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ABSTRACT 

 

A method to calibrate roadway lighting warrants and levels with crash-history 

Mustafa Al-Dulaimi,  

Concordia University, 2015 

Every year hundreds of night time road collisions result in fatalities and injuries in Canada. 

Roadway lighting is considered as the main countermeasure to prevent nighttime crashes. 

Provision of lighting follows two industry standards in North America: one for the warrants and 

the other for minimum recommended levels. The warrant system assigns scores to highway 

segments based on geometrical, operational and functional characteristics as well as the collision 

history through a night-to-day crash-ratio. Transportation agencies in North America had 

manifested their interest in simplifying the warrant system; eliminating elements and/or modifying 

lighting values, however, there is a need for a method to support lighting decisions over its 

effectiveness as a countermeasure. This thesis presents a novel method to calibrate lighting 

warrants and to identify effective levels of lighting in order to reduce the severity and frequency 

of night-time collisions. This new method uses an evidence-based mechanism to connect lighting 

warrants with statistical analysis of collisions in order to adjust the scores of the warrant. It also 

connects the estimation of lighting levels with evidence-based statistical analysis of crash-history 

in order to identify recommended levels of luminance, illuminance and uniformity variations. The 

method expands the industry standards by providing the decision maker with two alternate non-

exclusive approaches supported over collisions’ frequency and severity criteria.  A large-scale case 

study for highways in Quebec was used to calibrate the warrants and identified recommended 

levels of luminance of at least 1.5cd/m2, maximum uniformities of illuminance of 1.5 and of 

luminance of 8 times to prevent severe and frequent collisions. A case study of Arthabaska region 



iv 

 

in Quebec found that levels of luminance should be increased for every functional classification 

of roads that values of uniformity must be reduced, and that levels of illuminance increased to 

reduce severe collisions. The novel methods developed in this research will provide province/state 

transportation agencies and municipalities with the capability of not only allocating lighting when 

is needed and justified, but also of selecting the optimal levels that result in effective reductions in 

nighttime road collision frequency and severity, signifying safer roads for the society at large. 
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CHAPTER 1 - INTRODUCTION 

1.1 Background 

Road accidents negatively affect the lives of thousands of individuals and causes negative 

socioeconomic impacts on the society such as fatalities, injuries, labour loss and reduction of 

competitiveness (de Leur, Thue. and Ladd 2010). Collisions damage road infrastructure and 

traumatize families; carrying over heavy social consequences (WHO 2013). Roadway collisions 

are ranked eighth worldwide among causes of fatalities in the world, and this number is expected 

to increase in the coming decades (WHO 2013). About 1.24 million road users have died annually 

worldwide (WHO 2013). Moreover, road fatalities contribute to approximately one third of 

fatalities in Canada (Government of Canada 2012). In 2011, the number of injuries and fatalities 

had reached a total of 181,855 and 2,227 respectively on Canadian roads (WHO 2013). In high 

income developed countries, the largest percentage of road deaths is associated with collisions of 

motorized vehicles (WHO 2013). This number reached 81.6% for Canada in 2011 (WHO 2013). 

More than half of the Canadian road fatalities occur in rural areas (57%), whereas the majority of 

injuries (75%) occur in urban areas (Government of Canada 2012). In Quebec, 67% of the fatalities 

involved motorized users and the number of collisions is expected to grow as more people become 

motorized (SAAQ 2012). During 2012, the province registered 74,574 car accidents, 39,105 cases 

of injuries, and 436 fatalities on its road network (SAAQ 2012). As observed before, the number 

of fatalities on Quebec and Canadian roads is higher for motorized users, a trend that is being 

observed worldwide (SAAQ 2012). Only 18% of the road fatalities involved non-motorized road 

users (i.e., pedestrians and cyclists) in the Province of Quebec in 2012 (SAAQ 2012).  

According to the World Bank (2004) nighttime vehicle collisions can be mitigated through the 
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installation of adequate roadway lighting. Lighting not only serves to control the number of road 

related collisions but also the speed of the vehicles (IESNA 2005). The International Commission 

on Illumination agrees in the role of lighting to reduce “the toll of death and injury” (CIE 2007). 

However, the reality for many countries is that lighting is provided on very few roads because it 

is very expensive to provide and maintain the infrastructure for lighting the entire network. 

Additionally, environmental considerations also discourage unnecessary lighting. Only 35% of 

Quebec’s roads (1208 out of 3,452 kilometres of highways) count with artificial illumination 

(COMT 2013). This number considers only highways under MTQ’s jurisdiction and does not 

count grid roads at rural locations under municipal jurisdiction. The cost of initial investment, 

energy consumption, and maintenance is only justifiable when it translates into a reduction of 

nighttime road collisions of more than two times that of day time crashes, or when a combination 

of factors deem a significant reduction in night time accidents (Walton 1974, AASHTO 2005). 

Many studies have shown lighting to be an effective countermeasure to reduce night time road 

accidents (CIE 1992). Before and after studies have shown reductions in road collisions ranging 

between 13 to 75% at sites where artificial lighting has been improved or upgraded (Yanmaz-

Tuzel and Ozbay 2010). According to a comprehensive literature review conducted by the 

Commission International de l’eclairage (CIE 1992) and Rea et al. (2009) in some instances the 

number of accidents occurring at nighttime could be close to those happening during daytime. CIE 

(1992) and Rea et al. (2009) also identified that night-time accidents are more severe and involve 

more fatalities when compared to daytime accidents. According to the authors, it appears that 

darkness of a non-illuminated road reduces a driver’s ability to manoeuvre and respond adequately 

to hazardous situations, due to reduced visibility which impairs visual capability (CIE 1992).  

Transportation agencies are responsible for determining when to provide lighting and how much 
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lighting to design for. North America follows a warrant system first proposed by Walton (1974). 

This system uses scores to assess each road depending on its geometric, functional, and operational 

elements; the decision of lighting follows for roads obtaining 60 points or more. However, there 

is a disconnect between such decisions and whether or not lighting is beneficial for reducing 

collisions on the road under consideration. In 2003, Texas Department of Transportation adapted 

and extended the warrants (CTC and Associates LLC 2013), creating additional criteria and 

assigning custom values to the scores, and other states have recently followed. A review of the 

modified guidelines of several states revealed that most of the modifications are changing the 

existing scores with new values. This fact suggest that there is a need for local calibrations of 

warrant scores. Interviews with Quebec’s MTQ revealed that the application of the warrant system 

criteria sometimes results in unexpected decisions, which is evidence of lack of calibration to local 

circumstances. In addition, even when lighting is provided, the proposed levels should be designed 

in such a way that lighting becomes an effective countermeasure, reducing the number and severity 

of collisions. 

1.2 Problem Statement 

There are no methods to calibrate the warrant to local circumstances of road lighting and the design 

levels. Many transportation agencies had recently used expert criteria to simplify the existing 

methods and suggested modified values to the scores; however, this approach lacks a necessary 

connection between lighting warrants and crash-history which should be the basis for local 

calibrations. On the other hand, IESNA’s lighting levels are only reference minimums and there 

is no method capable of identifying recommended levels from a crash-experience perspective.  
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1.3 Research Objective 

1.3.1 Overall goal 

The overall goal of this thesis is to create methods to calibrate lighting warrants and to identify 

recommended lighting design levels which effectively serve to countermeasure night-time road-

collisions.  

1.3.2 Specific objectives 

i. Establish a connection between warrants and design levels with crash-history. 

ii. Connect warrants and design levels with crash-history. 

iii. Develop and test a method to locally calibrate lighting-warrants. 

iv. Develop and test a method to identify effective lighting levels. 

1.3.3 Tasks  

i. Collect illuminance and luminance data, prepare databases, and use statistical models to 

analyse the role of lighting indicators on night time collisions’ severity and frequency. 

ii. Conduct a critical review of lighting warrants around the world and identify the state of the 

art and practices, revise the state of the practice in North America and recommend changes.  

iii. Identify mechanisms to calibrate roadway lighting warrants and lighting levels from a 

crash-history perspective.  

iv. Use the mechanism to propose methods to conduct local calibration of warrant scores and 

identification of beneficial road lighting levels.   

v. Test the methods through case studies that illustrate the ability to explain less frequent and 

severe nighttime collisions  

vi. Write a protocol that summarizes the unified method. 
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1.4 Scope and Limitations 

1.4.1 Scope 

This research was funded by the Ministry of Transportation of Quebec (MTQ), the Fond 

Quebecois de la Recherche sur la Nature et la Tecnologie, and the Fond Quebecois de la Sante 

through a grant aimed to revise the grid warrant score system and adapt it for the province of 

Quebec. MTQ provided the road collisions data from 2007 to 2011. This data involves at least one 

motorized vehicle crashing with a motorized or non-motorized user or object. MTQ also provided 

data for geometric and functional characteristics. Roads for Arthabaska included local, collectors, 

arterials and highways with posted speeds ranging between 40 to 100 KPH. Roads for Quebec 

included only highways with posted speeds ranging between 70 to 110 KPH. Roadway lighting 

measurements were collected on the field. Lighting measurements for illuminance and luminance 

were collected for about 2,500 km on Quebec major highways & Arthabaska region.  

The aim of this research is not to study the impact of variables on road collisions, but to use this 

type of analysis to propose two methods. The research proposes methods for local calibration of 

warrant scores, and for the identification of lighting levels. It uses Quebec and Arthabaska as case 

studies explaining changes to AASHTO warrants and IESNA levels. However, the methods 

proposed are general enough to be applicable anywhere in the world.  

1.4.2 Limitations 

Many circumstances limit the ability to collect data (weather, safety, data storage, et cetera). For 

illuminance, observations were recorded at every 15 meters with the aid of a logger; however, 

measurements cannot be taken if there is precipitation. For luminance, pictures were taken every 

500 meters, lights of the vehicle were turned off and camera positioned to capture the drivers’ 
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perspective, which required taking several safety measures. Longitudinal uniformity was estimated 

for each segment (not measured). Transversal uniformity was not part of this research. No colour 

characterization was performed for the luminaires (the equipment was unable to measure it).  

It has been assumed that observed lighting has not changed across time and that it is representative 

of that observed at the time of the collisions. This subdivides in two assumptions: first that 

improvements (or downgrading) had not been observed; second, that the amount of lighting from 

the source is the same. However, other researchers (Jacket and Frith 2013) suggest that the amount 

of light varies as much as 15% throughout the lifespan of the lamp. 

The effect of some environmental variables on night time collisions will be left outside the scope 

of this research (snow, rain, fog, dust et cetera). The equipment was only capable of capturing the 

unified glare index and not the other glare indicators. 

Data for pedestrians was not available, and it was unable to be included in the analysis. 

Practitioners planning to adapt the methodology presented herein must add such information to 

further break down the analysis in order to estimate recommended values of lighting parameters, 

not only per functional classification, but per level of pedestrian activity. 

1.5 Research Significance 

This research makes the following contributions: 

i. Proposes a calibration method for roadway lighting warrants, providing departments 

of transportation and local municipalities with the ability to justify lighting decisions 

with expected reductions on nighttime collisions based on statistical analyses of crash 

experience. The revised scores are based on available data which better suits 

agencies’ needs.  The creation of this currently inexistent method will benefit 

agencies in North America and around the world, as is applicable anywhere as long 
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as crash-data is available. 

ii. Develops a method to identify effective levels of roadway illumination (illuminance, 

luminance and uniformities) according to the local/regional crash-experience, such 

that minimum values of illuminance and luminance and maximum uniformity 

variation do correspond to reductions of the frequency and severity of roadway 

collisions. This task has never been done before. 

iii. Databases useful for lighting research have been created with about 2,500 kilometres 

of highways with illuminance data. About 800 km of them with both illuminance and 

luminance. Such a massive database outweighs any other previously created. This 

work signifies the largest lighting safety database in the world. This will serve for 

future research on safety and lighting.  

iv. Demonstrates the use of Full Bayesian hierarchical analysis for validation and on a 

secondary plane to reproduce the ideas behind latent class mixture methods for the 

analysis of road collisions through safety risk groups. However, deeper exploration 

was left for future research. 

In addition to the new methods, this research will improve the existing ones because 

surrogate variables could be used. The number of variables reduced to those available and 

the decision could be justified through improvement on nighttime collisions frequency 

and/or severity which is currently absent.  

The overall research provides with a unified protocol for roadway lighting. This protocol 

will provide agencies at any level of government with an evidence-based justification of 

lighting to support their decisions, which in turn will minimize their liability position. 
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1.6 Organization of the Thesis  

This thesis is presented in seven chapters as follows. Chapter 1 defines the problem and presents 

the objectives of the research and structure of the thesis. Chapter 2 contains a review of concepts 

related to roadway illumination, road safety and its statistical analysis. Chapter 3 presents the 

methodology employed for the collection, processing and analysis of the data. Chapter 4 explores 

the understanding of lighting and safety through a pilot study of the Arthabaska region in Quebec. 

This chapter has been submitted as a conference paper to the 12th World Conference on Injury 

Prevention and Safety Promotion in September 2016 in Finland. Chapter 5 presents the method 

for calibration of road warrants. It illustrates the method on a case study of hundreds of kilometres 

of highways 20, 40, 55, 105 and 132 in the province of Quebec. It has been submitted for 

publication to the Journal of the Transportation Research Board of the National Academies. 

Chapter 6 presents the method to identify recommended levels of lighting, and it contains two case 

studies: one for Arthabaska region and another one for highways in Quebec. It has been submitted 

for publication to the Journal of the Transportation Research Board of the National Academies. 

Chapter 7 presents the conclusions and recommendations for future research work. Because of 

self-contained nature of chapters 4, 5 and 6 as papers, some of the contents maybe a reiteration of 

material previously discussed on the thesis.  
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CHAPTER 2 - LITERATURE REVIEW 

2.1 Introduction 

Roadway lighting is provided as a countermeasure to reduce nighttime collisions, but it also has 

secondary purposes, such increasing pedestrian safety by reducing crime (DMD & Associates Ltd. 

2009). Research on the safety benefits of lighting investigated crime rates before and after 

implementing nighttime lighting, showing nearly significant reductions for control areas in the US 

and significant reductions in UK (Rea et al. 2009). The following sections present the basic 

concepts of artificial roadway lighting, its use as collision countermeasure, and current warrant 

and design standards used in Canada. 

Three major areas are discussed thoroughly in this chapter: statistical analyses for road safety, the 

role of artificial lighting as a countermeasure for nighttime collisions, and the state of the practice 

on lighting warrants and design levels. The first section describes concepts related to statistical 

analysis used in road safety. The second section provides a brief review of lighting and the different 

indicators used to measure it. The third section covers nighttime road collisions and the role of 

lighting. The fourth section provides a description of lighting warrants and design guidelines. A 

revision of world practices and a critical review of the state of the practice of warrants in North 

America are used to justify the gap in knowledge due to inexistent research in this area and an 

urgent need from the state of the practice.    

2.2 Statistical Analyses in Road Safety 

Using an appropriate regression model to correlate independent variables with an outcome is 

important to provide reliable statistical results. There are many statistical regressions that can be 

used to predict an outcome associated to road safety. Road safety outcomes are collisions which 
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are random integers that typically got aggregated by looking into several years at a time and 

therefore turn into count variables. Widely used ordinary least squares model is not applicable to 

count collision data because this data is highly abnormal with zero inflated means (Zhou and Hsu, 

2009); rather count models such as Poisson or negative binomial must be used (Isebrands et al. 

2010). 

The typical form of a count model is given in Equation 2.1 (Bullough, Donnell and Rea, 2012). It 

depicts the relation between the outcome (collisions), and the explanatory variables (road 

characteristics among others). The model also includes an error term that takes into account the 

impact of unobserved variables. This form involves the use of a natural logarithm; however, 

because many observations of the response exhibit zero value, it is typically transformed to an 

exponential model such as that shown in Equation 2.1. 

𝑌𝑖 =  𝐴𝐴𝐷𝑇𝑖
𝑎 ∗ exp ( 𝛽0 + 𝛽1𝑥1𝑖 +  ⋯+𝛽𝑘𝑥𝑘𝑖)   [2.1] 

Where:        

k: variable number (1,2,3,….) 

βk : Coefficient of explanatory variable 𝑥𝑘 

𝑌𝑖: Frequency or severity of night-time collisions on segments i 

AADTi: Average Annual Daily Traffic of segments i 

Xki: Explanatory variable i 

α: Coefficient of AADT at segment i 

2.2.1 Poisson and negative binomial regression models 

Poisson and negative binomial models have been used to analyse roadway safety given their 

properties that enable them to handle count data. The main assumption behind the Poisson model 

is that the mean µ is equal to the expected value and to the variance VAR(Y) of the outcome as 

shown in Equation 2.2. This is not always the case mainly because of unobserved heterogeneity 

which can result from missing important site characteristics, randomness, and a high number of 
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zero counts, causing over-dispersion of the data and therefore resulting in variances much larger 

than the mean. The Poisson model is not applicable in those cases when the data is over-dispersed, 

mainly because it underestimates the standard error. Count data often exhibit over-dispersion 

making negative binomial the ideal choice.  

 = E(Y)  = Var(Y)  [2.2] 

Where: 

Y = Accident frequency or severity 

μ = Average number of accident (mean) 

VAR(Y) = Variance of Y 

E(Y) = Expected value of Y 

 

2.2.2 Zero-inflated Poisson an negative binomial 

If the count of zero (Equation 2.3) for the response is very high in the sample under study, a zero-

inflated Poisson (ZIP) (Equation 2.4, 2.5, and 2.6) or negative binomial model (ZINB) should be 

used, (Equation 2.7 and 2.8) depending whether or not there is over-dispersion (Mullahy  1986). 

The general framework for the ZIP model has been explained elsewhere (Lord and Miranda-

Moreno 2008) and is presented in Equations 2.3 to 2.6. The response Y is dependent on μi which 

is a function of a vector of site attributes, hence, it is a function of traffic flow (AADT) and the 

other characteristics of the road (x) and their accompanying coefficients (β). In these Equations εi 

is an unknown parameter representing the proportion of zeros that is added to the Poisson 

distribution. The error term εi can also be determined as a function of some site attributes that were 

not considered in the model in question and can be defined by using a logistic link function  

εi = 
𝑒⍵𝑧𝑖

1+𝑒⍵𝑧𝑖
, where ⍵ is a parameter vector and z is a vector of an unobserved site characteristics. 

In this model, the vector of covariates zi determines the probability of being in the zero count state 

and may be a function of specific-site attributes or other covariates that may be part of the  
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vector xi.  

Yi = 0, with probability εi, and   [2.3] 

Yi | μi ~ Poisson (μi), with probability (1- εi) [2.4] 

Equations 2.3 and 2.4 follow the following distributions respectively 

f(yi | μi, εi) = εi + (1- εi) Poisson(μi) for yi = 0, and  [2.5] 

f(yi | μi, εi) = (1- εi) Poisson(μi) for yi = 1, 2, … [2.6] 

 

Although the ZIP distribution can handle the problem of excessive zeros, it is inflexible in the 

sense that it cannot represent important unobserved attributes or randomness that may also affect 

the mean number of accidents (i.e. unobserved heterogeneity). To address this issue, ZIP has been 

extended to the zero-inflated Negative Binomial model, which assumes that the mean number of 

accidents is also random, by introducing a multiplicative random term (Hauer 1997). 

An alternative model to standard/regular negative binomial is the zero-inflated negative binomial 

regression model if over-dispersion is observed (Mei-Ling et al. 2004). The ZINB is an extension 

to the ZIP. This regression model deals with both the high number of zero counts and  

over-dispersion (Mei-Ling et al. 2004). This model assumes that the zero count results from two 

different processes. For instance, in the case of road safety, there might be a high number of zero 

accidents because of two reasons. The first reason can result from the fact that there are no reported 

accidents because of the road segment’s observed and unobserved characteristics (1-εi) in  

Equation 2.7. The second reason that might explain zero crash frequency is that the accident was 

not reported (εi) in Equation 2.8.  There is also a zero-inflated Poisson model that can be used  

if and only if the variance of the outcome is equal to the mean. The variance and the mean of the 

outcome have to be compared to determine which one to use. It is important to mention that  
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over-dispersion (α) for ZINB regression also stems from splitting the zero count generation process 

into two parts, in addition to what was mentioned earlier (Mullahy 1986 and Greene 2003). The 

ZINB model has the following probability distribution (Equations 2.7 and 2.8):  

f(yi | μi, εi, α) = εi + (1- εi) Poisson(μi, α) for yi = 0, and  [2.7] 

f(yi | μi, εi, α) = (1- εi) NegBin(μi, α) for yi = 1, 2, … [2.8] 

As in the ZIP model, εi represents the probability of being in the zero-state and is also analysed as 

a function of a vector of covariates zi.  

2.2.3 Full Bayesian analysis (FB) for road safety 

An alternative approach to classical statistical analysis is that of Full Bayesian Analysis combined 

with some estimation algorithm, like the Gibbs sampler or any other Markov Chain Monte Carlo 

simulation which enables the estimation of parameters via sampling of the space and, guided by 

initial priors and the information contained in the observed data. In this research, this approach 

used to validate the results obtained via classical statistical methods (i.e. those supported over 

maximum likelihood estimation). Three elements are at the core of any Bayesian analysis:  

(1) a prior distribution of the parameters of interest, (2) a likelihood distribution from the existing 

data, and (3) a posterior distribution to be estimated. In Bayesian estimation it’s necessary to 

provide a point of departure (called prior) to each parameter. Typically priors are based on previous 

studies or previous knowledge; they can also be directly obtained from professional engineers or 

technicians with vast experience in the area. The posterior inference comes from a mix of the prior 

and the likelihood.  

Full Bayesian regression analysis poses a superior framework for estimation when dealing with 

models that follow a hierarchical structure in which parameters are dependent of certain factors 

which are themselves parameters as well (Congdon 2010). This is dependent of certain probability 
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density functions (hyper-priors) of one or more parameters of the model, which are in turn 

dependent on a series of other parameters (called hyper-parameters). Such hyper-parameters also 

follow a particular prior distribution, so that different levels of hierarchies can be set up in the 

analysis. This idea will be briefly explored in the analysis of sites by level of risk introduced in 

chapter four of this research work. However, Full Bayesian regression will be used for validation. 

The process of estimation requires the preparation of thousands of iterations in order to achieve a 

stationary state form, from which the expected values of the posteriors can be estimated. Such 

values represent the estimated parameters that accompany the causal factors of the regression 

model. For this, Full Bayesian analysis takes advantage of simulation approaches such as Markov 

Chain Monte Carlo (MCMC) methods (Gamerman and Lopes 2006). The simulation follows the 

estimation of values from different points of departure called chains, which proceed until the paths 

of the values cross and reach a stable range called convergence. Convergence can be visualized by 

checking the historical trace of the chains. Typically, the first few thousand (and sometimes 

million) iterations must be dropped off the analysis, as they belong to an initial state in which the 

estimation has not converged. Checking the significance is another challenge in Full Bayesian 

analysis. The most common way is by simply observing the spread on the estimated statistical 

distributions of the parameters and making sure that the values of the distribution do not cross over 

zero; for instance if one seeks 95% confidence in the results of a given parameter, then the values 

of such parameter at the 2.5% and 97.5% points should both be positive (in the event of a positive 

contribution of the causal factor to the response) or negative (on the contrary). 

Several softwares exist for Bayesian estimation, among others: R (Albert 2007), JAGS (2014), 

WinBUGS (2014) and OpenBUGS (2014). All of them utilize a MCMC simulation approach for 

Bayesian inference, the difference lays on the algorithm: while many use a GIBBS sampler others 
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follow more general forms of the Metropolis Hastings algorithm. 

