommended to operate induction motors with voltage unbalance above 5% [15]. IEEE in [37] 
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attributes the excessive temperatures in parts of the rotor of induction motors to the excessive 

unbalanced (negative-sequence) currents. The fact that there are only sporadic reports of motor 

failures due to voltage unbalance is because that many motors operating in industry are less than 

fully loaded, and this can provide the needed thermal margin which will allow those motors to 

operate with a voltage unbalance condition without failure [38]. 

The unbalance voltage can be caused by unsymmetrical transformer windings or 

transmission impedances, unbalanced loads, large single-phase loads [39], incomplete 

transposition of transmission lines, open delta transformer connections [40], blown fuses on 

three-phase capacitor bank, operation of single-phase loads at different times, or defective 

transformers in power systems [41].   

The induction motor positive and negative sequence equivalent circuit that are used to 

analyze the performance of the machine operated under unbalanced voltages are as shown in 

Figure  1-2 and Figure  1-3 respectively. 

 

  

R1 X1 X2 

R2

s
 Xm 

V1 
Rfe 

 

Figure  1-2. Positive sequence equivalent circuit. 

 

R1 X1 X2 

R2

2-s
 Xm V2 Rfe 

 

Figure  1-3. Negative sequence equivalent circuit. 
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where, V1 is per phase positive sequence voltage; V2 is per phase negative sequence voltage; R1 

is per phase stator winding resistance; R2 is per phase rotor resistance; X1 is per phase stator 

leakage reactance; X2 is per phase rotor leakage reactance; Xm is per phase magnetizing reactance 

; Rfe is per phase core loss resistance.     

The behavior of the machine towards the positive sequence voltage is the same as for the 

balanced voltages, while it behaves in a different manner with the negative sequence voltage as 

illustrated in Figure  1-4. For a slip of value (s) with respect to positive sequence field, it will be 

(2-s) with the negative sequence field. The negative sequence torque will make the net shaft 

torque of the machine to be less than that produced under balanced voltages [33]. 

From Figure  1-4, it can be seen that the negative torque will affect: (1) the starting torque, 

which will be less than normal; (2) the maximum torque (breakdown torque), which will also be 

reduced; and (3) the full-load torque will be reduced to a level that if the same full-load is still 

applied on the machine, the motor will be forced to operate at lower speed (higher slip) which 

will definitely lead to higher machine’s copper losses and overheat problems. 

 

Figure  1-4. Positive and negative sequence torques of the IM [33]. 
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1.11. Impact of Over or Undervoltage 

The majority of industrial motors in the US are designed for 460 V operating voltage. 

Those motors are run with 480 V as this level of voltage is the rated value of the utility 

distribution system. The idea here is to avoid operating the motors with undervoltage when the 

system is heavily loaded in weak commercial or industrial systems [33]. 

According to ANSI/NEMA MG 1-2011 [15], induction motors that work with voltage 

supply of 10% or less of their rated voltage will operate with reduced pull-up and breakdown 

torque of approximately 20-30%. Loading such motors with their rated loads will definitely cause 

serious overheating problems which results in serious permanent damages. 

In [42], it was claimed that undervoltage is the most frequent case in industry, whereas 

overvoltage is considered a much rarer phenomenon. While in [43], it was shown that 

overvoltage cases often occur during the off-peak period in many countries. For example, in 

Taiwan, the national power company has to add reactors and to trip one HV circuits to reduce the 

charging in power system during off-peak or national holidays.   

It has been found that where utilization voltage exceeds 635 V, the safety factor of the 

insulation of motors rated to 575 V has been reduced to a level inconsistent with good 

engineering procedure [15]. 

 

1.12. Unbalanced and Fluctuated Voltages in the Literature  

Perfect balanced voltages can never be maintained, because the loads are continually 

changing, causing the phase-voltage unbalance to vary continually [44]. Unbalanced voltages can 

cause serious problems that can bring any induction motor to a premature failure. The severe 

effect of voltage unbalance on the performance of the induction motors was the area of interest of 

many researchers since 1930’s of the last century [45] when Reed and Koopman tried to analyze 

the performance of three-phase induction motors operating under unbalanced voltages by using 

the equivalent circuit and symmetrical components. In the 1950’s, few researchers presented 

other useful approaches to the same issue [46] [47] [48] [49].  

In [50], Gafford et al. concluded that the temperature rise above balanced operating 

temperature is due to increased copper loss. It was demonstrated that the negative sequence 
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current has a significant effect in terms of heating the motor, rather than an equal value of 

positive sequence, and that is due to the high negative sequence rotor resistance. It was also 

proven that core losses and friction and windage losses remain essentially independent of 

unbalance of negative sequence voltage that is less than 15%. It was also observed that negative 

sequence components cause vibration that may be injurious to bearings, to insulation, and to 

interconnecting mechanical parts of the machine.  

The study in [51] by Berndt and Schmitz examined three 5 hp, 220 volts, 1800 rpm, 

NEMA design type B motors, from different manufacturers which were tested for temperature 

rise. To derate the machines, they were run under fixed unbalance and different loads. Two 

different methods were used to measure the winding temperature: (a) Change in winding 

resistance; and (b) thermocouples. The exact temperature at shut-off was extrapolated by having 

many resistance measurements for different elapsed time readings. 14 thermocouples were used 

to determine the hot spots. The negative sequence voltage was the main parameter that was used 

to derate the three motors. This study concluded that there is a need for a severe reduction in the 

rating of induction motors when operated with unbalanced line voltages.  

In [34], Woll presented an important curve which shows the relationship between the 

percentage of voltage unbalance and the percentage of increase of motor losses and motor heating 

as shown in Figure  1-5. The motor heating curve in Figure  1-5 was drawn according to (1.4).  

%∆T~(%∆VU)2 DisplayText cannot span more than one line! 

where %∆T is the percentage increase of temperature, and %∆VU is the percentage increase in 

voltage unbalance. 
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Kersting and Phillips in [52] conducted a practical study which showed that “It is not 

sufficient to merely know the percent voltage unbalance, but it is equally important to know how 

they are unbalanced”. In this study, a detailed mathematical technique to analyze the performance 

of an induction motor under unbalanced voltages. The proposed technique shortened the 

conventional mathematical equations needed to achieve the same performance analysis on the 

machine. The study concluded that, beside what mentioned above of the importance of knowing 

the manner of the unbalanced voltages and its marked effect on the increase in losses, the rotor 

losses increase at a faster rate than the stator losses as the voltages become more unbalanced. The 

analysis included only the magnitude of the positive and negative sequence voltages without 

considering the effect of the angle on the performance of the machines.     

The National Electrical Manufacturers Association has set a derating curve in 

ANSI/NEMA MG 1-2011 (shown in Figure  1-6 ) for medium polyphase induction motors 

working under unbalanced voltage up to 5% is established.  

According to the amount of unbalance, the motor’s rated output power should be 

multiplied by the derating factor, obtained from the curve, to have a new reduced full-load value 

that makes the motor running safely without the risk of overheating that is caused by the effect of 

unbalanced voltage if the motor kept running with its rated output power. 

 

Figure  1-5. Increase in motor losses & heating due to voltage unbalance. 
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Lee claimed in [43] that the derating factor given by NEMA in Figure  1-6 is set in 

accordance only with voltage unbalance factor (VUF), without considering the many voltage 

unbalance cases which have the same VUF. The study conducted in [43] investigated 8 voltage 

unbalanced cases, which are as follows: 

(a) Single phase undervoltage unbalance. 

(b) Two-phase undervoltage unbalance. 

(c) Three-phase undervoltage unbalance. 

(d) Single phase overvoltage unbalance. 

(e) Two-phase overvoltage unbalance. 

(f) Three-phase overvoltage unbalance. 

(g) Unequal single phase angle displacement. 

(h) Unequal two-phase angle displacement. 

 

The study is conducted on 2 different classes of induction motors (2 hp and 3 hp)
(1)

. The 

study showed that the worst case of temperature rise due to 4% and 6% VUF was with three-

phase undervoltage unbalance. 

An important study on the derating of induction motors operating with a combination of 

unbalanced voltages and over or undervoltages was conducted by Pillay and Hofmann in 2002 

[33]. In this study, it was found that for a given percentage of voltage unbalance, based on the 

NEMA definition, there was a range of percentage unbalance, based on the true definition of 
                                                           

(1) The author did not mention the classes of the two machines. 

 

Figure  1-6. Medium motor derating factor due to unbalanced voltage [15]. 
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unbalance which is the ratio of negative sequence voltage to positive sequence voltage. The 

derating factor was determined according to (1.5). 

Derating Factor=
Pout, calculated

Prated

 (1.5) 

The study outcome was a practical extended NEMA derating curve as shown in 

Figure  1-7. The three curves were obtained from the following three cases: 

(a) Case 1: a motor was supplied with unbalanced voltages at rated average voltage. 

(b) Case 2: a motor was supplied with 10% overvoltage in combination with unbalanced 

voltages up to 5%. 

(c) Case 3: a motor was supplied with 10% undervoltage in combination with unbalanced 

voltages up to 5%. 

A comparison between graphical and mathematical methods of analyzing the performance 

of induction motors operated with unbalanced voltages was presented by Huang et al. in [32]. 

The complex voltage unbalance factor (CVUF) was used by Wang in [53]. This study 

showed the importance of the angle of the CVUF in analyzing the effect of unbalance on the 

performance of the induction motors. A method was proposed for determining the value of the 

 

Figure  1-7. Inclusion of overvoltages and undervoltages on the derating curve [33]. 

 

 

 



17 

 
 

angle for the worst cases that could cause a motor to be overheated. 

An interesting study conducted by Faiz et al. in [54] suggested that the available 

definitions of unbalanced voltages are not comprehensive and complete. For example, in an 

unbalanced voltage case, the phase voltages can have any phase angel, however, in NEMA and 

IEEE definitions, only the voltage amplitudes have been included.  The study also mentioned that 

in many studies, only general qualitative results were presented and no precise numerical values 

and characteristics have been provided, and it also claimed that the definition of unbalanced 

voltage and the resulting motor characteristics have not received attention and that what the study 

was about to prove. The study showed that an infinite number of line voltages can give the same 

voltage unbalance as illustrated in Figure  1-8. This figure shows that a 6% voltage unbalance, 

based on NEMA definition or True definition, will not lead to a unique terminal voltage of the 

motor. Each of those infinite number of line voltages that belongs to the same value of %VUF 

has different influence on the performance of the motor. 

Two methods were suggested in [54] to reduce the range of input voltage variation for a 

given VUF. The first method was by specifying the positive sequence voltage component (V1), 

and the second method was by using the complex voltage unbalance factor (CVUF) which has 

similar definition of VUF and it is calculated by using (1.6). 

 

Figure  1-8. Terminal voltage variation of motor for VUF=6%. (a) NEMA definition, (b) True definition. [54]. 
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%CVUF=100×
V2

V1

 (1.6) 

where V1 and V2 are the positive and negative vector components of the voltage, respectively. 

By using the two methods, the infinite numbers shown in Figure  1-8 were reduced to the 

highlighted areas in Figure  1-10. A comparison between the results using NEMA and True 

definitions and the proposed method was carried out and showed that the variation in pull-out 

torque, starting torque, full-load torque, and efficiency of a motor under test were very large 

comparing to the results obtained by using the proposed first method of specifying a value for the 

positive sequence voltage. 

The same author presented a practical example in [36] of induction machine’s derating 

showing that the value of derating factor was 90% at 2.42% unbalance by using the CUVF, while 

its value for the same degree of unbalance was 94% using the NEMA derating curve.   

A loss of life estimation technique due to operating induction motors on unbalanced 

voltages with a combination of over or undervoltage were proposed by Pillay and Marubini in 

[55]. The motor life is predicted by estimating the stator winding insulation life by using 

Arrhenius’ equations. Five cases were tested and they were as follows: 

(a) Case 1: a motor was run at full-load with unbalanced voltages. 

(b) Case 2: the motor was derated to 95%. 

(c) Case 3: the motor was derated to 85%. 

(d) Case 4: a motor was run at full-load with 10% overvoltage in combination with 0% to 5% 

unbalanced voltages. 



19 

 
 

(e) Case 5: the motor run at full-load with 10% undervoltage in combination with 0% to 5% 

unbalanced voltages. 

The loss of life curve produced by the study is illustrated in Figure  1-9. It can be clearly 

seen that Case 5 is the worst condition that can shorten the life of an induction motor. 

  

In [56] and [42], a research for Gnacinski was published in 2008 and 2009 respectively, 

 

Figure  1-10. Terminal voltage variation of motor for VUF=6%. (a) with V1=230 V, (b) with θ=120o. [54]. 

 

 

 

 

Figure  1-9. Loss of life under unbalanced voltages [55]. 

 

 

 



20 

 
 

which investigated the effect of simultaneous voltage unbalance and over or undervoltage on 

winding temperature and thermal loss of life of induction machines. The influence of angle of the 

CVUF was considered. The two studies showed that machines’ saturated circuit property has a 

significant influence on the derating factor in the conditions of unbalanced voltage combined 

with over or undervoltage. 

The latest research in regards to the induction machines derating issue was conducted by 

Anwari and Hiendro and published in 2010 [57]. In this research, a detailed symmetrical 

component mathematical procedure has been presented to estimate the efficiency of induction 

motor operating under unbalanced voltages with their associated phase angles. The only issue 

within the calculations was that the author didn’t include the core and mechanical losses to 

estimate the output power of the machine under test. 

The author used the complex voltage unbalance factor CVUF instead of VUF. The CVUF 

was presented as in (1.7).  

kv=
Vs2

Vs1

=kv∠θv (1.7) 

where kv is the magnitude of the CVUF and θv is the angle. 

It was again shown that for a certain value of kv, there are infinite combinations of 

terminal voltages. It was proposed to reduce the large range of terminal voltage variations by 

considering the phase angle and a new proposed factor which is called by the author “coefficient 

of unbalance” which was given the letter “f” and it is shown in (1.8).  

Vs1=f (
Vab+a.Vbc+a2.Vca

3
) ∠θs1 (1.8) 

where a is the Fortescue operator, a=-
1

2
+j

√3

2
, and a2=-

1

2
-j

√3

2
 

The study demonstrated an important comparison between the peak losses with balanced 

voltages when f=1, with under-unbalanced voltages when f<1, and with over-unbalanced 

voltages when f>1. For the example presented, the increase in the stator losses was 254% and 

217%, and the increase in the rotor losses was 293% and 210%,  for f=0.8 and f=1.2 respectively. 

This can indicate clearly that a motor operates in undervoltage unbalance condition can be under 
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high risk of overheating. 

1.13. Impact of Harmonics in the Literature 

Harmonics and their associated problems in induction motors were an area of interest for 

many scientists since 1920’s. In 1929, the harmonic phenomenon was addressed as an 

unnecessary noise in electrical apparatus. Spooner and Foltz in [58] had investigated the problem 

of noise in electrical motors. In 1930, Hildebrand had another study regarding the only noise 

problem the harmonics can cause in induction motors [59]. In [60], Appleman proposed a 

solution to eliminate noise in small motors by having proper slot combinations, winding 

distribution, and skew to secure nearly sinusoidal wave form. In the 1940’s, harmonics were still 

only a concern of the noise they caused in induction machines [61]. In the 1950’s, researchers 

started to address the serious problem of losses in induction machines caused by harmonics due 

to increasing of the number of applications of induction machines with static frequency converter 

power supplies. In [62], Rawcliffe and Menon discussed the fact that all induction motors have 

magnetic power-losses at harmonic frequencies. They demonstrated a simple test for measuring 

the harmonic-frequency losses in induction motors as a separate quantity. Jain in [63] had used 

Fourier technique to analyze the voltage waveform that supplied to an induction machine. A very 

detailed mathematical technique to estimate the output power and torque with harmonic was 

presented. He found that, when an induction motor is fed by variable-frequency source which is 

often rich in harmonics, the distorted voltage modifies the motor operation considerably from that 

operating under conditions of pure sinusoidal voltages. He also noticed that, depending on the 

order, a harmonic component of voltage may contribute either positive, negative, or zero torque. 

Fourier analysis showed that (3n+1) order harmonics in the voltage waveform develop positive 

torques, while (3n+2) orders result in negative torques. (3n+3) orders produce no torque. 

Klingshirn and Jordan presented a method in [64] for calculating harmonic currents and 

their associated losses in induction machines. The authors observed that the largest loss is in the 

rotor bars as a result of deep bar effect, and harmonic losses are almost independent of motor 

load. The applied voltage was assumed to have the expression shown in Eq(1.9) which is the 

voltage waveform that is most frequently encountred with 3-phase induction motors. It does not 

contain even and triplen harmonics.  
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v(t)=√2(V1 sin ωt +V5 sin 5ωt +V7 sin 7ωt +…+Vk sin kωt) (1.9) 

Chalmers and Sarkar [65] highlighted the need for an accurate assessment of the time-

harmonic losses when the input waveforms have a high harmonic content. They summarized the 

additional losses caused by harmonics in induction motors as follows: 

(a) Stator copper losses when the harmonic current contribute to the total r.m.s. input current. 

Skin effect may be neglected in small wire-wound machines.  

(b) Rotor copper losses. Skin effect must be taken into account as the rotor frequency is 

considered high. 

(c) Core losses due to harmonic main fluxes. 

(d) Losses due to skew-leakage fluxes. 

(e) Losses due to end-leakage fluxes. 

(f) Space-harmonic m.m.f. losses excited by time-harmonic currents. They might called high-

frequency stray load losses. 

As the development of static switching devices with high power ratings was leading to 

their increasing application in the control of induction machines, researchers started to search for 

new design of induction machine that can operate on rich harmonic power supply with minimum 

associated losses. McLean et al. in [66] and Buck in [67] investigated the reasons of loss of 

efficiency when conventional induction motors are supplied with square-wave voltages or 

subjected to PWM waveforms, and methods of design were described and presented to produce 

induction motors with comparable efficiency and output to those of sinusoidally fed machines. 

A modified induction motor equivalent circuit which have additional resistances to 

account for the losses associated with stator and rotor leakage fluxes was proposed by 

Venkatesan and Lindsay in [68]. The modified equivalent circuit was used to calculate the losses 

considering stray iron losses, end leakage, and skew leakage. It was found that on full-load, time 

harmonic losses while running a 20 hp motor on six-step waveform were about 18 to 20 percent 

of the fundamental losses. Another interesting finding was that the harmonic stray losses greatly 

exceeded the fundamental stray losses. It was shown that harmonics of order (3k+2), where k is 

odd integer, produce MMFs rotating in the opposite direction to the fundamental field, whereas 

harmonics of order (3k+1), where k is even integer, produce MMFs rotating in the same direction 

as that of the fundamental field.  
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De Buck et al. in [69] proposed a model for estimating losses caused by harmonics in 

induction motors. The model was claimed to account for harmonics between 100 and 20000 Hz. 

Stator, rotor, and iron losses were estimated separately as a function of frequency. A penalization 

factor Fi or Fv were developed and they depend only on harmonic frequency and motor power 

rating. 

In 1985, an IEEE Committee Report was written about the effects of power system 

harmonics on power system equipment and loads [70]. The problem of harmonics generation due 

to increasing applications of power electronic type devices which have nonlinear voltage current 

characteristics, and the increasing application of shunt capacitor banks for power factor 

correction and voltage regulation which results in an increased potential for resonant conditions 

that can magnify existing harmonic levels, were addressed in the report. The report divided the 

effect of voltage distortion into three general categories: (1) insulation stress; (2) thermal stress; 

and (3) disruption. The main purpose of the report was to examine the various equipment 

characteristics to determine the limiting factors in the operation of the equipment with system 

distortion present. In regards to motors, the report assumed that the harmonic components may be 

classified as stator winding loss, rotor winding loss, and stray loss, which are I
2
R loss. The 

additional core loss due to voltage distortion is negligibly small. 

It was also assumed that the rotor frequency at any harmonic is equal to the stator 

harmonic frequency. This assumption might overestimate the negative sequence losses, but 

underestimate the positive sequence losses. This assumption is reasonable as long the smallest 

harmonics (2≤n≤4) are not present. 

The report proposed the harmonic losses Ph to be represented as 

Ph

PRL

=k ∑
Vn

2

√n32
V1

2

∞

n=5

 (1.10) 

where PRL is the machine loss at the rated point with sinusoidal supply, and n is the harmonic 

order. The approximate form of the proportionality constant k is 

𝑘=

(
Tst

Tr
) η

(1-sr)(1-η)
 

(1.11) 
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where Tst is the starting torque, and Tr, sr, η are the machine torque, slip, and efficiency at rated 

point. 

The report came up with a definition of Motor Distortion Index (MDI) by the following equation: 

MDI=
1

V1

√∑
Vn

2

√n32

∞

n=5

 (1.12) 

The equation suggests that motors with a large deep bar or double cage effect would have 

the highest harmonic heating. 

The need for derating induction motors operating under rich harmonic power supply was 

first mentioned by Cummings in [71] where he developed Harmonic Voltage Factor (HVF). The 

slip for any harmonic frequency was defined as 

Sn=
3k

3k±1
 (1.13) 

where k is even integer as balanced firing of converter and symmetrical loads are assumed. So, 

only odd harmonics will be exist as shown in Table  1-II. 

Cummings used the equivalent circuit and the principle of superposition to evaluate the 

effect of harmonic voltage on induction motors. He approximated the harmonic equivalent circuit 

as shown in Figure  1-11. The resistance r1n in the figure was considered to be equal to the dc 

resistance of the stator winding which is constant with frequency and varies with temperature. 

The resistance rLLn represents the stary-load loss or any circulating or strand losses. The stator 

leakage reactance is proportional to frequency (x1n=nx1) where x1 is the stator leakage reactance 

Table  1-II. Time Harmonics and Rotation of their Associated Torques 

n 

Harmonic Orders for 

Positive Sequence 

(3n+1) 

Harmonic Orders for 

Negative Sequence 

(3n+2) 

Harmonic Orders for 

Zero Sequence 

(3n+3) 

0 1 2 3 

1 4 5 6 

2 7 8 9 

3 10 11 12 

4 13 14 15 

5 16 17 18 

6 19 20 21 

7 22 23 24 
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at fundamental frequency. The rotor resistance r2n and rotor leakage reactance x2n are a complex 

function of the frequency of the rotor current (n×frated×Sn) which is almost always ≤2 Hz for 

normal operation with 60 Hz rated frequency. At this low rotor current frequency, the skin effect 

or deep-bar effect is inactive. While for higher frequencies, the skin effect will take place which 

increases the rotor resistance and decreases the rotor leakage reactance. The rLLn was assumed to 

be proportional to n
0.8

 with sufficient accuracy due to its complex relationship with frequency. 

The author developed a model to estimate the harmonic loss and Harmonic Voltage 

Factor which is 

HVF=√∑
Vn

2

n

∞

n=5

 (1.14) 

The relationship between total harmonic loss and HVF is 

∆WT≅35×(HVF)2 (1.15) 

For thermal considerations, HVF has to be less than 0.045. 

Kataoka et al. in [72] presented a method of measuring both the fundamental and time 

harmonic equivalent circuit parameters of inverter fed induction motors. The fundamental 

equivalent circuit per phase had the core loss resistance and the magnetizing reactance in series. 

While the harmonic equivalent circuit ignored the core loss and magnetizing branch. The method 

includes no-load and blocked-rotor tests, beside a dc stator winding resistance test. The authors 

use the no-load and blocked-rotor tests with both fundamental and harmonic voltages. The iron 

 

Figure  1-11. Harmonic equivalent circuit. 
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loss resistance and the magnetizing inductance were measured at no-load with variable voltages 

at fundamental frequency. The rotor resistance and leakage inductance with harmonics were 

calculated by using the equivalent circuit with different applied frequencies. 

With regards to the dominant loss in induction motors due to harmonics existence, it has 

been claimed in [64] that the largest loss is usually in the rotor bars due to the deep bar effect. 

While Undeland and Mohan in [73] found that iron losses are the dominant part of the additional 

motor losses due to the presence of harmonics. 

Sen and Landa in [74] discussed derating of induction motors of NEMA design B of 

different output ratings due to different cases of harmonic distortion. According to IEEE Standard 

519 [75], no derating of a motor would be necessary for a harmonic content of up to 5%. 

According to [75], the distortion factor DF which can be determined as  

DF=√
sum of squares of amplitudes of all harmonic voltages

square of amplitude of fundamental voltage
 (1.16) 

and it is used to establish harmonic limits. The study in [74] was based on three assumptions: (1) 

the motors are nonskewed, Y-connected, and ungrounded, (2) the analysis is limited to full-load 

steady-state operating conditions, and (3) the principle of superposition applies. The mechanical 

losses that comprise of friction and windage losses are assumed to be unaffected by voltage 

harmonic distortion. The stray-load losses were estimated based on a comprehensive study 

conducted by Alger et al. in [76]. The percent full-load losses for a typical standard NEMA 

design B machines were presented as 

Pmechanical=0.09, Piron=0.20, Pstator copper loss=0.37, Protor copper loss=0.18, Pstray=0.16. 

The effect of harmonic voltages upon their orders were presented in [74] as shown 

Table  1-II which shows those time harmonics up to the 24
th

 order. It can be seen that all triplen 

harmonics have zero associated torque. 

 

The formula used to derate the machines under test is 
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Derating Factor=1-
Output Power with Harmonics

Output Power with Sinusoidal
 (1.17) 

The important outcomes of the study in [74] were that the second order harmonic have to 

be included on the harmonic distortion limits established by IEEE Standard 519, and derating in 

some cases should be considered for less than 5% harmonic distortion.  

In 1993, a new report of the IEEE Task Force on the effects of harmonics on equipment 

was established [77]. The problem of overheating was again presented as the main problem 

caused by voltage distortion as the losses in electric machines are dependent upon the frequency 

spectrum of the applied voltage. The increase in motor operating temperature will cause a 

reduction of the motor operating life. It was stated that if the harmonics are time varying, the 

motor can tolerate higher peak distortion levels without significant increase in temperature. This 

is because the motor thermal time constant is much longer than the period of harmonic variation. 

The pulsating torque was diagnosed as a consequence of the interaction between the fundamental 

air gap flux and the fluxes produced by the harmonic currents in the rotor. 

Lee et al. pointed out the reasons behind a rich harmonic power supply which are: (1) 

operation of power electronics devices, (2) operation of steel mills arc furnaces, and (3) 

resonance of shunt capacitors and/or series inductors [78]. Even when induction motors are 

driven by sinusoidal power supplies, the magnetic fields include many time harmonics which are 

caused by the phase band, stator and rotor slot ripple [79]. The authors in [78] used a real load 

test to investigate the effects of harmonics on the performance of induction motors under 

different Voltage Distortion Factors (VDF) in terms of efficiency, temperature rise, and pulsating 

torques. Three different VDFs, 5%, 10%, and 15%, were used to test a 3 hp, 3-phase induction 

motor for efficiency with different orders of harmonics. Associated useful figures were presented 

to show the effect of +ve, -ve, and zero sequences on the efficiency of the motor. It was noticed 

that the lower order harmonic (2nd order) resulted in lower efficiency, and the larger the VDF is, 

the lower the efficiency. The temperature rise was also observed, and again, the lower harmonic 

orders below 5 affect the performance of the motor more severely than the harmonic orders above 

5. The study concluded that when studying the impact of harmonics on induction motors, both 

odd and even harmonics must be considered. 

In [80], Jalilian et al. presented a method of measuring induction motor harmonic losses 
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by using the DCC (Double Chamber Calorimeter) technique. The idea is based on measuring the 

amount of heat dissipated from the machine while running under a rich harmonic power supply. 

It was mentioned that the calorimeter is capable of measuring motor losses up to 1 kW, including 

harmonic losses, with maximum uncertainty of ±15 W. This can give a clear idea that this 

approach can work with only small rated induction machines. 

In another study of Jalilian et al. [81], it was found that lower order harmonics cause more 

losses in induction motors when compared against higher order harmonics. A weighted THD 

which varies with harmonic orders was presented as  

WTHD=√∑
Vn

2

n0.8
 (1.18) 

This WTHD was proposed to be used as an index of the amount of distortion allowed in 

the supplied voltage rather than THD which seems not to vary with different harmonic orders, 

although the severe effects of lower harmonic orders over the higher ones was shown. 

Hildebrand and Boehrdanz in [82] studied the effects of pulse frequencies of PWM 

converters on the additional losses of induction motors caused by harmonics. They found that 

harmonic copper losses became significant with the increase of pulse frequencies, and those 

losses can be more distinct for skewed rotors. 

Wheeler et al. in [83] introduced Harmonic Loss Factor (HLF) which measured in 

milliwatts per square volt (mW/V2) which was considered to be an index of the amount of 

harmonic losses in induction motors. The relationship of the HLF with the applied frequency was 

shown. The harmonic loss for an induction motor under any operating condition was predicted 

from the HLF curve and the amount of distortion in the applied voltage. 

Many researchers proposed circuit models to represent the induction motor equivalent that 

includes harmonics effects [61] [63]  [72] [84]. Figure  1-12 and Figure  1-13 show the induction 

motor equivalent circuits of both fundamental and harmonic frequencies respectively. 
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Figure  1-12. Equivalent circuit at fundamental frequency. 
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Figure  1-13. General equivalent circuit at harmonic frequencies. 
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1.14. Thesis Outline 

This thesis is organized as follows: 

Chapter 2 

This chapter presents a novel algorithm for induction motor full-load and partial loads 

efficiency estimation from only no-load test. The algorithm is based on power calculations and it 

utilizes a large database of induction motors tested for efficiency in Laboratoire des Technologies 

de l'Énergie, Institut de Recherche, Hydro-Québec, Shawinigan, Québec, Canada [85].  The data 

has a wide range of motors’ power rating and generously offered by Hydro-Québec as a 

contribution to the project. Another valuable set of data is received from BC Hydro, which 

includes the testing of 55 used (aged) induction motors [86]. The algorithm is validated by testing 

196 induction motors of ratings ranged between 1 hp to 500 hp. The goal of the proposed 

algorithm is to be easily used in North America’s electric motor service centers. This research 

work is well received when presented in CIGRÉ 2014 in Paris. 

Chapter 3 

This chapter introduces another novel algorithm for induction motors efficiency 

estimation which also based on no-load tests. The algorithm requires the availability of variable 

voltages as it is based on the saturation test recommended by IEEE 112
TM

-2004. The algorithm 

also utilizes the Hydro-Québec/BC hydro data. The proposed algorithm is evaluated by testing 

eight induction motors and the results showed acceptable accuracy. The work is published in the 

IEEE Transactions on Energy Conversion journal. 

Chapter 4 

This chapter presents a developed software that includes both algorithms of Chapter 2 and 

Chapter 3 to create a useful industrial tool that can be used in electric motor service centers. The 

platform of the software is selected to be spreadsheets to make it affordable and user-friendly. 

The software is designed and upgraded upon feedbacks and comments that are received from 

technical monitors from several Canadian power companies. The software is evaluated and 

approved by the technical monitors and now it is being marketing by CEATI International Inc.    

 

 

http://www.google.ca/url?sa=t&rct=j&q=hydro%20quebec&source=web&cd=1&cad=rja&ved=0CC0QFjAA&url=http%3A%2F%2Fwww.hydroquebec.com%2Fen%2F&ei=A1uRUdemD5HUyQGd-4CAAQ&usg=AFQjCNEJBdMiaJLx76XRSWXx-1SxRoqW9A
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Chapter 5 

This chapter presents an algorithm for in-situ induction motor efficiency estimation by 

using a combination of GA procedures with the IEEE Form 2-Method F1 calculations. The 

algorithm is also designed to utilize the Hydro-Québec/BC hydro data. The algorithm uses the 

measured stray load loss and hot temperature. It requires only one load point which is full-load 

with its corresponding rms values of voltage, current, and power obtained at the motor terminals. 

The speed estimation technique used needs the current signal acquisition of only one line. The 

algorithm is not only an in-situ efficiency determination tool; it can also be used as a promising 

tool for on-site efficiency estimation that might eliminate the need to the costly dynamometer 

procedure. The algorithm is evaluated and assessed by testing 30 induction motors of different 

kinds and power ratings. The results show an acceptable level of accuracy. The work is published 

in the IEEE Transactions on Energy Conversion journal as Early Accessed Article. 

