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ABSTRACT 

 
The contribution of psychophysical spatial frequency channels to the discrimination 
of broadband contrast 
 
Bruno Richard, PhD 
Concordia University, 2015 
 
The design and function of the human visual system is thought to have been shaped by 

the environment and tasks humans have performed throughout evolution and experience. 

Thus, it is important to establish the association between the properties of natural scenes 

and the responses of the visual system to these features at a behaviourally relevant level 

(e.g., psychophysically). A relevant property of natural scenes - which human observers 

are sensitive to - is the slope of the orientation averaged Fourier amplitude spectrum (α). 

It characterizes the decrease in amplitude as a function of spatial frequency (1/fα), and has 

an average value of 1.0 (on logarithmic axes) in natural scenes. The process of detecting 

a change in α is thought to stem from the activity of one or more spatial frequency 

channels, but their exact contribution remains to be defined. The overarching goal of this 

dissertation was to assess the contribution of spatial frequency channels to the detection, 

and discrimination, of a change in α. We first set out to obtain psychophysical evidence 

that α discrimination thresholds were dependent on the spatial frequency content of noise 

stimuli with 1/f amplitude spectra. Our results showed that while all spatial frequency 

channels contribute to α discrimination, the channel(s) of most influence seem to 

correlate in peak spatial frequency to the dominant perceptual scale of the noise image. 

While the contribution of low spatial frequency channels discrimination of steep αs was 

evident from our data, the influence of higher spatial frequency channels to the 

discrimination of shallower αs was not. In an attempt to better isolate the role of high 

spatial frequency channels, we attempted to modulate their activity with trans-cranial 

Direct Current Stimulation (tDCS) and change α discrimination thresholds. However, 

while this technique is capable of modulating channels to alter contrast detection, we 

found tDCS to be an ill-suited technique to alter the response characteristics of channels 

under suprathreshold conditions (i.e., broadband noise discrimination). As a final effort to 

isolate the contribution of spatial frequency channels to the discrimination of broadband 
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contrast, we used a classification image paradigm to understand how different spatial 

frequencies contribute to the identification of a change in α. Interestingly, this method 

revealed task dependent contributions of spatial frequency channels to the discrimination 

of α. The identification of α is specific to α, in that increments and decrements in contrast 

in specific spatial frequency bands signal for particular αs, while the identification of a 

change in α (i.e., discrimination) was not specific to α. Regardless of the reference α, 

observers used an increment in contrast in low spatial frequency bands and decrement of 

contrast in higher spatial frequency bands to identify the odd stimulus. Taken together, 

these findings demonstrate that the discrimination of α is unspecific to α. Observers to 

rely on differences in contrast between low and high spatial frequency bands to detect a 

change in α, but may not be particularly tuned to certain α values as has previously been 

argued.    
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Chapter 1 

General Introduction
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GENERAL INTRODUCTION 

	
   The environment that humans live in and the tasks they perform daily are thought to have 

shaped the design and function of our visual system through evolution and experience. 

Establishing the relationship between the features of natural scenes (i.e. real-world stimuli as 

opposed to synthetic stimuli), the responses that scene features evoke in humans, and how these 

features are encoded and used to perform daily tasks can advance our knowledge of human 

visual perception.  

The early stages of visual processing (from the retina to the extra-striate cortex) operate 

through a series of distinct filter-like neuronal channels (or pathways) that detect different 

structural properties within an image (e.g., orientation, spatial frequency). Thus, at any moment 

in time, the complex light patterns from the environment that fall on the retina will stimulate 

numerous differently tuned channels, whose outputs will be weighted by the activity of other 

similarly and differently tuned channels. Visual processing, under natural stimulation, is thus the 

result of multiple interactions between channels, which can be excitatory or inhibitory (reviewed 

in Hansen, Haun, & Essock, 2008). However, in most studies on early visual processes, 

researchers have used dimensionally restricted (i.e., narrowband in spatial frequency and 

orientation) stimuli that activate only a subset of channels, whose tuning characteristics are 

matched to the properties of the stimulus (but see Goris, Wichmann, & Henning, 2009). While 

these studies have generated knowledge on the activity of small groups of channels that function 

in isolation, they do not reproduce the function and activity of these channels under naturalistic 

conditions. It has been posited that the function and underlying mechanisms of the early visual 

system are strongly tied to the properties of the environment it has developed in at the 

evolutionary, developmental, and behavioural timescales (Carandini et al., 2005; Field, 1987; 

Geisler, 2008; Hyvärinen, Hoyer, Hurri, & Gutmann, 2005; Hyvärinen, Hurri, & Hoyer, 2009; 

Olshausen & Field, 1996b, 1997, 2005; Olshausen & Lewicki, 2004; Simoncelli, 2003), and is 

therefore optimally suited to process stimuli it regularly encounters (e.g., natural - broadband - 

environments). Thus, the study of the visual system should be guided by an understanding of the 

statistical properties that describe natural scenes.  

One of the most investigated representations of natural scenes is their Fourier amplitude 

spectra, which defines their autocorrelation property (e.g., their second order statistic; Olshausen 

& Field, 2000). All natural scenes have a Fourier amplitude spectra that fall as a function of 
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spatial frequency, at a rate of 1/fα, where f is spatial frequency and α, on average, is 1.08 

(Billock, 2000). It has been demonstrated that changing α in an image can alter psychophysical 

performance, which suggest that this property of natural scenes is relevant to the early processing 

stages of the visual system (Knill, Field, & Kersten, 1990; Párraga, Troscianko, & Tolhurst, 

2000; Párraga et al., 2005; Tolhurst & Tadmor, 2000). However, a clear association between the 

response properties of spatial frequency channels - believed to underlie the detectability of a 

change in α - and psychophysical performance remains to be fully defined. The overarching goal 

of this dissertation was to identify a psychophysical mechanism responsible for encoding α and 

link it to the observed psychophysical performance of human observers on an α discrimination 

task. We aimed to bridge the gap in knowledge between the response properties of 

psychophysical channels in the early visual system to the second-order statistics of natural scenes 

and psychophysical performance.  

Channels in the Early Visual System  

The early stages of vision rely on functionally different neurons that operate like non-

linear filters, in that they extract a narrow range of spatial frequency and orientation content from 

the retinal image (Bergen, Wilson, & Cowan, 1979; Blakemore & Campbell, 1969; Campbell & 

Robson, 1968; Campbell & Kulikowski, 1972; Carandini et al., 2005; De Valois, Albrecht, & 

Thorell, 1982; De Valois, Morgan, & Snodderly, 1974; Enroth-Cugell & Robson, 1966; Graham 

& Nachmias, 1971; Graham, 1989; Henning, Hertz, & Broadbent, 1974; Maffei & Fiorentini, 

1973; Movshon, Thompson, & Tolhurst, 1978; Stromeyer & Julesz, 1972; Stromeyer & Klein, 

1974; Wilson & Bergen, 1979; Wilson, McFarlane, & Phillips, 1983; Wörgötter & Koch, 1991). 

While physiological studies have direct access to the measurement of the responses 

characteristics of these neurons, psychophysical approaches must deal with the responses of the 

system as a whole. Therefore, psychophysical studies can demonstrate the existence of separate 

processing for a particular sub-range of stimulus features, but cannot identify the exact loci of 

this separate processing. Hence, the populations of neurons that show similar tuning to a 

particular stimulus dimension, and may therefore be responsible for the separate processing 

identified, are referred to as channels within the psychophysical literature (Braddick, Campbell, 

& Atkinson, 1978).  

There are three main psychophysical approaches that have been used to define the 

properties of channels in the early visual system: selective adaptation (e.g., Blakemore & 
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Campbell, 1969), simultaneous masking (e.g., Campbell, Kulikowski, & Levinson, 1966), and 

subthreshold summation (e.g., Graham & Nachmias, 1971; Sachs, Nachmias, & Robson, 1971). 

Each method relies on the interactive effects of two stimuli on the detectability of a particular 

stimulus. In regards to the processing of spatial frequency content, these stimuli have typically 

been spatial periodic stimuli (e.g., sinusoidal gratings), with the experimental variables being the 

spatial frequency (in cycles/°) and the contrast of the sinusoid. The detectability of a sinusoidal 

grating varies according to its spatial frequency and contrast and peaks at or near of 4 cycles/° 

(when measured with sinusoidal gratings of a large spatial extent that is well localized in the 

Fourier domain; Peli et al., 1993). The idea of using sinusoids to stimulate channels stems from 

the Fourier series, which allows the description of any signal as the sum of sinusoidal 

components (Campbell & Robson, 1968; Peli, Arend, Young, & Goldstein, 1993; Smith, 2007). 

Indeed, early investigations on the encoding characteristics of the visual system defined them as 

a form of Fourier analysis. Specifically, it became evident that the early visual system 

decomposed the retinal input into an independent and linear subset of spatial frequency 

components (i.e., processed by multiple spatial frequency channels; Blakemore & Campbell, 

1969; Campbell & Robson, 1968), a process similar to that of Fourier analysis.  

The most referred to evidence for multi-channel models of spatial vision is that of the 

selective adaptation study of Blakemore & Campbell (1969). They found that prolonged 

exposure to a grating of a particular spatial frequency elevated contrast detection thresholds for 

that spatial frequency, while thresholds for other spatial frequencies remained unaffected. Tuned 

threshold elevation following adaptation could be obtained for spatial frequencies ranging 

between 3 and 20 cycles/°, and the bandwidth of threshold elevation was about 1.2 octaves full-

width at half-height. According to Blakemore and Campbell (1969), this was an indication that 

the early visual system was composed of multiple, narrowly tuned, linear, and independent, 

spatial frequency channels, which served as a neural substrate for the Fourier analysis of visual 

pattern. Additional evidence for the independent processing of spatial frequency information 

came from a study conducted Campbell and Robson (1968). They demonstrated that the 

detectability of the square-wave grating, a waveform that results from the infinite sum of odd 

harmonic sinusoids, could be predicted by the detectability of one of its sinusoidal components 

(as they should under Fourier theory). Additionally, they found that the detectability of a square-

wave grating was contained by contrast magnitude of its fundamental spatial frequency. That is, 
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the detectability of the square-wave did not change when additional harmonics were added to the 

grating until these harmonics reached their own detection thresholds (i.e., thresholds did not sum 

according to the presence of multiple spatial frequencies).  

The discovery of multiple independent psychophysical channels served as initial evidence 

towards the definition of the early visual system as a Fourier analyzer. However, it was also 

crucial to demonstrate that the bandwidth of spatial frequency channels was sufficiently narrow 

to allow for a Fourier analysis. Initial attempts to define the bandwidth of channels suggested 

they were; estimates of bandwidth from subthreshold summation studies measured bandwidth of 

approximately 0.3 octaves (Braddick et al., 1978; Sachs et al., 1971). However, these were 

discordant with other estimates from channel bandwidth (see above), and subsequent studies 

demonstrated that the narrow bandwidth of channels identified with subthreshold summation was 

actually due to an artefact of the stimulus construction (Stromeyer & Klein, 1975). Indeed, 

follow-up investigations, which used masking paradigms to estimate the bandwidth of spatial 

frequency channels, showed their bandwidth to be significantly larger than those initially 

estimated, and variable across spatial frequency (Wilson et al., 1983; Wilson & Wilkinson, 

1997). The bandwidth of a spatial frequency channel decreases as its preferred spatial frequency 

increases from about 2.5 octaves at low spatial frequencies to 1.25 octaves at high spatial 

frequencies (Wilson et al., 1983). These measurements corroborate those of single unit estimates 

of bandwidth (De Valois et al., 1982; Issa, Trepel, & Stryker, 2000; Tootell, Silverman, et al., 

1988; Yu et al., 2010), and similar decreases in the bandwidth of channels as a function of 

increased spatial frequency was found in the orientation domain (30° at low spatial frequencies 

and 15° at high; Phillips & Wilson, 1984). That said, more recent investigations on the 

bandwidth of channels in both the orientation and spatial frequency domain have shown that 

psychophysical measurements of bandwidth with masking paradigms are subject to interactive 

effects generated by the mask on the responses of channels within the early visual cortex (Cass, 

Stuit, Bex, & Alais, 2009; Hansen & Hess, 2012; Meese & Holmes, 2010). Similar non-linear 

interactions between spatial frequency channels are also known to contribute to the measurement 

of channel bandwidth via selective adaptation (Abbonizio, Langley, & Clifford, 2002; Ross & 

Speed, 1991; Wilson & Humanski, 1993). Thus, channels extract information from the retinal 

image across a range of spatial frequencies and orientations. However, their interactive 

properties and larger bandwidth mean this process cannot be described as a Fourier analysis. 
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Instead, a fair amount of computing might be completed by non-linear interactions observed 

across spatial frequency channels (Wilson & Wilkinson, 1997).  

The definition of a channel involves its independence. But, careful study of their response 

characteristics has demonstrated that channels can interact in a non-linear manner with both 

similarly and differently tuned channels (DeAngelis, Robson, Ohzawa, & Freeman, 1992; 

Henning et al., 1975; Legge & Foley, 1980; Meese & Hess, 2004; Meese & Holmes, 2010; 

Morrone, Burr, & Maffei, 1982; Olzak & Thomas, 1999; Petrov & Mckee, 2006; Polat & Sagi, 

1993, 1994; Stromeyer & Julesz, 1972; Tolhurst & Barfield, 1978; Wilson & Wilkinson, 1997). 

These interactions are typically inhibitory in nature, in that the activity of a channel will inhibit 

that of a similarly or differently tuned channel, and have been well-defined by modern adaptation 

and masking psychophysical studies (Graham & Sutter, 1998; Graham & Sutter, 2000; Meese & 

Holmes, 2007; Meese, 2004; Petrov, Carandini, & McKee, 2005; Petrov & Mckee, 2006; Xing & 

Heeger, 2000). It is the work of Henning and colleagues (1975) that first suggested the existence 

of non-linear interactions between channels differently tuned in spatial frequency. They 

presented a contrast modulated stimulus with a carrier spatial frequency of 9.5 cycles/° contrast 

modulated by a spatial frequency of 1.9 cycles/°. They found that this pattern masked a grating 

with a spatial frequency of 1.9 cycles/°, even though the masking stimulus contained spatial 

frequency content 2 octaves above that of the target grating. That is, a carrier spatial frequency of 

9.5 cycles/° contrast modulated by a spatial frequency of 1.9 cycles/° is equivalent to the sum of 

three gratings with spatial frequencies of 7.6, 9.5, and 11.4 cycles/°. As the distance between the 

masked stimulus and the lowest spatial frequency component of the mask (7.6 cycles/°) exceeds 

the bandwidth of any spatial frequency channel (De Valois et al., 1982; Stromeyer & Julesz, 

1972; Stromeyer & Klein, 1975; Wilson et al., 1983), the resulting effect could only stem from 

differently tuned channel interactions.  

Given this and other evidence, most models of spatial vision today encompass some form 

of non-linearity as a crucial component to convey useful information between different 

processing stages. This may be most easily demonstrated with Filter-Rectify-Filter modelling 

approaches, as they offer a simple definition of the non-linear neural responses to textures. The 

first stage within the model uses a bank of oriented filters who’s output is rectified (either full-

wave or half-wave) prior to being fed to a second bank of oriented filters with lower preferred 

spatial frequencies (Arsenault, Yoonessi, & Baker, 2011; Ellemberg, Allen, & Hess, 2006; 
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Graham, 2011; Johnson, Kingdom, & Baker, 2005; Schofield & Georgeson, 2003; Schofield, 

Rock, Sun, Jiang, & Georgeson, 2010). This model approach has been successfully implemented 

to explain results from a wide range of studies, including texture, luminance and contrast defined 

boundaries (Arsenault et al., 2011; Graham, 2011; Schofield & Georgeson, 2003; Schofield et 

al., 2010) and most recently, implemented to define neural responses to more complex, natural 

scene stimuli (Johnson & Baker, 2004; Johnson et al., 2005; Johnson, Prins, Kingdom, & Baker, 

2007).  

 The original studies that have tried to define the functional properties of psychophysical 

spatial frequency channels relied heavily on the use of simple stimuli (e.g., sine-wave gratings), 

which are defined by a single spatial frequency and orientation (i.e., the stimuli are narrowband). 

While this method of channel analysis allowed for the study of channels in isolation, it offers an 

over-simplified view of channel function in more naturalistic, broadband environments (Dan, 

Atick, & Reid, 1996; David, Vinje, & Gallant, 2004; Hansen & Hess, 2012; Johnson & Baker, 

2004; Kayser, Salazar, & Konig, 2003; Maldonado & Babul, 2007; Olshausen & Field, 1996b; 

Zetzsche & Röhrbein, 2001). Thus, psychophysical effects measured with stimuli that only 

activate a handful of channels cannot be representative of the non-linear interactions that may 

occur with more complex, broadband environments that activate multiple channels 

simultaneously. Additionally, the use of sinusoidal gratings to define channel behaviour offers 

little information as to why these channels behave or interact in the way they do. That is, the 

visual system has continuously been exposed to an environment that is spatially (and orientation) 

broadband and has therefore developed a coding scheme according to the properties of its 

broadband environment. An alternative approach may be to study the response characteristics of 

channels under broadband conditions, as they better represent the environments within which 

channels typically function. Thus, the study of spatial frequency channel function should include 

a study of the environment in which they developed.  

Statistics of natural scenes 

 Individually, natural scenes are difficult to describe as they contain complex interactions 

of texture, color, motion, surface reflectance, and changes in illumination and contrast. However, 

scenes also display regularities that can be defined statistically (i.e., scenes described according 

to the probability distribution of the intensity of pixels within an image). Additionally, the 

statistical representation of natural scenes is known to be of relevance to the processes of the 
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early visual system (Burton & Moorhead, 1987; Geisler, 2008; Hyvärinen et al., 2009; Lee, 

Mumford, & Huang, 2012; Ruderman, 1994; Schwartz & Simoncelli, 2001; Simoncelli & 

Olshausen, 2001; Simoncelli, 2003; van der Schaaf & van Hateren, 1996). The simplest 

statistical property of natural scenes treats each position (or pixel) within an image 

independently. Therefore, a first-order statistic represents the information derived from an 

individual point within a probability density function of illumination (Doi & Lewicki, 2005; 

Hyvärinen et al., 2005, 2009; Yang, 2012). Single pixel statistics are thought to offer little 

information on interactive encoding processes, but have been shown to play an important role in 

the initial processing stages of the input stimulus (Atick & Redlich, 1992; Doi, Inui, Lee, 

Wachtler, & Sejnowski, 2003; D. L. Ruderman, Cronin, & Chiao, 1998). 

The second-order statistics of natural scenes defines the correlation or covariance 

between two pixels across all locations and distances within an image. While these statistics may 

not carry information in regards to the particular structure within an image, they are never the 

less relevant to the encoding processes of the early visual system (Geisler, 2008; Graham & 

Field, 2007; Guyader, Chauvin, Peyrin, Hérault, & Marendaz, 2004; Simoncelli & Olshausen, 

2001). There are different approaches to quantify the second-order statistic of natural images 

(e.g., Principle Component Analysis), but the most commonly used method is that of Fourier 

analysis (Hyvärinen et al., 2009). The fundamental result of a frequency-based representation of 

natural images is that their power spectrum falls off inversely to the square spatial frequency. It 

was television engineers that first discovered that the orientation averaged power (β), in images, 

falls by a rate of 2 as spatial frequency (measured in cycles per picture or cycles per degree) 

increases (Kretzmer, 1952). The power spectrum is the square of the Fourier amplitude spectrum, 

and therefore, in images, the amplitude spectrum falls inversely proportional to spatial frequency 

according to the following power law:  

 Fourier Amplitude = 1 f α   Equation 1.1 

with α, the exponent, which dictates the particular rate of descent (the slope of the amplitude 

spectrum). This means that the distribution of luminance contrast (the square of amplitude) 

across spatial frequency, in all natural images, can be represented according to a single 

parameter: α (Hyvärinen et al., 2009; D. L. Ruderman, 1994; Simoncelli, 2005; Wainwright & 

Simoncelli, 2000). Figure 1.1-B shows the 2D Fourier amplitude spectrum of the image (Figure   
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Figure 1.1 The Fourier representation of an image. B The 2D amplitude spectra of the image. C 

The orientation average amplitude spectrum of the image. Each square marker represents the log 

amplitude for a given log spatial frequency. The grey line is the line of best fit, which on 

logarithmic axes has a slope of 1.15.  
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 1.1-A). It is clear from the 2D Fourier representation that most of the energy within the image is 

concentrated at the lower spatial frequencies and decreases as a function of increasing spatial 

frequency. The rate of descent of energy across spatial frequency is most easily calculated when 

amplitude is averaged over orientation and transformed into a 1D representation of the Fourier 

amplitude spectrum (Figure 1.1-C). On logarithmic axes (both spatial frequency and amplitude) 

the amplitude of the image falls at a rate of about α = 1.15, which is close to the typical α 

observed in the natural environment of 1.08 (Billock, 2000; Burton & Moorhead, 1987; Field, 

1987; Hansen & Essock, 2005; Ruderman, 1994; Tolhurst, Tadmor, & Chao, 1992; van der 

Schaaf & van Hateren, 1996).  

While the orientation-averaged amplitude spectrum slope may not define the distribution 

of energy across both orientation and spatial frequency, which is important to visual processing 

(Hansen, Essock, Zheng, & DeFord, 2003; Hansen & Essock, 2005; Haun & Essock, 2010; Kim, 

Haun, & Essock, 2010), the value of α, in-of-itself, seems to carry some information on the 

general distribution of energy across scene categories. This is the premise of analyses of the 

distribution of αs in natural images, as the visual system is thought to be tuned, and potentially 

exploit, to the orientation-averaged slope of the amplitude spectrum of natural scenes. However, 

for this argument to hold, α must be somewhat representative of natural images. The exact α that 

may best represent the average natural scene has been of much debate, but it is generally agreed 

that it ranges between 0.6 and 1.6, with an average value of 1.08 (Billock, 2000; Field & Brady, 

1997; Hansen & Essock, 2005). This range may be considered wide, but the distribution of αs 

across multiple images has been shown to narrow significantly, and have different modal 

tendencies, when the environment of the image is taken into consideration (Hansen & Essock, 

2005). Specifically, αs for natural-only scenes peak in frequency within a range of [.90 .94], 

natural and man-made scenes peak within a range of [1.05 1.09], and man-made only peak 

within a range of [1.30 1.34].  

The amplitude spectrum defines the distribution of amplitude (or luminance contrast for 

the power spectrum) across spatial frequency. The alignment of these spatial frequencies, and, 

therefore, the structural representation of an image, is carried by the phase spectrum in a spatial 

frequency-based representation of natural images. It is worth mentioning that when pit against 

one another, the phase spectrum is considered to be of more relevance than the amplitude 

spectrum to the definition of natural scenes (Bex & Makous, 2002; Gaspar & Rousselet, 2009;   
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Figure 1.2. The relative contribution of both the amplitude spectrum and the phase spectrum of 

natural scenes to perception. A Two images, one of food, and one of a scientist consuming food 

for inspiration while programming, are separated into their respective amplitude and phase 

spectra. The images are then reconstructed and returned to the spatial domain, but the amplitude 

spectrum of each image is swapped. B The resulting image when the amplitude spectrum of the 

left image in A is reconstructed with the phase spectrum of the right image (RED). It is evident 

that the phase spectrum of the right image in A is the noticeable component of the altered image. 

This figure was inspired by Figure 5.16 in Hyvärinen et al. (2009).  
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Hansen & Hess, 2007; Hansen & Loschky, 2013; Hyvärinen et al., 2009; Wichmann, Braun, & 

Gegenfurtner, 2006). This can easily be demonstrated by swapping the amplitude and phase 

spectra of two images, and creating a new image with the amplitude spectrum of an image, and 

the phase spectrum of another image (see Figure 1.2). The new image resembles the image from 

which the phase structure was taken. This is to be expected as natural scenes all have a 1/fα 

amplitude spectrum (Kretzmer, 1952). However, it is also evident that the new image contains 

discordant information and does not appear normal. Thus, while the 2D amplitude spectrum may 

not carry relevant information to the structure of an image, it is never the less a crucial 

component of the proper representation of images (Oliva & Torralba, 2001; Tadmor & Tolhurst, 

1993; Torralba & Oliva, 2003).  

 The statistical representation of a single image can be defined by the combination of the 

Fourier phase and amplitude spectrum. However, the definition of multiple natural images is 

most easily accomplished with the orientation averaged amplitude spectrum slope as it can easily 

represent the distribution of luminance contrast across spatial frequency in multiple images. 

Additionally, it is likely that the human visual system has developed processes ideally suited to 

encode the type of environments it has encountered regularly (Barlow, 1961; Field, 1987; 

Graham, Chandler, & Field, 2006; Graham & Field, 2007; Simoncelli & Olshausen, 2001). Thus, 

the study of sensitivity to the orientation average amplitude spectrum slope of natural images 

may be indicative of the spatial frequency encoding processes employed by the human visual 

system, and thus, the study of spatial frequency channel behaviour within broadband 

environments (see Hansen and Essock (2005) for a discussion on the average representation of 

oriented content within natural scenes, and its contributions to the study of orientation dependent 

processes in the early visual system). There is indeed evidence that neural processes within the 

early visual system may function optimally under naturalistic stimulation condition, and we 

briefly review the literature below. 

Neural adaptations to natural image statistics  

 There has been an accumulation of evidence towards demonstrating that cells, within the 

retina, the lateral geniculate nucleus (LGN), and striate cortex, respond “optimally” to images 

that contain statistical properties similar to those of natural stimuli (Atick, 1992; Coen-Cagli & 

Schwartz, 2013; Dan et al., 1996; David et al., 2004; Geisler, Najemnik, & Ing, 2009; Lörincz, 

Palotai, & Szirtes, 2012; Maldonado & Babul, 2007; Smyth, Willmore, Baker, Thompson, & 
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Tolhurst, 2003; Tolhurst, Smyth, & Thompson, 2009; Vinje & Gallant, 2000). It is important to 

mention that early studies on the neural representation of natural scenes searched for evidence of 

redundancy reduction, whereby redundant information (e.g., correlated pixels values) would be 

removed from the early neural code (Atick & Redlich, 1992; Atick, 1992; Barlow, 1961; Dan et 

al., 1996; Laughlin, 1987; Simoncelli & Olshausen, 2001). However, it is unclear if redundancy 

reduction is actually a coding scheme employed by the early visual system, as there is evidence 

that maintaining redundant information may be beneficial to the accurate coding of visual input 

(see Barlow, 2001).  

Initial studies that experimentally tested for a potential coding scheme within the visual 

system tailored to the statistical properties of natural scenes relied on the demonstration that 

early visual responses were generated in accordance with an efficient code1 (Atick & Redlich, 

1992; Atick, 1992; Dan et al., 1996). This means that the spatial correlation of natural images 

(i.e., their second-order statistics) should effectively be removed by the early processing stages 

of vision. This work was initially conducted on the retinal ganglion cells (Atick & Redlich, 1992; 

Laughlin, 1987), and subsequently expanded to the LGN (Dan et al., 1996). Similar 

neurophysiological and modeling work has also been conducted to define the orientation and 

spatial frequency tuning of cells within striate cortex by maximizing the independence of 

neurons, which is the fundamental principle of the sparse coding algorithm and Independent 

Component Analysis (ICA; Baddeley et al., 1997; Bell & Sejnowski, 1997; Caywood, Willmore, 

& Tolhurst, 2004; Hancock, Baddeley, & Smith, 1992; Hyvärinen et al., 2005, 2009; Olshausen 

& Field, 1996a, 1996b, 1997; Olshausen & Lewicki, 2004; van Hateren & van der Schaaf, 1998). 

Maximizing a certain property of natural scenes in accordance with de-correlation (PCA) or 

independence (sparseness) has offered valuable insight into the receptive field properties of 

single cells in the early visual system. For example, Baddeley and colleagues (1997) 

demonstrated that the firing rate distributions of cells in cat V1 and in the monkey Inferior 

Temporal cortex (IT) are exponential under naturalistic stimulation, a sign that information may 

be transmitted in an optimal fashion, with a constraint on mean firing rate. However, it was later 

shown that the exponential shape of firing rate distributions was only correct under noise-free 

                                                
1 We only discuss representational efficiency here, with focus on the decorrelation of a correlated 
signal. The other forms of efficiency (metabolic and learning) are reviewed in Graham and Field 
(2007).  
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conditions, and that taking noise into consideration, and not optimality constraints, could account 

for the findings of Baddeley and colleagues (De Polavieja, 2002). Several studies have 

demonstrated that the visual system does show improved performance under naturalistic 

stimulation (for review: Simoncelli, 2003). However, as these studies were intended to measure 

the behaviour of single cells, they cannot clearly demonstrate how performance, at a 

psychophysical level, may be tied to, or affected by, the statistical properties of the natural 

environment.  

Human psychophysical performance and the amplitude spectrum slope of natural scenes 

A direct approach to evaluating how the performance of the visual system may vary 

according to natural versus unnatural conditions is to ask observers to perform a visual task on an 

image while modulating the α of the image. If performance is best when the α of the image is 

natural, then it can be argued that α contributes visual performance. For example, when the α of 

an image is unaltered (natural), performance on a morphing task, where an image is slowly 

morphed into a second different and unrelated image (Benson, 1994), is better than when their α 

is modulated to be steeper (α > natural value) or shallower (α  < natural value; Párraga, 

Troscianko, & Tolhurst, 2000, 2005). These results suggest that the visual system is optimized to 

work within the natural αs of images it is exposed to. However, it is important to note that while 

morphing and manipulating the α of a natural image is an interesting approach to the 

measurement of perceptual performance, this artificial manipulation of α introduces noticeable 

and undesirable artefacts. When α is made steeper than its natural value the image is perceptually 

blurred while a shallower α will sharpen the images. However, naturally steep or naturally 

shallow αs do not appear blurred or sharp. This means that any performance change in this 

morphing sequence might not be indicative of optimal performance under naturalistic conditions, 

but instead reflect the difficulties induced by blurring or sharpening an image.  

There are other psychophysical approaches that have demonstrated the tuning of early 

visual processes to α without the introduction of perceptual artefacts. For example, the α of a 

noise or natural image has been shown to have a large impact on the perception of single image 

components (Webster & Miyahara, 1997). Prolonged exposure to either natural scenes or 1/f 

noise images that varied in α shifts the peak in the contrast sensitivity function towards higher 

spatial frequencies and reduces contrast sensitivity to low spatial frequencies. These effects were 

similar when measured supra-threshold with a matching task (Webster & Miyahara, 1997). 
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Given that images with natural α have a significant amount of luminance contrast at low spatial, 

it is perhaps not surprising that low spatial frequency contrast sensitivity was most impaired. 

Interestingly, the shift in the peak of the CSF induced by adaptation varied according to α. No 

measurable effect on the peak of the CSF could be measured with an adaptor α = 0.0 (white noise 

with equal amounts of contrast at all spatial frequencies), while the peak of the CSF shifted 

towards higher spatial frequencies as α approximated 1.0 and returned to lower spatial 

frequencies as α exceeded 1.0 (following an inverted U-shape function). Thus, contrast 

sensitivity (and contrast matching) at low spatial frequencies is affected most by adaptation to 

broadband images, and the extent of adapted spatial frequencies will vary according to the 

particular α value of the image. Similar findings have also been reporting with masking 

paradigms, which have shown that the elevation of thresholds will vary according to the α of the 

mask (i.e., noise patterns modulated to have different αs). Broadband noise masks with an α = 

1.0 generate significantly stronger masking effects – elevate thresholds most – on the detection 

of a Gabor pattern than broadband noise masks with shallower (α = 0.5) or steeper (α = 1.5) αs 

(Hansen & Hess, 2012). The variable masking strength of α extends to more complex target 

images, including natural scenes in a rapid scene categorization task (Hansen & Loschky, 2013; 

Loschky, Hansen, Sethi, & Pydimarri, 2010). Masks with αs similar to those of the target natural 

scene have larger masking effects than masks with dissimilar α, provided the α value of the 

target image is near 1.0 (Cass, Alais, Spehar, & Bex, 2009; Hansen & Loschky, 2013; Loschky 

et al., 2010).  

 Both adaptation and masking studies have clearly demonstrated that interactive visual 

processes are dependent upon the statistics of the image presented to observers (e.g., α). 

However, while these show the α of an image can influence visual processing, they do not 

necessarily define sensitivity to α. Questions in regards to the sensitivity of human observers to α 

have typically been answered by measuring the ability of human observers to detect, or 

discriminate, a change in α (Hansen & Hess, 2006; Johnson, Richard, Hansen, & Ellemberg, 

2011; Knill, Field, & Kersten, 1990; Párraga & Tolhurst, 2000; Tadmor & Tolhurst, 1994; 

Thomson & Foster, 1997; Tolhurst & Tadmor, 1997). Knill and colleagues (1990) were the first 

to measure the ability of observers to discriminate a change in α between two noise images 

(referred to as 1/f noise for the remainder of the dissertation). They found α discrimination 

thresholds were lowest when the reference αs ranged between 1.4 and 1.8, which they argued 
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was the range human observers are tuned to. This may seem odd, given that these α values are 

well above the range measured in natural environments (αs = [0.8 1.0]; Billock, 2000). However, 

Tadmor and Tolhurst (1994) proposed that the findings of Knill and colleagues (1990) might be 

attributed to their use of noise images, as noise images are not truly representative of the content 

of natural scenes (they lack all structure). In order to verify hypothesis, Tadmor and Tolhurst 

(1994) measured α discrimination thresholds to natural images with a range of αs between [0.78 

1.38] and noise images with comparable α values. They presented their images in a 3AFC task, 

whereby two images were set to a particular reference α (out of a possible 7) and the third with a 

slightly different α. Observers were asked to indicate which, within the set of three images, 

contained the odd α. For both natural and noise images, lowest α discrimination thresholds were 

found for steep αs, while observers’ thresholds were highest for α values near 1.0 (the “typical” 

value of natural scenes; Billock, 2000). They argued that this was evidence for tuning of the 

visual system to an α of 1.0 and proposed that the high thresholds they measured were an 

indication of tolerance towards changes within the common range of α values. A high tolerance 

to changes in common αs, which could be due to an eye movement, blink or a shift in gaze, 

would have little impact on perceptual stability, and thus benefit the processing of natural scenes. 

One issue with the Tadmor and Tolhurst (1994) study was that they modulated the α of natural 

images in their discrimination paradigm, which as previously described, generates noticeable 

artefacts in the images that are absent when viewed with their original α. This brings to question 

how α discrimination thresholds may change according to the reference α when observers must 

discriminate against the true α of an image. While not the main goal of their study (they were 

mostly interested in measuring the impact of phase coherence on α discrimination), Thomson 

and Foster (1997) found, in a temporal 2AFC task, that α discrimination thresholds were highest 

when the natural image’s α was near its natural α value (for all three reference αs used in the 

study - 0.7, 1.0, and 1.3). They argued against any tuning or tolerance of early visual processes to 

particular, or typical, αs.  

 A potential account for the discrepancies between studies on human sensitivity to α was 

brought forth by Hansen and Hess (2006). They proposed that methodological differences 

between previous studies, which include the size of the image patch presented, the use of 1/f 

noise versus natural images, and the retinal location of the stimulus presentation (fovea versus 

parafovea) might all be contributing factors to differences found in α discrimination thresholds. 
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They used a temporal version of the Odd-Man-Out procedure designed by Tadmor and Tolhurst 

(1994) to measure α discrimination thresholds with 1/f noise images and natural scenes (1° of 

visual angle is size) presented at fovea and parafoveal (the issue of stimulus size was not 

investigated in their study). They found that, regardless of retinal location tested, α 

discrimination thresholds were lowest for reference α values greater than 0.95 with natural 

images, and αs between 1.2 - 1.4 for 1/f noise. These results corroborated those of Knill and 

colleagues (1990). They also found a peak in thresholds at α = 0.8, which was most evident with 

measured with 1/f noise images and presented at parafovea, similar to the results of Tadmor and 

Tolhurst (1994). The findings of Hansen and Hess (2006) clarified certain discrepancies in 

previous studies on α discrimination, particularly in regards to visual resolution differences 

between the fovea and parafovea and α discrimination. In addition, they offer further evidence 

towards human sensitivity that is greatest for αs slightly steeper than those commonly observed 

in the natural environment, and high resilience for αs less than the typical observed value of 1.0.  

 Subsequent work on α discrimination has focused on refining our understanding of 

human observer sensitivity to α. It is known today that sensitivity to α is dependent on the 

observer’s environmental experiences, and will only reach typical α discrimination threshold 

values around 10 years of age (Ellemberg, Hansen, & Johnson, 2012). Others have shown that α 

discrimination thresholds are subject to contextual interactions (Johnson et al., 2011). That is 

while most studies on human sensitivity to α have been conducted with small, localized stimuli 

that vary only in their α, image patches within a natural environments are never seen in isolation. 

This led Johnson and colleagues (2011) to ask if the tuning α may be altered by contextual cues. 

They used an Odd-Man-Out psychophysical paradigm identical to that of Hansen and Hess 

(2006) to estimate α discrimination thresholds for isolated broadband 1/f noise patches and noise 

patches with a surrounding 1/f noise annulus. The experimental manipulations included the 

reference α of the centre stimulus (0.4, 0.7, 1.0, 1.3, and 1.6), the α of the surround (0.7, 1.0, 

1.3), and the distance between the centre and surround stimuli (0, 20, 40, and 60 arcmin). Oddly 

enough, average α discrimination thresholds for the centre stimulus alone condition were high 

and nearly identical for all reference α. Low α discrimination thresholds to steeper αs (1.2 – 1.4) 

were only found when the centre stimulus was circumscribed by a surround annulus. 

Additionally, the presence of a surround annulus had a facilitative effect on α discrimination 

thresholds, and this effect was not tuned to the α of the surround. However, α specific effects 
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were found on the persistence of the facilitation effect from the surround according to its 

distance from the centre. When the surround had a shallow α, the facilitative effects of the 

surround diminished as the distance increased, but for relatively steep surround αs (1.0 and 1.3) 

changes in the distance between the centre and the surround stimuli had little impact on 

facilitation. These findings indicate that, at least for steeper αs, discrimination may operate 

globally.  

Spatial Vision Coding Mechanisms of Natural Images  

 In the preceding section, the questions of interest focused on if there is a particular range 

of α that human observers may perform best under and if this correlates with the tuning of the 

visual system to α. While there are caveats in the literature, it seems as though the human visual 

system is psychophysically tuned to natural images with α values near 1.0, and performs best 

when the α of an image has a value of 1.0. Given the association of tuning to α and performance, 

the next logical step was to ask how the processes of the early visual system might respond to 

images with 1/f amplitude spectra in order to determine the particular encoding mechanism. 

