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Abstract  

Community phylogenetics of forest trees along an elevational gradient in the eastern 

Himalayan region of northeast India 

Stephanie Shooner 

Large-scale environmental gradients have been invaluable for unravelling the processes shaping 

the evolution and maintenance of biodiversity. Gradients provide a natural setting to test theories 

about species diversity and distributions within a landscape with changing biotic and abiotic 

interactions. Elevational gradients are particularly useful because they often have an extensive 

climatic range within a constricted geographic region. Arunachal Pradesh is the northeastern-

most province in India, located on the southern face of the eastern Himalayas. This region is 

considered a biodiversity “hotspot”, with an estimated 6000 flowering plant species of which 30-

40% are endemic. For this thesis, I analyzed tree communities in plots distributed throughout the 

province using both species and phylogenetic diversity indices. I explored shifts in community 

structure across elevation and space as well as the biotic and abiotic forces influencing species 

assembly throughout the landscape. Species richness and phylogenetic diversity decreased with 

increasing elevation, as theory predicts. However, species relatedness did not show a clear 

pattern with elevation. Nonetheless, by exploring beta-diversity (both taxonomic and 

phylogenetic), I was able to show a strong effect of environmental filtering with elevation. 

Environmental filtering is generally associated with species clustering on the phylogeny, where 

co-occurring species in a community are more closely related than expected by chance. Here, 

however, I suggest that forest community structure is driven by filtering on glacial relicts, 

resulting in random or over-dispersed community assemblages. These patterns point to possible 

regions for conservation priority that may provide refugia for species threatened by current 

warming trends.   
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PART I: Introduction  

One of the most important questions in ecology is why some species occur where they do and 

not elsewhere. The answer to this question is not a simple one; it encompasses a seemingly 

endless list of factors and their putative interactions. Important within this list are climate, 

elevation, species × species interactions, energy availability, and the adaptiveness of a given 

species. There are various analytical approaches that consider these factors either separately or in 

some combination, and often within an ecological gradient. In this thesis I explore one approach 

in particular, the relatively new field of phylogenetic community ecology (community 

phylogenetics). First described in detail by Webb et al. in 2002, community phylogenetics aims 

to capture the interaction among species assemblages, phylogeny and traits. In the following 

work I focus on the interface between species assembly and phylogeny, drawing inference from 

the phylogenetic structure of the species present in a community assemblage. 

Brief history of community phylogenetics 

The field of community phylogenetics built on previous ideas of species co-occurrence 

(Cody and Diamond 1975, Connor and Simberloff 1979, Gotelli and Graves 1996, Gotelli 2000), 

and merged this with advances in phylogenetic theory. Among the first to hypothesize about the 

nature of biotic interactions (species × species interactions), Darwin (1859) suggested that 

species from the same genus would experience stronger competition than more distantly related 

species from different genera on the basis that those species from the same genus were more 

ecologically similar due to their shared evolutionary history. Many years later, Elton (1946) 

empirically tested Darwin’s hypotheses by examining species-genus ratios in various 

communities and found that the different genera present in the communities were rarely 

represented by more than one species. He thus inferred that competition may allow different 

genera of the same trophic level to coexist, but limited coexistence of species of the same genus. 

Elton was also careful to suggest that it was necessary to distinguish between the ability of an 

individual to exist in a given environment and the ability to persist within a particular species 

assemblage. These ideas captured the essence of environmental filtering and limiting similarity 
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among related species as well as early ideas of niche filling within a community. Environmental 

filtering is the process by which abiotic factors structure species assemblages. At large scales, 

environmental filtering is thought to be a major determinant of species range, while at small 

scales it can contribute to niche heterogeneity (e.g. through variable soil or moisture). 

Conversely, limiting similarity describes the biotic interactions that can structure species 

coexistence. If species are sufficiently similar in their resource-use (niche) or phenotypic 

features, it is often presumed that they cannot coexist. Environmental filtering and biotic 

interactions can be inferred from patterns of phylogenetic relatedness, discussed below. 

The implementation of pairwise co-occurrence matrices improved understanding of the 

theory of limiting similarity by allowing researchers to identify pairs of species that rarely or 

never occurred together, providing an important step towards identifying the processes 

responsible for the competitive exclusion of species within the environment (Cody and Diamond 

1975). However, early results proved controversial as patterns were not compared to any null 

expectation, and thus remained largely descriptive. With the development and popularization of 

null models, these patterns in species assembly could be rigorously tested against a null 

hypothesis of random species associations (Gotelli and Graves 1996). These crucial milestones 

within ecology provided the foundation from which present-day community ecology and 

phylogenetic theory emerged. 

Improving phylogenies  

Another important factor in the development of modern community phylogenetics was the 

improvement of sequencing technology that allowed for better phylogenetic reconstructions. 

Traditionally estimated from shared phenotypic traits, phylogenies are now quantifiable using 

sequence information and fossil calibrations to inform divergence times among clades. With the 

advent of PCR in the 1980s, and more recently, next generation sequencing technology, 

molecular data can be generated quickly and cheaply, making the phylogenetic reconstruction of 

many 100’s or even 1,000’s of species possible (e.g. Plants: Davies et al. 2004, Mammals: 

Bininda-Edmonds et al. 2007; Birds: Jetz et al. 2012; Zanne et al. 2014; Animals, plants and 

microbes: Hinchliff et al. 2015). These phylogenetic trees provide the raw material upon which 

the indices describing community structure are based. The improvement of sequencing 

technology also came with a growth in bioinformatics and computing power, allowing for the 
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development of analytical programs that could easily integrate evolutionary information (via 

phylogeny), community information and sophisticated statistical tests.  

Patterns in community phylogenetics 

In a seminal paper, Webb et al. (2002) reviewed and discussed the potential for phylogenetics in 

studies of community assembly and introduced the field of modern community phylogenetics. 

The authors suggested that the distribution of pairwise distances measured on a phylogenetic tree 

between species within a community could help elucidate the processes structuring community 

assembly. It was hypothesized that communities structured by the abiotic environment would 

include species that are more closely related than expected by chance, presenting as “clustered” 

on the phylogeny. Under this scenario, a clustered community structure suggests that the species 

present in a community share the same traits related to persisting in a particular environment, 

assuming such traits are evolutionarily conserved. By contrast, a community structured by 

competition would have species that are more distantly related than expected by chance, referred 

to as “over-dispersed” on the phylogeny, again assuming trait evolutionary conservatism. Over-

dispersion is thought to be driven by competition for resources acting on conserved traits (i.e. the 

traits that describe the fit of a species to its abiotic niche are conserved on the phylogeny), where 

closely related species can undergo competitive exclusion stemming from the exploitation of 

similar resources (Wiens and Graham 2005, Losos 2008). However, Webb et al. (2002) 

acknowledge that an over-dispersed pattern could also suggest abiotic filtering, selecting for 

converged traits across many clades, and other more recent studies have suggested similar 

patterns of over-dispersion of clustering could arise from multiple processes (see ‘Caveats and 

assumptions’, below).  

Dimensions of diversity and phylogenetic metrics 

There are several metrics for quantifying phylogenetic diversity patterns across a landscape, with 

new methods being continuously developed in the field. Below, I describe some commonly used 

metrics that I explored in the thesis.  

Alpha diversity  

RH Whittaker (1960) was the first to explicitly describe the three spatial dimensions of species 

diversity in a landscape: alpha, beta and gamma diversity. He proposed that the total species 
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diversity of a region is equal to the sum of diversity per habitat in the region and the differences 

in diversity among those habitats. In this thesis, I examine a relatively large region but assume a 

single species pool, defined as the sum of all the species recorded in the study plots; I thus focus 

on alpha and beta diversity, using both species and evolutionary information.  

Phylogenetic diversity 

Phylogenetic diversity (PD) was first described in the context of conservation prioritization, 

particularly for areas where knowledge of the species pool was limited. Faith (1992) outlined the 

challenges in determining priority from taxonomic diversity, namely that information on the 

diversity of characters represented within a community was often lacking due to our limited 

ecological knowledge on species in any given area or within any given clade—a problem that 

remains today. Calculating evolutionary distances among species could instead, it was argued, 

predict character diversity without quantitative measurements of those features (Faith 1992). 

Phylogenetic diversity is presently and generally calculated using molecular phylogenies to 

capture the evolutionary distances separating species. Several metrics of phylogenetic diversity 

have been developed (e.g. see Schweiger et al. 2008, metrics reviewed in Winter et al. 2013); 

this thesis uses Faith’s PD, defined as the sum of the total phylogenetic branch lengths, including 

the root, for the species in a given community.  

 Species richness and phylogenetic diversity have been shown to be tightly correlated; 

communities with high species richness will also have proportionately higher PD (Schweiger et 

al. 2008). Incorporating a null model with the calculation of PD can disentangle phylogenetic 

diversity from species richness—revealing whether a community contains more or less 

evolutionary history than expected given its richness, helping distinguish between biotic and 

abiotic processes structuring a community. Standardized metrics of PD can also control for 

differences in species richness across samples (Proches et al. 2006).  

Net-relatedness index 

Similar to PD, the net-relatedness index (NRI) measures the standardized effect size of the 

relatedness of species within a community by comparing observed relatedness to expected 

relatedness given community species richness. More specifically, the net-relatedness index is 

equal to -1 times the standardized effect size of the mean pairwise distance among species. The 
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NRI of a community can be positive (clustered) or negative (over-dispersed) and centers around 

zero (random relationship among species). Values greater than 1.96 and less than -1.96 represent 

those that are two standard deviations from a mean of zero and can be indicative of significance 

(alpha=0.05), although significance testing is often formally assessed using randomizations. As 

discussed briefly above, species communities that are phylogenetically clustered are generally 

interpreted as being structured by the environment, where the traits important for persistence are 

conserved among closely related species. Conversely, communities that are phylogenetically 

over-dispersed are usually interpreted as being structured by competitive exclusion, where 

closely related species exploit similar niche spaces and therefore cannot co-exist. This metric is 

useful for exploring species assemblages in diverse or under-studied areas because it does not 

require extensive collection of trait data and can provide some insight into the relative strength of 

the biotic and abiotic factors structuring communities.  

