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ABSTRACT

High-dimensional behavior of some multivariate two-sample tests

Shan Shi

It is a difficult problem to test the equality of distribution of two independent p-dimensional

(p > 1) samples (of sizes m and n, say) in a nonparametric framework. It is not only because

we need deal with issues such as tractability of the null distribution of test-statistics but also

the fact that the latter are rarely distribution-free. Several notable nonparametric tests for

comparing multivariate distributions are the multivariate runs test of Friedman and Rafsky

(1979), the nearest-neighbor test of Henze (1988) and the inter-point distance-based test of

Baringhaus and Franz (BF) (2004). Biswas and Ghosh (BG) (2014) recently have shown that

in a high dimension, low sample-size (HDLSS) scenario, i.e. where p goes to infinity but m,n

are small or fixed, all the tests mentioned do not perform well. However, the BG-test is shown

to be consistent in the case of HDLSS. In this work, we study the asymptotic behaviors of

BF and BG tests when m,n and p go to infinity and min(m,n) = o(p). Our results reveal

when these tests are expected to work well and when they are not. Results are illustrated by

simulated data.
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Introduction

Classical statistical data analyses can only be applied in the case where the dimension of

observations is fixed and the sample size grows. In many recent practical applications, such as

data mining and microarray studies, we face a new challenge that is the number of variables

exceeds the number of observations dramatically. Due to the growing dimension of data,

many classical statistical data analysis tool are not available any more.

0.1 High-Dimensional Data Problems

In order to show some challenges happening in high-dimensional settings, let’s consider two

random samples X1, X2, . . . , Xm and Y1, Y2, . . . , Yn, where Xi, Yj ∈ Rp, for all 1 ≤ i, j ≤ m,n.

Now, let µ1 = E(Xi), µ2 = E(Yj) where µ1 = (µ11, µ12, . . . , µ1p)
′, µ2 = (µ21, µ22, . . . , µ2p)

′

and the covariance matrices Σ1 = cov(Xi), Σ2 = cov(Yj). Let’s assume we are interested in

testing

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2.

Traditionally, the Hotteling T 2 test is a widely used mean test. The test statistic is defined

as follow

T 2 =
mn

m+ n

(
X̄ − Ȳ

)
S−1
N

(
X̄ − Ȳ

)

where N = m+ n, X̄, Ȳ are sample mean vectors and SN is the pooled sample covariance

matrix defined as

SN =
1

m+ n− 2

[
m∑

i=1

(
Xi − X̄

) (
Xi − X̄

)′
+

n∑

j=1

(
Yj − Ȳ

) (
Yj − Ȳ

)′
]
.
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Under the null hypothesis, N−p+1
Np

T 2 has a central F-distribution with p and N − p + 1

degrees of freedom. However, Bai and Saranadasa (1996) show that the asymptotic power

of Hotelling’s test decrease as the ratio of the dimension to the sample size, p/N , increases

to 1. When p > N , that is, the dimension is larger than the sample size, the Hotelling’s

test is not well defined because the sample covariance matrix becomes singular. Thus, Bai

and Saranadasa (1996) proposed replacing (X̄ − Ȳ )
′

S−1
N (X̄ − Ȳ ) in the Hottelling’s test with

‖X̄ − Ȳ ‖, where ‖ · ‖ denotes the Euclidean norm. The test statistic they established, under

some mild conditions, shows attractive power as p/n → c < ∞.

0.2 Hypothesis Testing For Distributions

The high-Dimensional challenges also arise in problems of two-sample hypothesis testing for

distributions. Before we proceed, let’s have a short review on two-sample hypothesis testing

for distributions. In such tests, we are interested in either H0 : F = G or H1 : F 6= G. In

other words, we would like to know if two sets of independent observations Xi ∼ F, 1 ≤ i ≤ m

and Yj ∼ G, 1 ≤ j ≤ n share the same distribution function. The two-sample test problem

has been studied for a long time in fixed dimension settings. In the univariate case, some

distribution-free and consistent tests such as the Kolmogorov-Smirnov, Wald-Wolfowitz

runs and Wilcoxon rank sum tests are commonly applied. However, the multivariate case

seems not as straightforward as the univariate case. The easily noticed reason is the fact

that the multivariate tests often are not distribution-free under H0. Notable among many

proposals for test-statistics are the multivariate runs test of Friedman and Rafsky (1979), the

nearest-neighbor test of Henze (1988) and the inter-point distance-based test of Baringhaus

and Franz (2004).

Baringhaus and Franz (2004) proposed the test for arbitrary dimensions setting, which is

based on the average sample Euclidean inter-point distances, where

TBF
m,n =

mn

m+ n

[
1

mn

m∑

j=1

n∑

k=1

‖Xj − Yk‖ −
1

2m2

m∑

j=1

m∑

k=1

‖Xj −Xk‖ −
1

2n2

n∑

j=1

n∑

k=1

‖Yj − Yk‖
]
,

m, n are sample sizes and ‖ · ‖ is the Euclidean norm. The BF-test is simply motivated by
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the fact proven by Baringhaus and Franz (2004)

2E(‖X − Y ‖)− E(‖X −X∗‖)− E(‖Y − Y ∗‖) ≥ 0

where X,X∗ i.i.d∼ F, Y, Y ∗ i.i.d∼ G and the equality holds if and only if F = G. The null

hypothesis will be rejected when TBF
m,n is large. And, TBF

m,n converges in distribution to an

integrated, squared Brownian bridge depending on an unknown distribution, where the

theorem is the following.

Theorem 0.2.1. Let X1, X2, . . . , Y1, Y2, . . . be independent p-dimensional random vectors.

They have the same distribution function H. Then, as min(m,n) → ∞, the random variables

Tm,n converge in distribution to

T = γp

∫
B2

H(a, t)dµ⊗ λ(a, t),

where (BH(a, t); (a, t) ∈ Sp−1 ×R) is a H-Brownian bridge having the covariance function

Cov(BH(a, t), BH(b, s)) = P(a′X1 ≤ t, b′X1 ≤ s)− P(a′X1 ≤ t)P(b′X1 ≤ s)

with (a, t), (b, s) ∈ Sp−1 ×R.

