
DESIGNS WITH AN INTERSECTION PROPERTY INSPIRED

BY THE ERDÖS-KO-RADO PROBLEM.

Mathieu Loiselle

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

December 2015

c© Mathieu Loiselle, 2016

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Mathieu Loiselle

Entitled: Designs with an Intersection Property Inspired by the Erdös-Ko-

Rado Problem.

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect

to originality and quality.

Signed by the final examining commitee:

Weiyi Shang Chair

Hovhannes A. Harutyunyan Examiner

Brigitte Jaumard Examiner

Clement Lam Supervisor

Approved by:
Chair of Department or Graduate Program Director

Dean Faculty of Engineering and Computer Science

Date: December 21, 2015

Abstract

Designs with an Intersection Property Inspired by the Erdös-Ko-Rado Problem.

Mathieu Loiselle

Katona’s proof of the Erdős-Ko-Rado theorem (EKR) relies on the existence of a family of

v k-subsets of a set of size v with no subfamily of k + 1 sets that are pairwise 1-intersecting.

Herein, we consider a generalization of these families: collections of size λ
(
v
t

)
/
(
k
t

)
of k-subsets

of a set of size v with no subcollection of λ + 1 sets that are pairwise t-intersecting. Katona’s

original family corresponds to the case t = 1 and λ = k. Replacing Katona’s family with such a

collection in his proof constitutes a Katona-style proof of EKR for the parameters t, v, and k.

Any Steiner system is such a collection and any such collection is proven to be a t-design.

Moreover, the Erdős-Ko-Rado theorem itself can be seen as the statement that for any t and k,

and for a sufficiently large value of v, the set of all k-subsets of a set of size v is such a collection

with λ =
(
v−t
k−t
)
. Proofs and analogs of the Erdős-Ko-Rado theorem have been topics of interest

since its publication and the t-designs we identify have aspects of both. Each design proves a

particular instance of EKR and satisfies a condition analogous to the conclusion of EKR. In

honor of Katona’s proof, we have named these collections Katona sieves. The research questions

addressed by this thesis are for what values of λ, given t, v, and k, does such a collection exist

and which t-designs have this property.

We largely restricted our attention to 2-designs and developed programs for generating 2-

(v, k, λ) designs, testing for the additional property that no subfamily of λ + 1 subsets is 2-

intersecting, that is, testing the condition for being a Katona sieve. For any choice of v, k, and

λ, the number of blocks in the design, b, and the number of blocks containing a given element, r,

are uniquely determined. Of the 142 case listed in the CRC Handbook for 2-designs with b ≤ 64

and r ≤ 21, existence or non-existence of a Katona sieve is established through theory for 92

cases. Of these the enumeration problem was also settled for by theory for 71 cases and settled

by computation for 10 cases. Of the 50 cases for which the existence problem is not settled by

theory, we resolve 17 more through computation, fully enumerating 14 of these cases. This leaves

33 cases with b ≤ 64 and r ≤ 21 for which existence is not determined and an additional 14 only

partially enumerated.

iii

Acknowledgments

I would like to extend a sincere thank you to my professor Clement Lam for his patient assistance

throughout this process. He is also the person that turned my attention towards enumeration

of combinatorial objects. I also wish to thank Vašek Chvátal whose class made me consider the

problem in this work and who first pointed me to the relationship of this problem to t-designs.

Moreover, Lam and Chvátal’s insights were decisive in the final definition of the problem herein.

Finally, Mireille Sauvageau, your support has meant everything to me.

iv

Contents

List of Figures vii

List of Tables viii

0 Prologue 1

1 Introduction 2

1.1 Preliminaries . 2

1.2 Our Question . 4

1.3 Organization of the Thesis. 5

1.4 Contributions of the Thesis. 5

2 Definitions, Concepts, and Properties 7

2.1 Initial Definitions . 7

2.2 Incidence Matrix Representation . 12

2.3 Permutations Acting on Incidence Matrices . 13

2.4 Isomorph Rejection . 19

2.5 t-designs . 21

2.6 (λ, t)-Disjointness . 22

3 Motivation 26

3.1 Erdös-Ko-Rado Theorem . 26

3.2 Katona’s Circle Family . 28

3.3 Katona’s Circle Argument . 30

4 Computer Search 35

4.1 Condition Testing . 36

4.2 Programs . 38

4.2.1 Program 1 . 38

4.2.2 Program 2 . 42

v

4.2.3 Program 3 . 50

4.2.4 Program 4 . 53

4.2.5 Program 5 . 69

4.3 Performance . 71

5 Results 75

6 Conclusion 80

Bibliography 81

vi

List of Figures

1 The complete 2-(4,2,1) design . 3

2 A 2-(7,3,2) design . 3

3 A 2-(11,5,2) design . 4

4 A 2-(6,3,2) design . 18

5 Mσ (on the right), a column permutation of M 18

6 Katona’s Circle Family for v = 8 . 28

7 φ(A), the t-intersection graph of A . 37

8 Picture of φ(A) . 38

9 Completion of first two rows . 53

10 Two isomorphic completions of r − λ columns . 58

11 Two isomorphic completions of r − λ columns appended to a matrix complete to

r columns . 59

12 The unique 2-(9, 4, 6) Katona sieve . 77

vii

List of Tables

1 Performance Results to complete 2r − λ columns. 72

2 Performance results to complete all columns. 74

3 Computed Results . 76

4 Unsolved Existence Cases for r ≤ 21 and b ≤ 64. 78

5 Unsolved Enumeration Cases for r ≤ 21 and b ≤ 64. 79

viii

Chapter 0

Prologue

I would like to take the opportunity to summarize the early evolution of this problem in an

informal manner. It began with reading the work of Erdős, Faigle, and Kern in ”A Group-

Theoretic Settting for Some Interesting Sperner Families” [EFK92]. They perform counting

arguments on the action of a group on a monotone increasing sequence of subsets. After a

good amount of head scratching, I decided to work through an example, taking as the monotone

sequence a given t-subset T ⊆ V and a k-subset K containing T . Working through their Theorem

2.1 with this selection leads to a greatly simplified question with much of the group theory

discarded:

Does there exist a collection, B, of k-subsets of V with |B| =
(
v
t

)
containing no

t-intersecting subcollection of size greater than
(
k
t

)
?

This is roughly the question that I asked Vašek Chvátal who responded with the proof that

such a collection cannot be larger than
(
v
t

)
and that if the bound is reached, then it must be

a t-design. He also attached Österg̊ard’s paper on enumerating 2-(9, 4, 6) designs noting that if

such a collection of size
(

9
2

)
= 36 exists, then it must be one of the 270 million generated by

Österg̊ard [Ös01].

Finally, Clement Lam pointed out that I was limiting myself to designs of size
(
v
t

)
and that

the problem makes sense without this constraint. Indeed, considering an arbitrary t-(v, k, λ)

design, the final condition that emerges is:

Does there exist λ > 0 and a collection, B, of k-subsets of V with B = λ
(vt)
(kt)

containing

no t-intersecting subcollection of size greater than λ?

In Chapter 3, we will show the rather satisfying result:

If yes, then B is a t-(v, k, λ) design that can be used in a Katona-style proof of EKR-t

for those parameters.

1

Chapter 1

Introduction

In this thesis, we study the existence of t-(v, k, λ) designs whose blocks have the additional

property that any selection of greater than λ blocks contains a pair of blocks that intersects in

less than t varieties. While this is motivated by Katona’s proof of the Erdős-Ko-Rado theorem on

intersecting families of subsets, the aforementioned property that some t-(v, k, λ) designs possess

is interesting in its own right.

1.1 Preliminaries

A t-(v, k, λ) design is a collection, B, of sets such that:

1. Each B ∈ B contains k members from a set V of size v.

2. Each t-subset of elements of V is contained in exactly λ elements of B.

When discussing t-designs, the elements of V will also be referred to as varieties and elements

of B will also be referred to as blocks. Consider the following example with t = 2 and V =

{0, 1, 2, 3}:
B =

{
{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}

}
.

This forms a 2-(4, 2, 1) design because each element of B contains k = 2 elements and each

pair of elements of V occurs in exactly one member of B.This is a special design because it

consists precisely of every pair of elements of V .

Designs are usually depicted in the form of a matrix, known as an incidence matrix. For

example, if B is the design in the preceeding paragraph, each column of the matrix in Figure 1

can be considered to be a member of B and each row can be considered to be an element of V .

Note that the indexing of the matrix is zero-based so the first row corresponds to the element

0 ∈ V . A 1 appears at the intersection of a row and column if the element of V corresponding

to the row is an element of the member of B corresponding to the column.

2

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1




Figure 1: The complete 2-(4,2,1) design

Note how the two conditions to form a 2-(v, k, λ) design translate into properties of this

matrix. Each column contains k 1s, since the block it represents must contain k elements of V .

Further to this, the dot product of any pair of rows equals λ, which in this case is 1.

1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 0 1 0 1 0 1 0

0 0 1 1 0 0 0 1 0 1 0 1 0 1

0 0 0 0 1 1 1 0 0 1 1 0 0 1

0 0 0 0 1 1 0 1 1 0 0 1 1 0




Figure 2: A 2-(7,3,2) design

Figure 2 is an incidence matrix representing a 2-(7, 3, 2) design. This design does not consist

simply of all subsets of size 3 of a set of size 7. It also illustrates that the members of a design

may be repeated; for instance, the first two columns represent the same subsets of V . There is

another property of this design to note. The following lists the pairs of columns that intersect

in at least 2 elements of V :

{0, 1}

{2, 3}

{4, 5}

{6, 8}, {6, 9}, {6, 10}

{7, 8}, {7, 9}, {7, 11}

{8, 12}

{9, 13}

{10, 12}, {10, 13}

{11, 12}, {11, 13}

Notice that if two pairs {a, b} and {b, c} appear in this list, then {a, c} does not appear in this list.

3

1 1 1 1 1 0 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0 0

1 0 1 0 0 1 0 0 1 1 0

1 0 0 1 0 0 1 0 1 0 1

1 0 0 0 1 0 0 1 0 1 1

0 1 1 0 0 1 0 0 0 1 1

0 1 0 1 0 0 0 1 1 1 0

0 1 0 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 1 0 0

0 0 1 0 1 1 1 0 0 1 0

0 0 0 1 1 1 0 1 0 0 1




Figure 3: A 2-(11,5,2) design

In other words, there does not exist a triple {a, b, c} such that any choice of two is 2-intersecting.

Thus, the largest set of columns that is pairwise 2-intersecting is of size 2, the value of λ.

That the largest set of columns such that any pair has is 2-intersecting is of size λ is not

necessarily true of all 2-(v, k, λ) designs. Consider the 2-(11, 5, 2) design with incidence matrix

illustrated in Figure 3. In this design, any choice of two columns has 1s in two common rows.

So the largest subset of columns such that any pair contains a common pair of elements of V is

the set of all columns!

1.2 Our Question

For any given t-(v, k, λ) design, a selection of λ blocks that pairwise t-intersect can always be

made. In fact, taking any t-subset of varieties, the definition of a t-(v, k, λ) design provides such a

selection: the λ blocks containing that t-subset. But, when the pairs of blocks in the selection are

allowed to intersect in different t-subsets of varieties, we may be able to make a larger selection.

The question addressed in this thesis is whether, for a given t-(v, k, λ) design, there is no larger

selection of blocks with each pair of blocks intersecting in at least t varieties. For some parameter

sets, the answer is “no” for all t-(v, k, λ) designs. That is, in any t-(v, k, λ) design, a selection of

more than λ pairwise t-intersecting blocks always exists. For other parameter sets, it is “yes” for

all t-(v, k, λ) designs: in any t-(v, k, λ) design, a selection of more than λ pairwise t-intersecting

blocks never exists. Finally, for some parameter sets the answer is more complex: it depends on

the design.

In the example illustrated in Figure 1, where t = 2, no pair of columns intersects in 2 rows.

So, the largest pairwise t-intersecting subsets are the singletons of size 1, the value of λ. So

for this design, the answer to our questions is “yes”. But, recall that this example is a special

example. It is the complete design of 3-subsets of a set of size 6. The Erdős-Ko-Rado theorem

4

(EKR) can be seen as the statement that for any t and k, and for a sufficiently large value of v,

the answer to our question for the complete design of k-subsets of a set of size v is “yes”, there

does not exist a selection of greater than λ pairwise t-intersecting blocks. A 1-(v,k,k) design

where the answer to our question is “yes” also occurs prominently in Katona’s celebrated proof

of the Erdős-Ko-Rado theorem when t = 1. In this proof he uses this design as a sieve when

counting images of members of a family of sets under the action of a permutation group. It is

this proof that inspired the search for these t-designs and the name that we have selected for

them, Katona sieves.

1.3 Organization of the Thesis.

The body of this thesis is in Chapters 2 to 5. In Chapter 2, we begin by covering terminology

and definitions that will be used throughout. After this, we introduce concepts that not all

readers may be familiar with. In the final section of Chapter 2, we precisely define the property

of t-designs that we seek, as described in Section 1.2. This last section of Chapter 2 covers some

results that would be interesting to experienced readers.

In Chapter 3, we cover the Erdős-Ko-Rado theorem and Katona’s proof of this theorem for

the class of 1-intersecting families of sets. It is to extend this proof that our question becomes

pertinent. The existence of a design for which the answer to our question is “yes” proves EKR

for a specific case.

Chapter 4 explains the programs that were used. A discussion of their performance is also

included. Chapter 5 summarizes the results obtained computationally and theoretically. Finally

in Chapter 6 we conclude with a summary of the entire work and potential avenues for future

work.

1.4 Contributions of the Thesis.

This thesis presents a novel problem in the study of t-designs related to the historic result of

Erdős, Ko, and Rado that spurred on much investigation into intersecting set systems. The

property, distilled from Katona’s proof of the Erdős, Ko, and Rado theorem, has never been

defined previously for t-designs.

We prove that the existence of a solution is equivalent to the conclusion of the Erdős, Ko,

and Rado theorem for the parameter set t, v, and k. Non-existence is proven for a very large

number of cases. Tit’s lower bound on the existence of Steiner systems[Tit64] is shown to extend

to these designs. Further, symmetric designs are proven to not have this property if λ 6= 1. These

theoretical results, combined with the results published in the CRC Handbook [CD06], settle the

problem for 71 out of 142 cases with b ≤ 64 and r ≤ 21. Applying Property 2.6.4 to the known

Steiner systems proves existence for 21 additional cases.

5

We present programs that can serve to introduce the reader to enumeration of combinato-

rial objects. Isomorphism testing through recorded objects is explained as well as a technique

for indirect isomorphism testing by considering the isomorphism groups of smaller sections of

completions. The performance comparisons of these programs reveals that such an approach is

difficult to adapt to this problem as the condition is a global condition, not conducive to testing

on the smaller sections.

An extensive computer search across many cases was performed. The results represent over

200 CPU days of computation. In some cases, after weeks of generation, no solutions were

generated. But, in other cases, very many solutions were found. In fact, for some cases we

generated more designs than published in the CRC Handbook. One case of particular interest,

which started our research, is the case of 2-(9, 4, 6) designs for which of the 270 million designs,

there is a unique solution to the problem. The programs resolved existence of a Katona sieve

for 17 additional cases with b ≤ 64 and r ≤ 21 for which existence is not resolved by theory.

The Katona sieves for 24 cases were fully enumerated. For b ≤ 64 and r ≤ 21, there are 33

cases for which existence is not determined and an additional 14 that have only been partially

enumerated.

6

Chapter 2

Definitions, Concepts, and Properties

This chapter is meant to provide the reader with all of the notions that are required to understand

this thesis. We begin with the definitions and notation that will be used to describe set systems.

This is followed by a discussion of permutation groups and their action on set systems and

incidence matrices to introduce isomorphism testing. Finally, we provide the definitions of t-

designs and Katona sieves.

2.1 Initial Definitions

Our first set of definitions establishes the general terminology and notation we will use to describe

and elaborate on properties of set systems. In the entirety of this work, all sets are assumed to

be finite.

Definition 2.1.1. Given a set V , 2V will denote the set of all subsets of V .

Definition 2.1.2. A permutation is a bijection from a set to itself. Given a set V , SV will

denote the set of all permutations of V .

If a set V is, for example, enumerated V = {0, 1, 2, 3, . . . , v−1}, we can represent permutations

in cyclic notation. Cyclic notation denotes a permutation as a sequence of parenthesized disjoint

lists of elements of V . Each element within a parenthesized list is mapped by the permutation to

the following element in a left to right order except for the last element in the list. This element

is mapped to the first element in the subset. Fixed points are usually omitted. For example if

V = {0, 1, 2, 3, 4, 5} the permutation in cyclic notation,

f = (0 3 1)(4 5),

7

denotes the bijection:

f(0) = 3,

f(1) = 4,

f(2) = 2,

f(3) = 1,

f(4) = 5, and

f(5) = 4.

Note how 0, 3, and 4 map to the following element within their respective pairs of parentheses.

Being followed by closing parentheses, 1 and 5 map to the first element within their respective

pairs of parentheses. And 2, not appearing in the notation, remains fixed. For the identity

permutation, all elements are fixed and it is denoted (0), even though 0 is a fixed point.

Definition 2.1.3 (Indicator Function). Given a set V and a subset U ⊆ V , the indicator function

of U (with domain 2V) is the mapping 1U : 2V → {0, 1} defined as:

1U (W) =

 1 if W ⊆ U .

0 if W 6⊆ U .

We will be considering two kinds of set systems. Families of subsets of a given set and

Collections of subsets of a given set. The two differ in that collections permit repeated subsets

and families do not. Here, we will precisely define these terms. The “given” set will usually be

denoted by V and will frequently be referred to as the base set.

Definition 2.1.4. Given a set V and an index set I, a collection (B, I, V) on V with index set

I is a mapping, B, from I to 2V .

Definition 2.1.5. Given a set V and an index set I, a family (F , I, V) on V with index set I

is an injective mapping, F , from I to 2V .

It is important to note that collections and families are defined as mappings. This has

consequences on the way in which these objects are discussed. Given a collection (B, I, V) and

an element of the index set, i ∈ I, B(i) is a subset of V . And, B(I) = {B(i); i ∈ I} is a subset of

2V . It is the set of subsets of V that occur in the collection, forgotting multiplicity.

Now, a mapping is formally defined as a subset of the direct product of the domain and

codomain, we need a term for the pairs that constitute the mapping for a collection B. When

referring to the pairs (i,B(i)) ∈ I × 2V we will use the term members. The value of a member

is its second coordinate. Given a pair of members (i,B(i)) and (i′,B(i′)), their intersection will

8

refer to the set B(i) ∩ B(i′). Note that the intersection of two members of a collection is not

necessarily a member of that collection. We will say that two members (i,B(i)) and (i′,B(i′))

repeat each other if B(i) = B(i′). More generally, if in prose we perform a set operation on

members of a collection, it is to be understood that the operation is on the second coordinates,

their values. An example of this that will be seen frequently is summation over collections.

Although the symbol B by itself denotes only a mapping, in practice, we will use set notation

even for collections, and the reader is left to understand that members of the collection should

be considered with multiplicity if applicable. For instance, we may write B ∈ B as in:∑
B∈B

f(B) instead of
∑
i∈I

f(B(i)).