Beta diversity 

Beta diversity, or turnover, is the difference in species composition across space. It can be 

calculated in a variety of ways to determine boundaries in species composition or the rate of 

change through space. Differences among communities can be analogous to the degree of 

similarity between communities and the conversion between similarity and dissimilarity is 

simple (dissimilarity = 1- similarity). In this thesis I calculate taxonomic beta diversity using 

Sorenson’s index (eq. 1):  

𝐸𝑞. 1:  𝑆𝑜𝑟𝑒𝑛𝑠𝑜𝑛′𝑠 =
2𝐶

𝐴 + 𝐵
 

where A is the number of species in habitat A, B is the number of species in habitat B and C is 

the number of shared species between both habitats. The phylogenetic equivalent of Sorenson’s 

index is phyloSor, a measure of the shared branch lengths between habitats. The equation for 

phyloSor is the same as Eq. 1, except that A, B and C are quantified in terms of phylogenetic 

diversity (Faith 1992) rather than taxonomic richness. PhyloSor was first proposed to describe 

the phylogenetic shifts in community composition in a montane ecosystem—allowing 

exploration of whether phylogenetic turnover was strictly consistent with species turnover or 

whether differences among communities occurred somewhere along the evolutionary branches of 

the phylogeny (Bryant et al. 2008).  
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 Recently, additional work has reframed beta diversity as the total variance in species 

communities in a region (Legendre and De Cáceres 2013). With this approach, the variance (or 

total beta diversity of a region) can be partitioned into local (plot) and species contributions to 

beta diversity. The local contributions to beta diversity (LCBD) metric measures the relative 

uniqueness of the plots in a study in terms of their composition; the species contributions to beta 

diversity (SCBD) metric identifies species with high variance, or high abundance at relatively 

few sites. This approach offers a plot-level, hierarchical measure of beta diversity that provides 

some advantages over pairwise approaches, such as the Sorenson index, when evaluating 

diversity patterns across a complex, non-linear landscape.  

Caveats and assumptions 

Despite the growing use of community phylogenetic metrics for disentangling biotic processes 

from abiotic processes, such as those reviewed above, several concerns have recently been raised 

about the underlying assumptions on which they are based. When interpreting patterns of 

phylogenetic dispersion, the major assumption is that traits important for community assembly 

(determining niche differences as well as fitness differences) are conserved on the phylogeny and 

that closely related species will compete more strongly due to their ecological similarity 

(Chesson 2000). However, convergent evolution can confound ecological interpretations of 

phylogenetic clustering and over-dispersion, because similar traits may have evolved 

independently in several clades. This shortcoming was illustrated in a diverse oak system, where 

trait differences and niche preferences were well understood and could better explain the over-

dispersed structure of oak communities, which may have otherwise been interpreted as 

competition (Cavender-Bares et al. 2004). Thus without adequate knowledge of the study system 

and the various fitness traits associated with individuals within a clade, over-dispersion could be 

misinterpreted as competition, especially when processes such as convergent evolution and local 

adaptation are important (Kraft et al. 2015). The assumption that traits are conserved on the 

phylogeny is certainly not true for all traits, and lack of significant phylogenetic structuring in 

communities is sometimes attributed to the lack of trait conservatism within a particular group of 

taxa. In addition, evidence for trait conservatism may be misinterpreted from processes such as 

dispersal limitation, extinction and predation (Crisp and Cook 2012). 
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Although the focus of this thesis is not on competition, analyses that infer competition 

from patterns of community relatedness alone have been heavily criticized. In one highly cited 

example, Mayfield and Levine (2010) questioned whether competition should necessarily result 

in over-dispersion. Expanding on work by Chesson (2000), the authors suggest that 

differentiating between environmental filtering and competition can be difficult because 

coexistence is a product of both niche differences and competitive asymmetries. Niche 

differences may allow distantly related species to co-occur if niche differences vary with 

phylogenetic distance, whereas competitive similarities might favor co-occurrence of more 

closely related species if competitive traits are conserved and necessary for persistence (plant 

height, for example). In other words, competition can lead to the coexistence of distantly related 

species as well as closely related species, depending on the traits conferring competitive 

advantage. While the integration of co-existence theory and community phylogenetics is 

relatively new, Godoy et al. (2014) have shown that competitive differences increase with 

phylogenetic distance but that there is no relationship between stabilizing niche differences and 

phylogenetic distance. If this result generalizes, we would then predict that closely related 

species would co-occur more frequently in communities dominated by interspecific competition. 

However, the authors find in results from their experiment that co-occurring species are evenly 

dispersed on the phylogeny (Godoy et al. 2014). In part, this result might reflect scale effects (the 

small scale used in their study may not have had sufficient environmental heterogeneity for 

meaningful niche differences to be detected), but it also reaffirms the difficulty in inferring 

process from pattern, especially given the myriad of factors likely structuring communities.  

Additional difficulties in interpreting phylogenetic patterns are evident from recent new 

models that incorporate speciation, colonization and extinction effects (Pigot and Etienne 2015). 

Under these models, patterns of over-dispersion can be accounted for by evolutionary processes 

at the landscape scale, and thus should not be interpreted as competition or other ecological 

processes structuring community coexistence. Furthermore, few models account for the effects 

of positive interspecific interactions, such as facilitation, on phylogenetic community structure. 

Positive biotic interactions have not been investigated thoroughly (but see Callaway 2002, 

Valiente-Banuet and Verdú 2007, Butterfield and Callaway 2013) and could lead to either 

random or over-dispersed patterns under environmentally challenging conditions.  
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Another area of critique for the field is based on the models underlying trait evolution. 

Current metrics often implicitly assume that phylogenetic distance scales linearly with time; in 

other words, a trait will become increasingly different with phylogenetic distance at a constant 

rate. However, such an evolutionary mode may be rare. In a recent paper, Letten and Cornwell 

(2015) proposed a correction for the calculation of phylogenetic dispersion of a community to 

better match assumptions of a Brownian motion (BM) model of evolution, which is most 

commonly assumed in the phylogenetic comparative literature. If the true model of evolution is 

BM, linear scaling would result in over-weighing of taxa with long evolutionary branches 

(Letten and Cornwell 2015). Transforming phylogenetic distances by taking their square root 

could correct, at least somewhat, for the discrepancy between evolutionary time and taxa 

dissimilarity—reducing the weight of long evolutionary branches. However, this transformation 

is contingent on a Brownian model of evolution, which is unlikely to be the true model for all 

traits.  

Although the field of community phylogenetics has made great strides in developing and 

testing the influence of evolution on community response to biotic and abiotic influences, many 

challenges remain. Currently, our interpretation of phylogenetic patterns is limited by our 

understanding of how processes such as competition, environmental filtering and facilitation 

affect community structure in nature. Community phylogenetic models are also limited and do 

not currently account for the more complex evolutionary processes of speciation, extinction and 

colonization. Thus the analysis of phylogenetic patterns is not straightforward, and multiple 

factors must be considered before we can attempt to infer process from pattern.  

Phylogenetic community ecology along the elevational gradient 

Elevational gradients are some of the most distinct gradients in ecology. Trends in species 

richness and abundances with elevation have been investigated extensively and have suggested 

several general patterns, most commonly a monotonically decreasing or hump-shaped 

relationship with species richness (Rahbek 1995). While patterns in species richness and the 

causes of its variation with elevation have been the subject of several reviews (e.g. Lomolino 

2001, McCain and Grytnes 2010), the disparity of patterns among taxonomic groups and 

different regions of the world leaves many questions unanswered. Hypotheses on the elevational 

gradient in species richness most often relate to changes in climate. However, other factors such 



 

9 
 

as the species-area relationship, the mid-domain effect, and habitat heterogeneity have also been 

proposed, although evidence that these processes are primary drivers of richness gradients 

remains lacking (McCain and Grytnes 2010). Patterns of phylogenetic diversity have not been 

explored as intensively, but reported patterns of phylogenetic diversity along elevational 

gradients appear similar to gradients in species richness, perhaps unsurprisingly given the 

generally high covariation between taxonomic and phylogenetic diversity (see above).  

Based on the large scale processes structuring biodiversity, we would expect that 

phylogenetic diversity would decline with elevation, paralleling patterns of species richness. We 

might also predict that species would be more over-dispersed at low elevations due to higher 

habitat heterogeneity and warmer temperatures conducive to higher productivity and therefore 

greater competition, while high elevational communities might be more clustered because of 

environmental filtering. However, one of the first studies to explore phylogenetic dispersion of 

montane communities found that plant communities were relatively more over-dispersed at high 

elevations than at low elevations (Bryant et al. 2008). One explanation for this counterintuitive 

pattern is greater facilitation at higher elevations, which has been shown to be important in 

montane herbs (Callaway et al. 2002). Hummingbirds and ants, however, tend to be 

phylogenetically over-dispersed at low elevations and clustered at high elevations (Graham et al. 

2009, Machac et al. 2011), fitting better to our initial expectations, and supporting a trend for 

greater structuring by competition at low elevations and more structuring by environmental 

filtering at high elevations. More recent studies have suggested that patterns of phylogenetic 

dispersion might vary with phylogenetic lineage and node age (Ndiribe et al. 2013).  In this 

thesis, I revisit the question of how communities shift in phylogenetic structure with elevation, 

evaluating metrics of both alpha and beta diversity, using data on tree communities across one of 

the largest elevational gradients on earth.  