Chapter 6 

This chapter proposes a novel algorithm for in-situ efficiency estimation of induction 

motors operating with unbalanced voltages by using a combination of GA procedure, IEEE Form 

2-Method F1 calculations, and pre-tested motors. It is proven in Chapters 2 & 3 that using the 

assumed values of stray load loss can significantly increase the error and reduce the accuracy of 

the estimated efficiency. Hence, the proposed algorithm in this chapter is designed to utilize 

Hydro-Québec and BC hydro data. A strategy is proposed to assign an average value of stray load 

loss to the machine under test. The strategy is detailed in this chapter. The algorithm is also 

designed to use measured and assumed values of friction and windage losses. The algorithm 

requires only one load point which is full-load with its corresponding rms values of voltage, 

current, and power obtained at the motor terminals. The speed estimation technique that is used in 

this chapter needs the current signal acquisition of only one line. The algorithm is evaluated and 

assessed by 10 voltage unbalance tests and 2 test with balanced voltages using 2 small induction 

motors. The results are presented and show an acceptable level of accuracy. The goal of the study 

was to design a useful tool that can be used in industry to derate induction motors due to voltage 

unbalance. 
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Chapter 7 

This chapter proposes another novel algorithm for in-situ efficiency estimation of 

induction motors that operate with distorted unbalanced voltages by using GA procedures, IEEE 

Form 2-Method F1 calculations, and by utilizing Hydro-Québec/BC hydro data. The novelty of 

the algorithm is demonstrated by using a new approach in determining the stray load loss and 

friction and windage losses based on a certain strategies and novel equations which are declared 

in this chapter. The algorithm requires only one load point which is full-load with its 

corresponding rms values of voltage, current, and power obtained at the motor terminals. The 

online speed estimation technique that is used in this chapter needs the current signal acquisition 

of only one line. The algorithm is evaluated and assessed by 50 tests of different combinations of 

voltage unbalance and harmonics performed with two small induction motors. The results are 

presented and show an acceptable level of accuracy. The algorithm is also validated for its 

consistency by 10 repeated tests with a very low coefficient of variation. The usability of the 

algorithm with balanced harmonics free voltages is demonstrated by testing the two machines 

and an acceptable accuracy is shown. 

Chapter 8 

This chapter presents the conclusions and future works. 

 

1.15. Thesis Contributions 

The contributions that achieved in this Ph.D. work are as follows: 

I. In Chapter 2, a novel algorithm is designed to be easily used in any electric 

motor service center. It is based on only one no-load test and rms values. The 

algorithm is approved by technical monitors from several Canadian power 

companies. The algorithm is presented and well received in the CIGRÉ 2014 

Conference and Exhibition in Paris, France [87]. 

M. Al-Badri and P. Pragasen, "A Novel Technique for Refurbished Induction Motors’ 

Efficiency Estimation Based on," in CIGRÉ 2014 Conference and Exhibition, Session 45, Paris, 

24-29 August 2014. 
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II. In Chapter 3, another novel algorithm is designed to be used in electric motor 

workshops. It is also based on no-load tests. The algorithm is approved by 

technical monitors from several Canadian power companies. The algorithm is 

published in IEEE Transactions on Energy Conversion journal [88]. 

M. Al-Badri, P. Pillay and P. Angers, "A Novel Algorithm for Estimating Refurbished Three-

Phase Induction Motors Efficiency Using Only No-Load Tests," Energy Conversion, IEEE 

Transactions on, vol. 30, no. 2, pp. 615,625, June 2015.    

 

III. In Chapters 2 & 3, an uncertainty study is conducted on both proposed 

algorithms of Chapters 2 & 3 to create credits to the outcome of both 

algorithms. The study is presented in 2014 IEEE International Conference on 

Power and Energy (PECon) in Kuching, Malaysia [89]. 

M. Al-Badri and P. Pragasen, "Evaluation of measurement uncertainty in induction machines 

efficiency estimation," in Power and Energy (PECon), 2014 IEEE International Conference on, 

Kuching, Malaysia, 1-3 Dec. 2014. 

IV. In Chapters 4, a spreadsheet based software is developed to turn the two novel 

algorithms of Chapters 2 & 3 into a practical industrial tool. The software is 

approved by the technical monitors and it is being marketing now by CEATI 

International Inc. 

 

V. In Chapters 5, a novel in-situ efficiency estimation algorithm is proposed. The 

algorithm has the potential to replace the expensive dynamometer procedure. 

The research work is published in IEEE Transactions on Energy Conversion 

journal [90]. 

Al-Badri, M.; Pillay, P.; Angers, P., "A Novel In Situ Efficiency Estimation Algorithm for 

Three-Phase IM Using GA, IEEE Method F1 Calculations, and Pretested Motor Data," Energy 

Conversion, IEEE Transactions on , (IEEE Early Access Articles). 
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VI. In Chapters 6, a novel algorithm for in-situ efficiency estimation of induction 

motors operating with unbalanced voltages is proposed. The algorithm has the 

potential to be a reliable tool for induction motors derating due to voltage 

unbalance. The research work is presented in IEEE International Electric 

Machines & Drives Conference in Coeur d’Alene, Idaho, USA in May 10-13, 

2015. Upgraded version of this paper is submitted to IEEE Transactions on 

Industry Application. 

 

VII. In Chapters 7, a novel algorithm for in-situ efficiency estimation of induction 

motors operating with unbalanced and distorted voltages is proposed. The 

algorithm has the potential to be a reliable tool for induction motors derating 

due to voltage unbalance and harmonics. A paper of the research work is 

submitted to the IEEE Transactions on Energy Conversion journal. 
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CHAPTER TWO 

 

2. A Novel Technique for Induction Motors Full-Load and Partial Loads Efficiency 

Estimation from Only One No-Load Test 

 Full-load and partial load efficiency of 3-phase induction motors can be determined by 

using the dynamometer tests which is expensive, time consuming, and it is only available in well-

equipped laboratories. There were few trials from engineers in the field and researchers to make 

the process of induction motor efficiency estimation applicable in electric motors service 

workshops [90] .  

This chapter presents a novel method for estimating induction motor full-load and partial 

loads efficiency from only one no-load test. The objective of this research is to eliminate the need 

for the costly dynamometer method. The technique requires very limited data and can be applied 

in any electric motor service center in North America. Experimental and field results of testing a 

total of 196 induction motors are presented and the degree of accuracy is shown by comparing 

the estimated efficiencies against the measured values. The algorithm utilizes a database of a 

large number of induction motors tested for efficiency in the Laboratoire des Technologies de 

l'Énergie, Institut de Recherche, Hydro-Québec, Shawinigan, Québec, Canada.  The data has a 

wide range of motor types and power ratings. Another set of data was received from BC hydro 

which includes a full test of 55 used (aged) induction motors. The database is utilized to estimate 

machine losses based on a certain pattern of losses distribution. The accuracy of the algorithm is 

verified by testing 196 of power rating from 1 hp to 500 hp. An acceptable level of accuracy is 

obtained. Error analysis and uncertainty study is conducted to give the reliability and credibility 

needed for the algorithm.  

To turn the algorithm into a practical industrial tool that can be used in workshops, a user-

friendly software was designed to handle both the algorithm and the database. To make the 

software affordable and cost effective, a spreadsheet was selected to be the platform of the 

software. 
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2.1. Introduction 

In industrialized countries, electric motors utilize nearly two-thirds of the electricity 

generated [1], and hence, contribute to the global environmental problem which is represented by 

the emission of greenhouse gases [2]. Several Canadian and U.S. utilities have taken serious steps 

in implementing demand side management programs [3] to reduce both greenhouse gas effects 

and the cost of power that feeds this large population of electric motors. 

In developing countries, a similar situation encountered, where a significant portion of the 

generated power is utilized by motors. Taking South Africa as an example, motorized systems 

account for up to 60% of the total electricity utilization [4]. 

In industry, only motors above 500 hp are usually monitored because of their high costs. 

However, motors below 500 hp make up 99.7% of the motors in service. These motors operate at 

approximately 60% of their rated load because of oversized installations or under-load 

conditions, and hence, they work at reduced efficiency which results in wasted energy [6]. Motor 

losses can represent a considerable cost over a long period due to high load factor [7].    

Power costs are constantly rising at a rate that is even faster than both material and 

producer goods prices [8], many companies have hired energy managers whose sole purpose is to 

find practical ways to reduce power costs [9]. As an example, and according to the U.S. 

Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE), a 

large size paper mill could save an average of $659,000 a year through motor system efficiency 

[10]. In today’s economy, it is more important than ever to optimize motor losses and keep the 

operating cost under control [8]. Efficient operation of electric motors can provide significant 

energy savings with benefits for both consumers and power utilities [11].  

If a replacement decision of low efficient motor is taken as a result of the calculation of 

energy savings and payback periods that are based on nameplate motor efficiency or 

manufacturer's data only, this could lead to large errors [1], because the real efficiency of a motor 

is usually different from that value mentioned on its nameplate, as efficiency may decrease 

significantly due to aging or rewinding process [17], or it might not be given according to IEEE 

Std 112
TM

 Method B [18]. 
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A significant amount of research work have been conducted on the subject of induction 

motors’ efficiency estimation. The following is a quick review of some of the major methods that 

are used in the field. Comprehensive reviews were conducted in [18], [20], and [13]. In the 

nameplate method, it is assumed that the efficiency of the motor is constant and always equal to 

the nameplate value. This method is inaccurate and could lead to large error since the nameplate 

data are rounded [14], plus other issues that are previously mentioned. Other researchers 

proposed using the slip method as an approach to determine the efficiency of a motor. This 

method relies on speed measurements, but it has been proven that it is not very accurate or useful 

due to the variations in motor nameplate data, line voltage unbalance, and temperature variation 

of the rotor [19]. Another approach to approximate motor efficiency is the current method, and 

again, this method was also proven impractical and inaccurate in [18], [20] and [13]. In the 

segregated loss method, the magnitudes of the five losses of induction motor, namely, stator 

copper loss, rotor copper loss, core loss, stray load loss, and friction and windage loss are 

estimated and then summed up and subtracted from the input power to determine the output 

power and hence the efficiency [20]. In the IEEE Std 112
TM

 -2004, the equivalent circuit methods 

F/F1 are presented [21]. In these methods, the test procedure is as follows: 

 Measurement of cold resistance. 

 Perform the no-load test. 

 Conduct the impedance test. 

 Determine the friction and windage losses. 

 Determine the core loss. 

 Extract the six parameters of the motor. 

 Measure or assume the stray load loss. 

 Estimate the efficiency. 

The degree of the accuracy of this approach depends on how close the assumed hot 

temperature and stray load losses are to the real values. The wider the difference, the larger the 

error obtained in estimating the efficiency. Ontario Hydro proposed a modified version of the 

IEEE Std 112TM Method F1 [22]. A no-load test and a full-load test, both at rated voltage have 
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to be conducted. This method eliminates the need for a variable-voltage required by IEEE Std 

112TM Method F1 [20]. The well-known air-gap equations are utilized for determining motor 

efficiency by a method called the air-gap torque method. In this method, the negative rotating 

torque caused by unbalance voltages and harmonics is considered. The major disadvantage of this 

method is that current and voltage waveforms are required as input data, besides software is 

required to analyze the field measurements [20]. Most, if not all, of those methods in the 

literature have been designed to work properly in well-equipped laboratories, where the required 

instrumentation and equipment are available. The authors of those works did not pay close 

attention to make their proposed methods applicable in the electric motor service centers where 

there is a need to have the rewound motors tested for efficiency before delivering them back in 

service. In [11], the authors proposed a technique for efficiency estimation for refurbished 

induction motors, but again, it was not feasible to be applied in any workshop due to the need for 

data acquisition measuring devices and a sophisticated and expensive software to handle the 

proposed technique.  

In this chapter, a novel efficiency estimation technique for repaired, rewound, or any 

existing induction motor, is proposed. This would work in the technical environment of North 

America’s electric service centers and tailored to available in such workshops of instrumentation. 

The proposed algorithm is named (Method A), and it works with very limited data obtained from 

only one no-load operating point run under a voltage equal or close to the rated voltage. Method 

A is designed to eliminate any need for voltage and current waveforms capturing devices as it 

uses only RMS values. To transfer the method into a practical tool to be used in the industry; a 

software has been designed based on a spreadsheet. The algorithm utilizes a large database of 

induction motors tested for efficiency in the Laboratoire des Technologies de l'Énergie, Institut 

de Recherche, Hydro-Québec, Shawinigan, Québec, Canada.  The data has a wide range of motor 

power ratings [91]. Another valuable set of data is used from BC Hydro, which includes a full 

test of 55 used (aged) induction motors [86]. Applicability and feasibility of the method has been 

determined by technical visits made by the research team to some electric motor service centers 

in the Montréal region. Experimental and field results for testing 196 induction motors are 

presented and demonstrate the degree of accuracy of the proposed technique. 
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2.2. The Proposed Algorithm 

Efficiency tests are necessary to establish a performance level that allows evaluation of 

the repaired and rewound motors [92] or any existing motor. Determination of refurbished 

motor’s efficiency in laboratories is too expensive, although it can give precise efficiency 

estimation. A no-load based efficiency estimation of full-load and partial loads of the induction 

motor is the most suitable and applicable way to be used in electric motor service workshops. 

The simpler the requirements are, the easier the technique can be applied and be matched to the 

technical environment of those workshops where sophisticated equipment and software cannot be 

encountered. An algorithm is designed to work with very limited inputs of only one operating 

point with no load coupled to the motor shaft and with the motor running at rated or close to rated 

voltage, and with rated frequency. The algorithm relies mainly on induction motor powers 

calculation. The source of calculations is the nameplate data and RMS values of input voltage, 

input current, and input power. The DC resistance of the stator winding should be determined by 

using a DC resistance test that complies with section 5.4 of IEEE Std 112
™

-2004 [21] and section 

8 of CAN/CSA Std C392-11 [93]. The temperature has to be measured during the DC resistance 

test using the recommended instruments in section 4.4 of IEEE Std 112
™

-2004 and section 8 of 

CAN/CSA Std C392-11. The value of the DC resistance should be corrected to the full-load 

temperature (Hot Temperature). With no load coupled to the motor; the measured input power 

should be equal to the total losses of the motor as the output power is assumed to be zero. The 

stator copper loss, friction and windage losses, and core loss comprise the no-load total losses. 

The mechanical rotational losses that consist of friction and windage losses, and the core loss can 

be determined by subtracting the stator loss from the input power. The algorithm assumes that the 

no-load mechanical rotational losses have the same value under full-load condition if voltage and 

frequency are the same [94]. The reason of making this assumption is because the algorithm has 

no way to separate the core loss and friction and windage losses as it has only one operating 

point. Stray load loss is estimated based on IEEE Std 112
™

-2004 and International Standard IEC 

60034-2-1 [95] computing methodologies. Full-load total losses are estimated based on the 

nameplate data. Full-load efficiency is predicted based on the previous calculations and 

assumptions. The partial loads efficiencies are estimated based on relationships that are extracted 

based on a thorough investigation done on Hydro-Québec/BC hydro data. The flow chart of the 

proposed Method A’s algorithm is shown in Figure  2-1.  
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Start

Read the following quantities from the 

nameplate: 

Prated(hp), f (Hz), Vrated(V), Irated(A) 

 Nrated(rpm), Pole #, η
rated

(%) 

 INS, NEMA design, WIN. CONF. 

 

Perform the no-load test; read the 

following: 

Pnl(kW), Inl(A), Vnl(V) 

Calculate the DC resistance as follows: 

Rdc=
Rab+Rbc+Rca

3
 

Assumed 

Temperature 

Full-load temperature Tfl 

Correct Rdc to the specified Tfl: 

Rdc,corr=
Rdc(Tfl+234.5)

Tcold+234.5
 

Calculate the rotational losses Prot: 

Prot=Pnl-
1.5×Rdc×Inl

2

1000
 

Calculate the full-load stator copper loss Pscl, fl: 

Pscl, fl=
1.5×Rdc, corr×Irated

2

1000
 

Calculate the full-load input power Pin: 

Pin, fl=
Prated×0.746×100

η
rated

 

Assumed 

PSLL 

Full-load stray load loss PSLL, fl 

Calculate the full-load air gap power Pag, fl: 

Pag, fl=Pin, fl-Prot-Pscl, fl-PSLL, fl 

Calculate the synchronous speed Ns: 

Ns=
120×f

p
 

Calculate the full-load slip s: 

s=
Ns-Nrated

Ns

 

Calculate the full-load rotor copper loss Prcl: 

Prcl, fl=s×Pag, fl 

Calculate the full-load output power Pout: 

Pout, fl=Pag, fl-Prcl, fl 

Calculate the full-load efficiency η
fl
: 

η
fl
=

Pout, fl×100

Pin, fl

 

End

Measured 

Temperature Measured 

PSLL 

Perform the DC test: read 

Rbc(Ω), Rbc(Ω), Rca(Ω), Tcold( C
o

) 

Calculate: 

Pin, i, Pscl, i, Prcl, i, PSLL, i  

Pout, i=Pin, i − Pscl, i − Prcl, i − PSLL, i − Prot 

η
i
=

Pout, i×100

Pin, i

 

i=75%, 50%, 25% load 

 

Figure  2-1. The proposed algorithm flow chart 

 

 

 

2.2.1. Efficiency Estimation Procedure 

The efficiency estimation procedure of Method A is as follows: 

 

2.2.1.1. DC Test 

The stator winding lead-to-lead resistance is measured among the three phases of the 

motor (i.e. Rab, Rbc, Rca). The average lead-to-lead dc resistance Rdc is calculated as in (2.1). 

During the measurement, the temperature Tcold  is recorded. 

Rdc=
Rab+Rbc+Rca

3
 (2.1) 
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2.2.1.2. Nameplate Data 

Nameplate data is a necessary part of the algorithm. The rated voltage, rated current, rated 

power, rated speed, number of poles, efficiency, insulation class, NEMA design, and winding 

configuration should be read and recorded. 

 

2.2.1.3. Performing the No-Load Test 

The motor is run with no load coupled to the shaft at rated or close to rated voltage and 

with rated frequency shown on the nameplate. The input power reading should be stabilized, and 

the RMS values of input voltage, input current, and input power should be read and recorded. 

 

2.2.1.4. Stator Resistance Correction for Temperature  

The Rdc obtained from (2.1) should be corrected to the full-load temperature Tfl as in (2.2) 

and based on the insulation class of the machine and Table  2-I (if full-load temperature rise is not 

available) as recommended in IEEE Std 112
™

-2004. 

Rdc,corr=
Rdc(Tfl+K1)

Tcold+K1

 (2.2) 

where 

K1 is 234.5 for 100% IACS conductivity copper. 

 

 

Table  2-I : Rated Temperature for Efficiency Calculations [21] 

Class of 

insulation system 

Tfl 

Temperature in ˚C 

Total temperature 

including 25˚C reference ambient 

A 75 

B 95 

F 115 

H 130 
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2.2.1.5. Estimation of Stator Copper Loss at Room Temperature 

Stator Copper Loss at room temperature Pscl,a can be calculated as in (2.3). 

Pscl,a=1.5×Inl
2 ×Rdc (2.3) 

 

2.2.1.6. Estimation of Mechanical Rotational Losses 

Mechanical rotational losses Prl will be estimated by subtracting the no-load stator copper 

loss from the no-load input power as in (2.4). 

Prl=Pnl-Pscl,a (2.4) 

 

2.2.1.7. Estimation of Full-Load Input Power 

Full-load input power Pin,fl can be estimated by using nameplate values of full-load output 

power Pout and full-load efficiency η
fl
  as in (2.5). 

Pin,fl=
Pout

η
fl

 (2.5) 

 

2.2.1.8. Estimation of Stray Load Loss 

By investigating the testing data of wide range of machines of different power ratings (1-

500 hp) offered by by Hydro-Québec and BC hydro, it has been found that, for motors of ratings 

larger than 40 hp, the value of Stray Load Loss Psll can be better estimated by applying 

International Standard IEC 60034-2-1 computing methodology using (2.6). On the other hand, 

motors of ratings less than 40 hp, the stray load loss will be better assumed according to 

Table  1-I.  

Psll=Pin,fl [0.025-0.005log
10

(
Pout

1kW
)] (2.6) 

For the partial loads (i.e. 75%, 50%, and 25%), the stray load loss can be approximated by 

using the following formulas which are proposed in [90] and decided through a thorough check 
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upon the data. 

Psll,75=0.5556Psll,fl (2.7) 

Psll,50=0.2500Psll,fl (2.8) 

Psll,25=0.0625Psll,fl (2.9) 

 

2.2.1.9. Estimation of Full-Load Stator Copper Loss 

Full load stator copper loss Pscl,fl can be calculated as in (2.10). 

Pscl,fl=1.5×Ifl
2 ×Rdc,corr (2.10) 

For the partial loads (i.e. 75%, 50%, and 25%), stator copper loss can be approximated by 

using the following proposed formulas which are decided through a thorough check upon the 

data. 

Pscl,75=0.608Pscl,fl (2.11) 

Pscl,50=0.335Pscl,fl (2.12) 

Pscl,25=0.1675Pscl,fl (2.13) 

 

2.2.1.10. Estimation of the Air Gap Power 

Given one no-load operating point, there is no way to calculate the core and friction and 

windage losses. Hence, an assumption of using the same value of no-load mechanical rotational 

losses Prl obtained in subsection  2.2.1.6 in full-load losses calculations would be acceptable [94]. 

Air gap power Pag can be calculated as in (2.14). 

Pag=Pin,fl-Prl-Pscl,fl-Psll (2.14) 

 

2.2.1.11. Estimation of Synchronous Speed 

Synchronous speed ns can be estimated as in (2.15). 
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ns=
120×fr

p
 (2.15) 

2.2.1.12. Estimation of Full-Load Slip 

Full-Load slip Sfl can be estimated as in (2.16). 

Sfl=
ns-nfl

ns

 (2.16) 

 

2.2.1.13. Estimation of Rotor Copper Loss 

Full-load rotor copper loss Prcl,fl can be estimated as in (2.17). 

Prcl,fl=Sfl×Pag (2.17) 

For the partial loads (i.e. 75%, 50%, and 25%), the rotor copper loss can be approximated 

by using the following proposed formulas which are decided through a careful check upon the 

data. 

Prcl,75=0.541Prcl,fl (2.18) 

Prcl,50=0.235Prcl,fl (2.19) 

Prcl,25=0.061Prcl,fl (2.20) 

 

2.2.1.14. Estimation of Mechanical Power 

Mechanical power Pmech can be estimated as in (2.21). 

Pmech=Pag-Prcl,fl (2.21) 

The mechanical output power represents the value of the estimated output power at full-

load as in (2.22). 

Pout,ca=Pmech (2.22) 

 

2.2.1.15. Estimation of Efficiency 
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Estimated efficiency η can be obtained as in (2.23). 

η
i
=

Pout,cai

Pini

 (2.23) 

where i represents 100%, 75%, 50%, or 25% load. 

 

2.2.2. Experimental Results and Analysis 

Method A is applied on a group of different induction motors ranged from 3 to 150 hp. 

The results of the estimated efficiencies are tabulated in Table  2-II. The absolute error is 

calculated as in (2.24). 

Error=Measured Efficiency-Estimated Efficiency (2.24) 

The errors shown in Table  2-II reflect a certain degree of accuracy. Although this level of 

accuracy obtained can be compromised by the limited input data that feed the algorithm, 

however, such errors make the technique unacceptable to be relied on when it is used to estimate 

efficiency in motor service centers especially for large power rating motors. 

A thorough investigation into the source of error showed that two factors have large impact on 

the accuracy of the algorithm. The first factor is the estimated stray load loss Psll, and the second 

factor is the assumed full-load temperature Tfl. 

 

 

 

 

Table  2-II: Estimated Versus Measured Efficiencies 

Motor  

Size 

(hp) 

Measured  

Efficiency 

(%) 

Estimated  

Efficiency 

(%) 

Error 

(%) 

3 79.61 78.59 1.02 

7.5 90.79 89.55 1.24 

25 92.80 92.07 0.73 

50 92.80 91.68 1.12 

60 94.80 94.02 0.78 

100 95.50 93.81 1.69 

150 93.60 92.76 0.84 
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2.2.2.1. Stray Loa Loss 

According to IEEE Std 112
™

-2004, the stray load loss is that portion of the total loss in 

electrical machine not accounted for by the sum of the friction and windage loss, the stator 

copper loss, the rotor copper loss, and core loss. There are two ways to measure the stray load 

loss, indirect measurement and direct measurement. In the indirect measurement, the stray load 

loss is determined by measuring the total losses, and subtracting from these losses the sum of the 

friction and windage, core loss, stator copper loss, and rotor copper loss.  

The remaining value is the stray load loss. In the direct measurement of the stray load 

loss, the fundamental frequency and the high frequency components of the stray load loss are 

determined and the sum of these two components is the total stray load loss [21]. The other 

procedure to determine the stray load loss according to IEEE Std 112
™

-2004 is to assume it. If 

the stray load loss is not measured, its value at rated load may be assumed to be the value as 

shown in Table  1-I, or it can be estimated according to International Standard IEC 60034-2-1 as 

in (2.6). Figure  2-2 elaborates a comparison between the estimated Psll according to both 

standards and the measured values for five different induction motors. The wide difference 

between the assumed values of stray load loss and the measured values is very clear, especially 

for high power rating motors, which can prove that using the assumed value will significantly 

affect the value of the estimated efficiency and will lead to large errors. 
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2.2.2.2. Full-Load Temperature 

Assuming the full-load temperature Tfl according to Table  2-I also contributes effectively 

to the degree of the estimated efficiency accuracy. This can be seen clearly by comparing the 

assumed full-load temperature of the above mentioned five induction motors with the measured 

values as illustrated in Figure  2-3. The full-load temperature is very critical in the efficiency 

estimation. It can be clearly noticed now that using the measured values of both stray load loss 

and full-load temperature instead of the assumed ones will dramatically reduce the errors shown 

in Table  2-II.   

Hydro-Québec offered to support this research through providing an extremely valuable 

data of a large number and a wide range of induction motors tested in Laboratoire des 

Technologies de l'Énergie, Institut de Recherche, Hydro-Québec [91]. The data has been 

integrated in the algorithm, and whenever the motor under test is similar to any of the Hydro-

Québec tested motors, the algorithm will use the measured values of stray load loss and full-load 

 

Figure  2-2. Estimated stray load loss versus measured values. 

Source of measured data: Laboratoire des Technologies de l'Énergie, Institut de Recherche, Hydro-Québec. 
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temperature instead of the assumed values. The algorithm is designed to initiate the search 

process within the data by checking whether the power rating of the motor under test matches any 

of Hydro-Québec tested motors. Then it will pick up the value of the measured full-load  

 

temperature of a similar motor within the data if the motor under test and the Hydro-

Québec tested motor are similar in any of the following 4 conditions: 

- Number of poles and insulation class. 

- Rated voltage and insulation class. 

- Insulation class. 

- Rated voltage, no. of poles, and insulation class. 

Other than the above mentioned conditions, the algorithm will use the assumed value of 

temperature according to IEEE Std 112
™

-2004 as presented previously in Table  2-I. On the other 

hand, and in regards to the stray load loss, the algorithm is designed to start the search process 

within the data by checking whether the power rating of the motor under test matches any of 

 

Figure  2-3. Assumed versus measured full-load temperature. 

Source of measured data: Laboratoire des Technologies de l'Énergie, Institut de Recherche, Hydro-Québec. 
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Hydro-Québec tested motors. Then, if the similarity is found, the algorithm will pick up the value 

of the measured full-load stray load loss from the data if the motor under test and the motor 

within the data are similar in any of the following 2 conditions: 

- Rated voltage and insulation class. 

- Rated voltage, no. of poles, and insulation class. 

Other than that, the algorithm will use the assumed value of stray load loss according to 

Table  1-I, or according to the formula as previously shown in (2.6), depending on the power 

rating of the motor as discussed previously. Finally, if the power rating of the motor under test 

has no similarity with any of Hydro-Québec data, the algorithm is designed to use the assumed 

values of both full-load temperature and full-load stray load loss. Results of the estimated 

efficiency of the seven motors are tabulated in Table  2-III after integrating the Hydro-Québec 

data in the algorithm. By comparing the errors of Table  2-II and those of Table  2-III, it is clear 

that a very good improvement has occurred when the measured values of both stray load loss and 

full-load temperature were used instead of the assumed values. Although method A is expected to 

give a less accurate value of full-load efficiency due to its very limited data of having only one 

operating point and with no ability to segregate the core loss and friction and windage losses, but 

with the aid of the valuable data of Hydro-Québec, this method could give an acceptable value of 

the estimated efficiency of those seven motors with a maximum deviation of (-0.50) and 

minimum of (0.06). Though, it can be considered as an acceptable technique to estimate the full-

load efficiency from only one no-load operating point and with minimal requirement of 

instrumentations. 

 

Table  2-III: Estimated Versus Measured efficiency by Utilizing Hydro-Québec Measured Psll and Tfl 

Motor  

Size 

(hp) 

Measured  

Efficiency 

(%) 

Estimated  

Efficiency 

(%) 

Error 

(%) 

3 79.61 80.09 -0.48 

7.5 90.79 90.73 0.06 

25 92.80 93.30 -0.50 

50 92.80 92.93 -0.13 

60 94.80 94.74 0.06 

100 95.50 95.01 0.49 

150 93.60 93.42 0.18 
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2.2.3. Algorithm Validation (196 Motors Tested) 

Method A requires the following data to be fed to the software: Line-to-line stator 

resistance, winding temperature, nameplate data, or no-load input voltage (rated voltage, or any 

voltage level that is close to the rated voltage in case of having fixed level of voltages out of 

transformer taps), input current, and input power. By having all of those required data, Method A 

is validated by providing the estimated efficiencies of 196 induction motors.  

Figure  2-4 shows the experimental setup for 5.0 hp induction motor direct test. 

 

The following Table  2-IV shows the test results of the 196 tested motors tested using the 

proposed algorithm. 

 

 

 

Figure  2-4. The experimental setup for testing 5.0 hp induction motor: 1, programmable power supply control 

unit; 2, multi-channel signal conditioner; 3, field control unit; 4, 13 kW dynamometer; 5, torque transducer; 6, 

5.0 hp IM; 7, resistor bank. 