Since BF-test depends on an unknown distribution the authors suggested to simulate

critical values by using the bootstrap method.

Recently, Biswas and Ghosh (2014) have demonstrated that in a high dimension, low

sample-size (HDLSS) scenario, i.e., where p → ∞ but m,n are small, all the tests mentioned

above exhibit poor power. So, they proposed another test related to BF-test. The BG-test

statistic is TBG
m,n = ‖µ̂DF − µ̂DG‖2, where

µ̂DF =

[
µ̂FF =

(
m

2

)−1 m∑

i=1

m∑

j=i+1

‖Xi −Xj‖, µ̂FG = (mn)−1
m∑

i=1

n∑

j=1

‖Xi − Yj‖
]
,

µ̂DG =

[
µ̂FG = (mn)−1

m∑

i=1

n∑

j=1

‖Xi − Yj‖, µ̂GG =

(
n

2

)−1 n∑

i=1

n∑

j=i+1

‖Yi − Yj‖
]
.
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Like BF-test, the null hypothesis will be rejected when TBG
m,n is large. The BG-test works

because, if we let µFF = E(‖X −X∗‖), µGG = E(‖Y − Y ∗‖), µFG = E(‖X − Y ‖), µDF =

(µFF , µFG)
′, µDG = (µFG, µGG)

′, then

‖µDF − µDG‖2 = 0 ⇔ µDF = µDG ⇔ µFF = µGG = µFG

⇔ 2µFG − µFF − µGG = 0 ⇔ F = G.

The motivation is they observed that in a high dimension, low sample-size (HDLSS) scenario,

the BF-test has bad performances only when v2 ≤ |σ2
1 − σ2

2|, where σ2
1 = lim

p→∞
trace(Σ1)

p
, σ2

2 =

lim
p→∞

trace(Σ2)
p

, v2 = lim
p→∞

‖µ1−µ2‖2
p

, and Σ1 = Cov(Xi), Σ2 = Cov(Yj), µ1 = E(Xi), µ2 = E(Yj),

1 ≤ i, j ≤ m,n. The authors realized the fact v2 ≤ |σ2
1 − σ2

2| implies, assuming σ1 ≤ σ2

√
2σ1 ≤

√
σ2
1 + σ2

2 + v2 ≤
√
2σ2.

And, according to their assumptions, (µ̂FG−µ̂FF )√
p

→p (
√
σ2
1 + σ2

2 + v2−
√
2σ1) and

(µ̂FF−µ̂GG)√
p

→p

(
√

σ2
1 + σ2

2 + v2−
√
2σ2). Even when (µ̂FG− µ̂FF ) and (µ̂FF − µ̂GG) may be significantly differ-

ent from zero, both most likely have different signs. Thus, TBF
m,n = (µ̂FG− µ̂FF )+ (µ̂FF − µ̂GG)

might be close to zero, so H0 may not be rejected. TBG
m,n does not have the same weakness

since the cancellation is impossible to happen when TBG
m,n = (µ̂FG − µ̂FF )

2 + (µ̂FF − µ̂GG)
2.

When sample size is large and the dimension of data remains fixed, (m+ n)TBG
m,n converge in

distribution to
2σ2

0

λ(1−λ)
χ2
1, where λ = m

n
, σ2

0 = V (E (‖X1 −X2‖|X1)). While the sample size is

fixed and the dimension of data increases, the power of the BG-test of level α converges to 1

if limp→∞
‖µ1−µ2‖2

p
6= 0 or limp→∞

trace(Σ1)
p

6= limp→∞
trace(Σ2)

p
is assumed.

It is easy to note that both BF-test and BG-test are linear combinations of U−Statistics,

which is a very powerful tool and has been widely employed since 1948 when Hoeffding first

introduced it to the world. Recently, people have attempted to use the asymptotic theory

of U− statistics especially in the degenerating case to tackle high-dimensional problems.

However, Ahmad et al. (2014), claimed that no mentionable bibliography indicated that the

asymptotic theory of degenerate U− statistics was successfully applied to high-dimensional

problems. But, Ahmad et al. (2014) proposed a way to apply degenerate U-statistics theory
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on high-dimensional problems without explicit proof. In this work, following Jung, Sen and

Marron (2012), we are going to simplify Ahmad et al. (2014)’s method by using principal

components. We therefore review some basic definitions and theorems of U-statistics.

0.3 U− Statistics

Let X1, X2, X3, . . . be i.i.d random variables with common distribution function F (x). let

m ≥ 1 and h : Rm → R be a measurable function symmetric in its arguments. The U -statistic

with kernel h is defined by

Un(h) =

(
n

m

)−1 ∑

1≤i1<i2<···<im≤n

h (Xi1 , . . . , Xim) , n ≥ m.

The kernel h is called degenerate with respect to F (x) if for all 1 ≤ j ≤ m,

∫

R

h(x1, x2, . . . , xm)dF (xj) = 0, where −∞ < x1, . . . , xj−1, xj+1, . . . , xm < ∞.

Let

θ = Eh(X1, . . . , Xm)

and for i = 0 . . . ,m let

hi(x1, . . . , xi) = Eh(x1, . . . , xi, Xi+1, . . . , Xm)

σ2
i = V(hi(X1, . . . , Xi))

so that

σ2
0 = 0

σ2
m = V(h(X1, . . . , Xm))

We say that a U -statistic is degenerate if σ2
1 = 0.