Although recent, phylogenetic approaches have become widely used across multiple 

fields in ecology. Interesting applications for community phylogenetics include succession 

following disturbance (Verdú et al. 2009, Letcher 2010, Shooner et al. 2015), conservation 

prioritization (Faith 1992, Forest et al. 2007) , extinction risk and host-parasite interactions 

(Parker et al. 2015, Farrell et al. 2015). Software allowing the rapid generation of phylogenetic 

hypotheses has also become more available (e.g. phylomatic: Webb and Donoghue 2005, 
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phyloGenerator: Pearse and Purvis 2013), allowing users to generate large phylogenies with 

ease. Phylogenic methods additionally correct for species non-independence, allowing us to 

create better and more robust hypotheses testing. In this thesis, my aim is not only to investigate 

questions on phylogenetic diversity in montane regions, but also to illustrate the benefits of 

combining multiple complementary metrics to elucidate large-scale diversity patterns across a 

gradient.  

Objectives and Predictions 

In this thesis I investigate diversity patterns of forest assemblages in Arunachal Pradesh, India. 

The sampling plots used in this study were established on the southern face of the eastern 

Himalayas—providing an extreme elevational gradient to test changes in community structure. I 

use both taxonomic and phylogenetic metrics to infer the processes most important for forest 

species assembly at the plot level. More specifically, I investigate patterns of phylogenetic 

dispersion (PD and NRI) and beta-diversity (taxonomic beta-diversity, phylogenetic beta-

diversity, LCBD, PLCBD) in communities across the landscape, while considering the effects of 

space (geographical distance) and environment (elevation).  

The objectives of this thesis are: 

1. To describe forest (tree) diversity patterns along the elevational landscape. Arunachal 

Pradesh is a floristically unique region and studies of its species richness and diversity, 

particularly at the community level, have been limited.  

2. To explore the relative strength of environmental filtering with elevation using metrics of 

phylogenetic dispersion and beta-diversity.  

3. To locate sites with distinct tree species compositions, which might represent areas of 

particular conservation interest. 

 I make the following predictions: 

1. The province will have high species richness and high phylogenetic diversity, but that 

richness will be greater at low elevations than at high elevations. Due to the extreme 

elevations of the Himalayas, colder climates at higher elevations are likely to act as a 

filter for cold-adapted species. 
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2. Environmental filtering will be stronger at high elevations. If traits for tolerance are 

conserved on the phylogeny, species at high elevations will be more closely related than 

expected by chance.  

3. Phylogenetically unique sites will be located at higher elevations, and might represent 

climate refugia. 
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PART II: Phylogenetic diversity patterns in Eastern Himalayan forests reveal strong evidence for 

environmental filtering of evolutionarily distinct lineages 

 

 

Introduction 

Species diversity patterns have been extensively studied along a number of large-scale 

environmental gradients and have advanced our understanding of the processes shaping species 

assemblages. It is well established that species richness generally decreases with distance from 

the equator and with increasing elevation (Stevens 1989, Stevens 1992, Rahbek 1995, Lomolino 

2001), likely driven by factors including climate, energy and potential evapotranspiration (Currie 

1991, Givnish 1999, Hawkins et al. 2003), although opposing patterns have been observed 

(Rahbek 1995). However, a shortcoming of these observations is that analyses of richness 

patterns assume that species are equivalent and independent of one another, but evolutionary 

history might be an important additional factor shaping diversity gradients (Davies et al. 2004, 

Mittelbach et al. 2007, Davies and Buckley 2012, Kerkhoff et al. 2014). The potential 

importance of evolutionary process on diversity patterns has long been recognized. For example, 

hypotheses regarding the unusually high diversity in the tropics have described equatorial 

regions as either museums or cradles of diversity, concepts based on speciation and long-term 

extinction survival, respectively. Specifically, cradles of diversity are considered to have 

favorable climate conditions and diverse niche space, allowing for rapid radiation of certain 

lineages while museums are areas with persistent lineages and may represent refugia, where 

species have avoided extinction (Stebbins 1974). More recently, there has been growing 

appreciation that evolutionary history might structure not only richness, but also the composition 

of species assemblages (Webb 2000, Cavender-Bares et al. 2004, Vamosi et al. 2009). For 

example, closely related species might share similar ecological preferences and tolerances, and 

thus tend to be found in similar environments; however, at local scales, it is possible that 
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competitive displacement might occur among species if resource requirements are too similar 

(Chesson 2000, Webb et al. 2002). 

By combining information on evolutionary history with a large scale environmental 

gradient, we explore diversity patterns in India’s northeastern-most province, Arunachal Pradesh, 

home to the southern face of the Himalayas—the largest elevational gradient in the world. We 

use phylogenetically explicit metrics to unravel the evolutionary processes shaping the local 

flora, allowing us to explore shifts in community diversity and evolutionary structure with 

elevation. Current theory suggests that communities in abiotically harsher environments (such as 

those found at high elevations) will tend to be composed of more closely related species than 

predicted by chance because phylogenetic niche conservatism and strong environmental filtering 

would select for a subset of lineages adapted to these more extreme environments (Webb et al. 

2002, Bryant et al. 2008). However, empirical studies have sometimes shown opposite trends 

with phylogenetic clustering at low elevations, or in warmer climates, and over-dispersion at 

higher elevations, or in colder climates (Bryant et al. 2008, Gonzalez-Caro et al. 2014). 

Phylogenetic beta diversity can offer an additional perspective to diversity patterns as it 

allows easy partitioning of spatial and environmental drivers while also considering turnover of 

evolutionary history, or branches on the phylogeny (Graham and Fine 2008). Investigating 

phylogenetic turnover may help reveal shifts in clade membership among communities 

experiencing different abiotic conditions across the landscape, and may be more informative than 

simple measures of phylogenetic dispersion sensu Webb et al. (2002). Recent developments in 

beta diversity metrics allow us to additionally distinguish among the relative contributions of 

individual communities to the total beta diversity in a region (Legendre and De Cáceres 2013) – 

highlighting sites with particularly distinct communities. Such approaches can be simply 

extended to additionally consider phylogenetic diversity. In Arunachal Pradesh, high endemicity 

and habitat heterogeneity might affect both the phylogenetic structure of communities as well as 

the rate of turnover between communities perhaps leading communities in distinct environments 

to have distinct compositions.  

The apparent conflict between theory and empirical studies on the relationship between 

community structure and elevation highlight the need for a better understanding of the multiple 

processes determining community assembly. For example, it is well recognized that the 
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convergent evolution of relevant traits in stressful environments could lead to over-dispersed or 

random patterns of community structure (Webb et al. 2002, Bryant et al. 2008, Read et al. 2014). 

Relict taxa – taxa that have shifted their ranges to refugia in montane regions during periods of 

warming, for example – could also have large influence on phylogenetic community structure, 

but have been less well studied (Birks and Willis 2008, Stewart et al. 2010). Previous work has 

explored the genetic imprint of refugia on intraspecific genetic variation and local population 

dynamics, often using methods from phylogeography (Hooghiemstra and van der Hammen 1998, 

Tribsch and Schonswetter 2003, Mayle 2004, Vargas 2007, Provan and Bennett 2008); but to our 

knowledge, the presence of such refugia has not been considered within the context of 

community phylogenetic structure. Relictual taxa that have survived successive climate-driven 

extinction cycles might often be range restricted (Habel and Assmann 2009) and 

phylogenetically distinct from the regional community (Fryxell 1962, Provan and Bennett 2008). 

The presence of relict species might thus tend to increase local phylogenetic diversity and shape 

patterns of community phylogenetic dispersion. 

The Eastern Himalayan region offers a heterogeneous landscape along one of the largest 

elevational and climatic gradients on Earth, with vegetation varying from tropical forest to 

subtropical, temperate and gymnosperm-prominent alpine forest (Roy and Behera 2005). Unique 

to the Himalayas, the rapid transition between forest and climatic zones makes this region 

especially interesting for phylogenetic diversity studies despite remaining largely underexplored. 

Previous work in the Eastern Himalayas has suggested that the highest species richness occurs in 

forest transition zones, between tropical semi-evergreen to sub-tropical evergreen, and sub-

tropical evergreen to broadleaf forests (Behera and Kushwaha 2007), and it is estimated that 30% 

- 40% of the ~6000 plant species in Arunachal Pradesh are endemic (Myers 1988, Baishya 1999, 

Roy and Behera 2005). While there are conflicting reports on the relative frequency and 

distribution of endemics in the region, with evidence for high endemism in both the low-

elevation tropics and the high-elevation alpine regions (Behera et al. 2002, Roy and Behera 

2005), a study of endemism and species diversity in nearby Nepal reports that the highest 

proportion of endemic vascular plant species is found between 3800m and 4200m (Vetaas and 

Grytnes 2002).  



 

15 
 

Here, we analyze data on forest plots distributed throughout Arunachal Pradesh.  Our 

study explores changes in diversity patterns across 291 belt transects established by researchers 

at the North Eastern Regional Institute of Science and Technology (NERIST) in Nirjuli, 

Arunachal Pradesh, from 2007 to 2010. The forest plots were initially designed to investigate the 

species richness in the region, but because the plots encompass a vast elevational span, these data 

provide a unique opportunity to also explore shifts in community structure and richness. We use 

phylogenetic and taxonomic measures of diversity as well as indices of phylogenetic dispersion 

in combination with a regional phylogeny to evaluate elevational trends in richness and 

phylogenetic diversity, and to identify phylogenetically distinct sites, which may point to the 

presence of evolutionarily distinct glacial relicts.  

Methods 

Study site 

The forest plots were established throughout the north east province of Arunachal Pradesh, India 

(27.06°N, 93.37°E) by NERIST. Mountains in Arunachal Pradesh range in altitude from 200m to 

7500m, spanning climates that vary from tropical to alpine.  