Early attempts to define, psychophysically, how observers discriminate between images that vary 

solely in α approached α discrimination as one of contrast discrimination (Tadmor & Tolhurst, 

1994; Tolhurst & Tadmor, 1997). Thus, the detection of a change in α (i.e., α discrimination) was 

defined by the detectability of a change in contrast within a single spatial frequency band (or 

psychophysical channel).2 Under narrowband conditions (e.g., sine-wave gratings), models of 

contrast discrimination are known to replicate human observer performance well (Baker, 2013; 

Foley & Legge, 1981; Goris, Wichmann, & Henning, 2009; Klein & Levi, 2009; Meese & 

Baker, 2011; Meese & Summers, 2007; Watson & Solomon, 1997; Wilson & Humanski, 1993; 

Wilson & Regan, 1984). Interestingly, even though contrast in broadband images is significantly 

more complex to describe (Adini et al., 2004; Brady & Field, 1995; Peli, 1990; Perna & 

Morrone, 2007), the α discrimination model proposed by Tadmor and Tolhurst (1994) explained 

α discrimination thresholds for reference α = 0.8 (and later on for α of 0.4, 0.8, 1.4 and 1.8; 

Tolhurst & Tadmor, 1997). They demonstrated that the magnitude of the change required to 

discriminate two noise images with different αs agreed with the amount of contrast change 

required to discriminate between simpler sinusoidal gratings at the appropriate spatial frequency 
                                                
2 We note that the term single-channel here, and for the remainder of the dissertation, is not used to signify a single-
channel model of spatial vision. Instead, it refers to the detectability, or discriminability of a stimulus to be 
predominantly dictated by the activity of a single channel within an array of channels. 
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(Tolhurst & Tadmor, 1997). That is, the spatial frequency bands that contributed most to the 

discrimination of α varied according to the reference α. However, it has since been demonstrated 

that for broadband images, a non-squared contrast metric (e.g., Michelson Contrast, or band-

limited contrast) is not an appropriate definition of contrast (Bex & Makous, 2002), nor the 

perceived contrast of natural images (Brady & Field, 1995; Field & Brady, 1997; Haun & Peli, 

2013; McDonald & Tadmor, 2006). Furthermore, it is well established that the activity of a 

single spatial frequency channel is insufficient to define responses to stimuli that contain a 

significant amount of luminance contrast across multiple spatial frequencies (Bex, Solomon, & 

Dakin, 2009; DeAngelis et al., 1992; Elliott, Georgeson, & Webster, 2011; Hansen, Essock, 

Zheng, & DeFord, 2003; Hansen & Essock, 2005; Hansen, Haun, et al., 2008; Haun & Essock, 

2010; Henning et al., 1975; Legge & Foley, 1980; Meese & Hess, 2004; Meese & Holmes, 2007, 

2010; Morrone et al., 1982; Olman, Ugurbil, Schrater, & Kersten, 2004; Olzak & Thomas, 1999; 

Párraga & Tolhurst, 2000; Párraga et al., 2005; Polat & Sagi, 1993; Stromeyer & Klein, 1975; 

Stromeyer & Klein, 1974; Tajima & Okada, 2010; Webster & Miyahara, 1997; Wilson & 

Wilkinson, 1997). While Tolhurst and Tadmor (1997) agreed that the performance of observers 

on a slope discrimination task should not be defined solely by the activity of a single channel, 

they offered no alternative as to how the activity of multiple channels may pool, nor did they 

discuss how the activity of channels with other peak spatial frequencies may influence (e.g., 

normalized via contrast gain control; Foley, 1994; Heeger, 1992) the activity of the dominant 

channel they identified (i.e., the spatial frequency band accounting for most of the 

discriminability of the amplitude spectra). Multi-channel models (e.g., Rohaly, Ahumada, Jr., & 

Watson, 1997), which account for the interactive activity of multiple psychophysical spatial 

frequency channel (e.g., normalization), may offer a more plausible description of α 

discrimination.  

 One of the first attempts to define the perception of complex contrast patterns (e.g., 

broadband stimuli with 1//f spectra) according to the responses of multiple spatial frequency 

channels was developed by Field (1987). Field developed a model that measured the response 

characteristics of Gabor patterns (sinusoidal gratings windowed by a Gaussian envelope), with 

different orientation and spatial frequency selectivity, to six natural images. The tuning 

bandwidth (both spatial frequency and orientation) of the Gabor was varied according to various 

coding schemes in order to assess which may best represent the natural images. The optimal 
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spatial frequency bandwidth, defined as that which generated the largest signal to noise ratios, 

fell between 0.5 and 1.5 octaves, and subsequent modelling approaches that developed from the 

findings of Field (1987) have used constant, one-octave bandwidth filters to process the spatial 

frequency content of natural images (Brady & Field, 1995; Field & Brady, 1997). However, we 

note there is little evidence that spatial frequency channel bandwidth is constant in octaves over 

spatial frequency (De Valois, Albrecht, & Thorell, 1982; Foster, Gaska, Nagler, & Pollen, 1985; 

Wilson, McFarlane, & Phillips, 1983; Yu et al., 2010). While this modelling approach may not 

be biophysically valid, it nevertheless demonstrated that contrast in natural images could be well 

defined, and optimally transferred via a pool of spatial frequency channels with narrow tuning 

bandwidth. This model was further developed to define the perceived contrast of natural scenes 

according to the linearity and overall magnitude of filter responses to images with varying α 

(Brady & Field, 1995), and the magnitude of broadband masking effects on the perception of 

both narrowband and broadband stimuli (Hansen & Hess, 2012; Hansen & Loschky, 2013).  

There have been other attempts to define the response characteristics of psychophysical 

spatial frequency channels under naturalistic conditions that have stemmed from the foundational 

work of Field (1987). The psychophysical results of the morphing task of Párraga et al. (2000) 

and Párraga et al. (2005) were well described by a multi-channel model of complex contrast 

detection. Párraga et al. (2005) used a spatial frequency channel model to estimate the visibility 

of differences between the test and reference images. This model measured the responses of 

several filters with one-octave spatial frequency bandwidth to contrast, similar to that of Field 

(1987), Brady and Field (1995), and Field and Brady (1997), but additionally pooled across 

spatial frequency in order to generate a response criterion for the comparison between the test 

and reference images. Their mulit-channel discrimination model performed better than a single-

channel variant and an ideal-observer analysis. Additionally, their model explained differences in 

their morphing discrimination thresholds between observers, eccentricity, and picture sets. While 

the model generated by Párraga et al. (2005) did not explicitely try to predict α discrimination 

thresholds, it suggests that the discriminability of complex contrast patterns may be defined by 

the pooling of responses from multiple narrowly tuned spatial frequency channels. That said, 

they offered little towards the characteristics of spatial frequency pooling rules, which remain to 

be defined today (Haun & Essock, 2010; Haun & Peli, 2013; Rohaly et al., 1997).  
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Biologically plausible modelling approaches to the discrimination of α, inspired by the 

work of Field (1987), Brady and Field (1995), Field and Brady (1997), and Párraga et al. (2005), 

have demonstrated that the population activity of spatial frequency tuned neurons in striate 

cortex is related to the discriminability of images that vary solely in α (Tajima et al., 2010). 

Tajima and Okada (2010) developed a hypercolumn of neurons with varied spatial frequency 

tuning and used the pattern of activity within the hypercolumn to define the discriminability 1/f 

noise images. Their model performed well, and fit the α discrimination thresholds to both the 

foveal and parafoveal data of Hansen and Hess (2006) by only changing the spatial frequency 

tuning characteristics of cells; neurons with receptive fields located in fovea were modelled with 

a broader distribution of preferred spatial frequency, which extended to higher spatial 

frequencies those of the parafoveal neurons. Additionally, they found that implementing a 

normalization scheme, whereby the activity of individual cells within the hypercolumn were 

normalized by the total activity of cells within the hypercolumn generated, provided a better fit 

to the α discrimination thresholds of Hansen and Hess (2006) then when no normalization 

scheme was used. Their model extended the pre-existing filter models of α discrimination, and 

showed that a neurophysiologically plausible population response of cells tuned in spatial 

frequency, with normalization (Carandini, Heeger, & Movshon, 1997; Carandini & Heeger, 

1994; Heeger, 1992; Nestares & Heeger, 1997), was well suited to define the discriminability of 

1/f noise images. That said, their model contained a large number of free parameters (50), and 

while a necessity for biologically relevant models, their findings should be considered with this 

caveat in mind.  

 Most modelling approaches of α discrimination have defined discriminability according 

to the spatial frequency content of the stimulus and the corresponding responses of filters (or 

cells) tuned in spatial frequency to said content. However, direct psychophysical evidence for a 

spatial frequency dependent mechanism in the discrimination of α remains sparse. It is unclear if 

human observers asked to discriminate between images that vary in α utilize the spatial 

frequency content of the 1/f noise image in manner similar to that defined by these models. There 

is evidence that a spatial frequency dependent code, which adapts according to the reference α, is 

used by observers (Tolhurst & Tadmor, 1997). This study expanded on the band-limited contrast 

discrimination model developed by Tadmor and Tolhurst (1994) to the discrimination of αs (0.4, 

0.8, 1.4 and 1.8) in addition to demonstrating the behavioural relevance of particular spatial 
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frequency bands to α discrimination. They found that observers relied on contrast within spatial 

frequency bands ranging between 2 and 10 cycles/° for reference α = 0.4, 1 and 4 cycles/° for 

reference α = 0.8, and 5-20 cycles/° for reference αs of 1.4 and 1.8. They then measured α 

discrimination thresholds when the α of the image was changed either within or outside the 

relevant spatial frequency band. When the change occurred inside the band, thresholds were 

unaltered as if the change had occurred across the entire spectrum. Thresholds were elevated 

when the change in α occurred outside the band, which indicated that observers changed the 

relevant spatial frequency band they normally used in order to complete the α discrimination 

task, and thus could not perform as well as they would when using the relevant band. While it is 

plausible human observers may rely more heavily on particular spatial frequency bands to detect 

a change in the α of an image, the modelling approach used by Tolhurst and Tadmor (1997) to 

define the relevant band suffered from similar caveats to those of single-channel models defined 

above (e.g., non-squared metric). Additionally, the bandwidth of the bands used in the 

psychophysical component of their study was unusually large, spanning over 2 octaves of spatial 

frequency content. While a bandwidth of two octaves may be representative of the bandwidth of 

channels at very low spatial frequencies, a band of 2 octaves will include multiple spatial 

frequency channels at higher spatial frequencies. It is therefore unclear which particular spatial 

frequency band, or if more than a single band, contributed to the change in α discrimination 

thresholds measured by Tolhurst and Tadmor (1997).  

Overview of Experimental Chapters 

As described in the above discussion, the perception of contrast in natural scenes is 

accomplished by a series of channels narrowly tuned for spatial frequency and orientation. How 

these channels may contribute to the discrimination of complex contrast patterns (e.g., the α of a 

noise or natural images) remains to be properly defined. Thus, the overarching goal of this 

dissertation was to assess the contribution of spatial frequency channels to the discrimination of 

α. We divided the goal of this dissertation into three sub-goals, which are defined below.  

Chapter 2 served as a psychophysical demonstration that α discrimination thresholds are 

subject to the representation of spatial frequency content within an image. Specifically, we 

verified if α discrimination thresholds could be affected either by the representation of low 

spatial frequency luminance contrast, or low spatial frequency channel interactions, as is 

suggested by both psychophysical (Webster & Miyahara, 1997) and neurophysiological (Hansen, 
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Ellemberg, & Johnson, 2012; Hansen, Jacques, Johnson, & Ellemberg, 2011) evidence. We first 

measured how α discrimination thresholds may be affected by the representation of low spatial 

frequency luminance contrast with a simple manipulation of the size of 1/f noise images. An 

increase in stimulus size leads to an increased representation of low spatial frequency luminance 

contrast, and thus should lower thresholds if used by observers in an α discrimination task. Slope 

discrimination thresholds were measured with a 3-IFC “Odd-Man-Out” psychophysical 

procedure where observers were asked to identify, which of the first or third interval contained 

the stimulus with the odd α (the reference α was always presented in the second interval). This 

psychophysical method was used to estimate α discrimination thresholds for all experiments 

reported in this dissertation unless specified otherwise. In the second experiment of Chapter 1, 

we aimed to account for other factors that may lead to a decrease in thresholds when stimulus 

size in increased (e.g., summation of higher spatial frequency contrast) by measuring the 

contribution of low spatial frequency channels to α discrimination via a center-surround 

paradigm. This study replicated the original centre-surround experiment conducted by (Johnson 

et al., 2011), but increased the size of the gaps between the centre stimulus and the surround 

annulus to better target the influence of low spatial frequency channel interactions on α 

discrimination thresholds.   

 Chapter 3A and 3B implemented a relatively novel neuro-stimulation technique, trans-

cranial Direct Current Stimulation (tDCS) as a tool to assess the contribution of spatial frequency 

channels to α discrimination more directly. The effects of tDCS on the activity of cells within the 

primary visual cortex are polarity specific. Anodal tDCS (current enters cortex) has been shown 

to have an overall excitatory effect on the activity of cells and facilitates performance, while 

cathodal tDCS (current exits cortex) has an inhibitory effect of cell activity, which inhibits 

performance (see Jacobson et al., 2012 for a meta-analytical review). While small in magnitude, 

the influence of tDCS suffices to elicit measurable changes in the behaviour of observers. Thus, 

the polarity specific effects of tDCS render it a useful tool to modulate the perceptual state of 

human observers. However, it is important to note that these effects are only robust when tDCS 

is applied over motor cortex (where it has been most widely studied; Nitsche & Paulus, 2000; 

Nitsche et al., 2007, 2008; Pellicciari, Brignani, & Miniussi, 2013), and have been shown to vary 

in primary visual cortex (Antal, Nitsche, & Paulus, 2001, 2006a; Antal & Paulus, 2008; Chaieb, 

Antal, & Paulus, 2008; Hansen et al., 2015; Peters, Thompson, Merabet, Wu, & Shams, 2013; 
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Richard, Johnson, Thompson, & Hansen, under review; Spiegel, Byblow, Hess, & Thompson, 

2013). Thus, we first verified if tDCS could generate spatial frequency specific effects on the 

simpler task of contrast perception to serve as an indication of the susceptibility of spatial 

frequency channel to the modulatory effects of tDCS (Chapter 3A; Richard et al., 2015). In 

Chapter 3B, after verifying the effects on tDCS on simpler, sinusoidal gratings, we implemented 

it in the α discrimination task of Chapter 2 (with a stimulus size of 1° of visual angle presented 

at fovea; see Kraft et al., 2010 for a discussion on the eccentricity dependent effects of tDCS). 

 As a final verification to the contribution of spatial frequency channels to α 

discrimination, we used a classification image paradigm in Chapter 4 to measure the relative 

weights associated with particular spatial frequency bands observers have when asked to 

discriminate noise images that vary in α. The contrast of 8 discreet spatial frequency bands in 

noise images was randomly modulated by ± 8dB as observers completed an α identification task, 

a spatial variant of the α discrimination task, and the temporal α discrimination task identical to 

that of Chapters 2 and 3B. To measure the classification image of our observers, their 

performance on the identification and discrimination tasks was correlated, over multiple trials, to 

the particular luminance contrast within each spatial frequency band for that trial. This technique 

offered a glimpse into the relative contribution of the spatial frequency channels to the 

discrimination of α.   
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Chapter 2 

SIZE MATTERS: AMPLITUDE SPECTRUM SLOPE DISCRIMINATION THRESHOLDS 

ARE INFLUENCED MOST BY LOW SPATIAL FREQUENCY LUMINANCE CONTRAST 

WHEN THE SLOPE IS EQUAL TO OR GREATER THAN THE NATURAL SCENE 

AVERAGE AMPLITUDE SPECTRUM SLOPE. 

 

Bruno Richard, Bruce C. Hansen, & Aaron P. Johnson
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Abstract 

Sensitivity to the slope (α) of the amplitude spectrum of natural images has been used to argue 

that human observers are tuned to process broadband information with properties similar to those 

of natural scenes. Human observers show higher sensitivity (measured via α discrimination) to α 

values near 1.0 and decreased sensitivity to shallower or steeper αs. However, little is known as 

to how human observers may detect, and subsequently discriminate, a change in α. There is 

evidence that the detection of a change in α is completed according to the responses of spatial 

frequency channels in the early visual system. The goal of this chapter was to test for 

psychophysical evidence that α discrimination thresholds are contingent upon the representation 

of spatial frequency content. The initial approach increased the low spatial frequency content of 

noise images, generated according to five different reference αs, by increasing their size and 

monitoring any subsequent change in α discrimination thresholds. We observed that increases in 

stimulus size had a facilitative effect on α discrimination, and was largest for reference α = 1.0, 

while facilitation decreased as the reference α deviated from 1.0. The facilitation effect we found 

is similar to that of the perceived contrast of noise images with varying αs, and thus a mechanism 

that is similar to that of perceived contrast may be involved in the discrimination of α. However, 

the facilitation effect observed according to increases in stimulus size might have also stemmed 

from other psychophysical mechanisms (e.g., summation). To account for these other factors, 

and isolate the contribution of low spatial frequency luminance contrast to α discrimination 

thresholds, we replicated the center-surround paradigm of Johnson et al (2011), but increased the 

gap size between the center stimulus and the surround. The surround facilitated α discrimination 

thresholds for all gap sizes. This suggests that, while interactions between a range of spatial 

frequency channels is required to discriminated α, low spatial frequency tuned spatial frequency 

channels may contribute more heavily, particularly in regards to the facilitative effect of the 

surround.  
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One of the most explored statistical properties of natural scenes is the slope of the 

orientation-averaged amplitude spectrum (for review: Geisler, 2008). The slope of the amplitude 

spectrum (α) represents the rate of descent of luminance contrast as a function of spatial 

frequency, and on average falls by a factor of 1.0 (1/f) on logarithmic axes (α ranges between 0.6 

– 1.6 in natural scenes; Billock, 2000; Burton & Moorhead, 1987; Hansen & Essock, 2005; Oliva 

& Torralba, 2001; Tolhurst, Tadmor, & Chao, 1992; van der Schaaf & van Hateren, 1996). As 

humans are most likely to encounter natural environments with amplitude spectrum slopes values 

near 1.0, it has been argued by multiple studies that the human visual system should be tuned to 

best process broadband3 visual information with 1/f amplitude spectra (Field, 1987; Geisler, 

2008; Knill, Field, & Kersten, 1990; Párraga, Troscianko, & Tolhurst, 2000; Tadmor & Tolhurst, 

1994). One of the most utilized techniques to verify if human observers are ideally suited to 

process images with naturalistic (α = 1.0) amplitude spectra has been to measure their ability to 

discriminate between images (noise or natural) that vary in their α (Ellemberg, Hansen, & 

Johnson, 2012; Hansen & Hess, 2006; Johnson, Richard, Hansen, & Ellemberg, 2011; Knill et 

al., 1990; Párraga & Tolhurst, 2000; Tadmor & Tolhurst, 1994). While the psychophysical 

techniques used to measure the tuning characteristics of α discrimination thresholds have varied4, 

there is a general concensus that human observers show lower thresholds (i.e., highest 

sensitivity) when α is between 1.2 – 1.4, and elevated threshods when α is less than 1.0 or greater 

than 1.4. These data further support the notion that the human visual system is best suited to 

process natural images with 1/f amplitude spectra with exponents near the average α of natural 

scenes. Yet, they offer little information regarding the characteristics of the encoding mechanism 

responsible for the discrimination of images that vary in α. 

 The early stages of vision rely on a series of functionally different neurons tuned to a 

narrow range of orientation and spatial frequency - that behave like non-linear filters (Bergen, 

Wilson, & Cowan, 1979; Blakemore & Campbell, 1969; Campbell & Robson, 1968; Carandini 

et al., 2005; De Valois, Albrecht, & Thorell, 1982; De Valois, Morgan, & Snodderly, 1974; 

                                                
3 The term broadband here is used to define a stimulus that contains a significant amount of luminance contrast 
across multiple spatial frequencies and orientations. 
4 Part of the differences in the measured α discrimination thresholds can be attributed to the psychophysical methods 
employed by experimenters. For example, Hansen and Hess (2006) demonstrated that peak in α discrimination 
thresholds found for reference α values of 0.8 is only prominent when stimuli are presented in the parafovea 
(Tolhurst and Tadmor, 1994) and not at fovea (Knill et al., 1990). Other differences can also be explained by the use 
of natural images as opposed to fractal noise patterns (1/fα noise images) to measure α discrimination thresholds.	
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Enroth-Cugell & Robson, 1966; Graham & Nachmias, 1971; Graham, 1989; Henning, Hertz, & 

Broadbent, 1974; Maffei & Fiorentini, 1973; Stromeyer & Julesz, 1972; Wilson & Bergen, 1979; 

Wilson, McFarlane, & Phillips, 1983). Within the psychophysical literature, groups of neurons 

with similar spatial frequency and/or orientation selectivity are collectively referred to as 

channels. These channels were once thought to operate independently (Blakemore & Campbell, 

1969; Campbell & Robson, 1968), but are now known to interact with similarly and differently 

tuned channels (DeAngelis, Robson, Ohzawa, & Freeman, 1992; Henning et al., 1974; Legge & 

Foley, 1980; Meese & Hess, 2004; Meese & Holmes, 2010; Morrone, Burr, & Maffei, 1982; 

Olzak & Thomas, 1999; Petrov & Mckee, 2006; Polat & Sagi, 1993; Stromeyer & Julesz, 1972; 

Wilson & Wilkinson, 1997). The interactive behaviour of channels is of particular relevance to 

the description of the encoding of a stimulus broadband in spatial frequency and orientation 

content (i.e., natural scenes; Hansen, Essock, Zheng, & DeFord, 2003; Hansen, Haun, & Essock, 

2008; Haun & Essock, 2010). However, initial attempts to define the contribution of spatial 

frequency channels exposed to stimuli with naturalistic α relied more heavily on the description 

of single channel behaviour (i.e., grating contrast discrimination), than on their potential 

interactive properties (Tadmor & Tolhurst, 1994; Tolhurst & Tadmor, 1997). Specifically, these 

early attempts to define α discrimination according to the responses of channels in early vision 

attributed the ability to detect a change in α to the activity of a single spatial frequency channel, 

and thus defined α discrimination as a band-limited contrast operation (Peli, 1990). However, 

this band-limited contrast approach to the definition of contrast in natural images has since been 

shown to be a poor predictor of detectability of contrast (Bex & Makous, 2002), and could only 

somewhat predict the measured α discrimination thresholds (Tadmor & Tolhurst, 1994; Tolhurst 

& Tadmor, 1997). Furthermore, it is difficult to justify that the behaviour of a single spatial 

frequency channel is sufficient to describe the detection and the discriminability of broadband 

images (Bex et al., 2009; DeAngelis et al., 1992; Elliott, Georgeson, & Webster, 2011; Hansen et 

al., 2003, 2008; Haun & Essock, 2010; Párraga et al., 2005; Párraga & Tolhurst, 2000; Wilson & 

Wilkinson, 1997). Instead, interactive multi-channel approaches to the definition of channel 

behaviour under naturalistic stimulation seem a more likely approach to describe natural scene 

perception (Brady & Field, 1995; Field & Brady, 1997; Párraga & Tolhurst, 2000; Párraga et al., 

2005; Tolhurst & Tadmor, 1997).  



 

 

29 

 There is psychophysical evidence that human observers may use contrast within multiple 

spatial frequency bands in order to discriminate between images that vary in α. By increasing or 

decreasing the contrast of the entire spatial frequency spectrum of natural images, Párraga and 

Tolhurst (2000) were able to modulate the contrast of an image while leaving its original α 

unaltered. They postulated that if observers relied on single spatial frequency band to 

discriminate α, then discrimination thresholds should be affected by the contrast manipulation 

they implemented in a manner similar to the band-limited contrast modulations of Tadmor and 

Tolhurst (1994) and Tolhurst and Tadmor (1997). Similarly, they argued that α discrimination 

thresholds would not be altered if observers compared contrast between two of more spatial 

frequency bands, as the relative difference in contrast between two or more bands remains the 

same. They found that α discrimination thresholds were unaffected by their contrast modulation 

when the reference α had a value of 1.0 or 1.4, which indicates that observers rely on the relative 

difference in contrast across multiple spatial frequency bands when discriminating αs. When α 

was very shallow (α = 0.4), discrimination thresholds were affected by their manipulation, which 

suggest discrimination of very shallow αs (beyong the natural range) may operate according to a 

different process (e.g., within a single spatial frequency band).  

 Although Párraga and Tolhurst (2000) demonstrated that a multi-channel approach to α 

discrimination was a more likely mechanism than earlier single-channel models, they did not 

postulate on the underlying interactions between multiple channels that may be involved in α 

discrimination. That is, subsequent multi-channel approaches to broadband stimulus perception 

have shown that the introduction of a bias in the weights given to the responses of different 

spatial frequency channels tends to better predict human performance than when all channels are 

weighted equally (typically defined as low-pass contrast gain control processes; Bex, Mareschal, 

& Dakin, 2007; Bex et al., 2009; Cass, Alais, Spehar, & Bex, 2009; Haun & Essock, 2010; Haun 

& Peli, 2013; Schwartz & Simoncelli, 2001; Tajima & Okada, 2010). For example, human 

observers adapted to 1/f noise patterns (with different αs) showed reduced contrast sensitivity to 

lower and mid-range spatial frequencies, while contrast sensitivity to higher spatial frequencies 

remained unaltered (Webster & Miyahara, 1997). As adaptation effects are believed to stem from 

readjustments in contrast gain control (Wilson & Humanski, 1993) this suggests that the reduced 

contrast sensitivity to low spatial frequencies can be attributed to the disproportionately large 

responses of low spatial frequency channels to 1/f noise images (Webster & Miyahara, 1997). 
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There are additional neurophysiological studies that point to a low spatial frequency bias in the 

processing of broadband stimuli (Hansen et al., 2012, 2011).  

Spatial frequency channels tuned to lower spatial frequencies generate disproportionally 

large responses to noise images with 1/f amplitude spectra, and thus, may serve as the dominant 

coding signal for α (Hansen et al., 2012, 2011; Webster & Miyahara, 1997). Interestingly, the 

influence of lower spatial frequency channels may be dependent on the value of α. That is, while 

contrast sensitivity to low spatial frequency was always decreased following adaptation to a 

noise image, regardless of its α value, the extent of higher spatial frequencies affected by the 

adaptation protocol did vary according to α. That is, when α was equal to 0 (i.e., white noise), the 

slight decrease in contrast sensitivity was equal across all spatial frequencies. However, when α 

was fairly steep (between 2 and 2.5) adaptation effects were concentrated to spatial frequencies 

equal to or less than 2 cycles/°. Noise images with α = 1.0 had the broadest impact on contrast 

sensitivity, which decreased contrast sensitivity to spatial frequencies up to 8 cycles/°, and is 

most likely explained by the response characteristics of channels to broadband images with α of 

1.05 (Brady & Field, 1995; Field & Brady, 1997; Field, 1987). This correlation between the 

adaptation effects and the α value indicates that the underlying spatial frequency channel 

interactions responsible for readjusting the activity of channels are dependent not only on low 

spatial frequency luminance contrast, but also on the particular distribution of luminance contrast 

across spatial frequency (i.e., α).  

There is evidence that the responses of spatial frequency channels to broadband stimuli 

with 1/f amplitude spectrum may be biased towards lower spatial frequencies, and that this may 

be regulated by the rate of descent of luminance contrast across spatial frequency (α). However, 

there is to date no psychophysical evidence that this may influence observer’s ability to detect, 

and discriminate, a change in α. Therefore, the goal of this study was to assess whether 

luminance contrast at lower spatial frequencies is involved in α discrimination. In Experiment 

2.1, α discrimination thresholds were measured to progressively larger 1/f noise images in, 

generated according to 5 different reference αs (0.4, 0.7, 1.0, 1.3, and 1.6) in order to measure 

how the additional low spatial frequency content of larger stimuli may influence α discrimination 

thresholds. We opted to manipulate the low spatial frequency content of our stimuli via changes 

                                                
5	
  See the results and discussion section of Experiment 1 for further details on the model defined by Field (1987), 
Brady and Field (1995) and Field and Brady (1997).	
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in size, as opposed to any form of band-pass or low-pass filters, because the removal of spatial 

frequency content in 1/f noise images rapidly leads to a loss of their spectral quality that alters α 

discrimination thresholds in a manner too extreme to compare with other studies (Richard, 

Hansen, Ellemberg, & Johnson, 2013). We found that slope discrimination thresholds decreased 

as stimulus size increased most when the reference α equalled 1.0, and less so for steeper (α > 

1.0) and shallower (α < 1.0), which suggests that this effect may be attributed to the perceived 

contrast of 1/f noise images (Baker & Graf, 2009; Brady & Field, 1995; Hansen & Hess, 2012; 

McDonald & Tadmor, 2006). 

The nature of our manipulation in Experiment 2.1 cannot account for other factors than 

additional low spatial frequency luminance contrast in the facilitation effect we identified in 

Experiment 2.1. Specifically, summation effects of both medium and high spatial frequency 

luminance contrast may account for the decrease in slope discrimination thresholds that followed 

increases in stimulus size in Experiment 2.1. In Experiment 2.2 we aimed to address this issue 

by with a centre-surround α discrimination paradigm (Johnson et al., 2011), and varied the gap 

size between the centre and surround stimuli in order to isolate the involvement low spatial 

frequency channel interactions in our slope discrimination task. For all gap sizes, α 

discrimination thresholds for steep (α equal to or greater than 1), but not shallow α, decreased 

with the presence of a surround. These findings suggest that, in a manner similar to the 

perceptual effects described by Webster and Miyahara (1997), α discrimination thresholds are 

subject to the response, and interactions, of low spatial frequency channels, but that these are 

somewhat regulated by the reference α of the discrimination task.  

Experiment 2.1 

Method 

Participants 

Seven adults (5 females) between the ages of 19 and 23 (Median Age =21 years) 

participated in the experiment. All participants were experienced psychophysics observers with 

normal or corrected-to-normal visual acuity, and were all naïve to the aims of the experiment. 

Informed consent was obtained from all participants and all were treated in accordance the Tri-

Council Policy Statement: Ethical Conduct for Research Involving Humans (2014). Participants 

were all consenting volunteers. 
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Apparatus 

Stimuli were presented on a 22.5” Viewsonic (G225fB) monitor driven by an Apple Mac 

Pro (2 X 2.66GHz processor) equipped with 8GB of RAM and a 1GB PCIe x16 ATI Radeon HD 

5770 Graphics card with 10-bit grayscale resolution. Stimuli were displayed using a linearized 

look-up table, generated by calibrating with a Color-Vision Spyder3 Pro sensor. Maximum 

luminance output of the display monitor was 100 cd/m2 (50 cd/m2 mean luminance after 

calibration) the frame rate was set to 100 Hz, and the resolution was set to 1024 X 768 pixels. 

Single pixels subtended .0381° of visual angle (i.e., 2.23 arc min.) when viewed from 1.0 meter. 

Head position was maintained using a chin rest, and participant input was recorded via keyboard 

press.  

Stimuli 

All stimuli consisted of synthetic visual noise patterns that were constructed in the 

Fourier domain using MATLAB (ver. 2012b; Mathworks, Natick, MA, ver. 2012b) and 

corresponding Image Processing (ver 6.4) toolbox. We created the visual noise stimuli by 

constructing a 5122 polar matrix for the amplitude spectrum, and assigning all coordinates the 

same arbitrary amplitude coefficient (except at the location of the DC component, which was 

assigned a value of 0). The result is a flat isotropic broadband spectrum (i.e., α = 0.0), referred to 

as the template amplitude spectrum (Hansen & Hess, 2006; Tadmor & Tolhurst, 1994). In this 

form, the α of the template spectrum can be adjusted by multiplying each spatial frequency’s 

amplitude coefficient by f-α. The phase spectra were constructed by assigning random values 

from –π to π to the different coordinates of a 5122 polar matrix, while maintaining an odd 

symmetric phase relationship. The phase spectrum for all stimuli presented within a trial was 

identical, but was randomized from trial-to-trial. The noise patterns were rendered into the 

spatial domain by taking the inverse Fourier transform of an α-altered template amplitude 

spectrum and a given random phase spectrum. 

When the slope of the amplitude spectrum is changed, the total power within the 

spectrum is also changed. This may introduce a cue to observers during the slope discrimination 

task, as observers may no longer discriminate the images based on their relative slopes, but 

instead detect changes in the overall power of images. To avoid this potential artefact, all noise 

patterns were scaled in the spatial domain to have the same grayscale mean (0.5 on a 0 – 1 scale) 
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and RMS contrast (RMS = 0.15), defined as RMS = 1
NM

Iij − Iij( )2
j=1

M

∑
i=1

N

∑ , (see Tadmor & Tolhurst, 

1994; Hansen & Hess , 2006), to ensure that the total power across all noise images (regardless 

of assigned α value) was equivalent (i.e., RMS contrast of an image is equal to the square root of 

the power spectrum; Smith, 2007). This transformation does not, however, equate the amplitude 

coefficients across all assigned α value (see Figure 2.1). It is important to note that with 

broadband images, RMS contrast has been found to be the most reliable indicator of visibility of 

the image (as opposed to non-squared metrics, including Michelson Contrast), in line with others 

that have used compound gratings and noise images (Bex & Makous, 2002; Watson, 2000). 

Therefore, RMS contrast is the standard metric to use when defining contrast in natural images 

(Frazor & Geisler, 2006), and equating the power spectrum by adjusting the RMS contrast of our 

images ensures observers do not use spurious cues other than changes in the slope of the 

amplitude spectrum (or power spectrum) in our task. The noise patterns were rendered into the 

spatial domain by taking the inverse Fourier transform of the amplitude spectrum and a given 

random phase spectrum, with both shifted to Cartesian coordinates prior to the inverse DFT 

From each 5122 polar matrix noise image, an image patch was cropped from its centre and 

windowed with a cosine-tapered envelope, which ramped 5% of the image pixels in the 

proximity of the circle’s edge to mean luminance (50 cd/m2). Stimuli were generated with 

respect to five reference slope (α) values (0.4, 0.7, 1.0, 1.3, and 1.6) and cropped with respect to 

9 window sizes (0.75, 1, 1.41, 2, 2.83, 4, 5.66, 8, and 11.3 degrees of visual angle). The smallest 

stimulus, 0.75°, contained slightly over four octaves of spatial frequency content (1.346 – 22.881 

cpd), while the largest stimulus contained nearly eight octaves of spatial frequency content 

(0.088 – 22.881 cpd; see Figure 2.2C), with its lowest spatial frequency nearly 4 octaves below 

that of our smallest stimulus.  

Psychophysical Procedures 

The experimental conditions consisted of 5 reference slope values and 9 stimulus sizes 

for a total of 45 stimulus condition blocks. Each block was repeated twice, and the calculated 

thresholds for both blocks were averaged prior to data analysis. Stimulus size remained constant 

within each block, and the order of blocks was randomized between repetitions and observers. 

Thresholds were estimated by a temporal three-interval, two-alternative “Odd-Man-Out” forced 

choice task similar to that used by Hansen & Hess (2006) and Johnson and colleagues (2011).   
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Figure 2.1. A Examples of the 5 reference α presented to observers prior to and following RMS 

normalization. The slope value measured in the amplitude spectrum (α) and power spectrum (β) 

are reported here for notation consistency when describing the spectral properties of our stimuli. 

B The sum of the amplitude coefficients of our stimuli for all 5 reference α values prior to and 

following RMS adjustments. Note that the sum of the amplitude coefficients, both prior to and 

following RMS adjustments, is greatest for shallow slope values (α = 0.4) and smallest for 

steeper slopes (α = 1.6). C The sum of the power spectrum coefficients for all 5 reference β 

values presented to observers. While the total power in our stimuli increases as a function of 

slope (β – red line) it is identical for all reference β values following RMS normalization. D The 

RMS contrast measured for our stimuli both prior to and following RMS normalization. As RMS 

contrast is directly related to the power spectrum, the effect of RMS normalization on total 

power in our stimuli is identical to that seen with RMS contrast.  
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Participants were asked to select the stimulus, either the first or third presented, that contained 

the odd-amplitude spectrum – different from the reference stimulus, presented in the second 

interval. For any given trial, the phase spectrum of all three stimuli presented was identical, and 

stimuli only varied in their slope (α). 

At the beginning of each trial, a white (RGB [255, 255, 255]) fixation cross, which 

subtended 0.3° of visual angle in diameter was presented for one second at the centre of the 

screen. This was followed by three stimulus presentation intervals that each lasted 250ms. The 

second interval always contained the reference amplitude spectrum set at one of the five fixed 

reference α values (0.4, 0.7, 1.0, 1.3, and 1.6). One interval, either the first or the third, contained 

the same amplitude spectrum as that of the reference interval, while the other contained the test 

amplitude spectrum with a slope α steeper than the slope α of the reference interval. Each 

stimulus interval was interlaced by a screen set to the mean luminance of our display (RGB [128, 

128, 128]) for 500ms (see Figure 2.2). The interval that contained the test amplitude spectrum 

was randomized on each trial. At the end of each trial, the screen was set to mean luminance, and 

participants indicated which interval, either the first or the third, they perceived as being the 

“Odd-Man-Out” in comparison to the second interval (reference) via keyboard press. Viewing 

was binocular and the duration of the response interval was unlimited.  

The trial-to-trial change in the image’s slope exponent (α) was controlled by a transformed 1-up, 

2-down staircase procedure using the PAL_AMUD_setupUD and PAL_AMUD_updateUD 

functions from the Palamedes toolbox for MATLAB (Prins & Kingdom, 2009). The staircase 

approached the reference α value from above; hence, the α of the test interval was always steeper 

than that of the reference α. The initial α of the odd stimulus was α+0.5 units above the reference 

value. The α of the test interval was decreased in linear steps (step size down = 0.02) towards the 

reference α when the observer made two consecutive correct responses, and was increased in 

linear steps (step size up = 0.02) back towards the start value when the observer made an 

incorrect response (1 Up / 2 Down Rule). The procedure targeted the 70.71% performance level 

on a psychometric function (Kaernbach, 1991; Prins & Kingdom, 2009). In order to prevent 

extreme α values when estimating thresholds, the minimum possible α of the odd stimulus was 

set to the reference α value and the maximum was set to an α = 3. The experimental block 

continued until 12 reversals had occurred, at which point the block was terminated. Thresholds 

were estimated by averaging the slope α values of the odd stimulus for the last 5 reversals.   
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Figure 2.2. A General psychophysical procedure employed in our experiment. To estimate slope 

discrimination thresholds, all observers completed a 3-IFC, 2-AFC “Odd-Man-Out” 

psychophysical procedure. Observers had to indicate, which of the 1st or 3rd interval contained 

the stimulus that was different from the second – reference – interval (here the odd stimulus is 

the 3rd). B Example stimuli of the 5 reference α values used in this experiment. The phase 

spectrum of all 5 stimuli presented is identical. C The amplitude spectrum for all 5 reference α 

values and 9 stimulus sizes presented to observers in this study. Increases in stimulus size lead to 

addition low spatial frequencies for all stimuli. The smallest stimulus (0.75 degrees) contained 

nearly 4 octaves of spatial frequency content (minsf = 1.346 cpd, maxsf = 22.881 cpd) while the 

largest contained nearly 8 octaves of spatial frequency content (minsf = 0.088, maxsf = 22.881 

cpd), which is an additional 4 octaves of low spatial frequency content in comparison to our 

smallest stimulus size.   
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Results and Discussion 

 The average decrease of α discrimination thresholds (Δαs) as a function of stimulus size 

for all five reference αs is show in Figure 2.3A. We first conducted a 9 (stimulus size) by 5 

(reference α) repeated measures ANOVA on slope discrimination thresholds to verify for any 

interactive effects between stimulus size and reference α (see Tables 2.1 – 2.3). The interaction 

term was not statistically significant, F(32, 192) = 0.675, p = .906, 2
pη  = .101. However, both the 

main effects of stimulus size, F(8, 48) = 41.85, p < .001, 2
pη  = .875, and reference α, F(4, 24) = 

4.10, p = .011, 2
pη  = .406 were statistically significant. The main effect of size on Δαs was well 

explained by a linear trend with coefficients [4 3 2 1 0 -1 -2 -3 -4], F(1, 6) = 60.00, p < .001, 2
pη  

= .909. Increases in area, and therefore the additional low spatial frequency content of our 

stimuli, had a facilitatory effect on slope discrimination thresholds. The main effect of reference 

α on Δαs was best fit by a cubic trend (coefficients [-1 2 0 -2 1]), F(1,6) = 31.16, p = .001, 2
pη  = 

.839, which follows the typically reported shape of slope discrimination thresholds across 

different α (Hansen & Hess, 2006; Johnson et al., 2011; Knill et al., 1990; Tadmor & Tolhurst, 

1994).  

Given that no interactive effects between stimulus size and reference α were statistically 

significant, we calculated log ratios [log(Δαi/Δαlargest)] in order to compare, for each reference α, 

the relative influence of increases in stimulus size on Δαs. Specifically, we aimed to identify the 

size at which Δαs showed no significant improvement from further increases in stimulus size. 

The average log ratios for all five reference αs are shown in Figure 2.3B. It is clear that log 

ratios followed a quadratic trend across all stimulus sizes (coefficients [-2 -1 1 -1 -2]), F(1,6) = 

15.02, p = .008, 2
pη  = .715, whereby log ratios for α = 1.0 were greater than all other αs (see 

Tables 2.4-2.6). There is a small asymmetry in our experimental results between αs > 1 and αs < 

1, as the latter shows a slightly steeper descent than the former. Specifically, while Δαs for 

shallow slopes showed little change for stimulus sizes larger than 4° (α = 0.4: log ratio4°= -0.06, 

95% CI [-0.69 0.56]) or 5.66° (α = 0.7: log ratio5.66°= .23 95% CI [-0.13 0.59]), Δα for reference 

stimuli with α = 1 still improved when stimulus was increased from 8° to 11.3° stimulus (log 

ratio8°= 0.49, 95% CI [0.03 0.96]). Steep reference slopes (α = 1.3 and 1.6) both showed 

improvements in Δαs that mirrored the shallower αs (α = 0.4 and 0.7): α = 1.3 showed significant 

improvement in Δαs at our largest stimulus size (log ratio8°= 0.34, 95% CI [0.10 0.58]), while the   
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Figure 2.3. A The average slope discrimination threshold plotted as a function of stimulus size 

(abscissa). Each line represents averages thresholds for a given reference α. We find a 

statistically significant effect of stimulus size and a statistically significant effect of reference α, 

but no interaction effect. Therefore, all slope discrimination thresholds decreased as a function of 

increased stimulus size and this effect was similar for all reference α used in this study. B 

Average log ratios between slope discrimination thresholds (Δαs) against our largest stimulus 

size (11.3°). Values larger than 0 indicate that Δαs were greater than those of the 11.3° stimulus. 

