
COMPRESSIVE DATA GATHERING IN WIRELESS

SENSOR NETWORKS

DARIUSH EBRAHIMI

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE & SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

FEBRUARY 2016

c⃝ DARIUSH EBRAHIMI, 2016

CONCORDIA UNIVERSITY

Engineering and Computer Science

This is to certify that the thesis prepared

By: Dariush Ebrahimi
Entitled: Compressive Data Gathering in Wireless Sensor Net-

works
and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted stan-
dards with respect to originality and quality.

Signed by the final examining committee:

Dr. Maria Elektorowicz
Chair

Dr. Pin-Han Ho
External Examiner

Dr. Walaa Hamouda
External to Program

Dr. Lata Narayanan
Examiner

Dr. Jaroslav Opatrny
Examiner

Dr. Chadi Assi
Thesis Supervisor

Approved by

———————————————————————–
Chair of Department or Graduate Program Director

—————— ——————————————
Date Dean of Faculty

Abstract

Compressive Data Gathering in Wireless Sensor Networks

Dariush Ebrahimi, Ph.D.

Concordia University, 2016

The thesis focuses on collecting data from wireless sensors which are de-

ployed randomly in a region. These sensors are widely used in applications

ranging from tracking to the monitoring of environment, traffic and health

among others. These energy constrained sensors, once deployed may receive

little or no maintenance. Hence gathering data in the most energy efficient-

manner becomes critical for the longevity of wireless sensor networks (WSNs).

Recently, Compressive data gathering (CDG) has emerged as a useful method

for collecting sensory data in WSN; this technique is able to reduce global scale

communication cost without introducing intensive computation, and is capa-

ble of extending the lifetime of the entire sensor network by balancing the

forwarding load across the network. This is particularly true due to the bene-

fits obtained from in-network data compression. With CDG, the central unit,

instead of receiving data from all sensors in the network, it may receive very

few compressed or weighted sums from sensors, and eventually recovers the

original data.

To prolong the lifetime of WSN, in this thesis, we present data gathering

methods based on CDG. More specifically, we propose data gathering schemes

iii

using CDG by building up data aggregation trees from sensor nodes to a cen-

tral unit (sink). Our problem aims at minimizing the number of links in the

forwarding trees to minimize the number of overall transmissions. First, we

mathematically formulate the problem and solve it using optimization pro-

gram. Owing to its complexity, we present real-time algorithmic (centralized

and decentralized) methods to efficiently solve the problem. We also explore

the benefits one may obtain when jointly applying compressive data gathering

with network coding in a wireless sensor network. Finally, and in the context

of compressive data gathering, we study the problem of joint forwarding tree

construction and scheduling under a realistic interference model, and propose

some efficient distributed methods for solving it. We also present a primal

dual decomposition method, using the theory of column generation, to solve

this complex problem.

iv

Acknowledgments

I would like to express my deepest gratitude to many people who supported me

during my PhD and earlier studies and who helped me to complete my thesis.

Their generous help made this dissertation possible.

First of all, I am deeply grateful to my advisor, Dr. Chadi Assi, for his

inspiration, motivation and guidance throughout my related research. I could

not have imagined having a better advisor for my Ph.D study. I would like

to extend my honest appreciation to my former advisor, Dr. Maytham Safar,

for encouraging me during my studies and for introducing me to the world of

academic research. I am truly indebted to them for their knowledge, thoughts,

and friendship.

Besides my advisors, I would like to thank my committee members, Dr.

Lata Narayanan, Dr. Jaroslav Opatrny and Dr. Walaa Hamouda, for their

insightful comments and encouragement and most importantly for their will-

ingness to read through the thesis and serve on my committee board.

My sincere appreciation goes to Dr. Samir Sabbah who helped me toward

this thesis in my last work related to the primal-dual decomposition method.

I thank him for the insightful and enlightening discussions I had with him.

Furthermore, I am greatly thankful to all of my colleagues in the research

lab at Concordia University for providing me with warm and friendly atmo-

sphere.

v

Last but not least, I would like to thank my great parents, family and

friends for their continues support, understanding and assistance when ever I

needed them. I believe that without my parents, I could not be able to succeed

throughout my life. I am always grateful to them for their encouragement and

support.

vi

Contents

List of Figures xi

List of Tables xv

List of Algorithms xvi

Abbreviations xvii

1 Introduction 1

1.1 Overview and Objectives . 1

1.2 Problem Statement and Motivation 4

1.2.1 Distributed Compressive Data Gathering 5

1.2.2 Network-Coding Aware Compressive Data Gathering . . . 5

1.2.3 On the Interaction between Scheduling and Compressive

Data Gathering . 6

1.2.4 A Primal Dual Decomposition Method 7

1.3 Thesis Contribution . 8

1.4 Thesis Outline . 11

2 Literature Review and Preliminaries 13

2.1 Related Work . 13

2.2 Network Model . 19

vii

2.3 Compressive Sensing . 20

2.4 Compressive Data Gathering . 23

2.5 Sparse Random Projections . 28

3 Projection Based Compressive Data Gathering (PCDG) 31

3.1 Motivation . 31

3.2 Minimum Spanning Tree Projection (MSTP) 32

3.3 Extended Minimum Spanning Tree Projection (eMSTP) 41

3.4 Comparison and Numerical Results of MSTP and eMSTP 44

3.4.1 Comparison . 44

3.4.2 Numerical Results . 46

3.5 Optimal Selection of Projection nodes (OSPN) 54

3.6 Optimal Tree Construction (Opt-PCDG) 54

3.7 Projection based Compressive Data Gathering Algorithm (PB-

CDG) . 56

3.8 Performance Evaluation . 57

3.9 Conclusion . 60

4 Distributed Compressive Data Gathering (DCDG) 61

4.1 Motivation . 61

4.2 Overview of the Distributed Method 63

4.3 Description of the Distributed Algorithm 64

4.4 Illustrative Example . 66

4.5 Loop Free Tree Construction . 69

4.6 Message Overhead Analysis . 72

4.7 Numerical Results . 78

4.8 Conclusion . 81

viii

5 Network-Coding Aware Compressive Data Gathering (NC-CDG) 82

5.1 Network Coding Model . 83

5.2 Problem Description and Motivation 86

5.3 Optimal Tree Construction . 89

5.4 Algorithmic Solutions . 97

5.4.1 Centralized Method: . 98

5.4.2 Distributed Method: . 104

5.4.3 Performance Analysis: . 107

5.5 Performance Evaluation . 108

5.6 Conclusion . 116

6 Forwarding Tree Construction and Scheduling (FTCS) 118

6.1 Link Scheduling in Physical Interference Model 119

6.2 Problem Description . 120

6.3 Problem Formulation . 121

6.3.1 NP-hardness . 128

6.4 Algorithmic solution . 130

6.4.1 Distributed Tree Construction 130

6.4.2 Distributed Link Scheduling Algorithm 137

6.5 Performance Analysis . 140

6.5.1 Correctness . 140

6.5.2 Performance bounds of the link scheduling algorithm . . . 142

6.6 Performance Evaluation . 143

6.7 Conclusion . 155

7 A Column Generation (CG) Approach for FTCS 157

7.1 Problem Formulation and Complexity 159

ix

7.2 Decomposition method . 161

7.2.1 The Master Problem . 163

7.2.2 The Pricing Problem . 167

7.2.3 Solution methodology . 171

7.3 Numerical Results . 174

7.4 Conclusion . 180

8 Conclusion and Future Work 182

8.1 Conclusions . 182

8.2 Future Work . 186

A Message Overhead Analysis for Centralized CDG 188

B Message Overhead Analysis for Decentralized CDG 191

C TCM (Tree Construction Model) 200

D LSM (Link Scheduling Model) 202

Bibliography 215

x

List of Figures

1.1 Multi-hop data transmission in wireless sensor networks. 2

2.1 Basic Data Gathering . 24

2.2 Compressed Data Gathering . 24

2.3 Non - Compressed Sensing . 24

2.4 Plain - Compressive Data Gathering 24

2.5 Hybrid - Compressive Data Gathering 24

2.6 Sparse Hybrid-CDG Network . 27

2.7 Dense (mesh) Hybrid-CDG Network 28

2.8 Data gathering in sparse random projection 29

3.1 Illustration of Compressive Data Gathering. 36

3.2 MSTP . 38

3.3 eMSTP . 42

3.4 Sparse MSTP network . 45

3.5 Sparse eMSTP network . 45

3.6 Data transmission in dense network (1000 nodes, center sink) . . 48

3.7 Data transmission in dense network (1000 nodes, sink at top) . . 48

3.8 Data transmission in sparse network (1000 nodes, center sink) . 49

3.9 Data transmission in sparse network (1000 nodes, sink at top) . . 49

3.10 Probability density function (dense, n=100, m=5, center sink) . . 50

3.11 Probability density function (dense, n=100, m=10, center sink) . . 51

xi

3.12 Probability density function (sparse, n=100, m=20, sink at top) . 51

3.13 Probability density function (sparse, n=100, m=25, center sink) . 52

3.14 Probability density function (sparse, n=200, m=25, sink at top) . 52

3.15 Probability density function (dense, n=500, m=100, sink at top) . 53

3.16 Probability density function (dense, n=1000, m=10, center sink) . 53

3.17 Performance of selecting different projection nodes 55

3.18 Overall number of data transmission (n = 100, different m) 59

3.19 PDF for average node transmission of our different algorithms . . 60

4.1 Forwarding tree example using PB-CDG 63

4.2 Reconstruction of PB-CDG after node failure 63

4.3 DCDG example . 67

4.4 Loop free example in DCDG . 70

4.5 Example of recovery after node failure in DCDG 70

4.6 A sequential neighbor nodes topology example in DCDG 71

4.7 Linear Network Example . 74

4.8 Message overhead analysis for different number of nodes 75

4.9 Message overhead analysis for different number of projections . . 76

4.10 Constructing forwarding trees for mesh network (n=24,m=2) . . . 77

4.11 Constructing forwarding trees for mesh network (n=48,m=4) . . . 77

4.12 Different number of projections Vs. transmission cost (DCDG) . . 80

4.13 Different network Density Vs. transmission cost (DCDG) 80

4.14 Message Overhead Vs. number of nodes (DCDG) 81

5.1 Network coding topologies . 85

5.2 Data transmission scenario with and without network coding. . 88

5.3 Network coding without opportunistic listening 95

5.4 Network coding with opportunistic listening 96

xii

5.5 Maximum network coding bound 96

5.6 Updating route example in NC-CDG 102

5.7 Optimal tree construction without Network Coding 110

5.8 Optimal tree construction with Network Coding 110

5.9 NC-CDG: Cost of transmissions Vs. number of nodes 114

5.10 NC-CDG: Cost of transmissions Vs. number of projections 115

5.11 Probability Density Function (n=300) 116

6.1 Operation of FTCS . 122

6.2 Balancing the node degree of a tree in FTCS 134

6.3 Minimizing the height in a subtree for FTCS 134

6.4 Removing successive links in a tree for FTCS 136

6.5 Link scheduling solution . 145

6.6 FTCS Vs. LLHC-MWF: # slots in sparse network, m=10%n 152

6.7 FTCS Vs. LLHC-MWF: # slots in sparse network, m=20%n 153

6.8 FTCS Vs. LLHC-MWF: # slots in dense network, m = 10%n . . . 153

6.9 FTCS Vs. LLHC-MWF: # slots in dense network, m = 20%n . . . 154

6.10 FTCS vs. LLHC-MWF: schedule length Vs. # transmissions . . . 155

6.11 FTCS vs. LLHC-MWF: # nodes Vs. # transmissions 156

7.1 Scheduling length using different tree construction 158

7.2 Example of master columns/configurations. 162

7.3 Interference example . 167

7.4 Flow chart of the decomposition method. 173

7.5 # time slots & CPU time Vs. # iterations (n=30 nodes) 177

7.6 # time slots & CPU time Vs. # iterations (n=35 nodes) 177

7.7 CG Vs. distributed method . 181

A.1 Discovery message . 188

xiii

A.2 Network Topology Discovery (Node 6). 189

A.3 Network Topology Discovery (Node 5). 189

B.1 Message overhead to find interest-nodes in radius h3 − 1. 192

B.2 Message overhead to find interest-nodes in radius h4 − 1. 192

B.3 Message overhead to find interest-nodes in radius h5 − 1. 192

B.4 Message overhead analysis to find interest-nodes in radius hi − 1. 192

B.5 Message overhead to get information in radius h3 − 1 193

B.6 Message overhead to get information in radius h4 − 1 193

B.7 Message overhead to get information in radius h5 − 1 194

B.8 Message overhead to get information in radius h6 − 1 194

B.9 Message overhead analysis to get information in radius hi − 1 . . 194

xiv

List of Tables

5.1 Notation Used in the Optimization Model of NC-CDG 90

5.2 Overall number of data transmissions (NC-CDG vs CDG) 111

5.3 Overall number of data transmissions (NC-CDG vs Algorithms) . 112

5.4 Overall number of data transmissions (CDG vs Algorithms) . . . 112

6.1 Notations Used in problem formulation for FTCS 123

6.2 FTCS performance . 147

6.3 FTCS performance for combinations of multiple forwarding trees 150

7.1 Performance of ILP model for FTCS 161

7.2 Common parameters used throughout chapter 7 163

7.3 ILP model Vs. CG . 176

7.4 CG performance . 179

xv

List of Algorithms

2.1 Greedy Hybrid-CDG . 26

3.1 MSTP . 37

3.2 eMSTP . 43

3.3 PB-CDG . 57

4.1 Distributed Compressive Data Gathering 65

4.2 Steiner-CDG . 78

5.1 NC-CDG: Constructing m forwarding trees (Phase 1) 99

5.2 NC-CDG: Calculating network coding for each node (Phase 2) . . 100

5.3 NC-CDG: Updating the routes of the trees (Phase 3) 103

5.4 NC-CDG: Distributed Forwarding Tree Construction 105

6.1 Route discovery at node v (Phase 2) for FTCS 133

6.2 Tree refinement at node v (Phase 3) for FTCS 136

6.3 Distributed Scheduling Algorithm at link l for FTCS 139

6.4 Steps to get all minimum forwarding trees in FTCS 148

xvi

Abbreviations

WSN Wireless Sensor Network

CS Compressive Sensing

CDG Compressive Data Gathering

CDG/C Compressive Data Gathering Centralized method

CDG/D Compressive Data Gathering Decentralized method

MSTP Minimum Spanning Tree Projection

eMSTP extended Minimum Spanning Tree Projection

PCDG Projection-Based Compressive Data Gathering

DCDG Distributed Compressive Data Gathering

NC Network Coding

NC-CDG Network-Coding Compressive Data Gathering

NC-CDG/C . . . Network-Coding Compressive Data Gathering Centralized method

NC-CDG/D . . . Network-Coding Compressive Data Gathering Distributed method

OSPN Optimal Selection of Projection Nodes

xvii

Opt-PCDG . . . Optimal Projection-based Compressive Data Gathering

PB-CDG Projection-Based Compressive Data Gathering algorithm

FTCS Forwarding Tree Construction and Scheduling

D-FTCS Distributed Forwarding Tree Construction and Scheduling

CG Column Generation

ILP Integer Linear Programming

MILP Mixed Integer Linear Programming

Non-CS Non Compressive Sensing

Plain-CDG . . Plain Compressive Data Gathering

Hybrid-CDG Hybrid Compressive Data Gathering

CSMA Carrier Sense Multiple Access

TDMA Time Division Multiple Access

MAC Medium Access Control

RIP Restricted Isometry Property

MST Minimum Spanning Tree

SPF Shortest-Path-Forest

DFT Discrete Fourier Transformation

PDF Probability Density Function

IN Interest-Nodes

xviii

BFS Breadth-First-Search

SINR Signal to Interference plus Noise Ratio

RID Radio Interference Detection

ND Normal power Detection

HD High power Detection

OTC-OLS Optimal Tree Construction - Optimal Link Scheduling

DTC-OLS Distributed Tree Construction - Optimal Link Scheduling

TCM Tree Construction Model

LSM Link Scheduling Model

xix

Chapter 1

Introduction

1.1 Overview and Objectives

Wireless sensor networks (WSNs) have received significant attention due to

their versatility and have been deployed widely in applications such as mil-

itary surveillance, monitoring of environment, traffic and critical infrastruc-

tures, among others. Many of these applications require sensors to periodically

sense and send sensory data to a remote central unit (e.g., sink) for processing,

often through multi-hop paths as depicted in Figure 1.1. Once deployed, these

energy-limited sensors may receive little or no maintenance; therefore energy

efficient data collection protocols become of utmost importance to operate sen-

sor networks for a long period of time.

Increasing the lifetime of a wireless sensor network depends directly on

minimizing the energy consumption at sensor nodes. In a WSN, most of the

power is consumed in data transmission and forwarding when compared to

data sensing and computation (processing) [37]. According to [5], the energy

needed to transmit a single bit is measured to be over 1000 times greater than

a single 32-bit computation. Therefore, to maximize the network lifetime, one

1

Node

Node

Node

Node

Node

NodeNode

Node
Node

Node

Node
Node

Node

Node

NodeNode

Sink

Figure 1.1: Multi-hop data transmission in wireless sensor networks.

has to address the following two challenges: 1) reducing the global network

communication cost, and 2) dealing with the unbalance of energy consump-

tion throughout the network. In a large-scale network, when individual sen-

sors transmit their data to the sink, it is expected that a single data could

be transmitted several times through multi-hop routing, which causes a large

number of redundant transmissions in the network, therefore increasing the

overall network communication cost. Furthermore, nodes which are closer to

the sink do more forwarding tasks than other nodes. Therefore, these bottle-

neck nodes (i.e., neighbour nodes to the sink) consume more power and conse-

quently run out of energy quickly, which shorten the lifetime of the network.

Different methods have been proposed by researchers to maximize the life-

time of WSNs, such as, adjusting sensing ranges [10], sleep scheduling [69],

clustering routing protocol [65], cross-layer network formulation [18] and data

aggregation [50]. Data aggregation, unlike the other approaches, aims at re-

ducing the amount of data to be transported, and hence significantly helps in

overall energy consumption load.

2

Data aggregation eliminates the redundancy in transmitting data between

sensor nodes and the sink and thus significantly reduces the number of trans-

missions in the network, yielding substantial energy savings [55]. For in-

stance, given the spatial-temporal correlations that local sensed data may ex-

hibit, only an aggregate and representative extract (e.g., SUM, MIN, MAX) of

the measured data at various sensors may be forwarded to the sink, avoiding

unnecessary transmissions in the network. Alternatively, if the sink needs to

recover the set of all sensed data, more involved aggregation methods may be

used, such as collaborative or non-collaborative data compression [32], where

they differ in terms of practicality, complexity, and associated overhead.

Recently, compressive sensing (CS) [20] theory has emerged to provide an

alternative venue for data gathering in wireless sensor networks, referred to

as Compressive Data Gathering (CDG). Originally developed for signal pro-

cessing [8], CS promises to efficiently recover a signal from far fewer samples

than its original dimension, as long as the signal is sparse or compressible in

some domain. In WSNs, CDG is one of the most efficient methods for gather-

ing sensed data en-route to the sink [59] and has recently been receiving focal

attention owing to its ability to reduce the global communication cost without

incurring intensive computation or transmission overhead. With compressive

data gathering, rather than receiving all readings, e.g., from n sensors, the

sink will only receive few weighted (encoded) sums (e.g., m, m ≪ n) of all

the readings, from which the sink will be able to recover (decode) the origi-

nal data, as long as the readings can be transformed or compressed in some

sparse orthonormal transform domain [20, 59]; here, m = O(klogn) and k rep-

resents the sparsity representation of the data in the transform domain. CDG

has attracted researchers’ attention only recently; this technique has shown

3

to yield substantial energy savings, therefore extending the network lifetime,

and achieve load balancing by dispersing the communication costs to all sen-

sors along a given route [59].

1.2 Problem Statement and Motivation

In this thesis, we consider the problem of energy efficient data gathering in

a network consisting of n sensors. we suppose the original sensory data is

compressible in some transform domain, and it is recovered at the sink by

receiving m sparse projections [73], where each projection corresponds to an

aggregation of data from sensors according to the theory of compressive sens-

ing. Here, projections are gathered by establishing forwarding trees, one tree

for each projection which gather coded (compressed) data from nodes involved

in the projection. Projections may be either collected by projection nodes (se-

lected sensors), which subsequently send their collected coded measurements

to the sink (e.g., through shortest paths) to recover the original data, or at the

sink itself. Upon collecting all projections, the sink then attempts to recover

the original data by solving a convex optimization problem [8]. Here, it should

be noted that because of data aggregation in each projection, to reduce the

number of transmissions along the forwarding trees, parent nodes should only

transmit their measurements upon receiving measurements from their chil-

dren; once downstream coded/compressed measurements are received, such

measurements are combined with local measurements for uplink transmis-

sion.

Constructing efficient projections or gathering trees to collect measure-

ments, while minimizing the cost of transmissions, is indeed a challenging

problem and efficient heuristics and approximation algorithms have recently

4

been presented [2, 87]. Unlike previous work in the literature, the novelty

of our thesis lies in utilizing independent forwarding trees, where each for-

warding tree carries compressed (rather than native) data packets to the sink.

These forwarding trees are constructed to ensure fewer number of transmis-

sions as well as to evenly distribute the transmission load across the network.

In the following we state different scenarios for Projection-based compressive

data gathering (PCDG).

1.2.1 Distributed Compressive Data Gathering

In the centralized PCDG, initially the sink has to accomplish a topology discov-

ery by retrieving the network wide information through deploying an all-to-all

flooding (where O(n2) messages are needed), and then solves the algorithm

to construct the forwarding trees required for CDG. Subsequently, for each

forwarding tree, the sink sends out notification messages to all nodes in the

network notifying each of its parent node and children. Clearly, the overhead

associated with such centralized approach makes it difficult to implement in

practice. Rather, we present a distributed approach (DCDG) for constructing

the forwarding trees where each node locally decides its parent node to whom

it should transmit its encoded data.

1.2.2 Network-Coding Aware Compressive Data Gather-

ing

In PCDG, we observe that the presence of forwarding trees to collect com-

pressed data will create opportunities for many-to-many traffic patterns in the

network; such traffic patterns (which normally do not exist in wireless sen-

sor networks) in turn create opportunities for network coding which can be

5

exploited by the forwarding process to carry the compressed traffic towards

projection nodes. Network coding [1] has recently gained popularity for its

promise to reduce the number of transmissions in wireless networks, thereby

increasing their throughputs [47,67]. However, owing to the many-to-one traf-

fic patterns typically occurring in sensor networks, network coding found only

little applications in such networks; for example, to create a balance between

energy efficiency and reliability of the forwarding in the presence of packet

loss [48]. This thesis advocates using network coding by exploiting the over-

lap between forwarding trees carrying compressed traffic to their projection

nodes. Here, we should note that along forwarding trees, some sensor nodes

function as aggregators, combining their own sensed data with those received

from downstream nodes, while other sensors act as forwarders, simply relay-

ing the received aggregate data to parent nodes along the trees. Such nodes

(forwarders) can perform network coding on the compressed traffic traversing

along different forwarding trees, resulting in fewer transmissions and thus

better energy efficiency for the gathering protocols. To reap the most benefits,

however, forwarding or aggregation trees must be constructed to give rise to

such coding opportunities in the network.

1.2.3 On the Interaction between Scheduling and Com-

pressive Data Gathering

Once the gathering trees for PCDG are constructed, links on the constructed

trees need to be scheduled for transmissions such that adjacent transmissions

do not cause harmful interference on one another (thus corrupting the com-

pressed measurements) while maintaining a maximum spatial reuse of the

6

wireless spectrum. Therefore, finding forwarding trees to collect measure-

ments at the sink in the most energy efficient manner under the physical inter-

ference model becomes a complex problem of combinatorial nature. We refer

to this problem as Forwarding Tree Construction and Scheduling (FTCS).

The decentralized approach of FTCS decouples the problem into two sub-

problems; namely, the tree construction subproblem and the link scheduling

subproblem. Our decentralized tree construction is amended with refinements

to help the link scheduling achieve better scheduling and thus collection la-

tency. Our scheduling subproblem is resolved in a distributed fashion, through

interference localization an coordination among links to control the level of in-

terference.

To the best of our knowledge, our work is the first to resolve the problem of

compressive data gathering under physical interference constraints in a decen-

tralized manner without requiring to partition the unit square area into cells.

Our method can be used to efficiently operate large wireless sensor networks

which periodically gather sensory data in the most energy efficient manner

and with gathering latency constraints.

1.2.4 A Primal Dual Decomposition Method

To solve the FTCS problem, each tree may be constructed independently and

then its links are scheduled. However, when all trees are combined together,

the shortest and energy efficient schedule may not be guaranteed. Further, a

large number of possible forwarding trees for each projection may be consid-

ered. Both problems of enumerating forwarding trees and scheduling links for

those trees are hard combinatorial problems. This is compounded by the fact

that the two problems must be solved jointly, to guarantee the selection of best

7

forwarding trees which, when their links are scheduled, guarantee a shortest

energy efficient schedule.

Solving the joint problem of Forwarding Tree construction and Scheduling

(FTCS) using Mixed Integer Linear Programming (MILP) is very complex. The

difficulty of FTCS problem is centered around the fact that a large number of

forwarding trees may be constructed for each projection and that as many for-

warding trees as the number of projections should be selected. The m forward-

ing trees which guarantee minimum gathering latency (under an appropriate

link scheduling) should be selected. The number of such trees is exponentially

large and the link scheduling itself is a known NP-hard problem [30]. Owing

to the complexity and to keep track of the problem, we propose a primal-dual

decomposition method using Column Generation (CG) [14]; here, the problem

is divided into a Master and several Multi-Pricing sub-problems. Each sub-

Pricing schedules links for one constructed tree. The Master problem checks

whether the link scheduling obtained by all different sub-Pricing problems are

not overlapped and their physical interference constraints are satisfied. Most

importantly, the Master tries to choose a configuration from each sub-Pricing

which minimizes the gathering latency. To the best of our knowledge, this

problem has not been investigated in previous literature.

1.3 Thesis Contribution

The main contributions of the thesis are summarized as follows:

• We define our projection based compressive data gathering problem and

describe how the trees (joint routing pathes) from nodes to the sink can be

constructed to gather sensory data at the sink. First, we explain how we

8

divide sensors in the network into sets of interest-nodes, where each set

corresponds to a projection which their data is intended to be aggregated

through a forwarding tree to the sink. We present our first algorithmic

method (Minimum Spanning tree projection (MSTP)) for our problem de-

rived from current existing sparse random projections [73] which uses

random projection nodes to construct the trees. Then, we modify our

method and present a more efficient method (eMSTP) that improves our

first method by letting the sink node to gather weighted sums directly

from nodes instead of projection nodes; in this way we eliminate the traf-

fic resulting from transmitting the corresponding projection packets from

projection nodes to the sink. We present MSTP before eMSTP to show

how progressively we improve the lifetime of the network. Next, we show

that the efficiency of our algorithm eMSTP strictly depends on the selec-

tion of the projection nodes. Therefore, we propose an optimal selection

of projection nodes algorithm (OSPN). Later, we characterize a math-

ematical optimization model (Opt-PCDG) for the construction of trees

without using projection nodes and furthermore, we propose a heuris-

tic algorithm (PB-CDG) which gives near-optimal solution with very fast

computational time. Moreover, we analyze the time complexity of our

algorithmic methods, and further, we compare our methods with com-

pressive data gathering methods presented in the literature.

• The drawback of PCDG lies in communication and computation costs of

constructing required forwarding trees for compressive data gathering.

Whereas a central unit like the sink requires a complete knowledge of

the network topology to construct the forwarding trees and later to no-

tify all the nodes in the network of routing trees (for example, allowing

9

each node to know its parent and child). The computational cost can be

defeated by using the heuristic algorithm (not the MILP model) which

has much smaller complexity and runs quite fast. However, to overcome

the communication drawback, we present a distributed manner (refer to

as Distributed Compressive Data Gathering, DCDG) to construct the for-

warding trees. Through an example, we illustrate the operation of the

DCDG algorithm, then, we derive the approximation bound and analyze

the message overhead of the distributed method. Furthermore, we inves-

tigate how the PCDG may reconstruct the trees in case of node(s) failure

and also how DCDG may self healing reconstruct the trees. In addition,

we present the Steiner-CDG method where the forwarding trees for CDG

are constructed using minimum Steiner tree construction algorithm [49],

and we compare the performance of all of these heuristic CDG.

• We explore the problem of network coding aware data aggregation in

WSNs. We mathematically formulate the problem of optimal construc-

tion of forwarding/aggregation trees for projection based compressive data

gathering in the presence of network coding. These forwarding trees are

constructed to ensure fewer number of transmissions and to evenly dis-

tribute the transmission load across the network. Owing to its compu-

tational complexity, we then develop algorithmic solutions and present

centralized and distributed methods for constructing forwarding trees.

• We define the problem of forwarding tree construction and link schedul-

ing (FTCS) and we mathematically formulate the problem as a mixed

integer linear program (MILP) through which we may obtain optimal so-

lutions for small size networks. Next, we analyze the complexity of FTCS

and prove its NP-hardness. To overcome the computational complexity,

10

we propose a distributed method that can solve for large scale networks.

Later, We prove the correctness of our algorithmic method and analyze

its performance. Through a large set of numerical results, we validate

the efficiency and performance of our distributed FTCS method.

• After highlighting the complexity of the FTCS problem, we present a

novel primal-dual decomposition method using column generation. We

also highlight several challenges we faced when solving the decomposed

problem and present efficient techniques for mitigating those challenges.

One major advantage of our work is that it can serve as a benchmark

for evaluating the performance of any low complexity method for solving

the FTCS problem for larger network instances where no known exact

solutions can be found.

1.4 Thesis Outline

The rest of the thesis is structured as follows. Chapter 2 presents related work,

network model and background required for our investigation throughout this

thesis. In Chapter 3, we present efficient algorithmic methods and mathe-

matical formulation for our projection-based compressive data gathering. The

distributed approach is given and illustrated in detail in Chapter 4. Chapter

5 investigates the joint application of compressive sensing and network coding

to the problem of energy efficient data gathering in wireless sensor networks.

The joint problem of compressive data gathering and scheduling under the real

physical interference model is studied in Chapter 6. We highlight the complex-

ity of the last joint problem in Chapter 7 and propose a primal-dual decompo-

sition method using column generation. Finally, in Chapter 8 we summarize

11

our conclusion and provide some future directions for this research.

12

Chapter 2

Literature Review and

Preliminaries

2.1 Related Work

Data gathering is one of the most important functions that wireless sensor

networks (WSNs) are expected to perform, specially in scenarios where con-

tinuous monitoring is required. Some work is targeted at collecting the re-

quired data from individual sensor nodes [57], and others used the in-network

data aggregation techniques to reduce the number of transmissions for inter-

nal nodes by aggregating all the data received from downstream nodes before

forwarding them to uplink nodes. Aggregation techniques are well established

methods for data gathering (e.g., [56] and [28]) and the effectiveness of data

aggregation methods is strongly dependent on how the sensed data is routed

to the sink (e.g., [25, 60, 70, 79, 85]). The problem of constructing aggrega-

tion trees with minimum energy cost [50] or to maximize the network lifetime

has been studied in previous work [50, 79] where it was first shown that such

problems are NP-complete and then approximation algorithms are presented.

13

Spatial correlation between sensor readings often can be exploited to perform

in-network data compression to reduce the cost of communications [26]. Tech-

niques such as entropy coding or transform coding [17,32] are often employed

for data gathering, but suffer from excessive computation and control over-

heads. Another category for data compression is distributed source coding

which utilizes correlation at the sink [13, 16, 36]; such techniques however

may not be practical due to the lack of global correlation between the sensor

readings.

Recently, compressive sensing (CS) [20] has emerged as an effective ap-

proach for data gathering due to its promise to reduce the amount of traffic in

the network without adapting to the data correlation structure. This technique

has been receiving increased attention for its applications to data aggregation

in wireless sensor networks. The CS technique first has been presented by

David L. Donoho in [20] for signal processing. Bajwa et. al. in [4] introduced

CS into wireless network for a single-hop star network. In [35], the authors

gave a conceptual understanding of CS in a wireless sensor network. They

showed that original data reading vector of sensors could be recovered at the

sink with far fewer sample measurements using the same technique of CS

in [20] for signals. Note that, with this technique, it appears as if the original

sensors reading vector has been compressed. Hence, instead of transmitting

the original data in the network, the compressed data is rather sent and thus

a reduction in the traffic transmission loads in the network is expected.

The authors in [59] presented a compressive data gathering (CDG) method

for larger scale wireless sensor networks; the objective is to compress sen-

sor readings to reduce global traffic in the network and prolong the network

lifetime by distributing energy consumption among sensors in the network.

14

The authors however decoupled the interactions between data compression

and data routing. [9] analyzed theoretically the network energy consumption

and showed that CDG outperforms baseline data collection through detailed

analysis. Plain and Hybrid compressive sensing techniques in wireless sen-

sor networks are studied in [61,80] where the authors presented optimization

methods for the joint problem of link scheduling and compression to minimize

the network energy consumption. They improved the performance of CDG by

introducing the Hybrid-CDG scheme, where it applies CS only to relay nodes

that are overloaded. [80] proposed mathematical formulation and heuristic

greedy algorithm for constructing routing trees for Hybrid-CDG scheme to

minimize the network energy consumption. The authors in [75] presented

higher level of Hybrid-CDG scheme that integrates partial nodes selection

into compressive sensing by using a threshold, so as to extend the area be-

fore compressive sensing. In [7], the authors considered a scenario where a

wireless sensor network exploits ZigBee protocols which guarantees energy

saving. They designed a new adaptive mixed algorithm wherein each node

takes a decision about which scheme to adopt among PF (Pack & Forward)

and CS (Compressive Sensing) aiming at reducing the number of packets to

transmit.

The authors in [73] presented a distributed algorithm based on sparse ran-

dom projections that requires no global knowledge and guarantees the recov-

ery of near optimal approximation of the original sensed data. The algorithm

allows the collector to choose the number of sensors to query according to the

desired approximation error; Here the sparsity of the projections greatly re-

duces the communication cost of pre-processing the data. However, they did

not consider data gathering for each projection along the routing paths from

15

individual nodes to projection node. Motivated from sparse random projec-

tions, the authors of [52] presented an algorithm that computes the route

for each projection greedily from each random node to the sink to minimize

the communication cost. [74] used similar random routing method, but only

for grid network topology. The authors in [66] presented an algorithm that,

for each projection, uses random walk to collect sufficient number of sensor

readings while combining them together without significantly increasing the

inter-communication cost. The three random projection algorithms presented

in [52], [74] and [66], use specific walk from randomly chosen source node for

each projection to the sink to gather one weighted sum needed for data re-

covery. However, this projection walk takes long distance which results in

increasing the number of transactions and thus increases the network energy

cost.

The authors in [80] addressed the problem of energy efficient gathering by

jointly considering routing and compressed aggregation; given the NP-complete

nature of the problem, the authors presented a greedy method to achieve near

optimal solutions. Computing compression trees for data gathering is studied

in [54] where algorithms with provable optimality guarantees are presented

in a network with broadcast communication. The authors in [62] proposed an

algorithm that improves the network lifetime by dividing the sensor network

into subnetworks to decrease the communication rate and to build up the data

aggregation trees. The authors showed through simulations that their algo-

rithm outperforms LEACH [37] and shortest-path routing. The authors in [89]

introduced the partitioning method; where they divided the unit square area

into equal cells to restrict the transmissions between adjacent cells (horizon-

tal and vertical). In [78, 82, 83] a clustering method is used where, several

16

nodes are assigned for intermediate data collection at each cluster. [83] pre-

sented a hierarchical clustering architecture model, where instead of one sink

node being targeted by all sensors, several nodes are assigned for intermediate

data collection to gather at different hierarchical clustering levels. It is shown

that the hierarchical architecture reduces the number of measurements for CS

since in the proposed architecture the compressed ratio depends on the cluster

size rather than the global network size. [82] proposed a clustering method

that uses Hybrid-CDG for sensor networks and [78] presented an energy effi-

cient clustering routing data gathering scheme for large-scale wireless sensor

networks by obtaining the optimal number of clusters where all the cluster

heads are uniformly distributed.

A number of studies in the literature considered the scheduling problem in

conjunction with data gathering in wireless sensor networks. Among them,

[41, 43] proposed asynchronous distributed data collection using CSMA-based

MAC mechanism. The authors in [6] and [12] mathematically formulated the

problem of joint long-lifetime and minimum latency data collection and ag-

gregation scheduling respectively as a constrained optimization problem and

then proposed an approximation algorithm for their problem. The trade-off

between energy consumption and time latency was studied in [86]. In [68], the

authors presented a distributed implementation for data collection to let each

node calculate its duty-cycle locally by giving priority to sub-trees that have

bigger size (they assumed the tree is given). [88] presented a novel distributed

scheduling data collection algorithm, where the algorithm works periodically;

in each round a TOKEN is generated by the sink which is passed in post-order

to all nodes and at each round a transmission slot is assigned to nodes that

have not assigned before and do not conflict with other transmissions. This

17

method takes lot of time to assign a time slot for all nodes in a network, since

it requires so many rounds and time to pass the TOKEN.

The distributed data aggregation scheduling presented in [85] considers in-

terference only from one-hop node. A novel cluster-based TDMA-based MAC

protocol for energy-efficient data transmission has been proposed by [38]. In

their protocol, for each cluster, a node with higher remaining energy level acts

as a cluster head and assigns time slots to all nodes in its cell based on their

needs. The authors in [34] and [44] studied the aggregation rate under inter-

ference constraint, where [34] tried to maximize the aggregated information at

the sink under deadline constraint and [44] tried to minimize the sum delay of

sensed data. In [89], the authors investigated the capacity and delay analysis

for compressive data gathering under the protocol interference model. They

used a centralized method for their data gathering by partitioning the unit

square area into equal cells of a particular size under a certain probabilities.

Link scheduling under physical interference model has received increased

attention due to its realistic abstraction (e.g.; [11,40,42,51,53,84]). The prob-

lem of link scheduling in WSN under the physical interference model was

proved to be NP-hard in [30]. The authors in [40] showed that the data col-

lection rate, in addition of interference, is limited by the maximum degree of

the routing tree, and proposed techniques to improve the speed of data ag-

gregation. In all of these works [11, 40, 42, 53, 84] the network is partitioned

into equal cells and the cells are assigned with colors for concurrent schedul-

ing. In [84] and [53] the aggregation scheduling is done in levels; first aggre-

gate data from nodes in each small area, and then further aggregate data in

a larger area by collecting from those small ones. This process is repeated un-

til the entire network as the largest area is covered. [84] constructs the tree

18

and then does the data scheduling in uplink manner, whereas, [53] features

joint tree construction and link scheduling by assigning a nearest node to the

sink as a cell head. The data collection/aggregation scheme in [11] and [42] is

scheduled in two phases, where in each phase the data collection/aggregation

is done in one direction (whether horizontally or vertically to next cell). The au-

thors of [42] combined the CDG technique with pipeline technology and came

up with more efficient network capacity. In [51], the authors proposed a novel

technique under interference localization that allowed them to do scheduling

in a decentralized manner.