Photo is a courtesy of Concordia University. 
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Table  2-IV. Testing Results of 196 Induction Motors Tested with Method A 

Nameplate Measured Efficiency [%] Estimated Efficiency [%] Error [%] 
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460 1 1.4 1745 B F 84.4 84.4 83.6 80.3 68.0 84.8 85.0 83.1 74.5 0.40 1.37 2.81 6.49 

460 1 1.5 1740 B F 84.4 84.4 83.8 80.8 70.4 84.1 84.1 81.8 72.0 0.30 0.25 0.91 1.67 

575 1 1.2 1720 B F 81.9 81.9 81.5 78.2 66.7 81.1 81.7 80.0 70.7 0.84 0.20 1.73 4.01 

575 1 1.1 1745 B F 84.7 84.7 84.4 82.1 72.8 85.8 86.0 84.3 76.4 1.13 1.58 2.17 3.57 

575 1 1.1 1745 B F 84.8 84.8 84.5 81.7 72.6 86.6 87.1 85.9 79.5 1.78 2.64 4.21 6.84 

575 1 1.15 1750 B F 86.5 86.6 87.1 85.8 77.3 86.4 87.6 87.5 83.2 0.17 0.49 1.66 5.95 

575 1 1.16 1745 B F 83.2 83.2 82.6 79.3 67.5 83.4 83.2 80.6 70.2 0.13 0.67 1.33 2.66 

575 1 1.16 1745 B F 83.3 83.3 82.6 79.4 67.5 83.4 83.2 80.6 70.2 0.08 0.57 1.24 2.62 

575 1 1.2 1715 B F 78.7 78.8 77.9 73.5 63.0 79.3 79.7 77.3 66.2 0.49 1.74 3.79 3.21 

575 1 1.2 1740 B F 85.0 85.0 85.0 82.8 74.4 84.5 85.4 84.6 78.4 0.47 0.48 1.83 4.00 

460 1.5 2 3490 B F 85.8 85.8 85.2 82.5 80.2 85.4 85.2 82.6 72.9 0.33 0.04 0.15 7.33 

575 1.5 1.64 1725 B F 82.2 82.1 82.4 80.5 71.5 82.1 82.8 81.3 72.8 0.04 0.40 0.83 1.32 

575 1.5 1.64 1725 B F 82.5 82.4 82.6 80.7 71.7 82.0 82.7 81.2 72.7 0.40 0.09 0.55 1.00 

460 2 3 1180 B F 87.3 87.3 87.1 84.9 76.8 87.5 87.6 85.9 78.6 0.23 0.53 0.97 1.88 

460 2 2.5 3490 B F 88.3 88.3 88.0 85.9 82.5 87.3 87.4 85.8 78.6 1.03 0.58 0.09 3.88 

460 2 2.4 3500 B F 85.6 85.6 85.4 83.0 78.7 86.8 86.4 83.9 74.5 1.20 1.00 0.83 4.16 

575 2 2.36 1740 B F 82.6 82.5 82.8 81.0 72.0 83.9 84.0 81.9 72.5 1.38 1.16 0.90 0.49 

575 2 2.36 1740 B F 84.5 84.4 84.5 82.5 74.4 84.3 84.6 82.9 74.5 0.12 0.15 0.41 0.11 

575 2 2.2 1735 B F 85.2 85.2 85.3 83.4 75.0 84.3 85.1 84.0 77.2 0.83 0.19 0.65 2.19 

460 3 4.5 1180 B F 88.4 88.4 87.4 84.5 75.2 88.5 88.0 85.5 76.8 0.07 0.51 0.96 1.65 

460 3 3.8 1750 B F 87.7 87.7 87.5 85.5 77.8 87.5 87.4 85.5 77.6 0.28 0.13 0.02 0.13 

575 3 3.6 1760 B B 87.2 87.2 86.8 84.4 75.3 87.3 87.5 85.8 78.6 0.11 0.65 1.48 3.35 

575 3 3.35 1720 B F 85.7 85.5 87.2 87.6 83.9 84.8 86.8 87.5 84.7 0.62 0.44 0.10 0.77 

575 3 3 3510 B F 84.9 84.9 83.9 80.2 71.6 85.4 84.6 81.2 69.7 0.54 0.69 1.07 1.97 

575 3 3 3510 B F 84.7 84.7 83.8 80.2 72.1 85.3 84.4 81.0 69.3 0.61 0.69 0.81 2.80 

575 3 3.1 1745 B F 86.5 86.5 85.9 83.3 74.1 86.4 86.1 83.8 74.7 0.16 0.18 0.51 0.62 

460 5 6.7 1740 B F 85.0 85.0 85.3 83.7 75.9 85.5 85.7 83.9 75.9 0.53 0.40 0.21 0.05 

460 5 6.5 1750 B F 89.0 88.9 90.0 89.9 86.1 87.8 89.2 89.5 86.6 1.08 0.76 0.41 0.50 
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Nameplate Measured Efficiency [%] Estimated Efficiency [%] Error [%] 
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460 5 6.7 1740 B F 87.7 87.7 88.1 87.1 81.2 86.7 87.4 86.6 80.9 1.05 0.73 0.48 0.26 

460 5 6.5 1750 B F 87.4 87.4 87.7 86.2 79.0 86.4 87.1 86.2 80.3 1.07 0.61 0.06 1.24 

460 5 6.5 1750 B F 88.0 87.8 88.7 88.3 83.7 87.2 88.3 88.1 84.1 0.67 0.42 0.16 0.39 

575 5 5.1 1730 B B 86.6 86.7 87.2 86.0 78.9 86.1 87.0 86.3 80.8 0.58 0.27 0.27 1.85 

575 5 5.23 1736 B F 86.4 86.5 87.4 86.5 79.9 85.9 87.2 87.1 82.9 0.62 0.22 0.56 2.98 

460 7.5 10.2 1740 B B 86.9 86.8 87.8 87.4 82.5 86.0 87.3 87.2 83.0 0.85 0.49 0.20 0.55 

460 7.5 10.5 1180 B F 89.9 89.9 90.0 88.7 83.8 90.3 90.4 89.2 83.8 0.39 0.41 0.51 0.06 

575 7.5 7.9 1760 B F 89.1 89.1 89.6 89.2 85.3 89.4 90.0 89.4 84.9 0.34 0.41 0.14 0.34 

575 7.5 7.5 1750 B F 86.5 86.5 87.4 87.0 81.9 86.8 87.7 87.2 82.3 0.30 0.26 0.16 0.39 

575 7.5 6.9 3545 B F 89.4 89.4 88.9 86.7 79.0 89.9 89.2 86.8 78.5 0.45 0.32 0.04 0.56 

575 7.5 7.2 1750 B F 87.8 87.8 88.4 87.7 82.6 87.6 88.2 87.5 82.2 0.24 0.14 0.25 0.46 

460 10 12.1 1760 B F 91.1 91.0 92.1 92.5 91.0 90.9 91.9 92.2 90.1 0.04 0.16 0.32 0.84 

460 10 12.4 1755 B F 89.5 89.4 90.5 90.6 87.6 90.0 90.8 90.7 87.4 0.66 0.36 0.10 0.19 

460 10 11.5 1750 B F 89.9 89.7 90.9 91.1 88.6 89.1 90.3 90.5 87.9 0.62 0.60 0.55 0.62 

460 10 12.1 1755 B F 90.0 89.8 91.1 91.4 89.1 89.8 90.9 91.2 88.7 0.04 0.19 0.28 0.42 

460 10 12.4 1755 B F 90.2 90.1 91.1 91.5 89.1 90.3 91.3 91.3 88.6 0.24 0.13 0.16 0.50 

460 10 12 1745 B F 90.1 90.1 90.9 90.8 87.7 89.8 90.6 90.5 87.2 0.29 0.28 0.32 0.47 

460 15 16.6 3550 B F 88.7 88.7 88.3 86.4 79.0 89.3 88.5 85.9 77.0 0.60 0.20 0.48 2.04 

460 15 16.6 3550 B F 91.7 91.6 91.7 90.7 86.7 91.6 91.5 90.3 85.1 0.03 0.19 0.42 1.55 

575 15 15.8 1760 B F 91.6 91.6 92.2 92.0 88.8 91.6 92.3 92.0 89.1 0.01 0.07 0.07 0.25 

575 15 15 1775 B F 92.3 92.3 92.3 91.3 86.4 92.0 92.1 91.2 86.8 0.31 0.19 0.10 0.39 

460 20 25.2 1175 B F 91.2 91.2 92.1 92.0 89.2 91.3 92.0 91.9 89.2 0.14 0.02 0.10 0.01 

460 20 25.2 1175 B F 91.2 91.2 92.0 91.9 88.9 91.1 91.8 91.6 88.7 0.12 0.17 0.23 0.26 

460 20 26.5 1760 B B 88.6 88.7 89.5 89.3 85.6 87.9 89.1 89.2 86.0 0.77 0.44 0.08 0.40 

460 20 26.5 1760 B B 88.7 88.6 89.6 89.3 85.5 87.9 89.1 89.2 86.0 0.71 0.45 0.12 0.53 

575 20 18.8 1760 A F 90.4 90.3 91.5 91.7 89.2 91.4 92.1 92.0 89.1 1.11 0.64 0.22 0.13 

575 20 18.4 1760 B F 92.7 92.6 93.2 93.1 90.5 91.6 92.4 92.5 90.1 0.99 0.77 0.63 0.41 

575 20 18.8 1760 B F 91.1 91.1 91.8 91.5 88.1 91.1 91.7 91.2 87.6 0.00 0.11 0.25 0.43 

575 20 19.4 1770 B F 92.4 92.3 93.2 93.3 91.1 92.3 93.0 92.9 90.6 0.01 0.21 0.32 0.46 

460 25 30 1770 B F 93.9 93.9 94.5 94.6 92.5 93.7 94.3 94.4 92.6 0.14 0.17 0.21 0.11 
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460 25 28 3545 B F 91.4 91.4 91.9 91.2 87.1 91.5 91.8 91.1 87.1 0.06 0.07 0.13 0.08 

575 25 25 1780 B F 92.4 92.3 92.5 91.8 87.0 92.5 92.6 91.6 87.3 0.18 0.06 0.18 0.30 

575 25 25 1780 B F 92.8 92.8 93.0 92.3 88.1 92.8 92.9 92.1 88.2 0.07 0.13 0.20 0.07 

460 30 38 1755 B B 90.9 90.9 92.0 92.1 89.6 90.4 91.5 91.8 89.7 0.46 0.46 0.33 0.01 

460 30 32.9 3555 B F 91.1 91.1 90.7 88.9 82.2 91.4 90.9 88.9 81.9 0.39 0.16 0.05 0.31 

460 30 36 1770 B F 92.7 92.6 92.8 92.0 87.6 92.4 92.7 91.9 88.2 0.20 0.11 0.03 0.61 

575 30 27.9 1765 B F 92.4 92.4 93.0 92.7 89.5 92.8 93.2 92.8 89.7 0.46 0.27 0.06 0.22 

575 30 29.2 1773 B F 94.7 94.7 95.0 94.7 92.1 94.3 94.7 94.6 92.6 0.39 0.26 0.11 0.53 

575 30 28.2 1775 B B 93.9 93.9 94.4 94.4 92.1 94.0 94.5 94.3 92.2 0.11 0.02 0.05 0.16 

460 40 47 1750 B F 93.0 93.0 93.2 92.6 88.8 91.9 92.4 91.9 88.6 1.07 0.86 0.71 0.25 

460 40 48 1765 B B 89.3 89.2 90.1 89.9 86.0 88.5 89.6 89.5 86.2 0.72 0.56 0.36 0.21 

460 40 48 1770 B F 93.5 93.5 93.8 93.2 90.2 93.2 93.5 93.0 89.9 0.37 0.35 0.22 0.34 

575 40 37.5 1775 B B 93.8 93.8 94.2 93.9 91.0 93.5 93.9 93.5 90.9 0.33 0.32 0.37 0.13 

575 40 37 1770 B F 93.6 93.5 94.1 94.0 91.4 93.5 94.0 93.7 91.3 0.02 0.12 0.25 0.12 

575 40 38 1180 B F 93.5 93.5 93.4 92.3 87.7 93.0 93.1 92.2 88.2 0.50 0.36 0.09 0.48 

575 45 42 1780 B F 90.6 90.6 90.0 87.9 80.4 90.6 90.0 87.8 80.3 0.04 0.01 0.09 0.07 

460 50 62 1765 B B 89.8 89.8 90.7 90.6 86.7 89.3 90.5 90.7 88.1 0.46 0.24 0.10 1.40 

460 50 58 1770 B F 94.4 94.4 94.9 94.9 93.1 93.6 94.3 94.4 92.8 0.74 0.64 0.53 0.29 

460 50 58 1770 B F 93.3 93.3 93.8 93.5 90.5 93.0 93.5 93.2 90.6 0.30 0.36 0.36 0.09 

460 50 60 1760 B B 92.2 92.2 92.2 91.1 85.9 90.7 91.1 90.4 86.0 1.47 1.08 0.76 0.10 

575 50 50.5 1770 B F 92.5 92.5 93.0 92.7 89.2 92.5 93.1 92.9 90.3 0.01 0.09 0.21 1.01 

575 50 47.1 1770 B F 93.4 93.4 93.8 93.5 90.4 93.1 93.5 93.2 90.5 0.31 0.27 0.25 0.03 

575 50 45.6 1775 B F 92.7 92.7 93.5 93.7 91.7 93.5 94.0 93.8 91.6 0.73 0.44 0.14 0.13 

575 50 46.2 1770 B F 94.4 94.4 94.8 94.5 92.2 93.9 94.4 94.3 92.3 0.49 0.37 0.24 0.08 

460 60 71 1770 B F 93.3 93.3 94.0 94.1 91.8 92.6 93.3 93.4 91.4 0.73 0.68 0.69 0.41 

460 60 70 1780 B F 92.5 92.5 93.0 92.7 89.3 92.6 93.0 92.6 89.5 0.14 0.02 0.10 0.14 

575 60 57.1 1780 A F 94.2 94.1 94.5 94.3 91.6 93.7 94.1 93.9 91.6 0.41 0.40 0.41 0.02 

575 60 55 1770 B F 90.8 90.7 90.9 89.8 84.2 90.9 90.8 89.4 83.7 0.14 0.09 0.44 0.48 

460 75 86 1780 B F 94.5 94.5 95.1 95.1 93.1 94.9 95.3 95.1 93.3 0.42 0.22 0.02 0.17 

460 75 85 1780 B F 94.5 94.5 94.9 94.7 92.4 94.8 95.0 94.7 92.4 0.33 0.16 0.01 0.01 
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460 75 90.6 1765 B F 94.4 94.3 94.8 94.7 92.3 94.0 94.5 94.4 92.3 0.32 0.30 0.28 0.00 

460 75 82 3580 A F 94.4 94.3 94.2 93.3 89.2 94.5 94.3 93.2 89.3 0.16 0.07 0.01 0.12 

575 75 68 1780 B F 94.4 94.3 94.8 94.8 92.6 94.2 94.7 94.6 92.7 0.09 0.10 0.19 0.11 

575 75 70 1777 B F 92.1 92.1 92.2 91.4 86.7 92.3 92.4 91.3 86.8 0.26 0.13 0.11 0.13 

460 100 116 1780 B F 95.0 95.0 95.1 94.5 90.6 93.9 94.2 93.8 91.2 1.08 0.91 0.66 0.58 

460 100 112 1780 B F 95.0 95.0 95.3 95.1 93.1 94.3 94.8 94.6 92.7 0.68 0.55 0.44 0.36 

550 100 96 1170 B F 92.2 92.2 92.7 92.4 88.7 92.3 92.8 92.3 89.1 0.09 0.04 0.08 0.36 

575 100 93 1770 B F 93.6 93.6 93.7 92.9 89.0 93.1 93.2 92.5 88.7 0.52 0.45 0.40 0.25 

575 100 90 1770 B F 93.4 93.4 93.5 92.7 88.7 93.1 93.2 92.4 88.5 0.25 0.26 0.33 0.23 

575 100 90.2 1780 B F 93.4 93.4 93.9 93.6 90.8 93.9 94.2 93.8 91.1 0.53 0.30 0.15 0.27 

575 125 113.4 1780 B F 96.0 96.0 96.1 95.5 94.7 95.1 95.4 95.1 93.2 0.95 0.77 0.42 1.55 

575 125 107 1785 B F 94.5 94.4 94.8 94.5 92.0 95.0 95.1 94.6 92.0 0.55 0.31 0.07 0.07 

575 125 113 1778 B F 93.9 93.9 94.0 93.4 89.7 94.1 94.1 93.2 89.5 0.24 0.09 0.15 0.17 

575 125 116 1780 B F 94.8 94.8 94.9 94.4 91.2 94.8 94.9 94.3 91.5 0.00 0.04 0.09 0.32 

460 150 166 1783 C F 93.8 93.7 93.9 93.2 89.7 94.6 94.5 93.5 89.7 0.89 0.57 0.27 0.04 

460 150 175 1785 B F 95.3 95.2 95.2 94.5 91.0 95.1 95.0 94.2 91.0 0.16 0.19 0.30 0.00 

575 150 138.4 1780 B F 94.4 94.3 94.5 93.8 90.1 94.5 94.5 93.7 90.3 0.18 0.05 0.08 0.22 

575 150 132 1785 B F 95.7 95.7 96.0 95.8 94.0 95.6 95.9 95.6 93.9 0.06 0.10 0.17 0.09 

575 150 140 1780 B F 94.3 94.3 94.0 92.8 88.1 93.7 93.5 92.3 87.8 0.58 0.54 0.52 0.29 

460 200 230 1788 B F 95.0 94.9 95.0 94.5 91.3 95.0 95.0 94.3 91.3 0.09 0.02 0.18 0.03 

460 200 223 1785 B F 95.7 95.7 95.9 95.5 94.2 95.5 95.7 95.4 93.4 0.18 0.18 0.14 0.84 

460 200 235 1790 B F 95.2 95.2 95.0 93.9 89.9 95.0 94.9 93.9 90.4 0.22 0.13 0.03 0.48 

575 200 181 1780 B F 94.3 94.3 94.0 92.6 87.3 94.2 93.8 92.4 87.7 0.17 0.13 0.11 0.47 

575 200 176.9 1775 B F 95.8 95.8 95.9 95.4 92.6 95.1 95.3 94.9 92.7 0.64 0.52 0.41 0.00 

575 200 182 1785 B F 95.9 95.9 96.1 95.7 93.4 95.8 95.9 95.6 93.6 0.12 0.19 0.11 0.18 

575 200 182.1 1780 B F 93.5 93.5 93.5 92.4 87.5 93.7 93.5 92.3 87.8 0.19 0.02 0.15 0.26 

575 200 179 1780 B F 95.3 95.3 95.7 95.5 93.6 95.5 95.8 95.6 93.8 0.25 0.12 0.04 0.18 

575 200 179 1780 B F 96.7 96.7 96.9 96.8 95.4 95.9 96.3 96.3 95.2 0.75 0.60 0.42 0.25 

575 200 179.1 1785 B F 94.7 94.7 95.1 94.7 92.6 95.1 95.3 94.8 92.4 0.46 0.23 0.08 0.21 

460 250 274 1785 B F 95.5 95.4 95.5 94.9 92.1 95.3 95.4 94.8 92.2 0.16 0.15 0.15 0.05 
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460 250 284 1785 B F 95.1 95.1 95.3 94.8 92.3 95.1 95.2 94.7 92.3 0.02 0.07 0.08 0.01 

575 250 232 3550 B F 90.3 90.3 90.4 88.9 82.6 90.6 90.4 88.8 82.6 0.28 0.00 0.07 0.00 

460 300 430 1780 B F 95.6 95.6 95.7 95.2 92.7 94.7 95.0 94.6 92.3 0.93 0.75 0.59 0.35 

460 300 329 1785 B F 95.4 95.4 95.7 95.5 93.4 95.5 95.7 95.5 93.7 0.09 0.02 0.04 0.27 

575 300 268 1790 B F 95.2 95.2 95.1 94.2 92.2 95.3 95.1 94.2 90.8 0.07 0.03 0.02 1.35 

460 350 402 1790 B F 94.9 94.9 94.8 93.9 89.9 95.0 94.9 93.9 90.3 0.16 0.08 0.02 0.41 

575 350 320 1775 B F 93.4 93.4 93.6 92.8 88.6 93.5 93.5 92.7 89.0 0.00 0.03 0.07 0.42 

575 400 353 1788 B F 95.0 95.0 95.0 94.4 91.3 95.0 95.0 94.3 91.3 0.08 0.02 0.11 0.00 

575 500 446 1789 B F 96.6 96.6 96.6 95.9 93.0 96.6 96.5 95.8 93.4 0.07 0.12 0.10 0.35 

575 500 465 1185 B F 94.7 94.7 94.8 94.2 91.1 94.4 94.5 94.0 91.1 0.33 0.27 0.18 0.01 

460 15 17.2 1760 B F 91.0 90.6 91.2 90.7 86.5 90.4 90.8 90.1 85.8 0.25 0.39 0.57 0.68 

575 25 25 1780 B F 94.1 92.0 92.8 92.8 90.3 93.0 93.3 92.7 89.4 0.99 0.46 0.13 0.93 

575 50 50.5 1770 B F 93.0 92.8 93.1 92.6 89.2 92.6 93.2 93.0 90.5 0.23 0.06 0.39 1.27 

575 60 55.9 1790 B F 95.0 94.8 94.9 93.9 91.0 94.5 94.7 94.2 91.5 0.28 0.21 0.28 0.51 

440 100 120.4 1780 B F 94.5 95.5 95.5 94.9 92.1 95.1 95.2 94.7 92.2 0.44 0.30 0.19 0.09 

460 150 174 1780 B F 93.6 93.6 93.4 92.1 87.1 93.5 93.4 92.3 88.1 0.10 0.00 0.20 1.00 

230 7.5 17.7 1755 B F 91.7 90.5 91.2 90.8 86.9 90.5 91.6 91.9 89.8 0.03 0.38 1.08 2.87 

460 7.5 8.85 1755 B F 91.7 91.4 91.6 91.5 88 89.8 90.7 90.6 87.5 1.65 0.92 0.90 0.54 

208 3 10.3 1740 B B 81.0 80.1 79.8 77.1 65 79.8 79.9 77.2 65.6 0.28 0.13 0.14 0.56 

460 75 91.4 1785 A F 95.4 95.7 95.9 95.5 93.1 95.7 95.9 95.6 93.7 0.06 0.04 0.07 0.59 

460 75 91.4 1785 A F 95.4 95.4 95.6 95.2 92.6 95.6 95.8 95.4 93.3 0.24 0.19 0.21 0.63 

460 75 92 1770 B B 93.0 92.3 92.9 92.8 90.1 92.1 92.8 92.8 90.5 0.24 0.11 0.02 0.42 

460 100 119 1775 B B 93.0 92.9 93.6 93.7 91.6 92.5 93.3 93.4 91.6 0.32 0.31 0.23 0.02 

460 100 120 1780 B B 93.0 93.2 93.4 92.6 88.7 92.6 92.9 92.3 89.0 0.61 0.46 0.26 0.35 

460 75 92 1770 B B 92.0 91.7 92.2 91.8 88.4 91.7 92.3 92.1 89.1 0.09 0.14 0.22 0.66 

460 75 92 1770 B B 92.0 92.2 92.7 92.5 89.3 91.8 92.5 92.4 89.7 0.37 0.24 0.12 0.48 

460 50 56.5 1760 B B 91.0 90.6 92.0 92.6 91.5 91.4 92.4 92.6 90.6 0.75 0.38 0.01 0.90 

460 75 84 1785 B F 95.4 94.3 95.0 95.2 93.7 95.4 95.7 95.6 94.0 1.05 0.71 0.36 0.26 

460 75 84 1785 B F 95.4 94.3 95.1 95.4 94.2 95.5 95.9 95.8 94.4 1.14 0.75 0.38 0.25 

460 75 84 1785 B F 95.4 94.6 95.3 95.6 94.3 95.5 95.9 95.8 94.4 0.86 0.54 0.26 0.16 
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460 75 84 1785 B F 95.4 95.0 95.6 95.7 94.1 95.5 95.8 95.7 94.3 0.42 0.27 0.06 0.11 

460 150 175 1780 B F 95.8 96.3 96.4 96.0 93.7 95.4 95.7 95.5 93.7 0.86 0.67 0.47 0.00 

460 75 90 1775 B B 91.7 92.1 92.9 92.8 90.1 92.4 93.0 92.9 90.4 0.35 0.17 0.03 0.23 

460 75 90 1775 B B 91.7 91.4 92.4 92.6 90.0 91.8 92.6 92.6 90.3 0.45 0.21 0.09 0.38 

460 100 117 1780 B B 90.0 89.6 90.3 89.7 85.2 91.8 91.8 90.6 85.7 2.25 1.55 0.94 0.58 

460 100 118 1775 B F 90.2 91.0 90.9 89.5 83.4 90.9 90.8 89.2 83.2 0.05 0.10 0.27 0.15 

460 75 89 1775 B F 95.4 95.2 95.4 95.0 92.4 95.0 95.3 95.0 92.8 0.22 0.14 0.01 0.44 

460 75 85.1 1775 B F 95.4 94.7 94.8 94.2 90.9 94.5 94.6 94.0 91.1 0.17 0.13 0.13 0.18 

460 150 175 1783 B F 95.8 95.5 96.0 96.1 94.8 96.0 96.3 96.2 94.9 0.51 0.33 0.11 0.12 

460 75 89 1775 B F 95.4 95.2 95.5 95.2 92.9 95.1 95.5 95.2 93.4 0.10 0.06 0.06 0.49 

460 150 175 1783 B F 95.8 95.6 96.1 96.1 94.6 95.9 96.2 96.1 94.7 0.28 0.15 0.02 0.08 

460 150 165 1785 B F 96.2 96.3 96.6 96.4 94.5 95.9 96.1 96.0 94.4 0.49 0.41 0.38 0.12 

460 50 58.8 1775 B F 94.5 94.9 95.4 95.4 93.7 94.0 94.7 94.9 93.7 0.91 0.70 0.49 0.04 

460 75 87.1 1785 B F 95.4 94.5 94.8 94.5 91.9 95.0 95.1 94.6 92.0 0.46 0.30 0.10 0.19 

460 75 89 1760 B F 92.0 91.5 92.2 92.0 88.6 92.7 93.0 92.3 88.7 1.18 0.74 0.35 0.19 

460 75 86 1781 B F 95.0 93.7 94.3 94.3 92.0 94.5 94.8 94.6 92.3 0.84 0.53 0.28 0.29 

460 75 87 1775 B F 93.0 92.4 92.8 92.1 88.2 93.1 93.1 92.3 88.3 0.63 0.38 0.14 0.19 

460 150 170 1780 B F 95.8 96.3 96.5 96.1 94.1 95.7 96.0 95.8 94.2 0.65 0.51 0.32 0.08 

460 150 170 1780 B F 95.8 96.1 96.2 96.0 93.9 95.6 95.9 95.8 94.1 0.41 0.30 0.22 0.20 

460 75 82.3 1775 B F 95.4 95.1 95.6 95.5 93.6 94.7 95.2 95.2 93.7 0.40 0.36 0.22 0.14 

460 75 82.3 1775 B F 95.4 95.2 95.6 95.6 93.7 94.7 95.2 95.3 93.8 0.45 0.31 0.26 0.13 

460 150 166 1770 B F 93.5 93.1 93.7 93.5 90.6 93.7 94.0 93.5 90.7 0.64 0.35 0.08 0.06 

460 150 167 1759 B F 92.9 92.9 93.2 92.7 89.1 92.8 93.1 92.4 88.9 0.10 0.16 0.26 0.19 

460 75 89 1775 B F 93.0 94.0 94.7 94.8 93.0 94.5 95.0 95.0 93.4 0.52 0.30 0.18 0.40 

460 100 113 1780 B F 95.0 94.7 95.1 94.8 92.3 94.2 94.6 94.4 92.2 0.48 0.46 0.38 0.07 

460 50 60 1770 B F 91.7 91.7 91.8 90.6 85.2 91.7 91.7 90.6 85.7 0.05 0.03 0.03 0.51 

460 50 60 1770 B B 91.0 91.1 91.6 91.1 86.9 91.4 91.8 91.1 87.2 0.22 0.15 0.05 0.32 

460 150 178 1775 B F 95.0 95.0 95.2 94.6 91.8 94.6 94.8 94.3 91.7 0.38 0.38 0.33 0.09 

460 75 93 1780 B B 95.2 92.5 92.3 90.9 85.6 91.7 91.7 90.4 85.3 0.83 0.64 0.51 0.27 

460 150 174 1780 B F 93.6 93.8 93.8 92.9 88.7 93.7 93.6 92.6 88.6 0.11 0.19 0.26 0.13 
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460 75 86 1775 B F 95.4 94.9 95.4 95.3 93.3 94.8 95.3 95.2 93.6 0.12 0.09 0.04 0.35 

460 75 86 1775 B F 95.4 94.8 95.3 95.3 93.4 94.8 95.3 95.3 93.7 0.01 0.00 0.01 0.31 

460 75 90 1780 B B 93.0 92.4 93.0 92.6 89.4 92.8 93.1 92.6 89.4 0.33 0.07 0.06 0.01 

460 75 92 1770 B F 92.0 91.6 91.7 90.7 85.7 92.0 92.0 90.8 85.9 0.37 0.22 0.11 0.20 

460 75 93 1780 B F 93.0 92.6 92.6 91.5 86.7 92.8 92.7 91.7 87.2 0.19 0.16 0.15 0.44 

460 150 180 1775 B F 93.0 93.1 93.1 92.0 87.5 93.4 93.2 92.0 87.4 0.29 0.14 0.05 0.08 

460 150 171 1780 B B 91.5 91.3 91.0 89.3 83.2 91.4 91.0 89.1 82.5 0.17 0.01 0.23 0.65 

460 100 116 1775 B F 92.0 91.7 92.4 92.1 88.9 92.5 92.9 92.4 89.1 0.90 0.54 0.25 0.17 

460 50 58 1770 B F 92.0 91.6 92.4 92.4 89.6 92.1 92.7 92.5 89.7 0.46 0.25 0.03 0.09 

460 100 115 1785 B F 94.1 94.0 94.8 95.1 93.8 94.9 95.4 95.4 94.0 0.91 0.61 0.27 0.17 

460 50 60 1770 B F 94.1 91.6 92.2 92.0 88.6 92.2 92.6 92.0 88.5 0.67 0.38 0.08 0.09 

460 75 90 1775 B F 93.0 92.5 92.9 92.6 89.2 93.3 93.5 92.8 89.4 0.82 0.54 0.24 0.27 

460 150 174 1785 B F 93.0 94.7 94.8 94.3 91.3 94.7 94.9 94.3 91.5 0.07 0.04 0.00 0.23 

460 75 89.4 1775 B F 91.0 91.1 91.4 90.5 85.7 92.3 92.2 90.9 85.9 1.27 0.84 0.45 0.21 

460 150 174 1785 B F 93.0 94.5 94.7 94.3 91.4 94.8 94.9 94.4 91.7 0.29 0.20 0.08 0.29 

460 100 112 1785 B F 93.0 93.5 94.2 94.4 92.6 94.2 94.7 94.6 92.7 0.79 0.49 0.16 0.04 

460 100 112 1785 B F 94.0 93.5 94.3 94.4 92.6 94.1 94.6 94.5 92.6 0.61 0.33 0.07 0.01 
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2.3. Error Analysis and Uncertainty 

The accuracy of an estimated efficiency is highly dependent on the accuracy of power 

measurements, both electrical and mechanical [96]. This reflects the importance of conducting an 

uncertainty study to give the necessary credits to any declared estimated values of efficiency. The 

three components (i.e. the methodology, the instruments, and the personnel) are the main sources 

of error that compose the general form of the measurement error represented by (2.25).  

ζ=ζ
m

+ζ
i
+ζ

p
 (2.25) 

where, ζ is the measurement error, ζ
m

 is the methodological error, ζ
i
 is the instrumental error, and 

ζ
p
 is the personnel error [97]. 

Two error estimation techniques are used in this study for the evaluation of the 

uncertainty results of the proposed method. These techniques are, WCE (Worst-Case Estimation), 

and RPBE (Realistic Perturbation-Based Estimation). The WCE is based on the assumption that 

the maximum error of a measurement occurs when the possible maximum uncertainties of all the 

instruments used present simultaneously in the measurement system [97] [98] [99]. In this 

method, the effect of each error source will be taken into account separately. For an output 

variable y (i.e. motor efficiency) of a complex system (e.g. induction motor), the maximum error 

εy can be determined using (2.26). 

εy= ∑ Ixi
εxi

+
1

y

n

i=1

∑ Wzj

m

j=1

zj (2.26) 

where Ixi
 is the influence coefficient of the input variable xi and can be determined by using 

(2.27). 

Ixi
=

εy

εxi

=
xi

y
×

∂f

∂xi

 (2.27) 

Wzj
 is the influence coefficient of the additive noise zj. 

For a complex system, like an induction motor, the explicit expressions of the derivatives 

are not available, the influence coefficient of each input variable can be approximated by 

applying a small perturbation in the corresponding input variable and measuring the change in the 

output variable [99]. The RPBE method is introduced in [98], [99], and [100] as a technique that 
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improves the results obtained from the WCE. The effects of the individual instrumentation errors 

are discriminately accounted for according to their corresponding influence coefficient, hence, 

the estimate of the measurement error is more realistic [99]. 

In [97] it has been shown that for a uniformly distributed errors, the relative error in the 

output variable y can be determined using (2.28). 

εy=√∑(Ixi
εxi

)
2
+

1

y2

n

i=1

∑ (Wzj
zj)

2
m

j=1

 (2.28) 

The relationship between an input and output variable can be investigated by applying a 

small change in the input, and observing the influence coefficient on the output. The significance 

of the input variable can be obtained by multiplying its influence coefficient by its corresponding 

measurement accuracy. When all error sources are added up using (2.28), the overall realistic 

error in the output variable will be obtained. 

In order to achieve a proper uncertainty study with regard to the proposed Method A 

algorithm, the actual motor efficiencies must be measured and their accuracies must be 

guaranteed [99] [98] [100]. In this section, the two techniques (i.e. WCE, and RPBE) will be used 

to investigate the uncertainty of the measured and estimated motor efficiencies. 

Three different induction motors are chosen and their nameplates are manifested in 

Table 2-V. The three motors are tested for efficiency using the direct measurements 

(dynamometer procedure). Method A is used to estimate the efficiencies of the same three tested 

motors. 

To extract the value of every required influence coefficient, the change in the output 

variable (i.e. motor efficiency) is plotted against the corresponding perturbation in the input 

variable. Method A utilizes a very limited input data, and the only input variables accounted for 

are the input power, the stator resistance, and the stray load loss. For the direct measurements, the 

Table  2-V. Nameplate Details of Three Induction Motors 

Motor Size 

(hp) 

Rated Voltage 

(V) 

Rated Current 

(A) 

Rated Speed 

(rpm) No. of Poles INS. Design 

5 220 13 1730 4 H B 

7.5 230 17.7 1755 4 F B 

7.5 460 8.85 1755 4 F B 
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input variable involve in the uncertainty are the input power, shaft torque, and rotor speed. 

Figure 2-5 shows the graph produced to help extract the influence coefficient of the input power 

of the 5.0 HP, 220 V induction motor by using Method A. The final results obtained for the three 

tested motors of the direct measurements and the Method A measurements, by using WCE and 

RPBE techniques are tabulated in Table 2-VI. The results show that the average levels of 

uncertainty of Method A measurements are ±0.028%, and ±0.02% by using WCE and RPBE 

respectively. Such levels of uncertainty within the estimated efficiencies by using Method A can 

give a good credit to the proposed algorithm. 

 

 

Figure  2-5. Influence coefficient of input power, Method A measurements (Ip=-0.0399). 
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2.4. Summary 

In this chapter, a novel technique is proposed for estimating induction machines full-load 

and partial loads efficiencies from only one no-load test. The technique runs with very limited 

data and measurements that can easily performed in any electric motor service centers. The 

algorithm is designed to be applied in any motor repair shop. The algorithm utilizes an extremely 

valuable test data that is received from Hydro-Québec and BC Hydro which significantly 

improved the outcome of the proposed algorithm. The data is utilized in assigning the measured 

stray load loss and full-load temperature to the motor under test based on certain similarity with 

the motors of the data. The data is also utilized to propose new formulas to estimate the partial 

load stray load loss, stator copper loss, and rotor copper loss. 

