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Abstract

In 2003, Liu [16] proposed a new estimator dealing with the problem of multi-
collinearity in linear regression model pointing out a drawback of ridge estimator used
in this context. This new estimator, called Liu-type estimator was demonstrated to
have lesser mean squared error than ridge estimator and ordinary least squares esti-
mator, however, it may carry a large amount of bias. In the present paper, we propose
different estimators in order to reduce the bias of Liu-type estimator, one using the
Jackknife technique and other using the technique proposed in Kadiyala [11]. We also
investigate the Bootstrap method of bias correction on the Liu-type estimator as well.
The bias and mean squared error of these estimators have been compared using a sim-
ulation study as well as a numerical example.

Key Words: Multicollinearity, Liu-type estimator, Ridge estimator, Jackknife tech-
nique, Bootstrap technique.

1 Introduction

In 2003, Liu [16] pointed out that the ordinary ridge estimator (ORE) given by Hoerl and
Kennard [8] may still be ill-conditioned if k, the biasing constant, is chosen to be very
small and to overcome this problem, proposed a new estimator called the Liu-type estimator
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(LTE). This estimator should be differentiated from an earlier proposal by Liu [15] in 1993
that has been called as Liu estimator by the researchers [see Alheety and Kibria [3]]. The
basic difference between the two estimators is that the former is based on two constants
whereas the latter requires one constant. Thus the Liu-type estimator may be considered an
improvement over the Liu estimator. It may be noted that both of these may suffer serious
bias based on the values of the biasing parameter(s).
In order to reduce the bias of the Liu estimator, Akdeniz and Kaçiranlar [1] proposed an
almost unbiased Liu estimator following Kadiyala [11] and Ohtani [18]. They compared the
performance of almost unbiased Liu estimator with the Liu estimator and OLSE in terms of
mean squared error (MSE). Recently, following the lines of Singh et. al. [19], Akdeniz and
Akdeniz [5] performed jackknife technique on the Liu estimator and, by ignoring some terms,
obtained the form that is the same as the almost unbiased Liu estimator given by Akdeniz
and Kaçiranlar [1]. They also proposed a new estimator by incorporating Liu estimator
in jackknifed Liu estimator and compared its performance with the Liu and jackknifed Liu
estimator. Alheety and Kibria [3] extended Liu and almost unbiased Liu estimators for the
regression model with correlated errors and multicollinearity. Other references around Liu
estimator include Kaciranlar et. al. [10], Kibria [14] etc..

In the present paper, our aim is to improve upon the bias of LTE using jackknife and
bootstrap methods and to investigate their performance in comparison to other estimators
of interest. The form of the jackknifed LTE may also be used to write down the exact
jackknifed Liu estimator in contrast to the one in Akdeniz and Akdeniz [5]. Section 2
consists of the model and the estimators; we propose two new estimators namely jackknife
Liu-type estimator (JLTE) and almost unbiased Liu-type estimator (AULTE). Section 3.1
gives the comparison between the bias of LTE and JLTE, where as Section 3.2 compares
the MSE’s of LTE and AULTE. Section 4 and Section 5 consist of the simulation study and
numerical illustration respectively and Section 6 gives some concluding remarks.

2 The Model and the Estimators

Consider the following linear regression model

y = Xβ + u, (2.1)

where X is an n× p matrix with full column rank i.e. p, y is an n× 1 response vector, β is a
p× 1 vector of regression coefficients and u is an n× 1 vector of disturbances with E(u) = 0
and E(uu′) = σ2I.
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The OLSE for β in model (2.1) is

β̂OLSE = (X ′X)−1X ′y,

where as the commonly used biased estimator in the presence of multicollinearity among
independent variables is the ORE, given by

β̂ORE = (X ′X + kI)−1X ′y, k ≥ 0.

Liu [16] drew the attention to one of the drawbacks of ORE that k chosen in ORE should
be small and the small k may not be large enough to deal with the ill-conditioning problem
and (X ′X + kI) may still be ill-conditioned. To overcome this problem, a new estimator
called the LTE was proposed which is given by

β̂LTE = (X ′X + kI)−1(X ′y − dβ̂), (2.2)

where k > 0, −∞ < d < ∞ and β̂ can be any estimator of β but in our study, we take it to
be β̂OLSE. Hence, the resulting estimator becomes

β̂LTE = (X ′X + kI)−1(X ′y − dβ̂OLSE). (2.3)

The form of Liu estimator may be obtained from the above by substituting 1 or k and d for
−d. It was shown that under certain parametric conditions, LTE has lesser MSE than that of
ORE. A method to select the optimal values of k and d was also proposed. Like ORE, LTE
also carries a substantial amount of bias and in order to reduce the bias of LTE, we perform
jackknife technique on this estimator following Singh et. al. [19] in the next subsection.