Most observers show the largest log ratio for a reference α = 1 and smaller log ratios for steeper 

and shallower slope. C Slope discrimination thresholds for all 5 reference alpha at each stimulus 

size. Error bars in A, B and C represent ± 1 standard error of the mean. 
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steepest reference α used here showed no improvement for stimulus sizes beyond 4°(log 

ratio5.66°= .24 95% CI [-0.04 0.52]). 

We had hypothesized that steeper αs (α > 1) should be most subject to the effects of 

increases in stimulus size as the low spatial frequency luminance contrast is significantly greater 

in steep αs, and may thus be more relevant to discrimination than for shallower αs (e.g., α = 0.4). 

However, increases in stimulus size had a facilitatory effect on α discrimination thresholds for all 

reference α: α discrimination thresholds for a reference α of 1.0 benefitted most from increases in 

stimulus size, while steeper and shallower reference αs showed more moderated decreases in α 

discrimination thresholds. This suggests that the luminance contrast at low spatial frequencies 

might be important in a slope discrimination task, particularly when the reference α is close to 

the natural scene average (α = 1.08; Billock, 2000; Burton & Moorhead, 1987; Field, 1987; 

Hansen & Essock, 2005; Tolhurst et al., 1992). It is also interesting to find that α discrimination 

thresholds continued to benefit from increases in stimulus size beyond a stimulus size of 8° in 

diameter, as it indicates that observer may sample luminance contrast from fairly low spatial 

frequency bands in an α discrimination task, at least lower than what has previously been 

described (~ 1 cycle/°; Tadmor & Tolhurst, 1994; Tolhurst & Tadmor, 1997). That is, if 

observers sampled the luminance contrast within a single spatial frequency band, we should have 

found no facilitation of α discrimination thresholds when increasing size beyond a certain critical 

value as the additional luminance contrast added should eventually extend beyond the monitored 

band. This account may only hold for α values typically encountered within the natural 

environment as the facilitation observed for α discrimination thresholds for reference α of 0.4 

floored at a stimulus size of 4°. This finding is analogous to others that have found images with 

very shallow α (e.g., 0.4) to be discriminated according to a different mechanism than images 

with more “naturalistic” αs (Párraga & Tolhurst, 2000).  

A potential account for the quadratic trend observed across αs in our log ratio data may 

lie in how the visual system pools contrast over spatial frequency and space, and its effects on 

the perceived contrast of broadband images (Baker & Graf, 2009; Field & Brady, 1997; Hansen 

& Hess, 2012; McDonald & Tadmor, 2006; Tolhurst & Tadmor, 2000). It has been demonstrated 

that human observers perceive noise stimuli with an α = 1.0 to have greater contrast than steeper 

or shallower α (Baker & Graf, 2009; Hansen & Hess, 2012). These effects have also been 

measured in centre-surround paradigms where a surround annulus with an α = 1.0 suppresses the 
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perceived contrast of a centre stimulus more than a surround with any other α (McDonald & 

Tadmor, 2006). The benefits of increasing stimulus size on α discrimination thresholds show a 

similar effect as thresholds for reference α = 1.0 decreased most as stimulus size increased. There 

exist a multi-channel model of perceived contrast in complex images, including noise images 

with 1/f amplitude spectra proposed by Field, (1987), Brady and Field (1995), and Field and 

Brady (1997) that predicts larger responses from psychophysical spatial frequency channels to 

noise images with α = 1.0. In their model, filter bandwidth (1 octave) is held constant in octaves 

on logarithmic axes, and the peak sensitivity of filters is held constant as well. When given noise 

images with varying α, the pooled responses of these psychophysical channels to the stimulus are 

greatest when α = 1.0, and decrease in magnitude for steeper (α > 1.0) and shallower (α < 1.0) αs. 

While their model generates filter outputs that are correlated with the perceptual experience of 

observers, there is little evidence to suggest that the channel bandwidth (constant, 1 octave 

bandwidth) used in this model is neurophysiologically relevant. Indeed, most evidence (both 

psychophysical and neurophysiological) has demonstrated that the bandwidth of visually 

responsive neurons within striate cortex (De Valois et al., 1982; Tootell, Switkes, Silverman, & 

Hamilton, 1988; Yu et al., 2010), and psychophysical spatial frequency channels (Wilson et al., 

1983) decreases with increasing preferred spatial frequency. That said, this is of little impact on 

the model’s ability to predict larger pooled filter outputs, as more physiologically plausible 

channel bandwidths still generate larger responses to noise images with an α = 1.0 (Hansen & 

Hess, 2012)6.  

The quadratic trend observed across α was maintained across all increments in stimulus 

size (see Figure 2.3B), which is required for supra-threshold stimuli (Cannon & Fullenkamp, 

1988), and thus indicates that the responses of spatial frequency channels are adjusted via a 

contrast gain control mechanism in accordance with stimulus size changed (Brady & Field, 2000; 

Carandini, Heeger, & Movshon, 1997; Carandini & Heeger, 1994; Foley, 1994; Graham & 

Sutter, 2000; Heeger, 1992; Watson & Solomon, 1997; Wilson & Humanski, 1993; Yu, Romero, 

                                                
6Hansen and Hess (2012) demonstrated that the exact bandwidth of the spatial frequency filters used, either those 
defined by Brady and Field (1995) or those of Wilson and colleagues (1983), to generate spatial frequency channel 
responses to broadband noise images had little impact on the response magnitude to images with an α = 1.0. 
However, the pooled (summed) filter responses to noise images with different α did change according to the 
bandwidth of filters. Specifically, the response magnitude of constant 1 octave bandwidth filters to noise images 
with α = 1.5 were slightly greater than to α = 0.0 (although quasi-identical), while the difference in the response 
magnitude for both αs increase drastically when the filter bandwidth was made to decrease with increasing spatial 
frequency (the model outputs to α = 1.5 and α = 1.0 were much more similar). 
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& Lee, 2005). Given that our stimulus manipulation was intended to increase the representation 

of low spatial frequency luminance contrast within our stimuli, any form of normalization 

following the pooling of responses from spatial frequency channels should be low-pass in spatial 

frequency (Cass, Stuit, et al., 2009; Haun & Peli, 2013; Meese & Holmes, 2007). That said, it is 

difficult to reconcile how a contrast gain control process that is predominantly low-pass may 

allow for human observers to sample the low-spatial frequency luminance contrast of 1/f noise 

images when asked to discriminate their α and generate large increases in sensitivity as stimulus 

size increases. It is possible that the contrast gain control mechanism, which normalizes the 

activity of channels tuned to various spatial frequencies, is not perfect as has previously been 

argued by Párraga and Tolhurst (2000). However, it is also likely that observers do not sample 

the additional luminance contrast at low spatial frequencies, and instead benefit from other 

psychophysical mechanism that can take advantage of the increases in stimulus size. For 

example, the summation of higher spatial frequency content may have facilitated α 

discrimination thresholds (Baker & Meese, 2011; Graham & Sutter, 1998; Graham, 1989; 

Hutchinson & Ledgeway, 2010; Meese & Baker, 2011, 2013; Meese & Summers, 2007; Taylor, 

Bennett, & Sekuler, 2009), and other types of interactions between spatial frequency channels 

(e.g., contextual interactions) than contrast gain control may also have been responsible for the 

effects found here. We test these assumptions in Experiment 2.2.  

Experiment 2.2 

The changes in stimulus size implemented in Experiment 2.1, while a simple and 

convenient manipulation of low spatial frequency content in our stimuli, cannot account for other 

factors that can modulate α discrimination thresholds. For example, the increase in stimulus size 

will also lead to spatial summation effects, which may cloud any contribution of low spatial 

frequencies to slope discrimination thresholds (Baker & Meese, 2011; Graham & Sutter, 1998; 

Graham, Robson, & Nachmias, 1978; Meese, Summers, & Baldwin, 2012; Meese & Summers, 

2007). Spatial summation of luminance contrast - defined as an increase in sensitivity to a 

grating when its size or period is increased - is known to occur both at threshold (Graham & 

Sutter, 1998; Graham & Nachmias, 1971; Robson & Graham, 1981; Stromeyer & Klein, 1975; 

Watson, 1979), and suprathreshold (Meese & Baker, 2011; Meese & Summers, 2007) and may 

therefore have been a component of the facilitatory effects witness on α discrimination 

thresholds in Experiment 2.1. Thus, the spatial summation effect of mid- or high spatial 
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frequencies may also account for any benefits in slope discrimination thresholds we find as a 

function of increased stimulus size.  

Furthermore, it is difficult to assess the particular nature of interactions between spatial 

frequency channels in α discrimination thresholds from the manipulation we implemented in 

Experiment 2.1. That is, the decrease in α discrimination thresholds as stimulus sized increased 

may also be attributed to contextual interactions. We have previously shown that α 

discrimination thresholds are facilitated by the presence of a 1/f noise surround annulus with an α 

similar to that of the centre stimulus (Johnson et al., 2011). As the size of the stimuli we 

presented to observers in Experiment 2.1 were fairly large, the facilitatory effects on α 

discrimination thresholds may stem from centre-surround type interactions, similar to the one we 

have previously identified. Centre-surround interactions have a longstanding history in 

psychophysics, and have been the subject of extensive research on how the spatial characteristics 

of both the centre and surround may inhibit or facilitate psychophysical performance of 

observers on the centre stimulus, and these are well defined for narrowband stimuli (Cannon & 

Fullenkamp, 1988; Chubb, Sperling, & Solomon, 1989; Legge & Foley, 1980; Petrov, Carandini, 

& McKee, 2005; Petrov, Popple, & McKee, 2007; Petrov & Mckee, 2006; Polat & Sagi, 1993; 

Xing & Heeger, 2000; Xing & Heeger, 2001; Yu, Klein, & Levi, 2001). Typically, the addition 

of an annulus around the centre stimulus will lead to suppressive interactions, particularly when 

the centre and surround stimuli have the same, or similar, spatial configurations (e.g., orientation 

and spatial frequency; Chubb et al., 1989; Petrov et al., 2005; Xing & Heeger, 2000; Xing & 

Heeger, 2001). Facilitatory effects tend to be slightly more tuned for the dimensions of both the 

centre and surround stimuli (Xing & Heeger, 2001; Yu et al., 2001; Yu, Klein, & Levi, 2002). 

Foveally presented stimuli (Xing & Heeger, 2000), surrounds with a greater temporal frequency 

than that of the centre (Takeuchi & De Valois, 2000), and large gap sizes - up to 12 cycles of the 

centre spatial frequency - (Polat & Sagi, 1993, 1994) will all generate a net enhancement in the 

psychophysical performance of observers. 

Centre-surround interactions with spatially complex stimuli (i.e., images broadband in 

spatial frequency and/or orientation) have also been shown to elicit either suppression or 

facilitation on psychophysical performance both at threshold and above threshold (Goddard, 

Clifford, & Solomon, 2008; Hansen, Haun, et al., 2008; Hansen et al., 2015, 2003; Haun & 

Essock, 2010; Johnson et al., 2011; Kim, Haun, & Essock, 2010; McDonald & Tadmor, 2006), 
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and is known to be regulated by the α of the surround (McDonald & Tadmor, 2006). In their 

study, McDonald and Tadmor (2006) demonstrated that the perceived contrast of a broadband 

target (i.e., centre stimulus) decreased most when the surround had an α = 1.0 (identical to that of 

the target), while the suppressive effects were reduced in magnitude when the difference between 

the α of the centre stimulus and the surround increased. We have, in addition, show that the 

ability to discriminate a change in α can be affected by the presence of a surround (Johnson et 

al., 2011). Observers were asked to discriminate the α of noise images (identical to those 

presented here) either with or without the presence of a 1/f noise surround annulus generated 

according to an α of 0.7, 1.0, and 1.3, and gap sizes between the center and surround stimuli of 0, 

20, 40 and 60 minutes of arc. We found that α discrimination thresholds were facilitated by the 

presence of a surround, and this effect was greatest when the α of the center and surround stimuli 

were similar. Most interestingly, we found that changes in the size of the gap between the centre 

and surround stimuli had little effect on the facilitation of α discrimination thresholds if the 

surround had an α of 1.0 or 1.3, but the magnitude of the facilitation effect decreased as the gap 

increased when the surround had an α of 0.7. This decrease in facilitation at larger gap sizes for a 

surround α of 0.7 was attributed to a loss of high spatial frequency channel interactions that may 

have contributed to the facilitation effect at smaller gap sizes. Analogously, the perseverance of 

surround facilitation at large gap sizes when they had steeper αs suggested that any spatial 

interactions involved in facilitation were based in lower spatial frequency channels. However, 

facilitation effects in center-surround interactions have been shown to persist up to about 8 – 12 

cycles of the center, narrowband target, spatial frequency (Polat & Sagi, 1993, 1994). This 

means the largest gap size used in our 2011 study of 1° of visual angle (60 arc minutes) was too 

small to clearly implicate low spatial frequency channel interactions in our surround facilitation 

findings for steeper surround αs, as interactions between channels with peak frequencies up to 12 

cycles/° could have contributed to the facilitation effect. Experiment 2.2 replicated the Johnson 

et al. (2011) study, but increased the gap size between the centre stimulus and the surround 

annulus up to 3.2° of visual angle in order to better isolate the role of lower spatial frequency 

channel interactions in α discrimination thresholds.  
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Method 

Participants 

Six adults (3 females) between the ages of 19 and 27 (Median Age =20.5 years) 

participated in the experiment. Of the six psychophysical observers, three participated in both 

experiments. Two of the remaining three observers were also experienced psychophysics 

observers with normal or corrected-to-normal visual acuity, and all were naïve to the aims of the 

experiment. The last observer was not naïve to the goals of the study and participated in the 

original 2011 study. Informed consent was obtained from all participants and all participants 

were treated in accordance the Tri-Council Policy Statement: Ethical Conduct for Research 

Involving Humans (Medical Research Council of Canada, 2014). Participants were all 

consenting volunteers. 

Apparatus 

 Same as Experiment 2.1.  

Stimuli 

 The construction of the reference stimuli in Experiment 2.2 was identical to that of 

Experiment 2.1, with the addition of a second stimulus creation procedure to make the 

surrounding annuli. The surround annuli were generated from the same 5122 polar matrix used to 

generate the centre reference stimuli. This ensured that the phase spectrum of the surround 

annulus was identical to that of the centre stimulus for each trial. The centre stimuli were 

cropped to subtend 2°7 of visual angle on the retina, and their size was fixed for the entire 

experiment. The surround annulus was windowed with two circular linear edge ramps so to 

create an annulus, and both its internal and external borders were windowed with a cosine-

tapered envelope, which ramped 5% of the image pixels in the proximity of the circle’s edge to 

mean luminance (50 cd/m2). The visible surround diameter was set to subtend 4° of visual angle 

on the retina, and its area was constant for all gap sizes. Each stimulus block was generated 

according to 5 reference α values for the centre stimulus (α = 0.4, 0.7, 1.0, 1.3, and 1.6), 3 α 

values for the surround annuli (α = 0.7, 1.0, and 1,3) and 5 gap sizes between the centre stimulus 

and surround annulus (gap = 0, 0.2, 0.4, 0.8, 1.6, and 3.2° of visual angle; see Figure 2.4).  

                                                
7 We chose a 2° stimulus size as this was the size we used in our original center-surround study (Johnson et al., 
2011).  
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Figure 2.4. All gap sizes used to measure centre-surround interactions in experiment 2. For 

clarity, the centre α = 0.7, while the surround α = 1.3. The centre stimulus size was kept at 2° of 

visual angle for all stimulus condition blocks.  
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Psychophysical Procedures 

The experimental conditions consisted of 5 reference slope values, 3 surround slope 

values, and 6 gap sizes for a total of 90 stimulus condition blocks. As in Experiment 2.1, each 

block was repeated twice, and the calculated thresholds for both blocks were averaged prior to 

data analysis. Stimulus size remained constant within each block, and the order of blocks was 

randomized between repetitions and observers. Observers were instructed to ignore the surround 

for all trials and only base their decision on differences in α for the centre stimulus. All 

remaining psychophysical procedures were identical to those of Experiment 2.1 (see Figure 

2.2A).  

Result and Discussion 

 Average slope discrimination thresholds (Δα) measured both with and without a 

surround, at each gap size are shown in Figure 2.5. The discrimination thresholds measured in 

this study are lower than those of Johnson et al., (2011). The Johnson et al. (2011) study showed 

little tuning for α and high discrimination thresholds in the no surround condition (2011: MΔα = 

0.43, SD = 0.02), however, the centre only thresholds measured here never exceed Δα = 0.15, 

and show a clear depression in thresholds for α = 1.3 (following typical Δαs; Hansen & Hess 

2006). The magnitude of the surround facilitation effect measured here is also smaller than that 

of the previous study, which is most likely attributable to the lower Δαs (see Figure 2.5 and 

Figure 2 in Johnson et al., 2011).  

The effects of a surround on Δα obtained here are similar to those previously reported by 

Johnson and colleagues (2011). We verified how Δαs varied as a function of gap size for each 

surround condition separately with a 5 (reference α) X 6 (gap size) repeated measures ANOVA 

(see Tables 2.7-2.8). There were no statistically significant interactions, but there was a main 

effect of gap size on Δαs when the surround α = 0.7, F(5,25) = 4.61, p = .004, 2
pη =.480. The 

statistically significant main effect was followed by a trend analysis, but none of the typical 

trends (e.g., linear, quadratic, and cubic) were found to explain a significant portion of the main 

effect of gap size. In order to define the main effect of gap size, all Δαs were converted into 

suppression ratios8 (SRΔα) by dividing the Δα for a centre with surround conditions by the Δα for   

                                                
8 While we only found facilitatory effects of the surround, we use the term suppression ratio as it is a transformation 
used in the masking literature to define the magnitude of the suppression effect generated by a surround mask.  
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Figure 2.5. Slope discrimination thresholds (Δα) for all stimulus condition blocks. Error bars 

represent ± 1 standard error of the mean. 
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the respective centre alone condition, for each participant and gap size configuration (Kim et al.,  

2010; Petrov et al., 2005; Petrov & Mckee, 2006; Spiegel, Hansen, Byblow, & Thompson, 2012; 

Xing & Heeger, 2001). SRΔα were log transformed prior to all analyses, thus values less than 0 

designate net facilitation of Δαs when the surround was present. Cross participant average SRΔα, 

for each surround α, gap size and reference α are show in Figure 2.6A. Each SRΔα was analyzed 

descriptively by constructing 95% confidence intervals. A SRΔα was considered to be 

“significant” when its confidence interval did not overlap with a value of 0 (no suppression or 

facilitation from the surround). Two of the six gap sizes, when the surround α was 0.7, showed a 

significant facilitation effects: the 0.2° gap (SRΔα =-0.19, 95% CI [-0.30 -0.09]) and the 1.6° gap 

(SRΔα =-0.24, 95% CI [-0.39 -0.10]). Other than for these two conditions, there was no clear 

effect of gap size on SRΔα. The lack of any noticeable effects of gap size on Δα, similar to the 

findings of the original study (Johnson et al., 2011), suggests that the centre-surround 

interactions found here operate on a non-local (i.e., global) level, which may be accounted for by 

the low spatial frequency component of the signal used in higher order stimulus segmentation 

(Beck, Sutter, & Ivry, 1987; Gurnsey & Fleet, 2001).  

The centre-surround effects measured here, while not dependent on gap size were 

dependent on the α of both the centre and surround stimulus. We found no influence of surround 

α on Δαs when the centre stimulus reference α was shallow (0.4 and 0.7), but did find that all 

surround αs decreased slope discrimination thresholds when the reference α = 1.0 (Surround α = 

0.7: SRΔα = -0.272, 95% CI [-0.421 -0.123], Surround α = 1.0, SRΔα = -0.127, 95% CI [-0.214 -

0.040], Surround α = 1.3, SRΔα = -0.227, 95% CI [-0.323 -0.132]). For centre stimuli with 

steeper reference αs (1.3 and 1.6) the facilitation observed was slightly smaller than that of the 

reference α = 1.0 condition. However, this seemed determined by the difference between the 

centre stimulus α and the surround α, as Δαs for reference α = 1.3 (SRΔα = -0.246, 95% CI [-

0.377 -0.115]) and 1.6 (SRΔα = -0.267, 95% CI [-0.395 -0.138]) showed a significant facilitation 

effect when the surround α = 1.3. Very similar to the findings of the Johnson et al. (2011) study, 

center-surround facilitation effects on Δαs are determined by the difference between the centre 

and surround αs, when both are similar in value and steep (α is equal to or greater than 1), a net 

facilitation effect is observed, and this effect decreases as the difference between the center and 

surround αs increases (see Figure 2.6B).  
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Figure 2.6. A Suppression ratios (SRΔα - ordinate) for each reference α for the three surround αs 

and six gap sizes. Error bars represent the 95% confidence interval of the SRΔα. Gap size had no 

specific effect on SRΔα, and we therefore averaged all suppression ratios across gap size. B 

Average SRΔα collapsed across gap size. There is a clear facilitation effect from all three 

surrounds on Δα for a reference α = 1. Surround α = 1.3 led to net facilitation effects for all 

reference α > 1, while both the surround α = 0.7 and 1.0 had diminished facilitation effects at 

steeper reference α. Error bars represent the 95% confidence interval of the gap size averaged 

SRΔα.  
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We found the centre-surround interactions of 1/f noise stimuli to be facilitative in nature, 

and present only when the α of both the centre and the surround are similar, and relatively steep 

(α equal to or greater than 1.0). Facilitation effects are often found in more tradition center-

surround studies that use narrowband gratings to measure the interactive properties of the center 

and the surround. For example, facilitation from the surround is observed when the spatial 

frequency of the surround is lower than that of the center (Meese & Hess, 2004; Meese, 2004; 

Xing & Heeger, 2000, 2001; Yu et al., 2001). Conversely, surrounds with a spatial frequency 

higher than that of the centre will have a suppressive effect on the perception of the centre 

stimulus (Cannon & Fullenkamp, 1988; Sutter, Sperling, & Chubb, 1995; Xing & Heeger, 2001). 

This is interesting, as our shallowest surround (α = 0.7) showed no suppressive effects on slope 

discrimination thresholds for any reference α, and even showed facilitative effects when the 

reference α = 1. Evidently, a noise stimulus with an amplitude spectrum slope of 0.7, while 

perceptually dominated by higher spatial frequency content, contains a significant proportion of 

luminance contrast at low spatial frequencies, which may have been the dominant spatial 

frequency content to modulate the centre surround interactions seen here (at least when the 

reference α = 1).  

In Experiment 2.1, we found that it was the perceived contrast of our stimuli that seemed 

to modulate the facilitative effects associated with increases in stimulus size. However, as we 

found the presence of a surround to have only facilitatory effects on α discrimination thresholds, 

it is unlikely the perceived contrast of the noise images contributed to facilitation. Perceived 

contrast effects of the surround on the centre stimulus are always suppressive in nature, both for 

narrowband (Ellemberg, Wilkinson, Wilson, & Arsenault, 1998; Snowden & Hammett, 1998) 

and broadband stimuli (McDonald & Tadmor, 2006). Thus, as our effects show consistent 

facilitation of Δαs when the reference α was steep (in addition to a steeper surround), and the 

lack of any noticeable effect of gap size for all surround αs, the surround facilitation observed 

here results from low spatial frequency channels responding to both the centre and surround 

stimuli.  

General Discussion 

The findings of the current study offer psychophysical evidence that the ability of 

observers to detect, and discriminate, a change in the α of 1/f noise images occurs via a multi-

channel process that is influenced by the representation of low spatial frequency luminance 
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contrast, when the reference α is relatively steep (α >1). By increasing the area of 1/f noise 

stimuli and consequently adding progressively lower spatial frequency luminance contrast within 

the stimulus (Experiment 2.1), our observer’s ability to detect a difference in α increased. 

Additionally, this effect was tuned to reference α: observers benefitted most from an increase in 

stimulus size when the reference α = 1.0, while steeper (α > 1.0) and shallower (α  < 1.0) 

reference αs showed smaller benefits. This facilitatory effect is analogous to the perceived 

contrast of 1/f noise stimuli in that stimuli with α = 1.0 are perceived to have higher contrast than 

steeper or shallower αs (Baker & Graf, 2009; Chubb et al., 1989; Hansen & Hess, 2012; 

McDonald & Tadmor, 2006). Thus, it is possible that the facilitatory effect generated by 

increases in stimulus size may be due to changes in the perceived contrast of our stimuli. 

However, given that perceived contrast has been demonstrated to have little influence on the 

psychophysical performance of observers in masking studies (Hansen & Hess, 2012; Hansen & 

Loschky, 2013), it is unlikely the perceived contrast of our images is a likely contributor to the 

facilitation we obtained here. That said, our findings have interesting implications on the known 

contrast pooling strategies employed by the early visual system. That is, as that the facilitation 

effect across α was constant for all stimulus sizes, the pooling of responses across multiple 

spatial frequency channels to 1/f noise stimuli must be normalized according to a contrast gain 

control mechanism (Carandini & Heeger, 1994; Heeger, 1992; Wilson & Humanski, 1993). 

Additionally, given that the increases in stimulus size predominantly influence the representation 

of low spatial frequency luminance contrast, it is likely that any form of normalization must have 

been weighted towards lower spatial frequency channel activity (Bex et al., 2007; Cass, Stuit, et 

al., 2009; Haun & Peli, 2013).  

In Experiment 2.2, we aimed to isolate the nature of low spatial frequency channel 

interactions by replicating a study originally conducted in 2011 (Johnson et al., 2011), which 

measured centre-surround effects on slope discrimination thresholds, but increased the gap size 

between the centre and surround stimulus to better isolate low spatial frequency channel 

interactions. We found centre-surround interactions to be facilitatory in nature and constrained to 

reference 1/f noise images with steeper αs (α > 1), similar to the findings of the Johnson and 

colleagues (2011) study. Most interestingly, center-surround effects were somewhat tuned to the 

α of the surround. That is, while surrounds with α of 0.7 and 1.0 only elicited facilitatory effects 

for centre stimuli with steeper α (by 0.3), our steepest surround (α = 1.3) facilitated slope 
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discrimination thresholds for reference αs of 1.0 to 1.6. Center-surround interactions are known 

to modulate contrast detection and discrimination with narrowband stimuli (Bonneh & Sagi, 

1998; Cannon & Fullenkamp, 1988; Chubb et al., 1989; Ellemberg et al., 1998; Petrov et al., 

2005; Petrov & Mckee, 2006; Polat & Sagi, 1993; Snowden & Hammett, 1998; Xing & Heeger, 

2001) and with broadband stimuli (Johnson et al., 2011; Kim et al., 2010; McDonald & Tadmor, 

2006). The effects of a surround on the perception of the centre stimulus are usually inhibitory in 

nature, but the addition of a surround can also facilitate perception (both detection and 

discrimination) of the centre stimulus under certain stimulus constraints (i.e., when contrast of 

the surround is lower than that of the centre, or when the spatial frequency between the centre 

and the surround are matched; Huang, Jiao, & Jia, 2008; Linares, Motoyoshi, & Nishida, 2012; 

Meese, Summers, Holmes, & Wallis, 2007; Meese, 2004; Xing & Heeger, 2000; Yu et al., 2002, 

2001). Facilitation and inhibition effects in center-surround paradigms are traditionally shown 

with abutting stimuli (i.e., no gap between the centre and the surround), but the introduction of a 

gap between the centre and surround has also been shown to generate both inhibitory and 

facilitatory effects on centre stimulus perception (Mareschal, Sceniak, & Shapley, 2001; Polat & 

Sagi, 1993, 1994). The addition of the gap has the added benefit of investigating the region of 

interaction between the two parts of the stimuli. For sinusoidal gratings, the interactive region 

can extend up to 8-12 cycles of the centre stimulus spatial frequency, and will be facilitative 

when the gap extends beyond 2 cycles of the centre spatial frequency, well beyond the spatial 

integration range of a single receptive field (Polat & Sagi, 1993). The consistent facilitatory 

effects we observed in Experiment 2.2 on slope discrimination thresholds from the surround at 

all gap sizes suggest our observers may have been integrating over a fairly large region of the 

stimulus (i.e., non-local operations), and given the known constraints in the extent of facilitatory 

effects from the surround, must rely on spatial frequency content no more than 4 cycles/° for a 

gap size of 3.2° to elicit a facilitation effect (Polat & Sagi, 1993, 1994). It is possible that a 

similar global operation, whereby luminance contrast is integrated over a large region of space 

via lower spatial frequency channels, is responsible for the size effect we obtained in 

Experiment 2.1. Thus, when asked to discriminate between to noise images that vary in α, the 

ability of observers to detect the change may stem from the activity or the interactions between 

channels tuned to lower spatial frequencies, at least for 1/f noise images with steeper α (α > 1.0). 
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Limitations 

 We tried to account for spatial summation of higher spatial frequency luminance contrast 

effects in our study by implementing a centre-surround paradigm where the centre and surround 

stimuli were separated by a gap. That said, it is known that summation over space is extensive, 

which means that summation of higher spatial frequencies may have still influenced α 

discrimination thresholds when the gap size was small (Baker & Meese, 2011; Hutchinson & 

Ledgeway, 2010; Meese & Baker, 2011; Meese & Summers, 2007; Meese, 2004). Summation 

effects have been well described with narrowband stimuli (Bonneh & Sagi, 1998; Graham & 

Sutter, 1998; Graham et al., 1978; Graham, 1989; Movshon, Thompson, & Tolhurst, 1978), but 

they may function under broadband conditions, when many differently tuned channels are active 

(Meese & Holmes, 2010). Thus, we cannot fully account for the influence of summation at 

higher spatial frequencies in the facilitatory effects witnessed in both Experiment 2.1 and 

Experiment 2.2, that said, given that the facilitatory effect was sustained at our largest gap size 

of 3.2°, it is likely the dominant factor in the decrease of α discrimination thresholds is nested 

within the responses of channels to luminance contrast at lower spatial frequencies.  

Conclusions 

Initial attempts to define the mechanism that underlies the perceptual ability of observers 

under “naturalistic” stimulation (i.e., broadband) relied on the activity of a single spatial 

frequency channels (Tadmor & Tolhurst, 1994; Tolhurst & Tadmor, 1997). While it has since 

been shown that multi-channel approaches to broadband stimulation better define the perception 

of natural scene stimuli (Field & Brady, 1997; Field, 1987; Graham, Chandler, & Field, 2006; 

Graham, Friedenberg, & Rockmore, 2009; Hansen & Hess, 2012; Olshausen & Lewicki, 2004; 

Párraga et al., 2005; Simoncelli & Olshausen, 2001; Simoncelli, 2003), there remained to obtain 

psychophysical evidence that the perception of natural stimuli was contingent upon the 

representation of spatial frequency content within the stimuli. Thus, in this study, we aimed to 

demonstrate that the discriminability of the distribution of luminance contrast in a broadband 

stimulus (α) was contingent upon the representation of spatial frequency content within the 

image. Additionally, as there is evidence that the natural scenes elicit high activity within lower 

spatial frequency channels (Hansen et al., 2012, 2011; Haun & Peli, 2013; Webster & Miyahara, 

1997) we aimed to investigate how the representation of low spatial frequency luminance 

contrast may affect α discrimination. We have shown here that α discrimination thresholds are 
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susceptible to low spatial frequency channel interactions when the reference α is steep. The 

facilitatory effects witnessed on α discrimination from our manipulations of low spatial 

frequency content (in particular Experiment 2.2) only occurred when the reference α was 

steeper than or equal to the average value of α in natural images (α = 1.08; Billock, 2000). These 

findings may be indicative that while 1/f noise images are broadband in spatial frequency, in that 

they contain a significant amount of luminance contrast across multiple spatial frequencies, their 

discriminability may be dependent on the activity differences between a subset of spatial 

channels tuned to the perceptually dominant scale within the stimulus to that of other channels. 

Thus, stimuli with steep α, which are perceptually dominated by lower spatial frequency content, 

may be discriminated upon according to the disproportionate responses of lower spatial 

frequency channels in comparisons to higher tuned channels.  
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Chapter 2 Tables 

Table 2.1. Reference α X Stimulus Size Repeated Measures ANOVA source table on Δαs  
Source SS df MS F p 2

pη  

A 0.06 4 0.02 4.10 .011 .406 
B 0.85 8 0.11 41.85 .000 .875 
AxB 0.02 32 0.001 0.68 .906 .101 
S 0.36 6 0.06    
AxS 0.09 24 0.004    
BxS 0.12 48 0.003    
AxBxS 0.19 192 0.001    
 Total 1.70 314 0.01    
Note. A – Reference α, B – Stimulus Size, S - Subjects 
 
Table 2.2. Main effect analysis of reference α 
Source SS SSadjusted df MS F p 2

pη  

Acubic 0.15 0.03 1 0.15 31.16 .001 .839 
S 1.39 0.28 6 0.23    
Acubic x S 0.03 0.01 6 0.01  

 
 

 Total 15.64 0.32 13 1.20    
Note. A – Reference α, S – Subjects,  cubic coefficients = [-1 2 0 -2 1]. Sums of Squares (SS) are 
adjusted by dividing each SS by an adjustment factor defined as: 2 2jc∑ , where c is the linear 
weights vector.  
 
Table 2.3. Main effect analysis of stimulus size 
Source SS SSadjusted df MS F p 2

pη  

Blinear 22.02 0.73 1 22.02 60.00 <.001 .909 
S 9.14 0.31 6 1.52    
Blinear x S 2.20 0.07 6 0.37  

 
 

 Total 166.58 1.11 13 12.81    
Note. B – Stimulus Size, S – Subjects, linear coefficients = [4 3 2 1 0 -1 -2 -3 -4]. Sums of 
Squares (SS) are adjusted by dividing each SS by an adjustment factor defined as: 2 2jc∑ , 
where c is the linear weights vector.  
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Table 2.4. Reference α X Stimulus Size Repeated Measures ANOVA source table on log ratios 
Source SS df MS F p 2

pη  

A 6.84 4 1.71 2.54 .066 .297 
B 33.54 7 4.79 63.28 < .001 .913 
AxB 1.47 28 0.05 0.83 .709 .122 
S 5.63 6 0.94    
AxS 16.15 24 0.67    
BxS 3.18 42 0.08    
AxBxS 10.63 168 0.06    
 Total 77.44 279 0.28    
Note. A – Reference α, B – Stimulus Size, S - Subjects 
 
Table 2.5. Trend analysis of the main effect of stimulus size with log ratio data 
Source SS SSadjusted df MS F p 2

pη  

Blinear 2532.70 30.15 1 2532.70 178.84 <.001 0.968 
S 403.15 4.80 6 67.19  

 
 

Blinear x S 84.97 1.01 6 14.16  
 

 
 Total 10437.42 35.96 13 802.88  

 
 

Note. B – Stimulus Size, S – Subjects, * p < .001, linear coefficients = [7 5 3 1 -1 -3 -5 -7]. 
SSadjusted are the adjusted sums of squares according to the adjustment factor: 2 2jc∑ , where c is 
the linear weights vector. 
 
Table 2.6. Trend analysis of the main effect of reference α with log ratio data 
Source SS SSadjusted df MS F p 2

pη  

Aquadratic 58.07 8.30 1.00 58.07 15.02 0.008 0.715 
S 38.82 5.55 6.00 6.47    
Aquadratic x S 23.20 3.31 6.00 3.87    
 Total 664.33 94.90 13.00 51.10    
Note. A – Reference α, S – Subjects, * p < .001, quadratic coefficients = [-2 -1 1 -1 -2] SSadjusted 

are the adjusted sums of squares according to the adjustment factor: 2 2jc∑ , where c is the 
linear weights vector. 
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Table 2.7. Reference α X Gap Size Repeated Measures ANOVA on Δαs in our center-surround 
experiment  
 Source SS df MS F p 2

pη  

Surround α = 0.7 
A 1.97 4 0.49 0.70 .600 .123 
B 2.11 5 0.42 4.61 .004 .480 
AxB 1.15 20 0.06 0.76 .751 .132 
S 3.63 5 0.73       
AxS 14.06 20 0.70       
BxS 2.29 25 0.09       
AxBxS 7.56 100 0.08       
 Total 32.78 179 0.18       

Surround α = 1.0 
A 2.50 4 0.62 1.01 .425 .168 
B 0.59 5 0.12 2.14 .093 .300 
AxB 1.06 20 0.05 0.99 .477 .166 
S 3.91 5 0.78       
AxS 12.34 20 0.62       
BxS 1.38 25 0.06       
AxBxS 5.34 100 0.05       
 Total 27.11 179 0.15       

Surround α = 1.3 
A 3.13 4 0.78 1.44 .259 .223 
B 0.46 5 0.09 1.62 .191 .245 
AxB 2.02 20 0.10 1.46 .112 .226 
S 3.62 5 0.72       
AxS 10.90 20. 0.55       
BxS 1.43 25 0.06       
AxBxS 6.91 100 0.07       
 Total 28.48 179 0.16       
Note – A – Reference α, B – Gap Size, S – Subject.  
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Table 2.8. Trend analyses on the main effect of gap size (Surround α = 0.7) 
Source SS SSadj df MS F p 2

pη  
Blinear 6.27 0.18 1 0.18 0.15 .894 .560 
S 7.59 0.22 5 0.04       
Blinear X S 4.93 0.14 5 0.03       
 Total 193.30 5.52 11 0.50       
                
Bquadratic 0.74 0.02 1 0.02 0.00 .954 .035 
S 8.49 0.20 5 0.04       
Bquadratic X S 20.57 0.49 5 0.10       
 Total 188.49 4.49 11 0.41       
                
Bcubic 5.22 0.06 1 0.06 0.03 .928 .177 
S 45.01 0.50 5 0.10       
Bcubic X S 24.19 0.27 5 0.05       
 Total 699.94 7.78 11 0.71       
Note. B – Gap Size, S – Subject. SSadjusted are the adjusted sums of squares according to the 
adjustment factor: 2 2jc∑ , where c is the linear weights vector. 
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Prologue to Chapter 3A 

The following experiment strays from the broadband approach we have previously used 

to measure the functional properties of spatial frequency channels. However, this study (Chapter 

3A) was used as a preparatory experiment for the experiment of Chapter 3B, where we use 

trans-cranial Direct Current Stimulation (tDCS) to modulate the activity of cells in the primary 

visual cortex, and verify if this technique has any impact on α discrimination thresholds. In 

Chapter 3A we first characterize the effects of tDCS across both the spatial frequency and 

orientations that define the Contrast Sensitivity Function (CSF) in order to better assess the 

spatial frequency channels most subject to the influence of tDCS. There is evidence to suggest 

that tDCS can only influence spatial frequency channels tuned to higher spatial frequency, but 

the evidence towards such a selective modulation is sparse, and often conducted with a limited 

stimulus set and a wide variety of stimulation protocols. Consequently, we opted to measure the 

effects of tDCS on contrast sensitivity to a wider range of spatial frequencies within the same 

group of observers, all under the same stimulation protocol, in order to better define the 

influence of tDCS on the CSF and guide the interpretations of our findings in Chapter 3B.  
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Abstract 

Trans-cranial Direct Current Stimulation (tDCS) has recently been employed in traditional 

psychophysical paradigms in an effort to measure direct manipulations on spatial frequency 

channel operations in the early visual system. However, the effects of tDCS on contrast 

sensitivity have only been measured at a single spatial frequency and orientation. Since contrast 

sensitivity is known to depend on spatial frequency and orientation, we ask how the effects of 

anodal and cathodal tDCS may vary according to these dimensions. We measured contrast 

sensitivity with sinusoidal gratings at four different spatial frequencies (0.5, 4, 8, and 12 

cycles/°), two orientations (45° Oblique and Horizontal), and for two stimulus size conditions 

[fixed size (3 degrees) and fixed period (1.5 cycles)]. The results showed that only contrast 

sensitivity measured with a 45° oblique grating with a spatial frequency of 8 cycles/° (period = 

1.5 cycles) demonstrated clear polarity specific effects of tDCS, whereby cathodal tDCS 

increased, and anodal tDCS decreased contrast sensitivity. Overall, effects of tDCS were largest 

for oblique stimuli presented at high spatial frequencies (i.e., 8 and 12 cycles/°), and were absent 

at lower spatial frequencies. Further, the modulatory effects of tDCS were dependent on the 

sensitivity of the observer to the stimulus, and its spatial characteristics. It therefore seems that 

the effects of tDCS are only found for high spatial frequency stimuli that generally elicit lower 

contrast sensitivity, while the effects are diminished, or absent to stimuli that elicit higher 

contrast sensitivity. 
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The early stages of visual processing rely on a series of psychophysical channels, which 

are believed to result from the outputs of functionally different neurons.  Further, the neurons 

contributing to those channels are known to operate like non-linear filters that act to extract a 

narrow range of spatial frequency and orientation content from the retinal image (Graham, 1989; 

Bergen et al., 1979; Blakemore and Campbell, 1969; Campbell and Robson, 1968; Carandini et 

al., 2005; De Valois et al., 1982, 1974; Graham and Nachmias, 1971; Maffei and Fiorentini, 

1973;  Wilson et al., 1983; Enroth-Cugell and Robson, 1966; Henning et al., 1974; Stromeyer 

and Julesz, 1972). In terms of contrast detection, the psychophysical characterization of the 

combined relative outputs of those channels is described by the Contrast Sensitivity Function 

(CSF), which serves as an index for the relative sensitivity of different psychophysical channels 

to different spatial frequencies (Blakemore & Campbell, 1969; Campbell, Maffei, & Piccolino, 

1973; De Valois et al., 1982; De Valois et al., 1974; Robson, 1966; Sachs, Nachmias, & Robson, 

1971; Tolhurst & Movshon, 1975). The shape of the CSF, which is bandpass in spatial 

frequency, peaks at a spatial frequency of about 1 cycle/° when measured with a grating of fixed 

period over spatial frequency, while its peak shifts towards higher frequencies (~4 cycles/°) 

when measured with gratings of a larger, fixed size9 (Peli, Arend, Young, & Goldstein, 1993). 

