
 

New Approaches for Two-Dimensional DOA Estimation of  

Coherent and Noncircular Signals with Acoustic  

Vector-sensor Array 

 

Han Chen 

 

A Thesis  

in  

The Department  

of  

Electrical and Computer Engineering 

 

 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Master of Applied Science 

(Electrical and Computer Engineering) 

Concordia University 

Montreal, Quebec, Canada 

 

September 2015 

© Han Chen, 2015 

 



CONCORDIA UNIVERSITY 
SCHOOL OF GRADUATE STUDIES 

 
 
This is to certify that the thesis prepared 
 
By:  Han Chen 
 
Entitled: “New Approaches for Two-Dimensional DOA Estimation of Coherent 
  And Noncircular Signals with Acoustic Vector-sensor Array” 
  
 
and submitted in partial fulfillment of the requirements for the degree of 
 

Master of Applied Science 
 
Complies with the regulations of this University and meets the accepted standards with respect to 
originality and quality. 
 
Signed by the final examining committee: 
 
 ________________________________________________  Chair 
  Dr. R. Raut 
  
 ________________________________________________  Examiner, External 

Dr. Chun-Yi Su  (MIE)         To the Program 
 
 ________________________________________________  Examiner 
  Dr. H. Rivaz 
 
 ________________________________________________  Supervisor 
  Dr. W-P. Zhu 
 
 ________________________________________________  Supervisor 
  Dr. M. N. S. Swamy 
   
  
Approved by:  ___________________________________________ 
                                            Dr. W. E. Lynch, Chair 
                          Department of Electrical and Computer Engineering  
 
 
____________20_____   ___________________________________ 
                          Dr. Amir Asif, Dean 

Faculty of Engineering and Computer  
               Science 



 

iii 

 

Abstract 

New Approaches for Two-Dimensional DOA Estimation of Coherent 

and Noncircular Signals with Acoustic Vector-sensor Array 

Han Chen 

This thesis is mainly concerned with the two-dimensional direction of arrival (2D-DOA) 

estimation using acoustic vector-sensor array for coherent signals and noncircular signals. 

As for coherent signals, the thesis proposes two algorithms, namely, a 2D-DOA estimation 

algorithm with acoustic vector-sensor array using a single snapshot, and an improved 2D-DOA 

estimation algorithm of coherent signals. In the first algorithm, only a single snapshot is 

employed to estimate the 2D-DOA, and the second is an improved algorithm based on the 

method of Palanisamy et al. Compared to the existing algorithm, the proposed algorithm has the 

following advantages: (1) lower computational complexity, (2) better estimation performance, 

and (3) acquiring automatically-paired 2D-DOA estimates. 

As for noncircular signals, we propose real-valued space PM and ESPRIT algorithms for 2D-

DOA estimation using arbitrarily spaced acoustic vector-sensor array. By exploiting the 

noncircularity of incoming signals to increase the amount of effective data, the proposed 

algorithms can provide a better 2D-DOA estimation performance with fewer snapshots, which 

means a relatively lower sample rate can be used in practical implementations. Compared with 

the traditional PM and ESPRIT, the proposed algorithms provide better estimation performance 

while having similar computational complexity. Furthermore, the proposed algorithms are 

suitable for arbitrary arrays and yield paired azimuth and elevation angle estimates without 

requiring extra computationally expensive pairing operations. 
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Chapter 1  

1 Introduction 

1.1 Background 

Sensor arrays have been widely applied in many areas like seismology, optical imaging, acoustic 

imaging, radio astronomy and radar systems. One of the main goals of array signal processing is 

parameter estimation, especially for the direction of arrival (DOA) estimation. As to scalar 

sensors like the pressure sensors, the time-difference-of-arrival (TDOA) between scalar sensors 

of uniform linear arrays (ULAs) is normally used to extract directional information of sources, 

and thereby estimate the DOA. With the development of sensor technology, a new kind of device, 

which measures quantities such as velocity and acceleration in addition to pressure, is available. 

One such device is the acoustic vector sensor.  Since an acoustic vector-sensor consists of one 

pressure hydrophone and three orthogonal velocity hydrophones, it can measure both the 

pressure and vector components of an acoustic field such as a particle velocity [1]. This 

advantage allows the acoustic vector sensors to collect more useful information for the signal 

processing that follows. In the past decades, acoustic vector sensors have attracted a large 

amount of attentions in the acoustic research community and extensive work has been conducted 

based on the theory and design of vector sensors. Nowadays, acoustic vector sensors are being 

widely used for underwater target localizations, acoustic communications and sonar systems. 

 As mentioned before, an acoustic vector-sensor measures both the pressure and the particle 

velocity of the acoustic field at a point in space, whereas a traditional pressure sensor can only 

extract the pressure information. The main advantages of these vector sensors over traditional 

scalar sensors are their full use of the available acoustic information, better exploitation of 

beamforming, and hence, their performance in terms of DOA estimation accuracy [2]. Since the 

measurement model for acoustic vector sensor array [1] was developed in 1994, a great deal of 

research on DOA estimation of incoming signals has been performed, leading to many DOA 

estimation techniques [4-18]. However, most of these methods suffer serious degradation when 

the incident signals are coherent, as in some practical scenarios, due to multipath propagation. In 

addition to coherent signals, noncircular signals are also widely used in underwater 
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communications [24]. By exploiting the noncircularity of the signals, a better DOA estimation 

performance can be achieved, but not much research work of exploiting the noncircularity of 

signals to estimate 2D-DOA with acoustic vector-sensor array has been reported.  

1.2 Literature Review 

Acoustic vector sensor model was first introduced to the signal processing community in [3]. 

Since then, more and more advanced DOA estimation approaches with acoustic vector-sensor 

array have been presented [4-18]. To some extent, these approaches can be divided into two 

classes: parametric methods and spatial spectral-based methods. With regard to the parametric 

methods, they need global searches for all possible parameters which apparently lead to high 

computational complexity, and hence are difficult to be implemented in practical situations. 

Spatial spectral-based methods estimate the DOAs by finding the extremes of the spatial spectral 

functions. This class of methods can also be divided into two subclasses. One is combining 

spatial spectral-methods with traditional beamforming techniques; the estimation performance of 

these methods, however, is strictly limited to the amount of array sensors. The authors of [4] 

proposed a maximum likelihood-based DOA estimator with acoustic vector-sensor array in the 

presence of an isotropic noise field. Traditional beamforming and Capon method for DOA 

estimation were extended to vector-sensor arrays in [5], and the authors therein also found that 

the vector sensors’ directional sensitivity removes all bearing ambiguities and even simple 

structures such as linear arrays can determine both azimuth and elevation angles, and spatially 

undersampled regularly spaced arrays may be employed to increase aperture and, hence, improve 

the performance. The other one is combining spatial spectral-methods with the super-resolution 

DOA estimation techniques such as MUSIC [6][7]. The estimation performance of this subclass 

of methods is no longer limited to the size of sensors array and hence gets greatly improved. A 

novel blind MUSIC-based source localization algorithm applicable to an arbitrarily spaced 

acoustic vector-sensor array is introduced in [6], which uses ESPRIT to self-generate coarse 

estimates of the DOA to start off its MUSIC-based iterative search with no a priori source 

information. The method in [7] uses polynomial rooting to estimate DOA with acoustic vector 

sensors uniformly spaced in an L-shaped array configuration. This algorithm can also be used 

with nonuniform nonlinear arrays via the “virtual array interpolation” method. Although these 
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MUSIC-based methods have excellent DOA estimation performance in terms of accuracy, they 

normally require iterative 2D searches, which is not computationally effective. 

To avoid the enormous complexity of 2D search, some researchers have introduced classic 

ESPRIT to the DOA estimation of acoustic vector sensor array and proposed several improved 

methods [9][10]. Benefited from the high-resolution of classic ESPRIT, these novel ESPRIT 

based methods also have remarkable estimation accuracy. The authors of [9] introduced a novel 

ESPRIT-based closed-form source localization algorithm applicable to arbitrarily spaced 

acoustic vector sensors, whose locations need not be known. A novel ESPRIT-based 2D DOA 

estimation scheme using a uniform rectangular acoustic vector-sensor array was proposed in [10], 

which enlarges the array aperture, but needs no additional sensors, requires no nonuniform 

interelement spacing, and altogether avoids the direction-cosine ambiguity that commonly arises 

when interelement spacing exceeds the Nyquist half-wavelength upper limit.  

The subspace-based methods, such as ESPRIT and MUSIC, however, require eigen-value 

decomposition (EVD) of the cross correlation matrix and singular value decomposition (SVD) of 

the received data to obtain signal subspace or noise subspace, which still brings in fairly heavy 

computational burden. A computationally simple 2D-DOA finding algorithm in spatially 

correlated noise fields using two-far-separated subarray geometry was presented in [8]. The 

authors firstly defined a cross matrix to eliminate the effect of the spatially correlated noise. 

Then the propagator method (PM) was used to estimate the steering vectors of acoustic vector 

sensors. Finally, automatically-paired azimuth and elevation angle estimates were derived in a 

closed form. The algorithm in [8] requires no eigen decomposition into signal or noise subspaces 

nor any 2D iterative searching and hence the algorithm has low computational complexity. The 

authors of [18] also presented a PM based algorithm employing only one acoustic vector sensor 

to estimate DOAs. Since they don’t need global searches, EVD or SVD, the computational 

complexity of these PM-based algorithms are significantly lower than that of ESPRIT or 

MUSIC-based algorithms. 

The DOA estimation algorithms mentioned above have been proven to be accurate and 

efficient in dealing with the DOA estimation problem of incoherent sources. But, when the 

sources are coherent or partially coherent, for example in multipath propagation situation, the 
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performance of these algorithms will degrade significantly because the rank of the source signal 

covariance matrix becomes less than the number of incident signals. To overcome this, some 

decorrelated methods using scale sensors were proposed, such as the spatial smoothing 

techniques [19-21], EVD smoothing techniques [22][23], the computationally efficient subspace-

based method without eigen-decomposition (SUMWE) [42] as well as others. These scale 

sensors based methods, however, work well only for certain array structures, for example, 

uniform linear arrays.  With respect to vector-sensor, the authors of [29] proposed a 

computationally simple 2-D direction finding algorithm using a uniform linear array of vector 

hydrophones, which can be regarded as an improvement of SUMWE algorithm. The authors of 

[30] presented two methods for estimating 2-D DOA of coherent signals using an L-shaped array 

of acoustic vector sensors, but extra pair matching is required in these methods. 

Noncircular signals, such as the binary phase shift keying (BPSK) modulated signals, are 

found to be bandwidth efficient in underwater communications [24]. A signal ( )s t  is said to be 

noncircular if its complementary covariance [ ]TE= ≠C xx O . In other words, noncircular signals 

have nonvanishing conjugate correlation. This statistical redundancy can be used to increase the 

effective data and hereby makes it possible to achieve a better 2D-DOA estimation performance.  