2.1 Jackknife Liu-type Estimator

First let us transform the model in (2.1) as

y = Zγ + u, (2.4)

where, Z = XG and γ = G′β. Here G is a p× p matrix whose columns are normalized eigen
vectors of X ′X. Also, Z ′Z = G′X ′XG = Λ = diag(λ1, . . . , λp), λi being the ith eigenvalue
of X ′X. The ORE of γ may be written as

γ̂ORE = (Λ + kI)−1Z ′y = A−1Z ′y = A−1Λγ̂OLSE = (I − A−1kI)γ̂OLSE, (2.5)

where k ≥ 0, A = Λ + kI. Also, LTE of γ is written as

γ̂LTE = (Λ + kI)−1(Z ′y − dγ̂OLSE) = A−1(Λ− dI)γ̂OLSE = [I − A−1(kI + dI)]γ̂OLSE. (2.6)
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The above estimator may also be written as

γ̂LTE = A−1Z ′y − A−1dγ̂OLSE

= γ̂ORE − (Λ + kI)−1dΛ−1Z ′y

= γ̂ORE − α, (2.7)

where α = (Λ+kI)−1dΛ−1Z ′y. Now, performing jackknife technique on LTE, we first obtain
γ̂LTE(−i), the estimator after deleting the ith observation in data as given by,

γ̂LTE(−i) = γ̂ORE(−i) − α(−i). (2.8)

We already know the value of γ̂ORE(−i) (see Singh et. al. [19] and Khurana et. al. [12]), so
we are left with obtaining α(−i). We have,

α = (Z ′Z + kI)−1d(Z ′Z)−1Z ′y. (2.9)

So,

α(−i) = (Z ′Z − ziz
′
i + kI)−1d(Z ′Z − ziz

′
i)

−1(Z ′y − ziyi)

= (A− ziz
′
i)

−1d(Λ− ziz
′
i)
−1(Z ′y − ziyi)

=

[
A−1 +

A−1ziz
′
iA

−1

1− wi

]
d

[
Λ−1 +

Λ−1ziz
′
iΛ

−1

1− ui

]
[Z ′y − ziyi],

where A = (Z ′Z + kI), wi = z′iA
−1zi and ui = z′iΛ

−1zi. The above equation becomes

α(−i) =

[
A−1d+

A−1ziz
′
iA

−1d

(1− wi)

][
Λ−1Z ′y +

Λ−1ziz
′
iΛ

−1Z ′y
(1− ui)

− Λ−1ziyi − Λ−1ziz
′
iΛ

−1ziyi
(1− ui)

]

= A−1dΛ−1Z ′y +
A−1dΛ−1ziz

′
iΛ

−1Z ′y
(1− ui)

− A−1dΛ−1ziyi − A−1dΛ−1ziz
′
iΛ

−1ziyi
(1− ui)

+
A−1ziz

′
iA

−1dΛ−1Z ′y
(1− wi)

+
A−1ziz

′
iA

−1dΛ−1ziz
′
iΛ

−1Z ′y
(1− wi)(1− ui)

− A−1ziz
′
iA

−1dΛ−1ziyi
(1− wi)

−A−1ziz
′
iA

−1dΛ−1ziz
′
iΛ

−1ziyi
(1− wi)(1− ui)

.

The above equation simplifies to

α(−i) = α +
A−1dΛ−1ziz

′
iγ̂OLSE

(1− ui)
−A−1dΛ−1ziyi − A−1dΛ−1ziuiyi

(1− ui)

+
A−1ziz

′
iA

−1dγ̂OLSE

(1− wi)
+

A−1ziviz
′
iγ̂OLSE

(1− wi)(1− ui)
− A−1ziviyi

(1− wi)
− A−1ziviuiyi

(1− ui)(1− wi)

α(−i) = α− A−1dΛ−1ziei
(1− ui)

+
A−1ziz

′
iα

(1− wi)
− A−1ziviei

(1− wi)(1− ui)
, (2.10)
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where ei = yi − z′iγ̂OLSE, the OLSE residuals and vi = z′iA
−1dΛ−1zi. For the following

equation, please refer to Khurana et al.[12],

γ̂ORE(−i) = γ̂ORE − A−1zieiR
(1− wi)

, (2.11)

where eiR = yi − z′iγ̂ORE, the residuals of ORE.