The data include species identifications of the trees and shrubs found within 352 belt 

transects (referred to as plots herein). Plots range in elevation from 87m to 4090m above sea 

level, representing four distinct forest ecosystems: tropical evergreen/semi-evergreen, subtropical 

broadleaf/pine, temperate broadleaf/coniferous and alpine. Following preliminary examination of 

the data, several plots were excluded from the study, including those established in plantation 

fields or in fields without any tree or shrub species present, as noted by the field researchers. To 

the best of our knowledge, the 291 plots retained in the analysis represent natural forest with 

varying degrees of disturbance. Because of sampling practicalities, there was some variation in 

plot size (which ranged from 500m2 to 5000m2), we therefore divided the number of individuals 

of each species by total plot area, yielding the number of individuals per m2.  Furthermore, not 

all species were identified to species level, and this fraction varied among plots. We chose to 

analyze all 291 plots despite the differences in identification after determining that trends with 

elevation remained similar among groups of plots with differing percent identification (see 

Supplementary material Appendix 1, Table A1). 

http://tools.wmflabs.org/geohack/geohack.php?pagename=Arunachal_Pradesh&params=27.06_N_93.37_E_region:IN-AR_type:adm1st
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Phylogeny reconstruction 

A molecular phylogeny was reconstructed for the tree species in the study using sequence 

information from Genbank. We used three plant DNA barcodes: rbcL, matK and ITS1 and 2, 

although all three barcodes were rarely available for the same species (Kress et al. 2005, 

Hollingsworth et al. 2009). When barcodes were not publically available on Genbank for a 

species but were available for a sister taxon sampled in our study, we included the sister taxon 

and added the missing species post-hoc as tip polytomies. If gene information was missing and a 

given species did not have a representative sister species in the phylogeny, we looked for 

sequences for another regionally occurring species from that genus (occurrence was based on 

Materials for the Flora of Arunachal Pradesh, Hajra et al. 2006). We were unable to locate 

information on congenerics for three species (Balakata baccata, Khasiaclunea oligocephala, and 

Oxyspora paniculata); we thus included these taxa as polytomies to their closest relatives present 

in the phylogeny (Ostodes paniculata, Breonia oligocephala, Melastoma malabathricum 

respectively) based on the APG3 phylogeny (Bremer et al. 2009). This iterative process allowed 

us to generate a DNA matrix for 206 of the 279 species in the regional pool. The final sequences 

used for constructing the phylogeny are included in Supplementary material Appendix 2 (Table 

A2).  

 Sequences were aligned using MAFFT ver.7 (Katoh and Standley 2013) and trimmed 

using BioEdit (Hall 1999). We concatenated the sequences using SequenceMatrix ver 1.7.8 

(Vaidya et al. 2011) yielding a combined matrix 4365 bases in length. We inferred the phylogeny 

in MrBayes ver. 3.2.2 (Ronquist and Heulsenbeck 2003) by partitioning the data for each 

sequence and assigning the appropriate evolutionary model, as determined by modelTest in the 

phangorn R library (Schliep 2011). The genes rbcL, ITS1 and ITS2 were assigned the GTR+G+I 

model, while matK was assigned the GTR+G model. The phylogeny was constrained at the order 

or family level by assigning species to their known clades within MrBayes. We ran 25 million 

generations, and excluded the first 25% as burnin. One hundred phylogenies were randomly 

selected from the posterior distribution and rooted on the fern, Angiopteris evecta; each tree was 

then made proportional to time using calibration points on four nodes: root (454 mya; Clarke et 

al. 2011), Coniferae (309.5 mya; Clarke et al. 2011), Mesangiospermae (248.4 mya; Clarke et al. 

2011), and Magnoliidae, Monocotyledoneae and Eudicotyledoneae (132 mya; Magallón et al. 
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2015). Missing taxa were included at this stage as polytomies, using taxonomy as a guide, with 

the function add.species.to.genus() from the R package phytools (Revell 2012). The resulting 

phylogenies thus include all 279 taxa from the region. All subsequent phylogenetic analyses 

were conducted on these 100 phylogenies. A sample phylogeny is included in Supplementary 

material Appendix 3 (Fig. A3).  

Analysis of plant communities 

For each plot we calculated: species richness, phylogenetic diversity (Faith 1992) and the net-

relatedness index (Webb et al. 2002), using the R library picante (Kembel et al. 2010). We 

calculated both net phylogenetic diversity, which is equal to the sum of branch lengths 

represented in a community and the standardized effect size of phylogenetic diversity, which 

corrects for species richness with a tip-swap algorithm assuming the regional phylogeny (279 

species) as the species pool. The net-relatedness index (NRI) incorporates evolutionary 

information from the phylogeny to calculate the average relatedness of species within a 

community relative to a null expectation of random community assembly. We calculated both 

abundance weighted and non-weighted NRI using the same null model as for standardized effect 

size of phylogenetic diversity. We used linear regression to explore how these metrics varied 

with elevation, which was normalized with a log transformation.  

 We next calculated two pairwise measures of beta diversity among plots. First, we used 

Sorenson’s index to contrast species composition between plots using the vegdist() function from 

the vegan R library (Oksanen et al. 2007).  Second, we used a phylogenetic equivalent of the 

Sorenson index to calculate phylogenetic beta diversity between plots using the phylosor 

function in picante (Bryant et al. 2008), which quantifies the proportion of shared branch 

lengths. 

 We then determined the local contributions to regional beta diversity (LCBD) using the 

method of Legendre and De Cáceres (2013). R-code for implementing this function is available 

from [http://adn.biol.umontreal.ca/~numericalecology/Rcode/]. This metric identifies plots with 

unique or unusual composition. LCBD also reports species contributions to beta diversity 

(SCBD) which identifies species with high abundances in relatively few sites (Legendre and De 

Cáceres 2013). Because we were also interested in phylogenetic patterns, we used a simple 

extension of this metric to estimate phylogenetically-informed LCBD (herein referred to as 
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PLCBD) by using the phylogenetic beta diversity distance matrix in place of the Euclidean 

distance matrix of species compositional dissimilarities (phyloSor outputs a similarity matrix 

which was converted to represent dissimilarities for this analysis). We did not calculate 

significance values for PLCBD due to the extensive computational requirements associated with 

iterating across 100 separate phylogenies, and we were more interested here in the overall 

patterns of PLCBD in the landscape rather than the statistical significance of any particular plot. 

 We explored structure in beta diversity by contrasting Sorenson’s index with the 

phylogenetic equivalent, phylosor, and compared the distance decay in similarity from the plot 

with the lowest LCBD and the plot with the lowest PLCBD, respectively. This comparison 

allows us to examine whether taxa (tips) or lineages (branches) change more rapidly as we move 

from plots with low to high contribution to beta diversity. We also used partial-mantel tests to 

separately explore the relationship between phylogenetic beta diversity and distance (space) or 

elevation (environment). Finally, we explored the relationship between plot contributions to beta 

diversity, space and environment by modelling LCBD and PLCBD against the geographical 

distance and difference in elevation from the geographic center of the study site (Fig. 1).  

All analyses were performed using R ver. 3.0.2. (R Core Team 2015). 

Results 

Overall patterns of diversity 

Both species richness and phylogenetic diversity decreased with increasing elevation (SR: R2
adj= 

0.285, P<0.001; PD: R2
adj= 0.215, P<0.001). Standardized effect size of PD also increased with 

elevation, but the relationship was weaker, and plots with significantly higher PD than expected 

were located throughout the landscape (Supplementary material Appendix 4). In addition we 

observed a significant, albeit weak, negative relationship between phylogenetic dispersion 

(indexed by NRI) and elevation (R2
adj=0.133, P<0.001 and R2

adj=0.132, P<0.001 for unweighted 

and weighted NRI, respectively). Thus, phylogenetically clustered communities were marginally 

more often found at low elevations and communities became increasingly over-dispersed at 

higher elevations, contrary to our initial hypotheses. We found the opposite relationships (non-

weighted: R2
adj=0.047, P<0.001; weighted: R2

adj=0.039, P<0.001) when gymnosperms and ferns 

were removed from the analysis, although the relationships were even weaker (Supplementary 
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material Appendix 5, Fig. A5). The site with the lowest LCBD (least distinct community) was 

located near the geographical center of the study site (Fig 2a; 94.704E, 27.727N). The site with 

the lowest PLCBD was also fairly central, but slightly to the east (Fig 2b; 95.648E, 28.249N). 

Both sites were at relatively low elevations (LCBDmin=528m, PLCBDmin=295m). 

In general, species turnover (Sorenson’s Index) occurred at a faster rate than phylogenetic 

branch turnover (phylosor), as illustrated by the compositional decay from the site with lowest 

LCBD (Fig. 3a; slope=0.66, R2
adj=0.745) and the site with lowest PLCBD (Fig. 3b; slope=0.67, 

R2
adj=0.687), respectively. A mantel test of the Sorenson’s dissimilarity matrix and the phylosor 

dissimilarity matrix (transformed to dissimilarity by subtracting from one) revealed a strong 

relationship between the pairwise metrics (mantel r=0.703, P=0.001). We observed a strong 

relationship between phylogenetic beta diversity and elevation (mantel r=-0.4638, P<0.001), 

which remained significant when we corrected for differences in geographical distance among 

plots (partial mantel r=-0.38, P<0.001) and when gymnosperms and ferns were removed from 

the analyses (Supplementary material Appendix 6, Table A6).   

 The relationships between PD, NRI and phylogenetic beta diversity with elevation was 

not sensitive to the proportion of individuals identified per plot (Supplementary material 

Appendix 1, Table A1). 

Local contributions & distance decay (within a center of endemism) 

Local contributions to beta diversity (LCBD), although not phylogenetically informed, 

provided some insight into the structuring of communities. Plots located on the periphery of 

study area tended to have higher contributions to beta diversity than plots in central, low-

elevational sites (Fig. 2a). We found a weak, but significant, relationship between the strength of 

contribution and elevation, with plots contributing more at higher elevations (Table 1, Fig. 2a). A 

similar trend was found for phylogenetic local contribution to beta diversity (PLCBD; Table 1, 

Fig. 2b). The relatively low r-squared can, in part, be explained by the triangular relationship in 

the data, with plots at lower elevations having higher variance in their contribution.  