Despite this, we try to include the base set, V , and the symbol used to represent the index set,

I, each time a collection is “declared”, as in “Let (B, I, V) be a collection.”

Although we could have defined a family more simply as a subset of 2V , or a set of subsets

of V , this isn’t the case for collections. For collections, the index set is necessary to maintain

distinction between members that may have equal values. The definitions above are consistent

with each other; a family is a particular type of collection.

Now we have other definitions related to collections:

Definition 2.1.6. Given a collection (B, I, V), a subcollection, (B�J , J, V) of (B, I, V) is a subset

J ⊆ I and a mapping B�J : J → 2V such that for any i ∈ J , B�J(i) = B(i). A subfamily is a

subcollection of a family.

Definition 2.1.6 is the natural definition since we defined collections as mappings. If J ⊆ I,

then (B�J , J, V) is a subcollection of (B, I, V) if and only if B�J is the restriction of the mapping

B to J in the usual sense of restricting a function to a subdomain of its domain. Note that we

have also introducing notation for this restriction, B�J , but will not always use it. Instead we

may simply say declare a collection (B′, J, V) as a subcollection of (B, I, V).

Definition 2.1.7. If (B, I, V) is a collection, the size of (B, I, V) is |I|. Also, the notation, |B|
is to be understood as |I|.

One should contrast this notion of size with the size of the set B(I). If B(I) has repeated

members, then |B(I)| < |I| = |B|. A collection is a family if and only if |B(I)| = |I| = |B|.

Definition 2.1.8. Given a set V ,
(
V
k

)
will denote the set of all k-subsets of V . That is, the set

of subsets of V containing exactly k elements.

Later, we will be restricting our attention to k-uniform collections. A collection is k-uniform

if the value of each of its members is a k-subset of V .

9

Definition 2.1.9. A collection (B, I, V) is k-uniform if B(I) ⊆
(
V
k

)
.

And, we will be discussing intersections between members of a collection a great deal.

Definition 2.1.10. A pair of subsets U ⊆ V and W ⊆ V is t-intersecting if |U ∩W | ≥ t. A

collection (B, I, V) is t-intersecting if for any pair i, i′ ∈ I, |B(i) ∩ B(i′)| ≥ t.

So a collection is t-intersecting if and only if the size of the intersection of any pair of its

members is at least t. In set notation, (B, I, V) is t-intersecting if for any pair B,B′ ∈ B,

|B ∩B′| ≥ t.
At times it will be convenient to have a notation for a generic set of a given size;

Definition 2.1.11. If v ∈ N, then v̄ = {0, 1, . . . , v − 1}.

We will use interval notation for intervals of integers,

Definition 2.1.12. If a, b ∈ N, then define [a, b] = {n ∈ N; a ≤ n ≤ b}.

Definition 2.1.13. If M is a v × b matrix and 0 ≤ i < v and 0 ≤ j < b, M i represents the

ith row of the matrix and Mj will represent the jth column, and M(i,j) the entry in row i and

column j.

To simplify the algorithms, the rows and columns of matrices will be indexed starting with

0. However, in prose we may still refer to the 0th row as the first row and 0th column as the first

column. We will use calligraphy script to represent the set of all v × b matrices for integers v

and b.

Definition 2.1.14. Let Mv,b(L) represent the set of matrices with v rows, b columns, and

entries from the set L.

If the set L is omitted, it should be understood from the context. The reason that we include a

set of possible entries even if we will really only be concerned with (0,1)-matrices where L = {0, 1}
is that we will also need to be able to discuss partially completed matrices. We will represent

the undetermined entries with a “?”, and, as such, we will sometimes need L = {0, 1, ?}.
We will be discussing canonical forms and will use the row-major maximum matrix as an

example of a canonical form. The example depends on an ordering of Mv,b(L). We begin by

explaining this ordering. Consider the small matrix:

1 0 1 1

0 1 0 0

1 1 0 0

 
.

We can consider this a binary integer by concatenating the rows together one after the other as

in:

101101001100.

10

This is the row-major binary value of the matrix. However, if some entries of the matrix were

undetermined, we couldn’t do so directly:

? 0 1 1

0 ? 0 0

1 1 0 ?

 
.

Instead we need to assign a value to “?”. Suppose that we assign it the value 2 and glue then

concatenate the rows together:

201102001102.

This does represent an integer base 3. So with this function,

f(`) =


0 If ` = 0,

1 If ` = 1, and

2 If ` = ?;

(1)

we were able to assign this matrix an integer value.

Definition 2.1.15. Given an injection f : L → |L| the row-major value of M ∈ Mv,b(L) with

respect to f is defined as:

‖M‖f =

v−1∑
i=0

b−1∑
j=0

f(Mi,j)|L|((v−1)−i)b+((b−1)−j).

The row-major ordering with respect to f is defined for M1,M2 ∈Mv,b(L) as:

M1 ≤M2 ⇐⇒ ‖M1‖f ≤ ‖M2‖f .

This defines the row-major value of M ∈ Mv,b(L) with respect to f as the integer base |L|
formed from concatenating the values of the entries of each row together one row after another

in order, so that the first row becomes the highest order “digits” in the integer. The row-major

ordering of matrices is a total ordering since each matrix maps to a different integer. Column-

major value and ordering is defined equivalently, and we use the same notation. But, it will

always be clear from the context to which we are referring.

Definition 2.1.16. Given an injection f : L → |L| the column-major value of M ∈ Mv,b(L)

with respect to f is defined as:

‖M‖f =
b−1∑
j=0

v−1∑
i=0

f(Mi,j)|L|((b−1)−j)v+((v−1)−i).

The column-major ordering with respect to f is defined for M1,M2 ∈Mv,b(L) as:

M1 ≤M2 ⇐⇒ ‖M1‖f ≤ ‖M2‖f .

11

Now, the value of a matrix is the integer formed by concatenating the columns together one

after another. When dealing with partially completed (0, 1)-matrices, ‖M‖, with no index will

denote the row major order with f as defined in Equation 1.

2.2 Incidence Matrix Representation

The most common representation of collections is the incidence matrix. This representation is

also the basic representation when studying collections with computers. In an incidence matrix,

relationships between elements of the base set and members of the collection are represented as

a (0, 1)-matrix. The rows of the matrix represent the elements of the base set and the columns

represent the elements of the index set. In an incidence matrix of a collection (B, I, V), for each

i ∈ I and v ∈ V , a 1 appears in the intersection of the row representing v and the column

representing i if v ∈ B(i) and a 0 if v /∈ B(i).

In order to create an incidence matrix, the base set and index set must be enumerated. For ex-

ample, consider the following collection (B, I, V), where I = {i1, i2, i3, i4}, V = {v1, v2, v3, v4, v5},
and

B(i1) = {v1, v3, v5},

B(i2) = {v2, v3},

B(i3) = {v1, v4, v5}, and

B(i4) = {v1, v4, v5}.

Then, an incidence matrix representing this collection is:

1 0 1 1

0 1 0 0

1 1 0 0

0 0 1 1

1 0 1 1




i1 i2 i3 i4
v1

v2

v3

v4

v5 .

Note that in this description of incidence matrices we said that this is “an” incidence matrix

representation. The astute reader will note that in selecting an enumeration of the base set V

and the index set I, we have introduced a choice that is not intrinsic to the collection. There are

|V |! ways to number the elements of V and |I|! ways to number the elements of I. A computer

cannot generate collections directly, as these are abstract objects. Rather, incidence matrices

are generated. But, this means that two different incidence matrices may be generated that are

in fact representations of the same collection with different choices of indexing.

For Property 2.5.2 in Section 2.5 and Property 2.6.4 in Section 2.6, we will be showing that

concatenating collections with certain special properties yields collections with these same special

12

properties. The concatenation of two collections is the collection that can be represented by the

incidence matrix formed by putting incidence matrices of each of the two side by side. This is

possible as long as the two collections have the same base set. For example, concatenating B
with itself yields a collection that can be represented by the incidence matrix:

1 0 1 1 1 0 1 1

0 1 0 0 0 1 0 0

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

1 0 1 1 1 0 1 1




i1 i2 i3 i4 i
′
1 i
′
2 i
′
3 i
′
4

v1

v2

v3

v4

v5 .

2.3 Permutations Acting on Incidence Matrices

In Chapter 4, we will be performing isomorph rejection on incidence matrices to generate only

nonisomorphic matrices. In this section, we explain how this is equivalent to the generation of

nonisomorphic collections. As explained previously, to represent a collection by an incidence

matrix, the base set and the index set of a collection need to be enumerated. This implies

that a given collection can be represented by more than one incidence matrix. To remedy this,

we first need to define the notion of equivalence of collections. Then, we need to define the

notion of equivalence of incidence matrices. And finally, we need to analyze how the two notions

correspond.

It will be necessary to deal with groups and their actions on objects. So, we remind the

reader of the definition of a group and the action of a group. Many resources exist for a more

general and in depth introduction to group theory such as Micheal Artin’s Algebra [Art91].

Definition 2.3.1. A group is a set G endowed with a a composition, · : G × G → G taking

(g1, g2) to g1g2 ∈ G, satisfying the following properties:

1. For any g1, g2, g3 ∈ G composition is associative, g1(g2g3) = (g1g2)g3.

2. There exists an identity e ∈ G such that for any g ∈ G, eg = ge = g.

3. For any g ∈ G there exists an inverse of g, g−1 ∈ G, such that gg−1 = g−1g = e.

A related definition is that of a subgroup of a group:

Definition 2.3.2. A subgroup H of a group G is a subset H ⊆ G such that H is itself a group

under the same composition as G, or, equivalently, for any h1, h2 ∈ H, h1h2 ∈ H and h−1
1 ∈ H.

That H is a subgroup of G is denoted H ≤ G.

Now, the definition of an action:

13

Definition 2.3.3. An action of a group G on a set S is a mapping G× S → S taking (g, s) to

gs ∈ S satisfying the following conditions:

1. For any g1, g2 ∈ G and s ∈ S, (g1g2)s = g1(g2s).

2. If e is the identity of g, for any s ∈ S, es = s.

And, the definition of an associated concept, the orbit of an element, is:

Definition 2.3.4. Given a group G acting on a set S, the orbit of an element s ∈ S, is the set

of all images of s through the action of G, that is {gs : g ∈ G}. It may be denoted as GS or

OrbitG(S).

The set of all permutations of a set V, SV as in Definition 2.1.2 forms a group frequently

called the symmetric group of V. We will principally be dealing with symmetric groups, the group

of isomorphisms of a collection to itself, and the group of isomorphisms of a matrix to itself. We

have not yet formally defined the concept of an isomorphism of one collection to another. We do

so now.

Definition 2.3.5. A pair of bijective mappings,

f : V → V ′, and

g : I → I ′,

is an isomorphism from a collection (B, I, V) to another collection (B′, I ′, V ′) if they satisfy

v ∈ B(i) ⇐⇒ f(v) ∈ B′(g(i)).

The collections (B, I, V) and (B′, I ′, V ′) are isomorphic if there exists such a pair (f, g). That

two collections are isomorphic will be denoted:

(B, I, V) ∼= (B′, I ′, V ′).

Definition 2.3.6. An isomorphism from a collection to itself is an automorphism of that col-

lection. The automorphisms of a collection form a group called the automorphism group of that

collection.

Note that we are saying that the isomorphisms from a collection to itself forms a group.

We need to show that the identity is an automorphism, that the composition of automorphisms

yields automorphisms, and that inverting automorphisms yields automorphisms. It’s clear that

if f and g are the identity mapping of V and I respectively,

v ∈ B(i) ⇐⇒ f(v) ∈ B′(g(i)).

14

Now, suppose that the pairs (f, g) and (f ′, g′) are automorphisms of (B, I, V), then:

v ∈ B(i) ⇐⇒ f(v) ∈ B(g(i)) ⇐⇒ f ′(f(v)) ∈ B(g′(g(i))).

So, (f ′ ◦ f, g′ ◦ g) is also an automorphism of (B, I, V).

Finally, we need to show that if (f, g) is an automorphism so is (f−1, g−1). Since f is injective,

for any v ∈ V , v = f−1(u) for some u ∈ V . Similarly, i = g−1(j) for some j ∈ I. For any such u

and j,

v ∈ B(i) ⇐⇒ f(v) ∈ B(g(i))

is equivalent to:

f−1(u) ∈ B(g−1(j)) ⇐⇒ f(f−1(u)) ∈ B(g(g−1(j)) ⇐⇒ u ∈ B(j).

But, since f and g are surjective, for any u ∈ V and j ∈ J there exists corresponding v = f−1(u)

in V and i = g−1(j) in I.

We now turn our attention to matrices and their isomorphisms, since they will be used to

represent collections. Afterwards, we will establish how isomorphisms of collections are equivalent

to isomorphisms of the matrices that are used to represent them.

Definition 2.3.7. Given a pair of permutations,

ρ ∈ Sv, and

σ ∈ Sb,

and a matrix M , let ρMσ be the matrix such that (ρMσ)(i,j) = M(ρ−1i,σ−1j).

Definition 2.3.8. A pair of permutations,

ρ ∈ Sv, and

σ ∈ Sb,

is an isomorphism from a v × b matrix M to a v × b matrix M ′ if

ρMσ = M ′.

The matrices M and M ′ are isomorphic if there exists such a pair (ρ, σ) ∈ Sv × Sb. That two

matrices are isomorphic will be denoted:

M ∼= M ′.

At times we may need to restrict the group acting on matrices from Sv × Sb to one of its

subgroups. As such we define:

15

Definition 2.3.9. The matrices M and M ′ are isomorphic with respect to a permutation group

G ≤ Sv × Sb if there exists a pair (ρ, σ) ∈ G such that ρMσ = M ′.

Finally, given a matrix, we have a group:

Definition 2.3.10. An isomorphism from a matrix to itself is an automorphism of that matrix.

The automorphisms of a matrix form a group called the automorphism group of that matrix.

To see that this is a group, suppose that (ρ, σ) is an automorphism of a matrix. Then for

any i and j,

(ρMσ)(i,j) = M(ρ−1i,σ−1j) = M(i,j).

That is, applying the permutation to M keeps all of the values of the matrix the same. Applying

the inverse permutation will also keep all the values the same:

(ρ−1Mσ−1)(i,j) = M(ρi,σj) = M(ρ−1(ρi),σ−1(σj)) = M((ρ−1ρ)i,(σ−1σ)j) = M(i,j).

Composing another automorphism (ρ′, σ′) with (ρ, σ) also yields an automorphsim of M :

((ρ′ρ)M(σ′σ))(i,j) = M((ρ′ρ)−1i,(σ′σ)−1j) = M(ρ−1(ρ′−1i),σ−1(σ′−1j)) = M(ρ′−1i,σ′−1j) = M(i,j).

Note that we chose to write the row permutations on the left and the column permutations on

the right. This makes it clear that the row and column permutation can be applied in either

order. Now, we need a precise definition of an incidence matrix representation if we wish to show

how isomorphisms of incidence matrices are equivalent to isomorphisms of the collections that

they represent.

Definition 2.3.11. Given a collection (B, I, V), an incidence matrix representation is a pair of

bijections αM : {0, . . . , |V | − 1} → V and βM : {0, . . . , |I| − 1} → I together with a matrix, M ,

such that:

M(a,b) =

 0 if αM (a) /∈ B(βM (b)), and

1 if αM (a) ∈ B(βM (b)).

So an incidence matrix representation is not only the matrix itself, but also the mapping of the

rows to the varieties V and the mapping of the columns to the index set I. The next property says

that if M and M ′ are the matrices of two incidence matrix representations, then any isomorphism

from M to M ′ corresponds to an isomorphism of the collections that they represent, and any

isomorphsim of these collections corresponds to an isomorphism of these matrices.

Property 2.3.1. If (αM , βM ,M) is an incidence matrix representation of a collection (B, I, V)

and (αM ′ , βM ′ ,M
′) is an incidence matrix representation of (B′, I ′, V ′), then:

(ρ, σ) ∈ Sv × Sb is an isomorphism from M to M ′ ⇐⇒

(αM ′ρα
−1
M , βM ′σβ

−1
M) is an isomorphism from (B, I, V) to (B′, I ′, V ′).

16

And,

(f, g) is an isomorphism from (B, I, V) to (B′, I ′, V ′) ⇐⇒

(α−1
M ′fαM , β

−1
M ′gβM) is an isomorphism from M to M ′.

Proof. Suppose that (ρ, σ) ∈ Sv × Sb, and

M = ρM ′σ.

Then,

v ∈ B(i) ⇐⇒ Mα−1
M (v),β−1

M (i) = 1

⇐⇒ M ′
ρα−1

M (v),σβ−1
M (i)

= 1

⇐⇒ αM ′ρα
−1
M (v) ∈ B′(βM ′σβ−1

M (i)).

So, αM ′ρα
−1
M and βM ′σβ

−1
M form an isomorphism from (B, I, V) to (B′, I ′, V ′). Now suppose

that there are bijections f : V → V ′ and g : I → I ′ such that

v ∈ B(i) ⇐⇒ f(v) ∈ B′(g(i)).

Then,

M(a,b) = 1 ⇐⇒ αM (a) ∈ B(βM (b))

⇐⇒ fαM (a) ∈ B′(gβM (b))

⇐⇒ M ′
(α−1

M′fαM (a),β−1

M′gβM (b))
= 1.

Since all the involved mappings are bijective, (α−1
M ′fαM , β

−1
M ′gβM) ∈ Sv × Sb and is an isomor-

phism from M to M ′.

This fully states the equivalence, but it is a consequence of this, a simpler property, that is more

important to us:

Property 2.3.2. If (ρ, σ) is an isomorphism from M to M ′, then (αM , βM ,M) is an incidence

matrix representation of (B, I, V) if and only if (αMρ
−1, βMσ

−1,M ′) is an incidence matrix

representation of (B, I, V).

Proof. If (αM , βM ,M) is an incidence matrix representation of (B, I, V), then

M ′a,b = 1 ⇐⇒ Mρ−1(a),σ−1(b) = 1

⇐⇒ αMρ
−1(a) ∈ B(βMσ

−1(b)).

17

M =

1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

1 0 1 0 0 1 0 0 1 1

0 1 0 1 0 0 1 0 1 1

0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1 0 1




Figure 4: A 2-(6,3,2) design

On the other hand (ρ−1, σ−1) is an isomorphism from M ′ to M . So, if (αMρ
−1, βMσ

−1,M ′) is

an incidence matrix representation of (B, I, V), we have (αMρ
−1(ρ−1)−1, βMσ

−1(σ−1)−1,M) =

(αMρ
−1ρ, βMσ

−1σ,M) = (αM , βM) is an incidence matrix representation of (B, I, V).

Property 2.3.2 says that if two matrices M and M ′ are isomorphic, then any collection that

can be represented by one can also be represented by the other. Now we will present an example

of an isomorphism of incidence matrix representations in detail, but because of the equivalence

through these two properties, we will later only be focusing on isomorphisms of the incidence

matrices themselves. That is, we will not specify the mappings α and β.

Suppose that M in Figure 4 represents the collection (B, I, V) with the mappings (α, β) :

{0, . . . , |V | − 1} × {0, . . . , |I| − 1} → V × I. Consider the entry of the matrix:

M(2,1) = 0.