Now, using (2.10) and (2.11) in (2.8), we get

γ̂LTE(−i) = γ̂LTE − A−1zieiR
(1− wi)

+
A−1dΛ−1ziei
(1− ui)

− A−1ziz
′
iα

(1 − wi)
+

A−1ziviei
(1− wi)(1− ui)

.

Now,

γ̂LTE − γ̂LTE(−i) =
A−1zieiR
(1− wi)

− A−1dΛ−1ziei
(1− ui)

+
A−1ziz

′
iα

(1− wi)
− A−1ziviei

(1− wi)(1− ui)
. (2.12)

Defining the pseudo values,

Qi = γ̂LTE + n(1− wi)(γ̂LTE − γ̂LTE(−i)). (2.13)

Using (2.12) in (2.13), we get the pseudo values as

Qi = γ̂LTE + n(1− wi)

[
A−1zieiR
(1− wi)

− A−1dΛ−1ziei
(1− ui)

+
A−1ziz

′
iα

(1 − wi)
− A−1ziviei

(1− wi)(1− ui)

]
.

Averaging over Qi will give the JLTE as

Q̄ =
n∑

i=1

Qi/n

= γ̂LTE + A−1

n∑
i=1

zieiR −A−1dΛ−1

n∑
i=1

ziei
(1− wi)

(1− ui)
+ A−1

n∑
i=1

ziz
′
iα

−A−1
n∑

i=1

zi
vi

(1− ui)
ei

= γ̂LTE + A−1Z ′eR − A−1dΛ−1Z ′D1e+ A−1Z ′Zα− A−1Z ′D2e.

where D1 = diag{(1−wi

1−ui
)}, i = 1, ..., n and D2 = diag{( vi

1−ui
)}, i = 1, ..., n. Now, JLTE will

be equal to Q̄.

γ̂JLTE = γ̂LTE + A−1Z ′eR + A−1Λα− A−1dΛ−1Z ′D1e− A−1Z ′D2e

= γ̂ORE − α+ A−1Z ′y − A−1Λγ̂ORE + A−1Λα−A−1dΛ−1Z ′D1e− A−1Z ′D2e

= (I − A−1Λ)γ̂ORE − (I − A−1Λ)α + A−1Z ′y −A−1dΛ−1Z ′D1e− A−1Z ′D2e

γ̂JLTE = (I − A−1Λ)γ̂LTE + γ̂ORE −A−1dΛ−1Z ′D1e−A−1Z ′D2e. (2.14)

5



We see that the final form of JLTE is not very compact and it will be quite tedious to
compare its MSE with LTE. Hence, we propose another estimator called AULTE following
Kadiyala [11] in the next subsection.

2.2 Almost unbiased Liu-type Estimator

The LTE for γ is

γ̂LTE = (Λ + kI)−1(Λ− dI)γ̂OLSE, (2.15)

where k > 0 and −∞ < d < ∞. The bias of LTE is given by

Bias(γ̂LTE) = E(γ̂LTE)− γ

= −[I − A−1(Λ− dI)]γ. (2.16)

Following Kadiyala [11] and using (2.15) and (2.16), the bias corrected Liu-type estimator
(BCLTE) of γ is given by

γ̂BCLTE = γ̂LTE −Bias(γ̂LTE)

= γ̂LTE + [I −A−1(Λ− dI)]γ. (2.17)

Now, following Ohtani [18], if we replace γ by γ̂LTE to make it operational, we get the
AULTE as

γ̂AULTE = γ̂LTE + [I − A−1(Λ− dI)]γ̂LTE

= γ̂LTE + A−1(kI + dI)γ̂LTE

= [I + A−1(kI + dI)]γ̂LTE.

We know that γ̂LTE = A−1(Λ− dI)γ̂OLSE = [I −A−1(kI + dI)]γ̂OLSE. Using this, the above
estimator may be written as

γ̂AULTE = [I − A−2(kI + dI)2]γ̂OLSE. (2.18)

The bias of AULTE is given by

Bias(γ̂AULTE) = −A−2(kI + dI)2γ. (2.19)

It is easy to show that Bias(γ̂AULTE) < Bias(γ̂LTE) following the proof related to bias
given in the next section. And using AULTE, we can easily compare the MSE’s of LTE and
AULTE. (Theorem 3.1).