A detailed flow chart of the proposed algorithm is presented in subsection  2.2. All related 

formulas are also presented. 

The advantages of using measured stray load loss and full-load temperature in lieu of the 

assumed values are discussed and the algorithm accuracy improvement is shown in 

subsections  2.2.2.1 and  2.2.2.2 respectively. 

A total of 196 induction motors were tested using the proposed algorithm as part of the 

algorithm validation. The results are presented in subsection  2.2.3. 

To evaluate the estimated efficiency values obtained by the proposed algorithm, an 

uncertainty study is conducted and showed acceptable levels of uncertainty by using the WCE 

and RPBE techniques. The results are introduced in subsection  2.3.  

Table  2-VI. Uncertainty Results of the Three Tested Induction Motors 

Tested Induction 

Motor 

[±%] 

Uncertainty of the Measured 

Efficiency 

[±%] 

Uncertainty of the Estimated 

Efficiency 

(Method A) 

[±%] 

 

WCE 

[±%] 

RPBE 

[±%] 

 

WCE 

[±%] 

RPBE 

5.0 HP, 220 V 1.0417 0.6115 0.0350 0.0254 

7.5 HP, 230 V 0.9004 0.5517 0.0260 0.0198 

7.5 HP, 460 V 1.1664 0.6978 0.0238 0.0147 
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The proposed algorithm can be deemed to have enough confidence to be used in the 

industry to give acceptable motor efficiency prediction. 
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CHAPTER THREE 

 

3. A Novel Algorithm for Estimating Refurbished Three-Phase Induction Motors 

Efficiency Using Only No-Load Tests 

Induction motors fail due to many reasons and many are rewound two or more times 

during their lifetimes. It is generally assumed that a rewound motor is not as efficient as the 

original motor. Precise estimation of efficiency of a refurbished motor or any existing motor is 

crucial in industries for energy savings, auditing and management. Full-load and partial load 

efficiency can be measured by using the dynamometer. This work presents a novel technique for 

estimating refurbished induction motors’ full-load and partial loads efficiencies from only no-

load tests. The technique can be applied in any electric motor workshop and eliminates the need 

for the dynamometer procedure. It also eliminates the need for the locked-rotor test.   

Experimental and field results of testing 8 induction motors are presented and the degree of 

accuracy is shown by comparing the estimated efficiencies against the measured values. To 

provide the necessary credits to the proposed technique, an error analysis is conducted to 

investigate the level of uncertainty through testing three induction motors, and the results of 

uncertainty of the direct measurements and no-load measurements using the proposed technique 

are presented. 

 

3.1. Introduction 

In the industrialized countries, electric motors utilize nearly two-thirds of the electricity 

generated [1], hence, they contribute to the global environmental problem which is represented 

by the emission of greenhouse gases [2]. Several Canadian and U.S. utilities have taken serious 

steps in implementing demand side management programs [3] to reduce both greenhouse gas 

effects and the cost of power that feeds this tremendous population of electric motors. In 

developing countries, a similar situation encountered, where a significant portion of the generated 

power is utilized by motors. Taking South Africa as an example, motorized systems account for 

up to 60% of the total electricity utilization [4]. 

In industry, only motors above 500 hp are usually monitored because of their high costs. 
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However, motors below 500 hp make up 99.7% of the motors in service. These motors operate at 

approximately 60% of their rated load because of oversized installations or under-load 

conditions, and hence, they work at reduced efficiency which results in wasted energy [6]. Motor 

losses can represent a considerable cost over a long period due to high load factor [7].    

Power costs are constantly rising at a rate that is even faster than both material and 

producer goods prices [8], many companies have hired energy managers whose sole purpose is to 

find practical ways to reduce power costs. As an example, and according to the U.S. Department 

of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE), a large size 

paper mill could save an average of $659,000 a year through motor system efficiency [10]. If a 

replacement decision of low efficient motor is taken as a result of the calculation of energy 

savings and payback periods that are based on nameplate motor efficiency or manufacturer's data 

only, this could lead to large errors [1], because the real efficiency of a motor is usually different 

from that value mentioned on its nameplate, as efficiency may decrease significantly due to aging 

or rewinding [17], or it might not be given according to IEEE Std 112
TM

 Method B [18]. To make 

a correct decision and select the optimal retrofit scenario, engineering staff should be able to 

estimate the efficiency of motors under test with the least possible error. This demand from 

industry drives practical work and research on the development and enhancement of methods for 

induction motors efficiency estimation [1]. 

The key point in estimating the efficiency of an induction motor is to identify the 6 

electrical parameters of the machine. In [101], an offline deterministic method was used to 

identify moment of inertia, mechanical losses, and the electrical parameters for large induction 

machines based on DOL (Direct-On-Line) starting and slowdown tests performed under no-load 

conditions. The approximated machine model was used in this work. The core loss resistance is 

ignored. The proposed method is only applicable to large motors as the large mass of such 

machines can allow the rotor to stall for a time that will be enough to obtain some of the electrical 

parameters that is usually extracted from a locked-rotor test. This method lacks a proper 

validation, beside it is not applicable in all kind of electric motor workshops. 

Parameter identification from starting no-load low-voltage test was proposed in [102]. 

The core loss resistance was also ignored. The method utilizes the variation of impedance versus 

slip, with the help of least mean square (LMS) and particle swarm optimization (PSO) to obtain 
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the required electrical and mechanical parameters. Data acquisition equipment and sophisticated 

software make the method inapplicable to be used properly in normal electric workshops. In [11], 

a method was proposed to extract the electrical parameters of induction machines from no-load 

and start-up tests. Again, the need for data logging equipment and sophisticated software to run 

the proposed technique makes the method inapplicable in normal electric workshops. A 

comprehensive review of induction motor parameter estimation techniques was conducted in 

[103].   

Currently, the dynamometer method is the most reliable procedure that is being followed 

in the industry to test induction motor performance. However, this procedure is expensive and it 

is only available in well-equipped laboratories. There is also no-load/locked-rotor test. This test 

needs full control on the voltage, beside proper instrumentation to achieve a mechanically 

secured and safe locked-rotor condition. These instrumentations are widely different for different 

motor sizes. Using line-to-line single phase supply autotransformer to provide continuous voltage 

regulation to the input voltage during the locked-rotor test is an option in some electric 

workshops, but was not available in the workshops visited as part of this study. Hence, there is a 

need for practical and cost-effective procedure that can be applied easily in workshops.  

In this chapter, a novel efficiency estimation technique for repaired, rewound, or any 

existing induction motor, is proposed to match the technical environment of electric motor 

service workshops. It is tailored to what is really available in these workshops in terms of 

instrumentation and equipment. The algorithm works with very limited data obtained from a DC 

test (including cold temperature measurement), a minimum 5 no-load operating points, and one 

speed measurement. The algorithm is designed to eliminate any need for voltage and current 

waveforms capturing devices as it uses only rms values which is accounted for as one good 

advantage of the proposed algorithm. To transfer the method into a practical tool to be used in the 

industry; software has been designed based on spreadsheets and using Visual Basic
®
 

programming to implement the algorithm. The proposed method eliminates the need for 

sophisticated software that is unlikely to be available in the workshops. The algorithm utilizes a 

large database of induction motors tested for efficiency in the Laboratoire des Technologies de 

l'Énergie, Institut de Recherche, Hydro-Québec, Shawinigan, Québec, Canada.  The data has a 

wide range of motor power ratings. Another valuable set of testing data is received from BC 

hydro, which includes a full test of 55 used (aged) induction motors [86]. Applicability and 
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feasibility of the method has been supported by technical visits made by the research team to 

electric motor service centers in the Montréal area. Experimental and field results of testing 8 

induction motors are presented and demonstrate the degree of accuracy of the proposed 

technique. 

 

3.2. The Proposed Algorithm 

The algorithm is designed to deal with only rms values of voltage, current, and power that 

can be obtained using suitable measuring instruments which comply with IEEE Std 112
™

-2004 

[21] and Canadian standard CAN/CSA C392-11 [93]. 

The required input data for running the proposed algorithm are: 

 DC resistance of the stator windings. 

 Temperature of the stator winding. 

 Nameplate details. 

 Minimum of 5 different rms values of no-load voltage, no-load current, and no-

load input power. 

In IEEE Std 112™-2004, a method called Efficiency Test Method F1-Equivalent Circuit 

is proposed. This method estimates induction motor’s efficiency based on calculation of the 

machine’s equivalent circuit parameters by using no-load test data and an impedance test 

(Method 3). This proposed method is based on IEEE Std 112™-2004 Efficiency Test Method F1-

Equivalent Circuit. The parameters of the machine are extracted based on Method 3 (reduced 

voltage slip test) of the IEEE Std 112™-2004. The equivalent circuit of the machine is shown in 

Figure  3-1. In order to find the parameters of the machine from the voltage, current, and the 

power measurements, without performing a low frequency locked-rotor test, the data of multiple 

operating points is required. The multiple operating points are created by reducing the voltage 

and thus changing the slip of the machine in the no-load condition. Once the parameters are 

accurately defined for the rated condition, the slip and the input power of the machine under rated 

load and any partial load can be found based on solving the equivalent circuit of the machine 

iteratively. Knowing the real rated slip of the machine and the right value of the rated input 
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power will lead to more accurate estimation of the efficiency [21]. The algorithm is designed to 

work with limited data from running the motor with no load coupled to the shaft and with 

voltages started from rated voltage or value close to rated voltage, down to the point where 

further voltage reduction causes the current to increase. Per phase stator winding resistance 

R1,cold (cold resistance) should be determined by using a DC test that complies with section 5.4 of 

IEEE Std 112™-2004 and section 5.7 of Canadian standard CAN/CSA C392-11 [93]. 

The temperature Tcold has to be measured during the DC test using the recommended 

instruments in section 4.4 of IEEE Std 112™-2004. The value of R1,cold will be corrected to the 

full-load temperature Tfl. 

The measured input power is the total losses in the motor at no-load and these losses 

consist of the stator copper loss, friction and windage losses, and core loss, in addition to the 

stray load loss. 

The friction and windage losses and the core losses may be determined according to 

sections 5.5.4 and 5.5.5 of the IEEE Std 112™-2004 respectively, or section 7.1.7 of Canadian 

standard CAN/CSA C390-10 [104]. 

Stray load loss is estimated based on International Standard IEC 60034-2-1 computing 

methodology for induction motors larger than 40 hp as it is assumed to have better accuracy. For 

motors smaller than 40 hp, stray load loss is assumed according to IEEE Std 112™-2004 

methodology [88]. 

Full-load and partial load efficiencies are predicted based on the previous calculations and 

𝑅1 

𝑅2 

𝑋1 𝑋2 

𝑅2

(1 − 𝑠)

𝑠
 

𝑋𝑚  𝑅𝑓𝑒  

𝐼1 𝐼2 

𝐼𝑓𝑒  𝐼𝑚  

𝑍2 𝑉2 𝑉1 𝑍1 

 

Figure  3-1.  Induction motor equivalent circuit. 
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assumptions. 

It is useful to show induction motor power flow and its corresponding losses as illustrated 

in Figure  3-2. 

The test procedure as recommended in the IEEE Std 112
™

-2004 is as follows: 

 

3.2.1. DC Resistance Test 

The stator winding lead-to-lead resistance is measured among the three phases of the 

motor (i.e. Rab, Rbc, Rca). The average lead-to-lead dc resistance Rdc is calculated according to 

(2.1). During the measurement, the temperature Tcold  is recorded. 

 

Input Power 

𝑃𝑖𝑛 = 3𝑉𝑠𝐼𝑠 cos 𝜑 

Stator Copper Loss
𝑃𝑠𝑐𝑙 = 3𝐼𝑠

2𝑅1 Core Loss
𝑃ℎ  

Stator

RotorAir-Gap Power

(Rotor Input Power)

𝑃𝑎𝑔 = 𝑇𝑎𝑔 𝜔𝑠 

Developed Mechanical Power
𝑃𝑚𝑒𝑐 ℎ = (1 − 𝑠)𝑃𝑎𝑔  

Rotor Copper Loss
𝑃𝑟𝑐𝑙 = 𝑠𝑃𝑎𝑔  

Friction & 

Windage Loss

𝑃𝑓𝑤  
Stray Load Loss

𝑃𝑠𝑙𝑙  

Mechanical Output Power
 

Figure  3-2.  Induction motor power flow. 

 



69 

 
 

3.2.2. Nameplate Details 

Nameplate details are necessary part of the algorithm. Rated voltage, rated current, rated 

power, rated speed, number of poles, efficiency, insulation class, NEMA design, and winding 

configuration, all will be included in the algorithm. 

 

3.2.3. Performing the No-Load Test 

The no-load test is performed by running the motor with no load coupled to the shaft. 

This test is used to separate the no-load losses by running the uncoupled motor with different 

voltage levels starting from 125% of rated voltage down to the point where further voltage 

reduction increases the current. Temperature, voltage, current, and input power are to be read and 

recorded during each voltage point. An outcome of this test is to determine the Stator Copper 

Loss, Friction and Windage Losses, and Core Loss. 

By connecting the induction motor under the no-load test to a balanced 3-phase voltage 

supply and running the motor until the input power is stabilized, a minimum of six different 

voltage values are required [104]. By reading and recording voltage, current, and input power 

using suitable RMS meters, the no-load data would be tabulated and used in certain calculations 

to separate stator copper loss, core loss, and friction and windage losses. The no-load stator 

copper loss of operating point (i) Pscl,i is calculated by (3.1). 

Pscl,i=1.5×Inl,i
2 ×Rdc (3.1) 

where, 

Inl,i is the no-load current of the operating point (i). 

i=1,2,3,4,5,6 (six operating points with different voltage levels, 1 refers to the maximum voltage, 

6 refers to the minimum voltage). 

By subtracting Pscl,i from Pin,i (total input power at the operating point (i)) and plotting the 

power versus squared phase voltage at the last three or four voltage points, and by performing 

linear regression, the friction and windage losses can be determined. Figure  3-3 shows the losses 

curve of a 7.5hp induction machine. The friction and windage losses value (12.868W) is shown 

in the second term of the linear function (y=0.0022x+12.868) appeared on the figure. 
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Figure  3-3. Friction & Windage losses separation for 7.5hp 
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3.2.4. Impedance Test 

An Impedance Test is used to determine the value of each parameter of the equivalent 

circuit. Method 3 of the IEEE Std 112
™

-2004 standard is chosen as it matches the no-load 

condition. From the no-load data, a curve is drawn for total calculated reactance versus phase 

voltage. The highest point of this curve is used as the total no-load reactance per phase (X1 + Xm) 

which is equal to (81.629 Ω) as shown in Figure  3-4. This result belongs to the same example 

mentioned in subsection  3.2.3 and is used in calculations of the reduced voltage slip test. 

 From the reduced slip test data (i.e. the lowest voltage point 6), the total impedance per 

phase and the power factor are calculated. The phase angle (θ1,i) of the input current, the apparent 

resistance of the total per phase circuit (Ra,i), and the total apparent reactance (Xa,i) can be 

calculated as shown in (3.2) through (3.4).  
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Equations (39) through (58) in section 5.9.4.2 (pp29) of the IEEE Std 112™-2004 were 

checked and some typing errors have been found. Equations (3.2) through (3.23) of this paper are 

a corrected presentation of the above mentioned equations of the standard.  

θ1,6=- cos-1 (PF6) (3.2) 

Ra,6=Za,6× cos (-θ1,6) (3.3) 

Xa,6=Za,6× sin (-θ1,6) (3.4) 

The value of (Xa,i) determined from (3.4) is used as the first estimate of the sum (X1+X2). 

According to the machine design, a value for the ratio (X1 X2⁄ ) can be obtained according to 

Table  3-I. Based on the ratio and X1+X2. (X1) can be calculated as shown in (3.5). 

X1=Xa,i

(X1 X2⁄ )

1+(X1 X2⁄ )
 (3.5) 

 

Figure  3-4. Input reactance vs. phase voltage for 7.5 hp  
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Using the maximum value of total no-load reactance (X1+Xm)i, the value of the 

magnetizing reactance (Xm) can be approximated as shown in (3.6). 

Xm=(X1+Xm)i-X1 (3.6) 

Per phase stator winding resistance has to be determined according to (3.7) and (3.8).  

In case of a delta (∆) connected motor, 

R1,cold=1.5×Rdc (3.7) 

In case of a star (Y) connected motor 

R1,cold=0.5×Rdc (3.8) 

From the no-load data and for the reduced slip voltage, V2,6 (6 refers to the operating 

point 6) can be calculated according to (3.9). 

V2,6=√[V1,6-I1,6(R1,cold cos θ1,6 -X1 sin θ1,6)]
2
+[I1,6(R1,cold sin θ1,6 +X1 cos θ1,6)]

2
 (3.9) 

The angle (θ2,i) is calculated according to (3.10). 

θ2,6= tan-1 (
-I1,6(R1,cold sin θ1,6 +X1 cos θ1,6)

V1,6-I1,6(R1,cold cos θ1,6 -X1 sin θ1,6)
) (3.10) 

The following equations are used to calculate necessary values needed in equivalent 

circuit parameters determination. 

Im,6= V2,6 Xm⁄  (3.11) 

Rfe,6= V2,6
2 (Ph,6 3⁄ )⁄  (3.12) 

Table  3-I : Ratio of (X1 X2⁄ ) [21] 

Design class X1 X2⁄  

A 1.00 

B 0.67 

C 0.43 

D 1.00 

Wound rotor 1.00 
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Gfe,6= 1 Rfe,6⁄  (3.13) 

Ife,6= V2,6 Rfe,6⁄  (3.14) 

I2,6=√[I1,6 cos θ1,6- Im,6 sin θ2,6- Ife,6 cos θ2,6]
2
+[I1,6 sin θ1,6+ Im,6 cos θ2,6- Ife,6 sin θ2,6]

2
 (3.15) 

X2= (-V1,6I1,6 sin θ1-I1,6
2 X1-Im,6

2 Xm) I2,6
2⁄  (3.16) 

Xa,i=X1+X2 (3.17) 

Equations (3.5) through (3.17) must be repeated using the initial ratio of ( X1 X2)⁄  as used 

in (3.5) and the new value of (Xa,i) obtained from (3.17) and continue until stable values of (X1) 

and (X2) are achieved within 0.1%. 

Z2,6= V2,6 I2,6⁄  (3.18) 

s= ns-nr,i ns⁄  (3.19) 

R2,cold=s√Z2,6
2 -X2

2 (3.20) 

Using the value of the total reactance (X1+Xm)i from the rated voltage no-load test, the 

following is calculated. 

Xm=(X1+Xm)1-X1 (3.21) 

where Xm has a new value which is different from that obtained from (3.6). 

The algorithm will use the variable operating points and will estimate the nominal voltage 

and its associated no-load input power, no-load input current, power factor, input reactance 

(X1+Xm)1, and core losses Ph,1. The estimation is based on a curve fitting approach. Those 

estimated values will be used in the following equations. This curve fitting procedure plays an 

important role in the accuracy of the estimated value of efficiency. Moreover, it makes the 

algorithm very immune to voltage fluctuations (over or undervoltage) in the power supply.    

V2,1=√[V1,1-I1,1(R1,cold cos θ1,1 -X1 sin θ1,1)]
2
+[I1,1(R1,cold sin θ1,1 +X1 cos θ1,1)]

2
 (3.22) 
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Gfe,1= Ph,1 3V2,1
2⁄  (3.23) 

Rfe,1= 1 Gfe,1⁄  (3.24) 

The values of θ1,i, X2, Xm, and Rfe,i obtained from (3.2), (3.16), (3.21), and (3.24) 

respectively, are used in the equivalent circuit. The rotor resistance R2,cold from (3.20) and the 

stator resistance R1,cold will be corrected to the full-load temperature using (3.25) based on 

insulation class of the machine and Table  2-I (if full-load temperature rise is not available) as 

recommended in IEEE Std 112
™

-2004, before using them in the equivalent circuit. R1 and R2 

will refer to the corrected values of R1,cold and R2,cold respectively. 

R1=
R1,cold(Tfl+K1)

Tcold+K1

 (3.25) 

where, 

K1 is 234.5 for 100% IACS conductivity copper. 

 

3.2.5. Stray Load Loss 

If the motor under test has the same: 

 rated voltage & insulation class, or 

 rated voltage & number of poles & insulation class 

of any of the motor within the supporting data, the algorithm will use the measured stray load 

loss of the data. Otherwise, stray load loss is to be assumed according to Table  1-I based on IEEE 

Std 112™-2004 or IEC 60034-2-1 [95] standards. 

It has been noticed that estimating stray load loss (Psll) based on IEC 60034-2-1 standards 

could give better result for motors rating larger than 40 hp. Psll will be estimated by using (2.6). 

By having the full-load value of the stray load loss; the 75%, 50%, and 25% load stray 

load losses will be determined according to (2.18), (2.19), and (2.20) respectively [90]. 
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3.2.6. Test Method F1 

This test should be performed by using a group of equations that are set in Calculation 

Form F2. 9.13, Page 72 of IEEE Std 112
™

-2004. Those equations must be followed to estimate 

the efficiency. The equations are as follows: 

Slip is to be assumed for each load point. It is calculated using (3.19). 

Z2=√(R2 s⁄ )2+X2
2 (3.26) 

G2= (R2 s⁄ ) Z2
2⁄  (3.27) 

G=G2+Gfe (3.28) 

B2=-(X2 Z2
2⁄ ) (3.29) 

Bm=-(1 Xm⁄ ) (3.30) 

B=B2+Bm (3.31) 

Y2=√G
2
+B2 (3.32) 

Rg= G Y2
2⁄  (3.33) 

R=R1+Rg (3.34) 

Xg=-(B Y2
2⁄ ) (3.35) 

X=X1+Xg (3.36) 

Z=√R2+X2 (3.37) 

I1= V1 Z⁄  (3.38) 

I2= I1 √Z2
2×Y2

2⁄  (3.39) 

Ps=3I1
2R (3.40) 
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Pr=3I2
2(R2 s⁄ ) (3.41) 

Pscl=3I1
2R1 (3.42) 

Ph=3I1
2(Gfe Y2

2⁄ ) (3.43) 

Prcl=sPr (3.44) 

Pt=Pscl+Ph+Prcl+Pfw+Psll (3.45) 

Pcov=Ps-Pt (3.46) 

Finally, the efficiency is estimated by using (3.47). 

η=(Pcov Ps⁄ )×100 (3.47) 

where, 

Z2 is the rotor impedance. 

G2 is the rotor conductance. 

G is the rotor and magnetic conductance . 

B2 is the rotor susceptance. 

Bm is the magnetizing susceptance. 

B is the rotor & magnetic circuit susceptance. 

Y2 is the rotor and magnetizing circuit admittance. 

Rg is the rotor & magnetizing circuit resistance. 

R is the total resistance of the equivalent circuit. 

Xg is the rotor and magnetizing circuit reactance. 

X is the total reactance of the equivalent circuit. 

Z is the total impedance of the equivalent circuit. 

I1 is the stator current. 

I2 is the rotor current. 

Ps is the stator power. 

Pr is the rotor power. 

Pscl is the stator copper loss. 

Ph is the core loss. 



77 

 
 

Prcl is the rotor copper loss. 

Pt is the total loss. 

Pcov is the converted power. 

η is the estimated efficiency. 

 

3.3. Experimental Results and Analysis 

The proposed algorithm has been applied to test 7 induction motors of different ratings (3-

150hp). Out of the seven motors tested, the algorithm failed to estimate the efficiency of three        

motors as shown in Table  3-II. The proposed algorithm is supposed to be able to deal with all 

kinds and sizes of induction motors. A deep investigation was made to determine the cause of the 

failure, and in which part of the algorithm it occurs. To be able to determine the source of the 

problem and to pinpoint the place where it occurs, a flow chart of the proposed method is shown 

in Figure  3-5 which illustrates the flow of the whole process. There are two iteration processes. 

The first one is during the extraction of the motor parameters. 

Table  3-II. Efficiency estimation using the proposed algorithm 

Motor Size 

(hp) 

Efficiency estimation  

using the proposed algorithm 

3.0 Succeeded 

7.5 Failed 

25 Succeeded 

50 Failed 

60 Failed 

100 Succeeded 

150 Succeeded 
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The second iteration is for estimating the efficiency. The estimated parameters of the 

seven motors are as shown in Table  3-III. Having all the parameters extracted for all the seven 

motors means that the process went through the first iteration successfully. That indicates that the 

algorithm fell into an infinite loop within the second iteration. The second iteration starts with 

initial values of zero for both output power and slip, which means that the initial value of the 

rotor speed is the synchronous speed of the motor. The speed will be decreased by 1 r.p.m. for 

Start

Stator winding DC resistance (Cold) 

and cold temperature

End

Nameplate details

Minimum of 6 sets of input power, 

voltage and current readings

Induction motor equivalent circuit 

parameters.

Estimated efficiency and 

corresponding estimated speed

Perform the DC resistance test, measure 

the ambient temperature

Perform the no-load test, minimum of 6 OP

Perform stator losses separation

Minimum of 6 sets of input 

impedance, core loss, friction and 

windage loss

Correct stator winding DC resistance to the 

full-load temperature

Set a value for the desired percentage 

efficiency to be estimated.

Set the initial values of output power and 

the slip to zero.

Iterate (3.26) through (3.47) 

Solve (3.18) through (3.24)

Solve (3.2) through (3.4). Iterate through 

(3.5) to (3.17) until stable values for X1 

and X2

Are the values of X1 

and X2 are stable 

and within 0.1%?

NO

Is the estimated output 

power = the initial value?

YES

NO

YES
 

Figure  3-5. Algorithm flow chart 
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each iteration; so the slip and the output power will increase accordingly. The iteration will stop 

when certain conditions are met, that is when the estimated output power reaches the desired 

percentage of the rated output power of the motor. Failing to meet the foregoing set conditions 

means that the declared equivalent circuit parameters are not correct. 

It was noticed that with the 3 failed motors, the calculated value of the input reactance 

which is used in (6) leads to a high extracted value of X1 and hence X2 as shown in Table  3-III. If 

those high values of X1 and X2 are used in the IEEE Method F1 equations (28) through (49), and 

if the output of the equations is observed carefully, it can be seen that those high values of X1 and 

X2 will result in a low value of R in (36), high value of X in (38), low value of I1 in (40), and 

hence, low value of the input power Ps in (42). This low value of Ps will make the output power 

Pcov in (48) very low (it might even have negative value when the Ps is less than the total losses), 

and in this case, it cannot reach the expected value of the motor output power. As (28) through 

(49) are part of an iterative process to estimate the efficiency, this means that the process will fall 

into an infinite loop. 

From the previous analysis, it can be seen that the key factor in extracting realistic values 

for X1 and X2 is the value of the input reactance of the motor at the lowest voltage operating 

point. To further reduce the value of the input reactance, a suitable low voltage must be reached 

which will further increase the value of the input current. As the variable voltages in electric 

motor repair workshops is determined by fixed values of transformer taps; there is no way to 

reach the required low voltage, and hence, a mathematical approach was proposed in this work to 

solve the problem. The seven motors were run through five different levels of voltages. The input 

reactance values of the motors are tabulated in Table  3-IV. The table also shows a ratio of the 

maximum to the minimum values of the input reactance of every motor within the tested group. 

Table  3-III. Estimated equivalent circuit parameters 

Motor Size 

(hp) 

R1 

(Ω) 

X1 

(Ω) 

Rfe 

(Ω) 

Xm 

(Ω) 

R2 

(Ω) 

X2 

(Ω) 

3.0 0.7837 1.7397 204.73 19.175 0.5004 2.5966 

7.5 0.8144 18.549 820.27 52.499 0.4862 27.684 

25 0.8740 7.7979 2825.1 116.63 0.3584 11.638 

50 0.4899 5.1212 1344.6 39.900 0.3724 7.6436 

60 0.2858 4.0768 1808.1 53.304 0.0947 6.0847 

100 9.6098 0.9767 646.73 18.710 6.0182 1.4578 

150 7.5329 0.7997 512.49 19.128 4.2646 1.1937 
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By comparing the ratio values of the seven motors, it can be noticed that the three motors which 

the algorithm failed to estimate their efficiencies have smaller values of (Xmax Xmin⁄ ) compared 

to the others. It can be said that the smaller value of (Xmin) the bigger value of the ratio. 

 

Per phase input impedance of the motor can be calculated as follows: 

Zin= Vφ Iφ⁄  (3.48) 

where Vφ and Iφ are phase voltage and phase current respectively. 

The power factor (PF) is estimated by using (3.49) 

PF= Pin (√3VinIin)⁄  (3.49) 

where Vin and Iin are input line voltage and input line current respectively. 

Hence, the input reactance can be estimated using (3.50) 

Xin=
Vφ

Iφ

√1-PF2 (3.50) 

Based on (3.50) the only way to reduce the value of the minimum input reactance is by 

pushing up the value of the current. It is mentioned in subsection  3.2.3 that the minimum point 

during the no-load run is the point where further voltage reduction increases the current. 

Although that point is reached with the three failed motors, but still, the minimum reactance 

shows a relatively high value, hence, a low value of (Xmax Xmin⁄ ). It means that further voltage 

reduction is needed in the case of those three motors to achieve higher current and smaller value 

of (Xmin). The 7.5 hp induction motor is one of the motors in the failed group and has one of the 

Table  3-IV. Input reactance vs. voltage for seven induction motors 

%V 

3 

hp 

7.5 

hp 

25 

hp 

50 

hp 

60 

hp 

100 

hp 

150 

hp 

100% 20.64 70.57 124.42 45.02 57.38 19.68 19.92 

80% 29.21 76.67 138.77 58.53 61.47 23.10 21.20 

37% 29.99 80.21 147.23 62.74 62.63 24.75 16.89 

19% 18.89 68.48 97.81 53.76 40.69 17.00 5.48 

9% 4.552 41.62 20.74 16.84 11.31 3.03 2.68 
Xmax

Xmin

 6.588 1.927 7.098 3.725 5.538 8.168 7.911 
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lowest values of (Xmax Xmin⁄ ). The motor tested with the voltages shown in Table  3-V with its 

corresponding input reactances. 

Another further reduction in voltage (5.9%), the (Xmax Xmin⁄ ) is still within the low range 

(3.919) and yet, the machine failed again to go through the algorithm successfully. To bring up 

the (Xmax Xmin⁄ ) value, another voltage reduction is applied (4.57%) and the voltage versus input 

reactance results are tabulated in Table  3-VI. With 4.57% of the rated voltage (230V) of the 7.5 

hp induction motor, the value of (Xmax Xmin⁄ ) reached (6.86) which is considered to be within the 

preferred range. This value allowed the motor to go through the algorithm successfully. In one of 

the workshops, it was found that the lowest voltage that can be accessed is around 9% of the rated 

voltage of the network (usually 600V for industrial sector). In this case, reaching a low value as 

in the case of 4.57% of the rated voltage mentioned above in Table  3-VI is not usually allowable. 

The task now is how to adjust the algorithm to work with what is available in those motor service 

centers in terms of voltage supplies. 

 

 

 

Table  3-VI. Input voltage vs. input reactance of 7.5 hp 

%V Xin 

100% 69.669 

80% 76.378 

37% 81.562 

19% 72.961 

9% 39.414 

4.57% 11.885 
Xmax

Xmin

 6.86 

 

Table  3-V. Input voltage vs. input reactance of 7.5 hp motor 

%V Xin 

100% 71.240 

80% 77.530 

37% 82.663 

19% 72.104 

9% 39.668 

5.9% 21.089 
Xmax

Xmin

 3.919 
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3.4. Modified Method  

The lower point of voltage is limited with the lowest value that can be reached through 

the transformer taps. An alternative solution is proposed here. A mathematical approach to the 

problem is found to access a lower point within the input reactance versus phase voltage. The 

proposed mathematical solution to the problem is by fitting a curve to the multiple no-load 

operating points. The curve’s equation will be utilized to calculate the proper input reactance that 

can make the value of (Xmax Xmin⁄ ) to fall within the accepted range which is decided to be > 6.  

The value of (6) is determined through extensive experimental tests and based on values 

of (Xmax Xmin⁄ ) shown in Table  3-IV. 

So, the algorithm is further modified to go through the following steps before declaring 

the six parameters of the machine: 

1. In case that the value of (Xmax Xmin⁄ ) is less than 6, the algorithm will further 

check the following conditions: 

a. If (Xmax Xmin⁄ )  is greater than 1 and less than 2, then the algorithm will go 

down with the voltage and keep checking on the value of (Xmin), till 

(Xmax Xmin⁄ ) will be equal or greater than 12. A new value of minimum 

input reactance will be obtained here (Xmin, new). 

b. If (Xmax Xmin⁄ )  is greater than 2 and less than 4, then the algorithm will go 

down with the voltage and keep checking on the value of (Xmin), till 

(Xmax Xmin⁄ ) will be equal or greater than 11. A new value of minimum 

input reactance will be obtained here (Xmin, new). 

c. If (Xmax Xmin⁄ )  is greater than 4 and less than 6, then the algorithm will go 

down with the voltage and keep checking on the value of (Xmin), till 

(Xmax Xmin⁄ ) will be equal or greater than 9. 

