

Monitoring Service Level Workload of Highly

Available Applications

Mehran N. A. H. Khan

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Science (Electrical & Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

November 2015

© Mehran Khan, 2015

ii

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Mehran Noor Al Haq Khan

Entitled: “Monitoring Service Level Workload of Highly Available Application”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. M. Mehmet-Ali

 __ Examiner, External

Dr. R. Glitho (CIISE) To the Program

 __ Examiner

 Dr. S. Abdi

 __ Examiner

 Dr. M. Toeroe

 __ Supervisor

 Dr. Y. Liu

 __ Supervisor

 Dr. F. Khendek

Approved by: ___

 Dr. W. E. Lynch, Chair

 Department of Electrical and Computer Engineering

____________20_____ ___________________________________

 Dr. Amir Asif, Dean

Faculty of Engineering and Computer Science

iii

ABSTRACT

Monitoring Service Level Workload of Highly Available Applications

Mehran N. A. H. Khan

Elasticity is a key feature of cloud computation and is a major contributor to its popularity.

Elasticity is defined as automatic provisioning/de-provisioning of resources to match workload

changes over time. Service High Availability (HA) is among one of cloud computing’s big

challenges. High Availability (HA) is defined as providing a minimum of 99.999% service

availability. Maintaining service HA while scaling in/out is even more challenging. Recently, an

architecture has been proposed for managing HA. Following the proposed architecture, an

Elasticity Engine has been introduced that is capable of managing resources based on application

level provisioning or de-provisioning alerts while preserving HA. In contrast to the prevailing

monitoring solutions where Virtual Machine (VM) level workload is provided, the Elasticity

Engine requires a monitoring solution that monitors service-level workload and triggers alerts

accordingly. In this thesis, we propose an approach and an architecture for the monitoring of HA

applications at the service level. Accordingly, the monitoring approach starts with monitoring the

application components in traditional manner. Workload of the components are mapped to each

component’s respective service assignment. The resource usages of all the components providing

services is aggregated and mapped to the service level workload using a distributed client-server

architecture. This approach allows for distinguishing between the different HA states, active or

standby that a component can be assigned at runtime and it (the approach) adapts to the situations

where switchovers happen under the control of the SA Forum middleware due to failures for

iv

example. The proposed monitoring architecture has been implemented and integrated with the

Elasticity Engine to test its effectiveness and overhead. It has been shown that the implemented

and integrated prototypes achieve elasticity in a cluster based on service level workload while

keeping the monitoring overhead within 5% of its total resource.

v

Acknowledgements

I would like to thank my supervisors, Prof. Ferhat Khendek and Prof. Yan Liu for their

patience and belief in me and for giving me the opportunity to pursue my thesis under their

supervision. The thesis would not have been possible without their support and encouragement.

I am immensely grateful to Dr. Maria Toeroe (Ericsson Canada) for her support, knowledge,

expertise and guidance that helped me overcome the challenges in completing this thesis. I would

also like to thank her for her patience and support that helped me get through some trying times.

I am grateful to my friends Arshi Islam and Salman Moazzem for their support and

friendship.

I would also like to offer my gratitude to all my colleagues in the MAGIC team for their

friendship and for creating a pleasant work atmosphere.

I am grateful to Concordia University, Ericsson Canada, NSERC and the PERSWADE

Program for offering their facilities and resources.

This work has been partially supported by Natural Sciences and Engineering Research

Council of Canada (NSERC), Ericsson Software Research and Concordia University as part of the

Industrial Research Chair in Model Based Software Management.

Finally, I would like to pay earnest gratitude to my family for their love, support, and

encouragement. I owe all my accomplishments to them. I dedicate this thesis to them.