In the next section, we compare the biases of LTE and JLTE.
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3 Comparison between LTE, JLTE and AULTE

3.1 Bias Comparison between LTE and JLTE

From (2.16), we have the bias of LTE as

Bias(γ̂LTE) = −[I − A−1(Λ− dI)]γ

= −(kI + dI)A−1γ. (3.1)

Now, for the bias of JLTE, we have

γ̂JLTE = (I −A−1Λ)γ̂LTE + γ̂ORE − A−1dΛ−1Z ′D1e−A−1Z ′d2e.

Bias(γ̂JLTE) = E(γ̂JLTE)− γ

= (I −A−1Λ)E(γ̂LTE) + E(γ̂ORE)− γ

= (I −A−1Λ)A−1(Λ− dI)γ + (I −A−1kI)γ − γ

= −[I − (I −A−1Λ)A−1(Λ− dI)− (I − A−1kI)]γ. (3.2)

On simplifying (3.2), we get

Bias(γ̂JLTE) = −k(kI + dI)A−2γ. (3.3)

From (3.1) and (3.3), we get

Bias(γ̂JLTE) = kA−1Bias(γ̂LTE).

Comparing the ith components,

Bias(γ̂JLTE)i =
k

k + λi
Bias(γ̂LTE)i,

where 0 < k
k+λi

< 1. This proves that the Bias(γ̂JLTE)i is lesser than the Bias(γ̂LTE)i ∀i.

Next we find the expression for the variance of JLTE. JLTE in (2.14) may be written as

γ̂JLTE = (I − A−1Λ)A−1(Λ− dI)γ̂OLSE + (I − A−1kI)γ̂OLSE

−A−1dΛ−1Z ′D1e−A−1Z ′D2e

= [(I − A−1Λ)A−1(Λ− dI) + (I − A−1kI)]γ̂OLSE

−[A−1dΛ−1Z ′D1 + A−1Z ′D2]e. (3.4)
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Now using the above form and the fact that cov(γ̂OLSE, e) = 0, we get

V ar(γ̂JLTE) = [(I − A−1Λ)A−1(Λ− dI) + (I −A−1kI)]V (γ̂OLSE)

[(I − A−1Λ)A−1(Λ− dI) + (I −A−1kI)]′

+[A−1dΛ−1Z ′D1 + A−1Z ′D2]V (e)[A−1dΛ−1Z ′D1 + A−1Z ′D2]
′

= σ2[(I − A−1Λ)A−1(Λ− dI) + (I − A−1kI)]Λ−1

[(I − A−1Λ)A−1(Λ− dI) + (I −A−1kI)]′

+σ2[A−1dΛ−1Z ′D1 + A−1Z ′D2][I − ZΛ−1Z ′][A−1dΛ−1Z ′D1 + A−1Z ′D2]
′.

(3.5)

Using (3.2) and (3.5), MSE of JLTE becomes

MSE(γ̂JLTE) = V ar(γ̂JLTE) +Bias(γ̂JLTE)Bias(γ̂JLTE)
′

= σ2[(I −A−1Λ)A−1(Λ− dI) + (I −A−1kI)]Λ−1

[(I − A−1Λ)A−1(Λ− dI) + (I − A−1kI)]′

+σ2[A−1dΛ−1Z ′D1 + A−1Z ′D2][I − ZΛ−1Z ′][A−1dΛ−1Z ′D1 + A−1Z ′D2]
′

+[I − (I −A−1Λ)A−1(Λ− dI)− (I − A−1kI)]γγ′

[I − (I −A−1Λ)A−1(Λ− dI)− (I − A−1kI)]′. (3.6)

The variance of LTE is given by

V ar(γ̂LTE) = [A−1(Λ− dI)]V (γ̂)[A−1(Λ− dI)]′

= σ2[A−1(Λ− dI)]Λ−1[A−1(Λ− dI)]′. (3.7)

Now, using (3.7) and (3.1), we have the MSE of LTE as

MSE(γ̂LTE) = V ar(γ̂LTE) +Bias(γ̂LTE)Bias(γ̂LTE)
′

= σ2A−1(Λ− dI)Λ−1(A−1(Λ− dI))′

+[I −A−1(Λ− dI)]γγ′[I − A−1(Λ− dI)]′. (3.8)

Finding the dominance condition of MSE(γ̂JLTE) over MSE(γ̂LTE) is quite complicated, so
we compare the SMSE (scalar MSE; trace of the MSE matrix) of the two estimators through
a simulation study and a numerical example. In the next subsection, we compare the MSE’s
of AULTE and LTE.