The values 12, 11, and 9 in a, b, and c respectively were decided after 

extensive tests run on many machines. 

2. A new value of minimum input reactance (Xmin, new) will be obtained according to 

(a, b, or c). 
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3. New value of X1 will be calculated according to (3.51). 

X1, new=Xmin, new ((
X1

X2

) (1+
X1

X2

)⁄ ) (3.51) 

New value of X2 will be calculated according to (3.52). 

X2, new= X1, new (
X1

X2

)⁄  (3.52) 

These new values X1, new and X2, new will replace the previous extracted values by 

equations (3.2) through (3.24). 

 

3.5. Algorithm’s Validation 

A group of 8 motors are tested by using the modified method. The validation is achieved 

by using 5 and 6 operating points. The measured and estimated efficiencies by using 5 no-load 

operating points are tabulated in Table  3-VII. The measured and estimated efficiencies by using 6 

no-load operating points are tabulated in Table  3-VIII. Both tables show the absolute error which 

is the difference between the measured and the estimated values of efficiency. It can be clearly 

noticed that having 6 no-load operating points gives higher accuracy of the estimated efficiencies 

compared to 5 operating points. 
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Table  3-VII. Measured vs. Estimated efficiency for 8 Induction Motors (Proposed method, 5 OP) 

Motor Size 

(hp) 

 

100% 75% 50% 25% 

3.0 

Measured %η 80.4 79.1 75.6 63.9 

Estimated %η 80.2 79.7 76.5 65.4 

%Error 0.20 -0.60 -0.90 -1.50 

7.5 

Measured %η 90.5 91.2 90.8 86.9 

Estimated %η 90.1 91.1 91.0 87.3 

%Error 0.40 0.10 -0.20 -0.40 

15 

Measured %η 90.6 91.2 90.7 86.5 

Estimated %η 90.1 90.9 90.5 86.5 

%Error 0.50 0.30 0.20 0.00 

25 

Measured %η 92.0 92.8 92.8 90.3 

Estimated %η 92.7 93.4 92.8 89.3 

%Error -0.70 -0.60 0.00 1.00 

50 

Measured %η 92.8 93.1 92.6 89.2 

Estimated %η 92.2 92.7 92.1 88.3 

%Error 0.60 0.40 0.50 0.90 

60 

Measured %η 94.8 94.9 93.9 91.0 

Estimated %η 94.3 94.7 94.4 92.8 

%Error 0.50 0.20 -0.50 -1.80 

100 

Measured %η 95.5 95.5 94.9 92.1 

Estimated %η 95.1 95.4 94.9 93.0 

%Error 0.40 0.10 0.00 -0.90 

150 

Measured %η 93.6 93.4 92.1 87.1 

Estimated %η 93.4 93.6 92.7 88.4 

%Error 0.20 -0.20 -0.60 -1.30 
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3.6. Error Analysis and Uncertainty 

The same error analysis techniques that is described in subection 2.3, and the same three 

induction motors are used to demonstrate the uncertainty of the proposed Method B. Figure 3-6 

shows the experimental setup and the apparatus used to run both the dynamometer and the no-

load tests. To extract the value of every required influence coefficient, the change in the output 

variable (i.e. motor efficiency) is plotted against the corresponding perturbation in the input 

variable. Figure  3-7 shows the graph produced to help extracting the influence coefficient of the 

input power of the 5.0 hp, 220 V induction motor by using the algorithm. The final results 

obtained for the three tested motors of the direct measurements and the proposed method 

measurements, by using WCE and RPBE techniques are tabulated in Table 3-IX.  The results 

show that the average levels of uncertainty of the algorithm measurements are ±0.028%, and 

±0.02% by using WCE and RPBE respectively. The extracted influence factors for the input 

Table  3-VIII. Measured vs. Estimated efficiency for 8 Induction Motors (Proposed method, 6 OP) 

Motor Size 

(hp) 

 

100% 75% 50% 25% 

3.0 

Measured %η 80.4 79.1 75.6 63.9 

Estimated %η 80.6 79.6 75.6 63.9 

%Error -0.20 -0.50 0.00 0.00 

7.5 

Measured %η 90.5 91.2 90.8 86.9 

Estimated %η 90.4 91.4 91.4 88.5 

%Error 0.10 -0.20 -0.60 -1.60 

15 

Measured %η 90.6 91.2 90.7 86.5 

Estimated %η 90.8 91.4 90.9 86.7 

%Error -0.20 -0.20 -0.20 -0.20 

25 

Measured %η 92.0 92.8 92.8 90.3 

Estimated %η 92.7 93.4 92.9 89.4 

%Error -0.70 -0.60 -0.10 0.90 

50 

Measured %η 92.8 93.1 92.6 89.2 

Estimated %η 92.3 92.7 92.1 88.4 

%Error 0.50 0.40 0.50 0.80 

60 

Measured %η 94.8 94.9 93.9 91.0 

Estimated %η 94.2 94.7 94.3 92.8 

%Error 0.60 0.20 -0.40 -1.80 

100 

Measured %η 95.5 95.5 94.9 92.1 

Estimated %η 95.1 95.4 95.0 93.1 

%Error 0.40 0.10 -0.10 -1.00 

150 

Measured %η 93.6 93.4 92.1 87.1 

Estimated %η 93.4 93.6 92.7 88.4 

%Error 0.20 -0.20 -0.60 -1.30 
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voltage, input current, shaft torque, and stray load loss are all zero. The other influence factors of 

input power, rotor speed, stator resistance, and friction and windage losses were very low. This 

resulted in a low uncertainty of the estimated efficiencies. Such a low level of uncertainty within 

the estimated efficiencies gives some confidence to the proposed algorithm. 
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Figure  3-6. Motor testing experimental setup; 1, programmable power supply; 2, 3.0 hp induction motor; 3, 

torque transducer; 4, dynamometer; 5, field control unit; 6, multi-channel signal conditioner; 7, high resolution 

dc multimeter; 8, Resistor bank. 

Photo is a courtesy of Concordia University. 
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3.7. Summary 

In this chapter, a novel technique is proposed for a refurbished induction machines 

efficiency estimation. The technique is called “Method B”. Method B is designed to run with 

very limited data and measurements that can usually be encountered in electric motor service 

centers. Method B is also designed to be easily applied in any motor repair workshop. 

It was found that the IEEE Std 112™-2004-Method 3 is not capable of dealing with the 

 

Figure  3-7. The proposed method measurements, FL (5.0 hp): IP=0.0173  

y = 0.0173x - 0.0063 
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Table  3-IX. Uncertainty Results of the Three Tested Induction Motors 

Tested Induction 

Motor 

Uncertainty of the Measured 

Efficiency 

[±%]  

Uncertainty of the Estimated 

Efficiency 

(Proposed method) 

[±%]  

 

WCE 

[±%]  

RPBE 

[±%]  

 

WCE 

[±%]  

RPBE 

[±%]  

5.0 HP, 220 V 1.0417 0.6115 0.0359 0.0250 

7.5 HP, 230 V 0.9004 0.5517 0.0503 0.0314 

7.5 HP, 460 V 1.1664 0.6978 0.0310 0.0203 
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limitations of the variable voltage source in electric motor repair workshops. However, the IEEE 

Std 112™-2004-Method 3 succeeded to deal with the majority of the motors tested (8 motors), 

but on the other hand, it failed with some motors.  

In this chapter, a modification is proposed to the IEEE Std 112™-2004-Method 3 that 

takes into account the equipment limitations and capabilities in normal motor repair workshops. 

In other words, the IEEE Std 112™-2004-Method 3 is designed to work only in well-equipped 

laboratories, while the proposed Method B is designed to be applicable in North American 

electric motor service centers. 

A detailed procedure of the proposed method with its flow chart are presented in 

section  3.2 and its subsections. 

The algorithm utilizes a valuable data received from Hydro-Québec and BC hydro by 

using the measured full-load temperature and stray load loss values in lieu of the assumed ones. 

Having this data, has improved the performance and the output of the algorithm to acceptable 

levels of performance. 8 induction motors of size range from 3-to-150 hp were tested using the 

designed software. The results were presented and showed acceptable accuracy.  

To evaluate the estimated efficiency values obtained by the proposed algorithm, an 

uncertainty study was conducted and showed acceptable levels of uncertainty by using the WCE 

and RPBE techniques. The level of uncertainty within the estimated efficiencies obtained by 

using the proposed method provides confidence to the proposed algorithm and the software can 

be used in industry with some confidence. The proposed algorithm is designed to work with only 

60 Hz induction motors. It does not work with machines of different frequency or different types 

of rotors. 
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CHAPTER FOUR 

 

4. Developed Software 

Concordia University signed a contract with a Canadian company (CEATI International 

Inc.) to develop a user-friendly software that can be utilized as an industrial tool for three-phase, 

60 Hz induction motors efficiency estimation. The tool has to be totally applicable in North 

America electric motors service centers. The project title is “Estimating Motor Efficiency of 

Three Phase A.C. Motors Using Standard No-Load Tests”. Senior engineers from Hydro-Québec, 

BC hydro, SaskPower, and Manitoba Hydro were appointed as technical monitors for the project. 

Professor Pragasen Pillay of Concordia University was the Principle Investigator of the project. 

The two proposed algorithms (i.e. Method A & Method B) were approved after a very 

careful and thorough assessment and evaluation process done by the technical monitors of the 

project. It was decided that spreadsheets should be the software platform in order to make the 

proposed tool affordable by the electric motor workshops. The two algorithms and the Hydro-

Québec and BC hydro supporting data were all to be integrated in the software.    

Visual Basic
®
 programming was used to create an interactive front panel. This allows 

entering of the required data and obtaining the estimated value of the motor’s efficiency. The 

software is also designed to produce useful graphs and data. The software is approved by the 

technical monitors. 

 

4.1. Introduction to Visual Basic 

The name BASIC is an acronym for Beginner’s All-purpose Symbolic Instruction Code. 

BASIC was first developed in the early 1960s as a way to teach programming techniques to 

college students. BASIC caught on quickly and is available in hundreds of dialects for many 

types of computers. BASIC has evolved and improved over the years. For example, in many 

early implementations, BASIC was an interpreted language. Each line was interpreted before it 

was executed, causing slow performance. Most modern dialects of BASIC allow the code to be 

compiled — converted to machine code which results in faster and more efficient execution. 

BASIC gained quite a bit of respectability in 1991 when Microsoft released Visual Basic 
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for Windows. This product made it easy for the masses to develop stand-alone applications for 

Windows. Visual Basic has very little in common with early versions of BASIC, but Visual Basic 

is the foundation on which VBA was built. 

Excel 5 was the first application on the market to feature Visual Basic for Applications 

(VBA). VBA is best thought of as Microsoft’s common application scripting language, and it’s 

included with most Office 2010 applications and even in applications from other vendors [105]. 

 

4.2. Building up the Software 

At the first stage of building the software, it was suggested to have two separate versions 

of the software, one for Method A, and the other for method B. It is commonly known that the 

first step of the process of building a software is to design the front panel. The front panel was 

built by using the GUI technique. It has to include all the necessary cells to enter the machine 

data and its test measurements. The following are a group of figures that show the first version of 

the proposed software (Method A). 

  

 

Figure  4-1. A splash screen of the software.  
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Figure  4-2. The software license agreement window.  

 

Figure  4-3. The Nameplate Details window filled up with the 3 hp machine data.  
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Figure  4-4. The DC Test window filled up with the 3 hp machine data.  

 

Figure  4-5. The No-Load Method A Test window shows the final efficiency results of the 3 hp machine.  
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Later on, the technical monitors suggested that the software should be of one version that 

includes both Method A and Method B and the front panel should be only one piece rather than 

three separated windows and it consists of all test sections (i.e. DC Test, Nameplate Details, 

Method A measurements, and Method B Measurements). The following Figure  4-6 shows the 

modified software. Figure  4-7 shows only the front panel for clearer details. 

 

An Exit and Print buttons were suggested to be added to the software to help the user to 

have a printout copy of the final test results and to exit via the software GUI and not through the 

main spreadsheets window. The software was modified accordingly. Figure  4-7 shows the 

modified software. 

 

Figure  4-6. The modified software of one front panel.  
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The logos of the sponsor Canadian companies were suggested to be added to the software 

front panel. A button to display the User’s Guide is also proposed. The software was modified 

accordingly. Figure  4-8 shows the modified software. 

 

 

Figure  4-7. Print and Exit buttons are added to the front panel.  

 

Figure  4-8. The companies’ logos appear on the software.  



96 

 
 

The technical monitors also suggested that the DC test should include two procedures: 

1. DC test with voltage and current measurements of the three stator windings. 

2. DC test that is carried out by an ohmmeter. 

It was also suggested that the user should be able to save a test data and its associated 

results. The user should also be able to import pre-tested machine measurements into the software 

without the need of entering the data again. Hence, two buttons were added. One is named “Save 

Data As” whereby the data can be saved in both .xls and .xlsx extensions. The second added 

button was named “Import Data” helps the user of importing data of a pre-tested machine into the 

software. It was also suggested that the user has the option of hiding the front panel. Hence a 

button named “Hide” is added to the software. 

More than 10,000 coding lines were added to turn the software into a smart version where 

a checking process on all entered data is carried out once the user clicks on a newly added button 

named “Check”. The user cannot proceed to the efficiency estimation process unless all data are 

checked to be relative. Any abnormal data entered will trigger a message box from the software 

asking the user to make sure of the data that been entered. 

The technical monitors finally asked that an additional important feature must be added to 

the software. The feature is that, once the efficiency estimation process is finished, the user must 

be informed about the nominal and minimum efficiency the tested machine has to have according 

to the ANSI/NEMA MG 1-2011 standard [15]. Data of Table 12-11 (Full-load efficiencies of 

energy efficient motors (random wound)) and Table 12-12 (Full-load efficiencies for 60 Hz 

premium efficiency electric motors rated 600 volts or less (random wound)) of the mentioned 

standard were added to the software to be utilized to implement the new feature. The final version 

of the software had a total of 21050 coding lines. A detailed User’s Guide was produced with all 

illustrative picture that describe the procedure of using the software and handling the required 

tests. The following are group of figures that show the latest version of the software which is 

approved by the technical monitors. 
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Figure  4-9. The main window of the software 

Copyrights © CEATI International Inc. 

  

 

Figure  4-10. A splash screen shows up when the software launches. 

Copyrights © CEATI International Inc. 
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Figure  4-11. A 100 hp motor test results by using Method A. 

Copyrights © CEATI International Inc. 

  

 

Figure  4-12. The 100 hp motor test results by using Method B. 

Copyrights © CEATI International Inc. 
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Figure  4-13. A message box triggered due to 3 empty cells. 

Copyrights © CEATI International Inc. 

  

 

Figure  4-14. A generated test spreadsheet by the software to save a test results. 

Copyrights © CEATI International Inc. 
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4.3. Summary 

A software is developed to utilize the two proposed algorithms in chapters 2 & 3 and the 

supporting data. The software is aimed to be a practical industrial tool that can be used in any 

electric motor service center in North America. The software was under a thorough monitoring 

and assessing process by a technical monitors team selected by a group of Canadian Power 

Companies who sponsored the project. The software has come through many different stages of 

upgrading process by including many useful suggestions of the technical monitors. The latest 

version of the software comprises of 21050 coding lines. The latest version was approved by the 

technical monitors and it is currently a copyright of CEATI International Inc.  
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CHAPTER FIVE 

 

5. A Novel In-Situ Efficiency Estimation Algorithm for Three-Phase IM Using GA, 

IEEE Method F1 Calculations and Pre-Tested Motor Data 

The precise estimation of efficiency of induction motors is crucial in industries for energy 

savings, auditing, and management. This chapter presents a novel method for in situ induction 

motors efficiency estimation by applying the genetic algorithm and utilizing IEEE Form F2-

Method F1 calculations with pretested motor data. The method requires a dc test, full-load 

operating point rms voltages, currents, input power, and speed measurements. The proposed 

algorithm uses a sensorless technique to determine motor speed. The algorithm is not only an in 

situ tool; it can also be used as an on-site efficiency estimation tool that might replace the 

expensive dynamometer procedure. The method was validated by testing 30 induction motors. 

 

5.1. Introduction 

Electrical motors below 500 hp make up 99.7% of the motors in service. These motors 

operate at approximately 60% of their rated load because of oversized installations or under-load 

conditions, and hence, they work at reduced efficiency which results in wasted energy [6] and 

additional cost. Motor losses can represent a considerable cost over a long period due to high 

load factor [7].     

Power costs rise at a rate that is even faster than both material and producer good prices 

[8]. Many companies have hired energy managers whose sole purpose is to find practical ways to 

reduce power costs. These managers noticed that electric motors can present a major potential for 

cost reduction [9]. One approach to efficiently reduce wasted energy in the industrial sector and 

control the cost of the utilized power is by retrofitting standard efficient (SE) motors with energy 

efficient (EE) motors [3]. The Energy Act of 1992 mandates that most types of commonly used 

electric motors manufactured as of October 1997 or later must be energy efficient designs [12].  

If a replacement decision of low efficient motor is taken as a result of calculation of 

energy savings and payback periods that are based on nameplate motor efficiency or 

manufacturer's data only, this could lead to large errors [1]. The real efficiency of a motor is 
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usually different from that value mentioned on its nameplate, as efficiency may decrease 

significantly due to aging or rewinding [17], or it might not be given according to the IEEE Std 

112TM Method B [18]. To make a correct decision and select the optimal retrofit scenario, 

engineering staff should be able to estimate the efficiency values of the motors under test with the 

least possible error. This demand from industry stimulates practical work and research on the 

development and enhancement of techniques for induction motors efficiency estimation [1], with 

some of the research reported in [18], [20], and [13].  

Torque and speed measurements are necessary to estimate the efficiency of an induction 

motor. However, when an efficiency estimation is required for a running (in-situ) induction 

motor which its operation is not allowed to be disturbed due to an ongoing critical industrial 

process, torque is not available.  

Identifying the six parameters of induction motor is also a well-known procedure to 

estimate the efficiency. The six parameters of the per phase equivalent circuit which models the 

induction motor can be extracted by using the no-load/locked rotor test, or by using the IEEE Std 

112 impedance test-method 3. Nevertheless, both procedures are not applicable in the above 

mentioned in-situ case.  

In such a situation, the Genetic Algorithm (GA) is found to be one of the successful tools 

to identify the six parameters of the induction machine. Many research works employed the GA 

to estimate those parameters based on available operating data of the motor.  

The GA was employed in [106] to identify induction motor parameters from load tests. 

The proposed algorithm needed at least two different values of slip, which means two loading 

points. The model used was modified by connecting the magnetizing leakage reactance Xm and 

the iron loss resistance Rfe in series. In [107], several versions of the GA were used to help find 

the induction motor parameters for small (5 hp), medium (50 hp) and large (500 hp) induction 

motors. The core loss resistance is omitted in the IM model used in this work, but the stator 

resistance is estimated rather than measured. A comparison of the estimated parameter values 

against the actual values was demonstrated. It was concluded that one of the versions gave 

extremely good results. The GA applicability to in-situ efficiency determination was 

demonstrated in [1]. Three different methods were presented in this work; Method I utilizes only 

full-load input parameters that are used for motor parameter determination. This method showed 
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around a 3% deviation from the actual efficiency. Method II needs different load points and this 

approach did improve the robustness of the GA, but did not lead to better results in motor 

parameters and efficiency. In Method III, the nameplate output power is used as an additional 

full-load input parameter for the GA. This approach did improve the outcome of the GA by 

reducing the deviation to less than 1% [1]. In [17], another in-situ IM efficiency estimation 

approach which employed the GA was proposed. The approach needed multiple load points to 

have a noticeable improvement in accuracy and repeatability. It was concluded that this method is 

sensitive to the number of load points and to their separation. Thermal equilibrium was needed 

for each load point for good estimation of the resistive components. Other research works on the 

GA application in induction motor parameters determination can be found in [108], [109], [110], 

[111] and [112].  

In this chapter, a novel in-situ efficiency estimation using the GA, the IEEE Form F2-

Method F1 calculations, and pre-tested motors data is proposed. The algorithm utilizes a database 

of a large number of induction motors tested for efficiency in the Laboratoire des Technologies 

de l'Énergie, Institut de Recherche, Hydro-Québec, Shawinigan, Québec, Canada.  The data has a 

wide range of motor type and power ratings. Another valuable data set was received from 

BChydro, which includes a full test of 55 used (aged) induction motors. The database was used to 

specify the full-load temperature, the stray load loss, and the friction and windage loss. The 

algorithm is designed to not only be used as an in-situ tool; it is also built to be used as an on-site 

efficiency estimation tool that might replace the expensive dynamometer procedure. Applicability 

and feasibility of the method were approved by testing 30 induction motors. 

 

5.2. The Genetic Algorithm 

The GA is an optimization and search technique based on the principles of genetics and 

natural selection [113]. The GA is used to solve a system of nonlinear equations. It uses objective 

functions based on a performance criterion to calculate an error [107]. There are two versions of 

GA; the binary GA which represents variables as an encoded binary string, and the continuous 

GA which works with the continuous variables. This study adopts the continuous GA as it is 

faster than the binary GA because the chromosomes do not need to be decoded [113]. Figure  5-1 

is an overview of the continuous GA used in this research work. The first step in the process is 
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building a fitness function and defining a chromosome as an array of variables. A chromosome of 

certain number of variables (Nvar) can be represented as in (5.1) 

Chromosome=[P1, P2, ….., PNvar
] (5.1) 

where Pi is a variable.  

An initial population is generated with random values of the variables, and each 

chromosome within the population size is checked for its fitness through the fitness function.  

The algorithm assumes that the cold resistance and cold temperature of the stator winding 

are predetermined. The value of rotor leakage reactance X2 can be determined by identifying the 

value of the stator leakage reactance X1 and the NEMA design of the motor according to 

Table  3-I. Four parameters out of six are to be determined; the stator leakage reactance X1, the 

core loss resistance Rfe, the magnetizing leakage reactance Xm, and the rotor resistance R2. 

Those four parameters compose the four variables of each chromosome in the GA as in (5.2) 

Chromosome=[X1, Rfe, Xm, R2 ] (5.2) 
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Figure  5-1. The Genetic Algorithm flow chart. 
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5.3. The Proposed Algorithm 

A detailed flow chart of the proposed algorithm is illustrated in Figure  5-2. The algorithm 

starts with predetermined values of the stator winding cold resistance Rcold and cold temperature 

Tcold. The algorithm uses the nameplate details, full-load rms measured values for line-to-line 

voltage, line current, input power, and one line current signal captured by a data acquisition 

measuring device of at least 10 seconds length and preferably of 10 microsecond sampling time. 
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Figure  5-2. The proposed algorithm flow chart 
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5.3.1. Stray Load Loss, FL Temperature, and Friction & Windage Losses Determination 

The values of stray load loss and full-load temperature are required by the algorithm. 

According to the IEEE Std 112™-2004, the stray load loss is that portion of the total loss in the 

electrical machine not accounted for by the sum of the friction and windage loss (F&W), the 

stator copper loss, the rotor copper loss and core loss. There are two ways to measure the stray 

load loss, indirect measurement and direct measurement. In the indirect measurement, the stray 

load loss is determined by measuring the total losses and subtracting from these losses the sum of 

the F&W, core loss, stator copper loss and rotor copper loss. The remaining value is the stray 

load loss. In the direct measurement of the stray load loss, the fundamental frequency and the 

high frequency components of the stray load loss are determined and the sum of these two 

components is the total stray load loss [21]. The other procedure to determine the stray load loss 

according to the IEEE Std 112™-2004 is to assume it. If the stray load loss is not measured, its 

value at rated load may be assumed to be the value as shown in Table  1-I, or it can be estimated 

according to the International Standard IEC 60034-2-1 [95] as in (2.6). 

With the advantage of having the test data of a large number of motors that was provided 

by Hydro-Québec and BC hydro; a comparison was made between the measured and the assumed 

values of both stray load loss and full-load temperature showed that there is a wide difference 

between the real (measured) stray load loss and its corresponding assumed value according to the 

IEEE Std 112™-2004 or the IEC60034-2-1 standards. This can be clearly seen in Figure  5-3, 

which illustrates the results of 4 medium induction motors. Taking the 500 hp machine as an 

example, the IEEE standards overestimate the stray load losses by 257.83% while the IEC 

standards overestimate the mentioned loss by 215.78%. However, in IEC60034-2-1, it is stated in 

a note that the stray loss load curve generated does not represent an average value of stray load 

loss but an upper envelope of a large number of measured values, and in most cases it may yield 

greater additional load losses than the direct stray load loss measurements methods described in 

the standard [95]. Such a difference can significantly increase the error in the estimated efficiency 

and reduce the accuracy. The second factor that may significantly affect the accuracy of the 

estimated efficiency is the difference between the assumed and measured full-load temperature as 

illustrated in Figure  5-4 where it can be seen that for the 200 hp machine, the IEEE standards 

assumed temperature overestimates the measured value by 143.23% [90]. Hence, the advantage 

of the data will be utilized in enhancing the accuracy of the proposed algorithm by using the 
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measured values in lieu of the assumed ones whenever it is applicable. 

 

 

Figure  5-3. Estimated stray load loss versus measured values. 

Source of measured data: Laboratoire des Technologies de l'Énergie, Institut de Recherche, Hydro-Québec. 
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The strategy is based on the following criteria that will be used to determine: 

- friction and windage losses, 

- stray load loss and 

- full-load temperature. 

 

 

5.3.1.1. Motor has similarity with Hydro-Québec/ BC hydro data 

In this case, the algorithm will search the data using the following strategy: 

 If number of poles is similar, the measured F&W will be used. 

 If the rated voltage and insulation class are similar, the measured stray load loss 

will be used. 

 If the rated voltage, number of poles, and insulation class are all similar, the 

 

Figure  5-4. Assumed versus measured full-load temperature. 

Source of measured data: Laboratoire des Technologies de l'Énergie, Institut de Recherche, Hydro-Québec. 
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measured stray load loss will be used. 

 If the number of poles and insulation class are similar, the measured full-load 

temperature will be used. 

 If the rated voltage and insulation class are similar, the measured full-load 

temperature will be used. 

 If the rated voltage, number of poles and insulation class are similar, the measured 

full-load temperature will be used. 

It is important to mention that it was found that using the measured stray load loss and 

full-load temperature instead of the assumed values, based on only rated voltage and insulation 

class, will still give better efficiency estimation. 

 

    

5.3.1.2. Motor has no similarity with Hydro-Québec/ BC hydro data 

In this case, the algorithm will follow a different strategy as follows: 

 If number of poles is 2, then the F&W will be calculated as in (5.3) 

Pfw=2.5%×Pin,fl (5.3) 

  If number of poles is 4, then the F&W will be calculated as in (5.4) 

Pfw=1.2%×Pin,fl (5.4) 

 If number of poles is 6, then the F&W will be calculated as in (5.5) 

Pfw=1.0%×Pin,fl (5.5) 

where, Pfw is the friction and windage loss. 

The percentage values of input power in (5.3), (5.4), and (5.5) are determined by a 

thorough check made on the Hydro-Québec/ BC hydro data.  

 If the motor power rating is less than 40 hp, the stray load loss shall be estimated 

according to Table  1-I. 

 If the motor power rating is larger than or equal to 40 hp, the stray load loss is 



111 

 
 

estimated according to (2.6).  

The 40 hp threshold is determined by a thorough check made on the Hydro-

Québec/ BC hydro data. 

The full-load temperature is assumed according to Table  2-I. The data was further 

investigated to come out with another practical finding that is useful for identifying certain values 

of stray load loss of partial loads. The formulas are as previously shown in Chapter 2, 

subsection  2.2.1.8. 

It is very important to clarify that all similarity criteria mentioned above are only 

considered if, and only if, the motor under test and the data motor are of the same power rating. 

 

5.3.2. Stator Windings Temperature Measurement 

Temperature measurement plays an important role in the efficiency estimation process. 

On-line temperature measurement applications for induction machines temperature monitoring 

and protection are commercially available and cost-effective. The technique is to intermittently 

inject a low level of dc current into the stator winding without causing unacceptable torque 

pulsations in the machine, and using the dc voltage and current to estimate the value of stator 

resistance which can reflect the value of temperature compared to the reference cold resistance 

Rcold and its associated cold temperature Tcold. This technique was described and validated in 

[114] and [115].   In this study, the values of Rcold and Tcold are assumed to be known from data 

sheets or tests done during motor turn off. The stator resistance is measured online and translated 

to temperature as in (5.6). 

Thot=
K1(Rhot-Rcold)+TcoldRhot

Rcold

 (5.6) 

where, 

K1  is 234.5 for 100% IACS conductivity copper; 

Thot is the estimated hot temperature; 

Rhot is the measured hot resistance; 

Tcold is the measured cold temperature; 

Rcold is the measured cold resistance. 
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5.3.3. Sensorless Speed Measurement Technique 

Full-load speed is a critical input that is required by the proposed algorithm. The 

algorithm was designed to work where the industrial process is not interrupted. Hence, a speed 

measurement technique that estimates the speed through the input current signal is needed and 

proposed. The speed estimation throughout utilizing the motor slot harmonics was the area of 

interest of many researchers. The following is a brief review of major research works pertaining 

to the sensorless speed estimation. In [116], a technique of utilizing the harmonics generated in 

the stator voltages of inverter fed three-phase squirrel-cage induction motors in extracting the slip 

frequency was proposed. The idea was based on the slot harmonics being independent of 

electromagnetic parameters of the motor except for a frequency of the rotating flux. The Fast 

Fourier Transform (FFT) technique was utilized in [117] to improve speed detection of inverter 

fed induction motors through the stator current signal. The method implies another algorithm to 

determine the number of rotor slots as a key component required by the method. The researchers 

claimed that the technique was successful in detecting speeds under different load conditions 

including load levels down to near no-load conditions and over a wide range of inverter output 

frequencies. In [118], an improved technique of speed measurement utilizing the motor current 

harmonics which arise from stator core ovality, rotor shaft misalignment, bearing wear, or rotor 

bar resistance variations was proposed. The technique does not require any user input. The 

current harmonics can be described by (5.7) 

fsh=f1 {(kR+nd) (
1-s

p
) +nω} (5.7) 

where, 

fsh is the current harmonic frequency; 

f1 is the source frequency; 

k=0,1,2....; R is the number of rotor slots; 

nd=0,±1,…, is the order of rotor eccentricity; 

s is per unit slip; 

p is the number of pole pairs; 

nω=±1,±3,…, is the airgap mmf harmonic order.  
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Results of different sampling time and frequency source were illustrated and compared 

against speed measurements with an optical tachometer showed maximum deviation of 4.4 rpm 

and minimum of 0.9 rpm. In [119], the Motor Current Signature Analysis (MCSA) was 

implemented in Labview. The MCSA is an electric machinery monitoring technology developed 

by the Oak Ridge National Laboratory (ORNL) in 1990 which is based on the recognition that a 

conventional electric motor can also act as an efficient and permanently connected transducer that 

detects small time dependent motor load variations and converts them into electric current signals 

that flow along the feeder cable of the motor. The current signal was acquired and fed into a 

demodulation process that was followed by Fast Fourier Transform (FFT) to obtain the spectrum 

in the frequency domain. The spectrum clearly showed the component of interest which is the 

motor speed. A comparison of spectrum estimation techniques for sensorless speed detection in 

induction machines was conducted in [120].   

In this chapter, the speed detection technique is based on an adaptive notch filter 

algorithm which was proposed in [121], where all mathematical principles and the governing 

equations can be found. The advantage of this algorithm is that it does not use slots or slots 

harmonics, hence slots number is not required. 
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The block diagram of the proposed filter is shown in Figure  5-5. 

The μ parameters shown in the block diagram are important to be identified according to 

the current drawn by the motor and shall be adjusted due to the following conditions: 

0<μ
1
<2f1 

0<μ
2
< (

2f1

A
)

2

 

where, A is the amplitude of the current signal. 

The choice of μ
3
 is interdependent on the choice of μ

2
. One may choose the value of μ

3
 

such that the product of μ
2
μ

3
 becomes of the same order of magnitude as μ

1
 [121]. One line 

current signal was obtained by a data acquisition measuring device with a sampling time of 10 

microseconds, and fed to the notch filter to extract the main component. Noise filtering and the 

Fast Fourier Transform (FFT) were used to extract the frequency which was used to calculate the 

required slip according to (5.8) which is derived from (5.7) in [118] 

fsh=f1 (1±
1-s

p
) (5.8) 

Based on (5.8), the estimated speed will have a certain range due to the ± sign within the 
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Figure  5-5. Block diagram of the notch filter [121]. 
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equation. Figure  5-6 shows the range of the detected full-load speed of 3 hp, 208 V induction 

motor. The average value of 1741 and 1747 rpm was calculated to be 1744 rpm and declared as 

the estimated speed. The estimated speed has 1.1 rpm absolute error when compared with the 

1743 rpm measured by contactless tachometer. The results of other partial loads speed of the 

same motor are shown in Table  5-I. 