5



Theorem 0.3.1. Let Un be a U-statistic based on a kernel function h of degree m, then

V(Un) =

(
n

m

)−1 m∑

i=1

(
m

i

)(
n−m

m− i

)
σ2
i

0.4 Thesis Organization

In this work, we will show how BF-test and BG-test behave in the high dimensional setting

where n, p → ∞ and n = o(p). In Chapter 1 and 2 the asymptotic distributions of the

test statistics of BF-test and BG-test under the null hypothesis and theirs power properties

respectively are given. In Chapter 3, a comparison between BF and BG tests would be made.
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Chapter 1

Behavior of the BF-test as m,n, p → ∞

The goal of this chapter is to show how BF-test behaves in the case of the high-dimensional

setting. Instead of analyzing the original BF-test, we would like to work on the modified

BF-test. Its test statistic is

TBF∗
m,n = (m+ n)

[
2
∑m

j=1

∑n
k=1 ‖Xj − Yk‖
mn

−
∑m

j=1

∑m
k=1 ‖Xj −Xk‖

m(m− 1)
−
∑n

j=1

∑n
k=1 ‖Yj − Yk‖

n(n− 1)

]
.

To do the investigation, we need first find out the main contributors of TBF∗
m,n by analyzing its

Taylor approximation. Then, we would derive its limiting distribution under H0.

1.1 Assumptions

In order to carry out the investigation on these two tests, we need first to make the following

assumptions, following Hall and Neeman (2005) and Biswas and Ghosh (2014).

(A1) The fourth moments of the components of X and Y are uniformly bounded, where

X, Y ∈ Rp.

(A2) (i) trace(Σ1)
p

→ σ2
1, (ii)

trace(Σ2)
p

→ σ2
2, (iii)

‖µ1−µ2‖2
p

→ v2, (iv)
trace(ΣiΣj)

p2
→ cij, as p → ∞

where i, j = 1, 2.

(A3) X = (X(1), X(2), . . . , X(p)), Y = (Y (1), Y (2), . . . , Y (p)) are ρ mixing for functions domi-

nated by quadratics if whenever functions f and g of two variables satisfy |f(u, v) +

7



g(u, v)| ≤ Cu2v2, for some C > 0, and all u, v, we have

sup
1≤l,k<∞,|k−l|≥r

|corr
[
f(U (k), V (k)), g(U (l), V (l))

]
| ≤ ρ(r),

for (U, V ) = (X,X), (Y, Y ), (X, Y )

As a consequence of the assumptions, we will have the following

(i) ‖Xi −Xj

p
‖ →p

√
2σ1, (ii) ‖

Yi − Yj

p
‖ →p

√
2σ2, (iii) ‖

Xi − Yj

p
‖ →p

√
σ2
1 + σ2

2 + v2

since the variances of them go to zero as p goes to infinity. For more details, please refer to

Hall and Neeman (2005).

1.2 Taylor Approximation of TBF∗
mn

The way to show how BF-test behaves is to find the main contributors of the test statistic.

So, let’s begin with the Taylor expansion of TBF∗
m,n .

By simple calculation, we know

µx

p
=

E (‖Xi −Xj‖2)
p

=
2trace (Σ1)

p
≈ 2σ2

1

µy

p
=

E (‖Yi − Yj‖2)
p

=
2trace (Σ2)

p
≈ 2σ2

2

µxy

p
=

E (‖Xi − Yj‖2)
p

=
trace(Σ1 + Σ2)

p
+

‖µ1 − µ2‖2
p

≈ σ2
3 = σ2

1 + σ2
2 + v2

where µ1 = E(Xi) and µ2 = E(Yj), for all i, j > 0. And, it is easy to check that by Taylor

8



expansions of the function x → √
x centering at σ2

1, σ
2
2, σ

3
3

µ̂FF√
p

=
2

m(m− 1)

m∑

i=1

m∑

j=i+1

‖Xi −Xj

p
‖

=
√
2σ1 +

1

m
√
2σ1

m∑

i=1

(
(Xi − µ1)

′

(Xi − µ1)

p
− σ2

1

)

− 2

m(m− 1)
√
2σ1

m∑

i=1

m∑

j=i+1

(Xi − µ1)
′

(Xj − µ1)

p
+RµFF

µ̂GG√
p

=
2

n(n− 1)

n∑

i=1

n∑

j=i+1

‖Yi − Yj

p
‖

=
√
2σ2 +

1

n
√
2σ2

n∑

i=1

(
(Yi − µ2)

′

(Yi − µ2)

p
− σ2

2

)

− 2

n(n− 1)
√
2σ2

n∑

i=1

n∑

j=i+1

(Yi − µ2)
′

(Yj − µ2)

p
+RµGG

µ̂FG√
p

=
1

mn

m∑

i=1

n∑

j=1

‖Xi − Yj

p
‖

= σ3 +
1

2mσ3

m∑

i=1

(Xi − µ1)
′

(Xi − µ1)− pσ2
1

p

+
1

2nσ3

n∑

i=1

(Yi − µ2)
′

(Yi − µ2)− pσ2
2

p
− 1

mnσ3

m∑

i=1

n∑

j=1

(Xi − µ1)
′

(Yj − µ2)

p

− 1

mnσ3

m∑

i=1

n∑

j=1

((Xi − µ1)− (Yj − µ2))
′

(µ1 − µ2)

p

+
1

2σ3

(‖µ1 − µ2‖2
p

− v2
)
+RµFG

9



Thus, the modified BF-test can be expressed as the following

TBF∗
m,n√
p

= (m+ n) (2σ3 − σ1 − σ2) + (m+ n)
1

2σ3

(‖µ1 − µ2‖2
p

− v2
)

(1.1)

+ (m+ n)(
2

m(m− 1)
√
2σ1

m∑

i=1

m∑

j=i+1

(Xi − µ1)
′

(Xj − µ1)

p
(1.2)

+
2

n(n− 1)
√
2σ2

n∑

i=1

n∑

j=i+1

(Yi − µ2)
′

(Yj − µ2)

p
(1.3)

− 2

mnσ3

m∑

i=1

n∑

j=1

(Xi − µ1)
′

(Yj − µ2)

p
(1.4)

+ (
1

mσ3

− 1

m
√
2σ1

)
m∑

i=1

(Xi − µ1)
′

(Xi − µ1)− pσ2
1

p
(1.5)

+ (
1

mσ3

− 1

n
√
2σ2

)
n∑

i=1

(Yi − µ2)
′

(Yi − µ2)− pσ2
2

p
(1.6)

− 1

mnσ3

m∑

i=1

n∑

j=1

((Xi − µ1)− (Yj − µ2))
′

(µ1 − µ2)

p
(1.7)

+ 2RµFG
−RµFF

−RµGG
) (1.8)

The term (1.1), (1.5), (1.6), (1.7) from above equal zero under the null hypothesis. And, term

(1.8) would be proven negligible in Theorem 1.3.4. Thus, the main contributors of the BF-test

statistic, under null hypothesis are (1.2), (1.3) and (1.4).