3.2 MSE comparison between LTE and AULTE

Lemma: [Farebrother (1976)] Let A be a positive definite matrix, γ be a p×1 vector. Then
A− γγ′ is a nonnegative definite matrix if and only if γ′A−1γ ≤ 1 is satisfied.
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Theorem 3.1. Let k > 0 and −∞ < d < ∞. Then,

Δ = MSE(γ̂AULTE)−MSE(γ̂LTE),

is a positive definite matrix if and only if the following inequality is satisfied

γ′{L−1[σ2H + A−4(kI + dI)4γγ′]L−1}−1γ ≤ 1,

where L = A−1(kI + dI) and H = [I −A−1(kI + dI)]2Λ−1{[I + A−1(kI + dI)]2 − I}.

Proof. Using the fact that (I − A−1(Λ− dI)) = A−1(kI + dI), we can write (3.8) as

MSE(γ̂LTE) = σ2[I −A−1(kI + dI)]2Λ−1 + A−2(kI + dI)2γγ′. (3.9)

Also, the variance of AULTE is given by

V ar(γ̂AULTE) = [I − A−2(kI + dI)2]V (γ̂OLSE)[I − A−2(kI + dI)2]′

= σ2[I −A−2(kI + dI)2]Λ−1[I − A−2(kI + dI)2]′. (3.10)

Now, using (2.19) and (3.10), we get the MSE of AULTE as

MSE(γ̂AULTE) = V ar(γ̂AULTE) +Bias(γ̂AULTE)Bias(γ̂AULTE)
′

= σ2[I − A−2(kI + dI)2]2Λ−1 + A−4(kI + dI)4γγ′.

(3.11)

From (3.9) and (3.11), we get

Δ = σ2[I −A−2(kI + dI)2]2Λ−1 + A−4(kI + dI)4γγ′ − σ2[I − A−1(kI + dI)]2Λ−1

− A−2(kI + dI)2γγ′

= σ2{[I − A−2(kI + dI)2]2Λ−1 − [I − A−1(kI + dI)]2Λ−1}+ A−4(kI + dI)4γγ′

− A−2(kI + dI)2γγ′

= σ2H + A−4(kI + dI)4γγ′ − A−2(kI + dI)2γγ′, (3.12)

where

H = {[I − A−2(kI + dI)2]2Λ−1 − [I − A−1(kI + dI)]2Λ−1}
= [I −A−1(kI + dI)]2Λ−1{[I + A−1(kI + dI)]2 − I}.

It is easy to see that H is a positive definite matrix for the cases where (i) k > 0, d > 0 and
k > d, (ii) k > 0, d > 0 and k < d and (iii) k > 0, d < 0 and |k| > |d|. It is not positive
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definite for the case where k > 0, d < 0 and |k| < |d|.

Now, the difference Δ is positive definite if and only if L−1ΔL−1 is positive definite. We see
that

L−1ΔL−1 = L−1[σ2H + A−4(kI + dI)4γγ′]L−1 − γγ′. (3.13)

The matrix [σ2H + A−4(kI + dI)4γγ′] in the above equation is symmetric positive definite.
Therefore using the Lemma defined above, we conclude that L−1ΔL−1 is positive definite if
and only if following inequality holds

γ′{L−1[σ2H + A−4(kI + dI)4γγ′]L−1}−1γ ≤ 1.

This completes the proof.

With the aim of comparing the bias and SMSE of ORE, LTE, JLTE and AULTE under
different settings, we carry out a simulation study for the same.

4 A Simulation Study

In the present section, we compare the performance of ORE, LTE, JLTE and AULTE in
the sense of bias and SMSE with the help of Monte Carlo experiments. Let the model be
y = Xβ+u where u ∼ N(0, 1). Here β is taken as the normalized eigen vector corresponding
to the largest eigen value of X ′X. To ensure collinearity factor, the explanatory variables
are generated from the following equation

xij = (1− ρ2)
1
2wij + ρwip, i = 1, 2. . . . , n; j = 1, 2, . . . , p.

where wij are independent standard normal pseudo-random numbers and ρ2 is the correla-
tion between the two explanatory variables for j, j′ < p and j �= j′. When j or j′ = p, the
correlation will be ρ. We have taken ρ = 0.9 and 0.99 to investigate the effects of different
degrees of collinearity with sample sizes n = 20 and 50. Four different combinations for
(k, d) are taken as (0.8,0.4), (1.5,2.5) (3,-1.5) (2,-3).

This simulation study is patterned on that of McDonald and Galarnaeu [17]. For compu-
tations, the original model is first decomposed into a canonical form to get the estimator
of γ and then transformed back to the estimator of β. For these different choices of ρ, n
and (k, d), the experiment is replicated 1500 times. The average absolute bias and average
SMSE are computed using the following formula

Bias(β̂i) =
1

1500

1500∑
j=1

|β̂ij − βi|.
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SMSE(β̂) =
1

1500

1500∑
j=1

(β̂j − β)′(β̂j − β).