2.2 Network Model

We model a wireless sensor network as a connected graph G = (V,E), where

V is the set of n nodes deployed randomly in a region and E is the set of links

between any two sensor nodes which reside within each other’s communica-

tion radius. The density of the network can be adjusted by varying the trans-

mission power of the nodes. However, varying the transmit power yields a

system model that is much harder to solve. For simplicity, we assume a fixed

and uniform transmit power P for all sensor nodes and we assign the power

P such that the resulting graph is connected without a single disconnected

node and all transmissions within the communication range are successful.

We assume each sensor at each round (period) has a data reading xi (for ex-

ample, speed, density or temperature) which it intends to send to a base sta-

tion (sink) that may be located at a certain location in the network. Conse-

quently, at each round, the sink needs to gather, in total, a data vector of size

n (X = [x1, x2,, xn]
T) from all the nodes in the network. Since not all the

nodes may have a direct link with the sink, sensors will send their readings

19

over multi hop routes.

2.3 Compressive Sensing

Compressive sensing (CS) [59] promises to efficiently recover n sensors’ read-

ings at the sink with far fewer sample measurements, as long as the origi-

nal readings could be transformed or compressed in some sparse orthonormal

transform domain. Suppose the original data X = [x1, x2,, xn]
T has a k-

sparse representation under a proper transform basis Ψ, where Ψ is a Fourier

transform matrix of size n× n. i.e.:

X = ΨS (2.1)

or ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ11 · · · ψ1n

ψ21 · · · ψ2n

...

ψn1 · · · ψnn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1

s2

...

sn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.2)

where S is a k-sparse column vector representation ofX, and only k coefficients

of S are non-zero and k ≪ n. According to the Restricted Isometry Property

(RIP) of the CS theorem [20], the sink may receive m = O(k log n) measure-

ments instead of n readings, where m≪ n; that is

Z = ΦX (2.3)

20

or ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

z2

...

zm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ11 · · · φ1n

φ21 · · · φ2n

...

φm1 · · · φmn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.4)

where Z is a column vector of sample measurement of size m × 1 and Φ is

a random sample basis matrix of size m × n. In other words, the sink can

perfectly recover the original data X by receiving Z = [z1, z2,, zm]
T , where

zt =
∑n

j=1 φtjxj, t = 1, 2, ...,m. Each zt represents a weighted sum of measure-

ments from nodes in the network with non-zero coefficients in a row of the

matrix Φ. Later in the thesis, we refer to these nodes as interest nodes and

the data aggregated from those interest nodes as one projection. The matrix

Φ has m rows, one row for each weighted sum (projection), and n columns, one

column for each sensor node. Note that, the value of m is far smaller than n

(i.e. m≪ n); as suggested by [8], 4k ≥ m ≥ 3k is sufficient.

Now, after receiving all m measurements (Z), the destination (sink), using

the random sample matrix Φ and the Fourier transform matrix Ψ, recovers

the sparse representation of the data S̃ (not the original data) by solving the

convex optimization problem of (2.5).

S̃ = argmin
S̃
∥S̃∥l0

subject to Z = ΦX = ΦΨS̃

∥S̃∥l0 , ∥{i : si ̸= 0}∥

(2.5)

21

This l0 − norm optimization problem is NP-hard. Therefore, the approxi-

mate solution can be obtain by solving the l1−norm convex optimization prob-

lem given in (2.6).

min
S̃
∥S̃∥2 subject to Z = ΦΨS̃ = AS̃ (2.6)

where ∥v∥2 =
√∑

i |vi|2 is the l2 − norm of a vector v.

After recovering the sparse vector S̃, the original data (X) is obtained by

letting X = ΨS̃. For data recovery, the matrix A = ΦΨ has to satisfy the RIP

property. A matrix A obeys the RIP of order k if there exists a δk ∈ (0, 1) such

that (2.7) holds for all k-sparse vectors S [19].

(1− δk)∥S∥2l1 ≤ ∥ΦS∥
2
l1
≤ (1 + δk)∥S∥2l1 (2.7)

We will loosely say that a matrix A obeys the RIP of order k if δk is not too

close to one. More significantly, a matrix A obeys the RIP with high probabil-

ity if the entries are chosen at random with i.i.d (independent and identically

distributed) entries from a normal distribution with zero mean and variance

1
m

or they follow a Bernoulli distribution or more generally any Gaussian dis-

tribution [20]. Note that the matrix Ψ is only required at the sink for decoding

(recovering) and it is not required for encoding at the nodes. Matrix Φ is fixed

and can be considered as a priori knowledge for the entire network [59] or, each

random vector (corresponding to one sensor node) can be generated locally at

each node using a predetermined seed for a pseudo random generator. Seeds

may be distributed by the sink to the nodes in the networks. For more details

on CS, the reader is referred to [8,19,20].

Finally, we note that the performance of the CS depends significantly on

22

the sparse representation of the data. The more sparse the data can be, the

fewer sample measurements to recover the original data are needed.

2.4 Compressive Data Gathering

One of the practical applications of a WSN is to gather all sensors readings

at the sink. In its simplest way, and without using compressed sensing (Non-

CS), a data collection is built using tree representation as shown in Figure 2.3,

where the circular nodes represent the sensor nodes with their number as sen-

sor ID and the black square S represents the sink node. The routing tree can

be constructed using different strategies such as shortest-path or minimum-

power-greedy algorithm. After constructing the routing tree, all nodes in the

network know their corresponding parent and child nodes by sending notifi-

cation messages to each other. Now, in Non-CS, leaf nodes send their data

readings to their parent nodes using one packet each. Subsequently, parent

nodes send their readings plus the readings from their children in separate

packets to their higher parents in the tree (Figure 2.1 illustrates the Non-CS

for one route). Finally, n readings (packets) will be collected at the sink. Figure

2.3 illustrates an example of data collection without using compressed sensing.

Here, we observe that, the nodes closer to the sink carry out many more trans-

missions in contrast to the leaf nodes which perform only fewer transmissions.

Hence, the load in the network is greatly unbalanced.

Compressed sensing can resolve the problem of unbalanced load in the net-

work through the so called Compressed Data Gathering (CDG) [59]. Here, the

sink node receives m coded packets instead of n packets of original data from

nodes and by using CS technique, the sink recovers the original n data read-

ings. In order to do this using CDG, each node in the network multiplies its

23

Sink1 2 3 N-1 N

фm1X1

:

ф21X1

ф11X1

(a) Basic Data Gathering

(b) Compressive Data Gathering

1
2

3

4
5

6 Sink

фm1X1 + фm2X2

:

ф21X1 + ф22X2

ф11X1 + ф12X2

фm1X1 +...+ фmNXN

:

ф21X1 +...+ ф2NXN

ф11X1 +...+ ф1NXN

Sink1 2 3 N-1 N

X1

X2

X1 X1

XN-1

:

XN

XN-1

:

X1

Figure 2.1: Basic Data Gathering

Sink1 2 3 N-1 N

фm1X1

:

ф21X1

ф11X1

(a) Basic Data Gathering

(b) Compressive Data Gathering

1
2

3

4
5

6 Sink

фm1X1 + фm2X2

:

ф21X1 + ф22X2

ф11X1 + ф12X2

фm1X1 +...+ фmNXN

:

ф21X1 +...+ ф2NXN

ф11X1 +...+ ф1NXN

Sink1 2 3 N-1 N

X1

X2

X1 X1

XN-1

:

XN

XN-1

:

X1

Figure 2.2: Compressed Data Gathering

(b) Plain - Compressive Sensing

(a) Non - Compressive Sensing

12

2

1

1

5

3

1

1

1

1

14

S

15

8

7

4

11

6

2

310

9
12

3

3

3

3

3

3

3

3
3

3

33

S

15

8

7

4

11

6

2

310

9
12

(c) Hybrid - Compressive Sensing

3

2

1

1

3

3

1

1
1

1

13

S

15

8

7

4

11

6

2

310

9
12

Figure 2.3: Non - Compressed Sensing

(b) Plain - Compressive Sensing

(a) Non - Compressive Sensing

12

2

1

1

5

3

1

1

1

1

14

S

15

8

7

4

11

6

2

310

9
12

3

3

3

3

3

3

3

3
3

3

33

S

15

8

7

4

11

6

2

310

9
12

(c) Hybrid - Compressive Sensing

3

2

1

1

3

3

1

1
1

1

13

S

15

8

7

4

11

6

2

310

9
12

Figure 2.4: Plain - Compressive Data Gathering
(b) Plain - Compressive Sensing

(a) Non - Compressive Sensing

12

2

1

1

5

3

1

1

1

1

14

S

15

8

7

4

11

6

2

310

9
12

3

3

3

3

3

3

3

3
3

3

33

S

15

8

7

4

11

6

2

310

9
12

(c) Hybrid - Compressive Sensing

3

2

1

1

3

3

1

1
1

1

13

S

15

8

7

4

11

6

2

310

9
12

Figure 2.5: Hybrid - Compressive Data Gathering

24

reading (xj) into a j column vector of basis matrix Φ (i.e., φ1j, φ2j, ..., φmj) and

make a vector of size m. Then, the node waits to receive all same size vectors

from its child nodes and adds them to its own vector and transmits the result-

ing vector to its parent node using m packets. Since in matrix Φ there are n

columns and m rows, each column is assigned to one node in the network and

each row to one weighted sum. The idea of CDG is illustrated in Figure 2.2. All

the sensor nodes transmit m weighted sums zt , t = 1, 2, ..,m. To transmit the

tth sum zt, node 1 multiplies its reading x1 with a random coefficient φt1 and

sends the product to node 2. Node 2 in turn, after receiving the message from

node 1, multiplies its reading x2 with the random coefficient φt2 and adds the

two products φt1x1 and φt2x2 and sends the sum φt1x1 + φt2x2 to its next node

in the network. Each upstream node on the route to the sink adds its product

φtjxj to zt. Finally, the sink node receives the tth sum zt =
∑n

j=1 φtjxj. When the

sink receives all the m sums of zt, it recovers the original data of all sensors in

the network by solving the convex optimization problem as explained before.

This scheme of CDG is called Plain Compressive Data Gathering (Plain-CDG).

Based on Plain-CDG, all the nodes in the network transmit m packets where

m ≪ n and all the nodes experience the same transmission load, therefore

avoiding the bottleneck nodes problem. Figure 2.4 shows an example of Plain-

CDG (with n = 12 and m = 3).

By inspecting the two mechanisms (Non-CS and Plain-CDG), it is clear that

some nodes (especially the leaf nodes) in Non-CS transmit fewer packets than

Plain-CDG. Therefore, a hybrid compressed sensing (Hybrid-CDG) is proposed

in [61]. The Hybrid-CDG method uses the first method (Non-CS) for nodes that

transmit equal or less thanm packets and uses the second method (Plain-CDG)

for nodes that transmit more than m packets. Figure 2.5 shows an example of

25

Algorithm 2.1 Greedy Hybrid-CDG (Taken from [81])
Require: G(V,E), s, k
Ensure: Tree, A

1: repeat
2: for all the i ∈ B(A) do
3: Atest = A ∪ {i};Ftest = F\{i}
4: {costMST , L} ←MST (Atest)
5: {costSPF , t} ← SPF (Ftest, Atest)
6: if costMST + costSPF ≤ cost AND minl∈L t1 ≥ k − 1 then
7: cost = costMST + costSPF

8: Acand = Atest;Ftest = Ftest

9: end if
10: end for
11: A = Acand;F = Fcand

12: until A unchanged;
13: Tree =MST (A) ∪ SPF (F,A)
14: return Tree, A

this method, where the thick circles represent the aggregator nodes that use

Plain-CDG and the thin circles represent the forwarder nodes that use Non-

CS.

To minimize the network energy consumption through joint routing and

compressed aggregation in constructing the Hybrid-CDG tree, the authors

of [81] first characterized the optimal solution to the problem and then proved

its NP-completeness. Later, the authors proposed a mixed-integer program-

ming formulation to obtain the optimal solution for small scale network and

a greedy heuristic that delivers near optimal solution for larger networks. In

this thesis, we use their greedy heuristic algorithm to construct the Hybrid-

CDG tree, which we refer to as Hybrid-CDG algorithm (Algorithm 2.1) and

later we compare our new methods with this algorithm.

Note, the difficulty of Hybrid-CDG algorithm lies in partitioning the net-

work nodes into two sets: 1) aggregator set and 2) forwarder set. The algorithm

uses the Minimum-Spanning-Tree (MST) algorithm as the routing topology for

26

the aggregator set, and uses the shortest path from each node in forwarder set

to the nearest node in aggregator set. We refer to the former set as MST and

the other set as Shortest-Path-Forest (SPF).

The Hybrid-CDG algorithm is shown in Algorithm 2.1. It starts by assign-

ing MST = S (i.e. MST contains only sink node) and SPF=V/S (i.e. SPF contains

all the nodes in the network except the sink node). In each round, the algo-

rithm moves one neighbour node from SPF to MST, if the two criteria satisfy:

1) the action leads to greatest cost reduction, and 2) the leaf nodes of MST has

no less than m − 1 descendants. Consequently the size of the MST increases

and the algorithm stops when there is no any change in MST and SPF. This

algorithm is illustrated by two examples in Figures 2.6 and 2.7. In both ex-

amples, the thick circles and thick lines represent the aggregator set and MST

tree respectively and the thin circles and thin lines respectively represent SPF

and shortest path to MST. These joint routing and compressed aggregation

shown in both figures are the minimum overall energy consumption that can

be represented by Hybrid-CDG method.

3

2739
9

33
10

38

32

17

21

28

31

12

22

1

7

23

16
18 29

30

2411

2

S

4

5

13

20

26

34

6

14
25

8

36

15

37

40 1935

Sensor Power Radius

X

S

Aggregator Node

XFollower Node

MST Route

SPF Route

Sink

Figure 2.6: Hybrid-CDG construction using greedy algorithm. Sparse net-
work. n=40 and m=4. Network Cost = 92 transmissions. The load for bottle-
neck nodes 1, 2, 3 and 4 is 4 transmissions.

27

S

8 15312714

11 196451018

17 24139121623

27 312220212630

33 352925283234

Sensor Power Radius

X

SSink

MST Node

MST Route

Follower Route

XFollower Node

Figure 2.7: Hybrid-CDG construction using greedy algorithm. Dense (mesh)
network. n=35 and m=3. Network Cost = 59 transmissions. The bottleneck
loads for nodes 1,2 and 3 is 3 transmissions.

2.5 Sparse Random Projections

Data gathering with sparse random projection was first introduced in [73],

where m nodes are selected at random to gather m weighted sums in the net-

work. Each projection node gathers one weighted sum for the sink and each

row of the basis matrix Φ is assigned to one projection node. First, a projection

node t asks the nodes whose coefficients φtj are non-zero to send their data

readings by one packet each through shortest path to it and after receiving all

the packets, the projection node gathers all the data with its own data read-

ing and sends the result through shortest path to the sink by a single packet.

Similarly, all the other projection nodes gather and send the weighted sums to

the sink. This process is illustrated for one projection node in Figure 2.8. In

this figure, node 5 initializes the projection by sending requests to nodes 11,

15, and 20, where their φtj ̸= 0. These nodes reply to the request by sending

their data readings xj to node 5 (marked by arrows). Then, node 5 computes∑n
j=1 φtjxj and transmits it to the sink.

The authors in [73] claimed that there is a trade-off between the sparsity

of the projections (number of nonzero coefficients in each row of the matrix

28

S

12

20

14

13

11

16

10

18
19

15

5

9

8

7

17

6

4
3

21





































 























20

2

1

.

.

.
20

00
15

00
11

000

2

1

x

x

x

m
z

z

z







Figure 2.8: Illustration of data gathering in sparse random projection for one
projection node with its dependency to matrix Φ.

Φ) and the number of projections needed (number of rows in matrix Φ). The

authors have shown that the entries of the sparse projection matrix Φ can be

obtained as follows:

φtj =
√
s

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
+1, with prob. 1

2s

0, with prob. 1− 1
s

−1, with prob. 1
2s

(2.8)

That is φtj =
√
s with probability 1

2s
, φtj = 0 with probability 1 − 1

s
, and

φtj = −
√
s with probability 1

2s
. They assumed the entries within each row are

four-wise independent, while the entries across different rows are fully inde-

pendent. This limited independence assumption allows each projection vector

to be pseudo-random generated and stored in a small space. The parameter s

controls the degree of sparsity of the projections. Thus, if 1
s
= 1, the random

matrix Φ has no sparsity; and if 1
s
= logn

n
, the expected number of non-zeros

in each row of the random matrix Φ is log n. The sufficient number of sparse

projections to recover an approximation with error comparable to the best k-

sparse representation of data is m = O(sM2k2 log n), under the condition that

the original data X satisfies a peak-to-total energy ∥X∥∞/∥X∥2 ≤ M , where

29

∥X∥∞ = max1≤i≤n(|xi|) and ∥X∥2 =
√∑

i |xi|2. It was shown that if n
s
= log2 n,

sM2 = O(1), if n
s
= log n, sM2 = O(log n) and if n

s
= 1, sM2 = O(log2 n).

Note that according to RIP [19], if the number of projections (m) or the

sparsity of the projection (number of non-zeros in a row of Φ) are slightly below

the minimum requirement, the sink may still reconstruct the original reading

vector X with lower performance (approximation solution) if the coefficients X

exhibit the power law decay [19]. The authors of [73] in their numerical results

showed that when n = 2024, m = 200 and the average number of non-zeros in

a row of Φm×n = n
s

with sparsity 1
s
= log(n)

n
, the approximation error of the data

∥X−X∥22
∥X∥22

is below 0.35.

In this thesis, to distribute the non-zero coefficients more evenly in the ma-

trix Φ and make each projection as sparse as possible, the number of non-zero

coefficients in each row of the matrix Φ is chosen as ⌈ n
m
⌉ such that none of the

columns in Φ has all-zero entries. Since the sparsity (number of non-zero coef-

ficients) and number of projections (m) depend on the k-sparsity Fourier trans-

form representation of sensors’ readings (as we mentioned in section 2.3), the

random sample matrix Φ presented here satisfies all the conditions required

to fully recover the original data readings at the sink using the compressive

sensing technique.

30

Chapter 3

Projection Based Compressive

Data Gathering (PCDG)

In this chapter we present efficient algorithms to solve the problem of con-

structing aggregation trees for forwarding the compressed data to the sink

and we formulate a mixed integer linear program (MILP) to solve the prob-

lem. We show that our algorithms have outstanding performance and order of

magnitude faster than the optimal model.

3.1 Motivation

The Hybrid-CDG [61] method introduced in Chapter 2 has a major drawback;

that is, the nodes near the sink which do aggregation consume more power

than the leaf nodes, or far away from the sink, which do forwarding only.

Therefore, the energy consumption load is still not properly balanced through-

out the entire network. Furthermore, each node in Hybrid-CDG does the same

job over and over at different iterations and its task as aggregator or forwarder

never changes. In distributed sparse random projections algorithm [73] (refer

31

to Section 2.5), the authors, by choosing m projection nodes with probability m
n

at random, distributed the load more evenly throughout the network compared

to Hybrid-CDG. But their algorithm cannot guarantee a minimal overall net-

work cost, because for each random projection, the algorithm requires a large

number of transmissions between the nodes to collect the data at a projection

node with no en-route data gathering.

To overcome the drawbacks of the two algorithms above and improve the

overall cost and load balancing in the network, we present a new data aggre-

gation scheme which leverages the advantages of the above two methods. Our

method at first uses the same strategy of the algorithm in [73] by choosing

at random m nodes to do the projection in the network. Each projection node

however gathers one sample measurement (weighted sum) from all the nodes

in the network using compressed data gathering (CDG) and send the weighted

sum in one packet through a shortest path to the sink. When the sink receives

all the m weighted sums, it reconstructs the original data for all the network

nodes according to compressive sensing technique.

3.2 Minimum Spanning Tree Projection (MSTP)

Selecting m projection nodes among all sensors and generating a good random

basis matrix Φ for data compression are the two most critical issues that may

affect the efficiency of our method. There are two different ways for selecting

the m projection nodes;

• One way is to follow a decentralized approach as in [73], where among

n nodes in the network, m projection nodes are selected at random with

probability m
n

. This method does not guarantee that exactly m projection

32

nodes will be selected since each node has an m
n

probability to be selected.

Therefore, more or fewer nodes could be selected at random.

• Alternatively, one may fix the m nodes that do the projection in advance.

Note that later, after distributing the nodes in a region, the sink node

may change the projection nodes by sending a notification massage to

nodes that have been re-selected as projection nodes.

In [73], the authors proposed to select at random the position of the projec-

tion nodes in a distributed manner and this indeed allowed equally each node

to participate in doing the projection by periodically switching turns; this is

advantageous, particularly because each projection node in their method per-

forms more activities (i.e., the aggregation process) than the normal nodes and

therefore consumes more energy; hence, by taking turns in doing projection, all

nodes will participate and the consumption load will be uniformly distributed

across the network. In our work, however, the m projection nodes are known

and randomly selected in advance and there is no need to continuously change

their roles, since in our proposed method the projection nodes need not do any

extra effort which may consume additional power; they only act as the initial-

ization point for each projection. However, it is understood that their positions

in the network may affect the efficiency of the aggregation algorithm. There-

fore, one may attempt to find the fixed optimal position of the projection nodes.

We will generate the optimal position of projection nodes in Section 3.5.

In our MSTP method, to make each random projection as sparse as possible,

we make the number of non-zero in each row of the projection matrix Φ equals

to ⌈ n
m
⌉, with a condition that none of the columns in Φ has full zero entries. In

this way, we distribute the non-zero coefficients more even in the matrix Φ.

33

As an example, consider the 4×6 matrix shown in (B.5). This matrix is con-

structed for a network of size n = 6 and m = 4 random projections. Therefore,

the number of non-zero in each row is ⌈ n
m
⌉ = ⌈6

4
⌉ = 2 and none of the columns

in (B.5) has all its elements zero. The non-zero entries of φtj are selected at

random with i.i.d entries from the normal distribution with mean zero and

variance 1
m

.

Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ11 0 0 φ14 0 0

0 φ22 φ23 0 0 0

0 φ32 0 0 φ35 0

0 0 0 φ44 0 φ46

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.1)

There are three ways, as we discussed in section 2.1.2, to construct the

matrix Φ;

• First, each projection node generates the pseudo-random row sequence of

matrix Φ. The authors in [73] used a similar method to generate the row

vector of matrix Φ, but this method cannot guarantee the full distribution

of non-zero coefficients in the entire matrix Φ, as we discussed above for

the properties of our matrix Φ.

• Alternatively, the sink node can generate the matrix Φ and distribute it

to all nodes in the network. However, this will increase the transmission

cost for our network.

• Alternatively, a proper matrix Φ could be generated in advance and it will

be stored in the memory of each node before distributing the nodes in a

region, as a pre-known random basis Φ.

34

In this thesis, we use a pre-known matrix Φ as our pre-known projection

nodes. The process of our MSTP method works as follows. Consider a WSN of

size n with correlated reading values xj, j = 1, ..., n. According to the theory of

CS, the sink needs to receive only m weighted sums (sample measurements) to

recover the readings from all the nodes (i.e., zt =
∑n

j=1 φtjxj, t = 1, ..,m). Since

we have m projection nodes in the network, each projection node j gathers one

sample measurement from all the nodes in the network. To do that, each row

vector of the matrix Φ is assigned to one projection node. The size of each

row vector of Φ is n (related to n nodes in the network), and the nodes whose

coefficient φtj ̸= 0 represent the interest nodes for that projection node t. When

projection node t retrieves its interest nodes from the matrix Φ, it uses the

Minimum-Spanning-Tree (MST) algorithm (plus Breadth-First-Search (BFS)

algorithm to find shortest paths if needed) to construct a tree t, which connects

all interest nodes to the projection node. To construct the tree, projection node

t first considers itself as a one-node tree. Next it expands the tree, using the

MST algorithm, adding all interest nodes that can be reached directly without

any multi-hop. Then, if there are more interest nodes that have not been added

to the tree, using the BFS algorithm from all remaining interest nodes, the

nearest one through the shortest path will be added to the tree. Next, if still

more interest nodes remain, the algorithm continues using the same strategy

(using MST and BFS algorithms) until it connects all the interest nodes to

the tree. The projection node t represents the root for the current tree. Then,

according to the routing tree, each node knows its parent and child nodes and,

similar to CDG, it multiplies its reading xj with its coefficient φtj and gathers

its data φtjxj with its descendants and sends the weighted sum to the parent

node (as illustrated in Figure 3.1 for one projection). When the root (projection

35

z1= 11x11+ 14x14+ 17x17+ 18x18

S

12

11

7

10

5

4

2

13

6

9

3

81

13

2

1

.

.

.

00000
1817

00
14

00
11

2

1

x

x

x

m
z

z

z
11x11

+ 14x14

+ 18x18

11x11 18x18

17x17
11x11+ 18x18

Figure 3.1: Illustration of Compressive Data Gathering.

node t) receives the weighted sum from its children, it transmits this sum∑n
j=1 φtjxj in one packet through the shortest path to the sink. In total, there

are m such trees in the network. Each tree represents one projection (weighted

sum or sample measurement zt).

The details of MSTP method for projection nodes are given in Algorithm 3.1.

The algorithm for each projection node t among the set P starts by retrieving

the nodes that their coefficients in random basis matrix Φt are not zero and

puts them in interest nodes list Intt. Next, the algorithm puts the projection

node t into MSTt list as well as into temporary queue PQ. While the PQ is not

empty, the algorithm removes the top node from PQ queue and puts its neigh-

bour nodes in MSTt and PQ and removes them from Intt if they are in Intt.

This while loop in lines 7-14 illustrates the expansion of tree MSTt , which

connects all the nodes in Intt that can be reached directly from projection node

t without multi-hop. In lines 15-28, the algorithm adds the remaining inter-

est nodes (if available) to the MSTt. To do that, the algorithm first finds the

shortest paths from all nodes in Intt to MSTt and stores the shortest one in

ShortestPath list. Later, the algorithm puts all the nodes from ShortestPath into

MSTt and PQ and removes them from Intt. Now, while the PQ is not empty,

the algorithm repeats the steps in lines 8-13. This while loop in lines 15-28

36

Algorithm 3.1 MSTP
Require: P,Φ
Ensure: MSTt, SPt, t = 1, 2, ...,m

1: for all t ∈ P do
2: for all j ∈ Φtj ̸= 0 do
3: Put(Intt, j)
4: end for
5: Put(MSTt, t)
6: Put(PQ, t)
7: while !Empty(PQ) do
8: CNode = Rem(PQ)
9: if Adj(CNode ∈ Intt) then

10: Put(MSTt, CNode)
11: Put(PQ,CNode)
12: Rem(Intt, CNode)
13: end if
14: end while
15: while !Empty(Intt) do
16: for all h ∈ Intt do
17: Path(h)← Find shortest path from h to MSTt using BFS algorithm
18: if ShortestPath > Path(h) then
19: ShortestPath = Path(h)
20: end if
21: end for
22: Put(MSTt, ShortestPath)
23: Put(PQ, ShortestPath)
24: Rem(Intt, ShortestPath)
25: while !Empty(PQ) do
26: Execute steps 8-13
27: end while
28: end while
29: SPt ← Find shortest path from t to the sink
30: end for

37

S

8 15312714

11 196451018

17 24139121623

27 312220212630

33 352925283234

Sensor Power Radius

MSTP
SSink

Projection Node

Projection 2 Route

Projection 3 Route

XSensor Node

Shortest Path to Sink

Projection 1 Route

S

8 15312714

11 196451018

17 24139121623

27 312220212630

33 352925283234

Sensor Power Radius

eMSTP
SSink

Projection Node

XSensor Node

Projection 2 Route

Projection 3 Route

Projection 1 Route

Figure 3.2: MSTP. n=35 and m=3. There are three projection nodes with three
connected trees shown with different lines. Network Cost = 49 transmissions.
The number of transaction for bottleneck nodes are as follows: Node 1: 3,
Node2: 2, Node3: 1 packet transmissions.

will be repeated until the Intt becomes empty. At the end, the algorithm ter-

minates by finding the shortest path from each projection node to the sink and

stores the results into SPt. Upon termination, the algorithm returns MSTt and

SPt for all projection nodes.

We illustrate the MSTP method using the example shown in Figure 3.2.

In this figure, nodes 7, 9 and 27 (shown by thick circles) are assigned to ini-

tialize the three projections. Suppose for projection one, the interest nodes

(nodes with non-zero coefficients in Φ1) are 7, 8, 9, 10, 11, 14, 19, 20, 22, 25, 29, 32.

Projection node 7 constructs a tree connecting all these nodes together. The

algorithm starts by creating MST1 that contains only node 7. Next, as ex-

plained above the algorithm expands the MST1 using the MST algorithm, join-

ing nodes 14 and 10 which can be reached directly without multi-hop. At this

stage, the MST1 contains three nodes 7, 10 and 14 and now, none of the neigh-

bours of MST1 are interest nodes. In this situation, the algorithm finds node

9 as the nearest interest node to MST1 by exploiting BFS algorithm from all

remaining interest nodes to the tree. It connects node 9 through node 12 to the

tree MST1. Now, the MST1 tree contains 5 nodes (7, 14, 10, 12, 9). Again by

38

using the MST algorithm, the algorithm connects nodes 20, 22, 29 and 25 to

MST1 tree. It will expand the MST1 until it covers all the nodes whose coeffi-

cients in φ1j vector are non-zeros. At the end, MST1 tree becomes as illustrated

in Figure 3.2 by thick lines. Similarly MST2 and MST3 represent the trees for

projections 2 and 3 rooted at nodes 9 and 27 respectively. MST2 and MST3 are

marked by dashed and thin lines respectively in Figure 3.2.

After constructing the MSTt, each node knows its parent and child nodes

and it will wait to collect all the data from its child nodes if it is not a leaf node.

Each node in MSTt multiplies its data with its φtj and adds it with its child

node data and transmits it to its parent node until the root node t receives

the aggregate data
∑n−1

j=1 φtjxj from all n nodes in the network. The root node

(projection node) in turn adds
∑n−1

j=1 φtjxj with its own data φttxt. Note that,

in this MSTt all nodes throughout the network use only one packet to send

the aggregated data (weighted sum) to projection node t. Finally, at the last

step, each projection node t transmits the weighted sum zt =
∑n

j=1 φtjxj in

one packet to the sink using the shortest path as shown in Figure 3.2 (curved

arrows). Consequently, in general there are m projection nodes and m packets

will be transmitted to the sink node as in (B.6). Finally, the sink node recovers

the original data as we explained in Section 2.1 using compressive sensing.

zt =
n∑

j=1

φtjxj, t = 1, 2, ...,m (3.2)

Time Complexity Analysis

We consider two cases to analyze the time complexity of the MSTP algorithm;

In the best case, all the interest nodes could be connected directly without

39

multi-hop using the Minimum-Spanning-Tree (MST) algorithm. Second, in

the worst case, we assume none of the interest nodes can be connected using

the MST algorithm and for each interest node, the MSTP algorithm has to

use the Breadth-First-Search (BFS) algorithm from remaining interest nodes

which are disconnected from the tree to connect only one interest node to the

tree MSTt.

Best case analysis: The algorithm at initialization checks the neighbors of a

projection node and puts the ones which are interest nodes into a priority

queue PQ. This runs in O(dρ log ρ), where d is the average nodal degree

of a projection node and O(ρ) is needed to check whether the neighboring

node is among the interest nodes and O(log ρ) to insert it into the sorted

priority queue PQ, which may contain a maximum of ρ elements [15].

Next, the algorithm pops the top element of the PQ and finds its neigh-

bors and repeats the same steps as before. This procedure is repeated

until the priority queue PQ is empty, which takes O(ρ) at most. There-

fore, in total, the running time for m projection nodes is O(mdρ2 log ρ).

Worst case analysis: The MSTP algorithm first finds the shortest path from

each interest node to a projection node and adds the nearest one to the

tree MSTt. The shortest path for one interest node takes O(dn log n).

Therefore, the time complexity to find the shortest paths for ρ interest

nodes to the nearest node in the tree MSTt is O(ρdn log n). Now, MSTt

contains two nodes and the rest (ρ − 1) interest nodes remain to be con-

nected to the tree. In the worst case, we assume that none of the interest

nodes are connected to the tree MSTt using the MST algorithm and the

MSTP algorithm consequently uses BFS algorithm among remaining in-

terest nodes to connect one interest node to the tree MSTt. Consider

40

we are at stage where the tree MSTt contains k + 1 nodes and (ρ − k)

interest nodes remain to be connected to the tree. At this stage, the

time complexity to find the nearest (ρ − k) interest nodes to tree MSTt

is O((ρ − k)dn log n) as we explained above. Therefore, as we may have

(ρ − 1) stages, the total complexity for all stages plus the initial stage is

O(ρdn log n +
∑ρ−1

k=1[(ρ − k)dn log n]) ∼= O(dρ2n log n) and for m projection

nodes the time complexity is O(mdρ2n log n).

In fact, the actual time complexity of the MSTP algorithm could be much

lower than the worst case, since at each step, all the remaining interest nodes

may not be multi-hop away from the tree MSTt and thus every time the MSTP

algorithm may not use multiple BFS algorithm but rather it uses the MST al-

gorithm instead. On average, the MSTP algorithm connects most of the inter-

est nodes to the tree MSTt by using the MST algorithm more than consecutive

BFS algorithm, and hence the time complexity of the MSTP algorithm is closer

to the best case than the worst case.

3.3 Extended Minimum Spanning Tree Projec-

tion (eMSTP)

To improve our method, we have made a slight change to the construction of

MSTi. Instead of making the projection node i as a root of the MSTi, we extend

the algorithm to add the sink node to MSTt and make it the root of the tree.

Now the projection node t will not be the one that collects and computes the

data aggregation from all the nodes in the network. Projection node t will

only act as the initialization point for constructing the MSTt, and the sink

node will receive the entire data aggregation directly from all the nodes. In

41

S

8 15312714

11 196451018

17 24139121623

27 312220212630

33 352925283234

Sensor Power Radius

MSTP
SSink

Projection Node

Projection 2 Route

Projection 3 Route

XSensor Node

Shortest Path to Sink

Projection 1 Route

S

8 15312714

11 196451018

17 24139121623

27 312220212630

33 352925283234

Sensor Power Radius

eMSTP
SSink

Projection Node

XSensor Node

Projection 2 Route

Projection 3 Route

Projection 1 Route

Figure 3.3: eMSTP. n=35 and m=3. There are three projection nodes with three
connected trees shown with different lines. Network Cost = 43 transmissions.
The number of transaction for bottleneck nodes are as follows: Node 1: 1,
Node2: 2, Node3: 2 packet transmissions.

this way, we will eliminate the traffic load resulting from transmitting the

corresponding projection packets from the projection nodes to the sink. The

steps of eMSTP are shown in Algorithm 3.2 and its time complexity is same

as the MSTP algorithm. The same example of MSTP is shown for eMSTP in

Figure 3.3. In this figure, for projection 1, node 7 constructs the tree MST1

covering all nodes in the network that their φ1j ̸= 0, as well as the sink node.

The MST1 is shown by thin line in figure 3.3. The sink node receives directly

the weighted sum 1 (sample measurement z1) from all the nodes in MST1, and

similarly, it receives weighted sum 2 and 3 (i.e., z2 and z3) from MST2 and

MST3 respectively. Consequently, the sink has all the weighted sums zt =∑n
j=1 φtjxj, t = 1, 2, ...,m, which are needed to recover the original data for all

the nodes in the network.

42

Algorithm 3.2 eMSTP
Require: P,Φ
Ensure: MSTt, SPt, t = 1, 2, ...,m

1: for all t ∈ P do
2: for all j ∈ Φtj ̸= 0 do
3: Put(Intt, j)
4: end for
5: Put(Intt, sink)
6: Put(MSTt, t)
7: Put(PQ, t)
8: while !Empty(PQ) do
9: CNode = Rem(PQ)

10: if Adj(CNode ∈ Intt) then
11: Put(MSTt, CNode)
12: Put(PQ,CNode)
13: Rem(Intt, CNode)
14: end if
15: end while
16: while !Empty(Intt) do
17: for all h ∈ Intt do
18: Path(h)← Find shortest path from h to MSTt
19: if ShortestPath > Path(h) then
20: ShortestPath = Path(h)
21: end if
22: end for
23: Put(MSTt, ShortestPath)
24: Put(PQ, ShortestPath)
25: Rem(Intt, ShortestPath)
26: while !Empty(PQ) do
27: Execute steps 9-14
28: end while
29: end while
30: end for

43

3.4 Comparison and Numerical Results of MSTP

and eMSTP

In this section, first we compare our two methods MSTP and eMSTP with the

three mechanisms (Non-CS, Plain-CDG and Hybrid-CDG) discussed in Sec-

tion 2.2 on small network with few nodes, and then we present the numerical

results.

3.4.1 Comparison

For comparison, we consider sensor nodes that measure the temperature in

a field environment. We assume that the reading values have sparse repre-

sentation in Discrete Fourier Transformation (DFT). We take the number of

transmissions as our unit of power consumption in sensor nodes, because the

other tasks of sensors are identical and their power consumption is the same.

The more transmissions a sensor does, the more energy it consumes and the

faster it dies out. Here, in our numerical evaluation, we are interested in two

criteria, first minimizing the overall number of transmissions (transmission

cost) and second, balancing the transmission load throughout the network.

We consider two network topologies; 1) grid network with 35 nodes excluding

the sink node at the top with m = 3, and 2) arbitrary network with 40 nodes

plus sink node at the center with m = 4. For the former topology, Hybrid-CDG

in Figure 2.7 costs overall 59 transactions to send all the sample data to the

sink and the bottleneck nodes 1, 2 and 3 transmit three packets each. MSTP

in Figure3.2, costs 49 transactions, which is less than Hybrid-CDG and the

bottleneck nodes 1, 2 and 3 respectively transmit 3, 2 and 1 packets. As it is

obvious, not only the overall transmission in MSTP is less than Hybrid-CDG,

44

but also the load on bottleneck nodes is lower. This implies that the MSTP

method helps in increasing the lifetime of the network. eMSTP on the other

hand (Figure 3.3) transmits in total 43 packets and the bottleneck nodes 1, 2

and 3 transmit 1, 2 and 2 packets respectively. For the other topology (arbi-

trary network), refer to figure 2.6 for Hybrid-CDG, Figure 3.4 for MSTP and

Figure 3.5 for eMSTP. The figures in this arbitrary network topology example

show a higher performance of eMSTP and MSTP over Hybrid-CDG with re-

spect to the overall network cost and load balancing throughout the network.