Choosing the appropriate prior for Bayesian Regression has been a matter of debate (Lunn et al. 

2000 and Bishop 2007). The likelihood is generally derived from the available data and the prior 

from either expert criteria or independent studies. Priors can either be informative or non-

informative. When little is known about the phenomena that is being modelled, non-informative 

priors are preferable as they result into a more reliable posterior derived from observations (i.e., 

the likelihood). When there is insufficient knowledge about the phenomenon to be analysed, 

informative priors are recommended if there is certainty that such knowledge is incorrect. Priors 

get mixed with the likelihood (as explained before) producing an improved estimate of the 

posterior from a reduced variance. By obtaining such posterior it is possible to balance the 

associated risk of either having biased priors or unusual observations (from limited time series 

data, in particular).  

2.2.4 Latent Class or Markov mixture models (LCM) 

Most existing research has used traffic volume as the main factor to explain observing zero 

accidents at many road segments; that is, low volumes of vehicles commonly result in no crashes. 

However, a new technique called latent class has recently captured the attention of researchers 

(Persuad et al. 2009). This technique acknowledges the fact that observations across sites may 

belong to different populations. Hence having mixed observations presented as one isn’t adequate 

and that the structure of the data should reflect such membership to disentangle the results into 

separate analyses. Such a method strongly mirrors that of a nested or hierarchical analysis in the 

Full Bayesian literature (Persaud, et al. 2009). 

This technique abandons the dependency of the zero inflation and through an identification of the 

level of risk of the segment produces an analysis that takes into consideration the explanatory 
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power of the causal factors according to the level of risk at hands. Two precursor studies by 

Malyshkina, Mannering and Tarko (2009), and by Malyshkina and Mannering (2010) introduce 

this novel method and were dedicated to assess the suitability of Markov switching negative 

binomial models and of zero-state Markov models in their application to vehicle accident 

frequencies. Their studies found that instead of heavily depending on the zero inflation the models 

should rely more on a categorization of risk and on an analysis of the explanatory factors at each 

level. The most recent study was conducted by Peng and Lord (2011) through an application of 

the latent class to analyse longitudinal data. The analysis of trends was used to characterize the 

relative importance of risk factors on explaining accidents and estimated the contribution of 

geometrical and operational factors per level of risk.  

2.3 Roadway Lighting  

2.3.1 Photometric quantities 

Photometry is the science of measurement of light in terms of its apparent brightness to the human 

eye (IESNA 2008). It is distinct from radiometry, which is the science of light measurement in 

terms of absolute power. Photometric quantities such as lux, lumens, and candelas serve as 

reasonable indicators reflecting variables that characterize visual responses (Lennie, Pokorny and 

Smith 1993), including reaction times. 

According to the CIE (2007), road lighting standards are set by considering: 

1. Luminance and Illuminance  

2. Luminance-based uniformities and Illuminance-based uniformity 

3. Glare 

4. Threshold increment and color of the light source 

This research uses luminance, illuminance, and their variations. Glare was initially explored but 
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limited to the ability of the equipment; only the unified glare indicator was available. Other aspects 

of lighting were not included as the equipment was not capable of its measurement.  

2.3.2 Illuminance, luminance and uniformity variations 

Illuminance is the amount of light arriving at the surface of the pavement (Figure 2.1). It is 

measured in units of light flux (lux). Luminance is the amount of light as perceived by the driver; 

it depends on the road surface and environmental circumstances (wet, dry). It is measured in 

candela per square meter (cd/m2) and is typically measured using a photometer (which costs tens 

of thousands of dollars) or, most recently, a calibrated commercial camera, with its white balance 

and exposure settings calibrated to match the pixel grey-scale brightness to luminance targets 

(Jackett and Frith, 2013, Cai and Li 2014). According to Rea et al. (2009) for roads that are mainly 

used by non-motorized road users, illuminance should be used as a lighting criterion, whereas, 

luminance should be used for motorized roads with vehicles moving at high speed. Neither overall 

nor longitudinal uniformity has been identified as significant predictors of collision rates 

reductions in previous studies (OPUS 2012). Uniformity refers to the longitudinal and transversal 

variation of lighting (luminance or illuminance) as shown in Figure 2.1. Lower values of 

uniformity (starting on one) correspond to homogeneously lighting circumstances. Higher values 

refer to large variations, such as those seen on the longitudinal uniformity of Figure 2.1. Two ratios 

are commonly used for luminance-based uniformity: the maximum over minimum and the average 

to maximum. The maximum to minimum variation can tolerate larger variations as it looks at the 

brightest and darkest points from a driver’s perspective and it can be used to measure glare. 

Average to minimum luminance variation will likely have values of one in order to have 

consistently lit environments. For illuminance, the uniformity variation refers to the ratio of 

average over minimum and could lead to values starting at one (Figure 2.1) and large values for 
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segments where the amount of light on the surface varies significantly. One common issue is that 

of segments transitioning from zero to some level of illuminance, resulting in very large ratios. 

This situation can be fixed by removing them from the analysis. Similarly, non-lit roads with mean 

and minimum illuminance of zero pose a mathematical problem, solved by assigning a very low 

value of illuminance (0.01Lux).  

 
 

Figure 2.1 Top: Luminance and its Variables, Bottom: Illuminance and its Variables 

(Source: desktopwallpapers4.me 2015) 
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According to IESNA (2005) glare is defined as visual impairment or difficulty of seeing objects 

from the abrupt change in light contrast. This could come from the presence of a bright source of 

light or luminaire (Figure 2.1). Contrast is the difference in luminance between a target and its 

background, which is relative to the average luminance of the immediate environment (CIE 1976). 

Two types of glare have been defined: disability glare and discomfort glare (IESNA 2005). Several 

formulas have been developed throughout the years by different researchers to estimate glare. 

These equations were formulated by taking into consideration the low adaptation level to exterior 

lighting, the pulsating action experienced by the driver due to the presence of luminaires which 

emit high intensity of light close to the driver’s visual range of sight (Figure 2.1), or that is coming 

out from headlamps.  

This research employs the unified glare ratio because it was the only one the camera and software 

were able to estimate the unified glare ratio is defined in Equation 2.9. 

𝑈𝐺𝑅 = 8log [ (
0.25

𝐿𝑏
) ∑

𝐿2𝜔

𝑝2 ] [2.9] 

Where L is the luminance from one luminaire, ω is the solid angle of the luminaire from the 

viewer’s position, p is the Guth index which increases as the line of sight of the viewer moves 

away from the luminaire. 

The role of the Threshold index has been discussed by Armas and Laugis (2007). They essentially 

explain that, there is a value called adaptation luminance at which an object and its surroundings 

require a minimum level of contrast for it to be visible. In the event of glare veiling luminance, the 

eye of the driver is forced to adapt to higher levels of luminance making the object invisible. To 

counteract this adverse effect one needs to increase the luminance contrast. 

 

 

http://en.wikipedia.org/wiki/Light


20 

 

2.4 Roadway Lighting and Road Safety 

2.4.1 Road safety and night time collisions 

Highway features consistency is an important element in road safety (COMT 2013). In fact, TAC 

(2004) and TAC (1999) lay down the foundation of road safety on the cornerstone of consistency. 

The environment to which drivers are exposed impacts their behavior and their response on the 

road. Inconsistency in road features tends to increase the frequency and the severity of road 

crashes, depending on the complexity of the road environment. Severity refers to the degree of 

damage to the human body suffered by the driver and/or the passengers. A consistent road 

environment provides the driver with enough clues to take timely decisions. Consistency is one of 

the most transcendental concepts because it explains collision risk. Proper driving visibility is 

linked to consistency. According to TAC (2004), 90% of the information used by drivers is visual. 

In this sense, drivers should be able to recognize all signals and information from the road 

environment in order to avoid errors and collisions. Road crashes can be generally explained at 

sites where multiple decisions need to be done in a short amount of time. Complex operating 

environments, in which a variety of road users interact, could be crowded with information 

overwhelming the driver and impeding timely processing and decision making. The lack of proper 

lighting may aggravate these circumstances, given late detection of hazards or clues expected to 

condition the driver’s response. Even when the environment is not complex, lack of proper 

illumination can still result in limited visibility, which may lead to late responses, given 

insufficient time to process the information (TAC 2004) and sometimes resulting in road 

collisions. Visibility at night time is also dependent on driver’s age. Places with large concentration 

of elder drivers (Rea, Bullough and Zhou 2009) may require adjustment to the amount of 

illumination provided and to improve glare control measures like median panels (IESNA 2005). 
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Previous research had shown that higher speeds result in less frequent (due to increased gap 

between vehicles) but more severe collisions (CIE 1992). On the other hand, traffic volume is one 

of the explanatory variables that have a significant impact on crash frequency (TAC 2004). Higher 

frequencies of road collisions are expected during peak hours and at roads with higher volumes 

(with all other variables held constant). With this being said, collisions are never caused by a single 

factor. A combination of factors are always related to each collision, where at least four causal 

factors and the sequence of events are reported to the police.  

Some of the most recognized variables which have been traditionally linked to higher frequency 

of collisions are traffic volume, presence of intersections, undivided roads, and complex 

alignments with limited sight distances, dark locations, and disability glare.  

2.4.2 Lighting and night-time road collisions 

The question of whether roadway lighting reduces or increases the risk of crashes is one of the 

most studied and debated subject in road safety. Such an issue can be addressed by incorporating 

road lighting with the purpose of increasing visibility (Bulldough, Rea and Zhou 2009,  

Cobb et al. 1979). TAC (2004) and Oya, Ando and Kanoshima (2002) acknowledge that the 

provision of roadway lighting as a countermeasure results in a 10 to 40% decrease in observed 

collision frequency and up to 65% of fatal crashes. An effectiveness of 37% reduction on crash 

rate with 95% significance has been found by Isebrands et al. (2010). 

The effectiveness of roadway lighting also suggests that nighttime collisions result in more severe 

crashes and that provision of lighting contributed to the reduction of their frequency (TAC 2004, 

CIE 1992, IESNA 2006). 

The whole purpose of lighting is to increase visibility (Bullough, Rea and Zhou 2009). Because of 

the versatile use of lighting (DMD & Associates 2009), lighting can be used to provide just enough 
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visibility in some cases and in others, a higher level of lighting might be needed to provide safety 

to the road user.  

Several studies have been conducted for examining the relationship between roadway lighting 

levels and safety, Zhou and Hsu (2009) investigated how maintained illuminance levels impact 

safety of pedestrians. They found higher frequency of pedestrian crashes at sites with low level of 

lighting, and similar findings did Isebrands et al. (2010) for Minnesota. Yannis, Kondyli and 

Mitzalis (2013) found that road lighting contributes to reduce accident frequency and especially 

reduce the number of persons killed and seriously injured in a study conducted with data from 

urban and rural roads in Greece (Elvik 1995). CIE (1992) found that the presence of lighting was 

statistically significant in reducing the number of collisions. Also, lighting was found to be 

statistically significant in decreasing the number of motorized crashes in all three studies that 

considered freeways interchanges.  

Another review done by IESNA (1989) looked into three studies that investigated the impact of 

lighting on crash frequency in freeways. A decrease varying between 17 to 40% in road collision 

was found when illuminated freeways were compared to unlighted ones.  

Box (1970) conducted a theoretical cross-sectional study investigating 203 miles of illuminated 

and non-illuminated freeways in the regions of Toronto, Denver, Chicago, Atlanta, Dallas, and 

Phoenix. Box (1970) assumed that nighttime traffic accounts for approximately 25% of the total 

volume on an urban freeway and that nighttime traffic volume is one-third of that observed during 

the day. The study found a 40% reduction for all types of crashes   nighttime. Another study done 

by Box (1970) investigated the relative effectiveness of different light levels. The night-to-day 

crash ratio associated with low illuminance values, fluctuating between 0.3 and 0.6 horizontal fc 

(3 to 6 lux), was statistically different from  night-to-day ratios observed at higher illuminance 
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ranges (0.8 to 1.1 fc and 1.3 to 1.5 fc). Surprisingly, the set of higher lighting levels was observed 

to have higher crash ratios; whereas, roads with low illuminance levels had lower crash ratios than 

dark freeways. According to Box (1970), higher crash rates observed at sites with high illumination 

values might have been caused by glare, but this hypothesis was not tested. Several explanations 

can be found in the literature as to what higher levels of lighting result into more collisions. CIE 

(1992) suggest that to achieve the higher light levels, fixtures will have to be placed closer to one 

another thereby decreasing the uniformity ratio.  Having more light poles on the road, by placing 

them closer to each other might also simply provide more objects with which a vehicle could 

collide (Wilde 1994). 

Wilde (1994) studied the impact of light upgrades for a ‘before’ period of two years and a one year 

‘after’ period for a six lane, 5.3 mile length urban freeway. The results indicated that lighting 

upgrades were beneficial to safety. The night-to-day crash ratio observed were 3.0:1 and 1.3:1 for 

the before and after periods respectively in section A, and 3.1:1 and 2.1:1 night-to-day crash rate 

ratios for section B. (Wilde 1994).  A cross-sectional study done by Lamm, Kloeckner and 

Choueiri (1985) on a suburban freeway in Germany investigated the impact of the presence of 

lighting fixtures and reductions in lighting levels. Many difficulties related to data interpretation 

were encountered during this study (which was conducted from 1972 to 1981) mainly because of 

changes that couldn’t be controlled for during the period of study. Some of these factors have been 

correlated to reductions on observed accident frequency because they correspond to actual 

evolvement of maturity practices at the country level (Amador and Willis 2013). The major 

drawback of this study as well as many others such as Bruneau and Morin (2005) is that it assumed 

that lighting is maintained to national standards during the study period (that is an average 

luminance of 1 cd/m² and a minimum-to-maximum uniformity ratio of 0.7). The study found that 
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the provision of lighting from dusk to dawn in the after period has been found to decrease  

night-time collision rates when compared to the before period. A decrease in the period of 

illumination was observed to increase accident frequency significantly when compared to roads 

illuminated for longer periods during the night (Lamm, Kloeckner and Choueiri 1985). 

Five year cross-sectional studies, from 1985 to 1990, conducted by Griffith (1994) looked into the 

effect of lighting on urban freeways with continuous and interchange only lighting. Crash rates 

were broken into seven categories: 1) all crashes, 2) serious crashes, 3) injury crashes, 4) property 

crashes, 5) property damage only (PDO) crashes, 6) interchange area crashes, and 7) non-

interchange area crashes. It was observed that freeways with continuous lighting were found to 

have statistically less night-time collisions when compared to freeways with interchange only 

lighting. A reduction of 16% in collision frequency was observed on segments that are 

continuously lighted and located between interchanges. Both sections had the same distribution of 

total vehicle miles travelled which was also true for the traffic volumes. Moreover, Griffith (1994) 

assumed that all other exogenous causal factors that might have an impact on road collision 

frequency were the same for the sections given that they are adjacent to each other. It was observed 

that PDO collisions on lighted interchange-only segments were 19% higher than continuously lit 

freeway sections; no significant differences were observed for other types of severities. An 18% 

higher collision frequency was observed for road segments only illuminated at the intersections as 

compared to the continuously illuminated ones. PDO crashes were found to be 32% higher at non-

interchange parts of the freeway with interchange-lighting-only when compared to similar areas 

but with continuous lighting. The differences in serious injury and total injury crashes were not 

significant between these sections. 

A study conducted by Bruneau and Morin (2005) investigated the impact of different lighting 
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positions situations. Partial and complete interchange-only lighting settings and continuous 

lighting on Canadian rural freeways were looked at in this study. A sample of 213 freeway sections, 

with 800 km length and 4 lanes, along with an eight year crash data (1990 to 1998), was considered 

by taking into account the different types of severity being total collisions, PDO collisions, and 

fatal and injury crashes. Smaller crash ratios were observed for continuously illuminated freeway 

segments. The crash ratios were 33% (p < 0.001) and 49% (p < 0.05) for continuous and 

interchange-only lightings respectively when compared to unlighted similar sites. When compared 

to dark sites, a significant 33% (p < 0.05) reduction in the total collision frequency is found for 

freeway segments with continuous lighting. Also, a similar result (32%) was obtained for 

continuously lit segments when compared to interchange-only illumination. No significant 

difference was found between complete and partial interchange lighting. Variation in traffic 

volume doesn’t result in any changes in the aforementioned results. A significant decrease in PDO 

crashes was found when continuous lighting segments were compared to interchange-only 

illuminated sections and dark freeway segments, with 35% and 43% respectively.  More severe 

night-time road crashes, such as injuries and fatalities, were inconclusive when compared to the 

aforementioned different light settings. 

In 1973, Sabey and Johnson, conducted a before-after study on forty-three trunk (national) roads 

in England investigating the effect of light upgrade or provision, following national standards 

practiced at that time. The roads were classified based on posted speed limit. They found that, in 

general, crashes were reduced after new lighting was provided. Sabey and Johnson (1973) showed 

that for 70 mph roads, the estimated savings (from reduced crashes) turn out to be approximately 

three times the annual cost of lighting. 

Another type of investigation was done by Monsere and Fischer (2008) where they looked at the 
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effect of downgrading and/or removing lighting units on highway segments. A significant 29% 

increase in the number of collisions occurring during night-time was observed at locations where 

lighting was reduced when compared to similar road segments with the original lighting levels. 

Interestingly, a 23% decrease in severe daytime road collisions were observed at site where 

lighting was reduced (p < 0.05). 

Another study conducted in the Netherlands by Wanvik (2009), investigated whether the presence 

of lighting on roadways had an impact on injuries resulting from road accidents. A 50% decrease 

in nighttime injuries was observed in illuminated roadways when compared to non-lit ones. 

Collisions involving non-motorized road users were observed to be less in numbers for illuminated 

roads when compared to dark sites. Also, bad weather conditions seem to increase the number of 

non-motorized accidents in the same sites with the same lighting levels.   

A before-after study conducted by Cornwell and Mackay (1972) examined the impact of roadway 

lighting upgrades in urban and rural routes on the frequency of motorized collisions, which was 

observed to significantly decrease in both areas. Results obtained were such that a slightly larger 

decrease in road crashes (30%) was observed in rural roads when compared to urban routes as  

a result of improvements done to existing lighting levels. Similar results were found by Box (1989) 

in a before-after study where light provision significantly reduced the number of nighttime crashes 

(30%). The impact of lighting presence in intersections was investigated within the same study as 

well. It was found that 15% more night-time collisions occurred at unlighted intersections when 

compared to illuminated intersections. Also, in terms of urban and suburban intersections CIE 

(1992) found that previous studies always indicate that lighting is beneficial to safety. 

A before-after study of illuminance at intersections conducted by Oya, Ando and Kanoshima 

(2002) has showed a clear benefit of lighting at major urban intersections, with a statistically 
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significant reduction in the after period for light levels at or above 30 lux, but not for lower lighting 

levels. 

In 2008, Monsere and Fischer looked into the impact associated to decrease in lighting levels on 

freeway interchanges in Portland. They looked into the impact of reducing lighting levels from 

“partial plus” to partial lighting, and from full lighting to partial lighting. The authors defined the 

concept of “partial plus” as the level between full and partial lighting. A reduction of the level of 

lighting from full to partial was found to be statistically significant, p < 0.05, in decreasing daytime 

crashes and increasing nighttime accidents. Such a decrease in the level of illumination is found 

to decrease all daytime accidents by 2% and to decrease injury characterized collisions by 9%. On 

the other hand, an increase of 2% is observed in all night-time accidents, and a higher observed 

percentage of 12% for injury accidents. A further reduction in the level of lighting (i.e. from 

“partial plus” to partial lighting) was observed to decrease significantly all of daytime  and 

nighttime injury collisions as well as all night-time collision frequency by 14%, 40% and 35% 

respectively. 

Bruneau and Morin (2005) concluded that standard and non-standard levels of lighting contribute 

to less frequent collisions; however, their definition of standard is not based on photometric or 

illuminance measurements but rather on the presence of a lamp attached to a lighting pole 

(standard) or a utility pole (nonstandard). This has been criticized by Rea et al. (2009) from the 

lack of considerations on spacing height and actual levels of illuminance.  

Even though lighting is widely accepted as a countermeasure, the cost of its provision is very high 

because it involves the construction and maintenance plus the energy that is consumed. Some cities 

have installed dimmers to reduce the consumption of energy. Other cities like Dubai have recently 

decided to turn off street lighting at straight segments of local streets (not curves nor intersections) 
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with very low traffic flow (The National UAE, 2014). A similar policy had been implemented in 

UK where about 75% of the municipalities are implementing a similar policy (Dailymail 2010), 

other cities such as Edmonton in Canada are timidly testing the technology (City of Edmonton 

2014) through a pilot project in the community of Woodcroft. European companies are actively 

promoting the use of dimmers and other technology to save energy on their roads (E-streetlight 

2014). The major drawback when applying this system is the possible reduction of security when 

the light turned off, which could results in an increase in the rate of nighttime crime at those 

locations. 

Investigation of more realistic roadway lighting and driver scenarios was recently conducted 

through the aid of computerized software (Rea, Bullough and Zhou 2009). This software can 

account not only for fixed lamps but also for other cars’ headlamps and commercial lighting. Its 

results showed that low and high speed intersections should be illuminated; older drivers in 

particular benefit more when illumination is given to high speed roads.  

Most researchers have looked into the impact of light provision or upgrading. Many used 

terminology such as “good lighting” which often refers to the national standard at the time of 

evaluation (Rea et al. 2009). It appears that uniformity might be problematic and that further 

research might be necessary to know its true impact on road collision; other studies have been 

unable to find explanatory power on it (Jackett and Frith 2013).  

Scott (1980) observed that roadway luminance and night-to-day crash ratios are statistically 

related, where an increase in average luminance of 1.0 cd/m2 causes a 35% decrease in nighttime 

crash ratio. In his experiment, a mobile lab with a closed-circuit television system recorded the 

field of view from the driver’s perspective. Average road surface luminance, overall uniformity, 

and average luminance level of the area surrounding the roadway data were extracted from the 
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videotape. A data logger recorded veiling luminance (disability glare) and both horizontal and 

vertical illuminance at the road surface and at 0.3 m above the road surface, respectively. However, 

night measurements were made late at night to minimize the influence of vehicle forward lighting. 

Average road surface luminance and surrounding luminance were found to be highly correlated 

with horizontal and vertical illuminance, while metrics of disability and discomfort glare were not. 

Using data on average road surface luminance, overall uniformity, and surrounding luminance, 

Scott (1980) fitted each possible combination to see how incorporating each variable affected a 

model to predict night/day crash ratios. While overall uniformity alone was not strongly related to 

the crash ratio, its addition to models already containing either of the luminance measures did 

significantly improved the goodness of fit. 

With respect to the average road surface luminance, it was found that a range of pavement 

luminances between 1.2 and 2 cd/m² resulted in significantly lower night/day crash ratios (about 

20% to 30% lower) compared to lower ranges of luminances (between 0.3 and 0.9 cd/m² and 

between 0.9 and 1.2 cd/m²). The data also revealed a monotonic trend in terms of lower crash ratios 

with increasing surrounding luminance. With regard to uniformity it was found that increased 

uniformity of illumination was associated with higher nighttime crash risk, but the range of 

uniformity levels was not large and therefore not likely to be useful in predicting degrees of 

uniformity outside the range that was studied.  

The most recent study of safety and lighting was conducted by Jackett and Frith (2013) in urban 

streets in New Zealand. The study lacks a random sample selection and instead is based on an 

arbitrary selection of sites with at least 10 collisions (injuries and PDOs). In addition, streets were 

chosen only if they exhibit similar levels of lighting along their length. Not surprisingly the study 

finds that uniformity ratios are not a significant variable. The study uses night-to-day-ratios as 
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response which in a sense captures the relative deficiency on lighting from a frequency perspective. 