However, most of the existing algorithms for 2D-DOA estimation using acoustic vector sensor 

array mentioned above do not utilize the noncircularity of the signals and little research work of 

exploiting the noncircularity of signals to estimate 2D-DOA with acoustic vector-sensor array 

has been reported. Some 2D-DOA estimation algorithms for noncircular signals using scalar 

sensor array are available in [25][26], but array geometries applied to these methods are strictly 

limited. The authors of [25] presented a polynomial rooting technique-based direction finding 

algorithm for noncircular sources, and due to the noncircularity characteristics of the impinging 

sources, this method is able to handle more sources than sensors. In the meantime, the use of 

polynomial rooting instead of a searching technique, however, limits the method to linear 

uniformly spaced arrays. Haardt. et al. proposed a real-valued implementation of 2D Unitary 

ESPRIT for noncircular sources in [26], but uniform rectangular arrays are required, which may 

be difficult to realize in practical situations.  
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1.3 Thesis Outline 

The organization of the thesis is presented as follows. 

Chapter 2 discusses the fundamentals of array signal processing using acoustic vector sensor 

array, including the acoustic vector sensor measurements, the received noise model, three array 

structures that will be used in the later chapters, and Cramer-Rao bound (CRB). 

In Chapter 3, we propose two 2D-DOA estimation methods for coherent incident sources 

using acoustic vector-sensor array. In the first algorithm, only a single snapshot is employed to 

estimate the 2D-DOA, and the second is an improved algorithm based on that of Palanisamy et al 

[30]. Compared to the PKS algorithm, this proposed algorithm has the following advantages: (1) 

lower computational complexity, (2) better estimation performance, and (3) acquiring 

automatically-paired 2D-DOA estimates. 

In Chapter 4, real-valued space PM and ESPRIT algorithms for 2D-DOA estimation of 

noncircular signals using arbitrarily spaced acoustic vector sensor array are proposed. By 

exploiting the noncircularity of the incoming signals to increase the amount of effective data, the 

proposed algorithms can provide better 2D-DOA estimation performance with fewer snapshots, 

which means a relatively lower sample rate can be used in practical implementations. Compared 

with the traditional PM and ESPRIT, the proposed algorithms provide better estimation 

performance, with a similar computational complexity. Furthermore, the proposed algorithms are 

suitable for arbitrary array and yield paired azimuth and elevation angle estimates without 

requiring extra computationally-expensive pairing operations. 

Finally, Chapter 5 contains conclusions and provides some directions for future work. 



 

6 

Chapter 2  

2 Fundamentals of Array Signal Processing Using Acoustic 
Vector Sensor Array 

This chapter mainly introduces the fundamentals of array signal processing using acoustic vector 

sensor array, which include the acoustic vector sensor measurements, the noise model and three 

array structures used in the later chapters. 

2.1 Acoustic Vector Sensor Measurement 

In this thesis, the acoustic wave is assumed to be plane at the sensor. Let ku denote the unit 

vector at the sensor pointing towards the kth source, which is 

cos cos
sin cos

sin

k k

k k k

k

φ ϕ
φ ϕ

ϕ

 
 =  
  

u                                                    (2.1) 

where kφ  and kϕ  represent the azimuth and elevation angles, respectively, with  00 360kφ≤ <  

and 00 90kϕ≤ < , as shown in Figure 2.1 

X

Y

Z Source

kϕ

( )ks t

kφ

 

Figure 2.1 2D Direction of arrival 

The acoustic pressure component of the measurement is 
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( ) ( )( ) pp s t n tx t +=                                                     (2.2) 

where ( )s t  denotes the acoustic pressure of the signal at time t, and ( )pn t  is the corresponding 

noise. Similarly, the velocity component of the measurement is 

( ) ( )( ) vv s t tt ⋅ += u nx                                                 (2.3) 

Combining (2.2) and (2.3), we get the complete measurement of a single acoustic vector sensor, 

denoted as 

( )1
( )

( )
( )
( )

p

v

p

v

n t
s t

t
x t

t
    

+    
    

=
nux

                                           (2.4) 

Now we consider a total of K independent acoustic waves impinging on an arbitrarily spaced 

array containing M acoustic vector sensors. To extend the model (2.4) to this scenario, let ( )pv tx  

and ( )pv tn  be the 4M×1 dimensional pressure-velocity measurement and noise vectors. Then, 

the output of the array is given by  

1

1
( ) ( )( )

K

k k pv
k k

pv s t tt
=

 
⊗ + 
 

=∑a n
u

x                                          (2.5) 

where ka  is the kth column of steering matrix A , whose ( , )j k  element is represented as 

( , ) c jkij k e ω τ−=A                                                      (2.6) 

where jkτ  is the differential time delay of the kth wave between the reference and the jth sensor, 

and cω  is the frequency of the wave. 

2.2 Noise Model 

We assume that the noise is independent of the source, and noise is additive independent and 

identically distributed (i.i.d.) Gaussian with zero mean and variance 2σ . The covariances of the 

noise vector ( )tn  satisfies 



 

8 

1 2

H 2
1 2 ,{ ( ) ( )}= t tE t t σ δn n I                                                (2.7) 

1 2{ ( ) ( )}TE t t =n n O                                                     (2.8) 

where 1( )tn  and 2( )tn represent the noise output at time 1t  and 2t , respectively, I  and O indicate 

the identity matrix and the null matrix. Here 
1 2,t tδ  is the Dirac function. 

2.3 Array Structures 

In this section, we mainly discuss three array structures which will be used in this thesis, 

namely, uniform linear array, L-shaped array and arbitrarily spaced array. 

2.3.1 Uniform Linear Array 

kθ

1 2 Md

kth Source

 

Figure 2.2 Uniform linear array 

As shown in Figure 2.2, a uniform linear array arranges M sensor elements along a line in space 

with a uniform spacing d. We consider K independent sources with wavelength λ  and DOA kθ

(k=1,2,…,K) impinging on this array; then, the steering vector of kth source is given by 

[ ]( ) 1 exp( 2 sin / ) exp( 2 ( 1) sin / ) T
k k kj d j M dθ π θ λ π θ λ= − − −a              (2.9) 

We get the steering matrix of all K sources as 

1 2[ ( ), ( ),...., ( )]Kθ θ θ=A a a a  
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1 2

1 2

2 sin / 2 sin / 2 sin /

2 ( 1) sin / 2 ( 1) sin / 2 ( 1) sin /

1 1 1
K

K

j d j d j d

j M d j M d j M d

e e e

e e e

π θ λ π θ λ π θ λ

π θ λ π θ λ π θ λ

− − −

− − − − − −

 
 
 =
 
 
 





   



                  (2.10) 

where (2.10) is a Vandermonde matrix. It should be mentioned that a linear array of traditional 

scalar sensors can only be used to estimate 1D DOA, but the uniform linear array of vector 

sensors can determine both azimuth and elevation angles because of its directional sensitivity. 

2.3.2 L-shaped Array 

1 2, ,...,M

1 2, ,...,N Y

X

Z

 

Figure 2.3 L-shaped array 

Consider that an L-shaped array contains (M+N-1) sensor elements, and the sub-array along the 

x-direction consists of N sensor elements with uniform spacing xd , and that along the y-direction 

consists of M sensor elements with uniform spacing yd . These two sub-arrays have a common 

element at the origin, as shown in Figure 2.3. In most cases, x yd d d= = . We consider K 

independent sources impinging on this array with 2D-DOA ( , )k kφ ϕ , where ,k kφ ϕ  denote the 

azimuth and elevation angles of the kth source. The steering vector of the kth source of x-

direction sensors and y-direction sensors can be denoted as 

1
exp( 2 cos sin / )

( , )

exp( 2 ( 1) cos sin / )

k k
x k k

k k

j d

j N d

π φ ϕ λ
ϕ φ

π φ ϕ λ

 
 − =
 
 

− − 

a


        (2.11) 
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1
exp( 2 sin sin / )

( , )

exp( 2 ( 1) sin sin / )

k k
y k k

k k

j d

j M d

π φ ϕ λ
ϕ φ

π φ ϕ λ

 
 − =
 
 

− − 

a


        (2.12) 

Hence the steering matrix of x-direction sensors corresponding to all K sources is given by 

1 1 2 2[ ( , ), ( , ), , ( , )]x x x x K Kϕ φ ϕ φ ϕ φ=A a a a  

1 1 2 2

1 1 2 2

1 1 1
exp( 2 cos sin / ) exp( 2 cos sin / ) exp( 2 cos sin / )

exp( 2 ( 1)cos sin / ) exp( 2 ( 1)cos sin / ) exp( 2 ( 1)cos sin / )

K K

K K

j d j d j d

j d N j d N j d N

π φ ϕ λ π φ ϕ λ π φ ϕ λ

π φ ϕ λ π φ ϕ λ π φ ϕ λ

 
 − − − =
 
 − − − − − − 





   



 

(2.13) 

Similarly, the steering matrix of y-direction sensors can be denoted as 

1 1 2 2[ ( , ), ( , ), , ( , )]y y y y K Kϕ φ ϕ φ ϕ φ=A a a a  

1 1 2 2

1 1 2 2

1 1 1
exp( 2 sin sin / ) exp( 2 sin sin / ) exp( 2 sin sin / )

exp( 2 ( 1)sin sin / ) exp( 2 ( 1)sin sin / ) exp( 2 ( 1)sin sin / )

K K

K K

j d j d j d

j d M j d M j d M

π ϕ φ λ π ϕ φ λ π ϕ φ λ

π ϕ φ λ π ϕ φ λ π ϕ φ λ

 
 − − − =
 
 − − − − − − 





   



 

(2.14) 

There has been a growing interest in developing 2D-DOA estimates using the L-shaped array for 

better estimation performance and without encountering the pair-matching problem. Concerning 

the L-shaped array of scale sensors, Tayem and Kwon [43] proposed a method for estimating 

2D-DOA in the presence of uncorrelated or partially correlated signals exploiting the L-shaped 

array structure. Kikuchi et al. [44] developed an automatic pair-matching method for DOA 

estimation using the cross-correlation matrix. Gu et al. [45] developed an effective 2D-DOA 

estimation method for narrowband coherent signals using L-shaped arrays. Palanisamy et al. [30] 

developed an effective 2D-DOA estimation method for narrowband coherent signals using an L-

shaped acoustic vector sensor array. Based on this, we propose an improved algorithm in Section 
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3.3, which has lower computational complexity, better estimation performance as well as 

acquiring automatically-paired 2D-DOA estimates. 

