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ABSTRACT

A Diffusion Approximation of a Three Species Fitness-Dependent Population

Model

Liam Peuckert

We introduce a continuous time Markov chain to model the ecological competition in the

population of 3 species with fitness governed by a modified Moran process based on envi-

ronmental resources in a limited niche of constant total population N. We run simulations

to observe population behavior under different N and initial conditions. We then propose a

model approximation which for large N converges to an ODE over most of the population

space, with the population following a deterministic trajectory until it reaches an asymp-

totically stable line. We then prove that the approximation converges to a one dimensional

diffusion forced onto the stable line until the first extinction occurs. We use the drift and

diffusion coefficients of the diffusion to calculate the expected probability of first extinction

for specific species, as well as the expected time until first extinction. Finally, we compare

these with data obtained via simulations to show that the approximation is a good fit.
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Chapter 1

Introduction

Deterministic Approach

Many different approaches to modeling populations of interacting species or groups within

a species have been developped over time. These models borrow from different branches of

mathematics, although many of these approaches end up overlapping in some way. One

of the first was the Lotka-Volterra predator-prey model. It was first proposed by Lotka in

1925 by extending one of his previous models applied to chemical reactions [12]. Volterra,

who was analysing fluctuations in the fish populations in the Adriatic sea, independently

constructed the model in 1926, working on the assumption that fish and sharks were in a

predator-prey relationship [19].

Let x(t) be the number of individuals of the prey species, and y(t) the number of predator.

Then according to the Lotka-Volterra model, the change in populations over time follows

these two equations:

dx

dt
= x(λ− by)

dy

dt
= y(−µ+ cx)

(1.1)

In the absence of predators, the prey reproduce at a constant per-capita rate λ. Therefore

the prey never suffer from shortages of any resources, such as food. Predators, on the other
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hand, die at a constant per-capita rate µ in the absence of the prey species, meaning that

they are completely dependent on the prey species as a food source. When both species

are present, the predators eat the prey, which adds to the growth rate of the predator and

reduces that of the prey [2].

The Lotka-Volterra model has two stable points (points where the population does not

change over time). One is when x = 0 and y = 0; in other words when both species are

extinct, their populations remain at zero since there is no way for them to recover. The

other exists at x = µ/c and y = λ/b, so both populations are at perfect equilibrium at this

point. At any other population state, the population will exhibit periodic behavior around

the non-zero stable point, meaning the populations will over time follow the same trajectory

endlessly. Plotting the populations on the x-y plane, the trajectory will form a closed loop

around the non-zero stable point.

The Lotka-Volterra predator-prey model makes many assumptions in addition to ones al-

ready mentioned, such as having both species’ growth rates proportional to their populations

and ignoring any environmental or genetic changes. Numerous other models of differential

equations have been proposed to better fit different assumptions, to accommodate differ-

ent numbers and types of species interactions, or to better mimic the population dynamics

observed in certain species. For example, if a pair of predator-prey species do not display

periodic behavior, such as population trajectories heading towards certain stable points or

towards extinction, then the Lotka-Volterra model would be a bad fit.

However, deterministic differential equations by their nature cannot take into account

noise or randomness at all, and running a model with a given set of parameters and initial

values will always produce the same results. So for some purposes, such as examining

probabilities of extinction, stochastic models are more appropriate.

Stochastic Approach

For stochastic population models, both discrete and continuous time Markov chains can

be used. One commonly used model of Markov chains are birth-death processes, where

2



the only transitions are single births (population increases by 1), single deaths (population

decreases by 1) or the population remains the same [1]. So in the continuous case of a

general, single-type birth and death process, the infinitesimal transition probabilities satisfy

pi+j,i(∆t) = P (∆X(t) = j | X(t) = i)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λi∆t+ o(t), j = 1

µi∆t+ o(t), j = −1

1− (λi + µi)∆t+ o(t), j = 0

o(t), j ̸= −1, 0, 1

(1.2)

for ∆t sufficiently small. Note that λi and µi are usually described as functions of the

population size X(t).

We can also have multi-type birth and death process, where X(t) is now a vector of pop-

ulation sizes. Then the number of different jumps possible from any point in the population

can be much greater, since there are many possible combinations of births and deaths.

Let us consider a two species continuous-time Moran process with neutral drift as an

example. We will elaborate further on in the introduction about Moran processes; for now

we will think of this as a birth-death process where the sum of the population of both species

stays constant at N , and with rate 1 a simultaneous birth-death event occurs in which one

member of either species is born, and one member of either species dies. Both the newborn

and dying individuals are chosen in proportion to their respective populations. Label the

two species as (X(t), Y (t)). Since Y (t) = N − X(t), the behavior of the two species are

completely dependent on each other, and we can track the model by tracking only species
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X(t). In this example, the infinitesimal transition probabilities for species X(t) are

p0,0(∆t) = 1

pN,N(∆t) = 1

pi+j,i(∆t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
N

N−i
N

∆t+ o(t), j = 1

N−i
N

i
N
∆t+ o(t), j = −1

1− 2i(N−i)
N2 ∆t+ o(t), j = 0

o(t), j ̸= −1, 0, 1

(1.3)

for 0 < i < N and ∆t sufficiently small. The expected change in population caused by the

next simultaneous birth-death event given a certain state, E(∆X(t) | X(t) = i), is equal to

zero, as implied by the name ’neutral drift’. The second moment is E(∆X2(t) | X(t) = i) =

2i(N−1)
N2 .

For continuous time Markov chains, differential equations make a comeback as we can

express the rate of change of these transition probabilities with the forward and backward

Kolmogorov differential equations. Probabilistic models can also make use of stochastic

differential equations and diffusion processes, which are Markov processes with continuous

sample paths and additional properties regarding their infinitesimal means and variances

which we will elaborate upon later. Ito SDEs are often chosen for interacting populations,

and can be derived from discrete Markov chains [1].

For large populations, certain birth-death processes can be approximated by diffusion

processes. One way to do this is by manipulating the generator of the Markov process; since

generators of Markov processes uniquely define them, showing that one generator approx-

imates another is equivalent to showing that the two processes approximate each other in

distribution. If L is an operator on real-valued functions f of the state space and β(x, y)

denotes the jump rate of a process from state x to state y, then the generator of the Markov
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process is [16]

(Lf)(x) =
∑
y

β(x, y)(f(y)− f(x)) (1.4)

By taking limits of time or population size of these generators, in some cases genera-

tors of a diffusion process can be obtained. One-dimensional diffusions have the following

infinitesimal generator:

(Lf)(x) =
d

dt
Exf(Xt) |t=0=

1

2
a(x)

d2

dx2
f(x) + b(x)

d

dx
f(x) (1.5)

where b(x) and a(x) are known as the infinitesimal mean and infinitesimal variance respec-

tively [5]. For one-dimensional diffusions, formulas exist for finding such values as hitting

times and probabilities which might be difficult or impossible to otherwise calculate in the

original birth-death process. Some diffusions are degenerate, in which case their infinitesimal

variance goes to zero and it behaves like an ordinary differential equation.

Returning to our two species continuous-time Moran process with neutral drift example,

we can approximate it with a diffusion after it has been rescaled. The generator the rescaled

process N−1X(Nt) is

(Lf)(x) = N

(
i(N − i)

N2
(f(i+

1

N
)− f(i)) +

i(N − i)

N2
(f(i− 1

N
)− f(i))

)
(1.6)

By using a Taylor expansion and letting the population go to infinity, we get the following

approximation of the generator

(L̃f)(x) =
1

2N

2i(N − 1)

N2

d2

dx2
f(x) + 0

d

dx
f(x) (1.7)

in which case we see that the infinitesimal mean and variance are equal to E(∆X(t) | X(t) =

i) and 1
N
E(∆X2(t) | X(t) = i) respectively.

Game Theory Approach

Another approach to interacting populations is to apply game theory to evolution. In

5



game theory we have players playing a ”game” in which they each choose a strategy, and

then receive a payoff based off of the interactions of the various strategies chosen. When

applied to biology and evolution, each individual plant, animal or bacteria is a player, and

the ”strategy” they choose is based off of their species or phenotype. The ”game” can be a

competition for resources, or a mating strategy, or a reaction to a change in the environment,

for example. Finally the payoff is a surrogate for fitness [3]. The fit reproduce, and so

phenotypes spread or wither within a population. In the game theory approach the payoffs,

as well as the evolutionary game mechanisms for selecting births, deaths, invasions and

mutation can be either stochastic or deterministic. For example, a species’ mating strategy

could involve a large game of rock-paper-scissors, with those choosing ’rock’ having the best

chance of reproducing if most rivals play ’scissors’, and so on.

rock paper scissors

rock 0.5 0 1
paper 1 0.5 0
scissors 0 1 0.5

Table 1.1: Example of a fitness payoff matrix for a pairwise comparison rock-paper-scissors
model. Two individuals are chosen at random from the population, their fitnesses are com-
pared and one will be replaced by the child of the other. The numbers represent the fitness
of the row strategy when paired against the column strategy.

In such a model, depending on the payoff matrix and the evolutionary game dynamics, it

is possible for all three strategies to coexist in equilibrium, in which case the disappearance

of a phenotype would be highly unlikely. Alternately, a different set of parameters could lead

to highly unstable dynamics featuring regular cycles of invasion and extinction. This might

seem like a purely theoretical model, yet such a non-transitive dynamic has been found in

the mating strategies of the side-blotched lizard [15] [4].

One example of how selection dynamics would work in an evolutionary game with finite

population N is the Moran process, such as the Moran process with neutral drift example

introduced previously. It stems from a classical model of population genetics and has been
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recently applied to game theory. Individuals are replaced at a rate 1
N
. That is, an individual

x lives for an exponentially distributed amount of time with mean N , and the population as

a whole experiences one ”replacement” after another at a rate of 1. So lifespans and deaths

are random and independent of fitness.

To replace individual x, we choose an individual proportional to fitness from the pop-

ulation (including x itself) to be the parent of the new individual [5]. Since this is an

evolutionary game, fitness in this case is based on the payoff of a ”game” involving the dif-

ferent populations. If fitness is completely random, birth chances are equal for all individuals

and proportional to population for all types and we obtain neutral drift, as in our example.

Species Individual fitness Birth probability

X 1 X(t)/N
Y 1 Y (t)/N

Table 1.2: Fitness payoff and birth probability in a two species (X(t), Y (t)) Moran model
with neutral drift and total population size N . We see that the fitness of each individual
is constant in all cases, and so the probability of a species reproducing during the next
birth-death event is proportional to its population.