1.3 Asymptotic normality of TBF∗
mn Under H0

We are going to derive the limiting distribution of TBF∗
mn in the way of Ahmad et al. (2014).

First, we need to present the following important lemma. A similar proof has been given

by Chen and Qin (2010) by using Martingale Central Limit Theorem. Here, we are going

to present a different proof based on properties of degenerate U-statistics and the principal

components inspired by Jung, Sen and Marron (2012).

Lemma 1.3.1. Let Xi ∈ Rp and E(Xi) = 0, for all 0 < i < m, which satisfy (A1)-(A3).

Then Tm = 1
m

∑m
i=1

∑m
j=i+1

X
′

iXj

p
→d Y = lim

p→∞

∑p
i=1

λi

p
(W 2

i − 1), where W 2
1 ,W

2
2 , . . . being

independent χ2
1 random variables, as p,m → ∞.

10



Proof. we shall prove this result by the method of characteristic function, that is, by showing

E
(
eixTm

)
→ E

(
eixY

)
,m, p → ∞

Let ωi = Λ−1/2P−1Xi, where PΛP−1 = Σ1 and diag (Λ) = (λ1, λ2, . . . , λp), so

X
′

iXj = (Λ−1/2P−1Xi)
′

Λ(Λ−1/2P−1Xj) = ω
′

iΛωj =

p∑

k=1

λkωkiωkj

Thus,

Tm =
1

m

m∑

i=1

m∑

j=i+1

ω
′

iΛωj

p

It is noted that each value of (λ1, λ2, . . . , λp) depends on p(m), but for convenience we drop

p(m). And,

|E
(
eixTm

)
−E

(
eixY

)
| ≤ |E

(
eixTm

)
−E

(
eixTmk

)
|+|E

(
eixTmk

)
−E

(
eixYk

)
|+|E

(
eixYk

)
−E

(
eixY

)
|

where

Tmk =
1

m

m∑

i=1

m∑

j=i+1

k∑

s=1

λs

p
ωsiωsj

and

Yk =
k∑

s=1

λi

p

(
W 2

s − 1
)
.

Using the inquelity |eiz − 1| ≤ |z| we have

|E
(
eixTm

)
− E

(
eixTmk

)
| ≤ E|eixTm − eixTmk |

≤ |EeixTmk ||Eeix(Tm−Tmk) − 1|

≤ |E (x(Tm − Tmk)) |

≤ |x||E(Tm − Tmk)
2| 12
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E(Tm − Tmk)
2 = E

(
1

m

m∑

i=1

m∑

j=i+1

p∑

s=k+1

λs

p
ωsiωsj

)2

= E


 1

m2

m∑

i=1

m∑

j=i+1

(
p∑

s=k+1

λs

p
ωsiωsj

)2



≤
p∑

s=k+1

λ2
s

p2
≤ (

p∑

s=k+1

λs

p
)2

Since trace(Σ1)
p

→ σ1, p → ∞, and
∑p

s=1
λs

p
= trace(Σ1)

p
, trace(Σ1)

p
is Cauchy. So, there is a P

such that
∑p

s=k+1
λs

p
≤ ε for all k ≥ P ,So, |E

(
eixTm

)
− E

(
eixTmk

)
| ≤ ε when k ≥ P .

Next, let’s show that |E
(
eixTmk

)
− E

(
eixYk

)
| ≤ ε. We may rewrite Tmk as

Tmk =
1

m

k∑

s=1

λs

p

(
W 2

mk − Znk

)
,

where

Wmk = m− 1

2

m∑

i=1

wki

and

Zmk = m−1

m∑

s=1

w2
ki.

Since EWki = 0, V ar(Wmk) = 1, Cov (Wmk,Wml) = 0 for all k 6= l. And, wki depends on m

for all k, but for convenience we drop the m. Thus, by Lindeberge-Feller CLT, we have

(Wm1,Wm2, . . . ,Wmk) →d N (0, Ik×k) ,m → ∞.

And,

(Zm1, Zm2, . . . .Zmk) →p (1, 1, . . . , 1) ,m → ∞.

Consequently, we have |E
(
eixTmk

)
− E

(
eixYk

)
| ≤ ε for some M such that when all m ≥ M.

Last, we need to show that |E
(
eixYk

)
− E

(
eixY

)
| ≤ ε. If we assume Yk →d Y then we can

find a K such that |E
(
eixYk

)
− E

(
eixY

)
| ≤ ε for all k ≥ K.

Thus, we can find a L ≥ Max(m(P ),M,m(K)), so |E
(
eixTm

)
− E

(
eixY

)
| ≤ 3ε for all

m ≥ L.
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Remark. The way of deriving the limiting distribution suggested by Ahmad et al. (2014)

is same as shown in Serfling (1980). That is, find a L2 convergent sequence of the kernel.

Principal component method clearly gives what we want in our case.

According to the previous analysis, we present the following theorem about the limiting

distribution of the BF-test statistic.

Theorem 1.3.2. Under H0 : F = G, and the assumptions A(1)-A(3),

TBF∗
m,n

2
√

tr(Σ2)
tr(Σ)

→d N(0, ζ21 + ζ22 +
ζ23
2
)

as min(m,n), p → ∞, n = o(p), where ζ1 = lim m+n
m−1

, ζ2 = lim m+n
n−1

, ζ3 = lim m+n√
mn

.