The fall-off from the peak as a function of increasing and decreasing spatial frequency can be 

attributed to several cortical constraints (Snyder and Srinivasan, 1979; Banks et al., 1987; 

Campbell et al., 1966; Robson, 1966; Kelly, 1975; Hoekstra et al., 1974; Yang et al., 1995), 

which means that measurements of contrast sensitivity for stimuli that vary in spatial frequency, 

orientation and size, can be indicative of the functional organization of channels in the early 

visual system. Psychophysical approaches have long relied on the manipulation of contrast 

sensitivity with methodologies including selective adaptation (Blakemore & Campbell, 1969; 

Kohn, 2007), masking (Legge, 1978; Legge & Foley, 1980; Olzak & Thomas, 1999; Petrov, 

Carandini, & McKee, 2005; Polat & Sagi, 1993; Sagi & Hochstein, 1985; Snowden & Hammett, 

1998; Stromeyer & Julesz, 1972; Watson & Solomon, 1997; Xing & Heeger, 2001, 2000), and 

                                                
9 When measuring contrast sensitivity with sinusoids, gratings of fixed size vary in spatial frequency by changing 
the number of grating cycles within a fixed-size aperture. This approach stems from models that viewed visual 
spatial analysis as a global Fourier analysis, which required a stimulus well localized in the Fourier domain 
(Campbell & Robson, 1968; Peli et al., 1993). More recent approaches to spatial vision view spatial analyzers as 
localized both in space and spatial frequency, which has led to the use of two-dimensional patches of gratings. The 
most common is the Gabor, a sinusoidal grating with a Gaussian envelope. It is the bandwidth of the Gaussian that 
sets the periodicity of the Gabor pattern, which is fixed across spatial frequency, while the size of the Gabor is 
scaled according to spatial frequency. 
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sub-threshold summation (Graham & Sutter, 1998; Graham & Nachmias, 1971; Robson & 

Graham, 1981; Stromeyer & Klein, 1975; Watson, 1979) to define the independent and 

interactive properties of spatial frequency and orientation channels in striate cortex. While these 

methods have been seminal in our current understanding of the early visual system, their 

approach to channel analysis has predominantly been indirect: altered channel behaviour, which 

results in a change of performance from the observer, cannot be attributed to anything other than 

manipulations of the stimulus presented to observers.  

Neuro-stimulation techniques have recently been combined with traditional 

psychophysical paradigms in an effort to obtain a measure of a direct manipulation on channel 

behaviour in the early visual system (review: Antal, Nitsche, & Paulus, 2006). One technique 

that is gaining popularity due to its affordability and simplicity is trans-cranial Direct Current 

Stimulation (tDCS), a non-invasive brain stimulation technique that transiently modulates 

excitation and inhibition in the human brain via alterations in the membrane potential of neurons 

(Antal, Nitsche, & Paulus, 2001; Antal et al., 2006; Nitsche et al., 2008; Stagg & Nitsche, 2011; 

Stagg et al., 2009). The technique involves a stimulating device that delivers a mild direct current 

(DC) between two electrodes (anode and cathode) placed on the scalp of an observer in order to 

create a resistive DC circuit that induces a mild intra-cerebral electrical current from the anode 

electrode where current enters cortex, to the cathode electrode where current exits the cortex. 

The direction of current flow, whether it enters (anode) or exists (cathode) a particular cortical 

area has been reported to have differential effects on the behaviour of neurons located directly 

beneath the electrode (Antal et al., 2012; Bikson & Rahman, 2013; Jacobson, Koslowsky, & 

Lavidor, 2012; Paulus, 2011; Stagg & Nitsche, 2011). Specifically, when applied over motor 

cortex (M1), anodal stimulation (a-tDCS) generates a sub-threshold depolarization, while 

cathodal (c-tDCS) stimulation hyperpolarizes the membrane potential of neurons (Bikson & 

Rahman, 2013; Jacobson et al., 2012; Nitsche et al., 2008; Paulus, 2011; Pellicciari, Brignani, & 

Miniussi, 2013; Radman, Ramos, Brumberg, & Bikson, 2009; Rahman et al., 2013; Reato, 

Rahman, Bikson, & Parra, 2010; Stagg & Nitsche, 2011). The polarity specific effects of tDCS 

on motor cortex have also been associated with measurable performance changes, with a-tDCS 

reported to have a facilitative effect and c-tDCS an inhibitive effect on task performance (Antal 

& Paulus, 2008; Jacobson et al., 2012; Nitsche & Paulus, 2000; Nitsche, Fricke, et al., 2003; 

Nitsche, Nitsche, et al., 2003; Pellicciari et al., 2013; Stagg & Nitsche, 2011; Stagg et al., 2009). 
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In motor cortical areas (M1), these effects are robust: a recent meta-analysis found that the a-

tDCS facilitatory effect and c-tDCS inhibitory effect over motor cortex both generated average 

effect sizes of ~0.6 standard deviations (Jacobson et al., 2012). However, in other cortical areas, 

the polarity specific effects of tDCS readily found in M1 are often absent, and in the primary 

visual cortex, are rarely found at all. Only effects of either anodal or cathodal tDCS are usually 

observed in striate cortex, or if there are polarity specific effects, they are opposite to those found 

in motor cortex (Accornero, Li Voti, La Riccia, & Gregori, 2007; Antal, Kincses, Nitsche, 

Bartfai, & Paulus, 2004; Antal & Paulus, 2008; Antal et al., 2012; Antal, Ambrus, & Chaieb, 

2014; Antal, Kincses, Nitsche, & Paulus, 2003a, 2003b; Antal et al., 2001; Antal, Nitsche, et al., 

2004; Jacobson et al., 2012; Kraft et al., 2010; Lang et al., 2007; Olma, Kraft, Roehmel, 

Irlbacher, & Brandt, 2011; Peters et al., 2013; Spiegel et al., 2013, 2012). Part of the variability 

in the effectiveness and polarity specific effect of tDCS over various cortical loci can be 

attributed to structural differences (e.g., cell type and morphology and the direction of current 

flow in relation to the somatodendritic axis), or the functional complexity difference between 

stimulated areas (Bikson & Rahman, 2013; Radman et al., 2009; Reato et al., 2010; Rushton, 

1927; Shipp, 2005; Ward & Weiskrantz, 1969).  It should therefore come as no surprise that 

effects of tDCS over the visual cortex, which is both structurally and functionally different than 

motor cortex, are less clear. 

There are indications that the resistive DC circuit generated by tDCS can modulate 

visually responsive areas, and have distinctive effects according to the polarity of the circuit 

(anodal or cathodal). There have been a multitude of approaches to define the effects of tDCS 

over striate cortex (Accornero et al., 2007; Antal et al., 2014, 2003a, 2003b; Antal, Kincses, et 

al., 2004; Antal, Nitsche, et al., 2004), of note to the goals of the current study have been the 

findings pertaining to contrast detection thresholds modulation by tDCS. These have been shown 

to be facilitatory (i.e., contrast sensitivity improved) under a-tDCS when contrast sensitivity was 

measured with a grating of spatial frequency at the peak of the CSF (Peters et al., 2013; Spiegel 

et al., 2013), while effects at or next to the peak have been both facilitatory under a-tDCS (Kraft 

et al., 2010) and inhibitory under c-tDCS (Antal et al., 2001; Chaieb et al., 2008). However, it is 

important to note that these studies have used a varied set of stimulus spatial frequency and 

orientations to define the effects of tDCS, which clouds any in-depth assessment of how the 

magnitude of the effects of tDCS may vary according to the particular stimulus dimensions 
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presented to observer (e.g., a spatial frequency and orientation). This is of particular importance 

as the shape of the CSF is known to vary according to changes in stimulus dimensions (Campbell 

et al., 1966; Graham, 1989; Peli, Arend, Young, & Goldstein, 1993). In addition, the trademark 

anodal-excitatory and cathodal-inhibitory polarity specific effect of tDCS has yet to be reported 

on contrast sensitivity measurements completed within the same sample of “normal” 

psychophysical observers (note that a sample of individuals with amblyopia did show facilitatory 

effects of a-tDCS in their amblyopic eye, and inhibitory effects of c-tDCS in their fellow eye; 

Spiegel et al., 2013). Nevertheless, these findings are impressive as changes in contrast detection 

thresholds to simple sinusoidal gratings, particularly facilitatory effects, are traditionally quite 

difficult to obtain (Adini, Sagi, & Tsodyks, 2002; Adini, Wilkonsky, Haspel, Tsodyks, & Sagi, 

2004; Dorais & Sagi, 1997; Li, Polat, Makous, & Bavelier, 2009; Maehara & Goryo, 2007). 

Typically, extensive training on contrast sensitivity tasks will only show improvement when 

measured under situations that generally elicit poor contrast sensitivity (e.g., peripheral viewing, 

or gratings with non-cardinal orientations; Sowden et al., 2002). The current findings on the 

effects of tDCS on contrast sensitivity suggest similar limitation to the benefits, or detriment, of 

this stimulation technique. That is, although the neuro-modulatory effects of tDCS may be 

sufficient to manipulate the response characteristics of visually responsive cells in striate cortex, 

and generate measurable changes in psychophysical performance, they too may be subject to the 

stimulus dimensions presented to observers, as has been suggested by other neuro-stimulation 

studies (Antal et al., 2001; Thompson, Mansouri, Koski, & Hess, 2008). It remains unclear how 

the dimensions of the stimulus used to measure contrast sensitivity may influence the magnitude 

of tDCS related effects. 

The goal of the current study was to assess how the effects of tDCS vary according to the 

stimulus dimensions (spatial frequency and orientation) presented to observers when measuring 

contrast sensitivity. Given the known functional organization of the early visual system, and the 

properties of the DC circuit generated by tDCS, certain predictions as to the interaction of tDCS 

and stimulus dimension can be made. The effects of either a-tDCS or c-tDCS on contrast 

sensitivity should be greatest at high spatial frequencies, and diminish with decreasing spatial 

frequency. The magnitude of the electrical field generated by tDCS is greatest on the cortical 

surface, and decreases within the sulci of cortex (Miranda, Lomarev, & Hallett, 2006; Miranda, 

Mekonnen, Salvador, & Ruffini, 2013; Rahman et al., 2013). In striate cortex, this means that 
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stimuli presented further than 2° eccentricity from fovea are not affected by tDCS (Kraft et al., 

2010; but see Costa et al., 2015). As neurons located deeper into the calcarine sulcus have lower 

preferred spatial frequencies than cells at the apex of cortex, they should not be modulated by 

tDCS (De Valois et al., 1982; Engel, Glover, & Wandell, 1997; Foster, Gaska, Nagler, & Pollen, 

1985; Henriksson, Nurminen, Hyvärinen, & Vanni, 2008; Horton, 2006; Tootell, Silverman, & 

De Valois, 1981; Tootell, Switkes, Silverman, & Hamilton, 1988; Yu et al., 2010). In regards to 

the orientation of the gratings used to measure contrast detection thresholds, as previous work 

has shown the effects of tDCS to be constrained by the sensitivity of the observer to the stimulus 

dimensions, greater effects of tDCS to oblique orientations than cardinal orientations may be 

expected, as humans are less sensitive to oblique (the "Oblique Effect"; Appelle, 1972; Campbell 

et al., 1966). It is possible we will find polarity specific effects of tDCS on the orientation of 

gratings that would reduce the magnitude of contrast sensitivity differences between cardinal and 

non-cardinal orientations; a-tDCS may increase contrast sensitivity measured with oblique 

gratings, while c-tDCS may decrease contrast sensitivity to horizontal gratings, effectively 

decreasing the magnitude of the “Oblique Effect”. However, we may also find the higher 

contrast sensitivity obtained with horizontal gratings to be completely unaffected by tDCS, in a 

manner similar to experiments that have tried to increase contrast sensitivity with more 

traditional training techniques (Sowden et al., 2002). We aimed to better define how the effects 

of tDCS on low-level visual processes might be constrained, or altered, by the stimulus 

dimensions presented to observers. We measured changes in contrast sensitivity from a non-

stimulation baseline under both a-tDCS and c-tDCS to gratings at four different spatial 

frequencies that span the contrast sensitivity function (0.5, 4, 8, and 12 cycles/°) and two 

stimulus orientations (45° oblique or Horizontal). Whilst we find effects of tDCS on contrast 

sensitivity, we also show that these effects are, just as has been previously reported (Antal et al., 

2001; Li et al., 2009; Sowden et al., 2002; Thompson et al., 2008), constrained to stimulus 

dimensions that generally elicit poorer contrast sensitivity. 

Experiment 3.1 

Method 

Participants 

A total of 26 undergraduate students participated in the behavioural portion of this study 

(baseline), out of which 20 continued onto the tDCS portion of this study. All observers but two 
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were naïve to the goals of the experiment. Observers were prevented from moving onto the tDCS 

sessions when their contrast detection thresholds measured just prior to the application of tDCS 

exceeded 2 standard deviations of their average thresholds measured in the behavioural portion 

of this study. Participants that continued onto the tDCS sessions were separated into two groups; 

10 (Nfemale = 7, Mage = 20.2) participants were presented with oblique gratings while the other 10 

(Nfemale = 5, Mage = 20.5) saw horizontal gratings. Two of the participants in the oblique 

orientation completed the experiment at Concordia University (Montreal, Quebec, Canada), 

while data for all other participants in this study were collected at Colgate University (Hamilton, 

New York, USA). All participants had normal, or corrected-to-normal visual acuity (Snellen cut-

off = 20/25) and no astigmatism. Written informed consent was obtained from all participants 

and all participants were treated in accordance to the Tri-Council Policy Statement: Ethical 

Conduct for Research Involving Humans (Medical Research Council of Canada, 2003), and were 

compensated financially for their time.  

Apparatus 

All stimuli were presented on 22.5” Viewsonic (G225fB) monitors driven by a dual core 

Intel® Xeon® processor (1.60GHz x2) equipped with 4GB RAM and a 256MB PCIe x16 ATI 

FireGL V7200 dual DVI/VGA graphics card with 8-bit grayscale resolution at Colgate 

University and an Apple Mac Pro (2 X 2.66GHz processor) equipped with 8GB of RAM and a 

1GB PCIe x16 ATI Radeon HD 5770 Graphics card with 8-bit grayscale resolution. The color 

management settings for the graphics card (i.e., 3D display settings) were adjusted such that the 

luminance “gain” of the green gun was twice that of the red gun, which was set to twice that of 

the blue gun. A bit-stealing algorithm (Bex et al., 2007; Tyler, 1997) was employed to yield 10.8 

bits of luminance (i.e., grayscale) resolution (i.e., 1785 unique levels) distributed evenly across a 

0-255 scale. Stimuli were displayed using a linearized look-up table, generated by calibrating 

with a Color-Vision Spyder3 Pro sensor. Maximum luminance output of both display monitors 

was 100 cd/m2 (50 cd/m2 mean luminance after calibration). The frame refresh rate was set to 85 

Hz (100 Hz at Concordia), and the resolution was set to 1600 x 1200 pixels (1024 X 768 pixels 

at Concordia). Single pixels subtended .0134° (.0381° at Concordia) of visual angle, i.e., 0.80 arc 

min. (2.28 arc min. at Concordia) as viewed from 1.0 meter. Head position was maintained with 

a chin rest. Participants viewed the display monitor from 2 meters in a dark room through an 
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aperture (16° of visual angle in diameter) of a large black circular mask that was fit to the 

monitor bezel in order to obscure any monitor or room orientation cues.  

Trans-cranial Direct Current was generated with a 9V battery driven direct current 

stimulator (Chattanooga Ionto, USA) and delivered via a pair of carbon-rubber electrodes (The 

Magstim Company Ltd., UK). The electrodes were encased in potassium chloride soaked 

Spontex sponge pockets (The Magstim Company Ltd., UK). The size of the stimulating electrode 

was 6 × 8 cm, and the size of the reference electrode was 12 × 8 cm. The larger size of the 

reference electrode renders it inert due to low current density (Nitsche et al., 2007; Spiegel et al., 

2012). Both electrodes were held in place with four Magstim rubber headbands (The Magstim 

Company Ltd., UK), applied in a manner that maximized complete electrode sponge surface 

contact over the targeted scalp regions. 

Stimuli 

Stimuli consisted of foveally presented sinusoidal gratings generated at one of either two 

orientations: oblique (45°) or horizontal (90°). All gratings were windowed by a 2D Gaussian, 

which ramped down the contrast to mean luminance. Stimulus spatial frequency was 0.5, 4, 8, or 

12 cycles/°, with a period of 1.5 cycles (fixed period condition). The electrical field generated by 

tDCS is prominently focused onto the surface of the visual cortex, which limits the spatial extent 

of the visual field modulated by tDCS to the central 1-2° of the visual field (Kraft et al., 2010). 

As the effects of tDCS change as both a function of spatial frequency and stimulus area, we 

added a second stimulus condition and measured contrast sensitivity with a fixed stimulus size 

(3°), and adjusted the period of the stimulus with spatial frequency (fixed stimulus size 

condition). All stimuli were surrounded by a low contrast ring (Michelson Contrast = 10%) 1 

pixel in size, 0.78° away from the border of the grating, and paired with a low frequency tone; 

both served to minimize participant doubt as to the location and/or presence of the stimulus on 

the screen. Stimulus contrast was expressed as Michelson contrast = ( ) ( )max min max minL L L L− +⎡ ⎤⎣ ⎦  
scaled to have zero mean and then normalized to 1.0.   

Psychophysical Procedure 

The within-subject stimulus conditions for this experiment consisted of four spatial 

frequencies (0.5, 4, 8, and 12 cycles/°), and two period conditions (fixed period and fixed size). 

Observers were grouped according to the stimulus orientation (45° oblique or horizontal). The 

psychophysical procedure for both the training and test phases were identical. The stimulus 
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presentation procedure consisted of a 2-Interval Force Choice (2-IFC) procedure where 

participants had to indicate the interval, either the first or the second, which contained the target. 

Target contrast was controlled by a 2-up, 1-down staircase setup and controlled by the 

PAL_AMUD_setupUD and the PAL_AMUD_updateUD functions from the Palamedes toolbox 

for MATLAB (Kingdom & Prins, 2010; Prins & Kingdom, 2009). Threshold was approached 

from above with a target contrast step size of 0.05% Michelson contrast. Each staircase ran until 

12 reversals were observed and the averaged target contrast value of the last 5 reversals was used 

as an estimate of target contrast threshold (70.71% correct on the psychometric function).  

All staircases completed by observers began with an instruction screen that informed 

them of the spatial frequency and size condition of the stimulus (orientation never changed 

within observers). Each trial began with a black fixation dot (0.1°) presented at the center of the 

screen. The fixation dot served both to remind the observer a stimulus will appear shortly and the 

location of said stimulus. The fixation screen (300ms) was followed by a blank screen (150ms) 

set to mean luminance, and then the first stimulus interval, with an onset that followed a square-

wave function and remained on the screen for 150ms. This sequence was repeated for the second 

stimulus interval (see Figure 3A.1). One interval contained the stimulus, surrounded by a low-

contrast ring, while the other interval contained only a low-contrast ring. Participants indicated, 

via keyboard press, the interval that they believed contained the target. The duration of the 

response interval was unlimited, and participants received no feedback on their accuracy. Each 

spatial frequency by stimulus size block was repeated 10 times by observers in the baseline 

portion of the study, for a total of 80 staircase blocks, which approximately took 5 hours to 

complete over multiple sessions that lasted no more than an hour. All staircase blocks were 

randomly interleaved for each observer, and only the final 8 stimulus blocks were kept for data 

analysis. The contrast sensitivity of observers across each sequential measurement for all spatial 

frequency and stimulus size conditions is shown in Figure 3A.A1 (Supplemental Material A), 

separated by orientation group. The 20 observers (10 per orientation group) that continued onto 

the tDCS portion of this study showed no statistically significant increment or decrement in 

contrast sensitivity across the final 8 stimulus blocks completed during baseline (the slope of the 

line of best fit across all 8 stimulus blocks was tested against 0, all ps > .05), which is consistent 

with others that have shown either small (Li, Polat, Makous, & Bavelier, 2009; Sowden, Rose, & 

Davies, 2002), or no changes in the CSF over sequential measurements in healthy adults (Adini   
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Figure 3A.1. General psychophysical procedures completed by all observers in this study. A 

Stimulus presentation sequence (see text for details). B Contrast sensitivity was measured for 

both stimuli of a fixed size and fixed period, at 4 different spatial frequencies (0.5, 4, 8, and 12 

cycles/°). Groups (n = 10 per group) were split according to stimulus orientation (45° oblique, 

and horizontal). Stimuli in the fixed period condition do not represent the actual change in size of 

our stimuli during the staircase, and are a graphical representation of the different stimulus 

dimensions used in this study. Stimuli of a fixed size subtended 3° of visual angle while stimuli 

of a fixed period had a period of 1.5 cycles.  
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et al., 2002, 2004; Dorais & Sagi, 1997; Maehara & Goryo, 2007). 

tDCS Procedure 

Trans-cranial Direct Current Stimulation is known to be a safe neuro-stimulation 

technique with no long lasting negative side effects, it is nevertheless important to limit the 

duration of stimulation to no more than 30-35 minutes (Bikson, Datta, & Elwassif, 2009; 

Nitsche, Liebetanz, et al., 2003; Poreisz, Boros, Antal, & Paulus, 2007). In order to meet this 

time restriction, the number of repetitions for each spatial frequency by stimulus size block was 

set to two. The total number of staircases completed by observers while receiving tDCS was 16 

(four spatial frequencies by two stimulus size conditions by two repetitions). Prior to receiving 

either anodal or cathodal stimulation, participants completed two staircases for each spatial 

frequency by stimulus size blocks, which were combined with the 8 stimulus blocks from the 

baseline portion of this study and used as a pre-stimulation baseline (see Supplemental 

Material A, Figure A2). If contrast detection thresholds exceed their average baseline 

thresholds by at least two SDs, participants were asked to repeat the pre-stimulation baseline 

measurements. If thresholds following the repetition remained two SDs away from average 

thresholds, participants were excused from the study.  

Immediately following baseline measurements, participants repeated the 16 staircases 

while receiving tDCS (time to complete: M = 21.05 minutes, SD = 2.74). All observers 

completed two stimulation sessions (anodal and cathodal, counterbalanced across participants) 

with no less than 48 hours between sessions. As both anodal and cathodal tDCS have been 

shown to produce differential effects on contrast detection performance (see Antal et al., 2001; 

Jacobson et al., 2012; Spiegel et al., 2012; Kraft et al., 2010), we used both stimulation 

conditions to serve as a control of the other. Specifically, we prioritize any relative effects 

whereby tDCS polarity differentially modulated contrast sensitivity for a particular stimulus 

dimension within our observers. This allowed us to avoid certain confounds that have been 

associated with sham stimulation in neurostimulation designs (for review: Duecker & Sack, 

2015), specifically, while observers are unable to differentiate between anodal and cathodal 

tDCS, they have been shown to easily detect when they receive sham stimulation (Minhas, Datta, 

& Bikson, 2011; Peters et al., 2013; Spiegel et al., 2012), which may alter their response pattern 

and therefore serve as a poor control for neurostimulation.  



 

 

72 

Injecting current was set to 2mA, which yielded a stimulation current density of 0.042 

mA/cm2 over striate cortex. The stimulation and reference electrode were positioned over Oz and 

Cz respectively, in accordance with the 10-20 EEG system (Antal, Kincses, et al., 2004; 

Chatrian, Lettich, & Nelson, 1985). Under anodal stimulation, current was sent from the smaller, 

stimulating electrode placed over Oz to the larger reference electrode placed over Cz, while 

current direction was reversed under cathodal stimulation. The current was initially ramped up, 

over a period of 30 seconds and participants waited for a minute once the current ramped-up so 

the experimenter could verify comfort levels. When participants completed the 16 staircases, the 

current was ramped back down to 0 over a period of 30 seconds. Once the experimental session 

was completed, participants completed a post-stimulation checklist to verify for any minor side-

effects (Nitsche et al., 2008) – none were reported.  

Statistical Analyses 

Contrast detection thresholds (cthreshold) were transformed to dB sensitivity units, 

( )1020log 1dB thresholdCS c= , prior to analyses. Given that the non-shunted direct current that 

enters cortex with tDCS is several orders of magnitude less than what is required to elicit action 

potentials, we expected any influence of tDCS on psychophysical performance to be relatively 

small and therefore approached our analysis both at the group level (i.e., ANOVAs and 

appropriate effect sizes reported using both Hedge’s g andηp
2 ) and at the case level (e.g., Left 

Tail Ratios). Left-Tail Ratios (LTRs) are a case level analysis designed to assess the relative 

proportion of contrast sensitivity measurements recorded during stimulation to those of pre-

stimulation in the left-tail of the combined distribution (Kline, 2004). When combined, both 

group and case level analyses offer a thorough descriptive approach of the data by quantifying 

effects both in central tendency and spread of the distribution of contrast sensitivity values. LTRs 

are calculated with the largest proportion as the numerator (regardless of time-point affiliation), 

in the following sections, values marked by an asterisk (*) indicate that the pre-stimulation 

contrast sensitivity values were over-represented in the left tail of the combined distribution. 

Interval estimates reported for Hedge’s g effect size measures are exact 95% confidence intervals 

calculate from the non-central t distribution (see Supplemental Material B; Cumming & Finch, 

2001; Kline, 2004). Interval estimates for ηp
2  variance accounted for effect sizes are not reported, 
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as their distribution in correlated designs are complex and do not follow a central nor a non-

central test distribution (Kline, 2004). 

Results 

As data collection for two observers in the oblique orientation group was completed at 

Concordia University, we verified that their contrast sensitivity values from both the baseline and 

tDCS phases of the study were identical to those of the Colgate University sample by calculating 

U1 (see Supplemental Material B; Cohen, 1988), a measure of overlap with range [0 1]: values 

of 0 indicate complete overlap between both samples, while values of 1 indicate no overlap 

whatsoever. The average contrast sensitivity values from baseline, and both the a-tDCS and c-

tDCS sessions for both the Colgate and Concordia samples can be seen in Figure 3A.2. At 

baseline, there was significant overlap between contrast sensitivity measures collected at both 

testing facilities (U1 never exceeded .27). We found similar overlap between the Concordia and 

Colgate samples for both the a-tDCS and c-tDCS sessions, U1 values were all below .37, except 

for contrast sensitivity measured under a-tDCS with fixed size stimuli of spatial frequency 4 

cycles/° (U1 = .87). However, given that contrast sensitivity values were slightly discrepant for a 

single stimulus condition block, and that data still overlapped slightly between both samples, we 

decided to average contrast sensitivity values collected at both testing locations for all 

subsequent analyses.  

Fixed period oblique and horizontal stimuli 

The average effects of both a-tDCS and c-tDCS on fixed period oblique gratings can be 

seen in Figure 3A.3. We conducted a 2 (tDCS polarity) × 4 (spatial frequency) repeated 

measures ANOVA on the difference scores (stimulation – pre-stimulation) to test for any spatial 

frequency dependent or polarity specific effect of tDCS on contrast sensitivity values. We found 

a statistically significant interaction between tDCS polarity and spatial frequency, F(3, 27) = 

8.10, p < .001, ηp
2   = .474. A simple effect analysis, found that the interaction term stemmed 

from a contrast sensitivity decrease under a-tDCS and increase under c-tDCS at a spatial 

frequency of 8 cycles/°, F(1, 9) = 20.79, p < .001, ηp
2  = .698. At a descriptive level, a-tDCS 

decreased contrast sensitivity during stimulation to higher spatial frequencies (≥ 4 cycles/°) by a 

third of a standard deviation (4 cycles/°: g = -0.40, 95% CI [-0.78 -0.03], LTR = 4.34; 8 cycles/°: 

g = -0.32, 95% CI [-0.60 -0.03], LTR = 12.67; 12 cycles/°: g = -0.36, 95% CI [-0.70 -0.01], LTR 

= 124.19). Left- Tail Ratios increased as a function of spatial frequency, and observers under a-   
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Figure 3A.2. Contrast sensitivity values collected from Colgate University (solid lines) and 

Concordia University (dashed line) at baseline and during tDCS for all oblique stimulus 

condition blocks. For all conditions, contrast sensitivity values from both samples overlapped 

significantly and were therefore averaged for all analyses.   
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Figure 3A.3. A Average pre-stimulation (gray) and stimulation contrast sensitivity functions for 

both a-tDCS (red) and c-tDCS (blue) measured with the oblique fixed period gratings (at spatial 

frequencies of 0.5, 4, 8, and 12 cycles/°). Contrast sensitivity is presented in decibels (dB). Error 

bars represent the standard error of the mean difference calculated across observers. B Effect size 

measures of the mean difference contrast sensitivity measured at stimulation and at pre-

stimulation. Contrast sensitivity measured at 8 cycles/° shows a polarity specific effect of tDCS, 

whereby a-tDCS decreased contrast sensitivity and c-tDCS increased contrast sensitivity. Error 

bars represent the exact 95% confidence interval of the effect size.  
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tDCS were 124 than in the pre-stimulation condition at a spatial frequency of 12 cycles/°. 

Conversely, c-tDCS had little influence on contrast sensitivity values, other than for the increase 

in contrast sensitivity to the 8 cycles/° (g = 0.24, 95% CI [-0.03 0.50], LTR = 1.66). The average 

effects of both a-tDCS and c-tDCS on fixed period horizontal gratings are shown in Figure 

3A.4. Unlike the oblique fixed period grating, we do not find a statistically significant interaction 

between tDCS and spatial frequency, F(3,27) = 1.97, p = .585, ηp
2  = .179. In fact, the magnitude 

of the difference scores under a-tDCS decreased as a function of increasing spatial frequency (4 

cycles/°: g = 0.22, 95% CI [-0.13 0.57], LTR = 1.34*; 8 cycles/°: g = -0.15, 95% CI [-0.42 0.13], 

LTR = 1.23; 12 cycles/°: g = -0.02, 95% CI [-0.34 0.31], LTR =3.39). At the case-level,  

observers receiving a-tDCS were more likely to have a contrast sensitivity value one standard 

deviation below the mean of the combined distribution at higher spatial frequencies. Cathodal 

tDCS increased contrast sensitivity for all four spatial frequencies (0.5 cycles/°: g = 0.25, 95% 

CI [-0.19 0.67], LTR = 2.53*; 4 cycles/°: g = 0.13, 95% CI [-0.17 0.42], LTR = 24.80; 8 

cycles/°: g = 0.19, 95% CI [-0.11 0.48], LTR = 7.52) and this effect was most pronounced at a 

spatial frequency of 12 cycles/° (g = 0.35, 95% CI [-0.02 0.71], LTR = 1.70). Although we found 

small effects at the group-level, case-level analyses showed that as spatial frequency increased, 

observers receiving c-tDCS were progressively less likely to have a contrast sensitivity score one 

standard deviation below the mean of the combined distribution, which suggest some 

improvement in contrast sensitivity under c-tDCS.  

 In order to directly compare the effects of tDCS across orientation, we calculated 

Hedge’s g (with 95% confidence intervals – built for an independent sample design – see 

Supplementary Materials B) to standardize the mean difference in contrast sensitivity values 

between oblique and horizontal gratings for baseline measures (combined across baseline and 

both pre-stimulation sessions), and for both stimulation conditions (see Figure 3A.5). At 

baseline, we found that the magnitude of the difference between horizontal and oblique grating 

contrast sensitivity increased as a function of spatial frequency. Horizontal contrast sensitivity 

exceeded that of oblique by two thirds of a standard deviation at a spatial frequency of 12 

cycles/° (g = 0.62, 95% CI [-0.29 1.51]). Under tDCS, we found that a-tDCS increased the 

difference between contrast sensitivity to horizontal and oblique gratings at a spatial frequency 

of 4 cycles/° (g = 0.96, 95% CI [.02 1.88]) while c-tDCS had the same effect for a spatial 

frequency of 12 cycles/° (g = 0.96, 95% CI [0.02 1.88]). The difference in contrast sensitivity   



 

 

77 

 
Figure 3A.4. A Average pre-stimulation and stimulation contrast sensitivity functions for both a-

tDCS and c-tDCS measured with the horizontal fixed period gratings (at spatial frequencies of 

0.5, 4, 8, and 12 cycles/°). Contrast sensitivity is presented in decibels (dB). Error bars represent 

the standard error of the mean difference calculated across observers. B Effect size measures of 

the mean difference contrast sensitivity measured at stimulation and at pre-stimulation. We 

found a large increase in contrast sensitivity measured with the 12 cycles/° horizontal, fixed 

period grating during c-tDCS. Error bars represent the exact 95% confidence interval of the 

effect size.   
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Figure 3A.5. Effect size of the mean difference between contrast sensitivity measured with 

horizontally orientated gratings and oblique orientated gratings. Gray bars represent the 

respective pre-stimulation baseline for either a-tDCS (red) or c-tDCS (blue) contrast sensitivity 

difference between horizontal and oblique gratings. We do find a-tDCS to increase the difference 

between contrast sensitivity measured to horizontal gratings and that of oblique gratings at a 

spatial frequency of 4 cycles/° and for c-tDCS to have a similar effect at a spatial frequency of 12 

cycles /°. Error bars represent the exact 95% confidence interval for the mean difference effect 

size (effect sizes here are standardized on the pooled standard deviation). 
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between horizontal and oblique gratings measured to other spatial frequencies was not affected 

by a-tDCS or c-tDCS. 

Fixed size oblique and horizontal stimuli 

 The average effects of both a-tDCS and c-tDCS on oblique gratings of a fixed size are 

shown in Figure 3A.6. The repeated measures ANOVA conducted on the difference scores 

(stimulation – pre-stimulation) of the fixed size oblique stimuli did not return a statistically 

significant interaction of tDCS by spatial frequency, F(3, 27) = 0.65, p = .585, ηp
2 = .068. 

However, the analysis did return a statistically significant main effect of tDCS polarity F(1, 9) = 

9.23, p = .014, ηp
2  = .506. Anodal tDCS, on average, decreased contrast sensitivity while c-tDCS 

increased contrast sensitivity, regardless of spatial frequency. At high spatial frequencies, a-

tDCS decreased contrast sensitivity to the 8 cycles/° grating slightly (g = -.14, 95% CI [-0.41 

0.68], LTR = 34.84) and the 12 cycles/° grating (g = -.33, 95% CI [-0.65 0.01], LTR = 14.25). 

Interestingly, the LTRs did not increase as a function of spatial frequency, but instead were 

greatest at spatial frequencies of 4 and 8 cycles/° and slightly smaller for the 12 cycles/° grating. 

Cathodal tDCS increased contrast sensitivity for all spatial frequencies, but its largest effects 

were found for gratings of a spatial frequency of 4 cycles/° (g = 0.31, 95% CI [-0.26 0.86], LTR 

= 15.65). Unlike the fixed period oblique gratings, we find no clear tDCS polarity specific effect 

for any of the high spatial frequencies tested here as c-tDCS had little effect on the 8 cycles/° 

grating contrast sensitivity (g = 0.13, 95% CI [-0.25 0.51], LTR = 1.28*) and the 12 cycles/° 

grating contrast sensitivity (g = 0.21, 95% CI [-0.10 0.51], LTR = 2.37*). The case-level 

analyses do, however, suggest there may be a tDCS polarity specific effect. Observers were more 

likely to have a contrast sensitivity value one standard deviation below the mean of the combined 

distribution at a spatial frequency of 12 cycles/° when receiving a-tDCS while they were not 

when receiving c-tDCS. Larger stimuli with varying period may have moderated the effects of 

tDCS and shifted any noticeable effects to higher spatial frequencies.  

The effects of tDCS on contrast sensitivity values measured to a horizontal grating of a 

fixed size and variable period can be seen in Figure 3A.7. We found no interaction effect 

between tDCS polarity and spatial frequency, F(3,27) = 2.83, p = .057, ηp
2  = .239. Similarly, no 

discernable spatial frequency dependent effects of a-tDCS were observed when directly 

measuring the magnitude of the difference score in contrast sensitivity: under a-tDCS, effect 

sizes were small and oscillated between increments 8 cycles/°: g = 0.05, 95% CI [-0.30 0.40],   
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Figure 3A.6. A Average pre-stimulation (gray) and stimulation contrast sensitivity functions for 

both a-tDCS (red) and c-tDCS (blue) measured with the oblique fixed size gratings (at spatial 

frequencies of 0.5, 4, 8, and 12 cycles/°). Contrast sensitivity is presented in decibels (dB). Error 

bars represent the standard error of the mean difference calculated across observers. B Effect size 

measures of the mean difference contrast sensitivity measured at stimulation and at pre-

stimulation. We find a-tDCS to decrease contrast sensitivity while c-tDCS increases it. We found 

no statistically significant polarity specific effect of tDCS on contrast sensitivity measured here. 

However, at there are indications (both at the group-level and case-level analyses) of a tDCS 

polarity specific effect on contrast sensitivity measured to our highest spatial frequency (12 

cycles/°). Error bars represent the exact 95% confidence interval of the effect size.  
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Figure 3A.7. A Average pre-stimulation (gray) and stimulation contrast sensitivity functions for 

both a-tDCS (red) and c-tDCS (blue) measured with the horizontal fixed size gratings (at spatial 

frequencies of 0.5, 4, 8, and 12 cycles/°). Contrast sensitivity is presented in decibels. Error bars 

represent the standard error of the mean difference calculated across observers. B Effect size 

measures of the mean difference contrast sensitivity measured at stimulation and at pre-

stimulation. We found no effect of tDCS polarity on contrast sensitivity measured with this 

particular stimulus, but do find a large increase in contrast sensitivity to our 8 cycle/° grating 

under c-tDCS. Error bars represent the exact 95% confidence interval of the effect size.  
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LTR = 2.61) and decrements (4 cycles/°: g = -0.13, 95% CI [-0.59 0.33], LTR = 109.22; 12 

cycles/°: g = -0.10, 95% CI [-0.38 0.18], LTR = 4.17) in contrast sensitivity across spatial 

frequency. Unlike its oblique counterpart, LTRs for horizontal stimuli under a-tDCS were small, 

which is indicative of little change in the proportion of scores in the left tail of the combined 

distribution (the large LTR for the 4 cycle/° is most likely due to the high sensitivity and low 

variability of contrast sensitivity measured prior to stimulation, see Figure 3A.A4). There was a 

large facilitatory effect of c-tDCS on contrast sensitivity measured to the 8 cycles/° (g = 0.51, 

95% CI [0.06 0.93], LTR = 1.60*) horizontal gratings. However, at the case-level, the effect is 

relatively small as observer contrast sensitivity to horizontal 8 cycle/° gratings were only 1.6 

times more likely to fall in the left tail of the combined distribution at baseline than when 

receiving stimulation.  

tDCS modulated the magnitude of the oblique effect (see Figure 3A.8). We did observe 

an increase in the magnitude of the oblique effect by half a standard deviation from baseline 

under c-tDCS for the 8 cycles/° grating (g =1.38, 95% CI [0.39 2.36]), which reflects the large 

increase in the average contrast sensitivity of observers to the 8 cycles/° horizontal grating that 

was not observed for the oblique grating. The overlap between baseline and tDCS contrast 

sensitivity difference scores suggests the application of tDCS had no impact on the magnitude of 

the oblique effect in our fixed size stimuli. 