Let us apply the rock-paper-scissors dynamics to a Moran model as another brief example.

In a population dominated by paper individuals, each individal has an equal chance of being

replaced regardless of type, but the new individual will probably be rock. Note that the

total population remains constant at N at all times. The Moran process is a birth-death

process [18].

Model Dimensions

Both the Lotka-Volterra predator-prey model and the rock-paper-scissors Moran process

are 2-dimensional (in the Moran process case, since the sum of all populations remains fixed,

the population of the third species is completely dependent on the other two). The Lotka-

Volterra model features periodic orbits around a fixed point, a behavior which is not possible

in a 1-dimensional ordinary differential equations system. Systems with more dimensions

allow for more complex behavior when looking at population drift. Just as rock-paper-
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scissors offers the possibility of a attracting or repulsing fixed point, higher dimensions offer

the possiblitiy of multi-dimensional manifolds of fixed points exerting attraction or repulsion

in the space around them, or of being the centers of convoluted periodic orbits.

From a real-life perspective, additional dimensions permits the inclusions of more species

or additional groups with different characteristics, phenotypes or strategies. Complex ecosys-

tems can feature multiple species and long food chain. Starting off with a higher-dimensional

model allows us to capture this complexity. However, it is also useful to approximate a higher-

dimension model by a lower-dimension one. For example, if a 2-dimensional model forces

the population state onto a curve, it can be possible to approximate it by a one-dimensional

model. This can simplify calculations greatly while providing insight into the model behav-

ior, both of which occur when we approximated this paper’s model with a diffusion of a lower

dimension.

This Paper’s Model

In an attempt to find a good approximation to a model of three interacting groups, this

thesis touches upon most of the processes and approaches mentioned so far. The intial model

introduced in Chapter 3 is a continuous-time Moran process. While the focus of the fitness of

most Moran processes in population biology is on the interaction of different groups, such as

in the rock-paper-scissors example, in this case the fitness is based on an environment which

fluctuates between two distinct states. Two of the groups are specialists which have high

fitness in one environment and zero fitness in the other, while a third group is a generalist that

maintains a constant, lower fitness regardless of the environmental conditions. By adding

a simple environmental component to a Moran process, this model has the potential to be

a stepping stone towards models seeking to combine the interactive fitness of the Moran

process with outside factors that influence survival.

To make the model feel more concrete, the environmental states were termed plant sea-

son and meat season, and the three groups labeled as a carnivore, herbivore and omnivore

species. However, these terms were arbitrarily chosen to make the model intuitive, and can
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be substituted with whichever environments and groups the reader prefers.

Individual fitness Birth Probability
Species Meat season Plant season Meat season Plant season

Carnivore C(t) 1 0 2C(t)/(2C(t) +M(t)) 0
Herbivore H(t) 0 1 0 2H(t)/(2H(t) +M(t))
Omnivore M(t) 0.5 0.5 M(t)/(2C(t) +M(t)) M(t)/(2H(t) +M(t))

Table 1.3: Fitness payoff and birth probability for this paper’s Moran model. Fitness of each
species (Carnivore, Herbivore and Omnivore, represented by (C(t), H(t),M(t))) is season-
dependent (seasons being meat season and plant season). Total population remains constant
at C(t) +H(t) +M(t) = N .

A discrete-time birth death process is used as an analogue of the model for computer

simulations in Chapter 4 to gain a better understanding of the population dynamics. In

Chapter 5 we use an approximation on the generator to find that for large populations the

model can be approximated by a two-dimensional diffusion which is degenerate over most

of the population space. However, it is not degenerate in the case when both species of

specialists have equal populations, and the simulations from the previous Chapter spent

most of their time in or close to this state. The degenerate diffusion forces the process along

its ODE curves and onto this line in the population space. In Chapter 6, we use Ito’s formula

to show that the two-dimensional mostly degenerate diffusion converges to a one-dimensional

diffusion process along this line. This diffusion approximation is shown in Chapter 7 to be

a good fit for the simulation results.

This paper also serves as a a useful demonstration for other higher-dimensional diffu-

sion models which are degenerate, forced onto lines and could also be shown to converge

to one-dimensional diffusion processes. Such degenerate diffusions might arise from model

which, like ours, feature symmetrical equilibriums among some groups (in our case, the two

specialists).

9



Chapter 2

Background

Here are some definitions that will be used throughout the thesis.

2.1 Markov Chains

Most of the definitions in this chapter are based off of ones given in the book Probability and

Random Processes by Geoffrey Grimmett and David Stirzaker [8].

A Markov process is a special type of stochastic process which is memoryless: only the

current state of the process influences what the next state will be.

Let us first examine discrete-time processes. Let {X0, X1, ...} be a sequence of random

variables which take values in State Space S, which is a countable set. Each Xn is a discrete

random variable that takes one of N possible values, where N = |S|.

Definition 2.1.1. The process X is a Markov chain if it satisfies the Markov condition:

P (Xn = s | X0 = x0, X1 = x1, ..., Xn−1 = xn−1) = P (Xn = s | Xn−1 = xn−1) (2.1)

for all n ≥ 1 and all s, x1, ..., xn−1 ∈ S.
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Definition 2.1.2. The Markov chain X is Homogeneous if

P (Xn+1 = j | Xn = i) = P (X1 = j | X0 = i) (2.2)

for all n, i, j.

In this thesis all Markov processes, both discrete and continuous, are homogeneous.

In the case of homogeneous Markov chains, we can denote the transition probabilities

as

pij = P (Xn+1 = j | Xn = i) (2.3)

For a Markov process, an absorbing state is a state that, once entered, can never be left.

Definition 2.1.3. State i is an absorbing state if and only if

pii = 1, pij = 0 ∀i ̸= j (2.4)

Markov chains can also be continuous-time. Let X = {X(t) : t ≥ 0} be a family of

random variables taking values in a countable state space S and indexed by the half-line

[0,∞).

Definition 2.1.4. The process X is a continuous-time Markov chain if it satisfies the

Markov property:

P (X(tn) = j | X(t1) = i1, ..., X(tn−1) = in−1) = P (X(tn) = j | X(tn−1) = in−1) (2.5)

for all j, i1, ..., in−1 ∈ S and any sequence t1 < t2 < ... < tn of times.

Theorem 2.1.1. Let Tn be the time of the nth change in value of the continuous-time Markov

chain X. Then the holding time Tn+1 − Tn has the exponential distribution.

If we concentrate on the changes of state of a continuous-time Markov chain X(tn) at

the times of jumps, we can approach it as a discrete-time Markov chain.
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Theorem 2.1.2. Let Tn be the time of the nth change in value of the continuous-time

Markov chain X. The values Zn = X(Tn+) of X immediately after its jumps constitute a

discrete-time Markov chain Z with transition probabilities proportional to the various jump

rates.

Definition 2.1.5. If L is an operator on real-valued functions f of the state space and

β(x, y) denotes the jump rate of a Markov chain from state x to state y, then the generator

of the Markov chain is [16]

(Lf)(x) =
∑
y

β(x, y)(f(y)− f(x)) (2.6)

2.2 Diffusions

Most of this section is based off of books by Øksendal [13] as well as Revuz and Yor [14].

Definition 2.2.1. A diffusion is a stochastic process Xt(ω) = X(t, ω) : [0,∞) × Ω → Rn

satisfying a stochastic differential equation of the form

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ s; Xs = x (2.7)

where Bt is a m-dimensional Brownian motion and b : Rn → Rn, σ : Rn → Rn×m are

Lipschitz continuous.

Definition 2.2.2. Let {Xt} be a diffusion in Rn. The (infinitesimal) generator L of Xt is

defined by

Lf(x) = lim
t→0

Ex[f(Xt)]− f(x)

t
; x ∈ Rn (2.8)

Theorem 2.2.1. Let Xt be the diffusion dXt = b(Xt)dt+ σ(Xt)dBt.

If f ∈ C2
0(Rn) then the diffusion Xt has generator

Lf(x) =
1

2

n∑
i,j

ai,j(x)
∂2

∂xi∂xj
f +

n∑
i

bi(x)
∂

∂xi
f (2.9)
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where a = σ × σT .

Theorem 2.2.2. Assume b and σ are bounded and Lipschitz continuous, and that a is

uniformly positive definite. Let y(t) be a Markov process with values in Rn and with generator

L defined previously. Then first-order generators define deterministic processes. [16]

Theorem 2.2.3. If X is a diffusion with covariance a and drift b, then there exists a

predictable process σ such that a = σ × σT and a Brownian motion B on an enlargement of

the probability space such that [14]

Xt = X0 +

∫ t

0

σ(s)dBs +

∫ t

0

b(s)ds (2.10)

Theorem 2.2.4. Ito’s Formula: Let F ∈ C2(Rd,R) and X = (X1, ..., Xd) be a continuous

vector semimartingale; then F (X) is a continous semimartingale and

F (Xt) = F (X0) +
d∑

i=1

∫ t

0

∂iF (Xs)dX
i
s +

1

2

∑
1≤i,j≤d

∫ t

0

∂i∂jF (Xs)d⟨X i, Xj⟩s (2.11)

Theorem 2.2.5. Theorem: Maximal inequality (Brownian Motion). If
∫ t

0
E[Y 2

s ]ds < ∞,

then

P{max
0≤s≤t

|
∫ t

0

YsdBs| ≥ a} ≤
E[(

∫ t

0
YsdBs)

2]

a2
=

∫ t

0
E[Y 2

s ]ds

a2
(2.12)

2.3 ODEs and Dynamical systems

The following definitions are based on those from the book Ordinary Differential Equations

and Dynamical Systems by Gerard Teschl [17]. Definitions were modified to accomodate

manifolds.

Let y = (d(t),m(t)) represent values at time t of the ODE system. Denote the derivative
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of this function with respect to time by

g(y) = ẏ(t) (2.13)

Definition 2.3.1. A point y∗ with g(y∗) = 0 is then a fixed point.

Definition 2.3.2. A Lyapunov function V of a manifoldW of fixed points is a continuous

function over an open neighborhood U ofW which is zero for all fixed points y∗ ∈ W , positive

for y ̸= y∗ and satisfies

V (y(t0)) ≥ V (y(t1)), t0 < t1, for y(tj) ∈ U\W (2.14)

Definition 2.3.3. A manifold W of fixed points is called stable if for any given neighbor-

hood U ⊇ W there exists another neighborhood S, W ⊆ U ⊆ S such that any solution

starting in S remains in U for all t ≥ 0.