LCBD was significantly correlated with both distance and difference in elevation from 

the geographical center of the study site, with distance the stronger predictor (Table 1). The 

equivalent correlation with elevation for PLCBD was weaker (excluding plots with a species 
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richness of one), and in contrast to results with LCBD, elevation was the better predictor (Table 

1). The taxa which contributed the most to beta diversity, as indexed by the species contribution 

to beta diversity (SCBD; Legendre and De Caceres 2013), were Castanopsis indica, Duabanga 

grandiflora, Pinus roxburghii, and Quercus sp.; these taxa are restricted in their distribution but 

have high local abundances. The distribution of both LCBD and PLCBD was qualitatively 

similar when gymnosperms and ferns were removed from the analyses (Spearmann rank 

correlations; LCBD=0.939, PLCBD=0.853).  

Discussion 

We explored shifts in tree community structure and richness across one of the largest elevation 

gradients in the world, the Himalayas of Arunachal Pradesh, India. We found that species 

richness and phylogenetic diversity declined with elevation, a result that is consistent with our 

predictions and existing ecological theory. In general, elevational declines in richness are 

hypothesized to be due to factors similar to those driving the decline observed along the 

latitudinal gradient, such as the reduced availability of resources, colder temperatures and 

increased extinction rates at regional scales (Lomolino 2001, McCain and Grytnes 2010). A 

reduction of resources (lush soils and nutrients, for example) and colder temperatures at high 

elevations can limit the number of individuals and select for species with specific niche attributes 

(McCain and Grytnes 2010), with only those species possessing the appropriate traits and 

adaptations able to establish and thrive in these environments. 

Several lines of evidence in our study suggest that environmental filtering is contributing 

to shifts in community structure with elevation; including high local endemism and rapid 

phylogenetic turnover that was more strongly tied to changes in elevation than with distance. 

However, one key metric used to infer filtering, the net-relatedness index, which describes the 

phylogenetic dispersion of lineages (Webb et al. 2002), did not reveal a strong pattern with 

elevation. We suggest two possible explanations for the lack of pronounced community 

phylogenetic structuring along the elevational gradient despite strong species filtering. First, 

important traits could demonstrate convergent evolution, such that distant relatives share similar 

ecological habitats. Second, in high montane regions, filtering may operate on evolutionary 

distinct glacial relicts, remnants of once more diverse cold-adapted clades. Much previous work 

has focused on the former (Jobbágy and Jackson 2000, Kraft et al. 2007 (simulations), Losos 
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2011, Read et al. 2014); here we explore the latter, and consider the phylogenetic evidence for 

glacial relicts structuring communities in the high elevations of the Himalayas.  

Areas of high topographic relief such as mountain ranges have been linked to the 

presence of glacial refugia (Weber et al. 2014) because they provide cooler, more stable climates 

during warming periods (Stewart et al. 2010). These refugia provide suitable conditions for 

species that have retreated to microclimates resembling those of the last glacial maxima (Vetaas 

and Grytnes 2002, Ohlemüller et al. 2008). Such refugia might be increasingly important for 

many species given current warming trends (Opgenoorth et al. 2010). However, relict 

communities or species are a challenge to identify, usually requiring detailed population genetics 

on a regional scale, allowing past patterns of migration to be reconstructed (Hampe et al. 2003, 

Petit et al. 2005, Vargas 2007).  

Our approach combines knowledge on the evolutionary relationships among species with 

information on shifts in community composition and allows us to identify diversity patterns that 

might reflect the distribution of relict lineages and glacial refugia. For example, glacial relicts 

could represent survivors from once more diverse clades, perhaps a result of higher extinction 

rates of related species (Cain 1944, Fryxell 1962, Brooks and Bandoni 1988). Therefore, the 

communities in which they are found may be more phylogenetically diverse relative to their 

species richness. Because glacial relicts also tend to be range restricted (Habel and Assmann 

2009) we expect that relicts would also contribute more to the overall beta diversity of a region. 

Although we did not find strong evidence for higher phylogenetic diversity within higher 

elevation plots in Arunachal Pradesh, likely because both richness and phylogenetic diversity 

tend to decrease with elevation, we show high species and phylogenetic turnover, supporting 

evidence for high local endemism in the region. 

Investigating phylogenetic beta diversity in addition to species beta diversity provides 

added information on evolutionary history and corrects for species non-independence (Graham 

and Fine 2008). We found that species turnover occurred at a faster rate than branch turnover 

throughout the landscape; this pattern and the strong relationship between the two indices would 

be expected under null expectations. Previous work has interpreted higher species turnover as 

evidence for niche conservatism plus environmental filtering (Jin et al. 2015). However, 

phylogenetic clustering among species should also be expected with high conservatism and 
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strong filtering, which we did not observe. We therefore more carefully explored patterns of 

phylogenetic beta diversity, investigating the relative rates of turnover in branches with space 

versus elevation (our proxy for environment).  

Our results demonstrate that turnover of clade membership occurs along the elevational 

gradient, independently from turnover occurring with geographical distance, echoing the findings 

of Gonzalez-Caro et al. (2013), which showed that beta diversity in a tropical mountain system 

was not related to distance, but to temperature which varies with elevation (McCain and Grytnes 

2010). We suggest that general high phylogenetic beta diversity, the strong correlation between 

phylogenetic beta diversity and elevation, as well as the lack of clear patterns of species 

relatedness indicates environmental filtering of small ranged, evolutionary distinct, taxa. We 

propose that these taxa might represent glacial relicts or refuge species. 

The presence of glacial relicts would not only disrupt patterns of phylogenetic clustering 

predicted at high elevations in strongly filtered communities, but also contribute to the 

uniqueness or beta diversity of those communities. We show that high elevation plots do indeed 

contribute disproportionately to regional beta diversity. Because highly contributing plots 

represent those that contain communities with relatively greater species uniqueness (Legendre 

and De Cáceres 2013), they might also reflect the presence of narrow ranged and evolutionarily 

distinct endemics. Species with high individual contributions, many of which are endemic to the 

region, include Pinus roxburghii (Puri et al. 2011, IUCN RedList 2015), Pinus wallichiana 

(Saqib et al. 2013, IUCN RedList 2015) and Livistona jenkinsiana (Sikarwar et al. 2000). Both 

environment and distance from the center of the study site were important predictors of 

contributions to species beta diversity, indicating that communities are increasingly unique 

across space and elevation. In contrast, phylogenetic contributions to beta diversity increased 

more strongly with elevation than with distance, indicating that high elevation plots represent 

more phylogenetically unique clades. We suggest that the weaker relationship between distance 

and phylogenetic contributions to beta diversity might indicate that dispersal limitation may be 

less important in our study system. While dispersal limitation has been shown to stabilize centers 

of endemism (Weber et al. 2014), it does not appear to have a significant effect on local tree 

community structure in Arunachal Pradesh, despite the high proportion of endemics in the 

region. 



 

23 
 

Given strong filtering, high elevation taxa are likely well adapted to the environmental 

conditions where they are found; some of these species may have retreated to higher, colder, 

altitudes following the last glacial maximum. The absence of strong signal in phylogenetic 

clustering indicates that these taxa do not, however, represent radiations within one or a few 

clades, instead they may represent remnants from formerly more diverse clades in the region. 

A better understanding of richness patterns ultimately requires researchers to collect data 

in isolated, overlooked, and hard to access regions around the world. We suggest that regions 

with unique species, high endemicity and distinct geography should become priorities for 

research and conservation. By understanding the historical factors that have shaped them, these 

communities might provide insights into responses to future environmental change, not at the 

individual species level, but at the level of the ecological assemblage. Through the use of 

community-level diversity indices, we showed that filtering strongly drives community structure 

across elevations, and we suggest that some high-elevation communities may represent refugia 

for glacial relicts.  High altitude refugia may be important conservation targets because they can 

provide an escape from generally increasing temperatures globally by matching to the cooler 

climates resembling the conditions under which many taxa may have evolved. 
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PART III: Conclusions and Future Research 

The field of community phylogenetics has grown rapidly in a short time. Phylogenetic methods 

not only provide insight into the potential biotic and abiotic processes structuring communities 

but also allow us to account for the relatedness (and non-independence) of species. Species 

richness patterns provide only limited insight into the multitude of factors that structure 

biodiversity patterns. Using phylogeny we can infer process from pattern by factoring 

evolutionary history into analyses of diversity and dispersion. Here I explored multiple diversity 

metrics that capture information on both richness and phylogenetic composition to investigate 

the community assembly of forest trees in the Himalayas of Arunachal Pradesh, India. 

Revisiting objectives 

The forests of Arunachal Pradesh are species rich and diverse, changing notably across the 

landscape. Although many studies on species diversity have been conducted in the region, 

community-level diversity patterns have been largely overlooked, perhaps due to the challenges 

in sampling species rich regions with difficult terrain. The researchers at NERIST have been able 

to provide a detailed, high resolution dataset with which more specific questions of diversity and 

richness patterns can be addressed. We find that species richness and phylogenetic diversity 

decreased with elevation, but that species relatedness did not vary strongly. The decrease in 

species richness with elevation and latitude is well documented in the literature; however, 

community-level patterns and trends in phylogenetic structure are less well understood. 

Nevertheless, this information is useful in the context of conservation and restoration (more on 

this below) and for improving our understanding of the mechanisms structuring species richness 

gradients, especially within remote, poorly studied, regions where we lack detailed knowledge of 

species ecologies. 

 We have suggested that environmental filtering plays an important role in structuring 

forest communities along the vast elevational gradient in Arunachal Pradesh. Although this 

conclusion may not seem surprising, the patterns reported in the literature are not always 

consistent with prior expectations. For instance, environmental filtering may occur without 
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leading to a clear pattern of phylogenetic structuring, and no one metric can definitively 

conclude process from pattern. We drew inference by combining results on taxonomic and 

phylogenetic diversity and turnover (beta diversity), as well as plot level contributions to beta 

diversity. We found that phylogenetic beta diversity among plots varied more strongly with 

elevation than distance, but that species turnover more quickly than branches. In addition, plots 

that contributed more to the overall beta diversity of the region tended to be those furthest from 

the center of the study site. Together these patterns suggest that habitat heterogeneity might drive 

rapid turnover in species and branches, and that unique species communities are maintained at 

higher elevations. Our results provide strong evidence for environmental filtering, even though 

we did not detect significant trends in phylogenetic clustering.  