This study also looks into the color of the light source. Even though this study is a first step in the 

right direction, given that they use the calibrated camera, it lacks from the suggestion of methods 

to unite safety statistical analysis and warrant or lighting levels and is content only with the study 

of accident rates reductions with increments on luminance. 

2.5 Roadway Lighting Levels Identification 

2.5.1 International roadway lighting regulations  

Lighting systems in different regions of the world are compared in this section. The aim was to 

identify opportunities for improvement in North America’s lighting levels. The design guidelines 

used in Australia-New Zealand, Europe, and Japan were compared to IESNA RP-80 (2005) used 

in North-America (USA and Canada). Australia-New Zealand follow AS/NZS1158 (AS/NZS. 

2010), while Europe follows UE 13201 (CEN. 2004) and Japan follows JIS Z 9111 (JSA. 1988) 

as shown on Table 2.1 below. 
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Table 2.1 Comparison of Roadway Lighting in Developed Regions of the World 

Element North America Europe Japan Australia/Nz 

Illuminance 

Per functional 

classification and 

presence of non-

motorized vehicles, 

uses pavement 

reflectance. 

Per traffic flow, 

operating speeds, type 

of users and 

environmental 

characteristics. 

Includes a surrounding 

value just outside 

edges of road. 

For road with 

pedestrians and 

intersections 

(average 

maintained), for 

segments consider 

Illuminance-based 

uniformity 

For intersections. 

Functional classification 

based on operational 

characteristics (Jackett,  

Consulting and Firth  

2012) 

Luminance 

Per functional 

classification and 

presence of non-

motorized vehicles 

Per traffic flow, 

operating speeds, type 

of users and 

environmental 

characteristics 

For type of 

vehicles, depending 

on characteristics 

leading to 

functional 

classification 

Specific consideration 

for straight segments 

and curves less than 

100m and intersections 

Longitudinal 

Uniformity 

Per functional 

classification and 

presence of non-

motorized users. Two 

ratios for luminance, 

max to min and 

average to min. 

Wet and dry 

circumstances for the 

classes defined for 

luminance/Illuminance. 

One ratio: average to 

min. 

Dry only, per 

functional 

classification 

Yes per subcategory 

Transversal 

Uniformity 

Not considered Considered per road 

category (AADT) 

Per road functional 

classification 

Yes per subcategory 

Glare Veiling Luminance 

ratio 

Threshold Increment: 

light from luminaire 

shining on drivers eyes 

Glare control mark Threshold Increment 

Other – 

specific 

elements 

Pavement type, four 

design approaches 

Face 

recognition(presence of 

pedestrians), color 

rendering 

Modification of 

values when 

environment around 

road is dark (land 

use) 

Does include underpass, 

tunnels and tree lining 

roads. Luminaire Asset 

Management 

maintenance. Control 

upward waste lighting 

(sky glow). 

The system followed by Australia and New Zealand is somewhat similar to that followed by North-

America (USA and Canada) in the sense that pavement reflectance is considered and roads are 

categorized according to their functional characteristics. New Zealand and Australia have a very 

similar system with specific considerations for straight segments, curves of less than 100m radius 

and intersections. This could be interpreted as a need to further count with specific detailed values, 

and as seen in the following section, will translate into the need to count with a calibration method.  

In terms of levels, IESNA (2005) defines four different design methods based on illuminance, 

luminance, and control mark. Meanwhile Australia and New Zealand also define four design 
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approaches: luminance and illuminance computer design, curve spacing chart, and design rule for 

isolated intersections. Austroads guidelines control upward waste of lighting (sky glow) which is 

not done by IESNA (2005).  

Europe follows a more complex system in which each road is required to be characterized in terms 

of the traffic volume, speed, main allowed and not-allowed users (including non-motorized), 

geometry (including type of junctions, interchange spacing, conflict areas, lane separation, conflict 

areas and traffic calming needs), and environment and external influences (land use, main weather 

type). Europe’s approach can be thought of as a system with an eligibility requirement based on 

the aforementioned characteristics. This also represents an opportunity to incorporate such initial 

filters in the warrant of roadway lighting. 

Another interesting fact is that the European guidelines consider the transitioning between 

different lighting situations, and provide specific guidelines of how to move between them. In 

terms of levels and its values, Europe follows a more conservative scheme with lower uniformity 

variations and higher average illuminance for complex/dangerous circumstances or locations. For 

instance, European guidelines may go up to 50 lux, while IESNA’s maximum average 

recommended value is 34 lux at intersections. There is, however, a problem with having higher 

average values, which is that there is a higher likelihood of having uniformity issues or glare. 

The European norm considers the prevalent type of weather (dry or wet) when deciding the need 

to provide illumination and for the amount and characteristics of the lighting to be provided (wet 

uniformity). This kind of consideration seems to go best in line with Canada’s needs. IESNA’s 

regulations are simpler and more straight forward than European ones. However, this translates 

into an excess in generality of North America’s lighting practices, and an opportunity to count 

with a calibration method. The other learning element found in this critical review is that of an 
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eligibility filter to be incorporated at the beginning of the decision making process for the warrant 

of roadway lighting. It is interesting to notice how Japan utilizes illuminance-based uniformity for 

roads with no pedestrians (i.e. highways). A similar conclusion is found in the results of this 

research. 

2.5.2 North America’s roadway lighting regulations 

There are two types of guidelines in North America; one for the warrant of roadway lighting 

(AASHTO 2005) which is based on a grid system, and one for the allocation of lighting (IESNA 

2005) based on minimum recommended levels of luminance and illuminance, and maximum 

permissible uniformity variation ratios (Table 2.3 and 2.4). This research is concerned with the 

local calibration of the grid system and the identification of lighting levels. The Warrant system 

consists of five grids (G): highway segments (G1), highways plus intersections (G2), national, 

regional, collectors and local roads (G3), freeway interchanges (G4) and intersections (G5). The 

system is based on scores from a multitude of geometrical, operational, and functional factors as 

well as security considerations; Table 2.2 illustrates the grid G1. 

There is another system originally proposed by the NCHRP Report 152 (Walton 1974) which 

applies an analytical cost benefit approach (Preston and Schoenecker 1999). Even though the grid 

system comprises many elements, it fails to include severity; it also does not consider current 

lighting levels, as could be the case when non-standard lighting levels may be present on the road. 

In such cases, an increase on the level of lighting may turn out to be the solution to reduce nighttime 

collisions.  
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Table 2.2 Grid Assessment System for Quebec (Transports Quebec. 2012) 

 

 

 

Evaluation Grid (G1) 

Evaluated Element  

Length of Segment  Level (1, 2 or 3)  

Description of Analysed Criteria 
Real 

Value 

Classification Points (PT) 
Score (PD) 

Scored Value = 

PD*PT 1 2 3 4 5 

Geometry 

1 Total number of lanes  ≤4 5 6 7 ≥8 0.15  

2 Lanes width  >3.6 3.4 to 3.6 
3.2 to 

3.4 

3.0 to 

3.2 
<3.0 0.30  

3 Median Width  >12 7.5 to 12 
3.5 to 

7.5 

1.2 to 

3.5 
<1.2 0.30  

4 shoulder width  >3.0 2.5 to 3.0 
1.8 to 

2.5 

1.2 to 

1.8 
<1.2 0.30  

5 Slope (from 0 to 7)  >6:1 6:1 4:1 3:1 <3:1 0.30  

6 Horizontal curve radius  >3500 
1750 to 

3500 

875 to 

1750 

575 to 

875 
<575 4.90  

7 Vertical gradient  <3.0 3.0 to 4.0 
4.0 to 

5.0 

5.0 to 

7.0 
>7.0 0.25  

8 Frequent interchange distance  >6.5 5.0 to 6.5 
3.5 to 

5.0 

1.5 to 

3.5 
<1.5 1.85  

Subtotal 0 

Operational 

9 Level of Service (Night-time)  A B C D ≥E 3.05  

Subtotal 0 

Environment 

10 % of Developments  0 0 to 24 
25 to 

50 

50 to 

75 
>75 1.85  

11 

Distance to developments (e.g. 

residential, commercial, or 

industrial buildings) 

 >60 45 to 60 
30 to 

45 

15 to 

30 
<15 1.85  

Subtotal 0 

Security (Accidents) 

12 Night-to-day accident ratio  <1.0 1.0 to 1.2 
1.2 to 

1.5 

1.5 to 

2.0 

>2.0 

(see 

Note 

1) 

4.90  

Subtotal 0 

Notes: 

1.Provision of lighting 

2. Current speed: 80kph (95% of night-time operational speed if available, 

otherwise use the posted speed) 

3. Development is defined based on the presence of commercial, industrial, or 

residential buildings. 

4. Use the most deficient geometrical characteristics for road segments. 

Grand Total 

 
 

Required Scoring to provide 

lighting 
60 
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Table 2.3  Illuminance Criteria Recommended by Type of Road (IESNA 2005) 

 

IESNA RP-80 (IESNA 2005) recommends the use of the illuminance criteria (Table 2.3) for 

intersections and of the luminance criteria given on Table 2.4 for road segments. The analysis 

presented in future chapters of this thesis supports the view that illuminance is inadequate for road 

segments, but finds its uniformity to be important. 

In terms of lighting levels, the Transportation Association of Canada (TAC) and the province of 

Quebec follow those suggested by IESNA (Transports Quebec 2012). There are two types of 

lighting systems as discussed by Rea, Bullough and Zhou (2009); extended and localized, whereas 

extended refers to a continuous system, and localized implies only one lamp at a given point, 

commonly a rural intersection.  

 

 

 

 

 

 

 

Road and Pedestrian Conflict Area 

Pavement Classification 

(Minimum Maintained Average 

Values) 

Uniformity 

Ratio 

Eavg/Emin 

Veiling 

Luminance 

Ratio 

Lvmax/Lavg Road 
Pedestrian 

Conflict Area 

R1 

lux/fc 

R2 & R3 

lux/fc 

R4 

lux/fc 

Freeway Class A  6.0/0.6 9.0/0.9 8.0/0.8 3.0 0.3 

Freeway Class B  4.0/0.4 6.0/0.6 5.0/0.5 3.0 0.3 

Expressway 

High 10.0/1.0 14.0/1.4 13.0/1.3 3.0 0.3 

Medium 8.0/0.8 12.0/1.2 10.0/1.0 3.0 0.3 

Low 6.0/0.6 9.0/0.9 8.0/0.8 3.0 0.3 

Major 

High 12.0/1.2 17.0/1.7 15.0/1.5 3.0 0.3 

Medium 9.0/0.9 13.0/1.3 11.0/1.1 3.0 0.3 

Low 6.0/0.6 9.0/0.9 8.0/0.8 3.0 0.3 

Collector 

High 8.0/0.8 12.0/1.2 10.0/1.0 4.0 0.4 

Medium 6.0/0.6 9.0/0.9 8.0/0.8 4.0 0.4 

Low 4.0/0.4 6.0/0.6 5.0/0.5 4.0 0.4 

Local 

High 6.0/0.6 9.0/0.9 8.0/0.8 4.0 0.4 

Medium 5.0/0.5 7.0/0.7 6.0/0.6 4.0 0.4 

Low 3.0/0.3 4.0/0.4 4.0/0.4 4.0 0.4 
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Table 2.4 Luminance Criteria – Recommended Levels (IESNA 2005) 

 

A comparison of the grid systems was prepared in order to find out the most significant factors 

influencing the decision process of lighting provision across different kind of sites (i.e., 

intersections, road segments, et cetera) and is presented on Table 2.5. Shaded cells represent those 

factors with a large impact on the corresponding grid. In general across the grids, night-to-day 

ratio is the most utilized factor across all grids followed by external lighting, curvature and level 

of non-motorized activity. Others, such as slope, interchange frequency and et cetera are also 

considered. 

Road and Pedestrian Conflict 

Area 
Average 

Luminance 

(Lavg) 

(cd/m2) 

Uniformity 

Ratio 

Lavg/Lmin 

(Maximum Allowed) 

Uniformity 

Ratio 

LMax/Lmin 

(Maximum Allowed) 

Veiling Luminance 

Ratio 

LVmax/Lavg 

(Maximum Allowed) 
Road 

Pedestrian 

Conflict Area 

Freeway Class A  0.6 3.5 6.0 0.3 

Freeway Class B  0.4 3.5 6.0 0.3 

Expressway 

High 1.0 3.0 5.0 0.3 

Medium 0.8 3.0 5.0 0.3 

Low 0.6 3.5 6.0 0.3 

Major 

High 1.2 3.0 5.0 0.3 

Medium 0.9 3.0 5.0 0.3 

Low 0.6 3.5 6.0 0.3 

Collector 

High 0.8 3.0 5.0 0.4 

Medium 0.6 3.5 6.0 0.4 

Low 0.4 4.0 8.0 0.4 

Local 

High 0.6 6.0 10.0 0.4 

Medium 0.5 6.0 10.0 0.4 

Low 0.3 6.0 10.0 0.4 
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Total number of lanes x x x x

Lanes width x x x x

Median Width x x

shoulder width x x

Slope (from 0 to 7) x x

Horizontal curve radius x x x x x

Vertical gradient x x x x

Frequent interchange distance x G1
Visibility Distance x x x

Opening within median x G3
Private entrance/exit x G3
Parking x G3
Type of interchange x G4
Route Channelization x x

Lateral Lane x G4
Visibility Distance (from transversal road to the intersection) x G4
Angle of offset intersections x G5
Number of approaches x G5
Angle of approach x G5
Channelization x G5

Service Darkness level (traffic time for darkness) x x

Frequency between interchanges and intersections x G1
Turn lane
Median Width x x

Average speed or posted speed limit x x x (major road, 

Level of Non-motorized activity (e.g. cyclists, pedestrians) during highest nighttime period x x

Intersections with traffic lights x G3
Left turn lane x G3
AADT both directions x G5
Nighttime pedestrian flow per hour x G5
Network classifications involved x G5

Distance to developments (e.g. residential, commercial, or industrial buildings) x x x x

% of development x x

Zone type x x

External lighting (other than road lighting) x x

Median with border x x

Presence of development x G4
Lightning of transversal roads x G4
Highway lightening x G4
Development lit within a radius of 100m from the intersection x G5

Night to day Accident ratio x x x x

Average Annual nighttime accidents or rate for last 3 years (accidents only related due to 

poor lighting)
x G5

Note: Cells highlighted in grey have high scores

G2: 

Highways+inter

sxns

G3: National, 

Regional, 

collectors, local

Security (Accidents)

Environment

Operational

Geometry

G4: Freeway 

interchange

Parameter 

unique to grid #

G5: 

Intersections
Criteria G1: Highways

 Table 2.5 Comparison of Warrant Grids and Largest Contributing Factors 
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2.5.3 A critical review of the state of the practice in North America  

The first predecessor of North America’s lighting warrants was proposed by Walton in 1974 

through a national cooperative research program project aimed at the establishment of a 

standardized method for warrants of highway lighting. In this report (NCHRP-152) Walton 

proposes the use of a warrant system based on a score system that considers the geometric, 

functional and operational characteristics of any highway segment under consideration. 

Additionally, appendix D of NCHRP-152 presents the possibility of using a cost-benefit analysis 

as an optional alternate to the score system. Table 2.6 illustrates the historical progression of 

lighting warrants.  
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Table 2.6 Historical Progression of Lighting Warrants in North America 

 

Year Title Author Relevance 

1974 
Warrant for Highway 

Lighting 
NCHRP-152 

Foundation, suggested use 

of benefit cost on its 

appendix 

1976 
Roadway Lighting 

Design Guide 
AASHTO Warant system 

1978 Lighting Handbook FHWA Federal Government 

1979 
N.Y. State DoT policy 

on Highway Lighting 
New York State Adopt AASHTO warrant 

1983  FHWA Addendum 

1984  AASHTO Addendum 

2003 
Texas DoT Highway 

Illumination manual 
 

Creates additional warrant 

criteria 

2005  AASHTO Latest version 

2006 
Guide for the Design of 

Roadway Lighting 
TAC Adopt AASHTO warrant 

2009 

Guidelines for 

Roadway Lighting 

based on safety benefits 

& Cost 

NCHRP-05-19 

Terminated prematurely, 

argue not all states data on 

benefits (before-after 

studies) 

2010 

Minnesotta DOT 

Roadway Lighting 

Design Manual 

Minnesota DoT 
Creates additional warrant 

criteria 

2012  New Jersey 
Creates additional warrant 

criteria 

2013  CALTRANS 

Investigates uses of 

additional criteria, or 

simpler method 

2015?  AASHTO 

Expected revision, 

apparently warrant 

remains unchanged 

  

In 1976 the American Association of State and Transport Officials (AASHTO) launched the 

official guidelines for roadway lighting, followed by the Federal Highway administration in 1978, 
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both of them based upon the NCHRP-152 (Walton 1974). In 1979 the state of New York adopted 

the guidelines and many other states followed throughout the years. Minor modifications were 

introduced to the AASHTO guidelines in 1984 and the FHWA in 1983. It was in 2003 when Texas 

Department of Transportation became the first DOT that questioned the guidelines and extended 

them by creating additional warrant criteria, other states followed. AASHTO published the latest 

version of its lighting guidelines in 2005. In 2006, TAC in Canada created its own version based 

on the aforementioned publication with no significant changes. According to a 2013 report of 

California DOT, it is expected that AASHTO will publish a revised version this year, but no 

changes in the warrant system are anticipated as much of the attention has been devoted to the role 

of new technology such as LED and to develop regulations for the automatic dimming of street 

lights.  

A review of the guidelines developed by several states from 2003 to date (Figure 2.2) revealed that 

most of the additional criteria is a simple modification of the existing factors by changing the score 

values or reducing the number of elements used in the warrant. This fact suggests the need for 

local calibrations of such elements. Interviews with Quebec MTQ revealed that the application of 

the current warrant system criteria sometimes resulted in unexpected decisions, which is another 

evidence of the lack of calibration to local circumstances. Two other elements were found in the 

review of DOTs guidelines: first there is a need to verify that the proposed levels of lighting are 

effective in reducing the number and severity of road collisions as suggested by Oregon DOT. 

Second there may be a need to count with a filtering system that enables experts to conduct an 

initial identification of the sites possibly requiring lighting. For instance, some states suggest the 

need to light all urban areas; perhaps such disposition could be used as an initial filter of eligibility 

and the locally calibrated warrant system would be applied afterwards. 

 



41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Justification for the need of a calibration method 

 

 

The need for a local calibration is the main result from this critical review of the DOT’s current 

practices. Its detailed explanation is presented in chapter three. Finally, it is of interest to mention 

that there is an alternate method for the warrant of lighting based on benefit-cost analysis. Such a 

method, however, suffers from one major drawback. It requires the estimation of lighting benefits, 

which in turn implies the need to count with before-after studies to be able to estimate the reduction 

in accidents. Not all states count with such information, however it is impossible to rule-out such 

type of analysis from a theoretical perspective. The approach was initially proposed in 1974 by the 

NCHRP-152 and revised by the NCHRP-1509 (Rea et al. 2009) which was prematurely 

terminated.  

Type of change                          Proposed by                                   My Conclusions 
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Texas 
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Development 

It is on Grid.  
Need to be calibrated 
Need to revise levels 

NOT on Grid.  
Could be added as filter 
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2.5.4 The state of the art and advancing the state of the practice 

The state of the art and the practice match almost perfectly in the field of lighting warrants and 

levels. With the only difference of the research conducted by Rea et al.(2009) which is at the upper 

front of the state of the art. Rea et al. (2009) proposes the use of a benefit-cost approach to justify 

lighting decisions. This method has not been yet implemented by practitioners and the project was 

actually prematurely terminated. A critical review of his propositions reveals that his method is 

difficult to implement in practice because it requires the estimation of benefits employing among 

others before and after studies which are data hungry and imply the use of longitudinal data  

(Figure 2.3). This doctoral thesis adapted the ideas of Rea et al. (2009) and instead proposes the 

use of evidence-based analyses that in the kernel also capture the safety effects of lighting 

decisions by estimating the explanatory power of several variables over two types of responses 

(frequency & severity). Figure 2.3 presents the improvements to the state of the practice 

incorporating the method presented in this research and keeping the use of the benefit-cost 

approach as an alternate method to justify lighting decisions. As can be seen, the eligibility 

requirement was incorporated in lighting warrants as an initial filter and the need was suggested 

to conduct a local calibration of the grid system. This calibration is divided in two: one for current 

roads (with the inclusion of the night-to-day accident ratio) and another one without it for new 

highways.  It is important to note that the use of a benefit-cost analysis could be employed in either 

case. It is also crucial to emphasize that the use of custom-tailored criteria, as currently found in 

the state of the practice, is arbitrary and subjective and hence unjustifiable because it lacks a 

connection to the root of the problem; nighttime collisions. A locally calibrated grid and design 

levels can adequately identify when to count with lighting and what levels are required to 

effectively reduce nighttime crashes. 
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Figure 2.3 Advancing the State Of The Art on Lighting Regulations  

 

2.6 Summary of Literature Review 

As seen on Table 2.7, studies for lighting can be traced back to the 1970’s with Box looking into 

crash rates and levels of illumination. Many others followed up until today, with Jacket and Frith 

(2013) finally suggesting that crash-rates could be used to estimate levels of lighting.  Measuring 

lighting has been one of the major challenges; given the difficulties, few researchers have studied 

this field. It was only recently that digital cameras became capable of being calibrated to measure 

luminance. The majority of the studies conducted until today were done in developed countries 

such as USA, Canada, Germany, Greece, Australia & New Zealand, France, and Japan. They look 

at two major areas, effectiveness of lighting and relationship between different characteristics of 
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lighting and road collisions. Highway features consistency is an important element in traffic safety 

and inconsistency in road features tends to increase the frequency and the severity of road crashes 

(COMT 2013), (TAC 2004) and (TAC 1999). Traffic volumes, presence of intersections, 

undivided roads, complex alignments with limited visibility, presence of animals, and dark 

locations and disability glare are the most recognized explanatory variables that have significant 

impact on crash frequency. However a combination of variables is always related to each accident 

(TAC 2004) (Sullivan 2009). Many conducted studies and reports acknowledge that the provision 

of lighting would increase visibility and considered it as a countermeasure to reduce the collisions 

frequency & severity.  

Some of these studies found that higher frequency of pedestrian crashes are observed at sites with 

lower levels of lighting (Zhou and Hsu 2009) (Yannis, Kondyli and Mitzalis 2013). 

International focus on lighting has shifted to energy consumption, light pollution, and the use of 

new technologies. Most researchers concentrate their attention in understanding the role of lighting 

and finding better methods to measure the effectiveness of lighting indicators. Only one recent 

study has suggested the need to connect crash-history with levels of lighting. Nobody has looked 

into developing a method to calibrate lighting warrants to crash history. 

The literature review reveals some minor differences of design guidelines used in Australia-New 

Zealand (AS/NZS1158), Europe  (UE 13201), and Japan (JIS Z 9111)  as compared  to IESNA 

RP-80 used in North-America. One of the important learning outcomes was that illuminance is 

used in sites with the presence of pedestrians (intersections) and luminance on sites with the 

presence of vehicles (luminance). However illuminance-based uniformities are used on sites with 

vehicles. Also the existing literature on lighting revealed that contrast differences between the 

brightest and darkest spots is related to amount of glare.  These two facts are important for the 
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interpretation of the results of this research. From the perspective of statistical models, it was 

learned that zero-inflated negative binomial was the most adequate method applicable to the cases 

studies of this thesis and that Full Bayesian regression modelling could be used for validation. 