The effects of tDCS on low spatial frequency contrast sensitivity 

It is important to note that while we do find that the contrast sensitivity to a grating with a 

spatial frequency of 0.5 cycles/° can be affected by tDCS, these effects are unlikely to be 

indicative of a true modulation in contrast sensitivity under tDCS. The 0.5 cycles/° grating were 

identical in both the fixed period and fixed size condition, and attributing contrast sensitivity to 

either condition was arbitrary in our analysis. When both the fixed period and fixed size 

conditions are combined, we find that both a-tDCS (g = 0.46, 85% CI [0.05 0.85], LTR = 1.61*) 

and c-tDCS (g = 0.44, 95% CI [0.02 0.85], LTR = 4.44*) increased contrast sensitivity from 

baseline to stimulation equally. As both a-tDCS and c-tDCS had an identical influence on 

contrast sensitivity values, neither can serve as a control for the other, which complicates how 

tDCS effects may be defined at lower spatial frequencies. Given the known physiology of striate 

cortex, we had not anticipated any modulation of contrast sensitivity under tDCS for our lowest 

spatial frequency grating. Our 0.5 cycles/° gratings differ from all others used in this study as it   
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Figure 3A.8. Effect size of the mean difference between contrast sensitivity measured with 

horizontally orientated gratings and oblique orientated gratings. Gray bars represent the 

respective pre-stimulation baseline for either a-tDCS (red) or c-tDCS (blue) contrast sensitivity 

difference between horizontal and oblique gratings. The large difference in contrast sensitivity 

between horizontal and oblique gratings can easily be seen at the high spatial frequencies used in 

this study when contrast sensitivity was measured with stimuli of a fixed size. However, tDCS 

polarity (anode and cathode) had no impact on the oblique effect: the contrast sensitivity 

difference between both oblique and horizontal gratings remained under both stimulation 

conditions. Error bars represent the exact 95% confidence interval for the mean difference effect 

size (effect sizes here are standardized on the pooled standard deviation).  
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is part of the low spatial frequency rollover in the CSF, and is presumably subject to additional 

inhibition than the other gratings (Meese & Hess, 2004; Webster & Miyahara, 1997). If the 

application of tDCS over striate cortex creates an imbalance in the interactive properties of 

neurons (i.e., excitatory and inhibitory interactions), regardless of polarity, then contrast 

sensitivity to low spatial frequency gratings may be affected differently by the current generated 

with tDCS than to high spatial frequencies. Our findings here suggest that the application of a 

current, regardless of polarity, will increase contrast sensitivity to low spatial frequencies. Thus, 

tDCS seems to be of not true influence on contrast sensitivity to low spatial frequencies.  

Discussion 

 The goal of the current study was to assess whether the stimulus dimensions of gratings 

(spatial frequency, size, and orientation) could modulate the effectiveness of tDCS on contrast 

sensitivity. We measured changes in contrast sensitivity, from a pre-stimulation baseline, to 

gratings of a fixed period (1.5 cycles) and fixed size (3°) at 4 different spatial frequencies (0.5, 4, 

8, and 12 cycles/°) and 2 orientations (oblique and horizontal) while observers received either a-

tDCS or c-tDCS over striate cortex. As expected, we found particular stimulus dimensions to be 

more susceptible to the effects of tDCS. Polarity specific effects of tDCS in visually responsive 

cortical areas are uncommon (Accornero et al., 2007; Antal, Kincses, et al., 2004; Antal et al., 

2001; Jacobson et al., 2012), however, we found that contrast sensitivity measured with an 8 

cycles/° fixed period 45° oblique grating showed a large polarity specific effect of tDCS, in that 

a-tDCS decreased while c-tDCS increased contrast sensitivity. Similar effects were obtained with 

the horizontal grating of the same spatial frequency, but the magnitude of the effect was smaller 

than that of the 45° oblique grating, and not statistically significant. The 45° oblique grating of a 

fixed size also showed indications of a polarity specific effect of tDCS at our highest spatial 

frequency (12 cycles/°), however, this effect, while large, was not statistically significant. Our 

results suggest that stimulus dimensions that generally elicit greater contrast sensitivity from 

observers are less susceptible to the influence of both a-tDCS and c-tDCS than stimulus 

dimensions that generally elicit poor contrast sensitivity (high spatial frequencies when measured 

with a fixed period and non-cardinal orientations)10, as is typical of other experiment findings 

                                                
10 Our findings suggest a correlation between the observer internal sensitivity to contrast from a particular set of 
stimulus dimensions and the magnitude of the tDCS modulation obtained, specifically, the improvements in contrast 
sensitivity should be negatively correlated with baseline contrast sensitivity, while the inverse holds true for 
decrements in contrast sensitivity. Under a-tDCS, only the 12 cycles/° fixed period oblique gratings showed a 
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that have tried to increase contrast sensitivity in human observers (Adini et al., 2002, 2004; 

Dorais & Sagi, 1997; Li et al., 2009; Maehara & Goryo, 2007; Sowden et al., 2002; Thompson et 

al., 2008).  

The constraints of stimulus dimensions on tDCS as described above highlight the 

importance of considering both the electrical components of this stimulation technique (e.g., 

ampere, current density, stimulation duration; Paulus, 2011; Miranda et al., 2006), and the 

structural organization of the stimulated cortical area. In striate cortex, neurons with receptive 

fields of higher preferred spatial frequencies are typically found in superficial layers of cortex, 

near the apex of the calcarine sulcus (De Valois et al., 1982; Engel, Glover, & Wandell, 1997; 

Foster, Gaska, Nagler, & Pollen, 1985; Henriksson, Nurminen, Hyvärinen, & Vanni, 2008; 

Horton, 2006; Tootell, Silverman, & De Valois, 1981; Tootell, Switkes, Silverman, & Hamilton, 

1988; Yu et al., 2010). These neurons are more likely to be influenced by tDCS, as the 

magnitude of the electric field is greatest at the cortical surface (Bikson & Rahman, 2013; 

Miranda et al., 2006; Nitsche et al., 2007). Similarly, tDCS effects are limited to the central 

visual field, which is retinotopically mapped to the apex of the calcarine sulcus (Engel et al., 

1997; Grill-Spector & Malach, 2004; Horton, 2006; Tootell, Switkes, et al., 1988). It has already 

been shown that stimuli presented at eccentricities greater than 2° are unaffected by tDCS (Kraft 

et al., 2010), and is therefore unsurprising that detection of large gratings, which cover more than 

the central 2° of the visual field, was only be mildly modulated by tDCS. This may have been 

exacerbated for large gratings with a high period due to summation effects, which also increase 

contrast sensitivity (Graham, Robson, & Nachmias, 1978; Legge, 1978; Meese & Summers, 

2007; Peli et al., 1993). We note, however, that other mechanisms may have been involved, as a 

recent study by Costa and colleagues (2015) has failed to replicate the findings of Kraft and 

colleagues (2010).  

Of note to the goals of the current study, we have shown that the direction and magnitude 

of the modulation in contrast sensitivity caused by tDCS can vary when other parameters, 

including stimulus orientation and period, are varied. This can lead to a diminished effect of 

                                                                                                                                                       
statistically significant positive correlation between contrast sensitivity and tDCS effect magnitude (Hedge’s g), r(9) 
= .85, p = .002, 95% CI [.47 .96]. Under c-tDCS, only the 4 cycles/° fixed period oblique gratings showed a 
statistically significant negative correlation, r(9) = -.64, p = .045, 95% CI [-.91 -.02]. We note that the number of 
observers in our study is small and consequently, we are probably underpowered to properly identify any correlation 
between stimulus dimension and tDCS modulation magnitude. Nevertheless, the two correlations obtained here 
suggest a link between internal sensitivity and the magnitude of tDCS effects.  
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tDCS on contrast sensitivity, change the direction of the effect (from an increment to a 

decrement), or abolish the effect completely (e.g., we found no effect of a-tDCS for large 

horizontal gratings). Consequently, our findings emphasize caution when linking effect direction 

to tDCS polarity in vision paradigms. Many of the confidence intervals calculated here contained 

both positive and negative values. As 95% of all confidence intervals calculated in this way will 

contain the true effect size of a-tDCS and c-tDCS on contrast sensitivity measurements, both 

increments and decrements in contrast sensitivity appear equally valid directions of effects to be 

obtained under either a-tDCS or c-tDCS, at least when measuring contrast sensitivity under our 

tDCS protocol. In fact, the expected directionality of tDCS polarity - a-tDCS excites while c-

tDCS inhibits - which stems predominantly from findings in motor cortex (Jacobson et al., 2012; 

M. A. Nitsche et al., 2007; M. A. Nitsche, Fricke, et al., 2003; Pellicciari et al., 2013; Stagg et 

al., 2009), should be disregarded for cortical areas that are functionally and structurally different 

(Shipp, 2005, 2007). It is best when implementing tDCS within a vision paradigm to utilize 

stimulus dimensions that will reliably elicit large effects of tDCS and to infer directionality post 

hoc.  

tDCS Polarity and Psychophysical Performance 

Whilst we find facilitatory and inhibitory effects of tDCS on visual function, the direction 

of these effects is opposite to that of previous tDCS vision studies, which have reported increases 

in contrast sensitivity during a-tDCS (Kraft et al., 2010; Peters et al., 2013; Spiegel et al., 2013), 

and decreases during c-tDCS (Antal et al., 2001; Chaieb et al., 2008). However, we are not the 

first to report polarity specific effects of tDCS over striate cortex inverted to those generally 

found in motor cortex (Accornero et al., 2007; Hansen et al., 2015; Antal et al., 2004a; Pirulli et 

al., 2014). The association between the effects induced by neuro-stimulation protocols on 

neuronal behaviour, whether it is “excitatory” or “inhibitory” in nature, and the behavioural 

outcome remains unclear. This holds true for other neuro-stimulation protocols (e.g., rTMS), that 

have shown both inhibitory and excitatory stimulation can generate increases in contrast 

sensitivity (Thompson et al., 2008; Waterston & Pack, 2010). Granted, there are many factors 

that contribute to the net influence of the current on cell activity, including but not limited to the 

stimulation onset relative to stimulus onset, stimulation duration, and the direction of current in 

relation to the somatodendritic axis of cells beneath the electrode (Bikson & Rahman, 2013; 

Peterchev et al., 2012; Pirulli et al., 2014; Radman et al., 2009). Nevertheless, the net effects of 
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tDCS polarity on the behaviour of cells has been shown to follow the expected directionality (a-

tDCS excites while c-tDCS inhibits) both at the single cell and network level, at least in motor 

cortex (Medeiros et al., 2012; M. A. Nitsche, Fricke, et al., 2003; Radman et al., 2009; Rahman 

et al., 2013; Reato et al., 2010). If the influence of current polarity on cells in the primary visual 

cortex is similar to that of motor cortex, then our finding that inhibitory stimulation (c-tDCS) 

benefits contrast sensitivity may be explained by a reduction the overall cortical excitability 

below a certain threshold noise level, thus minimizing stimulus uncertainty in observers (Pelli, 

1985), and increasing contrast sensitivity. Conversely, a-tDCS, which increases the overall 

excitability of cells beneath the electrode, may lower the signal-to-noise ratio, and lead to a 

reduction in contrast sensitivity attributed to increased uncertainty in observers. This noise-

reduction hypothesis has previously been used to account for the facilitatory effect of c-tDCS in 

a noise limited motion discrimination task (Antal, Nitsche, et al., 2004). However no direct 

evidence for tDCS effects on neural noise currently exist.  

The few neuro-imaging studies that have measured striate cortex activity following c-

tDCS suggest that the impact on the behaviour of cells, at least at a network level, from a mild 

direct current may be counter to that of motor cortex. Cathodal tDCS is known to decrease both 

neuronal and cortical activity of cells in motor cortex (Jacobson et al., 2012; M. A. Nitsche et al., 

2007, 2008; M. A. Nitsche, Fricke, et al., 2003; Rahman et al., 2013; Reato et al., 2010), 

however, over striate cortex, both inhibitory (Antal, Kincses, et al., 2004) and excitatory effects 

of c-tDCS on behaviour have been reported (Accornero et al., 2007; Antal, Kincses, et al., 2004; 

Antal et al., 2012; Pirulli et al., 2014). Given the variability in the net effects of tDCS in primary 

visual cortex, a noise reduction explanation to the benefits c-tDCS seems an unlikely 

explanation. The injection of a mild electrical current in striate cortex changes the balance of 

excitation and inhibition between neurons, which is a known neuro-mechanism responsible for 

the tuning characteristics of visually responsive neurons (tuning curve bandwidth orientation and 

spatial frequency), and in particular their response to contrast (Blin et al., 1993; Edden et al., 

2009; Ferster and Miller, 2000; Rose and Blakemore, 1974; Li et al., 2008; Katzner et al., 2011). 

If tDCS affects this balance, then its effects may lie in low-level gain mechanisms that adjust the 

responses of a cell to a given level of contrast.  

Limitations 
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 Trans-cranial Direct Current Stimulation is a popular neuro-stimulation technique that is 

affordable and relatively simple to implement. However, there are certain caveats that 

accompany the implementation of tDCS in vision experiments. Of interest to the current study is 

the underlying cortical structure being influenced by tDCS. It is well known that the polarizing 

effects of tDCS are dictated by the alignment of the cells in relation to the direction of current 

(Radman et al., 2009; Rahman et al., 2013; Rushton, 1927). Pyramidal cells with apical or basal 

dendrites oriented towards the cortical surface (i.e., neurons perpendicular to the cortical 

surface), will be correctly aligned with an electrode placed on a gyral surface, and therefore 

subject to the polarizing effects of the electric field generated by tDCS (with the net polarization 

dependent on the direction of current; Radman et al., 2009; Rushton, 1927). However, for cells 

located within cortical layers buried in a sulcus would be oriented parallel to the electrode, and 

likely not altered by tDCS. Cortical folding of the stimulated area is therefore a crucial 

component in the net results of tDCS, as it will dictate which neurons are innervated by tDCS. 

This is of particular relevance here, as we used fairly large electrodes (48 cm2 over Oz and 96 

cm2 over Cz) in our stimulation protocol, and most likely covered both striate and extrastriate 

cortical areas, which differ in their cortical folding properties (Horton, 2006; Rosa, Casagrande, 

Preuss, & Kaas, 1997; Rosa, Fritsches, & Elston, 1997). It is unclear how the stimulation of both 

striate and extrastriate cortex may have impacted our findings here, however, more focal 

approaches that use smaller electrodes (HD-tDCS; Miranda et al., 2013; Rahman et al., 2013), 

may help prevent the simultaneous stimulation of multiple visually responsive cortical sites in 

future studies. 

Conclusions 

The effects of tDCS on contrast sensitivity were most noticeable when measured at high 

spatial frequencies with 45° oblique oriented gratings with a fixed period of 1.5 cycles, which 

suggests that the magnitude of tDCS effects in vision are dependent upon the baseline sensitivity 

of observers to the presented stimuli: stimulus dimensions that will generally elicit high contrast 

sensitivity from observers (large, cardinally orientation gratings with a spatial frequency near the 

peak of the CSF) are not as suceptible to be modulated by tDCS. In addition, we found that under 

certain conditions, tDCS effects may be facilitatory or inhibitory within a particular group of 

observers, regardless of stimulation polarity, and that careful use of stimuli that reliably elicit 

tDCS polarity specific effects should favoured when implementing tDCS in vision studies.   
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Chapter 3A Tables 
 

Table 3A.1 – Repeated Measures ANOVA – Fixed Period Oblique Stimuli 
Factors SS df MS F p 2

pη  

tDCS 1.98 1 1.98 0.52 0.489 0.055 
SF 5.19 3 1.73 0.29 0.830 0.032 
tDCS x SF 72.30 3 24.10 8.10 0.001 0.474 
Subjects 57.57 9 6.40    
tDCS x Subjects 34.17 9 3.80    
SF x Subjects 159.36 27 5.90    
tDCS x SF x Subjects 80.29 27 2.97    

Total 410.85 79 5.20    
 

Table 3A.2 – Simple Effect Comparison - Fixed Period Oblique Stimuli 
Factors SS df MS F p 2

pη  

tDCS at SF = 8 cpd 26.35 1 26.35 20.79 0.001 0.698 
Subjects 34.83 9 3.87    
tDCS X Subjects 11.41 9 1.27    

Total 72.58 19 3.82    
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Table 3A.3 – Repeated Measures ANOVA – Fixed Size Oblique Stimuli 
Factors SS df MS F p 2

pη  

tDCS 48.45 1 48.45 9.23 0.014 0.506 
SF 20.46 3 6.82 1.35 0.278 0.131 
tDCS x SF 14.41 3 4.80 0.66 0.585 0.068 
Subjects 64.89 9 7.21    
tDCS x Subjects 47.25 9 5.25    
SF x Subjects 135.93 27 5.03    
tDCS x SF x Subjects 197.21 27 7.30    

Total 528.60 79 6.69    
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Table 3A.4 – Repeated Measures ANOVA – Fixed Period Horizontal Stimuli 
Factors SS df MS F p 2

pη  

tDCS 12.27 1 12.27 1.08 0.325 0.107 
SF 14.26 3 4.75 0.58 0.631 0.061 
tDCS x SF 39.13 3 13.04 1.97 0.142 0.179 
Subject 284.48 9 31.61    
tDCS x Subject 101.86 9 11.32    
SF x Subject 219.68 27 8.14    
tDCS x SF x Subject 178.88 27 6.63    

Total 850.56 79 10.77    
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Table 3A.5 - Repeated Measures ANOVA – Fixed Size Horizontal Stimuli 
Factors SS df MS F p 2

pη  

tDCS 56.38 1 56.38 4.80 0.056 0.348 
SF 45.33 3 15.11 0.97 0.423 0.097 
tDCS x SF 48.72 3 16.24 2.83 0.057 0.239 
Subject 278.77 9 30.97    
tDCS x Subject 105.70 9 11.74    
SF x Subject 421.96 27 15.63    
tDCS x SF x Subject 154.98 27 5.74    

Total 1111.84 79 14.07    
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Chapter 3B 

DOES TRANS-CRANIAL DIRECT CURRENT STIMULATION (TDCS) MODIFY 

DISCRIMINATION THRESHOLDS OF THE SLOPE OF THE AMPLITUDE SPECTRUM? 

 

 

Bruno Richard, Bruce C. Hansen, Aaron P. Johnson 
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Abstract  

The discrimination of α is dependent on the representation of low spatial frequency content 

within an image when the reference α is steep (see Chapter 2). Thus, the discriminability of 

steep αs seems subject to the activity of low spatial frequency tuned channels within the early 

visual system. We aimed to explore this effect further by directly manipulating the activity of 

spatial frequency channels in an α discrimination task with trans-cranial Direct Current 

Stimulation (tDCS). tDCS is a neuro-stimulator that modulates the membrane potential of 

cortical neurons and alters their responses to visually presented stimuli. The effects of tDCS are 

spatial frequency dependent, and as we have previously shown, only modulate contrast detection 

of higher spatial frequencies. The findings of Chapter 2 indicated that the spatial frequency 

tuning of the contributing channels might be correlated with the α of the reference stimulus. 

Thus, if the discrimination of shallower reference αs is subject to the activity of higher spatial 

frequency channels, it is possible that tDCS will only influence discrimination thresholds of 

shallow αs. Discrimination thresholds to steeper slopes should remain unaffected by tDCS. 

Participants completed two stimulation sessions, and began with either a-tDCS or c-tDCS, while 

a third group received sham in both sessions. The effects of tDCS on α discrimination were small 

and unspecific. The current applied by tDCS is much smaller than that required to illicit action 

potentials
 
in neurons directly beneath the electrode. As tDCS only raises or decreases the 

likelihood of the release of an action potential, its neuro-modulatory effects may be too weak to 

influence the behaviour of cells exposed to 1/f noise stimuli. Given that previous research has 

shown that tDCS effects are constrained to high spatial frequencies and are orientation specific, 

the use of tDCS on stimuli that are broadband in both spatial frequency and orientation may be 

an ill-suited approach to investigate the behaviour of V1 cells when exposed to naturalistic 

stimuli.  
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Early visual processes (e.g., contrast detection) can be altered in humans by the 

application of trans-cranial Direct Current Stimulation (tDCS) over the primary visual cortex 

(Antal, Nitsche, & Paulus, 2001, 2006a, 2006b; Kraft et al., 2010; Peters, Thompson, Merabet, 

Wu, & Shams, 2013; Spiegel, Byblow, Hess, & Thompson, 2013). The change in perception 

induced by tDCS is both polarity and stimulus specific, and we have shown in the preceding 

chapter (Chapter 3A) that for contrast detection, the effects of tDCS can be best observed at 

higher spatial frequencies (i.e., 8 cycles/°) and non-cardinal orientations (i.e., 45°; Richard, 

Johnson, Thompson, & Hansen, under review). Specifically, cathodal tDCS (c-tDCS) increased 

contrast sensitivity to high frequency oblique gratings, while anodal tDCS (a-tDCS) generated a 

net decrease in contrast sensitivity. The magnitude of the change induced by tDCS was 

somewhat correlated with the baseline contrast sensitivity of observers, and larger when contrast 

sensitivity to a particular stimulus dimension is low, similar to more traditional psychophysical 

training techniques on contrast sensitivity (Adini, Sagi, & Tsodyks, 2002; Adini, Wilkonsky, 

Haspel, Tsodyks, & Sagi, 2004; Li, Polat, Makous, & Bavelier, 2009; Sowden, Rose, & Davies, 

2002). Trans-cranial Direct Current Stimulation may, therefore, temporarily modify mechanisms 

that relate to observer learning and task performance (i.e., consolidation of visual information; 

Peters et al., 2013), with the added benefit of control over the directionality of observer 

performance, as it can either improve or diminish it according to the stimulation polarity. Most 

of the literature on the perceptual effects of tDCS has centred on modulating the performance of 

observers to simple, narrowband stimuli; however, there are indications that tDCS can modify 

the complex visual processes of broadband stimulation as well. These findings propose that the 

modulation induced by tDCS on vision may be sufficient to alter the behaviour of multiple 

neurons – differently tuned in spatial frequency and/or orientation (Antal, Kincses, Nitsche, 

Bartfai, & Paulus, 2004; Antal, Nitsche, et al., 2004; Spiegel et al., 2013). Consequently, tDCS 

could be a useful tool to explore the neuronal mechanisms that underlie naturalistic vision. Here, 

we asked if tDCS could alter the perception of a stimulus broadband in both spatial frequency 

and orientation. Specifically, we tested whether the application of either a-tDCS or c-tDCS could 

modulate α discrimination thresholds of the noise stimuli (1/f noise) used in Experiment 2.1 and 

2.2. Additionally, we investigated if the effects of tDCS on α discrimination thresholds were 

reference α specific. Given that the effects of tDCS on spatial vision seem constrained to higher 

spatial frequencies (Richard, et al., under review), and stimulus conditions that observers are 



 

 

96 

generally less sensitive to, we may expect tDCS to have larger effects on α discrimination of 

shallower reference αs (i.e., α < 1.0, which are perceptually dominated by higher spatial 

frequency content).  

The exact processes that lead to the modulatory effects of tDCS on the activity of cells in 

striate cortex remain unclear (as described in Chapter 3A). But, it is known that the effects of 

tDCS are largest on visually responsive neurons with receptive fields at or near fovea (i.e., cells 

located on the cortical surface; Kraft et al., 2010; but see Costa et al., 2015 for contrasting 

findings), and that there is a negative correlation between the effects of neuro-stimulation and the 

baseline performance of observers (Antal et al., 2001; Thompson et al., 2008). Most recently, it 

has been demonstrated that neuro-stimulation (rTMS) may modify the neuronal interactions 

responsible for adjusting the tuning width (both spatial frequency and orientation) of cells in 

striate cortex (Kim, Allen, Pasley, & Freeman, 2015). The perceptual effects of tDCS, therefore, 

may lie in the interactive properties of neurons within the visual cortex, which renders it an 

interesting tool to assess the role of early neuronal interactions in perception. That said, the 

studies mentioned above were all conducted with simple, narrowband stimuli, which are 

purposefully designed to activate only a small subset of neurons in striate cortex. Under 

naturalistic stimulation, however, the image on the retina will stimulate a large number of 

visually responsive cells with varied tuning properties. Furthermore, the output of these cells will 

be weighted according to the activity of other, similarly and differently tuned cells. Thus, the 

activity of cells in striate cortex exposed to naturalistic (i.e., broadband) stimuli is poorly 

approximated by findings obtained with narrowband stimuli (Dan, Atick, & Reid, 1996; David, 

Vinje, & Gallant, 2004; Kayser, Salazar, & Konig, 2003; Maldonado & Babul, 2007; Olshausen 

& Field, 1996; Zetzsche & Röhrbein, 2001). Thus, it is unclear how tDCS may alter visual 

processes in tasks that employ broadband, or naturalistic, stimuli.  

There is evidence that tDCS is able to modulate the performance of observers on 

psychophysical tasks that incorporate spatially more complex stimuli than single narrowband 

gratings. Two studies, to date, have explicitly measured the modulatory effects of tDCS on the 

perception of spatially complex patterns (Hansen et al., 2015; Spiegel, Hansen, Byblow, & 

Thompson, 2012). Both used masking paradigms (overlay suppression and surround suppression, 

respectively) to assess if tDCS could enhance or diminish the strength of the masking effect on 
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the perception of a target stimulus11. Surround-suppression occurs when neural responses to a 

target are diminished by a stimulus presented outside of, or surrounding, their classical receptive 

field (Akasaki, Sato, Yoshimura, Ozeki, & Shimegi, 2002; Cavanaugh, Bair, & Movshon, 2002; 

DeAngelis et al., 1992; Fitzpatrick, 2000; Osaki, Naito, Sadakane, Okamoto, & Sato, 2011; 

Walker, Ohzawa, & Freeman, 2000), which stems from suppressive lateral interactions between 

cells in primary visual cortex (Cavanaugh et al., 2002). In humans, surround suppression is 

narrowly tuned for both orientation [Half-Width Half-Height (HWHH) = 30°] and spatial 

frequency (~ 1.4 octaves), which indicates that the suppression originates within striate cortex 

(Petrov et al., 2005). In their study, Spiegel and colleagues (2012) measured the contrast 

detection threshold of a narrowband Gabor target both with and without the presence of a 

surround annulus, matched in frequency, but free to vary in orientation. They found that a-tDCS 

applied over the primary visual cortex negated the suppressive effects of the surround mask, and 

returned contrast detection thresholds to baseline values, while c-tDCS had no effect. Thus a-

tDCS may be capable of changing the lateral interactions that underlie surround suppression 

(Cavanaugh et al., 2002; Huang et al., 2008; Petrov et al., 2005; Petrov & Mckee, 2006; Spiegel 

et al., 2012; Xing & Heeger, 2000, 2001). But, it is unclear which of the neuronal responses, 

either to the mask or to the target (Baker & Vilidaite, 2014) are altered by tDCS. That is, tDCS 

may alter the suppressive effects of a surround mask directly, or may somehow increase neural 

responses to the target stimulus to exceed the suppressive effects of the mask.  

There is evidence that the spatial characteristics of the mask, whether it is narrowband or 

broadband in spatial frequency content, will change the strength of the tDCS effect on the 

suppression induced by the mask, which suggest tDCS is modulating neural responses to the 

mask. Overlay suppression (i.e., simultaneous masking) occurs when a mask is placed over a 

target and alters perception (Foley, 1994; Kim, Haun, & Essock, 2010; Meese & Holmes, 2010; 

Petrov et al., 2005). Unlike surround suppression, overlay suppression is broadly tuned both in 

spatial frequency (approximate bandwidth is 3 octaves) and orientation (HWHH = 90°), and for 

this reason was thought to occur in stages of processing prior to striate cortex (Petrov et al., 

2005). Yet, we have recently shown that the magnitude of overlay masking can be altered by the 
                                                
11 In both studies, the target stimulus was always a narrowband Gabor. Spiegel and colleagues (2012) presented an 
oblique (45°) oriented Gabor with a spatial frequency of 3.5 cycles/°, while Hansen and colleagues (in press) used a 
Gabor oriented either at vertical, 45° oblique or horizontal, with a spatial frequency of 8 cycles/°. The complexity 
within these studies stem from tDCS modulating the strength of the masking effect (i.e., suppression factors), and 
not the effects of tDCS on the perception of the narrowband Gabor.  
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orientation of the mask when it is broadband in spatial frequency (Hansen et al., 2015). That is, 

when the mask contains a large amount of luminance contrast energy across spatial frequency 

(the masks had a 1/f amplitude spectrum over ~ 2 octaves of spatial frequencies centred on 8 

cycles/°), but is narrowband in orientation (HWHH = 10°), overlay masking shows orientation 

tuning characteristics that could not originate from a pre-cortical process. Additionally, when c-

tDCS was applied over the primary visual cortex of observers, it reduced the suppression of the 

broadband overlay mask on a Gabor target much more than that of the identically oriented 

narrowband mask (spatial frequency HWHH = 1 octave). As the spatial characteristics of the 

mask altered the tDCS induced effects in the overlay masking paradigm, it would suggest that 

tDCS does modify cortical signals to a mask, and furthermore, does so most when the mask is 

broadband in spatial frequency.  

The application of tDCS over striate cortex has a noticeable impact on observer 

psychophysical performance both with narrowband stimuli, and more complex, broadband 

stimuli that have naturalistic αs (α = 1.0; Billock, 2000). In Chapter 2, we demonstrated that α 

discrimination thresholds were subject to the representation of contrast energy at low spatial 

frequencies within our noise images. These effects were only found when α was relatively steep 

(α equal to or greater than 1), which suggest that there is a negative correlation between the 

tuning of the contributing spatial frequency channel and the perceptually dominant spatial 

frequency content within 1/f noise images (Boynton et al., 1999; Britten, Shadlen, Newsome, & 

Movshon, 1992; Campbell & Kulikowski, 1972; Haynes et al., 2003; Kwon, Nelson, Toth, & 

Sur, 1992; Ross & Speed, 1991; Shadlen & Newsome, 1998; Zenger-Landolt & Heeger, 2003). 

Thus, the spatial frequency bands used by observers to discriminate α of noise images may 

change in accordance with the reference α (Hansen, Ellemberg, & Johnson, 2012; Hansen, 

Jacques, Johnson, & Ellemberg, 2011; Párraga & Tolhurst, 2000; Tolhurst & Tadmor, 1997). As 

the effects of tDCS appear to be constrained to higher spatial frequencies (Richard et al., 2015), 

we ask here if α discrimination thresholds can be altered by tDCS, and if this effect may be most 

prominent when the reference α is shallow (as they are perceptually dominated by higher spatial 

frequency content). We measured α discrimination thresholds according to the same 

psychophysical procedure defined in Experiment 2.1 in a group of inexperienced 

psychophysical observers and tested for changes in thresholds between tDCS and a non-

stimulation baseline. Furthermore, we added a sham group in this study to verify for any effects 
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of stimulation that may be attributed to confounding variables (e.g., the presence of the 

electrodes), which was not implemented in Chapter 3A.  

Experiment 3.2 

Method 

Participants 

Fifteen undergraduate students in psychology (14 females), with a median age of 22 years 

(range: 19 – 39 years) took part in this study. All participants had normal or corrected to normal 

visual acuity (cut-off = 20/25). Informed consent was obtained from all participants and all were 

treated in accordance the Tri-Council Policy Statement: Ethical Conduct for Research Involving 

Humans (2014). Participants were financially compensated for their time. None of our 

participants in this study had any prior psychophysical testing experience. 

Apparatus 

Stimuli were presented on a 22.5” Viewsonic (G225fB) monitor driven by an Apple Mac 

Pro (2 X 2.66GHz processor) equipped with 8GB of RAM and a 1GB PCIe x16 ATI Radeon HD 

5770 Graphics card with 10-bit grayscale resolution. Stimuli were displayed using a linearized 

look-up table, generated by calibrating with a Color-Vision Spyder3 Pro sensor. Maximum 

luminance output of the display monitor was 100 cd/m2 (50 cd/m2 mean luminance after 

calibration) the frame rate was set to 100 Hz, and the resolution was set to 1024 X 768 pixels. 

Single pixels subtended .0381° of visual angle (i.e., 2.23 arc min.) when viewed from 1.0 meter. 

Head position was maintained using a chin rest, and participant input was recorded via keyboard 

press.  

Stimuli 

All stimuli in this experiment were constructed in an identical fashion to those of 

Experiment 2.1 and Experiment 2.2 (center stimulus) and generated according to the same 5 

reference α values (0.4, 0.7, 1.0, 1.3, and 1.6). All stimuli consisted of synthetic amplitude 

spectrum noise and were constructed in the Fourier domain using MATLAB (ver. 2014b; 

Mathworks, Natick, MA), and corresponding Image Processing (ver. 6.4) toolbox. The noise 

patterns were rendered into the spatial domain by taking the inverse Fourier Transform of 

amplitude spectrum and a given random phase spectrum, which was randomized each trial. All 

stimuli were normalized to have an RMS contrast of 0.15. An image patch, with diameter of 1° 

of visual angle, was cropped from its center and windowed with a cosine-tapered envelope, 
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which ramped 5% of the image pixels in the proximity of the circle’s edge to mean luminance 

(50 cd/m2).  

Psychophysical Procedures 

The psychophysical procedures used to estimate threshold in this experiment were similar 

to those of Experiment 2.1 and Experiment 2.2, and only an abridged version is presented here. 

The experimental condition consisted of five reference amplitude spectrum slope values. All 

observers completed four repetitions of each experimental condition as training prior to the tDCS 

component of this study, which took approximately two hours to complete. Thresholds were 

estimated by a temporal three-interval, two-alternative “Odd-Man-Out” forced choice. 

Participants were asked to select the stimulus, either the first or third presented, that contained 

the odd-amplitude spectrum – different from the reference stimulus, presented in the second 

interval in their α (see Figure 3B.1). Threshold estimation was identical in both the training and 

experimental phases of this study. 

At the beginning of each trial, a white (RGB [255, 255, 255]) fixation cross, which 

subtended 0.3° of visual angle in diameter was presented for one second at the center of the 

screen. This was followed by three stimulus presentation intervals that each lasted 250ms, which 

were each interlaced by a screen set to mean luminance for 500ms. The second interval always 

contained the reference amplitude spectrum set at one of the five fixed reference α values. One 

interval, either the first of the third, contained the same amplitude spectrum as that of the 

reference interval, while the other contained the test amplitude spectrum with a slope α steeper 

than the slope α of the reference interval. The interval that contained the test amplitude spectrum 

was randomized on each trial. At the end of each trial, the screen was set to mean luminance, and 

participants indicated which interval, either the first or the third, they perceived as being the 

“Odd-Man-Out” in comparison to the second interval (reference) via keyboard press. The 

duration of the response interval was unlimited. The trial-to-trial change in the image’s slope 

exponent (α) was controlled in an identical fashion to Experiment 2.1 and 2.2. 

tDCS Procedures 

Our tDCS procedures were similar to those used by Peters, Thompson, and Merabet 

(2013). After completing the four baseline staircases, observers were separated into three groups, 

based on the first tDCS session polarity: Anodal tDCS first (a-tDCS First), Cathodal tDCS First   
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Figure 3B.1. A General psychophysical procedure employed in our experiment, and graphical 

representation of the “Odd-Man-Out” psychophysical procedure. Observers had to indicate, 

which of the 1st or 3rd interval contained the stimulus that was different from the second – 

reference – interval (here the odd stimulus is the 3rd). B Example stimuli of the 5 reference α 

values used in this experiment. The phase spectrum of our stimuli was identical within a trial, 

and randomized between trials. C Experiment sequence completed by observers in this study. All 

observers completed a baseline session. At the first stimulation session, observers were placed 

into one of three possible experimental paths (a-tDCS First, c-tDCS First, Sham). They 

continued on the same path in their second experimental session.  
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(c-tDCS First), or Sham. Observers completed two experimental sessions, and tDCS polarity was 

reversed on the second session for both experimental groups, while the sham group received 

sham stimulation once more (see Figure 3B.1 - C). This experimental stimulation design 

allowed us to minimize any confounds from observers awareness of their current stimulation 

condition as observers can reliably differentiate between real and sham stimulation, but not 

anodal and cathodal tDCS (Duecker & Sack, 2015; Minhas et al., 2011; Peters et al., 2013; 

Spiegel et al., 2012). The total number of staircases completed by observers in the tDCS phase of 

the study was 25. They completed 2 staircases per reference α prior to and following tDCS, and a 

single staircase per reference α during tDCS to prevent the duration of stimulation to exceeded 

30 minutes (Bikson, Datta, & Elwassif, 2009; Nitsche, Liebetanz, et al., 2003; Poreisz, Boros, 

Antal, & Paulus, 2007). In total, each tDCS session took about one and a half hours to complete. 

All observers completed two stimulation sessions, with no less than 48 hours and no more that 7 

days between sessions. All stimulation parameters used here were identical to those reported in 

Chapter 3A.  

Results 

Baseline 

The average α discrimination thresholds (Δα) and the change in Δαs as a function of 

sequential measurement in time during the training session are shown in Figure 3B.2. The 

average Δαs from our 15 inexperienced observers show little tuning to steeper reference α (α = 

1.0 and 1.3), as opposed to typical quadratic trend seen with Δαs (see Results of Experiment 1.1 

and 2.1; Hansen & Hess, 2006; Knill, Field, & Kersten, 1990; Tadmor & Tolhurst, 1994). We 

verified if observer Δαs remained constant across all four baseline measurements of each 

experimental condition by fitting the Δαs with a linear regression (see Table 3B.1). None of the 

lines of best fit deviated statistically significantly from 0. That said, given that Δαs were fairly 

high in the baseline portion of the study (see Figure 3B.2), we opted to only compare Δαs while 

observers received tDCS to their same day (pre-stimulation) Δαs, and did not use the baseline 

data in subsequent analyses. In addition, we did not analyze all Δαs collected following tDCS 

(post-stimulation), as regardless of stimulation condition, all observers showed an increase in 

thresholds. 

tDCS  

We began our analyses by collapsing over our two tDCS groups (Anode First and   
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Figure 3B.2. Baseline slope discrimination thresholds averaged across all 15 observers in this 

study. A Average α discrimination threshold across each sequential measurement in the baseline 

session of the study. Thresholds for all reference α were stable across all 4 repetitions, except for 

α = 1, which was found to have a statistically significant decrease over all four measurements. B 

The average slope discrimination function, averaged across all 15 observers and the final four 

measurements for each reference α in the baseline portion of the study. Error bars represent 1 

standard error of the mean.  
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Cathode First) to measure the overall effects of tDCS polarity on Δαs. Effect sizes, which show 

the magnitude of the change in Δα under tDCS from pre-stimulation, and were calculated in a 

manner identical to those of Chapter 3A, are shown Figure 3B.3. It is clear from the collapsed 

data that neither a-tDCS nor c-tDCS elicited any measurable effect on Δαs (all confidence 

intervals contained 0).  

The second step in our analysis was to verify if the sequence of stimulation for each 

individual group (receiving a-tDCS first, c-tDCS first or sham) might have altered Δα in a way 

we could not see in the collapsed data. We conducted a repeated-measures ANOVA with within-

subject factors: reference α (5 levels: α = 0.4, 0.7, 1.0, 1.3, 1.6), time (2 levels: pre-stimulation 

and stimulation), and stimulation session (2 levels: session 1 and session 2) according to the 

order of stimulation polarity received by observers, and between-subject factor of group (a-tDCS 

First, c-tDCS First, and Sham). Only the interaction term for Stimulation Group X Stimulation 

Session X Time was statistically significant, F(2, 12) = 5.098, p = .025, 𝜂!!= .459 (see Table 

3B.2). Observers in both the a-tDCS First group (g = -0.54, 95% CI [-1.14 0.11]) and c-tDCS 

First group (g = -0.91, 95% CI [-1.78 0.01]) showed a decrease in Δαs at the first experimental 

session from pre-stimulation to stimulation, while observers under sham did not (g = 0.004, 95% 

CI [-0.52 0.52]). This effect was only observed at the first experimental session (see Figure 

3B.4), and was not polarity specific, as both the a-tDCS First group and the c-tDCS First group 

showed a decrease in Δαs of similar magnitude. 