 By integrating new metrics with phylogeny, we were able to reveal that plots at higher 

elevations contribute more to both species and phylogenetic beta diversity. These sites contain 

species or lineages that are high in abundance but have restricted distributions. We suggest that 

these plots may represent high elevation refugia, or areas where cold-adapted species can persist. 

The presence of these evolutionarily distinct taxa in higher elevational sites may also be part of 

the explanation for why we do not find strong evidence for phylogenetic clustering at high 

elevations.  

 Our findings have important implications for conservation prioritization in light of 

changing climates and increased anthropogenic pressures globally. Anthropogenic pressures in 

Arunachal Pradesh are high and projected to increase, as the forests provide several ecosystem 

services (timber, food, medicine) to the local communities (Menon et al. 2001). As a result, 

deforestation is commonplace and impacts may be particularly severe where the forest is easily 

accessed from towns and roads. With rising global temperatures, tree species will be exposed to 

additional stresses. For example, recent studies have shown that species are migrating northward 

or upwards to remain within their optimal niche envelope (Lenoir et al. 2008, Morueta-Holme et 

al. 2015). The impact of both anthropogenic pressures and changing climates is not clear at the 

community level. Our study suggests that forest community composition is strongly structured 

by the environment. Environmental change is thus likely to impact forest communities. These 

changes may, in turn, impact the resources that forests provide to local inhabitants. 
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 Phylogenetic diversity may be a useful metric for conservation prioritization because it 

can help identify lineages and communities that contain the most functional diversity. Thus, 

identifying taxonomically and phylogenetically distinct communities can help inform 

conservation prioritization. We have shown that phylogenetically distinct communities are 

located at high elevations, and are thus less likely to be exploited by local habitants, but they 

may be subject to higher stress from climate change. If species alter their ranges to adjust for 

warming temperatures, these cool, high elevation sites might provide important refugia for 

temperature-sensitive species.  

Future Research 

 Future work could incorporate species distribution modelling to characterize the climate 

niches of high elevation species. With these models, species ranges could be mapped and 

overlapped to identify potential barriers to dispersal, and sites with rare or contracting 

environments. High resolution environmental data such as humidity, rainfall, temperature and 

soil composition will be essential for generating such models, but are often lacking at the 

appropriate scale for this region, where very large changes in elevation, slope and aspect can 

result in very different environmental regimes over short spatial distances.  

 We should additionally strive to collect additional data on species’ functional traits. 

Although one of the benefits of phylogenetics is the ease with which it can be incorporated into 

studies lacking trait data, the various phylogenetic metrics can be improved with additional 

functional trait information. Collecting trait information is time consuming and difficult work, 

especially for a study of this size, but could provide additional insight into community 

structuring. For example, with detailed trait information, it would be possible to test for 

convergent evolution and to more directly evaluate evidence for trait dispersion. While 

phylogeny might provide a useful proxy for expected ecological similarity among species, 

detailed trait data is critical for identifying the specific selective forces structuring species 

distributions and co-existence.   

 With an increased need for richness and conservation assessment throughout the world, 

phylogenetic community ecology can provide an additional perspective on how (and sometimes 

why) communities are presently structured, as well as how they might adapt to projected 

environmental change. Fortunately, the tools required to build phylogenies and to compute 
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phylogenetic metrics are becoming easier to use and more widely available. Trait and species 

richness information can complement phylogenetic approaches—but neither approach may be 

sufficient on its own. While phylogenetic methods are constrained by various assumptions, they 

can begin to account for species non-independence and evolutionary history in analyses of 

diversity patterns, and, as I have shown here, potentially identify regions for conservation based 

on unique phylogenetic structure. The work presented in this thesis indicates that Arunachal 

Pradesh contains phylogenetically unique forests that potentially have a high conservation value, 

both in terms of genetic diversity and resource availability for local human populations. 
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Figures 

 

Figure 1: Map of the study site in Arunachal Pradesh, India, with darker shading indicating 

higher elevations. The sites in our study range in elevation from 87m to 4090m above sea level. 

The geographic center of the study is identified with an arrow in the inset figure (94.704E, 

27.727N, elevation: 709m). 
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Figure 2: Maps show the spatial distribution of LCBD (a) and PLCBD (b). For (a) and (b), 

symbols are shaded by contribution, where red indicates higher contributions to beta diversity. 

The plots with the lowest contributions are colored white and identified with arrows. These plots 

represent the least unique sites for LCBD (a) and PLCBD (b), respectively. We also show the 

change in local contribution to beta diversity (LCBD; Fig. 2c) and local contribution to 

phylogenetic beta diversity (PLCBD; Fig. 2d) of each plot with increasing distance from the 

geographical center of the study site (see Fig. 1). Here, symbols are shaded by elevational 

differences, where red indicates a large difference in elevation from the center of the site and 

blue indicates small differences.  
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Figure 3: The relationship between phylogenetic beta diversity and Sorenson’s beta diversity 

from the site with lowest LCBD (a) and the site with lowest PLCBD (b). Both phylogenetic and 

Sorenson’s beta diversity are represented on a scale from 0 to 1, where 0 indicates sites that are 

compositionally identical and 1 indicates no overlap between sites in either phylogenetic branch 

lengths or taxa, respectively.  
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Tables 

Table 1: Linear models testing change in LCBD and PLCBD with elevation and distance. 

Distance represents the geographical distance between each plot and the geographical center of 

the study site while elevation is the absolute value of the difference in elevation between each 

plot and the center of the study site (709m).  

Model     R2
adjusted Pmodel  Pdistance  Pelevation 

LCBD      

 Elevation   0.276  <0.001 

 Distance + elevation  0.4307  <0.001  <0.001  <0.001 

PLCBD 

 Elevation   0.1628  <0.001 

 Distance + elevation  0.1666  <0.001  0.456  <0.001 
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Supplementary Material 

Appendix 1: Assessing sensitivity of results to differences in species identification among 

plots. 

Areas of high diversity, although ecologically invaluable, pose a unique challenge for 

researchers. Species identification is highly related to the knowledge of the field personnel and 

researchers involved (Elliott and Davies 2014). As such, not all individual trees in our study 

were identified to the genus level. To determine whether the discrepancy among plots (in terms 

of species identification) had any effect on the overall patterns we observed, we separated our 

data into three groups: all 291 plots used in the study, plots with at least 50% of individuals 

identified to genus level (257 plots), and plots with at least 75% of individuals identified to 

genus level (174 plots).  

Using the same 100 phylogenies as for all other analyses, we calculated phylogenetic 

diversity (PD), the non-abundance weighted net-relatedness index (NRI) and phylogenetic beta 

diversity (PBD) for the three groups of plots, defined above. We regressed PD and NRI for each 

group with log-transformed elevation and calculated mantel tests for pairwise phylogenetic beta 

diversity and pairwise elevation or distance. We found that the patterns we observed in the study 

were conserved for all groups, suggesting that using all plots, despite varying levels of species 

non-identification does not affect general patterns of phylogenetically informed indices along the 

elevational gradient and overall landscape (Table A1). Phylogenetic metrics such as PD, NRI 

and PBD are calculated as standardized effect sizes using 1000 null iterations each, which 

corrects for differences in species richness (higher richness with elevation) at the plot level. 

Moreover, these metrics consider evolutionary information maintained in the branch lengths and 

adding or removing taxa (phylogenetic tips) may not add significant evolutionary information or 

alter the overall patterns observed.  
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Table A1: Regressions for both PD and NRI against log-transformed elevation for three groups 

of plots (all plots, at least 50% identified, at least 75% identified). We also include the results 

from mantel tests for distance matrices of phylogenetic beta diversity, elevational differences and 

distance.  

Linear models 

Model    R2
adj  P  F  DF  

PD~elevation 

All plots (291)  0.198  <0.001  72.82  289 

50% identified (257) 0.198  <0.001  64.31  255 

75% identified (174) 0.208  <0.001  46.47  172 

NRI~elevation 

All plots (291)  0.133  <0.001  44.83  285 

50% identified (257) 0.192  <0.001  60.87  251 

75% identified (174) 0.251  <0.001  57.56  168 

 

Mantel Test 

Model     mantel-r P 

PBD~elevation (mantel) 

 All plots (291)   -0.4638 0.001 

 50% identified (257)  -0.4767 0.001 

 75% identified (174)  -0.4473 0.001 

PBD~distance (mantel) 

 All plots (291)   -0.312  0.001 
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 50% identified (257)  -0.3412 0.001 

 75% identified (174)  -0.3575 0.001 

 

References 
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Appendix 2: Genbank accession numbers for phylogeny reconstruction.  

Table A2: List of accession numbers used to reconstruct the 100 phylogenies used in the study. 

In some cases, sequences were not available for the species in our study and we used sequences 

for closely related species. Both the species names for the sequences and the name used in the 

phylogenies are noted. 

GenBank species name MATK RBCL ITS1-2 Name in phylogeny 

Abies alba HQ619823.1 FR831929.1  Abies alba 

Abroma augusta HM488448.1 AJ012208.1 AJ277462.1 Abroma augusta 

Acacia catechu AF274141.1 GQ436355.1 KC952019.1 Acacia sp. 