Table 2.7 Summary of Literature Review 

Year Author(s) Type study, size, location Findings 

1970 Box 
Cross Sectional, 203 miles (US, 

Canada) 
Effects of lighting levels, night-to-day ratios 

1972 Cornwell and Mackay Before and After Lighting upgrades, urban and rural 

1973 Sabey and Johnson Before and After Lighting effectiveness 

1976 Walton (NCHRP 152) Cross sectional Warrants and Cost Benefit method 

1979 Cobb et al. Cross-sectional Lighting increase visibility 

1985 Lamm, Kloeckner and Choueiri. Cross-Sectional (Germany) Impact of reductions on lighting levels 

1989 IESNA Several Comprehensive literature review of lighting 

1992 CIE Several Comprehensive literature review of lighting 

1994 Wilde Before-After Impact of Lighting upgrades 

1994 Griffin Frequency and Severity Continuous and intermittent (at interchanges) 

1995 Elvik Greece Lighting as countermeasure 

1999 Preston and Schoenecker USA Cost benefit method for lighting 

2002 Oya et al. Before and After Urban intersections and lighting 

2002 Ando and Kanoshima Cross sectional Lighting countermeasure 

2004 Transportation Assoc. Canada Several lighting countermeasure 

2005 Bruneau and Morin Cross-sectional (Canada) Impact of standard lighting 

2006 IESNA Several Literature review of lighting and safety 

2007 Armas and Laugis Threshold Index Luminance adaptation 

2008 Monsere and Fisher Before-after Downgrading lighting 

2009 Bulldough, Rea and Zhou Simulation environment Lighting increase visibility 

2009 Zhou and Hsu Levels of lighting Illuminance and pedestrian collisions 

2009 Sullivan Cross-sectional Lighting and animal vehicle collisions 

2009 Wanvik Netherlands Lighting effectiveness, bad-weather 

2009 Rea USA Cost benefit method for Warrants 

2010 Isebrands et al. Cross-sectional Lighting effectiveness 

2011 Hiscocks Calibrated Camera Calibrated Camera 

2013 Yannis, Kondyli and Mitzalis Cross-sectional Lighting on Frequency and Severity 

2013 Jackett and Frith 
Cross Sectional (270 Km - New 

Zealand) 
Effects of lighting levels, crash-history 

2014 Nabavi et al. Cross sectional Looked at intersections in Montreal 
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2.6.1 Drawbacks and what is missing 

The following is a summary of drawbacks and what is missing: 

 Most of the studies were limited to small segments of roads, and some looked into road 

corridors. However, it was not possible to find a full scale study for the role of street lighting 

as a countermeasure for nighttime collisions of an entire province, state or country. 

 The majority of previous experimental work was conducted with manual illuminance meters 

that is data logging in the past, which was done manually. Recent incorporation of global 

positioning systems into equipment capable of measuring data characteristics and its 

connection to handheld computers have recently enabled researchers to create large databases 

at the network level.   There is a lack of research on large scale experiments containing  

geo-referenced luminance and illuminance.  

 There are warrant systems and design guidelines followed by North America and other 

developed countries. However, there doesn’t exist a method that calibrates the warrant system 

to give more importance to those factors that explain more frequent or severe accidents and the 

adequate levels for a design that is effective in reducing the accident frequently and severity. 

 Many agencies and municipalities have modified the warrant system but this has been based 

on expert criteria and no method has been proposed to scientifically do this. No calibration for 

the guidelines, based on a statistical analysis, has been proposed. 
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CHAPTER 3 - METHODOLOGY 

3.1 Introduction  

New methods to calibrate the warrant system and identify recommended lighting levels are 

developed in this chapter. The chapter is divided into four main sections. The first section explains 

the procedure for data collection and processing, leading to the creation of spatial databases used 

in the statistical analyses. The second section includes details of the statistical analyses. The third 

section explains the connection between statistical analysis, the warrant system, and lighting 

levels. Finally, the last section presents two novel methods. The new methods used to calibrate the 

warrants and estimate levels use the database to feed statistical analyses responsible for the 

estimation of recommended levels and score values for the warrants as seen in Figure 3.1. 

 

Data Collection

Data Processing

Database Creation

Estimation of
Explanatory Variables

Full Bayesian: Non
Informative

Statistical Analyses

Estimation of
Recommended levels

Estimation of Grid
Scores

Local Calibration

 

Figure 3.1  Overall Methodology 
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3.2 Creation of a Database for Safety Analysis and Lighting 

Two databases were created for this research; the first one for the Arthabaska region and the second 

one for major highways throughout the province of Quebec (routes 20, 40, 55, 105, and 132). The 

first database was aimed for a pilot study in order to test the methodology. The Quebec network 

database was used for a case study to demonstrate the application of the method for local 

calibration. Roadway lighting measurements of illuminance (in lux) were collected for both 

regions.  The first dataset is for a pilot study with a sample of approximately 95 km randomly 

selected roadways corresponding to several segment classifications in the Arthabaska region of 

Quebec. The second dataset is of approximately 2,500 km of highways along the main axis of 

Quebec’s road network and will be used in the calibration of the grid system to local conditions 

for the entire province of Quebec.  

The primary task of the data collection is to map roadway accidents and roadway lighting into road 

segments that already contained other attributes such as surface condition at the time of the 

accident, presence of heavy vehicles, geometry (horizontal and vertical curves), presence of 

intersections, number of lanes, posted speed, et cetera. Base maps for Quebec roads as well as 

roadway accidents were provided by the Ministry of Transportation of Quebec (MTQ). Roads used 

in this analysis corresponded to different functional classification, namely highways, arterial, 

collector and local roads. Each road was broken into 100m segments and both a count of accidents 

and an index of severity (as explained later) were created based on the record of accidents from 

the past 5 years. Minimum, maximum, standard deviation and average amount of illuminance (in 

lux) was assigned to each segment.  

This research used segments of 100 m for the Arthabaska region in order to capture the precise 

location of intersections and of lighting levels and uniformity variations. This is contrary to 
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previous research which did not go to such levels of detailed information and accuracy. For the 

case study of Quebec highways, this research used segments of 500m following conversations 

with MTQ that revealed possible inaccurate spatial location of collisions. Larger segment sizes 

seem to be ideal for the aggregation of accidents in order to avoid having a large number of 

segments with zero accidents. On the contrary, having too long of segments will prevent the ability 

to identify hotspots, which was not the aim of this research. 

3.2.1 Data collection 

Data for illuminance was collected while driving a vehicle and using two devices: spectrosense 

(Figure 3.2) and a GPS with the application MyTracks to assist the GPS. It is recommended that 

the driver starts and finishes at a stationary position for the data collection in order to have the 

same recorded geographical coordinates on both devices. The sensors connected to the 

spectrosense device were placed on the top of the car to capture illuminance. The car was driven 

at preferable constant speed to obtain illuminance measurements at constant intervals. The logger 

collected both illuminance and coordinates for about 50 minutes with a rate of 1 observation per 

second. A cell phone with an assisted GPS unit was used in parallel to have an extra set of 

coordinates to be used only if the spectrosense GPS failed. 

For Arthabaska, 95 km of lighting data was collected covering the entire region for both 

illuminance and luminance and used for a pilot study later described in this thesis. For the Province 

of Quebec, the main highway network (routes numbered under 132) consisted of 9,225 km, so a 

27% sample was selected (2,500 km) at the beginning of the research and data for illuminance was 

collected twice during winter and summer. Several tests were conducted in order to reduce the 

sample size without modifying the results given the high degree of difficulties encountered to 

collect lighting data. It was found that 800 km were enough to replicate the results obtained with 
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2,500 km. Data for luminance for this reduced sample of 800 km (1,600 segments of 500 meters) 

were collected between January and March 2015. Many difficulties were faced given the adverse 

weather conditions, safety concerns, and time of data collection. Winter data was selected given 

the adverse circumstances that motorists experience and increased likelihood of collision as 

observed in the crash history.  

 



51 

 

Figure 3.2 SpectroSense2+ Logger and Setup for Data Collection 

Data for luminance was collected using a professional digital camera with a special lens filter (fish 

eye type, as shown in Figure 3.3), and specialized software capable of estimating average 

luminance (as perceived by the driver) and unified glare (Photolux 2012). Data collection followed 

the parameters established by JIS-Z-9111 (1988) in terms of the location of the camera (midpoint 
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between luminaires), angle (2 degrees from horizontal sight of driver), height (1.5m), visual 

environment (capturing distance between 60 and 160 meters ahead, 90 m for intersections) and 

other specifications related to data collection already predefined in the system (seven continuous 

shots, with a variation of aperture and other photograph characteristics predefined and calibrated 

by the software provider). 

Figure 3.3   Digital Camera with a Special Filter (Fish Eye Type) for Luminance 

3.2.2 Data processing 

Once finished collecting measurements, the data was then transferred to a computer where it was 

processed. As explained in Figure 3.5, there were three major steps in the processing: one related 

to the illuminance data, a second one dealing with the road network map, and the third with the 

accident database. The final purpose was to join lighting and collisions to the network’s segments.  
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For luminance, the Photolux software processed pictures by reading the information stored in the 

header of the picture using the EXIF format (Photolux, 2012). This information included the 

aperture, time of exposure, and sensitivity. Photolux computes the exposure used on the picture to 

assign a value of luminance to each pixel which eventually results in a luminance map. This map 

represents the amount of luminance in candela per square meter and can be used to estimate the 

unified glare. Figure 3.4 illustrates the Photolux camera capabilities. The flowchart shown in 

Figure 3.5 illustrates the steps done for data collection of illuminance and luminance, data 

processing, and data analysis. 
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Figure 3.4   Luminance Map Generated by Photolux.
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Figure 3.5 Data Collection, Processing, and Analysis (Illuminance & Luminance) Flowchart 
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3.3 Statistical Safety Analysis 

3.3.1 Creation of a severity index  

An economic value in Canadian dollars (C$) has been given to each type of road collision. The 

value came from a comprehensive collision cost study prepared by De Leur et al. (2010). 

A new indicator for severity is proposed in this research, it is based on a semi-monetized 

expression of collision severity that has been normalized in order to avoid large values of  

over-dispersion that happens when direct monetary value is used as the scaling factor on the model. 

The indicator has been built in two steps: first the monetized collision value at a particular segment 

is used to obtain a scaling factor by normalizing everything in terms of major injuries. Secondly, 

normalized values are multiplied by 100 in order to move extremely small values away from zero 

and obtain a scale similar in orders of magnitude to that of accident frequency. Used values and 

factors are shown on Table 3.1. 

Table 3.1 Severity Monetary Values and Index Weight to Build a Severity Index 

Collision Severity Economic Value ($) Scaling Factor Index Weight 

Fatality 5,416,000 3.9 390 

Major Injury 1,385,000 1 100 

Minor Injury 30,581 0.0216 2.16 

PDO Major 15,000 0.0108 1.08 

PDO Minor 2,000 0.0014 0.14 

  

3.3.2 Selection of the type of regression 

Statistical analysis will be used for two initial models that will examine the correlation between 

accident frequency and severity with roadway lighting.  The type of regression to be used in these 
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statistical analyses depends on the type of data. Figure 3.6 shows the logical process followed to 

test for this; the first thing that one needs to identify is the distribution type of the response. If the 

distribution is continuous, then ordinary least squares (OLS) regression model can be used which 

is not the case. The next step would be to check if this dependent variable is inflated and has a high 

number of zero counts. If this is the case, then a zero inflated regression model should be used. If 

non-zero mean is observed in the predictor, then the analysis can be run using regular Poisson or 

Negative Binomial models. If the variance is greater than the mean, then Negative Binomial should 

be used. This is because the Poisson regression model assumes that there is no over-dispersion (i.e. 

mean = variance), whereas Negative Binomial takes into account over-dispersion. This criterion 

is also applicable when deciding on choosing zero inflated Poisson model or zero inflated Negative 

Binomial regression model.   



58 

 

Figure 3.6 Statistical Analysis Flowchart 

 

3.3.3 Division of road segment by levels of risk 

A risk index can be based on the segments’ deficiency or on other factors. Even though deficiency 

can be estimated from geometric characteristics, it may fail to capture other circumstances relative 

to unobserved operational or functional characteristics. This research proposes the use of a risk 

factor based on predicted number of collisions calculated as the value of each coefficient (of the 

explanatory variables) multiplied by the observed level of each variable. The coefficients are 

directly obtained from a statistical analysis which uses collision frequency as response and 

available road elements as causal factors. As such, the risk index will be based on the following 

factors, shown on Table 3.2. 
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Table 3.2 Weights Used In the Creation of a Risk Index 

Predicted Frequency Coef. 

lnAADT 0.10 

Number of lanes 0.11 

Presence of Intersection 0.40 

Average Lux Illuminance 0.00 

Number of Heavy Trucks involved in Collisions 0.43 

Wet Pavement 0.28 

Snow Pavement 0.29 

Iced Pavement 0.54 

Slope 1.50 

Average Posted Speed 0.02 

Suburban 0.32 

Urban 1.25 

Standard Illumination 0.50 

Presence of Animals 0.58 

Functional Class 0.33 

Total Width 0.04 

Right Shoulder width -0.24 

Presence of Pedestrians -0.34 

Land Use -0.23 

 

The risk index will be used to create three levels of risk, as suggested by Peng and Lord (2011): 

low, medium and high. A longitudinal analysis for such groups was prepared to verify that the 

groups followed the expected trends (Figure 3.7). It was expected that the low level group 

experienced the lowest number of accidents and observed zero or declining trends across time, that 

the individuals at the medium group observed stagnant or slowly increasing trends of accidents, 

and that those at the high level observed growing levels and higher number of accidents. All these 

were confirmed by the data obtained and presented in Figure 3.7. 
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Figure 3.7 Longitudinal Analysis of Accidents 

A mapping of the location of the segments also revealed good agreement with prior expectations 

of having higher risk segments concentrated at intersections of urban areas as shown in Figure 3.8. 
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Figure 3.8 Risk Indicator for the Arthabaska Network. 
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3.3.4 Validation using a F. B. Non-informative model 

A maximum likelihood statistical analysis was validated by a Full Bayesian regression analysis 

with non-informative approach. A comparison of the values of the coefficients for the explanatory 

variables of both analyses will be used to validate the use maximum likelihood approach to conduct 

a local calibration of the grid system’s weights, as further explained in the following section. It is 

expected that for a pilot study of the same data, both analyses should reach similar values of the 

coefficients of the explanatory variables, meaning that their contribution to explain collisions is 

the same. Having surpassed such tests, the results from either approach could be used for the local 

calibration of weights. 

3.4 Connecting Warrants and Design Levels with safety analysis 

One of the main drawbacks of current lighting warrants and design levels is the lack of a 

connection to the observed crash-history and in particular the ability to use such a connection to 

locally modify the scores of the warrants and the levels of roadway lighting. The idea is that the 

warrant serves to identify the need to provide lighting when such measure is expected to reduce 

nighttime collisions frequency and severity. Similarly, there is no point in providing lighting at 

levels unable to reduce the number and severity of nighttime collisions. The two methods proposed 

in this thesis serve to identify scores for the grid and levels for the design of roadway lighting by 

connecting statistical analyses of safety to both lighting standards.  

3.4.1 Warrants and crash-history 

As seen in section 2.5.2, the warrant system consists of a grid system with scores given to 

geometric, functional, operational, and crash-history elements. These elements could be 

interpreted as causal factors and treated as such through a statistical analysis. Then the value of 
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the coefficients from the statistical analysis can be interpreted as the contribution of each factor 

(element) to explain collisions, if the response is the number (or severity) of nighttime collisions, 

then the coefficient is explaining the factors contribution to nighttime collision frequency (or 

severity). Only factors with p-values below the desired level of confidence will survive the analysis 

and used in a local calibration as explained in future sections. For instance, a negative coefficient 

will be interpreted as an effective reduction on collisions (frequency or severity), with an increase 

on the corresponding factor value. Factors such as number of lanes and width of the shoulder, 

among others, are expected to have such behavior. Other factors would explain higher levels of 

collisions with higher values of the factor (for instance, traffic volume).  

A critical review of several departments of transportation’s policies revealed a trend of their 

guidelines to reduce the number of factors used in the grid. This thesis proposes the ability to do 

so by running a statistical analysis with those factors available to the analyst, which will result in 

a grid with only those significant factors. 

3.4.2 Lighting levels and crash history 

A similar proposition can be made for connecting lighting levels and crash history. However, 

lighting levels should be explained through their ability to be effective countermeasures. If a 

lighting level is too low, its effect on reducing collisions (frequency or severity) may be null or 

insignificant from a statistical analysis. The connection of lighting levels and crash-history is also 

done through statistical analyses, however many analyses are required in order to identify the 

minimum recommended levels. The idea is to run analyses for various levels of any given lighting 

parameter; for instance, in the case of luminance, very low levels (say 0.1 cd/m2) may not explain 

reductions in collisions (frequency or severity).  At some point there has to be a level such that 

luminance explains less frequent and/or severe collisions. To identify such a level, one needs to 
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use a dummy variable for the given lighting indicator. A dummy variable will help categorize those 

segments of roads (ramps, intersections, et cetera.) that exhibit the desired level (or better) by 

giving them a value of 1, while deficient roads below the tested lighting level will be given a value 

of zero. A statistical analysis containing all other explanatory variables (linearly independent) and 

the dummy variable will establish the contribution of each factor to explain the response, similarly 

to as explained above If a variable has a negative value, then any increase on such variable results 

in a reduction of the response. Hence, if the statistical analysis provides a negative value for the 

dummy variable (and the p-value is below the desired target) then one will interpret such level of 

lighting used to categorize the data through the dummy as an effective countermeasure for 

nighttime accidents. Analyses will run until the sign of the dummy changes from positive (not an 

effective countermeasure) to negative (an effective countermeasure). At which stage, the sign 

change point is interpreted as the minimum recommended level of the lighting indicator being 

analyzed. 

One final point is necessary regarding the connection of lighting levels and crash history; each 

time we change and test for a better lighting value, the sample of observations (with such level or 

above) reduces, hence, it is plausible that at some point the p-value will start dropping from a lack 

of enough observations. 

3.5 Local Calibration of Lighting Warrant Scores 

The warrant grid system contains two major dimensions: (1) classification points and (2) scores. 

The classification points assign a degree of deficiency to each road element. The scores give the 

contribution of each element to explain nighttime collisions. Walton (1974) conducted a series of 

interviews and used questionnaires to establish the scores and identify the classification points. 

The current warrant system utilizes both elements to obtain an overall estimation of the degree of 
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deficiency of the road during nighttime, and presumes that lighting is an effective element that can 

be used to ameliorate (improve) the degree of safety.  

The calibration of the warrants could consider either or both dimensions. This thesis explores the 

connection of the warrants to the crash history, and the approach selected transforms the warrants 

to become an evidence-based method. The most practical way to do this is by estimating the 

relative explanatory power of each element on the warrants in explaining nighttime collisions. 

Hence, it becomes natural to use statistical analyses at the core of the calibration and to apply the 

calibration to the scores, which directly provides the contribution of each element to explain 

nighttime collisions and allows the reduction of the number of elements based on the available 

data. 

The approach used in this thesis is to calibrate the scores of the warrant system using the expected 

contribution of available causal factors on nighttime collisions. The method normalizes and re-

scales parameters to obtain scores of a grid containing geometric, operational, environment and 

crash-history factors. The new grid contains only significant factors identified by the analysis. In 

this regard it better serves the needs of departments of transportation with limited available data.  

Figure 3.9 summarizes the calibration method proposed in this research. The first step was to 

prepare a consolidated database containing geometrical, operational and environment 

characteristics, as well as crash-history of the road. Then data was analyzed in a statistical 

regression in order to estimate the beta coefficients that accompany each possible explanatory 

variable. Statistically significant values are normalized and scaled in order to estimate the 

recommended scores for the local calibration. Calibrated grids could be produced for frequency 

and/or severity of collisions (Figure 3.9).  
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Figure 3.9 Method to Calibrate the Lighting Score Grid System  

 

The normalization establishes relative weights on a zero to one basis for all the available 

coefficients (Figure 3.10). The re-escalation transforms the weights into scores that are multiplied 

by classification points with values between one and five. Hence, the maximum theoretical 

summation of scores multiplied by points reaches up to 100 points. Given the 100 points and 5 

levels, all scores together could not go beyond a maximum of 20 points. Hence, each factor 

(previously normalized) is multiplied by 20 in order to obtain the final value of the new score for 

the grid of the warrant system (Figure 3.10). It is important to notice that the warrant system 

consists of 5 grids and that each grid is applicable to a specific element of roads. This subdivision 

follows a functional classification and type of road site (intersections, segments, et cetera).   
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Figure 3.10 Calibration Mechanism  

 

The other possible approach to calibrate is to change the classification points. This could be done 

in two ways: (1) adjusting the interval values that categorize the deficiency level of each element 

or (2) abandoning the global values used for the classification points (one to five) and using 

individualized values per road element. The adjustment of the deficiency levels will require a very 

large amount of data containing observations at all ranges in order to calibrate them. It is easier to 

preserve the nature of the intervals to be associated with deficiency levels. The connection of the 

crash-history to the classification points is complicated, but possible; it will require the 

individualization per road element, changing first the upper limit according to the explanatory 
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follow any form, not necessarily linear as in today’s grid. But, it will be impractical for decision 

makers, because it will further subdivide the grid, overcomplicating it for practitioners.  

3.6 Estimation of Recommended Levels of Lighting 

The estimation of recommended levels starts with the preparation of a consolidated database 

containing road characteristics, nighttime traffic volume, crash-history and lighting. The 

estimation can be further broken down into two types of analysis (severity and frequency) and five 

variables from which recommended level needs to be learnt. The first two values estimate 

minimum maintained levels of illuminance and luminance. Then, the estimation of maximum 

accepted variation in the form of three uniformity indicators could be considered. Minimum 

recommended levels of illuminance or luminance take the form of a dummy level variable. Several 

statistical analyses containing the level of the variable in turn at the time are prepared; the data is 

separated into two groups according to the compliance with a minimum average level of either 

illuminance or luminance. The estimated coefficients of such variables will indicate if the variable 

is capable of explaining less severe and/or less frequent roadway collisions. The analysis will 

continue until a point at which the level-variable shows a capability to explain less severe or 

frequent collisions, and at that moment, the minimum average recommended value of either 

illuminance or luminance will have been found. A similar approach will follow for the estimation 

of maximum recommended variation of uniformity: a level-variable is used to divide the data in 

two groups and this level variable is used to measure the ability to have less frequent/severe 

accidents.  
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Figure 3.11 Method to Estimate Adequate Levels of Lighting 

 

This procedure (Figure 3.11) is repeated per functional classification of roads; that is, a value of 

minimum average illuminance and luminance and values of maximum permitted uniformity 

variation are given for each type of road. Additionally, values could be further broken down into 

lighting per intensity of pedestrian activity, however this is not done in this research.  

3.7 Protocol of a Unified Method for Lighting Warrants and Levels 

This research proposes the need to unify both the warrant system and the recommended levels. 

This need comes from the fact that the warrant determines which sections to lit, the levels respond 
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to the amount of lighting to be provided. From the state of the practice perspective, it is clear that 

both approaches come from separate industry standards (AASHTO 2005 and IESNA 2005). 

However, from a state of the art viewpoint, they should be treated together and, as proposed herein, 

connected to the crash-history in order to justify evidence-based lighting decisions.   

The unified method is nothing more than the culmination of this research thesis. The method is 

applicable to municipal governments, regional authorities, and provincial/state agencies. The 

method provides the decision maker with an identification of warrants and levels for its 

jurisdiction. First, roadway lighting data must be collected; this data will be unified to existing 

crash and road characteristics data to generate a database for the analysis (Figure 3.12). The 

methods explained before will be used to calibrate the scores of the warrant’s grid for each type of 

entity (Figure 3.12). The approach given before for lighting levels will be used to identify 

recommended levels per functional classification of roads.  