Finally, we decided to conduct a descriptive analysis, similar to that of Chapter 3A and 

calculated the effect size for the mean difference in Δαs for each stimulation group and reference 

αs (see Figure 3B.4). Statistical significance was assed by constructing 95% confidence intervals 

around each effect size measure, and evaluating whether the interval contained an effect size 

value of 0. The effect sizes we calculated here are relatively large for tDCS induced effects (g ~ 

0.6 SD; Jacobson, Koslowsky, & Lavidor, 2012), particularly in the cathode First group. Most 

had interval estimates that encompassed 0, and are therefore not considered to be statistically 

significant. We did find a large decrease in Δαs in the first stimulation session of the cathode 

First group for a reference α of 1.6 (g = -1.01, 95% CI [-1.89 -0.09]). However, the sham 

stimulation group also showed an equally large decrease in Δαs for the same reference in their 

second session (g = -0.89, 95% CI [-1.57 -0.20]). Given the null effects of the grand averaged 

Δαs, the Δαs analyzed by stimulation session and the descriptive analysis of Δαs for each   
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Figure 3B.3. The magnitude (Hedge’s g) of the difference between slope discrimination 

thresholds measured while observers received a-tDCS, c-tDCS or sham and pre-stimulation 

thresholds, collapsed across stimulation sessions. We find a fairly large effect of a-tDCS on slope 

discrimination thresholds to a reference α = 1, however, the interval estimate of this effect is too 

large to infer any statistical significance. Error bars represent the exact 95% confidence interval.  
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Figure 3B.4. A Slope discrimination thresholds across all measurements in time for both 

stimulation sessions. Both the Anode First group and the Cathode first group showed a 

statistically significant decrease in slope discrimination thresholds from pre-stimulation to 

stimulation at the first stimulation session, while the sham group did not. No other changes in 

slope discrimination thresholds were observed at any other time points. Error bars are +/- 1 

Standard Error of the Mean. B Effect size of the mean difference between slope discrimination 

thresholds measured prior to and during stimulation. Negative effect sizes represent a decrease in 

thresholds (increase in sensitivity). We found no meaningful change in thresholds at any 

reference α across all three groups. Error bars are exact 95% confidence intervals.  
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reference α, we cannot attribute any measureable effect of tDCS on Δαs. 

Discussion 

We had aimed to alter α discrimination thresholds with the application of tDCS over 

primary visual cortex, but found no measurable impact of either anodal or cathodal tDCS on the 

discriminability of α. The effects of tDCS on contrast perception are constrained to higher spatial 

frequency gratings presented foveally (Antal et al., 2001; Chaieb, Antal, & Paulus, 2008; Kraft et 

al., 2010; Peters et al., 2013; Richard et al., 2015; Spiegel et al., 2013), and recent evidence 

suggests its effects are sufficiently large to alter neural responses to complex images broadband 

in spatial frequency, but narrowband in orientation (Hansen et al., 2015), and thus had expected 

tDCS would modulate the perception of a stimulus broadband in spatial frequency and 

orientation, but found no sign of this in this dataset.  

The addition of tDCS to psychophysical paradigms offers a novel approach to manipulate 

channel behaviour in the early visual system directly (Antal et al., 2006a, 2006b). To date, most 

studies that have implemented tDCS in visual paradigms have constrained their stimulus set to be 

narrowband both in spatial frequency and orientation, (e.g., sinusoidal gratings, random dot 

kinematograms). Stimuli restricted in dimensionality, like sinusoidal gratings, offer a high level 

of control to the experimenter, but given they only stimulate a limited number of channels (or 

potentially, a limited number of cells), they can, at best, serve as an incomplete approximation of 

visual function within natural environments. Using natural stimuli, or noise images with 

naturalistic α can be argued as a more suitable approach to investigate visual function, 

particularly given that the visual system is ideally suited to encode said images (Brady & Field, 

1995; Carandini et al., 2005; Dan et al., 1996; Field, 1987, 1994). However, the use of natural 

stimuli may add a level of complexity to the experimental design that may surpass any mild 

influence from a neuro-stimulator like tDCS. Our experimental findings are a sign that the 

mechanisms changed by tDCS used in more traditional psychophysical paradigms may function 

differently under natural stimulation. The interactive properties of cells in striate cortex under 

natural stimulation may alter the known influence of tDCS on perception (Baddeley et al., 1997; 

Baker & Vilidaite, 2014; Bieniek, Pernet, & Rousselet, 2012; Brady & Field, 1995; Dan et al., 

1996; David et al., 2004; Field, 1994; Hansen et al., 2012, 2011; Prenger, Wu, David, & Gallant, 

2004; Rieger et al., 2013; Vinje & Gallant, 2000). The following describes what we consider to 

be most likely reasons for the null effect we obtained in this study. 
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The magnitude of the influence of tDCS (and other neuro-stimulation techniques) on 

psychophysical performance seems tied to the underlying sensitivity of observers to the stimulus 

dimensions (Antal et al., 2003a, 2001; Pirulli et al., 2014; Thompson et al., 2008). As we showed 

in Chapter 3A, both a-tDCS and c-tDCS showed larger modulatory effects to stimuli that elicit 

low contrast sensitivity, while contrast sensitivity to spatial frequencies near the peak of the CSF 

(1 – 4 cycles/°) and gratings cardinally orientated (e.g., horizontal) mildly altered by tDCS. 

Sensitivity to a particular stimulus property is correlated with the magnitude of neural responses 

to the property (Boynton et al., 1999; Britten et al., 1992; Campbell & Kulikowski, 1972; Haynes 

et al., 2003; Kwon et al., 1992; Ross & Speed, 1991; Shadlen & Newsome, 1998; Zenger-

Landolt & Heeger, 2003), and thus, tDCS will influence perception by modulating the activity of 

cells responding to the stimulus. Trans-cranial Direct Current Stimulation will influence signal-

to-noise ratios, which dictate the early perceptual responses of the observer to the stimulus, by 

either increasing the responses of cells beyond the noise threshold (a-tDCS) or by lowering the 

noise threshold (c-tDCS; Antal et al., 2003a; Baker & Vilidaite, 2014; Klein & Levi, 2009; Levi, 

Klein, & Chen, 2005; Pirulli et al., 2014; Thompson et al., 2008; Tyler & Chen, 2000). Noise 

images with 1/f spectra contain a significant amount of luminance contrast across spatial 

frequency and orientation, and will therefore elicit activity from a wide set of cells with varied 

tuning properties. It is likely, therefore, that the activity of cells attributed to the spectral 

characteristics of 1/f noise images, coupled with any non-linear adjustments that follow 

broadband stimulation (Bex et al., 2007; Brady & Field, 2000; Carandini & Heeger, 1994; David 

et al., 2004; Heeger, 1992; Prenger et al., 2004), may have been too great to allow for any 

influence of a mild neuro-stimulator (tDCS; Bikson & Rahman, 2013; Miranda, Lomarev, & 

Hallett, 2006; Miranda, Mekonnen, Salvador, & Ruffini, 2013; Peterchev et al., 2012; Sadleir, 

Vannorsdall, Schretlen, & Gordon, 2010).  

Psychophysical performance under broadband conditions can often differ greatly from 

performance on an identical task but with narrowband stimuli, and thus it may not be surprising 

that tDCS will have different effects on both types of stimuli. For example, contrast sensitivity to 

a narrowband grating is highest for horizontally oriented gratings and worse for oblique 

(Campbell et al., 1966), but under broadband conditions, contrast sensitivity to cardinal 

orientations (e.g., horizontal) is worse than that of oblique contrast sensitivity (i.e., the horizontal 

effect; Hansen, Essock, Zheng, & DeFord, 2003; Hansen, Haun, & Essock, 2008; Haun & 
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Essock, 2010; Kim et al., 2010). Briefly, the horizontal effect has been argued to stem from an 

anisotropic contrast gain control mechanism that pools the activity of cells, numerically biased in 

preferred orientation, into multiple local gain pools, which reapplies inhibition accordingly 

(Hansen et al., 2015; Kim et al., 2010). Lower contrast sensitivity to horizontally orientated 

content in natural scenes, according to this model, stems from the activation of the contrast gain 

control mechanism that reapplies inhibition accordingly to the most active cells (Hansen et al., 

2015). In a numerically biased population of cells, whereby there are more cells tuned to 

horizontal than any other orientation (Li, Peterson, & Freeman, 2003), the responses pooled by a 

normalization mechanisms would be greatest for horizontally orientated cells, which would lead 

to a decreased response, and decreased sensitivity of the observer to horizontal content (Hansen 

et al., 2003).  

Interestingly, the horizontal effect was recently shown to be susceptible to the effects of 

tDCS (Hansen et al., 2015). When a horizontal mask broadband in spatial frequency and 

narrowband in orientation, is overlaid onto a Gabor target (of the same orientation), the large 

suppression due to the mask can be reduced by c-tDCS. This may be odd, given our null effect of 

tDCS on α discrimination thresholds, but there are methodological differences between our study 

and that of Hansen and colleagues (2015) that may account for the discrepancy in tDCS effects. 

Both studies that have implemented tDCS to modulate the perception of spatially complex 

stimuli, and found measureable effects, have done so by measuring the influence of tDCS on 

perceptibility of a masked target (Hansen et al., 2015; Spiegel et al., 2012). In masking 

paradigms, the perceptual outcome is dictated by the interactions between the spatial properties 

of the mask and target stimuli (Hansen & Loschky, 2013; Meese, 2004; Petrov et al., 2005; Polat 

& Sagi, 1993; Snowden & Hammett, 1998; Stromeyer & Julesz, 1972). It is possible that the 

interactions between the mask and target (i.e., suppressive influence of masks), particularly when 

the mask is broadband in spatial frequency content, differ considerably in function from the 

neural interactions that occur when observers are asked to detect a change in, or discriminate 

between, natural images (e.g., Bex, Mareschal, & Dakin, 2007; Brady & Field, 2000; Cass, 

Alais, Spehar, & Bex, 2009). Hence, the facilitative effect of c-tDCS on the suppressive effects 

of a mask broadband in spatial frequency may lie in the interaction of the narrowband target and 

mask signals (or the net combination of both), and less on the individual processing of each 

stimulus. It might be worth verifying if tDCS can alter the suppressive influence of a mask 
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broadband in both spatial frequency and orientation (e.g., 1/f noise images) on the perception of a 

Gabor stimulus. As Hansen and colleagues (2015) used masks broadband in spatial frequency 

only, the effects they got may have in part been due to the restricted orientation content of their 

masks, which may have restricted neural activity sufficiently to adduce any effect of tDCS.  

Conclusions  

 Trans-cranial Direct Current Stimulation has been shown to modulate early visual 

processes (Antal, Kincses, et al., 2004; Antal et al., 2003b, 2001, 2006a, 2006b; Kraft et al., 

2010; Olma et al., 2011; Spiegel et al., 2013). The directionality of these effects (either 

facilitatory or inhibitory) have varied (Jacobson et al., 2012) as both tDCS polarities have to 

been shown to have facilitatory and inhibitory effects on early visual processes, which vary 

according to a variety of methodological factors (see Chapter 3A; Accornero, Li Voti, La 

Riccia, & Gregori, 2007; Antal, Kincses, et al., 2004; Antal et al., 2003a, 2001; Bikson & 

Rahman, 2013; Chaieb et al., 2008; Kraft et al., 2010; Nitsche et al., 2008; Olma et al., 2011; 

Peterchev et al., 2012; Peters et al., 2013; Pirulli et al., 2014; Richard et al., 2015; Spiegel et al., 

2013, 2012). Nevertheless, the application of tDCS can have measureable impact on visual 

perception, and we have recently shown that contrast sensitivity measured at higher spatial 

frequencies and non-cardinal orientations will be most susceptible to the influence of tDCS. We 

had hypothesized that α discrimination threshold, particularly those of shallower reference α (α < 

1.0), would be affected by the application of tDCS. However, we found no measureable impact 

of tDCS on α discrimination thresholds regardless of the reference α.  

In Chapter 2, we found that α discrimination thresholds to noise images with steeper 

reference α (α between 1.0 and 1.6), while a broadband process that involves both low and high 

spatial frequency channel interactions, were most susceptible to the responses of low spatial 

frequency channel. We thus proposed that the dominant coding spatial frequency may be 

correlated with the perceptually salient spatial frequency content in our noise images (as steeper 

α are perceptually dominated by lower spatial frequencies). We had expected that observers’ 

ability to discriminate between 1/f noise images perceptually dominated by higher spatial 

frequency content (α < 1.0) would be most affected by tDCS as its effects are largest at higher 

spatial frequencies (for contrast detection thresholds). While found no evidence that tDCS could 

influence α discrimination thresholds, this is most likely due to the overall neural responses to 1/f 

noise images, and not necessarily the actual encoding mechanism. The null effects are not 
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evidence that the contributing spatial frequency channel to α discrimination does not scale 

according to the reference α. Instead, our findings here suggest that tDCS may be an ill-suited 

approach to measure spatial frequency coding mechanisms of broadband stimuli.  
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Chapter 3B Tables 
 

Table 3B.1. Linear regression conducted on baseline α discrimination thresholds  
 b β t(2) p 95% CI r2 
Reference α     LL UL  
0.4 0.007 0.000 0.136 .905 -0.229 0.244 .296 
0.7 -0.001 0.000 -0.014 .990 -0.424 0.421 .031 
1.0 -0.008 0.000 -0.056 .960 -0.601 0.586 .547 
1.3 0.012 0.000 0.090 .936 -0.553 0.577 .655 
1.6 0.011 0.000 0.079 .944 -0.585 0.607 .568 
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Table 3B.2. Repeated Measures ANOVA source table  
Source SS df MS F p 𝜂!! 

Within Subjects Effects 
A 0.032 4 0.008 2.119 .093 .150 
 Error 0.182 48 0.004    
B 0.016 1 0.016 5.996 .031 .333 
 Error 0.032 12 0.003    
C 0.002 1 0.002 0.395 .541 .032 
 Error 0.047 12 0.004    
A x B 0.005 4 0.001 0.519 .722 .041 
 Error 0.120 48 0.003    
A x C 0.006 4 0.001 0.553 .698 .044 
 Error 0.126 48 0.003    
B x C 0.001 1 0.001 0.025 .876 .002 
 Error 0.019 12 0.002    
A x B x C 0.008 4 0.002 0.879 .484 .068 
 Error 0.108 48 0.002    

Between Subjects Effects 
Group 0.207 2 0.103 3.070 .084 .338 
 Error 0.404 12 0.034    
A x Group 0.022 8 0.003 0.724 .670 .108 
B x Group 0.002 2 0.001 0.313 .737 .050 
C x Group 0.005 2 0.002 0.613 .558 .093 
A x B x Group 0.030 8 0.004 1.472 .192 .197 
A x C x Group 0.017 8 0.002 0.825 .585 .121 
B x C x Group 0.016 2 0.008 5.098 .025 .459 
A x B x C x Group 0.008 8 0.001 0.444 .888 .069 
Note. A – Reference α, B – Session Time (Pre-Stimulation and Stimulation), C – Stimulation 
Session (a-tDCS c-tDCS)
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Chapter 4 

 

THE TASK DEPENDENT CONTRIBUTION OF SPATIAL FREQUENCY CHANNELS TO 

THE PERCEPTION OF THE SLOPE OF THE AMPLITUDE SPECTRUM OF NOISE 

IMAGES  

 

 

Bruno Richard, Bruce C. Hansen, Aaron P. Johnson 
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Abstract  

Human observers are thought to be most sensitive to deviations in the slope of the amplitude 

spectrum near the average slope value of natural scenes (α = 1.0), and slightly less so at values 

that exceed the range typically found within the natural environment (Billock, 2000; Hansen & 

Essock, 2005; Hansen & Hess, 2006; Johnson et al., 2011; Knill et al., 1990; Párraga & Tolhurst, 

2000). While the sensitivity characteristics of human observers to α are now well defined, the 

underlying mechanism that underlies α discriminability remains unclear. We have previously 

demonstrated that α discrimination is subject to the representation of luminance contrast across 

spatial frequency in a noise image, but were unable to show how spatial frequency content is 

used to discriminate α. Here, we implemented an image classification paradigm, whereby 

contrast was randomly increased or decreased (by  8dB) within 8 discrete spatial frequency 

bands, to assess how the contrast of each spatial frequency band is weighted by observers to 

identify a change in α. Observers to complete two tasks: an α identification, and an α 

discrimination task. We began with a slope identification task in order to define how observers 

may view, or weight, the spatial frequency content of 1/fα noise images when no discrimination 

task is assigned. We found that observers rely on progressively lower spatial frequency bands 

when viewing stimuli with steeper amplitude spectra. This correlated with the perceptually 

salient scale within our noise images (e.g., lower spatial frequencies for steep αs and higher 

spatial frequencies for shallow αs), which may reflect the activity of particular spatial frequency 

channels in the early visual system exposed to different αs (Boynton et al., 1999; Campbell & 

Kulikowski, 1972; Hansen et al., 2012, 2011; Haynes et al., 2003; Ress et al., 2000; Ross & 

Speed, 1991; Zenger-Landolt & Heeger, 2003). Yet, when asked to discriminate between stimuli 

that vary in their amplitude spectra, we found observers to forgo the spatial frequency dependent 

process identified in Experiment 4.1. In Experiments 4.2 and 4.3, we combined the “Odd-Man-

Out” psychophysical procedure (a spatial and temporal variant) with the classification image 

paradigm, and found that observers no longer adjusted the peak of the critical spatial frequency 

band according to the α of the reference stimulus. While the decision weights between all three 

observers varied, on average, they identified the stimulus with the odd α according to the 

difference in contrast between low and high spatial frequency bands. The loss of the spatial 

frequency dependent process in our α discrimination paradigm has interesting implications 

towards the definition of a coding mechanism involved in α discrimination.  

±
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 Over the past 20 years, researchers have investigated, and demonstrated that human 

observers are sensitive to the autocorrelation function of natural images, a second-order statistic 

of natural scenes that reflects the variance of luminance contrast within an image (Hansen & 

Hess, 2006; Johnson, Richard, Hansen, & Ellemberg, 2011; Knill, Field, & Kersten, 1990; 

Párraga & Tolhurst, 2000; Tadmor & Tolhurst, 1994; Thomson & Foster, 1997; Tolhurst & 

Tadmor, 1997, 2000). Second-order statistics are typically defined according to the slope of the 

Fourier amplitude spectrum of natural scenes, which represents a linear decrease in log 

amplitude as a function of log spatial frequency by a factor of 1/f α. Across multiple scenes, the 

slope (α) has been shown to range from 0.6 – 1.6, and has a mean value of about 1.0 (Billock, 

2000; Burton & Moorhead, 1987; Hansen & Essock, 2005; Tolhurst et al., 1992; van der Schaaf 

& van Hateren, 1996). Generally, human observers show greater sensitivity to images with an α 

near that of the average α (i.e., α = 1.0; Billock, 2000), and lower sensitivity to steeper and 

shallower αs (Hansen & Hess, 2006; Knill et al., 1990). The sensitivity of human observers to α 

suggest this statistical property may be relevant to the early processing stages of the visual 

system, and additionally, be necessary to encode the broadband information of natural scenes in 

some optimal fashion (Barlow, 1961, 2001; Graham & Field, 2007; Knill et al., 1990; Olshausen 

& Field, 2000; Olshausen & Field, 1996; Párraga et al., 2005; Párraga et al., 2000; Simoncelli & 

Olshausen, 2001; Simoncelli, 2003; Tolhurst & Tadmor, 2000). However, the description of the 

psychophysical mechanism involved in α discrimination remains to be defined. That is, while it 

is now well understood that human observers are able to detect and discriminate a change in α, 

how they discriminate between distributions of luminance contrast across spatial frequency 

remains to be defined.  

There is evidence that human observers may rely on diagnostic12 spatial frequency bands 

to discriminate α (Tadmor & Tolhurst, 1994; Tolhurst & Tadmor, 1997). When a change in α 

occurred only within the diagnostic spatial frequency bands, thresholds were unaltered as if the 

change had occurred across the entire spectrum. However, when the change in α occurred 

outside of the diagnostic band, thresholds no longer resembled those of a normal α 

discrimination task, as observers were now forced to use spatial frequency bands they do not 

                                                
12 A diagnostic spatial frequency band refers to a band of spatial frequency content that contains the necessary 
information for observers to complete a particular task. In an α discrimination task, this means that the comparison 
between αs is completed according to differences in contrast within that single spatial frequency band, which 
changes according to the reference α.  
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typically use to discriminate an α value. These findings suggest that observers may not rely on 

contrast across the entire spatial frequency spectrum to discriminate α, and may instead weight 

certain bands more heavily than others. That said, the diagnostic bands defined by Tolhurst and 

Tadmor (1997) were larger (at least 2 octaves) than the typical bandwidth given to 

psychophysical spatial frequency channels (Field, 1987; Párraga et al., 2005; Wilson & 

Humanski, 1993; Wilson et al., 1983) and the known spatial frequency bandwidth of cells in 

striate cortex (De Valois et al., 1982; Tootell, Silverman, et al., 1988; Yu et al., 2010). Thus, it is 

difficult to assess which particular band, or bands, were used by observers to complete the α 

discrimination task of Tolhurst and Tadmor (1997).  

We have also demonstrated that humans rely on luminance contrast within particular 

spatial frequency bands to discriminate α, which may be indicative of a diagnostic process. 

Specifically, in Chapter 2, we found that increases in the size of 1/f noise stimuli, which 

increases the representation of low spatial frequency content in the image, caused a decrease in α 

discrimination thresholds. Interestingly, this effect was most pronounced for a reference α of 1.0 

and decreased as the reference α was made steeper or shallower. We proposed our findings could 

be well described according to the summed responses of multiple one-octave bandwidth spatial 

frequency channels to noise images 1/f amplitude spectra (Brady & Field, 1995; Field & Brady, 

1997; Field, 1987; Hansen & Hess, 2012). The combined response of these channels has been 

demonstrated to be greatest for images with an α of 1.0, and decreased as α deviates from 1.0 (an 

inverted U-shape function). However, the size manipulation of Experiment 2.1 did not reveal 

any biases in the sampling characteristics of spatial frequency content across α. We had 

anticipated that α discrimination thresholds to noise images perceptually dominated by lower 

spatial frequency content (α > 1.0) would be most influenced by the increase in stimulus size, but 

found no indication of this effect13. In order to isolate the contribution of low spatial frequency 

content to α discrimination thresholds, we replicated the centre-surround study conducted by 

Johnson et al. (2011) and increased the gap sizes between the centre stimulus and surround 

annulus (Experiment 2.2). Similar to the findings of Johnson et al. (2011), the presence of a 

surround lowered α discrimination thresholds when the reference α equalled or was greater than 

1.0, and generated the largest facilitation when the surround α was steep (α = 1.3). Most 

                                                
13 The facilitation of discrimination thresholds with shallower reference αs was argued to stem from the spatial 
summation of higher spatial frequency luminance contrast.   
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interestingly, we found the distance between the centre stimulus and surround annulus to have no 

impact on the facilitation of α discrimination thresholds, which suggests the spatial interactions 

involved in our surround facilitation effect are low spatial frequency based. Thus, the responses 

of channels tuned to low spatial frequency luminance contrast play a key role in regulating α 

discrimination thresholds, at least when the reference α is equal to or greater than 1.0. The 

contribution of low spatial frequency channels to α discrimination thresholds corroborates 

neurophysiological evidence that the perception of noise stimuli with steep αs is dominated by 

the responses of lower spatial frequency channels (Hansen et al., 2012; Hansen, Jacques, 

Johnson, & Ellemberg, 2011), and psychophysical findings that adaptation to natural scenes 

primarily reduces contrast sensitivity to low spatial frequencies (Webster & Miyahara, 1997). As 

the contribution of low spatial frequency tuned channels was only evident when the reference α 

was relatively steep, we proposed that the contributing spatial frequency channel might scale in 

spatial frequency tuning according to the reference α, in a manner similar to that proposed by 

Tolhurst and Tadmor (1997).  

Noise images with steep α are perceptually dominated by low spatial frequency content 

(i.e., a significantly large proportion of the contrast energy is in the lower spatial frequencies), 

while noise images with shallow α tend to be perceptually dominated by higher spatial frequency 

content. If the perceptually salient spatial frequency content of our noise images reflect the 

dominant activity of particular spatial frequency channels, as has been proposed elsewhere 

(Boynton et al., 1999; Britten et al., 1992; Campbell & Kulikowski, 1972; Haynes et al., 2003; 

Kwon et al., 1992; Ross & Speed, 1991; Shadlen & Newsome, 1998; Zenger-Landolt & Heeger, 

2003) then they might indicate the tuning of the diagnostic spatial frequency band used by 

observers to discriminate α. It followed that modulating the activity of channels tuned to higher 

spatial frequencies should have modulated α discrimination thresholds to shallower αs (e.g., α = 

0.4, 0.7). In Chapter 3B, we attempted to modulate the activity of cells in striate cortex with 

trans-cranial Direct Current Stimulation (tDCS) to affect slope discrimination thresholds for 

shallow reference α. However, tDCS seems an ill-suited tool to the modulate suprathreshold 

perception of broadband stimuli as it had no measureable effect on slope discrimination 

thresholds.  

A difficulty we have encountered with our previous experiments when identifying the 

function of differently tuned spatial frequency channels exposed to broadband noise stimuli may 
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lie in the appearance of noise images. Broadband images, which contain a significant amount of 

luminance contrast across a wide range of spatial frequencies, do not appear to human observers 

as a set of identifiable, or separate, spatial frequency bands, but instead appear unified across 

scale (i.e., the perception of contrast is unified across spatial frequency). Indeed, nearly all 

models of broadband feature perception will pool the transduced contrast across spatial 

frequency prior to the decision stage (Azzopardi & Petkov, 2012; Brady & Field, 1995; Hansen 

& Hess, 2012; Haun & Peli, 2013; Johnson, Prins, Kingdom, & Baker, 2007; Kim, Haun, & 

Essock, 2010; Morgan & Watt, 1997; Párraga et al., 2005). While the contribution of individual 

spatial frequency channels can be studied in isolation with filtering methods, removing spatial 

frequency content from broadband noise images can transform the task observers complete from 

an α discrimination task to one of contrast discrimination (i.e., narrowband discrimination). 

Additionally, segregating the high or low spatial frequency content from broadband noise images 

(i.e., high-pass or low-pass filters, respectively), and asking observers to discriminate the α of 

these altered images, generates α discrimination threshold that show little tuning to α (i.e., α 

discrimination thresholds are identical for all reference αs; Richard, Hansen, Ellemberg, & 

Johnson, 2013), and can therefore not be interpreted according to the findings of more typical α 

discrimination tasks (see Figure 4.1 for an example of the appearance of filtered 1/f noise 

images). Indeed, there are indications that observers may require the entire spatial frequency 

spectrum to complete an α discrimination task (at least for reference α values greater than 0.4; 

Párraga & Tolhurst, 2000) and thus, the study of the function of spatial frequency channels in α 

discrimination should aim to use 1/f noise images that contain a complete representation of their 

spatial frequency content.  

The image classification paradigm (Ahumada, Jr. & Ahumada, 2002; Ahumada, Jr., 

1971, 1975; Beard & Ahumada, Jr., 1998) may be better suited to identify the function or 

contribution of individual spatial frequency channels as it does not remove any spatial frequency 

content from the noise images. In an image classification paradigm, observers are asked to make 

perceptual judgements on the entirety of a signal while the individual components of the stimulus 

are modulated over multiple trials. The observer responses are then correlated with the stimulus 

variation, which identifies the average weight an observer attributes to the individual 

components of the signal. The benefit of this technique is that it allows observers to judge the 

entire image, as they would within a traditional α discrimination paradigm, without the   
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Figure 4.1. Filtered 1/f noise images with α = 1.0. Each image is filtered with an ideal low-pass 

(A) or high-pass (B) filter of varying spatial frequency cut off.  
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requirement that a particular spatial frequency band be removed, or attention be paid to a 

particular spatial frequency band. Image classification paradigms have previously been used to 

identify spatial frequency tuning functions in white noise (Levi et al., 2005), of targets within 

noise (Klein & Levi, 2009; Kontsevich & Tyler, 2004; Levi, Klein, & Chen, 2008; Murray, 

Bennett, & Sekuler, 2005; Taylor, Bennett, & Sekuler, 2009), and most recently, identify the role 

of individual spatial frequency components in the perceived contrast of natural images (Haun & 

Peli, 2013). 

Haun and Peli (2013) used an image classification paradigm in order to derive the spatial 

frequency weighting functions for subjective estimates of broadband image contrast. They 

randomly modulated contrast of natural images within eight discrete spatial frequency bands, and 

in a 2-AFC task, asked observers to identify the image that had the greater contrast. According to 

their findings, the overall contrast of a natural image is determined by the amount of contrast in 

the spatial frequency bands between 1 and 6 cycles/°, which corresponds to the peak of the 

contrast sensitivity function (Peli, Arend, Young, & Goldstein, 1993; Robson, 1966). Most 

relevant to the current study, they demonstrated that the peak spatial frequency band used by 

observers to determine contrast changed according to the α of the original, un-modulated image. 

Observers weighted lower spatial frequency bands more heavily when the image α was steep, 

and higher spatial frequency bands when the image α was shallow. The change in weights of 

spatial frequency bands used by observers suggest that the mechanism involved in the perception 

of low level characteristics in broadband images (e.g., perceived contrast) may rely on diagnostic 

spatial frequency bands. The image classification paradigm, therefore, seems an appropriate 

approach to verify if observers rely on more “diagnostic” spatial frequency bands in an α 

discrimination task. 

Experiment 4.1 

 In an image classification paradigm, observers are asked to make a simple perceptual 

judgement of an image while the individual components of the images are varied over multiple 

trials. As we were uncertain of how this method would translate to our α discrimination task, we 

opted to first measure the classification images of our observers to different αs. Specifically, we 

asked observers to identify the α of a noise image while the magnitude of contrast within eight 

discrete spatial frequency bands was changed across multiple trials. This technique simplified the 

task, and additionally, allowed us to generate a representation of how observers may use the 
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distribution of contrast across spatial frequency to judge the particular α of an image. The 

identification of α is not a representation of observer sensitivity to α as is the resulting threshold 

of an α discrimination task (for review on the measurement of sensitivity to α see Hansen & 

Essock, 2005), but does allow us to assess the internal representation observers may have built of 

noise images with different α.  

Method 

Participants 

Three experienced psychophysical observers (2 females), who were all 21 years of age at 

the start of the study, participated in all three experiments of this study. All were experienced 

psychophysical observers, and participated in Experiments 2.1 and 2.2 (P1 was P1 in Chapter 1, 

P2 was P3, and P3 was P4). All participants had normal or corrected to normal visual acuity (cut-

off = 20/25). Informed consent was obtained from all participants and all were treated in 

accordance the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans 

(2014). Participants were consenting volunteers.  

Apparatus 

The apparatus was identical in all three experiments of this study, and are therefore only 

described here. Stimuli were presented on a 22.5” Viewsonic (G225fB) monitor driven by an 

Apple Mac Pro (2 X 2.66GHz processor) equipped with 8GB of RAM and a 1GB PCIe x16 ATI 

Radeon HD 5770 Graphics card with 10-bit grayscale resolution. Stimuli were displayed using a 

linearized look-up table, generated by calibrating with a Color-Vision Spyder3 Pro sensor. 

Maximum luminance output of the display monitor was 100 cd/m2 (50 cd/m2 mean luminance 

after calibration) the frame rate was set to 100 Hz, and the resolution was set to 1024 X 768 

pixels. Single pixels subtended .0381° of visual angle (i.e., 2.23 arc min.) when viewed from 1.0 

meter. Head position was maintained using a chin rest, and participant input was recorded via 

keyboard press.  

Stimuli 

All stimuli were constructed in an identical fashion to those of Experiment 2.1, 

Experiment 2.2, and Experiment 3.2, and subsequently modified according to a re-weighting 

vector defined below. The image classification paradigm requires a large number of trials, and 

therefore we only generated stimuli according to 3 reference α values, equidistant (  0.2) around 

an α = 1.0 (α = [0.8, 1.0, 1.2]). This ensured the difference in αs was large enough for observers 

±
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to differentiate between all three αs. All stimuli consisted of synthetic amplitude spectrum noise, 

were constructed in the Fourier domain using MATLAB (ver. 2012b; Mathworks, Natick, MA, 

ver. 2012b) and corresponding Image Processing (ver 6.4) toolbox, and were presented using the 

Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). The noise 

patterns were rendered into the spatial domain by taking the inverse Fourier Transform of 

amplitude spectrum and a given random phase spectrum, which was randomized on each trial. 

All stimuli were normalized to have an RMS contrast of 0.15. Each 1/fα noise image was then 

divided into eight spatial frequency bands, including seven bands of one-octave bandwidth 

centred on 1, 2, 4, 8, 16, 32, and 64 cycles per picture (cpp), and an eighth that plateaued at 128 

cpp. We define the centre spatial frequencies of our filters in cycles per picture for the general 

description of our stimulus creation procedure as the size of our stimuli differed between 

Experiment 4.1 and Experiment 4.2 and 4.3. As the appropriate metric to define the spatial 

frequency bands is in cycles per degree of visual angle (see Haun & Peli, 2013), the centre 

spatial frequency of each filter is stated in cycles per degree within the results section of each 

experiment. The seven one-octave bands were defined by a raised-cosine of log frequency 

envelope h (see Figure 4.2) defined as 

  Equation 4.1	
  

where s is the centre frequency (in cycles per picture) of the raised-cosine filter, and f is spatial 

frequency (Haun & Peli, 2013; Peli, 1990). The remaining high spatial frequency content was 

assigned to the eighth, residual, spatial frequency band (i.e., for f  128, h(s) = 1). We defined 

the contrast modulation of each spatial frequency band by creating a vector (ω) of random 

reweighting coefficients ranging from -8 dB to +8 dB [ ], and 

applied to the series of spatial frequency bands to generate a new set of reweighted series, which 

were then summed to obtain an altered version of the original image (see Figure 4.2). The image 

was then normalized to fit within the 0 – 1 pixel value display range. We chose the range of  

8dB as this change was large enough to generate noticeable changes in the appearance of the 

stimulus, but small enough to not alter the α of the original image, and completely disrupt the 

appearance of the 1/f noise stimuli. Following the alteration of our stimuli, an image patch with 

diameter of 8° of visual angle was cropped from its centre and windowed with a cosine-tapered   

h s( ) =
1
2
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Figure 4.2. Stimulus generation procedure. A Original 1/fα noise image with α = 1. B The weight 

coefficients applied to the 8 pre-defined spatial frequency bands. C The 8 raised-cosine filters 

used to separate the image into 8 spatial frequency bands. Once each band is extracted, its 

contrast is modulated by their respective weight coefficients – defined in B, shown in the circles 

to the right of each filter. D The original and modulated image orientation-averaged amplitude 

spectrum. E The 8 modulated images are summed together to generate the final contrast band 

modulated image.   
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envelope, which ramped 5% of the image pixels in the proximity of the circle’s edge to mean 

luminance (50 cd/m2). Examples of the original and altered stimuli for all three reference α, in 

addition to a schematic illustration of the weighting coefficients for each image can be seen in 

Figure 4.3.  

Psychophysical Procedures 

Viewing was binocular in all experiments of this study. Observers completed a α 

identification task, whereby they were asked to indicate if the presented stimulus had an α of 0.8, 

1.0, or 1.2. Observers first completed a practice block that consisted of 250 trials per α (750 total 

trials) of unaltered stimuli, where the particular α of the stimulus was randomly interleaved 

between trials. The baseline component of Experiment 1 took on average an hour to complete 

for each observer. Average accuracy for our baseline measure was quite high (P1 = 94.7%; P2 = 

88.8%, P3 = 89.8%), which demonstrates our participants could reliably differentiate between 

the three α used in this study (see Figure 4.4).  

The experimental condition of this study consisted of the same αs presented in the 

practice blocks, but stimuli were now altered according to the stimulus generation procedures 

defined above. Participants completed 1000 trials per α (3000 total), and the presentation of any 

of the three αs was randomized on every trial. All stimuli were generated on a trial-by-trial basis, 

and therefore, both their phase spectrum and the vector of weighted coefficients were 

randomized on every trial. Each trial began with a white fixation cross (RGB = [255, 255, 255]), 

which subtended 0.3° of visual angle in diameter was presented for 250ms at the centre of the 

screen. This was followed by the presentation of the stimulus, which remained on screen until 

the observer indicated the α of the presented stimulus. Participants knew the three possible α 

values presented, and every 200 trials, were presented with an unaltered stimulus that had an α = 

1.0 to serve as a reference for their decision. Once observers indicated the α of the image, they 

were asked to indicate their confidence level in their decision, they used a keyboard press to 

indicate whether they were confident or not confident with their selection14. These confidence 

levels were then transformed into scalars used to scale the decision weights (see Results). 

Observers took, on average, 4 hours to complete the α identification task.  

  

                                                
14 We chose to implement a binary confidence rating approach as observers preferred this rating method, compare to 
one with four confidence levels in pilot studies.  
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Figure 4.3. Example of the 3 αs (right column) used in Experiment 1, their schematic vector of 

re-weighting coefficients (centre column), and the altered stimulus (left column).  
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Results and Discussion 

The goal of Experiment 4.1 was to understand how observers might use contrast within 

particular spatial frequency bands to identify the α of noise images. We report decision weights 

(βf) as a function of spatial frequency defined in cycles per degree of visual angle (cycles/°). 

Noise images, in Experiment 4.1, subtended 8° of visual angle in diameter, and therefore, the 

centre spatial frequencies of our cosine filters were 0.25, 0.5, 1, 2, 4, 8, 16, and 32 cycles/°). In 

order to calculate the average contrast value of stimuli defined as having a particular α (0.8. 1.0, 

or 1.2), we calculated the average band-limited contrast modulation (ωf) for a given spatial 

frequency, weighted by the confidence rating (γi) of the observer, for a correct trial (i) define in 

symbols as: 

   Equation 4.2	
  

Each observer’s confidence rating (γi) was given a weight of 2 when they reported being 

confident in their decision, and a weight of 1 when they reported not being confident in their 

decision. Note that this technique is not a model of contrast perception. Instead it is used to 

quantify subject performance according to the altered contrast within each spatial frequency band 

of our stimuli. This technique is a measure of how contrast within a particular spatial frequency 

band may influence the perceived α of an image, not how it is encoded.  

The decision weights (βf) for each observer, and chosen image α are shown in Figure 4.4. 

Observers P1 and P2 both showed distinct peaks in their decision weights, which shift towards 

lower spatial frequencies as the α of the stimulus steepen. Images with positive contrast weights 

in lower spatial frequency bands (2 cycles/°) were typically judged as having a steeper α (α = 

1.2) than images with positive contrast weights in higher spatial frequency bands (8 – 16 

cycles/°), which were described as having shallower α values (0.8). Observer P1 had slightly 

higher peak spatial frequencies than observer P2. 

In comparison to observers P1 and P2, observer P3 had relatively flat decision weights, 

with little preference for any particular spatial frequency. The peak in decision weights for 

observer P3 was similar to those of observers P1 and P2 for α = 1.0 at a spatial frequency of 4 

cycles/°. However, observer P3 showed no positive peak for α = 0.8 (other than the 32 cycles/° 

band), but did show a similar negative contrast weight at a spatial frequency of 16 cycles/°. 