2.3.3 Arbitrarily Spaced Array 

We consider M sensor elements arbitrarily placed in the space and the mth sensor is located at 

( , , )m m m mx y z=l , and K independent sources impinge on this array. Then the steering vector of 

the kth source can be shown to be  

1 1 1

1 1 1

1
exp[ 2 ( sin cos sin sin cos ) / ]

( , )

exp[ 2 ( sin cos sin sin cos ) / ]

k k k k k
k k

M k k M k k M k

j x y z

j x y z

π ϕ φ ϕ φ ϕ λ
ϕ φ

π ϕ φ ϕ φ ϕ λ− − −

 
 − + + =
 
 

− + + 

a


     (2.15) 

where λ  is the wavelength. Hence the steering matrix is given by 

1 1 2 2[ ( , ), ( , ), , ( , )]K Kϕ φ ϕ φ ϕ φ=A a a a                                 (2.16) 

In Chapter 4, we proposed real-valued space PM and ESPRIT algorithms for 2D-DOA 

estimation of noncircular signals using arbitrarily spaced acoustic vector sensor array. Both of 

the proposed algorithms do not require any a priori knowledge of the location of any of the 

vector sensors, because the propagator of the PM and the invariant factors of the ESPRIT, which 

are used to estimate 2D-DOA, depend only on the source parameters. 

2.4 Cramer-Rao Bound 

The Cramer-Rao Bound (CRB) is a lower bound on the variance of all unbiased estimators of 

some parameter or set of parameters. Consider the problem of finding the K sources parameter 

vector 1 1 2 2[ , , , ,..., , ]K Kφ ϕ φ ϕ φ ϕ=θ , where kφ  and kϕ  stand for the azimuth angle and the 

elevation angle of the kth source, respectively, in the following discrete-time acoustic vector-

sensor array model associated with M vector sensors 

( ) ( ) ( )( ) t tt += A θ s nx             t=1,2,…,L                          (2.17) 
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where ( )tx  is the output of the array at time t, ( )ts  is the source signals, and ( )tn  is an additive 

noise. We assume that the source signal sequence { (1), (2),..., ( )}Lx x x  is an independent 

identically distributed (i.i.d.) Gaussian process with zero mean and 

,[

[ ( ) (

]

)]

( ) ( ) t s

T

HE

E t s

t s δ=

=

x x P

x x O
      for all t and s                            (2.18) 

We also assume that the matrix ( )A θ  has full rank. For notational simplicity we will omit the 

explicit dependence on θ  and t. Considering the estimation of θ in the model (2.17) under the 

above assumptions and with θ ,  P  and the noise variance 2σ  unknown, Theorem 3.1 of [1] 

gives a compact matrix expression for the CRB on the DOA parameters with an acoustic vector-

sensor array, namely, 

( ){ }
2 1ˆRe

2
H TCRB

L
σ −

⊥ = ∏ AD D P                                  (2.19) 

where   is the Hadamard (elementwise) product, 

1 2 1 2[ , ,..., , , ,..., ]K Kϕ ϕ ϕ φ φ φ=D d d d d d d  with k
k

ϕ ϕ
∂

=
∂

Ad  and k
k

φ φ
∂

=
∂

Ad        (2.20) 

ˆ ˆ
ˆ

ˆ ˆ
s s

s s

 
=  
  

P P
P

P P
 with ( ) ( )

1

1ˆ
L

H
s

t
t t

L =

= ∑P x x                                 (2.21) 

  1
4 ( )H H

M
⊥ −Π = −A I A A A A                                             (2.22) 

and 4MI  is the identity matrix of size 4M. Furthermore, the CRB in (2.19) remains the same 

independently of whether 2σ is known or unknown. For the details of the expression, see 

Appendix C of [41]. 

2.5 Summary 

We have discussed in this chapter some fundamentals of array signal processing using acoustic 

vector sensor array, including the acoustic vector sensor measurements, the received noise model 
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and three array structures that will be used in the later chapters of this thesis. The model and 

assumptions introduced in this chapter applies to the entire thesis. 
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Chapter 3  

3 2D-DOA Estimation of Coherent Sources with Acoustic Vector-
Sensor Array 

3.1 Introduction 

This chapter deals with the 2D-DOA estimation problem of coherent sources using acoustic 

vector-sensor array. Some vector sensors-based high-resolution DOA estimation algorithms, 

such as MUSIC [6][7] and ESPRIT[9][10], have been proven to be accurate and efficient in 

dealing with the DOA estimation problem of incoherent sources. But, when the sources are 

coherent or partially coherent, for example in multipath propagation situation, the performance 

of these algorithms will degrade significantly because the rank of the source signal covariance 

matrix becomes less than the number of incident signals. To overcome this, some decorrelated 

methods, such as spatial smoothing techniques [19-21], EVD smoothing techniques [22][23], and 

SUMWE [42], have been proposed. However, certain array structures, for example ULA, are 

required for these scale sensors-based methods. The author in [29] proposed a SUMWE-based 

computationally simple 2D direction finding algorithm using a ULA of vector hydrophones. The 

authors of [30] presented two methods for estimating 2D-DOA of coherent signals using an L-

shaped array of acoustic vector sensors, but extra pair matching is required in these methods. 

In this chapter, we propose two 2D-DOA estimation methods for coherent incident sources 

using acoustic vector-sensor array. In the first algorithm, only a single snapshot is employed to 

estimate the 2D-DOA, while the second is an improved algorithm based on the method of 

Palanisamy et al [30]. Compared to the algorithm of [30], the proposed algorithm has the 

following advantages: (1) lower computational complexity, (2) better estimation performance, 

and (3) acquiring automatically-paired 2D-DOA estimates. 

3.2 2D-DOA Estimation of Coherent Sources with Acoustic Vector-
Sensor Array Using a Single Snapshot 

Compared with subspace-based methods, such as MUSIC and ESPRIT, the PM has lower 

computational complexity. However, only in high-snapshots situation, can the PM algorithm 

yield a better estimation performance. Besides, all of these algorithms mentioned above cannot 
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work for coherent sources. In this section, we combine PM with Toeplitz Hermitian matrix 

representation, and propose an improved algorithm, which works well in the case of coherent 

signals and a single snapshot. Furthermore, the proposed method can achieve automatically-

paired 2D angle estimates. Simulation results are provided showing that the proposed method has 

a better performance and less computational complexity than spatial smoothing methods do. 

3.2.1 Data Model 

We consider that a total of K narrowband plane waves impinge on a uniform linear array 

containing M=2N+1 acoustic vector sensors, as shown in Figure 3.1. The reference acoustic 

vector sensor is located at the origin of coordinates, and the distance between two adjacent 

acoustic vector sensors is d. We consider that the signals are in the far-field and the noise is 

independent of the source, and noise is additive i.i.d. Gaussian. Let the kth signal arrive from 

direction ( ,k kφ ϕ ), where kφ  and kϕ  stand for the azimuth angle and the elevation angle, 

respectively. Let [ , ]T
k k kφ ϕ=θ be the 2D-DOA of the kth source. In the scenario of free-spacing, 

the noise-free output of an acoustic vector sensor at mx  can be shown to be [6][7] 

2

1

1
( ) ( )mk

TK
j

m k
k k

t e s tπτ−

=

 
=  

 
∑x

u
 

where ( )ks t  is the transmit signal of the kth source, mkτ  is the differential time delay of the kth 

wave between the origin and the mth sensor, 1 and ku  are the pressure component and the 

velocity components, respectively. Here ku  is given by 

cos cos ( )
sin cos ( )

sin ( )

k k k

k k k k

k k

φ ϕ α
φ ϕ β

ϕ γ

   
   = =   
      

θ
u θ

θ
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Figure 3.1 The structure of array 

According to the symmetry of the array containing M acoustic vector sensors, the output can be 

expressed as  

( )

( )

( ) ( ) ( ) ( )0t t t

( )

N

N

t

t

t

− 
 
 
 = = +
 
 
  

x

X Ax θ S N

x





 

where ( )tS contains K source signals, ( )tN  is the received additive white Gaussian noise 

(AWGN) vector with zero mean and covariance matrix 2
4Mσ I . 

( ) ( ) ( ) ( )[ ]1 1 2 2 K Kϕ ϕ ϕ= ⊗ ⊗ ⊗A a h a h a hθ   

where ( ) ( ) ( ) ( ) ( )[exp 2 sin / , , exp 2 sin / ,1,exp 2 sin / , , exp 2 sin / ]T
k k k k ki Nd i d i d i Ndϕ π ϕ λ π ϕ λ π ϕ λ π ϕ λ= − −a   , 

and ( )kϕa is the M × 1 steering vector of an acoustic pressure sensor array with the same 

geometry as the acoustic vector sensor array for the kth signal, and [1, ]T T
k k=h u  is the bearing 

vector of the kth source. 
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3.2.2 DOA Estimation Using a Single Snapshot 

3.2.2.1 Data Representation 

The proposed method gets rid of the negative effects of coherent incident signals by constructing 

the Toeplitz Hermitian data matrix. First, the snapshot is set to be unity, and a Toeplitz data 

matrix Y is defined as 

0 1 2

1 0 1 ( 1)

2 1 0 ( 2)

1 2 0

N

N

N

N N N

− − −

− − −

− −

− −

 
 
 
 =
 
 
  

x x x x
x x x x
x x x x

x x x x

Y







    



                                           (3.1) 

where 4( 1) ( 1)N N+ × +∈Y  , and ( )m N m N− ≤ ≤x  is a component of the output matrix ( )tX .  Y can 

also be expressed as 

( ) ( ) ( ), ( )N t = + θ θ θY B S B S B S NФ Ф  

where ( ) [ ]1 1 2 2( ) ( ) ( )K Kϕ ϕ ϕ= ⊗ ⊗ ⊗B b h b h b hθ  , ( ) ( ) ( )1,exp 2 sin / , , exp 2 sin /[ ]k k
T

k i d i Ndϕ π ϕ λ π ϕ λ−= −b   

and ( ) ( )1exp 2 sin / , , exp 2{ si }n /Kidiag d i dπ ϕ λ π ϕ λ− −Ф = . 

Then we construct a Toeplitz Hermitian matrix via 

1 1 2
∗=Y J Y J                                                        (3.2.a) 

1( ) / 2= +Z Y Y                                                    (3.2.b) 

where 4( 1) 4( 1)
1

N N+ × +∈J   can be obtained by  

4 4 4 4

4 4 4

1

4 4 4

4 4 4 4

 
 
 
 =
 
 
  

0 0 0 I
0 I 0

J
0 I 0
I 0 0 0
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where 40  is a 4×4 zero matrix and 4I  is a 4×4 identity matrix, while ( 1) ( 1)
2

N N+ × +∈J   can be 

expressed as 

2

0 0 0 1
0 1 0

0 1 0
1 0 0 0

 
 
 
 =
 
 
  

J



 

    

 



 

By transforming the matrix Z using the exchange matrix J to bring the pressure components and 

the velocity components of the acoustic vector sensors together, which is a necessary step of 

getting estimated angles in the following subsection, obtain a new transformed matrix Z  as 

given by 

T=Z J Z                                                      (3.3) 

where 1 2 3 4[ , , , ]=J e e e e  is a 4(N+1)×4(N+1) matrix, 4 8 4[ , , ,..., ]i i i i i Ne e e e+ + +=e for i=1,2,3,4, and 

ie  is the 4(N+1)×1 unit vector whose ith component is unity and all others are zero. 