Definition 2.3.4. Similarly, a manifold W of fixed points of y(t) is called asymptotically

stable if it is stable and if there is a neighborhood U ⊇ W such that

lim
t→∞

|y(t)− y∗| = 0 ∀ y(t) ∈ U, y∗ ∈ W (2.15)

Theorem 2.3.1. Suppose W is a manifold of fixed points. If there is a Lyapunov function

V of manifold W , then W is an asymptotically stable manifold.

2.4 Matrices

Theorem 2.4.1. Let M be a 2 by 2 matrix with values

M =

⎛⎜⎝ a b

c d

⎞⎟⎠
14



Define δ as the determinant δ = ad− bc, q = ±
√
δ, r = ±

√
a+ d+ 2q. Then if r ̸= 0, a

square root of matrix M is

R =
1

r

⎛⎜⎝ a+ q b

c d+ q

⎞⎟⎠ (2.16)

2.5 Convergence of a Stochastic Differential Equation

Forced onto a Manifold

The following is a slightly modified version of theorem 6.3 from Katzenberger’s paper detail-

ing the behavior of a stochastic differential equation forced onto a manifold by large drift.

[9] It provides a more rigorous approach to the convergence of our 2-dimensional diffusion

to a 1-dimensional diffusion. However, since the following theorem is not straightforward, a

more accessible proof of convergence is used in this paper.

Let U ⊂ Rd be open and F : U → Rd be a C1 vector field. Assume Γ = {x|F (x) = 0} is

a C0 submanifold of U of dimension m.

For n ≥ 1, let (Ωn,Fn, {Fn
t }t≥0, P ) be a flitered probability space, let Zn be a an Re-

valued cadlag {Fn
t }-semimartingale with Zn(0) = 0 and let An be a real-valued cadlag

{Fn
t }-semimartingale satisfying

Xn(t) = Xn(0) +

∫ t

0

σn(Xn)dZn +

∫ t

0

F (Xn)dAn (2.17)

for all t ≤ λn(K) and all compact K ⊂ U , where

λn(K) = inf{t ≥ 0|Xn(t−) ̸∈ KorXn(t) ̸∈ K} (2.18)

Assume that Γ is C2 and, for every y ∈ Γ, the matrix ∂F (y) has d −m negative eigen-

values. Assume the martingale part of Zn is uniformly integrable, that the process An is
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asymptotically continuous, Φ is C2 (or F is LC2) and Xn ⇒ X(0) ∈ UΓ. Let

Yn(t) = Xn(t)− ψ(Xn(0), An(t)) + Φ(Xn(0)) (2.19)

and, for compact K ⊂ UΓ, let

µn(K) = inf{t ≥ 0|Yn(t−) ̸∈ KorYn(t) ̸∈ K} (2.20)

Then, for every compact K ⊂ UΓ, the sequence {Y µn(K)
n , Z

µn(K)
n , µn(K)} is relatively

compact in DRd×Re [0,∞) × [0,∞]. If (Y, Z, µ) is a limit point of this sequence, then (Y, Z)

is a continuous semimartingale, Y (t) ∈ Γ for every t a.s., µ ≥ inf{t ≥ 0|Y (t) ̸∈ K} a.s. and

Y (t) =Y (0) +

∫ t∧µ

0

∂Φ(Y )σ(Y )dZ

+
1

2

∑
ijkl

∫ t∧µ

0

∂ijΦ(Y )σij(Y )d[Zk, Z l]
(2.21)

The following remark from Katzenberger’s paper helps to explain the significance of the

previous theorem:

”Basically this theorem says that Xn follows the flow of F according to the clock An(t)

until Xn is close to Γ, then it stays close to Γ and moves according to the SDE given in

(previous eqn). Notice that ψ(Xn(0), An(t))−Φ(Xn(0)) is small for t bounded away from 0.

The theorem implies that Xn(t)− ψ(Xn(0), An(t)) is small for t close to 0.” [9]
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Chapter 3

Model

3.1 Introducing the Model

We define this model as Moran model represented by a continuous time, vector valued Markov

chain X(t) = (C(t), H(t),M(t)), t ≥ 0, on the state space {0, 1, ..., N}3. Each coordinate

of the vector represents the population of a species (carnivores, herbivores and omnvores,

respectively), and C(t) +H(t) +M(t) = N . In other words, the total population size of all

three species is constant at N .

The population undergoes a simultaneous birth and death at a constant rate β. Since

this rate is independent of time t, our Markov chain is time homogeneous, otherwise known

as stationary. Thus if we let Ti denote the amount of time between the ith birth-death and

the next one, Ti’s are exponentially distributed with mean 1
β
and are mutually independent.

For simplicity, we will set β = 1.

We can break down this jump rate based on which species give birth or die. Let µK(X)

be the death rate of species K at population state X(t). Similarly, let λK(X) be the birth

rate of species K at population state X(t). Note that

µC(X) + µH(X) + µM(X) = β = 1

λC(X) + λH(X) + λM(X) = β = 1

(3.1)
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since the sum of the different death rates at a given population state X(t) must equal the

total jump rate, and the same applies to the sum of the birth rates.

Since this is a Moran model, deaths are completely random. During a death event, each

individual is equally likely to die regardless of species, thus the death rate of the whole

species is proportionate to the number of individuals alive. To simplify notation, we will

denote C(t) ,H(t) and M(t) by C,H and M respectively.

For C ̸= N,H ̸= N , M ̸= N ,

µC(X) =
C

N

µH(X) =
H

N

µM(X) =
M

N

(3.2)

Birth rates in a Moran model, however, are fitness dependent: random, but proportional

to fitness.

For C ̸= N,H ̸= N , M ̸= N ,

λC(X) = q ∗ 2C

2C +M

λH(X) = (1− q) ∗ 2H

2H +M

λM(X) = q ∗ M

2C +M
+ (1− q) ∗ M

2H +M

(3.3)

The reasoning behind these rates is that fitness is determined by the ”food season”

(meat season and plant season) and the diet of the species. The type of season is randomly

determined at the time of the birth-death; it is a meat season with probability q and a plant

season with probability 1− q. For simplicity, we have set q = 1
2
for the rest of this paper. In

a meat season, herbivores are totally outcompeted and have no chance of birthing, whereas

carnivores are twice as likely as omnivores to birth (proportional to population). In a plant

season, carnivores can’t reproduce and herbivores are twice as likely as omnivores to birth.

An exception is made when only one species remains: if herbivores are the sole surviving
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species, they cannot be outcompeted and thus birth even in the unfavorable meat season.

Thus the total population remains stable no matter how many species coexist. There is no

mutation, so extinction is permanent.

Note that although the model has been termed with labels pertaining to food and diet,

it could conceivably work with other criteria such as weather conditions, and the 3 ”species”

could be simple phenotypes within a species, thus mutations between phenotypes could be

introduced.

3.2 Additional Notation: 2 Variable Representation

and Proportional Population

While a 3 variable notation has been used to define the mode and program the simulation,

it is possible to use only two variables to define the model because of the constraint C(t) +

H(t)+M(t) = N . For mathematical analysis it is preferable to use a 2 variable notation, not

least because this permits the representation the population space in 2 dimensions. Therefore

most of the rest of this article will use the 2-variable notation.

Denote the difference in population between carnivores and herbivores at time t byD(t) =

C(t)−H(t). Instead of X(t), the model can be represented by the 2-dimensional vector

Y (t) = (D(t),M(t)) (3.4)

It can be useful to use proportions of populations rather than absolute populations. To
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this end we will use lower-case letters to distinguish the two.

x(t) = X(t)/N = (c(t), h(t),m(t))

c(t) = C(t)/N

h(t) = H(t)/N

m(t) =M(t)/N

d(t) = c(t)− h(t) = D(t)/N

(3.5)

3.3 Infinitesimal Transition Probabilities

This section deals with non-absorbing states. For absorbing states, see the next section.

For the three variable notation, denote the infinitesimal transition probabilities by

pX+j,X(∆t) = P (∆X(t) = j | X(t) = X) (3.6)

For C ̸= N,H ̸= N , M ̸= N (i.e., for non-absorbing states)

pX+j,X(∆t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λC(X)µM (X)∆t+ o(t), j = (1, 0,−1)

λC(X)µH(X)∆t+ o(t), j = (1,−1, 0)

λH(X)µM (X)∆t+ o(t), j = (0, 1,−1)

λH(X)µC(X)∆t+ o(t), j = (−1, 1, 0)

λM (X)µH(X)∆t+ o(t), j = (0,−1, 1)

λM (X)µC(X)∆t+ o(t), j = (−1, 0, 1)

1− (1− λC(X)µC(X)− λH(X)µH(X)− λM (X)µM (X))∆t+ o(t), j = (0, 0, 0)

o(t) otherwise

(3.7)
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From these we can calculate the infinitesimal transition probabilities in the 2-variable

notation.

For D ̸= ±N,M ̸= N (i.e., for non-absorbing states)

pY+j,Y (∆t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(N+D−M)(N−D−M)
4N(N+D)

∆t+ o(t), j = (2, 0)

(N+D−M)(N−D−M)
4N(N−D)

∆t+ o(t), j = (−2, 0)

M(N−D−M)
2(N+D)(N−D)

∆t+ o(t), j = (1, 1)

M(N+D−M)
2(N+D)(N−D)

∆t+ o(t), j = (−1, 1)

M(N+D−M)
2N(N+D)

∆t+ o(t), j = (1,−1)

M(N−D−M)
2N(N−D)

∆t+ o(t), j = (−1,−1)

1− (1− (N+D−M)2+2M2

4N(N+D)
− (N−D−M)2+2M2

4N(N−D)
)∆t+ o(t), j = (0, 0)

o(t) otherwise

(3.8)

The previous transition probabilities show that Y (t), like X(t), is still a Markov chain,

since for filtration Ft and for every A ∈ S, P (Y (t) ∈ A | Fs) = P (Y (t) ∈ A | Y (s))

3.4 Absorbing States

Recall that for a Markov Process, an absorbing state is a state that, once entered, can never

be left. In this model, there are 3 absorbing states: {X(t) = (N, 0, 0), (0, N, 0) or (0, 0, N)},

corresponding to the extinction of 2 species. In 2-variable notation, these states are repre-

sented as {Y (t) = (−N, 0), (N, 0) or (0, N)}. Not only are these expected due to extictions,

they are also designed into the model with their own transition probabilities.
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For C = N,H = N , M = N

pX+j,X(∆t) =

⎧⎪⎪⎨⎪⎪⎩
1, j = (0, 0, 0)

0 otherwise

(3.9)

For D(t) = ±N and M(t) = N , and thus for d(t) = ±1 and m = 1, all moments and

variances are 0 since there is no longer any change in population.