Proof. Under H0, without the loss of generality, we can assume that µ1 = µ2 = 0, σ1 = σ2 = σ

and Σ1 = Σ2 = Σ. So,

1√
p
TBF∗
mn =

N√
p
(2µ̂FG − µ̂FF − µ̂GG)

=
2N

m(m− 1)
√
2σ

m∑

i=1

m∑

j=i+1

X
′

iXj

p
+

2N

n(n− 1)
√
2σ

n∑

i=1

n∑

j=i+1

Y
′

i Yj

p

− 2N

mn
√
2σ

m∑

i=1

n∑

j=1

X
′

iYj

p
+ 2NRµFG

−NRµFF
−NRµGG

where, N = m+ n. Now, let Φ1 =
1

m(m−1)

∑m
i=1

∑m
j=i+1

X
′

iXj

p
,Φ2 =

1
n(n−1)

∑n
i=1

∑n
j=i+1

Y
′

i Yj

p
,

and Φ3 =
1

mn

∑m
i=1

∑n
j=1

X
′

iYj

p
. It is easy to see that Φ1, and Φ2 are one-sample U - Statistics,

and Φ3 is a two-sample U - Statistic. And, Φ1,Φ2 and Φ3 are degenerate U - statistics, since

E (Xi|Xj) = E (Yi|Yj) = 0. From Lemma 1, we know that

1

m

m∑

i=1

m∑

j=i+1

X
′

iXj

p
→d

∞∑

i=1

λi

p

(
Z2

1i − 1
)

1

n

n∑

i=1

n∑

j=i+1

Y
′

i Yj

p
→d

∞∑

i=1

λi

p

(
Z2

2i − 1
)

13



1√
mn

m∑

i=1

n∑

j=1

X
′

iYj

p
→d

∞∑

i=1

λi

p
(Z1iZ2i)

as p,m → ∞, where λi is a eigenvalue of Σ, Z1i and Z2i are two independent sequences of

independent standard normal variables. So,

√
2trace(Σ)

p√
2σ

√
2σ

2
√
p
TBF∗
mn →d

N

m− 1

∞∑

i=1

λi

p

(
Z2

1i − 1
)
+

N

n− 1

∞∑

i=1

λi

p

(
Z2

2i − 1
)
− N√

mn

∞∑

i=1

λi

p
(Z1iZ2i) .

According to

Lemma 1.3.3. Let Xi be i.i.d. random variables with mean 0 and variance 1. let bni, 1 ≤
i ≤ n be a sequence of constants such that maxi b2ni → 0 as n → ∞ then

n∑

i=1

bniXi →d N(0, 1)

as n → ∞.

And, φ1, φ2 and φ3 are uncorrelated. Thus,

1√
2trace(Σ2)

p2

√
2trace (Σ)

p

1

2
√
p
TBF∗
mn →d N(0, ζ21 + ζ22 +

ζ23
2
).

In order to finish the proof of theorem 1.3.2, we need to show that the remainders converge

to 0 in probability. We will show NRµFF
→p 0, the others can be shown in the same way.

Theorem 1.3.4. Follow the same assumptions as Theorem 1.3.2, as p,min(m,n) → ∞ and

min(m,n) = o(p), NRµFF
→p 0, where

NRµFF
=

N

m(m− 1)

m∑

i=1

m∑

j=i+1

1

8ξ
3

2

ij

(
(Xi −Xj)

′

(Xi −Xj)

p
− 2σ2

1

)2

where ξij falls between
(Xi−Xj)

′

(Xi−Xj)

p
and 2σ2

1.
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Proof. According to Hall et al.(2005), we know that ‖Xi−Xj

p
‖ →p

√
2σ1 and

‖Xi−Xj‖√
p

=
√
2σ1 +Op

(
1√
p

)
. Thus,

‖Xi−Xj‖2
p

= 2σ2
1 +Op(

1√
p
) +Op(

1
p
). So,

NRµFF
=

1

m(m− 1)

m∑

i=1

m∑

j=i+1

1

8ξ
3

2

ij

(
√
N2σ2

1 −
√
N2σ2

1 +Op(

√
N√
p
) +Op(

√
N

p
)

)2

.

Since N
p
→ 0 then, NRµFF

→p 0

1.4 Ratio-Consistent Estimators

To make BF-test useful in high-dimensional settings, we need to find ratio-consistent estimators

of trace (Σ), trace (Σ2) under Σ1 = Σ2 = Σ. In other words, we need estimators such that

̂trace (Σ)

trace (Σ)
→p 1

̂trace (Σ2)

trace (Σ2)
→p 1.

Since trace(Σ)
p

and
trace(Σ2)

p2
are bounded for all p > 0, we only need find consistent estimators

for them. We can use the following two estimators

̂trace (Σ)

p
=

m

m+ n

2

m(m− 1)

m∑

i=1

m∑

j=i+1

‖Xi −Xj

p
‖2 + n

m+ n

2

n(n− 1)

n∑

i=1

n∑

j=i+1

‖Yi − Yj

p
‖2

̂trace (Σ2)

p2
=

m

m+ n

2

m(m− 1)

m∑

i=1

m∑

j=i+1

‖Xi −Xj

p
‖4 + n

m+ n

2

m(m− 1)

m∑

i=1

m∑

j=i+1

‖Yi − Yj

p
‖4

Theorem 1.4.1. Under the assumptions A(1)-A(3), and assume H0 is true,
̂trace(Σ)
p

and
̂trace(Σ2)
p

are consistent unbiased estimators.

Proof. It is clear that each estimator is a sumation of two U−statistics. So we only need to

show that the E
(
‖Xi−Xj

p
‖2
)
< ∞ and E

(
‖Xi−Xj

p
‖4
)
< ∞ because U− statistics converge to

its mean almost surely if E (|h|) < ∞, where h is the kernel function of a U−statistic. Thus,

15



we only need show the follwing. Without the loss of generality, we can assume EXi = 0.

E

(
‖Xi −Xj

p
‖4
)

=
E

((
X

′

iXi

)2
+
(
X

′

jXj

)2
+ 4

(
X

′

iXj

)2
+ 2

(
X

′

iXi

) (
X

′

jXj

))

p2

E

(
X ′

iXi

p

)2

= E

(∑p
s=1

∑p
t=1 x

2
isx

2
it

p2

)
<

∑p
s=1

∑p
t=1

√
Ex4

isEx
4
it

p2
< ∞

The rest can be proven by a similar way. So,

E

(
‖Xi −Xj

p
‖4
)

< ∞

According to the above analysis, we can also discuss the power properties of the BF-test.