3

2739
9

33
10

38

32

17

21

28

31

12

22

1

7

23

16
18 29

30

2411

2

S

4

5

13

20

26

34

6

14
25

8

36

15

37

40 1935

Sensor Power Radius

Projection 4 Route

Projection 1 Route

Projection 2 Route

Projection 2 Route

3

2739
9

33
10

38

32

17

21

28

31

12

22

1

7

23

16
18 29

30

2411

2

S

4

5

13

20

26

34

6

14
25

8

36

15

37

40 1935

Sensor Power Radius

Projection 4 Route

Projection 1 Route

Projection 2 Route SSink

XSensor Node

Projection 2 Route

XProjection Node

SSink

XSensor Node

XProjection Node

Shortest Path to Sink

Figure 3.4: Sparse MSTP network (n=40 and m=4). Network Cost = 83 trans-
missions. The loads for bottleneck nodes are; Node1: 3, Node2: 3, Node3: 3
and Node4: 4 transmissions.

3

2739
9

33
10

38

32

17

21

28

31

12

22

1

7

23

16
18 29

30

2411

2

S

4

5

13

20

26

34

6

14
25

8

36

15

37

40 1935

Sensor Power Radius

Projection 4 Route

Projection 1 Route

Projection 2 Route

Projection 2 Route

3

2739
9

33
10

38

32

17

21

28

31

12

22

1

7

23

16
18 29

30

2411

2

S

4

5

13

20

26

34

6

14
25

8

36

15

37

40 1935

Sensor Power Radius

Projection 4 Route

Projection 1 Route

Projection 2 Route SSink

XSensor Node

Projection 2 Route

XProjection Node

SSink

XSensor Node

XProjection Node

Shortest Path to Sink

Figure 3.5: Sparse eMSTP network (n=40 and m=4). Network Cost = 75 trans-
missions. The loads for bottleneck nodes are; Node1: 3, Node2: 2, Node3: 4
and Node4: 4 transmissions.

45

3.4.2 Numerical Results

We conducted several studies to evaluate the performance of our two methods

MSTP and eMSTP with Hybrid-CDG, Plain-CDG and Non-CS. We used Java

developer to implement the algorithms. We considered four network topolo-

gies: 1) Dense Network with the sink node at the center, 2) Dense Network

with the sink node at the top, 3) Sparse network with the sink at the center,

and 4) Sparse network with the sink at the top. For each topology, we have

considered four network sizes: 1) 100 nodes, 2) 200 nodes, 3) 500 nodes, and

4) 1000 nodes and for each we used different number of random samples m

with compression ratio of around 20 to 4 (sizes around 5% to 25% of total nodes

n). The nodes are distributed randomly in a specific fixed region and the den-

sity of the network is aligned by increasing or decreasing the communication

power radios of each sensor nodes. In this sub-section, we first evaluated the

overall data transmissions in the network over an average of ten runs (with

95% confidence interval) and later, we evaluated the distribution loads across

the sensor nodes. We run our program on CPU with Intel Core i7 processor,

2.67 GHz speed, 6 GB memory ram and 64-bit windows operating system. The

program for MSTP or eMSTP with a network of size 1000 nodes, in average for

different topologies, run in 20 seconds time, and for Hybrid-CDG run in about

35 minutes. As we analyzed in section 5.4.3, the time complexity of the MSTP

(Algorithm 3.1) or eMSTP (Algorithm 3.2) is O(mdρ2 log ρ) in the best case and

O(mdρ2n log n) in the worst case, where as the Hybrid-CDG (Algorithm 2.1)

runs in O((n− k)2n2 + n3) (as shown in [81]).

46

Overall Network Data Transmissions

We present the average results of five runs of MSTP and eMSTP with differ-

ent random basis Φ and different projection nodes. After obtaining the results

of all network topologies with different sizes (n = [100, 200, 500, 1000]), the re-

sults showed almost the same curves. Hence, we only present results for one

network size. In Figures 3.6, 3.7, 3.8 and 3.9, for all topologies, Non-CS has

almost the highest overall packet transmissions in the network and Hybrid-

CDG comes at second highest transmission and then MSTP and eMSTP come

at third and fourth position respectively. Furthermore MSTP falls behind the

Hybrid-CDG when the compression ratio goes below 6 or 5 (size of random

sample m goes above 15% or 20% of total node size n). We note that in networks

where the distance from leaf nodes to the sink is too short, as in Figure 3.6 and

Figure 3.8 (network with center sink), MSTP dramatically collapses and its ef-

ficiency with respect to the overall network cost drops below Non-CS when the

value of m is above 20% of total nodes n. This is because, when the value of

m is high, more projection nodes are needed, and for each projection node, the

weighted sum is transmitted in shortest path through multi-hop nodes to the

sink, therefore, the overall number of transmissions in the network increases.

Our extended method eMSTP however, always has smaller overall number of

transmissions and outperforms all the other methods for all tested network

topologies (as shown in the figures). In case of MSTP, when the compression

ratio is high, the algorithm performs better than Hybrid-CDG, Plain-CDG and

Non-CS and performs worse than Hybrid-CDG in overall network transmis-

sion in case of low compression ratio. However, it outperforms Hybrid-CDG in

balancing the transmission load which is the main advantage of CS as we will

discuss it in the coming sub-section.

47

M10 M50 M100 M200 M250

Non-CS 6974 6974 6974 6974 6974

Hybrid-CS 2087 4041 5149 6305 6530

MSTP 1523.6 3275.8 4709.6 6849.4 7619.4

eMSTP 1463 2991.6 4158.6 5724 6258.6

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

O
ve

ra
l P

ac
ke

t
T

ra
n

sm
it

io
n

N1000 - Dense - Center

Figure 3.6: Overall data transmissions in a dense network with 1000 nodes
and sink at the center.

M10 M50 M100 M200 M250

Non-CS 10787 10787 10787 10787 10787

Hybrid-CS 2117 4351 5819 7587 7996

MSTP 1566 3525 5183.2 7717.6 8775.4

eMSTP 1476.8 3103.8 4425.6 6441.6 7291.6

0

2000

4000

6000

8000

10000

12000

O
ve

ra
l P

ac
ke

t
T

ra
n

sm
it

io
n

N1000 - Dense - Top

Figure 3.7: Overall data transmissions in a dense network with 1000 nodes
and sink at top.

48

M10 M50 M100 M200 M250

Non-CS 11940 11940 11940 11940 11940

Hybrid-CS 2858 6464 8451 10381 10924

MSTP 2233 5311 7747.2 11357.4 12829.8

eMSTP 2121.8 4819.8 6817.2 9405.6 10450.4

0

2000

4000

6000

8000

10000

12000

14000

16000

O
ve

ra
l P

ac
ke

t
T

ra
n

sm
it

io
n

N1000 - Sparse- Center

Figure 3.8: Overall data transmissions in a sparse network with 1000 nodes
and sink at the center.

M10 M50 M100 M200 M250

Non-CS 16918 16918 16918 16918 16918

Hybrid-CS 2904 6316 8913 12583 13307

MSTP 2278.2 5583.4 8362.4 12450.2 14247.6

eMSTP 2124.2 4927 7117.2 10343 11670

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

O
ve

ra
l P

ac
ke

t
T

ra
n

sm
it

io
n

N1000 - Sparse- Top

Figure 3.9: Overall data transmissions in a sparse network with 1000 nodes
and sink at top.

49

Load Distribution and Load Balance

The most important advantage of CS in WSN is its ability to solve the bottle-

neck problem and to distribute the load more evenly throughout the network.

Figures 3.6, 3.6, 3.6, 3.6, 3.10, 3.11 and 3.12 represent the un-metric Proba-

bility Density Function (PDF) of transmission per node for the entire network.

From the figures, we can see that most of the nodes in MSTP and eMSTP in

average transmit fewer packets in comparison to the Hybrid-CDG and Non-

CS methods. This indeed shows that our two new methods MSTP and eMSTP

distribute the load more evenly throughout the network and hence increases

its lifetime. Also, we observe that, as the compression ratio (number of ran-

dom sample measurements to total nodes) decreases, the performance of CS

methods increases, since fewer transmissions are needed.

Node transmission
2 4 6 8 10 12

D
en

si
ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 Non-CS
Plain-CDG
Hybrid-CDG
MSTP
eMSTP

MSTP

eMSTP

Hybrid-CDG Plain-CDG

Non-Cs

Figure 3.10: PDF for average transmission in dense network with 100 nodes,
5 random samples and sink at the center.

50

Node transmission
2 4 6 8 10 12 14 16 18

D
en

si
ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Non-CS
Plain-CDG
Hybrid-CDG
MSTP
eMSTPPlain-CDG

Hybrid-CDG

Non-CDG

eMSTP

MSTP

Figure 3.11: PDF for average transmission in dense network with 100 nodes,
10 random samples and sink at top.

Node transmission
5 10 15 20 25 30

D
en

si
ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Non-CS
Plain-CDG
Hybrid-CDG
MSTP
eMSTP

MSTP

Hybrid-CDG

eMSTP

Non-CS

Plain-CDG

Figure 3.12: PDF for average transmission in sparse network with 100 nodes,
20 random samples and sink at top.

51

Node transmission
5 10 15 20 25 30 35

D
en

si
ty

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 Non-CS
Plain-CDG
Hybrid-CDG
MSTP
eMSTP

Plain-CDG

Non-CS

Hybrid-CDG

MSTP

eMSTP

Figure 3.13: PDF for average transmission in sparse network with 100 nodes,
25 random samples and sink at the center.

Node transmission
5 10 15 20 25 30 35 40 45

D
en

si
ty

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Non-CS
Plain-CDG
Hybrid-CDG
MSTP
eMSTP

Hybrid-CDG

Non-CS

eMSTP

MSTP

Plain-CDG

Figure 3.14: PDF for average transmission in sparse network with 200 nodes,
25 random samples and sink at top.

52

Node transmission
0 10 20 30 40 50 60 70 80

D
en

si
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 Non-CS
Hybrid-CDG
MSTP
eMSTP

eMSTP

MSTP

Hybrid-CDG

Non-CS

Figure 3.15: PDF for average transmission in dense network with 500 nodes,
100 random samples and sink at top.

Node transmission
1 2 3 4 5 6 7 8 9 10

D
en

si
ty

0.05

0.1

0.15

0.2

0.25

0.3
Hybrid-CDG
MSTP
eMSTP

eMSTP

MSTP

Hybrid-CDG

Figure 3.16: PDF for average transmission in dense network with 1000 nodes,
10 random samples and sink at the center.

53

3.5 Optimal Selection of Projection nodes (OSPN)

As we illustrate next, the performance of eMSTP depends on the selection of

projection nodes; Fig. 3.17 shows a sample network with two different projec-

tion node selections. When node 5 is selected, the overall number of transmis-

sions is 10 (Fig. 17(a)), and when node 11 is selected, the overall number of

transmission increases to 12 (Fig. 17(b)). To determine the best set of projec-

tion nodes, one may do an exhaustive search through all the possibilities and

then select the one that yields the best performance; indeed, this exhaustive

search is challenged by the large number of possibilities of selecting projec-

tion nodes (
(
n
m

)
) making it grossly impractical. Therefore, instead of searching

through this large space of possibilities, each projection tree can be constructed

independent from the others without sacrificing in the performance. That is,

we start by selecting the first projection node considering all nodes as candi-

dates and the projection tree (out of n trees) that results in smallest number

of transmissions from the interest nodes involved in this projection is selected.

Then, the same procedure is repeated for the remaining m − 1 projections.

Therefore, instead of searching through a space of
(
n
m

)
possibilities, the solu-

tion is found by exploring a total of m× n possibilities. This revised method is

referred to as OSPN.

3.6 Optimal Tree Construction (Opt-PCDG)

To characterize the optimal solution, we let the sink node, instead of the pro-

jection nodes, construct the routing trees to the m sets of interest nodes and

collect the m weighted sums. Let T be a set of m trees and ztij be a binary

variable indicating whether there is an edge between nodes i and j in tree t.

54

S

12

20

14

13

11

16

10

1819

15

5

9

8

7

17

6

4
3

21

(a) 10 transmissions.

S

12

20

14

13

11

16

10

1819

15

5

9

8

7

17

6

4
3

21

(b) 12 transmissions.

Figure 3.17: Performance of selecting different projection nodes. The thick
circle is a projection node and gray ones are interest nodes.

Let xtij be a flow of traffic between nodes i and j in tree t. Let s denote the

sink node and It be the set of interest nodes (IN) for tree t. The objective of our

problem is to minimize the total number of packet transmissions (i.e., mini-

mize the number of edges in each of the m trees), which is formulated in the

following (Opt-PCDG):

Minimize
m∑
t=1

∑
(i,j)∈E

ztij (3.3)

∑
j:(i,j)∈E

xtij −
∑

j:(j,i)∈E

xtji =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−⌈ n

m
⌉, i = s;

1, ∀i ∈ It;

0, otherwise.

t ∈ T (3.4)

xtij − ztij ≥ 0 ,∀(i, j) ∈ E , ∀t ∈ T (3.5)

ztij −m−1xtij ≥ 0 ,∀(i, j) ∈ E , ∀t ∈ T (3.6)∑
j:(i,j)∈E

ztij ≤ 1 ,∀t ∈ T (3.7)

ztij ∈ {0, 1} ,∀(i, j) ∈ E , ∀t ∈ T (3.8)

xtij ≥ 0 ,∀(i, j) ∈ E , ∀t ∈ T (3.9)

55

Constraints (B.8) present the flow conservation constraints; they force the

interest nodes that belong to one tree (projection) to have one flow each to the

sink [64]. Constraints (B.9) and (B.10) make the connection between xtij and ztij,

such that only edges carrying positive flows are indicated as tree edges; they

imply that xtij = 0⇔ ztij = 0 and xtij > 0⇔ ztij = 1 [81]. Constraint (4.1) asserts

that each node can have a maximum of one transmission (outgoing edge) in

each tree to avoid loops. The presence of the boolean variables ztij turns the

above linear program into an NP-Hard problem. In the next subsection, we

present a scalable and efficient algorithm to solve the construction of the trees

for the compressive data aggregation problem.

3.7 Projection based Compressive Data Gather-

ing Algorithm (PB-CDG)

Our algorithm uses the same steps as eMSTP with the difference that there

are no projection nodes, but rather, the sink will gather the compressed data

(or weighted sums). The steps are shown in Algorithm 3.3. The time complex-

ity for the algorithm is O(mdρ2 log ρ) in the best case and O(mdρ2n log n) in the

worst case, same as eMSTP, where d is the average nodal degree of the nodes

and ρ is the number of interest nodes.

The algorithm for each projection t at initialization retrieves the nodes

whose coefficients in the basis matrix Φt are non-zero (i.e., It), adds them to

the interest nodes list Intt and then assigns the sink node s as a single node

tree Tt. In the second step, the algorithm removes the nodes in Intt which

can be connected directly to tree Tt and adds them to Tt using the MST algo-

rithm. Since interest nodes are spread throughout the network and may not

56

Algorithm 3.3 PB-CDG
Require: Matrix Φ.
Ensure: Set of trees T = {T1, T2, ..., Tm}.

1 For each projection t (t = 1, 2, ...,m) do:

1.1 Tt = {s} and Intt = It = { all nodes s.t. φtj ̸= 0, j = 1, 2, ..., n}.

1.2 Add those nodes in Intt into tree Tt which can be connected directly to
nodes in Tt using MST algorithm and remove them from Intt.

1.3 While !Empty(Intt) do:

1.3.1 Find the nearest node h in Intt to Tt using BFS algorithm.

1.3.2 Add node h to Tt plus all the intermediate nodes in shortest path
to Tt.

1.3.3 Remove node h from Intt.

1.3.4 If Intt is not empty, do step 1.2.

be reached without multi-hop, there may still be nodes in Intt which could not

be connected to Tt using MST. Therefore, as long as Intt is not empty, the al-

gorithm finds the nearest node in Intt to Tt using the BFS algorithm and adds

that node plus all the intermediate nodes to Tt and removes that node from

the list. Again the algorithm repeats by adding more nodes from Intt to Tt tree

using MST if possible. Upon termination, the algorithm returns all the m trees

Tt (t = 1, 2, ...,m).

3.8 Performance Evaluation

We consider an arbitrary network topology with n nodes distributed randomly

in a region with a sink node at the center. We use different number of projec-

tions m and present the average results of five runs to compare between our

methods with different random basis Φ and different random projection nodes

57

in case of eMSTP and OSPN methods.

We start by first evaluating the performance of the mathematical model

(Opt-PCDG) in terms of computation complexity. For this purpose, we consider

a smaller network (n = 50, m = 5) and we use CPLEX to solve the model. We

use two different approaches for solving Opt-PCDG, where in the first, Opt-

PCDG is solved as presented in the previous section and in the second we

consider solving it sequentially, selecting one projection at a time, until all m

projections/trees are determined. Both methods yield the same solution (as

we explained earlier), however the difference being the running time. For the

considered network instance, the first method takes 62 minutes to give back

the solution whereas only 28 seconds are needed in the second approach. When

m = 10, the running times for the first and second approaches are 4:15 hours

and 48 seconds respectively. Therefore, in the rest of this proposal we follow

the sequential approach for solving Opt-PCDG.

Our results in Figure 3.18 for a 100-node network illustrate the benefits of

our proposed methods. Without using any gathering, the number of data trans-

missions in the network is excessively large; for instance, when m = 5, the

Non-CS method performs 169% more transmissions than Opt-PCDG method.

Our results show that eMSTP is far from optimal; in the worst case, eMSTP

showed an 18% gap with the results obtained by the Opt-PCDG method and it

outperforms the Hybrid-CDG by transmitting overall fewer packets. In addi-

tion, OSPN achieves very close results to the Opt-PCDG method with a max-

imum gap of 0.5%. Finally, PB-CDG showed remarkable performance, with

results very close to those obtained by the optimal method (a maximum gap

of 2.5% is observed between their results), but PB-CDG being much more scal-

able than Opt-PCDG and OSPN. For instance, when m = 25, PB-CDG runs in

58

8 milliseconds and OSPN runs in 8 seconds, whereas Opt-PCDG (depending

on Φ) takes between 3 minutes and hours.

One of the advantages of using CDG is its ability to solve the bottleneck

problem and to distribute the transmission load more evenly throughout the

network. Figure 3.19 represents the un-metric Probability Density Function

(PDF) of nodes that transmit particular number of packets in the network; that

means, the fraction of nodes that send one packet (transmission), two packets,

etc. By observing the peak of the curves, we can see that most of the nodes

in eMSTP in average transmit fewer packets in comparison to Non-CS and

Hybrid-CDG. Opt-PCDG, OSPN, and PB-CDG methods respectively distribute

the load more evenly throughout the nodes with less number of transmissions

and hence increase the lifetime of the network.

m = 5 m = 10 m = 15 m = 20 m = 25

Non-CS 467 467 467 467 467

Hybrid-CDG 223 314 365 402 425

eMSTP 179.4 257 325.4 370.4 401.6

PB-CDG 177 244.8 301.8 327.4 346.4

OSPN 174 240.4 295 321 340.2

Opt-PCDG 173 239.4 294.4 320.6 339.6

100

150

200

250

300

350

400

450

500

O
ve

ra
ll

P
ac

ke
t

T
ra

n
sm

is
si

o
n

s

Figure 3.18: Overall number of data transmission (n = 100, different m)

59

Node Transmission
2 4 6 8 10 12 14 16 18

D
e
n
si

ty

0.05

0.1

0.15

0.2

0.25

Non-CS
Hybrid-CDG
eMSTP
PB-CDG
OSPN
Opt-PCDG

OSPN

Non-CS

Hybrid-CDG

Opt-PCDG

eMSTP

PB-CDG

Figure 3.19: PDF for average node transmission of our different algorithms (n
= 100)

3.9 Conclusion

This chapter proposed a projection-based compressive data gathering scheme

by constructing routing trees in a way that minimizes the overall energy con-

sumption and distributes the energy load more evenly throughout the network.

The simulation results showed that our data gathering methods dramatically

increase the lifetime of sensor networks.

60

Chapter 4

Distributed Compressive Data

Gathering (DCDG)

This chapter presents a decentralized method for the compressive data gath-

ering problem (DCDG). The method allows each sensor node to locally make a

decision in constructing and maintaining the forwarding trees and has mini-

mal complexity and overhead with outstanding performance.

4.1 Motivation

All methods presented in the previous chapter are centralized in nature; that

is, initially the sink has to accomplish a topology discovery by retrieving the

network wide information through deploying an all-to-all flooding (whereO(n2)

messages are needed), and then solves the algorithm to construct the forward-

ing trees. Subsequently, for each forwarding tree, the sink sends out notifica-

tion messages to all nodes in the network informing each of its parent node

and children. Clearly, the overhead associated with such centralized approach

makes it difficult to implement in practice. Further, such centralized methods

61

do not respond well to topological changes.

With our centralized method (e.g., PB-CDG), in the case where one or more

nodes leave the network, affecting one or more aggregation trees, one just

needs to reconnect the tree (or trees) which contains that departed node and

does not need to be concerned about the remaining trees. Furthermore, for

reconstructing the affected tree, there is no need to start from its root. It is

enough to join the disconnected interest nodes (caused by a departing node) to

the tree by following the same steps of our algorithm. For example, as illus-

trated in Figure 4.1, if node 23 departs the WSN, four interest nodes (30, 32,

37and 39) will be disconnected from the tree. Hence, we only need to join these

four nodes to the tree and not be concerned about other nodes which are al-

ready connected to the tree. By using our proposed algorithm (PB-CDG), node

30 will be joined to the tree. Nodes 37 and 39 are already attached to node 30

and we do not need to do anything. At last step, as illustrated in Figure 4.2,

we join node 32 to the tree.

However, note that in the case of topological changes as a result of either

nodes getting disconnected and/or links being removed due to poor channel

conditions (fading, shadowing, etc), centralized methods have to collect new

topological information and run to reconstruct the aggregation tree(s). The

overhead of this is quite substantial. Alternatively, constructing the trees

could be done in a distributed manner, without requiring network-wide topol-

ogy information. The distributed method builds upon the deficiencies of cen-

tralized methods, where the computation is local for each node. In this chapter,

we present the distributed approach (DCDG) for constructing the forwarding

trees where each node locally decides its parent node to whom it should trans-

mit its encoded data.

62

S

74

1312119

2218

312726

38

6

15

1

20

28 29

363534

8

24

40

16

3

1917

3025

3933

14

5

21

2

10

37

32

23

Figure 4.1: Forwarding tree example using PB-CDG

S

74

1312119

2218

312726

38

6

15

1

20

28 29

363534

8

24

40

16

3

1917

3025

3933

14

5

21

2

10

37

32

Figure 4.2: Reconstruction of PB-CDG after node failure

4.2 Overview of the Distributed Method

This chapter presents a distributed method for constructing m forwarding

trees. Each forwarding tree connects the interest nodes of one particular pro-

jection to the sink and allow the sink to collect the weighted sum corresponding

to this projection with minimal communication cost. Upon collecting the m en-

coded sums, the sink will recover/decode the original data by solving a convex

problem. Below we describe the method. Initially (Phase 1), the sink starts by

sending a discovery message to its neighbors. Each node, upon receiving the

message, will broadcast it to allow other nodes, not close to the sink, to receive

the discovery message. Hence, each node v will learn its shortest path (Pvs) to

the sink as well as the hop count (hv) along the path. Further, node v gets to

learn its neighbors N(v). Node v upon checking matrix Φ, which is stored in its

63

memory, determines whether node u ∈ N(v) (∀u) belongs to the set of interest

nodes (It) of tree t or not. In Phase 2, each interest node decides its parent on

the uplink path to the sink (details are provided next).

4.3 Description of the Distributed Algorithm

The steps of the method are shown in Algorithm 4.1. As explained earlier,

Phase 1 consists of sending a discovery message to the network such that each

node knows its shortest path and hop count to the sink. In Phase 2, tree con-

struction starts. We explain the construction of one tree t (similar procedure is

repeated for others). Once nodes in the network receive the discovery message,

each node j determines whether it is an interest node or not (j ∈ It). For each

interest node, we assign an attribute to designate its parent interest node (πj)

(note a parent interest node could be a neighbor of j or can be reached through

other relay nodes) and a decision flag (Fj) to indicate whether the parent in-

terest node of j is fixed (Fj = 1 indicates that the parent interest node is fixed).

Lines (7-9) show that every interest node which is a neighbor of the root

selects the root as its parent node. Now, if interest node j (Lines (10-12)) is not

a neighbor of the root, but has an interest node neighbor b with Fb = 1, then j

selects b as its parent interest node and commits its decision (Fj = 1). In the

case where none of the neighboring interest nodes (b) of j has its decision flag

set (i.e., Fb = 0), j will select the neighboring interest node with smaller hop-

count to the sink as its parent interest node (Lines 13-14). Now, when only

interest node neighbors with equal hop-count to the sink as j can be found

(Lines 15-16), j selects the one (b) whose successive parents reach an interest

node with smaller hop-count or decision flag F = 1 or no parent node, and

does not reach node j (to avoid loops). Note that, in this scenario when an

64

Algorithm 4.1 Distributed Compressive Data Gathering
1: Phase 1: Start a Breath-First-Search (BFS) at the sink to disseminate the

discovery message to all nodes: Each node v ∈ G learns its shortest-path(s)
(Pvs, s = root) to the root and hop-count hv.The parameters and variables
used by the algorithm are defined in Section IV.

2: Phase 2:
3: for each tree Tt, t = 1, 2, ...,m do
4: Identify the set of interest-nodes It ⊆ V for tree Tt.
5: Set Fj = 0 ∀j ∈ It.
6: for j ∈ It(j = 1, 2, ..., ⌈ n

m
⌉) do

7: if root ∈ N(j) then
8: πj = s; (s = root)
9: Fj = 1 ;

10: else if b ∈ N(j) AND b ∈ It AND Fb = 1 then
11: πj = b;
12: Fj = 1 ;
13: else if b ∈ N(j) AND b ∈ It AND hb < hj then
14: πj = b ;
15: else if b ∈ N(j) AND b ∈ It AND hb = hj AND successive parents of

b reach a parent node with smaller hop-count or F = 1 or non-parent
and do not reach j then

16: πj = b ;
17: else
18: Run BFS from j in a radius equals to hj − 1.
19: if we found interest-node(s) in this radius then
20: Connect j to nearest interest-node through shortest path.
21: else
22: Connect node j through its shortest path to the root.
23: end if
24: end if
25: end for
26: Repeat lines (6-25) until there are no changes in Fj.
27: end for

65

interest node chooses a parent with equal hop-count, it has to keep a record

of its successive parents, and in case of node or link failure, it has to notify

its child for any updates in route decisions. If none of the above conditions

is satisfied, j runs a BFS (Breath-First-Search) to explore its neighborhood of

radius hj − 1 in search for an interest node b with smaller hop count to the

sink otherwise, for an interest node whose decision flag Fb = 1 (Lines 18-20).

Node j avoids selecting interest nodes b whose πb = j to avoid loops. Finally,

if no interest node is found, j connects itself directly through a shortest path

to the sink (this path is known from the discovery phase). Interest nodes with

Fj = 0 repeat the above procedure (Lines 6-25) until no more changes in their

flag attributes Fj.

4.4 Illustrative Example

Before we illustrate, we note that upon completion of Phase 1 of the algorithm,

each sensor node locally executes Lines (6-25) to cooperate in the construction

of the forwarding tree. Now, we illustrate the operation of the algorithm on

a sample network shown in Figure 4.3. Note that here each node is assumed

to be connected to all neighboring nodes with a link of normalized distance

(unitary distance) and the hop count is used to compute the path length from a

source node to the destination. Gray nodes are the interest nodes which need

to be connected through an efficient forwarding tree to the sink (black square

S). Next, for each interest node j in the network, we show the value of πj and

Fj.

Upon completing the discovery phase, each interest node locally determines

its parent node in the forwarding tree as follows (note that all interest nodes

simultaneously are executing the process of Phase 2). Being a neighbor of the

66

S

54321

109876

1514131211

2019181716

F=1

F=0

F=0F=0F=0

F=0

π=S

π=4

π=10π=15π=12

π=4

(a) After first iteration of each
node. Total transmissions = 7.

S

54321

109876

1514131211

2019181716

F=1

F=1

F=1F=1F=1

F=1

π=S

π=4

π=10π=15π=12

π=18

(b) After second iteration of each
node. Total transmissions = 6.

S

5321

9876

141311

201716

F=1

F=1

F=1F=1

F=1

π=S

π=4

π=10

π=18

4

10

1512

19
π=12
18

(c) Node 19 departs the network.

S

54321

109876

1514131211

2019181716

F=1

F=1

F=1F=0

F=0

π=S

π=4

π=10π=12

π=4

(d) upon node failure.

Figure 4.3: DCDG example

sink, node 4 sets π4 = s and F4 = 1. Node 10, having received the discovery

message(s) from the sink through node 4, will (by Lines 13-14) sets its parent

node to 4 (π10 = 4). Node 10 then sends a notification message to its parent

(node 4) to notify it of its decision and that it will transmit its data to the

sink through it (here, node 4 will encode the received data with its own before

forwarding to the sink). Node 4 sends back a message to its child (node 10)

informing it that its decision flag F4 = 1 and subsequently, node 10 sets its

decision flag F10 = 1. Similar decisions are made for nodes 15 and 19. Note

that once Node 10 sets its F10, it will communicate with node 15 and this node

sets its F15 = 1 which in turn does the same with node 19. Now, node 18 at first

iteration (Figure 3(a)) receives discovery messages from nodes 12 and 19, but

(Lines 13-14) selects node 12 as its parent node (π18 = 12) since node 12 has a

67

smaller hop count to the sink. Note, however, when node 19 informs node 18

(being its neighbor) that its flag is set F19 = 1, in the second iteration (Figure

3(b)), node 18 (Lines 10-12) switches its parent node to node 19 (π18 = 19) and

fixes its flag (F18 = 1). It is to be noted that node 18 opted to use a longer route

(through node 19) to the sink over the shorter path through node 12 as this

achieves better aggregation gain. Finally, node 12 in the first iteration runs a

BFS in its neighborhood of radius h12− 1 to discover interest node 4 and sets it

as its parent interest node (π12 = 4). Node 12 (being a neighbor of node 18) will

receive a notification that node 18 had fixed its decision flag, therefore, in the

second iteration (using Lines 10-12) it switches its path to the sink by selecting

node 18 as its parent node (π12 = 18) and sets its decision flag (F12 = 1). As

mentioned above, this decision is guided by the data gathering benefits along

this route. We should note that each node runs the DCDG algorithm only

once, unless it receives a notification message from its neighbors (e.g., upon a

change in a flag value), or following a node (or link) failure (due to mobility or

channel impairments)) occurring in the network triggering route maintenance.

In both cases, the node runs the algorithm to decide a new route to the sink by

selecting a new parent node.

We illustrate the route maintenance in Figure 3(c). Upon the failure of node

19, both nodes 18 and 12 will be disconnected from the forwarding tree. Node

18 runs the algorithm and informs interest-node 12 that it has been selected

as its parent interest node and sets F18 = 0. Node 12 after receiving a message

from node 18 learns about the changes and runs the algorithm locally and

selects interest node 4 as its parent interest node (Lines 18-20 of Alg. 4.1) and

sets F12 = 0; after recovering from node failure, the new forwarding tree is

shown in Figure 3(d).

68

4.5 Loop Free Tree Construction

In this section, we illustrate through examples that our distributed algorithm

may not cause routing loops in case of node failure. Consider an example where

nodes A, B and C are neighbors with each other, and they all use node D as

their parent node. When node D fails/dies, they all need to find a new parent.

It is very important that the DCDG algorithm will not allow the three nodes

to choose new parents such that a routing loop occur (i.e., A connects to B, and

B connects to C, and C connects to A).

In a case where nodesA, B and C (say after node failure) have different hop-

distances to the sink through alternative shortest-paths (not through node D),

there will not be any possibility for a loop as illustrated in Figure 4.4. Nodes A

and B will choose neighbour interest-node C as their parent since node C has

smaller hop-distance to the sink (i.e, hC < hA and hC < hB), and node C will

not choose any of nodes A or B because they have smaller hop-count. Note that

each node at the first phase by receiving the discovery message from neigh-

bours in different direction knows all the shortest-path(s) and hop-distances

to the sink. Therefore, it does not require to receive a discovery message again

in case of node failure.

Now, in case when after the failure of node D, all the neighbour nodes A,

B and C have the same hop-distance to the sink, a loop only might happen

however when the set of nodes have to choose neighbour parent-nodes with

equal hop-distance to the sink. But, according to DCDG algorithm (Lines 15-

16), a node (j) selects an interest-node parent whose successive parents reach

an interest node with smaller hop-count or decision flag F = 1 or no parent

node, and does not reach node j. This condition avoids all the loop possibilities.

In example of Figure 4.5, when node D fails, node A may choose node B as its

69

S

F

C

D

A

B
hA=7

hB=7

hC=7

hD=6

hF=2

E
hE=6

(a) Before node failure.

S

F

C

D

A

B
hA=8

hB=8

hC=7

hF=2

E
hE=6

(b) After node failure.

Figure 4.4: There is no possibility for loop when neighbor interest nodes have
different hop-distance to the sink. Line represents the link, dark and dashed
flashes represent the forwarding tree’s routes for link and path respectively. h
represents the hop-distance to the sink for each node.

parent, and node B may choose node C, but node C can not choose node A,

since node A has successive parents which reach node C. Therefore, node C

runs BFS (Breadth-First-Search) in search for an interest node with decision

flag F = 1 or smaller hop-distance to the sink.

S

C

D

A

B
hA=7

hB=7

hC=7

hD=6

(a) Before node failure.

S

CA

B
hA=7

hB=7

hC=7

X

(b) After node failure.

Figure 4.5: Example of recovery after node failure.

Now, let us consider a network topology where 10 interest nodes are sequen-

tially neighbours with each other around the sink with seven hop-distance

70

S

h6=7

h7=7

h8=7

h10=7

h1=7

h9=7

h5=7

h4=7

h3=7

h2=7
1

9

2

4

6

10

3

8

75

(a) Network topology

S

h6=7

h7=7

h8=7

h10=7

h1=7

h9=7

h5=7

h4=7

h3=7

h2=7
1

9

2

4

6

10

3

8

75

(b) Forwarding tree example 1.

S

h6=7

h7=7

h8=7

h10=7

h1=7

h9=7

h5=7

h4=7

h3=7

h2=7
1

9

2

4

6

10

3

8

75

(c) Forwarding tree example 2

Figure 4.6: A sequential neighbor nodes topology example in DCDG

away as illustrated in Figure 4.6, and all the nodes do not have any other

neighbour interest nodes with smaller hop-distance to the sink or decision flag

F = 1. In this scenario, by running the distributed algorithm we might have

different forwarding trees (for example Figures 6(b) and 6(c)), but clearly there

are not possibilities for having loops.

71

4.6 Message Overhead Analysis

In the sequel we present the message overhead analysis of both centralized

and distributed methods; first we clarify how the centralized and decentralized

algorithms calculate the message overhead.

The following steps represent the calculation of message overhead in De-

centralized Compressive Data Gathering:

1. Discovery phase: the sink initiates (broadcasts) a network discovery pro-

cess, which may take up to n messages.

2. If an interest-node has neighbour interest-node(s) and assigns one of its

neighbour interest-node as its parent node, then the node needs to send

only one message to its parent to notify the parent of its decision.

3. In case where an interest-node i does not have a neighbour interest-node

to choose for its parent interest-node, the overhead is computed as fol-

lows:

a) Node i sends out a discovery message calling for interest-nodes for

tree t in a radius equal to hi − 1 (hi is a hop distance from node i to

the sink). Nodes, by receiving this discovery message, if they are in

a radius hi−2, forward the message to their neighbours. In this step,

in total Ri messages are required, where Ri is the number of nodes

in radius hi − 2.

b) Only nodes in radius hi − 1 that belong to set of interest-nodes for

tree t send message (containing; node-ID, identification-flag (F), hop-

distance to node i and hop-distance to the sink (hj)) through shortest-

path to node i. This step takes a number of messages equals to the

72

number of interest-nodes in radius hi plus the number of hops in

their way to node i.

c) Node i, after running the DCDG algorithm and choosing its parent

interest-node, sends a notification message in shortest-path to the

chosen interest-node, which consumes a number of messages equals

to the number of hops in its shortest-path.

The following steps represent the calculation of message overhead in Cen-

tralized Compressive Data Gathering:

1. n messages are needed for the sink to broadcast the discovery message to

all nodes in the network.

2. To obtain the network topology at the sink, each node in the network,

based on the number of neighbours it has, sends out information mes-

sages to the sink. This step for obtaining the network topology takes a

number of messages equals to the number of nodes in the network plus

the number of neighbours for each node and the hop-distances to the sink.

3. After running the centralized algorithm at the sink and constructing m

trees for compressive data gathering, the sink sends out a message to

each node participating at each three t through shortest-path notifying

of forwarding trees. This step consumes a number of messages equals to

the number of trees m into the number of nodes participating in each tree

t plus their hop-distances to the sink.

Now, to make the analysis more simple, we use a linear network. Note

that the linear network is the worst case for the decentralized method and

best case for centralized method. That is because the number of neighbours

73

for each node in the linear network is minimum (advantage for centralized

algorithm) and the discovery radius for most of the nodes in decentralized al-

gorithm is very big in case where they do not have a neighbour interest-nodes

(disadvantage for decentralized method).

First, we calculate the number of message overhead on a linear network

shown in Figure 4.7, later we show the analysis for network of size n and

m number of projections. In the linear network, to get the worst case for the

decentralized algorithm, we let each interest-node to be as far away as possible

from others by making the distances between any two interest-nodes equal to

m. In the example of Figure 4.7, the white and dark nodes represent two

different sets of interest-nodes (trees). In the graph n = 6 and m = 2.

1 2 3 4 5 6Sink

Figure 4.7: Linear Network Example

The message overhead computation and analysis of the given example for

centralized and decentralized methods are given in Appendices A and B re-

spectively.