Oddly, observer P3 had two moderate positive deflections in the decision weights for an α of 1.2   

β f =
1
T

γ ω f ,i( )
i=1

T

∑
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Figure 4.4. A Decision weights for all centre spatial frequency of our cosine filters for observers 

P1, P2, and P3. As described in text, all observers showed a progression in the peak spatial 

frequency band used according to the chosen α value. To the right of each decision weight plots 

are the schematic illustrations of the decision weights for each observer. Each classification 

image was generated by modulating a noise stimulus according to the decision weights of each 

observer. Error bars represent 95% confidence intervals calculated via bootstrapping the average 

decision weight with replacement and 2000 repetitions. B Accuracy for each α. All observers 

performed well above chance (dashed gray line). Both observer P1 and P3 show greatest 

identification accuracy for α = 1.0 (91.2% and 94.4% respectively), and lowest identification 

accuracy when α = 0.8 (85.2% and 90.4% respectively). Observer P2 was most accurate at 

identifying stimuli with α = 1.2 (98.4%) and least for stimuli with α = 0.8 (90.4%).   
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 (0.5 and 8 cycles/°). We generated schematic representations of the decision weight vector for 

all three observers by modulating noise images by the weight vector of each observer (see 

Figure 4.4). In all three observers, there is a clear progression in the dominant scale observed 

within each image (which follows the decision weight vector of each observer). The schematic 

representations we generated are particularly useful to understand the weight vector of observer 

P3. While the absolute value of the contrast weight vector remained relatively shallow, there is 

still somewhat of a progression in the perceptually dominant scale in the schematic 

representation of the decision weights (βf) for observer P3. Just as the other two observers, 

observer P3 viewed noise images perceptually dominated by low spatial frequency content to 

have a steeper α than images with dominated by higher spatial frequency content.  

 The approach taken by our observers to identify the α of a noise image corroborates our 

assumption that contrast increments within a particular spatial frequency band should correlated 

with the perceptually dominant spatial frequency content of noise images. Similarly, spatial 

frequency content that is not perceptually salient in these images (e.g., high spatial frequency 

information in images with shallow α) should be attenuated. We found that observers identified 

the slope of the amplitude spectrum of 1/fα noise images as shallow or steep according to the 

magnitude of luminance contrast in higher (~16 cycles/°) or lower (~2 cycles/°) spatial frequency 

bands respectively, and increments in contrast near the peak of the CSF (~ 4 cycles/°) when the 

stimulus has an α of 1.0, while other spatial frequency bands showing decrements in decision 

weights. This suggests that the internal template of α, in noise images, is adaptive similar to other 

classification image paradigms (Kersten, 1987; Levi et al., 2005; Taylor et al., 2009). 

Specifically, the shape of the decision function we found in Experiment 4.1 suggests that the 

identification of α in noise images is more than a passive filtering of contrast across spatial 

frequency. It is unlikely that the shape of the decision weights we have obtained stem solely 

from spatial frequency channel interactions (Levi et al., 2005), and given the nature of the task, 

most probably falls within the realm of higher-order mechanisms similar to those defined in 

categorization paradigms (Gosselin & Schyns, 2001; Hansen, Farivar, Thompson, & Hess, 2008; 

Morrison & Schyns, 2001; Oliva & Schyns, 1997; Schyns & Gosselin, 2003; Schyns & Oliva, 

1994, 1999). 

 Particular spatial frequency bands (i.e., low or high spatial frequencies) are known to 

carry different information of relevance for a particular task. It is well established in natural 
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scene categorization, that observers will rely more heavily on information within lower spatial 

frequency bands to complete the task (Brand & Johnson, 2014; Oliva & Schyns, 1997; Schyns & 

Oliva, 1994). However, this is subject to the particular demands of the categorization task. When 

observers are asked to identify the presence of an expression in hybrid images, which contain 

different content within their high and low spatial frequency bands (e.g., the presence of an 

expression), observers relied heavily on high spatial frequency content to make their decision 

(Schyns & Oliva, 1999). Conversely, when asked to identify the particular emotion expressed on 

the face, observers relied more heavily on low spatial frequency content within the image. Our 

findings for the identification of α for a noise image highlight a similar process to the diagnostic 

spatial frequency bands defined within the scene categorization literature, but interestingly, with 

much simpler stimuli that are not designed to be recognizable other than by their α. Additionally, 

these diagnostic bands scale according to α, in that observers rely on the amount of luminance 

contrast at low spatial frequencies to identify steep αs, and high spatial frequencies for shallow 

αs, in accordance with the dominant spatial scale of 1/fα noise images. We ask now if observers 

may use a similar process in an α discrimination task.  

Experiment 4.2 

Identification and discrimination differ considerably. In an identification task, observers 

are required to match the properties of an image to some form of internal template, which may be 

as simple as the distribution of responses of spatial frequency channels to luminance contrast or 

more complex features that require the integration of contrast across multiple spatial frequencies 

(e.g., an edge or border; Hansen et al., 2008). Conversely, image discrimination can be 

completed without any prior knowledge of the stimulus properties. In an α discrimination task 

like the one we have implemented in previous studies, observers need only compare the relative 

differences of luminance contrast between noise images, a process that is irrespective of α. Thus, 

while we find that observers rely of diagnostic bands to identify the α of an image in 

Experiment 4.1, it is unclear if such a mechanism may carry over to α discrimination. In 

Experiments 4.2 and 4.3 implemented the classification image paradigm defined in Experiment 

4.1 in the α discrimination task we have used throughout this dissertation. Given that the contrast 

modulated noise images required for the image classification task are relatively complex, 

observers first completed a spatial variant of the “Odd-Man-Out” procedure in order to minimize 

any added difficulty from having to integrate and hold, over time, three complex images 
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presented sequentially (Blackwell, 1952; Jäkel & Wichmann, 2006). The spatial “Odd-Man-Out” 

procedure presented all noise images simultaneously, and observers were free to fixate all three 

stimuli.  

Method 

Stimuli 

 The stimuli of Experiment 4.2 were constructed in an identical fashion to those of 

Experiment 4.1. All stimuli subtended 6 degrees of visual angle when viewed from one meter 

(stimuli were smaller in Experiments 4.2 and 4.3 in order to fit on the screen). The centre spatial 

frequency of our cosine filters remained identical to those of Experiment 1, in cycles per picture 

(in cycles/°: 0.27, 0.53, 1.07, 2.14, 4.28, 8.56, 17.12, and 34.23). The following algorithm was 

used to produce two re-weighting coefficient vectors: (1) create a vector (ω1) of uniformly 

distributed random coefficients within the range of 8dB. (2) Create a second vector (ω2) by 

randomly rearranging the values in vector. (3) If the positive or negative coefficients in ω1 have 

the same position in ω2, repeat step (2). This meant the two stimuli presented on screen had the 

same relative amount of contrast change, but these changes did not occur in the same spatial 

frequency bands for both stimuli.  

Psychophysical Procedures 

The spatial variant of the “Odd-Man-Out” procedure asked observers to identify the 

stimulus, either on the left or right of the screen, which contained the odd amplitude spectrum 

slope compared to that of the centre reference stimulus. Observers first completed a practice 

block of 1500 trials with unaltered 1/fα noise images generated according to an α of 0.8, 1.0, or 

1.2 (i.e., 500 trials per reference α). The psychophysical procedure implemented here is similar 

to that of the preceding chapters, but have a few key differences that are described here. In 

Experiment 4.2, slope discrimination thresholds were estimated using a spatial 2-Alternative 

Forced Choice (2-AFC) “Odd-Man-Out” psychophysical procedure, whereby observers had to 

select either the leftmost or rightmost stimuli that had an odd amplitude spectrum slope (steeper 

α) different from that of the unaltered reference α (centre stimulus; see Figure 4.5). At the 

beginning of each trial, a white fixation cross, 0.3° degrees of visual angle in diameter, appeared 

at the centre of the screen for 1000ms, which was followed by the presentation of all three 

stimuli. Reference α were randomly interleaved across trials. Observers indicated, via keyboard   

±
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Figure 4.5. A Procedures of Experiment 4.2. Observers completed a spatial “Odd-Man-Out” 

task whereby either the left or right stimulus had an odd amplitude spectrum slope in comparison 

to that of the centre, reference stimulus. This task was completed both with the original noise 

stimuli B examples three reference α used in the task, and with noise stimuli that varied in 

contrast within 8 predefined spatial frequency bands. C Example weight vectors used to 

modulate the right and left stimulus. Weight vectors contained the same 8 contrast weight values, 

but their position on the spatial frequency axis was randomized for both stimuli so that neither 

would have the same modulation (either positive or negative) within the same spatial frequency 

band. D The resulting orientation-averaged amplitude spectrum slope of our noise stimuli for a 

given trial.  
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press, which stimulus (the left or right stimulus) had an amplitude spectrum slope that was odd 

from the reference. The reference stimulus remained unaltered (did not undergo the band-limited 

contrast modulation) for all trials in this study. A blank screen, set to mean luminance for 500ms, 

interlaced each trial and the response interval was unlimited. Viewing was binocular.  

The trial-to-trial change in the images slope exponent (α) was defined by a constant stimulus 

approach. The amplitude spectrum slope of the odd stimulus was pre—defined by generating a 

vector of random Δα values that ranged from reference α + [0.01 - 0.30] (50 trials per Δα), with 

the upper limit of Δαs according to that used in previous studies (see Experiment 2.1). Given 

that Δαs were constrained to be greater than 0.01, α discrimination thresholds were estimated by 

fitting a cumulative Weibull psychometric function defined, in symbols as: 

  Equation 4.3	
  

with x the random vector of Δα values, and the threshold (Δα), which corresponds to the 63.21% 

accuracy rate. The slope parameter (b), which was not of interest to this study, is not reported. 

When participants completed all trials from the practice block, they repeated the experiment, 

however, both odd stimuli were modulated according to the procedure defined in above (see 

Stimuli, Experiment 4.2). Participants completed 1500 trials per reference α, for a total of 4500 

trials, which took approximately 6 hours to complete.  

Results and Discussion 

 The data from the practice block of Experiment 4.2 is plotted for all three observers in 

the form of psychometric functions, in addition to their α discrimination thresholds for each 

reference α, in Figure 4.6. The quality of the fits of the psychometric function varied 

significantly between observers and reference αs, and thus, the α discrimination thresholds 

should be interpreted with this caveat in mind. Note that the Weibull function used estimate 

thresholds targets the 63.21% accuracy rate, which estimates a lower accuracy threshold than the 

staircase procedure used in Experiments 2.1 and 2.2 that targets 70.71% accuracy. α 

discrimination thresholds for both observers P2 and P3 followed the typical sensitivity profile to 

1/fα noise stimuli, whereby thresholds for reference within the range of α = [1.0 1.2] are lower 

than for shallower reference αs. Conversely, observer P1 showed a high threshold for a reference 

α of 1.0, while their thresholds for reference αs of 0.8 and 1.2 were approximately equal. 

We report decision weights (βf) as a function of spatial frequency defined in cycles per 

degree of visual angle, which vary slightly from those of Experiment 4.1 (stimulus size changed   

P = 1− e
− x

Δα
⎛
⎝⎜

⎞
⎠⎟
b
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Figure 4.6. A Psychometric functions that relate the accuracy of observers (ordinate) to identify 

the odd amplitude spectrum stimulus for a particular Δα (abscissa). The dashed lines represent 

the upper and lower bounds of the 95% confidence interval of the line of best fit, calculated via 

bootstrapping procedures, with replacement and 2000 repetitions. B Each observer’s α 

discrimination threshold (63.21% accuracy) for all three reference αs. Observers P2 and P3 

showed normal α discrimination thresholds (lower for steeper α) while observer P1 had low 

threshold for α = 0.8 and α = 1.2.  
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from 8° to 6°). The centre spatial frequency of our octave bandwidth filters, in cycles per degree, 

were: 0.27, 0.53, 1.07, 2.14, 4.28, 8.56, and 17.12 cycles/°, while the remaining high spatial 

frequency content was assigned to the eight band that plateaued at 34.23 cycles/°. As the two test 

stimuli presented to observers in the spatial α discrimination task had different native spectra (α 

and α+Δα), we normalized all decision weights in accordance to the α of a particular image for a 

given trial. For correct trials, the weight vector of the chosen stimulus ( ,
chose
f iω ) was divided by the 

α of the odd stimulus (reference αi+Δαi), according to Equation 4.4: 

  Equation 4.4 

For incorrect trials, where the stimulus with the odd α was rejected, its weight vector (

,
reject
f iω ) that was divided by α+Δα. Given that we were predominantly interested in the attributes 

given by observers to the odd stimulus in the α discrimination task, decision weights (βf) were 

calculated for all trials, regardless of observer accuracy. We only labelled trials as correct or 

incorrect in order to adjust the decision weights of observers according to the α of each image. 

Observers rated their confidence (γ; confident or not) in the chosen / rejected stimulus on all 

trials, which was used to adjust the magnitude of the weight vector difference score for a 

particular trial (see Equation 4.4). Trials rated as confident by observers were given a scalar 

weight of 3 (the chosen image received a score of 4 while the rejected image received a score of 

1), while trials rated low in confidence received a scalar weight of 1. The decision weights (βf), 

which reflect the difference in the weight vectors of the chosen ( ,
chose
f iω ) and rejected ( ,

reject
f iω ) 

images of the α discrimination task, are shown in Figure 4.7. 

Unlike in Experiment 4.1, we found no discernable shift in the peak spatial frequency 

band with reference α in the α discrimination task. There is individual observer variability in the 

pattern of decision weights across spatial frequency. However, observers showed identical peaks 

in their respective decisions weights for all reference αs. Observer P1 shows a clear segregation 

in the weights given to low and high spatial frequencies between the chosen and the rejected 

stimulus. That is, the stimulus chosen as odd by observer P1 had a contrast increment within the 

low spatial frequency bands (peak = 1 cycle/°) and a contrast decrement at higher spatial 

frequencies (peak = 8 cycles/°). Observer P2, on the other hand, had negative decision weights 

(representative of a contrast decrement) at low spatial frequencies (peak = 1.07 cycles/°) and   

β f =
1
T

γ
ω f ,i

choose

α i + Δα i

−
ω f ,i

reject

α i

⎛

⎝⎜
⎞

⎠⎟i=1
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∑



 

 

136 

 
Figure 4.7. A Spatial AFC - Decision weights of all three observers for the difference in the 

weight vectors between the stimulus chosen as having the odd amplitude spectrum slope and the 

rejected stimulus. These decision weights, unlike those reported in Experiment 1 represent the 

difference in contrast weights between the chosen and rejected stimulus. Observer P1 had a clear 

separation between the contrast weights of low and high spatial frequencies they used to identify 

the odd stimulus, while observers P2 and P3 showed much flatter decision weights. B The 

decision weights for both the chosen and rejected stimuli. These are used to verify that non-linear 

operations (e.g., uncertainty) were not part of the process observers used to complete the task. 

Given that their decision weights only differed in signs, observers used similar processes to 

select the chosen and rejected stimulus. Error bars represent 95% confidence intervals calculated 

via bootstrapping the average decision weight (or difference in decision weights) with 

replacement and 2000 repetitions. 

0.27 0.53 1.07 2.14 4.28 8.56 17.1234.23 0.27 0.53 1.07 2.14 4.28 8.56 17.12 34.23

α = 0.8
α = 1.0
α = 1.2

Spatial Frequency (cycles/o)
0.27 0.53 1.07 2.14 4.28 8.56 17.12 34.23

De
ci

si
on

 W
ei

gh
t (

β f
)

-8

-6

-4

-2

0

2

4

6

8
P2 P3P1

Spatial Frequency (cycles/o)Spatial Frequency (cycles/o)

A

B

Spatial Frequency (cycles/o)

De
ci

si
on

 W
ei

gh
t (

β f)

Chosen Stimulus

De
ci

si
on

 W
ei

gh
t (

β f)

Rejected Stimulus

De
ci

si
on

 W
ei

gh
t (

β f)

Chosen Stimulus

De
ci

si
on

 W
ei

gh
t (

β f)

Rejected Stimulus

De
ci

si
on

 W
ei

gh
t (

β f)

Chosen Stimulus

De
ci

si
on

 W
ei

gh
t (

β f)

Rejected Stimulus

Spatial Frequency (cycles/o)Spatial Frequency (cycles/o)

-4

-2

0

2

4

0.27 0.53 1.07 2.14 4.28 8.56 17.12 34.23
-4

-2

0

2

4

-4

-2

0

2

4

0.27 0.53 1.07 2.14 4.28 8.56 17.12 34.23
-4

-2

0

2

4

-4

-2

0

2

4

0.27 0.53 1.07 2.14 4.28 8.56 17.12 34.23
-4

-2

0

2

4



 

 

137 

positive decision weights for higher spatial frequencies (peak near 17 cycles/°). Observer P3 had 

two positive deflections in their decision weights (0.27 and 4.28 cycles/°) and a large negative 

deflection at a spatial frequency of 17.12 cycles/°. In a manner similar to observer P1, it seems 

observer P3 identified stimuli with positive contrast weights near the peak of the CSF (1-4 

cycles/°) and negative contrast weights at higher spatial frequencies to have an odd α. While 

each observer may have used luminance contrast across spatial frequency differently to identify 

the odd α (there is no consensus in positive or negative decision weights for all three observers), 

it is evident that none relied on a diagnostic spatial frequency band that scaled in accordance 

with α to complete the discrimination task as they did in the α identification task. 

 Given the large variability in the decision weights between all three observers in this 

study, we wondered if the modified stimulus might have lead to certain non-linear operations in 

the discrimination of α, which are not typically observed with unaltered stimuli. Under a linear 

observer model, the shape of the decision weights function under the chosen and rejected stimuli 

should be the same, except for a change in sign (if positive weights are given to a particular band 

in the chosen stimulus, then the rejected stimulus should have negative weights for the same 

band; Beard & Ahumada, 1999). If non-linear operations are involved in this α discrimination 

task (e.g., uncertainty), then the shape of the decision weight functions for the chosen and 

rejected stimuli should vary beyond a simple change in sign. We compared the decision weights 

for the chosen ( ,
chose
f iω ) and rejected noise images ( ,

reject
f iω ; see Figure 4.7B) for all three observers 

and references α by correlating their absolute values. The correlations between ,
chose
f iω  and ,

reject
f iω  

were fairly high for all three observers, except for a single condition in the data of observer P2 

(see Table 4.1). The correlation between the chosen and rejected noise image decision weights 

of observer P2, for a reference α = 1.2, was not statistically significant (r = .292, p = .484). This 

seems to be accounted for by variability in the decision weights of higher spatial frequency 

bands (> 8 cycles/°). Given that high spatial frequency bands carry little luminance contrast 

energy in comparison to lower spatial frequency bands when the α of an image is steep, they may 

be more susceptible to non-linear operations (e.g., uncertainty) from the observer. Nevertheless, 

all other conditions showed decision weights between the noise image chosen as the odd α and 

that rejected only differed in sign (i.e., their absolute value was strongly correlated), which 

suggests that non-linear operations in the discrimination task, if present, only played a minor role 

in the responses of our observers. 
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In Experiment 4.1, observers relied on critical, and potentially diagnostic bands of 

spatial frequency to identify the α of a noise image. That is, the location of the peak in decision 

weights scaled according to reference α, whereby increments in low spatial frequency contrast 

led observers to identify the image as having a steep α (α = 1.2), while images with increments in 

high spatial frequencies were identified as containing a shallow α (α = 0.8). However, when 

asked to discriminate between stimuli that vary in α, observers forgo the use of any diagnostic 

spatial frequency band, and instead seem to use general changes in contrast between low and 

high spatial frequencies, regardless of the reference α. This is compelling evidence that the 

spatial frequency dependent processes involved in the identification of α are different from those 

of α discrimination (Hansen, et al., 2008). We return to this point in the general discussion.  

Experiment 4.3 

 The findings of Experiment 4.2 suggest that for α discrimination, observers do not rely 

on some form of internal template (e.g., diagnostic spatial frequency bands) and instead rely 

solely on the luminance contrast differences between low and high spatial frequencies. That said, 

we simplified the task for observers in Experiment 4.2 and allowed them to freely fixate all 

three stimuli on screen during a particular trial. While this minimized a potential difficulty in 

having to integrate, and hold over time, three relatively complex images (Blackwell, 1952; Jäkel 

& Wichmann, 2006), we may have simultaneously avoided measuring the traditional 

discrimination mechanism used by observers in temporal version of the discrimination task. That 

is, we may find that observers rely on diagnostic spatial frequency bands when they must hold 

the distribution of luminance contrast in memory in order to discriminate between different αs. 

Therefore, to rule out the possibility that the change in psychophysical procedure is causing the 

difference in findings, in Experiment 4.3, we asked observers to complete a slope discrimination 

task identical to that of Experiments 2.1, 2.2, and 3.2, the temporal version of the “Odd-Man-

Out” psychophysical procedure, to gauge for any differences between the findings of its spatial 

counterpart.  

Method 

Psychophysical procedures 

 The stimuli were generated in an identical fashion to those of Experiment 4.2. 

Experiment 4.3 was a replication of Experiment 4.2 in all respects, other than the stimulus 

presentation sequence. Here, observers completed a temporal, 3-IFC, 2-AFC “Odd-Man-Out”   
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Figure 4.8. The 3-AFC, 2-IFC “Odd-Man-Out” psychophysical procedure of Experiment 4.3, 

identical to that of Experiment 1 and 2 in Chapter 1 and that of Chapter 2B. All stimulus 

intervals were presented for 250ms, while the inter-stimulus interval (a screen set to mean 

luminance) was presented for 500ms. The three stimuli in the lower left corner are examples of 

the three reference alpha presented to observers. Just as in Experiment 2, the reference stimulus 

(here, the second interval) was never modulated, while both test stimuli (the first and the third 

interval) had random contrast variations in the 8 spatial frequency bands (see Stimuli – 

Experiment 2). The weight vectors used to modulate both stimuli were generated in an identical 

fashion to those of Experiment 2.  
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slope discrimination task (see Figure 4.8) similar to that of Experiment 2.1, 2.2 and 3.2. Each 

trial began with a white fixation cross at the centre of the screen for 1000ms. This was followed 

by the presentation of the three stimulus intervals, which remained on screen for 250ms, 

interlaced by a blank screen set to mean luminance for 500ms. The response interval, at the end 

of the trial, was unlimited.  

Results and Discussion 

All data in Experiment 4.3 were analyzed in an identical fashion to those of Experiment 

4.2. The data from the practice block of Experiment 4.3 is plotted for all three observers in the 

form of psychometric functions, in addition to their α discrimination thresholds for each 

reference α, in Figure 4.9. As expected, discrimination accuracy for all three observers, did not 

reach ceiling performance as rapidly as it did in the spatial counterpart of the “Odd-Man-Out” 

task. Nevertheless, thresholds for all three reference α were relatively low (never exceeding Δα = 

.075), however, these should be interpreted under the consideration that goodness of fit values 

were mediocre for most psychometric functions. Once more, we find typical α discrimination 

thresholds, whereby thresholds are lowest for an α of 1.0 with observer P1 and P3. Observer P3, 

however, showed an inverted function, as they had higher thresholds for a reference α of 1.0 than 

to steeper and shallower αs. The psychophysical paradigm used here is identical to that of 

previous chapters, but nevertheless differs in regards to the blocking of reference α. While it is 

unclear if classification image paradigms are subject to block designs (i.e., multiple trials are 

conducted, in sequence with an identical reference stimulus), we opted to interleaved the 

reference α across trials in order to minimize hysteresis, and prevent any alterations in the 

classification image of our observers attributable to blocking (Levi et al., 2005). Thus, it may be 

that α discrimination thresholds here will differ slightly from those previously reported in 

Experiments 2.1 and 2.2.  

 The decision weights for each spatial frequency in our temporal version of the amplitude 

spectrum slope discrimination task can be seen in Figure 4.10A. Interestingly, the decision 

weights for all observers in Experiment 4.3 are nearly identical to those of Experiment 4.2. 

Observer P1 shows a clear separation in the decision weights between low and high spatial 

frequencies, while observers P2 and P3 have decision weights that oscillate near 0, with small 

peaks or troughs at high and low spatial frequency bands. Importantly, and the same as we found 

in Experiment 4.2, there is no difference in the spatial frequency bands of peak decision weights   
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Figure 4.9. A Psychometric functions that relate the accuracy of observers (ordinate) to identify 

the odd amplitude spectrum stimulus for a particular Δα (abscissa). The dashed lines represent 

the upper and lower bounds of the 95% confidence interval of the line of best fit, calculated via 

bootstrapping procedures, with replacement and 2000 repetitions. B Each observer’s α 

discrimination threshold (63.21% accuracy) for all three reference αs. Observers P2 and P3 

showed normal α discrimination thresholds (lower for steeper α) while observer P1 had low 

threshold for α = 0.8 and α = 1.2.  
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Figure 4.10. A Decision weights of all three observers for the difference in the weight vectors 

between the stimulus chosen as having the odd amplitude spectrum slope and the rejected 

stimulus for the temporal force-choice psychophysical procedure. The decision weights of our 

three observers are identical to those of Experiment 2. B The decision weights for both the 

chosen and rejected stimuli. These are used to verify that non-linear operations (e.g., uncertainty) 

were not part of the process observers used to complete the task. Given that their decision 

weights only differed in signs, observers used similar processes to select the chosen and rejected 

stimulus. Error bars represent 95% confidence intervals calculated via bootstrapping the average 

decision with replacement with 2000 repetitions. 
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between the three reference α presented to observers. The pattern of results we have obtained in 

Experiment 4.2 seems, therefore, to not be attributable to the psychophysical paradigm itself, 

but instead highlight the true spatial frequency mechanism used by observers when asked to 

discriminate images that vary in α. 

We, again, verified that the processes used by observers to discriminate α were linear, 

and did not include any non-linear operations, like uncertainty, by correlating the absolute value 

of the decision weights for the chosen and rejected noise images (see Figure 4.10B). Once more, 

decision weights mostly differed in sign alone (see Table 4.3), although observer P2 still showed 

a poor correlation between decision weights for the chosen and rejected stimuli for a reference α 

= 1.2 (r = -.091, p = .830, 95% CI [-.748 .656]). Additionally, the correlation coefficient of 

observer P1 for a reference α of 0.8 did not reach statistical significance  (r = .672, p = .068, 95% 

CI [-.063 .934]), which suggest that both observer P1 and P2 had certain non-linear operations 

involved when selecting the odd stimulus in the temporal version of the “Odd-Man-Out” 

psychophysical paradigm. While the weak correlation of Observer P1 seems attributable to 

variability in their decision weights for higher spatial frequency bands, observer P2 showed 

fairly large differences in their decision weights towards the lower spatial frequency bands 

defined in this study. The decision weights of observer P2, particularly for a reference α = 1.2 

should be interpreted with caution as they showed poor correlations in both the spatial and 

temporal version of the task. For all other conditions, the correlation between the decision 

weights of the chosen and rejected stimuli were high, which suggest that non-linear operations 

were not involved in the temporal forced-choice version of our psychophysical procedure (Beard 

& Ahumada, 1999).  

General Discussion 

In the current chapter, we implemented an image classification paradigm in order to 

better define the use of luminance contrast across spatial frequency in an α discrimination task. 

We found that the spatial frequency based mechanism varies according to the task observers 

must complete. When asked to identify the α of a noise image, observers rely on diagnostic 

spatial frequency bands that correlate with the dominant perceptual scale within the noise image. 

Thus, noise images with increased contrast in lower spatial frequency bands and decreased 

contrast in higher spatial frequency bands will be identified as having steeper αs. Conversely, 

those with contrast increments in higher spatial frequency bands, and contrast decrements in low 
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spatial frequency bands will be identified as having shallower αs. Most interestingly, when asked 

to discriminate between noise images that vary in α (i.e., α discrimination task), observers no 

longer rely on diagnostic spatial frequency bands. Instead, they use the general differences 

between low and high spatial frequency luminance contrast to detect the noise image with the 

odd α. Their decision weights do not vary according to the reference α, nor do they vary when 

the images are presented simultaneously (spatial 2-AFC) or in sequence (temporal 2-AFC). Thus, 

there seem to be strong task dependencies (identification versus discrimination) on the 

contribution and use of spatial frequency channels to the perception of α.  

α Identification  

In order to identify or categorize an image, observers are known to rely on critical spatial 

frequency bands (Gosselin & Schyns, 2001; Hansen, et al., 2008; Kwon & Legge, 2011; 

Morrison & Schyns, 2001; Oliva & Schyns, 1997; Schyns & Gosselin, 2003; Schyns & Oliva, 

1994, 1999). It is interesting to find that observers rely on a similar mechanism to identify the αs 

of noise images. Granted, all participants in this study were all experienced psychophysical 

observers that have been exposed to 1/f noise stimuli multiple times. Still, observers showed 

clear diagnostic spatial frequency bands to identify α, which suggests that they have some form 

of internal representation of the appearance of noise images with different αs. Thus, our 

observers identified the α of a noise image in a manner similar to how observers categorize, or 

identify more complex natural scenes.  

There is neurophysiological evidence of a spatial frequency tuned process used to encode 

natural scenes that relates to the spatial frequency shifts in the decision weights of the α 

identification task. Early visual processes are know to rely on a progression of spatial frequency 

tuned mechanisms (i.e., from low spatial frequencies to high spatial frequencies) to encode 

naturalistic images, which are adjusted according to image complexity (i.e., these processes are 

dependent on the amount of edge density, or structural complexity within the image; Hansen et 

al., 2012, 2011). Hansen and colleagues (2011) demonstrated that the magnitude of the P1 

component, a Visually Evoked Potential (VEP) waveform marked as the first positive deflection 

from baseline within an EEG signal, serves as the dominant perceptual code for relatively sparse 

images, including 1/f noise. That is, the magnitude of the P1 scaled according to the α of the 

noise image presented to observers. Conversely, the first negative deflection from baseline (N1) 

showed no such scaling. While the N1 magnitude did not scale with α, its magnitude was greater 
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than that of the P1 for noise images with shallow α (α < 1.0). This suggests that the dominant 

component (in terms of absolute magnitude) within the EEG signal shifted from the N1 to the P1 

as the α of the noise image increased (i.e., steepened). The P1 deflection is thought to reflect 

activity within the magnocellular pathway of the early visual processing streams, and the N1 the 

parvocellular pathway (Ellemberg, Hammarrenger, Lepore, Roy, & Guillemot, 2001; Tobimatsu, 

Tomoda, & Kato, 1995). Thus, these findings may indicate that the progression we observed in 

the decision weights in the α identification task reflect the transition in the magnitude of 

responses of higher or lower tuned spatial frequency channels to progressively shallower or 

steeper αs, respectively. However, we note that observers in the Hansen and colleagues (2011) 

study were not given any particular task other than to look at the images presented on screen, and 

it is unclear if observers tried to identify the α of the 1/f noise images in a manner similar to the 

requirements of Experiment 4.1.  

How the shift in the activity of differently tuned spatial frequency channels may be used 

to label α remains to be defined. One possibility, at least for steep αs, is that observers compare 

response increments of low spatial frequency channels to the decrement of high spatial frequency 

channels to an internal template for blur. Indeed, the perception of blur has often been considered 

as analogous to that of the α of a noise images (e.g., a noise image with a steep α is considered to 

be blurred), and α discrimination has often been defined in terms of blur discrimination (Elliott et 

al., 2011; Tadmor & Tolhurst, 1994; Watson & Ahumada, 2011; Webster, Georgeson, & 

Webster, 2002). However, scenes only appear blurred when their natural α is artificially 

steepened (scenes with naturally steep αs are in focus and do not appear blurred), and it has 

recently been demonstrated that this change in α does not actually simulate the perception of blur 

(Murray & Bex, 2010). That is, steepening α affects the relative amount of contrast energy 

between low and high spatial frequencies within an image, but this is not equal to blurring in the 

conventional definition (i.e., low-pass filtering). Instead, observers may rely directly on 

increments in activity within a single spatial frequency band (and conversely the decrement in 

activity of other bands) as a diagnostic indication of α. This mechanism would mirror those of 

diagnostic spatial frequency bands identified in the scene categorization or face identification 

literature (Gosselin & Schyns, 2001; Hansen et al., 2008; Morrison & Schyns, 2001; Oliva & 

Schyns, 1997; Schyns & Gosselin, 2003; Schyns & Oliva, 1994, 1999). 
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α Discrimination 

The initial description of a mechanism responsible for α discrimination was defined in a 

similar fashion to models of contrast discrimination. Specifically, observers monitor a change in 

luminance contrast energy within a single spatial frequency band (a critical band) and adjusted 

the bands’ center spatial frequency in accordance to the reference α (Tadmor & Tolhurst, 1994; 

Tolhurst & Tadmor, 1997). While we have also found that the discrimination of α may rely on 

increments and decrements of luminance contrast within select spatial frequency bands, these 

bands do not shift according to the value of the reference α, unlike previous reports on the 

contribution of spatial frequency channels to α discrimination (Tadmor & Tolhurst, 1994; 

Tolhurst & Tadmor, 1997). Thus, while observers may rely on the activity of certain spatial 

frequency bands to discriminate α, these bands do not appear to be diagnostic of the reference α. 

Additionally, this comparison (and potential mechanism) seems to be unaffected by stimulus 

presentation paradigm, as the decision weights were identical in both the spatial and temporal 

variants of the α discrimination task. Observers seem to make general comparisons between the 

luminance contrast of low and high spatial frequency bands in order to discriminate α, and do so 

even if multiple noise images must be held in memory (via the temporal AFC), or if all are 

simultaneously (via the spatial AFC) available to observers.  

These findings are concordant with other psychophysical evidence for the contribution of 

multiple spatial frequency channels to α discrimination (Párraga & Tolhurst, 2000), at least when 

the reference α falls within the range of αs in the natural environment (α [0.6 - 1.6]; Billock, 

2000; Burton & Moorhead, 1987; Hansen et al., 2003; Párraga & Tolhurst, 2000; Tolhurst et al., 

1992). Párraga and Tolhurst (2000) demonstrated that changes in the global contrast of an image, 

which leaves the original α of the image unaltered, had no impact on α discrimination thresholds 

(for reference α > 0.4). They argued that if observers relied on a single spatial frequency band to 

discriminate natural images with different amplitude spectra, then their manipulation should have 

affected α discrimination thresholds. Conversely, thresholds should be unaffected if observers 

compute the actual slope (by comparing the luminance contrast energy across two or more 

bands) to complete the discrimination task. Here, we show direct evidence for a multi-channel 

mechanism involved in slope discrimination. However, we also show that the use of multiple 

spatial frequency channels in an α discrimination task may only serve to segragate luminance 

contrast energy between high and low spatial frequencies, and not directly estimate the α of the 
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noise image (i.e., the spatial frequency mechanism involved in discrimination is not tuned to nor 

selective for reference α). The decision weights of Observer P1 are most representative of this 

process: they chose the odd amplitude spectrum slope as the stimulus that contained a contrast 

increment in lower spatial frequencies, and a contrast decrement in higher spatial frequencies, 

regardless of reference α. The decision weights of observer P3 were not as clear as those of P1, 

but still showed a similar low versus high spatial frequency approach to the discrimination of α. 

Observer P2, on the other hand, may have completed the task in a manner quite dissimilar to the 

other observers, and may therefore not be representative of the true spatial frequency dependent 

mechanism involved in α discrimination.   

Identification VS Discrimination 

The differences observed in the classification images of the α identification and α 

discrimination tasks speak to the potential internal representation of the α of noise images and 

how they may serve early visual processes. The shift in the peak spatial frequency bands 

observed under identification suggests observers rely on diagnostic channel activity, as it scales 

in spatial frequency across α, to identify the α of a noise image. Consequently, observers must 

have some internal representation of the perceptually dominant scale in noise images, which may 

potentially extend to natural scenes. Most studies that have assess the mechanistic properties of 

recognition, which are traditionally done with face identification paradigms, have shown that the 

mechanism of face recognition is discrete in spatial frequency and relies on a match between an 

internal representation and the visual input within the critical,spatial frequency band (typically 

located above the peak of the CSF; Hansen, et al., 2008; Schyns & Oliva, 1999). This suggests 

that a close match between the internal representation and the visual input must be met in order 

for the recognition process to be accurate. However, this seems unnecessary in the α 

discrimination task implemented here as the classification images showed no scaling or change 

in the spatial frequency representation of α across different α values. Thus, the discrimination of 

α seems to be completed based solely on the differences of spatial frequency channel activity: 

that is, increments in contrast at low spatial frequencies, and decrements in contrast at high 

spatial frequencies were indicative of the odd stimulus, regardless of reference α.  

Limitations  

 There are certain differences between the psychophysical methodology we implemented 

here, and those that are typically used in an α discrimination task. Of note is the interleaved 
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designed we used to measure slope discrimination thresholds in Experiments 4.2 and 4.3. In 

previous studies (Hansen & Hess, 2006; Johnson et al., 2011), we have always measured slope 

discrimination thresholds in a blocked designed, where observers completed a staircase for each 

reference α separately. However, the methodological requirements (e.g., the large number of 

trials) of the classification image paradigm prevented the use of our typical staircase method, and 

instead required a constant stimulus psychophysical method, where the presentation of the three 

reference αs was interleaved. Observers could not predict the reference α they were asked to 

discriminate from trial to trial, which may have generated a bias in their decision weights. For 

example, in a blocked design, observers are consistently discriminating according to a fixed 

reference α. This may have allowed them to better adjust the monitored spatial frequency bands 

according to the reference α. Given that observers responded in a fairly consistent manner and 

did not show signs of uncertainty in their decision weights, in both the spatial and temporal 

variants of this task, it is unlikely that the use of an interleaved design, as opposed to a blocked 

design, had any significant impact on the decision weights of our observers.  

 Second, the stimulus with the odd amplitude spectrum always had a steeper α than the 

reference α. While this most likely did not affect the slope discrimination thresholds of our 

observers, it may have contributed to the pattern of decision weights we observers in 

Experiments 4.2 and 4.3. That is, the low spatial frequency contrast increment observed in the 

decision weights of Observers P1 and P3 may stem from the odd stimulus always containing a 

steeper amplitude spectrum slope (as it has for all previous α discrimination experiments they 

have participated in). It is possible that the pattern of their decision weights would have inverted 

in sign if the odd stimulus always contained a shallower amplitude spectrum slope. While not 

crucial to the interpretations of this study, a change in sign of the decision weights, in according 

with how α discrimination threshold is approach (from above or from below the reference α) 

could indicate some form of prior knowledge, and strategizing from participants completing an α 

discrimination task.  

Conclusion 

 Natural images contain statistical regularities that the early visual system is believed to be 

ideally suited to encode (Field, 1987). One such regularity is the slope of the amplitude 

spectrum, a second-order statistic that defines the variance of luminance contrast in natural 

images. It is thought that the encoding of α is completed via a spatial frequency based process in 
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early vision (Brady & Field, 1995; Field & Brady, 1997; Field, 1987; Hansen et al., 2012, 2011; 

Hansen & Hess, 2012; Knill et al., 1990; Párraga & Tolhurst, 2000; Tadmor & Tolhurst, 1994; 

Tolhurst & Tadmor, 1997). While there are certain models that suggest α can be discriminated 

according to the responses of spatial frequency channels, there lacks psychophysical evidence 

that may define the underlying properties of such a mechanism. Here, we implemented a 

modified classification image paradigm in order to assess how human observers may use 

luminance contrast energy across multiple spatial frequency bands to discriminate the α of noise 

images. We first measured how observers used luminance contrast in an α identification task and 

found, congruent with neurophysiological findings of natural scene perception (Hansen et al., 

2012, 2011), that observers rely on diagnostic spatial frequency bands, whereby the spatial 

frequencies used by observers scales according to the α of the image, to identify its α. However, 

in a discrimination task, observers forgo the use of any diagnostic spatial frequency bands 

instead compare the general luminance contrast between high and low spatial frequencies, 

regardless of reference α. There are task dependent contributions of spatial frequency channels to 

the encoding of the α of noise images, and measurements of α discrimination thresholds may not 

be fully representative of the spatial frequency dependent processes completed by the early 

visual system to encode the α natural stimuli.  
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Chapter 4 Tables 
 
Table 4.1. Correlation between the absolute decision weight vectors for the chosen and rejected 
stimulus, Experiment 4.2 
   95% CI 
 r p LL UL 
P1     
 α = 0.8 .859 .006 .392 .974 
 α = 1.0 .910 .002 .573 .984 
 α = 1.2 .833 .010 .313 .969 
P2     
 α = 0.8 .841 .009 .334 .970 
 α = 1.0 .789 .020 .191 .960 
 α = 1.2 .292 .484 -0.512 .826 
P3     
 α = 0.8 .861 .006 .398 .975 
 α = 1.0 .886 .003 .482 .979 
 α = 1.2 .959 <.001 .786 .993 
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Table 4.2. Correlation between the absolute decision weight vectors for the chosen and rejected 
stimulus, Experiment 4.3 
   95% CI 
 r p LL UL 
P1     
 α = 0.8 .672 .068 -.063 .934 
 α = 1.0 .914 .002 .588 .985 
 α = 1.2 .870 .005 .427 .976 
P2     
 α = 0.8 .904 .002 .549 .983 
 α = 1.0 .712 .048 .015 .943 
 α = 1.2 -.091 .830 -.748 .656 
P3     
 α = 0.8 .896 .003 .517 .981 
 α = 1.0 .839 .009 .328 .970 
 α = 1.2 .717 .045 .026 .945 
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Chapter 5 

 

General Discussion 
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GENERAL DISCUSSION 

 The early processing stages of vision are composed of a series of channels, which act like 

filters to extract a narrow range of spatial frequency and orientation content from the retinal 

image (Bergen, Wilson, & Cowan, 1979; Blakemore & Campbell, 1969; Campbell & Robson, 

1968; Campbell & Kulikowski, 1972; Carandini et al., 2005; De Valois, Albrecht, & Thorell, 

1982; De Valois, Morgan, & Snodderly, 1974; Enroth-Cugell & Robson, 1966; Graham & 

Nachmias, 1971; Graham, 1989; Henning, Hertz, & Broadbent, 1974; Maffei & Fiorentini, 1973; 

Movshon, Thompson, & Tolhurst, 1978; Stromeyer & Julesz, 1972; Stromeyer & Klein, 1974; 

Wilson & Bergen, 1979; Wilson, McFarlane, & Phillips, 1983; Wörgötter & Koch, 1991). It has 

been posited that the functional attributes of these channels are strongly tied to the properties of 

the environment they have developed in (Carandini et al., 2005; Field, 1987; Geisler, 2008; 

Hyvärinen, Hoyer, Hurri, & Gutmann, 2005; Hyvärinen, Hurri, & Hoyer, 2009; Olshausen & 

Field, 1996b, 1997, 2005; Olshausen & Lewicki, 2004; Simoncelli, 2003). Hence, these channels 

may be optimally tuned to extract, and process, visual inputs regularly encountered by the visual 

system (on either an evolutionary or developmental time scale). However, most investigations on 

the function of channels have measured their contribution to the early stages of visual processing 

with simple stimuli, which are narrowband in both spatial frequency and orientation (e.g., sine-

wave gratings). While a useful approach to assess the contribution of a subset of channels tuned 

to the dimensions of the stimulus, this method serves as a poor representation of how these 

channels function under more naturalistic conditions. That is, narrowband stimuli fail to generate 

sufficient channel activity to simulate the interactive properties of channels under naturalistic 

stimulation (Bex et al., 2009; DeAngelis et al., 1992; Elliott, Georgeson, & Webster, 2011; 

Hansen et al., 2003, 2008; Haun & Essock, 2010; Párraga et al., 2005; Párraga & Tolhurst, 2000; 

Wilson & Wilkinson, 1997). It may, therefore, be beneficial to approach the study of 

psychophysical channels in the early visual system with more naturalistic, broadband stimuli.  