At the end, the designer or decision maker will have a calibrated grid with recommended levels of 

minimum maintained luminance and illuminance (whichever is applicable for the type of road 

entity) and of maximum permissible uniformity variation for luminance and illuminance 

(whichever is applicable for the type of road entity).  This will enable them to make an informed 

decision to provide roadway lighting as a countermeasure. 
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Figure 3.12 A Unified Method for Lighting Warrants and Levels 
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CHAPTER 4 - UNDERSTANDING LIGHTING AND SAFETY: A PILOT 

STUDY OF ARTHABASKA REGION 

4.1 Introduction  

Road collisions can negatively impact thousands of individuals. In 2011, road fatalities were 

ranked eighth worldwide, making road injuries one of the top ten leading causes of death 

worldwide (WHO 2013). The majority of existing research has focused on intersections and 

interchanges (Abdel-Aty et al. 2005, Santiago-Chaparro et al. 2010, Lord and Persuad 2000, 

Lovegrove and Sayed 2006). Few researchers had concentrated into road segments (Jonsson, Ivan, 

and Zhang 2007), perhaps because more collisions are actually observed at intersections (Barua, 

Azad, and Tay 2010). Collision frequency typically responds to higher volumes of traffic (Baek 

and Hummer 2008, El-Basyouny and Sayed 2010, Hadayeghi, Malone and De Gannes 2006), the 

presence of complex geometries (El-Basyouny and Sayed 2010),  and combinations of horizontal 

and vertical curves in particular (Eassa and You 2009, Hummer, Rasdor and Findley 2010). 

Slippery surfaces have been found to explain a higher number of road collisions (Bullas 2004, 

Gilfillan 2000, Karlaftis 2002). Urban sites seem to receive more attention than rural ones (El-

Basyouny and Sayed 2010), with constant efforts spent on improving their safety and special focus 

placed on intersection retrofitting (Feldman, Manzi, and Mitman 2010). Some of these studies 

looked into traffic calming measures as possible solutions (Zein et al. 1997). Typical studies 

focused on motorized vehicles, particularly cars, although other research focused primarily on 

motorcycles (Haque and Chin 2010). Some researchers have looked into pedestrians and their role 

in road safety (Lyon and Persuade 2002), taking into consideration their presence and interactions 

with motorized users. This is especially true for nighttime road collisions, for which current 

guidelines (IESNA 2005, TAC 2006) have established the decision criteria for warranting lighting 
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and specified its levels as those found on grids G3 and G5 (Transports Quebec 2012) on the basis 

of pedestrians’ presence. 

Research has proven that many severe accidents occur at nighttime (Isebrands et al. 2010, CIE 

1992), particularly involving pedestrians (Zhou and Hsu 2009).The typical countermeasure for 

nighttime collisions is roadway lighting (Rea, Bullough, and Zhou 2009). Studies have observed 

significant reductions in nighttime collisions at road segments to which lighting was provided as 

a countermeasure, with effectiveness ranging between 10 to 40% of all crashes observed and up 

to 65% of fatal crashes (TAC 2004). Previous research has found a roughly 37% reduction of crash 

rates (Isebrands et al. 2010). This is also supported by a report by CIE (CIE 1992) that found a 

large number of studies before 1992 which revealed that nighttime accidents resulted in more 

severe accidents and that lighting did help reduce their frequency. Several studies have been 

conducted to examine the relationship between roadway lighting levels and safety. Some 

researchers (Isebrands et al. 2010, Zhou and Hsu 2009) investigated how maintained illuminance 

levels impact safety of pedestrians, finding a higher frequency of pedestrian crashes at sites with 

low level of lighting. Others found that road lighting contributes to reduce collision frequency and 

especially reduce the number of persons killed and seriously injured (Yannis, Kondyli, and 

Mitzalis 2013).  

The majority of studies on lighting refer to illuminance of a single site. Illuminance portable 

technology has recently been developed (Cai and Li 2014). Measurement of luminance for road 

safety studies of nighttime crashes is recent. Luminance portable technology does exist but has 

been impractical for collecting massive amounts of data (Elvik 1995).  
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4.1.1 Motivation and Goals 

The main motivation of this chapter is to explore the role of lighting as a countermeasure for 

nighttime road collisions involving motorized vehicles in road segments. Several aspects need to 

be studied or confirmed. First, whether severity and/or frequency is the best response to capture 

the causes of night time collisions in statistical analyses. Second, what indicator of lighting should 

be used for road segments, illuminance or luminance. Third, what geometric, functional, and 

operational characteristics of the segment should be used as causal factors. Fourth, to confirm that 

lighting is indeed a good countermeasure. 

As expected, the main goals respond directly to each of the four previous aspects. In summary, 

this chapter identifies what response should be used, what factors were considered and what 

indicator of lighting was included, and finally, the effectiveness of lighting as a countermeasure as 

witnessed through a reduction in collision rates. Good understanding for the specification of 

statistical analyses will be developed. 

4.1.2 Database 

Part of the data used in the first part of this chapter was obtained from the Arthabaska region. 

These databases benefitted from the work of a team of students under the supervision of Dr. 

Nicholas Saunier of Ecole Polytechnique, that merged the spatial location from the emergency 

vehicle system to the one of the Ministry of Transportation, this signified the ability to count with 

a more precise spatial location of the accidents which in turn justifies the possibility to use 

segments of 100 meters. A total of 951 road segments of 100 meters were used in this pilot study. 

Some geometric and operational characteristics of the segments along with lighting measurements, 

accident counts, and a severity index were used for the analysis (Table 4.1). Geometry attributes 

included presence of intersection, number of lanes, complex geometry, posted speed, land use  
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(i.e. rural or urban), and average AADT for a period of ten years. These attributes are also 

described ahead in Table 4.1. 

 Roadway lighting in the form of illuminance and luminance was collected for a network of around 

a 95 km of roads in the Arthabaska region in central Quebec (Figure 4.1). Illuminance 

measurements were collected using the Spectrosense2+ machine by placing two light sensors on 

top of the roof of a passenger car along with the device’s built-in GPS system. An additional 

assisted-GPS was used to input missing coordinates in those cases where the Spectrosense2+ lose 

signal.  

 

Figure 4.1. Arthabaska Region and Highways on this Pilot Study 

 

A protocol for data collection is presented in Figure 4.2. Data collection begins and ends with the 

drivers being at a stationary position in order to have a known location and to allow the GPS to 

find signal; the driver then proceeds at near constant speed in order to have uniform point 
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separation. Data collection is complemented by a cleaning process during the processing to remove 

measurements logged while stopped. Spectrosense2+ and the assisted GPS have to be turned on 

and off simultaneously at the commencement and at the end of data collection respectively. The 

data then needs to be transferred to a computer system where it is processed. A preliminary visual 

inspection of the data is done using ArcGIS, where missing data can be easily identified. 

Coordinates from the assisted GPS are added in such cases. The complete cleaned illuminance 

dataset is then saved as a shape file which will be used at a later stage. 

In terms of Luminance, data was collected using a professional digital camera (Nikon D70) with 

a special lens filter (fish eye type) and specialized software capable of estimating average 

luminance from ISO 400 photos as perceived by the driver and a glare indicator (Photolux 2012). 

Data collection followed the parameters established by JIS-Z-9111 (1988) in terms of the location 

of the camera (midpoint between luminaires), angle (2 degrees from horizontal sight of driver), 

height (1.5m), visual environment (capturing distance between 60 and 160 meters ahead, 90 m for 

intersections) and other specifications related to data collection already predefined in the system. 

Jackett and Frith (2013) further explained the calibration of a commercial camera required to 

translate photo pixels into luminance values. One indicator of glare was tested; the unified glare 

ratio. 

Photolux software was used to process pictures by reading the information stored in the header of 

the picture using the EXIF format (Photolux, 2012). This information includes the aperture, time 

of exposure, and sensitivity. Photolux computes the exposure used on the picture to assign a value 

of luminance to each pixel, which eventually results in a luminance map. This map represents the 

amount of luminance in candela per square meter and can be used to estimate glare indicators. 

A second subprocess takes care of adding the road network’s operational and geometric 
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characteristics and splits roads into one hundred meter segments. In addition, intersections were 

identified by creating buffers. Segmentation of the network followed a two-step process where 

routes were created and divided. The creation and splitting of the routes resulted in the loss of 

relevant segment-related attributes. Characteristics corresponding to each section are 

reincorporated into the splitted segments shapefile. 

A third process uses a 20m buffer to allocate collisions into road segments in the form of collision 

frequency and by using specified weights (3.9, 1, 0.0216, 0.0108 and 0.0014 for fatality, 

major/minor, injury and major/minor PDO) creates a severity indicator scaled to match the order 

of magnitude of observed frequencies. Finally, lighting measurements, road network operational 

and geometrical characteristics, and accident frequency were joined together. The final database 

was used for statistical analyses (Figure 4.2). 

4.1.3 Lighting variables used in the analysis 

Values of uniformity followed those recommended by IESNA (2005) which defines uniformity of 

illuminance or luminance are shown on Equations 4.1, 4.2 and 4.3.  

Uniformity (illuminance) 
Minimum

Average
   [4.1] 

Uniformity 1 (luminance)
Minimum

Maximum
  [4.2] 

Uniformity 2 (luminance)
Minimum

Average
  [4.3] 

According to IESNA (2005), the uniformity ratios are dependent on the functional classification 

of the road. The values provided in this table are the maximum allowable values that can be 

observed on road segments. Road segments in the database were classified as being standard by 

looking into the minimum illuminance and luminance values and functional classification in order 

to meet IESNA minimum recommended illuminance and luminance values. Uniformities for 
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illuminance and luminance were used in the analysis as well. Average illuminance and calculated 

uniformity were the only light related variables used in the analysis. A dummy variable for lighting 

levels describing whether the light found on the segment is standard or non-standard was included 

as well.  The natural logarithm of AADT has been chosen as a predictor to inflate the regression. 

This is because the number of crashes (or their severity) is related to traffic volume (AADT), i.e., 

many segments with low levels of traffic registered zero collisions. 

 

 

Figure 4.2  Flowchart of Data Collection and Processing  
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4.2 Methodology 

This first stage of the analysis develops frequency and severity statistical models for roadway 

collisions in order to identify the recommended form of the response. The analysis is conducted in 

two parts: one for lighting in the form of illuminance and the other in the form of luminance. 

Maximum likelihood and Full Bayesian analyses were employed (the second to validate the results 

of the first) to identify the factors that are significant. The main tasks are shown on Table 4.1: 

Table 4.1 Main Tasks 

Method Purpose 

Statistical analyses of collision’s frequency and severity Identify best type of response 

Statistical analyses of illuminance and luminance Identify best indicator for lighting 

Correlation Matrix Identify causal factors to be used 

Statistical analyses of daytime vrs. night-time collisions Demonstrate lighting is countermeasure 

Full Bayesian and maximum likelihood Validation of results 

 

4.2.1 Statistical Analyses  

Different methods are available to estimate the parameters of a regression model. The most popular 

in safety analysis are the method of moments (Baglivo 2004), the method of maximum likelihood 

(Bedford and Cooke 2001), and Bayesian estimation (Gelman and Hill 2008). The method of 

maximum likelihood is widely accepted, and therefore used in this study. However, Full Bayesian 

counts with interesting properties and interpretive advantages (Mitra and Washington 2006) like 

the ability to handle structured data which could be exploited to replicate the ideas behind Latent 

class models and to abandon the need to inflate for zeros. Moreover Bayesian can combine expert 

criteria with local observations in order to calibrate models based on specific contributing factors 
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for different engineering applications (Amador and Mrawira 2011). Bayesian estimation is 

structured based on prior, likelihood, and posterior. Prior distribution, which represents the initial 

knowledge about a parameter, can be selected as informative based on previous researches, 

literature, expert criteria, or experience. It can alternatively be specified to be non-informative. 

The likelihood is represented by data containing local observations. Finally, the posterior 

distribution can be obtained by mixing prior and likelihood. The Posterior distribution can be 

estimated through a stochastic Markov Chain Monte Carlo simulation framework using Gibbs 

sampler, which samples the space of the contributing factors and takes into account the randomness 

associated to these factors.  

The analysis also runs parallel models with maximum likelihood as the main method and Full 

Bayesian in order to validate its results. However, Bayesian analyses will be the base of future 

research in order to develop a calibration method that separates road sites by levels of risk and then 

establishes calibrated lighting warrants. 

A Zero-Inflated Negative-Binomial (ZINB) model is used to estimate the contribution of 

explanatory variables (including lighting) on collision frequency and severity. The ZINB is an 

extension to the ZIP, capable of dealing with the high number of zero counts as well as over-

dispersion (Mei-ling et al. 2004). This model assumes that the high number of zero responses could 

come from two possible processes. One could be the result of good safety practices and adequate 

geometric design. The second could come from some collisions not being reported. The outcome 

Y studied herein follows a ZINB with distributions and the mean for the variance as recommended 

by Sharma and Landge (2013). 

This chapter employs a safety performance function (SPF) that estimates the relationship between 

predicted crash frequency and a series of segment characteristics from four major areas, namely 
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operational characteristics (AADT, speed, et cetera),  geometry and built environment (land use, 

curvature, et cetera),  environmental exposure (road surface condition), and roadway illumination. 

The SPF adopted in this study is presented in Equation 4.4 and follows the format recommended 

by AASHTO (AASHTO 2010). It should be noted that all segments measure 100m in length 

making possible to drop such factor. 

  

𝑌𝑖 =  𝐴𝐴𝐷𝑇𝑖
𝑎 ∗ exp ( 𝛽0 + 𝛽1𝑥1𝑖 +  ⋯+𝛽𝑘𝑥𝑘𝑖)   [4.4] 

Where:        

k: variable number (1,2,3,….) 

βk : Coefficient of explanatory variable 𝑥𝑘 

𝑌𝑖: Frequency or severity of night-time collisions on segments i 

AADTi: Average Annual Daily Traffic of segments i 

Xki: Explanatory variable i 

α: Coefficient of AADT at segment i 

4.3 Results 

An increase in the number of collisions is expected for high traffic areas. Two models were run: 

classical analysis (maximum likelihood) using Stata and Full Bayesian using OpenBUGS  

(Table 4.3). 

4.3.1 Road Collisions and illuminance 

A zero inflated negative binomial model was analyzed using a maximum-likelihood commercial-

software (Stata) and a Full-Bayesian free-source-software (OpenBUGS). Two sub-models were 

prepared and results were obtained; one for accident frequency and one for accident severity. Their 

results were compared in Table 4.2 in order to validate and to withdraw conclusions regarding the 

preferred response. 

The presence of an intersection, having a wet, icy or snowed pavement, along with the slope of the 
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terrain and the presence of animals increase the number of roadway collisions. Higher average 

speeds resulted in slightly less accidents with an almost negligible contribution. More causal 

factors were capable of explaining accident severity; as such and in addition to the aforementioned 

variables, higher levels of average illuminance were found to explain less severe accidents. The 

presence of animals increase the frequency and severity of collisions. Tired and drunk drivers 

resulted insignificant for explaining collisions frequency and severity. Sites with standard levels 

of illumination were associated with more severe accidents as compared to sites with non-standard 

levels. This contradictory result aligns with the literature recommendation of not using illuminance 

as an indicator for road segments (only for intersections). This also suggests the possibility that 

the current standard is not helping to reduce the number of road collisions and may need to be 

revised. 
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Table 4.2 Comparison Maximum Likelihood (Stata) with Full Bayesian (OpenBUGS) for Illuminance 

Parameters Variable Name 
Frequency Severity 

FB Stata Significant (90%) FB Stata Significant (90%) 

beta[3] Number of lanes -0.020 0.028  -0.309 0.213  

beta[4] Presence of Intersection 0.964 0.908 YES 0.623 0.757 YES 

beta[5] Average Illuminance 0.003 -0.001  -0.081 -0.055 YES 

beta[6] Number of Heavy Trucks involved in Collisions 0.005 -0.102  -0.670 -0.391  

beta[7] Wet Pav. 0.454 0.459 YES 1.060 0.933 YES 

beta[8] Snow Pav. 0.319 0.308 YES 0.388 0.392 YES 

beta[9] Iced Pav. 0.544 0.549 YES 1.499 1.650 YES 

beta[10] Horizontal Curve -0.001 -0.023  0.041 0.198  

beta[11] Slope 0.274 0.307 YES 1.166 1.086 YES 

beta[12] Average Posted Speed -0.012 -0.010  -0.082 -0.022 YES 

beta[13] Suburban -0.591 -0.498  -0.120 0.904  

beta[14] Urban -0.153 0.090  -0.542 0.294  

beta[15] Standard Illumination 0.578 0.695 YES 1.185 1.255 YES 

beta[16] Nonstandard Illumination 0.436 0.524 YES 0.511 0.598 YES 

beta[17] Presence of Drunk Driver 0.031 -0.012  0.064 0.145  

beta[18] Presence of Tired Driver 0.002 0.076  0.820 0.175  

beta[19] Presence of Animals 0.238 0.255 YES 0.585 0.590 YES 

beta[20] Uniformity for illuminance (Avg to Min) -0.001 -0.001  -0.004 -0.003  
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4.3.2 Road Collisions and luminance 

In this analysis, lighting took the form of luminance and glare (unified), for the same segments 

used in the analysis before. It was confirmed that segments with higher levels of traffic flow, on a 

slope, at an intersection, or exposed to slippery circumstances or the presence of animals (possibly 

poor fencing control) experienced a higher number of accidents. In terms of lighting, this analysis 

measured the role of luminance as perceived by the driver, glare, and uniformity variation (the 

higher the value the larger the lighting inconsistency). It was found that higher values of luminance 

resulted in less frequent and severe accidents (although at an 85 and 80% confidence), higher 

values of glare resulted in more frequent collisions and higher degrees of inconsistency in 

uniformity, resulting in more collisions. Tired and drunk drivers resulted insignificant for 

explaining collisions frequency and severity (Table 4.3). 

Table 4.3 Classical Analysis (Maximum Likelihood) Analysis Results – Stata 

No. Variable 
Frequency Severity 

Coef. P-value Coef. P-value 

2 Log AADT (Traffic Volume) 0.29 0.09 0.39 0.08 

3 Number of lanes 0.05 0.63 0.34 0.02 

4 Horizontal Curves 0.00 1.00 -0.01 0.96 

5 Slope 0.25 0.05 0.55 0.01 

6 Average Posted Speed -0.01 0.14 -0.02 0.01 

7 Intersections 0.91 0.00 0.51 0.01 

8 Land Use 0.08 0.42 0.12 0.33 

9 Average Luminance -1.06 0.13 -1.23 0.19 

10 Uniformity1 Luminance Avg to Min 0.13 0.19 0.10 0.48 

11 Uniformity2 Luminance Max to Min -0.03 0.21 0.00 0.97 

12 Illuminance from Luminance 0.32 0.08 0.29 0.23 

13 Unified Glare 0.05 0.07 -0.03 0.43 

14 Animals 0.23 0.03 0.74 0.00 

15 Tired driver 0.23 0.38 0.08 0.85 

16 Drunk driver -0.17 0.33 -0.30 0.36 

17 Wet pavement 0.52 0.00 1.22 0.00 

18 Snow pavement 0.32 0.00 0.41 0.01 

19 Iced Pavement 0.61 0.00 1.14 0.00 
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4.3.3 Causal factor selection 

The previous analyses were not concerned with the selection of factors and concentrated only on 

the identification of the ideal response(s) and suitable indicator(s) of lighting. This section is 

devoted to the identification of the causal factors to include in the analysis. The prior belief is that 

any factor in principle correlated to the response should be dropped. By correlated in principle, 

one means those who represent a specific characteristic of the response. For instance in the 

previous analysis, the presence of an animal at the time of the accident is a count of how many of 

the observed accidents involved an animal; similarly the impairment of the driver (tired or drunk) 

is also a mere count of accidents in which the driver presented as either of those circumstances. 

Finally, the surface of the pavement at the time of the accident is also a mere count of frequency 

of how many accidents occurred while the surface of the pavement presented some wet, icy, or 

snowy circumstances.  

Table 4.4 Correlation Matrix for In-Principle Correlated Factors 

 y = frequency Animal 
Driver Pavement 

Tired Drunk Wet Snow Ice 

y = frequency 1       

Animal 0.31 1      

Tired 0.17 0.13 1     

Drunk 0.39 0.30 0.57 1    

Wet pavement 0.88 0.22 0.15 0.33 1   

Snow pavement 0.79 0.30 0.18 0.30 0.59 1  

Ice pavement 0.51 0.18 0.14 0.26 0.30 0.37 1 

 

Table 4.4 shows a portion of a correlation matrix of such factors with accident frequency, while 

the other portion containing the remaining factors is shown on Table 4.5 given the large size of the 

matrix. As seen, most accidents presented a slippery circumstance, about half involved an impaired 

driver, and one third involved the presence of an animal on the road. They all result in high values 
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of correlation and should not be included in the analysis.  

As seen in Table 4.5 there are three factors showing high values of correlation one of them 

(horizontal curve) with the response possibly because such measure (binary) only reflects the fact 

of whether the collision occurred at a horizontal curve segment or not. If this is the case, such 

geometric variable is inadequate and one containing the actual measure of the radius of curvature 

should be used. The other two variables showing high correlation are land use with speed (56%) 

and illuminance with luminance (68%). The reasons behind the second pair of highly correlated 

factors (illuminance and luminance) are very clear; the value of illuminance was estimated from 

the value of luminance, and hence only one or the other should be used. A negative correlation is 

observed between speed and land use, which means the more types of proximal land uses (urban 

and suburban) to a road segment, the lower the observed speed. This observation makes sense as 

the indicator of land use herein defined acknowledges the fact that homogeneous circumstances 

(only one type of land use) possibly results in higher speeds, and that transitioning segments will 

likely observe lower speeds. 
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Table 4.5 Correlations for the Rest of Causal Factors 

 
y 

nighttime 
ln_aadt lanes curve slope speed inters Landuse Lumen unif_1 unif_2 illumin glare 

Y for nighttime 1             

ln_aadt 0.15 1            

lanes 0.27 0.37 1           

curve 0.70 0.12 0.14 1          

slope 0.41 0.12 0.16 0.43 1         

speed -0.29 -0.08 -0.35 -0.22 -0.14 1        

inters 0.34 0.04 0.20 0.29 0.23 -0.39 1       

landuse 0.21 0.42 0.21 0.17 0.14 -0.56 0.28 1      

lumin 0.23 0.00 0.28 0.16 0.11 -0.40 0.18 0.19 1     

unif_1 -0.02 -0.25 -0.03 -0.02 0.01 -0.21 0.07 0.00 0.71 1    

unif_2 0.05 0.15 0.14 0.03 0.03 -0.24 0.18 0.21 0.08 0.16 1   

illumin 0.32 0.34 0.46 0.23 0.13 -0.38 0.18 0.29 0.68 0.02 0.08 1  

glare 0.02 -0.04 -0.23 0.06 0.04 0.07 -0.06 0.04 -0.27 -0.40 -0.15 -0.03 1 

Table 4.6 Correlations for the Causal Factors on Daytime Analysis 

 
y 

daytime 
lanes intersec total_width shoulder_width ln aadt Speed radius median_bin Landuse slope 

Y for daytime 1           

lanes 0.05 1          

intersections 0.18 0.04 1         

total_width 0.05 0.89 0.05 1        

shoulder_width -0.03 -0.05 0.11 -0.01 1       

ln aadt 0.14 0.43 0.10 0.42 0.21 1      

speed -0.10 0.13 -0.21 0.12 -0.67 -0.04 1     

radius curvature 0.02 0.20 -0.06 0.18 -0.15 -0.01 0.19 1    

median_binary 0.01 -0.06 -0.11 -0.02 0.32 0.11 -0.23 -0.11 1   

Land use 0.71 0.19 0.21 0.17 -0.02 0.14 -0.20 -0.01 -0.03 1  

slope 0.24 0.04 0.15 0.02 -0.02 0.06 -0.18 0.001 -0.04 0.41 1 
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4.3.4 Demonstrating that lighting is a countermeasure 

The analysis, however, is based on an expanded version of the database which contained more 

segments (1600 segments) with geometric values for lane width, number of lanes, total pavement 

width, shoulder width, slope, horizontal curve radius, density of intersections/interchanges, and 

traffic volume. The data contained for land use on the database showed a high (0.71) correlation 

coefficient with the response (Table 4.6). The reason was that the fields of land use in the database 

reflected a count of collisions observed at the corresponding land use, so for this reason it was 

dropped from the analysis. The same correlation matrix (Table 4.6) revealed that total width was 

highly correlated to number of lanes. Only one value was kept for the analysis.  