To compare the message overhead between these two methods, we have to

consider the relation between the values n and m. Based on the compressive

sensing technique [20], m = C.k. log(n), where C is a constant value and k is

the sparsity representation of the data. In our numerical results, the smallest

value of m used is equal to 5% of n (i.e.; m = n
20

). If we let m = n
20

, the message

overhead for both methods become as in (4.1) and (4.2), where the overhead in

centralized method growths sharper than decentralized method as the number

of nodes increases (refer to Figure 4.8). Based on our presented analysis and as

74

the Figure 4.9 shows for linear network, when m ≥ 5
100
n, decentralized beats

centralized method. Note that we emphasize here that the linear network

is the worst case for the decentralized method and best case for centralized

method.

Total Centralized Message Overhead(m = 10%n) =
1141n3

24000
+

439n2

400
+

31n

30
− 1

(4.1)

Total Decentralized Message Overhead(m = 10%n) <=
857n2

160
+
73n

8
− 80

n
+
1571

6

(4.2)

100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

Number of nodes (m=5%n)

M
es

sa
g

e
O

ve
rh

ea
d

Centralized
Decentralized

Figure 4.8: Message overhead analysis for different number of nodes

It should be noted that in a linear network the message overhead difference

between the centralized and distributed method is minimum and as we change

the network topology the variance increases. This is why the linear network

is the best for the centralized method and worst for the decentralized method.

To further clarify, consider the two uniform mesh network examples shown in

Figures 4.10 and 4.11. The number of control messages required to construct

the forwarding trees in Figure 4.10 for centralized method is 288 and for de-

centralized method is 48 messages, and in linear network the centralized and

decentralized methods require 1751 and 1274 control messages respectively.

75

1 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

The % of m to n

M
es

sa
g

e
O

ve
rh

ea
d

Centralized
Decentralized

Figure 4.9: Message overhead analysis for different number of projections

The overhead differences between the centralized and decentralized methods

in uniform network is %83.33 and in linear network is %27.24. Similarly, for

Figure 4.11, the number of messages needed to construct the forwarding trees

in uniform and linear networks for centralized (decentralized) method is 928

(304) and 11,191 (8,998) with %67.24 and %19.6 differences respectively. The

reason that the linear network gives the smaller overhead gap between the

centralized and decentralized method is that the number of neighbours for

each node in the linear network is minimum (which is an advantage for the

centralized algorithm) and the discovery radius for most of the nodes in de-

centralized algorithm is very big in case where they do not have a neighbour

interest-nodes (a disadvantage for the decentralized method). But in a uniform

or arbitrary network, each node in the decentralized method has more chances

to have a neighbour interest node and the nodes which do not have a neigh-

bour interest node, their discovery radius is not as large as most of the nodes

in the linear network. Therefore, based on the current numerical results, the

linear network gives the worst results for decentralized method and best for

centralized method compared to other network topologies.

76

S

(a) Network topology

S

(b) Forwarding trees

Figure 4.10: Constructing forwarding trees for mesh network with n = 24 and
m = 2. Each set of interest nodes and forwarding tree have a unique color and
unique line.

S

(a) Network topology

S

(b) Forwarding trees

Figure 4.11: Constructing forwarding trees for mesh network with n = 48 and
m = 4. Each set of interest nodes and forwarding tree have a unique color and
unique line.

77

4.7 Numerical Results

We present simulation results to evaluate the performance of our distributed

method and compare with other compressive data gathering (namely, Hybrid-

CDG [81], PB-CDG and Steiner-CDG method) using metrics such as transmis-

sion cost and message overhead.

In Steiner-CDG method, forwarding trees are constructed using minimum

Steiner tree algorithm [49]. The minimum Steiner tree problem is to connect

a set of interest nodes I ⊂ V such that the connected spanning tree has a min-

imum total distance on its edges. Algorithm 4.2 presents steps of the Steiner-

CDG method. The algorithm takes O(ρn2) to construct one tree, where ρ is

the number of interest nodes. In total, the time complexity of the algorithm to

construct m trees is O(mρn2).

Algorithm 4.2 Steiner-CDG
Require: Graph G, Matrix Φ.
Ensure: Set of trees T = {T h

1 , T
h
2 , ..., T

h
m}.

1 For each projection t (t = 1, 2, ...,m) do:

1.1 Construct the undirected distance graph G1
i =< Si, Ei, d > that contains

only interest nodes Si, where Ei is the set of links between two interest
nodes with d hops away from each other.

1.2 Find the MST t1i from G1
i .

1.3 Construct the graph G2
i from G by replacing each edges in t1i by its cor-

responding shortest path in G.

1.4 Find the MST t2i from G2
i .

1.5 Construct tree thi from t2i by removing leaf nodes which are not interest
nodes with their edges in a way that all leaves in thi are interest nodes.

We consider arbitrary connected networks where nodes are generated and

distributed randomly in a 700 × 700 unit field using the uniform distribution

78

and we assume all the nodes have unique communication range. In our sim-

ulation, we change the node density and we average the results over ten runs

with different random sample matrices Φ (our results are shown with 95% con-

fidence interval). Figures 4.12 and 4.13 show the overall number of transmis-

sions (cost) vs number of projections (m) and node density respectively. Clearly

Non-CS incurs the highest cost followed by Hybrid-CDG since this method did

not exploit projection based gathering, rather it only relied on constructing

one forwarding tree to collect all weighted sums. PB-CDG achieves minimal

transmission cost with Steiner-CDG being close to it (difference of 2.1% in Fig-

ure 4.12 and 2.5% in Figure 4.13). DCDG differs from the previous methods

in that it is completely distributed but yet achieves very close performance

to PB-CDG and Steiner-CDG with maximum gap of 3.8% and 7.5% in Figure

4.12 and Figure 4.13 respectively. Observe that a lower compression ratio (i.e.,

higher m) in Figure 4.12 results in a higher number of transmissions (cost)

than when the compression ratio is high (i.e., lower m) and this is due to the

fact that a higher m means more projections and therefore more transmissions

in the network to collect the weighted sums. Finally, we compare the over-

head incurred by DCDG and PB-CDG for constructing the forwarding trees

and the results are depicted in Figure 4.14 for different network sizes. The

figure clearly shows that DCDG has a lower communication overhead than

PB-CDG and both methods have an overhead that grows polynomially with

the size of the network (the analysis is beyond the scope of the letter). DCDG

enjoys an overhead that is 53% to 65% less than PB-CDG.

79

150

200

250

300

350

400

450

500

m = 5 m = 10 m = 15 m = 20 m = 25

Tr
an

sm
is

si
on

 C
os

t

Number of projections, (n=100 nodes)

Non-CS

Hybrid-CDG

DCDG

Steiner-CDG

PB-CDG

Figure 4.12: Different number of projections Vs. transmission cost (DCDG)

0

500

1000

1500

2000

2500

3000

3500

100
(5.25)

200
(11.23)

300
(16.79)

400
(22.68)

500
(28.95)

600
(33.08)

700
(38.94)

800
(46.37)

900
(50.61)

1000
(56.69)

Tr
an

sm
is

si
on

 C
os

t

Number of nodes (density), m=n*10%

Non-CS

Hybrid-CS

DCDG

Steiner-CDG

PB-CDG

Figure 4.13: Different network Density Vs. transmission cost (DCDG)

80

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Number of nodes (n), m=n*10%

N
um

be
r

of
 m

es
sa

ge
s

PB−CDG
DCDG

Figure 4.14: Message Overhead Vs. number of nodes (DCDG)

4.8 Conclusion

We proposed an efficient distributed CDG scheme where each sensor node in-

dependently finds its parent node and constructs part of the routing tree with-

out requiring a central unit to construct all the forwarding trees. Through

simulations we showed that DCDG performs (in terms of transmission cost)

very close to the best centralized methods but outperforms them in terms of

communication overhead.

81

Chapter 5

Network-Coding Aware

Compressive Data Gathering

(NC-CDG)

In this chapter we investigate the joint application of compressive sensing

(CS) and network coding (NC) to the problem of energy efficient data gath-

ering in wireless sensor networks. We consider the problem of optimally con-

structing forwarding trees to carry compressed data to projection nodes; each

compressed data refers to a weighted aggregation (or sum) of sensed mea-

surements from network sensors collected at one projection node. Projection

nodes then forward their received compressed data to the sink, which sub-

sequently recovers the original measurements. This aggregation technique

based on compressive sensing is shown to reduce significantly the number of

transmissions in the network. We observe that the presence of multiple for-

warding trees gives rise to many-to-many communication patterns in sensor

networks which in turn can be exploited to perform network coding on the

compressed data being forwarded on these trees. Such technique will further

82

reduce the number of transmissions required to gather the measurements,

and consequently result in a better network-wide energy efficiency. The chap-

ter addresses the problem of network coding aware construction of forward-

ing/aggregation trees. We present a mathematical model to optimally con-

struct such forwarding trees which encourage network coding operations on

the compressed data. Owing to its complexity, we further develop algorithmic

methods (both centralized and distributed) for solving the problem and ana-

lyze their complexities. We show that our algorithmic methods are scalable

and accurate, with worst case optimality gap not exceeding 3.96% in the stud-

ied scenarios. We also show that when both network coding and compressive

data gathering are considered jointly, performance gains (reduction in num-

ber of transmission) of up to 30% may be attained. Finally, we show that the

proposed methods distribute the work load of data gathering throughout the

network nodes uniformly, resulting in extended network life times.

5.1 Network Coding Model

Network coding, originally developed by [1], has shown to yield substantial

increase in the throughput of both wired and wireless networks both for mul-

ticast and unicast sessions [71, 72]. The basic idea of network coding is that a

relay node combines several packets, which are intended for various receivers,

into one packet and broadcasts it. Provided that each recipient has a priori

knowledge of other packets (through overhearing), it can decode the desired

packet from the aggregate packet. Therefore, the relay node is capable of for-

warding more data within one transmission which eventually improves the

overall throughput and reduce the cost of communications. In our work, we

consider a simple network coding mechanism [47] where packets are linearly

83

coded through a simple operation (e.g., modulo-2 or XOR addition). We fur-

ther assume that each coded packet is decodable at the next hop of a broadcast

transmission. Another type of network coding, which is worth mentioning, is

analog NC, which is a physical-layer technique and was introduced and dis-

cussed in [45]. Although analog NC seems simple to implement, this tech-

nique has many disadvantages (e.g., noise amplification, as the need to deal

with symbol, phase, and frequency synchronization [46,58].

Several coding topologies/structures can be constructed in the network for

relaying the traffic (see Figure 5.1). In each coding structure, an edge node is

a transmitter and/or receiver of different packets. A recipient edge node must

know any uncoded packet except its desired one through either: 1) overhear-

ing the link through which the packet was transmitted, or 2) being its previ-

ous transmitter. Coding structures constructed based on the former scheme of

obtaining knowledge, are referred to as network coding with opportunistic lis-

tening, while the latter one is known as network coding without opportunistic

listening in the literature [47]. In any particular coding structure, the node re-

sponsible for combining native received packets from other nodes in the same

coding structure (edge nodes), is referred to as the relay node. We denote that

in each coding structure, only packets from different flows can be encoded to-

gether. Figure 5.1 illustrates various coding structure, constructed based on

the above rules, which we explain as follows.

Chain structure

Here, two packets from two flows traversing in reverse directions are coded

without opportunistic listening (Figure 1(a)). For instance, relay node C upon

84

C

B

A

(a) Chain

D

C

B

A

(b) Bell

E

C

B

D

A

(c) X

Figure 5.1: Different coding components. Solid lines show intended trans-
mission links and dashed lines show overhearing links. Note: Links are not
necessarily symmetric.

receiving packets from both A and B (e.g., in two consecutive time slots) per-

forms XOR operation and broadcasts the coded packet for both nodes A and

B (in the third time slot). These two edge nodes subsequently can decode the

coded packet by XORing it with their own native one to extract their desired

packet. This coding structure reduces the required number of transmissions

from 4 to 3, which is a 25% improvement [47].

X structure

A maximum of two packets which are sent in two consecutive time slots and in-

tersecting at the relay node, are encoded (Figure 1(b)). The destination of each

packet obtains the other unintended native packet by listening to its transmis-

sion (opportunistic listening). Later, the overheard packet is used to decode the

intended packet. The performance of X component is similar to the Chain and

provides 25% improvement by reducing the required number of transmissions

in the network from 4 to 3.

Bell structure

A maximum of two packets are encoded where only one of the destinations

obtains its unintended packet through opportunistic listening (Figure 1(c)).

85

As with the previous coding structures, this structure reduces the number of

transmissions by 25%.

5.2 Problem Description and Motivation

Given a connected graph G of n nodes (sensors), a sink, and a sparse matrix

Φ, our problem consists of finding m forwarding trees to collect measurements

from n sensors in the most energy efficient manner; each tree Tt corresponds to

one projection which gathers one weighted sum zt from interest nodes (nodes

with non-zero coefficients in a corresponding row of matrix Φ) at a random

projection node Pt as explained in Section 3.2 for MSTP method. Here, our ob-

jective is to construct those trees such that the total number of transmissions

in the network is minimized, by exploiting both projection based compressive

data gathering and network coding techniques. Note that, similar to [73] the

projection nodes are selected randomly (for example, can be considered as a

priori knowledge for the entire network). However, selecting the appropriate

projection nodes may have different impact on the number of data transmis-

sions, but require more time, energy and efforts to find the most appropriate

ones. We have studied the problem of finding the best projection nodes with-

out considering the NC in Section 3.5, where, with the presence of NC, this

problem is beyond the scope of this thesis.

Clearly, the existence of forwarding trees creates opportunities for many-

to-many traffic patterns which can be exploited to perform network coding on

the (compressed) traffic belonging to different projections. Here, we distin-

guish between forwarder nodes and interest nodes. Interest nodes are those

involved in data aggregation; that is, those nodes whose random coefficients

are not zero and thus prior to forwarding the received aggregate/compressed

86

data received from downstream nodes, they combine their own measurement

readings (as explained before) and then forward the aggregate data to their

parents. Forwarder nodes, on the other hand, are those nodes whose random

coefficients are zeros (for a particular projection), and thus they simply forward

the received downstream data without doing any aggregation functions. Such

forwarder nodes if they appear on more than one forwarding tree (or if for-

warding trees are constructed in a way to include such forwarder nodes), they

can perform network coding on the traffic flowing through the corresponding

trees. We illustrate in the following example.

Consider the scenario shown in Figure 5.2, where projection node 9 needs

to gather data from nodes 2 and 5, and similarly projection node 1 requires to

gather data from nodes 4 and 8. The data for both projections may be gathered

as shown in Figure 2(a), where two trees are constructed (optimal construction

of trees is used [21]), tree 1 (dashed arrows) contains 7 links and thus requires

7 transmissions and tree 2 (dark arrows) requires 6 transmissions. In total,

7+6 = 13 transmissions are required to gather the data for the two projections.

Figure 2(b) shows a different construction of the trees which benefits from

the existence of two coding components, namely a chain and a X structure at

nodes 7 and 3 respectively. Traffic forwarded on both trees is network-coded

(e.g., using XOR operations, as discussed earlier) at these forwarder nodes; for

instance, it can be easily observed that the chain (6-7-8) reduces the number

of transmissions by 1. In total, 11 transmissions are needed to gather the data

from the interest nodes for the two projections, a total gain of 15.38% over the

previous solution where network coding is not considered. The gain achieved

using this simple method motivated us to study the optimal construction of

network coding-aware aggregation trees.

87

1

9

4

7

15
13

5

16

6 8

10

2

3

14

11

12

(a) Total number of transmissions: 13

1

9

4

7

15
13

5

16

6 8

10

2

3

14

11

12

(b) Total number of transmissions:11

Figure 5.2: Data transmission scenario with and without network coding.

It should be noted here that the m projection nodes may be selected at

random with a probability m
n

[73]; alternatively, the position of the projec-

tion nodes may be part of the design problem but their optimal selection is

beyond the scope of this thesis. We assume in our work such positions are pre-

determined. In this work, we do not make any particular assumption about the

link scheduling method; once forwarding trees are constructed, we assume any

scheduling approach (e.g., TDMA-like or random-like) may be used to activate

the wireless links connecting the adjacent sensors.

88

5.3 Optimal Tree Construction

In this section, we present a mathematical formulation for the problem of

optimal construction of forwarding trees as a mixed integer linear program

(MILP). Each tree connects a set of interest nodes to one pre-selected projec-

tion node; the projection node collects a weighted sum of measurements from

the interest nodes through compressive data gathering. The trees are con-

structed to exploit network coding on weighted sums from different sets of

interest nodes. We refer to this model as coding aware compressive data gath-

ering. Projection nodes transmit the received weighted sums on shortest paths

to the sink, which upon receiving all weighted sums, will decode to obtain the

original data measurements. Our objective is to perform data collection in the

most energy efficient manner, or alternatively, using the minimum number of

transmissions.

The notations used throughout this section are listed in Table 6.1. Let T

be a set of m trees and ztij be a binary variable indicating whether there is an

edge between nodes i and j in tree t. Let xtij be a variable which represents the

flow of traffic between nodes i and j in tree t. Let Pt denote a projection node

(i.e., the root of tree t) and It denote the set of interest nodes for tree t. That

is, It = {nodes with non-zero coefficients φti, i = 1, 2, ..., n}, t = 1, 2, ...,m. Let

Ci denote the amount of network coding at node i; for example, Ci represents

the number of times node i performs network coding on the traffic/packets

traversing through it. Then, our objective is to construct trees that minimize

the number of transmissions, which can be achieved by simultaneously min-

imizing the total number of edges in each of the m trees and maximizing the

89

Table 5.1: Notation Used in the Optimization Model of NC-CDG
V Set of nodes in the network.
E Set of edges in the network.
n Total number of nodes.
m Total number of projections.
lij The directed link connecting node i to j.
Γjik The directed segment connecting node j to k through node i.
xtij The amount of flow on link lij and tree t.
ztij Indicating whether link lij in tree t is active.
Pt The projection node (root) for tree t.
It The set of interest nodes for projection or tree t.
T The set of m forwarding trees.
btj Indicating whether node j in tree t has more than one child.
f t
ij Indicating whether link lij in tree t is a forwarder link

(i.e., node j in tree t has only one child i).
Fj The number of forwarder links to node j .
wt

jik Indicating whether segment Γjik in tree t is a forwarder-segment
Wjik Total amount of forwarder-segments traversing the segment Γjik

N(i, j) Parameter indicating whether nodes i and j can hear each other
p(i) Set of segments that traverse intermediate node i
ckik

′

jij′ The number of times node i has been intersected by two directed
forwarder segments Γjij′ and Γkik′.

Ci The total number of network coding instances at node i.

number of possible network coding at each (forwarder) node:

Minimize
m∑
t=1

∑
(i,j)∈E

ztij −
n∑

i=1

Ci (5.1)

Flow conservation constraints:

The flow conservation stats that at each node the total incoming flow plus the

flow originating at the current node equals the total outgoing flow. The follow-

ing constraints force all interest nodes (in It) belonging to one tree (projection)

90

to have each one flow to a projection node Pt:

∑
j:(i,j)∈E

xtij −
∑

j:(j,i)∈E

xtji =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−It, i = Pt;

1, ∀i ∈ It;

0, otherwise.

∀t ∈ T (5.2)

Connectivity constraints:

These constraints create the relation between flow variables xtij and link vari-

ables ztij. The edges which have positive flows are indicated as tree links. This

implies that xtij = 0⇔ ztij = 0 and xtij > 0⇔ ztij = 1. Therefore, we have:

⎧⎪⎨⎪⎩
xtij − ztij ≥ 0

ztij −m−1xtij ≥ 0

,∀(i, j) ∈ E , ∀t ∈ T (5.3)

Transmission constraint:

This constraint asserts that each node should have a maximum of one trans-

mission (i.e., outgoing edge) in each tree to avoid loops.

∑
j:(i,j)∈E

ztij ≤ 1 ,∀t ∈ T (5.4)

Directional constraint:

Links in each tree must have only one direction. The following constraint

forces each edge to have a maximum of one direction in each tree.

ztij + ztji ≤ 1 ∀(i, j) ∈ E , ∀t ∈ T (5.5)

91

Next we present the constraints necessary to find the amount of traffic to be

coded at each forwarder node. Such forwarder nodes are referred as relay

nodes in the rest of the chapter.

Constraints to find forwarder links to relay nodes:

We start by identifying all the links (transmissions) to relay nodes which are

not going to be used for compressive coding/gathering but rather such trans-

missions are intended to be forwarded by relay nodes to next (parent) nodes.

Such links are referred to as forwarder-links.

Let the binary variable f t
ij denote whether the link between two nodes i and

j on tree t is a forwarder-link or not. A link lij in tree t is a forwarder-link for

node j if node i is the only child for j. In other words, when link lij is the only

incoming edge to node j in tree t, this link is a forwarder-link since there are no

other transmissions incoming to node j which should be combined (gathered

using compressive sensing method) with the transmission or packet arriving

from node i. Let btj be a binary variable which indicates whether the number

of links of tree t incoming at node j is greater than one or not. btj is defined as

follows:

btj =

⎧⎪⎨⎪⎩
1, if

∑
i∈V z

t
ij > 1

0, otherwise.

(5.6)

Using Linear Programming (LP) notations, the constraints for finding btj

are as follows: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
btj ≤

∑
i∈V z

t
ij

btj ≤ |
∑

i∈V z
t
ij − 1

m
|

btj ≥
∑

i∈V ztij−1

m

,∀j ∈ V , ∀t ∈ T (5.7)

92

Now, an edge lij in tree t is a forwarder link (i.e., f t
ij = 1) if the number of

incoming links to node j in tree t is not more than one (i.e., bj = 0) and edge lij

is a selected link for tree t (i.e., ztij = 1) and node j is not the projection node Pt

(i.e, the root of t) or any of the interest nodes in It. The variable f t
ij indicating

whether lij is a forwarder-link is defined as follows:

f t
ij =

⎧⎪⎨⎪⎩
1, if btj = 0, ztij = 1, j ̸∈ {It&Pt}

0, otherwise.

(5.8)

The corresponding LP constraints are:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f t
ij ≤ ztij

f t
ij ≤ 1− btj

f t
ij ≥ ztij − btj

,∀(i, j) ∈ E , j ̸∈ {It, Pt} ,∀t ∈ T (5.9)

Therefore, the total number of forwarder-links for node j can be obtained

by summing all the forwarder-links coming to node j on all forwarding trees:

Fj =
∑
t∈T

∑
i∈V

f t
ij ,∀j ∈ V (5.10)

Forwarder-segment constraints:

The term forwarder-segment is defined as a two-hop path or segment of a path

on a tree that a packet is expected to traverse. This segment contains a re-

lay node that will simply forward the incoming traffic without any aggrega-

tion function; such node may be exploited to perform network coding on the

transiting traffic/transmissions. Let wt
jik be a binary variable which indicates

whether the segment Γt
jik in tree t is a forwarder-segment or not (j and k are

93

child and parent nodes respectively of i and i is a relay node). Then, wt
jik = 1

for a forwarder-segment and 0 otherwise. Γt
jik is a forwarder-segment if both

f t
ji and ztik are simultaneously 1. Here, f t

ji = 1 implies we have an incoming

forwarder-link to node i, and ztik = 1 indicates an outgoing link from node i to

node k. The mathematical constraints for a forwarder-segment are:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
wt

jik ≤ f t
ji

wt
jik ≤ ztik

wt
jik ≥ f t

ji + ztik − 1

,∀
(i, j) ∈ E

(i, k) ∈ E
,∀i ∈ V ,∀t ∈ T (5.11)

Summing over all forwarding trees, we obtain the number of forwarder seg-

ments traversing the structure Γjik in the network. Let Wjik be such number:

Wjik =
∑
t∈T

wt
jik ∀(j, i) ∈ E , ∀(i, k) ∈ E (5.12)

Network Coding participation constraints:

Let p(i) denote the set of segments which traverse intermediate node i (for

example, ΓAiB or ΓBiA in Figure 5.3). Let N(i, j) (a binary parameter) denote

whether two nodes i and j can listen to each other’s transmissions. That is:

N(i, j) =

⎧⎪⎨⎪⎩
1, if i = j or i and j are neighbours

0, otherwise.
(5.13)

Both parameters p(i) and N(i, j) are computed offline for a given connected

graph .

Let ckik′jij′ denote the number of times a node i has been intersected/crossed

by two directed forwarder-segments Γjij′ and Γkik′ (i.e., there is a likelihood of

94

network coding at i). The following give the coding participation constraints

for any two segments intersecting at i:

⎧⎪⎨⎪⎩
ckik

′

jij′ ≤ Wjij′ .N(j, k′)

ckik
′

jij′ ≤ Wkik′ .N(k, j′)

∀
(j, i, j′) ∈ p(i)

(k, i, k′) ∈ p(i)
,∀i ∈ V (5.14)

Constraints (5.14) assert that when two forwarder-segments Γjij′ and Γkik′

intersect at intermediate node i, then if two nodes j and k′, as well as k and j′,

can listen to each other’s transmission, node i may perform network coding on

the traversing traffic.

Amount of network coding at each node:

Figure 5.4 and Figure 5.3 show two different network coding opportunities

with and without opportunistic listening respectively. The tables next to the

figures show the different values that variable c can obtain. Clearly, for each

coding structure, there is a duplicate value for the variable c. For example, in

Figure 5.3 cAiB
BiA is the duplicate of cBiA

AiB. Therefore, the total amount of network

coding a node can perform on the traversing traffic is computed as:

Ci =

∑
(j,i,j′)∈p(i)

∑
(k,i,k′)∈p(i) c

kik′

jij′

2
,∀i ∈ V (5.15)

i BA

C =1
AiB

BiA

C =0
AiB

AiB

C =0
BiA

BiA

C =1
BiA

AiB

Duplicate

Figure 5.3: Network coding without opportunistic listening

95

C =1
AiB

CiD

C =0
AiB

DiC

C =0
BiA

CiD

C =0
BiA

DiC

C =1
CiD

AiB

C =0
CiD

BiA

C =0
DiC

AiB

C =0
DiC

BiA

D

i

B

A C

Duplicate

Figure 5.4: Network coding with opportunistic listening

Maximum network coding bound:

The total amount of network coding at each node should not exceed half of the

total number of forwarder links to a node. An example is illustrated in Figure

5.5 where node imay do coding for traffic traversing segments ΓAiB and ΓFiE, or

ΓAiB and ΓDiC , or ΓFiE and ΓDiC . The above presented constraints will calculate

three different coding amounts for node i in this example. However, in reality,

node i should only choose one coding structure (to avoid one transmission being

network coded in more than one coding component). Therefore, the following

constraint will limit the upper bound on the number of coding at each node:

Ci ≤
Fi

2
,∀i ∈ V (5.16)

D

i

B

A C

F

E

Figure 5.5: Maximum network coding bound

96

The value ranges of decision variables:

xtij ≥ 0 ,∀(i, j) ∈ E AND ∀t ∈ T (5.17)

ztij ∈ {0, 1} ,∀(i, j) ∈ E AND ∀t ∈ T (5.18)

btj ∈ {0, 1} ,∀j ∈ V AND ∀t ∈ T (5.19)

f t
ij ∈ {0, 1} ,∀(i, j) ∈ E AND ∀t ∈ T (5.20)

Fj ≥ 0 ,∀j ∈ V (5.21)

wt
jik ∈ {0, 1} , ∀(j, i) ∈ E , ∀(i, k) ∈ E , ∀t ∈ T (5.22)

Wjik ≥ 0 ,∀(j, i) ∈ E AND ∀(i, k) ∈ E (5.23)

ckik
′

jij′ ≥ 0 , ∀(j, i, j′) ∈ p(i), ∀(k, i, k′) ∈ p(i) (5.24)

Ci ≥ 0 ,∀i ∈ V (5.25)

5.4 Algorithmic Solutions

In this section, we present our algorithmic approach for solving the coding-

aware forwarding tree construction for compressive data gathering (NC-CDG).

We present both centralized and distributed methods for solving the NC-CDG

problem. The NC-CDG calls for constructing m forwarding trees to gather

data from the sensors in the most energy efficient manner. As in the previous

section, the objective is to minimize the total number of transmissions for col-

lecting the sensed data. Before presenting our methods, we note the similarity

between our problem and the Steiner tree problem;the Steiner tree problem

finds a tree in a graph G(V,E) that spans S ⊆ V with minimum total distance

on its edges. For each projection, if we let S be the set of interest nodes plus

the projection node, the Steiner tree problem will be similar to our problem of

97

constructing one forwarding tree.

5.4.1 Centralized Method:

The centralized algorithm has three phases. Initially, phase 1 constructs the

m forwarding trees. Phase 2, based on the constructed trees, calculates and

obtains the total amount of network coding at each node separately, and phase

3 updates the routes of the trees to further reduce the overall number of trans-

missions. The details of each phase are provided next.

The steps of phase 1 are shown in Algorithm 5.1. At initialization, the

algorithm for each projection t retrieves the nodes whose coefficients in the

basis matrix Φti, i = 1, 2, ..., n are non-zero, adds them to the interest nodes

list (Intt) and then assigns the projection node Pt as a single node tree Tt (Pt

is selected at random). In the second step, the algorithm removes the nodes in

Intt which can be connected directly to tree Tt and adds them to Tt using the

Minimum-Spanning-Tree (MST) algorithm. Since interest nodes are spread

throughout the network and may not be reached directly without multi-hop,

there may still be nodes in Intt which could not be connected to Tt using MST.

Therefore, as long as Intt is not empty, the algorithm finds the nearest node

in Intt to Tt using the Breadth-First-Search (BFS) algorithm and adds that

node plus all the intermediate nodes to Tt and removes that node from the list.

Again, the algorithm repeats by adding more nodes from Intt to Tt tree using

MST if possible. Upon termination, the algorithm returns all the m trees Tt

(t = 1, 2, ...,m). The time complexity is O(mdρ2 log ρ) in the best case (when all

nodes can be connected to the projection nodes using MST) and O(mdρ2n log n)

in the worst case (when non of the interest nodes can be connected to the trees

using MST), where d is the average nodal degree of the nodes and ρ is the

98

Algorithm 5.1 NC-CDG: Constructing m forwarding trees (Phase 1)
Require: Graph G(V,E), Matrix Φ, Set of projection nodes Pt (t = 1, 2, ...,m),

and the sink.
Ensure: Set of trees Tt.

1: for each projection t (t = 1, 2, ...,m) do
2: Let tree Tt = {Pt}, and
3: set of interest nodes Intt = It = { all nodes s.t. φti ̸= 0, i = 1, 2, ..., n}.
4: Add those nodes in Intt into tree Tt which can be connected directly to

nodes in Tt using MST and remove them from Intt.
5: while !Empty(Intt) do
6: Find nearest node h in Intt to Tt using BFS from nodes in Intt to Tt.
7: Add node h to Tt plus all the intermediate nodes in shortest path to Tt
8: Remove node h from Intt.
9: if Intt is not empty then

10: execute step 4.
11: end if
12: end whileConnect the projection node Pt to the sink through shortest-

path.
13: end for

number of interest nodes. For time complexity analysis refer to Section 3.2.

Algorithm 5.2 shows the steps of phase 2. At each node, the algorithm

determines the maximum amount of traffic (transmissions) which can be coded

and which is obtained from the m forwarding trees. We explain the steps at a

node i (a similar procedure is repeated for others). Each node maintains two

lists: the network coding list and the segment list, both are initially empty

(i.e., NCLi = ∅ and Candidatei = ∅); initially, the total number of codings

(transmissions which can be coded) at node i is set to zero (i.e.; Ci = 0). Then,

for each tree t the algorithm checks whether the total number of incoming tree

links to node i is greater than one or not (bti indicates that). In other words,

if
∑n

j=1 z
t
ji > 1, bti = 1 and zero otherwise (lines 4-8). Next (lines 9-14), for

each incoming link to node i (i.e.; ztji = 1), if bti = 0, a forwarding-link variable

f t
ji is set to one (i.e.; f t

ji = 1). Now, for each forwarder-link variable where

f t
ji = 1, if node i is not an interest or projection node for tree t (i.e., node i

99

has an outgoing link in tree t and will not aggregate or compress any packets),

node i might use the forwarder-segment Γt
jik (obtained by joining incoming

tree link lji with outgoing tree link lik, where k is the parent of node i in tree t)

for network coding with forwarding-segment of other trees. Therefore, node i

puts the forwarder-segment Γt
jik whose wt

jik = 1 in candidate list Candidatei for

possibility of network coding with other forwarder-segments (lines 16-19).

Algorithm 5.2 NC-CDG: Calculating network coding for each node (Phase 2)
Require: Set of trees Tt.
Ensure: The total and set of network coding at each node.

1: for each node i ∈ V do
2: Set network coding list NCLi = ∅, Candidatei = ∅, Ci = 0.
3: for each tree t ∈ T do
4: if

∑n
j=1 z

t
ji > 1 then

5: bti = 1.
6: else
7: bti = 0.
8: end if
9: for each ztji = 1 do

10: if bti = 0 then
11: f t

ji = 1.
12: else
13: f t

ji = 0.
14: end if
15: end for
16: if i ̸∈ {Pt&It} AND f t

ji = 1 then
17: Let k be the parent for node i.
18: Add forwarder-segment Γt

jik to candidate list Candidatei.
19: end if
20: end for
21: for each two different forwarder-segments Γt

jij′ and Γt′

kik′ in Candidatei
list, where j ̸= k and j′ ̸= k′ do

22: if N(j, k′) AND N(k, j′) then
23: Add ckik′jij′ to NCLi list, and remove Γt

jij′ and Γt′

kik′ from Candidatei list
24: Increment the total number of network coding Ci = Ci + 1.
25: end if
26: end for
27: end for
28: return NCLi and Ci.

100

From the Candidatei list, the algorithm chooses two different segments Γt
jij′

and Γt′

kik′, where j ̸= k and j′ ̸= k′ (line 21). If nodes j and k can listen to the

transmissions of k′ and j′ respectively (line 22), i may combine and transmit

the two packets coming from j and k into one coded transmission. Conse-

quently, the algorithm adds ckik′jij′ into the NCLi list, increments the total num-

ber of network coding Ci by one, and removes the two segments from Candidatei

list (lines 23-24). The last step (lines 21-26) will be repeated until there are no

two forwarder-segments in the Candidatei list which can be coded together. At

termination, the algorithm returns the total number of network coding Ci and

the list NCLi for each node i = 1, 2, ..., n. At each node, the algorithm takes

O(md2) and hence the overall time complexity is O(nmd2).

In phase 3 (steps shown in Algorithm 5.3), each node i attempts to discover

a new route (if that exists) to the projection node of each tree in a way to im-

prove the overall transmission cost. Algorithm 5.3 starts by checking if node i

in tree t is one of the interest nodes in set It and its parent (πt
i) does not belong

to any interest node set It (for example, node 5 in Figure 5.6; in this figure,

dark nodes are interest nodes and arrows represent the forwarding tree). If

these conditions are satisfied for node i, then the algorithm (in line 4) removes

all the successive tree links from node i to a node that is either an interest

node or has more than one child (an example is illustrated in Figure 5.6; for

node 5, the path shown by arrows with ‘x’ from node 5 to node 2 is removed;

note that node 2 has two children). Let b represent the node that has more

than one child. Let R be the total number of removed links. The total amount

of network coding at those nodes which are on the removed path is calculated

and stored in a variable RC. In this step, interest node i and its descendants

are disconnected from the main tree t (e.g., node 5 in Figure 5.6 which has been

101

disconnected from the tree). Next, to discover an alternative path to connect

node i to the main tree t, node i (lines 8-9) searches in a radius equals to R,

using Breadth-First-Search (BFS), for a node(s) in tree t (if any) such that the

cost of transmission (e.g., number of transmissions) is improved (e.g., in Fig-

ure 5.6, node 5, which has been disconnected, can connect to the tree through

different paths; for example, connecting to node 4 through the intermediate

node 6, as it is shown in the figure with dashed arrows, or to node 2 or 7. Here,

since all the paths have the same hop distance, the algorithm will choose a

path which has better coding capabilities). To find a better path, for each node

g found on tree t in a radius R, the algorithm calculates the hop distance (hg)

and the total number of possible network coding (Og) from node i to g. Then,

the algorithm will choose a path whose overall gain from network coding is

better than other paths (lines 10-17). The time complexity for the algorithm

is O(ρmδ), where δ is the average number of nodes for different values of R.

This is because, each interest node (among ρ) for each tree (among m), using

BFS (Breath First Search Algorithm), searches for nodes in radius R to find a

better route. BFS algorithm has time complexity of O(number of nodes in the

radius search). Therefore, the total time complexity will be O(ρmδ).

x

4

2

1

3

6

5 7

Figure 5.6: Updating route example in NC-CDG

102

Algorithm 5.3 NC-CDG: Updating the routes of the trees (Phase 3)
Require: Set of trees Tt (t = 1, 2, ...,m), Set of coding list NCLi (i = 1, 2, .., n).
Ensure: Updated trees Tt.

1: for each node i ∈ V do
2: for each tree t ∈ T do
3: if i ∈ It AND πi ̸∈ It then
4: Remove all the successive tree links from node i to first interest node

b or has more than one child in tree t.
5: R← Total number of removed links.
6: RC ← Total number of network coding on nodes which have been

removed from tree t.
7: Bi = RC −R.
8: Run Breath-First-Search (BFS) algorithm from i in a radius equals

to R.
9: if node(s) other than b on disconnected main tree t is found in this

radius then
10: for each found node g do
11: hg ← Hop distance from i to g.
12: Og ← Total number of network coding on nodes from i to g.
13: if (Og − hg) > Bi then
14: Bi = Og − dg.
15: b← g.
16: end if
17: end for
18: end if
19: Connect node i to b in shortest-path.
20: Update the list and number of network coding on nodes based on the

path changes.
21: end if
22: end for
23: end for

103

5.4.2 Distributed Method:

A drawback of the centralized approach is that a central unit performs a topol-

ogy discovery by retrieving network wide information through an all-to-all

flooding, and then solves the algorithm to construct the forwarding trees and

subsequently notifies each node in the network with necessary information to

execute the route process. Clearly, the overhead associated with such central-

ized approach makes it costly for large networks and does not respond well

to topological changes (e.g., in the presence of node or link outages). There-

fore, it is more desirable to distribute the computation on individual nodes. In

this subsection, we present a distributed algorithm for constructing forward-

ing trees, where each node locally makes a decision in the routing process and

for each tree (projection), the node decides to whom it should transmit its data

packet.

The distributed method consists of four phases. The first two phases are re-

lated to constructing forwarding trees and the steps are given in Algorithm 5.4.

The last two phases for calculating the network coding and updating the rout-

ing trees are the same as Algorithms 5.2 and 5.3, since both algorithms could

be executed locally at each node. For both algorithms, nodes may retrieve in-

formation needed for their computation (e.g., network coding list NCL) from

nearby nodes by sending request messages. Below we describe the tree con-

struction for the distributed method.