3.2.2.2 DOA Estimation 

Here we use PM to estimate the 2D-DOAs. Define ϕB( )  as 

1 1

2 1

3 1

4 1

Tϕ ϕ =

   
   
   = =
   
   
   

B( ) B( )

B B
B B α

J
B B β
B B γ

                                            (3.4) 

where 1 2{ ( ), ( ),..., ( )}Kdiag α α α=α θ θ θ , 1 2{ ( ), ( ),..., ( )}Kdiag β β β=β θ θ θ , and 1 2{ ( ), ( ),..., ( )}Kdiag γ γ γ=γ θ θ θ . 

Partition the matrix ϕB( )  as 

1

2

( )
( )
ϕ

ϕ
ϕ

 
=  
 

B( )





B
B

                                                       (3.5) 
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where 1( )ϕB  is a K×K nonsingular matrix, and 2 ( )ϕB  is a [4(N+1)-K]×K matrix. Then 2 ( )ϕB  is 

a linear transformation of 1( )ϕB , 

2 1( ) ( )Hθ θ=B P B                                                      (3.6) 

where [4( 1) ]K N K× + −∈P   is the propagator matrix. We define K K
E H

× 
∈  
 

I
P

P
, and then have 

1( )Eϕ ϕ=B( ) P B                                                        (3.7) 

The propagator P  can be obtained from Z , which we partition as 

1

2

 
=  
 

Z
Z

Z







                                                            (3.8) 

where 1Z  is a K×K nonsingular matrix, and 2Z  is a [4(N+1)-K]×K matrix. In the noise-free case, 

2 1
H=Z P Z                                                            (3.9) 

Actually, there is always noise, and the propagator matrix can be estimated by the follow 

minimization problem 

2

2 1 F
( ) H

csmJ = −ZP P Z   

The estimate of P  is achieved by 

1
11 1 1 2( )ˆ H H−=P Z Z Z Z                                                       (3.10) 

In the  noise-free case, 1( )Eϕ ϕ=B( ) P B , and we partition EP  as 

1

2

3

4

E

 
 
 =
 
 
 

P
P

P
P
P

                                                             (3.11) 
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where ( 1) ( 1, 2,3, 4)N K
i i+ ×∈ =P  . Then according to (3.4) and (3.7), we get 

1 1 1( )ϕ = BP B                                                        (3.12.a) 

2 1 1( )ϕ =P B αB                                                     (3.12.b) 

3 1 1( )ϕ =P B βB                                                     (3.12.c) 

4 1 1( )ϕ =P B γB                                                    (3.12.d) 

Substitution of (3.12.a) into (3.12.d) yields 

-1
1 14 1( ) ( )ϕ ϕ+ =P P γ B B                                                (3.13) 

After the eigen-value decomposition of 1 4
+P P , the eigen-values correspond to the estimates of 

the diagonal elements of γ , and the eigenvectors are the estimates of 1( )ϕB , which satisfies 

1 1
ˆ ( ) ( )ϕ ϕ= Π B B , where Π  is a permutation matrix, and 1 T− =Π Π . Then the estimate of γ  

satisfies ˆ T=γ Π γΠ .   

To obtain automatically-paired 2D-DOA, we get 1
ˆ ˆ ˆ ( )Eϕ ϕ=B( ) P B  according to (3.7), and 

partition ˆ ϕB( )  as 

1

2

3

4

ˆ

ˆ

ˆ

ˆ

ˆ

ϕ

 
 
 

=  
 
 
 

B( )

B

B

B

B

                                                         (3.14) 

In the noiseless case, 2 1=B B α , 3 1=B B β , and 4 1=B B γ , via 1 1/B α B  and 1 1/B β B , α and β  can 

be obtained, where / represents the division between diagonal elements of two matrices. The 

estimates of α and β  are ˆ T=α Π αΠ  and ˆ T=β Π βΠ , which can be achieved via 2B̂ / 1B̂  and 3B̂ /

1B̂ , respectively. 
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Finally, according to the definition of ku , the elevation and azimuth angles are estimated by 

ˆ angleφ = ˆ(α + ˆ)jβ                                              (3.15.a) 

  ϕ̂ 1 ˆsin ( )−= γ                                                 (3.15.b) 

Till now, we have derived the 2D-DOA estimation algorithm based on the Toeplitz Hermitian 

matrix representation for acoustic vector-sensor array. We summarize below, 

Step 1: Construct the Toeplitz Hermitian matrix Z via (3.1) and (3.2); 

Step 2: Partition Z to estimate ˆ
EP  via (3.8) and (3.10); 

Step 3: Partition ˆ
EP  to get ( 1) ( 1, 2,3, 4)N K

i i+ ×∈ =P  , and obtain γ̂ and 1( )ϕB  via (3.11)-(3.13); 

Step 4: Get 1B̂ , 2B̂  and 3B̂  from (3.14) to obtain α̂  and β̂ , and finally estimate the elevation and 

azimuth angles using (3.15). 

3.2.2.3 Complexity Analysis 

The complexity of the proposed algorithm is O{ 3 2 236( 1) 4 ( 1) 4 ( 1)N K N K N+ + + + + +  33K }, 

while that of the spatial smoothing-based PM (SS-PM) and the spatial smoothing-based ESPRIT 

algorithm (SS-ESPRIT) are O{ 2 3 216(2 1) 512 64N N N K+ + + 2 314 3NK K+ + } and 

O{ 2 3 2 316(2 1) 1024 6 2N N NK K+ + + + }, respectively. It is apparent that the computational 

complexity of the proposed algorithm is significantly lower than that of SS-ESPRIT and SS-PM 

algorithms. 

Figure 3.2 presents the complexity comparison among the proposed algorithm, SS-PM, and 

SS-ESPRIT algorithm, when K=3 for different values of N. Figure 3.3 depicts the complexity 

comparison when N=10 for different values of K. 



 

22 

 

Figure 3.2 Complexity comparison for K=3 and different values of N 

 

Figure 3.3 Complexity comparison for N=10 and different values of K 
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3.2.2.4 Advantages of the Proposed Algorithm 

The proposed algorithm has the following advantages: 

1) The computational complexity of the proposed algorithm is significantly lower than that of 

subspace-based methods 

2) The proposed algorithm obtains the estimation results under a single snapshot 

3) The proposed algorithm works well for coherent signals 

4) The proposed algorithm can achieve automatically-paired 2D angle estimation 

5) The proposed method has a better angle performance than spatial smoothing methods do. 

3.2.3 Simulation Results 

In this subsection, simulation results are presented to show the performance of the proposed DOA 

estimation technique as compared to some of the existing methods. In the experiment, we 

consider that there are two coherent signals sources with DOA ( 1φ , 1ϕ )=( 20 , 30 ) and ( 2φ ,

2ϕ )=( 50 , 60 ). The root mean square error (RMSE) is used to evaluate the estimation 

performance in this thesis, which is defined as 

2 2
, ,1

1

ˆ1 1 ˆ[( ) ( ) ]
L

K
k l k k l kk

l
RMSE K L φ φ ϕ ϕ

=
=

= − + −∑ ∑  

where ,k̂ lφ , ,ˆk lϕ are the estimates of kφ , kϕ of the lth Monte Carlo trial.  

Figures 3.4 and 3.5 depict angle estimation results of the proposed algorithm for two sources 

with SNR=15dB, and SNR=25dB. The array consists of M=17 sensors with one sensor at the 

origin and the number of snap-shots L=1. The elevation and azimuth angles can be clearly 

observed in these figures. 
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Figure 3.4 Estimation results of the proposed algorithm using acoustic vector sensor array containing 17 sensors 

with L=1 and SNR=15dB 

 

Figure 3.5 Estimation results of the proposed algorithm using acoustic vector sensor array containing 17 sensors 

with L=1 and SNR=25dB 

Figure 3.6 presents the comparisons among the proposed algorithm, SS-PM, SS-ESPRIT [19], 

He’s PM [29], PM of Palanisamy et al. [30] and CRB. The array consists of M=17 sensors with 
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one sensor at the origin and the number of snap-shots L=1. From Figure 3.6, we can observe that 

the angle estimation performance of the proposed algorithm is better than that of the other 

algorithms. 

 

Figure 3.6 Estimation performance comparison between the proposed algorithm, SS-ESPRIT algorithm, SS-

PM, He’s PM, PM of Palanisamy et al. and CRB using acoustic vector sensor array containing 17 sensors with 

K=2 and L=1 

Figure 3.7 shows the angle estimation performance of the proposed algorithm for different 

values of M and L=1. It is seen that the angle estimation performance of the proposed algorithm 

improves with increasing M. 
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Figure 3.7 Estimation performance comparison of the proposed algorithm with L=1, K=2 and different values of 

M 

In another experiment, we consider that there are three coherent signal sources with DOA ( 1φ ,

1ϕ )=( 20 , 30 ), ( 2φ , 2ϕ )=( 40 , 50 ) and ( 3φ , 3ϕ )=( 60 , 70 ), first and second signals being 

coherent and the third uncorrelated with the first and second signals. 

Figure 3.8 shows the comparison among the proposed algorithm, SS-PM, SS-ESPRIT 

algorithm, and CRB. The array consists of M=31 sensors with one sensor at the origin and L=1. It 

is seen that the DOA estimation performance of the SS-PM and SS-ESPRIT algorithm hardly 

improves with increasing SNR, and their RMSEs at higher SNRs are approximately equal to their 

RMSEs at lower SNRs. Hence, the DOA estimation performance of the proposed algorithm is 

better than that of the other two algorithms.  
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Figure 3.8 Estimation performance comparison between the proposed algorithm, SS-ESPRIT algorithm, SS-

PM and CRB using acoustic vector sensor array containing 31 sensors with K=3 and L=1 

In Figure 3.9, we consider that the array consists of M=31 sensors and the snap-shots L=50 in 

SS-PM and SS-ESPRIT algorithm while L=1 in our algorithm. It can be seen that when we 

increase the number of snap-shots in SS-PM and SS-ESPRIT algorithm, the performances of 

these two algorithms ameliorate, so the absence of enough snap-shots accounts for the 

degradation.  
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Figure 3.9 Estimation performance comparison between the proposed algorithm, SS-ESPRIT algorithm, SS-

PM and CRB using acoustic vector sensor array containing 31 sensors with K=3 and L=50 in SS-PM and SS-

ESPRIT algorithm while L=1 in the proposed algorithm 

  

3.3 Improved 2D-DOA Estimation of Coherent Signals with Acoustic 
Vector-sensor Array Using Multiple Snapshots 

In this section, we consider the problem of 2D-DOA estimation of coherent signals impinging on 

an L-shaped array of acoustic vector sensors, and propose an improved estimation algorithm 

based on the PM of Palanisamy et al. Compared with latter algorithm, the computational 

complexity of the proposed algorithm is lower and the angle estimation performance is better. 