Acer caesium  DQ978397.1  Acer caesium 

Acer campbellii JF952995.1 DQ978398.1 HM352652.1 Acer campbellii 

Acer cappadocicum   AJ634579.1 Acer cappadocicum 

Actinodaphne obovata AF244410.1  AY265398.1 Actinodaphne obovata 

Aglaia elaeagnoidea AB925001.1 AB925482.1 AY695536.2 Aglaia spectabilis 

Ailanthus integrifolia EU042843.1 JF738642.1  Ailanthus integrifolia 

Alangium chinense FJ644642.1 L11209.2 FJ610017.1 Alangium chinense 

Albizia lebbeck JX495667.1 KC417043.1  Albizia lebbeck 

Albizia lucidior   JX856396.1 Albizia lucidior 

Albizia procera KC689800.1 KC417044.1 JX856397.1 Albizia procera 

Alnus nepalensis JF953073.1 FJ844581.1 AJ251676.1 Alnus nepalensis 

Alsophila spinulosa  AB574756.1  Cyathea spinulosa 

Alstonia scholaris Z70189.1 X91760.1 DQ358880.1 Alstonia scholaris 

Altingia excelsa AF013037.1 AJ131769.1 AF304525.1 Altingia excelsa 

Angiopteris evecta  EU439092.1  Angiopteris evecta 

Aquilaria sinensis HQ415244.1 GQ436619.1 KF636364.1 Aquilaria malaccensis 

Aralia cachemirica   AY725107.1 Aralia sp 

Ardisia crenata GU135103.1 GU135270.1 JF416242.1 Ardisia macrocarpa 

Artocarpus chama AB924725.1 AB925336.1 FJ917047.1 Artocarpus chama 

Artocarpus heterophyllus  JX856635.1 FJ917039.1 Artocarpus heterophyllus 

Azadirachta indica EF489115.1 AJ402917.1 AY695594.1 Azadirachta indica 

Baccaurea lanceolata AY552419.1   Baccaurea ramiflora 

Bambusa balcooa JX966236.1  EU244594.1 Bambusa balcooa 
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Bambusa tulda EU434248.1  EF540854.1 Bambusa tulda 

Bauhinia ungulata JQ587517.1 JQ591586.1 FJ009818.1 Bauhinia ungulata 

Beilschmiedia roxburghiana AB924825.1 AB925437.1  Beilschmiedia fagifolia 

Berberis asiatica GU934752.1 GU934836.1 GU934647.1 Berberis leschenaultii 

Bhesa robusta AB925166.1 AY935723.1  Bhesa robusta 

Bischofia javanica EF135508.1 AY663571.1  Bischofia javanica 

Boehmeria glomerulifera  KF138115.1 KF137807.1 Boehmeria glomerulifera 

Boehmeria macrophylla KF137956.1 JF317496.1 KF835865.1 Boehmeria macrophylla 

Boehmeria nivea KF137957.1 AJ235801.1 KF835885.1 Boehmeria nivea 

Boehmeria platyphylla   KF835876.1 Boehmeria platyphylla 

Boehmeria rugulosa KF137960.1 KF138125.1 KF137817.1 Boehmeria rugulosa 

Bombax ceiba JX495673.1 JN114787.1 HQ658377.1 Bombax ceiba 

Brassaiopsis hispida  JQ933245.1 AY725117.1 Brassaiopsis mitis 

Breonia chinensis  AJ346968.1 AJ346858.1 Breonia chinensis 

Bridelia retusa HQ415363.1  FJ439910.1 Bridelia retusa 

Brucea javanica AB924837.1 EU042986.1 AY510155.1 Brucea javanica 

Calamus erectus JQ041983.1 JQ042035.1  Calamus sp 

Callicarpa arborea FM163260.1 JF738395.1 FM163241.1 Callicarpa arborea 

Callicarpa macrophylla FM163273.1 JQ618476.1 FM163246.1 Callicarpa macrophylla 

Camellia sinensis AF380077.1 AF380037.1 EU579774.1 Camellia sinensis 

Canarium strictum  FJ466638.1  Canarium strictum 

Carallia brachiata AF105086.1 AB925477.1 AF328957.1 Carallia brachiata 

Caryota urens JF344998.1 JQ734494.1 JF344933.1 Caryota urens 

Casearia glomerata HQ415293.1   Casearia vareca 

Cassia fistula JQ301870.1 JX571794.1 JX856432.1 Cassia fistula 

Castanopsis indica JF953474.1 JF941185.1 AY040377.1 Castanopsis indica 

Casuarina stricta U92858.1   Casuarina sp 

Chukrasia tabularis AB924866.1 AB925481.1 FJ518894.1 Chukrasia tabularis 

Cinnamomum bejolghota GQ248098.1 GQ248569.1  Cinnamomum bejolghota 

Citrus maxima AB626794.1 GQ436734.1 AB673398.1 Citrus maxima 

Citrus reticulata FJ716729.1 JQ593913.1 AB456115.1 Citrus reticulata 

Clerodendrum infortunatum  JQ724863.1  Clerodendrum infortunatum 

Cordia africana  KF158134.1  Cordia grandis 
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Coriaria nepalensis KF022395.1 KF022461.1 KF022334.1 Coriaria nepalensis 

Cornus capitata DQ341340.1 AY530926.1 AY530915.1 Cornus capitata 

Cupressus torulosa HM023995.1 AY988257.1 AY988393.1 Cupressus torulosa 

Cyathea podophylla JF303907.1   Cyathea sp 

Cyathea klossi  EU352299.1  Cyathea sp 

Dalbergia sissoo AF203582.1 JX571817.1 EF451079.1 Dalbergia sissoo 

Daphne laureola HM850899.1 JN892035.1 GQ167536.2 Daphne papyracea 

Debregeasia saeneb JF317422.1 JF317481.1 KF137835.1 Debregeasia saeneb 

Dendrocalamus hamiltonii HM448942.1   Dendrocalamus hamiltonii 

Dillenia indica AB924752.1 FJ860350.1 AY096030.1 Dillenia indica 

Dipterocarpus retusus KF021568.1   Dipterocarpus retusus 

Docynia indica JQ391000.1 JQ933307.1 JQ392426.1 Docynia indica 

Duabanga grandiflora GQ434087.1 AY036150.1 AF163695.1 Duabanga grandiflora 

Dysoxylum binectariferum JX982143.1 JX982144.1 JX982145.1 Dysoxylum binectariferum 

Elaeagnus umbellata AY257529.1 HM849968.1 AF440257.1 Elaeagnus parvifolia 

Elaeocarpus sphaericus  AF206765.1 DQ499079.1 Elaeocarpus floribundus 

Elatostema acuminatum  AY208702.1  Elatostema platyphyllum 

Engelhardia fenzelii AY147099.1 AY147095.1 KF201317.1 Engelhardia spicata 

Erythrina lanceolata JQ587635.1 JQ591753.1  Erythrina stricta 

Eucalyptus tereticornis   AF390482.1 Eucalyptus sp. 

Eurya acuminata   AY626852.1 Eurya acuminata 

Eurya japonica AF380081.1 Z80207.1 AY626867.1 Eurya japonica 

Exbucklandia populnea U77092.1 AF081071.1 AF127504.1 Exbucklandia populnea 

Ficus auriculata JQ773629.1 JQ773648.1 JQ773837.1 Ficus auriculata 

Ficus benjamina JQ773507.1 JX571829.1 JQ773842.1 Ficus benjamina var. nuda 

Ficus cyrtophylla JF953730.1 JF941526.1 JQ773858.1 Ficus cyrtophylla 

Ficus glaberrima JF953733.1 JF941532.1 JQ773885.1 Ficus glaberrima 

Ficus hirta HQ415330.1 JQ773693.1 JQ773900.1 Ficus hirta 

Ficus hispida KC508602.1 GU935070.1 JQ773905.1 Ficus hispida 

Ficus racemosa GU935040.1 JF941550.1 HM368196.1 Ficus racemosa 

Ficus semicordata JQ773468.1 JF941553.1 JQ773985.1 Ficus semicordata 

Garcinia cowa HQ331596.1 HQ332054.1 AB110799.1 Garcinia cowa 

Garcinia pedunculata  KF783274.1  Garcinia pedunculata 
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Garuga floribunda  GU246039.1  Garuga pinnata 

Gaultheria trichophylla JF953858.1 JF941732.1 HM597327.1 Gaultheria sp. 

Gleditsia triacanthos AY386849.1 JX572626.1 AF509981.1 Gleditsia assamica 

Glochidion nomorale AY936569.1   Glochidion heymeanum 

Glochidion puberum  AY663586.1  Glochidion heymeanum 

Gmelina arborea JQ589430.1 KF381143.1  Gmelina arborea 

Grewia glabra  JF738370.1  Grewia optiva 

Gymnocladus chinensis AY386928.2  AF510034.1 Gymnocladus assamicus 

Heteropanax fragrans  JQ933360.1 JX106276.1 Heteropanax fragrans 

Hevea brasiliensis HQ606140.1  AB441762.1 Hevea brasiliensis 

Hovenia dulcis JX495724.1 JX571848.1 DQ146607.1 Hovenia dulcis var. dulcis 

Hydrangea anomala GU369710.1 JF941956.1 JF976652.1 Hydrangea sp. 

Illicium verum GQ434033.1 JQ003520.1 AF163724.1 Illicium griffithii 

Juglans regia HE966942.1 HE963521.1 HE574833.1 Juglans regia 

Juniperus chinensis JQ512420.1  EU243566.1 Juniperus sp. 

Kydia calycina EF207261.1   Kydia calycina 

Lagerstroemia speciosa  JN114813.1 AF163696.1 Lagerstroemia speciosa 

Leea macrophylla   JN160927.1 Leea macrophylla 

Lindera glauca AB442056.1 HM019477.1 AB500616.1 Lindera sp. 