Initially (Phase 1), each projection node (Pt) starts by sending a discovery

message to its neighbors. Each node, upon receiving the message, will broad-

cast it to allow other nodes, not close to the projection node, to receive the

discovery message. Hence, each node i will learn its shortest path(s) (SpathtiPt
)

to the projection node Pt as well as the hop count (hti) along the path. Further,

104

Algorithm 5.4 NC-CDG: Distributed Forwarding Tree Construction
1: Phase 1:
2: for each projection-node Pt (t = 1, 2, ...,m) do
3: Disseminate the discovery message to all nodes by running BFS algo-

rithm. Each node i ∈ V learns its shortest-path(s) (Spathti) and hop-count
hti to the root (Pt).

4: end for
5: Phase 2:
6: for each node i ∈ V do
7: for each tree t ∈ T do
8: if i ∈ It then
9: if root ∈ N(i) then

10: πt
i = Pt;

11: Set and broadcast flagti = 1;
12: else if b ∈ N(i) AND b ∈ It AND flagtb = 1 then
13: πt

i = b;
14: Set and broadcast flagti = 1;
15: else if b ∈ N(i) AND b ∈ It AND htb < hti then
16: πt

i = b;
17: Set flagti = 0;
18: else if b ∈ N(i) AND b ∈ It AND htb = hti AND successive parents of

b reach a node with smaller hop-count or flag = 1 or non-parent and
do not reach i then

19: πt
i = b;

20: Set flagti = 0;
21: else
22: Run BFS from i in a radius equals to hti − 1.
23: if interest-node(s) in this radius found then
24: Connect i to nearest interest-node through shortest path.
25: Set flagti = 0;
26: else
27: Connect node i through its shortest path to the root.
28: end if
29: end if
30: if node i receives a notification message of any changes then
31: Repeat lines (8-33).
32: end if
33: end if
34: end for
35: end for

105

node i discovers its neighbor set N(i). Node i, upon checking matrix Φ, which

is stored in its memory, determines whether node u ∈ N(i) (∀u) belongs to the

set of interest nodes (It) of tree t or not. In Phase 2, each node i for each tree

t, if it is an interest node, decides its parent on the uplink path to the projec-

tion node Pt. For each interest node, we assign an attribute to designate its

parent interest node (πt
i) (note a parent interest node could be a neighbor of

i or can be reached through other relay nodes) and a decision flag (flagti) to

indicate whether the parent interest node of i is fixed. Lines (9-11) show that

every interest node which is a neighbor of the root selects the root as its parent

node and sets and distributes its decision flag flagti = 1. Now, if interest node i

(Lines (12-14)) is not a neighbor of the root, but has an interest node neighbor b

with flagtb = 1, then i selects b as its parent interest node and commits its deci-

sion (flagti = 1). In the case where none of the neighboring interest nodes (b) of

i has its decision flag set (i.e., flagtb = 0), i will select the neighboring interest

node with the smaller hop-count to the sink as its parent interest node (Lines

15-17). Now, when only interest node neighbors with equal hop-count to the

sink as i can be found (Lines 18-20), i selects the one (b) whose successive par-

ents reach an interest node with smaller hop-count or decision flag flag = 1 or

no parent node, and does not reach node i (to avoid loops). If none of the above

conditions is satisfied, i runs a BFS to explore its neighborhood of radius hti− 1

in search for an interest node b with smaller hop count to the sink; otherwise,

for an interest node whose decision flag flagtb = 1 (Lines 22-25). Node i avoids

selecting interest nodes b whose πt
b = i to avoid loops. Finally, if no interest

node is found, i connects itself directly through a shortest path to the sink

(this path is known from the discovery phase). Node i will repeat the route

discovery in lines (8-33) if it receives a notification message from its neighbors

106

indicating that there is a change in the network, e.g., change in a decision flag,

or following a node or link failure due to mobility or channel impairments oc-

curring in the network triggering route maintenance. The time complexity for

distributed algorithm in phase 1 for each projection node is O(n), and O(mn)

for all projection nodes. In phase 2, the time complexity for each interest node

i in tree t is O(1) in the best case and O(γ) in the worst case, where γ is the

number of nodes around node i and within a radius hti − 1. Note that nodes in

the distributed approach simultaneously execute the algorithm.

5.4.3 Performance Analysis:

In this section, we attempt to derive theoretical performance bounds on the

algorithmic solution we presented above. We start by noting that our problem

for constructing each aggregation tree is similar to the Steiner tree problem in

that we connect all interest-nodes I ⊆ V and the sink together such that the

constructed spanning tree has a minimum total distance on its edges. The dif-

ference between our tree construction with the minimum Steiner tree is that

our tree is rooted at the sink which makes a difference in selecting the ap-

propriate minimum spanning tree when there are several minimum spanning

trees possible for a given graph or network. In [49], the authors proved that

the edges on the minimum steiner tree in the worst case have a total distance

no more than 2(1 − 1
l
) times that of the optimal tree, where l is the number

of leaves in the optimal tree. In our problem, the worst case occurs when the

overlaps of the trees do not make opportunities for NC, and hence we have zero

NC in the network. Therefore, the worst case performance of our NC-CDG al-

gorithmic method will not be worse than 2(1− 1
l
). Recall that the total number

of leaves in a tree is equal to or less than the number of interest-nodes, and

107

there are ⌈ n
m
⌉ interest-nodes. Thus, our NC-CDG method in the worst case

performs no worse than 2(1− 1
⌈ n
m
⌉). i.e.;

NCCDG−alg

NCCDG−opt

≤ Steineralg
Steineropt

≤ 2(1− 1

⌈ n
m
⌉
) (5.26)

For example, if n = 100 and m = 20, the upper bound performance of our

algorithmic method is 2(1 − 1
5
), which is 8

5
-approximation. We should note

however that the upper bound given above is not the tightest possible bound.

5.5 Performance Evaluation

This section presents numerical and simulation results obtained by solving

the various methods presented earlier; namely, we numerically study the per-

formance of Network Coding aware tree construction for Compressive Data

Gathering (NC-CDG) and compare it with a method that does not exploit net-

work coding for tree construction (CDG) [21]. We also compare centralized

and distributed algorithmic implementations of both NC-CDG and CDG. We

consider networks of different sizes; each network is randomly generated and

nodes are uniformly distributed over a region such that the resulting graph is

connected. We assume all nodes use the same transmit power. The metrics of

comparisons are 1) gain achieved from network coding 2) the total number of

transmissions 3) transmission load distribution across the sensors.

NC-CDG Vs. CDG:

We first start by comparing the optimal forwarding tree construction using

the 20-node network topology shown in Figures 5.7 and 5.8. In this exam-

ple, the number of projections (trees) is m = 4 and for each tree, a projection

108

node (with dashed border line) is required to gather a weighted sum from four

interest nodes (with same color). Figure 5.7 illustrates the optimal forward-

ing trees without considering network coding (CDG) [21] where it is easy to

verify that in total 30 transmissions are required to fulfill the gathering at

projection nodes. Note that, a total of 16 transmissions are needed to forward

the weighted sums from projection nodes to the sink through shortest paths.

Therefore, Figure 5.7 overall requires 46 transmissions. In Figure 5.8, the for-

warding trees are constructed using NC-CDG; as one can observe, the optimal

routing trees use different paths to allow four nodes (1, 4, 7 and 8) to perform

XOR-coding. This optimal tree construction gathers all weighted sums at their

projection nodes with 30− 4 = 26 transmissions (and at sink with 42 transmis-

sions); hence, this method outperforms the former one and yields a gain of 8.7%

in transmission cost reduction.

Now, we evaluate the performance of NC-CDG for larger networks (20 ≤

n ≤ 50) with different number of projections (m = 5, m = 6) and present the

average results of five runs varying different matrix Φ and projection nodes

for comparison. Table 5.2 depicts the overall number of data transmissions re-

quired to gather all the sensed data at the sink; the table shows a base model

where compressive sensing is not used for data gathering (Non-CDG) and sim-

ple shortest-paths are used for collecting the data. The results indicate that

both NC-CDG and CDG outperform the base model; for instance, the gains

of NC-CDG over non-CDG range between 11% to 47.88% whereas the gains of

NC-CDG over CDG vary between 3.08% and 12.11%. It should be noted that

these gains strongly depend on the size of the network, the projection nodes

and matrix Φ (i.e., position of interest nodes and projection nodes). Indeed, the

larger the network is, and the more forwarding trees (projections) there are,

109

S

3

9

10

17

12

1

7

16

18

11

2

4

5

13

20

6

14

8

15

19

Figure 5.7: Optimal tree construction without Network Coding

S

3

9

10

17

12

1

7

16

18

11

2

4

5

13

20

6

14

8

15

19

Figure 5.8: Optimal tree construction with Network Coding

110

the more coding opportunities there could be between the forwarding trees and

thus the higher the gains are. Given the complexity of the models, we were not

able to run them for larger network instances.

Table 5.2: Overall number of data transmissions (NC-CDG vs CDG)
Nodes # Projections NC-CDG CDG Non-CDG

n = 20
m = 5 44.6 47.2 60
m = 6 53.4 56.2 60

n = 30
m = 5 70.6 74 114
m = 6 79 85 114

n = 40
m = 5 100.6 103.8 193
m = 6 110 115.8 193

n = 50
m = 5 114.6 127.6 206
m = 6 135 153.6 206

Performance of the algorithms:

This section will evaluate the performance of the algorithmic methods we pre-

sented earlier. We compare NC-CDG with the centralized method (NC-CDG/C)

and the distributed method (NC-CDG/D). The objective of this comparison is

to showcase the effectiveness of both methods in reaching solutions which are

close to those obtained by the NC-CDG optimal method. We also compare

CDG/C [22] and CDG/D [23] with the CDG [21] method. The results (over-

all number of transmissions for delivering the sensed data) of these compar-

isons are presented in Tables 5.3 and 5.4; clearly, the results indicate that both

centralized and distributed methods (both with and without network coding)

achieve very close performance to those obtained in the models with a worst

case gap of 5.78% (for CDG/D to CDG) and 3.29% (for NC-CDG/D to NC-CDG)

in the studied scenarios. We build on such results to study the performance of

the coding-aware CDG on larger networks using the algorithmic methods.

111

Note that the optimal solution of NC-CDG using Cplex solver takes time in

average between one and half minutes for 20-node network size to two hours

and twelve minutes and sometimes over a day for a 50-node network. Whereas,

the algorithmic (heuristic) method takes between one, two to four seconds to

solve for 20-node, 50-node to 100-node network size respectively. However,

NC-CDG optimal was incapable to solve for 100-node network. We run our

program on CPU with Intel Core i7 processor, 2.67 GHz speed, 6 GB memory

ram and 64-bit windows operating system.

Table 5.3: Overall number of data transmissions (NC-CDG vs Algorithms)
Nodes # Projections NC-CDG NC-CDG/C NC-CDG/D

n = 20
m = 5 44.6 45.6 45.2
m = 6 53.4 54.4 54

n = 30
m = 5 70.6 71.2 71.6
m = 6 79 81.2 81.6

n = 40
m = 5 100.6 102.4 102.6
m = 6 110 112.2 113.4

n = 50
m = 5 114.6 117.6 116.4
m = 6 135 137.2 136.4

Table 5.4: Overall number of data transmissions (CDG vs Algorithms)
Nodes # Projections CDG CDG/C CDG/D

n = 20
m = 5 47.2 48 48
m = 6 56.2 57 57.2

n = 30
m = 5 74 74.8 76.2
m = 6 85 85.4 87.4

n = 40
m = 5 103.8 105.6 109.8
m = 6 115.8 117.4 120.6

n = 50
m = 5 127.6 129.4 131.2
m = 6 153.6 156.6 159.4

112

Performance on larger networks:

This section will evaluate the performance of network coding aware tree con-

struction for compressive data gathering on larger networks using the algo-

rithmic methods, both centralized and distributed. For comparison purposes,

we also use a tree construction method for CDG which relies on using the

Steiner method (Steiner-CDG). Figure 5.9 shows the overall number of trans-

missions for different networks (n range from 100 to 500 nodes) with total pro-

jection nodes of m = n×10%. We observe that our centralized (NC-CDG/C) and

distributed (NC-CDG/D) algorithms almost equally outperform the Steiner-

CDG method, and as the number of nodes in the network increases, they start

to gradually outperform Steiner-CDG; the figure shows a minimum gain (for

smaller network sizes) of 2.43% and a maximum gain of 13.26% over Steiner-

CDG. It should be noted here that the Steiner-CDG method is NP-complete

since the Steiner problem is itself NP-complete. On the other hand, NC-CDG/C

and NC-CDG/D exhibit substantial performance gains over CDG/C and CDG/D

respectively with gains ranging from 11.88% to 22.89% for centralized methods

and from 16.21% to 27.39% for the distributed methods. The reason being that

as the size of the network increases, more forwarding trees are constructed

(m = n × 10%) and therefore more chances for constructing such trees to ex-

ploit the network coding opportunities.

Next, we vary the number of projections (m) and study its impact on the

performance gains. We consider a network of 400 nodes and the results are

depicted in Figure 5.10. The algorithmic methods are compared against each

other and against the Steiner-CDG heuristic. Intuitively, the larger the value

of m, the more forwarding/aggregation trees are needed to gather the sensed

data, and hence the higher is the likelihood to construct such trees to promote

113

0

500

1000

1500

2000

2500

3000

3500

n=100 n=200 n=300 n=400 n=500

N
um

be
r

of
 t

ra
ns

m
is

si
on

s

Number of nodes

CDG/D

CDG/C

Steiner-CDG

NC-CDG/C

NC-CDG/D

Figure 5.9: NC-CDG: Cost of transmissions Vs. number of nodes (m = 10%n)

or exploit coding opportunities. First, as the number of projections increases

(from m = 20 to m = 100), both NC-CDG/D and NC-CDG/C performs similarly

and they both significantly outperform the CDG methods, with NC-CDG/D

(NC-CDG/C) showing gains (reduction in the total number of transmissions

required) ranging from 23.26% to 28.82% (resp. 16.71% to 24.8%) over CDG/D

(resp. CDG/C). Both NC-CDG methods outperform the Steiner-CDG method.

Here, it should be noted that the Steiner-CDG method does not exploit the net-

work coding opportunities, but rather construct trees in a more optimal man-

ner (i.e., minimize the number of transmissions per each aggregation tree).

Not surprisingly, the NC-CDG methods exhibit a maximum gain of 13.7% and

a minimum gain of 8.79% over Steiner-CDG.

114

1100

1600

2100

2600

3100

3600

m=20 m=40 m=60 m=80 m=100

N
um

be
r

of
 t

ra
ns

m
is

si
on

s

Number of projections

CDG/D

CDG/C

Steiner-CDG

NC-CDG/C

NC-CDG/D

Figure 5.10: NC-CDG: Cost of transmissions Vs. number of projections for
n=400 nodes

Transmission load balancing:

In addition to reducing the cost of transmissions, CDG methods attempt to

distribute the load of aggregation and forwarding among all sensors in the

network. The advantage of this is that all sensors more or less equally con-

sume similar amount of energy which result in extending the lifetime of the

network and avoid having nodes deplete their batteries earlier than others. To

study this effect, we look at the distribution of number of transmissions (PDF)

at all nodes in the network. This distribution is depicted in Figure 5.11 for a

network of 300 nodes (m = n × 10%) and using NC-CDG/D, CDG/D, Steiner

CDG and the Non-CDG method. The three methods show much better energy

consumption distribution than the Non-CDG method. It is clear that with the

NC-CDG method, the average transmission load per node is smaller than other

115

aggregation methods, followed by Steiner-CDG, CDG and Non-CDG. With the

Non-CDG method, the variance of transmission load is very large implying

that some nodes may deplete their energy much earlier than others, result-

ing in shorter network lifetimes. Conversely, the NC-CDG method yields the

most balanced transmission load distribution, owing to the capabilities of the

method to distribute the load cross all sensors.

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Node Transmissions

D
en

si
ty

NC−CDG/D
Steiner−CDG
CDG/D
Non−CDG

Figure 5.11: Probability Density Function (n=300)

5.6 Conclusion

We studied the problem of compressive data gathering (CDG) in wireless sen-

sor networks. Gathering measurements from the network relies on construct-

ing forwarding/projection trees, each tree corresponds to a projection for col-

lecting a weighted/compressed data. The existence of such trees creates oppor-

tunities for many-to-many communication patterns, which in turn gives rise

to network coding operations; such operations if exploited will further reduce

116

the number of transmissions needed to collect the sensory data. We devel-

oped a mathematical model for constructing trees which maximally exploits

the coding opportunities on compressed data being routed on these forward-

ing/projection trees. We have shown that when network coding and compres-

sive data gathering techniques are jointly considered (NC-CDG), gains (reduc-

tion in number of transmission) of up to 47.67% (resp. 10.71%) can be ob-

served over networks (up to 50 nodes) which do not implement compressive

sensing for data gathering (resp. with only CDG). Owing to its complexity and

to evaluate NC-CDG over larger networks, we developed both centralized and

distributed algorithmic methods for solving the NC-CDG problem. We showed

that our algorithmic methods are scalable and accurate, with worst case opti-

mality gap not exceeding 3.96% in the studied scenarios. We also showed that

NC-CDG yields performance gains of up to 30% may be attained.

117

Chapter 6

Forwarding Tree Construction

and Scheduling (FTCS)

In this chapter we study the problem of constructing forwarding trees for col-

lecting and aggregating sensed data in the network under the realistic physi-

cal interference model. More specifically, we jointly address the problem of tree

construction and link scheduling for our problem PCDG proposed in Chapter 3.

With PCDG, multiple forwarding trees are constructed, each for aggregating a

coded or compressed measurement, and these measurements are collected at

the sink for recovering the uncoded transmissions from the sensors.

The problem of gathering tree construction and link scheduling is addressed

jointly, through a mathematical formulation, and its complexity is underlined.

Our objective is to collect data at the sink with both minimal latency and fewer

transmissions. We show the joint problem is NP-hard and owing to its com-

plexity, we present a decentralized method for solving the tree construction

and the link scheduling sub-problems. Our link scheduling sub-problem re-

lies on defining an interference neighbourhood for each link and coordinating

transmissions among network links to control the interference. We prove the

118

correctness of our algorithmic method and analyze its performance. Numerical

results are presented to compare the performance of the decentralized solution

with the joint model as well as prior work from the literature.

6.1 Link Scheduling in Physical Interference Model

We consider a Time Division Multiple Access (TDMA) based MAC access where

time is divided into slots of equal length; we define the set of links which can

be active concurrently in the same time slot as a configuration. Here, a

configuration consists of links/transmissions from multiple forwarding trees

which may be active simultaneously, such that no one parent (in one tree) is

scheduled for transmission before it receives transmissions from its children.

Let dij be the Euclidean distance between two nodes i and j and let Gij be

the channel gain from a transmitter node i to a receiver node j, (e.g., Gij =

d−α
ij , α is the path lost exponent). Now, under the physical interference model

[33], in the presence of concurrent transmissions, a receiver j can successfully

receive the transmission from node i if the signal to interference plus noise

ratio (SINR) at j is above a certain threshold β, which is formulated as:

SINR(i,j) =
P Gij

η +
∑

∀(h,k)∈E:h̸=i P Ghj

≥ β ∀(i, j) ∈ E (6.1)

where η is the background noise. In general, we refer to the number of

time slots needed to schedule the links in all forwarding trees (to collect all

compressed measurements) as a round. The size of a round determines the

latency for collecting the measurements. We further assume all packets (each

carrying a compressed measurement) are of equal size.

119

6.2 Problem Description

We are interested in gathering, in each round, measurements at the sink from

all the sensors. We assume sensors have finite battery lifetime. We also as-

sume transmissions in the network can interfere with one another and there-

fore an access scheme should be in place to coordinate the transmissions.

Problem Definition 1 (Forwarding tree construction in PCDG): Given

a connected graph G of n sensor nodes, a sink, and a sparse matrix Φ, the prob-

lem of finding tree construction in projection based compressive data gathering

(PCDG) consists of finding m forwarding trees, each tree to collect coded mea-

surements from a subset of nodes (nodes with non-zero coefficients in a corre-

sponding row of matrix Φ, where such nodes are referred to as interest nodes)

en-route to the sink in the most energy efficient manner.

Here, each tree t (1 ≤ t ≤ m) corresponds to one projection which gathers

one weighted sum zt from a set of interest nodes at the sink. Our objective

is to construct these trees such that the total number of transmissions in the

network is minimized. The gathering on each routing tree is performed based

on the Compressive Sensing technique.

Problem Definition 2 (Scheduling): Given a set of forwarding trees,

the scheduling problem consists of finding maximal size sets (where a set is a

configuration1 of active links in one time slot) and allocating time slots for them

such that the resulting schedule length is minimized. Such problem guarantees

the delivery of compressed measurements to the sink with minimal latency.

Problem Definition 3 (FTCS): The joint problem of forwarding tree con-

struction and scheduling (FTCS) is the combination of problems 1 and 2.
1A configuration is formally defined in Section 6.1.

120

We illustrate the operation of FTCS on the sample network shown in Fig-

ure 6.1; namely, we illustrate the interaction between the tree construction

and link scheduling and highlight the impact on the data gathering latency

(or the schedule length). We compare a joint FTCS method with one that con-

structs trees and schedule them separately. The results are depicted in Figures

1(a)-1(b). The example shows how to gather data at the sink from all sensors

using three projections. As the figures show, both methods require the same

number of transmissions (links) to gather the data, however, Figure 1(a) shows

that the trees in the joint FTCS can be scheduled in only 8 time slots, whereas,

the disjoint method, as Figure 1(b) shows, requires 9 time slots to collect the

measurements. This is due to the fact that trees are constructed without con-

sidering the requirements for achieving shorter schedule length. Such insights

will be exploited as we develop our decentralized method in subsequent sec-

tions. Figure 1(c) shows a tree construction using a distributed (algorithmic)

method, where the scheduling length of this method depends on the radius of

the interference neighbourhood of each link. Our distributed method as well

as the interference neighbourhood will be properly introduced and explained

in Section 7.3.

6.3 Problem Formulation

In this section, we formulate FTCS as an optimization problem whose objec-

tive is to obtain a set of forwarding trees which can be scheduled to deliver

measurements to the sink in the shortest schedule period to achieve a balance

between lower latency delivery and energy efficient gathering. We mathemat-

ically formulate the problem as a mixed integer linear program (MILP).

xtij is a binary variable which indicates whether there is an edge between

121

3

S

9

10
1

712

11

2

4

5

13
6

14

8

15

(a) Joint tree construction and scheduling

3

S

9

10
1

712

11

2

4

5

13
6

14

8

15

(b) Disjoint tree construction & scheduling

3

S

9

10
1

712

11

2

4

5

13
6

14

8

15

(c) Algorithmic tree construction

Figure 6.1: FTCS, m = 3 (m = 20%n). In the network, the black square S is the
sink which intends to gather data from all nodes. Same colour arcs represents
aggregation tree for one projection. Each set of interest nodes is illustrated
with same colour. The numbers on the arcs represent the time slot when the
tree links are active.

122

Table 6.1: Notations Used in problem formulation for FTCS
Parameters

V The set of nodes in the network.
E The set of edges in the network.
n Total number of nodes.
m Total number of projections (trees).
|It| Total number of interest nodes in set It.
P Node power transmission.
Gij Channel gain from transmitter i to receiver j.
β SINR threshold.
η Background noise.
S The set of a large number of time slots sufficient for one round of data gathering

(for all transmissions).
T The set of m trees required for compressive data gathering.
ω Weight of each term in the objective function. (0 ≤ ω < 1)

Variables
f t
ij ∈ N The amount of traffic flow (data traffic load) on link (i, j) in tree t.
xtij ∈ {0, 1} Indicating whether link (i, j) is in tree t.
at,sij ∈ {0, 1} Indicating whether link (i, j) in tree t is active in time slot s.
λs ∈ {0, 1} Indicating if at least one link is active at time slot s.

nodes i and j in tree t, and let at,sij indicates whether link (i, j) in tree t is active

(scheduled) during time slot s or not. In addition, we define S to be a large

number of time slots which is sufficient to gather data for all trees. We use a

binary variable λs to assert if a time slot s has at least one active link. That is:

λs =

⎧⎪⎨⎪⎩
1, if at least one link active at time slot s;

0, otherwise.
(6.2)

The notations used throughout this section are listed in Table 6.1. The

objective of our design is to construct trees which achieve a balance between

the number of links needed to gather the measurements (and thus energy ex-

pended for data gathering) and the required number of time slots needed to

123

schedule the constructed trees (i.e., gathering latency):

Minimize ω
∑
t∈T

∑
(i,j)∈E

xtij + (1− ω)
∑
s∈S

λs, (6.3)

The first sum corresponds to the total number of links in the constructed

trees and the second one depicts the scheduling length. The parameter ω

(0 ≤ ω < 1) indicates the weight of each term in the objective. Depending

on the task, if one of the terms (whether energy efficiency or time efficiency) is

more important than the other, we give more weight for that particular term.

Otherwise, we assign equal weight to both terms (ω = 0.5). The following are

the constraints for our problem:

Traffic Flow conservation constraints:

These constraints assert that the total incoming traffic flow (data traffic load)

plus the traffic flow originating at a particular node is equal to the total out-

going traffic flow. Let f t
ij ∈ N being the data traffic load (number of packets)

imposed by certain routing on edge (i, j) or between nodes i and j in tree t.

The following constraints, for each tree t, force the set of interest nodes (vector

set It) which belong to one tree (projection) to have one data flow from each

interest node to the sink:

∑
j:(i,j)∈E

f t
ij −

∑
j:(j,i)∈E

f t
ji =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−|It|, i = sink;

1, ∀i ∈ It;

0, otherwise.

∀t ∈ T (6.4)

124

Tree link creation constraints:

These constraints create forwarding links for a tree. Let xtij ∈ {0, 1} indicate

whether there is a link between nodes i and j in tree t. xtij = 1, if there is a

positive traffic flow from i to j, and zero otherwise. This implies that f t
ij = 0⇔

xtij = 0 and f t
ij > 0 ⇔ xtij = 1 which is achieved by the following inequalities:

(note that n (number of nodes) is always greater than any f t
ij)

⎧⎪⎨⎪⎩
f t
ij − xtij ≥ 0

xtij −
f t
ij

n
≥ 0

∀(i, j) ∈ E, t ∈ T. (6.5)

Outgoing link constraints:

These constraints assert that each node can have a maximum of one outgoing

transmission (link) in each tree to avoid loops. Otherwise, data is not aggre-

gated to a root (sink).

∑
j:(i,j)∈E

xtij ≤ 1 ∀i ∈ V, t ∈ T. (6.6)

Half duplex constraints:

The half duplex constraints ensure that a node may not transmit and receive

in the same time slot.

∑
t∈T

at,sij +
∑
t∈T

at,sjk ≤ 1 ∀(i, j) ∈ E, (j, k) ∈ E, s ∈ S. (6.7)

125

Transmitting constraints:

These constraints ensure that a transmitter cannot simultaneously transmit

to multiple receivers in the same time slot.

∑
t∈T

∑
j:(i,j)∈E

at,sij ≤ 1 ∀i ∈ V, s ∈ S. (6.8)

Receiving constraints:

These constraints ensure that a receiver cannot simultaneously receive from

multiple senders in the same time slot.

∑
t∈T

∑
i:(i,j)∈E

at,sij ≤ 1 ∀j ∈ V, s ∈ S. (6.9)

Link scheduling constraints:

These constraints are required to force a link in a tree to be scheduled only

once in a time slot.

∑
s∈S

at,sij = xtij ∀(i, j) ∈ E, t ∈ T. (6.10)

Transmission order constraints:

These constraints are required to ensure that a node in a tree cannot transmit

unless it receives all packets from its children. That is, a link (i, k) in a tree t

at time slot s can be scheduled, if all links to its children have been scheduled

prior to time slot s (i.e., in time slots between 1 and s − 1). In other words,

at,sik = 1, if
∑s−1

s=1

∑
j:(j,i)∈E a

t,s
ji ≥

∑
j:(j,i)∈E x

t
ji.

126

In LP format, the above condition is written as follows:

s−1∑
s=1

∑
j:(j,i)∈E

at,sji +B(1− at,sik) ≥
∑

j:(j,i)∈E

xtji ∀(i, k) ∈ E, s ∈ S, t ∈ T.

(6.11)

B is a big constant, which is bigger than the total number of links in any

combination of m trees. When at,sik = 0, inequality (6.11) is always satisfied.

But, when at,sik = 1, (6.11) reduces to
∑s−1

s=1

∑
j:(j,i)∈E a

t,s
ji ≥

∑
j:(j,i)∈E x

t
ji which

implies that the summation of all links coming to node i had to be activated at

time slots between 1 and s−1, otherwise, node i can not transmit (or, link (i, k)

can not be active, i.e., at,sik ̸= 1) at the current time slot s.

SINR constraints:

The following constraints make sure that the SINR for each active link is above

the thresholdβ.

P Gij +Bt,s
ij (1− a

t,s
ij) ≥ β(η +

∑
t∈T

∑
(k,h)∈E;k ̸=i

P Gkj a
t,s
kh) ∀(i, j) ∈ E, s ∈ S, t ∈ T.

(6.12)

where Bt,s
ij is a constant and satisfies the following:

Bt,s
ij ≥ η +

∑
t∈T

∑
(k,h)∈E;k ̸=i P Gkj a

t,s
kh

In (6.12), if link (i, j) in tree t is active in time slot s (i.e., at.sij = 1), then

(6.12) reduces to expression (6.1).

127

Finding occupied time slots in a schedule:

The following constraints check whether a time slot s has at least one active

link or not.

λs ≥ at,sij ∀s ∈ S , t ∈ T , (i, j) ∈ E. (6.13)

Note, after solving the above problem, the time slots which have no active

links are removed from the schedule and the remaining time slots form the

corresponding scheduling solution.

6.3.1 NP-hardness

The authors of [29] have shown that the data gathering in WSN under SINR

is NP-hard through a reduction from the max-connections problem [3]. The

max connection problem is to select a maximal set or configuration size under

the physical interference model. Our problem however is different from [29]

in that we construct multiple forwarding trees (rather than only one) to collect

the coded measurements; we also differ in that a node waits for its children’s

measurements to compress them (with its own) into one packet for upward

transmission. This makes the scheduling problem more difficult. Here, we

try to show that the problem of forwarding tree construction and scheduling

(FTCS) is very difficult to solve. Below is our informal methodology for high-

lighting this difficulty.

The FTCS problem has two combined objective terms (constructing m ag-

gregation trees with minimum links, and scheduling these links based on

SINR constraint in a shortest time length). Now, according to the weight given

128

to each term, the problem gives different results. Without loss of general-

ity, let us first assume the trees are given. We may show that the minimum

link scheduling problem is NP-hard by reducing from the One-Shot Scheduling

problem which has been shown to be NP-hard in [30]. The One-Shot Schedul-

ing problem is to pick a subset of weighted links such that the total weight is

maximized and the SINR at the receiver of each link is above the threshold β.

In other words, attempting to use one slot to its full capacity. It should be noted

that in our problem links have equal weights. Therefore, we give a weight of

one to each link and the problem of one-shot scheduling becomes of picking a

maximum number of links in one slot that satisfies the SINR constraint.

The problem of finding the minimum scheduling length among all m data

aggregation trees can be decomposed into a series of one-shot scheduling sub-

problems. In each one-shot scheduling subproblem, an auxiliary graph is con-

structed (in polynomial time) from a set of links in m aggregation trees that

do not have child links for data aggregation. In other words, an edge is added

to the auxiliary graph if the corresponding link on any aggregation tree is con-

nected to a leaf node. After resolving the one-shot scheduling subproblem on

the auxiliary graph, the scheduled links are removed from the aggregation

trees. This step is repeated until no links remain in any tree. Then, the num-

ber of iterations is the total number of time slots required for trees scheduling.

Therefore, scheduling the problem of finding the minimum scheduling length

is NP-hard.

On the other hand, if we give the highest weight to minimizing the total

links in constructing the m aggregation trees, we may show the problem of

constructing each aggregation tree is NP-hard by reducing from the minimum

129

Steiner tree problem which is known to be NP-hard problem [39]. The mini-

mum Steiner tree problem is to connect a set of interest nodes I ⊆ V such that

the connected spanning tree has a minimum total distance on its edges. Now,

from the minimum Steiner tree problem, if we let one of the nodes in the tree

act as a root, the minimum Steiner tree is converted to one tree construction

of our problem. Selecting a root (which is the sink node) can clearly be done in

polynomial time. We require m such trees for our compressive data gathering.

Therefore, the tree construction is also NP-hard.

6.4 Algorithmic solution

To overcome the computational complexity of the FTCS problem, we decom-

pose it into two subproblems, namely the forwarding tree construction and the

link scheduling subproblems and present decentralized methods for solving

them.

6.4.1 Distributed Tree Construction

Our objective is to construct forwarding trees in a decentralized manner. Each

forwarding tree will carry a compressed measurement from the network to the

sink; our objective is to obtain energy efficient trees which deliver data to the

sink with minimal latency.

The compressive data gathering tree construction consists of three phases:

1) disseminating discovery messages; 2) route discovery; 3) search for more ef-

ficient routes, to leverage them in the scheduling subproblem. Initially (Phase

1), the sink starts by sending a discovery message to its neighbours. Each

node, upon receiving the message, will broadcast it to allow other nodes, not

130

close to the sink, to receive the discovery message. This procedure is similar

to traversing the network using a breadth-first search (BFS) algorithm [15].

Hence, each node v will learn its shortest path (Pvs) to the sink as well as the

hop-count along the path. Further, node v discovers its neighbour set N(v).

Node v, upon checking matrix Φ, which is stored in its memory, determines

whether node u ∈ N(v) (∀u) belongs to the set of interest nodes (It) of tree t or

not. The time complexity for Phase 1 (similar to BFS) is O(n).

In Phase 2, each node v for each tree t (if it is an interest node), after

running Algorithm 6.1, decides its parent on the uplink path to the sink. For

each interest node, we assign an attribute to designate its parent interest node

(πt
v) (note, a parent interest node could be a neighbour of v or can be reached

through other relay nodes) and a decision flag (flagtv) to indicate whether the

parent interest node of v is fixed. Lines (1-3) show that every interest node

which is a neighbour of the root selects the root as its parent node and sets and

distributes its decision flag flagtv = 1. Now, if interest node v (Lines (4-6)) is not

a neighbour of the root, but has an interest node neighbour b with flagtb = 1,

then v selects b as its parent interest node and commits its decision (flagtv = 1).

In the case where none of the neighbouring interest nodes (b) of v has its deci-

sion flag set (i.e., flagtb = 0), v will select the neighbouring interest node with

the smaller hop-count to the sink as its parent interest node (Lines 7-9). Now,

when only interest node neighbours with equal hop-count to the sink as v can

be found (Lines 10-12), v selects the one (b) whose successive parents reach

an interest node with smaller hop-count or decision flag flag = 1 or no parent

node, and does not reach node v (to avoid loops). If none of the above condi-

tions is satisfied, v runs a BFS to explore its neighbourhood of radius htv − 1

in search for an interest node b with smaller hop-count to the sink; otherwise,

131

it searches for an interest node whose decision flag flagtb = 1 (Lines 14-17).

Node v avoids selecting interest nodes b whose πt
b = v to avoid loops. Finally,

if no interest node is found, v connects itself directly through a shortest path

to the sink (this path is known from the discovery phase). Node v will repeat

the route discovery (Algorithm 6.1) if it receives a notification message from

its neighbours indicating that there is a change in the network, e.g., change

in a decision flag, or following a node or link failure due to mobility or chan-

nel impairments occurring in the network triggering route maintenance. The

time complexity for Phase 2 is O(1) in the best case (when a node chooses a

neighbour node) and O(γ) in the worst case (when node does not have a neigh-

bour interest node), where γ is the number of nodes around node v and within

a radius htv − 1. Note that nodes in the distributed approach simultaneously

execute the algorithm.

Tree Construction Refinement:

We motivate our refinement phase through an illustrative example shown in

Figures 2(a)-2(b). The intuition for refining the tree selection is that the for-

warding trees should have fewer links for energy efficiency and should be

scheduled in a shorter time period for latency efficiency. For instance, node

9 may select either node 4 or node 5 as its parent node. Either selection will

result in a forwarding tree with same number of links, however, the trees cor-

responding to the two selections will differ in their data collection latency, ob-

tained from the scheduling subproblem (going through node 5 requires a total

of 5 times slots, and through node 4 only 4 time slots). Clearly, if a parent in

a tree has a higher node degree, with multiple incoming transmissions, then

those transmissions will be scheduled sequentially, and therefore this should

be avoided. Clearly, this suggests a thinner but a larger tree height. The

132

Algorithm 6.1 Route discovery at node v (Phase 2) for FTCS
1: if root ∈ N(v) then
2: πt

v = s;
3: Set and broadcast flagtv = 1;
4: else if b ∈ N(v) AND b ∈ It AND flagtb = 1 then
5: πt

v = b;
6: Set and broadcast flagtv = 1;
7: else if b ∈ N(v) AND b ∈ It AND htb < htv then
8: πt

v = b;
9: Set flagtv = 0;

10: else if b ∈ N(v) AND b ∈ It AND htb = htv AND successive parents of b reach
a node with smaller hop-count or flag = 1 or non-parent and do not reach
v then

11: πt
v = b;

12: Set flagtv = 0;
13: else
14: Run BFS from v in a radius equals to htv − 1.
15: if interest node(s) in this radius found then
16: Connect v to nearest interest node through shortest path.
17: Set flagtv = 0;
18: else
19: Connect node v through shortest path to the root.
20: end if
21: end if

larger tree height however may in turn suggest longer schedule period; this is

because a parent node along a path towards the sink will have to wait until all

downstream measurements are collected before it forwards its own measure-

ment. Recall, measurements have to be compressed, to reduce the number

of transmissions in the network. This is depicted in Figures 3(a)-3(b), where

selecting a subtree with larger height increases the scheduling period, and

thus collection latency. Motivated by these observations, our tree construction

should be refined to yield more efficient forwarding trees, and this is elabo-

rated in Phase 3.

In Phase 3, each node v checks whether it is among the interest nodes in

set It. If yes, node v runs Algorithm 6.2 searching for a more efficient route

133

S

3

9

8

1

6

4

7

5

1
2

3

1

42

1

3 5

2

(a) Number of time slots=5

S

3

9

8

1

6

4

7

5

1
2

1

2

32

1

3 4

2

(b) Number of time slots=4

Figure 6.2: An example of balancing the node degree in a tree. In the network,
black nodes are interest nodes. The directed arcs denote the links on the data
aggregation tree. The active time slot for each arc is shown next to it.