3.5 Moments of simultaneous birth-death changes in

population

Here we examine the moments of the change in absolute population caused by the next

simultaneous birth-death event given a certain state. Recalling theorem 2.1.2, we can treat

the nth change of value as a discrete-time Markov chain with transition probabilities propor-

tional to the jump rates. Since in our case the sum of our jump rates (if we include as a jump

the event that a birth-death event occurs in which the same species type is born and dies,

leaving the populations unchanged) sum to β = 1, the transition probabilities of the discrete

Markov chains are equal to the jump rates and so we can use the jump rates as probabilities

to calculate the moments of the simultaneous birth-death changes in population.

Note that to represent the moments as functions of proportional populations, we factored

out the total population N from every variable. For all of the following moments, the N’s in

the numerator and denominator cancel out, so the moments are not affected by the size of

the total population, merely the proportions of each species.

For D(t) ̸= ±N,M(t) ̸= N (i.e., for non-absorbing states)

E(∆D(t) | Y (t)) =
−D(N2 −NM −D2)

N(N +D)(N −D)
=

−d(1−m− d2)

(1 + d)(1− d)
(3.10)

Note that E(∆D(t) | Y (t))=0 if and only if D(t) = 0. The other factor, (N2−NM−D2),
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equals zero when M(t) = N , which implies D(t) = 0, or when D(t) = ±N , which are two

absorbing states which are defined as having moments equal to zero.

E(∆M(t) | Y (t)) =
D2M

N(N +D)(N −D)
=

d2m

(1 + d)(1− d)
(3.11)

Note that E(∆M(t) | Y (t))=0 if and only if D(t) = 0 orM(t) = 0. Also, since N is positive,

M is non-negative and |D(t)| ≤ N , E(∆M(t)) ≥ 0 over the whole population space.

E(∆D2(t) | Y (t)) =
2N3 − 2N2M − 2ND2 −MD2

N(N +D)(N −D)
=

2− 2m− 2d2 −md2

(1 + d)(1− d)
(3.12)

E(∆M2(t) | Y (t)) =
M(2N2 − 2NM −D2)

N(N +D)(N −D)
=
m(2− 2m− d2)

(1 + d)(1− d)
(3.13)

E[∆D(t) ∗∆M(t) | Y (t)] =
−DM(N +M)

N(N +D)(N −D)
=

−dm(1 +m)

(1 + d)(1− d)
(3.14)

Cov(∆D(t),∆M(t) | Y (t)) =
−MD(N4 +N3M − 2N2D2 +D4)

N2(N +D)2(N −D)2
=

−dm(d4 − 2d2 +m+ 1)

(1 + d)2(1− d)2

(3.15)

Similarly, the variances of D(t) and M(t) are not functions of N . Since they are long

and awkward, they have not been included.

3.6 Moments of simultaneous birth-death changes in

proportional population

Here we examine the moments of the change in proportional population caused by the next

simultaneous birth-death event given a certain state, similar to the previous section.

23



Moments of proportional variables are equal to the moments of their corresponding pop-

ulation variables divided by the appropriate factor of N . This makes sense intuitively: one

step changes in absolute population are not a function of N , since the increment is always

of 1 individual. One step changes in proportion, however, depend on N : the larger the total

population, the smaller the increment in proportional population when a single individual is

born or dies.

For d(t) ̸= ±1,m ̸= 1 (i.e., for non-absorbing states)

E(∆d(t) | Y (t)) =
E(∆D(t) | Y (t))

N
=

1

N
∗ −d(1−m− d2)

(1 + d)(1− d)
(3.16)

E(∆d2(t) | Y (t)) =
E(∆D2(t) | Y (t))

N2
=

1

N2
∗ 2− 2m− 2d2 −md2

(1 + d)(1− d)
(3.17)

E(∆m(t) | Y (t)) =
E(∆M(t) | Y (t))

N
=

1

N
∗ d2m

(1 + d)(1− d)
(3.18)

E(∆m2(t) | Y (t)) =
E(∆M2(t) | Y (t))

N2
=

1

N2
∗ m(2− 2m− d2)

(1 + d)(1− d)
(3.19)

E[∆d(t) ∗∆m(t) | Y (t)] =
E[∆D(t) ∗∆M(t) | Y (t)]

N2
=

1

N2

−dm(1 +m)

(1 + d)(1− d)
(3.20)

Cov(∆d(t),∆m(t) | Y (t)) =
Cov(∆D(t),∆M(t) | Y (t))

N2
=

1

N2

−dm(d4 − 2d2 +m+ 1)

(1 + d)2(1− d)2

(3.21)
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3.7 Graphs

Graphs over the population space deal with proportional populations instead of absolute

populations, have d(t) on the x axis and m(t) on the y axis, and treat the population as

continuous (i.e. N → ∞). The population space is thus displayed as an isoceles triangle,

bounded by m(t) ⩾ 0, m(t) + d(t) ≤ 1, m(t)− d(t) ≤ 1, since total proportions must equal

1.

This first graph shows the expected change from a simultaneous birth-death in vector

form over the proportional population space. In other words, it shows the direction of the

”drift” in the model. d(t) = 0 is clearly an attracting line. d(t) always tends towards 0, and

m(t) is always increasing except at m(t) = 0.

Figure 3.1: Direction of drift vectors. Line d(t) = 0 is clearly attracting.

To better understand the second graph, the following density graph shows the magnitude

of the vector at each point, that is
√
E[d(t)]2 + E[m(t)]2. It shows that the drift decreases

as the population approaches the attracting line d(t) = 0, and that the drift is strongest

close to d(t) = ±1.

25



Figure 3.2:
√
E[d(t)]2 + E[m(t)]2, Magnitude of drift vectors
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Chapter 4

Simulation Results

4.1 Introducing the Discrete-Time Markov Chain Sim-

ulations

The purpose of simulations for this model are three-fold: to better understand population

behavior of the Markov process over time, to help choose an appropriate approximation, and

to judge the accuracy of that approximation.

In order to simplify computations, simulations were run for a discrete-time Markov chain

with the exact same birth-death probabilities as the continuous-time model. Recalling the-

orem 2.1.2, we know that the only difference is in the time of the occurences of the birth-

deaths: while in the original model birth-deaths occur in mutually independent exponential

time intervals with mean 1
β
, in the simulations birth-deaths occur at constant time-intervals

of length 1. We shall see that the 2 quantities we will use to compare the simulations and the

approximation of the original model are identical for the discrete-time and continous-time

models.
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4.2 Variables of Interest

For the continuous-time Markov chain, let TK = min{t ≥ 0 : K(t) = 0}, where K =

C,H or M . Define TK = ∞ if K never goes extinct. Thus TC , TH and TM represent the

time until extinction of specific species.

Let τ = TC ∧ TH ∧ TM , thus the time to first extinction.

Finally let h(K) = P (TK < TJ ∀J ̸= K) = P (τ = TK). This is the probability that the

first extinction is of species K.

For the discrete-time Markov chain, let T ∗
K and τ ∗ be analogous to their continuous-time

counterparts. Therefore

TK =

T ∗
K∑

i=1

Zi and τ =
τ∗∑
i=1

Zi (4.1)

where Zi ’s are i.i.d. exponential random variables with mean 1
β
.

Since h(K) relates to the birth-death occurences instead of time, it is identically dis-

tributed for both discrete- and continous-time Markov chains and as such will not be subject

to a different notation.

The 2 quantities we will be using to evaluate the approximation are h(M) and E[τ ]. Note

that

E[τ ] = E[
τ∗∑
i=1

Zi] = E[E[
τ∗∑
i=1

Zi | τ ∗]] = β ∗ E[τ ∗] (4.2)

so for β = 1 E[τ ] should be equal to its discrete-time counterpart E[τ ∗], allowing a proper

comparison between simulations and the approximation.

4.3 Notation for Observed Data

Since this chapter will be dealing with the data observed from the simulations, we will add

new notations to distinguish these from the random variables.

Tilde will be used to denote a single outcome of observed data (ex: τ̃ ∗).
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Bar will be used to denote the average of the observed data points

(ex: τ ∗ =
N∑
i=1

τ̃ ∗i /n).

4.4 Effect of the Size of N

Simulations were run until time τ ∗ with N=100 (1000 runs), N=1000 (1000 runs) and N=10

000 (100 runs), with the inital point x(t) = (1
3
, 1
3
, 1
3
). A population of size 10 000 is the upper

limit of what a personal computer can handle in a reasonable time frame.

Probability that first extinction is of species K: h(K)

First extinction probabilities h(K) remained similar across all 3 total population sizes N .

h(M) > h(C) and > h(H), so M is more likely to go extinct first for all N when starting

from x(t) = (1
3
, 1
3
, 1
3
). We should note, however, that this does not necessarily mean that M

is the least likely sole survivor. Recall that the model stays near D = 0, so when the first

species to go extinct is C we can expect M ≈ N and H ≈ 0. Similarly when the first species

to go extinct is H almost the entire population consists of omnivores. So the probability

that M is the sole surviving species is ≈ 1 − h(M) = h(C) + h(H), while the probability

that C is the sole surviving species is ≈ h(M)/2 and similarly for H.

h(K) N=100 N=1000 N=10000

M 0.419 0.417 0.38
C 0.287 0.295 0.28
H 0.294 0.288 0.34

Table 4.1: Probabilities of first extinction for different N

Times of first extinction: τ̃ ∗

By scaling τ̃ ∗ by N−2, we arrive at very similar values for different total population sizes N .

τ ∗ ≈ 0.48 ∗N2, and the square factor explains why scaling up N affects the time it takes to
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run simulations so drastically. The scaling by a factor of N2 is the same as that of Brownian

motion, suggesting that a diffusion approximation might be appropriate. Note that only 100

simultions were performed for N = 10000 instead of the usual 1000 runs because of how slow

simulations are at high populations.

For all sizes of N , T ∗
M < τ ∗. In other words, if the omnivores go extinct first, they tend

to do so in less time than if either the carnivores or herbivores go extinct first. We also

see that T ∗
C/N

2 and T ∗
H/N

2 grow as N becomes larger, despite the inverse factor of N2.

Although this might partly be due to chance (since the number of runs for N = 10000 was

much smaller than for other N because of computational time), it also suggests that scaling

by N−2 is not exact.