It is clear that BF-test won’t work, if σ1 = σ2 and v2 = 0, but Xi’s and Yj’s from different

distributions. That is because, in such case BF-test converge to the same distribution as it

does under the null hypothesis. Even when we assume that v2 = 0 and σ1 6= σ2, the BF-test

will still perform poorly in the cases where v2 ≤ |σ2
1 − σ2

2|, according to Biswas and Ghosh

(2014)’s simulation results.
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Chapter 2

Behavior of the BG-test as m,n, p → ∞

In this chapter, we are going first to find the main contributors of N
p
TBG
mn by using the Taylor

method, where N = m+ n. Secondly, we present the asymptotic distribution of N
p
TBG
mn in

high dimensional settings. Last, we can show its power properties by analyzing its Taylor

approximation.

2.1 Taylor Approximation of N
p T

BG
mn

N
p
TBG
mn can be written as below,

N

p
TBG
mn =

1

2



(√

N√
p
(2µ̂FG − µ̂FF + µ̂GG)

)2

+

(√
N(

µ̂FF√
p

− µ̂GG√
p
)

)2



According to the analysis from the last chapter, we know that, under the null hypothesis

√
N√
p
(2µ̂FG − µ̂FF + µ̂GG) =

TBF∗
mn

p
√
N

= Op

(
1√
n

)
.

So, we only need deal with (√
N(

µ̂FF√
p

− µ̂GG√
p
)

)2

.
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Now, let’s find out the Taylor approximation of
√
N( µ̂FF√

p
− µ̂GG√

p
).

√
N(

µ̂FF√
p

− µ̂GG√
p
) =

√
N
(√

2σ1 −
√
2σ2

)
+

√
N

m
√
2σ1

m∑

i=1

(
(Xi − µ1)

′

(Xi − µ1)

p
− σ2

1

)

−
√
N

n
√
2σ2

n∑

i=1

(
(Yi − µ1)

′

(Yi − µ2)

p
− σ2

2

)

− 2
√
N

m(m− 1)
√
2σ1

m∑

i=1

m∑

j=i+1

(Xi − µ1)
′

(Xj − µ1)

p

+
2
√
N

n(n− 1)
√
2σ2

n∑

i=1

n∑

j=i+1

(Yi − µ2)
′

(Yj − µ2)

p

We know that

V(
2
√
N

m(m− 1)
√
2σ1

m∑

i=1

m∑

j=i+1

(Xi − µ1)
′

(Xj − µ1)

p
) =

2N

m(m− 1)σ1

tr(Σ2)

p2
→ 0

so
2
√
N

m(m− 1)
√
2σ1

m∑

i=1

m∑

j=i+1

(Xi − µ1)
′

(Xj − µ1)

p
→p 0.

Thus, the main contributor of
√
N( µ̂FF√

p
− µ̂GG√

p
) is, under H0

√
N

m
√
2σ1

m∑

i=1

(
(Xi − µ1)

′

(Xi − µ1)

p
− σ2

1

)
−

√
N

n
√
2σ2

n∑

i=1

(
(Yi − µ2)

′

(Yi − µ2)

p
− σ2

2

)
.

2.2 Asymptotic distribution of N
p T

BG
mn

Theorem 2.2.1. Under the assumptions A(1)-A(3),

∑m
i=1

(
(Xi−µ1)

′

(Xi−µ1)
p

− traceΣ1

p

)

√
m

√
V

(
(Xi−µ1)

′

(Xi−µ1)
p

) →d N(0, 1),

as m, p → ∞.

18



Proof. According to the theorem 1.4.1, we know that

V

(
(Xi − µ1)

′

(Xi − µ1)

p

)
< ∞ for all p > 0.

And,

〈
[
(Xi − µ1)

′

(Xi − µ1)

p
− traceΣ1

p

]2
〉

is uniformly integrable over p, since

(
(Xi − µ1)

′

(Xi − µ1)

p
− traceΣ1

p

)2

→p 0

and according to the property of ρ-mixing, as p → ∞

E

(
(Xi − µ1)

′

(Xi − µ1)

p
− traceΣ1

p

)2

→ 0

So, the Lindeberge Condition is met, because

1

m

m∑

i=1

E



(
(Xi − µ1)

′

(Xi − µ1)

p
− traceΣ1

p

)2

; |(Xi − µ1)
′

(Xi − µ1)

p
− traceΣ1

p
| >

√
mε




= E



(
(Xi − µ1)

′

(Xi − µ1)

p
− traceΣ1

p

)2

; |(Xi − µ1)
′

(Xi − µ1)

p
− traceΣ1

p
| >

√
mε




≤ sup
p>0

E



(
(Xi − µ1)

′

(Xi − µ1)

p
− traceΣ1

p

)2

; (
(Xi − µ1)

′

(Xi − µ1)

p
− traceΣ1

p
)2 > mε


→ 0

Thus, the result follows.

Let’s denote

S =

√
N

m
√
2σ1

m∑

i=1

(
(Xi − µ1)

′

(Xi − µ1)

p
− σ2

1

)
−

√
N

n
√
2σ2

n∑

i=1

(
(Yi − µ2)

′

(Yi − µ2)

p
− σ2

2

)
.
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Lemma 2.2.2. Under A(1)- A(3), and assume H0 is true, as min(m,n), p → ∞,

S√
V(S)

→d N(0, 1)

Proof. Under H0, σ = σ1 = σ2 and Σ = Σ1 = Σ2. It is easy to check that

S =

√
N

m
√
2σ

m∑

i=1

(
(Xi − µ1)

′

(Xi − µ1)

p
− traceΣ

p

)

−
√
N

n
√
2σ

n∑

i=1

(
(Yi − µ2)

′

(Yi − µ2)

p
− traceΣ

p

)

So, according to the theorem 2.2.1, the result follows.

Based on the above analysis, we can now present the following theorem.