S

3

9 8

1 2 6

4

7

5

3 3

8
1

2

3

4

5
63

2

1

(a) Number of time slots=6

S

3

9 8

1 2 6

4

7

5

3 3

8

1

1

2

3

4
54

3

2

(b) Number of time slots=5

Figure 6.3: An example of minimizing the height of a subtree. Black nodes are
interest nodes, while white nodes are relay nodes. The directed arcs denote
the links on the tree. The active time slot for each arc is shown next to it.

134

or a parent that potentially can reduce the scheduling length as discussed

above. Algorithm 6.2 removes all the successive tree links from node v to a

node that is either an interest node or has more than one child (an example

is illustrated in Figure 4(a); for node 5, the path shown by arrows with ‘x’

from node 5 to node 2 is removed (note that node 2 has two children)). Let b

represent the node that has more than one child. Let R be the total number

of removed links. In this step, an interest node v and its descendants are

disconnected from the main tree t (e.g., node 5 in Figure 4(a) which has been

disconnected from the tree). Next, to discover an alternative path to connect

v to the main tree t, v searches in a radius equals to R, using Breath-First-

Search (BFS), for a node(s) in tree t (if any) that can improve the schedule

length and reduce the number of transmissions (e.g., in Figure 4(b), node 5,

which has been disconnected, can connect to the tree through node 4; hence,

the overall number of transmissions decreases from 5 to 4). To find a better

path, the algorithm adds the nearest candidate nodes found on tree t in a

radius R into a Candidates list. Furthermore, for each node g in Candidates

list, it retrieves the nodal degree Dg and its hop-distance to the sink Hg. This

information can be obtained from each node where they have been obtained

from Phase 2. As discussed earlier, the candidate that minimizes the nodal

degree and the height of the subtree will be selected as the new parent (refer

to lines 8-13 in Algorithm 6.2).

Let δ to be the number of nodes within a radius R, it takes O(δ) to traverse

all nodes in radius R using BFS algorithm. Finding best candidate among

nodes in the Candidates list takes O(ρ), where ρ is the size of the Candidates

list. Therefore, Algorithm 6.2 takes O(δ + ρ), where δ is bigger than ρ, since ρ

is a subset of δ. Thus, the time complexity for the algorithm is O(δ).

135

3

5

1

6

2

4

(a) Before Phase3

3

5

1

6

2

4

(b) After Phase3

Figure 6.4: An example of removing successive links in a tree. The arcs with
X sign denote the removed tree links.

Algorithm 6.2 Tree refinement at node v (Phase 3) for FTCS
1: Remove all the successive tree links from node v to first interest node or

node that has more than one child in tree t. Let b be the found node.
2: R← Total number of removed links.
3: Bestcandidate ← b.
4: Run BFS algorithm from v in a radius equals to R.
5: if node(s) other than b on disconnected main tree t is found in this radius

then
6: Candidates← put the nearest candidate nodes into the list.
7: Bestweight = Infinity.
8: for each node g in the Candidates list do
9: Hg ← Hop-count from g to the sink.

10: Dg ← Degree of node g.
11: if (Dg +Hg) < Bestweight then
12: Bestweight = Dg +Hg.
13: Bestcandidate ← g.
14: end if
15: end for
16: end if
17: Connect node v to Bestcandidate in shortest-path.

136

6.4.2 Distributed Link Scheduling Algorithm

We consider a Time Division Multiple Access (TDMA)-based access method,

and assume time is divided into slots of equal length; we assume each time

slot is divided into a scheduling period and a transmission period. A schedule

is constructed during the scheduling period where a configuration of links (a

configuration is defined earlier) which may be scheduled concurrently is de-

termined. During the transmission period, links in the selected configuration

transmit their packets, one packet each, containing their compressed measure-

ments. In this section, we present our decentralized scheduling algorithm,

where the objective is for each link to locally schedule its transmission while

not violating 1) the order of transmissions and 2) the interference constraints

for transmissions to be successful. To achieve this objective, we define for each

link an interference neighbourhood, which is centered around the receiver of

the link. We shall determine (and control) the cumulative interference caused

by active sensors falling in the interference neighbourhood of a link. Fur-

ther, all links whose transmitters are inside the interference neighbourhood

of a link l will be able to exchange information (therefore coordinate) with the

transmitter of l for scheduling purposes.

For each link l of length dl (e.g., a transmission between a transmitter\child

i and a receiver\parent j), an interference neighbourhood with a radius Kl×dl

around the receiver of link l, and using the interference localization method

presented in [51], is constructed. The neighbourhood for each link is con-

structed such that interference beyond this neighbourhood only has negligible

impacts on its received signal [51]. For a transmission to be successful on a

link l, the maximum interference that can be tolerated at the receiver of link l

137

is:

Imax
l ,

Pd−α
l

β
(6.14)

where P is the transmit power, α is a power loss exponent and β is a pre-

determined SINR threshold required for an acceptable bit error rate. The au-

thors of [51] showed that given a constant ϵ, where 0 < ϵ < 1, for a link l to

be feasible, the upper bound on the interference coming from the transmit-

ters of active links located outside the interference neighbourhood of link l

should not exceed ϵImax
l and the total interference coming from transmissions

inside the interference neighbourhood cannot exceed (1 − ϵ)Imax
l . The radius

of the interference neighbourhood (Kl × dl) certainly depends on the value of

ϵ. The smaller the value of ϵ, the larger the interference neighbourhood, and

thus the higher the scheduling overhead. The value of ϵ can be used to control

the scheduling overhead. In addition, the receiver of each link can estimate

the interference power created by the transmitter of each link in the interfer-

ence neighbourhood using the Radio Interference Detection (RID2.) [90]. For

more details about the interference localization and RID methods, we refer the

reader to [51] and [90] respectively. It should be noted that other approaches

(e.g., FlashLinQ [77] and ITLinQ [63]) have been shown to perform very well

in terms of interference management and can be used for our link scheduling

subproblem.

We now propose our distributed scheduling algorithm. Let ∆l be the set of
2The RID protocol is only used to let the receiver estimates the interference caused by any

transmitter. The basic idea of RID is that a transmitter broadcasts a High Power Detection
(HD) packet, and immediately follows it with a Normal Power Detection (ND) packet. The HD
packet contains the transmitters ID, from which the receiver knows from which transmitter
the following ND packet comes. The receiver estimates possible interference caused by the
transmitter by sensing the power level of the transmitters ND packet. For more details we
refer the reader to [90]

138

Algorithm 6.3 Distributed Scheduling Algorithm at link l for FTCS
1: Transmitter of link l broadcasts SchReq to all links in ∆l.
2: Receiver of Links k ∈ L

⋂
∆l calculate the interference I temk after adding

link l temporary to L.
3: if any receiver of link k has I temk > (1− ϵ)Imax

k then
4: Link k sends an NotAcc message to link l.
5: end if
6: if link l receives at least one NotAcc message then
7: Link l does not add itself to schedule L.
8: Link l broadcasts RemSch message.
9: All links k upon receiving RemSch message remove link l from current

schedule L.
10: else if Link l receives no NotAcc messages then
11: Link l is added to the current schedule L.
12: Link l broadcasts AccSch message.
13: All links k upon receiving AccSch message update their schedule L by

adding link l to L.
14: end if

all links k such that the transmitter of link l is in their interference neighbour-

hood. Let L be the set of links for the current schedule; at the beginning of each

time slot, L is empty. At a high level, links to leaf nodes or links whose children

do not have data to transmit will go into a ready state (since they do not have

to wait for any downstream data); transmitters of such links broadcast their

priority information to all nodes in their interference neighbourhood ∆l. The

priority of each node is estimated based on two criteria: (1) its parent nodal

degree and (2) its hop-count to the root (this information is obtained from the

tree construction phase). For instance, the priority of a node can be quantified

by combining (1) and (2). A node with bigger parent nodal degree and larger

hop-count to the sink assigns itself a higher priority. The tie can be broken by

the transmitter’s node ID (node with bigger ID has higher priority). The pri-

ority information of a link l is disseminated to all links (transmitters) within

the interference neighbourhood of l. Now, each link l in ready state which has

139

the highest priority among all links (in ready state) in its interference neigh-

bourhood, if its cumulative interference Il is not exceeding (1 − ϵ)Imax
l and its

receiver has not already been scheduled for any other link, can simultaneously

run Algorithm 6.3 to add itself to the current schedule L. This process contin-

ues until no more ready state links can be added to the current schedule L.

For the next time slot, new links will be added to the ready state if their pre-

decessor links have been scheduled in the previous time slots. Accordingly, the

above procedure will be repeated until no more links are left unscheduled.

6.5 Performance Analysis

In this section, we prove the correctness of our algorithmic method and an-

alyze its efficiency by giving the approximation ratio of the algorithmic tree

construction to the optimal one and analyze the performance bounds of the

link scheduling algorithm with respect to the aggregation latency.

6.5.1 Correctness

Our distributed method, as discussed above, consists of two (tree construction

and link scheduling) parts, where the former part has three phases. We prove

the correctness of each part or/and phase using the following theorems.

Theorem 6.5.1. (Correctness of phase 1). The sink disseminates the discovery

message, and all the nodes in the network receive it and hence update their

information.

Proof. Sensor nodes in the network are connected and thus there is at least one

path from each node to the sink. If nodes upon receiving the discovery mes-

sage, broadcast it, this guarantees that all the nodes will receive this discovery

140

message, and by updating the hop-counter, nodes learn their distances to the

sink, as well as the number of neighbors, since they receive one message from

each neighbor. It should be noted that nodes do not re-broadcast the discovery

message with equal or higher hop-count, and this proves the termination of

the discovery message phase.

Theorem 6.5.2. (Correctness of Phase 2). In Algorithm 6.1, each interest node

v that belongs to tree t finds its route to nearest interest node parent.

Proof. In Algorithm 6.1, a node has to choose an interest node parent with

smaller hop-count (nearer to the sink) or a parent with a decision flag equals

one (i.e.; flagtparent = 1). When the node chooses a parent with flagtparent = 1,

this guarantees that the route will reach the sink (a node can set its decision

flag equal one if its ancestors reach the sink); otherwise, the node will select

the parent with smaller hop-count to the sink. The selected parent will repeat

the same procedure until the route to the sink is discovered.

Theorem 6.5.3. (Correctness of Phase 3). A node in Algorithm 6.2 can enhance

the forwarding tree by finding a more efficient route, if any.

Proof. After removing the successive tree links from node v and disconnecting

it from the forwarding tree t, Algorithm 6.2 examines all the paths to nearest

node(s) in tree t and finally chooses the best one and connects node v to the tree.

Hence, reconnecting the disconnected node to the tree ensures the termination

of the algorithm.

Theorem 6.5.4. (Correctness of Link scheduling). The distributed link schedul-

ing algorithm in Section 6.4.2 can correctly schedule the links in all the m trees

under the physical interference model.

141

Proof. Algorithm 6.3 guarantees that each link in the ready state which has

the highest priority among others and its cumulative interference does not

exceed the maximum interference which can be tolerated, will be added to

current scheduling list and removed from the ready state, and hence will be

scheduled once. At the end of each round, the ready state will be updated and

links that have not been assigned a time slot remain for future rounds. Finally,

all the links will be added to the schedule list and the algorithm terminates.

6.5.2 Performance bounds of the link scheduling algorithm

In this section, we discuss the theoretical lower and upper bounds on the la-

tency for data aggregation on the constructed m forwarding trees.

Theorem 6.5.5. Given a set of m trees T for compressive data gathering, the

lower bound on the required time slots to schedule all the links in T is

max(m,Dt
i +H t

i)(∀i ∈ V, t ∈ T) (6.15)

Dt
i and H t

i are respectively the nodal degree and hop-count to the sink for node

i and tree t.

Proof. In any tree, a parent node (doing data aggregation) has to wait until it

receives data from all of its children and then forward the aggregated data to

its upper node (if it is not a sink node). Therefore, the minimum number of

time slots required for a node i in tree t is Dt
i (i.e., the number of neighbors of

node i in tree t). This Dt
i includes the time slot to transmit data from node i to

its parent, since its parent has been counted as one of its neighbors in Dt
i .

Now, the minimum time required to send data from a node to the sink is

142

equal to the hop-distance of a node to the sink, which is represented by H t
i .

Therefore, in total a minimum of Dt
i +H t

i time slots is needed for node i in tree

t to send its aggregated data to the sink. If all the transmissions occur in a way

that the SINR constraint is satisfied at each receiver, then the possible lower

bound on the required number of time slots is max(Dt
i +H t

i)(∀i ∈ V, t ∈ T). We

should note here that the sink can receive only one transmission in each time

slot, hence for m trees a minimum of m time slots is required for the sink to

receive all the aggregated data from m trees. Therefore, the final lower bound

on time slot for CDG is (6.15).

It should be noted that at each time slot, the maximum number of links

from m trees which are at the ready state and their SINR is below the thresh-

old β, are going to be scheduled and removed from the trees to let the remain-

ing links to be scheduled in the next rounds. It is possible that in the worst case

(because of lack of fulfilling the SINR constraint, common node transmission

or receiver among ready state links), no more than one link could be scheduled

at each time slot. Intuitively, at least one link can be scheduled at each time

slot and thus, the worst case performance of the link scheduling algorithm for

m trees under the physical interference model is bounded by the total number

of links in all m trees.

6.6 Performance Evaluation

We study the performance of the joint design method under optimal formu-

lation and compare it with the decentralized solution we proposed. We also

study the performance of FTCS under optimal tree construction and optimal

scheduling, separately. Finally, we compare the performance of our FTCS with

143

LLHC-MWF [29], which does data gathering but not compressive data gather-

ing. Our metrics for comparisons are the number of transmissions and sched-

ule length required to gather data under various network sizes, topologies, and

number of projections (for compressive data gathering). For numerical results,

we generate arbitrary networks with n nodes where nodes are randomly dis-

tributed over a region of 700× 700 unit distance, such that the resulting graph

is connected. The density (average nodal degree) of the network is tuned by

increasing or decreasing the communication range of a node. Further, we ran-

domly assign each node in the network to m sets of interest-nodes where each

set contains ⌈ n
m
⌉ nodes. Note that based on the number of n nodes and m sets,

a node might be included in more than one set. We assume all nodes use the

same normalized transmit power P = 1. Moreover, we assume a path loss ex-

ponent α = 3 and the SINR threshold for successful transmission β = 2; we

assume the background noise is negligible; we also assume a single transmit

rate and hence only one threshold β. We further assume ω = 0.5, giving equal

weights to both terms in the objective (i.e., energy efficiency and time efficiency

are equally important). We use CPLEX to solve our optimization model and

JAVA to simulate the operation of our distributed algorithms. We run our pro-

gram on CPU with Intel Core i7 processor, 3.6 GHz speed, 8 GB memory ram

and 64-bit windows operating system.

Evaluation on a small network

We start by examining the results obtained by solving the FTCS jointly using

the MILP model and compare it with our decentralized solution, using the 15-

node network shown in Figure 1(a). Clearly, both methods construct forward-

ing trees with same number of links (and thus same number of transmissions

144

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3->1
11->7
13->5
9->14

7->1
10->3
14->15

1->8
15->0
12->7

8->4
1->3
7->11

3->6
11->2

4->0
6->15
2->13

15->0
13->5 5->0

(a) FTCS joint

1 2 3 4 5 6 7 8 9 10 11 12 13 14

13->5
1->3
9->14
12->7

5->0
10->3
14->15
7->11

3->8
15->0
11->2

11->7
3->6
2->13

7->1
6->15

15->0
13->5

1->8
5->0 8->4 4->0

(b) FTCS disjoint

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10->3
13->4
12->1

1->3
4->6

1->3
2->13

11->7
3->6
13->5

3->8
5->0

7->1
6->15

1->8
15->0

8->4
3->9

4->0
9->14 14->15 15->0

(c) FTCS Decentralized, ϵ = 0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10->3
13->4
12->1

1->3
4->6

1->3
2->13

11->7
3->6

3->8
13->5

7->1
5->0 1->8 3->9

8->4
9->14 6->15

15->0
14->15 15->0 4->0

(d) FTCS Decentralized, ϵ = 0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

13->4
12->1 1->3

11->7
10->3
2->13

1->3
13->5 3->6

3->8
5->0

7->1
4->6 1->8 3->9

8->4
9->14 6->15

15->0
14->15 15->0 4->0

(e) FTCS Decentralized, ϵ = 0.9

Figure 6.5: Link scheduling solution

to gather the sensory data), however both methods differ in their link schedul-

ing performance as depicted in Figure 6.5. First, the MILP solution yields an

optimal link scheduling (schedule length = 8 time slots), however its solution

is centralized. The decentralized solution (see Figure 1(c)) varies according to

the value of ϵ; a smaller ϵ indicates a larger interference neighbourhood and

thus larger area to coordinate transmissions and as a result obtain better so-

lutions than larger values of ϵ. However, this better performance comes at the

expense of larger scheduling overhead [51]. When ϵ = 0.3, a schedule length

of 11 time slots is obtained which is around 27% far from the optimal solu-

tion. The MILP however, being a centralized method, exhibits a much higher

computational complexity.

145

Centralized Vs. Distributed

Now, we compare the performance of the decentralized solution of FTCS (D-

FTCS) with two other disjoint methods, namely, methods that solve the prob-

lems of tree construction and scheduling separately using either the central-

ized optimal model or distributed algorithmic method. The first one is central-

ized and solves the two subproblems optimally (OTC-OLS) and the second one

solves only the (centralized) scheduling subproblem optimally (DTC-OLS). It

should be noted that the link scheduling under interference model is an NP-

hard problem, as shown before. The results, averaged over five runs, are shown

in Table 6.2. We should recall that the schedule length highlights the gather-

ing latency in the network. It is observed that OTC-OLS and DTC-OLS, being

able to provide optimal solutions to the link scheduling subproblem, resulted in

shortest schedule length and thus faster collection time for the measurements.

It is interesting to note that DTC-OLS for larger network instances resulted

in slightly shorter schedules and this is due to the tree construction refine-

ment phase of the distributed algorithm. In OTC-OLS, however, trees are

constructed to contain minimum number of edges without any refinement. D-

FTCS on the other hand achieved notably a good performance with worst case

gap to other solutions not exceeding 27%. In terms of computation complexity,

our decentralized algorithm obtained solutions in less than 2 seconds (for a 40

nodes network) whereas OTC-OLS obtained a solution for a 40 nodes network

after a day; namely, the tree construction took only few seconds and the link

scheduling took 1.5 days. For smaller networks (e.g., 20 nodes), the decen-

tralized method returned the solution in less than one second and OTC-OLS

took in the order of minutes. These results confirm that the link scheduling

under interference constraints is indeed very complex to solve in a centralized

146

setting. Finally, we should note that all three methods constructed trees with

same number of edges, consuming the same number of transmissions. We will

further examine and compare the performance of D-FTCS in terms of schedule

length and number of transmissions with other method in the literature at the

end of this section.

Table 6.2: FTCS performance (number of time slots, m = 20%n)
#Nodes Avg. nod. deg. #Trans. D-FTCS DTC-OLS OTC-OLS
n=10 2.9 10.8 6 5.6 5.6
n=15 3.12 20.6 9.6 9.6 9.4
n=20 3.14 31.4 14.6 12 11.4
n=25 3.46 44.8 19 15.4 15.4
n=30 3.55 63.4 22.4 17.8 18.4
n=35 3.33 82.2 30.6 25.2 26
n=40 5.22 76.6 29.4 21.4 22.4

Exploring more forwarding trees

At this stage, it should be clear that the scheduling performance depends en-

tirely on the structure of the forwarding trees. In a general graph, more than

one forwarding tree with minimum edges may be constructed to gather data

from a set of interest nodes to the sink. Therefore, to obtain a more efficient

(shorter) schedule, one may first construct all the possible minimum forward-

ing trees and then solve the scheduling subproblem for all tree combinations,

each for a multi-set of interest nodes (or projection), and then choose a com-

bination that gives the best schedule length among others. Let I1, I2, ..., Im

represent interest nodes sets for projections 1, 2, ...,m respectively. For each

set (It), we may have different minimum trees (i.e,; τt = {t1, t2, ...}). To find

the best scheduling, we have to solve for τ1 × τ2 × ...× τm combination of trees.

Algorithm 6.4 shows the steps to find all the minimum forwarding trees.

147

Algorithm 6.4 Steps to get all minimum forwarding trees in FTCS
1 Construct the optimal forwarding tree. (e.g., (6.3)-(6.6) without the second
sumation of (6.3).

1.1 Add the tree into MinimumTreesSet.
1.2 Let NLinks = number of links in the tree.

2 Remove links one by one from the optimal tree.
2.1 Construct tree without that removed link.
2.2 If the number of links in the obtained tree is equal to NLink, and

the obtained tree is not in MinimumTreesSet :
2.2.1 Put the obtained tree into MinimumTreesSet.
2.2.2 Put the obtained tree into CheckTreesSet.

3 While CheckTreesSet is not empty;
3.1 Remove one tree from the CheckTreesSet.
3.1 Repeat step 2 for this tree.

Recall that a primary objective in a WSN is to minimize the total number

of transmissions (links in the forwarding trees) for energy efficiency, and later

schedule those trees to obtain a shortest schedule for efficient data gathering

latency. If the primary objective is latency, then more trees may be enumerated

(step 2.2 in Algorithm 6.4 can be updated to accept trees with larger size (we

add µ to NLinks, where, µ indicates the number of edges that is acceptable if

the obtained tree has links more than optimal tree)). It might be possible that

trees with larger size yield a better schedule length. If we let the value of µ

to be large enough (i.e. µ ≥ number of edges in the network), the algorithm

will find all possible forwarding trees without a cycle. Let τi = {t1, t2, ...} be the

set of all forwarding trees for each set It, the scheduling length is obtained by

solving the scheduling subproblem for all τ1 × τ2 × ... × τm combinations. Let

S∗ = {τ ∗1 , τ ∗2 , ..., τ ∗m} indicate the optimal tree combinations yielding optimal

schedule, τ ∗t for interest nodes set t (obtained through MILP or exhaustive),

and let Sτ and Sτ be the best scheduling found for τ and τ respectively. Then,

S∗ ≤ Sτ ≤ Sτ .

Table 6.3 shows the results (number of time slots, time complexity and

148

number of constructed forwarding trees combination) for the same instances

used in Table 6.2. In this table, the scheduling problem for each trees-combination

is solved using the two methods (optimal model and distributed algorithm).

The results show that constructing multiple trees for each projection improves

the performance of the disjoint methods. However, it significantly increases by

computational complexity. For instance, the multiple trees construction with

optimal scheduling method (for 20-node network) performed 12% better than

OTC-OLS, but obtained the solution after days (res. near an hour) when tak-

ing all forwarding tree combinations (res. minimum tree combinations). On

the other hand, when solving the scheduling subproblem with distributed al-

gorithm, the multiple trees construction method solved the 20-node network

in minutes (much faster than when solving the scheduling subproblem opti-

mally), whereas D-FTCS took less than a second with a worst gap scheduling

performance not exceeding 12% (but, equal number of transmissions in case

of Min-Trees). It should be noted that the computational complexity of all the

multiple trees construction methods grow exponentially with the size of the

network, whereas D-FTCS is scalable for very large networks due to the fact

that each node in a network can do the tree construction and scheduling locally.

149

Table 6.3: FTCS performance using combinations of multiple forwarding trees (m = 20%n, time is shown by h:m:s)
Optimal Scheduling Subproblem Algorithmic Sheduling SubproblemOptimal (MILP) All-Trees Min-Trees All-Trees Min-Trees#Nodes

#Slots Time #Slots Time #Slots Time #Tran. #Slots Time #Tran. # Slots Time
5.6 0:00:59 5.6 0:00:24 10.8 5.6 0:00:27 10.8 5.6 0:00:14n=10 5.6 0:00:23 44.80 tree comb. 16.00 tree comb. 44.80 tree comb. 16.00 tree comb.
7.8 0:29:35 7.8 0:03:16 21.2 9 0:01:13 20.6 9.4 0:00:38n=15 7.8 13:50:37 427.40 tree comb. 74.2 tree comb. 427.40 tree comb. 74.20 tree comb.
10 61:40:26 10 0:40:01 31.4 12.6 0:03:07 31 13 0:00:51n=20 Exp.

10
Out of

Memory 3468.40 tree comb. 53.00 tree comb. 3,468.40 tree comb. 53.00 tree comb.
44.8 16 0:15:08 44.4 16.4 0:02:21n=25 29,425.60 tree comb. 2,034.00 tree comb.

62.8 20.8 0:05:14n=30 239,831.20 tree comb. 5,301.00 tree comb.

150

Our distributed method Vs. [29]

Next, we examine and compare the performance of our distributed solution for

FTCS (D-FTCS) with the centralized data gathering algorithm (LLHC-MWF)

presented in [29] in terms of schedule length and number of transmissions

required to complete one round of data gathering. It should be noted how-

ever that LLHC-MWF algorithm does not use compressive data gathering; it

constructs only one tree for data gathering, where each node in the network

chooses a parent node that minimizes the maximum subtree size and intro-

duces a new link that is compatible with most links in the constructed tree.

Figures 6.6, 6.7, 6.8 and 6.9 depict the results of comparison between D-

FTCS (with ϵ=0.0, ϵ=0.25, ϵ=0.5) and LLHC-MWF under different network

topologies (sparse and dense) and varying number of sensor nodes (100 to 500)

with communication radius ranges from 45 to 100 units for sparse and 75 to

150 units for dense networks, and different number of projections (m=10%n

and m=20%n) with an average of ten runs. As shown in the figures, our D-

FTCS (with any value of ϵ) outperforms LLHC-MWF and achieves much shorter

schedule lengths (thus lower collection latency). For instance, when n = 500

and ϵ = 0.5, D-FTCS in the sparse network performs 25% and in the dense net-

work performs 21% better than LLHC-MWF. It should be noted here that such

gains are attributed to compressive data gathering, a feature lacking in the

LLHC-MWF method. LLHC-MWF on the other hand constructs only one tree

and is oblivious to the order of transmissions when performing link schedul-

ing; in other words, in LLHC-MWF, a parent node does not need to wait for

its children’s measurements since it is not performing any compression, thus

its scheduling is more flexible. Nonetheless, our D-FTCS outperformed LLHC-

MWF. It is also notable that D-FTCS performs much better than LLHC-MWF

151

when the number of projections is smaller (around 15% to 25% when m = 20%n,

and 41% to 52% whenm = 10%n for different network sizes). With fewer projec-

tions, fewer forwarding trees are constructed, and when constructed efficiently,

they result in much shorter schedule. Moreover, the curves in the figures

show that the performance of D-FTCS over LLHC-MWF in sparse networks

increases steeper than dense networks, specially in large networks. The rea-

son goes for the advantage of compressive data gathering, where in the sparse

networks, because of deficiency of interference, more links can be scheduled in

fewer time slots. In addition, the figures confirm that the results of D-FTCS

vary according to the value of ϵ as explained earlier, where a smaller ϵ achieves

shorter schedule length.

100 200 300 400 500
0

200

400

600

800

1000

Number of Nodes

Ti
m

e
S

lo
ts

LLHC−MWF
D−FTCS e0.5
D−FTCS e0.25
D−FTCS e0.0

Figure 6.6: FTCS Vs. LLHC-MWF: # slots in sparse network, m=10%n

Finally, we consider a network of 200 nodes and we compare the perfor-

mance of D-FTCS with LLHC-MWF [29] as we vary the number of projections

(m) used for FTCS. The results (schedule length and number of transmissions)

are shown in Figure 6.10. The number of transmissions and time slots for

different number of projections (m) in LLHC-MWF are both uniform, since

152

100 200 300 400 500
0

200

400

600

800

1000

Number of Nodes

Ti
m

e
S

lo
ts

LLHC−MWF
D−FTCS e0.5
D−FTCS e0.25
D−FTCS e0.0

Figure 6.7: FTCS Vs. LLHC-MWF: # slots in sparse network, m=20%n

100 200 300 400 500
0

100

200

300

400

500

Number Of nodes

Ti
m

e
S

lo
ts

LLHC−MWF
D−FTCS e0.5
D−FTCS e0.25
D−FTCS e0.0

Figure 6.8: FTCS Vs. LLHC-MWF: # slots in dense network, m = 10%n

153

100 200 300 400 500
0

100

200

300

400

500

Number of Nodes

Ti
m

e
S

lo
ts

LHLC−MWF
D−FTCS e0.5
D−FTCS e0.25
D−FTCS e0.0

Figure 6.9: FTCS Vs. LLHC-MWF: # slots in dense network, m = 20%n

LLHC-MWF method does not rely on compressive data gathering technique

and thus is not affected by different number of projection. The figure shows

that when the number of projections is small, D-FTCS substantially outper-

forms LLHC-MWF both in terms of number of transmissions and schedule

length. For instance, when m=5%n and 10%n, with D-FTCS, few trees are con-

structed to collect the data from the network (respectively 10 and 20 trees), and

owing to compressive data gathering, much fewer transmissions are needed to

collect the data (resp. 58% and 45% less transmissions), where such transmis-

sions can be scheduled effectively in a very short period of time (resp. performs

67% and 50% better). The schedule length is either smaller than half or close

to half that of LLHC-MWF. However, as the number of projections increases,

then more forwarding trees are constructed and hence more transmissions will

be needed. Accordingly, the length of schedule as well as number of transmis-

sions start to increase. As Figure 6.10 shows, when m = 40%n or bigger, our

algorithm performs slightly worse than LLHC-MWF. Alternatively, if the num-

ber of projections is kept smaller, then D-FTCS outperforms substantially the

154

performance of LLHC-MWF, as depicted in Figure 6.11, for varying network

sizes. For example, when m=20%n, FTCS achieves gains that vary between

29% and 44% over LLHC-MWF.

5% 10% 15% 20% 25% 30% 35% 40% 45%
0

200

400

600

800

1000

1200

1400

Projections (m=20%n, n=200)

of

 ti
m

e
sl

ot
s

&
 tr

an
sm

is
si

on
s

D−FTCS Time slots
LLHC−MWF Transmissions
D−FTCS Transmissions
LLHC−MWF Time slots

Number of transmissions

Number of time slots

Figure 6.10: FTCS vs. LLHC-MWF: schedule length Vs. # transmissions

6.7 Conclusion

In this chapter, we considered the problem of projection-based compressive

data gathering and scheduling in wireless sensor networks under the phys-

ical interference model. We formulated the problem of joint forwarding tree

construction and link scheduling mathematically with the objective of achiev-

ing energy efficient data gathering with minimal collection latency. We high-

lighted the complexity of the problem, and then we presented our decentralized

algorithm for solving it. Our decentralized approach decouples the problem

into two subproblems; namely, the tree construction subproblem and the link

scheduling subproblem. Our decentralized tree construction is amended with

155

100 300 500 700 900
0

2000

4000

6000

8000

10000

12000

Number of nodes

To
ta

l n
um

be
r o

f t
ra

ns
m

is
si

on
s

LLHC−MWF
D−FTCS (m=20%n)
D−FTCS (m=10%n)
D−FTCS (m=5%n)

Figure 6.11: FTCS vs. LLHC-MWF: # nodes Vs. # transmissions

refinements to help the link scheduling achieve better scheduling and thus col-

lection latency. Our scheduling subproblem is resolved in a distributed fashion,

through interference localization and coordination among links to control the

level of interference. Our distributed method showcased the benefits of com-

pressive data gathering in collecting measurements and has been shown to be

scalable with outstanding performance in terms of energy efficiency (number

of transmissions) and gathering latency (time to gather data from sensors).

156

Chapter 7

A Column Generation (CG)

Approach for FTCS

In the problem of constructing multiple forwarding trees and scheduling (FTCS),

presented in Chapter 6, each tree may be constructed independently and then

its links are scheduled. However, when all trees are combined together, the

shortest and energy efficient schedule may not be guaranteed. Further, a large

number of possible forwarding trees for each group of sensors may be consid-

ered. Both problems of enumerating forwarding trees and scheduling links for

those trees are hard combinatorial problems [24]. This is compounded by the

fact that the two problems must be solved jointly, to guarantee the selection

of best forwarding trees which, when their links are scheduled, guarantee a

shortest energy efficient schedule.

Figure 7.1 illustrates an example on the interaction between the tree con-

struction and link scheduling and highlights the impact on the data gathering

latency (or the schedule length). The example shows how to gather data at

the sink from all sensors using three groups of interest-nodes. As the figures

157

5

1

121

S

8

4

14

12

2

6

7

3

13

5

9

11

10

15

(a) No. of time slots = 12

1

S

8

4

14

12

2

6

7

3

13

5

9

11

10

15

7

(b) No. of time slots = 11

51

S

8

4

14

12

2

6

7

3

13

5

9

11

10

15

10

(c) No. of time slots = 10

91

S

8

4

14

12

2

6

7

3

13

5

9

11

10

15

7

(d) No. of time slots = 9

Figure 7.1: An example of tree construction and link scheduling; (d) joint and
(a)-(c) disjoint with different tree constructions. Here, m = 3 (m = 20%n). In
the network, S is the sink which intends to gather data from all nodes. Same
color arcs represents aggregation tree for one set. Each set of interest nodes is
illustrated with same color. The numbers on the arcs represent the time slot
when the tree links are active.

158

show, all four tree constructing methods require the same number of transmis-

sions (links) to gather the sensory data; however, Figure 1(d) shows that the

trees in the joint FTCS can be scheduled in only 9 time slots, whereas, other

figures (Fig. 1(a) - Fig. 1(c)) require more time slots to collect the measure-

ments. This is due to the fact that trees are constructed without considering

the requirements for achieving a shorter schedule length.

In this chapter, after highlighting the complexity of the FTCS problem, we

present a novel primal-dual decomposition method using column generation.

We also highlight several challenges we faced when solving the decomposed

problem and present efficient techniques for mitigating those challenges. One

major advantage of our work is that it can serve as a benchmark for evaluating

the performance of any low complexity method for solving the FTCS problem

for larger network instances where no known exact solutions can be found.

7.1 Problem Formulation and Complexity

The FTCS problem, as we mentioned earlier, has two sub-problems: (1) Find-

ing m forwarding trees, each connects one set of interest-nodes to a sink node,

and (2) Scheduling the links on these forwarding trees. The joint FTCS prob-

lem can be modeled as follows:

Objective:
min
−→τ ∈T

f(−→τ) (7.1)

Subject to:

1. Routing (tree construction) constraints.

2. Link scheduling constraints.

3. SINR constraint.

159

In (7.1), we assume f(.) is a cost function incorporating both energy con-

sumption and gathering latency. −→τ = (τ1, τ2, ..., τm) is set of forwarding trees,

each for a set of interest-nodes (It), and T =
⋃m

t=1 T t, where T t is the set

of all possible forwarding trees for interest-nodes set It. The above FTCS

model has been mathematically formulated in chapter 6 (and in our previ-

ous work [24]) as an ILP model. Our objective function aims at minimizing

the number of links in the constructed trees to reduce the number of transmis-

sions for data gathering (thus, conserving energy) and the required number

of time slots needed to schedule the constructed trees (i.e, gathering latency).

Clearly, this ILP model is complex and hard to scale for networks of reason-

able sizes. The complexity of the problem can be categorized as follows: 1)

Complexity of constructing and enumerating forwarding trees; this problem,

similar to the Steiner tree problem, is NP-complete and its NP-hardness has

been shown in [39]. 2) Complexity of link scheduling under the physical in-

terference model; the problem is shown to be NP-complete, e.g., in [30]. 3)

Complexity of finding multiple trees which, collectively, guarantee a minimum

schedule length; it has been shown in [29] that this problem is NP-hard as

well. Note that, in addition to the listed complexities, the above model has to

jointly construct and schedule links for multiple trees. Table 7.1 illustrates

the ILP solutions for three network sizes. As the table shows, the ILP model

failed to find solutions for networks with 20 nodes or larger due to the large

number of mapping possibilities that the model had to search through to find

the optimal solution. Therefore, to address the scalability issue, in the follow-

ing section we introduce a primal-dual decomposition approach using Column

Generation (CG) [14].

160

Table 7.1: Performance of ILP model (m = 20%n)
Nodes # Trans. # Slots CPU Time

n=10 11 6 12 seconds
n=15 20 8 10 hours
n=20 Out of memory after passing 8 hours

7.2 Decomposition method

To design a more efficient method, we decompose our problem into sub-problems,

using the technique of CG [14]. CG is an efficient method for solving large scale

LP problems by decomposing the original problem into two sub-problems, a

Master and a Pricing. The two sub-problems are solved iteratively until an

optimal criteria is met. The Master (LP) is initialized with a subset of con-

figurations (columns) that satisfy all the constraints in the Master model (a

feasible solution is obtained). The Pricing (ILP), which is a separation model

for the dual LP of the Master, iteratively generates and adds columns that im-

prove the solution of the Master problem. A very few number of these columns

is usually sufficient for the Master sub-problem to obtain the optimal LP solu-

tion. In some cases, in order to obtain an epsilon optimal solution for the ILP

model, it is enough to solve the Master problem using the columns associated

with the optimal LP solution.

Given the nature of our FTCS problem, we decompose it into a Master and

a set of Pricing sub-problems, where each Pricing constructs (for each group

of interest nodes) a tree and schedules its links. Pricing sub-problems, at

each iteration, generate configurations for the Master, and the Master prob-

lem chooses the best combination of configurations among all the feasible ones

gathered by the Pricing problem. Figure 7.2 illustrates an example of how

Master columns (configurations) look like in our problem. As the figure shows,

for each interest-nodes set (It), each configuration is generated by solving a

161

C
o

nf
ig

u
ra

ti
o

n
 0

 t
 1

…..
C1

Interest-nodes set t = 1

c=0 c=1

………………….

From iteration 1

C
o

nf
ig

u
ra

ti
o

n
 1

 t
 1

C
o

nf
ig

u
ra

ti
o

n
 2

 t
 1

c=2

C
o

nf
ig

u
ra

ti
o

n
 0

 t
 2

….
C2

Interest-nodes set t = 2

c=0 c=1

C
o

nf
ig

u
ra

ti
o

n
 1

 t
 2

C
o

nf
ig

u
ra

ti
o

n
 2

 t
 2

c=2

C
o

nf
ig

u
ra

ti
o

n
 0

 t
 m

….
Cm

Interest-nodes set t = m

c=0 c=1

C
o

nf
ig

u
ra

ti
o

n
 1

 t
 m

C
o

nf
ig

u
ra

ti
o

n
 2

 t
 m

c=2

Initial basis From iteration 2 ………….

Figure 7.2: Example of master columns/configurations.

Pricing sub-problem at each iteration. Let Ct represent the set of configura-

tions for set of interest-nodes It (recall, each configuration is a tree and a sched-

ule for It). The set of all possible configurations is depicted by C =
⋃m

t=1Ct.