α(2) is an element of V and β(1) is an element of I. And, since M(2,1) = 0,

α(2) /∈ B(β(1)).

Similarly, since

M(3,1) = 1,

we conclude,

α(3) ∈ B(β(1)).

1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

1 0 1 0 0 1 0 0 1 1

0 1 0 1 0 0 1 0 1 1

0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1 0 1





1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

0 1 1 0 0 1 0 0 1 1

1 0 0 1 0 0 1 0 1 1

0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1 0 1




Figure 5: Mσ (on the right), a column permutation of M

18

Now, suppose that we interchange the first and second columns of M as in Figure 5. Let σ = (0 1)

represent this column permutation.

Notice that,

(Mσ)(2,1) = 1.

But, recall that,

α(2) /∈ B(β(1)).

However, Mσ can also be made to represent the collection (B, I, V) with an appropriate choice

of indexing, (α′, β′). In particular, if

α′ = α and

β′ = βσ−1

as suggested by Property 2.3.2. Then, with this choice of indexing,

(Mσ)(2,1) = 1

is correct, since

α′(2) = α(2) ∈ B(β(0)) = B(βσ−1(1)) = B(β′(1)).

Similarly, if we apply a row permutation ρ to Mσ, we have another incidence matrix represen-

tation of (B, I, V):

1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

0 1 1 0 0 1 0 0 1 1

1 0 0 1 0 0 1 0 1 1

0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1 0 1





1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

1 0 0 1 0 0 1 0 1 1

0 1 1 0 0 1 0 0 1 1

0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1 0 1




.

If ρ = (2 3) represents this row permutation, then the appropriate choice of α′′ and β′′ to

make ρMσ an incidence matrix representation of (B, I, V) is:

α′′ = αρ−1 and

β′′ = βσ−1.

2.4 Isomorph Rejection

In the previous section we explained that an incidence matrix representation of a collection

(B, I, V) includes a choice of numbering of I and a choice of numbering of V . Given a matrix

representing a collection, any permutation of columns is a renumbering of the elements of I and

any permutation of rows is a renumbering of V .

19

Recall the example in Section 2.3 of three matrices that all can be made to represent the

same collection:

1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

1 0 1 0 0 1 0 0 1 1

0 1 0 1 0 0 1 0 1 1

0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1 0 1





1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

0 1 1 0 0 1 0 0 1 1

1 0 0 1 0 0 1 0 1 1

0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1 0 1





1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

1 0 0 1 0 0 1 0 1 1

0 1 1 0 0 1 0 0 1 1

0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1 0 1




.

If we wish to use (0, 1)-matrices to represent all collections with given parameters, it would

not be correct to list these three matrices as different collections; the difference in the matrices is

an artifact of the choices of numbering. The typical way to overcome this is to define a canonical

form for incidence matrices.

Definition 2.4.1. A canonical form with respect to a permutation group G ≤ Sv×Sb forMv,b(L)

is a mapping Ψ :Mv,b(L)→Mv,b(L) such that for any A,B ∈Mv,b(L)

Ψ(A) = Ψ(B) if and only if there exists (σr, σc) ∈ G such that σrAσc = B.

This definition states that a canonical form for a matrix is the same for any matrix that

can be obtained from it through the action of G, that is, any matrix in the same orbit. If the

permutation group is not specified, the canonical form is assumed to be with respect to Sv ×Sb.
When the permutation group in question is Sv × Sb, recall how Property 2.3.2 states that if

(M,α, β) is an incidence matrix representation of the collection (B, I, V), then for any element

M ′ in the orbit of M , there exist mappings α′ and β′ such that (M ′, α′, β′) is an incidence matrix

representation of (B, I, V). Therefore, the canonical form of a matrix can represent any collection

that any matrix in its orbit can represent. And, by its definition, is the canonical form of any

matrix in its orbit.

Given any total ordering of Mv,b(L) and permutation group G we can define a canonical

form with respect to G:

Ψ(A) = ρ′Aσ′ such that for any (ρ, σ) ∈ G, ρAσ ≤ ρ′Aσ′.

In other words, Ψ(A) is the matrix in the orbit of A under the action of G with the greatest

value in the ordering. For Mv,b(L), matrices of size v × b with entries from L, given a value

f : L → |L|, the row-major or column major ordering with respect to f is a total ordering and

can thus be used to define a canonical form. But, other more efficiently calculated canonical

forms exist. The canonical forms that were used in the implementations of the algorithms are

those returned by Brendan Mckay’s nauty [MP14].

20

2.5 t-designs

We will now begin considering collections with more structure. The algorithms that will be

presented in later sections are for the generation of 2-designs, a t-design with t = 2. Chapter 3

relates t-designs with our additional property to EKR. As such we need to introduce t-designs

for readers that may not be familiar with them.

Definition 2.5.1. For 0 ≤ t ≤ k ≤ v, a collection (B, I, V) is a t-(v, k, λ) design if:

1. |V | = v,

2. B is k-uniform, and

3. For any t-subset T ⊆ V , |{i ∈ I;T ⊆ B(i)}| = λ.

The term t-design is used to refer to a t-(v, k, λ) design for some parameters v, k, and λ. The

members of a t-(v, k, λ) design are commonly referred to as blocks and the elements of the base

set are commonly referred to as varieties. In the literature, t-(v, k, λ) designs are characterized

with five parameters (along with t). But, given t, any three of the five parameters determine the

other two.

v = The number of varieties.

b = The number of blocks.

k = The number of varieties per block.

r = The number of blocks containing each variety.

λ = The number of blocks containing any given t-subset of varieties.

Establishing that b is a function of t,v, k, and λ can be done through a simple argument.

Since it must be k-uniform, each block of a t-design includes
(
k
t

)
t-subsets. Each t-subset of V

must occur in exactly λ blocks. Therefore, b
(
k
t

)
= λ

(
v
t

)
, or, b = λ

(vt)
(kt)

.

Property 2.5.1. If (B, I, V) is a t-(v, k, λ) design, then |B| = λ
(vt)
(kt)

.

That the parameter r is a function of t,v, k, and λ follows from observing that b blocks each with

k elements must be the same number as v elements each in r blocks, i.e. bk = vr, or r = bk
v .

Note that t-designs can be concatenated to yield t-designs.

Property 2.5.2. Suppose that (B, I, V) is a t-(v, k, λ) designs and (B′, I ′, V) is a t-(v, k, λ′)

designs with I ∩ I ′ = ∅. Then, the collection:

B′′ : I ∪ I ′ → 2V : i 7→

 B(i) if i ∈ I, and

B′(i) if i ∈ I ′,

21

is a t-(v, k, λ+ λ′) designs.

Proof. V hasn’t changed and B′′ is clearly k-uniform. Given a t-subset T of V , there are λ

indices i ∈ I for which T ⊆ B(i) and λ′ indices i ∈ I ′ for which T ⊆ B(i′). Therefore there are

λ+ λ′ indices i ∈ I ∪ I ′ such that T ⊆ B′′(i).

Our first examples of t-designs are Steiner systems. These are the class of t-designs where

λ = 1.

Definition 2.5.2. An S(t, k, v)-Steiner System is a t-(v, k, 1) design for some parameters t ≤
k ≤ v.

Steiner systems are interesting to us because we will see that they all satisfy the additional

condition that we will impose on t-designs. In this sense, the designs that we isolate can also

be seen as generalizations of Steiner systems. Steiner systems are well studied. One can find

examples in Chapter 4 of the CRC Handbook [CD06].

2.6 (λ, t)-Disjointness

As there does not appear to already be a term for the property we need to discuss, we are naming

it here. This property is the focus of this work. At the end of this section, it will become clear

why t and λ were used as the “parameters” of this property.

Definition 2.6.1. For λ, t ∈ N, a collection (B, I, V) is (λ, t)-disjoint if all t-intersecting sub-

collections are of size no more than λ.

Our first example of (λ, t)-disjoint collections are Steiner Systems. That they are t-designs is

not coincidental. In fact, Katona pointed out that Steiner systems can be used in the same way

that we will use (λ, t)-disjoint t-designs in Chapter 3.

Property 2.6.1. An S(t, k, v)-Steiner system is (1, t)-disjoint.

Proof. Suppose that a pair of members in an S(t, k, v)-Steiner system is t-intersecting. Then,

then there is a t-subset contained in the intersection of these. But this t-subset is thus contained

in more than one block, contradicting the definition of a Steiner system.

The argument of this example can be extended to show an upper bound on the size of k-

uniform (λ, t)-disjoint collections. The following result was provided by Vašek Chvátal in a

private communication [Chv12].

Property 2.6.2. For any (λ, t)-disjoint k-uniform collection (B, I, V),

|B| ≤ λ
(
v
t

)(
k
t

) .
22

Proof. We count the number of instances where a t-subset of V is a subset of a member of the

collection B. This is given by the double summation:∑
B∈B

∑
T∈(Vt)

1B(T).

Since B is k-uniform, each member includes
(
k
t

)
t-subsets as a subset:

∑
B∈B

∑
T∈(Vt)

1B(T) =
∑
B∈B

(
k

t

)

= |B|
(
k

t

)
.

If we reverse the order of summation we see the implication of (λ, t)-disjointness. Since a given

t-subset can be a subset of no more than λ members of B,∑
T∈(Vt)

∑
B∈B

1B(T) ≤
∑
T∈(Vt)

λ

= λ

(
v

t

)
.

Therefore,

|B|
(
k

t

)
=
∑
B∈B

∑
T∈(Vt)

1B(T) =
∑
T∈(Vt)

∑
B∈B

1B(T) ≤ λ
(
v

t

)
.

Property 2.6.2 says that an upper bound on the size of a k-uniform (λ, t)-disjoint collection

is the size of a t-(v, k, λ) design. Steiner systems were our first example of (λ, t)-disjoint col-

lections, and, being t-designs, they attain this bound by Property 2.5.1 . One might wonder if

k-uniform (λ, t)-disjoint collections that attain this maximum size are always t-(v, k, λ) designs.

We introduce the term Katona Sieve to encompass these properties:

Definition 2.6.2. A (λ, t)-disjoint collection (B, I, V) is defined to be a Katona Sieve for pa-

rameters (t, v, k, λ), where t ≤ k ≤ v, if |V | = v, it is k-uniform, and

|B| = λ

(
v
t

)(
k
t

) .
To our knowledge no name exists for such collections. The name chosen derives from the

possibility of using such a collection in an analogue of a proof discovered by Katona and presented

in Section 3.3.

Theorem 2.6.3. Suppose for t ≤ k ≤ v and λ, (B, I, V) is a Katona sieve, then B is a t-design

with corresponding parameters.

23

Proof. By the hypothesis, |B| (
k
t)

(vt)
= λ. So, continuing from the conclusion of the proof of Property

2.6.2 we have:

λ

(
v

t

)
= |B|

(
k

t

)
=
∑
B∈B

∑
T∈(Vt)

1B(T) =
∑
T∈(Vt)

∑
B∈B

1B(T) ≤ λ
(
v

t

)
.

Thus, they must all be equal and we conclude:∑
T∈(Vt)

∑
B∈B 1B(T)(
v
t

) = λ. (2)

The expression on the left is the average number of B ∈ B that a t-subset of V is contained

in. But, since B is (λ, t)-disjoint, any given t-subset of V can be contained in no more than λ

members of B. So, the average value attains an upper bound on each of the constituent values.

This is only possible if each of the values equals the upper bound as well. That is, we can

conclude that for each T ∈
(
V
t

)
, ∑

B∈B
1B(T) = λ.

Like t-designs, Katona sieves can be concatenated to yield Katona sieves.

Property 2.6.4. Suppose that (B, I, V) and (B′, I ′, V) are Katona sieves where I ∩ I ′ = ∅.
Then, the collection:

B′′ : I ∪ I ′ → 2V : i 7→

 B(i) if i ∈ I, and

B′(i) if i ∈ I ′.

is also a Katona sieve.

Proof. V hasn’t changed and B′′ is k-uniform.

|B′′| = |B|+ |B′| = λ

(
v
t

)(
k
t

) + λ′
(
v
t

)(
k
t

) = (λ+ λ′)

(
v
t

)(
k
t

) .
Therefore, we need only establish (λ, t)-disjointness. Suppose that J ⊆ I∪I ′ such that (B′′�J , J, V)

is t-intersecting. Then, if JI = J ∩ I and JI′ = J ∩ I ′, both (B�JI , JI , V) and (B′�JI′ , JI′ , V) are

t-intersecting subcollections of B and B′ respectively. So, we have

|J | = |JI |+ |JI′ | ≤ λ+ λ′.

Finally, we have a negative result for the case t = 2. We need the following definition.

24

Definition 2.6.3. Given a collection (B, I, V) the dual of the collection (B∗, V, I) is the collec-

tion:

B∗ : V → 2I : v 7→ {i ∈ I; v ∈ B(i)}.

The dual of a symmetric 2-(v, k, λ) design is also a 2-(v, k, λ) design [CD06]. As a result, we

have the following theorem.

Theorem 2.6.5. If v > λ > 1 and (B, V, I) is a 2-(v, k, λ) design with v = b, then (B, V, I) is

not a Katona Sieve.

Proof. Because the dual of a symmetric 2-(v, k, λ) design is also a 2-(v, k, λ) design, (B∗, I, V) is

also a 2-(v, k, λ) design. Condition 3 of Definition 2.5.1 for B∗ says that given any two elements

i1, i2 ∈ I, there exist exactly λ elements v ∈ V such that {B(i1),B(i1)} ⊆ B∗(v). But,

{v ∈ V ; {B(i1),B(i1)} ⊆ B∗(v)} = B(i1) ∩ B(i1).

Since λ ≥ 2, this means that any two blocks of B are 2-intersecting.

25

Chapter 3

Motivation

Up to this point, we have been discussing terminology and notation, and some basic observations

on collections of subsets. Now we will discuss the results motivating the study of (λ, t)-disjoint

collections.

3.1 Erdös-Ko-Rado Theorem

The Erdos-Ko-Rado Theorem is a famous result in extremal set systems. It establishes an upper

bound on the size of a t-intersecting family of k-subsets of a set V , provided that V is sufficiently

large in relation to t and v.

Theorem 3.1.1. Given k ∈ N, k ≥ t ≥ 0, there exists v0(k, t) ∈ N such that the size of any

k-uniform t-intersecting family, (F , I, V) with |V | = v ≥ v0(k, t) is bounded as:

|F | ≤
(
v − t
k − t

)
.

Note that for convenience, we will parametrize the theorem as EKR-t. So, EKR-2 states

that for t = 2, given any k ≥ 2, v0(k, 2) exists. We will refer to EKR-1 simply as EKR. And,

we will use the term EKR-t when referring to the entire set of theorems. For the case where

t = 1 the EKR paper established that v0(k, 1) = 2k. EKR-t was also proven by establishing

an upper-bound of t + (k − t)
(
k
t

)3
for v0(k, t). The original paper actually considers a class of

families of subsets larger than k-uniform families, that is, Sperner families. Since we consider

here only k-uniform families we have stated the theorem as such. Today, the exact value of

v0(k, t) is known to be (t+ 1)(k − t+ 1), a result generally credited to both Frankl [Fra78] and

Wilson [Wil84]. The proofs contained in the EKR paper will not be presented here. Instead, in

the following section, a proof of EKR-1, similar to Katona’s original proof that v0(k, 1) = 2k, will

be presented [Kat72]. This proof inspires the name and consideration of the t-designs discussed

26

here. Katona’s proof will be extended to show that the conclusion of EKR-t holds for v and k

assuming the existence of a Katona sieve with these parameters. Otherwise no other proof of

EKR-t, nor the exact value of v0(k, t) for t > 1, will be given.

First, we want to establish that the bound on the size of the t-intersecting family in the

theorem is “tight”. For EKR-t, what this means is that, given k and t, there actually is a family

of t-intersecting subsets of V whose size attains the bound of
(
v−t
k−t
)
. It is formed by choosing t

elements of V to be included in every member of the family and selecting every possible k − t
subset of the remaining elements. That is, we take every k-subset of V containing a given

t-subset.

For instance, since, 6 ≥ (1 + 1)(3 − 1 + 1) = 2 ∗ 3, EKR-1 along with the known value of

v0(3, 1) = 6 establishes that no 1-intersecting family of 3-subsets of a set of size 6 is larger than

the following:

1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 1 0 1 0 1 1




,

with 10 =
(

6−1
3−1

)
members and formed from selecting one element of V to be in all members and

completing with all possible selections of 2 elements from the remaining. On the other hand,

consider the family formed from all 4-subsets of a set of size 6 containing a given 2-subset. This

is an incidence matrix of such a family:

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1




.

Remember that the exact value of v0(4, 2) has been proven to be (2+1)(4−2+1) = 9. So, EKR-2

does not apply to this case. Indeed, in this case we can find a larger family of 2-intersecting

4-subsets:

1 1 1 1 1 1 0 0 0

1 1 1 0 0 0 1 1 1

0 0 0 1 1 1 1 1 1

1 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 0 1

0 1 1 0 1 1 0 1 1




.

27

3.2 Katona’s Circle Family

Katona found a very elegant double counting proof of EKR-1 and its bound v0(k, 1). In the

proof, a (λ, 1)-disjoint family of subsets k-uniform subsets is used. Katona’s proof relies on a

lemma, establishing that a family of sets is (λ, 1)-disjoint. He then uses this family as a sieve to

count all the images of members of an arbitrary k-uniform 1-intersecting family, (F , I, V) under

a set of permutations. We begin by defining his family and providing an example.

Definition 3.2.1. Given parameters k and v where 2k ≤ v, a Katona circle family for these

parameters is the family of subsets:

R =
{
{i mod v, i+ 1 mod v, . . . , i+ (k − 1) mod v}; i ∈ [0, v − 1]

}
.

For the parameters k = 4 and v = 8 the incidence matrix of such a family is shown in Figure

6.

1 0 0 0 0 1 1 1

1 1 0 0 0 0 1 1

1 1 1 0 0 0 0 1

1 1 1 1 0 0 0 0

0 1 1 1 1 0 0 0

0 0 1 1 1 1 0 0

0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1




Figure 6: Katona’s Circle Family for v = 8

It is the orbit of the 4-subset, {0, 1, 2, 3}, of the 8 element set, {0, 1, . . . , 7}, under the action of

the cyclic group of order 8. The important thing to note is that any selection of greater than

k = 4 members (columns) includes at least one pair of members that does not intersect. That

is, this family is (4, 1)-disjoint. Katona’s Lemma is that Katona’s cycle family is (k, 1)-disjoint

for any v.

Lemma 3.2.1. (Katona’s Lemma [Kat72]). If v ≥ 2k, then the family of subsets of v̄,

R =
{
{i mod v, i+ 1 mod v, . . . , i+ (k − 1) mod v}; i ∈ [0, v − 1]

}
,

is (k, 1)-disjoint.