 

 
 

 

 

 

5.3.4. Extracting the Induction Motor Unknown Parameters 

So far, all the required data which is needed to run the GA were collected. The task now 

 

Figure  5-6. The range of estimated full-load speed of 3 hp, 208 V induction motor 

 Table  5-I. Estimated Against Measured Speeds 

Loads 

[%] 

Measured Speed 

[rpm] 

Estimated Speed 

[rpm] 

100% 1743 1744 

75% 1761 1760.5 

50% 1774 1774 

25% 1787.5 1788 
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is to estimate the remaining unknown motor parameters, i.e. X1, Rfe, Xm, and R2 by using the GA 

technique. Three GAs were designed to extract the required parameters. The fitness functions of 

the three GAs were built based on the induction motor equivalent circuit detailed in [21] and 

shown in Figure  5-7.  

The following equations are used in the three GA fitness functions 

Ym=
1

jXm

+
1

Rfe

 (5.9) 

Y2=
1

R2

s
+jX2

 (5.10) 

Z2=
1

Ym+Y2

 (5.11) 

Z1=R1+jX1 (5.12) 

Z=Z1+Z2 (5.13) 

Is=
Vph

Z
 (5.14) 

Ir=Is [
1 (Ym+Y2)⁄

1 Y2⁄
] (5.15) 

Im=Is-Ir (5.16) 

R1 

R2 

X1 X2 

R2

(1 − s)

s
 

Xm  Rfe  

Is Ir 

Ife  Ima  

Vm  Vph  Z 

Im  

 

Figure  5-7. Per phase induction motor equivalent circuit 
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Vm=
Im

Ym

 (5.17) 

where, 

Ym  is per phase admittance of the magnetizing branch; 

Xm  is per phase leakage reactance of the magnetizing branch; 

Rfe  is per phase iron loss resistance; 

Y2  is per phase admittance of the rotor; 

R2  is per phase rotor resistance; 

X2  is per phase rotor leakage reactance; 

s is the slip; 

Z2  is per phase impedance of both the rotor and the magnetizing branches; 

Z1  is per phase stator impedance; 

R1  is per phase stator resistance; 

Z  is per phase total impedance; 

Vph  is phase voltage; 

Is  is per phase stator current; 

Ir  is per phase rotor current; 

Im  is per phase total magnetizing current; 

Vm  is per phase magnetizing voltage. 

The stator and rotor resistances shall be corrected to the full-load temperature Tfl 

according to (5.18) and (5.19) 

R1,corr=
R1(Tfl+K1)

Tcold+K1

 (5.18) 

R2,corr=
R2(Tfl+K2)

Tcold+K2

 (5.19) 

 

The total core loss, stator copper loss, and rotor copper loss will be estimated as in (5.20), 

(5.21) and (5.22) respectively 

Ph=3
Vm

2

Rfe

 (5.20) 
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Pscl=3Is
2R1,corr (5.21) 

Prcl=3Ir
2R2,corr (5.22) 

where, 

Ph  is total core loss; 

Pscl is total stator copper loss; 

Prcl is total rotor copper loss. 

Total losses will be determined by (5.23) 

Ptotal=Ph+Pscl+Prcl+Pfw+Psll (5.23) 

where, 

Ptotal is the total losses; 

Pfw is the friction & windage losses. 

The output power can be estimated by using (5.24) 

Pout=Pin,fl-Ptotal (5.24) 

where, 

Pout is the output power; 

Pin,fl is the measured input power. 

The input power will be estimated according to (5.25) 

Pin, calc=3real(VphIs
*) (5.25) 

where, 

Pin, calc is the calculated input power; 

Is
*  is the conjugate of the stator phase current. 

 

The three GAs have the same error functions as described in (5.26), (5.27), (5.28), (5.29) 

and (5.30) 

f1=
real(Ism)-real(Is)

real(Ism)
 (5.26) 
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f2=
imag(Ism)-imag(Is)

imag(Ism)
 

(5.27) 

f3=
Pin, fl-Pin, calc

Pin, fl

 
(5.28) 

f4=
θ1-θ2

θ1

 
(5.29) 

f5=
P-Pout

P
 

(5.30) 

where, 

Ism is the measured per phase stator current; 

θ1  is the measured phase angle of the input current; 

θ2  is the per phase impedance phase angle; 

P  is nameplate power. 

The fitness function which has the maximum value of 1 is as in (5.31) 

ff=
1

1+ ∑ fi
5
i=1

 (5.31) 

The three GAs are run in the following sequence and certain observations should be done 

carefully to guarantee best results of the algorithm. In GA1, the core loss will be approximated by 

using (5.32) 

Ph, calc=Pin, fl-P-Pscl-Prcl-Pfw-Psll (5.32) 

The approximated core loss Ph, calc is compared against the total core loss Ph of (5.20). 

This comparison is utilized to adjust the constraints of Rfe. The values of both Rfe and Ph from 

GA1 are used as fixed values in GA2. This makes R2 converge to a stable value. Hence, GA2 

works with only three variables (i.e. X1, Xm, and R2). The values of the 4 variables of 10 

consecutive runs of both GA1 and GA2 are tabulated and values of best fitness are used as new 

constraints for both GA1 and GA2. A new round of 10 runs follows, and this process iterates 

until a stable value of R2 is achieved. 

Figure  5-8 shows that the GA can reach a stable fitness value after about the 50
th

 

generation.  
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5.3.5. Rotor Resistance Calibration 

As input power is primarily a function of R2/s , the value of R2 shall be calibrated 

according to the IEEE Std 112
™

-2004 procedure described in section 6.9 of the standard. An 

iteration process shall start with an assumed value of R2/s. The value of R2/s is adjusted for each 

iteration until the calculated value of input power Ps and input current I1 both agree with the 

measured values of input current and input power within 1%.   

The value of R2 is then transferred and fixed in GA3. This makes other variables reach 

stable values. Hence, GA3 also has 3 variables (i.e. X1, Xm, and Rfe). GA3 will run, and the best 

values of the three variables after each 10 runs will be used as new constraints until stable values 

are achieved and the 4 parameters of the induction machine are declared. R1 is already known, 

and X2 will be determined based on Table  2-I. 

 

 

 

Figure  5-8. Fitness of the objective function 
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5.3.6. IEEE Form F2-Method F1 for Full-Load and Partial Load Efficiency Estimation  

The six motor parameters are used to estimate the full-load and other partial loads by 

using the IEEE Form F2-Method F1 calculations [21]. The value of stray load loss for 75%, 50% 

and 25% loads are as proposed in (2.7) - (2.9) respectively. 

 

5.4. Experimental Results and Analysis 

A 3.0 hp induction machine with a nameplate as detailed in Table  5-II was tested using 

the proposed algorithm. The test was conducted by using a programmable power supply, a 13 kW 

dynamometer driven by a field control unit and supplied with a torque transducer, a multi-

channel signal conditioner, and high resolution digital dc voltmeter which is used to display the 

dc analog output of the multi-channel signal conditioner which corresponds to the value of the 

applied torque. The dynamometer load is a resistor bank. The DC test was performed on the 

machine and the stator cold resistance and cold temperature were measured and recorded. The 

motor was run for 8 hours to reach its temperature stability. The hot temperature was measured 

by using the resistance procedure. One line current signal was needed to be acquired by using a 

data acquisition device to be used in the speed detection technique. The speed was also measured 

by using a contactless tachometer just for evaluation purpose. Table  5-III shows the machine 

measured efficiencies and their corresponding speeds. The data was transferred to the designed 

algorithm and the six parameters were extracted and tabulated in Table  5-IV. Those parameters 

were used in IEEE Form 2-Method F1 calculations, and the full-load efficiency and other partial 

loads efficiencies were declared as shown in Table  5-V. It can be noticed from Table  5-V that the 

full-load and partial loads speeds can be also estimated by using IEEE Form 2-Method F1. The 

table also shows the absolute errors of both efficiency and speed compared with the results of 

Table  5-IV. 

 

5.5. Algorithm Validation (30 Motors Tested) 

The proposed algorithm is applied in testing 30 induction motors of different kinds and 

power ratings. All motors are of 60 Hz rated frequency. All values of stray load loss and full-load 

temperature used in testing the 30 machines are the measured values obtained from the 
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supporting data associated to the algorithm.  

Figure  5-9 shows the experimental setup of testing 3.0 hp machine in Dr. P. D. Ziogas 

Laboratory of Concordia University. 

The results are tabulated and shown in Table  5-VI. The proposed algorithm shows an 

acceptable level of accuracy when the estimated efficiencies are compared to their associated 

measured values.  

The other factor which is important in the validation process of the proposed algorithm is 

the level of consistency of the extracted parameters with terminal voltage and current 

measurements. To demonstrate this consistency, 17 out of the 30 tested motor are selected. The 

proposed method is used to extract the parameters of each induction motor. The parameters are 

used in the IEEE per phase equivalent circuit of Figure  5-7. The measured per phase voltage is 

applied to the circuit, and the input current is calculated. The results are shown in Table  5-VII. 

Table  5-II. Nameplate Details of 3 hp Motor 

Hp VOLTS AMPS RPM 

3 208 10.3 1740 

POLES EFF. INS. DESIGN 

4 80.6 B B 

 

Table  5-III. 3 hp Measured Efficiencies and Speeds 

Load 

[%] 

Speed 

[rpm] 

Efficiency 

[%] 

100% 1743 80.1 

75% 1761 79.8 

50% 1774 77.1 

25% 1787 65.0 

 

Table  5-IV. Six Parameters of the Tested Motor 

R1 X1 Rfe Xm X1 R2 

0.81167 0.21068 253.826 18.3924 0.31445 0.49923 

 

Table  5-V. 3 hp Estimated Efficiencies and Speeds 

Load 

[%] 

Speed 

[rpm] 

Error 

[rpm] 

Efficiency 

[%] 

Error 

[%] 

100% 1744 1 80.7 0.6 

75% 1759 2 79.8 0.0 

50% 1773 2 76.2 0.9 

25% 1786 1 65.4 0.4 
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The percentage of deviation of the calculated current from the measured value is presented in the 

table. It can be seen that the highest error (deviation) is with motor number 22 (i.e. 125 hp) where 

the error is found to be 4.19%. As per the table of accuracy in Table  5-VI, the percentage error of 

the estimated full-load efficiency of the motor number 22 is 0.3%, which is within the acceptable 

range of error. It means that even with high deviation of calculated input current compared to the 

measured value, the percentage error of the estimated efficiency is still within the acceptable 

level.  

This validation gives credibility to the proposed tool and demonstrates the level of 

confidence in the capability of the tool in estimating induction machine efficiency without the 

presence of the measured value. It also gives credits to the applicability of the tool in industry.

 

Figure  5-9. The experimental setup for testing 3.0 hp induction motor: 1, programmable power supply; 2, multi-

channel signal conditioner; 3, high-resolution dc voltmeter; 4, field control unit; 5, 13 kW dynamometer; 6, 

torque transducer; 7, 3.0 hp IM; 8, resistor bank. 

Photo is a courtesy of Concordia University. 
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Table  5-VI. Measured versus Estimated Efficiency of 30 Induction Motors 

No. 

Nameplate Measured Efficiency Estimated Efficiency Absolute Error 

V
O

L
T

S
 

H
P

 

A
M

P
S

 

R
P

M
 

D
E

S
IG

N
 

IN
S

 

100% 75% 50% 25% 100% 75% 50% 25% 100% 75% 50% 25% 

1 460 1 1.4 1745 B F 84.4 83.6 80.3 68.0 84.7 83.8 79.5 67.1 0.3 0.2 0.7 0.9 

2 460 1 1.5 1740 B F 84.4 83.8 80.8 70.4 84.8 83.9 80.5 70.7 0.4 0.1 0.4 0.3 

3 575 1 1.2 1720 B F 81.9 81.5 78.2 66.7 82.8 81.6 77.7 66.3 0.9 0.1 0.6 0.4 

4 575 1 1.1 1745 B F 84.7 84.4 82.1 72.8 84.9 84.1 81.0 71.0 0.2 0.3 1.1 1.8 

5 575 1 1.1 1745 B F 84.8 84.5 81.7 72.6 85.2 84.5 81.6 72.0 0.3 0.0 0.1 0.6 

6 575 1 1.2 1750 B F 86.6 87.1 85.8 77.3 87.6 87.5 85.5 77.3 1.0 0.4 0.3 0.0 

7 575 1 1.2 1745 B F 83.2 82.6 79.3 67.5 83.8 82.7 78.6 66.3 0.5 0.1 0.7 1.2 

8 575 1.5 1.6 1725 B F 82.1 82.4 80.5 71.5 82.9 82.7 79.8 69.7 0.8 0.3 0.7 1.9 

9 460 2 3 1180 B F 87.3 87.1 84.9 76.8 87.9 86.5 82.6 72.5 0.6 0.5 2.3 4.2 

10 460 2 2.5 3490 B F 88.3 88.0 85.9 82.5 88.8 88.4 86.0 82.8 0.5 0.4 0.1 0.3 

11 208 3 10 1740 B B 80.1 79.8 77.1 65.0 80.7 80.0 76.4 65.7 0.6 0.2 0.7 0.7 

12 460 5 6.5 1750 B F 88.9 90.0 89.9 86.1 89.2 89.5 88.4 83.3 0.3 0.5 1.5 2.8 

13 460 7.5 8.9 1755 B B 91.0 91.7 91.4 87.8 90.3 91.4 91.4 88.3 0.7 0.3 0.0 0.5 

14 575 7.5 6.9 3545 B F 89.4 88.9 86.7 79.0 89.3 88.4 85.5 76.3 0.1 0.5 1.2 2.7 

15 460 10 12 1745 B F 90.1 90.9 90.8 87.7 90.4 90.8 90.0 85.6 0.3 0.1 0.8 2.1 

16 575 15 16 1760 B F 91.6 92.2 92.0 88.8 91.9 92.4 91.5 87.0 0.3 0.2 0.5 1.8 

17 460 20 25 1175 B F 91.2 92.1 92.0 89.2 91.6 92.2 91.3 87.8 0.4 0.1 0.7 1.4 

18 460 50 58 1770 B F 94.4 94.9 94.9 93.1 94.8 95.3 95.1 92.7 0.5 0.4 0.1 0.3 

19 460 60 70 1780 B F 92.5 93.0 92.7 89.3 93.0 93.3 92.4 88.3 0.5 0.3 0.3 1.0 

20 460 75 82 3580 A F 94.3 94.2 93.3 89.2 94.5 94.3 92.9 88.3 0.1 0.0 0.3 0.9 

21 575 100 93 1770 B F 93.6 93.7 92.9 89.0 93.6 93.3 92.0 88.2 0.1 0.4 0.9 0.8 

22 575 125 107 1785 B F 94.4 94.8 94.5 92.0 94.7 95.0 94.2 92.0 0.3 0.2 0.3 0.1 

23 575 150 132 1785 B F 95.7 96.0 95.8 94.0 96.0 96.2 95.9 94.2 0.4 0.2 0.0 0.2 

24 460 200 235 1790 B F 95.2 95.0 93.9 89.9 95.8 95.7 94.8 91.4 0.6 0.7 0.9 1.5 

25 460 250 284 1785 B F 95.1 95.3 94.8 92.3 95.3 95.4 94.5 93.1 0.2 0.1 0.3 0.8 

26 460 300 329 1785 B F 95.4 95.7 95.5 93.4 95.6 95.9 95.6 92.4 0.3 0.2 0.0 1.0 

27 460 350 402 1790 B F 94.9 94.8 93.9 89.9 95.1 95.0 94.2 90.7 0.2 0.2 0.3 0.8 

28 575 400 353 1788 B F 95.0 95.0 94.4 91.3 95.2 95.2 94.2 90.6 0.2 0.2 0.2 0.7 

29 575 500 446 1789 B F 96.6 96.6 95.9 93.0 96.8 96.6 96.2 93.5 0.2 0.0 0.2 0.5 

30 575 500 465 1185 B F 94.7 94.8 94.2 91.1 94.8 94.8 93.7 91.2 0.0 0.0 0.5 0.1 
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5.6. Summary 

In this chapter, a novel algorithm for in-situ induction motor efficiency estimation by 

using a combination of GA procedures and the IEEE Form 2-Method F1 calculations is proposed. 

It was shown that using the assumed values of stray load loss and hot temperature can 

significantly increase the error and reduce the accuracy of the estimated efficiency. Hence, the 

algorithm was designed to utilize test data of large number of induction motors provided by 

Hydro-Québec and BC hydro. The algorithm uses the measured stray load loss and hot 

temperature. The algorithm requires only one load point which is full-load with its corresponding 

rms values of voltage, current, and power obtained at the motor terminals. 

The genetic algorithm is briefly introduced in subsection  5.2.  

A detailed flow chart of the proposed algorithm is presented in subsection  5.3. 

The impact of using the assumed values of stray load loss and full-load temperature 

instead of the measured values and the strategy of assigning these values are illustrated in 

subsection  5.3.1. 

Table  5-VII. Measured versus Calculated Input Full-Load Currents  

No. 

Nameplate 

Measured 

Full-Load 

Current 

(A) 

Calculated 

Full-Load 

Current 

(A) 

Error 

(%) V
O

L
T

S
 

H
P

 

A
M

P
S

 

R
P

M
 

D
E

S
IG

N
 

IN
S

 

1 460 1 1.4 1745 B F 1.504 1.543 2.60 

2 460 1 1.5 1740 B F 1.450 1.470 1.33 

3 575 1 1.2 1720 B F 1.186 1.201 1.22 

4 575 1 1.1 1745 B F 1.208 1.197 0.88 

11 208 3 10 1740 B B 9.834 9.802 0.32 

14 575 7.5 6.9 3545 B F 7.176 7.065 1.54 

16 575 15 16 1760 B F 15.460 15.194 1.72 

17 460 20 25 1175 B F 24.449 24.263 0.76 

18 460 50 58 1770 B F 55.835 56.454 1.11 

19 460 60 70 1780 B F 70.243 70.868 0.89 

20 460 75 82 3580 A F 84.708 86.614 2.25 

21 575 100 93 1770 B F 92.233 91.672 0.61 

22 575 125 107 1785 B F 111.008 115.660 4.19 

23 575 150 132 1785 B F 134.669 137.094 1.80 

25 460 250 284 1785 B F 281.539 288.071 2.32 

26 460 300 329 1785 B F 326.995 338.358 3.48 

30 575 500 465 1185 B F 462.953 467.838 1.06 

 

 



126 

 
 

Novel formulas of estimation the friction and windage losses are presented in 

subsection  5.3.1.2.  

The speed estimation technique that is detailed in subsection  5.3.3 which is used in the 

proposed algorithm needs the current signal acquisition of only one line. 

The algorithm is extensively evaluated and assessed by testing 30 induction motors of 

different kinds and power ratings. The results are presented in subsection  5.5. and showed an 

acceptable level of accuracy. 

The algorithm is not only deemed an in-situ efficiency determination tool; it can also be 

used as a promising tool for on-site efficiency estimation that might eliminate the need to the 

costly dynamometer procedure.  
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CHAPTER SIX 

 

6. A Novel Full-Load Efficiency Estimation Technique for Induction Motors Operating 

with Unbalanced Voltages 

This chapter presents a novel algorithm for in situ full-load efficiency estimation of 

induction motors operating with unbalanced voltages. The goal of this research work is to design 

a reliable in situ efficiency estimation tool that can be used in industry to not only estimate 

induction motors efficiency, but also to help derate induction motors operating with unbalanced 

voltages. The proposed technique utilizes the genetic algorithm, IEEE Form F2-Method F1 

calculations and pre-tested motor data. The method requires a DC test, full-load rms voltages, 

currents, input power and speed measurement. The proposed algorithm uses a sensorless on-line 

speed measurement technique. The algorithm is evaluated by testing two induction motors with 

different voltage unbalance conditions. The results show acceptable accuracy. The repeatability 

of the algorithm is assessed. The usability of the algorithm with balanced voltages is also 

evaluated. 

 

6.1. Introduction 

Induction motors are designed to operate with balanced voltages. Voltage unbalance 

increases rotor losses which results in stator and rotor temperature rises that can cause serious ill 

effects on the three-phase induction motors, such as, reduction in output torque, vibration and 

overheating that lead to a reduction on insulation life of the machine [35]. IEEE attributes the 

excessive temperatures in parts of the rotor of induction motors to the excessive unbalanced 

negative sequence currents [37]. The fact that there are only sporadic reports of motor failures 

due to voltage unbalance is because many motors operating in the industry are less than fully 

loaded, and this can provide the needed thermal margin which will allow those motors to operate 

with a voltage unbalance condition without failure [38]. The voltage unbalance can exist by 

unsymmetrical transformer windings or transmission impedances, unbalanced loads, large single-

phase loads [39], incomplete transposition of transmission lines, open delta transformer 

connections [78], blown fuses on three-phase capacitor bank, operation of single-phase loads at 
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different times, or defective transformers in power systems.   

Induction motors are always prone to stresses due to voltage unbalance as there is no 

power supply that can be perfectly balanced. In power systems which supply large single-phase 

loads, the level of unbalance can be considerably large [36]. According to ANSI/NEMA MG 1-

2011, it is not recommended to operate induction motors with voltage unbalance above 5% [15]. 

The severe effect of voltage unbalance on the performance of the induction motors was the area 

of interest of many researchers since 1930’s of the last century [45] where there was a trial to 

analyze the performance of three-phase induction motor operating under unbalanced voltages by 

using the equivalent circuit and the symmetrical component. In the 1950’s, some other useful 

approaches to the same issue were presented [46] [47] [48] [49]. In [50], it was concluded that the 

temperature rise above balanced operating temperature is due to an increase in copper loss. It was 

demonstrated that the negative sequence current has the worst effect in terms of heating the 

motor, rather than an equal value of positive sequence and that is due to the low negative 

sequence rotor resistance. It was noticed that core loss and friction and windage losses remain 

essentially independent of unbalance of negative sequence voltage that is less than 15%. It was 

also observed that negative sequence components cause vibration that may be injurious to 

bearings, to insulation, and to interconnecting mechanical parts of the machine.  Important 

studies was conducted in [51] where three 5 hp, 220 volts, 1800 rpm, and of NEMA design type 

B, from different manufacturers were tested for temperature rise. To derate the machines, they 

were run under fixed unbalance and different loads. Two different methods were used to measure 

the winding temperature: (a) Change in winding resistance, and (b) thermocouples. The exact 

temperature at shut-off was extrapolated by having many resistance measurements for different 

elapsed time readings. 14 thermocouples were used to determine the hot spots. The negative 

sequence voltage was the main parameter that was used to derate the three motors. This study 

concluded that there is a need for a severe reduction in the rating of induction motors when 

operated with unbalanced line voltages. Important curves were produced in [34] which show the 

relationship between the percentage of voltage unbalance and the percentage of increase of motor 

losses and motor heating. In [52], a useful study stated that “It is not sufficient to merely know the 

percent voltage unbalance, but it is equally important to know how they are unbalanced”. In this 

study, a detailed mathematical technique to analyze the performance of an induction motor under 

unbalanced voltages was presented. The proposed technique shortened the conventional 
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mathematical equations needed to achieve the same performance analysis on the machine. The 

study concluded that, besides what mentioned above of the importance of knowing the manner of 

the unbalanced voltages and its marked effect on the increase in losses, the rotor losses increase 

at a faster rate than the stator losses as the voltages become more unbalanced. The analysis 

included only the magnitude of the positive and negative sequence voltages without considering 

the effect of the angle on the performance of the machines. 

The Genetic Algorithm (GA) is an evolutionary procedure that is successfully employed 

in studying the performance of induction motors. The GA is a very practical tool in on-line 

induction motor efficiency estimation. It is used to identify the electrical parameters of the 

machine which is an important requirement to accurately estimate the efficiency. The application 

of the GA in evaluating the performance of induction motors is presented and validated in many 

research works [1], [41], and [104]-[110]. [106] [108] [109] [110] [111] [112]        

In this chapter, a novel technique for in situ efficiency estimation of three-phase induction 

motors operating with unbalanced voltages, utilizing the GA, IEEE Form F2-Method F1 

calculations and pre-tested motors data is proposed. The algorithm utilizes a database of large 

number of induction motors tested for efficiency in the Laboratoire des Technologies de 

l'Énergie, Institut de Recherche, Hydro-Québec, Shawinigan, Québec, Canada.  The data has a 

wide range of motor type and power ratings. Another set of data was received from BC hydro 

which includes a full test of 55 used (aged) induction motors. The database is utilized to specify 

the stray load loss and the friction and windage loss for induction motors that have similarities 

with the motors within the data. Applicability and feasibility of the method are approved by 

testing 2 induction motors under different levels of voltage unbalance. The repeatability of the 

algorithm is assessed. The usability of the algorithm with balanced voltages is also evaluated. 

 

6.2. The Proposed Algorithm 

The proposed algorithm utilizes the Genetic Algorithm (GA) which was introduced and 

discussed in Chapter 5. The proposed algorithm assumes that the cold resistance and cold 

temperature of the stator winding of the induction motor under test are predetermined from data 

sheets or during a turn off. The value of rotor leakage reactance X2 can be determined by 

identifying the value of the stator leakage reactance X1 and the NEMA design of the motor 



130 

 
 

according to Table I. Four parameters out of six are to be identified; the stator leakage reactance 

X1, the core loss resistance Rfe, the magnetizing leakage reactance Xm, and the rotor resistance 

R2. Those four parameters represent the four variables of each chromosome in the GA as in (6.1) 

Chromosome=[X1, Rfe, Xm, R2 ] (6.1) 

A flow chart that fully pictures the proposed algorithm is illustrated in Figure  6-1. The 

first input to the algorithm is the predetermined values of the stator winding cold resistance Rcold, 

and cold temperature Tcold. Then, the algorithm is fed with the nameplate details, full-load rms 

measured values for three line-to-line voltages, three line currents, total input power and one line 

current signal acquired by data logging device of at least 10 seconds length and preferably of 10 

microsecond sampling time. 
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6.2.1. Determination of Full-Load Stray Load Loss and Friction and Windage Losses 

The stray load loss determination plays an important role in the precise evaluation of the 

motor efficiency. In [122], IEEE 112-B was considered the most suitable standard for the stray-

load loss measurements and both IEC 34-2 and JEC 37 overestimate the motor efficiency because 

they define, instead of measuring, the stray-load losses. On the other hand, IEEE 112-B also 

assumes the stray load loss based on the motor power rating in case the measurement cannot be 

performed, and again, the assumed values seem to overestimate the real stray load loss which will 

not allow the correct efficiency value to be obtained [123]. This is in line with the results 
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Figure  6-1. The proposed algorithm flow chart 
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presented in a study conducted by the authors of this work [88]. However, the stray load loss 

measurements are not simple to perform and they are severely influenced by the measurement 

errors. 

Stray load loss of a particular motor is affected by the magnitude and the angle of voltage 

unbalance factor, and due to the unlimited voltage unbalance combinations, where each has 

different effects on the machine in terms of losses, and hence, each combination produces a 

different value of stray load loss; this situation creates a large amount of uncertainty in the 

estimation of the stray load loss. The proposed algorithm is designed to perform in-situ where 

stray load loss measurements is not allowed due to the intrusive nature of those measurements. 

Based on this and on the above mentioned discussion, it is proposed in this paper to utilize the 

measured values of the stray load loss in the data of Hydro-Québec and BC hydro to have a 

reasonable approximation of the stray load loss. The measured stray load loss of the data is based 

on balanced power tests, so it can be considered as an underestimated value if compared to the 

stray load loss of the same machine when operating with unbalanced voltages. On the other hand, 

if the stray load loss is calculated according to the International Standard IEC 60034-2-1 [95] as 

in (2.6), its value will be overestimated as discussed above. Hence, the better approximation of the 

stray load loss is by taking the average of both measured and calculated values. The strategy to 

assign the measured stray load loss from the data is as follows: 

6.2.1.1. Motor Has Similarity with the Data 

Whenever data is mentioned, it means the Hydro-Québec/BC hydro data.  

If the motor under test is similar to any of the data’s motors, the algorithm will search the 

data using the following strategy: 

 If power, rated voltage, and insulation class are similar, the measured stray load 

loss will be used. 

 If power, rated voltage, number of poles, and insulation class are all similar, the 

measured stray load loss will be used. 

6.2.1.2. Motor Has No Similarity with the Data 

In this case, the stray load loss will be assumed according to (2.6). 
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6.2.2. Determination of Friction & Windage Losses 

The extra heating in induction motors operating with unbalanced voltages is due to the 

increase in copper loss. The negative sequence current has a worse effect in terms of heating the 

motor. The core loss and friction and windage losses remain essentially independent of unbalance 

of negative sequence voltage that is less than 15% [50]. In this study, all tests were conducted 

within the 5% limit of unbalance which is set by NEMA. The proposed algorithm follows the 

following strategy in estimating the friction and windage losses. 

 

6.2.2.1. Motor Has Similarity with the Data 

 If power and number of poles is similar, the measured F&W will be used. 

 

6.2.2.2. Motor Has No Similarity with the Data 

In this case, the algorithm will follow a different strategy which is similar to that 

presented in Chapter 5. The strategy is as follows: 

 If number of poles is 2, then the F&W will be calculated as in (5.3). 

  If number of poles is 4, then the F&W will be calculated as in (5.4). 

 If number of poles is 6, then the F&W will be calculated as in (5.5). 

 

 

6.2.3. Sensorless Speed Measurement Technique 

Speed measurement plays a key role in the process of induction motors efficiency 

estimation. Measuring the speed by an intrusive procedure is not allowed in many industrial 

situations. On-line speed measurement is the suitable way to deal with such a situation.  The 

algorithm utilizes the same on-line speed measurement technique that was presented and 

discussed in Chapter 5, subsection  5.3.3. 
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6.2.4. Stator Windings Temperature Measurement 

Determination of the stator winding temperature is one of the important factors in the 

process of a precise induction motors efficiency estimation. Due to the in situ nature of the 

proposed algorithm, the same procedure that was presented in Chapter 5, subsection  5.3.2 to 

determine the stator winding temperature is followed. 

 

6.2.5.  Determination of Positive and Negative Sequence Components 

The three unsymmetrical line-to-line voltages are measured and recorded. They are used 

in the following group of equations to determine the three unsymmetrical per phase voltages and 

the positive and negative sequence voltages with their defined angles [124] [125]. The angle of 

Vab is predefined as in (6.2) 

θab=0
o
 (6.2) 

The angles of Vbc and Vca are calculated by using the cosine law as follows: 

θVab-bc
=cos-1 (

Vab
2 +Vbc

2 -Vca
2

2VabVbc

) (6.3) 

θVbc-ca
=cos-1 (

Vbc
2 +Vca

2 -Vab
2

2VbcVca

) 
(6.4) 

θVbc
=-180

o
+θVab-bc

 (6.5) 

θVca
=θVab-bc

+θVbc-ca
 (6.6) 

The positive and negative sequence voltages V1 and V2 are calculated as in (6.7) 

[
V1

V2
] =D-1 [

Vab

Vbc
] (6.7) 

where, 

D= [1-a2 1-a

a2-a a-a2
] (6.8) 

where, a = -0.5+j0.866 

The three unsymmetrical per phase voltages Va, Vb and Vc are calculated as in (6.9) 
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[

Va

Vb

Vc

] =A [
0

V1

V2

] (6.9) 

where, 

A= [
1 1 1

1 a2 a

1 a a2

] (6.10) 

To make Va to be the reference vector, the absolute value of the angle of Va is added to all 

other vectors to redefine new angles as follows: 

θVa, new
=θVa

+|θVa
|=0

o
 (6.11) 

θVb, new
=θVb

+|θVa
| (6.12) 

θVc, new
=θVc

+|θVa
| (6.13) 

θVab, new
=θVab

+|θVa
| (6.14) 

θVbc, new
=θVbc

+|θVa
| (6.15) 

θVca, new
=θVca

+|θVa
| (6.16) 

θV1, new
=θV1

+|θVa
| (6.17) 

θV2, new
=θV2

+|θVa
| (6.18) 

The angles of the three input currents are determined as follows: 

θIa
=cos-1 |

Pa

VaIa

| (6.19) 

θIb
=cos-1 |

Pb

VbIb

| 
(6.20) 

θIc
=cos-1 |

Pc

VcIc

| 
(6.21) 

where, 

𝑃𝑎 is the measured input power of phase a; 
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𝑉𝑎 is the calculated voltage of phase a; 

𝐼𝑎 is the measured input current of phase a; 

𝑃𝑏 is the measured input power of phase b; 

𝑉𝑏 is the calculated voltage of phase b; 

𝐼𝑏 is the measured input current of phase b; 

𝑃𝑐 is the measured input power of phase c; 

𝑉𝑐 is the calculated voltage of phase c; 

𝐼𝑐 is the measured input current of phase c. 