Among these configurations, the Master sub-problem should select one and

only one configuration for each It. Furthermore, the Master should forbid the

selection of 1) configurations which contain the same link that is scheduled at

the same time slot along the scheduling horizon; 2) configurations in which the

same node receives from more than one child (each child in different configura-

tion) in the same time slot; 3) configurations in which a node is receiving and

transmitting at the same time slot; 4) configurations which violate the SINR

constraints.

At the beginning of our decomposition method, to get an initial basis (con-

figurations) for solving the Master problem, we start by independently con-

structing m minimum spanning trees (MSTs), one tree for all interest-nodes

in each set (It, t = 1..m), to a sink node using an ILP model (Tree Construc-

tion Model (TCM), see Appendix C). Then, for each tree, using a separate ILP

162

model (Link Scheduling Model (LSM), refer to Appendix D), we find the min-

imum number of time slots required to schedule the links. The initial con-

figurations of the Master are created by concatenating schedules of all trees

to avoid scheduling conflicts among links or transmissions of different trees

(inter-tree interference). Now, as we explained earlier for CG, the Master and

sub-Pricing problems iteratively alternate until a stoping criteria is met [14].

The Master problem can be formulated as follows:

7.2.1 The Master Problem

• Parameters:

Table 7.2: Common parameters used throughout the chapter
V : Set of vertices in the graph.
E: Set of edges in the graph.
| It |: Total number of interest-nodes in set It.
S: A large number of time slots for one round of data gathering.
P : Power transmission for each node.
Gij : Channel gain from transmitter i to receiver j.
β: Minimum SINR threshold.
η: Background noise.
B: Big number.
ε: 0 < ε < 1.

λtc : Number of consecutive time slots required to schedule configuration

c for interest-nodes set t.

ds,tij,c : Indicate whether link (i, j) at time slot s for configuration c of

interest-nodes set t is active or scheduled.

bs,ti,c : Indicate whether node i at time slot s for configuration c of interest-

nodes set t is busy (transmitting or receiving).

F s,t
j : Interference caused by other scheduled links on node j at time slot

s on tree selected by interest-nodes set t.

163

as,tij,c =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
PGij − βF s,t

j , if link (i,j) is active at time slot s for configuration c

of interest-nodes set t;

−βF s
j , otherwise.

• Decision Variables:

L :Total number of required slots.

Zt
c =

⎧⎪⎨⎪⎩
1, if configuration c for interest-nodes set t is selected;

0, otherwise.

Hs
ij : Indicate whether any configuration is using link (i,j) at time slot s.

•Mathematical Model:

Minimize L (7.2)

Subject to:

γ : L ≥ λtc Zt
c ∀c ∈ C, t = 1..m. (7.3)

δ :
∑
c

Zt
c = 1 t = 1..m. (7.4)

θ :
∑
t,c

bs,ti,c Zt
c ≤ 1 ∀i ∈ V, s ∈ S. (7.5)

ω :
∑

t,c a
s,t
ij,c Zt

c ≥ β η + (Hs
ij − 1)B

∀(i, j) ∈ E, s ∈ S.
(7.6)

µ : Hs
ij ≥ ε

∑
t,c

ds,tij,c Zt
c ∀(i, j) ∈ E, s ∈ S. (7.7)

ν : Hs
ij ≤

∑
t,c

ds,tij,c Zt
c ∀(i, j) ∈ E, s ∈ S. (7.8)

164

Note that λtc, b
s,t
i,c, d

s,t
ij,c and as,tij,c are parameters in the Master problem which are

obtained after solving the LSM or/and the multi-Pricing sub-problems. Each

Pricing solves its decision variables λ, bsi , dsij and asij, which correspond respec-

tively to parameters in the Master problem. At each iteration, columns (a

column for each interest-nodes set) of these parameters are added to the basis

of the Master problem. Therefore, the number of configurations (C =
⋃m

t=1Ct)

in the Master problem is increased by one for each interest-nodes set t (It) at

each iteration. as,tij,c is a parameter which the Master needs to calculate the

interference on link (i,j) (belonging to configuration c for interest-nodes set t)

scheduled at time slot s. When link (i,j) is active, as,tij,c is the received power

at node j minus interference caused by other links active in the same time

slot of the same configuration. When link (i,j) is not active, as,tij,c depicts only

interference coming from other active links at time slot s (i.e., as,tij,c = −βF
s,t
j).

The objective of the Master problem is to choose best configurations ob-

tained from the multi-Pricing sub-problems which minimize the total num-

ber of time slots required for scheduling collectively forwarding trees for all

interest-nodes sets. Constraint (7.3) finds the number of consecutive time

slots required for scheduling each configuration of a group of interest-nodes.

Constraint (7.4) asserts that for each group of interest-nodes only one con-

figuration is selected. Constraint (7.5) makes sure that nodes are not active

(scheduled) for more than one activity (transmit/receive) at a time slot. Con-

straints (7.6), (7.7) and (7.8) enforce that the SINR constraint for each link

(i,j) is satisfied when all m forwarding trees for all sets of interest-nodes are

selected. As we explained earlier in section 6.1, the SINR constraint (6.1) for

165

link (i,j) is satisfied if

PGij

η + F s
j

≥ β (7.9)

where F s
j is the aggregate interference caused by other concurrent active links

at receiver node j in time slot s. Hereafter, we explain how constraints (7.6),

(7.7) and (7.8) lead to SINR constraint (7.9). First, for each link, we check

whether it is active in any configuration in a time slot; this can be represented

by Hs
ij and obtained through (7.7) and (7.8). Then, if the link is not active (i.e.,

Hs
ij = 0), constraint (7.6) is always satisfied (i.e., no need to check the SINR

constraint). Else, if it is active (i.e., Hs
ij = 1), constraint (7.6) reduces to

∑
t,c

as,tij,c Zt
c ≥ β η (7.10)

Now, when link (i,j) is active in a forwarding tree of interest-nodes set t,

as,tij,c = PGij − βF s,t
j , otherwise, as,tij,c = −βF s,t

j . We know that link (i,j) can

be active in only one tree of the interest-nodes set (refer to constraint (7.5)),

and only one configuration (c) is going to be chosen for each interest-nodes set

(forced by constraint (7.4)). Therefore, only one term in the left hand side of in-

equality (7.10) (i.e.,
∑

t,c a
s,t
ij,c Zt

c) should be positive (this corresponds to a tree

of interest-nodes set which has an active link (i,j), i.e., as,tij,c = PGij − βF s,t
j),

and negative for all other trees of interest-nodes sets (i.e., as,tij,c = −βF
s,t
j ; these

negative values add the interference caused by other active links in other trees

on node j). Hence, (7.10) can be written as:

PGij − βF s
j ≥ β η (7.11)

166

which is equivalent to (7.9). Figure 7.3 illustrates an example on how con-

current active links in two trees (solid and strip arcs) have impact on link

(i,j). The figure shows only the concurrent active links in both trees. For

the first tree (shown by solid arcs) as,tsolidij,c = PGij − βP [Gkh + Gab], and for the

second tree (shown by strip arcs) as,tstripij,c = −βP [Geg + Goq + Gru]. Accordingly,∑
t,c a

s,t
ij,c Zt

c = PGij−βP [Gkh+Gab+Geg+Goq+Gru], which is equal to PGij−βF s
j .

l1

l2
l3

l4l5

l6

i

a

h

j

k

b

q e g

u
r

o

Figure 7.3: Example of interference caused by concurrent active links in two
trees (solid and strip arcs) on link (i,j). The interference from the transmitter
of concurrent links on the receiver of link (i,j) is shown by stipe line.

7.2.2 The Pricing Problem

During each iteration, the Pricing problem generates a new feasible column (to

join the Master basis) which may improve the Master’s current LP solution.

The columns which improve the Master’s objective value are the ones with

the negative reduced costs. The Pricing sub-problem is guided towards those

improving columns by the dual values passed from the Master problem. Let

γ, δ, θ, µ and ν denote the dual values corresponding to constraints (7.3), (7.4),

(7.5), (7.7) and (7.8) in the Master problem respectively. The Pricing problem

keeps generating new columns as long as the Master problem provides the

combination of dual values that allow such columns. When the best column

the Pricing can generate is of reduced cost value greater than or equal to zero,

167

the CG algorithm stops the search process for the best combination of columns.

RC = −λ γ + δ −
∑
i,s

bsi θsi +
∑
ij,s

asij ωs
ij − ε

∑
uv,s

dsij µs
ij +

∑
ij,s

dsij νsij (7.12)

When the objective of the Master problem is to minimize, the standard piv-

oting rule of the Simplex method is to choose a new column (configuration)

such that (7.12) is maximum; the column which is found is added to the basis

of the Master problem. The Master problem is solved, again, with the new

basis to obtain a new solution, and the dual variables are passed to the sub

Pricing problems which are again solved. The Master and Pricing problems

are solved iteratively until there is no off-basis column with a negative reduce

cost found and therefore the LP solution is optimal. Indeed, this requires that

the last simplex iteration of all individual sub Pricing problems are solved to

optimality to ensure that there is no off-basis column with positive reduced

cost remains unexplored in each pricing. The ILP mathematical model of the

Pricing problem is derived as follows:

• Parameters:

The dual values (γ, δ, θsi , ωs
ij, µs

ij and νsij) from the Master problem.

The remaining parameters are listed in Table 7.2.

• Decision Variables:

xij =

⎧⎪⎨⎪⎩
1, if link (i,j) is active in a tree;

0, otherwise.

yij ∈ Z : Indicating at what time slot link (i,j) is active (yij > 0).

dsij =

⎧⎪⎨⎪⎩
1, if link (i,j) is active at time slot s;

0, otherwise.

168

bsi =

⎧⎪⎨⎪⎩
1, if node i is busy at time slot s;

0, otherwise.

F s
j ∈ R : Interference caused by other links on node j at time slot s.

asij =

⎧⎪⎨⎪⎩
PGij − βF s

j , if link (i,j) is active at time s;

−βF s
j , otherwise.

λ ∈ Z : Consecutive number of time slots required for scheduling.

•Mathematical Model:

Maximize RC (7.13)

Subject to:

Constraints (C.2)-(C.4) for xij in TCM (see Appendix C)

| yij − yik |≥ xij + xik − 1 ∀(i, j)&(i, k) ∈ E : j ̸= k. (7.14)

| yij − yjk |≥ xij + xjk − 1 ∀(i, j)&(j, k) ∈ E : i ̸= k. (7.15)

yij ≥
xij
B

∀(i, j) ∈ E. (7.16)

yij ≤ B xij ∀(i, j) ∈ E. (7.17)

| yij − ykj |≥ xij + xkj − 1 ∀(i, j)&(k, j) ∈ E : i ̸= k. (7.18)

yjk +B(1− xjk) ≥ yij + 1 ∀(j, k)&(i, j) ∈ E. (7.19)⎧⎪⎨⎪⎩
dsij ≤ 1− |s−yij |

B

dsij ≥ 1− (B | s− yij |)
∀s ∈ S, (i, j) ∈ E. (7.20)

169

P Gij +B(1− dsij) ≥ β(η +
∑

(k,h)∈E:k&h̸=i&j

P Gkj.d
s
kh)

∀s ∈ S, (i, j) ∈ E.

(7.21)

λ ≥ yij ∀(i, j) ∈ E. (7.22)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
bsi ≤

∑
j:(j,i)∈E d

s
ji +

∑
j:(i,j)∈E d

s
ij

bsi ≥
∑

j:(j,i)∈E d
s
ji

bsi ≥
∑

j:(i,j)∈E d
s
ij

∀s ∈ S, i ∈ V. (7.23)

asij = P Gijd
s
ij − β

∑
(k,h)∈E:k&h̸=i&j

P Gkj.d
s
kh)

∀s ∈ S, (i, j) ∈ E.

(7.24)

It should be noted that we have m Pricing sub-problems, one for each set

of interest-nodes (It), and the above mathematical model represents one Pric-

ing (similar procedure is repeated for others). The objective of the Pricing

is to construct a forwarding tree for a set of interest-nodes and schedule its

links by considering dual values from the Master problem. The variable xij

indicates the forwarding tree which is required to be scheduled in the Pric-

ing problem. Kindly, refer to constraints (C.2)-(C.4) in Appendix C for con-

straints related to xij. Constraint (7.14) ensures that a node may not transmit

to multiple receivers. Constraint (7.15) asserts that a node may not receive

and transmit at the same time slot. Constraint (7.16) ensures that all active

edges (i.e., edges which are part of a tree) have to be scheduled (i.e., when

xij = 1 =⇒ yij > 0). Similarly, all edges in a graph which are not part of the

tree (i.e., xij = 0) are not scheduled (i.e., yij = 0), which is enforced through

constraint (7.17). Constraint (7.18) asserts that a node can not receive data

from multiple transmitters simultaneously in the same time slot. Constraint

170

(7.19) ensures that a parent link in a tree has to be scheduled after any child

link. In other words, a node in a tree can not transmit unless it receives all

packets from its children. Constraints (7.20) obtain dsij which are required for

SINR measurements. Constraints (7.20) make sure dsij = 1 when a link (i,j) in

a tree is active (scheduled) at time slot s (i.e., dsij = 1, if xij = 1 and s = yij),

otherwise dsij = 0. Constraint (7.21) ensures that the SINR for each active link

is above the threshold β. Note that the constant B should be greater than

any η +
∑

(k,h)∈E;k ̸=i P G−α
kj askh. In (7.21), if link (i, j) in a tree is active in time

slot s (i.e., dsij = 1), then (7.21) reduces to expression (6.1). Constraint (7.22)

finds the last time slot or the total number of consecutive time slots required

for tree scheduling. Constraints (7.23) show whether a node is busy trans-

mitting or receiving data (packet) at time slot s. In other words, bsi = 0, if∑
(j,i)∈E d

s
ji +

∑
(i,j)∈E d

s
ij = 0, and bsi = 1, otherwise. These busy node variables

(bsi) are needed for the Master problem. The last constraint (7.24) obtains vari-

ables asij (defined above in the decision variables) which are required for the

master problem as well. asij = PGij − β
∑

(k,h)∈E:k&h̸=i&j PGkjd
s
kh, when dsij = 1;

and asij = −β
∑

(k,h)∈E:k&h̸=i&j PGkjd
s
kh, when dsij = 0.

7.2.3 Solution methodology

At this level, it is clear that our approach for solving the FTCS problem is

through decomposing it into 1) a Master, which decides best m configurations

which yield shortest schedule for data gathering and 2) a set of Pricing sub-

problems, each Pricing, guided by the dual variables obtained from the Master,

computes a forwarding tree for a particular set of interest nodes (and schedule

its links) and returns the configuration to the Master. However, the fact that

each Pricing sub-problem solves a joint tree construction and link scheduling,

171

renders the Pricing difficult to solve. Further, this is solved for each Pric-

ing sub-problem, and multiple times, as the iterations between Master and

Pricing evolve, until the optimal solution is found. Denote this optimal solu-

tion by x∗LP , which is the LP solution of the FTCS problem. x∗LP is obtained

through the column generation decomposition, where only a subset of the con-

figurations (necessary to obtain the optimal LP solution) is obtained. Let this

subset of configurations be CCG. Now to obtain the ILP solution of the FTCS

problem, we solve the Master sub-problem one last time without relaxing its

integer variables. Let the obtained solution be x̂ILP ; it is clear that x̂ILP ≥ x∗ILP

where x∗ILP is the optimal ILP solution for the FTCS problem (x∗ILP is in gen-

eral unknown, except for small instances where it can be obtained using [24]).

This is because x̂ILP is obtained by solving the Master sub-problem with CCG.

Through numerical evaluation on small networks, we observed that the gap

between x̂ILP and x∗ILP can be very large and that the computation time to

obtain x̂ILP is excessive, owing to the complexities discussed earlier. To im-

prove the gap between the LP and ILP solutions, one may need to diversify

the configurations or columns in CCG, e.g., by adding more columns to this ba-

sis, which could be beneficial to the ILP solution. Hence, and to overcome the

above issues, we next elaborate our methodology (Figure 7.4) for solving the

FTCS. First, we relax the Pricing by separating the tree construction from the

link scheduling (we fix the xij variables in the Pricing); we assume forwarding

trees are already constructed (as we explain below) and the Pricing solves to

obtain best schedule (configuration) for the links. This substantially reduces

the run time of the Pricing.

Now, to initialize the Master problem, the tree construction model (TCM)

runs to construct trees, one for each set of interest nodes, and these trees are

172

has
all possible edges of

initial MSTs been
removed

Add newly generated configurations

no

yes

no

yes

Construct MST for set I1

Create initial configurations by concatenating
scheduling of each tree after another

Choose best configurations that
minimize latency

is
No. of iterations ≥
Stopping criteria

Add all configurations of LP master
to ILP master problem

Column Generation

Master Problem (LP)

Pricing Problem 1 (ILP) Pricing Problem m (ILP)

TCM (ILP)

Construct MST for set Im

TCM (ILP)

LSM (ILP) LSM (ILP)

Start

Find optimal scheduling for tree 1 Find optimal scheduling for tree m

Find min. time slots for tree
1 using master’s dual

Find min. time slots for tree
m using master’s dual

Solve ILP master

End
Remove one edge from each initial MST

to let an alternate feasible tree if
possible to be constructed

Figure 7.4: Flow chart of the decomposition method.

173

scheduled using LSM, and schedules are concatenated as explained earlier.

Now, the Master runs with this initial basis and then the Pricing sub-problems

are solved to return different configurations which improve the solution of the

Master. Both Master and Pricing sub-problems keep alternating until reaching

a stoping point which is defined by the user. The set of configurations used to

obtain the LP solution (Cnow) is saved into a set Citer = Cnow. Next, for each tree

used for each set of interest nodes, we remove one edge and then construct a

new tree using the TCM model; this new set of trees is used again to solve our

CG model (as explained above), until optimal LP solution is obtained (using

the new set of configurations Cnow). The set of configurations Citer is updated

as follows Citer = Cnow ∪ Citer. This process keeps repeating (removing one

edge at a time from each tree, construct new set of trees, solve CG, update the

Citer set) until all edges from the initial trees are removed, one after the other.

Finally, the ILP instance of the Master problem is solved (using as input the

set of configurations, Citer). The advantages of this method over the previous

one are two fold. First, the relaxed Pricing sub-problem is much faster to

solve, and second the basis (Citer) used to solve the ILP Master is much more

diversified, containing columns which could not be enumerated through the

previous decomposition. The procedural details of this method are depicted in

Figure 7.4.

7.3 Numerical Results

In this section, we first evaluate the performance of our decomposition method

against the optimal solution obtained using the joint ILP model [24]. We also

study the performance of CG by varying the number of iterations for differ-

ent forwarding tree combinations. We further analyze the performance by

174

either using diverse forwarding trees with different sizes or trees with min-

imum number of edges. Finally, we compare the performance of CG with a dis-

tributed method presented in our previous work [24]. For numerical results,

we generate seven networks whose sizes vary from n = 10 to n = 40 nodes

with five nodes increment; nodes are randomly distributed over a 700 × 700

unit square area without a single disconnected node. Further, we randomly

assign each node in the network to m sets of interest-nodes where each set

contains ⌈ n
m
⌉ nodes; we consider m = 20%n. We assume all nodes use the same

normalized transmit power P = 1. Moreover, we assume a path loss exponent

α = 3 and SINR threshold for successful transmission β = 2. We use JAVA to

simulate the operation of our CG and CPLEX to solve our optimization models.

We run our program on CPU with Intel Core i7 processor, 3.6 GHz speed, 8 GB

memory ram and 64-bit windows operating system.

ILP Vs. CG

We start by examining the results obtained by solving the joint FTCS problem

(formulated as an ILP model) and compare it with our CG approach. Table

7.3 shows the required scheduling length (number of time slots) for gathering

data, as well as the CPU run time needed to solve the FTCS problem. Note

that both methods construct forwarding trees with same number of links and

thus require the same number of transmissions to gather the sensory data.

As it can be observed from the table, for the given network instances, the CG

obtains the optimal link scheduling length after iteratively solving a certain

number of iterations. However, the CG solves the FTCS problem much faster

than the optimal joint ILP model for larger networks. For example, in a 15-

node network, CG obtains the result in 27 seconds, whereas, the joint ILP

175

model took around ten hours to solve. Further, the joint ILP model failed to

find solutions for 20 nodes or larger networks.

Table 7.3: ILP model Vs. CG
Nodes ILP CG

#Slots Time #Slots Time #Iterations
n=10 6 12 sec. 6 18 sec. 13
n=15 8 10 hours 8 27 sec. 4
n=20 - - 14 2 min. 7

Performance of CG Vs. number of iterations

At this stage, it is clear that the scheduling performance depends entirely

on the number of iterations the CG performs. Figures 7.5 and 7.6 show the

scheduling performance and CPU run time required to gather data for two

networks (30-node and 35-node networks respectively) by varying the number

of iterations. Clearly, as we increase the number of iterations, the CG performs

better with respect to improving (reducing) the schedule length, however, more

iterations require more CPU time to execute. In larger networks (e.g., 35-node

network, Figure 7.6) the run time increases sharper than smaller networks

(e.g., 30-node network, Figure 7.5). The reason for this is that in bigger net-

works, at each iteration, we have to solve for more trees (since we have more

groups of interest-nodes) and hence more sub pricing problems are solved, and

for each sub pricing, more time is required to solve the pricing ILP model since

it has larger number of mapping possibilities (and larger number of links to

schedule). For scheduling performance, the improvement depends on the for-

warding tree combinations. The sooner a better combination occurs, the faster

is the drop for the number of time slots for data gathering.

176

35

31

250:02:21

0:07:40

0:24:41

0:00:00

0:02:53

0:05:46

0:08:38

0:11:31

0:14:24

0:17:17

0:20:10

0:23:02

0:25:55

24

26

28

30

32

34

36

1 5 10

CP
U

 t
im

e

N
um

be
r

of
 t

im
e

sl
ot

s

Number of iterations

of Time slots

CPU time

Figure 7.5: Number of time slots and CPU time Vs. number of iterations (n=30
nodes)

40

34

280:03:59

0:11:50

1:30:38

0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

1:12:00

1:26:24

27

29

31

33

35

37

39

41

1 5 10

CP
U

 t
im

e

N
um

be
r

of
 t

im
e

sl
ot

s

Number of iterations

of Time slots

CPU time

Figure 7.6: Number of time slots and CPU time Vs. number of iterations (n=35
nodes)

177

Performance of CG with diverse forwarding trees

As we mentioned in our solution methodology, different forwarding trees might

improve the performance of the decomposition method (CG). Often, we ob-

served, the combination of these diverse forwarding trees along with number of

iterations improve the result of the CG. Table 7.4 depicts the results obtained

from our decomposition method using two methods for constructing alternate

trees. Namely, constructing forwarding trees with any size or/and constructing

trees with minimum number of edges (i.e., minimum spanning trees (MSTs)

only). In the table, starting from the initial basis, the number of time slots

required for data gathering decreases as the number of iterations increases,

whereas, the execution time increases as we explained earlier. When we con-

sider the MST for our alternate trees construction, the running time of CG

is significantly lower than when we consider any size forwarding trees. The

reason is simply because fewer alternate trees are constructed. However, the

scheduling performance is not always better when we use any size for alter-

nate forwarding trees; as shown in the table for 40-node network at iteration

10 or 15, where the scheduling performance of MST (34 time slots) is slightly

better than when we use any size tree (35 time slots). That is because, in this

particular case, although the number of diverse forwarding trees is less, how-

ever, the combination of such trees have occurred in such a way that improved

the scheduling performance.

178

Table 7.4: CG performance using any tree combinations and Minimum Spanning Tree (time is shown by h:m:s)
Iterations 1 2 3 4 5 10 15#Nodes Basis #Slots Time #Slots Time #Slots Time #Slots Time #Slots Time #Slots Time #Slots Time
Any tree 7 0:00:03 7 0:00:04 7 0:00:05 7 0:00:05 7 0:00:06 7 0:00:13 6 0:00:20n=10 7 MST 7 0:00:01 7 0:00:02 7 0:00:02 7 0:00:02 7 0:00:03 7 0:00:05 7 0:00:07
Any tree 16 0:00:11 16 0:00:16 11 0:00:21 8 0:00:27 8 0:00:34 8 0:01:12 8 0:01:52n=15 17 MST 16 0:00:06 16 0:00:08 16 0:00:10 16 0:00:13 14 0:00:16 8 0:00:32 8 0:00:49
Any tree 23 0:00:32 17 0:00:47 17 0:01:01 17 0:01:19 17 0:01:41 14 0:03:38 14 0:06:02n=20 25 MST 23 0:00:28 17 0:00:39 17 0:00:54 17 0:01:08 17 0:01:23 14 0:03:03 14 0:04:54
Any tree 24 0:00:55 23 0:01:21 23 0:01:49 21 0:02:27 20 0:02:59 15 0:06:25 15 0:11:46n=25 25 MST 25 0:00:44 25 0:01:04 25 0:01:25 25 0:01:51 21 0:02:19 16 0:04:56 15 0:08:20
Any tree 35 0:02:21 31 0:03:57 31 0:05:13 31 0:06:24 31 0:07:40 25 0:24:41 25 1:36:35n=30 37 MST 34 0:01:58 34 0:03:04 34 0:03:59 34 0:05:12 34 0:06:28 30 0:16:02 30 0:29:59
Any tree 40 0:03:59 34 0:05:50 34 0:07:36 34 0:09:35 34 0:11:50 34 1:30:38 28 7:04:18n=35 40 MST 38 0:02:31 38 0:03:37 38 0:04:48 38 0:06:20 35 0:07:44 32 0:16:59 31 0:43:47
Any tree 40 0:08:48 39 0:12:51 39 0:16:44 35 0:47:45 35 1:17:24 35 6:01:16 35 35:11:27n=40 47 MST 40 0:06:53 39 0:10:13 39 0:13:46 39 0:17:27 39 0:21:22 34 3:33:39 34 8:19:46

179

CG vs. a distributed method

To overcome the complexity of the joint FTCS problem, in our previous work

[24] we designed a low complexity distributed method for solving it for large

network sizes. Our distributed method constructs and schedule links com-

pletely in a distributed way. For solving a distributed scheduling problem, our

method defines an interference neighborhood for each link, where a constant ϵ

(0 < ϵ < 1) controls the size (or radius) of the interference neighborhood. Links

coordinate their transmissions through message exchanges. The smaller the

value of ϵ, the larger the interference neighborhood and thus the higher the

scheduling overhead. Indeed, while we were able to verify the performance

of our distributed method on small instances (since we could obtain the ILP

solution), it was not clear how our distributed method performed for larger

instances, since we have no known ILP solutions for such instances. The pur-

pose of this study is to bring a closure to answering this question; namely, our

CG method will serve as a benchmark to compare the performance of the dis-

tributed solution of the FTCS problem. Figure 7.7 depicts the results of the

comparisons where we used various setups for our distributed method: ϵ = 0.2

and ϵ = 0.5. Note that both methods constructed forwarding trees with same

number of links. As shown in the figure, clearly, CG performs better than dis-

tributed method (service as a best lower bound); the distributed method with

ϵ = 0.2 shows close performance to CG with a maximum gap of 20%.

7.4 Conclusion

In this chapter, we studied the complex problem of constructing and scheduling

multi-forwarding trees, each to aggregate data from a group of interest-nodes

180

Number of nodes
10 15 20 25 30 35

N
um

be
r

of
 ti

m
e

sl
ot

s

5

10

15

20

25

30

35
Dist. method e=0.5

Dist. method e=0.2

Column Generation

Figure 7.7: CG Vs. distributed method (e = 0.2 and e = 0.5)

to the sink in a wireless sensor network. We highlighted the complexity of

the problem and proposed a primal-dual decomposition method using column

generation to solve it. We investigated the performance of our proposed col-

umn generation through numerical analysis and the results showed that the

problem can be solved for bigger networks with optimal or near optimal so-

lutions. One major advantage of our primal-dual method is that it can serve

as a benchmark for evaluating the performance of low complexity distributed

(or other algorithmic) approaches for solving the joint FTCS problem, since no

known exact solutions are available for larger networks.

181

Chapter 8

Conclusion and Future Work

8.1 Conclusions

This thesis addressed the problem of gathering data from wireless sensors,

which are deployed randomly in a region, to a central unit (sink) in the most

energy efficient manner to prolong the lifetime of wireless sensor networks

(WSNs). Namely, we presented data gathering methods using Compressive

Sensing technique in WSN, referred to as Compressive Data Gathering (CDG),

to reduce the global communication cost and balance the energy load through-

out the network without incurring intensive computation or transmission over-

head. With CDG, rather than recieving all readings from sensors, the sink may

receive few weighted/encoded sums of all the readings, from which the sink can

recover the original data. Our work in this thesis highlighted the benefits of

CDG and exposed the combinatorial complexity of such problems and therefore

presented some methods which are very efficient and scalable to solve. Several

CDG methods have been proposed in the literature, however the methods pre-

sented in this thesis outperform them since we used a novel sparse projection

technique by building up in-network data aggregation tree for gathering each

182

weighted/encoded sum from a set of chosen sensors to the sink. Our problem

aims at minimizing the number of links in the forwarding trees to minimize

the number of overall transmissions in the network.

First, we proposed MSTP, a new method for data aggregation in large-scale

WSN using compressive sensing and random projection. The proposed method

selects random projection nodes to generate routing trees with each projec-

tion node gathering a weighted sum from all the nodes in the network whose

coefficients in a random basis matrix Φ are non-zero, and in turn each pro-

jection node sends the received weighted sum to the sink. We also extended

the method and presented eMSTP by joining the sink to each tree and letting

the sink node gathers all the weighted sums. We showed that the time com-

plexity of MSTP and eMSTP algorithms is O(mdρ2 log ρ) in the best case and

O(mdρ2n log n) in the worst case. We compared our methods with three differ-

ent schemes (Non-CS, Plain-CDG and Hybrid-CDG) and the numerical results

showed that our methods outperform those schemes with respect to network

lifetime. Further, we showed that the performance of eMSTP depends on the

selection of appropriate projection nodes, and we proposed OSPN method that

finds the best projection nodes for the network. In addition, we presented

PB-CDG algorithmic method which gathers the compressed data directly from

sensors to the sink without relying on the projection nodes, and the mathe-

matical optimization model has been derived for the problem. Moreover, we

showed that our data gathering methods dramatically increase the lifetime of

sensor networks.

Next, to overcome the communication drawback of the centralized meth-

ods, we proposed a decentralized approach (DCDG), where each sensor node

in the network independently selects its parent node to whom it should send

183

the aggregated data. In this manner there is no requirement for a central unit

to accomplish a topology discovery. We showed how DCDG can easily recover

in case of node(s) failure, and further we analyzed the message overhead and

derived the approximation bound of the presented method. Further, through

simulations we showed that DCDG performs (in terms of transmission cost)

very close to the best centralized methods but outperforms them in terms of

communication overhead.

We explored the benefits of using Network Coding in projection-based com-

pressive data gathering and proposed NC-CDG method. In this method, the

existence of forwarding trees to gather compressed data from sensors to pro-

jection nodes creates opportunities for many-to-many communication patterns,

which in turn gives rise to network coding operations; such operations if ex-

ploited will further reduce the number of transmissions needed to collect the

sensory data. We mathematically formulated the NC-CDG problem which

maximally exploits the coding opportunities on compressed data being routed

on these forwarding trees. Owing to its computational complexity and to eval-

uate NC-CDG over larger networks, we developed both centralized and dis-

tributed algorithmic methods for solving the NC-CDG problem. Through sim-

ulations we showed that NC-CDG yields significant gains over methods that

do not consider network coding.

Finally, we studied the problem of jointly constructing forwarding trees for

projection-based compressive data gathering and scheduling (FTCS) under the

real physical interference model. We formulated the problem as a mixed in-

teger linear program through which we obtained optimal solutions for small

size networks. We proved its NP-hardness, and then, we proposed a decen-

tralized algorithm that can solve for large scale networks. The decentralized

184

approach decouples the problem into two subproblems; namely, the tree con-

struction subproblem and the link scheduling subproblem. Further, We proved

the correctness of the algorithmic method and analyzed its performance. Later,

after highlighting the complexity of the FTCS problem, we presented a novel

primal-dual decomposition method using column generation to solve it. We

also highlighted several challenges we faced when solving the decomposition

problem and presented efficient techniques for mitigating those problems. This

primal-dual method can serve as a benchmark for evaluating the performance

of low complexity algorithmic methods for solving the FTCS problem, where

no known exact solutions can be found for larger network instances. At the

end, through a large set of numerical results, we validated the efficiency and

performance of our distributed FTCS method.

In general, using compressive data gathering has few disadvantages. First

of all, as we mentioned in the background for CDG, this technique requires

the original sensors’ readings to be able to transform into a sparse domain,

and without this condition, the CDG can not be used for data gathering in

WSNs. Secondly, CDG requires both time and computation energy to do cod-

ing and decoding at sensors and the sink side respectively. In the NC-CDG

method, additional time and energy are needed to do the in-network coding

(XOR-adding) operation on top of coded data for CDG. In addition, sensors re-

quire more memory to store the matrix Φ which is needed for generating a

weighted sum in CDG. However, we should note that matrix Φ may take less

than 0.5 KB memory RAM, where wireless sensors have 1KB - 4MB onboard

memory RAM [31]. Currently, a cheap and better storage flash memories are

used in wireless sensors [27]. Therefore, owing to the development in hard-

ware technologies, memory and data processing are not major obstacles for

185

data gathering in WSNs. A variety of different wireless sensor nodes along

with their specifications is listed in [76].

8.2 Future Work

The work presented in this thesis provided considerable enhancements of data

gathering (specifically, compressive data gathering) in wireless sensor net-

works. However, there remain several future research direction that may pro-

vide additional benefits.

In our network model, we assumed all sensors for simplicity have fixed and

uniform transmission power regardless of their distances to neighbor nodes.

Each sensor can communicate with nodes which reside within its communi-

cation radius. However, considering the power control ability of sensor nodes

might significantly affect the construction of forwarding trees for our energy

efficient compressive data gathering. Indeed, this power control ability makes

our problem combinatorially much more complicated. Therefore, solving the

optimization model of the problem becomes very challenging and hence alter-

nate heuristic method needs to be derived to overcome the scalability of the

model.

The projection-based compressive data gathering methods presented in this

thesis apply compressive sensing technique on entire network which require

a large number of sensors to participate in each compressed gathering even

in the presence of sparse random projections. Moreover, for each projection,

sensors might be located far from each other, which result in additional data

transmissions and hence lead to waste lot of energy. To this end, one may di-

vide the network into cells or clusters and apply compressive data gathering

on each cluster and eventually gathers the aggregated data from the entire

186

cluster heads to the sink in the same scheme presented in this thesis. Accord-

ingly, new challenges will arise, namely, how to obtain the optimal number of

clusters, size of the cluster, etc.

In Chapter 5, for network-coding aware compressive data gathering prob-

lem we did not consider interference and time scheduling in our formula-

tion, since in that chapter energy efficiency was the most important objective.

Therefore, it will be interesting to study the impact of link scheduling on the

construction of forwarding trees required for compressive data gathering with

the presence of network coding. Furthermore, we have studied the problem

of finding the best projection nodes without considering the NC in our thesis,

where, with the presence of NC, this problem is considered for future work.

One of the important key issues in multi-hop data gathering in WSN is to

balance the energy load throughout the network. Although, CDG is helpful

in this context, however, in the methods presented in this thesis, we acknowl-

edged that some nodes may be used more than others when they belong to

multiple trees (or projections). Hence, a better metric for energy balance would

be to minimize the maximum number of transmissions per node, which could

be considered for future work.

187

Appendix A

Message Overhead Analysis for

Centralized CDG

The computation analysis of message overhead of the example in Figure A.1

for centralized method is given through the following steps.

1. For discovery (refer to Figure A.1), n = 6 messages is required.

1 2 3 4 5 6Sink

2 4 5 61

Figure A.1: Discovery message

2. For topology discovery, Node 6 sends one message to the sink (refer to

Figure A.2), since it has only one neighbour node. Node 5 sends two

messages to the sink (Figure A.3), since it has two neighbours. Nodes

4,3,2 send two messages each and node 1 sends one message to the sink.

Therefore, in total for topology discovery, the graph needs 6+2(5)+2(4)+

2(3)+2(2)+1 = 35 messages. The overhead analysis for topology discovery

of n nodes is given by (A.1).

188

1 2 3 4 5 6Sink

5 3 2 16

Figure A.2: Network Topology Discovery (Node 6).

1 2 3 4 5 6Sink

4 2 15

125 4

Figure A.3: Network Topology Discovery (Node 5).

n+ 2
n−1∑
2

+1

= n+ (n− 1 + 1− 2)(n− 1 + 2) + 1

= n+ (n− 2)(n+ 1) + 1

= n+ n2 + n− 2n− 2 + 1

= n2 − 1

(A.1)

After running the centralized algorithm at the sink, two messages are re-

quired to be sent to each node to notify it of its parent and child nodes. The

message overhead for the example of linear network is as follows; a) For tree 1

(dark nodes), 2× (1+3+5) messages is required for nodes 1,3 and 5; 2× (2+4)

messages needed for relay nodes 2 and 4. In total 30 messages required for

tree 1. b) For tree 2 (white nodes), 2× (2 + 4 + 6) messages is needed for nodes

2,4 and 6; 2× (1 + 3 + 5) messages required for relay nodes 1,3 and 5. In total

42 messages is needed for tree 2. In total 30+42=72 messages are needed to

notifying the nodes for forwarding trees. The overhead analysis for forwarding

189

tree notification is given by (A.2).

2
m∑

x=1

n+1−x∑
y=1

y =
m∑

x=1

(n+ 1− x)(n+ 2− x)

=
m∑

x=1

(n2 + 3n− 2nx− 3x+ 2 + x2)

= (n2 + 3n+ 2)
m∑

x=1

1− (2n+ 3)
m∑

x=1

x+
m∑

x=1

x2

= (n2 + 3n+ 2)(m)− (2n+ 3)
(m2 +m)

2
+
m3

3
+
m2

2
+
m

6

= mn2 −m2n+ 2mn+
m3

3
−m2 +

2m

3

(A.2)

Therefore, the number of message overhead in the linear network of cen-

tralized method is 6+72+35=113 and the complete overhead analysis for cen-

tralized method is given in (A.3) by adding discovery message n to the equa-

tions (A.1) and (A.2).

Total Centralized Message Overhead =

n+ n2 − 1 +mn2 −m2n+ 2mn+
m3

3
−m2 +

2m

3

(A.3)

190

Appendix B

Message Overhead Analysis for

Decentralized CDG

The computation analysis of message overhead of the example in Figure A.1

for decentralized method is given through the following steps.

1. For discovery, we require n messages. In the example of Figure 4.7, n = 6.

2. Node 1 needs only one message to notify the sink.

3. Node 2 requires two message to notify the sink, since it does not have

interest parent neighbour and its h2 − 1 = 1. Therefore, node 2 sets the

sink as its parent interest.