Proof. We need to show that if v ≥ 2k for any selection of k + 1 members of the family, at least

one pair does not intersect. To see this, suppose that a subfamily F ⊆ R is intersecting and

that F = {i mod v, i+1 mod v, . . . , i+(k−1) mod v} ∈ F . There are 2k−2 members of R that

28

intersect F and they can be separated into two classes: those that intersect F on the “lower”

end and those that intersect F on the “higher” end:

A =
{
{i+m mod v, i+m+ 1 mod v, . . . , i+m+ (k − 1) mod v}; m ∈ [1, k − 1]

}
, and

B =
{
{i−m mod v, i−m+ 1 mod v, . . . , i−m+ (k − 1) mod v}; m ∈ [1, k − 1]

}
.

Since all members of F intersect F , F must be a subset of {F} ∪A ∪B. Since 2k ≤ v, A and

B are disjoint. Moreover, given m ∈ [1, k − 1],

{i+m mod v, i+m+ 1 mod v, . . . , i+m+ (k − 1) mod v

∩ {i−m mod v, i−m+ 1 mod v, . . . , i−m+ (k − 1) mod v} = ∅.

So, these two members of R cannot both be in F (since F is 1-intersecting). That is each

selection of an element in A eliminates a possible selection of a member of B and vice versa.

Therefore,

|F | ≤ 1 + max{|A |, |B|} = 1 + (k − 1) = k.

Katona’s Lemma for R is simply the statement that R is (k, 1)-disjoint if v ≥ 2k. Since, R

is k-uniform, λ = k, and t = 1,

λ

(
v
t

)(
k
t

) = k
v

k
= v = |R|.

This means that R is a Katona sieve, as defined in Definition 2.6.2.

The requirement that v ≥ 2k cannot be removed because the value of v0(k, 1) = 2k. A

construction equivalent to Katona’s for v = 7 and k = 4, with v < 2k, looks like this:

1 0 0 0 1 1 1

1 1 0 0 0 1 1

1 1 1 0 0 0 1

1 1 1 1 0 0 0

0 1 1 1 1 0 0

0 0 1 1 1 1 0

0 0 0 1 1 1 1




.

All of this family’s members intersect. Indeed, this example extends to any k and v where 2k > v.

All members of the corresponding family will 1-intersect because v is too small to contain two

disjoint k-subsets.

29

3.3 Katona’s Circle Argument

Now, equipped with Katona’s lemma, we can move on to his proof. Recall the statement of

EKR-1.

Theorem 3.3.1. Given k ∈ N, k ≥ 1, there exists v0(k, 1) ∈ N such that the size of any k-uniform

1-intersecting family, (F , I, V) with |V | = v ≥ v0(k, 1) is bounded as:

|F | ≤
(
v − 1

k − 1

)
.

Katona’s proof of EKR-1 [Kat72]. Assume that v ≥ 2k and consider the summation:∑
ρ∈SV

∑
F∈F

∑
R∈R

1ρF (R).

Here SV denotes the set of all permutations of the elements of V and R is the Katona circle

family for k and v. This summation is the number of instances where a permutation maps an

element of F to an element of R. Since F is intersecting, so is the family ρF = {ρF ;F ∈ F}.
Therefore, since the largest intersecting subfamily of R is of size k, a given permutation can map

at most k elements of F to elements of R.∑
ρ∈SV

∑
F∈F

∑
R∈R

1ρF (R) ≤
∑
ρ∈SV

k = kv!. (3)

On the other hand, ∑
ρ∈SV

∑
F∈F

∑
R∈R

1ρF (R) =
∑
F∈F

∑
R∈R

∑
ρ∈SV

1ρF (R).

Given two k-subsets of V , there are (v − k)!k! permutations that map one to the other. Using

this fact and evaluating the summations:∑
F∈F

∑
R∈R

∑
ρ∈SV

1ρF (R) =
∑
F∈F

∑
R∈R

(v − k)!k!

=
∑
F∈F

|R|(v − k)!k!

= |F ||R|(v − k)!k!

= |F |v(v − k)!k!.

Combining these results,

|F |v(v − k)!k! =
∑
F∈F

∑
R∈R

∑
ρ∈SV

1ρF (R) =
∑
ρ∈SV

∑
F∈F

∑
R∈R

1ρF (R) ≤ kv!.

Finally, if |F | is isolated, we have:

|F | ≤ k

v

(
v

k

)
=

(
v − 1

k − 1

)
.

30

It is in Equation (3) of the proof that the family R is used to sieve no more than k elements

out of ρF for each permutation ρ. Now, observe that although R was a family of sets, the fact

that the blocks are distinct was used only to establish Katona’s Lemma and not in the proof

itself. Indeed, given v and k, not only could any Katona sieve with parameter t = 1 substitute

for R in this proof of the conclusion of EKR-1 for v and k, but any Katona sieve with parameters

t, k, and v could be substituted yielding a proof that the conclusion of EKR-t holds for these

values. The following theorem is not a full generalization of Katona’s proof of EKR-1 to a proof

of EKR-t. The existence of a Katona sieve would be required for this to prove EKR-t.

Theorem 3.3.2. If there exists a Katona sieve for parameters t, k, v, 0 ≤ t ≤ k ≤ v and some

λ > 0, then, for any t-intersecting family F of k-subsets of V ,

|F | ≤
(
v − t
k − t

)
.

Proof. Let R be a Katona sieve. Given a t-intersecting family F , we again we consider the

summation: ∑
ρ∈SV

∑
R∈R

∑
F∈F

1R(ρF).

For any permutation ρ ∈ SV , ρF = {ρF ;F ∈ F} is again a t-intersecting family. Since R is

(λ, t)-disjoint and k-uniform, and since ρF is t-intersecting, there are at most λ members F ∈ F

such that ρF = R for some R ∈ R. That is, given, ρ:∑
R∈R

∑
F∈F

1R(ρF) ≤ λ.

And, we have ∑
ρ∈SV

∑
R∈R

∑
F∈F

1R(ρF) ≤
∑
ρ∈SV

λ = λv!. (4)

On the other hand, ∑
ρ∈SV

∑
R∈R

∑
F∈F

1R(ρF) =
∑
F∈F

∑
R∈R

∑
ρ∈SV

1R(ρF).

And, given F ∈ F , for each R ∈ R there are (v − k)!k! permutations that map F to R:∑
R∈R

∑
ρ∈SV

1R(ρF) = |R|(v − k)!k!.

Summing over all of F we have∑
F∈F

∑
R∈R

∑
ρ∈SV

1R(ρF) = |F |(v − k)!k!.

Combining this with Inequality (4) gives

|F | ≤ λv!

|R|(v − k)!k!
=

λ

|R|

(
v

k

)
.

31

By the definition of a Katona sieve,

λ

|R|

(
v

k

)
=

(
k
t

)(
v
t

)(v
k

)
.

.

But, (
k
t

)(
v
t

)(v
k

)
=

(
v − t
k − t

)
.

Therefore, we can conclude:

|F | ≤
(
v − t
k − t

)
.

Katona himself had noted that a Steiner system can be used for such a proof [Kat00]. This

is the case where λ = 1 in Theorem 3.3.2. And, EKR-t itself is equivalent to the statement that

for v sufficiently large
(
v̄
k

)
is a Katona sieve with λ =

(
v−t
k−t
)
. By Theorem 3.3.2, regardless of the

value of λ and regardless of whether there are repeated blocks, a Katona sieve implies EKR-t for

v and k. This is a new result as Katona sieves themselves have not previously been identified.

As mentioned in Section 3.1, the exact value of v0(k, t), as defined by EKR-t, has been shown

to be v0(k, t) = (t+ 1)(k− t+ 1) [Wil84, Fra78]. We do not prove this here, but this means that

for v ≥ (t + 1)(k − t + 1) there exists a Katona sieve for some λ, namely the t-design
(
V
k

)
with

λ =
(
v−t
k−t
)
. We will see in Corollary 3.3.4, the value (t + 1)(k − t + 1) is also a lower bound on

the size of V for a Katona sieve to exist and we will later use this to eliminate possibilities. We

present the proof that Wilson cites as due to Frankl [Fra78, Wil84] of the lower bound of v0(k, t)

beginning with an explanation of the construction used.

Let Y ∈
(
V
t+2

)
and consider the family of k-subsets of V :

F = {F ∈
(
V

k

)
; |F ∩ Y | ≥ t+ 1}.

Frankl’s proof that (t+ 1)(k− t+ 1) is a lower bound for v0(k, t) compares the size of F with

the family, F ′, of k-subsets of V containing a fixed t-subset X of V . The size of F ′ is given by(
v−t
k−t
)
. Let k = 3, t = 1, and consider how the sizes of these families changes as |V | varies from

5 to 7:

|V | = 5: F =

1 1 1 1 1 0 0

1 1 1 0 0 1 1

1 0 0 1 1 1 1

0 1 0 1 0 1 0

0 0 1 0 1 0 1



Y

.

F ′ =

1 1 1 1 1 1

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1



}
X

.

32

|V | = 6: F =

1 1 1 1 1 1 1 0 0 0

1 1 1 1 0 0 0 1 1 1

1 0 0 0 1 1 1 1 1 1

0 1 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 1 0

0 0 0 1 0 0 1 0 0 1





Y

.

F ′ =

1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1





}
X

.

|V | = 7: F =

1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 0 0 1





Y

.

F ′ =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 1 1 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 1 1 0

0 0 0 1 0 0 0 1 0 0 1 0 1 0 1

0 0 0 0 1 0 0 0 1 0 0 1 0 1 1





}
X

.

Although F begins larger than F ′, F ′ grows faster as |V | is increased. Regardless of k and

t, this will be the case. The size of F ′ eventually surpasses the size of F as v grows. To be

exact, this occurs when |V | = (t+ 1)(k − t+ 1).

Theorem 3.3.3 (Extension of Tit’s Bound). If v < (t + 1)(k − t + 1) and |V | = v there exists

a family of t-intersecting k-subsets of V such that

|F | >
(
v − t
k − t

)
.

Proof. (due to Frankl [Fra78, Wil84])

Let Y ∈
(
V
t+2

)
and consider the family of k-subsets of V :

F = {F ∈
(
V

k

)
; |F ∩ Y | ≥ t+ 1}.

Any two sets in F are t-intersecting, and

|F | =
(
t+ 2

t+ 1

)(
v − (t+ 2)

k − (t+ 1)

)
+

(
v − (t+ 2)

k − (t+ 2)

)
.

33

The first term in this sum is the number k-subsets of V whose intersection with Y is exactly of

size t + 1, and the second the number of k-subsets whose intersection with Y is exactly of size

t+ 2. Rearranging terms in the previous equation, we have:

|F | = (t+ 2)(v − k)(k − t)− (k − t− 1)(k − t)
(v − t− 1)(v − t)

(
v − t
k − t

)
.

If |F | ≤
(
v−t
k−t
)
, we must have:

(t+ 2)(v − k)(k − t)− (k − t− 1)(k − t)
(v − t− 1)(v − t)

≤ 1.

Letting x = v − t− 1 and y = (k − t) and rearranging terms, this becomes

x2 − (t+ 2)xy − (t+ 1)y2 = (x− (t+ 1)y)(x− y) ≥ −(x− (t+ 1)y).

Since x− y = v − k − 1 is greater than or equal to zero unless v = k, if v 6= k, x− (t+ 1)y ≥ 0,

or v ≥ (t+ 1)(k − t+ 1).

Because of this lower bound on the value of v0(k, t), we also have a lower bound for the

existence of a Katona sieve with parameters v,k,t, and any λ.

Corollary 3.3.4. If (R, I, V) is a Katona sieve for parameters t, k, v, and λ, then

v ≥ (t+ 1)(k − t+ 1).

Proof. We combine Theorem 3.3.2 and Theorem 3.3.3 and argue as follows: suppose that

(R, I, V) is a Katona sieve where v < (t + 1)(k − t + 1). Then, it can be used via Theorem

3.3.2 to prove that the conclusion of EKR-t holds for the particular values t,k, and v . But, the

conclusion of EKR-t cannot hold when v < (t+ 1)(k − t+ 1), because of Theorem 3.3.3.

This lower bound on the value of v for a Katona sieve to exist is a direct extension of the Tit’s

lower bound on the value of v for a Steiner system to exist [Tit64]. The question that remains

is if v ≥ (t+ 1)(k − t+ 1), for which values of λ does there exist a Katona sieve. We know that

one exists for λ =
(
v−t
k−t
)
, but what are the smaller values of λ for which there exists a Katona

sieve? This work is a computer-based search to begin answering this question.

34

Chapter 4

Computer Search

Up until this point, we have been explaining our problem and its origin. Now, we will describe

programs that can be used to search for Katona Sieves. The reader is invited to recall that the

incidence matrix representing the collection
(

6̄
3

)
is:

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0

0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1

0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1

0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1




.

Since we have not yet carefully looked at an incidence matrix representing a Katona sieve, we will

now use this as an example. We will confirm that this matrix satisfies the definition of a Katona

sieve, or rather, that this matrix satisfies the equivalent conditions for a matrix to represent a

Katona sieve.

The collection is clearly 3-uniform. We want to show that it is (4, 2)-disjoint. That is, we are

choosing λ = 4 and t = 2. So we will argue that and choice of λ+ 1 = 5 columns includes a pair

that does not 2-intersect. Note that this matrix is special because it represents all 3-subsets of a

set of size 6. What this means is that for any choice of two rows, the rows and the columns can be

rearranged to yield the matrix above with these two rows moved to the first two positions. Now

suppose that we select 5 columns pairwise 2-intersecting and that we have rearranged the matrix

so that the first two columns in the above matrix are included in the selection of 5 columns.

Only the third, fourth, fifth, and eleventh columns 2-intersect both of the first two columns. Of

these, no selection of three are pairwise 2-intersecting. This contradicts the existence of these 5

pairwise 2-intersecting columns.

35

Finally, we check the size condition of Definition 2.6.2:

20 = 4 ∗
(
6

1

)(
3

1

)
.

So this is indeed a Katona sieve.

We will present some programs to search for Katona sieves of given parameters in Section

4.2. We begin with a discussion of general techniques for testing the conditions that in modified

form will apply to all the programs.

4.1 Condition Testing

In this section, we will review the conditions for a collection to represent a Katona Sieve and

explain how these conditions will be tested.

Property 4.1.1. A v × b matrix, M , represents a Katona sieve if it satisfies the following

conditions:

1. M is k-uniform, that is each column contains k 1’s.

2. M has b = λ
(vt)
(kt)

columns.

3. For any (λ+1)-subset J ⊆ b̄, there exists a pair j, j′ ∈ J where the inner product, Mj ·Mj′ ,

of the columns Mj and Mj′ is less than t.

Note that the third condition of Property 4.1.1 is stronger than the following, which together

with the first and second conditions imply only that M is a t-design.

3’. For any t-subset T ⊆ v̄, the number of columns containing T is λ, |{j ∈ v̄;1T ·Mj = t}| = λ.

Indeed, that Conditions 1, 2 and 3 imply 3’ is the result of Theorem 2.6.3. However, for

convenience, we will still refer to 3’ as Condition 3’ of Property 4.1.1. For the example above,

an incidence matrix of
(

6̄
3

)
, Conditions 1 and 2 were easily verifiable by the reader. Condition

3 was more difficult to verify, and we relied on specific properties that this matrix has. We

now explain a more general technique to test this property. To illustrate, we use the following,

smaller, 2-design with t = 2, k = 3, v = 6, and λ = 2:

A =

1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

1 0 1 0 0 1 0 0 1 1

0 1 0 1 0 0 1 0 1 1

0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1 0 1





36

We show that this also represents a Katona sieve. Conditions 1 and 2 are readily verifiable.

In order to verify Condition 3, we construct an auxilliary graph with the the blocks as vertices

and an edge between two vertices if and only if the two blocks are 2-intersecting. First we can

compute the matrix ATA. The entry (i, j) of ATA is the inner product of column i and column

j of the matrix A:

ATA =

3 2 2 1 1 2 1 1 1 1

2 3 1 2 1 1 2 1 1 1

2 1 3 1 2 1 1 1 2 1

1 2 1 3 2 1 1 1 1 2

1 1 2 2 3 1 1 2 1 1

2 1 1 1 1 3 1 2 1 2

1 2 1 1 1 1 3 2 2 1

1 1 1 1 2 2 2 3 1 1

1 1 2 1 1 1 2 1 3 2

1 1 1 2 1 2 1 1 2 3




.

This matrix is known as the block intersection matrix of A. Since we are interested in t-

intersecting columns of A, we will be considering a graph that we will denote φ(A) throughout

the remainder of this work. The adjacency matrix of φ(A) is derived from ATA, with an edge

between two vertices if the dot product of the corresponding columns is greater than or equal to

t. In this case, t = 2, so we have the adjacency matrix shown in Figure 7.

φ(A) =

0 1 1 0 0 1 0 0 0 0

1 0 0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 0 1 0

0 1 0 0 1 0 0 0 0 1

0 0 1 1 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 1 1 0

0 0 0 0 1 1 1 0 0 0

0 0 1 0 0 0 1 0 0 1

0 0 0 1 0 1 0 0 1 0





Figure 7: φ(A), the t-intersection graph of A

Suppose that this graph has a clique of size λ + 1. Then, there would be λ + 1 columns of

the original collection, A, such that the inner product of any pair of them is at least t. So, A

would not be (λ, t)-disjoint. On the other hand, if no such clique exists, then in any selection

of λ+ 1 columns of A at least one pair has dot product less than t. That is, A is the incidence

matrix of a (λ, t)-disjoint collection if and only if φ(A) has no cliques of size greater than λ. A

picture of the graph φ(A) can be seen in Figure 8. Using this picture, the reader can easily see

37

that there are no cliques of size λ + 1 = 3, and, therefore, our collection is (λ, t)-disjoint. This

together with Conditions 1 and 2 of Property 4.1.1 makes the collection a Katona sieve.

Note that any algorithm can be used for finding the maximum size of a clique in φ(A).

Initially, the program used for finding the maximum clique size was Sampo Niskanen and Patric

Österg̊ard’s Cliquer [Ns03]. Later, we used a simple routine that saves all cliques of size less than

or equal to λ, extending and retracting cliques as columns were filled. This is not included in

the programs and we will simply refer to an arbitrary algorithm MaxClique for determining the

clique-number of φ(A).

12 3

4 5

6

7

8

9

10

Figure 8: Picture of φ(A)

4.2 Programs

The programs used are all backtracking algorithms which progressively fill an initially empty

matrix. For demonstration, we begin with a very general, though impractical, program that can

fill the entries in any order. As we proceed to later programs, we will use specific orders to fill

the entries. The first program would be very slow and was not implemented and the second was

not implemented because the third program is a minor modification of the second which was

implemented. The fourth and fifth programs were implemented.

For the remainder of this chapter, we assume that t = 2 unless otherwise noted.

4.2.1 Program 1

The concepts are in place to define an initial backtracking program that finds a (0,1)-matrix to

represent each unique nonisomorphic Katona sieve given parameters t,v,k, and λ. We write the

first program in two functions. The first tests to see if a completed matrix satisfies the conditions

to represent a Katona sieve, the conditions of Property 4.1.1. The second function is recursive.

Over the course of the recursion, an initially empty matrix is filled in an arbitrary order with 0’s

and 1’s. The recursion serves to consider all possible completions of the matrix.