Here, β̂ij denotes the estimate of ith parameter in jth replication and β1, β2, β3 and β4 are
the true parameter values.
Our interest also lies in bootstrapping LTE and obtain the bias and SMSE of bias corrected
bootstrap Liu-type estimator (BCLE) and compare it with the jackknifed estimator. Firstly,
for the model defined in (2.1), we fit the least squares regression equation for full sample of
size n and calculate the standardized residuals ûi. Then, draw an n sized bootstrap sample
with replacement (û

(b)
1 , û

(b)
2 , . . . , û

(b)
n ) from the residuals ûi’s giving 1/n probability to each

ûi. After this, we obtain the bootstrap y values using the resampled residuals keeping the
design matrix fixed as shown below

y(b) = Xβ̂OLSE + û(b).

Now, we get the LTE from the first bootstrap sample as

β̂
(b1)
LTE = (X ′X + kI)−1(X ′y − dβ̂OLSE)

(b1).

Repeat the above steps B times where B is the number of bootstrap resamples. Based on
these, the bootstrap Liu-type estimator (BLE) for β is given by

β̂BLE =
B∑
r=1

β̂
(br)
LTE/B.

where r = 1, . . . , B. The estimated bias is given by

Biasest = β̂BLE − β̂OLSE,

and the BCLE is given by

β̂BCLE = β̂LTE −Biasest. (4.1)

The number of bootstrap resamples that are considered is 500. Results of the simulation
study are given in Tables 1, 2 and 3. From Tables 1 and 2, we see that BCLE is reducing
the bias of LTE in almost all of the cases. JLTE has also reduced the bias of LTE in all the
cases considered. Bias of LTE is lesser than the bias of ORE, mostly when (k, d) = (3,−1.5).
From Table 3, we note that the SMSE of JLTE is lesser than that of LTE’s in cases where
(k, d) is (1.5,2.5) and (2,-3). The bias of AULTE is also less than that of LTE’s and at
some places, it is even less than JLTE’s. We can see that when (k, d) is (2,-3), the SMSE of
AULTE is less than the SMSE’s of both JLTE and LTE. Also, the SMSE of BCLE is lesser
than LTE’s mostly when (k, d) is (2,-3). In the next section, we illustrate our findings using
a numerical example.
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Table 1: Bias comparison of ORE, LTE, JLTE and BCLE when n = 20

ρ (k, d) ORE LTE JLTE AULTE BCLE
0.9 (0.8,0.4) 0.00359585 0.00889876 0.00441062 0.00220381 0.00773377

0.01309056 0.01671577 0.00672986 0.00722956 0.00735867
0.01671221 0.01963761 0.00882148 0.00713168 0.01066501

(1.5,2.5) 0.01038602 0.03937934 0.00050196 0.02016977 0.00712672
0.01872495 0.04019962 0.00839022 0.01350838 0.00655825
0.02364720 0.04495682 0.00616534 0.00728643 0.01081683

(3,-1.5) 0.02288873 0.00793938 0.00278312 0.00540309 0.00780756
0.03020230 0.01802123 0.00702433 0.00632749 0.00740127
0.03916607 0.02501374 0.00867390 0.01020253 0.01068230

(2,-3) 0.01476151 0.01789571 0.00672402 0.00581364 0.00828887
0.02261763 0.00254859 0.00557622 0.00618017 0.00804428
0.02880348 0.00189039 0.01007549 0.01016321 0.01055753

0.99 (0.8,0.4) 0.00632873 0.02032329 0.00003615 0.01591076 0.02178824
0.01803624 0.01803149 0.01130039 0.00972627 0.01829871
0.01273458 0.01157122 0.00252733 0.00976492 0.01537968

(1.5,2.5) 0.01486287 0.07573498 0.01966620 0.12106221 0.01805438
0.02239214 0.02963616 0.00438528 0.02813537 0.01193202
0.02030140 0.02903489 0.00146845 0.06144381 0.01772021

(3,-1.5) 0.02975442 0.00404702 0.00592012 0.01574801 0.02347565
0.03419825 0.02612199 0.01571980 0.01597861 0.02145137
0.03580292 0.02543211 0.00536941 0.01272542 0.01406701