N τ ∗/N2 T ∗
M/N

2 T ∗
C/N

2 T ∗
H/N

2

N=100 0.4574 0.4192 0.4749 0.4950
N=1000 0.4862 0.4208 0.5252 0.5409
N=10000 0.5121 0.3215 0.6400 0.6198

Table 4.2: Average scaled times of first extinction for different N
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Figure 4.1: Histograms of scaled times to first extinction for different N . These suggest that
time is scaled by a factor of N2.

31



4.5 Simulations starting on the D = 0 line

Figure 4.2: Probability that the first extinction is species M

Simulations were run starting on the D = 0 stable line with total population N = 1000

from initial proportional populations Y (0)/N = {(0, 1
10
), (0, 2

10
), ..., (0, 9

10
)}.

For the probability that M is the first extinction, we can see from figure 4.2 that as m(0)

increases, h(M) steadily decreases. This is to be expected, since a larger share of the total

population should render a population less susceptible to extinction.

For the time until first extinction as shown in figure 4.3, τ ∗ starts at 0 at m(0) = 0,

increases with m(0) to a humped peak around m(0) = 0.4, then slowly decreases back to 0

at m(0) = 1. It is to be expected that the further m(0) is from any absorbing boundary, the

larger τ ∗ will be.

It should be noted that regardless of x(0), τ̃ ∗ is very long tailed, a fact captured by the

histogram in figure 4.4 as well as by the fact that the median is smaller than the mean.
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Figure 4.3: Average time until first extinction
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Figure 4.4: Histogram of τ̃ ∗ , the time until the first extinction occurs
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Figure 4.5: Boxplot of M when line D = 0 is first reached. Note the upward drift from the
initial value M = 334.

4.6 Simulations with D(0) ̸= 0

Define T ∗
D=0 as the time until the discrete Markov Chain first reaches D = 0. Define τ ∗0 =

τ ∗ ∧ T ∗
D=0, that is as the time until first extinction or D = 0, whichever comes first.

All of the simulations in this section were run until τ̃ ∗0 . 1000 runs were performed for

each initial point Y (0).

Boundary at τ̃ ∗0 (334,334) (480,480) (490,490) (500,50) (500,20) (500,10) (970,10) (985,5)

P{M(τ̃ ∗0 ) = 0} 0 0 0 0 0.005 0.09 0 0.025
P{H(τ̃ ∗0 ) = 0} 0 0.005 0.05 0 0 0 0 0
P{D(τ̃ ∗0 ) = 0} 1 0.995 0.95 1 0.995 0.91 1 0.975

Table 4.3: Probabilities of first boundary hit for different initial populations

Even with a small H(0) or M(0), D = 0 is almost always hit before the first extinction.

In the simulations run with H(0) = 20 or M(0) = 20, P{D(τ̃ ∗0 ) = 0} > 0.99. Therefore

in the interior of the triangle away from D(t) = 0, the drift seems to override the noise.
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It would seem reasonable to assume that for large N, unless c(0), h(0) or m(0) ≈ 0, then

P{D(τ̃ ∗0 ) = 0} = 1. In other words, for large N any initial point not extremely close to the

absorbing boundaries will end up reaching the line D = 0.

At Y (0) = (334, 334) near the center of the half-triangle, P{D(τ̃ ∗0 ) = 0} = 1. The

box plot in figure 4.5 shows the value of M when D = 0 was first reached, that is M(τ̃ ∗0 ).

M(τ̃ ∗0 ) = 368.2, indicating the presence of a slight drift towards greater M during the time

that the population approached D = 0. And while half the M(τ̃ ∗0 ) values fall quite close to

the median, the tails are quite long.

Again in simulations with 1000 runs starting with Y (0) = (334, 334), T̃ ∗
D=0 was very small

compared to the τ̃ ∗ calculated previously at the same N, as can be seen in the histogram in

4.6. T ∗
D=0 = 4803 turns, is about 1

100
th of τ ∗. In other words, the model moves very quickly

(relative to the time of first extinction) to the stable line D = 0.
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Figure 4.6: Histogram of the time until line D = 0 is first reached. Note that the values are
very small compared to the time until first extinction as shown in figure 4.4
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4.7 Proportion of Time Spent close to D=0 before

First Extinction

With initial population X(0) = (333, 333, 334) and 100 runs until time of first extinction

τ̃ ∗, the simulation spends almost half its time within −20 ≤ D ≤ 20 , and 89% within

−50 ≤ D ≤ 50. In other words, once the population has reached parity between herbivores

and carnivores, it deviates very little from that parity until the first exctinction occurs.

Area % of time spent Cumulative %
|D| ≤ 10 26.35% 26.35%

10 < |D| ≤ 20 22.41% 48.76%
20 < |D| ≤ 30 18.27% 67.03%
30 < |D| ≤ 40 13.33% 80.36%
40 < |D| ≤ 50 8.86% 89.22%
50 < |D| ≤ 100 10.65% 99.86%

100 < |D| 0.14% 100.00%

Table 4.4: Proportion of time spent in different bands around D = 0
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Chapter 5

ODE Convergence

5.1 Generator of the rescaled Markov Process

Recalling definition 2.1.5, the generator of a Markov chain is

(Lf)(x) =
∑
y

β(x, y)(f(y)− f(x)) (5.1)

Take the Markov process N−1Y (Nt) where Y (t) = (D(t),M(t)); we rescaled the popu-

lation count from absolute numbers to proportions, and multiplied time by the same factor

of N . According to the previous definition, the generator for this process is

(Lf)(y) = N ∗
∑
i

β((d,m), (d+∆di,m+∆mi))(f(y + (∆di,∆mi))− f(y)) (5.2)

By approximating f(y + (∆di,∆mi)) by its Taylor expansion, we get

(L̃f)(y) = N ∗
∑
i

β((d,m), (d+∆di,m+∆mi)) ∗ (∂df(d,m)∆di + ∂mf(d,m)∆mi

+
1

2
∂ddf(d,m)(∆di)

2 +
1

2
∂mmf(d,m)(∆mi)

2 + ∂dmf(d,m)(∆di)(∆mi))

(5.3)

As in section 3.5, the jump rates equal their corresponding probabilities for calculating
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the simultaneous birth-death changes in population. Substituting in expectation we get

(L̃f)(y) = N
(
∂df(d,m)E[∆d | y] + ∂mf(d,m)E[∆m | y]

+
1

2
∂ddf(d,m)E[(∆d)2 | y] + 1

2
∂mmf(d,m)E[(∆m)2 | y] + ∂dmf(d,m)E[(∆d)(∆m) | y]

)
(5.4)

Recalling theorem 2.2.1, a 2-dimensional diffusion process has generator

(Lf)(x, y) = ∂xf(x, y)bx+∂yf(x, y)by+
1

2
∂xxf(x, y)axx+

1

2
∂yyf(x, y)ayy+∂xyf(x, y)axy (5.5)

where bi are values from the drift coefficient vector and aij are values from the diffusion

coefficient matrix, which is nonnegative definite.

Therefore the Markov process N−1Y (Nt) = (d(Nt),m(Nt) approximates to a diffusion

process with drift coefficients equal to its first moments and diffusion coefficients equal to

its second moments multiplied by a factor of N−1.

When we substitute in the appropriate values of d and m, we get

(L̃f)(d,m) =∂df(d,m)
−d(1−m− d2)

(1 + d)(1− d)
+ ∂mf(d,m)

d2m

(1 + d)(1− d)

+
1

2N
∂ddf(d,m)

2− 2m− 2d2 −md2

(1 + d)(1− d)
+

1

2N
∂mmf(d,m)

m(2− 2m− d2)

(1 + d)(1− d)

+
1

N
∂dmf(d,m)

−dm(1 +m)

(1 + d)(1− d)

(5.6)

By approximating with a Taylor expansion, the approach we used to obtain this generator

is similar to the Kramers-Moyal Expansion. [7]

5.2 Deterministic Process

We are interested in creating an approximation of this model for large N. Since the first order

of our generator is an order of N larger than the second order, our generator is approximately
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a first order generator for large N over most of the population space. [10] Theorem 2.2.2

formalizes this idea.

In our case, for d > o(N−1), limN→∞ L̃f(y) = ∂df(y)bd+∂mf(y)bm defines a deterministic

process.

However, when d is of the same order as N−1, i.e. for o(d) = o(N−1), we have

L̃f(y(t)) ≈ 1

N

(
− (1−m)∂df(y) + (1−m)∂ddf(y) +m(1−m)∂mmf(y)

)
+ o(N−2) (5.7)

which is clearly not a first-order generator.

5.3 ODE solution

The deterministic process obtained from the first order generator defines a system of ordi-

nary differential equations (ODEs). These ODEs, which can be thought of as the expected

simultaneous birth-death change in population, define a velocity vector (which includes both

direction and the magnitude) of any point in the interior of the triangle. Here is the ODE

system:

∂d

∂t
=

−d(1−m− d2)

(1 + d)(1− d)

∂m

∂t
=

d2m

(1 + d)(1− d)

(5.8)

We used ”∂” instead of ”d” to denote derivatives to avoid confusion with variable d.

Notice that neither d nor m explicitly depend on the independent variable t, making the

ODEs autonomous. This allows us to represent them as the derivative of d with respect to

m and vice-versa to find a set of solutions independent of time.
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∂d

∂m
=

−1 +m+ d2

dm
∂m

∂d
=

dm

−1 +m+ d2

(5.9)

d(m) = ±
√
1− 2m+ Cm2

m(d) =
−1 + d2

−1 +
√
1 + C(−1 + d2)

,− −1 + d2

1 +
√
1 + C(−1 + d2)

(5.10)

When we use the initial conditions d = d0 and m = m0 to derive constant C and then

apply the boundary conditions of the population space, we obtain the following curve as a

solution to the ODE. The following equation describes the same curve, defined as either a

function of d or m.

d(m) = ±

√
1− 2m+

(−1 + 2m0 + d20)m
2

m2
0

m(d) =
1− d2

1 +
√

1 +
(−1+2m0+d20)(−1+d2)

m2
0

(5.11)

5.4 Lyapunov Stable Line

Let y = (d(t),m(t)) represents the proportional population at time t of the ODE system.

Denote the derivative of this function with respect to time by

g(y) = ẏ(t) (5.12)

For our system, g(y) is given by (5.8), and g(y∗) = 0 for y = (0,m) ∀m. Therefore we

have a line of fixed points at d = 0. Other fixed points are the absorbing points (−1, 0) and

(1, 0), since they were defined as having 0 drift.