 Natural scenes can be represented by their characteristic Fourier amplitude spectrum 

slope (α), which represents the autocorrelation property of natural images (Ellemberg et al., 

2012; Field, 1987, 1989; Gaspar & Rousselet, 2009; Hansen & Hess, 2006; Hansen & Loschky, 

2013; Hyvärinen et al., 2009; Johnson et al., 2011; Olshausen & Field, 2000; Párraga et al., 

2005; Schwartz & Simoncelli, 2001; Simoncelli, 2005; Tadmor & Tolhurst, 1993; Tolhurst et al., 

1992; Wainwright & Simoncelli, 2000). The value of α can have a noticeable impact on visual 
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perception, including the detection and discrimination of contrast (Webster & Miyahara, 1997), 

the strength of masking effects on both simple (Hansen & Hess, 2012) and complex images 

(Hansen & Loschky, 2013; Loschky et al., 2010). Additionally, human observers tend to show 

better performance on visual tasks when images have α values at or near their natural α (Párraga 

et al., 2000; Párraga et al., 2005). Finally, observers have also shown differing sensitivity to αs, 

as they are most sensitive to a change in α when it occurs near to or above the average α of 

natural scenes (α = or > 1.0; Hansen & Hess, 2006; Johnson et al., 2011; Knill et al., 1990). 

Taken together, these findings suggest that α is relevant to the early processing stages of the 

visual system (Knill, Field, & Kersten, 1990; Párraga, Troscianko, & Tolhurst, 2000; Párraga et 

al., 2005; Tolhurst & Tadmor, 2000). That said, the contribution of early visual processes to the 

encoding of α remain to be properly defined. Specifically, the detection, and subsequent 

discrimination, of a change in α is believed to be a spatial frequency dependent process,(Hansen 

et al., 2012, 2011; Párraga & Tolhurst, 2000; Tadmor & Tolhurst, 1994; Tajima et al., 2010; 

Tolhurst & Tadmor, 1997). Yet, which channels may be most involved in the discrimination of 

α, and whether this mechanism is specific to α is unclear. The overarching goals of this 

dissertation were to build upon the findings described above and establish the contribution of 

spatial frequency channels to the discrimination of α.  

 The main questions of this dissertation revolved around the behaviourally relevant 

attributes of a spatial frequency based mechanism responsible for detecting and discriminating a 

change in α. All experiments in this dissertation, therefore, used a well-established α 

discrimination procedure (3-IFC, 2-AFC “Odd-Man-Out” task) to estimate the discriminability 

of α as either the spatial frequency content of stimuli or the activity of spatial frequency channels 

were manipulated. The following reviews the goals and significant findings of each experimental 

chapter. 

Review and Significance of Main Findings 

Chapter 2. The goal of Chapter 2 was to obtain psychophysical evidence for the 

influence of spatial frequency channels on α discrimination. In particular, we were interested in 

measuring the contribution of low spatial frequency channels, as they seem to dominate neural 

responses to α (Hansen et al., 2011; Webster & Miyahara, 1997). Discrimination thresholds to 

five different reference αs were measured according to different representation of low spatial 

frequency content in our 1/f noise stimuli (i.e., a change in stimulus size). The findings of 
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Experiment 2.1 demonstrated that α discrimination thresholds are facilitated by the addition of 

low spatial frequencies, as all thresholds decreased as the stimulus size increased. This 

facilitation, measured with log ratios normalized by the α discrimination thresholds to our largest 

stimulus size, followed an inverted-U function across α. We found that discrimination thresholds 

for a reference α = 1.0 benefitted most from the increases in stimulus size, while steeper (α > 1.0) 

and shallower (α < 1.0) αs showed weaker facilitation. There is a multi-channel model that can 

account for the perceived contrast of broadband images that vary in α. This model, initially 

developed by Field, (1987), Brady and Field (1995), and Field and Brady (1997), generates filter 

outputs that correlate well with the effects of stimulus size we obtain in Experiment 2.1. The 

responses of multiple narrowly tuned 1-octave bandwidth spatial frequency filters are greatest for 

images with α = 1.0, and decrease as α steepens (α  > 1.0) or shallows (α < 1.0). It is plausible, 

therefore, that the discriminability of α is determined by the pooled responses of multiple, 

narrowly tuned spatial frequency channels (with either constant or decreasing octave bandwidth; 

Hansen & Hess, 2012; Wilson et al., 1983; Wilson & Wilkinson, 1997). 

The change in stimulus size, while a simple manipulation of spatial frequency content, 

could not account for the influence of other psychophysical mechanisms in the observed 

facilitation effect. For example, summation effects of higher spatial frequency content within our 

stimuli may have been responsible for the decrease of α discrimination thresholds may have 

contributed to the facilitation effect (Baker & Meese, 2011; Graham & Sutter, 1998; Graham, 

1989; Hutchinson & Ledgeway, 2010; Meese & Baker, 2011, 2013; Meese & Summers, 2007; 

Taylor, Bennett, & Sekuler, 2009). In Experiment 2.2, we aimed to better isolate the 

contribution of low spatial frequency channels to the discrimination of α by replicating the 

center-surround paradigm used by Johnson and colleagues (2011), but increased the width of the 

gap between the centre and surround annulus to 3.2° of visual angle. The results of our study 

were similar to those of Johnson and colleagues (2011). We found a facilitative effect of the 

surround annulus on the discriminability to the centre’s α, when the centre α was relatively steep. 

Furthermore, the gap size had little impact on the magnitude of this facilitation effect in that a 

surround annulus 3.2° away from the centre stimulus still had a facilitatory effect on α 

discrimination thresholds. These findings indicate that α discrimination is completed globally 

(Johnson et al., 2011; Mareschal et al., 2001), and may thus be mediated predominantly by the 

responses of lower tuned spatial frequency channels. These findings, additionally, suggest the 
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facilitation effect observed in Experiment 2.1 may be attributed to the manipulation of low 

spatial frequency luminance contrast within our stimuli, at least when α is steep. As only 

relatively steep centre αs were influenced by the presence of a surround annulus, we argued that 

the spatial frequency channels that contribute most to the discrimination of α have peak spatial 

frequency tuning that correlates with the perceptually dominant scale in noise stimuli. Thus, as 

we only found steeper reference αs (αs = 1.0, 1.3, and 1.6) to be influenced by the presence of a 

surround annulus, α discrimination thresholds for steep αs seem regulated by the activity of low 

spatial frequency tuned channels. That said, this is not indicative that higher tuned spatial 

frequency channels are not involved in the discrimination of α, but may not dominate neural 

responses when α is steep. As the shallower reference αs (α = 0.4 and 0.7) showed no real 

influence of the surround annulus (when the suppression factors were collapsed across gap size), 

we proposed α discrimination thresholds for shallower reference αs to be regulated by higher 

spatial frequency tuned channels. We verified if higher tuned spatial frequency channels may 

contribute most to the discrimination of shallower αs in Chapter 3.  

Chapter 3. We aimed, in Chapter 3 to directly measure the contribution of spatial 

frequency channels to the discrimination of α with the application of tDCS over the primary 

visual cortex. The implementation of tDCS to visual paradigms is relatively novel, but has been 

demonstrated to measurably alter early visual processes (e.g., contrast detection; Antal et al., 

2001, 2006a, 2006b; Hansen et al., 2015; Jacobson et al., 2012; Peters et al., 2013; Spiegel et al., 

2013, 2012). However, these effects have only been measured to a limited set of stimulus 

dimensions. Therefore, prior to implementing tDCS in our α discrimination task, we verified 

how varying sensitivity to contrast according to stimulus spatial frequency and orientation may 

influenced the effectiveness of tDCS to modulate early visual function. That is, we asked how 

the effects of tDCS (both anodal and cathodal) change according to the different contrast 

sensitivity of the sine-wave gratings spatial frequencies that comprise the contrast sensitivity 

function (CSF). We found, in Chapter 3A, that the modulatory effects of tDCS are largest on 

contrast sensitivity to high spatial frequencies and non-cardinal orientations – stimulus 

dimensions that generally elicit lower contrast sensitivity (Robson, 1966). The tDCS polarity 

effects we observed differed slightly from those typically reported within the vision and tDCS 

literature. Anodal tDCS, which typically has a facilitative effects on behaviour (Antal et al., 

2001; Spiegel et al., 2013, 2012), caused a decrease in contrast sensitivity at higher spatial 
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frequencies (8 cycles/° and 12 cycles/°), while cathodal tDCS, which is normally reported to 

have a deleterious effects on behavioural performance (Antal et al., 2001; Olma et al., 2011; 

Spiegel et al., 2013) increased contrast sensitivty to higher spatial frequencies (for a good 

discussion on the behavioral impact of cathodal tDCS in vision studies, see Pirulli et al., 2014). 

The spatial frequency dependence of tDCS found on contrast detection is congruent with the 

findings that the current generated by tDCS influences cells at or near the cortical surface most 

(Bikson & Rahman, 2013; Datta et al., 2009; Peterchev et al., 2012; Radman et al., 2009; 

Rahman et al., 2013). Given the selectivity of tDCS we identified in Chapter 3A, we thought it 

an interesting tool to directly assess the contribution of spatial frequency channels in an α 

discrimination task.  

In Chapter 3B observers completed an α discrimination task, while they received either 

anodal or cathodal tDCS (a third group received only sham stimulation). Given the findings of 

Chapter 2 and Chapter 3A, we had hypothesized that the effects of tDCS would be largest on 

the discrimination thresholds of shallow α (i.e., perceptually dominated by higher spatial 

frequency content, and thus regulated by higher spatial frequency channels). We found that 

neither tDCS polarity had any measurable impact on α discrimination thresholds. That said, the 

null-effects of tDCS obtained in Chapter 3B are mostly likely attributed to the limitations of the 

stimulation technique, and not an indication that a spatial frequency dependent mechanism is not 

involved in α discrimination. The ability of tDCS to modulate perception seems constrained to 

changes in the detectability of a stimulus, and may be unsuited to modulate any discrimination, 

or other suprathreshold processes completed by the early visual system.  

Chapter 4. In Chapter 4, we used an image classification paradigm as a final effort to 

define the contribution of spatial frequency channels to the discrimination of α. To measure the 

classification image, observers were asked to make a perceptual judgement on the whole 

stimulus (e.g., determine or discriminate α) while its physical attributes, or components, were 

randomly changed from trial to trial. The perceptual judgement was then correlated with the 

change in the stimulus over a large number of trials, and averaged to generate a representation of 

the weight attributed by observers to the components of a stimulus. The contrast of eight discrete 

spatial frequency bands of 1/f noise stimuli was randomly modulated by ± 8dB over multiple 

trials, and the generated classification images (i.e., decision weights) were used to assess the 

weights attributed to contrast within individual spatial frequency bands by observers in either an 



 

 

158 

identification or discrimination task. Thus, the classification image paradigm allowed us to 

experimentally verify which spatial frequency bands are behaviourally relevant to the 

identification and discrimination of α. While we found task dependent contributions of spatial 

frequency channels to the perception of broadband contrast, in general, we found observers to 

make a perceptual decision by comparing contrast between low and high spatial frequency 

channels (Boynton et al., 1999; Britten et al., 1992; Campbell & Kulikowski, 1972; Haynes et 

al., 2003; Kwon et al., 1992; Ress et al., 2000; Ross & Speed, 1991; Shadlen & Newsome, 1998; 

Zenger-Landolt & Heeger, 2003). For all three experiments, observers relied on increments in 

contrast in low spatial frequency bands, and decrements in contrast at higher spatial frequency 

bands to complete the task. In Experiment 4.1 we found that when asked to identify the α of a 

noise image, observers relied on contrast within diagnostic spatial frequency bands. That is, the 

increment and decrement in contrast used by to identify the α of the image scaled with 

perceptually dominant scale of the image. When the α of the image was steep (1.2), observers 

relied on increments in contrast at low spatial frequency and decrements in contrast at higher 

spatial frequencies to identify α, while the inverse held true for shallower α (0.8). This result 

suggests that the spatial frequency mechanism used to identify the α of an image (which was 

done with high accuracy) is adjustable, and may rely on diagnostic spatial frequency bands. That 

is, the particular ratio of high and low luminance contrast across spatial frequency may be 

indicative of α. Diagnostic spatial frequency bands are commonly reported in identification 

paradigms. Observers are known to rely heavily on low spatial frequency content to identify the 

category of a scene, and similarly, face recognition studies have demonstrated that diagnostic 

spatial frequency bands carry information about the face identify and the presence or type of an 

emotion (Gosselin & Schyns, 2001; Hansen, et al., 2008; Kwon & Legge, 2011; Morrison & 

Schyns, 2001; Oliva & Schyns, 1997; Schyns & Gosselin, 2003; Schyns & Oliva, 1994, 1999). 

Other features than spatial frequency content, including colour, have also been reported to hold 

diagnostic properties in the categorization of scenes (Goffaux et al., 2005; Oliva & Schyns, 

2000). Thus, when asked to identify or recognize the property of a particular image, observers 

will rely on the information transmitted by only a few spatial frequency channels, and will adjust 

the monitored band according to its relevance to the task.  

It is interesting to find a similar process used by observers to identify the α of noise 

images, which are specifically designed to carry no semantically meaningful information. The 
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recognition process requires a comparison between neural responses to the stimulus and some 

internal representation of that stimulus. Thus, our findings suggest that experienced 

psychophysical observers may have an internal representation of α, which is related to the 

perceptually salient scales of 1/f stimuli with different αs (e.g., the perceptually salient low 

spatial frequency content of noise images with steep αs versus the high spatial frequency content 

of noise images with shallow αs). These results corroborate neurophysiological findings on the 

encoding of α in noise images. The Visually Evoked Potentials (VEPs) of human observers to 

noise images that vary in α have been shown to scale in magnitude according to the α of a noise 

image (Hansen et al., 2012, 2011). When the α of an image was steep, the dominant neural signal 

to the noise image was likely carried by cells tuned to lower spatial frequencies (the P1 VEP 

component; Ellemberg et al., 2001), while cells tuned to higher spatial frequencies likely 

dominated the neural response to noise images with shallower α (the N1 VEP component). Thus, 

our findings and those of Hansen and colleagues (2011, 2012) suggest that the peak spatial 

frequency of the channel that responds most, in comparison to other channels, will signal for the 

α of an image. Whether the comparison is made solely between low and high spatial frequency 

tuned channels, or whether this is a fairly discreet process remains to be determined.  

Most interestingly, we found that the process of discrimination, unlike identification, 

showed no spatial frequency selectivity to α. While we found each observer to vary widely in 

their results, the key observation here for each observer was that decision weights in 

Experiments 4.2 and 4.3 were identical for all three reference αs. Similar to the identification 

task, the odd stimulus was identified according to a comparison between contrast at lower and 

higher spatial frequency bands, but interestingly, the decision weights did not scale with α. As 

the reference α had no impact on the decision weights, it seems that observers did not rely on any 

prior knowledge, or any internal representation of α to complete the discrimination task, which 

agrees with other findings that discrimination is not specific to the attributes of the stimulus 

(Hansen et al., 2008). Task dependent effects aside, our findings also suggest that the 

discrimination model proposed by Tolhurst and Tadmor (1997) is incorrect. Their model defined 

α discrimination as a process of contrast discrimination within a single and wide spatial 

frequency band (2-octave bandwidths), with center spatial frequencies that adjusted according to 

the reference α. Thus, in their model, the discrimination process is dependent on observers 

collecting information in regards to the reference α in order to adjust the monitored band 
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accordingly. Our results, however, suggest observers may not need this process to discriminate α, 

and can complete an α discrimination task without any regards to the value of the reference α 

(for α values of 0.8, 1.0, and 1.2 – more extreme α values may show significantly different 

effects;  Párraga & Tolhurst, 2000). These findings also suggest that the low spatial frequency 

interactions we identified in Experiment 2.2 may not be constrained to steeper αs, but instead a 

result of the general discrimination mechanism identified in Experiments 4.2 and 4.3. We note, 

however, that decision weights offer a representation of the stimulus attributes observers use or 

rely on to complete a particular task (Ahumada, Jr. & Ahumada, 2002; Beard & Ahumada, Jr., 

1998; Haun & Peli, 2013), and while potentially correlated with the response patterns of spatial 

frequency channels within the early visual system, are not a model of their behaviour in 

broadband conditions (Boynton et al., 1999; Klein & Levi, 2009; Levi et al., 2005; Ress et al., 

2000; Zenger-Landolt & Heeger, 2003).  

Future Directions  

 The experimental reports mentioned above offer insight on the contribution of spatial 

frequency channels to α discrimination. We demonstrated that α discrimination is regulated by 

low spatial frequency channel interactions, and it seems that this process is not specific to the 

reference α. These findings raise further questions in regards to human sensitivity to the α of 

natural scenes, which are discussed below.   

Tuning to α. The distribution of αs across natural images peaks at a value of 1.08 

(Billock, 2000; Ruderman & Bialek, 1994; Tolhurst et al., 1992; van der Schaaf & van Hateren, 

1996). Additionally, the range of αs typically encountered is fairly narrow (when careful 

consideration is taken for the environment) and extends between [0.8 – 1.0] (Hansen & Essock, 

2005). Thus, the probability of encountering an environment with an α near 1.0 is high, and this 

has been used to argue that human observers should show either high sensitivity (Hansen & 

Hess, 2006; Knill et al., 1990) or high resilience (Tadmor & Tolhurst, 1994; Tolhurst & Tadmor, 

1997) to changes in α near 1.0. While both theories on sensitivity to α propose different 

sensitivity profiles, they both argue that the visual system should be tuned, or show selectivity, in 

how it responds to αs near those of the average α versus steeper or shallower αs. That is, when 

asked to discriminate between different αs, human observers show better performance (greater 

sensitivity) to αs near that or above the average α value of natural images (α = 1.08; Billock, 

2000), and worse performance for αs outside of that range. However, we have shown here that 
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the process involved in the discrimination α is not specific to the reference α, in that the spatial 

frequency bands used by observers to identify the odd stimulus do not change according to the 

reference α. Thus, while human observers show tuning to particular α values (typically near 1.0), 

the discrimination process is not tuned to α. Future research should verify how a general 

discrimination mechanism generates the sensitivity profile to α previously reported in 

discrimination studies (Hansen & Hess, 2006; Knill et al., 1990; Tadmor & Tolhurst, 1994; 

Tolhurst & Tadmor, 1997). Specifically, it could be interesting to generate a model of α 

discrimination that could incorporate a general discrimination mechanism as the one identified in 

Chapter 4, and verify what other processes are required to generate tuning similar to that 

typically found. This may lie in the form of interactions between spatial frequency channels prior 

to pooling between channels and the decision stages. It would be interesting to verify if these 

interactions are facilitative (Meese, 2004; Xing & Heeger, 2000) or inhibitive (Bex et al., 2007; 

Carandini & Heeger, 1994; Heeger, 1992; Hugh R. Wilson & Humanski, 1993) in nature, or if 

any bias in the strength of interactions between channels tuned to particular ranges of spatial 

frequency content (Cass, Alais, Spehar, & Bex, 2009; Haun & Essock, 2010; Haun & Peli, 2013; 

Taylor et al., 2009), are required to generate the typical tuning for α with our general 

discrimination process.  

Neurostimulation. In Chapter 3, we had aimed to directly measure the contribution of 

spatial frequency channels to the discrimination α with the application of tDCS over primary 

visual cortex, but found no effect and proposed tDCS may be inadequate to modulate 

suprathreshold vision. There are other neurostimulation techniques that may be better suited to 

investigate, more directly, the contribution of spatial frequency channels to α discrimination. For 

example, neurostimulation techniques with greater stimulation precision and/or magnitude (e.g., 

HD-tDCS or TMS; Antal et al., 2006b; Edwards et al., 2013; Kuo et al., 2013; Miranda et al., 

2013; Rahman et al., 2013; Thompson et al., 2008; Waterston & Pack, 2010), may be better 

suited to influence the activity of cells in primary visual cortex, and thus, modulate α 

discrimination thresholds.  

Diagnostic spatial frequency bands. Both the identification of α and the discrimination 

of α were shown, in Chapter 4, to be completed by different processes. For identification, 

observers completed the task in a manner similar to that of scene categorization and face 

recognition (Schyns & Gosselin, 2003; Schyns & Oliva, 1999). That is, they relied increments 
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and decrements in contrast in diagnostic spatial frequency bands to judge the α of an image, 

which indicates observers may have a an internal representation of α. It is intriguing to find 

observers approach the identification of noise stimuli in a similar manner to the categorization of 

meaningful images (e.g., scenes and faces). Future studies should investigate how the diagnostic 

scale use we have identified for α identification may factor into more complex processes of 

natural scene perception. That is, the α of an image has been shown to influence lower level 

perceptual cues like the perceived contrast of an image (Baker & Graf, 2009; Hansen & Hess, 

2012; McDonald & Tadmor, 2006), and the peak spatial frequency used by observers to 

determine perceived contrast (Haun & Peli, 2013). While α, in-of-itself, may be insufficient to 

contribute to scene identification (Oliva & Torralba, 2001; Torralba & Oliva, 2003) it may serve 

to regulate the spatial frequency of the diagnostic band used by observers to categorize the scene. 

The categorization of natural scenes is known to follow a hierarchical structure, whereby coarse 

scale processing of the scene occurs prior to fine scale processing (Brand & Johnson, 2014; 

Oliva & Schyns, 1997; Schyns & Oliva, 1994). It is plausible that the α of an image will regulate 

the peak spatial frequency of the diagnostic band used by observers to categorize the natural 

image. Thus, α may not be a diagnostic property of a scene, but may aid in the selection of 

diagnostic information.   

Models of α discrimination. Many models of α discrimination have previously been 

proposed (Brady & Field, 1995; Field & Brady, 1997; Párraga et al., 2005; Tadmor & Tolhurst, 

1994; Tajima et al., 2010; Tolhurst & Tadmor, 1997), but given recent evidence from the data 

presented here, certain modifications to the perception and discrimination of broadband contrast 

should be brought forth. Specifically, previous models on the discrimination of α, however, 

relied on the use of diagnostic spatial frequency bands to account for the detectability of a 

change in α (Tadmor & Tolhurst 1994; Tolhurst & Tadmor 1997). However, the psychophysical 

data obtained here suggest the discrimination of α to be a passive process, un-tuned to the 

particular value of the reference α. The psychophysical mechanism defined here compares the 

luminance contrast across low and high spatial frequencies to detect a change in α, but does not 

adjust the particular spatial frequency bands used in accordance with α. Thus, a new model, 

which can accurately define the detectability of a change in α without adaptable or diagnostic 

spatial frequency bands, should be developed. There have been modern attempts to define human 

sensitivity to broadband contrast that may aid in developing such a model (Baker & Graf, 2009; 
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Elliott et al., 2011; Haun & Peli, 2013). These models have aimed to define human sensitivity to 

broadband contrast by including two important components to the model. The first was to define 

a spatial frequency dependent pattern of contrast sensitivity for spatial frequency channels, 

similar to the Contrast Sensitivity Function of human observers, and the second, a weighted 

contrast gain control mechanism that adjusts the responses of channels differently according to 

the preferred spatial frequency. Indeed, given spatial frequency channels a response magnitude 

that mirrors human sensitivity to contrast across scale alone can predict, relatively well, the peak 

in the detectability of a change in α for reference α values of 1.0 (Baker & Graf, 2009). 

Suppressive interactions between channels must also be included within novel models of α 

discrimination, and is most likely low-pass in structure (Elliott et al., 2011; Haun & Peli, 2013). 

There is evidence that the human visual system is adapted to the distribution of luminance 

contrast in natural scenes, and may thus adjust neural responses accordingly, in that it will 

suppress low spatial frequency channel activity more heavily than higher spatial frequency 

channels (Clifford et al., 2007; Elliott et al., 2011; Webster et al., 2002). Indeed, models that 

have included a weighted contrast gain control mechanism tend to better predict human observer 

performance than models that have a flat, or white, contrast gain control mechanism (Hansen et 

a., 2015; Haun & Peli, 2013). Such a mechanism would effectively lower the dominant responses 

to lower spatial frequency channels and potentially allow the early visual system to use both low 

and high spatial frequency channel outputs (now weighted equally) to detect a change in the α of 

an image. That said, the exact structure of contrast gain control, and any other non-linear 

interactions, under broadband stimulation remain to be properly defined, and a model of 1/f noise 

discrimination may aid this process.  

Concluding Remarks 

We have shown that the discrimination of α is dependent on the representation of spatial 

frequency content within image. Additionally, observers rely predominantly on low spatial 

frequency luminance contrast changes to detect and discriminate a change in α. We have also 

shown that this process is not subject to the value of the reference α, which suggests that 

observers complete the discrimination task in a stimulus unspecific manner. This is not to say 

that human observers have no representation of α. Indeed, most observers likely do have some 

form of internal representation of the distribution of luminance contrast across spatial frequency 

in natural scenes. Perhaps of most importance, given the task dependence of the contribution of 
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spatial frequency channels to the identification and discrimination of α, are questions 

surrounding the relevance of discrimination paradigms in the study of human sensitivity to 

natural scene statistics. Specifically, given that observers undergo α discrimination in a manner 

that disregards the exact α of the image, this leads to question how the value of α in a natural 

scene may affect visual processing. Specifically, while the study of human sensitivity to α may 

be beneficial to develop a better understanding of the function of spatial frequency channels in 

broadband environments, it remains a poor model of natural scenes and natural scene processing. 

The amplitude spectrum of natural images is but one aspect of the Fourier representation of 

natural scenes, and the proper study of naturalistic vision should, additionally, include the 

structural components of an image (i.e., their phase spectra). Both the amplitude and phase 

component of natural images carry distinct information but these components are also known to 

interact in vision and should not be studied in isolation (Tadmor & Tolhurst, 1993). Thus, while 

we find that the discriminability of α may be a passive process, it may influence the perception 

of structure, or textural cues in natural scenes, in a way that can only be identified when both the 

amplitude and phase components of natural images are presented to observers simultaneously. 

The study of human sensitivity to broadband contrast, in particular when said contrast is 

distributed in a way similar to that of natural scenes has been crucial in determining how the 

early visual system functions under naturalistic stimulation. It now follows that more complex 

representations of natural scenes, which account for the interactive properties of luminance 

contrast and structure in natural scenes should be studied to generate a more cohesive 

understanding of natural scene perception.  
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Supplementary Material A 

Baseline Sequential Measurement in Time Data 

 The baseline portion of this study, completed by all observers, measured their contrast 

sensitivity to each spatial frequency by size stimulus blocks 10 times. The first two repetitions 

were practice staircases and removed prior to data analysis. Contrast sensitivity values for all 

observers in this study (both 45° oblique and horizontal orientation groups) for the final 8 

staircases completed during baseline are shown in Figure 3A.A1. As described in text, we 

calculated the linear regression line of best fit for all observers across the 8 sequential 

measurements in time for all stimulus dimensions (solid lines in Figure 3A.A1) and found that 

no slope deviated from 0. Therefore, contrast sensitivity value for all 20 observers remained 

relatively stable across the final 8 repetitions of baseline measurements.  

 We opted to combine both the contrast sensitivity measured during baseline and the pre-

stimulation contrast sensitivity measures to use as a pre-stimulation baseline in our data analyses 

reported in text. There is evidence that same-day and different-day baseline measures may alter 

the relative effects of tDCS (Peters et al., 2013), however, as observers were constrained to 

perform similarly to their baseline contrast sensitivity measurements prior to undergoing 

stimulation, we found no differences in our effects when using either different-day baseline 

measures or same-day baseline measures alone or combined (see Figure 3A.A2).  
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Figure 3A.A1. Observers in the 45° oblique grating group and horizontal grating group showed 

no statistically significant difference across the sequential measurements in time for all stimulus 

dimensions used in this study (all ps > 0.05). Each color in the figure represents the contrast 

sensitivity value for an individual observer for the final 8 measurements of contrast sensitivity 

(in decibels) completed in the baseline portion of the study.  
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Figure 3A.A2. Average contrast sensitivity values (n = 10 observers per data point) for the last 8 

spatial frequency by stimulus size blocks (fixed period and fixed size) of the baseline session, 

and the pre-stimulation contrast sensitivity values for both for a-tDCS (red) and c-tDCS (blue) 

sessions. The figure is split by stimulus orientations. Average contrast sensitivity values did not 

change significantly between baseline measurements sessions or pre-stimulations. Error bars 

represent 1 standard error of the mean (note that many data points have error bars smaller than 

the marker).  
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Supplementary Material B 

 This appendix offers a brief description of analyses used in this study to estimate the 

magnitude of both a-tDCS and c-tDCS effects on contrast sensitivity. We begin with a complete 

table of U1 statistics used to assess overlap between the Colgate University and Concordia 

Samples, and subsequently offer an overview of building exact [(1-α)*100] confidence intervals 

around the Hedge’s g effect size, and finally define the computation of Left Tail Ratios (LTRs). 

Further details can be found in Kline (2004) and Cumming and Finch (2001).  

Measures of Overlap 

 Given the large discrepancy in sample size between the Colgate (n = 8) and Concordia (n 

= 2) samples, we opted to assess overlap between the two prior to averaging their data with a 

simple measure of overlap, U1, which defines the proportion of scores between two sampling 

distribution that do not overlap (Cohen, 1988). If the mean contrast between both groups is 0, 

then U1 is also 0, while it is 1 if both samples do not overlap whatsoever. U1 is calculated by 

counting the number of scores from one group that lie outside the range of the other group, and 

divide that number by total sample size (N), reported below in Table 3A.B1. 

Group-Level Analyses 

 Traditionally, confidence intervals are constructed in order to estimate the mean of the 

sampling distribution of the parameter of interest (µ), as the mean of the sampling distribution 

will be within the confidence interval [(1-α)*100] percent of the time. There are, other 

approaches to build confidence intervals, which are more intuitive when building a confidence 

interval around an effect size measure. Instead of defining the confidence intervals as capturing µ 

[(1-α)*100] percent of the time, the confidence interval is built by defining plausible values of µ. 

Therefore, the lower limit of the confidence interval is defined as all plausible values of µ having 

a [(1- α/2)*100]probability below a certain value of x, while the upper limit is defined as all 

plausible values of µ having a [(α/2)*100] probability below x. In this form, the confidence 

intervals can be calculated by finding the mean of the distribution for which [(1-α/2)*100] of its 

proportion lies below our effect size measure to define the lower limit and the mean of a 

distribution for which [(α/2)*100] of its proportion falls below our effect measure to define the 

upper limit (see Figure 3A.B1). 

The sampling distribution of effect sizes (g) is a non-central t distribution, a probability 

density function defined by two parameters, the degrees of freedom (df) and a non-centrality   
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Table 3A.B1. Measures of overlap between the Colgate and Concordia samples (U1) for all 
stimulus block and time points (Baseline / tDCS) of the study.  

 
Baseline tDCS 

 
a-tDCS Session c-tDCS Session a-tDCS Session c-tDCS Session 

Spatial Frequency Fixed Stimulus Period 
0.5 0.15 0.15 0.38 0.13 

4 0.28 0.20 0.06 0.06 
8 0.15 0.16 0.31 0.19 

12 0.05 0.05 0.25 0.00 

 Fixed Stimulus Size 
0.5 0.05 0.05 0.06 0.19 

4 0.16 0.13 0.88 0.19 
8 0.11 0.13 0.25 0.00 

12 0.03 0.03 0.13 0.13 
  



 

 

204 

 
Figure 3A.B1. Finding the two non-central t distributions with best fitting non-centrality 

parameters (ΔL and ΔU). The blue pdf is the non-central t distribution with the best fitting ΔL for 

which a cumulative density of [1-α/2]*100 falls below t. The orange distribution is the best 

fitting ΔU for which a cumulative density of [α/2]*100 falls below t. Values taken from Kline 

(2004). 
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parameter (Δ). The non-centrality parameter reflects the degree to which the null hypothesis is 

false. If Δ = 0, the resulting distribution is a symmetrical central t distribution with the same df, 

while it will be positively skewed when Δ > 0 and negatively skewed when Δ < 0. In an 

independent samples design, the effect size between two sample means is related to the non-

centrality parameter as follows: 

 Δ = δ n1n2

n1 + n2

 Equation 3A.B1 

When building confidence intervals around an effect size for a dependent samples design, 

as we have done here, exact confidence intervals can only be defined when the mean difference 

is standardize by the standard deviation of the difference scores (sD). Effect sizes standardized by 

the within-group pooled standard deviation or by the standard deviation of a single group are too 

complex and do not follow a central or non-central t distribution. In a dependent samples design, 

the effect size is related to the non-centrality parameter as follows: 

 δ = Δ 2sD
2

n s1
2 + s2

2( )  Equation 3A.B2 

and the variance of the difference scores ( sD2 ) is defined as  

 sD
2 = s1

2 + s2
2 − 2cov12

cov12 = r12s1s2
 Equation 3A.B3 

 

where cov12 is the covariance of the observed scores across conditions and is the product of the 

cross condition correlation and the within condition standard deviations.  

As both the non-centrality parameter and effect size are linked, we can build confidence 

intervals around an effect size measure by first building a confidence interval for the non-

centrality parameter and then transforming it into the effect size units. For a given t statistic (

t = m1 −m2 sm1−m2
), we can search for the non-central t distribution with Δ such that [1- 

α/2]*100 falls below the t statistic (the lower limit, ΔL) and conversely find the non-central t 

distribution with Δ such that [α/2]*100 falls below t (the upper limit, ΔU). Figure 3A.B1 

illustrates this concept for an independent sample design with values taken from Kline (2004). 

When both the ΔL and ΔU have been found, they can easily be converted into effect size values 

(equation 3A.B1 and equation 3A.B2). 
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Finding the appropriate non-central t distribution can easily be completed in MATLAB, 

using the nctcdf function (requires the statistics toolbox) to calculate the cumulative density of 

the non-central t distribution at a particular t statistic, for given df and Δ (see attached MATLAB 

code). Statistical software, including SAS and STATISTICA also include non-central t 

distribution calculators that allow building exact confidence intervals around an effect size, and 

the Real Statistics Excel Resource Pack (http://www.real-statistics.com/) also contains a non-

central t distribution calculator. We strongly encourage the construction of confidence intervals 

around effect sizes, as the effect, just as any other statistics, will always be subject to estimation 

error.  

Case-Level Analyses 

Trans-cranial Direct Current Stimulation in human observers are subject to a variety of 

factors that include the skull density, and alignment of cortical gyri with the electrodes that will 

moderate the effects of stimulation and vary significantly between observers (Datta et al., 2009; 

Miranda et al., 2006; Sadleir et al., 2010). Furthermore, given the magnitude of the non-shunted 

direct current that enters cortex is several orders of magnitude less than what is required to elicit 

action potentials (Creutzfeldt, Fromm, & Kapp, 1962; Peterchev et al., 2012; Rahman et al., 

2013), we expected contrast sensitivity values obtain during stimulation of have different 

variance than those obtain prior to stimulation (as some observers may respond more  

between observers receiving tDCS have predominantly focused on the removal of “non-

responders” (observers that shown small or effects in the opposite direction typically reported for 

a tDCS polarity), we opted to implement case-level analyses, which allowed us to keep all 

observers that underwent tDCS in our data analysis. Case-level analyses can be particularly 

beneficial when the variance between two samples (here pre-stimulation and stimulation) is 

believed to differ significantly, but their central tendency may not. Case-level analyses are 

therefore ideally suited to quantify the effects of neuro-modulators, including tDCS, as the 

effects of stimulation are known to be small (Jacobson et al., 2012) at the level of central 

tendency, but may induce large effects in certain observers more susceptible to neuro-

stimulation. There are many forms of case-level analyses (see Kline, 2004), however, given that 

our data showed large suppressive effects of a-tDCS, we opted to measure the Left-Tail Ratios 

for all stimulus dimensions presented in the results section. Table 3A.B2 reports all left-tail 

ratios for this study.   



 

 

207 

Table 3A.B2. Left-Tail Ratios for all stimulus blocks 
  Spatial Frequency (cycles/°) 
Stimulus Dimensions 0.5 4 8 12 
45° Oblique      

Fixed Period      
 a-tDCS 2.509* 4.344 12.673 124.192 
 c-tDCS 6.467 1.023* 1.655 16.4807 

Fixed Size      
 a-tDCS 4.595 36.283 34.843 14.253 
 c-tDCS 1.037 15.652 1.286* 2.366* 

Horizontal       
Fixed Period      

 a-tDCS 1.744* 1.342* 1.226 3.394 
 c-tDCS 2.559* 24.803 7.521 1.701 

Fixed Size      
 a-tDCS 2.065 109.215 2.606 4.168 
 c-tDCS 4.696* 1.051 1.598* 26.565 

Note. Values marked with an asterisk (*) are ratios with the proportion of scores from the pre-
stimulation distribution as the numerator.  
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A Left-tail ratio is the relative proportion of scores from two different groups (here 

contrast sensitivity collected prior to and during tDCS) that fall in the lower extreme (left-tail) of 

the combined frequency distribution. Tail ratios are always calculated with the largest value as 

the numerator and are therefore always larger than 1. We computed left-tail ratios based on a cut-

off point relative to the mean (Mt) and standard deviation (sT) of the combined distribution (pre-

stimulation and stimulation) for each stimulus dimension presented to observers in this study. 

The mean and standard deviation of the combined distribution are calculated as follows. 

 

MT = n1M1 + n2M 2[ ]
SST = n1 M1 −MT( )2 + n2 M 2 −MT( )2 + df s1

2( ) + df s2
2( )

sT = SST
df

 Equation 3A.B4 

The cut-point for left tail ratios is defined as one standard deviation below the grand mean. The 

distance between the cut-off score (MT – sT) and the mean of each sample is then converted into a 

z-score and the proportion of scores that fall below this z-score under the normal distribution is 

calculated. The left-tail ratio is then simply the ratio between both proportions, with the largest 

proportion always placed as the numerator.  

 

z1 =
MT − sT( )−M1

s1

z2 =
MT − sT( )−M 2

s2

LTR = P(≥ z1)
P(≥ z2 )

 Equation 3A.B5 

 