(2,-3) 0.02011554 0.04254836 0.02114007 0.01627883 0.02633305
0.02617161 0.01398278 0.02677071 0.01617312 0.02638689
0.02557615 0.00980388 0.00602516 0.01247210 0.01222235
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Table 2: Bias comparison of ORE, LTE, JLTE and BCLE when n = 50

ρ (k, d) ORE LTE JLTE AULTE BCLE
0.9 (0.8,0.4) 0.00946307 0.01022269 0.00778286 0.00763951 0.00777550

0.00304358 0.00449567 0.00005227 0.00003726 0.00049357
0.00218047 0.00033499 0.00696886 0.00682497 0.00766309

(1.5,2.5) 0.01098788 0.01606125 0.00719419 0.00532347 0.00777283
0.00564471 0.01482025 0.00023196 0.00058286 0.00027182
0.00196880 0.01726912 0.00600010 0.00374898 0.00748086

(3,-1.5) 0.01461314 0.01127850 0.00737560 0.00771632 0.00778080
0.01127577 0.00570758 0.00011782 0.00010636 0.00050346
0.01034083 0.00156472 0.00649076 0.00687354 0.00767375

(2,-3) 0.01215312 0.00583922 0.00796125 0.00780553 0.00778074
0.00751821 0.00355002 0.00031200 0.00010716 0.00068312
0.00482663 0.01323040 0.00749057 0.00702221 0.00782039

0.99 (0.8,0.4) 0.00537287 0.00421371 0.01009930 0.00202196 0.02421351
0.00578432 0.00889184 0.00399562 0.00584493 0.00048458
0.01192998 0.00592146 0.00767233 0.00088292 0.02405705

(1.5,2.5) 0.00084908 0.04317427 0.01206160 0.07905265 0.02455552
0.00866138 0.02381486 0.00842260 0.02094144 0.00116302
0.01266971 0.00612580 0.01479676 0.08256044 0.02284905

(3,-1.5) 0.00963288 0.00745658 0.01428730 0.01979262 0.02417474
0.01478512 0.00717720 0.00078137 0.00029776 0.00121435
0.01787113 0.02090907 0.01448349 0.01943132 0.02468448

(2,-3) 0.00414376 0.03889093 0.03067854 0.02041510 0.02392582
0.01069389 0.00599301 0.00266908 0.00031289 0.00248065
0.01414485 0.02884809 0.03099984 0.01983303 0.02562576
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Table 3: SMSE comparison of ORE, LTE, JLTE and BCLE

n ρ (k, d) ORE LTE JLTE AULTE BCLE
20 0.9 (0.8,0.4) 0.476470 0.219188 0.694739 0.4388244 1.472460

(1.5,2.5) 0.284077 0.737832 0.221457 5.369156 1.477606
(3,-1.5) 0.147666 0.606052 0.784080 1.096411 1.476669
(2,-3) 0.218172 2.593648 2.228677 1.163111 1.497701

0.99 (0.8,0.4) 0.373850 2.293556 1.619370 13.00634 17.274870
(1.5,2.5) 0.154178 39.012490 33.334130 485.3489 17.646990
(3,-1.5) 0.060653 4.635836 5.009879 10.15625 17.283510
(2,-3) 0.102604 37.548220 37.059220 10.34917 17.561200

50 0.9 (0.8,0.4) 0.289831 0.247422 0.364261 0.3540111 0.390741
(1.5,2.5) 0.233586 0.069411 0.287308 0.1594167 0.387318
(3,-1.5) 0.158766 0.258936 0.335352 0.3598087 0.390932
(2,-3) 0.203291 0.499424 0.417133 0.3703853 0.395409

0.99 (0.8,0.4) 0.580607 0.064050 0.689338 0.1941529 4.266513
(1.5,2.5) 0.252640 4.755504 1.687548 45.31219 4.321887
(3,-1.5) 0.089493 1.374429 1.672291 2.811444 4.287226
(2,-3) 0.165724 8.428380 7.610839 2.966738 4.394909

5 Numerical Illustration

In this section, we take up real data to illustrate the theoretical findings. We consider the
famous dataset on Portland cement originally due to Woods et al. [21] and since then it has
been widely used by many researchers (for instance see Hald (1952), Gorman and Toman
(1966), Montgomery and Peck (1982), Özkale (2012)). This data arise from an experimental
investigation of the dependence of heat evolved during the setting and hardening of Portland
cements of varied composition on the percentages of four compounds in the clinkers from
which the cement was produced. The four compounds (explanatory variables) considered
are tricalcium aluminate (X1), tricalcium silicate (X2), tetracalcium aluminoferrite (X3) and
β-dicalcium silicate (X4). The heat evolved will be denoted by y and is measured in calories
per gram of the cement. Variables have been standardized before the calculations. The data
set is given in Table 4.