Furthermore, the pair-matching problem that occurs in the PM of Palanisamy et al. is solved in 

our algorithm. The simulation results validate the effectiveness of the proposed algorithm. 
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3.3.1 Data Model 

In order to compare the proposed algorithm with the PM of Palanisamy et al. [30], the same data 

model is considered, which differs from the data model introduced in Subsection 2.1. Consider 

that an L-shaped acoustic vector sensor array as shown in Figure 3.10 consists of 2(M-1) sensors, 

out of which (M-1) sensors of the array are located on the x-axis and M sensors located on the z-

axis with an interelement spacing of d and a common reference sensor at the origin.  

0

2

2
1

1
y

x

z

M-2

M-1

φ

ϕ

 

Figure 3.10 The structure of array 

A total of K narrowband plane waves impinge on the L-shaped array, and we consider the 

signals in the far-field. Consider that the kth signal is arriving from direction ( kφ , kϕ ), where kϕ  

and kφ  stand for the azimuth angle and the elevation angle, respectively. Each element of the 

acoustic vector array produces an output, which is a 4×1 vector, corresponding to the acoustic 

pressure and the acoustic particle velocity. The 4×1 array manifold corresponding to the ith 

signal is given by 

sin cos
sin sin

( , )
cos

1 1

k k k

k k k
k k

k k

φ ϕ α
φ ϕ β

φ ϕ
φ γ

   
   
   = =
   
   
   

c   for k=1, 2, …, K                     (3.16) 
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From [30], we know that the output at the mth sensor of the acoustic vector sensor array located 

on the x-axis can be expressed as 

1
( ) ( ) ( , ) ( ) ( ) ( )

0,1,..., 2; 1, 2,...,

k

m

K
jm H

m k k k xm x xm
k

t s t e t t t

for m M t L

ψ φ ϕ
=

= + = +

= − =

∑x c n B s n

  
                       (3.17) 

where (2 / )k kdψ π λ α= , 1 2
1 1 2 2[ ( , ), ( , ),..., ( , )]K

i

ji ji ji T
x K Ke e eψ ψ ψφ ϕ φ ϕ φ ϕ− − −=B c c c  is a K×4 matrix, 

and ( )xm tn  is a noise vector at the mth sensor of the acoustic vector sensor array along the x-axis. 

The entire output at all sensors located on the x-axis can be represented as 

( ) ( ) ( )x xt t t= +x A s n     for t=1,2,…,L                                 (3.18) 

where 0 1 2( ) [ ( ), ( ),..., ( )]T T T T
Mt t t t−=x x x x  is a 4(M-1)×1 vector, 

1 1 1 1 2 2 2 2[ ( , ) ( , ), ( , ) ( , ),..., ( , ) ( , )]x x x x K K K Kφ ϕ φ ϕ φ ϕ φ ϕ φ ϕ φ ϕ= ⊗ ⊗ ⊗A q c q c q c  

is a 4(M-1)×K array manifold matrix of the acoustic vector sensor array along the x-axis and 
2 ( 2)( , ) [1, , ,..., ]k k kj j j M T

x k k e e eψ ψ ψφ ϕ −=q , 1 2( ) [ ( ), ( ),..., ( )]T
Kt s t s t s t=s is the K×1 signal vector, and 

0 1 ( 2)( ) [ ( ), ( ),... ( )]T T T T
x x x x Mt t t t−=n n n n is the 4(M-1)×1 noise vector at the acoustic vector sensor 

array along the x-axis. 

Similarly, the output at all sensors located on the z-axis can be represented as 

( ) ( ) ( )z zt t t= +z A s n      for t=1,2,…,L                                (3.19) 

where 0 1 1( ) [ ( ), ( ),..., ( )]T T T T
Mt t t t−=z z z z  is a 4M×1 vector. 
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3.3.2 Improved DOA Estimation Algorithm 

3.3.2.1 Decorrelation 

We divide the source signals into p groups, and the signals in the same group are coherent, while 

being incoherent to the signals in the other groups. Let iL  be the number of coherent signals in 

the ith group and  max 1 2max{ , ,..., }pL L L L= .  

Remark A: The number of source signals D and the group number p can be pre-estimated via 

some available methods in [31-40]. 

Based on the noise assumption in Section 2.2, the cross-correlation 
kzxR  between the 

observation vectors ( )tz  and ( )i tx  can be expressed as 

[ ( ) ( )]
i i

H
zx i z s xE t t= =R z x A R B    for i=0,1, …,M-2                       (3.20) 

where [ ( ) ( )]H
s E t t=R s s  is a K×K autocorrelation matrix of the signal. The cross-correlation 

matrix zxR , which is a 4M×4(M-1) matrix, is formed by concatenating 
izxR  for i=0,1, …,M-2, as 

0 1 2
[ , ,..., ]

M

H
zx zx zx zx z s x−
= =R R R R A R A                                  (3.21) 

If all the source signals are incoherent, rank{ zxR }= D and the signal subspace can be formed 

without extra operations. However, if all or some of the source signals are coherent, then 

rank{ zxR }<D and the signal subspace cannot be formed directly. In order to decorrelate the 

coherent sources, we partition the cross-correlation matrix zxR  and form a new matrix R  as 

follows 

max( )(1) (2)[ , ,..., ]L
zx zx zx=R R R R                                            (3.22) 

where the jth submatrix ( )j
zxR  is formed from the (4(j-1)+1)th row to the 4(M- maxL +j)th row of 

zxR . The dimension of the matrix R  is 4(M- maxL +1)×4(M-1) maxL , and R  can also be 

represented as 
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max 10 1[ , ,..., ]LH H H
z z s x z s x z s x z

−= =R A Φ R A Φ R A Φ R A A Ψ  

where zA  consists of the first 4(M- maxL +1) rows of zA ; ( )1{exp 2 cos /z diag j dπ φ λ=Φ

( ) ( )2, exp 2 cos / ,..., exp 2 cos / }Kj d j dπ φ λ π φ λ . Since rank{ i H
z s xΦ R A }= min{rank( i

zΦ ), 

rank( sR ), rank( H
xA )}=min{D, rank( sR ), D}= rank( sR ), we get rank{Ψ }=p·rank( sR ). Hence, 

we have rank{ R }= min{rank{ zA },rank{Ψ }}=min{K, p·rank( sR )}=D, because D, p, rank( sR ) 

always satisfy p·rank( sR )≥D. 

It is necessary to transform the matrix R  using the exchange matrix J  to bring the velocity 

components and the pressure components of the acoustic vector sensors together. We define a 

new transformed matrix R  as 

T=R J R  

where 1 2 3 4[ , , , ]=J J J J J , is a 4(M- maxL +1)×4(M- maxL +1) matrix, 4 8[ , , ,...,i i i ie e e+ +=J  max4( - ) ]i M Le +

for i=1,2,3,4, and ie  is the 4(M- maxL +1)×1 unit vector whose ith component is unity and all 

others are zero. 

3.3.2.2 DOA Estimation 

Next, we use the PM to estimate the 2D-DOAs. After the transformation applied to R , the 

steering vector zA  becomes 

T
z z=A J A  

where zA  consists of the first 4(M- maxL +1) rows of the array manifold matrix zA . 

Partition the matrix zA  as 
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1 4 1

2 4 2

3 4 3

4 4

z z

z z
z

z z

z z

Γ   
   Γ   = =
   Γ
   
   

A A
A A

A
A A
A A

                                                    (3.23) 

where 1 1 2{ , ,..., }Kdiag α α αΓ = , 2 1 2{ , ,..., }Kdiag β β βΓ =  and 3 1 2{ , ,..., }Kdiag γ γ γΓ =  are K×K 

diagonal matrices. 

Because 4zA  is a Vandermonde matrix with full rank K, 4zA  can be partitioned as 

2
4

1
z

 
=  
 

A
A

A
 

where 1A  is a K×K nonsingular matrix, and 2A  is a [(M- maxL +1)-K]×K matrix. zA  can also be 

expressed by 

2 1

1 1

2 2

1 2 2

2 3 1

1 3

2

1

z

Γ 
 Γ 
 Γ
 Γ   = =   Γ   

Γ 
 
 
  

A
A
A
A B

A
A A
A
A
A

  

where max[4( - +1)- ]
2

M L K K×∈B   is a linear transformation of 1A , namely, 

2 1
H=B P A  

where max[4( - +1)- ]K M L K×∈P   is the propagator matrix [18]. 

We define 
H

E
K K×

 
=  
 

P
P

I
, then 
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1E z=P A A                                                         (3.24) 

We partition EP  as 

1

2

3

4

E

E
E

E

E

 
 
 =
 
 
 

P
P

P
P
P

                                                          (3.25) 

where max( 1)
1 2 3 4, , , M L K

E E E E
− + ×∈P P P P  . Then according to (3.23) and (3.24), we get 

1 1 4 1E z= ΓP A A                                                   (3.26.a) 

2 1 4 2E z= ΓP A A                                                   (3.26.b) 

3 1 4 3E z= ΓP A A                                                    (3.26.c) 

4 1 4E z=P A A                                                      (3.26.d) 

Substituting (3.26.d) into (3.26.c), we obtain 

1
4 3 1 3 1E E

+ −= ΓP P A A                                                  (3.27) 

After the eigen-value decomposition of 4 3E E
+P P , the eigen-values correspond to the diagonal 

elements of 3Γ , and the eigenvectors are the estimates of 1A , which satisfies 1 1
ˆ =A A Π , where 

Π  is a permutation matrix, and 1 T− =Π Π . 

Remark B: Eq. (3.27) can also be represented as 4 3 1 1 3E E
+ = ΓP P A A , where 3Γ  is a diagonal 

matrix consisting of the eigen-values of 4 3E E
+P P . Hence, it is obvious that the eigenvectors of 

4 3E E
+P P are the estimate of 1A . 

In order to obtain P, we partition the covariance matrix of the received data R  as 
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2

1

 
=  
 

R
R

R
                                                     (3.28) 

where max[4( -1) ]
1

K M L×∈R  , max max[4( 1) ] [4( -1) ]
2

M L K M L− + − ×∈R   and  

2 1
H=R P R                                                  (3.29) 

As described by (3.10), the estimate of P  can be obtained via 

1
2 1 1 1

ˆ ( )H H −=P R R R R                                          (3.30) 

According to (3.24), we get 1
ˆ ˆ

z E=A P A , and partition ˆ
zA  as 

1

2

3

4

ˆ

ˆˆ
ˆ

ˆ

z

z
z

z

z

 
 
 

=  
 
 
 

A

A
A

A

A

                                                      (3.31) 

In the noise-free case, 1 4 1z z= ΓA A , 2 4 2z z= ΓA A , thereby  

1 4 1z z
+Γ = A A  and 2 4 2z z

+Γ = A A                                      (3.32) 

Hence the estimates of 1Γ and 2Γ  can be achieved by 4
ˆ

z
+A 1

ˆ
zA  and 4

ˆ
z
+A 2

ˆ
zA , respectively. 