Proposition 5.4.1. Let W = {(0,m),m ∈ [0, 1]}, then W is a manifold of fixed points, and
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V (d,m) = d2 is a Lyapunov function of manifold W for system (5.8) over the whole popu-

lation space excluding absorbing points (−1, 0) and (1, 0). Further, W is an asymptotically

stable manifold.

Proof: Since W consists of all the points y∗ in the space such that d = 0, clearly

V (y∗) = 0. Further, since the population is always real-valued, V (d,m) > 0 for all other

values in the population space. Finally, notice that the ODE ∂d/∂t is negative for d > 0,

implying that a positive d decreases over time; similarly, ∂d/∂t is positive for d < 0, implying

implying that a negative d increases over time. So d2 will decrease over time over the

whole population space (excluding absorbing points (−1, 0) and (1, 0)) except at d = 0.

Therefore, according to definition 2.3.2, V (d,m) = d2 is Lyapunov, which implies that W is

an asymptotically stable manifold according to theorem 2.3.1.

5.5 Another rescaling

Our first rescaling of the Markov process N−1Y (Nt) = y(Nt) approximated to a diffusion

which degenerated to an ODE over most of the population space except at d = 0. When

close to d = 0, we obtain a diffusion process with coefficients of the order N−1. To better

study what happens around the asymptotically stable line, we need to further speed up time.

This approach is corroborated by the simulations, in which the time until the process hits

the stable line is very small compared to the time until extinction.

Therefore we take a second rescaling of the Markov process N−1Y (N2t). This gives us a
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new generator

(Lf)(y) =N ∗ (L̃f)(y)

=N ∗ ∂df(d,m)
−d(1−m− d2)

(1 + d)(1− d)
+N ∗ ∂mf(d,m)

d2m

(1 + d)(1− d)

+
1

2
∂ddf(d,m)

2− 2m− 2d2 −md2

(1 + d)(1− d)
+

1

2
∂mmf(d,m)

m(2− 2m− d2)

(1 + d)(1− d)

+ ∂dmf(d,m)
−dm(1 +m)

(1 + d)(1− d)

(5.13)

5.6 Expected distance from the ODE solution

We will now use a theorem to show that the maximum expected distance between the

diffusion and the ODE curve goes to 0 with N .

Theorem 5.6.1. Let Yt = (Dt,Mt) be the diffusion in (5.13) and Y 0
t the solution of (5.8),

both starting from (D0,M0). Let 0 < ϵ < 1. There is a constant γ dependent on ϵ such that

if N is large then for all (D0,M0) such that |D0| < 1− ϵ , 0 < M0 < |1−D0|, we have

E( sup
0≤t≤(γ logN)/N

|Yt − Y 0
t |2) ≤ N−1/2 (5.14)

Proof: We use the proof [6] of Durrett and Popovic, with only 2 slight modifications.

In the drift and diffusion coefficients, we replace d by (−1 + ϵ/2) ∨ d ∧ (1 − ϵ/2) to obtain

Lipschitz continuity of the coefficients. The second modification involves a different bound

for the maximal inequality: since aij ≤ 8/ϵ2 ∀ i, j we get

E( sup
0≤s≤t

|Ys − Y 0
s |2) ≤ 4E|Yt − Y 0

t |2 ≤
32t

ϵ2N
(5.15)

Neither of these differences materially change the rest of the calculations, so the rest of

the proof remains the same as the original.

Remark: Theorem 5.6.1 implies that the expected distance between the diffusion in

(5.13) and the ODE described in (5.8) goes to zero in expectation for large N until the
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diffusion reaches the stable line d = 0. This justifies our treatment of the model as an ODE

for large N over most of the population space.
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Chapter 6

Convergence to 1D Diffusion

6.1 Convergence Theorem

In this chapter we will show that the 2-dimensional diffusion in (5.13) stays close to the

asymptotically stable line d = 0, and that it converges to a 1-dimensional diffusion process

along that line. We will present the theorem at the end of this section and spend the rest

of the chapter proving it and calculating the coefficients of this new 1-dimensional diffusion.

The steps are similar to those taken in a paper by Durrett and Popovic to prove Theorem 2

[6].

We had previously represented the model as a system of ordinary differential equations

in (5.8) over most of the population space. Further we had shown that line d = 0 is

asymptotically stable over the whole population space excluding sole survivor points (−1, 0)

and (1, 0), which implies that all other points are on an ODE trajectory which leads to

d = 0. Let Φ(d,m) be the map that takes a point y = (d,m) to the destination of the ODE

trajectory on the asymptotically stable line d = 0. Let m∗(d,m) be the m-coordinate of

point (d,m) when it follows the ODE to the stable line d = 0. Then Φ(d,m) = (0,m∗).

Applying the projection to the semimartingale Yt gives Φ(Dt,Mt) = (0,M∗
t ).

Theorem 6.1.1. Consider the diffusion Yt = (Dt,Mt) in (5.13). Let τ = inf{t : Mt =
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0 or Dt = ±1} be the time of first extinction. Let 0 < δ < 1/2. Suppose |D0| ≤ N−δ. Then

if N is large, with high probability we have |Dt| ≤ 2N−δ for all t ≤ τ . Also, as N → ∞ the

process M∗
t converges in distribution to a diffusion process on the aymptotically stable line

d = 0.

6.2 Ito’s formula for our 2-dimensional diffusion

To apply Ito’s formula, we write the 2-dimensional diffusion in (5.13) as a stochastic dif-

ferential equation, following theorem 2.2.3. Yt = (Dt,Mt) is a vector semimartingale,

Bs = (Bd
s , B

m
s ) is a 2-dimensional Brownian motion whose components Bd

s and Bm
s are

independent and

Yt = Y0 +

∫ t

0

σ(s)dBs +

∫ t

0

b(s)ds⎛⎜⎝Dt

Mt

⎞⎟⎠ =

⎛⎜⎝D0

M0

⎞⎟⎠+

∫ t

0

⎛⎜⎝σdd σdm

σmd σmm

⎞⎟⎠× d

⎛⎜⎝Bd
s

Bm
s

⎞⎟⎠+

∫ t

0

⎛⎜⎝ bd

bm

⎞⎟⎠ ds

(6.1)

Here we will use capital Ds and Ms to denote that they are semimartingales of pro-

portional variables d and m, and not directly related to absolute population values D(t) =

d(t) ∗N or M(t) = m(t) ∗N .

From (5.13) we know that the drift and diffusion coefficients of the 2-dimensional diffusion
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are:

bd = N ∗ −d(1−m− d2)

(1 + d)(1− d)

bm = N ∗ d2m

(1 + d)(1− d)

add =
2− 2m− 2d2 −md2

(1 + d)(1− d)

amm =
m(2− 2m− d2)

(1 + d)(1− d)

adm = amd =
−dm(1 +m)

(1 + d)(1− d)

(6.2)

Ito’s formula uses σij, which can be obtained from the diffusion coefficient since a =

σ × σT , but since σij values are only used as intermediaries and the coefficients of the 1

dimensional diffusion can be represented using aij, they are not shown here.

From theorem 2.2.4, we get that Ito’s formula for a 2-dimensional semimartingale is

F (Yt) =F (Y0) +

∫ t

0

∂dF (Ys)dDs +

∫ t

0

∂mF (Ys)dMs

+
1

2

∫ t

0

∂2dF (Ys)d⟨D,D⟩s +
1

2

∫ t

0

∂2mF (Ys)d⟨M,M⟩s +
∫ t

0

∂d∂mF (Ys)d⟨D,M⟩s

(6.3)

Since ⟨Y i, Y j⟩s = ai,jds, we can substitute the quadratic variations for the corresponding

values in the diffusion coefficient. When we also substitute dDs and dMs from their values

in (6.1) we get

F (Yt) = F (Y0) +

∫ t

0

(
∂dF (Ys)bd + ∂mF (Ys)bm

)
ds

+

∫ t

0

(
∂dF (Ys)σdd + ∂mF (Ys)σmd

)
dBd

s +

∫ t

0

(
∂dF (Ys)σdm + ∂mF (Ys)σmm

)
dBm

s

+
1

2

∫ t

0

(
∂2dF (Ys)add + ∂2mF (Ys)amm + 2∂d∂mF (Ys)adm

)
ds

(6.4)
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6.3 Applying Ito’s formula to the projection map

To apply Ito’s formula to the projection map, we will need to obtain m∗ from m(0) in 5.11

and then calculate its derivatives.

m∗ =
1

1 +
√

1− (−1+2m+d2)
m2

=
m

m+
√

(1−m)2 − d2
(6.5)

∂m∗

∂d
=

dm√
(1−m)2 − d2

(√
(1−m)2 − d2 +m

)2

∂2m∗

∂d2
=
m

(
m2

(√
(m− 1)2 − d2 − 2

)
− 2m

√
(m− 1)2 − d2 + (2d2 + 1)

√
(m− 1)2 − d2 +m3 +m

)
((m− 1)2 − d2)3/2

(√
(m− 1)2 − d2 +m

)3

∂m∗

∂m
=

−d2 −m+ 1√
(m− 1)2 − d2

(√
(m− 1)2 − d2 +m

)2

∂2m∗

∂m2
=−

2d4 + d2
(
−3m

√
(m− 1)2 − d2 + 2

√
(m− 1)2 − d2 − 3m2 + 6m− 4

)
((m− 1)2 − d2)3/2

(√
(m− 1)2 − d2 +m

)3

−
2(m− 1)2

(√
(m− 1)2 − d2 +m− 1

)
((m− 1)2 − d2)3/2

(√
(m− 1)2 − d2 +m

)3

∂2m∗

∂m∂d
=−

dm
(
m

(
2
√

(m− 1)2 − d2 − 3
)
−
√

(m− 1)2 − d2 − d2 + 1
)

((m− 1)2 − d2)3/2
(√

(m− 1)2 − d2 +m
)3

−
d (d2 − 1)

(√
(m− 1)2 − d2 + 2m3

)
((m− 1)2 − d2)3/2

(√
(m− 1)2 − d2 +m

)3

(6.6)

Recall that the projection of the semimartingale Yt gives Φ(Dt,Mt) = (0,M∗
t ). If we take
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function m∗
s = m∗(Ds,Ms), then by applying Ito’s formula to the ODE we get the following