The eigen values of X ′X are 26.82844842, 18.91279284, 2.23927379, 0.01948495 which gives
the condition number as 37.10634. This indicates the presence of strong multicollinearity
among the regressors. We use the optimal value of d as given by Liu [16]
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Table 4: Data set

X1 X2 X3 X4 y
7 26 6 60 78.5
1 29 15 52 74.3
11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9
11 55 9 22 109.2
3 71 17 6 102.7
1 31 22 44 72.5
2 54 18 22 93.1
21 47 4 26 115.9
1 40 23 34 83.8
11 66 9 12 113.3
10 68 8 12 109.4

dopt =

∑p
i=1((σ

2 − kγ2
i )/(λi + k)2)∑p

i=1((λiγ2
i + σ2)/λi(λi + k)2)

.

It was suggested to choose k so that the condition number of X ′X + kI is reduced to 10 as

k̂ =
λ1 − 100 ∗ λp

99
.

Using the above expressions, we get k̂ = 0.2513127 and dopt = −0.01056076. These values are
used to get the estimates of LTE and JLTE which are given in Table 5. It also gives the val-
ues of Abias (sum of absolute biases of individual coefficients) and SMSE. SMSE requires the
knowledge of σ2 which has been estimated by using σ̂2 = (y−Xβ̂OLSE)

′(y−Xβ̂OLSE)/(n−p).

To calculate ORE and its properties in Table 5, we make use of the feasible value of k which
is obtained by the optimal formula k = pσ2

β′β as given by Hoerl et al. [9], so that

k̂ =
pσ̂2

β̂ ′
OLSEβ̂OLSE

. (5.1)

where σ̂2 is as defined earlier. To see the effects of different values of (k, d) on ORE, LTE
and JLTE, we plot the bias and SMSE of these estimators against the different values of d
for k = 0.8, 1.5 and 10. We did the calculations for AULTE for different (k, d) and observed
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some dramatically high values of bias mostly in cases when k is small and d is high, so we
skipped the idea of putting AULTE in the plots.

Table 5: Estimated values of coefficients, Abias and SMSE of ORE, LTE, JLTE
and AULTE

Estimators β1 β2 β3 β4 Abias SMSE

β̂ORE 0.517342 0.320572 -0.052067 -0.377593 0.609064 0.172062

β̂LTE 0.500856 0.312176 -0.065651 -0.384781 0.654720 0.145385

β̂JLTE 0.531458 0.334313 -0.039538 -0.364412 0.587632 0.152082

β̂AULTE 0.530644 0.331735 -0.040734 -0.367263 0.562938 0.065397

From Figures 5, 3 and 5, we see that the bias of JLTE is always less than the bias of LTE.
Also, we can make out the range where the bias of LTE is lesser than the bias of ORE and
the point where they are equal. From Figures 2 and 4, we can make out the points where
the SMSE of JLTE and LTE becomes little lesser than the SMSE of ORE and the point of
intersection of the SMSE’s of ORE, LTE and JLTE. Also, from Figure 6 when k = 10, we
see that the SMSE of JLTE and LTE becomes less than that of ORE’s in a certain range
and the SMSE of JLTE is less than that of LTE’s over the range considered.
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Figure 1: Bias comparison of ORE, LTE and JLTE when k = 0.8
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Figure 2: SMSE comparison of ORE, LTE and JLTE when k = 0.8
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Figure 3: Bias comparison of ORE, LTE and JLTE when k = 1.5
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Figure 4: SMSE comparison of ORE, LTE and JLTE when k = 1.5
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Figure 5: Bias comparison of ORE, LTE and JLTE when k = 10
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Figure 6: SMSE comparison of ORE, LTE and JLTE when k = 10

6 Concluding Remarks

In the present paper, we performed the jackknifed technique on LTE and obtained the
jackknifed estimator, JLTE. We also proposed another almost unbiased Liu type estimator,
AULTE. Comparing the bias and SMSE’s of ORE, LTE, AULTE and JLTE, we found that,
JLTE reduces the bias of LTE and it is also efficient in few cases. AULTE also has a reduced
bias than LTE; in some cases, its even lesser than JLTE’s and its performance is better in
sense of MSE as well in few cases. A Simulation study and a numerical example were shown
to support the results. We also performed bootstrap on LTE and found that BCLE’s bias is
lesser than that of LTE’s and it is also efficient in some of the cases.
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