Lighting was represented by luminance and glare, collision severity was used as response. As seen 

in Table 4.7, both daytime and nighttime identify the same significant factors: number of lanes, 

density of intersections, traffic volume (AADT), posted speed, and slope. All coefficients are very 

close except the one for traffic volume which is about three times as important during nighttime. 

This could be explained by the fact that traffic volume has a greater impact on night time accidents. 

This is seen in the warrant score system of highway lighting by the use of a 2 to 1 night-to-day 

accident ratio. Both luminance and glare resulted significant and negative, which is to say that 

higher luminance and glare result in fewer collisions.  This confirms that for the case study, lighting 

measured through luminance is an effective countermeasure. The result for glare contradicts prior 

expectations, thus glare should not be used. 
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Table 4.7 Day and Night Time Analyses 

Daytime Collisions Nighttime Collisions 

Factor Coefficient p-value Factor Coefficient p-value 

Lanes -0.48 0.03 Lanes -0.50 0.01 

intersection 3.11 0.00 Intersection 2.07 0.00 

shoulder 0.08 0.37 Shoulder -0.04 0.55 

Lnaadt 0.16 0.00 Lnaadt 0.55 0.00 

Speed 0.00 0.00 Speed 0.00 0.00 

radius_curve 0.00 0.46 Radius_curve 0.00 0.24 

Slope 7.27 0.00 Slope 7.23 0.00 

 
Luminance -0.47 0.02 

Glare -0.09 0.00 

 

4.4 Conclusions 

This chapter presented a protocol to collect lighting data and developed understanding of the role 

of lighting in explaining nighttime collisions. This will be used in the upcoming chapters to 

develop a method to calibrate lighting warrants and design levels. In terms of the four major goals 

of this research, results from the analysis showed that accident severity is preferred over frequency, 

but one should keep in mind that they respond to different circumstances and it is the opinion of 

the author that both should be kept in the analysis. It was observed that illuminance returned 

inconsistent values for the statistical analysis of collisions on road segments, whereas luminance 

showed strong significance and improvement as a countermeasure. This result aligns with the 

literature that recommends the use of luminance for road segments (no pedestrians). Correlation 

analyses proved useful in identifying linearity between factors (same nature) or between factors 

and the response.  

Miscellaneous initial results showed that, for the Arthabaska region in Quebec, the presence of an 

intersection, the presence of animals, and having a slippery/wet road surface produced more 

frequent and severe collisions.  However, the correlation analyses force the drop of the presence 
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of animals and slippery/wet roads as well as driver impairment. Roads with complex alignments 

resulted in higher collision rates. Traffic volume also explained higher collision frequency. 

Standard illuminated roads resulted in an increase of road collision frequency, a contradictory 

result. Average level of illumination (and being at an urban location) was only significant from a 

severity perspective, explaining less severe accidents with higher levels of illumination.  

It was confirmed that Full Bayesian analysis was capable of estimating the impact of the 

explanatory variables on the response as it returned similar results to those obtained by the classical 

analysis. This is a key step for the validation of statistical analyses using Full Bayesian analysis. 

Future steps of this project include the development of a method to calibrate lighting warrants and 

estimate recommended design levels of lighting indicators. Such specifications will be based upon 

refined statistical analysis containing all the recommendations found in this chapter.  
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CHAPTER 5 - A CALIBRATION FOR THE WARRANT OF ROAD 

LIGHTING: CASE STUDY OF QUEBEC 

5.1 Introduction 

The Provision of Roadway lighting follows a warrant system established four decades ago. The 

current state of the practice finds many agencies in North America and the rest of the world 

simplifying the grid system to contain fewer elements already available to them and custom-tailor 

scores based on expert criteria. This tendency suggests the need for a method to conduct a local 

calibration of the warrant’s grid supported by the local crash-history. This chapter presents a 

method to calibrate the scores of the warrant system utilizing only those elements available and 

significant from a statistical perspective in explaining less frequent and severe night-time 

collisions. A case study of the province of Quebec in Canada illustrates the application of the 

method. As explained later, only few factors survive the analysis and were found to be significant 

in explaining less frequent and severe accidents. Values of such factors were normalized and re-

scaled to obtain the scores for grid G1 (highways). The number of lanes, width of the shoulder, 

density of intersections, traffic volume, and night-to-day crash ratios were calibrated to obtain two 

grids, one for severity and one for frequency. A modified grid without night-to-day ratios is 

proposed for new highways. The method to locally calibrate over statistical analyses proposes a 

strong foundation for lighting decisions better suited from a liability perspective.  

The role of lighting as a countermeasure for night-time road collisions has been addressed by many 

researchers in the past (Zhou and Hsu 2009, Isebrands et al. 2010, Yannis, Kondyli and Mitzalis 

2013, and Sullivan, 2009). In general researchers have found that certain levels of lighting is 

beneficial for reducing accident frequency (Elvik 1995, CIE 1992). The pilot study of the previous 

chapter confirms the positive effect of luminance in reducing road collisions. 
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Guidelines and regulations for recommended levels of lighting are proposed in IESNA (2005) and 

the warrant given by AASHTO (2005) and by TAC in Canada (2006). Many departments of 

transportation in the United States have developed custom values of specific geometric or 

operational characteristics following their disappointment with the current system and the fact that 

the warrant does not always agree with expert’s criteria. This disagreement reveals, in the opinion 

of the author, the need to count with a local calibration method. However, no one has developed a 

method for local calibration of the warrants for highway lighting. 

This chapter presents a calibration method for the warrant system. It addresses the grid (G1) of the 

warrant system. It estimates recommended values for the scores of G1, such that provision of 

roadway lighting is adapted to local characteristics of highway segments and ramps. It presents a 

case study of the road network for the province of Quebec. The method is similar to that presented 

in the pilot study; however, the model replaces two of the factors currently at the grid score system 

with surrogates. Severity and frequency were used as responses. The analysis was based on a 

maximum likelihood which enables the estimation of the parameters associated with each of the 

elements of the grid from the observed data. 

5.2 Methodology 

5.2.1 Exploratory statistical analysis 

Two brief exploratory analyses were proposed. The first one was intended to confirm the findings 

of the pilot study; that is, identifying the best response and the set of causal factors that are linearly 

independent. The analysis was conducted on commercial statistical package Stata and made use 

of statistical regressions and correlation matrices. The other analysis illustrated the division of sites 

per levels of risk. The estimated value of each parameter was multiplied by the observed level of 

the corresponding variable and their products were added obtaining a prediction of the number of 



 

93 

 

collisions. Sites were categorized in low, medium, and high levels given their predicted number of 

collisions. The breakpoints for the groups were established ad-hoc, based on the 33 and the  

66-percentiles. 

5.2.2 The calibration method 

The calibration of the scores for grid G1 followed the normalization and re-escalation of 

coefficients obtained at statistical analyses. The process converted the weights obtained by the 

Maximum likelihood analysis into equivalent scores for the grid G1. The parameters values were 

presumed to be a good indication of the relative importance of each variable in explaining the 

response. Their values were converted into scores through a normalization and re-escalation that 

preserved their relative importance. The normalization computed the relative weight of each factor 

with respect to their total summation. The re-escalation stretched the scale to match a maximum 

theoretical summation of scores of 100 points. For this, a factor of 20 was used. It must be noted 

that the grid contains variables which are further given up to 5 times their weight; hence the weight 

of each variable was given by the normalized weight multiplied by a factor of 20 as shown in 

Equation 5.1. 

𝑃𝑇𝑖 = (
𝑃𝑖

∑ 𝑃𝑖
𝑁
𝑖=1

) 20                                                                                                          [5.1] 

Where: 

PTi: Proposed grid score value for variable i 

Pi: Parameter value obtained from the statistical analysis  

 

This calibration method should be repeated for the other four site environments of the grid system 

(i.e., intersections, interchanges, roundabouts et cetera). Future research could look into a method 
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to handle multiple sites by having an indicator for the classification such that the analysis will 

identify a set of grid scores per category. This can be done through a hierarchical approach in 

which data is classified into groups and each coefficient carries an indicator of the group that it 

belong to, plus the coefficient’s subscript index. Another way is by analyzing each group 

separately. Figure 5.1 illustrates the steps done for data collection of illuminance and luminance, 

data processing, and data analysis. 

 

Figure 5.1  Data Collection, Processing, and Analysis (Illuminance & Luminance) Flowchart  
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CASE STUDY 

A database was created by joining 2,500 km of roads surveyed at night time to measure illuminance 

with a Spectrosense 2+GPS. A luminance camera with GPS and luminance software (photolux) 

were used to collect data for a sample of 800 km from the previous database. Other functional, 

operational, and geometrical characteristics were added (Figure 5.2). The database was conceived 

to be representative of different land-use environments encountered through the province, and it 

extended in a longitudinal sense from West to East with several loops connecting back to the 

TransCanada Highway.  

Additionally, the database was joined with the record of collisions and other accident related 

characteristics (impairment of driver, presence of animal on the road, condition of the pavement, 

time of the accident, among others). 
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Figure 5.2 Selected Roads in Quebec Case Study 

Table 5.1 gives a summary for the variables in the database used for this analysis. The effect of 

other geometric and operational variables was also included in the analysis in order to make 

inferences for the parameters of interest.  

 A total of 20 explanatory variables were tested. The nature of the variables was also presented; it 

ranged from binary (yes or no) to discrete and continuous. Some variables were compared versus 

a base level variable (for instance, lighting levels). 

A safety function relating the outcomes and the explanatory variables was used in a zero inflated 

negative binomial model and a Full Bayesian multilevel model. The function used in the following 

analyses is presented in Equation 5.2. As seen, the model had many explanatory variables located 
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on the power of the exponential in addition to AADT. 

𝑌𝑖 =  𝐴𝐴𝐷𝑇𝑖
𝑎 ∗ exp ( 𝛽0 + 𝛽1𝑥1𝑖 +  ⋯+𝛽𝑘𝑥𝑘𝑖)   [5.2] 

Where:        

k: variable number (1,2,3,….) 

βk : Coefficient of explanatory variable 𝑥𝑘 

𝑌𝑖: Frequency or severity of night-time collisions on segments i 

AADTi: Average Annual Daily Traffic of segments i 

Xki: Explanatory variable i 

α: Coefficient of AADT at segment i 

5.3 Exploratory Results of Safety Analysis 

The natural logarithm of AADT has been chosen as a predictor to inflate the regression. This is 

because the number of accidents is related to AADT. An increase in the number of collisions is 

expected for high traffic areas as opposed to road segments with low AADT. In general the analysis 

test for determining the significance of several operational and geometry related variables, as well 

as lighting indicators, is presented below for each specific analysis. The adequacy of severity has 

been explained before in this research and it comes from the fact that collision frequency per 

segment does not fully capture the nature of the outcome.  

5.3.1 Finding the best response:  frequency and/or severity 

A maximum-likelihood zero-inflated Negative-Binomial regression was conducted in order to gain 

better understanding of the contribution of available factors. This analysis also serves to estimate 

the predicted number of accidents for each segment based on its own observed characteristics. 

Significant factors are shown in bold font in Table 5.2 below.  

The values of the coefficients obtained by the statistical analysis of collision frequency  

(Table 5.1) were used to estimate the expected number of accidents per segment. This number was 

used to categorize roads into three levels of safety: low, medium and high.  
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Table 5.1 Summary of Statistical Analysis 

Sr. No. Variable Name 
Frequency  Severity 

Coef. P>z  Coef. P>z 

2 lnAADT Ln(aadt) 0.10 0.00  0.12 0.00 

3 Number of Lanes x3 0.11 0.13  -0.01 0.84 

4 Presence of Intersections x4 0.40 0.00  0.10 0.01 

5 Average Lux illuminance x5 0.00 0.03  0.00 0.64 

6 Presence of Heavy Trucks  x6 0.43 0.00  0.14 0.00 

7 Wet Pavement x7 0.28 0.00  0.09 0.00 

8 Snow Pavement x8 0.29 0.00  0.03 0.07 

9 Iced Pavement x9 0.54 0.00  0.14 0.00 

10 Horizontal Curve x10 0.00 0.58  0.00 0.02 

11 Slope x11 1.50 0.00  -0.35 0.00 

12 Average Posted Speed x12 0.02 0.00  0.00 0.18 

13 Suburban x14 0.32 0.00  0.18 0.03 

14 Urban x13 1.25 0.00  0.11 0.14 

15 Standard illuminance x15 0.50 0.00  0.23 0.00 

16 Presence of Animals x16 0.58 0.00  0.15 0.00 

17 
Uniformity illuminance Average to 

Min. 
x17 0.00 0.26  0.00 0.61 

18 Length x18 0.00 0.611  0.00 0.85 

19 Road Functional Class  x19 0.33 0.00  0.11 0.02 

20 Total Width of road x20 0.04 0.02  0.07 0.00 

21 Right Shoulder Width x21 -0.24 0.00  0.03 0.07 

22 Presence of Pedestrians x22 -0.34 0.03  -0.84 0.00 

23 Driver Workload x23 -0.23 0.00  -0.03 0.37 

 

5.3.2 Using levels of risk: Full Bayesian Multilevel Modelling 

The previous Full Bayesian model was nested by levels of risk estimated through the coefficients 

and the actual values of each factor. Two Full Bayesian nested analysis were estimated for 22 

coefficients and only those significant at the 95% are shown in Table 5.2. 
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Table 5.2 Results from Full Bayesian Analysis 

Sr. No. Variable Name Risk Beta Frequency Severity 

2 lnAADT (Traffic Volume) 

Low 2 3.47 4.87 

Med 2 3.50 4.81 

High 2 -1.62 2.93 

3 Number of Lanes 

Low 3 NS NS 

Med 3 -1.72 NS 

High 3 NS NS 

4 Presence of Intersections 

Low 4 NS NS 

Med 4 NS -1.68 

High 4 NS -1.64 

5 Average Lux illuminance 

Low 5 NS NS 

Med 5 0.00 NS 

High 5 0.00 NS 

6 Presence of Heavy Trucks  

Low 6 NS NS 

Med 6 NS NS 

High 6 0.31 0.83 

7 Wet Pavement 

Low 7 NS NS 

Med 7 0.33 0.79 

High 7 0.19 1.79 

8 Snow Pavement 

Low 8 NS NS 

Med 8 NS NS 

High 8 0.50 NS 

9 Iced Pavement 

Low 9 NS 4.99 

Med 9 NS NS 

High 9 0.88 NS 

10 Horizontal Curve 

Low 10 -4.00 -3.94 

Med 10 NS 0.00 

High 10 NS NS 

11 Slope 

Low 11 NS NS 

Med 11 2.03 4.77 

High 11 1.51 0.72 

12 Average Posted Speed 

Low 12 NS NS 

Med 12 0.03 0.08 

High 12 NS 0.08 

13 Suburban 

Low 13 NS NS 

Med 13 -3.92 NS 

High 13 -6.23 NS 

14 Urban 
Low 14 NS NS 

Med 14 NS NS 
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Sr. No. Variable Name Risk Beta Frequency Severity 

High 14 -6.77 NS 

15 Standard Illuminance 

Low 15 NS NS 

Med 15 1.08 3.83 

High 15 1.11 2.12 

16 Presence of Animals 

Low 16 7.85 7.14 

Med 16 0.16 NS 

High 16 0.45 1.36 

17 Uniformity Illuminance Average to Min. 

Low 17 NS NS 

Med 17 NS NS 

High 17 NS NS 

18 Total Length 

Low 18 NS NS 

Med 18 -0.06 -0.09 

High 18 NS NS 

19 Functional Class 

Low 19 NS NS 

Med 19 -6.57 NS 

High 19 1.54 NS 

20 Total Width of road 

Low 20 NS NS 

Med 20 NS -0.68 

High 20 NS -0.317 

21 Right Shoulder Width 

Low 21 NS NS 

Med 21 -2.78 NS 

High 21 -0.14 NS 

22 
 

Presence of Pedestrians 

Low 22 NS NS 

Med 22 NS 4.38 

High 22 2.36 NS 

23 Land Use 

Low 23 NS NS 

Med 23 1.02 NS 

High 23 NS -6.72 

 

It is not possible to argue in favor of only one aspect; either frequency or severity lead to different 

angles of the problem at hand and should be used in the analysis. At this stage is important also to 

acknowledge that a correlation between factors, as well as and factors and the response, should be 

explored. Finally, any measure of lighting should be dropped from the calibration. Both aspects 

are addressed in the upcoming sections of this chapter. 
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5.3.3 Identifying the causal factors 

A correlation matrix (Table 5.3) was prepared for the coefficients available after removing several 

collinear variables (presence of animals, drunk driver, trucks and weather-related pavement 

surface). A similar number of factors were identified to the one produced in chapter four. The 

matrix confirms the linear independency of selected variables suggested by the analysis conducted 

in the pilot study. Table 5.3 presents the values of a reduced matrix containing only the factors 

kept for the analysis. 

Table 5.3 Correlation Matrix for Road-Segments 

 Y_Night Lanes Intersection Shoulder Lnaadt ND_Ratio Speed Radius Slope 

Y_ Night 1         

Lanes 0.03 1        

Intersection 0.18 0.04 1       

Shoulder -0.02 -0.05 0.11 1      

Lnaadt_Night 0.17 0.41 0.10 0.22 1     

ND_Ratio 0.09 -0.04 0.03 0.02 0.02 1    

Speed -0.12 0.13 -0.21 -0.67 -0.06 -0.13 1   

Curvature 0.02 0.20 -0.06 -0.15 -0.02 0.04 0.19 1  

Slope 0.28 0.04 0.15 -0.02 0.07 0.32 -0.18 0.00 1 

 

 The coefficient on the slope was slightly higher than the other variables, and its correlation to the 

night-to-day-ratio of accidents along with further verification of the database confirmed the fact 

that this value reflected a count of accidents occurring at a segment with a slope and did not 

represent the actual slope of the road in the longitudinal direction. Another abnormal value is that 

of shoulder and speed, which could not be explained. A similar matrix for highway ramps is 

presented in Table 5.4. 
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Table 5.4 Correlation Matrix for Ramps 

 Y_Night Lanes Intersection Shoulder lnAADT ND_Ratio Speed Radius Ramp 

Y_Nighttime  1         

Lanes 0.08 1        

Intersection 0.10 0.02 1       

Shoulder 0.03 -0.15 0.10 1      

lnAADT 0.23 0.09 -0.12 0.18 1     

ND_ratio 0.10 -0.09 0.02 0.05 -0.02 1    

Speed -0.21 0.11 -0.30 -0.60 -0.16 -0.16 1   

Radius -0.03 0.21 -0.13 -0.15 -0.02 0.12 0.23 1  

Ramp_Length 0.07 0.14 0.06 -0.01 0.15 0.11 -0.06 0.14 1 

 

In summary, the exploratory results suggested the fact that not all variables currently contained on 

the grid (G1) are required from a statistical-perspective. This means that only those that surpassed 

the test of correlation should be used. Furthermore, only those deemed significant will be used on 

the final calibrated grid (G1). The preparation of a local calibration of the warrant was based on 

the available data which is statistically significant in explaining collisions and will facilitate the 

work of transport officials in producing local adaptations. 

5.4 Calibration of Warrants Scores for Quebec’s Highways 

5.4.1 Existing roads 

Four analyses were prepared by frequency (Table 5.5) and severity (Table 5.6): two for highway 

ramps and two for road segments, It was found that both types of facilities share some causal 

factors but their values differ. From a frequency perspective (Table 5.5), the presence of an 

intersection proximal to a ramp resulted in a very large and significant value, and the traffic volume 

(AADT) during the night and the night-to-day accident ratio also resulted in positive contribution 

to more frequent accidents. In a minor role speed resulted significant, however its coefficient was 

very close to zero. For road segments, the same trend previously depicted for ramps was observed, 
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while having more lanes or wider paved shoulders resulted in less frequent collisions. 

From a severity perspective (Table 5.6), ramps observed less severe collisions when equipped with 

wider shoulders and more severe collisions with more traffic flow (AADT) higher night-to-day 

accident ratio and higher values of speed and smaller radius of horizontal curvature. For road 

segments, less severe accidents are observed with more lanes and wider shoulders, and more severe 

collisions are observed with higher density of intersections (more frequently spaced), higher traffic 

volume (AADT), higher night-to-day accident ratios and higher speed. Again, the contribution of 

speed was negligible as its coefficient was close to zero.  

Table 5.5 Coefficients of Ramps and Segments – Frequency Analysis 

RAMPS Coef. P-Value SEGMENTS Coef. P-Value 

Lanes -0.05 0.90 Lanes -0.54 0.08 

Intersection 2.13 0.00 Intersection 3.46 0.00 

Shoulder -0.04 0.75 Shoulder -0.43 0.00 

ND_ratio 0.65 0.00 ND_ratio 0.60 0.00 

Speed 0.00 0.00 Speed 0.00 0.00 

Radius 0.00 0.85 Radius 0.00 0.09 

lnAADT 1.25 0.00 lnAADT 0.45 0.00 

Ramp_Length 0.00 0.84   
 

Table 5.6 Coefficients of Ramps and Segments – Severity Analysis 

RAMPS Coef. P-Value SEGMENTS Coef. P-Value 

Lanes 0.57 0.27 Lanes -0.84 0.06 

Intersection 0.13 0.87 Intersection 1.87 0.00 

Shoulder -0.66 0.00 Shoulder -0.56 0.00 

ND_ratio 0.23 0.03 ND_ratio 0.31 0.00 

Speed 0.00 0.00 Speed 0.00 0.00 

Radius 0.00 0.94 Radius 0.00 0.46 

lnAADT 0.33 0.21 lnAADT 0.92 0.00 

Ramp_Length 0.00 0.82    
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Statistically significant values of the previous analysis are used to construct a grid for the warrant 

of lighting. First, the coefficients’ values are expressed in absolute value, and a relative weight is 

estimated by dividing each coefficient by the summation of the coefficients (Table 5.7). The 

relative weights provide the basis for a calibrated value of the score. The classification points are 

preserved and their values are not modified in any sense. The new grid (G1) is constructed for 

highway segments and ramps. The new grid is a reduced version of the old one, containing only 

those significant factors previously selected. The only remaining challenge is the fact that the grid 

scores should add to one hundred.  