vi

Table of Contents

List of figures ... x

List of tables ... xii

List of acronyms ... xiii

1. Introduction .. 1

1.1. Research domain ... 1

1.2. Thesis motivations... 3

1.3. Thesis contributions .. 4

1.4. Thesis organization ... 6

2. Background on Availability, Cloud, SA Forum Middleware and Related Work 7

2.1. Service Availability ... 7

2.2. Service Availability Forum (SA Forum) ... 7

2.3. Availability Management Framework .. 9

2.3.1. Logical entities .. 9

2.3.2. Redundancy Models .. 14

2.3.3. AMF configuration .. 20

2.4. Information Model Management (IMM) .. 20

2.4.1. Information Model organization ... 22

2.5. Elasticity Engine ... 24

vii

2.6. Monitoring and tracing tools ... 26

2.6.1. LTTng (Linux Tracing Tool, next generation).. 27

2.6.2. Python PSUtil .. 28

2.7. Cloud Computing .. 28

2.8. Related work ... 29

2.8.1. Available Monitoring Solutions .. 29

2.8.2. Resource usage representation: Hardware vs. AMF SI................................... 32

3. Monitoring Approach Overview .. 36

3.1. Monitoring architecture ... 36

3.1.1. Monitoring Client .. 37

3.1.2. Monitoring Server ... 43

3.2. Integration with the Elasticity Engine ... 44

3.3. Activity overview .. 46

3.4. Conclusion ... 47

4. Instrumentation of AMF Components .. 49

4.1 SA Aware Components... 50

4.2 Component life-cycle API .. 51

4.3. Component CSI management ... 53

4.4 Instrumentation Method .. 56

Architecture and Functions .. 57

viii

4.4 Summary ... 64

5. Service Instance Usage Mapping and Aggregation .. 66

5.1. Aggregation approach overview ... 66

5.2. Algorithms and data structures for aggregation .. 69

5.2.1. SI-tree .. 69

5.2.2. Workload-tree.. 76

5.3. Summary ... 80

6. Monitoring Prototype and Overhead Evaluation .. 81

6.1. Prototype architecture ... 81

6.2. Workload metrics .. 87

6.2.1. Normalized CPU usage ... 87

6.2.2. Total CPU cycle usage .. 88

6.2.3. Normalized memory usage.. 89

6.2.4. Total memory usage .. 89

6.3. Test-beds and test cases... 89

6.3.1. HTTP service... 90

6.3.2. Video streaming service .. 100

6.4. Monitoring overhead ... 105

6.5. Summary ... 109

ix

7. Conclusion and Future Work .. 110

7.1. Conclusion ... 110

7.2. Limitations and Future Work .. 111

Bibliography .. 112

x

List of figures
FIGURE 2-1: AN SA FORUM MIDDLEWARE ARCHITECTURE [14] .. 8

FIGURE 2-2: AMF LOGICAL ENTITIES AND THEIR RELATIONSHIPS [9] ... 14

FIGURE 2-3: SG WITH 2N REDUNDANCY MODEL .. 16

FIGURE 2-4: SG WITH N+M REDUNDANCY MODEL ... 17

FIGURE 2-5: SG WITH NWAY REDUNDANCY MODEL ... 18

FIGURE 2-6: SG WITH NWAY-ACTIVE REDUNDANCY MODEL .. 19

FIGURE 2-7: SG WITH NO-REDUNDANCY REDUNDANCY MODEL .. 19

FIGURE 2-8: IMM SERVICE INTERFACES [15] ... 21

FIGURE 2-9: EXAMPLE OF INFORMATION MODEL .. 23

FIGURE 2-10: ELASTICITY ENGINE ARCHITECTURE ... 26

FIGURE 2-11: MONITORING IN TERMS OF HARDWARE ENTITIES ... 33

FIGURE 2-12: SERVICE LEVEL SYSTEM RESOURCE USAGE REPRESENTATION ... 35

FIGURE 3-2: AMF CALLBACK DISPATCH DETECTION USING LTTNG UST FOR SA-AWARE COMPONENTS .. 38

FIGURE 3-3: AMF CALLBACK DISPATCH DETECTION USING LTTNG UST FOR NON-SA-AWARE COMPONENTS 40

FIGURE 3-4: COLLECTING WORKLOAD-PER-COMPONENT .. 42

FIGURE 3-5: WORKLOAD AGGREGATION IN THE MONITORING SERVER ... 44

FIGURE 3-6: MONITORING APPROACH/ARCHITECTURE INTEGRATED WITH THE ELASTICITY ENGINE AND AMF 45

FIGURE 3-7: SEQUENCE DIAGRAM OF INTERACTIONS BETWEEN MONITORING ENGINE AND ELASTICITY ENGINE 47

FIGURE 4-1: THE MAIN INTERACTIONS BETWEEN AN SA-AWARE COMPONENT AND AMF .. 55

FIGURE 4-2: OVERALL VIEW OF INSTRUMENTATION METHOD .. 58

FIGURE 4-3: AMF COMPONENT INTERFACE INSTRUMENTATION METHOD ... 60

FIGURE 6-1: MONITORING PROTOTYPE ARCHITECTURE .. 82

FIGURE 6-2: MONITORING ENGINE INTEGRATED WITH ELASTICITY ENGINE IN A CLUSTER .. 91