Finally, according to the definition of ( , )k kφ ϕc  in (3.16), the elevation and azimuth angles are 

estimated by 

1
3

ˆ ˆcos ( )φ −= Γ                                                    (3.33.a) 

ˆ angleϕ = 1
ˆ(Γ + 2

ˆ )jΓ                                              (3.33.b) 

Till now, we have obtained the improved PM-based 2D-DOA estimation of coherent signals 

using acoustic vector-sensor array. We give the major steps of the proposed algorithm below. 

Step 1: Form the covariance matrix of the received data R  using (3.20)-(3.22); 
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Step 2: Obtain the propagator matrix P using (3.28)-(3.30); 

Step 3: Construct and partition EP  to get 1 2 3 4, , ,E E E EP P P P , and obtain 3Γ̂  and 1Â  via (3.25)-

(3.27); 

Step 4: Get 1Γ̂  and 2Γ̂  from (3.31), and finally estimate the elevation and azimuth angles using 

(3.33) 

3.3.2.3 Complexity Analysis 

First, calculating R  requires multiplications of order 2
max max{64( 1) ( 1)O M L M L− + −

16 ( 1) }M M L+ − , and obtaining the propagator matrix P has computational complexity of 

2
max max max{16 ( 1)( 1) 4 ( 1)}O K M L M L K M L− + − + − + . Also, computing 3Γ̂  and 1Â  is of

2 2
max{4 ( 1) 2 }O K M L K− + + . Finally, estimating 1Γ̂  and 2Γ̂  requires 2 2

max{10 ( 1) 2 } O K M L K− + +

computations. Therefore, the computational load of the proposed algorithm is about
2 2 2

max max max max max{64( 1) ( 1) 16 ( 1) 4 16 ( 1)( 1) 17 ( 1)}O M L M L M M L K K M L M L K M L− + − + − + + − + − + − + , 

while the PM of Palanisamy et al. is 2 2
max max{64( 1) ( 1) 16 ( 1) 3O M L M L M M L K− + − + − − +

2
max max max16 ( 1)( 1) 13 ( 1)}K M L M L K M L− + − + − +  without considering the cost of extra 

computationally-expensive pair matching, where L denotes the number of snap-shots. The 

computational complexity of the proposed algorithm is lower. 

3.3.2.4 Advantages of the Proposed Algorithm 

The proposed algorithm has the following advantages. 

1) The computational complexity of the proposed algorithm is smaller than that of the PM of 

Palanisamy et al. 

2) The angle estimation performance of the proposed algorithm is better than that of the PM of 

Palanisamy et al. 

3) The proposed algorithm achieves automatically-paired two-dimensional angle estimates. 

4) The proposed algorithm can be used for the DOA estimation of coherent signals. 
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3.3.3 Simulation Results 

In this subsection, simulation results are presented to show the performance of the proposed DOA 

estimation technique as compared to some of the existing methods. In the first experiment, we 

consider that there are two coherent signal sources with DOA ( 1φ , 1ϕ )=( 50 , 40 ) and ( 2φ ,

2ϕ )=( 60 , 50 ). The array consists of 12 sensors with 7 sensors along the z-direction and 6 

sensors along the x-direction and we define RMSE as 

2000
2 2

, ,
1

ˆ1 ˆ[( ) ( ) ]2000 n k k n k k
n

RMSE φ φ ϕ ϕ
=

= − + −∑  

where ,n̂ kφ , ,ˆn kϕ are the estimates of kφ , kϕ of the nth Monte Carlo trial.  

Figures 3.11 and 3.12 depict the angle estimation results of the proposed algorithm for two 

sources with SNR=0dB, snap-shots L=500, and SNR=15dB, L=500. The elevation and azimuth 

angles can be clearly observed. 

 

Figure 3.11 Estimation results of the proposed algorithm using acoustic vector sensor array containing 12 

sensors with 7 sensors along z-direction and 6 sensors along x-direction with L=500, K=2 and SNR=0dB 
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Figure 3.12 Estimation results of the proposed algorithm using acoustic vector sensor array containing 12 

sensors with 7 sensors along z-direction and 6 sensors along x-direction with  L=500, K=2 and SNR=15dB 

Figure 3.13 presents the comparisons among the proposed algorithm, the PM of Palanisamy et 

al. and CRB. It is seen that the angle estimation performance of the proposed algorithm is better 

than that of the PM of Palanisamy et al. 

 

Figure 3.13 Estimation performance comparison between the proposed algorithm, the PM of Palanisamy et al. 

and CRB using acoustic vector sensor array containing 12 sensors with 7 sensors along z-direction and 6 

sensors along x-direction with K=2 and L=500 
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Figure 3.14 presents the angle estimation performance of the proposed algorithm for different 

values of L. It is observed that the angle estimation performance of the proposed algorithm 

improves with increasing L. 

 

Figure 3.14 Estimation performance of the proposed algorithm with M=12, and K=2 for different values of L 

In another experiment, we consider that there are K = 3 sources with DOA( 1φ , 1ϕ )=(50 , 40 ), 

( 2φ , 2ϕ )=( 60 , 50 ) and ( 3φ , 3ϕ )=( 70 , 60 ), second and third signals being coherent and the first 

being uncorrelated with the second and third signals. The array consists of 16 sensors of 9 

sensors along z-direction and 8 sensors along x-direction. 

Figures 3.15 and 3.16 depict the angle estimation results of the proposed algorithm for all three 

sources with SNR=0dB, L=500 and SNR=15dB, L=500. The estimated elevation and azimuth 

angles can be clearly observed. 
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Figure 3.15 Estimation results of the proposed algorithm using acoustic vector sensor array containing 16 

sensors of 9 sensors along z-direction and 8 sensors along x-direction with  L=500, K=3 and SNR=0dB 

 

Figure 3.16 Estimation results of the proposed algorithm using acoustic vector sensor array containing 16 

sensors of 9 sensors along z-direction and 8 sensors along x-direction with  L=500, K=3 and SNR=15dB 

Figure 3.17 shows the performance comparison of the proposed method with that of the SS-
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PM [19], the He’s PM [29], the PM of Palanisamy et al. [30] and the CRB. In the experiment of 

Figure 3.17, L=100 or L=200 snapshots. It is clearly seen that the estimation performance of the 

proposed algorithm is better than that of the SS-PM, the He’s PM and the PM of Palanisamy et 

al., when the same snapshot number L=100 is used. Also, note that the estimation performance of 

the proposed algorithm with L=100 is very close to that of the PM of Palanisamy et al. with 

L=200. That’s because the proposed algorithm is able to exploit all the useful received 

information to estimate 1Γ̂  , 2Γ̂ , and 3Γ̂ by adding an identity matrix K K×I  to expand the 

propagator matrix P ,  so that 1zA , 2zA , 3zA and 4zA  can be respectively considered as a whole in 

the following estimation step, rather than dividing each of them into two parts and just use one 

part to estimate 1Γ̂  , 2Γ̂ , and 3Γ̂ , which is actually used in the PM of Palanisamy et al. This 

expanding as well as the subsequent procedure can be regarded as doubling the useful 

information than the the PM of Palanisamy. It is also clear from Figure 3.17 that the estimation 

performance of the proposed algorithm improves with increasing the number of snapshots.  
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Figure 3.17 Estimation performance comparison between the proposed algorithm, SS-PM, He’s PM, PM of 

Palanisamy et al. and CRB  using acoustic vector sensor array containing 16 sensors of 9 sensors along z-

direction and 8 sensors along x-direction with K=3 and L=100 or 200. 

Figure 3.18 presents the angle estimation performance of the proposed algorithm for different 

values of L. It is observed that the angle estimation performance of the proposed algorithm 

improves with increasing L. 
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Figure 3.18 Estimation performance comparison of the proposed algorithm with M=15, K=3 and different 

values of L 

3.4 Summary 

In this chapter, we proposed two novel methods to enhance the 2D-DOA estimation performance 

for coherent incident sources using acoustic vector-sensor array.  

In Section 3.2, a method which collects only a single snapshot to estimate the 2D-DOA of 

coherent incident sources is proposed by combining the PM with Toeplitz Hermitian matrix 

representation. This method has a better angle performance and less computational complexity 

than the traditional spatial smoothing methods. 

Based on the PM of Palanisamy et al. [30], an improved 2D-DOA estimation algorithm of 

coherent signals impinging on an L-shaped acoustic vector-sensor array was presented in Section 

3.3. Compared to the PM of Palanisamy et al., the proposed algorithm has the advantages of 

lower computational complexity, better estimation performance, and being able to acquire 

automatically-paired 2D-DOA estimates. 
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Chapter 4  

4 2D-DOA Estimation of Noncircular Signals with Acoustic 
Vector-Sensor Array 

4.1 Introduction 

For a zero-mean Gaussian random vector x , its covariance matrix is defined as ][ HE=R xx  and 

complementary covariance matrix is defined as ][ TE=C xx . In the past, it was often assumed 

that the complementary covariance vanishes, =C O  , a case that is referred to as circular [46]. 

However, it has been shown that there are a number of situations in communications where this 

does not hold. For example, binary phase shift keying (BPSK) modulator, which is found to be 

bandwidth efficient in underwater communications [24], produces noncircular communication 

signals, in which case ≠C O . When dealing with the noncircular signals, a better 2D-DOA 

estimation performance can be achieved by taking the information contained in the 

complementary covariance into account.  

In this chapter, the real-valued space PM and ESPRIT algorithm are proposed for 2D-DOA 

estimation of noncircular signals by using arbitrarily spaced acoustic vector sensor array. By 

exploiting the noncircularity of the incoming signals to increase the amount of effective data, the 

proposed algorithms can provide better 2D-DOA estimation performance with fewer snapshots, 

which means a relatively lower sample rate can be used in practical implementations. Compared 

with the traditional PM and ESPRIT, the proposed algorithms provide better estimation 

performance while at the same time having a similar computational complexity. Furthermore, the 

proposed algorithms are suitable for arbitrary arrays and yield paired azimuth and elevation 

angle estimates without requiring extra computationally-expensive pairing operations. 