The positive and negative sequence currents are identified as follows: 

[
0

I1

I2

] =A
-1 [

Ia

Ib

Ic

] (6.22) 

where, 

A
-1

=
1

3
[
1 1 1

1 a a2

1 a2 a

] (6.23) 

 

6.2.5.1. Example Calculations 

As an example for the above mentioned calculations and to know the magnitude and 

angle of the voltage unbalance, let the three line-to-line voltages at the terminals of a motor of 

460 V rated voltage be as follows: 

Vab=473 V 

Vbc=460 V 

Vca=434 V 

By applying the procedure described in subsection  6.2.5, the calculated per phase three 

voltages and the positive and negative voltages will be as follows: 

Va=260.89 V∠-28.94
o
 

Vb=275.34 V∠-152.71
o
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Vc=253.02 V∠-86.29
o
 

V1=262.92 V∠-31.79
o
 

V2=13.16 V∠68.50
o
 

To make Va as the reference, a value of +28.94
o
 must be added to the three phases which 

will result in the following redefined phasors: 

 Va=260.89 V∠0
o
 

Vb=275.34 V∠-123.77
o
 

Vc=253.02 V∠115.23
o
 

V1=262.92 V∠-2.84
o
 

V2=13.16 V∠97.44
o
 

The percentage complex voltage unbalance factor can be determined as in 

CVUF=100
V2
̅̅̅̅

V1
̅̅̅̅

 (6.24) 

By substituting the obtained complex values of the positive and negative voltages into 

(6.24), the results will be as follows: 

CVUF=0.05∠100.28
o
 

 

 

 

6.2.6. Identifying the Electrical Parameters 
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All the required data which is needed to run the GA are acquired so far. According to the 

algorithm flow chart in Error! Reference source not found., the unknown motor parameters, 

.e. X1, Rfe, Xm, and R2, are to be identified by using the GA technique. Three GAs were designed 

to extract the required parameters. The fitness function for each GA was built based on the 

positive sequence equivalent circuits shown in Figure  6-2(a). The negative sequence equivalent 

circuit is shown in Figure  6-2(b). 

The following equations that are derived from the positive sequence equivalent circuit are 

used in the three GAs fitness functions. 

Ym=
1

jXm

+
1

Rfe

 (6.25) 

 

R1 X1 X2 

R2

s
 

Xm  Rfe  

Is1 Ir1 

Ife1  Ima1  

Vm1  Vph1  

Im1  

Z1 

(a)

R1 X1 X2 

R2

2-s
 

Xm  Rfe  

Is2 Ir2 

Ife2  Ima2  

Vm2  Vph2  

Im2  

Z2 

(b)  

Figure  6-2. Induction machine exact equivalent circuit with unbalanced voltages; (a) Positive Sequence; 

(b) Negative sequence [132]. 
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Yr=
1

R2

s1
+jX2

 
(6.26) 

Zr=
1

Ym+Yr

 
(6.27) 

Z1=R1+jX1 (6.28) 

Z=Z1+Zr (6.29) 

Is1
=

Vph1

Z
 

(6.30) 

Ir1
=Is1

[
1 (Ym+Yr)⁄

1 Yr⁄
] 

(6.31) 

Im1
=Is1

-Ir1
 (6.32) 

Vm1
=

Im1

Ym

 
(6.33) 

Zm=
Vph1

Is1m

 
(6.34) 

where, 

Ym is per phase admittance of the magnetizing branch; 

Xm is per phase leakage reactance of the magnetizing branch; 

Rfe is per phase iron loss resistance; 

Yr is per phase admittance of the rotor; 

R2 is per phase rotor resistance; 

X2 is per phase rotor leakage reactance; 

s1 is the slip; 

Zr is per phase impedance of both the rotor and the magnetizing branches; 

Z1 is per phase stator impedance; 

R1 is per phase stator resistance; 

Z is per phase total impedance; 

Vph1
 is the positive sequence phase voltage; 
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Is1
 is the positive per phase estimated stator current; 

Ir1
 is the positive per phase estimated rotor current; 

Im1
 is the positive per phase estimated total magnetizing current; 

Vm1
 is the positive per phase estimated magnetizing voltage; 

Zm is the positive sequence per phase impedance calculated based on measured 

positive sequence current;  

Is1m
 is the measured positive sequence current. 

The stator and rotor resistances are to be corrected to the full-load temperature Tfl 

according to (6.35) and (6.36) 

R1,corr=
R1(Tfl+K1)

Tcold+K1

 (6.35) 

R2,corr=
R2(Tfl+K2)

Tcold+K2

 
(6.36) 

The total core loss, stator copper loss and rotor copper loss are estimated as in (6.37), 

(6.38) and (6.39) respectively 

Ph=3
Vm1

2

Rfe

 (6.37) 

Pscl=3Is1

2 R1,corr (6.38) 

Prcl=3Ir1

2 R2,corr (6.39) 

where, 

Ph  is total core loss; 

Pscl is total stator copper loss; 

Prcl is total rotor copper loss. 

Total losses will be determined by (6.40) 

Ptotal=Ph+Pscl+Prcl+Pfw+Psll (6.40) 

where, 

Ptotal is the total losses; 
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Pfw is the friction & windage losses. 

The output power can be estimated by using (6.41) 

Pout=Pin,fl-Ptotal (6.41) 

 

where, 

Pout  is the output power; 

Pin,fl  is the measured input power. 

The total input power will be calculated according to (6.42) and (6.43) 

Pin, calc1=3real(Vph1
Is1m

* ) (6.42) 

Pin, calc2=3real(Vph1
Is1

* ) (6.43) 

where, 

Pin, calc1 is the calculated input power from measured current; 

Is1m

*  is the conjugate of the positive sequence measured stator current; 

Pin, calc2 is the calculated input power from calculated current; 

Is1

*  is the conjugate of the positive sequence estimated stator current in (6.30). 

The two values of the input power are used to produce an error function as in (6.46). The 

three GAs have the same error functions as described in (6.44), (6.45), (6.46), (6.47), and (6.48) 

f1=
real(Is1m

)-real(Is1
)

real(Is1m
)

 (6.44) 

f2=
imag(Is1m

)-imag(Is1
)

imag(Is1m
)

 
(6.45) 

f3=
Pin, calc1-Pin, calc2

Pin, calc1

 
(6.46) 

f4=
θZm

-θZ

θZm

 
(6.47) 
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f5=
P-Pout

P
 

(6.48) 

where, 

θZm
 is the angle of the measured input impedance Zm; 

θZ  is the angle of the calculated input impedance Z; 

P is nameplate power. 

The fitness function which has the maximum value of 1 is as in (6.49) 

ff=
1

1+ ∑ fi
5
i=1

 (6.49) 

The three GAs are to be run in the following sequence, and certain observations should be 

done carefully to guarantee best results of the algorithm. In GA1, the core loss is approximated 

by using (6.50) 

Ph, calc=Pin, fl-Pout-Pscl-Prcl-Pfw-Psll (6.50) 

The approximated core loss Ph, calc is compared against the total core loss Ph of (6.37). 

This comparison is utilized to adjust the constraint of Rfe. The values of both Rfe and Ph from 

GA1 are used as fixed values in GA2. This makes R2 converge to a stable value. Hence, GA2 

works with only three variables (i.e. X1, Xm and R2). The values of the 4 variables of 10 

consecutive runs of both GA1 and GA2 are tabulated and the values of best fitness are used as 

new constraints for both GA1 and GA2. New round of 10 runs follows, and this process iterates 

until a stable value of R2 is achieved. 

  

6.2.7. Rotor Resistance Calibration 

The value of R2 that is transferred to GA3 shall be carefully calibrated until the best 

fitness of GA3 is acquired. This makes other variables reach stable values. Hence, GA3 will also 

have 3 variables (i.e. X1, Xm, and Rfe). GA3 iterates, and the best fitness of the three variables 

after each 10 runs is used as new constraints until stable values are achieved and the 4 parameters 

of the induction machine is declared. R1 is already known, and X2 will be determined based on 

Table  3-I. 
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6.2.8. IEEE Form F2-Method F1calculations  

The six motor parameters are used in IEEE Form F2-Method F1 calculations to estimate 

positive sequence output power Pcov1 as illustrated in the following equations (6.51) through 

(6.71) 

Z2=√(R2 s1⁄ )2+X2
2 (6.51) 

G2= (R2 s1⁄ ) Z2
2⁄  (6.52) 

G=G2+Gfe (6.53) 

B2=-(X2 Z2
2⁄ ) (6.54) 

Bm=-(1 Xm⁄ ) (6.55) 

B=B2+Bm (6.56) 

Y2=√G
2
+B2 

(6.57) 

Rg= G Y2
2⁄  (6.58) 

R=R1+Rg (6.59) 

Xg=-(B Y2
2⁄ ) (6.60) 

X=X1+Xg (6.61) 

Z=√R2+X2 (6.62) 

I1= Vph1 Z⁄  (6.63) 

I2= I1 √Z2
2×Y2

2⁄  
(6.64) 

Ps=3I1
2R (6.65) 

Pr=3I2
2(R2 s1⁄ ) (6.66) 

Pscl=3I1
2R1 (6.67) 

Ph=3I1
2(Gfe Y2

2⁄ ) (6.68) 
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Prcl=s1Pr (6.69) 

Pt=Pscl+Ph+Prcl+Pfw+Psll (6.70) 

Pcov1=Ps-Pt (6.71) 

s2=2-s1 (6.72) 

The positive sequence slip s1 is replaced with the negative sequence slip s2 of (6.72), and 

the positive sequence phase voltage Vph1 is replaced with the negative sequence phase voltage 

Vph2 that was calculated in (6.7), and the same equations (6.51) through (6.71) are used to 

estimate the negative sequence output power Pcov2. The friction and windage and the stray load 

loss that are shown in (6.70) are excluded from the calculations of total negative sequence losses. 

Finally, the full-load efficiency will be estimated by using (6.73) 

η=
Pcov1+Pcov2

Ps

×100 (6.73) 

where, 

Z2  is the rotor impedance; 

G2  is the rotor conductance; 

G  is the rotor and magnetic conductance; 

B2  is the rotor susceptance; 

Bm  is the magnetizing susceptance; 

B  is the rotor & magnetic circuit susceptance; 

Y2  is the rotor and magnetizing circuit admittance; 

Rg  is the rotor & magnetizing circuit resistance; 

R  is the total resistance of the equivalent circuit; 

Xg  is the rotor and magnetizing circuit reactance; 

X  is the total reactance of the equivalent circuit; 

Z  is the total impedance of the equivalent circuit; 

I1  is the stator current; 

I2  is the rotor current; 

Ps  is the stator power; 
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Pr  is the rotor power; 

Pscl  is the stator copper loss; 

Ph  is the core loss; 

Prcl  is the rotor copper loss; 

Pt  is the total loss; 

Pcov1  is the positive sequence converted power; 

Pcov2  is the negative sequence converted power; 

s1  is the positive sequence slip; 

s2  is the negative sequence slip; 

η  is the estimated efficiency. 

 

6.3. Experimental Results and Analysis 

An experimental setup shown in Figure  6-3 is used to test a 7.5 hp induction motor. The 

nameplate details are tabulated in Table  6-I.  

 

 

Figure  6-3. The experimental setup for testing 7.5 hp induction motor: 1, programmable power supply; 2, high 

resolution digital dc voltmeter; 3, multi-channel signal conditioner; 4, field control unit; 5, dynamometer; 6, 

torque transducer; 7, 7.5 hp IM; 8, resistor bank. 

Photo is a courtesy of Concordia University. 
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The test was conducted by using a programmable power supply, 13kW dynamometer 

driven by a field control unit and supplied with torque transducer, multi-channel signal 

conditioner and high resolution dc voltmeter which is used to display the dc analog output of the 

multi-channel signal conditioner which corresponds to the value of the applied torque. The 

dynamometer load is a resistor bank. The DC test was performed and the stator cold resistance 

and cold temperature were measured and recorded. The motor was run for 8 hours to reach its 

temperature stability. The hot temperature was measured by using the resistance procedure where 

the cold temperature is taken as a reference and the value of the hot resistance is translated to hot 

temperature as in (5.6). The line-to-line voltages, line currents, and total input power were 

measured by using rms measuring devices. One line current signal is needed to be acquired by 

using a data logging device for the purpose of speed measurement. The speed was also measured 

by using contactless tachometer for validation purpose. Voltage unbalance of 5% was created by 

the programmable power supply and applied on the machine for one hour and the full-load 

efficiency was measured and recorded. The data of the test is illustrated in Table  6-II. 

   

The data is transferred to the proposed algorithm and the six parameters including the corrected 

stator resistance are identified and sorted in Table  6-III.  

Table  6-I. Nameplate Details of 7.5 hp Motor 

Hp VOLTS AMPS RPM 

7.5 460 8.85 1755 

POLES EFF. INS. DESIGN 

4 91.7 F B 

 

 

 

 

 

 

Table  6-II. Test Data of 7.5 hp Machine 

Vab 

[V] 
Vbc 

[V] 
Vca 

[V] 
Ia 

[A] 
Ib 

[A] 
Ic 

[A] 

473.05 459.95 433.92 10.616 11.212 5.703 

Pa 

[W] 
Pb 

[W] 
Pc 

[W] PFa PFb PFc 

2685 2364 1251 0.970 0.770 0.870 

Nr 

[rpm] 
PFW 

[W] 
PSLL 

[W] 
TFL 

[
o
C] 

Tcold 

[
o
C] 

R1,cold 

[Ω] 

1757.5 17.785 108.68 67.89 22.1 2.55 
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Those parameters are to be used in IEEE Form 2-Method F1 calculations, i.e. equations 

(6.51) through (6.71), and the full-load efficiency is declared and compared to the measured 

value and illustrated in Table  6-IV. As it can be seen from Table  6-IV, the estimated efficiency is 

close to the measured value. 

 

 

6.4. The Proposed Algorithm Validation 

The 7.5 hp machine was tested for full-load and partial loads efficiency. The machine was 

also tested for efficiency at different values of voltage unbalance (i.e. 1%, 2%, 3%, 4%, and 5% 

of VU). 

A 3.0 hp induction motor is also tested by the dynamometer method and the proposed 

algorithm under the same pattern of voltage unbalance described above. The impact of unbalance 

on the 3.0 hp machine is illustrated in Figure  6-4. The severe impact of the 5% VU on the 

performance of the machine can be easily noticed where the full-load efficiency degraded from 

80.7% under balanced voltages to 79.1% under 5% unbalance. 

The results of both 3.0 and 7.5 hp machines are shown in Table  6-V and Table  6-VI 

respectively. The maximum deviation of the estimated efficiency when compared to the measured 

value is 0.4% for both 3.0 hp and 7.5 hp respectively. This range of error reflects an acceptable 

accuracy. Although the algorithm is validated through 10 different voltage unbalance tests with 

acceptable accuracy, the algorithm still needs additional validation by testing medium and large 

size induction motors. 

Table  6-III. Electrical Parameters of 7.5 hp Machine 

R1 

[Ω] 
X1 

[Ω] 
Rfe 

[Ω] 
Xm 

[Ω] 
R2 

[Ω] 
X2 

[Ω] 

3.005 2.474 4153 201.7 2.300 3.693 

 

 

 

 

 

 

 

Table  6-IV. Full-Load Efficiency of 7.5 hp Machine Under 5% UV  

Measured Efficiency 

[%] 
Estimated Efficiency 

[%] Absolute Error 

88.7 88.3 0.4 
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Figure  6-4. Impact of unbalance on the 3.0 hp machine performance 
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Table  6-V. Measured vs. estimated efficiency of 3.0 hp motor 

Unbalance 

[%] 
Measured Efficiency 

[%] 
Estimated Efficiency 

[%] 
Absolute Error 

[%] 

1 80.7 80.5 0.2 

2 80.6 80.6 0.0 

3 80.6 80.2 0.4 

4 79.7 79.6 0.1 

5 79.0 79.1 0.1 
 

 

 

 

 

 

 

Table  6-VI. Measured vs. estimated efficiency of 7.5 hp motor  

Unbalance 

[%] 
Measured Efficiency 

[%] 
Estimated Efficiency 

[%] 
Absolute Error 

[%] 

1 90.4 90.1 0.3 

2 90.2 89.8 0.4 

3 89.9 89.6 0.3 

4 89.3 89.0 0.3 

5 88.7 88.3 0.4 
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6.4.1. Usability of the Proposed Algorithm with Balanced Supplied Voltages 

The usability of the proposed algorithm to estimate the efficiency of induction motors that 

operate with balanced voltages is demonstrated by testing the 7.5 hp and 3.0 hp machines. The 

results are shown in Table  6-VII. The acceptable accuracy obtained can give another credit to the 

proposed technique and demonstrate the level of confidence in the capability of the technique 

under different electrical environments. 

  

 

6.4.2. Repeatability of the Proposed Algorithm 

The efficiency test by using the proposed algorithm of the 7.5 hp machine that operates 

with 5% voltage unbalance is repeated ten times. The results are tabulated in Table  6-VIII. The 

coefficient of variation CV is used as one of the statistical concepts to compare relative dispersion 

of data [126]. The coefficient of variation is defined as the ratio of the standard deviation σ to the 

mean value e̅ expressed as a percentage as in (6.74) 

Cv=100
σ

e̅
 (6.74) 

The coefficient of variation obtained for the data shown in Table  6-VIII is 13.13% which 

can prove the consistency of the results obtained by the proposed algorithm. 

Table  6-VII. Estimated Efficiency with Balanced Voltages 

Motor 

Size 

[hp] 

Measured  

Efficiency 

[%] 

Estimated  

Efficiency 

[%] 

Absolute  

Error 

[%] 

7.5 91.0 90.3 0.7 

3.0 80.7 80.3 0.4 
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6.5. Summary 

In this chapter, an algorithm for in situ efficiency estimation of induction motors 

operating with unbalanced voltages by using a combination of GA procedure, IEEE Form 2-

Method F1 calculations, and pre-tested motors is proposed. It was proven in chapter 1 that using 

the assumed values of stray load loss can significantly increase the error and reduce the accuracy 

of the estimated efficiency. Hence, the algorithm was designed to utilize test data of a large 

number of induction motors provided by Hydro-Québec and BC hydro. 

The proposed algorithm and its detailed flow chart is presented in subsection  6.2. 

The strategy on how to assign the value of stray load loss and friction and windage losses 

are detailed in subsection  6.2.1. The strategy is to assign an average value of stray load loss to the 

machine under test when the motor under test has similarity with the supporting data. New 

proposed formulas to determine the friction and windage losses are detailed in the mentioned 

subsection. 

An extensive procedure is presented in subsection  6.2.5 for the determination of positive 

and negative sequence components. This procedure is used to determine the phase voltages and 

their associated angles of a certain level of unbalance in the programmable power supply. An 

Table  6-VIII. Ten Repeated Tests by Using the Proposed Algorithm 

No. 

Measured FL  

Efficiency 

[%] 

Estimated FL  

Efficiency 

[%] 

Absolute  

Error 

[%] 

1 

88.70 

88.32 0.38 

2 88.22 0.48 

3 88.31 0.39 

4 88.26 0.44 

5 88.30 0.40 

6 88.29 0.41 

7 88.22 0.48 

8 88.33 0.38 

9 88.23 0.47 

10 88.15 0.55 
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example calculations are given in subsection  6.2.5.1.  

The algorithm requires only one load point which is full-load with its corresponding rms 

values of voltage, current, and power obtained at the motor terminals.  

The same speed estimation technique that is presented in Chapter 5 is used in this study 

and it needs the current signal acquisition of only one line.  

The algorithm is evaluated and assessed by 10 voltage unbalance tests and the accuracy of 

the results is shown. 

The usability of the algorithm with balanced voltages is investigated by testing the 3.0 hp 

and 7.5 hp machines and the results with acceptable accuracy are presented in subsection  0. 

The repeatability of the proposed algorithm is also investigated in subsection  6.4.2. The 

results showed a 13.13% coefficient of variation. 

The goal of the study was to design a useful tool that can be used in industry to derate 

induction motors due to voltage unbalance. 
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CHAPTER SEVEN 

 

7. A Novel In Situ Efficiency Estimation Algorithm for Three-Phase Induction Motors 

Operating with Distorted Unbalanced Voltages 

Three-phase power supply can never be completely clean of distortion or voltage 

unbalance. Unbalanced voltages and harmonics have detrimental impacts on the performance of 

induction motors. The efficiency estimation process can be a difficult task with the existence of 

voltage unbalance and harmonics. In this chapter, a novel algorithm for in situ full-load 

efficiency estimation for induction motors operating with distorted unbalanced voltages is 

proposed. The proposed technique utilizes the genetic algorithm, IEEE Form F2-Method F1 

calculations and pre-tested motors data. The method requires a stator winding dc resistance 

measurement, full-load rms voltages, currents, input power and speed measurement. The 

proposed algorithm uses a sensorless online speed measurement. The technique is evaluated by 

testing 2 induction motors with different combinations of voltage unbalance and total harmonic 

distortion. The results showed acceptable accuracy. The technique may be used as a potential 

industrial tool that can help derate induction motors upon the presence of voltage unbalance and 

harmonics distortion. 

 

7.1. Introduction 

Three-phase induction motors can perform well up to their design limits if they are 

supplied with balanced sinusoidal voltages. However, power supplies nowadays can never be 

balanced or clean of harmonics. Voltage unbalance can exist by (1) unbalanced loads, (2) 

unsymmetrical transformer windings or transmission impedances, (3) large single-phase loads 

[39], (4) incomplete transposition of transmission lines, (5) open delta transformer connections 

[78], (6) blown fuses on three-phase capacitor bank, (7) operation of single-phase loads at 

different times, or (8) defective transformers in power systems [41]. On the other hand, 

harmonics presence in a power supply is due to: (1) operation of power electronics devices, (2) 

operation of steel mills arc furnaces, and (3) resonance of shunt capacitors and/or series inductors 

[78]. Stator and rotor temperature rises due to voltage unbalance can cause detrimental effects on 



153 

 
 

the three-phase induction motors, such as, reduction in output torque, vibration and overheating 

that lead to a reduction on insulation life of the machine [35]. The excessive temperatures in parts 

of the rotor of induction motors are attributed to the excessive unbalanced negative sequence 

currents [37]. Induction motors are always prone to stresses due to voltage unbalance as there is 

no power supply that can be perfectly balanced due to the previously mentioned reasons. 

According to the American National Standard ANSI/NEMA MG 1-2011, it is not recommended 

to operate induction motors with voltage unbalance above 5% [15]. The serious effect of voltage 

unbalance on the performance of the induction motors was the area of interest of many 

researchers since 1930’s of the last century [45] where there was a trial to analyze the 

performance of three-phase induction motor operating under unbalanced voltages by using the 

equivalent circuit and the symmetrical component. In [50], it was demonstrated that the negative 

sequence current has the worse effect in terms of heating the motor, rather than an equal value of 

positive sequence and that is due to the high negative sequence rotor resistance. It was noticed 

that core loss and friction and windage losses remain essentially independent of unbalance of 

negative sequence voltage that is less than 15%. Unbalance voltage related vibration and its 

injurious effects to bearings, to insulation, and to interconnecting mechanical parts of the 

machine was also reported. Voltage unbalance is defined differently according to the national 

Electrical Manufacturers Association (NEMA), IEEE and IEC standards. Those definitions are 

detailed and discussed in [127]. In [52], it was stated that “It is not sufficient to merely know the 

percent voltage unbalance, but it is equally important to know how they are unbalanced”. This 

important point stimulates researches to come up with what is called Complex Voltage 

Unbalance Factor (CVUF) where the magnitude and angle of the unbalance factor are both taken 

into account [54] [128]. 

The other issue that has serious impact on the performance of induction machines is the 

presence of harmonics in the supplied three-phase voltages. When a motor is operated on a bus 

with harmonic content, its efficiency will be reduced. The harmonics increase the electrical losses 

which decrease efficiency. The increase in losses results in an increase in motor temperature, 

which further reduces the efficiency [15]. Harmonics and their associated problems in induction 

motors were the area of interest of many scientists since 1920’s. In 1929, the harmonic 

phenomenon was addressed as an unnecessary noise in electrical apparatus [58]. In the 1950’s, 

researchers started to address the serious problem of losses in induction machines caused by 
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harmonics due to increasing of the number of applications of induction machines with static 

frequency converter power supplies. In [62], the fact that all induction motors have magnetic 

power-losses at harmonic frequencies was discussed. A simple test for measuring the harmonic-

frequency losses in induction motors as a separate quantity was demonstrated. In [63], Fourier 

technique was utilized to analyze the voltage waveform that supplies an induction machine. A 

very detailed mathematical technique to estimate the output power and torque with harmonic was 

presented. It was found that, when an induction motor is fed by variable-frequency source which 

is often rich in harmonics, the distorted voltage modifies the motor operation considerably from 

that operating under conditions of pure sinusoidal voltages. It was also noticed that, depending on 

the order, a harmonic component of voltage may contribute either positive, negative, or zero 

torque. Fourier analysis showed that (3n+1) order harmonics in the voltage waveform develop 

positive torques, while (3n+2) orders result in negative torques. On the other hand, (3n+3) orders 

produce no torque, where n is any integer number. Each harmonic order has its own slip as 

presented in [129]. 

In 1985, an IEEE Committee Report was written about the effects of power system 

harmonics on power system equipment and loads [70]. The problem of harmonics generation due 

to increasing applications of power electronic type devices which have nonlinear voltage current 

characteristics, and the increasing application of shunt capacitor banks for power factor 

correction and voltage regulation which results in an increased potential for resonant conditions 

that can magnify existing harmonic levels, were addressed in the report. The report divided the 

effect of voltage distortion into three general categories: (1) insulation stress, (2) thermal stress, 

and (3) disruption. The main purpose of the report was to examine the various equipment 

characteristics to determine the limiting factors in the operation of the equipment with system 

distortion present. In regards to motors, the report assumed that the harmonic components may be 

classified as stator winding loss, rotor winding loss, and stray loss. The additional core loss due 

to voltage distortion is negligibly small. 

To estimate the efficiency of an induction motor, measurements of torque and speed are 

essential. Such a kind of measurements is not available when efficiency estimation is required for 

a running (in situ) machine and when any disruption of its operation is not allowed.  

Identifying the six parameters of the per phase equivalent circuit of the induction motor is 
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also a well-known procedure for efficiency determination. The six parameters can be identified 

by using the no-load/locked rotor test, or by using the IEEE Std. 112 impedance test-method 3. 

Nevertheless, both procedures are not applicable in the above mentioned in situ case. The Genetic 

Algorithm (GA) is found to be one of the successful tools to help identify the six parameters of 

the induction machine in in situ situation. Many research works employed the GA to estimate 

those parameters based on available operating data of the motor. The GA was employed in [106] 

to identify induction motor parameters from load tests. The proposed algorithm needed at least 

two different values of slip, which means two loading points. The model used was modified by 

connecting the magnetizing leakage reactance Xm and the iron loss resistance Rfe in series. In 

[107], several versions of the GA were used to help find the induction motor parameters for a 

small (5 hp), medium (50 hp) and large (500 hp) induction motors. The core loss resistance is 

omitted in the IM model used in this work. The stator resistance is estimated rather than 

measured. A comparison of the estimated parameter values against the actual values was 

demonstrated. It was claimed that one of the versions gave extremely good results. The GA 

applicability to in situ efficiency determination was also demonstrated in [1]. Three different 

methods were presented in this work; Method I utilizes only full-load input parameters that are 

used for motor parameter determination. This method showed around a 3% deviation from the 

actual efficiency. Method II needs different load points and this approach did improve the 

robustness of the GA, but did not lead to better results in motor parameters and efficiency. In 

Method III, the nameplate output power is used as an additional full-load input parameter for the 

GA. This approach did improve the outcome of the GA by reducing the deviation to less than 1% 

[1]. Other research works on the GA application in induction motor parameters determination can 

be found in [17], and [106]-[110]. [108] [109] [110] [111]  [112] 

In this chapter, a novel technique for in situ efficiency estimation of three-phase induction 

motors operating with a combination of unbalanced voltages and harmonics, utilizing the GA, 

IEEE Form F2-Method F1 calculations and pre-tested motors data is proposed. The algorithm 

utilizes a database of large number of induction motors tested for efficiency in the Laboratoire 

des Technologies de l'Énergie, Institut de Recherche, Hydro-Québec, Shawinigan, Québec, 

Canada.  The data has a wide range of motor types and power ratings. Another set of data was 

received from BC hydro which includes a full test of 55 used (aged) induction motors. The 

database is utilized to specify the stray load loss and the friction and windage loss for induction 
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motors that have similarities with the tested motors of the data. Applicability and feasibility of 

the method are approved by testing 2 induction motors under different combinations of voltage 

unbalance and total harmonic distortion. 

 

7.2. The Proposed Algorithm 

The proposed algorithm utilizes the Genetic Algorithm which was introduced in Chapter 

5. The per phase stator winding cold resistance and cold temperature of the induction motor 

under test are assumed to be predetermined from data sheets or tests performed during motor turn 

off. The value of rotor leakage reactance Xr is determined by identifying the value of the stator 

leakage reactance Xs and the NEMA design of the motor according to Table  3-I of the IEEE Std 

112-2004 [21]. Hence, only four parameters out of six are to be identified; (1) the stator leakage 

reactance Xs, (2) the core loss resistance Rfe, (3) the magnetizing leakage reactance Xm, and (4) 

the rotor resistance Rr. Each chromosome in the designed GA consists of four variables; each 

variable represents one of the above mentioned parameters as in (7.1) 

Chromosome=[Xs, Rfe, Xm, Rr ] (7.1) 

A detailed flow chart of the proposed algorithm is illustrated in Figure  7-1. The algorithm 

is first fed with the predetermined values of the stator winding cold resistance Rcold, and cold 

temperature Tcold. The nameplate details, full-load rms measured values for three line-to-line 

voltages, three line currents, total input power and one line current signal acquired by data 

logging device of at least 10 seconds length and preferably of 10 microsecond sampling time are 

also required input. 
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7.2.1. Determination of Full-Load Stray Load Loss 

Stray load loss consists of many loss components within the stator and rotor that involves 

number of slots, slot opening shape, stator winding distribution, rotor construction, skewing and 

saturation, and eccentricity of the air gap [130]. Determining the value of stray load loss in an 

induction motor is one of the important requirements for having accurate efficiency estimation 

process. An indirect efficiency measurement can be deemed more accurate if the stray load loss is 
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Figure  7-1. The proposed algorithm flow chart 
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accurately determined [131]. In [122], IEEE 112-B was introduced to be the most suitable 

standard for the stray load loss measurements and both IEC 34-2 and JEC 37 overestimate the 

motor efficiency because their procedures define the stray load loss instead of measuring it. 

However, IEEE 112-B also assumes the stray load loss based on the motor power rating in case 

the measurement cannot be conducted. The assumed values seem to overestimate the real stray 

load loss which will not allow the precise efficiency value to be acquired [123]. This is in line 

with the results presented in detail in a study conducted by the authors of this psper [88]. 

Figure  7-2 illustrates a comparison between measured values of stray load loss of 4 induction 

motors and their assumed values according to IEEE and IEC standards. Taking the 500 hp motor 

as an example, it can be seen from the values shown on the figure that IEEE and IEC standards 

overestimate the value of stray load loss by 257.83% and 215.78% respectively. Nevertheless, the 

stray load loss measurements are not easy process to perform and they are severely influenced by 

the measurement errors. 

 

 

 

Figure  7-2. Measured and assumed stray load loss 

Source of measured data: the Laboratoire des Technologies de l'Énergie, Institut de Recherche, Hydro-Québec, 

Shawinigan, Québec. 
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Stray load loss of a particular motor is affected by voltage unbalance, and due to the 

unlimited voltage unbalance combinations, where each has different effects on the machine in 

terms of losses, and hence, each combination produces a different value of stray load loss; this 

situation creates a large amount of uncertainty in the estimation of the stray load loss. The 

proposed algorithm is designed to perform in in situ where stray load loss measurement is not 

allowed due to the intrusive nature of the measurements. Hence, in this paper, it is proposed to 

utilize measured values of the stray load loss in the data of Hydro-Québec and BC hydro to have 

a reasonable approximation of the stray load loss. The measured stray load loss of the data is 

based on balanced power tests, so it can be considered as an underestimated value if compared to 

the stray load loss of the same machine when operating with unbalanced voltages. On the other 

hand, the stray load loss is calculated according to the International Standard IEC 60034-2-1 [95] 

as in (2.6) or assumed based on IEEE as in Table  1-I.  

Using (2.6) or Table  1-I overestimates the value of stray load loss as discussed above. 

Hence, the better approximation of the stray load loss is by taking the average of both measured 

and assumed values. 

To assign the stray load loss value, the following strategy is applied: 

 

7.2.1.1. Motor Has Similarity with the Data 

Whenever data is mentioned, it means Hydro-Québec and BC hydro data. 

If the motor under test is similar to a motor within the data, the algorithm will use the 

following strategy: 

 If power, rated voltage, and insulation class are all similar, the measured stray load 

loss will be assigned. 