Litsea cubeba AB259073.1 KF912878.1 AB260863.1 Litsea cubeba 

Litsea monopetala HM019346.1 HM019486.1 DQ120602.1 Litsea monopetala 

Litsea salicifolia KF523364.1 KF523365.1  Litsea salicifolia 

Livistona jenkinsiana HQ720190.1   Livistona jenkinsiana 

Loranthus europaeus EU544436.1   Loranthus sp 

Loranthus delavayi  HQ317767.1  Loranthus sp 

Lyonia ovalifolia U61305.1 AF124580.1  Lyonia ovalifolia 

Macaranga denticulata   AJ275630.1 Macaranga denticulata 

Machilus gamblei JF954542.1 JF942458.1 JF976983.2 Machilus kurzii 

Maesa indica   JQ436585.1 Maesa indica 

Magnolia hodgsonii JN050055.1   Magnolia hodgsonii 

Magnolia pealiana AY008979.1 AY008901.1  Magnolia pealiana 

Mallotus philippensis HQ415385.1 GU441775.1 DQ866614.1 Mallotus philippensis 

Mangifera indica JQ586472.1 JF739088.1 AB071671.1 Mangifera indica 
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Melastoma malabathricum  AF270748.1 GQ265880.1 Melastoma malabathricum 

Melia azedarach EF489117.1 JX856725.1 AY695595.1 Melia azedarach 

Merrilliopanax listeri   KC952369.1 Merrilliopanax alpinus 

Mesua ferrea HQ331661.1 GQ436685.1 AY625635.1 Mesua ferrea 

Meyna tetraphylla   AJ315083.1 Meyna laxiflora 

Michelia champaca  AY008902.1  Michelia champaca 

Micromelum integerrimum   JX144208.1 Micromelum integerrimum 

Moringa oleifera JX092021.1 JX571866.1 AF378589.1 Moringa oleifera 

Morus macroura GU145567.1 GU145581.1 AB604232.1 Morus laevigata 

Musa acuminata KC904699.1 FJ871828.1 JF977066.1 Musa sp. 

Myrica esculenta   FJ469994.1 Myrica esculenta 

Oroxylum indicum GQ434292.1 JN407262.1 FJ606747.1 Oroxylum indicum 

Ostodes paniculata EF135574.1 AJ402979.1  Ostodes paniculata 

Pandanus tectorius JX903664.1 M91632.1 EU816709.1 Pandanus furcatus 

Persea bombycina  EU128737.1  Persea odoratissima 

Phlogacanthus thyrsiflorus   EU528907.1 Phlogacanthus thyrsiflorus 

Phoebe lanceolata AB924934.1 AB925556.1 FM957844.1 Phoebe cooperiana 

Phyllanthus emblica FJ235251.1 AB925416.1 AB550082.1 Phyllanthus emblica 

Pieris formosa U61303.2 AF124581.1 EU547690.1 Pieris formosa 

Pinus kesiya AB161008.1 JN039276.1 AF037004.1 Pinus kesiya 

Pinus merkusii AY497287.1 AB019811.1 AF037006.1 Pinus merkusii 

Pinus roxburghii AB084495.1 JN854162.1 AF037021.1 Pinus roxburghii 

Pinus wallichiana JN854154.1 X58131.1 AF036991.1 Pinus wallichiana 

Podocarpus neriifolius KF713737.1 AF249618.1 KF713961.1 Podocarpus neriifolius 

Prunus cerasoides HQ235127.1 HQ235411.1 JQ034160.1 Prunus cerasoides 

Psidium guajava JQ588510.1 JQ592981.1 AB354956.1 Psidium guajava 

Pterospermum acerifolium KJ510943.1  JX856493.1 Pterospermum acerifolium 

Pterospermum lanceifolium AB924689.1 HQ415058.1 JX856596.1 Pterospermum lanceifolium 

Pyrus communis JN895841.1 JQ391382.1 JQ392467.1 Pyrus communis 

Quercus baloot HE583734.1  HE591363.1 Quercus baloot 

Quercus glauca JX860839.1 AB060571.1 HE611290.1 Quercus glauca 

Quercus leucotrichophora JX860844.1   Quercus leucotrichophora 

Rhododendron arboreum JF955906.1 JF943838.1 JF978202.1 Rhododendron arboreum 
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Rhododendron barbatum EU087304.1   Rhododendron barbatum 

Rhododendron cinnabarinum  JF943863.1 JF978227.1 Rhododendron cinnabarinum 

Rhododendron falconeri U61343.1   Rhododendron falconeri 

Rhododendron fulgens EU087314.1   Rhododendron fulgens 

Rhododendron grande U61336.1 GU176646.1 GU176633.1 Rhododendron grande 

Rhododendron lanatum EU087332.1   Rhododendron lanatum 

Rhododendron maddenii JF956017.1 JF943959.1 AY877281.1 Rhododendron maddenii 

Rhododendron thomsonii EU087359.1   Rhododendron thomsonii 

Rhododendron wallichii JF956143.1 JF944100.1 JF978451.1 Rhododendron wallichii 

Rhus chinensis   EF682845.1 Rhus chinensis 

Ricinus communis GU134993.1 GU135207.1 AY918198.1 Ricinus communis 

Sambucus adnata JF956193.1 JF944171.1 JF978510.1 Sambucus adnata 

Sarcochlamys pulcherrima  KF138244.1 KF137924.1 Sarcochlamys pulcherrima 

Saurauia nepaulensis  Z83147.1  Saurauia nepaulensis 

Schefflera venulosa   JF284828.1 Schefflera venulosa 

Schima khasiana   HM100439.1 Schima khasiana 

Schima wallichii AF380100.1 AF380056.1 HM100444.1 Schima wallichii 

Senna siamea GU942496.1 JQ301862.1 KC984644.1 Senna siamea 

Shorea assamica AB246453.1   Shorea assamica 

Shorea robusta  JX856763.1  Shorea robusta 

Smilax perfoliata JF956459.1 JF944425.1 JF978768.1 Smilax sp. 

Spondias mombin AY594480.1 GQ981882.1 AF445882.1 Spondias pinnata 

Sterculia apetala GQ982103.1 JQ594218.1  Sterculia villosa 

Stereospermum chelonoides   KF199892.1 Stereospermum chelonoides 

Styrax officinalis AJ429300.1 EU980810.1 AF327489.1 Styrax sp. 

Syzygium cumini GU135062.1  FM887016.1 Syzygium cumini 

Syzygium jambos DQ088583.1 JQ592986.1 AM234135.1 Syzygium jambos 

Tectona grandis FM163282.1 JQ618492.1 FM163255.1 Tectona grandis 

Terminalia bellirica  AF425714.1 FJ381773.1 Terminalia bellirica 

Terminalia chebula AB924845.1 FJ381812.1 FJ381775.1 Terminalia chebula 

Terminalia myriocarpa  FJ381816.1 FJ381779.1 Terminalia myriocarpa 

Tetrameles nudiflora AY968458.1 AF206828.1 AF280105.1 Tetrameles nudiflora 

Toona ciliata JX518246.1  FJ462488.1 Toona ciliata 
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Toona sureni   KC155954.1 Toona sureni var. sureni 

Toxicodendron griffithii   FJ945925.1 Toxicodendron griffithii 

Trema orientalis JX518199.1 AB925367.1 AY488734.1 Trema orientalis 

Trevesia palmata GQ434261.1 U50258.1 KF591488.1 Trevesia palmata 

Trewia nudiflora  AY663648.1 DQ866628.1 Trewia nudiflora 

Tsuga dumosa EF395590.1 AF145460.1 EF395515.1 Tsuga dumosa 

Vernonia cinerea  GU724239.1 AY142953.1 Vernonia arborea 

Viburnum colebrookeanum HQ591570.1 HQ591715.1 HQ591959.1 Viburnum colebrookeanum 

Viburnum cylindricum JF956777.1 JF944759.1 JF979002.1 Viburnum cylindricum 

Walsura robusta AB924714.1 AB925325.1  Walsura robusta 

Wendlandia tinctoria HM119580.1 FM207649.1 FM204699.1 Wendlandia glabrata 

Zanthoxylum armatum  GQ436751.1 DQ016546.1 Zanthoxylum armatum 

Ziziphus mauritiana JX518013.1 JX856806.1 DQ146589.1 Zizyphus mauritiana 
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Appendix 3: Example phylogeny. 

 

 

Figure A3: One of the 100 phylogenies used in this study. The phylogenies were built for 279 

species and rooted on Angiopteris evecta, identified as the most basal species present in our 

species pool. 
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Appendix 4: The relationship between the standardized effect size of phylogenetic diversity 

and elevation. 

Glacial refugia may sustain a disproportionate amount of phylogenetic diversity if relict species 

are phylogenetically unique, perhaps due to the local extinction of closely related species. The 

standardized effect size of phylogenetic diversity (ses.pd) corrects for species richness and can 

provide significance with a null model that compares observed phylogenetic diversity to 

simulated phylogenetic diversity, given species richness and the regional phylogeny. We found 

that ses.pd increased with log-transformed altitude (R2
adj=0.156, P<0.001). This suggests that 

plots at high elevations have higher phylogenetic diversity than expected given species richness. 

Although we find a trend of increasing ses.pd with elevation, the 39/291 plots with significant 

ses.pd were located throughout the region at elevations ranging from 192m to 3863m. 

Consequently, there was no relationship between plots with significant PD and elevation 

(R2
adj=0.002, P=0.299).  
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Appendix 5: The net-relatedness index with gymnosperms and ferns removed. 

 

Figure A5: Patterns of net-relatedness index (NRI) along the elevational gradient with 

gymnosperms and ferns removed from the regional phylogeny and ignored if present in the 

community plots. Fig. A5a shows the change in non-abundance weighted NRI with log-

transformed elevation (linear regression; R2
adj=0.047, P<0.001) while Fig. A5b shows the change 

in abundance weighted NRI with log-transformed elevation (linear regression; R2
adj=0.038, 

P<0.001). Although the slope is positive, removing long branch lengths from the analysis did not 

significantly change our result of no clear pattern of phylogenetic dispersion with elevation. 

Therefore, it is unlikely that gymnosperms and ferns skewed the patterns of phylogenetic 

dispersion observed in our study.  
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Appendix 6: Mantel tests for phylogenetic beta diversity against elevation and distance 

with gymnosperms and ferns removed. 

Table A6: Mantel tests were calculated for pairwise phylogenetic beta diversity (PBD; calculated 

with phylosor) with gymnosperms and ferns removed against elevation, distance or both. Results 

show strong, negative relationships between phylogenetic beta diversity (shared branch lengths) 

and elevation, even when correcting for differences in distance, which is consistent with our 

results when gymnosperms and ferns were included in the analysis.  

Model    mantel-r  P 

PBD~elevation  -0.481  <0.001 

PBD~distance   -0.320  <0.001 

PBD~elevation + distance -0.400  <0.001 

  

 

 

 