Table 5.7 Calibration of the Coefficients for Lighting Warrant: Obtaining Relative Weights 

Calibration of Lighting Warrant for G1 based on collision Frequency 

RAMPS Coef. ABS Weight Score SEGMENTS Coef. ABS Weight 
Proposed 

Score 

Lanes     Lanes -0.54 0.54 10% 1.96 

Intersection 2.13 2.13 53% 10.57 Intersection 3.46 3.46 63% 12.65 

Shoulder     Shoulder -0.43 0.43 8% 1.57 

ND_ratio 0.65 0.65 16% 3.23 ND_ratio 0.60 0.60 11% 2.18 

Speed 0.00 0.00 0% 0.01 Speed 0.00 0.00 0% 0.01 

Radius     Radius 0.00 0.00 0% 0.00 

lnAADT 1.25 1.25 31% 6.20 lnAADT 0.45 0.45 8% 1.63 

Ramp_Length          

SUMMATION  4.03 100%    5.47 100%  

          

Calibration of Lighting Warrant for G1 based on collision Severity 

RAMPS Coef. ABS Weight Score SEGMENTS Coef. ABS Weight 
Proposed 

Score 

Lanes    0.00 Lanes -0.84 0.84 19% 3.72 

Intersection    0.00 Intersection 1.87 1.87 42% 8.32 

Shoulder -0.66 0.66 53% 10.70 Shoulder -0.56 0.56 12% 2.49 

ND_ratio 0.23 0.23 19% 3.82 ND_ratio 0.31 0.31 7% 1.37 

Speed 0.00 0.00 0% 0.05 Speed 0.00 0.00 0% 0.01 

Radius    0.00 Radius     

lnAADT 0.33 0.33 27% 5.43 lnAADT 0.92 0.92 20% 4.09 

Ramp_Length          

SUMMATION  1.23 100%    4.49 100%  

 



 

105 

 

At this stage, the theoretical maximum value of points could reach up to 500%, because the grid 

could see a multiplication of its factors of up to five times. This issue is solved by dividing the new 

scores (Table 5.7) by 5 and multiplying by one hundred (or simply by multiplying by 20). The 

scores shown on Table 5.8 are based on this approach. An alternate solution would be to reduce 

the weight of the classification points into a zero-to-one scale and use the relative weights of  

Table 5.8 without re-scaling. The decision should be based on the consideration of what is more 

important, the levels of the factor or its value. The calibration opens a new possibility to the 

decision maker; it can be based on either frequency or severity, and either grid could justify the 

provision of lighting. As seen, the new grid is not only locally calibrated using the region’s crash 

history, but is also a reduction of the previous system because it enables agencies to utilize existing 

data to justify their lighting decisions.  

Table 5.8 Grid Assessment System for Road Segments – Frequency 

 

An updated version of the new grid (G1) for road segments and highway ramps is presented on 

Table 5.8. As seen, not all factors from the old grid are included. This is due to several reasons. 

Evaluation Grid (G1) 

Evaluated Element  

Length of Segment  Level (1, 2 or 3) PD 

Description of Analyzed Criteria 
Real 

Value 

Classification Points (PT) Old 

Score 

New 

Score 1 2 3 4 5 

Geometry 

1 Total number of lanes  ≤4 5 6 7 ≥8 0.15 1.96 

4 Shoulder width  >3.0 2.5 to 3.0 
1.8 to 

2.5 

1.2 to 

1.8 
<1.2 0.30 1.57 

8 Frequent interchange distance  >6.5 5.0 to 6.5 
3.5 to 

5.0 

1.5 to 

3.5 
<1.5 1.85 12.65 

Operational 

9 
Level of Service (Night-time) – ln 

AADT used as surrogate 
 A B C D ≥E 3.05 1.63 

Security (Accidents) 

12 Night-to-day accident ratio  <1.0 1.0 to 1.2 
1.2 to 

1.5 

1.5 to 

2.0 
>2.0 4.90 2.18 
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One is that not all factors were available (as was the case of % of development, distance to 

development, slope and vertical gradient). Another reason is that some of factors were correlated, 

while others were not significant. 

5.4.2 New Roads 

The use of night-to-day accident ratio is not possible in the case of the design of new roads. For 

this reason, it is believed that the analysis could be based on a local calibration without the use of 

the night-to-day ratio (ND_ratio). Four new analyses were prepared for road segments and ramps 

from a frequency (Table 5.9) and severity (Table 5.10) perspective, this time without utilizing the 

night-to-day accident ratio (ND_ratio). Some researchers could argue that the use of such a ratio 

is not recommended in a statistical analysis given that it is constructed from the response itself. 

However, it should be noted that the ratio has no dimensions, its units cancel, therefore it represents 

only an estimate of deficiency from a crash perspective. Those practitioners and researchers not 

sharing such perspective can simply ignore the use of such a ratio and proceed without it, in the 

way illustrated below for new roads. 

Table 5.9 Coefficients for the Calibration of Ramps and Segments – New Roads 

RAMPS Coef. P-Value SEGMENTS Coef. P-Value 

Lanes -0.24 0.56 Lanes -0.85 0.01 

Intersection 1.29 0.04 Intersection 2.98 0.00 

Shoulder -0.09 0.44 Shoulder -0.40 0.00 

ND_Ratio   ND_ratio   

Speed 0.00 0.00 Speed 0.00 0.10 

Radius 0.00 0.68 Radius 0.30 0.00 

lnAADT 0.69 0.00 lnAADT 2.11 0.08 

Ramp_Length 0.00 0.65    
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Table 5.10 Coefficients Calibration of Ramps & Segments – Severity Analysis – New Roads 

 

RAMPS Coef. P-Value SEGMENTS Coef. P-Value 

Lanes 0.40 0.43 Lanes -1.00 0.02 

Intersection -0.06 0.94 Intersection 1.67 0.01 

Shoulder -0.69 0.00 Shoulder -0.61 0.00 

ND_Ratio   ND_ratio   

Speed 0.00 0.00 Speed 0.00 0.00 

Radius 0.00 0.52 Radius 0.00 0.43 

lnAADT 0.20 0.44 lnAADT 0.79 0.00 

Ramp_Length 0.00 0.94    

 

The results (Table 5.9 and Table 5.10) show that warrants for lighting of new highways should be 

based on the number of lanes, the presence of an intersection, the width of the shoulder, and 

expected traffic volume. The design speed can be ignored. This recommendation applies for both 

collision frequency and severity.    

For ramps, the recommendation is a little more difficult given the limited amount of variables that 

resulted significant. Warrants for a ramp should be based on the proximity of an intersection and 

traffic volume from a frequency perspective, and on the width of the shoulder from a severity point 

of view. However, this poses an issue of over simplification. At this point the modeller is faced 

with the need to collect more data in order to include more variables into the analysis. Calibrated 

values of the scores for grid G1for new roads were obtained in the same way as explained in the 

previous section for existing roads. The only difference being the absence of night-to-day accident 

ratios. 

Grids similar to those produced on Appendix A could be prepared for the case of new roads and 

based on the proposed scores found on Table 5.11. 
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Table 5.11 Calibrating the Coefficients for the Warrant of Lighting: New Roads 

Calibration of Lighting Warrant for G1 based on collision Frequency-new roads 

RAMPS Coef. ABS Weight Score SEGMENTS Coef. ABS Weight 
Proposed 

Score 

Lanes    0.00 Lanes -0.85 0.85 13% 2.57 

Intersection 1.29 1.29 62% 12.44 Intersection 2.98 2.98 45% 8.97 

Shoulder -0.09 0.09 4% 0.83 Shoulder -0.40 0.4 6% 1.22 

ND_Ratio     ND_ratio     

Speed 0.00 0 0% 0.02 Speed 0.00 0 0% 0.00 

Radius    0.00 Radius 0.30 0.3 5% 0.90 

lnAADT 0.69 0.69 34% 6.71 lnAADT 2.11 2.11 32% 6.34 

Ramp_Length          

SUMMATION  2.07 100%    6.65 100%  

          

Calibration of Lighting Warrant for G1 based on collision Severity- new roads 

RAMPS Coef. ABS Weight Score SEGMENTS Coef. ABS Weight Score 

Lanes    0.00 Lanes -1.00 1.00 25% 4.92 

Intersection    0.00 Intersection 1.67 1.67 41% 8.19 

Shoulder -0.69 0.69 100% 4.98 Shoulder -0.61 0.61 15% 2.99 

ND_ratio    0.00 ND_ratio     

Speed 0.00 0.00 0% 0.02 Speed 0.00 0.00 0% 0.01 

Radius    0.00 Radius     

lnAADT    0.00 lnAADT 0.79 0.79 19% 3.89 

Ramp_Length    0.00      

SUMMATION  0.69 100%    4.07 100%  

 

5.5 Conclusions 

A new method to locally calibrate the warrant of lighting was presented in this chapter. The method 

is capable of using the crash-history to identify significant factors involved in the warrant of road 

lighting. Values of the scores corresponded to the relative importance of statistical factors in 

explaining nighttime crashes. The new grid system has two options and either frequency or severity 

could justify lighting. A case study based on hundreds of highway segments in the province of 

Quebec is used to illustrate the application of the method. It was revealed that for existing road 

segments, the number of lanes and width of the shoulder had a positive effect on collision 
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frequency and severity. Also it was found that the frequency of intersections, traffic volume and 

night-to-day ratio had a negative impact on accident frequency and severity. Hence, frequency and 

severity formed the basis of two possible mechanisms to justify lighting. A similar analysis was 

prepared for ramps, however, the significant factors did not match; the density of intersections, 

traffic volume, and night-to-day accident ratios explained more frequent collisions, while from a 

severity perspective wider shoulders explained less severe accidents and traffic volume and night-

to-day accident ratios explained more severe accidents. All these factors formed the basis of two 

similar mechanisms for ramps. 

The use of night-to-day accident ratios was dropped for new roads, new statistical analyses were 

prepared, and it was found that, for road segments, having more lanes and wider shoulders resulted 

in less frequent and severe collisions (just as explained before for existing roads). The presence of 

intersections and traffic volume (AADT) resulted in more frequent and severe accidents. All these 

factors formed the basis for the new grid and their relative value of contribution in explaining the 

response was normalized and rescaled to produce the score on a locally calibrated grid G1. A 

similar analysis was conducted for ramps, resulting in only the width of a shoulder as being 

significant for severity and traffic volume and density of intersections as being significant for 

frequency. 
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CHAPTER 6 - IDENTIFYING RECOMMENDED LIGHTING LEVELS 

6.1 Introduction 

This chapter presents a method to identify recommended lighting levels for all forms of lighting 

characteristics currently used by practitioners as recommended by the industry standard (IESNA 

2005). The identification of lighting levels is supported by statistical evidence of improvement of 

either accident frequency or severity as explained in each specific case. Hence, the main 

prerogative is that minimum required levels of luminance and illuminance, as well as maximum 

permissible variation of them, should be based on evidence that demonstrates reductions on the 

number of accidents (frequency) or their effects (severity). To understand the results found, it is 

important to have a clear understanding of the role of luminance and illuminance, as well as that 

of uniformity variation (from both of them). This chapter is divided in three main sections: the first 

one provides the reader with such understanding; the second one presents the methodology; the 

last one is divided into two case studies that illustrate the application of the method. 

6.1.1 The role of luminance in night time collisions 

In simple terms, luminance can be defined as the amount of light perceived by the human eye in 

a given context. Some studies have tested for the role of higher levels of average luminance with 

a driver’s ability to detect and recognize signals, objects, and pedestrians (Easa et al. 2010). Such 

studies have found that higher levels of luminance do result in improvements of the perceived 

environment allowing the driver to make fewer errors and therefore resulting in lower levels of 

nighttime collisions. Most of these studies have used simulators or have manually collected 

luminance data at a controlled environment. 

In general, researchers have looked into the role of luminance as a factor in nighttime collisions. 
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Worldwide practices in lighting design give preference to luminance as a design criterion for 

highways instead of illuminance. The Japanese guidelines (JSA 1988), the European code (CEN 

2004) and the Austroads manual (AS/NZS 2010) all recommend the use of luminance from the 

perspective of the driver. Whenever the design involves high speeds or deals with the driver’s 

ability to perceive objects and dangerous circumstances, luminance seems more adequate. 

6.1.2 The role of illuminance in night time collisions 

Illuminance (lux) is the amount of light arriving at the surface of the pavement, in contrast to 

luminance (candela/m2 or simply cd/m2), which is the amount of light being reflected towards the 

driver, as perceived by the driver. 

According to Rea et al. (2009) for roads that are mainly used by non-motorized road users, 

illuminance can be used as a lighting criterion. 

CIE (1992) found a large number of studies before 1992 revealing that night time accidents result 

in more severe collisions and that lighting did help reduce their frequency. Similar numbers have 

been found by TAC (2004) for intersections. 

Several studies have been conducted to examine the relationship between roadway lighting levels 

and safety. Zhou and Hsu (2009) investigated how maintained illuminance levels impact the safety 

of pedestrians, and they found a higher frequency of pedestrian crashes at sites with low level of 

lighting, and similar findings were obtained by Isebrands et al. (2010) for Minnesota. 

Neither transversal nor longitudinal uniformity has been identified to be significant (OPUS 2012) 

predictors of collision rates reductions. 
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6.2 Methodology  

This section describes the method used to estimate recommended levels of lighting according to 

the ability of lighting characteristics (and their specific levels) to act as countermeasures. That is, 

it is expected that values of lighting above certain minimum average levels (or contained within a 

maximum variation) will contribute to reduce nighttime collisions. As suggested, the method 

utilizes a statistical approach to test various levels of lighting parameters in order to identify the 

breakpoint at which such parameters become incapable of explaining a beneficial effect through a 

reduction in accident rates. 

Recommended values will correspond to specific types of roads according to their functional 

classification. A set of recommended values will be determined. Current values as recommended 

by IESNA (2005) will be used as an initial point. Figure 6.1 illustrates the method; the approach 

is repeated for average values of illuminance, luminance, and uniformities. The first step consists 

of selecting a trial level for each lighting explanatory variable, and a dummy variable is used to 

categorize segments above or below this level. The explanatory capability of the factor is learned 

from the statistical analysis. If decreasing the lighting variable helps to explain a lower number of 

collisions, then the procedure is repeated by setting up a new trial level. If the variable does not 

help explain a reduction in the frequency/severity of collisions, then the procedure is terminated 

and the previous significant lighting level that explains less collisions is used as recommended 

minimum value (Figure 6.1). The method must go in this fashion and not follow a continuous 

variable approach, because of the need to identify the minimum or maximum levels for each 

lighting parameters according to their capability to explain less lighting. 

The dummy variable divides the data into two groups by assigning a value of one for those 

observations with values above the proposed lighting level, and zero for those below it. The 



 

113 

 

statistical analyses will investigate if the first group explain more or less collisions (frequency or 

severity) as compared to the other group. 

 

Positive 
explanatory 

power

Coose level of lighting 
variables

YES

Categorize data according 
to level value
Above/Below

Estimated explanatory 
ability of Level Variable

Set previous level 
variable as 

recommended value

NO

Repeat procedure

 

Figure 6.1 Method for the Estimation of Recommended Level 

6.3 Case Study of the Arthabaska Region  

6.3.1 Establishment of possible levels  

The first step for the identification of recommended levels of lighting characteristics is to establish 

possible levels for the dummy variable. Levels of illuminance and luminance, along with their 

corresponding uniformity variation ratios, must be given possible values from which the analysis 
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will determine the minimum maintained or maximum permissible variation, depending on the 

nature of the indicator at hand. Values of luminance and illuminance must be specified in terms of 

minimum maintained levels. Uniformity recommended values were given in terms of maximum 

permissible variation and they came from either an illuminance or a luminance perspective. 

Illuminance-based uniformity is computed as average over minimum, while luminance-based 

uniformity could be computed as average over minimum (uniformity 1) or as maximum over 

minimum (uniformity 2). The values of all such lighting indicators could be determined from either 

expert criteria or by testing which consists of checking whether a given level of lighting does 

explain less severe or frequent collisions. In this case study, several analyses were conducted and 

used to identify the ideal levels of lighting as those capable of effectively explaining fewer   and 

less severe collisions. For each analysis, a dummy variable was codified on the database reflecting 

whether or not (1 or 0) the corresponding lighting level was satisfied at each road segment. 

Statistical analyses were run for each level of the corresponding lighting indicator. These values 

of possible lighting levels are shown in Table 6.1 below and were established from those given by 

IESNA (2005) which were called “low” for average illuminance and luminance and “high” for 

uniformity. The values were modified in the desired direction until the dummy variable took on a 

negative and significant value, which was interpreted as observing improvement from a safety 

perspective (frequency or severity). In the case study of Arthabaska, the dummy variable had 

specific values for each of the observed classes of roads (functional classification). 
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Table 6.1  Values for the Analysis (Arthabaska Region) 

Road Type 

Illuminance Luminance 

Average Uniformity Average Uniformity 1 Uniformity2 

 Lowa Medium High 
Very 

High* 
Higha Medium Low* Lowa Medium High* Higha Medium* Low Higha Medium* Low 

Highway 6 9 12 15 3 2 1 0.4 0.6 0.8 3.5 2 0.5 6 4 2 

Arterial 9 13 17 21 3 2 1 0.6 0.9 1.2 3.5 2 0.5 5 3 1 

Collector 6 10 14 18 4 3 2 0.4 0.6 0.8 4 2.5 1 8 6 4 

Local 4 8 12 16 4 3 2 0.3 0.5 0.7 6 4 2 10 8 s 

No. of Observations 160 160 110 77 874 854 829 245 67 59 899 897 718 96 90 0 

Percentage of Observ. 17% 17% 12% 8% 94% 92% 89% 26% 7% 6% 97% 96% 77% 10% 10% 0% 

Note: * denotes recommended levels.  a  denotes IESNA reference level 
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6.3.2 Identification of recommended values  

One analysis per possible level is prepared, while the remaining lighting variables are left outside 

the analysis and a dummy variable for the lighting indicator and its corresponding level is used to 

estimate if such form of lighting, explains less accidents. For this, the dummy variable (0 or 1) 

must obtain a negative coefficient and be significant. Another important detail is that the 

specification of the dummy variable follows a bigger than criteria for those indicators that require 

minimum maintained level, that is, for each value of the potential level, those observations with 

values above the given level are assigned a value of one (they fulfil or exceed the required level). 

For the uniformity ratios, one must use the smaller than criteria, as those values below the 

reference level represent better conditions in terms of lighting variations.   

Results from the analysis are shown on Table 6.2. As seen, levels of illuminance, luminance, and 

uniformity which corresponded to significant reductions in accident rates were identified and 

highlighted back in Table 6.2.  

The table shows that illuminance should be increased to a very high level in order to observe 

significant reductions on accident frequency. Variation of uniformity from illuminance should be 

reduced to low levels to show a reduction in accident rates of -0.574. Luminance should be 

increased to the range deemed high in order to observe a strong explanatory power on accident 

frequency (-1.078). Similarly, uniformity 2 values (from luminance) must be moved to those 

deemed medium in order to observe a reduction in accident frequency (-1.934) as seen in Table 6.2. 
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Table 6.2 Ability of Recommended Levels to Explain Less Frequent Accidents 

 Level of Lighting Indicator Coefficient P-Value 
Il

lu
m

in
an

ce
 

Low Insignificant 0.859 

Medium Insignificant 0.859 

High Insignificant 0.375 

Very High* -0.588 0.037 

U
n

if
o

rm
it

y
 

il
lu

m
in

an
ce

 High Insignificant 0.13 

Medium* -0.456 0.089 

Low -0.574 0.016 

L
u

m
in

an
ce

 Low Insignificant 0.822 

Medium Insignificant 0.303 

High* -1.078 0.022 

U
n

if
o

rm
it

y
 1

 f
ro

m
 

L
u

m
in

an
ce

 High Insignificant 0.343 

Medium* -4.258 0.076 

Low Insignificant 0.8 

U
n

if
o

rm
it

y
 2

 f
ro

m
 

L
u

m
in

an
ce

 

 

High -1.859 0.001 

Medium* -1.934 0.001 

Low Insignificant Insignificant 

Note: * denotes recommended levels 
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6.4 Case Study of the Province of Quebec   

6.4.1 Establishment of possible levels  

As explained before in the case of Arthabaska, the first step consists of establishing possible levels 

of minimum maintained illuminance and luminance and of maximum permissible uniformity 

variation, depending on the nature of the indicator at hand. For this case study, the departure values 

were obtained from IESNA (2005) and modified accordingly until the desired effect was observed, 

that is, a negative and significant value of the coefficient for the observed dummy variable. This 

was interpreted as the ability of the lighting indicator to explain improvements from a road safety 

historical perspective (less frequent or severe).  

A summary of each statistical analysis, containing observed effects and significance, as well as, 

observed coefficients for other variables are presented in the following section.  

6.4.2 Identification of recommended values  

The initial values of possible levels of lighting indicators are set following those provided by 

IESNA (2005) in the RP-80 report. For instance, lower levels of luminance and illuminance are 

preferable from energy-saving and cost perspectives. However, from a safety perspective, there is 

a minimum level that effectively reports less frequent and/or severe collisions. Hence, the analysis 

followed a trade-off between cost and safety.  

Table 6.3 presents the results of the analyses for luminance. The dummy variable represented 

whether or not (1 or 0) each road segment satisfied at least the required level of luminance. A 

positive value of the dummy represented having more frequent and severe collisions at those 

segments where the dummy took a value of 1. A negative value signified having less frequent and 

severe collisions at those segments above the required level of luminance. 
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As seen in Table 6.3, a level of luminance of 0.6cd/m2 did not result in reductions in a collision’s 

severity or frequency. A value of 1.5 (and above) resulted in statistically significant reductions of 

severity and frequency of nighttime motorized collisions, hence such a value (1.5 cd/m2) clearly 

becomes the recommended one for the province of Quebec. 

Table 6.3 Identification of Recommended Levels for Luminance 

Luminance-Levels Analysis of Severity 

 Level of Lighting Indicator on Dummy Variable 

 0.6 cd/m2 1.5 cd/m2 * 1.7 cd/m2 1.9 cd/m2 

Variable Coeff P-Value Coeff P-Value Coeff 
P-

Value 
Coeff P-Value 

ND_Ratio _One 0.29 0.00 0.25 0.00 0.27 0.00 0.27 0.00 

Number_Lanes -0.52 0.11 -0.26 0.43 -0.32 0.34 -0.36 0.27 

Intersections 1.12 0.03 1.74 0.00 1.63 0.00 1.57 0.00 

Shoulder_Width -0.55 0.00 -0.61 0.00 -0.59 0.00 -0.59 0.00 

Lnaadt_Night 0.78 0.00 0.70 0.00 0.75 0.00 0.76 0.00 

Speed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radius 0.00 0.24 0.00 0.33 0.00 0.28 0.00 0.27 

DUMMY 0.40 0.05 -3.39 0.01 -4.74 0.18 -15.02 0.98 

Effect negative significant positive significant positive 
80% 

CI 
positive insignificant 

No.Obs.above 450 121 74 67 

Luminance-levels analysis of frequency 

 Level of Lighting Indicator on Dummy Variable 

 0.6 cd/m2 1.5 cd/m2 * 1.7 cd/m2 1.9 cd/m2 

Variable Coeff P-Value Coeff P-Value Coeff 
P-

Value 
Coeff P-Value 

ND_Ratio _One 0.67 0.00 0.48 0.00 0.49 0.00 0.48 0.00 

Number_Lanes -0.33 0.10 -0.09 0.63 -0.01 0.96 -0.18 0.35 

Intersections 1.65 0.00 2.69 0.00 2.90 0.00 2.57 0.00 

Shoulder_Width -0.21 0.00 -0.29 0.00 -0.28 0.00 -0.28 0.00 

Lnaadt_Night 0.50 0.00 0.48 0.00 0.52 0.00 0.49 0.00 

Speed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radius 0.00 0.00 0.00 0.05 0.00 0.04 0.00 0.02 

DUMMY 1.14 0.00 -2.08 0.00 -3.85 0.00 -699.79 Not converge 

Effect negative significant positive significant positive 
80% 

CI 
positive insignificant 

No.Obs.above 450 121 74 67 

Note: * denotes recommended values 
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A similar analysis resulted from illuminance (Table 6.4). However, it was impossible to observe 

the desired effect under any tested level. This confirms that illuminance is incapable of explaining 

safety improvements (frequency or severity) on segments.  