Theorem 2.2.3. Under A(1)- A(3), and assume H0 is true,

2NTBG
m,n

pV(S)
→d χ

2
1,

where N = m+ n, as min(m,n), p → ∞, and min(m,n) = o(p).

2.3 A ratio consistent estimator for V(Np T
BG
mn )

During our carefully studying, we found that it is hard to find a ratio-consistent estimator of

V

(
X

′

iXi

)
,

which is the main part of V (S). Thus, we will find an ratio-consistent estimator of

V

(√
N(

µ̂FF√
p

− µ̂GG√
p
)

)

under H0 in the following way.
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Since

√
N(

µ̂FF√
p

− µ̂GG√
p
) =

√
N

(
m

2

)−1 m∑

i=1

m∑

j=i+1

‖Xi −Xj‖√
p

−
√
N

(
n

2

)−1 n∑

i=1

n∑

j=i+1

‖Yi − Yj‖√
p

it is clearly a sum of two U -statistics. Let

Ux =

(
m

2

)−1 m∑

i=1

m∑

j=i+1

‖Xi −Xj‖√
p

and

Uy =

(
n

2

)−1 n∑

i=1

n∑

j=i+1

‖Yi − Yj‖√
p

.

We only need to find the limiting distribution of Ux. The limiting distribution of Uy can be

derived in the same way.

The Hájek projection of Ux can be expressed as

Ûx − θ =
2

m

m∑

i=1

h̃1(Xi),

where

θ1 = E(
‖X1 −X2‖√

p
)

h̃1(Xi) = E(
‖Xi −Xj‖√

p
|Xi)− θ1.

Theorem 2.3.1. Follow the assumptions A(1)-A(3),

√
m
(Ûx − θ1)

δ1/
√
p

→d N(0, 4),

where
δ2
1

p
= V(h̃1(Xi)).

Proof. It is easy to check

δ21
p

= V(h̃1(Xi)) = E(E(
‖Xi −Xj‖√

p
|Xi)

2)− θ2 ≤ E(
‖Xi −Xj‖2

p
) =

2tr(Σ1)

p
.

21



According to Theorem 1.4.1, we know that

E(E(
‖Xi −Xj‖√

p
|Xi)

4) ≤ E(
‖Xi −Xj‖4

p2
) < ∞, for all p > 0.

Thus, 〈
E(

‖Xi −Xj‖√
p

|Xi)
s

〉

is uniformly integrable over p for all 0 < s < 4 since

sup
p>0

E

(
E(

‖Xi −Xj‖√
p

|Xi)
s;E(

‖Xi −Xj‖√
p

|Xi)
s > m

)

≤ 1

m4/s−1
sup
p>0

E

[
E(

‖Xi −Xj‖√
p

|Xi)
4;E(

‖Xi −Xj‖√
p

|Xi)
s > m

]
→ 0, as m → ∞.

It is clear that
〈
h̃2
1(X)

〉
is also uniform integrable over p. Since for all ε > 0

1

δ21/p

m∑

i=1

E

(
h̃2
1(Xi)

m
; |h̃1(Xi)| >

√
mε

)

=
1

δ21/p
E

(
h̃2
1(Xi); |h̃1(Xi)| >

√
mε
)

≤ 1

δ21/p
sup
p>0

E

(
h̃2
1(Xi); h̃

2
1(Xi) > mε

)
→ 0 as n → ∞

by the Lindeberg - Feller theorem,

√
m
(Ûx − θ1)

δ1/
√
p

→d N(0, 4)

In order to show
√
m
Ux − θ1
δ1/

√
p

→ N(0, 4),

we need to show that

e = Ux − Ûx
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is negligible. In other words, we need to show that

√
Ne

δ1/
√
p
→p 0.

It is clear that E(e) = 0. So, we need show that

V(

√
Ne

δ1/
√
p
) → 0.

It can be shown in the following.

V(

√
Ne

δ1/
√
p
) =

N

δ21/p
E(Ux − θ1 − Ûx)

2

=
N

δ21/p
[E(Ux − θ1)

2 + EÛ2
x − 2E((Ux − θ1)Ûx)]

=
N

δ21/p
[E(Ux − θ1)

2 + EÛ2
x − 2

m∑

i=1

EE(Uxh1(Xi)|Xi)]

=
N

δ21/p
[E(Ux − θ1)

2 + EÛ2
x − 2EÛ2

x ]

=
N

δ21/p
[E(Ux − θ1)

2 − EÛ2
x ]

=
N

δ21/p
(
4

m
δ21/p+ o(n−1)− 4

m
δ21/p)

= o(1)

Now, we can present the following theorem.

Theorem 2.3.2. Follow the assumptions A(1)-A(3), under H0, let δ2

p
= V(h̃1(Xi)) =

V(h̃1(Yj)), for all 0 < i, j < m, n

NTBF

2δ2 (N/m+N/n)
→d χ

2
1,

as min(n,m), p → ∞ and min(m,n) = o(p).

Proof. First, let’s denote λ = lim m
N
. Since under H0, let’s assume θ = E(Ux) = E(Uy). From
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the analysis above, we know that

√
N

2δ/
√
p
(
µ̂FF√

p
− µ̂GG√

p
) =

√
N√
m

(√
m
Ux − θ

2δ/
√
p

)
−

√
N√
n

(√
n
Uy − θ

2δ/
√
p

)

→d N(0,
1

λ
+

1

1− λ
)

So, we have the following √
N

2δ/
√
p
( µ̂FF√

p
− µ̂GG√

p
)

√
N/m+N/n

→d N(0, 1)

Thus,
NTBF

2δ21 (N/m+N/n)
→d χ

2
1

According to the analysis above, we know that Biswas and Ghosh(2014) suggested to

estimate δ21 = pV(h̃1(Xi)) and δ22 = pV(h̃1(Yi)) by using the following two estimators.