 If power, rated voltage, insulation class, and number of poles are all similar, the 

measured stray load loss will be assigned. 

 

7.2.1.2. Motor Has No Similarity with the Data 

In such a case, the only option to estimate the stray load loss is to assume it using (2.6). 
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7.2.2. Determination of Friction & Windage Losses 

Two types of losses remain essentially independent of unbalance of negative sequence 

voltage that is less than 15%. They are core loss and friction and windage losses [50]. In this 

study, all tests were conducted within the limit of 5%  unbalance which is set by NEMA. To 

accurately estimate the efficiency, friction and windage losses are to be determined and accounted 

for. The proposed algorithm follows the following strategy in estimating friction and windage 

losses: 

  

7.2.2.1. Motor Has Similarity with the Data 

If power and number of poles are similar, the measured friction and windage losses will 

be used. 

 

7.2.2.2. Motor Has No Similarity with the Data 

In such a case, the algorithm uses a different strategy [90] which is as follows: 

 If number of poles is 2, then the friction and windage losses will be calculated as 

in (5.3). 

 If number of poles is 4, then the friction and windage losses will be calculated as 

in (5.4). 

 If number of poles is 6, then the friction and windage losses will be calculated as 

in (5.5). 

 

7.2.3. Online Speed Measurement 

Speed measurement is one of the key elements in the efficiency estimation process. In in 

situ situation, a non-intrusive procedure for speed measurement is required. An online speed 

measurement technique that estimates motor speed through the input current signal is utilized in 

this paper. The speed detection technique is based on an adaptive notch filter algorithm that was 

proposed in [121], where all mathematical principles and the governing equations can be found. 

The accuracy of the technique was previously presented in Chapter 5, subsection  5.3.3. 
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7.2.4. Online Stator Windings Temperature Measurement 

Unbalanced voltages and harmonics bring a lot of stress on induction motors due to the 

excessive losses and the resulting heat. Temperature measurement plays an important role in the 

efficiency estimation procedure. Determination of the stator winding temperature is one of the 

important factors in the process of a precise induction motors efficiency estimation. Due to the in 

situ nature of the proposed algorithm, the same procedure that presented in Chapter 5, 

subsection  5.3.2 to determine the stator winding temperature is used. 

 

7.2.5.  Identifying the Electrical Parameters 

The acquired values of stray load loss, friction and windage losses, stator winding dc 

resistance and its associated temperature, speed, and input power, voltage and current for the 

three phases are used to run the GA which is utilized to extract the unknown motor parameters, 

i.e. Xs, Rfe, Xm, and Rr. Three GAs are designed to extract the required parameters. The three 

GAs have the same fitness functions which are built based on the positive sequence equivalent 

circuits shown in Figure  7-3.  
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The negative sequence equivalent circuit and the harmonics-based equivalent circuit are 

also shown. The following equations are used in the three GAs fitness functions. 

Ym=
1

Rfe

+
1

jXm

 (7.2) 

Rs  Xs Xr  

Rr

s1
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Figure  7-3. Induction machine equivalent circuit with unbalanced voltages; (a) Positive Sequence; (b) Negative 

sequence; (c) Harmonics.  
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Yr=
1

Rr

s1
+jXr

 
(7.3) 

Zr=
1

Ym+Yr

 
(7.4) 

Zs=Rs+jXs (7.5) 

Z1=Zs+Zr (7.6) 

Is1
=

Vph1

Z1

 
(7.7) 

Ir1
=Is1

[
1 (Ym+Yr)⁄

1 Yr⁄
] 

(7.8) 

Im1
=Is1

-Ir1
 (7.9) 

Vm1
=

Im1

Ym

 
(7.10) 

Zm1
=

Vph1

Is1m

 
(7.11) 

 

where, 

Ym is per phase admittance of the magnetizing branch; 

Xm is per phase leakage reactance of the magnetizing branch; 

Rfe is per phase iron loss resistance; 

Yr is per phase admittance of the rotor; 

Rr is per phase rotor resistance; 

Xr is per phase rotor leakage reactance; 

s1 is the positive sequence slip; 

Zr is per phase impedance of both the rotor and the magnetizing branches; 

Zs is per phase stator impedance; 

Rs is per phase stator resistance; 

Xs is per phase stator leakage reactance; 
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Z1 is per phase positive sequence total impedance; 

Vph1
 is the positive sequence phase voltage; 

Is1
 is the positive per phase estimated stator current; 

Ir1
     is the positive per phase estimated rotor current; 

Im1
 is the positive per phase estimated total magnetizing current; 

Vm1
 is the positive per phase estimated magnetizing voltage; 

Zm1
 is the positive sequence per phase impedance calculated based on measured positive 

sequence current; 

Is1m
 is the measured positive sequence current; 

k is harmonic order. 

The subscripts 1, 2, and k refer to the positive sequence, negative sequence, and 

harmonics components respectively. 

The stator and rotor resistances are to be corrected to the full-load temperature Tfl 

according to (7.12) and (7.13) 

Rs,corr=
Rs(Tfl+K1)

Tcold+K1

 (7.12) 

Rr,corr=
Rr(Tfl+K2)

Tcold+K2

 
(7.13) 

The total core loss, stator copper loss and rotor copper loss are estimated as in (7.14), 

(7.15) and (7.16) respectively 

Ph=3
Vm1

2

Rfe

 (7.14) 

Pscl=3Is1

2 Rs,corr (7.15) 

Prcl=3Ir1

2 Rr,corr (7.16) 

where, 

Ph is total core loss; 

Pscl is total stator copper loss; 
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Prcl is total rotor copper loss. 

Total losses will be determined by (7.17) 

Ptotal=Ph+Pscl+Prcl+PFW+Psll (7.17) 

where, 

Ptotal is the total losses; 

PFW is the friction & windage losses. 

The output power can be estimated by using (7.18) 

Pout=Pin,fl-Ptotal (7.18) 

where, 

Pout is the output power; 

Pin,fl is the measured input power. 

The total input power will be calculated according to (7.19) and (7.20) 

Pin, calc1=3real(Vph1
Is1m

* ) (7.19) 

Pin, calc2=3real(Vph1
Is1

* ) (7.20) 

where, 

Pin, m is the calculated input power from measured current; 

Is1m

*  is the conjugate of the positive sequence measured stator current; 

Pin, calc is the calculated input power from estimated current; 

Is1

*  is the conjugate of the positive sequence estimated stator current in (7.7). 

The two values of the input power are used to build an error function as in (7.23). The 

three GAs have the same error functions as described in (7.21), (7.22), (7.23), (7.24) and (7.25) 

f1=
real(Is1m

)-real(Is1
)

real(Is1m
)

 (7.21) 

f2=
imag(Is1m

)-imag(Is1
)

imag(Is1m
)

 
(7.22) 
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f3=
Pin, m-Pin, calc

Pin, m

 
(7.23) 

f4=
θZm

-θZ

θZm

 
(7.24) 

f5=
P-Pout

P
 

(7.25) 

where, 

θZm
 is the angle of the measured input impedance Zm; 

θZ is the angle of the calculated input impedance Z; 

P is nameplate power. 

The fitness function which has the maximum value of 1 is as in (7.26) 

ff=
1

1+ ∑ fi
5
i=1

 (7.26) 

The three GAs are to be run in the following sequence, and a certain observations should 

be carefully done to guarantee best results of the algorithm: 

In GA1, the core loss is approximated by using (7.27) 

Ph, calc=Pin, fl-Pout-Pscl-Prcl-PFW-Psll (7.27) 

The approximated core loss Ph,calc is compared with the total core loss Ph of (7.14). This 

comparison is utilized to adjust the constraints of 𝑅𝑓𝑒. The values of both Rfe and Ph from GA1 

are used as fixed values in GA2. This makes Rr to converge to a stable value. Hence, GA2 works 

with only three variables (i.e. Xs, Xm and Rr). The values of the 4 variables of 10 consecutive runs 

of both GA1 and GA2 are checked and the values of best fitness are used as new constraints for 

both GA1 and GA2. New round of 10 runs follows, and this process iterates until a stable value 

of Rr is acquired. 
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7.2.6. Rotor Resistance Calibration 

The value of Rr is transferred to GA3. This value is to be very carefully calibrated until 

the best fitness of GA3 is achieved. Having the best value of Rr makes other variables reach 

stable values. Hence, GA3 will also have 3 variables (i.e. Xs, Xm, and Rfe). GA3 iterates, and the 

best fitness of the three variables after each 10 runs is used as new constraints until stable values 

are achieved and the 4 parameters of the induction machine are declared. Rs is already measured, 

and Xr will be determined based on Table  3-I. 

 

7.2.7. IEEE Form F2-Method F1 Calculations  

The IEEE Form F2-Method F1 calculations is a powerful tool in induction motor 

efficiency estimation. The whole set of equations can be found in IEEE Std 112-2004 [21]. The 

calculations form is used to estimate the output power of each individual equivalent circuit, i.e. 

the positive sequence equivalent circuit, the negative sequence equivalent circuit, and the 

equivalent circuit of each harmonic exists in the supplied voltage. Power analyzer can be used to 

identify the harmonic order and its rms value. The obtained six parameters are used in the output 

power calculations for each equivalent circuit. For the positive sequence output power 

calculation, the calculated per phase positive sequence voltage Vph1 and slip s1 are used. For the 

negative sequence output power calculation, the calculated per phase negative sequence voltage 

Vph2 and slip s2 are used. The slip s2 is determined according to (7.28) 

s2=2-s1 (7.28) 

For each harmonic order, the per phase voltage used is the rms value of the particular 

harmonic. The slip for each harmonic equivalent circuit is determined based on the torque 

associated to the harmonic, whether it is positive or negative torque as shown in Table  1-II.  

Equations (7.29) and (7.30) are used to calculate the positive and negative harmonic slip 

respectively [129]. 

sk
+=(1-k)+ks1 (7.29) 

sk
- =(1+k)-ks1 (7.30) 

where k is the harmonic order.    
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The friction and windage losses and the stray load loss are only used in the positive 

sequence output power calculation. Finally, the full-load efficiency will be estimated by using 

(7.31) 

η=
Pcov

+ +Pcov
- + ∑ Pi

k
i=2

Pin,fl

×100 (7.31) 

where, 

Pcov
+  is the positive sequence converted power; 

Pcov
-  is the negative sequence converted power; 

Pi is the harmonic output power; 

η is the estimated efficiency. 

 

7.3. Experimental Results and Analysis 

The impact of the unbalanced and distorted voltages on the performance of induction 

motors are demonstrated by testing a 7.5 hp, 460 V induction motor. The motor is tested for 

efficiency under different loads and different levels of voltage unbalance. The deterioration in the 

performance of the machine is illustrated in Figure  7-4(a) where the full-load efficiency, for 

example, is decreased from 91.4% with balanced voltages to 88.7% with 5% unbalance. The 

same motor is tested with balanced voltages and different Total Harmonic Distortion (THDV). 

The impact of the harmonics presence in the supplied voltages is shown in Figure  7-4(b) where it 

can be clearly seen how the full-load efficiency is deteriorated from 91.07% with 0.15% THDV to 

89.72% with 9.86% THDV.  
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Figure  7-4. Impact of (a) unbalanced voltages and (b) harmonics on the performance of a 7.5 hp machine. 
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The tests are performed by using a programmable power supply whereby the unbalanced 

voltages and harmonics are created; a 13kW dynamometer driven by a field control unit and 

supplied with torque transducer; multi-channel signal conditioner and high resolution dc 

voltmeter which is used to display the dc analog output of the multi-channel signal conditioner 

which corresponds to the value of the applied torque. The dynamometer load is a resistor bank. 

The experimental setup is shown in Figure  7-5. 

 

To obtain the necessary data to run the proposed algorithm, the dc test is performed and 

the stator cold resistance and cold temperature are measured and recorded. The motor is run for 8 

hours to reach its temperature stability. 5% THDV and 5% voltage unbalance are applied on the 

machine for 1 hour by using the programmable power supply. Then, the hot temperature is 

measured by using the resistance procedure where the cold temperature is taken as a reference 

and the value of the hot resistance is translated to hot temperature as in (5.6). The line-to-line 

voltages, line currents, and total input power are measured by using rms measuring devices. One 

line current signal is needed to be acquired by using a data logging device for the purpose of 

 

Figure  7-5. The experimental setup for testing 7.5 hp, 460 V induction motor; 1, programmable power supply; 

2, high resolution digital dc voltmeter; 3, multi-channel signal conditioner; 4, field control unit; 5, DC 

generator; 6, torque transducer; 7, 7.5 hp motor.  

Photo is a courtesy of Concordia University 
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online speed measurement. The speed is also measured by using contactless tachometer for 

validation purpose. The efficiency is measured and recorded. The friction and windage losses and 

stray load loss are measured for this machine. The parameters of the machine are extracted by 

using the three stages of GA. The efficiency is estimated by using the positive and negative 

sequence equivalent circuits in addition to harmonic equivalent circuit for each harmonic that is 

present in the supplied voltage. The results are shown in Table  7-I 

 

 

7.4. The Proposed Algorithm Validation 

The 7.5 hp machine and another 3.0 hp induction motor were tested under the same set of 

combination THDV and voltage unbalance. The required dc tests, and measurements of speed, 

full-load temperature, and terminals current, voltage, and power were performed and data were 

collected. The full-load efficiency of the induction motors is measured under each case. The 

programmable power supply was used to create the required distorted and unbalanced voltages. 

The harmonics index used was the THDV and it was created within the range of 0% up to the 5% 

limit of THDV in the voltage which is set by IEEE [75]. The voltage unbalance was formed 

within the range of 1% up to 5% limit which is set by NEMA. The programmable power supply 

setup and the three-phase currents waveforms produced by a 5% voltage unbalance and 4.86% 

THDV distorted three-phase voltages are shown in Figure  7-6. As it can be seen from Figure  7-6, 

the 5
th

, 2
nd

, and 4
th

 harmonic are chosen to shape up the input voltage signal. The reason of 

Table  7-I. Test Data and Results of 7.5 hp Machine 

Vab  

[V] 

Vbc  

[V] 

Vca  

[V] 

Ia  

[A] 

Ib  

[A] 

Ic  

[A] 

479.96 459.83 440.14 10.969 10.659 5.732 

Pa  

[W] 

Pb  

[W] 

Pc  

[W] PFa PFb PFc 

2777 2182 1307 0.950 0.740 0.900 

Nr  

[rpm] 

PFW  

[W] 

PSLL  

[W] 

TFL  

[
o
C] 

Tcold  

[
o
C] R1,cold [Ω] 

1759 17.785 108.68 73.42 22.1 2.55 

R1 

[Ω] 
X1 

[Ω] 
Rfe 

[Ω] 
Xm 

[Ω] 
R2 

[Ω] 
X2 

[Ω] 

3.06 1.669 5416 188.78 2.285 2.491 

THDV  

[%] 
Unbalance 

[%] 

Measured 

Efficiency 

[%] 

Estimated 

Efficiency 

[%] Absolute Error 

4.87 5 89.2 88.1 1.1 
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having the 5
th

 harmonic is that this order has the worst effect on the machine performance as 

demonstrated in Figure  7-7 which showed results of extensive tests conducted on the 7.5 hp 

induction motor by using different harmonic orders and their effects on the performance of the 

machine. It is clearly shown that the 5
th

 harmonic has the worst impact on the full-load efficiency 

of the machine. 

 

 

 

 

 

 

 

Figure  7-6. Programmable power supply setup for creating 5% voltage unbalance and 4.86% Total Harmonic 

Distortion 
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In [78], as mentioned previously in Chapter 1, the impact of the 2
nd

 harmonic on the 

performance of the tested machine was investigated and the paper concluded that when studying 

the impact of harmonics on induction motors, both odd and even harmonics must be considered. 

That was the reason of implying the 2
nd

 harmonic in this study. The 4
th

 harmonic was also 

implied to have a positive sequence torque as per Table  1-II.  

The results of 50 tests are shown in Table  7-II. The measured efficiency is compared with 

the estimated value. The absolute error is declared for each case. The maximum error obtained in 

testing the 7.5 hp machine is 1.1%, and the minimum is 0.3%. On the other hand, the 3.0 hp 

machine tests show a maximum error of 0.2% and a minimum of 0.0%. Such a level of accuracy 

can be acceptable in induction motor efficiency estimation field. 

 

 

Figure  7-7. Impact of harmonics on the 7.5 hp induction motor. 
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7.5. Repeatability of the Proposed Algorithm 

The efficiency test by using the proposed algorithm of the 7.5 hp machine that operates 

with 5% THDV and 5% voltage unbalance is repeated ten times. The results of the 10 tests did not 

show any difference with one decimal point of efficiency. Hence, 4 decimal points are shown to 

demonstrate the difference. The results are tabulated in Table  7-III.  

Table  7-II. Measured vs. Estimated Efficiency of 7.5 hp and 3.0 hp Machines 

Unbalance 

[%] 

3.0 hp 7.5 hp 

THDV  

[%] 

Measured 

Efficiency 

[%] 

Estimated 

Efficiency 

[%] 

Absolute 

Error 

[%] 
THDV  

[%] 

Measured 

Efficiency 

[%] 

Estimated  

Efficiency 

[%] 

Absolute  

Error 

[%] 

1% 

0.97 80.7 80.6 0.1 0.98 91.1 90.8 0.3 

1.91 80.6 80.6 0.0 1.89 91.0 90.7 0.3 

2.99 80.5 80.5 0.0 2.89 91.0 90.7 0.3 

3.93 80.4 80.3 0.1 3.94 91.0 90.7 0.3 

4.86 80.3 80.3 0.0 4.98 91.0 90.7 0.3 

2% 

0.97 80.6 80.5 0.1 0.93 91.1 90.7 0.4 

1.91 80.5 80.5 0.0 1.89 91.0 90.6 0.4 

2.99 80.4 80.3 0.1 2.95 91.0 90.6 0.4 

3.93 80.3 80.1 0.2 3.93 91.0 90.6 0.4 

4.86 80.2 80.2 0.0 4.84 90.9 90.5 0.4 

3% 

1.02 80.2 80.2 0.0 0.95 90.6 90.2 0.4 

1.92 80.0 80.0 0.0 1.95 90.4 90.0 0.4 

2.97 80.0 80.0 0.0 2.93 90.4 90.0 0.4 

3.88 80.0 80.0 0.0 3.99 90.4 90.0 0.4 

4.87 79.9 79.9 0.0 4.87 90.6 90.2 0.4 

4% 

1.00 79.7 79.7 0.0 0.94 89.9 89.5 0.4 

1.94 79.7 79.7 0.0 1.90 89.9 89.5 0.4 

2.97 79.6 79.6 0.0 2.89 89.9 89.5 0.4 

3.90 79.5 79.5 0.0 3.96 89.8 89.4 0.4 

4.90 79.4 79.5 0.1 4.90 89.7 89.3 0.4 

5% 

0.96 79.2 79.2 0.0 0.95 89.5 88.7 0.8 

1.95 79.2 79.1 0.1 1.90 89.4 88.5 0.9 

2.92 79.1 79.0 0.1 2.90 89.4 88.4 1.0 

3.92 78.9 78.9 0.0 3.99 89.2 88.1 1.1 

4.86 78.7 78.7 0.0 4.87 89.2 88.1 1.1 
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The coefficient of variation CV is used as one of the statistical concepts to compare 

relative dispersion of data [126]. The coefficient of variation is defined as the ratio of the 

standard deviation σ to the mean value �̅� expressed as a percentage as in (7.32) 

Cv=100
σ

e̅
 (7.32) 

The coefficient of variation obtained for the data shown in Table  7-III is 0.0793% which 

can prove the consistency of the results obtained by the proposed algorithm. 

 

7.6. Usability of the Proposed Algorithm with Undistorted Balanced Supplied Voltages 

The usability of the proposed algorithm to estimate the efficiency of induction motors that 

operate with balanced and undistorted supply voltages is demonstrated by testing the 7.5 hp and 

3.0 hp machines. The results are shown in Table  7-IV. The acceptable accuracy obtained as 

shown in Table  7-IV can give another credit to the proposed technique and demonstrate the level 

of confidence in the capability of the technique under different electrical environments.  

It is important to mention that the proposed algorithm still needs to be validated by testing 

medium and large size machines. 

Table  7-III. Ten Repeated Tests of 7.5 hp Machine 

THDV  
[%] 

Measured 

Efficiency 

[%] 

Estimated 

Efficiency 

[%] 
Absolute Error 

[%] 

4.87 89.2 

88.1196 1.0804 

88.1195 1.0805 

88.1196 1.0804 

88.1196 1.0804 

88.1182 1.0818 

88.1174 1.0826 

88.1196 1.0804 

88.1204 1.0796 

88.1196 1.0804 

88.1196 1.0804 
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7.7. Summary 

An algorithm for in situ efficiency estimation of induction motors that operate with 

distorted unbalanced voltages by using GA procedures, IEEE Form 2-Method F1 calculations, 

and by utilizing data of pre-tested motors is proposed in this chapter.  

In subsection  7.2, the proposed algorithm and its detailed flow chart are introduced. 

The algorithm is designed to utilize a test data of large number of induction motors 

provided by Hydro-Québec and BC hydro. The novelty of the algorithm is demonstrated by using 

a new approach in determining the stray load loss and friction and windage losses based on a 

certain strategy and novel equations which were declared in subsection  7.2.1.  

The algorithm requires only one load point which is full-load with its corresponding rms 

values of voltage, current, and power obtained at the motor terminals.  

The same online speed estimation technique that is presented in Chapter 5 is used in this 

study and it needs the current signal acquisition of only one line. 

The experimental results of applying the proposed algorithm in testing a 7.5 hp induction 

motor are discussed in subsection  7.3.  

The algorithm is evaluated and assessed by 50 tests of different combinations of voltage 

unbalance and harmonics done with two small induction motors. The results were presented and 

showed an acceptable level of accuracy as demonstrated in subsection  7.4.  

The algorithm is also validated for its consistency by 10 repeated tests with a very low 

coefficient of variation of 0.0793% as shown in subsection  7.5.  

The usability of the algorithm with balanced harmonics free voltages is demonstrated by 

testing the two machines and an acceptable accuracy is obtained as illustrated in subsection  7.6. 

 

Table  7-IV. Estimated Efficiency with 0% THDV and 0% Voltage Unbalance 

Motor 

Size 

[kW] 

Measured 

Efficiency 

[%] 

Estimated 

Efficiency 

[%] 
Absolute Error 

[%] 

5.5 91.3 91.0 0.3 

2.2 80.7 80.7 0.0 
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CHAPTER EIGHT 

 

8. Conclusions and Future Works 

This Ph.D. work is devoted to designing induction motor efficiency estimation algorithms 

that can be turned into reliable and practical tools to be used in industry. Hence, the level of both 

accuracy and uncertainty are important issues to evaluate the proposed algorithms in this research 

work. This chapter concludes this work and also suggests some future work. 

 

8.1. Conclusions  

Induction motors are deemed the backbone of industry. They use two-thirds of the total 

electrical energy generated in industrialized countries. Motors are prone to fail due to many 

reasons and many are rewound two or more times during their lifetimes. Estimation of the 

efficiency of a refurbished motor or any existing motor is crucial in industries for energy savings, 

auditing and management.  

Full-load and partial load efficiency can be determined by using the dynamometer 

procedure which is a highly expensive way and available only in well-equipped laboratories. An 

inexpensive and easily applied procedure for efficiency estimation is a target of researchers and 

engineers in the field. 

In Chapter 1, the objectives of this Ph.D. work was introduced and a review of the 

efficiency estimation techniques in the literature was presented. It was also shown that derating 

induction motors with voltage unbalance and/or harmonics is a necessary procedure to protect the 

machines from premature failure. It was also discussed that to derate a machine, its efficiency 

under balanced sinusoidal voltages is required to be determined. The efficiency of that machine 

under unbalanced voltages and/or harmonics is also required to determine the derating factor.  

Chapters 2 and 3 of this thesis were devoted to design two novel methods for estimating 

repaired, refurbished, or any existing induction motors efficiency.  

In Chapter 2, the proposed Method A for estimating induction machines full-load and 

partial load efficiencies from only one no-load test was presented. It was shown that the 
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technique can run with very limited data and measurements, which can easily be performed in 

any electric motor service centers. The algorithm was designed to be applied in any motor repair 

workshop. The algorithm utilizes an extremely valuable test data that was received from Hydro-

Québec and BC Hydro which significantly improved the outcome of the proposed algorithm. The 

data was utilized in assigning the measured stray load loss and full-load temperature to the motor 

under test based on certain similarity with the motors of the data. The data was also utilized to 

propose new formulas to estimate the partial load stray load loss, stator copper loss, and rotor 

copper loss. 

The advantages of using measured stray load loss and full-load temperature instead of the 

assumed values were discussed and the algorithm accuracy improvement were also discussed and 

analyzed. 

A total of 196 induction motors were tested by using the proposed algorithm as part of the 

algorithm validation and the results obtained were with acceptable accuracy. 

To evaluate the estimated efficiency values obtained by the proposed algorithm, an error 

analysis study was conducted and showed acceptable levels of uncertainty by using the WCE and 

RPBE techniques 

In Chapter 2, it was concluded that the proposed algorithm can be deemed to have enough 

confidence to be used in the industry to give acceptable motor efficiency prediction. The 

algorithm was presented and well received in the CIGRÉ 2014 Conference and Exhibition in 

Paris, France [87]. 

In Chapter 3, Method B was proposed for refurbished induction machine efficiency 

estimation. Method B was designed to run with very limited data and measurements that can 

usually be encountered in electric motor service centers. Method B was also designed to be easily 

applied in any motor repair workshop. 

It was found that the IEEE Std 112™-2004-Method 3 was not capable of dealing with the 

limitations of the variable voltage source in electric motor repair workshops. However, the IEEE 

Std 112™-2004-Method 3 succeeded to deal with the majority of the motors tested (8 motors), 

but on the other hand, it failed with some motors. Hence, a modification was proposed to the 

IEEE Std 112™-2004-Method 3 that takes into account the equipment limitations and 

capabilities in normal motor repair workshops. In other words, the IEEE Std 112™-2004-Method 
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3 was designed to work only in well-equipped laboratories, while the proposed Method B was 

designed to be applicable in electric motor service centers.  

The proposed algorithm utilizes the Hydro-Québec/BC hydro data by using the measured 

full-load temperature and stray load loss values in lieu of the assumed ones. Having this data, 

improved the performance and the output of the algorithm to acceptable levels of performance. 

Eight induction motors of size range from 3-to-150 hp were tested using the designed software. 

The results were presented and showed acceptable accuracy.  

As a necessary part of the evaluation of the estimated efficiency values obtained by the 

proposed algorithm, an uncertainty study was conducted and showed acceptable levels of 

uncertainty by using the WCE and RPBE techniques. The level of uncertainty within the 

estimated efficiencies obtained by using the proposed method provides confidence to the 

proposed algorithm and the software can be used in industry with some confidence. 

Chapter 4 was devoted to the developed software which utilizes the two proposed 

algorithms of chapters 2 & 3 and the supporting data. The software was aimed to be a practical 

industrial tool that can be used in any electric motor service center in North America. The 

software went through a monitoring and assessing process by the technical monitors team which 

was selected by a group of Canadian Power Companies who sponsored the project. The software 

underwent many different stages of upgrading by including many useful suggestions of the 

technical monitors. The latest version was approved by the technical monitors and it is currently a 

copyright of CEATI International Inc. 

In Chapter 5, a novel algorithm for in-situ induction motor efficiency estimation using a 

combination of GA procedures and the IEEE Form 2-Method F1 calculations was proposed. It 

was shown that using the assumed values of stray load loss and hot temperature can significantly 

increase the error and reduce the accuracy of the estimated efficiency. Hence, the algorithm was 

designed to utilize the Hydro-Québec/BC hydro data. The algorithm uses the measured stray load 

loss and hot temperature. The algorithm requires only one load point which is full-load with its 

corresponding rms values of voltage, current, and power obtained at the motor terminals. The 

algorithm uses online speed measurement technique to determine the speed of the motor under 

test. 

The algorithm was extensively evaluated and assessed by testing 30 induction motors of 
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different kinds and power ratings. The results were presented and showed an acceptable level of 

accuracy. 

The algorithm was not only deemed as an in-situ efficiency determination tool; it can also 

be used as a promising tool for on-site efficiency estimation that might eliminate the need to the 

costly dynamometer procedure. 

Induction motors are designed to operate with balanced voltages. Voltage unbalance 

increases rotor losses which results in stator and rotor temperature rises that can cause serious ill 

effects on the three-phase induction motors, such as, reduction in output torque, vibration and 

overheating that lead to a reduction on insulation life of the machine. Hence, Chapter 6 was 

devoted to designing an algorithm for in situ efficiency estimation of induction motors operating 

with unbalanced voltages by using a combination of GA procedure, IEEE Form 2-Method F1 

calculations, and pre-tested motors is proposed. The algorithm was designed to utilize the Hydro-

Québec/BC hydro data. 

An extensive procedure was presented in this chapter for the determination of positive and 

negative sequence components. This procedure was used to determine the phase voltages and 

their associated angles of a certain level of unbalance in the programmable power supply.  

The same speed estimation technique that was presented in Chapter 5 was used in this 

chapter.  

The algorithm was evaluated and assessed by 10 voltage unbalance tests and the accuracy 

of the results was shown. 

The usability of the algorithm with balanced voltages was investigated by testing the 3.0 

hp and 7.5 hp machines and the results showed acceptable accuracy. 

The repeatability of the proposed algorithm was also investigated and the results showed 

a 13.13% coefficient of variation. 

The goal of the study was to design a useful tool that can be used in industry to derate 

induction motors due to voltage unbalance. 

Three-phase power supply can never be completely clean of distortion or voltage 

unbalance. Unbalanced voltages and harmonics have detrimental impacts on the performance of 

induction motors. The efficiency estimation process can be a difficult task with the existence of 
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voltage unbalance and harmonics. Hence, Chapter 7 was allocated to demonstrate a proposed 

novel algorithm for in situ efficiency estimation of induction motors that operate with distorted 

unbalanced voltages by using GA procedures, IEEE Form 2-Method F1 calculations, and by 

utilizing data of pre-tested motors is proposed in this chapter.  

The algorithm was designed to utilize the Hydro-Québec/BC hydro data. The novelty of 

the algorithm was demonstrated by using a new approach in determining the stray load loss and 

friction and windage losses based on a certain strategy and novel equations. 

The same online speed estimation technique that was discussed in Chapter 5 was used to 

determine the speed of the motor under test. 

The algorithm was evaluated and assessed by 50 tests of different combinations of voltage 

unbalance and harmonics done with two small induction motors. The results showed an 

acceptable level of accuracy. 

The repeatability of the algorithm was also validated by 10 repeated tests with a very low 

coefficient of variation of 0.0793%. 

The usability of the algorithm with balanced harmonics free voltages was demonstrated 

by testing the two machines with an acceptable accuracy. 

 

8.2. Proposed Future Works 

In this section, suggested future works are proposed based on the acquired experiences 

throughout this Ph.D. work. 

 

8.2.1. Minimizing the Load Test Time 

As mentioned in this thesis, testing a machine by using the direct method (dynamometer 

procedure) requires long time. Full-load temperature stability can be reached after around eight 

hours of running the machine with 100% load. To reach another point of stability with new load, 

measurement can only be taken after around one hour of applying the required load. 

It will definitely be useful if an algorithm can be designed to predict the performance of 

the machine under any partial load with quick measurement without waiting for the time required 



182 

 
 

for temperature stability. 

8.2.2. Hot Spot Determination 

Determination motor temperature plays an important role in estimating its efficiency. The 

procedure that was followed to determine the temperature in Chapters 5, 6, and 7 was through 

stator resistance measurement which is then needed to be translated into a temperature. Hence, it 

would be useful to develop an online algorithm that could precisely predict the hot spot of a 

running machine. 

 

8.2.3. Identification of Machine’s Parameters 

In this thesis, the genetic algorithm was used in in-situ efficiency estimation of induction 

motors. Although the GA has been used successfully in induction machine efficiency estimation; 

it is known that there are few other evolutionary techniques that can be used for the same 

purpose, and some were used in some similar studies like the Bacterial Forging Algorithm 

(BFA). 

It would be very useful if a comparison study can be achieved by estimating the efficiency 

of some induction motors using different types of evolutionary methods and investigating the 

advantages and disadvantages of each technique in terms of accuracy and speed. 

 

8.2.4. Stray Load Loss Estimation 

Determination of stray load loss is a key point in induction motors efficiency estimation. 

In this work, and by the advantage of having the Hydro-Québec/BC hydro data, the stray load 

loss could be estimated with some good approximation compared to the measured value for 

motors that have similarity with the data tested motor. Nevertheless, motors with no similarity 

will be assigned the assumed stray load loss as per IEEE and IEC standards which overestimate 

the measured value and hence contribute significantly to the inaccuracy of the estimated 

efficiency. It is very important to the field of induction motor performance evaluation that a new 

approach to be designed for stray load loss determination that can give better results than IEEE 

and IEC standards.  
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