FIGURE 6-3: HTTP SERVICE WITH N-WAY-ACTIVE REDUNDANCY MODEL IN MINIMUM CONFIGURATION ... 92

FIGURE 6-4: MONITORING OUTPUT OF HTTP SERVER APPLICATION AT MINIMUM CONFIGURATION ... 92

FIGURE 6-5: HTTP SERVICE AFTER TRIGGERING UNDERPROVISIONED ALERT ... 95

xi

FIGURE 6-6: MONITORING OUTPUT OF HTTP COMPONENTS IN SU-1 AND SU-2 RECEIVING HEAVY TRAFFIC 95

FIGURE 6-7: MONITORING OUTPUT OF HTTP SERVER AFTER TRIGGERING UNDERPROVISIONED ALERT .. 96

FIGURE 6-8: MONITORING OUTPUT OF HTTP SERVER REACHING MAXIMUM CAPACITY OF THE CLUSTER .. 97

FIGURE 6-9: MEMORY USAGE METRICS DURING PROVISIONING/DEPROVISIONING OF VMS ... 99

FIGURE 6-10: CPU USAGE METRICS DURING PROVISIONING/DEPROVISIONING OF VMS ... 100

FIGURE 6-11: VIDEO STREAMING HA SERVICE WITH A 2N REDUNDANCY MODEL .. 101

FIGURE 6-12: MONITORING SERVER CONSOLE OUTPUT FOR VIDEO STREAMING SERVICE... 103

FIGURE 6-13: CONSOLE OUTPUT AT THE MONITORING SERVER AFTER FAILOVER ... 104

FIGURE 6-14: RELATIVE CPU AND MEMORY WORKLOAD OF THE VIDEO STREAMING SERVICE DURING FAILOVER 104

xii

List of tables
TABLE 3-1: MAPPINGS AMONG COMPONENT, CSI, PROCESS ID AND PROCESS WORKLOAD ... 42

TABLE 4-1: FUNCTIONS TO INSTRUMENT AND THE MAPPINGS OBTAINED FROM THE INSTRUMENTATION OF EACH FUNCTION 56

TABLE 4-2: INSTRUMENTATION TEMPLATE SAMPLE INPUT AND ITS SAMPLE MAPPING ... 64

TABLE 5-1: NAMES AND SHORT DESCRIPTIONS OF THE LEVELS IN AN SI-TREE .. 71

TABLE 6-1: HARDWARE SPECIFICATIONS OF THE SYSTEM RUNNING THE HYPERVISOR AND THE VMS .. 90

TABLE 6-2: PROCESSES RESPONSIBLE FOR MONITORING OVERHEAD AND THEIR DESCRIPTIONS ... 105

TABLE 6-3: RESULTS OVER MONITORING OVERHEAD MEASUREMENT .. 108

xiii

List of acronyms

AIS

AMF

API

CCB

CSI

CLM

DN

HA

HPI

HTTP

IM

IMM

LDAP

LTTng

OI

OM

PLM

PSUtil

RDN

RM

SA Forum

SG

SI

SU

Application Interface Specification

Availability Management Framework

Application Programming Interface

Configuration Change Bundle

Component Service Instance

Cluster Membership Service

Distinguished Name

High Availability

Hardware Platform Interface

Hypertext Transfer Protocol

Information Model

Information Model Management

Lightweight Directory Access Protocol

Linux Tracing Toolkit next generation

Object Implementer

Object Modifier

Platform Management Service

Python System and process Utilities

Relative Distinguished Name

Redundancy Model

Service Availability Forum

Service Group

Service Instance

Service Unit

xiv

TCP

UML

UST

VM

Transmission Control Protocol

Unified Modeling Language

User Space Tracing

Virtual Machine

1

1. Introduction

This chapter introduces the research domain, the motivations and the contributions of this

work.

1.1. Research domain

With our increasing dependency on computer-based systems, the need to ensure that services

are always provided to the end-users has become more important than ever. Service Availability

is an important characteristic of service excellence in a number of domains such as

telecommunication, cloud computing, etc.

Service Availability for a service is defined as the percentage of time a service is provided

[1]. High Availability (HA) is defined as providing a minimum of 99.999% service availability,

which translates to at most 5.26 minutes of downtime in a year [1].

Cloud computing is a popular paradigm that refers to priced, on-demand delivery of services

of applications and other remote resources over a network [2]. Service Availability is one of the

big challenges of cloud computing [3]. Elasticity, on the other hand, is a key feature of the cloud

that is contributing to its popularity. Elasticity is defined as automatic provisioning/de-

provisioning of resources to match workload changes over time [4].