Table 6.4 Identifying Recommended Levels for Illuminance. 

Illuminance-Levels Analysis-Severity 

Dummy level 4 lux 6 lux 8 lux 15 lux 

 Coeff P-Value Coeff P-Value Coeff P-Value Coeff P-Value 

ND_Ratio _One 0.29 0.00 0.30 0.00 0.30 0.00 0.29 0.00 

Number_Lanes -0.49 0.13 -0.54 0.10 -0.52 0.12 -0.38 0.24 

Intersections 1.29 0.01 1.22 0.01 1.35 0.00 1.48 0.00 

Shoulder_Width -0.50 0.00 -0.45 0.00 -0.44 0.00 -0.55 0.00 

Lnaadt_Night 0.60 0.00 0.51 0.00 0.46 0.00 0.72 0.00 

Speed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radius 0.00 0.39 0.00 0.43 0.00 0.55 0.00 0.21 

Dummy 0.70 0.01 1.14 0.00 1.43 0.00 1.34 0.01 

Effect negative significant negative significant negative significant negative significant 

No.Obs.Above 164 113 80 19 

Illuminance-Levels Analysis-Frequency 

Dummy level 4 lux 6 lux 8 lux 15 lux 

 Coeff P-Value Coeff P-Value Coeff P-Value Coeff P-Value 

ND_Ratio _One 0.70 0.00 0.74 0.00 0.76 0.00 0.64 0.00 

Number_Lanes -0.40 0.10 -0.49 0.06 -0.44 0.08 0.14 0.50 

Intersections 2.36 0.00 2.43 0.00 2.69 0.00 2.59 0.00 

Shoulder_Width -0.11 0.13 -0.12 0.10 -0.13 0.08 -0.23 0.00 

Lnaadt_Night 0.28 0.00 0.29 0.00 0.28 0.00 0.46 0.00 

Speed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radius 0.00 0.06 0.00 0.08 0.00 0.17 0.00 0.00 

Dummy 1.91 0.00 2.22 0.00 2.50 0.00 2.77 0.00 

Effect negative significant negative significant negative Significant negative significant 

No.Obs.Above 164 113 80 19 

 

Table 6.5 contains the results for uniformity based on illuminance. The dummy variable for 

uniformity captures observations having the given level or better (lower) uniformity variation, 

hence it is only at a value of uniformity of 1.5 that the dummy variable explains less severe 

accidents. 
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Table 6.5 Identifying Recommended Levels for Illuminance Variation. 

Uniformity Illuminance Levels Analysis-Severity 

Dummy level 4 times 3 times 2 times 1.5 time * 

 Coeff P-Value Coeff P-Value Coeff P-Value Coeff P-Value 

ND_Ratio _One 0.29 0.00 0.29 0.00 0.28 0.00 0.26 0.00 

Number_Lanes -0.43 0.19 -0.42 0.20 -0.47 0.16 -0.45 0.16 

Intersections 1.55 0.00 1.54 0.00 1.48 0.00 1.02 0.04 

Shoulder_Width -0.60 0.00 -0.59 0.00 -0.58 0.00 -0.56 0.00 

Lnaadt_Night 0.83 0.00 0.83 0.00 0.81 0.00 0.76 0.00 

Speed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radius 0.00 0.28 0.00 0.27 0.00 0.26 0.00 0.32 

DUMMMY 0.14 0.54 0.08 0.72 -0.07 0.73 -0.60 0.00 

Effect negative insignificant negative Insignificant negative insignificant Positive significant 

No.Obs.Below 1133 1101 1040 632 

Uniformity_Illuminance Levels Analysis-Frequency 

Dummy level 4 times* 3 times* 2 times* 1.5 time* 

 Coeff P-Value Coeff P-Value Coeff P-Value Coeff P-Value 

ND_Ratio _One 0.55 0.00 0.55 0.00 0.56 0.00 0.64 0.00 

Number_Lanes -0.26 0.18 -0.31 0.11 -0.51 0.01 -0.20 0.32 

Intersections 2.37 0.00 2.36 0.00 2.33 0.00 1.57 0.00 

Shoulder_Width -0.24 0.00 -0.23 0.00 -0.24 0.00 -0.27 0.00 

Lnaadt_Night 0.58 0.00 0.57 0.00 0.53 0.00 0.50 0.00 

Speed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radius 0.00 0.01 0.00 0.02 0.00 0.01 0.00 0.07 

DUMMMY -0.46 0.00 -0.49 0.00 -0.78 0.00 -1.47 0.00 

Effect positive significant Positive Significant Positive Significant Positive significant 

No.Obs.Below 1133 1101 1040 632 

Note: * denotes recommended values 

It is important to note that from the perspective of uniformity variation, as measured by average 

over minimum illuminance, ratios of uniformity variation of 1.5 are required to explain less severe 

accidents. From a frequency perspective, any of the ratios explained a lower number of collisions, 

therefore from this angle any uniformity up to 4 could be recommended. However, the final 

selection of uniformity values should be based on the more critical of the two approaches 

(frequency and severity). Values for uniformity of luminance (maximum over minimum) are 

shown on Table 6.6. One can see that uniformity variation for maximum over minimum luminance 



 

122 

 

can vary anywhere from 1 to 8 without affecting the safety of drivers from frequency or severity 

of observed accidents. After this value, one finds a dummy variable explaining more severe and 

frequent accidents, possibly from glare from large contrast between the brightest and darkest spots 

for the driver’s. 

Table 6.6 Identification of Permissible Levels of Luminance Variation U2 

Uniformity Luminance (Max/Min) Levels Analysis-Severity 

Dummy level 1.1 times 6 times 8 times* 12 times 

 Coeff P-Value Coeff P-Value Coeff P-Value Coeff P-Value 

ND_Ratio _One 0.29 0.00 0.29 0.00 0.29 0.00 0.29 0.00 

Number_Lanes -0.52 0.11 -0.52 0.11 -0.52 0.11 -0.43 0.18 

Intersections 1.12 0.03 1.11 0.03 1.11 0.03 1.52 0.00 

Shoulder_Width -0.55 0.00 -0.55 0.00 -0.55 0.00 -0.59 0.00 

Lnaadt_Night 0.78 0.00 0.78 0.00 0.78 0.00 0.82 0.00 

Speed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radius 0.00 0.24 0.00 0.24 0.00 0.24 0.00 0.27 

DUMMMY -0.40 0.05 -0.41 0.04 -0.41 0.04 12.70 0.99 

Effect negative significant Negative significant negative significant positive insignificant 

No.Obs.Below 947 948 950 1394 

Uniformity Luminance (Max/Min) Levels Analysis-Frequency 

Dummy level 1.1 times 6 times 8 times* 12 times 

 Coeff P-Value Coeff P-Value Coeff P-Value Coeff P-Value 

ND_Ratio _One 0.67 0.00 0.67 0.00 0.67 0.00 0.53 0.00 

Number_Lanes -0.33 0.10 -0.33 0.10 -0.32 0.10 -0.25 0.20 

Intersections 1.65 0.00 1.65 0.00 1.64 0.00 2.50 0.00 

Shoulder_Width -0.21 0.00 -0.21 0.00 -0.21 0.00 -0.25 0.00 

Lnaadt_Night 0.50 0.00 0.50 0.00 0.50 0.00 0.57 0.00 

Speed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radius 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

DUMMMY -1.14 0.00 -1.14 0.00 -1.14 0.00 118.89 0.30 

Effect positive significant Positive significant positive Significant positive significant 

No.Obs.Below 947 948 950 1394 

Note: * denotes recommended values 

 

 

Values of luminance uniformity 1 (Table 6.7) corresponding to average over minimum luminance 

resulted as insignificant and no conclusion could be withdrawn from them. The problem came 
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from the data; 95% of the data ranged from 1 to 1.05 and 99% of the values of uniformity 1 had 

values that ranged between 1 and 1.2. 

Table 6.7 Identification of Recommended Levels for Luminance Variation U1 

Uniformity_Luminance (Avg/Min) Levels Analysis-Severity 

Dummy level 1.05 times 1.1 times 1.15 times 1.2 times 

 Coeff P-Value Coeff P-Value Coeff P-Value Coeff P-Value 

ND_Ratio _One 0.28 0.00 0.28 0.00 0.29 0.00 0.29 0.00 

Number_Lanes -0.36 0.27 -0.39 0.23 -0.40 0.22 -0.38 0.26 

Intersections 1.59 0.00 1.63 0.00 1.60 0.00 1.57 0.00 

Shoulder_Width -0.61 0.00 -0.60 0.00 -0.59 0.00 -0.59 0.00 

Lnaadt_Night 0.84 0.00 0.81 0.00 0.82 0.00 0.82 0.00 

Speed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radius 0.00 0.32 0.00 0.30 0.00 0.28 0.00 0.28 

DUMMMY 0.65 0.17 1.15 0.24 0.92 0.42 1.56 0.39 

Effect negative Insignif. negative Insignif. negative Insignif. negative Insignif. 

No.Obs.Below 1337 1379 1388 1390 

Uniformity_Luminance (Avg/Min) Levels Analysis-Frequency 

Dummy level 1.05 times 1.1 times 1.15 times 1.2 times 

 Coeff P-Value Coeff P-Value Coeff P-Value Coeff P-Value 

ND_Ratio _One 0.52 0.00 0.53 0.00 0.53 0.00 0.53 0.00 

Number_Lanes -0.24 0.22 -0.25 0.20 -0.26 0.20 -0.26 0.19 

Intersections 2.50 0.00 2.50 0.00 2.50 0.00 2.49 0.00 

Shoulder_Width -0.26 0.00 -0.25 0.00 -0.25 0.00 -0.25 0.00 

Lnaadt_Night 0.57 0.00 0.56 0.00 0.56 0.00 0.56 0.00 

Speed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Radius 0.00 0.03 0.00 0.02 0.00 0.02 0.00 0.02 

DUMMMY 0.21 0.52 0.23 0.68 0.22 0.79 0.15 0.87 

Effect negative Insignif. negative Insignif. negative Insignif. negative Insignif. 

No.Obs.Below 1337 1379 1388 1390 

 

6.5 Conclusions 

Lighting parameters were estimated for the recommended minimum levels of illuminance and 

luminance (IESNA 2005) and for the maximum variation of uniformity ratios. For the case study 

of the Arthabaska region, calibrated levels of illuminance suggested an increase in average values, 

as well as in average maintained luminance along with more strict (reduced) variation on 
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uniformity. All these to obtain truly significant reductions in accident rates. The specific values 

depended on the functional classification of the roads. 

Levels of luminance for highways in Quebec should increase to at least 1.5 cd/m2, instead of the 

currently used level of 0.6 cd/m2; both frequency and severity of road collisions diminish at those 

sites with values above 1.5 cd/m2. Variation of illuminance (average to minimum) should be based 

on a value of 1.5. From the perspective of uniformity of luminance, the design can tolerate up to  

8 times between the brightest and darkest spots of the driver’s visual range. Variations larger than 

8 times should be avoided as they will likely result in negative effects from a safety perspective 

and could represent the fact that the driver is now under the presence of some degree of glare. 

From the perspective of this analysis, levels of luminance-based uniformity, given by average to 

minimum (uniformity 1), cannot be used to conclude in regards to recommended levels. The fact 

that average and minimum luminance values were so close suggests that we are already in the 

presence of a very consistent lighting environment in the form of luminance.   
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CHAPTER 7 - CONCLUSIONS AND FUTURE RESEARCH 

7.1 Conclusions 

7.1.1 From the literature review 

A comprehensive literature review of the role of lighting on night time collisions found that 

illuminance should be used in the presence of pedestrians and low speed vehicles, and that 

luminance is preferred for highway segments. The literature identified that both frequency and 

severity should be used, as they serve different purposes.  

It was concluded based on the literature that there is a need to count with a calibration method for 

the warrant of lighting and that such a method should be based on crash history. It was also 

concluded that current lighting warrants must go beyond the current criteria and integrate levels of 

lighting into it to ensure the reduction in collision frequency and severity. 

7.1.2 From the pilot study  

Co-linearity analysis must precede any statistical analysis aimed to calibrate or identify 

recommended roadway lighting. Co-linear elements, even if present on the grid, must be dropped 

off the analysis and subsequently off the calibrated warrants (i.e. number of lanes and width of the 

road).  

Severity of collisions must be used in combination with frequency. It was also concluded that 

luminance is better for the statistical analysis of the role of lighting. Even though illuminance is 

incapable of explaining nighttime collisions, it was not concluded that its use should be dropped, 

but rather explored on each analysis as it may be useful for certain types of sites such as 

intersections or junctions. 
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7.1.3 From the calibration of the warrant system of lighting 

It was recommended the use of a new method to locally calibrate the warrant of lighting. The 

method is capable of using the crash-history to identify significant factors involved in the warrant 

of road lighting and properly justify the warrant from a scientific perspective. The new grid system 

provides the decision maker with two options to justify lighting: frequency or severity. 

A case study based on hundreds of  highway segments in the province of Quebec allowed the 

following conclusions: for existing road-segments, the number of lanes and width of the shoulder 

must be used in the grid in addition to the frequency of intersections, traffic volume and night-to-

day ratios. It was concluded that two possible mechanisms must be used for the grid, depending 

on the explanatory power of the aforementioned elements on frequency or severity.  

Similarly, for a grid to warrant lighting on ramps, one should consider the presence of an 

intersection, traffic volume, and night-to-day accident ratios from a frequency perspective, while 

from a severity perspective wider shoulders, traffic volume, and night-to-day accident ratios 

should be considered. 

The use of night-to-day accident ratios must be dropped for new roads. In this case, the grid system 

should consider the number of lanes, the width of the shoulder, the presence of intersections, and 

traffic volume (AADT).  

For ramps, the new grid for new highways must consider the width of the shoulder for severity 

and traffic volume and presence of intersections for frequency.  

7.1.4 From the identification of recommended lighting levels 

IESNA recommended values are minimums (as well established by this organization) and 

practitioners must follow the mechanism herein presented to find recommended levels for their 

designs.  
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For the case study of the Arthabaska region, calibrated levels of illuminance, as well as average 

maintained luminance, must be increased along with more strict (reduced) variations on uniformity 

in order to obtain truly significant reductions in accident rates.  

Levels of luminance for lighting on highways in Quebec must be increased to at least 1.5cd/m2 

instead of the currently used level of 0.6cd/m2; both frequency and severity of road collisions 

diminish at those sites at such values. Variation of illuminance (average to minimum) must be 

reduced to 1.5 times. If the decision of lighting is done, then luminance-based uniformity of 

average over minimum for Quebec highways must observed a very uniform consistent design. 

Non-illuminated roads are preferable to those with significant variations of the amount of light 

landing on the surface of the road (illuminance-based uniformity variation). From the perspective 

of uniformity of luminance, the design can tolerate up to 8 times for severity and frequency 

between the brightest and darkest spots. Variations larger than 8 times should be avoided, as they 

will likely result in negative effects of more severe or frequent collisions. It was concluded that 

this observation is likely linkable to the fact that one is now under the presence of some degree of 

disability glare. 

Luminance-based uniformity variation given by average to minimum (uniformity 1) cannot be 

used to conclude in regards to recommended levels.  

7.1.5  Novelty of this doctoral thesis  

This research proposes a method for the calibration of the warrant of roadway lighting. The method 

integrates AASHTO 2005 and IESNA 2005 methods. It provides an evidence-based mechanism 

to connect statistical analyses of night time collisions with lighting warrants and levels. A new 

method over the basis of such a mechanism is proposed and used to calibrate lighting warrants to 

local circumstances and to find effective levels of lighting that will reduce the number of roadway 
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collisions and their degree of severity. In this sense, the methods expand current industry standards 

and reformulate them from the perspective of frequency and severity criteria. These methods 

provide the decision maker with a justifiable way to support his/her recommendations and place 

him/her in a stronger position from a liability perspective, given that his/her decisions are 

supported over statistical analysis that link lighting decisions with expected reductions on night 

time collisions frequency and severity.  

The methods proposed herein can be used by any transportation agency in the world, not 

necessarily just those in North America, as they are generic and easy to follow. For researchers, 

the evidence-based methods create a new mechanism that could be used in similar problems and 

applications, such as the design of civil engineering facilities and infrastructure and to support 

decision making from a policy perspective. Also researchers will have access to a large database 

applicable to future analysis involving lighting and road safety. 

7.2 Future Research Work 

This research explores the identification of minimum recommended levels from an evidence-based 

approach. Future research could explore the optimization of such levels which itself could justify 

another PhD dissertation. 

Future research (possibly at a master’s thesis level) can contrast the selection of lighting from both 

the traditional system and the one herein proposed in order to investigate the practical implications 

on resources and the degree of agreement from a spatial perspective (geographical location of 

lighting).  

Other elements left for future research work are: 

1. Attempt to adapt the method herein presented to those circumstances when no crash data 

is available, perhaps through the use of indicators of risk or some other approach. 



 

129 

 

2. Adapt the method herein presented to those circumstances in which non-standard levels of 

illumination are currently being provided. 

3. Explore the use of levels of risk and latent class models in the methods herein proposed. 

4. Explore the role of light color as an additional variable to the method. 

5. Explore the use of glare and other visibility indicators in addition to the lighting 

measurements of luminance and illuminance conducted herein. 
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APPENDIX A 

 Grid Assessment System for Existing Road Segments - Frequency 

 

  

Evaluation Grid (G1) 

Evaluated Element  

Length of Segment  Level (1, 2 or 3)  

Description of Analyzed Criteria 
Real 

Value 

Classification Points (PT) Score 

(PD) 

Proposed  

Score 1 2 3 4 5 

Geometry 

1 Total number of lanes  ≤4 5 6 7 ≥8 0.15 1.96 

4 Shoulder width  >3.0 
2.5 to 

3.0 

1.8 

to 

2.5 

1.2 

to 

1.8 

<1.2 0.30 1.57 

8 Frequent interchange distance  >6.5 
5.0 to 

6.5 

3.5 

to 

5.0 

1.5 

to 

3.5 

<1.5 1.85 12.65 

Subtotal  

Operational 

9 
Level of Service (Night-time) 

ln (AADT) as surrogate 
 A B C D ≥E 3.05 1.63 

Subtotal  

Security (Accidents) 

12 Night-to-day accident ratio  <1.0 
1.0 to 

1.2 

1.2 

to 

1.5 

1.5 

to 

2.0 

>2.0 

(see 

Note 

1) 

4.90 2.18 

Subtotal  

 

Notes: 

1.Provision of lighting 

2. Current speed: 80kph (95% of night-time operational speed if available, 

otherwise use the posted speed) 

3. Development is defined based on the presence of commercial, industrial, 

or residential buildings. 

4. Use the most deficient geometrical characteristics for road segments. 

 

Grand Total 

 
 

Required Scoring to 

provide lighting 
60 
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Grid Assessment System for Existing Road Segments - Severity 

 

 

  

Evaluation Grid (G1) 

Evaluated Element  

Length of Segment  Level (1, 2 or 3)  

Description of Analyzed Criteria 
Real 

Value 

Classification Points (PT) Score 

(PD) 

Proposed  

Score 1 2 3 4 5 

Geometry 

1 Total number of lanes  ≥ 8 7 6 5 ≤4 0.15 3.72 

4 Shoulder width  >3.0 
2.5 to 

3.0 

1.8 

to 

2.5 

1.2 

to 

1.8 

<1.2 0.30 2.49 

8 Frequent interchange distance  >6.5 
5.0 to 

6.5 

3.5 

to 

5.0 

1.5 

to 

3.5 

<1.5 1.85 8.32 

Subtotal  

Operational 

9 
Level of Service (Night-time) 

ln (AADT) 
 A B C D ≥E 3.05 4.09 

Subtotal  

 Speed  0 0 to 24 
25 to 

50 

50 to 

75 
>75 1.85 0.01 

Security (Accidents) 

12 Night-to-day accident ratio  <1.0 
1.0 to 

1.2 

1.2 

to 

1.5 

1.5 

to 

2.0 

>2.0 

(see 

Note 

1) 

4.90 1.37 

Subtotal  

Notes: 

1.Provision of lighting 

2. Current speed: 80kph (95% of night-time operational speed if available, 

otherwise use the posted speed) 

3. Development is defined based on the presence of commercial, industrial, 

or residential buildings. 

4. Use the most deficient geometrical characteristics for road segments. 

Grand Total 

 
 

Required Scoring to 

provide lighting 
60 
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Grid Assessment System for Existing Ramps - Frequency 

 

  

Evaluation Grid (G1) 

Evaluated Element  

Length of Segment  Level (1, 2 or 3)  

Description of Analyzed Criteria 
Real 

Value 

Classification Points (PT) Score 

(PD) 

Proposed  

Score 1 2 3 4 5 

Geometry 

8 Frequent interchange distance  >6.5 
5.0 to 

6.5 

3.5 

to 

5.0 

1.5 

to 

3.5 

<1.5 1.85 10.57 

Subtotal  

Operational 

9 
Level of Service (Night-time) 

ln (AADT) as surrogate 
 A B C D ≥E 3.05 6.20 

Subtotal  

Environment 

10 Speed  0 0 to 24 
25 to 

50 

50 to 

75 
>75 1.85 0.01 

Subtotal  

Security (Accidents) 

12 Night-to-day accident ratio  <1.0 
1.0 to 

1.2 

1.2 

to 

1.5 

1.5 

to 

2.0 

>2.0 

(see 

Note 

1) 

4.90 3.23 

Subtotal  

Notes: 

1.Provision of lighting 

2. Current speed: 80kph (95% of night-time operational speed if available, 

otherwise use the posted speed) 

3. Development is defined based on the presence of commercial, industrial, 

or residential buildings. 

4. Use the most deficient geometrical characteristics for road segments. 

Grand Total 

 
 

Required Scoring to 

provide lighting 
60 
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Grid Assessment System for Existing Ramps - Severity 

 

 

 

 

Evaluation Grid (G1) 

Evaluated Element  

Length of Segment  Level (1, 2 or 3)  

Description of Analyzed Criteria 
Real 

Value 

Classification Points (PT) Score 

(PD) 

Proposed 

Score 1 2 3 4 5 

Geometry 

4 Shoulder width  >3.0 
2.5 to 

3.0 

1.8 

to 

2.5 

1.2 

to 

1.8 

<1.2 0.30 10.70 

Subtotal  

Operational 

9 
Level of Service (Night-time) 

Use AADT as surrogate 
 A B C D ≥E 3.05 5.43 

Subtotal  

Environment 

10 Speed  0 0 to 24 
25 to 

50 

50 to 

75 
>75 1.85 0.00 

Subtotal  

Security (Accidents) 

12 Night-to-day accident ratio  <1.0 
1.0 to 

1.2 

1.2 

to 

1.5 

1.5 

to 

2.0 

>2.0 

(see 

Note 

1) 

4.90 3.82 

Subtotal  

Notes: 

1.Provision of lighting 

2. Current speed: 80kph (95% of night-time operational speed if available, 

otherwise use the posted speed) 

3. Development is defined based on the presence of commercial, industrial, 

or residential buildings. 

4. Use the most deficient geometrical characteristics for road segments. 

Grand Total 

 
 

Required Scoring to 

provide lighting 
60 

  