4.2 Data Model 

Consider that a total of K plane acoustic waves impinge on an irregular array containing M 

acoustic vector sensors. We also consider the signals in the far-field, wherein the sources are far 

enough so that the arriving waves are essentially planes over the array. The noise is independent 

of the source, and is additive i.i.d. Gaussian with zeros mean and variance 2σ . Let the k-th signal 
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arrive from direction ( ,k kφ ϕ ), where kφ  and kϕ  stand for the azimuth and elevation angles, 

respectively. Let T[ , ]k k kφ ϕ=θ  denote the 2D-DOA of the k-th source. The output of the m-th 

acoustic vector sensor ( )m tq  is shown to be 

( )

( )
( )
( )
( )

( )2

1

1 ( )
cos cos ( )
sin cos ( )

sin ( )

mk

m pm

K
m k k xmj

m k
km k k ym

m k zm

p t n t
x t n t

t e s t
y t n t
z t n t

τπφ ϕ
φ ϕ

ϕ

−

=

     
     
     = = +
     
     
      

∑q

                  

(4.1) 

where ( )p t is the pressure measurement and ( )x t , ( )y t and ( )z t  represent the 3-D velocity 

measurements; ( )ks t  is the transmitted signal of the k-th source; mkτ  is the differential time 

delay of the k-th wave between the reference and the m-th sensor; ( )pmn t , ( )xmn t , ( )ymn t  and 

( )zmn t  represent the noises. Then the output of the entire irregular array containing M acoustic 

vector sensors at time t is 

( )

( )( ) ( )
( )( ) ( )
( )( ) ( )
( )( ) ( )

p

x

y

z

tt t
tt t

t
tt t
tt t

α

ν

ω

    
    
    = = +
    
    
     

np As
nx AΦ s

q
ny AΦ s
nz AΦ s











                                        (4.2) 

where 1( ) [ ( ),..., ( )]T
Mt p t p t=p , 1( ) [ ( ),..., ( )]T

Mt x t x t=x , 1( ) [ ( ),..., ( )]T
Mt y t y t=y  and  ( ) [t =z

1( ),..., ( )]T
Mz t z t ; 1 2( ) [ ( ), ( ),..., ( )]T

Kt s t s t s t=s ; 1 2( ) [ ( ), ( ),..., ( )]T
p p p pMt n t n t n t=n , 1( ) [ ( )x xt n t=n  

2, ( ),..., ( )]T
x xMn t n t , 1 2( ) [ ( ), ( ),..., ( )]T

y y y yMt n t n t n t=n and 1 2( ) [ ( ), ( ),..., ( )]T
z z z zMt n t n t n t=n ; 

1 1 2 2{cos cos cos cos cos cos }K Kdiag φ ϕ φ ϕ φ ϕα = , ,...,Φ , 1 1 2 2{sin cos sin cosdiag φ ϕ φ ϕν = ,Φ

sin cos }K Kφ ϕ,..., and  1 2{sin sin sin }Kdiag ϕ ϕ ϕω = , ,...,Φ . A  is the steering matrix, which is 

given by 1 2[ , ,..., ]K=A a a a  with 1 22 2 2[ , ,... ]k k Mkj j j T
k e e eτ τ τπ π π− − −=a . 

By collecting L transmitted symbols, the output of the acoustic vector-sensor array is denoted 

as ( ) ( ) ( )[ 1 , 2 ,..., ]L=Q q q q

   , which can be rewritten as 
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E
α

ν

ω

  
  
  = = + = +
  
  
    

P AS
X AΦ S

Q N A S N
Y AΦ S
Z AΦ S





  





                                   
(4.3) 

where [ ](1), (2),..., ( )L=P p p p , [ ](1), (2),..., ( )L=X x x x , [ ](1), (2),..., ( )L=Y y y y  and

[ ](1), (2),..., ( )L=Z z z z ; K L×∈S   is the source matrix for the L snapshots; 4M L×∈N  is the noise 

matrix. 

A signal is said to be noncircular if its complementary covariance ≠C O  [25]. This statistical 

redundancy can be used to enhance the DOA estimation performance. According to the 

noncircular property, the source matrix can be denoted by 

0=S ψS                                                            (4.4) 

where 1{ ,..., }Ki idiag e eψ ψ=ψ  with p qψ ψ≠ for p q≠  and 0
K L×∈S   with *

0 0=S S . 

In order to utilize the noncircularity of the signals, we first reconstruct and expand the output 

matrixQ to form Q , which can be written as 

)
)

)
)
)

(
(

(
(

(

)
(

)(
)

(

r r

j j

r r

j j

r r

j j

r r

j j

α

α

ν

ν

ω

ω

  
  
  
  
  
  = +  
  
  
  
  
     

=

A
A

A
A

N
A

P S
P S
X Φ S
X Φ S

Q
Y Φ S
Y Φ S
Z Φ S
Z

A

AΦ
A

S

















                                          (4.5) 

where subscripts r and j are the real and imaginary parts of the complex matrix, respectively. 

Substituting (4.4) into (4.5), Q  can be simplified as 
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                      (4.6) 

where ) )( (T T
r j

T
 =  A ψAψA  . This process of reconstruction increases the effective data for the 

next step of the 2D-DOA estimation. In other words, it is equivalent to enlarging the array 

aperture, which is actually twice as much as the original data if the noncircularity had not been 

utilized. This increase of effective data makes it possible to achieve a better 2D-DOA estimation 

performance, which means we can use relatively lower sampling rate in practical 

implementations. 

4.3 2D-NC-PM based on Acoustic Vector-Sensor Array 

4.3.1 DOA Estimation Using 2D-NC-PM 

In the section, we use PM to estimate the 2D-DOAs. Partition the matrix EA  as 

1

2
E

 
=  
 

A
A

A
                                                             (4.7) 

where 1A  is a K×K nonsingular matrix, 2A is a (8M−K)×K matrix. Then 2A  is a linear 

transformation of 1A , 

2 1
H=A P A                                                             (4.8) 

where (8 )K M K× −∈P   is the propagator matrix. We define K K
E H

× 
=  
 

I
P

P
; then, 
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1E E=A P A                                                           (4.9) 

We denote the covariance matrix of the received data by ER , which we partition as 

[ ]1 2E =R R R                                                     (4.10) 

where 8
1

M K×∈R   and 8 (8 )
2

M M K× −∈R  . In the noise-free case, we can obtain 

2 1=R R P                                                            (4.11) 

Actually, there is always noise, and the propagator matrix can be estimated by the following 

minimization problem  

2
2 1 F

( )csmJ = −P R R P  

The estimate of P  is then given by 

H 1 H
1 1 1 2

ˆ ( )−=P R R R R                                                    (4.12) 

In the practical implementation, the covariance matrix ER  can be estimated through 

ˆ /H
E L=R QQ . Next, we use the estimated propagator P̂  to obtain 2D-DOA estimates. In the 

noise-free case, EP  can be partitioned as 

1

2

3

4

E

 
 
 =
 
 
 

P
P

P
P
P

      2
1 2 3 4, , , M K×∈P P P P                                         (4.13) 

Using (4.9) and (4.13), we obtian 

1 1=A P A                                                    (4.14.a) 

4 1ω =AΦ P A                                                 (4.14.b) 
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Then, it’s easy to derive the relation from (4.14) 

1
1 4 1 1
+ −

ω=P P A Φ A                                                 (4.15) 

After the eigen-value decomposition of 1 4
+P P , the eigen-values correspond to the diagonal 

elements of ωΦ , and the eigenvectors are the estimate of 1A , namely, 1 1
ˆ =A A Π , where Π  is a 

permutation matrix, and 1 T− =Π Π ; then the estimate of ωΦ  is ˆ
ω ω=Φ ΠΦ Π .  

Now we consider estimating αΦ  and νΦ . Substituting the estimated propagator P̂  and 1Â  

into (4.9), we can get the estimate of EA , namely, ˆ
EA  by 

1
ˆ ˆˆ

E E=A P A                                                     (4.16) 

and then partition the estimated ˆ
EA as  

ˆ

ˆ ˆ
ˆ

ˆ ˆ

ˆ ˆ

EE
α

ν

ω

 
 
 

=  
 
 
 

A

AΦ
A

AΦ

AΦ

                                                       (4.17) 

Define  

1
ˆB A , 2

ˆ ˆ
αB AΦ  and 3

ˆ ˆ
νB AΦ                                       (4.18) 

ˆ
αΦ and ˆ

νΦ  can be obtained via 1 2
+B B  and 1 3

+B B . 

Finally, by exploiting the definition of  αΦ , νΦ and ωΦ  in (4.2), the elevation and azimuth 

angles are estimated by 

ˆ ˆ ˆ( )angle jφ α ν= +Φ Φ                                           (4.19.a) 

  1 ˆˆ sin ( )ϕ −
ω= Φ                                                  (4.19.b) 

Since the column ambiguity doesn’t exist in acquiring ˆ
αΦ , ˆ

νΦ and ˆ
ωΦ , the proposed algorithm 

gives automatically-paired azimuth and elevation angles without requiring extra computationally 

expensive pairing operations. 

Till now, we have achieved the 2D-NC-PM algorithm for acoustic vector-sensor array. We 

give the major steps of the proposed algorithm below. 
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Step 1: Construct the data matrix Q via (4.5) and estimate the covariance matrix ER  through

ˆ /H
E L=R QQ . 

Step 2: Partition ˆ
ER  to estimate EP  via (4.10) and (4.12). 

Step 3: Partition ˆ
EP  to get 1 2 3 4, , ,P P P P  via (4.13), obtain ˆ

ωΦ and 1Â  by performing the 

eigenvalue decomposition to 1 4
+P P . 

Step 4: Get the estimate of EA  from (4.16), and partition it to obtain ˆ
αΦ  and ˆ

νΦ  from (4.18), 

and finally estimate elevation and azimuth angles via (4.19). 

4.3.2 Advantages of 2D-NC-PM Algorithm 

The proposed algorithm has the following advantages: 

1)  The angle estimation performance of the proposed algorithm is better than that of the 

traditional PM, which will be seen in the simulation section (Section 4.3.3). 

2)  The proposed algorithm is suitable for arbitrary array geometry. 

3)  The proposed algorithm can achieve automatically paired two-dimensional angle estimates. 

4.3.3 Simulation Results 

In this subsection, simulation results are presented to show the performance of the proposed 

DOA estimation technique as compared to some of the existing methods. We consider that there 

are K = 3 sources with DOA ( 1 1,φ ϕ )= (10 , 10−  ), ( 2 2,φ ϕ )=(30 ,30  ) and ( 3 3,φ ϕ )= ( 40 ,50  ). 

Define RMSE as  

2 2
, ,

1 1

ˆ1 1 ˆ[( ) ( ) ]
K N

k n k k n k
k n

RMSE K N φ φ ϕ ϕ
= =

= − + −∑ ∑  

where ,k̂ nφ , ,ˆk nϕ  are the estimates of kφ , kϕ of the n-th Monte Carlo trial.  

Figure 4.1 depicts the angle estimation results from the proposed algorithm for all the three 

sources with M=10, L=200, SNR= 0dB and M=10, L=100, SNR= 20dB. It is seen that the 

elevation and azimuth angles can be clearly observed. 
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Figure 4.1 Estimation results of the proposed algorithm using 10 sensors with L=200, SNR= 0dB and L=100, 

SNR= 20dB 

Figures 4.2 and 4.3 present comparisons of the estimation performance among the proposed 

algorithm, traditional PM and CRB. From these figures, we can observe that the angle estimation 

performance from the proposed algorithm is better than that of traditional PM. 

 

Figure 4.2 Estimation performance comparison between the proposed algorithm, traditional PM and CRB 

using 6 sensors with K=3 and L=50 
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Figure 4.3 Estimation performance comparison between the proposed algorithm, traditional PM and CRB 

using 10 sensors with K=3 and L=200 

Figure 4.4 presents the angle estimation performance of the proposed algorithm with M = 10, 

K = 3 and different values of L. It is seen from the figure that the angle estimation performance 

of the proposed algorithm improves with increasing L. 