M∗
t =M∗

0 +

∫ t

0

(∂m∗
s

∂d
bd +

∂m∗
s

∂m
bm

)
ds

+

∫ t

0

(∂m∗
s

∂d
σdd +

∂m∗
s

∂m
σmd

)
dBd

s +

∫ t

0

(∂m∗
s

∂d
σdm +

∂m∗
s

∂m
σmm

)
dBm

s

+
1

2

∫ t

0

(∂2m∗
s

∂d2
add +

∂2m∗
s

∂m2
amm + 2

∂2m∗
s

∂d∂m
adm

)
ds

(6.7)

In the previous equation, the constant N is only present from the drift coefficients bd and

bm. The constant N disappears since

∂m∗
s

∂d
bd+

∂m∗
s

∂m
bm =

dm√
(1−m)2 − d2

(√
(1−m)2 − d2 +m

)2 ∗N ∗ −d(1−m− d2)

(1 + d)(1− d)

+
−d2 −m+ 1√

(m− 1)2 − d2
(√

(m− 1)2 − d2 +m
)2 ∗N ∗ d2m

(1 + d)(1− d)
= 0

(6.8)

which leaves us with the following equation, with no factors of N :

M∗
t =M∗

0 +

∫ t

0

(∂m∗
s

∂d
σdd +

∂m∗
s

∂m
σmd

)
dBd

s +

∫ t

0

(∂m∗
s

∂d
σdm +

∂m∗
s

∂m
σmm

)
dBm

s

+
1

2

∫ t

0

(∂2m∗
s

∂d2
add +

∂2m∗
s

∂m2
amm + 2

∂2m∗
s

∂d∂m
adm

)
ds

(6.9)

6.4 1-dimensional diffusion and coefficients

Here we will show that equation (6.9) represents a 1D diffusion. The sum of 2 integrals of

Brownian motion is also an integral of Brownian motion, therefore equation (6.9) is that of

a 1D semimartingale.

From equation (6.9), we can conclude that the drift coefficient is

b∗ =
1

2

(
∂2m∗

0

∂d2
add +

∂2m∗
0

∂m2
amm + 2

∂2m∗
0

∂d∂m
adm

)
(6.10)
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To calculate the diffusion coefficient, we can take the quadratic variation of the semi-

martingale. Since B1
s and B2

s are independent, this gives us

⟨M∗
t ⟩ =

∫ t

0

(
∂m∗

s

∂d
σdd +

∂m∗
s

∂m
σmd

)2

ds+

∫ t

0

(
∂m∗

s

∂d
σdm +

∂m∗
s

∂m
σmm

)2

ds

=

∫ t

0

(
∂m∗

s

∂d

)2

(σ2
dd + σ2

dm) +

(
∂m∗

s

∂m

)2

(σ2
md + σ2

mm)ds

+

∫ t

0

2
∂m∗

s

∂d

∂m∗
s

∂m
(σddσmd + σdmσmm)ds

(6.11)

Recall that a = σσT , which implies aij(x) =
∑

k σik(x)σjk(x). Substituting back aij

values gives

a∗ =

(
∂m∗

0

∂d

)2

add +

(
∂m∗

0

∂m

)2

amm + 2

(
∂m∗

0

∂d

)(
∂m∗

0

∂m

)
adm (6.12)

Plugging in the values from the derivatives of the ODE and the generating function, the

coefficients give:

b∗ =
−m

(
−2d4 − 2(m− 1)(−2 + 3

√
−d2 + (m− 1)2 + 3m) + d2(6− 4m+ 3

√
−d2 + (m− 1)2m+ 3m2)

)
2(−1 + d2)

√
−d2 + (m− 1)2(

√
−d2 + (m− 1)2 +m)3

(6.13)

a∗ = − m (−2 + d2 + 2m)(√
−d2 + (−1 +m)2 +m

)4 (6.14)

6.5 Convergence Near the Stable Line

The Lyapunov function V (d,m) = d2 introduced in section 5.4 can also be used to help

study the distance from the asyptotically stable line d = 0. Let δ > 0. For all (d,m) in the
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neighborhood |d| ≤ N−δ of the fixed points the change in direction of the strong drift is

∇V · F = 0 + 2d ∗ bd =
−2d2(1−m− d2)

(1 + d)(1− d)
=

−2(1−m− d2)

(1 + d)(1− d)
∗ V ≤ −βV (6.15)

where ∇V is the gradient of V , F is the strong drift, and

β = inf
d,m:|d|≤N−δ<0.5

{2(1−m− d2)

(1 + d)(1− d)

}
> 0 (6.16)

We wish to show that the Lyapunov function converges to 0 as the population tends to

infinity for all 0 < t < τN , where τN = inf{t ≥ 0 : |Dt| > N−δ}.

For that, we will apply Ito’s formula to eNβ(t∧τN )V (Dt∧τN ,Mt∧τN ). By taking steps similar

to those in section 6.3 but with the inclusion of the product rule, we get

eNβ(t∧τN )V (Dt∧τN ,Mt∧τN ) = V (D0,M0)

+

∫ t∧τN

0

eNβs(NβV + Vdbd + Vmbm +
1

2
Vddadd +

1

2
Vmmamm + Vdmadm)ds

+

∫ t∧τN

0

eNβs(Vdσdd + Vmσmd)dB
d
s +

∫ t∧τN

0

eNβs(Vdσdm + Vmσmm)dB
m
s

(6.17)

By substititing values, which is made easy by the fact that all m-derivatives of V equal

0, and dividing both sides by eNβt we get

V (Dt∧τN ,Mt∧τN ) = e−Nβ(t∧τN )V (D0,M0)

+ e−Nβ(t∧τN )

∫ t∧τN

0

N ∗ eNβs(βV +∇V · F )ds

+ e−Nβ(t∧τN )

∫ t∧τN

0

eNβs ∗ addds

+ e−Nβ(t∧τN )

∫ t∧τN

0

eNβs ∗ 2Ds ∗ σdddBd
s

+ e−Nβ(t∧τN )

∫ t∧τN

0

eNβs ∗ 2Ds ∗ σdmdBm
s

(6.18)

It is clear that the constant in (6.18) converges to 0. Now we will show the same for each
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integral of equation (6.18).

Convergence of Second Integral

Since Dt∧τN ≤ N−δ, we have

add =
2− 2Ms − 2D2

s −MsD
2
s

(1 +Ds)(1−Ds)
≤ 2

1−N−2δ
=

2N2δ

N2δ − 1
(6.19)

So the limit of the second integral of (6.18) is less than

lim
N→∞

2N2δ

N2δ − 1
∗ e−Nβt

∫ t∧τN

0

eNβsds = 0 (6.20)

Values of σij

For the third and fourth integral, we can apply theorem 2.4.1 on the square root of 2 × 2

matrices to the identity a = σ × σT to deal with the σij values. σij values are real and of

the same sign as their corresponding aij values.

Let q =
√
addamm − admamd > 0 and r =

√
add + amm + 2q and recall that both add, amm >

0. Then the following inequalities hold:

σdd =
add + q

r
<

√
add

σdm =
adm
r
, |σdm| <

adm√
add

(6.21)

Convergence of Third Integral

For the third integral of (6.18), we have a sequence of random times τN and T ≥ 0 such

that the following inequalities hold for all sequence values:

I3 = e−Nβ(t∧τN )

∫ t∧τN

0

eNβs ∗2Ds ∗σdddBd
s < sup

0≤t≤T∧τN
e−Nβt|

∫ t

0

eNβs ∗2Ds ∗σdddBd
s | (6.22)
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We can then use the inequalities found in equations 6.19 and 6.21 to assert

I3 < sup
0≤t≤T∧τN

e−Nβt ∗ 2N−δ ∗
√

2N2δ

N2δ − 1
|
∫ t

0

eNβsdBd
s | (6.23)

Next we will use the theorem of maximal inequality applied to Brownian motion to set

an upper limit to the probability that the integral surpasses a certain value.

Theorem 6.5.1. Theorem: Maximal inequality (Brownian Motion).

If
∫ t

0
E[Y 2

s ]ds <∞, then

P{max
0≤s≤t

|
∫ t

0

YsdBs| ≥ a} ≤
E[(

∫ t

0
YsdBs)

2]

a2
=

∫ t

0
E[Y 2

s ]ds

a2
(6.24)

Applying the theorem of maximal inequality to (6.23) we get

P
{

sup
0≤t≤T∧τN

√
8e−Nβt

√
N2δ − 1

|
∫ t

0

eNβsdBd
s | ≥ a

}
≤ 8e−2Nβt

a2(N2δ − 1)

∫ t

0

e2Nβsds

≤ 4

Nβa2(N2δ − 1)

(6.25)

If we set a2 = N−1 and take the limit as N goes to infinity, we get

lim
N→∞

P
{

sup
0≤t≤T∧τN

√
8e−Nβt

√
N2δ − 1

|
∫ t

0

eNβsdBd
s | ≥ N− 1

2

}
= 0 (6.26)

This shows us that the third integral of (6.18) converges in probability to 0 by using the

following definition.

Definition 6.5.1. Sequence Xn → X in probability iff ∀ϵ > 0

lim
n→∞

P{|Xn −X| > ϵ} = 0 (6.27)
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Convergence of Fourth Integral

The fourth integral of (6.18) is identical to the third, except with σdm instead of σdd. If

we demonstrate that |σdm| ≤ σdd ∀(d,m) in the population space, then the convergence in

probability of the third integral (done previously) implies the convergence in probability of

the fourth.

From equation 6.21, showing |adm| ≤ |add| would imply |σdm| ≤ |σdd|. Recall from chapter

3 that the population boundaries are 0 ≤ m ≤ 1, |d| ≤ 1 and m + |d| ≤ 1. Without loss of

generality, assume d ≥ 0 (the following can easily be shown to hold for d < 0). Then

add − |adm| =
2− 2m− d(2d+m(1 + d+m))

(1 + d)(1− d)
(6.28)

By substituting m+ d ≤ 1 we get

add − |adm| ≥
2− 2m− 2d

(1 + d)(1− d)
≥ 0 (6.29)

Therefore |σdm| ≤ σdd ∀d,m in the population space and the fourth integral converges.

Convergence of the Lyapunov Function

Finally, for the first integral, recall from equation (6.15) that ∇V ·F+βV ≤ 0, so the integral

is negative. Since the Lyapunov function V is non-negative and all the other components

of (6.18) converge in probability to 0, then so must the first integral. This implies that

V (Dt∧τN ,Mt∧τN )
p→ 0, which implies

Dt∧τN
p→ 0 (6.30)

We used Ito’s formula to obtain Mt, which only implies convergence in law. So we have

(Dt∧τN ,Mt∧τN )
d→ (0,Mt∧τN ) (6.31)
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6.6 Convergence to the 1D Diffusion

Finally we wish to show thatM∗
t converges as N goes to infinity to a 1-dimensional diffusion.