In a typical cloud system elasticity is managed based on the system resource usage of the

virtual machines (VM) running the application. I.e. the resource usage of the VM is equated to the

resource usage of the application hosted in the VM [5] [6]. Therefore, the smallest resource

provisioned to or de-provisioned from any service in this context is a VM. These VMs are assumed

to be stateless, allowing each VM to participate in the service from the point they are added to a

2

cloud cluster without any kind of state propagation/synchronization. This design includes a number

of assumptions that are not necessarily true for telecom applications that provide state-full HA

services and run according to some redundancy model. In such HA systems, the resources

providing the application services are defined at a finer detail according to a configuration where

each service provider has an active or a standby role. The state of each active service provider is

synchronized with its associated standby service provider(s) so that it (they) can assume the active

role at any time it becomes necessary. A middleware is responsible for managing the life cycle of

these application resources according to the configuration as well as assigning the active and

standby roles, in particular, assigning the active role to a standby provider whenever the active

provider fails. In such a dynamic system a simple association of a workload with a set of VMs

may not be effective since different service providers may be collocated in the same VM, some

VMs may only be partially or not at all associated with a given application service.

3

1.2. Thesis motivations

The Service Availability (SA) Forum [7] middleware is capable of managing HA services

[1] in the cloud. The SA Forum [8] middleware’s Availability Management Framework (AMF)

[9] manages the availability of application services based on the application configuration. Such a

configuration can be divided into two conceptual parts: the service provider and the service parts.

The service provider part represents the resources and it is made up of sets of interrelated

components. The service is described in terms of Service Instances (SIs) that are made up of one

or more Component Service Instances (CSIs). The SIs represent the services provided by the

application managed by AMF. At runtime AMF assigns the CSIs of the SI to the service provider

entities – the application components [9].

An Elasticity Engine [8] [10] has been proposed recently for AMF managed applications.

The Elasticity Engine manages the resource usage of AMF applications by changing their AMF

configurations, which in turn triggers AMF to redistribute the CSI/SI assignments. To take any

such action, the Elasticity Engine needs an input, for example, from a Monitoring Engine that can

measure the system load imposed by the SI.

Most existing monitoring solutions are either:

a) Capable of providing workload in terms of resource like CPU, RAM, memory, etc. usage

at the platform level per VM or

b) Too platform specific to apply to AMF managed applications.

In this thesis, we are interested in measuring the workload imposed by HA services (SIs) and

address three main related challenges:

4

a) Retrieving the distribution of CSI assignments in the system at runtime

b) Retrieving the system usage that is relatable to the CSI assignments to the nodes and

c) Aggregating the system usage according to distribution of CSI assignments to express the

usage in terms of AMF services

In this thesis, we propose an approach and a monitoring architecture to relate platform level

workload to workload in terms of SIs so that the existing Elasticity Engine [10] can react and adjust

the configuration.

1.3. Thesis contributions

In this thesis, we address the problems mentioned in the previous subsection by introducing

a monitoring approach/architecture. The main contributions of this thesis are summarized as

follows:

o A method to instrument AMF components automatically to detect and map CSI assignments

to components.

 The components in a cluster interact with AMF using an interface based on API defined

by the SA Forum. For each new service assignment, service assignment change or service

assignment removal, AMF dispatches call-backs to the components using this interface.

By instrumenting the AMF-component-interface AMF call-backs to the component can be

detected at runtime. It allows us to map the services to their corresponding components.

o A method to aggregate workload of components into workload of the SIs running in the system.

 The mapping of CSIs to the components and the system usage per processes running the

components in each of the Monitoring Client are transmitted to the Monitoring Server for

5

aggregation. The Monitoring Server then creates a tree-like data structure for the

component-CSI assignments, keeping the system usage as the leaves of the tree. The

workload per SI is then calculated by bottom-up aggregation of system usage metrics along

the tree-paths, which provides us with workload in terms of SIs.

o A monitoring architecture to measure workload in terms of potentially collocated SA Forum

middleware services.

 The architecture follows a client-server architecture.

 In a cluster, each node hosting application components is considered as a Monitoring

Client, one of the nodes in the cluster is designated the role of Monitoring Server. Hence,

one of the nodes in the cluster plays a dual role of both Monitoring Client and Monitoring

Server. The Monitoring Server must be reachable from all Monitoring Clients over the

network.

o A prototype to perform experiments and evaluate its performance.