Condition 2 of Property 4.1.1 says that we can assume a priori the value of b. Condition 3’,

which followed from Theorem 2.6.3, tells us that the matrix must also represent a 2-design. Since

38

we are generating a 2-design we can use the fact that all rows must have r = bk
v 1’s. Moreover,

since we are now assuming that t = 2, we use the fact that the inner product of any pair of

rows must be λ. Since checking these properties is computationally less intensive than clique

testing, it is advantageous to test these prior to performing clique testing. The condition testing

is presented in Algorithm 1.

Algorithm 1 Program 1 (initial version)

Prerequisites:

• A maximum clique-testing algorithm, MaxClique.

• A canonical form Ψ for Mv,b over Sv × Sb as defined in Definition 2.4.1.

• A data-structure to hold solutions, S.

1: function ConditionsPass(A)

2: For each j do

3: if
∑v−1
i=0 A(i,j) 6= k then return false.

4: For each i do

5: if
∑b−1
j=0A(i,j) 6= r then return false.

6: For each {i, i′} ∈
(
v̄
2

)
do

7: if not
∑b−1
j=0A(i,j)A(i′,j) = λ then return false.

8: if MaxClique(φ(A)) > λ then return false.

9: return true.

10: end function

The second function is the backtracking recursion that fills the matrix with 0’s and 1’s. At

a given node of the recursion at depth m ≤ vb, the recursive function begins with the matrix H

having entries (i1, j1), (i2, j2), . . . (im−1, jm−1) filled. The two children of this node begin with a

0 as entry (im, jm) and a 1 as entry (im, jm). When m = vb+ 1, H is completely filled and the

conditions are tested. If the matrix satisfies the conditions, its canonical form is then compared

to the canonical forms of all previously seen matrices that satisfied the conditions which were

stored in S. If it is new, in that its canonical form was not previously seen, its canonical form

is also stored in S. Algorithm 2 presents this recursion.

As it is, this program generates all 2vb, v× b matrices, we would like to prune this search tree

by eliminating some of the partially completed matrices which are impossible to complete. This

will be done by moving the condition testing as specified in ConditionsPass to the nodes of

the search tree. In terms of the pseudocode, we wish to move the test, ConditionsPass, before

the statement “If m = vb + 1” of Algorithm 2. However, the actual routines encompassing

ConditionsPass will need to be modified to accomplish this. Let us consider the conditions

specified in ConditionsPass in relation to a matrix only partially filled with 0’s and 1’s:

39

Algorithm 2 Program 1 (initial version, continued)

11: function Recurse(m)

12: if m = vb+ 1 then

13: if not ConditionsPass(H) then return

14: For each A ∈ S do

15: if Ψ(H) = A then return

16: Copy Ψ(H) into S

17: H(im,jm) ← 0

18: Recurse(m+ 1)

19: H(im,jm) ← 1

20: Recurse(m+ 1)

21: H(im,jm) ←?

22: end function

1 1 1 1 1 0 0 0 0 0

1 1 ? 0 0 1 ? ? ? 0

0 1 ? ? ? ? ? ? ? ?

1 0 ? 1 ? ? ? ? ? 1

0 0 ? 0 1 0 ? ? ? 0

0 0 ? 1 1 1 ? ? ? 1




.

Here, “?” indicates values not yet set. This matrix corresponds to a possible internal node of

the search tree. Since the matrix is not complete we need to determine whether it is impossible

for any of the leaf nodes descended from this node to be a solution. If this is the case, then we

do not need to continue the recursion to the children of this node. For this program, we will only

illustrate this with the two conditions specified by:

2: For each j do

3: if
∑v−1
i=0 A(i,j) 6= k then return false.

4: For each i do

5: if
∑b−1
j=0A(i,j) 6= r then return false.

since these are straightforward to modify. Condition 1 of 4.1.1 simply says that each column

contains k 1’s and condition 2 that each row contains r 1’s. In the context of an incomplete

matrix, Condition 1 becomes that the number of 1’s in each column doesn’t exceed k and the

number of 0’s in each column doesn’t exceed v − k as otherwise there could not be k 1’s in the

completed matrix. Similarly, condition 2 becomes that the number of 1’s in each row cannot

40

exceed r and the number of 0’s cannot exceed b− r.

Algorithm 3 Test row sums (final version).

1: function RowSumsPass(A)

2: For each i do

3: if
b−1∑
j=0

A(i,j)=1

A(i,j) > r then return false.

4: if
b−1∑
j=0

A(i,j)=0

(1−A(i,j)) > b− r then return false.

5: return true.

6: end function

Algorithm 4 Test column sums (final version).

1: function ColumnSumsPass(A)

2: For each j do

3: if
v−1∑
i=0

A(i,j)=1

A(i,j) > k then return false.

4: if
v−1∑
i=0

A(i,j)=0

(1−A(i,j)) > v − k then return false.

5: return true.

6: end function

On the other hand, the other conditions tested by ConditionsPass require a fairly elaborate

modification to be tested at internal nodes when the entries are being filled in any order. Since

this program only serves for demonstration, we refrain from presenting them here. But we will

do so in later programs, where it is more simple.

Before proceeding, we update the statement of the program to reflect the preceeding discus-

sion. We introduce two separate functions, NodeConditionsPass and LeafConditionsPass,

separating the conditions that can be tested only at the leaves from those that can now be tested

at the internal nodes of the recursive tree. This updated program is presented in Algorithm 5.

Both the (λ, t)-disjointness testing and isomorphism testing are performed only at the leaf

nodes. This will be addressed in the next program. In order to perform isomorphism testing at

the internal nodes of the search tree, we will assume more about the order in which the entries

are being filled. That is, in all subsequent programs, the order in which the entries of the matrix

are filled will be more restrictive.

41

Algorithm 5 Program 1 (final version).

Prerequisites:

• A maximum clique-testing algorithm, MaxClique.

• A canonical form Ψ for Mv,b over Sv × Sb as defined in Definition 2.4.1.

• A data-structure to hold solutions, S.

1: function NodeConditionsPass(A)

2: if not RowSumsPass(A) then return false.

3: if not ColumnSumsPass(A) then return false.

4: return true.

5: end function

6: function LeafConditionsPass(A)

7: For each {i, i′} ∈
(
v̄
2

)
do

8: if not
∑b−1
j=0A(i,j)A(i′,j) = λ then return false.

9: if MaxClique(φ(A)) > λ then return false.

10: return true.

11: end function.

12: function Recurse(m)

13: if not NodeConditionsPass(H) then return

14: if m = vb+ 1 then

15: if not LeafConditionsPass(H) then return

16: For each A ∈ S do

17: if Ψ(H) = A then return

18: Copy Ψ(H) into S

19: H(im,jm) ← 0

20: Recurse(m+ 1)

21: H(im,jm) ← 1

22: Recurse(m+ 1)

23: H(im,jm) ←?

24: end function

4.2.2 Program 2

Whereas in Program 1 we only required a fixed ordering for filling the entries of the matrix, in

this program, we will be filling the matrix an entire column at a time. Each column is therefore

42

set to an element of
(
v̄
k

)
, k-subsets of a set of size v. That is, the elements of the set represent the

entries of the column that are set to 1. We first state an initial version of our column-by-column

program. Then, we improve it by first bringing the condition testing to the internal nodes of

the search tree and then by bringing isomorphism testing to the internal nodes too. The initial

version of this program is found in Algorithm 6. Note that since we are assuming that we are

setting the columns of H to elements of
(
v̄
k

)
, we do not need to test that each column sums to k.

We now generalize the condition that the inner product of any pair of rows of an acceptable

completed matrix is λ so that it can be tested at the internal nodes of the search tree. That is,

we need a method DotProductsPass(n,A) to test for condition 3’ of Property 4.1.1, when A

is a matrix with only n columns filled. When completing the matrix column by column, we need

to check that for any pair of rows, it is still possible for them to be completed so as to have inner

product equal to λ. Since the number of 1’s in each row of an acceptable completed matrix is r,

this is not possible for a pair of rows Ai and Ai
′

if:

1. the number of columns j such that A(i,j) = 1 and A(i′,j) = 1 already exceeds λ,

2. the number of columns j such that A(i,j) = 1 and A(i′,j) = 0 exceeds r − λ,

3. the number of columns j such that A(i,j) = 0 and A(i′,j) = 1 exceeds r − λ, or

4. the number of columns j such that A(i,j) = 0 and A(i′,j) = 0 exceeds b− (2r − λ).

Therefore, our method DotProductsPass should be as shown in Algorithm 7.

Algorithm 7 Test row intersections (final version).

1: function DotProductsPass(n,A)

2: For each {i, i′} ∈
(
v̄
2

)
do

3: if
∑n−1
j=0 A(i,j)A(i′,j) > λ then return false.

4: if
∑n−1
j=0 (1−A(i,j))A(i′,j) > r − λ then return false.

5: if
∑n−1
j=0 A(i,j)(1−A(i′,j)) > r − λ then return false.

6: if
∑n−1
j=0 (1−A(i,j))(1−A(i′,j)) > b− (2r − λ) then return false.

7: return true.

8: end function

Generalizing clique testing so that it can be performed at the internal nodes of the search

tree is also greatly simplified when compared to the modification that would be needed when

filling the entries in arbitrary order. Suppose that A is a matrix with n columns filled, and that

A′ is a completion of A to b columns, the upper left n × n submatrix of ψ(A′) is determined

by the inner products of the first n columns of A′ and any clique of size greater than λ in this

43

Algorithm 6 Program 2 (initial version).

Prerequisites:

• A maximum clique-testing algorithm, MaxClique.

• A canonical form Ψ for Mv,b over Sv × Sb as defined in Definition 2.4.1.

• A data-structure to hold solutions, S.

1: function NodeConditionsPass(A)

2: if not RowSumsPass(A) then return false.

3: return true.

4: end function

5: function LeafConditionsPass(A)

6: For each {i, i′} ∈
(
v̄
2

)
do

7: if not
∑b−1
j=0A(i,j)A(i′,j) = λ then return false.

8: if MaxClique(φ(A)) > λ then return false.

9: return true.

10: end function.

11: function Recurse(n)

12: if not NodeConditionsPass(H) then return

13: if n = b then

14: if not LeafConditionsPass(H) then return

15: For each A ∈ S do

16: if Ψ(H) = A then return

17: Copy Ψ(H) into S

18: For each ~b ∈
(
v̄
k

)
do

19: Hn ← ~b

20: Recurse(n+1)

21: Hn ←?? . . .??

22: end function

44

submatrix is also a clique in ψ(A′). But, this submatrix can already be determined from the

completed columns of A. That is, if we define an n× n matrix

φn(A)(j,j′) =

 0 if Aj ·Aj′ < t and

1 if Aj ·Aj′ ≥ t,

then any clique of size greater than λ in φn(A) would appear in φ(A′) for any completion A′ of

A. Therefore, we do not need to continue completing A. This gives us Algorithm 8 as the final

version of NodeConditionsPass which will be used in all subsequent programs.

Algorithm 8 Test Node Conditions (final version).

1: function NodeConditionsPass(n,A)

2: if not RowSumsPass(A) then return false.

3: if not DotProductsPass(n,A) then return false.

4: if MaxClique(φn(A)) > λ then return false.

5: return true.

6: end function

Now recall that isomorph rejection is still only being performed at the leaves of the search

tree. Indeed, thus far we only have a canonical form for completed matrices, Ψ. To remedy this,

we will require more. For precision, we need some additional definitions, but we will immediately

simplify the notation afterwards:

Definition 4.2.1. For n ∈ [0, b], define:

Mn
v,b = {v × b matrices with entries from {0, 1} in columns [0, n− 1] and “?” otherwise}.

The elements of Mn
v,b will be called matrices truncated to n columns.

We also need a way to represent truncations of matrices.

Definition 4.2.2. For m,n ∈ [0, b] where m ≥ n and M ∈Mm
v,b, define πmn (M) to be the matrix

in Mn
v,b obtained from M with all entries from columns [n,m − 1] substituted with “?”. The

matrix πmn (M) will also be called M truncated to n columns and M will be called a completion

of πmn (M) to m columns.

Note that M0
v,b, contains only the matrix with all entries “?”, and πm0 (M) is this matrix for

any M and m ∈ [0, b]. Also Mb
v,b =Mv,b. Throughout this section, we will make the following

notational conventions for simplicity:

1. For any n, the subscripts v and b on Mn
v,b will usually be dropped.

45

2. Although the functions πmn had a superscript to represent the domain of the function, we

will simply write πn and the domain can be inferred from the context.

3. For any n, and M ∈ Mn
v,b, ‖M‖ will represent the row major lexicographical value with

respect to the function f : {0, 1, ?} → {0, 1, 2} and the permutations fixing columns beyond

the nth. This was defined in Definition 2.1.15.

Finally, we will make use of a sequence of “pruning functions”.

Definition 4.2.3. Given n ∈ [0, b], let U be an arbitrary set and ψn :Mn
v,b → U . The function

ψn is a pruning function for level n if it satisfies:

For any A,B in Mn
v,b, if ψn(A) = ψn(B) and A′ ∈Mv,b such that πn(A′) = A, then there

exists B′ ∈Mv,b such that πn(B′) = B and A′ ∼= B′.

In other words, ψn is a “pruning function” for level n if it only maps two matrices truncated

to n columns to the same value if they can be completed to form isomorphic matrices. Despite

the notational difficulty, the modification to the program and its justification are fairly intuitive.

This is the modification and its motivation in point form:

• The current program recurses on all partial matrices that might be completed to yield a

(λ, 2)-disjoint design.

• For each n ∈ [0, b] we have a pruning function that, given two partial matrices A,B ∈Mn,

tells us whether any completion of A is isomorphic to a completion of B.

• Modify the program so that if any completion of a partially completed matrix A must

be isomorphic to a completion of partially completed matrix B that was already recursed

upon, then A is not recursed upon.

Note that this implies recording the value of the pruning function already seen in some way,

for example, keeping a representative for each value. We do so by introducing a data structure

Sn at each level for storage. Also note that we can always select ψn to be the identity mapping

on Mn; any completion of a partially complete matrix is obviously isomorphic to itself.

A toy example of a pruning function for level n is as follows: arbitrarily select a matrix

A ∈ Mn for some n ∈ [0, v]. Let B be the matrix formed from A by interchanging the first two

columns of A. Define ψn :Mn →Mn ∪ {∅} :

ψn(M) =

 ∅ if M = A or M = B, and

M otherwise.

Then, if ψn(M) = ψn(N), either:

46

1. Neither M nor N are equal to A or B, in which case ψm(M) = ψm(N) implies M = N .

So, any completion of M is a completion of N .

2. M = A and N = B or vice versa, in which case any completion of M can be formed from

a completion of N by interchanging the first two collmns.

3. M = N = A or M = N = B, and, again, any completion of M is a completion of N .

We will return to our choice of mappings ψn later in this section, but now we modify the

program and prove its correctness using Definition 4.2.3. The modified program is displayed in

Algorithm 9.

Moving isomorphism testing to the internal nodes of the search tree by means of the prun-

ing functions ψn is a relatively significant change that warrants proving the correctness of the

program. We need to show that S contains all possible canonical forms of elements ofM which

satisfy the conditions of being a Katona sieve.

Claim 4.2.1. For any matrix M ∈M that can represent a Katona sieve, the preceeding program

generates a matrix M ′ ∈M such that M ∼= M ′ and Ψ(M ′) ∈ S.

Proof. We will argue by induction. But first, we explicitly state the key property of NodeCon-

ditionsPass(n,A):

If A is a Katona sieve, then for any n ∈ [0, b], NodeConditionsPass(n, πn(A)) is true.

The correctness of this was explained earlier when defining NodeConditionsPass. We also use

the fact that if A,B ∈ M and A ∼= B, then if A is (λ, 2)-disjoint, so is B. Now, we can proceed

with the induction.

First, note that if ψb(πb(A
′)) ∈ Sb, then Ψ(A′) ∈ S. Indeed, if ψb(πb(A

′)) ∈ Sb then a matrix

B ∈ Mb = M such that ψb(B) = ψb(πb(A
′)) was generated and recursed upon. But B′ = B

is the unique matrix such that B = πb(B
′) and A′ is the unique matrix such that A′ = πb(A

′).

Since ψb(πb(B
′)) = ψb(πb(A

′)), it must be the case that B′ ∼= A′. Since A′ is (λ, 2)-disjoint, so

is B′, and Ψ(B′) = Ψ(A′) was added to S.

Suppose that a matrix A′0 ∈ M is (λ, 2)-disjoint and Ψ(A′0) /∈ S. Let w0 be the great-

est index in [0, b] such that ψw0
(πw0

(A′0)) ∈ Sw0
. Then, ψw0+1(πw0+1(A′0)) /∈ Sw0+1. So it

must be the case that a matrix A1 ∈ Mw0+1 was previously generated with ψw0+1(A1) =

ψw0+1(πw0+1(A′)). By the definition of a pruning function, there must be A′1 ∈ M such that

A′1
∼= A′0 and πw0+1(A′1) = A1. Since A′1 is isomorphic to A′0, A′1 is also (λ, 2)-disjoint and for

any n ∈ [0, b], NodeConditionsPass(n, πn(A′1)) is true. If w1 is the greatest index such that

ψw1(πw1(A′1)) ∈ Sw1 then and w1 is strictly greater than w0. This argument can be repeated with

A′1 to yield w2 and A′2 ∈ Mw2 such that w2 > w1 > w0, ψw2
(πw2

) ∈ Sw2
, and A′2

∼= A′1
∼= A′0.

Continuing in this way, eventually w` will be equal to b and we will have a matrix A′`
∼= A′ that

47

Algorithm 9 Program 2 (second version).

Prerequisites:

• A maximum clique-testing algorithm, MaxClique.

• A canonical form Ψ for Mv,b over Sv × Sb as defined in Definition 2.4.1.

• A data-structure to hold solutions, S.

• Pruning functions ψn for n ∈ [0, b] satisfying Definition 4.2.3.

• A sequence of data-structures to hold partial solutions, Sn, for n ∈ [0, b].

1: function NodePruningPasses(n,A)

2: For each M ∈ Sn do

3: if ψn(A) = M then return false.

4: Copy ψn(A) into Sn

5: return true.

6: end function

7: function Recurse(n)

8: if not NodeConditionsPass(n,H) then return

9: if not NodePruningPasses(n,H) then return

10: if n = b then

11: For each A ∈ S do

12: if Ψ(H) = A then return

13: Copy Ψ(H) into S

14: For each ~b ∈
(
v̄
k

)
do

15: Hn ← ~b

16: Recurse(n+1)

17: Hn ←?? . . .??

18: end function

48

was generated, and such that ψb(πb(A
′
`)) ∈ Sb. But this implies Ψ(A′`) = Ψ(A′0) was added to

S.

That only one matrix is generated isomorphic to a given matrix by the program is ensured

by the final isomorphism test at level n = b. Since we have not defined the mappings ψn for

n ∈ [0, b] we essentially have a template for a program. The pruning functions that we would

like to use are canonical forms with respect to Gn = {(ρ, σ) ∈ Sv × Sb; j ≥ n ⇒ σj = j}, the

permutations fixing all but the first n columns. So, for example we can define:

ψn(M) = ρ′Mσ′ such that ‖ρ′Mσ′‖ = max
(ρ,σ)∈Gn

‖ρMσ‖.