In section 6.4 we showed that for each N , the 1-dimensional drift and diffusion coefficients are

given by b∗(Dt,Mt) and a
∗(Dt,Mt) as defined in (6.13) and (6.14). Since in the neighborhood

of the asymptotically stable line the coefficients b∗ and a∗ are bounded, the sequence of

processes is tight, and the convergence in law (Dt∧τN ,Mt∧τN )
d→ (0,M∗

t∧τN ) previously shown

combined with Theorem 5.4 in Kurtz and Protter (1991) [11] implies that for all 0 ≤ t ≤ τN

we have convergence of M∗
t to the one-dimensional diffusion process.
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Chapter 7

Comparison of Simulations and the

Diffusion Approximation

The simulation results are plotted in blue, with the actual points shown as black dots.

Simulations are based on population N = 1000, 9 starting points, 1000 reps. Probabilities

and times of extinction for m = 0 and m = 1 were also included as simulation results. The

approximation is plotted in purple, based off 1000 points for which the integrations were

calculated, as well as appropriate values for m = 0.

7.1 Natural Scale

The definitions in this section are based on Chapter 7 of Durrett’s book [5].

Hitting probabilities and occupation times are related to the natural scale ϕ of a diffusion.

ϕ(x) =

∫ x

exp

(∫ y −2b∗(z)

a∗(z)
dz

)
dy (7.1)
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−2b∗(z)

a∗(z)
=− (

√
−d2 + (m− 1)2 +m)

(
− 2d4 − 2(m− 1)(−2 + 3

√
−d2 + (m− 1)2 + 3m)

+ d2(6− 4m+ 3
√
−d2 + (m− 1)2m+ 3m2)

)
/
(
(−1 + d2)

√
−d2 + (m− 1)2(−2 + d2 + 2m)

)
(7.2)

So the innermost integral over z to find the natural scale is in fact a 2D integral over the

area projected by the ODE onto the line d = 0 between m = y and m = 0.

This area A corresponds to the area defined by

−
√

1− 2m+
−1 + 2y

y2
∗m2 ≤ d ≤

√
1− 2m+

−1 + 2y

y2
∗m2

0 ≤ m ≤ y

(7.3)

Note that when y = 1 this corresponds to the whole area of the triangle.

The resulting integral ∫
A

−2b∗(d,m)

a∗(d,m)
dddm (7.4)

had to be integrated numerically. Therefore the outermost integral for calculating ϕ also

needed to be calculated numerically. A table with 1000 values of ϕ(x) was compiled, and

ϕ(x) was normalized to obtain the probability of m being the first extinction given starting

location (d = 0,m = y)

Px (Tm=0 < Tm=1) =
ϕ(1)− ϕ(x)

ϕ(1)− ϕ(0)
=
ϕ(1)− ϕ(x)

ϕ(1)
(7.5)

The natural scale is also used to derive Green’s Function, thus the expected time until

first extinction.

Define τx = T0 ∧ T1 starting at (d = 0,m = x). Then

E[τx] =

∫
G(x, y)dy (7.6)
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Where G(x, y) is the Green’s function for the interval [0, 1], thus

G(x, y) =

⎧⎪⎪⎨⎪⎪⎩
2 (ϕ(1)−ϕ(x))(ϕ(y)−ϕ(0))

ϕ(1)−ϕ(0)
1

ϕ′(x)a∗(x)
, y ≤ x

2 (ϕ(x)−ϕ(0))(ϕ(1)−ϕ(y))
ϕ(1)−ϕ(0)

1
ϕ′(x)a∗(x)

, x < y

(7.7)

The approximations used in the subsequent graphs are based off 1000 values of m(0) for

which the integrations were numerically calculated.
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7.2 Probability of first extinction being m over starting

value of m

In purple: h(M). In blue: h(M)

The approximation seems to be a good fit; although it seems to consistently underestimate

the probability of M going extinct first, the gap might close if N were larger.

Figure 7.1: Pobability that the first extinction is species M , approximation and simulation
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7.3 Expected Time until first extinction over starting

value of m

In purple: τ ∗N2. In blue: τ ∗

Since the simulations deal with populations and the model deals with proportions, the

approximation has been scaled by multiplying the results by N2 = 10002 in the following

graph, which is the appropriate scaling from discrete markov chains to diffusions. The

approximation has the same shape as the simulations, yet it has significantly higher average

times than the simulation. Part of the reason the simulations have a lower average time

is probably due to the long tails of the time to first extinction (see section 4.4), which a

limited amount of simulations might have a hard time capturing. Other possible sources

of difference include the size of N as well as compounded numerical errors to integrate the

Green function.

Figure 7.2: Average time until first extinction, approximation and simulation

61



7.4 Verdict

Based off of the probability of first extinction and the expected time to the first extinction,

the approximation seems to conform to the simulation results, and is therefore appropriate

to use.
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Chapter 8

Discussions

Our work analysed a continuous time Markov chain model to eventually approximate it by

a 1 dimensional diffusion. Chapter 3 introduced the continuous time, vector valued Markov

process. The probabilities and moments of the simultaneous birth deaths were calculated,

and with those both the direction and magnitude of the drift vectors were graphed to better

understand the behaviour of the model.

Chapter 4 examined the discrete time Markov chain with the same transition probabilities

and expected times to extinction as the continuous version. This discrete time Markov

chain was used in simulations with different total populations N and with different initial

populationsX(t). The simulations mainly measured which species went extinct first and after

how much time, as well as if the line D = 0 was hit before extinction and the proportion of

time spent close to that line.

In Chapter 5 we used the generator of the rescaled Markov process to show that the

process approximates a 2-dimensional diffusion for large N . This diffusion degenerated to a

deterministic process over most of the population space, with the drift becoming an ordinary

differential equation and the variance going to zero. We solved the ODE and showed via the

Lyapunov function d2 that d = 0 is an asymptotically stable line of fixed points. Finally we

proved that the expected maximum distance between the diffusion and the ODE trajectory
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goes to zero as N becomes large.

Chapter 6 centered around proving theorem 6.1.1, which states that the 2-dimensional

degenerate diffusion converges to a 1-dimensional diffusion on the asymptotically stable line.

To this end, Ito’s formula was applied to the ODE projection map to find the 1D diffusion

and drift coefficients. Then we used Ito’s formula again on the Lyapunov function d2 to show

convergence near the stable line. This allowed us to wrap up our proof of theorem 6.1.1 of

the convergence.

Finally Chapter 7 evaluates the 1-dimensional diffusion approximation by comparing

some quantities with simulation results. The natural scale was computed numerically from

the coefficients (6.13) and (6.14), which allowed us to calculate both the probability that the

first extinction is M , as well as the expected time until first extinction. These values, along

with their counterparts obtained via simulations in Chapter 3, were graphed for different

initial population values on the asymptotically stable line. This allowed for easy comparison

between the approximated and simulated values, and showed that at a total population of

N = 1000 the approximation already seemed to be a good fit on both measures.

It would have been possible to obtain the results of this thesis from a different approach.

From the 2-dimensional degenerate diffusion derived at the beginning of Chapter 5, we

showed convergence in distribution to the 1-dimensional diffusion along the asymptotically

stable line. However, since the 2D diffusion was obtained by approximation via the generator,

we only showed that the 1D diffusion approximates the continuous time Markov chain, which

of course is less rigorous than a convergence. It remains possible to show that the Markov

chain converges in distribution to a diffusion, and a paper by Katzenberger [9] provides a

guideline to doing so from a semi-martingale. This convergence would lead to the same result

for practical and calculation purposes as the approximation, since the coefficients would be

identical.

We used a continuous time Markov chain for our starting model, which lent itself more

easily to a diffusion approximation than a discrete time Markov chain. However, the discrete
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time version, in which birth-death events happen in regular, discrete intervals rather than

as a Poisson process was used for simulations, as has been explained in Chapter 4. The

continuous time model could have been programmed for the simulations, but would have

been less convenient without providing much in terms of further insights. The discrete time

Markov chain could be explored further, and it should be possible to approximate it with

a 1-dimensional diffusion with coefficients very similar or identical to those in (6.13) and

(6.14). The matrix of one-step transition probabilities of the discrete version is a square

matrix (N + 1)(N + 2)/2 to each side. It is mostly composed of zeros, with at most 7

non-zero values per row, however these non-zero probabilities are not simple. Even if it

were possible to calculate numerically the limiting probabilities for a given N , it would not

provide us with a general rule for large N as our diffusion approximation does.

Our model was presented as having three distinct species with different diets and two

seasons. This biological framework is not a restriction; the model can be made to fit many

different situations. Instead of three species, the model could instead deal with three distinct

phenotypes or genotypes within a single species. In this case, a mutation rate can be added,

since it would now be theoretically possible for individuals from one group to mutate to

another, and extinction might no longer be permanent. The diets of the population can be

replaced with other adaptive traits, as well as survival or mating strategies which depend on

the environment. Even the seasons can be generalized to different environmental states.

Though our analysis is confined to our original model, the continuous time Markov chain

introduced in Chapter 3, it can serve as a useful guide to better understand other proba-

bilistic population models which feature degenerate diffusions forcing the population onto

an asymptotically stable line. Diffusions of interest could be the original models; it is not

necessary that they be derived from a Markov chain. And the models need not de inspired

by the realm of biology, they might be purely theoretical or arise from the modeling needs

of another branch of science.

Another generalization would involve changing the probability of each season occurring.
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In our original model, any given birth-death period has an equal probability of occurring

during either of the 2 different seasons. However, we could change these probabilities to, say,

p for meat season and (1−p) for plant season. Preliminary calculations and simulations show

that this produces an asymptotically stable line in the population space along d = 2p−1. By

using the same approach as in Chapters 5 and 6, it should be possible to approximate this

more generalized continuous time Markov chain with a 1-dimensional diffusion. Furthermore,

we could subject the model to climate shifts by changing the value p slowly over time, either in

a deterministic or probabilistic fashion. If the changes in p are abrupt, the population would

suddenly find itself out of equilibrium, and would likely hew closely to an ODE trajectory like

in Chapter 5 until it reached the new equilibrium, where it could once again be modeled by

a different 1-dimensional diffusion. In a world of increasing climatic shifts and uncertainty,

models such as these might serve to better understand what new equilibriums might arise in

ecosystems subject to changing environmental pressures.
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