The other nodes in the network to find their parent interest-node require

the following messages:

a) To find interest-nodes in radius hi − 1, Node 3 requires 3 messages as

shown in Figure B.1. Node 4 requires 4 messages as shown in Figure

B.2. Node 5 requires 4 messages as shown in Figure B.3 and node 6

requires 5 messages.

191

1 2 3 4 5 6Sink

12 3

h3-1

Figure B.1: Message overhead to find interest-nodes in radius h3 − 1.

1 2 3 4 5 6Sink

13 4

h4-1

2

Figure B.2: Message overhead to find interest-nodes in radius h4 − 1.

1 2 3 4 5 6Sink

14 2

h5-1

3

Figure B.3: Message overhead to find interest-nodes in radius h5 − 1.

1 2 3 4 n/2 (n/2)+1Sink n-1 n

- - 2(x-2)+1 2(x-2)+1 2(x-2)+1 (n-2) (n-2) (n-1)

Figure B.4: Message overhead analysis to find interest-nodes in radius hi − 1.

192

As it is clear from the example and Figure B.4, nodes from node 3 to

node n
2

require 2(x − 2) + 1 message overhead each, where x is the

hop-distance to the sink (shown by node-ID). The total number of

nodes in this range is ⌈n
2
⌉ − 2. Nodes from node n

2
+ 1 to node n − 1

require (n−2) message overhead each. The total number of nodes in

this range is ⌊n
2
⌋ − 1. The last node (node n) needs (n − 1) message

overhead to discover its hn− 1 range. The overhead analysis is given

in (B.1).

⌈n
2
⌉∑

x=3

(2(x− 2) + 1) + (n− 2)(⌊n
2
⌋ − 1) + (n− 1)

=

⌈n
2
⌉∑

x=3

(2x− 3) + (n− 2)(⌊n
2
⌋ − 1) + (n− 1)

(B.1)

b) To get information from interest-nodes in radius hi−1, node 3 requires

4 messages as it is shown in Figure B.5. Node 4 requires 4 messages

(refer to Figure B.6). Node 5 requires 6 messages (Figure B.7) and

as the Figure B.8 shows, node 6 requires 6 messages.

1 2 3 4 5 6Sink

1 4 3

Figure B.5: Message overhead to get information from interest-nodes in radius
h3 − 1.

1 2 3 4 5 6Sink

2 4 3

Figure B.6: Message overhead to get information from interest-nodes in radius
h4 − 1.

193

1 2 3 4 5 6Sink

1 2

653

Figure B.7: Message overhead to get information from interest-nodes in radius
h5 − 1.

1 2 3 4 5 6Sink

1

54

2

6

Figure B.8: Message overhead to get information from interest-nodes in radius
h6 − 1.

1 2 3 4 n/2 (n/2)+1Sink n-1 n

- -

2[m+2m+…+(x/m-1)m] [m+2m+…+(x/m-1)m] + [m+2m+…+((n-x)/m)m]

Figure B.9: Message overhead analysis to get information from interest-nodes
in radius hi − 1.

By observing Figure B.9, node 3 to n
2

receive equal number of mes-

sages from their interest-nodes at both sides (left and right). The dis-

tance between each two interest-nodes is m hops. Thus, the number

of messages needed for a node x to receive messages from interest-

nodes at both sides is 2(m + 2m + ... + (⌈x
2
⌉)m), where node x has

⌈ x
m
⌉−1 interest-nodes at one side. Therefore, the summation of mes-

sage overhead for these nodes is given by 2
∑n

⌈n
2
⌉+1

∑⌈ x
m
⌉−1

y=1 ym. Simi-

larly, node n
2
+1 to last node n, each requires m+2m+ ...+(⌈ x

m
⌉−1)m

messages for its left and m + 2m + ... + (⌊n−x
m
⌋)m messages for its

right side, since their hi − 1 range at right side is limited to the last

node n in the graph. Therefore, the total message overhead for these

nodes is
∑n

⌈n
2
⌉+1

∑⌈ x
m
⌉−1

y=1 ym +
∑n

⌈n
2
⌉+1

∑⌊n−x
m

⌋
y=1 ym. The total message

194

overhead for collecting information is given in (B.2).

2

⌈n
2
⌉∑

x=3

⌈ x
m
⌉−1∑

y=1

ym+
n∑

⌈n
2
⌉+1

⌈ x
m
⌉−1∑

y=1

ym+
n∑

⌈n
2
⌉+1

⌊n−x
m

⌋∑
y=1

ym (B.2)

c) To notify the chosen parent, node 3,4,5 and 6 in example shown in Fig.

4.7 requires two messages each. Each node sends a notification mes-

sage to its nearest interest-node and since the nearest interest-node

is m hop away from the current node, it takes only m message over-

head. Therefore, the total message overhead for parent notification

is given in (B.3).

m(n− 2) (B.3)

Now, the total decentralized message overhead for given example is 6 + 1 +

2+16+ 20+ 8 = 53 compared to 113 messages in centralized method. The total

decentralized message overhead for n nodes and m projections is obtained by

adding the discovery message overhead n and 1 + 2 messages for node 1 and 2

to the equations (B.1), (B.2) and (B.3). The total overhead is presented in (B.4).

n+ 1 + 2

+

⌈n
2
⌉∑

x=3

(2x− 3) + (n− 2)(⌊n
2
⌋ − 1) + (n− 1)

+m(n− 2)

+ 2

⌈n
2
⌉∑

x=3

⌈ x
m
⌉−1∑

y=1

ym+
n∑

⌈n
2
⌉+1

⌈ x
m
⌉−1∑

y=1

ym+
n∑

⌈n
2
⌉+1

⌊n−x
m

⌋∑
y=1

ym

(B.4)

We may simplify the equation (n−2)(⌊n
2
⌋−1)+(n−1) as in (B.5) and the sum-

mations
∑⌈n

2
⌉

x=3(2x−3), 2
∑⌈n

2
⌉

x=3

∑⌈ x
m
⌉−1

y=1 ym,
∑n

⌈n
2
⌉+1

∑⌈ x
m
⌉−1

y=1 ym and
∑n

⌈n
2
⌉+1

∑⌊n−x
m

⌋
y=1 ym

as in (B.6), (B.7), (B.8) and (B.9) respectively.

195

Lemma B.0.1.

(n− 2)(⌊n
2
⌋ − 1) <=

n2

2
− 2n+ 2 (B.5)

Proof.

(n− 2)(⌊n
2
⌋ − 1) <= (n− 2)(n

2
+ 1− 1)

= (n− 2)(n
2
)

= n2

2
− n− n+ 2n2

2
− 2n+ 2

Lemma B.0.2.

⌈n
2
⌉∑

x=3

(2x− 3) <=
n2

4
− 1 (B.6)

Proof.∑⌈n
2
⌉

x=3(2x− 3) = 2
∑⌈n

2
⌉

x=3 x− 3
∑⌈n

2
⌉

x=3 1

= 2
(⌈n

2
⌉+1−3)(⌈n

2
⌉+3)

2
− 3(⌈n

2
⌉+ 1− 3)

= (⌈n
2
⌉ − 2)(⌈n

2
⌉+ 3− 3)

= (⌈n
2
⌉ − 2)⌈n

2
⌉

<= (n
2
− 1)(n

2
− 1)

= n2

4
− 1

Lemma B.0.3.

2

⌈n
2
⌉∑

x=3

⌈ x
m
⌉−1∑

y=1

ym <=
n3

24m
+

3n2

8m
+
n2

8
+

13n

m
+
nm

4
+

3n

4
− 4

m
− m

2
− 2 (B.7)

Proof.

2
∑⌈n

2
⌉

x=3

∑⌈ x
m
⌉−1

y=1 ym = 2m
∑⌈n

2
⌉

x=3(
(⌈ x

m
⌉−1+1)(⌈ x

m
⌉−1+1−1)

2
)

= m
∑⌈n

2
⌉

x=3⌈ xm⌉
2 −m

∑⌈n
2
⌉

x=3⌈ xm⌉—–(a)

196

∑⌈n
2
⌉

x=3⌈ xm⌉ <=
∑n

2
+1

x=3
x
m
+ 1

= 1
m

∑n
2
+1

x=3 x+
∑n

2
+1

x=3 1

= 1
2m

(n
2
+ 1 + 1− 3)(n

2
+ 1 + 3) + 1

2
(n
2
+ 1 + 1− 3)

= 1
2m

(n
2
− 1)(n

2
+ 4) + 1

2
(n
2
− 1)

= n2

8m
+ 3n

4m
+ n

4
− 2

m
− 1

2
—–(b)

∑⌈n
2
⌉

x=3⌈ xm⌉
2 <=

∑n
2
+1

x=3 (
x
m
+ 1)2

=
∑n

2
+1

x=3
x2

m2 +
∑n

2
+1

x=3
2x
m

+
∑n

2
+1

x=3 1

= 1
m2 (

∑n
2
+1

x=3 x
2 −

∑2
x=1 x

2) + 2
m

∑n
2
+1

x=3 x+
∑n

2
+1

x=3 1

= 1
m2 (

(n
2
+1)3

3
+

(n
2
+1)2

2
+

(n
2
+1)

6
− 23

3
− 22

2
− 2

6
) + 2

3m

(n
2

4
+2n−n

2
−4)

2
+ n

2
− 1

= n3

24m2 +
3n2

8m2 +
n2

4m
+ 13n

12m2 +
3n
2m

+ n
2
− 4

m2 − 4
m
− 1 —–(c)

(b) and (c) in (a)

2
∑⌈n

2
⌉

x=3

∑⌈ x
m
⌉−1

y=1 ym <=

n3

24m
+ 3n2

8m
+ n2

4
+ 13n

12m
+ 3n

2
+ nm

2
+− 4

m
− 4−m− n2

8
− 3n

4
− nm

4
+ 2 + m

2

= n3

24m
+ 3n2

8m
+ n2

8
+ 13n

m
+ nm

4
+ 3n

4
− 4

m
− m

2
− 2

Lemma B.0.4.

n∑
⌈n
2
⌉+1

⌈ x
m
⌉−1∑

y=1

ym <=
7n3

48m
+

3n2

16m
+

3n2

16
+
nm

24
+
n

8
(B.8)

Proof.∑n
⌈n
2
⌉+1

∑⌈ x
m
⌉−1

y=1 ym = m
∑n

⌈n
2
⌉+1(

(⌈ x
m
⌉−1+1−1)(⌈ x

m
⌉−1+1)

2
)

= m
2

∑n
⌈n
2
⌉+1⌈

x
m
⌉2 − m

2

∑n
⌈n
2
⌉+1⌈

x
m
⌉—–(a)

∑n
⌈n
2
⌉+1⌈

x
m
⌉ <=

∑n
n
2
+1(

x
m
+ 1)

= 1
m

∑n
n
2
+1 x+

∑n
n
2
+1 1

= 1
2m

(n+ 1− n
2
− 1)(n+ n

2
+ 1) + n+ 1− n

2
− 1

197

= 1
2m

(n
2
)(3n

2
+ 1) + n

2

= 1
2m

(3n
2

4
+ n

2
) + n

2

= 3n2

8m
+ n

4m
+ n

2
—–(b)

∑n
⌈n
2
⌉+1⌈

x
m
⌉2 <=

∑n
n
2
+1(

x
m
+ 1)2

= 1
m2

∑n
n
2
+1 x

2 + 2
m

∑n
n
2
+1 x+

∑n
n
2
+1 1

= 1
m2 (

∑n
1 x

2 −
∑n

2
1 x

2) + 2
m

∑n
n
2
+1 x+

∑n
n
2
+1 1

= 1
m2 (

n3

3
+ n2

2
+ n

6
− (n

2
)3

3
− (n

2
)2

2
−

n
2

6
) + 2

m
(
(n+1−n

2
−1)(n+n

2
+1)

2
) + n+ 1− n

2
− 1

= 1
m2 (

n3

3
+ n2

2
+ n

6
− n3

24
− n2

8
− n

12
) + 2

2m
(n
2
)(3n

2
+ 1) + n

2

= 7n3

24m2 +
3n2

8m2 +
n
12

+ 3n2

4m
+ n

2m
+ n

2

= 7n3

24m2 +
3n2

8m2 +
3n2

4m
+ n

2m
+ 7n

12
—–(c)

(b) and (c) in (a)∑n
⌈n
2
⌉+1

∑⌈ x
m
⌉−1

y=1 ym <= 7n3

48m
+ 3n2

16m
+ 3n2

8
+ n

4
+ 7nm

24
− 3n2

16
− n

8
− nm

4

= 7n3

48m
+ 3n2

16m
+ 3n2

16
+ nm

24
+ n

8

Lemma B.0.5.

n∑
⌈n
2
⌉+1

⌊n−x
m

⌋∑
y=1

ym <=
n3

48m
− n2

16m
+
n2

16
+

n

24m
− n

8
(B.9)

Proof.∑n
⌈n
2
⌉+1

∑⌊n−x
m

⌋
y=1 ym = m

2

∑n
⌈n
2
⌉+1⌊

n−x
m
⌋(⌊n−x

m
⌋+ 1)

= m
2

∑n
⌈n
2
⌉+1⌊

n−x
m
⌋2 + m

2

∑n
⌈n
2
⌉+1⌊

n−x
m
⌋—–(a)

∑n
⌈n
2
⌉+1⌊

n−x
m
⌋ <=

∑n
n
2
+1(

n−x
m

)

= n
m

∑n
n
2
+1 1−

1
m

∑n
n
2
+1 x

= n
m
(n+ 1− n

2
− 1)− 1

2m
(n+ 1− n

2
− 1)(n+ n

2
+ 1)

198

= n
m
(n
2
)− 1

2m
(n
2
)(3n

2
+ 1)

= n2

2m
− 3n2

8m
− n

4m

= n2

8m
− n

4m
—–(b)

∑n
⌈n
2
⌉+1⌊

n−x
m
⌋2 <=

∑n
n
2
+1(

n−x
m

)2

= n2

m2

∑n
n
2
+1 1−

2n
m2

∑n
n
2
+1 x+

1
m2

∑n
n
2
+1 x

2

= n2

m2 (n+ 1− n
2
− 1)− n

m2 (n+ 1− n
2
− 1)(n+ n

2
+ 1) + 1

m2 (
∑n

1 x
2 −

∑n
2
1 x

2)

= n2

m2 (
n
2
)− n

m2 (
n
2
)(3n

2
+ 1) + 1

m2 (
n3

3
+ n2

2
+ n

6
− n3

24
− n2

8
− n

12
)

= 7n3

2m2 − 3n3

4m2 − n2

2m2 +
7n3

24m2 +
3n2

8m2 +
n

12m2

= n3

24m2 − n2

8m2 +
n

12m2 —–(c)

(b) and (c) in (a)∑n
⌈n
2
⌉+1

∑⌊n−x
m

⌋
y=1 ym <= n3

48m
− n2

16m
+ n2

16
+ n

24m
− n

8

Therefore, the roughly total message overhead in decentralized algorithm

is given by (B.10).

Total Decentralized Message Overhead <=

5n3

24m
+
n2

2m
+

9n2

8
+

31mn

24
+

313n

24m
− 3n

4
− 5m

2
− 4

m
+ 1

(B.10)

199

Appendix C

TCM (Tree Construction Model)

• Parameters:

The parameters are listed in Table 7.2.

• Decision Variables:

fij ∈ Z: Flow on link (i,j).

xij =

⎧⎪⎨⎪⎩
1, if link (i,j) is active in a tree;

0, otherwise.

•Mathematical Model:

Minimize
∑

(i,j)∈E

xij (C.1)

Subject to:

∑
j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− ∥ It ∥, i = sink;

1, ∀i ∈ It;

0, otherwise.

(C.2)

200

⎧⎪⎨⎪⎩
xij ≤ fij

xij ≥ fij
B

∀(i, j) ∈ E. (C.3)

∑
j:(i,j)∈E

xij ≤ 1 ∀i ∈ V. (C.4)

The objective of the TCM problem is to construct a forwarding tree that

connects a set of interest-nodes (It) in the network to a root (i.e., sink) with

minimum edges (thus reducing the number of transmissions and hence energy

efficiency). Constraints (C.2) are the flow conservation for routing across the

network, which force the set of interest-nodes (vector set It) to have one data

flow from each interest-node to the sink. Constraints (C.3) identify forwarding

links for the tree. When there is a positive traffic flow on link (i,j) (i.e, fij > 0

), this link is assigned for the tree (i.e, xij = 1). In other words, it implies that

fij = 0⇔ xij = 0 and fij > 0⇔ xij = 1. Constraint (C.4) asserts that each node

can have a maximum of one outgoing transmission (link) in each tree to avoid

loops. Otherwise, data is not aggregated to a root (sink).

201

Appendix D

LSM (Link Scheduling Model)

• Parameters:

xij: Indicate whether link (i,j) belongs to a tree.

The remaining parameters are listed in Table 7.2.

• Decision Variables:

Same variables as in section 7.2.2 (pricing problem).

•Mathematical Model:

Minimize λ (D.1)

Subject to: (7.17) - (7.24).

The LSM problem schedules transmission for each link in a constructed

tree while it is not violating 1) the order of transmissions and 2) the interfer-

ence constraints for transmissions to be successful. The objective of the model

is to minimize the scheduling length (i.e., λ). Here, the parameter xij (variable

in TCM) indicates the constructed tree which is required to be scheduled in

LSM problem. Constraints are exactly same as the pricing sub problem; for

details refer to Section 7.2.2.

202

Bibliography

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung. Network information flow.

IEEE Transactions on Information Theory, 46(4):1204–1216, 2000.

[2] M. Alnuaimi, K. Shuaib, K. Alnuaimi, and M. Abed-Hafez. Data gath-

ering in wireless sensor networks with ferry nodes. In 2015 IEEE 12th

International Conference on Networking, Sensing and Control (ICNSC),

pages 221–225. IEEE, 2015.

[3] M. Andrews and M. Dinitz. Maximizing capacity in arbitrary wireless

networks in the sinr model: Complexity and game theory. In IEEE IN-

FOCOM 2009, pages 1332–1340. IEEE, 2009.

[4] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak. Compressive wireless

sensing. In Proceedings of the 5th international conference on Information

processing in sensor networks, pages 134–142. ACM, 2006.

[5] K. C. Barr and K. Asanović. Energy-aware lossless data compression.

ACM Transactions on Computer Systems (TOCS), 24(3):250–291, 2006.

[6] M. Borghini, F. Cuomo, T. Melodia, U. Monaco, and F. Ricciato. Optimal

data delivery in wireless sensor networks in the energy and latency do-

mains. In Proceedings of the First International Conference on Wireless

Internet, pages 138–145. IEEE, 2005.

203

[7] C. Caione, D. Brunelli, and L. Benini. Compressive sensing optimization

over zigbee networks. In 2010 International Symposium on Industrial

Embedded Systems (SIES), pages 36–44. IEEE, 2010.

[8] E. J. Candè and M. B. Wakin. An introduction to compressive sampling.

IEEE Signal Processing Magazine, 25(2):21–30, 2008.

[9] G. Cao, F. Yu, and B. Zhang. Improving network lifetime for wireless

sensor network using compressive sensing. In 2011 IEEE 13th Interna-

tional Conference on High Performance Computing and Communications

(HPCC), pages 448–454. IEEE, 2011.

[10] M. Cardei, J. Wu, M. Lu, and M. O. Pervaiz. Maximum network lifetime in

wireless sensor networks with adjustable sensing ranges. In IEEE Inter-

national Conference on Wireless And Mobile Computing, Networking And

Communications, 2005 (WiMob’2005)., volume 3, pages 438–445. IEEE,

2005.

[11] S. Chen and Y. Wang. Data collection capacity of random-deployed wire-

less sensor networks under physical models. Tsinghua Science and Tech-

nology, 17(5):487–498, 2012.

[12] Z. Chen, G. Yang, L. Chen, and J. Wang. An algorithm for data aggre-

gation scheduling with long-lifetime and low-latency in wireless sensor

networks. International Journal of Future Generation Communication

and Networking, 5(4):141–152, 2012.

[13] J.-H. Chou, D. Petrovic, and K. Ramachandran. A distributed and adap-

tive signal processing approach to reducing energy consumption in sensor

networks. In INFOCOM 2003. Twenty-Second Annual Joint Conference

204

of the IEEE Computer and Communications. IEEE Societies, volume 2,

pages 1054–1062. IEEE, 2003.

[14] V. Chvatal. Linear programming. Macmillan, 1983.

[15] T. H. Cormen. Introduction to algorithms. MIT press, 2009.

[16] R. Cristescu, B. Beferull-Lozano, and M. Vetterli. On network correlated

data gathering. In INFOCOM 2004. Twenty-third AnnualJoint Confer-

ence of the IEEE Computer and Communications Societies, volume 4,

pages 2571–2582. IEEE, 2004.

[17] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer.

Network correlated data gathering with explicit communication: NP-

completeness and algorithms. IEEE/ACM Transactions on Networking,

14(1):41–54, 2006.

[18] F. Cuomo, A. Abbagnale, and E. Cipollone. Cross-layer network formation

for energy-efficient ieee 802.15. 4/zigbee wireless sensor networks. Ad Hoc

Networks, 11(2):672–686, 2013.

[19] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok. Introduction

to compressed sensing. Preprint, 93(1):2, 2011.

[20] D. L. Donoho. Compressed sensing. IEEE Transactions on Information

Theory, 52(4):1289–1306, 2006.

[21] D. Ebrahimi and C. Assi. Optimal and efficient algorithms for projection-

based compressive data gathering. IEEE Communications Letters,

17(8):1572–1575, 2013.

205

[22] D. Ebrahimi and C. Assi. Compressive data gathering using random pro-

jection for energy efficient wireless sensor networks. Ad Hoc Networks,

16:105–119, 2014.

[23] D. Ebrahimi and C. Assi. A distributed method for compressive data

gathering in wireless sensor networks. IEEE Communications Letters,

18(4):624–627, 2014.

[24] D. Ebrahimi and C. Assi. Joint compressive data gathering and schedul-

ing in wireless sensor networks under the physical interference model. In

2015 IEEE 16th International Symposium on a World of Wireless, Mobile

and Multimedia Networks (WoWMoM), pages 1–9. IEEE, 2015.

[25] M. Enachescu, A. Goel, R. Govindan, and R. Motwani. Scale free ag-

gregation in sensor networks. In Algorithmic Aspects of Wireless Sensor

Networks, pages 71–84. Springer, 2004.

[26] J. Gao, L. Guibas, N. Milosavljevic, and J. Hershberger. Sparse data ag-

gregation in sensor networks. In Proceedings of the 6th international

conference on Information processing in sensor networks, pages 430–439.

ACM, 2007.

[27] K. K. Gautam, N. K. Gautam, and P. Agrawal. Memory required for wire-

less sensor nodes on the basis of characteristics and behaviour when using

TinyOS. 4(1):26–34, 2014.

[28] A. Giridhar and P. Kumar. Computing and communicating functions over

sensor networks. IEEE Journal on Selected Areas in Communications,

23(4):755–764, 2005.

206

[29] D. Gong and Y. Yang. Low-latency sinr-based data gathering in wire-

less sensor networks. IEEE Transactions on Wireless Communications,

13(6):3207–3221, 2014.

[30] O. Goussevskaia, Y. A. Oswald, and R. Wattenhofer. Complexity in geo-

metric sinr. pages 100–109. ACM MobiHoc, 2007.

[31] D. K. Gupta. A review on wireless sensor networks. Network and Complex

Systems, 3(1):18–23, 2013.

[32] H. Gupta, V. Navda, S. Das, and V. Chowdhary. Efficient gathering of cor-

related data in sensor networks. ACM Transactions on Sensor Networks

(TOSN), 4(1):4:1–4:31, 2008.

[33] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE

Transactions on Information Theory, 46(2):388–404, 2000.

[34] S. Hariharan and N. B. Shroff. Maximizing aggregated information in

sensor networks under deadline constraints. IEEE Transactions on Auto-

matic Control, 56(10):2369–2380, 2011.

[35] J. Haupt, W. U. Bajwa, M. Rabbat, and R. Nowak. Compressed sensing for

networked data. IEEE Signal Processing Magazine, 25(2):92–101, 2008.

[36] S. He, J. Chen, D. K. Yau, and Y. Sun. Cross-layer optimization of corre-

lated data gathering in wireless sensor networks. IEEE Transactions on

Mobile Computing, 11(11):1678–1691, 2012.

[37] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-

efficient communication protocol for wireless microsensor networks. In

Proceedings of the 33rd Annual Hawaii International Conference on Sys-

tem Sciences, pages 10–pp. IEEE, 2000.

207

[38] T.-H. Hsu and P.-Y. Yen. Adaptive time division multiple access-based

medium access control protocol for energy conserving and data transmis-

sion in wireless sensor networks. IET Communications, 5(18):2662–2672,

2011.

[39] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner tree problem.

Elsevier, 1992.

[40] O. D. Incel and B. Krishnamachari. Enhancing the data collection rate

of tree-based aggregation in wireless sensor networks. In SECON’08. 5th

Annual IEEE Communications Society Conference on Sensor, Mesh and

Ad Hoc Communications and Networks, pages 569–577. IEEE, 2008.

[41] B. Jang, J. B. Lim, and M. L. Sichitiu. An asynchronous scheduled mac

protocol for wireless sensor networks. Computer Networks, 57(1):85–98,

2013.

[42] S. Ji, R. Beyah, and Z. Cai. Snapshot and continuous data collection

in probabilistic wireless sensor networks. IEEE Transactions on Mobile

Computing, 13(3):626–637, 2014.

[43] S. Ji and Z. Cai. Distributed data collection in large-scale asynchronous

wireless sensor networks under the generalized physical interference

model. IEEE/ACM Transactions on Networking (ToN), 21(4):1270–1283,

2013.

[44] C. Joo, J.-G. Choi, and N. B. Shroff. Delay performance of scheduling with

data aggregation in wireless sensor networks. In 2010 Proceedings IEEE

INFOCOM, pages 1–9. IEEE, 2010.

208

[45] S. Katti, S. Gollakota, and D. Katabi. Embracing wireless interference:

analog network coding. In ACM SIGCOMM Computer Communication

Review, volume 37, pages 397–408. ACM, 2007.

[46] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard. Symbol-level net-

work coding for wireless mesh networks. In ACM SIGCOMM Computer

Communication Review, volume 38, pages 401–412. ACM, 2008.

[47] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. Xors in

the air: practical wireless network coding. In ACM SIGCOMM Computer

Communication Review, volume 36, pages 243–254. ACM, 2006.

[48] L. Keller, E. Atsan, K. Argyraki, and C. Fragouli. Sensecode: Network

coding for reliable sensor networks. ACM Transactions on Sensor Net-

works (TOSN), 9(2):25:1–25:20, 2013.

[49] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner trees.

Acta informatica, 15(2):141–145, 1981.

[50] T.-W. Kuo and M.-J. Tsai. On the construction of data aggregation tree

with minimum energy cost in wireless sensor networks: NP-completeness

and approximation algorithms. In 2012 Proceedings IEEE INFOCOM,

pages 2591–2595. IEEE, 2012.

[51] L. B. Le, E. Modiano, C. Joo, and N. B. Shroff. Longest-queue-first schedul-

ing under sinr interference model. In Proceedings of the eleventh ACM

international symposium on Mobile ad hoc networking and computing,

pages 41–50. ACM, 2010.

209

[52] S. Lee, S. Pattem, M. Sathiamoorthy, B. Krishnamachari, and A. Ortega.

Compressed sensing and routing in multi-hop networks. University of

Southern California CENG Technical Report, 2009.

[53] H. Li, Q. S. Hua, C. Wu, and F. C. M. Lau. Minimum-latency aggrega-

tion scheduling in wireless sensor networks under physical interference

model. In Proceedings of the 13th ACM international conference on Mod-

eling, analysis, and simulation of wireless and mobile systems, pages 360–

367. ACM, 2010.

[54] J. Li, A. Deshpande, and S. Khuller. On computing compression trees for

data collection in wireless sensor networks. In 2010 Proceedings IEEE

INFOCOM, pages 1–9. IEEE, 2010.

[55] S. Lindsey, C. Raghavendra, and K. M. Sivalingam. Data gathering algo-

rithms in sensor networks using energy metrics. IEEE Transactions on

Parallel and Distributed Systems, 13(9):924–935, 2002.

[56] C. Liu and G. Cao. Distributed monitoring and aggregation in wire-

less sensor networks. In Proceedings IEEE INFOCOM, 2010, pages 1–9.

IEEE, 2010.

[57] C. Liu, K. Wu, and J. Pei. An energy-efficient data collection frame-

work for wireless sensor networks by exploiting spatiotemporal correla-

tion. IEEE Transactions on Parallel and Distributed Systems, 18(7):1010–

1023, 2007.

[58] L. Lu, T. Wang, S. C. Liew, and S. Zhang. Implementation of physical-layer

network coding. Physical Communication, 6:74–87, 2013.

210

[59] C. Luo, F. Wu, J. Sun, and C. W. Chen. Compressive data gathering for

large-scale wireless sensor networks. In Proceedings of the 15th annual

international conference on Mobile computing and networking, pages 145–

156. ACM, 2009.

[60] D. Luo, X. Zhu, X. Wu, and G. Chen. Maximizing lifetime for the shortest

path aggregation tree in wireless sensor networks. In Proceedings IEEE

INFOCOM, 2011, pages 1566–1574. IEEE, 2011.

[61] J. Luo, L. Xiang, and C. Rosenberg. Does compressed sensing improve

the throughput of wireless sensor networks? In 2010 IEEE International

Conference on Communications (ICC), pages 1–6. IEEE, 2010.

[62] S. Mehrjoo, J. Shanbehzadeh, and M. M. Pedram. A novel intelligent

energy-efficient delay-aware routing in wsn, based on compressive sens-

ing. In 2010 5th International Symposium on Telecommunications (IST),

pages 415–420. IEEE, 2010.

[63] N. Naderializadeh and A. S. Avestimehr. ITLinQ: A new approach for

spectrum sharing in device-to-device communication systems. IEEE Jour-

nal on Selected Areas in Communications, 32(6):1139–1151, 2014.

[64] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algo-

rithms and complexity. Courier Corporation, 1998.

[65] M. Safar, H. Al-Hamadi, and D. Ebrahimi. Peca: power efficient cluster-

ing algorithm for wireless sensor networks. International Journal of In-

formation Technology and Web Engineering (IJITWE), 6(1):49–58, 2011.

211

[66] M. Sartipi and R. Fletcher. Energy-efficient data acquisition in wireless

sensor networks using compressed sensing. In Data Compression Confer-

ence (DCC), pages 223–232. IEEE, 2011.

[67] S. Sengupta, S. Rayanchu, and S. Banerjee. Network coding-aware

routing in wireless networks. IEEE/ACM Transactions on Networking,

18(4):1158–1170, 2010.

[68] W.-Z. Song, F. Yuan, R. LaHusen, and B. Shirazi. Time-optimum packet

scheduling for many-to-one routing in wireless sensor networks. The

International Journal of Parallel, Emergent and Distributed Systems,

22(5):355–370, 2007.

[69] R. Subramanian and F. Fekri. Sleep scheduling and lifetime maximiza-

tion in sensor networks: fundamental limits and optimal solutions. In

Proceedings of the 5th international conference on Information processing

in sensor networks, pages 218–225. ACM, 2006.

[70] N. Thepvilojanapong, Y. Tobe, and K. Sezaki. On the construction of ef-

ficient data gathering tree in wireless sensor networks. In IEEE Inter-

national Symposium on Circuits and Systems, 2005. ISCAS 2005, pages

648–651. IEEE, 2005.

[71] D. Traskov et al. Network coding for multiple unicasts: An approach based

on linear optimization. PhD thesis, Citeseer, 2006.

[72] D. Traskov, M. Heindlmaier, M. Médard, R. Koetter, and D. S. Lun.

Scheduling for network coded multicast: A conflict graph formulation.

In 2008 IEEE GLOBECOM Workshops, pages 1–5. IEEE, 2008.

212

[73] W. Wang, M. Garofalakis, and K. Ramchandran. Distributed sparse ran-

dom projections for refinable approximation. In Proceedings of the 6th

international conference on Information processing in sensor networks,

pages 331–339. ACM, 2007.

[74] X. Wang, Z. Zhao, Y. Xia, and H. Zhang. Compressed sensing based

random routing for multi-hop wireless sensor networks. In 2010 Inter-

national Symposium on Communications and Information Technologies

(ISCIT), pages 220–225. IEEE, 2010.

[75] Z. Wei, Y. Sun, and Y. Ji. An integrating data gathering scheme for wire-

less sensor networks. In 2013 IEEE Wireless Communications and Net-

working Conference (WCNC), pages 1151–1156. IEEE, 2013.

[76] Wikipedia. List of wireless sensor nodes. http://timmurphy.

org/2009/07/22/line-spacing-in-latex-documents/. Accessed

February 9, 2016.

[77] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and

A. Jovicic. FlashLinQ: A synchronous distributed scheduler for peer-to-

peer ad hoc networks. IEEE/ACM Transactions on Networking (TON),

21(4):1215–1228, 2013.

[78] X. Wu, Y. Xiong, W. Huang, H. Shen, and M. Li. An efficient compressive

data gathering routing scheme for large-scale wireless sensor networks.

Computers & Electrical Engineering, 39(6):1935–1946, 2013.

[79] Y. Wu, S. Fahmy, and N. B. Shroff. On the construction of a maximum-

lifetime data gathering tree in sensor networks: NP-completeness and

213

http://timmurphy.org/2009/07/22/line-spacing-in-latex-documents/
http://timmurphy.org/2009/07/22/line-spacing-in-latex-documents/

approximation algorithm. In IEEE INFOCOM 2008. The 27th Conference

on Computer Communications. IEEE, 2008.

[80] L. Xiang, J. Luo, and C. Rosenberg. Compressed data aggregation:

Energy-efficient and high-fidelity data collection. IEEE/ACM Transac-

tions on Networking, 21(6):1722–1735, 2013.

[81] L. Xiang, J. Luo, and A. Vasilakos. Compressed data aggregation for en-

ergy efficient wireless sensor networks. In 8th annual IEEE communica-

tions society conference on sensor, mesh and ad hoc communications and

networks (SECON), 2011, pages 46–54. IEEE, 2011.

[82] R. Xie and X. Jia. Transmission-efficient clustering method for wireless

sensor networks using compressive sensing. IEEE Transactions on Par-

allel and Distributed Systems,, 25(3):806–815, 2014.

[83] X. Xu, R. Ansari, and A. Khokhar. Power-efficient hierarchical data ag-

gregation using compressive sensing in wsns. In 2013 IEEE International

Conference on Communications (ICC), pages 1769–1773. IEEE, 2013.

[84] X. Xu, X.-Y. Li, and M. Song. Efficient aggregation scheduling in multihop

wireless sensor networks with sinr constraints. IEEE Transactions on

Mobile Computing, 12(12):2518–2528, 2013.

[85] B. Yu, J. Li, and Y. Li. Distributed data aggregation scheduling in wire-

less sensor networks. In IEEE INFOCOM 2009, pages 2159–2167. IEEE,

2009.

[86] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Energy-latency trade-

offs for data gathering in wireless sensor networks. In INFOCOM 2004.

214

Twenty-third AnnualJoint Conference of the IEEE Computer and Com-

munications Societies, volume 1, pages 224–255. IEEE, 2004.

[87] M. Zhao, Y. Yang, and C. Wang. Mobile data gathering with load balanced

clustering and dual data uploading in wireless sensor networks. IEEE

Transactions on Mobile Computing, 14(4):770–785, 2015.

[88] W. Zhao and X. Tang. Scheduling sensor data collection with dynamic

traffic patterns. IEEE Transactions on Parallel and Distributed Systems,

24(4):789–802, 2013.

[89] H. Zheng, S. Xiao, X. Wang, X. Tian, and M. Guizani. Capacity and delay

analysis for data gathering with compressive sensing in wireless sensor

networks. IEEE Transactions on Wireless Communications, 12(2):917–

927, 2013.

[90] G. Zhou, T. He, J. A. Stankovic, and T. Abdelzaher. Rid: radio interference

detection in wireless sensor networks. In INFOCOM 2005. 24th Annual

Joint Conference of the IEEE Computer and Communications Societies.

Proceedings IEEE, volume 2, pages 891–901. IEEE, 2005.

215

	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Introduction
	Overview and Objectives
	Problem Statement and Motivation
	Distributed Compressive Data Gathering
	Network-Coding Aware Compressive Data Gathering
	On the Interaction between Scheduling and Compressive Data Gathering
	A Primal Dual Decomposition Method

	Thesis Contribution
	Thesis Outline

	Literature Review and Preliminaries
	Related Work
	Network Model
	Compressive Sensing
	Compressive Data Gathering
	Sparse Random Projections

	Projection Based Compressive Data Gathering (PCDG)
	Motivation
	Minimum Spanning Tree Projection (MSTP)
	Extended Minimum Spanning Tree Projection (eMSTP)
	Comparison and Numerical Results of MSTP and eMSTP
	Comparison
	Numerical Results

	Optimal Selection of Projection nodes (OSPN)
	Optimal Tree Construction (Opt-PCDG)
	Projection based Compressive Data Gathering Algorithm (PB-CDG)
	Performance Evaluation
	Conclusion

	Distributed Compressive Data Gathering (DCDG)
	Motivation
	Overview of the Distributed Method
	Description of the Distributed Algorithm
	Illustrative Example
	Loop Free Tree Construction
	Message Overhead Analysis
	Numerical Results
	Conclusion

	Network-Coding Aware Compressive Data Gathering (NC-CDG)
	Network Coding Model
	Problem Description and Motivation
	Optimal Tree Construction
	Algorithmic Solutions
	Centralized Method:
	Distributed Method:
	Performance Analysis:

	Performance Evaluation
	Conclusion

	Forwarding Tree Construction and Scheduling (FTCS)
	Link Scheduling in Physical Interference Model
	Problem Description
	Problem Formulation
	NP-hardness

	Algorithmic solution
	Distributed Tree Construction
	Distributed Link Scheduling Algorithm

	Performance Analysis
	Correctness
	Performance bounds of the link scheduling algorithm

	Performance Evaluation
	Conclusion

	A Column Generation (CG) Approach for FTCS
	Problem Formulation and Complexity
	Decomposition method
	The Master Problem
	The Pricing Problem
	Solution methodology

	Numerical Results
	Conclusion

	Conclusion and Future Work
	Conclusions
	Future Work

	Message Overhead Analysis for Centralized CDG
	Message Overhead Analysis for Decentralized CDG
	TCM (Tree Construction Model)
	LSM (Link Scheduling Model)
	Bibliography