We need to verify that this choice of ψn for n ∈ [0, b] satisfies the definition of a pruning

function. Suppose that A,B ∈ Mn such that ψn(A) = ψn(B) and A′ ∈ M is a completion of

A. That is, A = πn(A′). Since ψn(A) = ψn(B), by the definition of ψn, there are permutations

(ρA, σA), (ρB , σB) ∈ Gn such that:

ρAAσA = ψn(A) = ψn(B) = ρBBσB .

By the definition of Gn, σAσ
−1
B maps columns [0, b−1] to columns [0, b−1] and columns [n, b−1]

to columns [n, b− 1]. But this means that:

πn(ρ−1
B ρAA

′σAσ
−1
B) = πn(ρ−1

B ρAA
′)σAσ

−1
B .

By its definition πn commutes with any permutation of rows. So,

πn(ρ−1
B ρAA

′σAσ
−1
B) = πn(ρ−1

B ρAA
′)σAσ

−1
B

= ρ−1
B ρAπn(A′)σAσ

−1
B

= ρ−1
B ρAAσAσ

−1
B

= B.

So for any A,B ∈Mn such that ψn(A) = ψn(B), and A′ ∈M such that A = πn(A′) there exists

a B′ ∈M such that πn(B′) = B and B′ ∼= A′. Namely,

B′ = ρ−1
B ρAA

′σAσ
−1
B ,

where ρAAσA = ψn(A) = ψn(B) = ρBBσB .

In this verification, the only property ofGn that was used is that each element ofGn commutes

with πn. As such, any subgroup of Gn could also be used to define ψn. For example, the subgroup

of Gn that fixes the rows, {(e, σ) ∈ Gn; e is the identity permutation of Sv}, could have been

used. The canonical form with respect to this subgroup is the matrix obtained by sorting the

columns in lexicographical order.

49

It is important to note that for n ∈ [0, b], ψn can be defined separately for each n. When n

is larger, that is, when more columns are filled, it may be costly to compute a canonical form.

Also, the number of different isomorphism classes may be quite large for some values of n, so

using a canonical form as our pruning function may not always be appropriate. For this reason,

we may define ψn to be the identity for some values of n and avoid this cost. For example, we

can choose ψn as a canonical form over Gn for small values of n and the identity for larger values

of n. If I ∈ [0, b] is the level to which we wish to use a canonical form for ψn, then we can state

our final selection of the sequence ψn.

Let Gn = {(ρ, σ) ∈ Sv × Sb; j ≥ n⇒ σj = j}. Then define:

ψn(M) =

 ρ′Mσ′ such that ‖ρ′Mσ′‖ = max(ρ,σ)∈Gn ‖ρMσ‖ if 0 ≤ n ≤ I, and

M if I < n ≤ b.
(5)

Note that choosing ψn to be the identity means that at level n, no pruning of the search

tree is being performed at all. That is, any partial matrix generated at level n is recursed upon.

For this reason, if ψn is the identity, it is not necessary to store the values in Sn at all unless

the partial matrices are otherwise needed. The final version of this program is thus presented in

Algorithm 10.

4.2.3 Program 3

In this section we will make only a minor modication to Program 2. This program was imple-

mented and its performance will be compared to Program 4 in Section 4.3. We still complete

the matrix column by column, but first we set the values of the first two rows to be elements of(
b
r

)
whose inner product is λ. We then proceed to fill the remaining entries of each column in

order so that each column contains k 1’s.

Since any acceptable way to complete the first two rows is isomorphic to any other through

a permutation of the columns, we can simply start at level n = 0 with a specific selection for

these two rows. In particular, we begin with the matrix H in the form shown in Figure 9.

The column by column generation is then modified as follows:

1. Fill the remaining entries of the first r − λ columns with (k − 1)-subsets of [2, v − 1].

2. Fill the remaining entries in the next λ columns with (k − 2)-subsets of [2, v − 1].

3. Fill the remaining entries of the next r − λ columns with (k − 1)-subsets of [2, v − 1].

4. Finally, the remaining entries in the last b− 2r + λ with k-subsets of [2, v − 1].

We restate the program with this modification in Algorithm 11.

50

Algorithm 10 Program 2 (final version).

Prerequisites:

• A maximum clique-testing algorithm, MaxClique.

• A canonical form Ψ for Mv,b over Sv × Sb as defined in Definition 2.4.1.

• A data-structure to hold solutions,S.

• Pruning functions ψn for n ∈ [0, b] as in Equation 5 on Page 5.

• A sequence of data-structures to hold partial solutions, Sn, for n ∈ [0, b].

1: function NodePruningPasses(n,A)

2: For each M ∈ Sn do

3: if ψn(A) = M then return false.

4: Copy ψn(A) into Sn

5: return true.

6: end function

7: function Recurse(n)

8: if not NodeConditionsPass(n,H) then return

9: if not NodePruningPasses(n,H) then return

10: if n = b then

11: For each A ∈ S do

12: if Ψ(H) = A then return

13: Copy Ψ(H) into S

14: For each ~b ∈
(
v̄
k

)
do

15: Hn ← ~b

16: Recurse(n+1)

17: Hn ←?? . . .??

18: end function

51

Algorithm 11 Program 3 (final version).

Prerequisites:

• A maximum clique-testing algorithm, MaxClique.

• A canonical form Ψ for Mv,b over Sv × Sb as defined in Definition 2.4.1.

• A data-structure to hold solutions, S.

• Pruning functions ψn for n ∈ [0, b] as in Equation 5 on Page 50.

• A sequence of data-structures to hold partial solutions, Sn, for n ∈ [0, b].

1: function NodePruningPasses(n,A)

2: For each M ∈ Sn do

3: if ψn(A) = M then return false.

4: Copy ψn(A) into Sn

5: return true.

6: end function

7: function Recurse(n)

8: if not NodeConditionsPass(n,H) then return

9: if not NodePruningPasses(n,H) then return

10: if n = b then

11: For each A ∈ S do

12: if Ψ(H) = A then return

13: Copy Ψ(H) into S

14: if n < r − λ then

15: For each ~b ∈
(
v−2
k−1

)
do

16: Hn ← ~b

17: Recurse(n+1)

18: if r − λ ≤ n < r then

19: For each ~b ∈
(
v−2
k−2

)
do

20: Hn ← ~b

21: Recurse(n+1)

22: if r ≤ n < 2r − λ then

23: For each ~b ∈
(
v−2
k−1

)
do

24: Hn ← ~b

25: Recurse(n+1)

26: if 2r − λ ≤ n < b then

27: For each ~b ∈
(
v−2
k

)
do

28: Hn ← ~b

29: Recurse(n+1)

30: Hn ←?? . . .??

31: end function

52

H =

1 1 . . . 1 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1 1 1 . . . 1 0 0 . . . 0

? ? . . . ? ? ? . . . ? ? ? . . . ? ? ? . . . ?

? ? . . . ? ? ? . . . ? ? ? . . . ? ? ? . . . ?

? ? . . . ? ? ? . . . ? ? ? . . . ? ? ? . . . ?

? ? . . . ? ? ? . . . ? ? ? . . . ? ? ? . . . ?

? ? . . . ? ? ? . . . ? ? ? . . . ? ? ? . . . ?





 r − λ  λ  r − λ b− 2r + λ

.

Figure 9: Completion of first two rows

4.2.4 Program 4

Filling the matrix in the manner of Program 3, beginning with the first two rows completed,

opens the door to another possibility. This program was implemented and will be compared

to Program 3 in Section 4.3. For illustration, we will use the construction of a 2-design with

parameters v = 7, k = 3, b = 14, r = 6, and λ = 2. Suppose that with n = r columns completed,

the procedure begins with:

H =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 ? ? ? ? ? ? ? ?

1 0 0 1 0 0 ? ? ? ? ? ? ? ?

1 1 0 0 0 0 ? ? ? ? ? ? ? ?

0 1 1 0 0 0 ? ? ? ? ? ? ? ?

0 0 1 1 0 0 ? ? ? ? ? ? ? ?




.

After some searching, the program might reach this matrix at level n = 2r − λ:

H =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 ? ? ? ?

1 1 0 0 0 0 1 0 0 1 ? ? ? ?

0 0 1 1 0 0 1 1 0 0 ? ? ? ?

1 1 0 0 0 0 0 1 1 0 ? ? ? ?

0 0 1 1 0 0 0 0 1 1 ? ? ? ?




.

Notice the reappearance of the section indicated with dotted lines.

Notation: Let us use Σ1, Λ, Σ2, and Ω to denote the various sections of the matrix H as

follows:

53

H =

1 1 . . . 1 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1 1 1 . . . 1 0 0 . . . 0

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?



Σ1(H) Λ(H) Σ2(H) Ω(H)

 r − λ  λ  r − λ b− 2r + λ

.

The preceding example illustrates that for any valid completion of the matrix up to level

n = 2r − λ:

H =

1 1 . . . 1 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1 1 1 . . . 1 0 0 . . . 0

? ? ? ? ? ? ? ? ? ? ? ? ? ? . . . ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? . . . ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? . . . ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? . . . ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? . . . ?



Σ1(H) Λ(H) Σ2(H)

 r − λ  λ  r − λ b− 2r + λ

,

the following matrix with Σ2(H) occupying the first columns must be a valid completion of r

columns:

H′ =

1 1 . . . 1 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1 1 1 . . . 1 0 0 . . . 0

? ? ? ? ? ? . . . ?

? ? ? ? ? ? . . . ?

? ? ? ? ? ? . . . ?

? ? ? ? ? ? . . . ?

? ? ? ? ? ? . . . ?



Σ2(H) Λ(H)

 r − λ  λ  r − λ b− 2r + λ

.

We will actually be using this observation in the reverse order. When the program has filled r

columns of H, we will fill the columns [r, 2r − λ − 1] with previously seen Σ1(A), where A is a

matrix the program generated with r − λ columns completed. In order to keep things readable,

we need to be able to represent a matrix constructed from putting together or concatenating

smaller matrices together. In particular, we need the following notation:

Definition 4.2.4. If A is a (v − 2)× x matrix, B is a (v − 2)× y matrix, and H is the matrix

54

of Figure 9 on Page 53, then we define A|B to be the matrix:

(A|B)(i,j) =


H(i,j) if 0 ≤ i < 2,

A(i−2,j) if 2 ≤ i < v and 0 ≤ j < x, and

B(i−2,j−x) if 2 ≤ i < v and a ≤ j < x+ y .

In other words, “|” concatenates the matrices A and B into an a (v − 2) × (x + y) matrix

and then inserts it into the left-hand side of the “?” portion of Figure 9. For example, if A is a

(v − 2)× (r − λ) matrix and B is a (v − 2)× λ matrix, then

A|B =

1 1 . . . 1 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1 1 1 . . . 1 0 0 . . . 0

? ? ? ? ? ? . . . ?

? ? ? ? ? ? . . . ?

? ? ? ? ? ? . . . ?

? ? ? ? ? ? . . . ?

? ? ? ? ? ? . . . ?



A B
 r − λ  λ  r − λ b− 2r + λ

.

We also extend this definition slightly using a matrix [?] consisting of all ? of the implied

size. That is, if A is a (v− 2)× x matrix and we want to indicate the v× b matrix with only the

columns of A included in the submatrix of columns [0, x − 1], we will write A|[?] as though [?]

was a matrix with v − 2 rows of all ?’s.

Now, we can introduce our strategy. For the moment, we will assume that isomorphism testing

was not performed when filling the first r− λ columns and that we are storing every acceptable

matrix H generated at level r − λ in Sr−λ. So, with Gn = {(ρ, σ) ∈ Sv × Sb; j ≥ n ⇒ σj = j}
and I the level at which we stop performing partial isomorphism pruning, we are choosing the

pruning function:

ψn(M) =


M if n < r − λ,

ρ′Mσ′ such that ‖ρ′Mσ′‖ = max(ρ,σ)∈Gn ‖ρMσ‖ if r − λ ≤ n ≤ I, and

M if I < n ≤ b.

(6)

By choosing ψn as the identity for n < r − λ, we are not performing isomorphism pruning at

all for these levels and we are storing every matrix generated in Sn. With this choice, we begin

with initial program presented in Algorithm 12.

55

Algorithm 12 Program 4 (initial version).

Prerequisites:

• A maximum clique-testing algorithm, MaxClique.

• A canonical form Ψ for Mv,b over Sv × Sb as defined in Definition 2.4.1.

• A data-structure to hold solutions,S.

• Pruning functions ψn for n ∈ [0, b] as in Equation 6 on Page 55.

• A sequence of data-structures to hold partial solutions, Sn, for n ∈ [0, b].

1: function NodePruningPasses(n,A)

2: For each M ∈ Sn do

3: if ψn(A) = M then return false.

4: Copy ψn(A) into Sn

5: return true.

6: end function

7: function RecursePhase3(n)

8: if not NodeConditionsPass(n,H) then return

9: if not NodePruningPasses(n,H) then return

10: if n = b then

11: For each A ∈ S do

12: if Ψ(H) = A then return

13: Copy Ψ(H) into S

14: if 2r − λ ≤ n < b then

15: For each ~b ∈
(
v−2
k

)
do

16: Hn ← ~b

17: RecursePhase3(n+1)

18: Hn ←?? . . .??

19: end function

56

Algorithm 12 Program 4 (initial version, continued).

20: function FillPhase2

21: For each A ∈ Sr−λ do

22: H← Σ1(H)|Λ(H)|Σ1(A)

23: RecursePhase3(2r − λ)

24: H← Σ1(H)|Λ(H)|[?]

25: end function

26: function RecursePhase1(n)

27: if not NodeConditionsPass(n,H) then return

28: if not NodePruningPasses(n,H) then return

29: if n = r then

30: FillPhase2

31: if n < r − λ then

32: For each ~b ∈
(
v−2
k−1

)
do

33: Hn ← ~b

34: RecursePhase1(n+1)

35: if r − λ ≤ n < r then

36: For each ~b ∈
(
v−2
k−2

)
do

37: Hn ← ~b

38: RecursePhase1(n+1)

39: Hn ←?? . . .??

40: end function

57

We repeat the differences between this initial version of Program 4 and the final version of

Program 3:

1. The recursion filling columns [0, r − 1] and columns [2r − λ, b − 1] remains unchanged,

but has been separated by the function FillPhase2(). FillPhase2() completes columns

[r, 2r − λ− 1] of the matrix H with the previous completions of columns [0, r − λ− 1].

2. The isomorphs are not being pruned when columns [0, r − λ− 1] are being completed.

Foregoing isomorphism testing when completing columns [0, r− λ− 1] is not feasible in practice

but is required to make this initial program correct. From the previous discussion, it is clear

that any completion of Σ2(H) is contained in Sr−λ when the program completes, since this will

contains all possible completions of Σ1(H). The only potential issue is that the program only

uses previously generated members of Sr−λ. However, this is justified because for any matrix H

with 2r − λ rows completed, one of the matrices Σ1(H)|[?] or Σ2(H)|[?] was generated first or

they are equal. So, considering only previously generated members would lead to the generation

of either H or Σ2(H)|Λ(H)|Σ1(H), which are isomorphic through a column permutation.

D0 =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 ? ? ? ? ? ? ? ? ? ?

1 1 0 0 ? ? ? ? ? ? ? ? ? ?

1 1 0 0 ? ? ? ? ? ? ? ? ? ?

0 0 1 1 ? ? ? ? ? ? ? ? ? ?

0 0 1 1 ? ? ? ? ? ? ? ? ? ?




.

D1 =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 ? ? ? ? ? ? ? ? ? ?

1 1 0 0 ? ? ? ? ? ? ? ? ? ?

0 0 1 1 ? ? ? ? ? ? ? ? ? ?

1 1 0 0 ? ? ? ? ? ? ? ? ? ?

0 0 1 1 ? ? ? ? ? ? ? ? ? ?




.

Figure 10: Two isomorphic completions of r − λ columns

We would like to reintroduce isomorphism pruning when completing the first r − λ columns

with respect to the permutations fixing the first two rows and begin by explaining why it would

have been incorrect to do this pruning without more changes. Any permutation mapping one

(v−2)×(r−λ), A, to another, B, carries over to a permutation mapping A|[?] to B|[?]. However,

if C is a (v − 2) × r matrix, a permutation mapping A to B will not generally carry over to a

permutation mapping C|A to C|B.

58

R|Σ1(D0) =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 ? ? ? ?

1 1 0 0 0 0 1 1 0 0 ? ? ? ?

1 1 0 0 0 0 1 1 0 0 ? ? ? ?

0 0 1 1 0 0 0 0 1 1 ? ? ? ?

0 0 1 1 0 0 0 0 1 1 ? ? ? ?




.

R|Σ1(D1) =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 ? ? ? ?

1 1 0 0 0 0 1 1 0 0 ? ? ? ?

1 1 0 0 0 0 0 0 1 1 ? ? ? ?

0 0 1 1 0 0 1 1 0 0 ? ? ? ?

0 0 1 1 0 0 0 0 1 1 ? ? ? ?




.

Figure 11: Two isomorphic completions of r − λ columns appended to a matrix complete to r

columns

To illustrate the problem, consider the matrices in Figure 10. These two are isomorphic since

interchanging the fifth and sixth rows transforms one into the other. But, when we append

Σ1(D0) and Σ1(D1) to the same matrix completed to level r, the resulting matrices are not

necessarily isomorphic, as illustrated by appending these to a matrix R in Figure 11.

The reason that the two matrices fail to be isomorphic in the latter context is because

interchanging the fifth and sixth rows is not an automorphism of the rest of the matrix; that is,

there does not exist a column permutation that when combined with this row permutation fixes

the rest of the matrix.

This shows that if we wish to fill the columns [r, 2r − λ − 1] as a unit while still pruning

isomorphs when filling the columns [0, r − λ − 1], we need to recover some isomorphs that

were eliminated. Now, let Sr−λ be the set of matrices that would have been generated if we

had performed isomorphism pruning while completing rows [0, r − λ − 1]. Note that it is not

necessary to consider column permutations of these matrices since the columns [r, 2r−λ− 1] are

interchangeable for any partial matrix generated in this way. For a matrix A generated at level

r, the possible completions to 2r − λ columns of a A must be contained in:

{A|Σ1(ρM); M ∈ Sr−λ, ρ ∈ S[2,v−1]}.

Indeed, this recovers all isomorphs through a row permutation of elements of Sr−λ and must

therefore include at least one member of each isomorphism class of completions to 2r − λ of A.

Returning to the example of Figures 10 and 11, if ρ = (4 5) is the permutation interchanging

59

the fifth and sixth rows, then we would have generated both R|Σ1(D0) and R|Σ1(ρD0).

We state the changed functions in Algorithm 13 which includes isomorphism testing when

filling the first r − λ columns. With Gn = {(ρ, σ) ∈ Sv × Sb; j ≥ n⇒ σj = j} and I the level at

which we stop performing partial isomorphism pruning, we are returning to the pruning function:

ψn(M) =

 ρ′Mσ′ such that ‖ρ′Mσ′‖ = max(ρ,σ)∈Gn ‖ρMσ‖ if n ≤ I, and

M if I < n ≤ b.
(7)

Algorithm 13 Program 4 (second version).