 

Figure 4.4 Estimation performance comparison of the proposed algorithm with M=10, K=3 and different values 

of L 

Figure 4.5 shows the angle estimation performance of the proposed algorithm with L = 100, K 

= 3 for different M. It is observed that the angle estimation performance of the proposed 

algorithm improves with increasing the number of sensors. 
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Figure 4.5 Estimation performance comparison of the proposed algorithm with L=100, K=3 and different values 

of M 

4.4 2D-NC-ESPRIT based on Acoustic Vector-Sensor Array 

4.4.1 DOA Estimation Using 2D-NC- ESPRIT 

Here we use the ESPRIT method to estimate the 2D-DOAs. By performing the eigenvalue 

decomposition of ER , we obtain 

H H
s sE s n n n= +R E D E E D E                                                (4.20) 

where sD  denotes a K K×  diagonal matrix formed by the K largest eigenvalues, nD  denotes a 

diagonal matrix formed by (8M-K) smaller eigenvalues, sE  contains the eigenvectors 

corresponding to the K largest eigenvalues, and nE  represents the remaining eigenvectors. Note 

that sE and nE  represent the signal and noise subspaces, respectively. It is well known that there 

exists a nonsingular K K× linear transform matrix T  such that 

s E=E A T                                                       (4.21) 

We partition sE  as 

[ ]2 3 41
T

s =E E E EE  
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where 1 =E AT , 2 α=E AΦ T , 3 ν=E AΦ T  and 4 ω=E AΦ T . It is easy to verify that the eigen-

values of 1 4
+E E  correspond to the diagonal elements of ωΦ , and the eigenvectors are the 

estimate of T , namely, ˆ =T TΠ , where Π  is a permutation matrix, and 1 T− =Π Π . Then the 

estimate of ωΦ  is given by ˆ
ω ω=Φ ΠΦ Π . Thus, the elevation angles can be estimated by 

1ˆ ˆsin ( )k kϕ −= ω( )θ                                                (4.22) 

where ˆ kω( )θ  is the k-th diagonal element of ˆ
ωΦ . 

The azimuth angles could be obtained by exploiting the inherent relations of the estimate ˆ
EA of 

EA . Note that ˆ
EA  can be obtained from (4.17), that is, 1ˆ ˆ

E s
−=A E T . Obviously, ˆ

αΦ , the estimate 

of  αΦ , can be estimated by ( ) ( )ˆ ˆ1: 2 ,: 2 1: 4 ,:E EM M M+ +A A , and ˆ
νΦ , the estimates of νΦ , can 

then be obtained via ( ) ( )ˆ ˆ1: 2 ,: 4 1: 6 ,:E EM M M+ +A A . Finally, the azimuth angles are estimated 

as 

ˆ ˆ ˆ( )k k kangle jφ = α( ) + ν( )θ θ                                          (4.23) 

where ˆ kα( )θ  and ˆ kν( )θ  are the k-th diagonal element of ˆ
αΦ  and that of ˆ

νΦ , respectively. The 

covariance matrix ER of the received signal can be estimated by ˆ /H
E L=R QQ . 

In summary, the implementation of our algorithm contains the following four major steps: 

Step 1: Construct the data matrix Q via (4.5) and estimate the covariance matrix ER  through

ˆ /H
E L=R QQ . 

Step 2: Perform eigenvalue decomposition to the covariance matrix ˆ
ER  to get the estimate sE

via (4.20). 

Step 3: Partition sE  to obtain the estimates of ωΦ  and T , and then estimate the elevation angles 

via (4.22). 

Step 4: Obtain ˆ
EA  from (4.21), and estimate the azimuth angles via (4.23). 
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4.4.2 Complexity Analysis 

Let us now consider the computational complexity of the proposed algorithm. First, calculating

ER  requires multiplications of order 2(64 )O M L , and decomposing ER  has computational 

complexity of 3(512 )O M . Also, computing ˆ
ωΦ  is of 2 3(6 2 )O MK K+ . Finally, estimating ˆ

αΦ  

and ˆ
νΦ  requires 2 3(20 2 )O MK K+ computations. Therefore, the computational load of the 

proposed algorithm is about 2 3 2 3(64 512 26 4 )O M L M MK K+ + + . Considering that each 

complexity of the complex multiplication is four times that of a real-valued multiplication, one 

can show that the traditional complex ESPRIT algorithm needs 2 3(64 256O M L M+ +

2 352 32 )MK K+ real multiplications. Figure 4.6 presents the complexity comparison between the 

proposed algorithm and the traditional complex ESPRIT algorithm for K=3, L=100 and different 

values of M. From Figure 4.6, we see that the computational complexity of the proposed 

algorithm is only slightly larger than that of the traditional ESPRIT algorithm. 

 

Figure 4.6 Complexity comparison for K=3, L=100 and different values of M 
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4.4.3 Advantages of 2D-NC- ESPRIT Algorithm 

The proposed algorithm in this section has the following advantages. 

1) The angle estimation performance of the proposed algorithm is better than that of traditional 

ESPRIT algorithm, which will be shown in the simulation section (Section 4.4.4). 

2) The proposed algorithm is suitable for arbitrary arrays without knowing the locations of 

sensors. 

3) The proposed algorithm can obtain automatically-paired two-dimensional angle estimates. 

4.4.4 Simulation Results 

In this subsection, simulation results are presented to show the performance of the proposed 

DOA estimation technique as compared to some of the existing methods. We consider that there 

are K = 3 sources with DOA ( 1 1,φ ϕ )= (10 , 10−  ), ( 2 2,φ ϕ )=(30 ,30  ) and ( 3 3,φ ϕ )= ( 40 ,50  ) and 

define RMSE as  

2 2
, ,

1 1

ˆ1 1 ˆ[( ) ( ) ]
K N

k n k k n k
k n

RMSE K N φ φ ϕ ϕ
= =

= − + −∑ ∑  

where ,k̂ nφ , ,ˆk nϕ  are the estimation of kφ , kϕ of the nth Monte Carlo trial.  

Figure 4.7 depicts the angle estimation results of the proposed algorithm for the all three 

sources with M=10, L=200, SNR= 20dB. It is seen that the elevation and azimuth angles can be 

clearly observed. 
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Figure 4.7 Estimation results of the proposed algorithm using 10 sensors with L=200 and SNR= 20dB. 

 

Figure 4.8 presents a comparison of the estimation performance of the proposed method with 

that of the traditional ESPRIT algorithm using acoustic vector sensor array, as well as CRB. In 

our experiment of Figure 4.8, an acoustic vector sensor array of 10 sensors is employed, along 

with L=100 or 200 snapshots. It is clearly seen that the estimation performance of the proposed 

algorithm is better than that of the traditional ESPRIT algorithm when the same number of 

snapshots are adopted. Note that the estimation performance of the proposed algorithm with 

L=100 is close to that of the traditional ESPRIT algorithm with L=200, indicating that the 

effective data used for 2D-DOA estimation has been increased by utilizing the noncircularity of 

the source signals in the proposed algorithm. It is also clear from in Figure 4.8 that the estimation 

performance of the proposed algorithm improves with increasing number of snapshots. 
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Figure 4.8 Estimation performance comparison between the proposed algorithm, traditional ESPRIT algorithm 

and CRB using 10 sensors with L=100 or 200. 

 

Figure 4.9 presents the angle estimation performance of the proposed algorithm with M = 10, 

K = 3 and different values of L. It is observed that the angle estimation performance of the 

proposed algorithm improves with increasing the number of snapshots. 
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Figure 4.9 Estimation performance comparison of the proposed algorithm with M=10 and different values of L. 

 

Figure 4.10 shows the angle estimation performance of the proposed algorithm with L = 100, 

K = 3 and different values of M. It is seen that the angle estimation performance of the proposed 

algorithm improves with increasing number of sensors. 
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Figure 4.10 Estimation performance comparison of the proposed algorithm with L=100 and different values of 

M. 

4.5 Summary 

In this chapter, we have proposed real-valued space PM and ESPRIT algorithms for 2D-DOA 

estimation using arbitrarily spaced acoustic vector-sensor array. By exploiting the noncircularity 

of the incoming signals to increase the amount of effective data, the proposed algorithms provide 

better 2D-DOA estimation performance with fewer snapshots, which means a relatively lower 

sample rate can be used in practical implementations. Compared with the traditional PM and 

ESPRIT, the proposed algorithms provide better estimation performance while having similar 

computational complexity. Furthermore, the proposed algorithms are suitable for arbitrary arrays 

and yield paired azimuth and elevation estimation angles without requiring the extra 

computationally-expensive pairing operations. 
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Chapter 5  

5 Conclusion and Future Work 

5.1 Conclusion 

This thesis has been concerned with the 2D-DOA estimation problem using acoustic vector-

sensor array for coherent signals and noncircular signals. 

For the coherent signals, two 2D-DOA estimation algorithms have been proposed. In the first 

algorithm, only a single snapshot is employed to estimate the 2D-DOA, while the second, an 

improved 2D-DOA estimation algorithm of coherent signals based on the PM of Palanisamy et al. 

has been proposed. Compared to the PM of Palanisamy et al., the proposed algorithm has a lower 

computational complexity as well as better estimation performance, and is able to acquire 

automatically-paired 2D-DOA estimation. 

As for noncircular signals, we have proposed real-valued space PM and ESPRIT algorithms 

for 2D-DOA estimation using arbitrarily spaced acoustic vector-sensor array. By exploiting the 

noncircularity of the incoming signals to increase the amount of effective data, the proposed 

algorithms provide better 2D-DOA estimation performance with fewer snapshots, which means a 

relatively lower sample rate can be used in practical implementations. Compared with the 

traditional PM and ESPRIT, the proposed algorithms provide a better estimation performance 

while having similar computational complexity. Furthermore, the proposed algorithms are 

suitable for arbitrary arrays and yield paired azimuth and elevation angle estimates without 

requiring the extra computationally-expensive pairing operations. 

5.2 Future Work 

During my two years of study, some efficient algorithms have been proposed to deal with 2D-

DOA estimation problem of coherent and noncircular incident sources using acoustic vector-

sensor array. There are still some issues that require further investigation. 

The two algorithms for coherent signals presented in this thesis use uniform linear array and 

L-shaped array to estimate the 2D-DOAs. However, due to the complexity of the underwater 
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environment, these two special arrays may be difficult to be realized in practical situations. 

Therefore, it is necessary to develop new methods using different types of arrays, especially 

arbitrarily spaced array. 

Regarding noncircular signals, we have proposed the PM and ESPRIT-based real-valued space 

algorithms to estimate 2D-DOAs. Actually, there exist many super-resolution DOA estimation 

techniques such as MUSIC. By exploiting the noncircularity of the incoming signals in these 

super-resolution DOA estimation techniques, we can achieve more accurate estimation 

performance. 

The noise is assumed to be additive i.i.d. Gaussian within this thesis, which, however, is 

almost impossible in practical submarine environment. Hence, it’s meaningful to extend the 

proposed methods to different types of noise models. 
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