S1 =

[(
m

3

)−1 m∑

i=1

m∑

j=i+1

m∑

k=j+1

‖Xi −Xj‖‖Xi −Xk‖
]
−
[(

m

2

)−1 m∑

i=1

m∑

j=i+1

‖Xi −Xj‖
]2

S2 =

[(
n

3

)−1 n∑

i=1

n∑

j=i+1

n∑

k=j+1

‖Yi − Yj‖‖Yi − Yk‖
]
−
[(

n

2

)−1 n∑

i=1

n∑

j=i+1

‖Yi − Yj‖
]2

.

According to our simulation, these two estimators often give negative values. Thus, we

recommend the estimator proposed by Sen(1960),

S∗
1 =

1

m− 1

m∑

i=1

[
ĥ1(Xi)− Um

]2

where

ĥ1(Xi) =
1

m− 1

m∑

j=1

‖Xi −Xj‖

and

Um =

(
m

2

)−1 m∑

i=1

m∑

j=i+1

‖Xi −Xj‖.
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Later, in our simulation studies, we employ the pooled estimator

S =
mS∗

1 + nS∗
2

m+ n

where

S∗
2 =

1

n− 1

n∑

i=1

[
ĥ2(Yi)− Un

]2

ĥ2(Yi) =
1

n− 1

n∑

j=1

‖Yi − Yj‖

and

Un =

(
n

2

)−1 n∑

i=1

n∑

j=i+1

‖Yi − Yj‖.

Based on our previous analysis, it is clearly that

S∗
i

p
→p lim

p→∞

σi

p
, i = 1, 2

because

V

(
S∗
i

p

)
→ 0, i = 1, 2.

2.4 Power properties of the BG-test

Theorem 2.4.1. Under the assumptions A(1)-A(3), the power of BG-test of level α tend to

1 if either σ1 6= σ2 or v2 ≥ 0.

Proof. If σ1 6= σ2 or v2 ≥ 0, most of terms of the Taylor approximation of

√
N√
p
(2µ̂FG − µ̂FF + µ̂GG)

converges to zero in probability except

√
(m+ n) (2σ3 − σ1 − σ2) +

√
(m+ n)

1

2σ3

(‖µ1 − µ2‖2
p

− v2
)
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,
√
N

[(
1

mσ3

− 1

m
√
2σ1

) m∑

i=1

(Xi − µ1)
′

(Xi − µ1)− pσ2
1

p

]

and,
√
N

[(
1

mσ3

− 1

m
√
2σ1

) n∑

i=1

(Yi − µ2)
′

(Yi − µ2)− pσ2
2

p

]
.

According to the previous analysis, we know that

(√
N√
p
(2µ̂FG − µ̂FF + µ̂GG)

)2

=

[√
(m+ n) (2σ3 − σ1 − σ2) +

√
(m+ n)

1

2σ3

(‖µ1 − µ2‖2
p

− v2
)]2

+Op(1)

And,

N(
µ̂FF√

p
− µ̂GG√

p
)2 = N

(√
2σ1 −

√
2σ2

)2
+Op (1)

Thus, N
p
TBG →p ∞.

From above analysis, it is easy to see if σ1 = σ2 and v2 = 0, BG-test does not work

because in such case the test would converge to the same distribution as it does under the

null hypothesis.
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Chapter 3

Simulation Results

In this chapter, we report results from simulation studies designed to evaluate the power of

the two test in high dimensional case.

3.1 Simulation of Power curves

First, we will estimate the power of BF-test. We set F distributed as Np((µ, . . . , µ)
′

, σIp)

where Ip stands for identity matrix. And, G is distributed as (Exp(1), . . . , Exp(1))
′ ∈ Rp. We

consider four cases, namely (µ = 1, σ = 1),(µ = 1, σ = 3),(µ = 0, σ = 1) and(µ = 0, σ = 2).

In each case, we generate n observations from each distribution to test H0 : F = G. We

choose n = 15 and 100. And, the experiment is repeated 200 times, and the proportion of

times a test rejected H0 was considered as an estimate of its power. Since

TBF∗
m,n

2

√
t̂r(Σ2)

t̂r(Σ)

√
(m+n
m−1

)2 + (m+n
n−1

)2 + ( m+n√
2mn

)2

converges to N(0, 1), the null hypothesis would be rejected if test is larger than 1.96.

From the plots below, we see that BF-test does not work when µ1 = µ2, σ1 = σ2. In the

other cases, BF-test works fine when min(m,n), p → ∞.
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(a) (µ = 1, σ = 1) (b) (µ = 1, σ = 3)

(c) (µ = 0, σ = 1) (d) (µ = 0, σ = 2)

Figure 3.1: Power curves of BF-test

28



Next, we would like to estimate the power of BG-test. We would follow the same procedures.

Additionally, we would like to estimate the power of BG-test in the case of HDLSS. We

also consider the same four cases, namely (µ = 1, σ = 1),(µ = 1, σ = 3),(µ = 0, σ = 1)

and(µ = 0, σ = 2). Since BG-test

NTBF

2δ̂21 (N/m+N/n)

converges to Chi-square distribution with degree freedom 1, the null hypothesis will be

rejected if it is larger than 3.841.

According to the following plots 3.2, it is easy to see that BG-test also does not work

when µ1 = µ2, σ1 = σ2. In other case, BG-test works very well even when sample size equals

4. Biswas and Ghosh (2014) suggested to use permutation test if sample size is small. It may

not be necessary. This problem is beyond the scope of this work but it could be one of my

future research topics.

3.2 Conclusions of Simulation

According to our analysis, we can say both tests are mean-variance tests. In other words,

they both test H0 : EX = EY and VX = VY rather than H0 : F = G. It is because two

distributions sharing the same mean and variance may be different in many other ways. Thus,

further studies are needed to propose a more sophisticated test.
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(a) (µ = 1, σ = 1) (b) (µ = 1, σ = 3)

(c) (µ = 0, σ = 1) (d) (µ = 0, σ = 2)

Figure 3.2: Power curves of BG-test in the case of HDLSS
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(a) (µ = 1, σ = 1) (b) (µ = 1, σ = 3)

(c) (µ = 0, σ = 1) (d) (µ = 0, σ = 2)

Figure 3.3: Power curves of BG-test
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