Prerequisites:

• A maximum clique-testing algorithm, MaxClique.

• A canonical form Ψ for Mv,b over Sv × Sb as defined in Definition 2.4.1.

• A data-structure to hold solutions,S.

• Pruning functions ψn for n ∈ [0, b] as in Equation 7 on Page 60.

• A sequence of data-structures to hold partial solutions, Sn, for n ∈ [0, b].

1: function NodePruningPasses(n,A)

2: For each M ∈ Sn do

3: if ψn(A) = M then return false.

4: Copy ψn(A) into Sn

5: return true.

6: end function

7: function FillPhase2

8: For each ρ ∈ S[2,v−1] do

9: For each A ∈ Sr−λ do

10: H← Σ1(H)|Λ(H)|Σ1(ρA)

11: RecursePhase3(2r − λ)

12: H← Σ1(H)|Λ(H)|[?]

13: end function

Despite restoring isomorphism testing when completing columns [0, r − λ − 1] this program

is still not feasible in practice. The loop that we have introduced over all permutations of rows

[2, v − 1] is very costly. The remainder of this discussion focuses on reducing this cost.

The principal way in which this will be reduced is based on the fact that the inner product

of each of the rows [2, v − 1] with both the first and second rows must equal λ. Suppose that

in FillPhase2 we are again considering the two matrices R and Σ1(D0) from Figure 11. Now

60

however, let ρ′ be the permutation interchaging the third and fourth rows of the matrix being

appended. Then the program generates the following:

R|Σ1(ρD0) =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 ? ? ? ?

1 1 0 0 0 0 0 0 0 0 ? ? ? ?

1 1 0 0 0 0 1 1 0 0 ? ? ? ?

0 0 1 1 0 0 0 0 1 1 ? ? ? ?

0 0 1 1 0 0 0 0 1 1 ? ? ? ?




.

The inner product of the third row with the second is not equal to λ. In fact, this will always

be the case if the permutation ρ being applied to Σ1(A) in FillPhase2 does not map the

rows of Σ1(A) to rows with an equal number of 1’s in Σ1(H). For a valid H with 2r − λ

columns completed, the number of 1’s in each row of Σ1(H) must equal the number of 1’s in the

corresponding row of Σ2(H). If this was not the case for a given H and row i, then we would

have:

λ = Hi ·H0 =
λ−1∑
j=0

H(i,j) +
r−λ−1∑
j=0

H(i,j) 6=
λ−1∑
j=0

H(i,j) +
2r−λ−1∑
j=r

H(i,j) = Hi ·H1 = λ.

So for each A in Sr−λ we need only consider the permutations ρ that map a row i to ρi

where the number of 1’s in row i of Σ1(A) is equal to the number of 1’s in row ρi of Σ1(H). As

a result, if there is no such permutation, A itself should not be considered in FillPhase2.

The most convenient way to use this observation is to have rows [2, v− 1] of H sorted by the

number of 1’s in the corresponding row of Σ1(H) and to have each A ∈ Sr−λ sorted similarly.

Again, if the sequence of row sums of Σ1(H) is different then the sequence of sums for Σ1(A) for

some A ∈ Sr−λ we need not consider A for H in FillPhase2. If the sequence of row sums is

the same, then the permutations that should be considered with A in FillPhase2 are exactly

those permutations that map a row of Σ1(H) to another row with the same row sums. This

leads to the following definitions:

Definition 4.2.5. Given A with r−λ columns completed and rows [2, v−1] sorted by row sums,

define C(A) ⊆ Sr−λ, the partial matrices compatible with A, to be the matrices B ∈ Sr−λ such

that for any row i,
r−λ−1∑
j=0

A(i,j) =
r−λ−1∑
j=0

B(i,j).

Since the compatibility lists are simply a function of the sequence of sorted row sums, in the

program we maintain compatibility lists for each each such sequence seen and “Update” the

compatibility lists with the matrices generated. And, we also have:

61

Definition 4.2.6. Given A with r − λ columns completed and rows [2, v − 1] sorted by row

sums, define G(A) ⊆ S[2,v−1], the rowsum-fixing group of A, to be the permutations ρ ∈ S[2,v−1]

such that for any row i,
r−λ−1∑
j=0

A(i,j) =
r−λ−1∑
j=0

A(ρi,j).

That the rowsum-fixing group actually forms a subgroup of S[2,v−1] follows by noting that

if two permutations keep the number of 1’s of A fixed, then the matrix resulting from applying

one of these then the other to A must have the same number of 1’s in each row as A. We can

now state the next revision to this program. The groups can be stored as a set of generators

known as a strong generating set. This permits efficient group traversal. For details on strong

generating sets and how they can be used refer to Kaski and Ostergard [Ks06, 159-162].

In Algorithm 14, we have reduced the matrices considered in FillPhase2 to those compatible

with the Σ1(H) and reduced the permutations to those that fix the rowsums of Σ1(H). The next

modification that we would like to make is to eliminate the permutations from the rowsum-

fixing group of Σ1(H) that are equivalent with respect to Σ1(H) to a previously considered

permutation.

Suppose that R is taken from the example in Figure 11 on Page 59, and that D2 is the matrix:

D2 =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 ? ? ? ? ? ? ? ? ? ?

1 1 0 0 ? ? ? ? ? ? ? ? ? ?

0 1 1 0 ? ? ? ? ? ? ? ? ? ?

0 0 1 1 ? ? ? ? ? ? ? ? ? ?

1 0 0 1 ? ? ? ? ? ? ? ? ? ?




.

Then, D2 ∈ C(Σ1(R)). The permutation ρ = (4 5) is in the rowsum-fixing group of Σ1(R).

In FillPhase2 this generates:

R|Σ1(ρD2) =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 ? ? ? ?

1 1 0 0 0 0 1 1 0 0 ? ? ? ?

1 1 0 0 0 0 0 0 1 1 ? ? ? ?

0 0 1 1 0 0 0 1 1 0 ? ? ? ?

0 0 1 1 0 0 1 0 0 1 ? ? ? ?




.

The permutation ρ′ = (3 6) interchanging the fourth row with seventh row is also in the rowsum-

fixing group of Σ1(R) and yields:

62

Algorithm 14 Program 4 (third version).

Prerequisites:

• A maximum clique-testing algorithm, MaxClique.

• A canonical form Ψ for Mv,b over Sv × Sb as defined in Definition 2.4.1.

• A data-structure to hold solutions,S.

• Pruning functions ψn for n ∈ [0, b] as in Equation 7 on Page 60.

• For A ∈Mv−2,r−λ, a means to compute and traverse the group G(A).

function NodePruningPasses(n,A)

For each M ∈ Sn do

if ψn(A) = M then return false.

if n = r − λ then

Sort rows [2, v − 1] of ψn(A) by rowsums.

Update C(ψn(A))

Copy ψn(A) into Sn

return true.

end function

function FillPhase2

For each ρ ∈ G(Σ1(H)) do

For each A ∈ C(Σ1(H)) do

H← Σ1(H)|Λ(H)|Σ1(ρA)

RecursePhase3(2r − λ)

H← Σ1(H)|Λ(H)|[?]

end function

63

Algorithm 14 Program 4 (third version, continued).

function RecursePhase1(n)

if not NodeConditionsPass(n,H) then return

if not NodePruningPasses(n,H) then return

if n = r then

FillPhase2

if n < r − λ then

For each ~b ∈
(
v−2
k−1

)
do

Hn ← ~b

if n = r − λ− 1 then

Sort rows [2, v − 1] of H by rowsums.

Compute G(Σ1(H))

RecursePhase1(n+1)

if n = r − λ− 1 then

Restore H to the state prior to sorting its rows.

if r − λ ≤ n < r then

For each ~b ∈
(
v−2
k−2

)
do

Hn ← ~b

RecursePhase1(n+1)

Hn ←?? . . .??

end function

64

R|Σ1(ρ′D2) =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 ? ? ? ?

1 1 0 0 0 0 1 0 0 1 ? ? ? ?

1 1 0 0 0 0 0 1 1 0 ? ? ? ?

0 0 1 1 0 0 0 0 1 1 ? ? ? ?

0 0 1 1 0 0 1 1 0 0 ? ? ? ?




.

Now, suppose that we apply the permutation ρ′′ = (3 6)(4 5) to this entire matrix:

ρ′′(R|Σ1(ρ′D2)) =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 ? ? ? ?

0 0 1 1 0 0 1 1 0 0 ? ? ? ?

0 0 1 1 0 0 0 0 1 1 ? ? ? ?

1 1 0 0 0 0 0 1 1 0 ? ? ? ?

1 1 0 0 0 0 1 0 0 1 ? ? ? ?




,

followed by the column permutation σ = (0 2)(1 3):

ρ′′(R|Σ1(ρ′D2))σ =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 ? ? ? ?

1 1 0 0 0 0 1 1 0 0 ? ? ? ?

1 1 0 0 0 0 0 0 1 1 ? ? ? ?

0 0 1 1 0 0 0 1 1 0 ? ? ? ?

0 0 1 1 0 0 1 0 0 1 ? ? ? ?




.

Then we have the same matrix as R|Σ1(ρD2). That is,

ρ′′(R|Σ1(ρ′D2))σ = R|Σ1(ρD2).

So the two matrices R|Σ1(ρD2) and R|Σ1(ρ′D2) are actually isomorphic. There are two things

to note about these three row permutations:

1. σ only permutes the columns [0, r − 1] amongst each other.

2. ρ′′Rσ = R, that is (ρ′′, σ) is an automorphism of R.

3. ρ = ρ′′ρ′.

Since σ only permutes the columns [0, r− 1] amongst each other, it commutes with the concate-

nation operation “|”. Any row permutation, does as well. Moreover, all the row permutations

65

here commute with Σ1 since they fix the first two rows. These properties together imply the

observation that was made about these matrices. Indeed,

ρ′′(R|Σ1(ρ′D2))σ = ρ′′Rσ|ρ′′Σ1(ρ′D2))

= ρ′′Rσ|Σ1(ρ′′ρ′D2))

= R|Σ1(ρD2).

On the other hand, suppose that we have three permutations ρ, ρ′ and ρ′′ and a column permu-

tation σ such that:

1. σ only permutes the columns [r, 2r − 1] amongst each other. So, σ is essentially a permu-

tation of D2.

2. ρ′′D2σ = D2, that is (ρ′′, σ) is an automorphism of D2.

3. ρ = ρ′ρ′′.

Then, we can arrive at a similar conclusion,

R|Σ1(ρ′D2) = R|Σ1(ρ′(ρ′′D2σ))

= (R|Σ1(ρD2))σ.

Again, ρ and ρ′ generated isomorphic matrices. Now we incorporate these observations in a final

version of this program. In the preceding discussion, we also discussed the column permutation

corresponding to the automorphisms. However, in the program they are not really used. As

such, for each A ∈ Sr−λ, let:

AutR(A) = {ρ ∈ S[2,v−1]; there exists σ ∈ S[0,r−λ−1] such that ρAσ = A}.

And, for each matrix R with r rows completed, let:

AutR(R) = {ρ ∈ S[2,v−1]; there exists σ ∈ S[0,r] such that ρRσ = R}.

These still form groups. If ρ1 and ρ2 are in AutR(A) there exists column permutations σ1 and

σ2 such that ρ1ρ2Aσ2σ1 = ρ1Aσ1 = A. Therefore, since the column permutation σ2σ1 exists,

ρ1ρ2 ∈ AutR(A). The same argument can be used to show that AutR(R) forms a group. These

are also stored as strong generating sets computed from the generators provided by nauty [MP14]

using the techniques described in Kaski and Ostergard [Ks06, 159-162].

66

Algorithm 15 Program 4 (final version).

Prerequisites:

• A maximum clique-testing algorithm, MaxClique.

• A canonical form Ψ for Mv,b over Sv × Sb as defined in Definition 2.4.1.

• A data-structure to hold solutions,S.

• Pruning functions ψn for n ∈ [0, b] as in Equation 7 on Page 60.

• For A ∈Mv−2,r−λ, a means to compute and traverse the groups G(A) and AutR(A).

• A data-structure to hold previously seen permutations, P.

1: function NodePruningPasses(n,A)

2: For each M ∈ Sn do

3: if ψn(A) = M then return false.

4: if n = r − λ then

5: Sort rows [2, v − 1] of ψn(A) by rowsums.

6: Update C(ψn(A))

7: Compute and store AutR(ψn(A))

8: Copy ψn(A) into Sn

9: return true.

10: end function

11: function RecursePhase3(n)

12: if not NodeConditionsPass(n,H) then return

13: if not NodePruningPasses(n,H) then return

14: if n = b then

15: For each A ∈ S do

16: if Ψ(H) = A then return

17: Copy Ψ(H) into S

18: if 2r − λ ≤ n < b then

19: For each ~b ∈
(
v−2
k

)
do

20: Hn ← ~b

21: RecursePhase3(n+1)

22: Hn ←?? . . .??

23: end function

67

Algorithm 15 Program 4 (final version, continued).

24: function FillPhase2

25: Compute and store AutR(Σ1(H)|Λ(H))

26: Empty P
27: For each ρ ∈ G(Σ1(H)) do

28: For each ρ′ ∈ AutR(Σ1(H)|Λ(H)) do

29: if ρ′ρ ∈ P then continue to next ρ

30: Insert ρ into P.

31: For each A ∈ C(Σ1(H)) do

32: For each ρ′′ ∈ AutR(A) do

33: if ρρ′′ 6= ρ and ρρ′′ ∈ P then continue to next A

34: H← Σ1(H)|Λ(H)|Σ1(ρA)

35: RecursePhase3(2r − λ)

36: H← Σ1(H)|Λ(H)|[?]

37: end function

38: function RecursePhase1(n)

39: if not NodeConditionsPass(n,H) then return

40: if not NodePruningPasses(n,H) then return

41: if n = r then

42: FillPhase2

43: if n < r − λ then

44: For each ~b ∈
(
v−2
k−1

)
do

45: Hn ← ~b

46: if n = r − λ− 1 then

47: Sort rows [2, v − 1] of H by rowsums.

48: Compute G(Σ1(H))

49: RecursePhase1(n+1)

50: if n = r − λ− 1 then

51: Restore H to the state prior to sorting its rows.

52: if r − λ ≤ n < r then

53: For each ~b ∈
(
v−2
k−2

)
do

54: Hn ← ~b

55: RecursePhase1(n+1)

56: Hn ←?? . . .??

57: end function

68

4.2.5 Program 5

In this final algorithm, we address a weakness of Program 3. The definition of ψn in Equation

5 used the entire group of row permutations. However, the program begins with the matrix H

shown in Figure 9. This actually reduces the amount of pruning done by ψn. We explain this

now with an example. When r columns are completed, the following two are not isomorphic:

A =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 ? ? ? ? ? ? ? ?

1 1 0 0 0 0 ? ? ? ? ? ? ? ?

0 0 1 1 0 0 ? ? ? ? ? ? ? ?

1 0 1 0 0 0 ? ? ? ? ? ? ? ?

0 1 0 1 0 0 ? ? ? ? ? ? ? ?




,

B =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 0 0 0 0

1 1 0 0 0 0 ? ? ? ? ? ? ? ?

1 1 0 0 0 0 ? ? ? ? ? ? ? ?

0 0 1 1 0 0 ? ? ? ? ? ? ? ?

0 0 1 0 1 0 ? ? ? ? ? ? ? ?

0 0 0 1 0 1 ? ? ? ? ? ? ? ?




.

However, if we apply column permutation (0 4)(1 5) and row permutation (1 3) to A we obtain

the matrix:

C =

1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 ? ? ? ? ? ? ? ?

1 1 0 0 0 0 ? ? ? ? ? ? ? ?

1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 0 1 1 0 0 ? ? ? ? ? ? ? ?

0 0 1 0 1 0 ? ? ? ? ? ? ? ?

0 0 0 1 0 1 ? ? ? ? ? ? ? ?




.

The first r columns of C and B are the same, and this would also be true if the permutation

was applied to any completion, A′, of A to b rows. After rearranging the columns beyond r of

A′, we would have a completion of B to b columns.

The issue is that the completed rows are preventing the row permutation from being consid-

ered for isomorphism pruning. If n < b, then only the first two rows of A and B are completed and

the row permutation ρ can only interchange these rows between each other. In fact, if n < 2r−λ
even these two rows cannot be interchanged with each other. Therefore, for n < 2r − λ, fixing

the first two rows at the onset has increased the number of matrices considered non-isomorphic

69

by a factor of up to (v − 1) and, for n ≥ 2r − λ, by a factor of up to v−1
2 .

But this inadvertantly imposed reduction can the remedied by truncating the matrix in the

original selection of ψn, Equation 5. That is, using the truncation to n columns, πn as in

Definition 4.2.2, we can redefine ψn as:

ψn(M) =

 ρ′πn(M)σ′ such that ‖ρ′πn(M)σ′‖ = max(ρ,σ)∈Gn ‖ρπn(M)σ‖ if 0 ≤ n ≤ I, and

M if I < n ≤ v.

and restore isomorphism testing over the group Gn = {(ρ, σ) ∈ Sv × Sb; j ≥ n⇒ σj = j}.
As a final note, the weakness of Program 3 that is pointed out above also applies to Program

4. It would also be possible to remedy this problem in Program 4, but doing so would be far

more complicated. We do not include pseudocode for Program 5 as it is the same as Program 4

with a different choice of pruning function.

70

4.3 Performance

In this section, we will be compare the performance of the three programs that we have imple-

mented. Since the code for Programs 3, 4, and 5 converge once 2r − λ columns are completed,

we begin with a comparison of all the three while completing the first 2r−λ columns. Programs

3 and 4 generate the same number of solutions to 2r − λ columns, so we will only compare the

performance of Programs 4 and 5 for completing all b columns.

Table 1 summarizes the performance of the three programs when filling the first 2r − λ

columns. The first column of the table indicates the case number as they are listed in the

CRC Handbook of Combinatorial Designs [CD06]. The runtimes are recorded as t3, t4, and t5

where the subscript indicates the program number. Note how this comparison was performed.

Isomorphism pruning was performed when each of the first columns [0, r−1] were filled and when

completing column 2r − λ − 1. Nr represents the number of non-isomorphic partial matrices

generated by Programs 3 and 4 with r columns completed. N∗r is the number of non-isomorphic

partial matrices generated by Program 5 with r columns completed.

We can see that Program 4 is sometimes faster than Programs 3. However, Program 5 is

always at least as fast. The cases in which Program 4 performed reasonably well tended to be

those cases where many solutions to 2r−λ were found. This is because the procedure FillPhase2

of Program 4 essentially performs some isomorphism testing prior to using the pruning function.

Programs 3 and 5 rely entirely on the pruning function for isomorphism testing at level 2r − λ,

and it is consequently called more often by these programs in these cases. On the other hand, we

refrained from performing isomorphism testing with the pruning function when filling columns

[r − λ, 2r − λ − 1] and it is possible that performing isomorphism testing at these levels would

further reduce the runtimes of Programs 3 and 5.

Program 4 performs poorly if many solutions can be eliminated early in Programs 3 and 5

when completing columns [r − λ, 2r − λ − 1]. Indeed, because of the way that these columns

are being completed by Program 4, clique-testing is not performed until the entire section is

completed. Also note that, in the worst case, the rowsum-fixing group of a completion to r − λ
columns can be as large as (v − 2)!. Although Property 2.6.1 says that any Steiner system is a

Katona sieve, we included CRC case 5, the last result in Table 1, to illustrate the effect of the

size of the rowsum-fixing group on the performance of Program 4. This case is a Steiner system

and there is a unique solution to r − λ columns, so the poor performance cannot be due to the

number of compatible pairs. Indeed, it can be shown that when λ = 1 (Steiner systems) there is

always a unique solution to r − λ columns. For v = 9 and k = 3 the unique completion to r − λ

71

Table 1: Performance results for completing the first 2r − λ columns.

v b r k λ Nr N∗r N2r−λ N∗2r−λ t3 t4 t5

67 7 28 12 3 4 41 20 234 156 0.03 0.02 0.02

117 7 35 15 3 5 119 46 1251 739 0.2 0.1 0.08

191 7 42 18 3 6 332 108 6262 3278 1.36 0.67 0.46

276 7 49 21 3 7 829 231 26969 12626 8.17 4.03 2.35

357 7 56 24 3 8 1966 494 103678 44098 44.09 21.95 11.2

477 7 63 27 3 9 4322 995 355979 140517 207.69 106.37 47.41

275 8 56 21 3 6 4122 727 5511585 1765683 2248.18 1101.84 396.91

21 9 24 8 3 2 7 5 89 71 0.02 0.01 0.02

66 9 36 12 3 3 67 27 17792 10713 2.28 0.9 0.85

150 9 36 16 4 6 88253 11440 3 1 7.99 382.62 7.43

145 9 48 16 3 4 818 191 2658399 996768 560.87 242.01 125.01

30 10 30 9 3 2 7 4 484 424 0.15 0.08 0.07

71 10 30 12 4 4 9811 1309 75 5 1.58 201.55 0.8

55 12 44 11 3 2 14 7 33094 30282 28.47 9.7 9.39

56 12 33 11 4 3 6371 700 6761779 1348772 2049.31 22056.95 224.9

23 13 26 8 4 2 39 14 3853 2199 2.21 7.62 0.77

65 13 52 12 3 2 23 13 338577 314455 544.11 183.99 183.06

16 15 21 7 5 2 19 6 0 0 0 7.81 0

5 16 20 5 4 1 1 1 1 1 0.06 675.66 0.06

columns is:

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 ? ? ? ? ? ? ? ? ?

1 0 0 ? ? ? ? ? ? ? ? ?

1 0 0 ? ? ? ? ? ? ? ? ?

0 1 0 ? ? ? ? ? ? ? ? ?

0 1 0 ? ? ? ? ? ? ? ? ?

0 0 1 ? ? ? ? ? ? ? ? ?

0 0 1 ? ? ? ? ? ? ? ? ?




.

Its rowsum-fixing group is of size 6! and its automorphism group is of size 3! ∗ 23. In general,

given v, k, and λ = 1, the unique solution to r − λ will have a rowsum-fixing group of size

(k − 2)!(v − k)! and automorphism group of size (k − 2)!(r − 1)!((k − 1)!)r−1. So, taking into

account the permutations eliminated for these cases, we will be applying roughly (v−k)!
(r−1)!((k−1)!)r−1

permutations in FillPhase2 of Program 4. And, indeed, this is reflected in the performance

72

results for Case 5. In this case, (v−k)!
(r−1)!((k−1)!)r−1 = 15400 and the performance difference from

Programs 3 and 5 is a factor of roughly 105.

Another factor impacting the performance of Program 4 is the loop over all compatible

completions to r− λ columns. The runtime of algorithm FillPhase2 is Ω(m2), where m is the

length of the longest compatibility list. So, a particularly long list leads to poor runtime. This

occurs for CRC case 150.

We explained in Section 4.2.5 that the partial isomorphism testing for Programs 3 and 4,

when compared to Program 5, can increase the number of completions to r columns by a fac-

tor of up to (v − 1) and the number of completions to 2r − λ columns by a factor of up to
v−1

2 . Some cases come very close to these factors. For example, for case 275 with v − 1 = 7,

N∗r /Nr = 5.66 and N∗2r−λ/N2r−λ = 3.2. And, for case 150 with v − 1 = 8, N∗r /Nr = 7.71.

If we compare the runtimes of Programs 4 and 5 to complete all columns, the impact of this

reduced number of completions to level 2r − λ for Programs 5 becomes clear. The increased

number of solutions with 2r−λ blocks completed is proportional to the increased runtime. This

is seen in Table 2 where cases with no solutions up to 2r−λ or with runtime 0 have been omitted.

73

Table 2: Performance Results for completing all columns.

v b r k λ N2r−λ N∗2r−λ t4 t5
N2r−λ/N

∗
2r−λ

t4/t5

43 6 20 10 3 4 6 4 0.01 0.01 1.5

118 6 30 15 3 6 13 8 0.03 0.02 1.1

236 6 40 20 3 8 33 17 0.1 0.07 1.4

31 7 21 9 3 3 37 28 0.02 0.02 1.3

67 7 28 12 3 4 234 156 0.14 0.11 1.5

117 7 35 15 3 5 1251 739 1.02 0.66 1.1

191 7 42 18 3 6 6262 3278 7.24 4.06 1.1

276 7 49 21 3 7 26969 12626 41.92 20.69 1.1

357 7 56 24 3 8 103678 44098 209.74 93.98 1.1

477 7 63 27 3 9 355979 140517 925.47 384.86 1.1

21 9 24 8 3 2 89 71 0.07 0.07 1.3

66 9 36 12 3 3 17792 10713 176.03 110.86 1.0

275 8 56 21 3 6 5511585 1765683 41917.77 13860.55 1.0

The performance results indicate that the simpler method was more effective for this problem.

It should be noted, however, that it would be possible to improve the isomorphism testing of

of the technique used in Program 4. Program 4 could be modifed so that during the procedure

FillPhase2 isomorphisms with respect to the row-group SV are pruned as in Program 5. To

do so one would need to track the row to which such a permutation maps the second row,

extract the r − λ columns not including this row, compute its canonical form and traverse

the compatibility list of this matrix instead. However, doings so would be unlikely to lead to

performance improvements as can be seen comparing Programs 3 and 4.

74

Chapter 5

Results

Before presenting the results of the computer search, we present the conclusions that follow from

the theory presented in earlier chapters. In particular,

1. If v < (t+ 1)(k− t+ 1) = 3(k− 1), because of Corollary 3.3.4, there cannot exist a Katona

sieve for any value of λ.

2. For λ = 1, by Property 2.6.1, any Steiner system is a Katona sieve.

3. If λ > 1, then by Theorem 2.6.5, a symmetric 2-design cannot be a Katona sieve.

These results, combined with the results for 2 designs published in the CRC Handbook [CD06]

completely resolve the problem for 71 out of the 142 cases with b ≤ 64 and r ≤ 21. Since Katona

sieves can be concatenated to yield Katona sieves by Property 2.6.4, this resolves the existence

problem for an additional 21 cases.

Table 3 lists the results of the computer search achieved with the programs in Chapter 4.

The first column indicates the case number as enumerated in the CRC Handbook. The column

labelled NK is the number of Katona sieves that were found, and Nd is the number of known

designs as published in the CRC Handbook. Cases with a * are the 17 cases for which the

existence problem was settled through computation. For one of these the existence problem

was not established directly by computation, but can be deduced through concatenation of a

computed case and Property 2.6.4. In particular, for CRC case 190, a 2-(10,3,4) Katona sieve

was not computed, but one can be constructed by concatenating two computed 2-(10, 3, 2) Katona

sieves. Cases with † are cases for which a greater number of designs than previously listed in the

CRC Handbook were found.

Table 4 lists the 33 cases with r ≤ 21 and b ≤ 64 for which the existence of 2-(v, k, λ) Katona

sieves was not determined by this work. For cases that were attempted on a 3.0 Ghz system with

75

Table 3: Computed Results.

CRC # v b r k λ NK Nd

*4 6 10 5 3 2 1 1

9 7 14 6 3 2 4 4

*10 10 15 6 4 2 0 3

21 9 24 8 3 2 13 36

23 13 26 8 4 2 184 2461

*24 9 18 8 4 3 0 11

*30 10 30 9 3 2 111 960

31 7 21 9 3 3 10 10

*35 16 24 9 6 3 0 18920

*36 28 36 9 7 2 0 8

*43 6 20 10 3 4 4 4

44 16 40 10 4 2 ≥ 321 ≥ 2.2× 106

46 21 42 10 5 2 ≥ 105 ≥ 22998

*49 21 30 10 7 3 0 3809

*55 12 44 11 3 2 ≥ 10230000 242995846

*56 12 33 11 4 3 0 ≥ 17172470

†65 13 52 12 3 2 ≥ 10230000 ≥ 1897386

66 9 36 12 3 3 4215 22521

67 7 28 12 3 4 35 35

†70 13 39 12 4 3 ≥ 157091 ≥ 3702

*71 10 30 12 4 4 0 13769944

74 31 62 12 6 2 ≥ 15 ≥ 72

*†116 11 55 15 3 3 ≥ 10230000 ≥ 436800

117 7 35 15 3 5 109 109

*118 6 30 15 3 6 6 6

145 9 48 16 3 4 4061937 16585031

*150 9 36 16 4 6 1 270474142

*190 10 60 18 3 4 ≥ 1 ≥ 961

191 7 42 18 3 6 418 418

*236 6 40 20 3 8 13 13

*275 8 56 21 3 6 773919 3077244

276 7 49 21 3 7 1508 1508

76

64 GB of RAM, some comments are included. The programs print the runtime when a multiple

of 2500 of partial solutions to r − λ or 2r − λ columns are found and when complete solutions

are found. As such, in some cases, no value for the runtime was printed and we only say “after

a long time”. In all cases, this indicates at least 8 hours but generally many days.

Finally, the fourteen cases listed in Table 5 are the cases with r ≤ 21 and b ≤ 64 for which

at least one Katona sieve exists but not all have been enumerated. Case 32 is a Steiner system

and NK is taken directly from the CRC Handbook. For cases 116, 55, 65, 70, 44, and 46, NK is

the number of designs generated by the programs of Chapter 4. The remaining cases must have

at least one Katona sieve by concatenating smaller Katona sieves.

We conclude this section with the result of the very special case which started our research.

Of over 270 million 2-(9, 4, 6) designs enumerated by Österg̊ard [Ös01], Figure 12 is the only

Katona sieve. Its automorphism group is of order 54. Since none of the 11 2-(9, 4, 3) designs are

Katona sieves, a 2-(9, 4, 6) sieve could not have been constructed using Property 2.6.4. When

v ≥ (t + 1)(k − t + 1), if we fix both k and v, and let λ increase, the Erdős-Ko-Rado theorem

guarantees that sooner or later, a Katona sieve exists. So it is interesting to find the minimum

value of λ for which a Katona sieve exists. In the case t = 2, v = 9, and k = 4, the value λ = 3

was not sufficient and the minimum λ is 6.

111111 111111 1111 000000 0000 0000 000000
111111 000000 0000 111111 1111 0000 000000
000000 111111 0000 111111 0000 1111 000000

111000 001000 1100 010001 1000 0111 111100
000011 000111 0001 000010 1110 0101 111010

001001 011100 1000 001000 0111 1010 001111
010110 000010 0011 000101 0001 1011 010111

100000 110000 0111 111000 1100 1000 110011
000100 100001 1110 100110 0011 0100 101101




Figure 12: The unique 2-(9, 4, 6) Katona sieve

77

Table 4: Unsolved Existence Cases for r ≤ 21 and b ≤ 64.

CRC # v b r k λ Comment:

59 45 55 11 9 2

69 19 57 12 4 2 No solutions after a long time.

75 21 42 12 6 3

76 16 32 12 6 4

79 33 44 12 9 3 No solutions after a long time.

90 27 39 13 9 4 No solutions after a long time.

91 40 52 13 10 3

102 15 42 14 5 4 No solutions when out of memory.

104 15 35 14 6 5 No solutions after 2.5× 105 sec.

107 29 58 14 7 3 No solutions after 2.4× 105 sec.

108 22 44 14 7 4 No solutions after 7.4× 104 sec.

123 16 48 15 5 4 No solutions after a long time.

124 13 39 15 5 5 No solutions when out of memory.

128 16 40 15 6 5

134 28 42 15 10 5 No solutions after a long time.

153 21 56 16 6 4

157 29 58 16 8 4

161 33 48 16 11 5 No solutions after 7.4× 105 sec.

163 45 60 16 12 4

176 18 51 17 6 5 No solutions when out of memory (4.1× 106 sec).

193 10 45 18 4 6 No solutions when out of memory (105 sec).

199 19 57 18 6 5 No solutions after 1.2× 106 sec.

200 16 48 18 6 6

207 25 50 18 9 6 No solutions after 1.2× 106 sec.

211 34 51 18 12 6

225 39 57 19 13 6

242 11 55 20 4 6 No solutions when out of memory (3× 106 sec).

250 21 60 20 7 6 No solutions after 1.2× 106 sec.

258 31 62 20 10 6 No solutions after a long time.

280 15 63 21 5 6

284 16 56 21 6 7

289 19 57 21 7 7

297 40 60 21 14 7

78

Table 5: Unsolved Enumeration Cases for r ≤ 21 and b ≤ 64.

CRC # v b r k λ NK

32 28 63 9 4 1 ≥ 4747

44 16 40 10 4 2 ≥ 321

46 21 42 10 5 2 ≥ 105

55 12 44 11 3 2 ≥ 10230000

65 13 52 12 3 2 ≥ 10230000

70 13 39 12 4 3 ≥ 157091

72 25 60 12 5 2 ≥ 1

74 31 62 12 6 2 ≥ 15

116 11 55 15 3 3 ≥ 10230000

119 16 60 15 4 3 ≥ 1

122 21 63 15 5 3 ≥ 1

149 13 52 16 4 4 ≥ 1

190 10 60 18 3 4 ≥ 1

235 9 60 20 3 5 ≥ 1

79

Chapter 6

Conclusion

Katona sieves form a class of combinatorial objects that have not been studied previously. We

have shown how they are closely related to the Erdős-Ko-Rado theorem. In a strong sense they

are generalizations of Steiner systems. In fact, Katona himself observed that the existence of

a Steiner system for a given set of parameters implies EKR-t, stating that he never published

this previously since existence of Steiner systems is itself a hard problem [Kat00]. It’s therefore

unlikely that he brought it a step further to consider (λ, t)-disjoint designs very deeply even if he

may have known the results herein. That is, not only a Steiner systems, but also (λ, t)-disjoint

designs can be used to generalize his proof. Moreover, Tit’s lower bound on the existence of

Steiner systems[Tit64] is directly extendable to a lower bound on the existence of (λ, t)-disjoint

designs. For this reason we consider these as extensions of Steiner systems and name them

Katona sieves in honor of his proof.

An extensive computer search across many cases was performed. The results represent over

200 CPU days of computation. In some cases, after weeks of generation, no solutions were

generated. But, in other cases, very many solutions were found. In fact, for some cases we

generated more designs than published in the CRC Handbook [CD06]. One case of particular

interest is the case of 2-(9, 36, 6) designs. Chvátal noted that any Katona sieves for this case

must have been generated by Österg̊ard, and, indeed, a unique Katona sieve exists amongst the

270 million t-designs that exist for this case[Ös01].

There are still 33 unsolved cases amongst for the existence of Katona sieves amongst 2-designs

with b ≤ 64 and r ≤ 21 and an additional 14 for which not all sieves have been enumerated.

Improvements in isomorphism testing or on clique finding may enable one to solve the problem for

some of these designs. For our implementation of the programs herein, cases with b > 64 would

require a complete rewrite of the program because designs are represented as a fixed number of

64-bit words and this representation is assumed throughout for bitwise operations.

80

Bibliography

[Art91] M. Artin. Algebra. Prentice Hall, 1991.

[CD06] C. J. Colbourn and J. H. Dinitz. Handbook of Combinatorial Designs, Second Edition.

Chapman & Hall/CRC, 2006.

[Chv12] V. Chvátal. Private communication, April 2012.

[EFK92] P. L. Erdős, U. Faigle, and W. Kern. A group-theoretic setting for some intersecting

Sperner families. Combinatorics, Probability and Computing, 1:323–334, 1992.

[EKR61] P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quarterly

Journal of Mathematics, Oxford, pages 313–318, 1961.

[Fra78] P. Frankl. The Erdős-Ko-Rado theorem is true for n = ckt. In Combinatorics, Proc.

Fifth Hungarian Colloq. Combin, pages 365–375. North-Holland, 1978.

[Kat72] G. O. H. Katona. A simple proof of the Erdős-Chao Ko-Rado theorem. Journal of

Combinatorial Theory, Series B, 13(2):183–184, 1972.

[Kat00] G. O. H. Katona. The cycle method and its limits. In I. Althöfer, N. Cai, G. Dueck,

L. Khachatrian, M.S. Pinsker, A. Sárközy, I. Wegener, and Z. Zhang, editors, Numbers,

Information and Complexity., pages 129–141. Kluwer Academic Publishers, Norwell,

MA, 2000.

[Ks06] P. Kaski and P. R. J. Österg̊ard. Classification Algorithms for Codes and Designs.

Number 15 in Algorithms and Computation in Mathematics. Springer-Verlag, Berlin

Heidelberg, 2006.

[MP14] B. D. McKay and A. Piperno. Practical graph isomorphism, {II}. Journal of Symbolic

Computation, 60(0):94 – 112, 2014.

[Ns03] S. Niskanen and P. R. J. Österg̊ard. Cliquer user’s guide, version 1.0. Technical Report

T48, Communications Laboratory, Helsinki University of Technology, Espoo, Finland,

2003.

81

[Ös01] P. R. J. Österg̊ard. There are 270,474,142 nonisomorphic 2-(9, 4, 6) designs. Journal

of Combinatorial Mathematics and Combinatorial Computing, 37:173–176, 2001.

[Tit64] J. Tits. Sur les systemes de steiner associes aux trois ”grands” groupes de mathieu.

Rendic. Math., 23:166–184, 1964.

[Wil84] R. M. Wilson. The exact bound in the Erdős-Ko-Rado theorem. Combinatorica,

4(2):247–257, 1984.

82

	List of Figures
	List of Tables
	Prologue
	Introduction
	Preliminaries
	Our Question
	Organization of the Thesis.
	Contributions of the Thesis.

	Definitions, Concepts, and Properties
	Initial Definitions
	Incidence Matrix Representation
	Permutations Acting on Incidence Matrices
	prop:incidencematrixtransformation
	prop:IMtransformation2
	Isomorph Rejection
	t-designs
	prop:tdesignblockcount
	(,t)-Disjointness
	prop:disjointupperbound
	theorem:TdisjointimpliesTdesign

	Motivation
	Erdös-Ko-Rado Theorem
	Katona's Circle Family
	Katona's Circle Argument

	Computer Search
	Condition Testing
	Programs
	Program 1
	Program 2
	Program 3
	Program 4
	Program 5

	Performance

	Results
	Conclusion
	Bibliography