 The prototype is capable of adapting to change of workload distribution. It can measure

and detect significant workload change of any SI and alert the Elasticity Engine.

 Two test beds have been used to test the monitoring architecture effectiveness. Each test

bed has been used for a unique test case.

 The Monitoring overhead has been measured for each of the aforementioned test cases.

6

1.4. Thesis organization

The thesis is organized in seven chapters. In Chapter 2, the background knowledge related

to availability, SA Forum middleware, monitoring tools and related work are discussed. In Chapter

3, an overview of the monitoring approach, its architecture and the steps taken to measure service

level workload are discussed. In Chapter 4, the procedure to instrument AMF components and its

automation are discussed with an example. In Chapter 5, the algorithms to map and aggregate

component-workload to SI-workload are discussed. In Chapter 6, the Monitoring prototype details,

its effectiveness in the test cases and its overhead evaluation are discussed. Finally, in Chapter 7,

we summarize our contributions and discuss future work.

7

2. Background on Availability, Cloud, SA Forum Middleware

and Related Work

 In this chapter, the general definition for service availability is presented, which is followed

by discussions on the relevant sections of SA Forum middleware related to this work. We also

review some related work in the cloud and service availability.

2.1. Service Availability

Service Availability for a service is defined as the percentage of time a service is provided

[1]. The two factors that determine the availability of a service are: Mean Time to Repair (MTTR)

and Mean Time Between Failures (MTBF) [1].

 MTBF is the statistical mean time between two consecutive failures of a system, and

 MTTR is the statistical mean time to repair the system.

Keeping these two factors in mind, service availability of a system can be defined using Eq.

2-1 [1]:

Availability =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
 (2-1)

The service availability of a system relies on the availability of individual components of

that system.

2.2. Service Availability Forum (SA Forum)

The objective of the SA Forum is to define standard interfaces that facilitate the development

of carrier-grade and mission critical applications and systems [7]. It is a consortium [7] of

companies from the telecommunication and computing industries working together to develop and

8

publish high availability middleware service specifications. OpenSAF middleware [11] is an open

source implementation of the SA Forum specifications [12].

The SA Forum services are categorized into two main specifications: the Hardware Platform

Interface (HPI) and the Application Interface Specification (AIS) [12]. Typically, the services

specified by the HPI are implemented as libraries in the hardware platform. These services serve

up the hardware information in a standard way so that a user application does not have to be aware

of the specifics of the underlying hardware [13]. The main objective of AIS is to provide

standardized APIs for middleware functions typically required by HA applications. These

specifications consist of different middleware services among which we will be focusing on the

AMF [9] service, which is the most relevant to this thesis. Figure 2-1 gives an overview of the SA

Forum services.

Figure 2-1: An SA Forum middleware architecture [14]

9

2.3. Availability Management Framework

AMF is the SA Forum middleware service in charge of managing the service availability of

an HA application. AMF is responsible for 1) assigning the workload to the application

components, 2) managing the life-cycle of the resources under its control (e.g. software

components), 3) reassigning the workload of a faulty component to a standby (and healthy)

component, and 4) repairing the faulty component [9].

2.3.1. Logical entities

The AMF uses an abstract system model to represent the resources under its control. This

abstract model consists of various logical entities [9]. Fig. 2-2 shows the logical entities of AMF

and the relationships among them.

2.3.1.1. Component

A component is the smallest logical entity in the system on which AMF performs error

detection, isolation and repair. It represents a specific resource such as a process, which is capable

of providing a set of functionalities [9].

2.3.1.2. Component Categories

Components are categorized based on their capability in terms of service availability -

awareness. Components of different component categories behave differently based on their

different properties [9]. In the context of this work, the component categories based on their HA

Awareness and Life Cycle Management have been considered. Based on HA Awareness,

components can be categorized into the following:

 SA Aware Component: Components that are under the direct control of the AMF can

have a high level of integration with this framework, which enables fast workload

10

assignment, error detection, isolation and repair [9]. Such components are called SA-

aware components.

o Proxy Components: The proxy component is an SA-aware component that is

responsible for conveying requests made by the AMF to its proxied components.

o Proxied Components: The AMF determines the proxied components for which a

proxy component is responsible when the proxy component registers with the

framework, based on configuration and other factors like availability of components

in the cluster.

 Non-SA-Aware Component: Components that do not register directly with the AMF are

called non-SA-aware components [9].

o Non-Proxied, Non-SA-Aware Component: For non-proxied, non-SA-aware local

components, the role of the AMF is limited to the management of the component life

cycle. The AMF instantiates a non-proxied, non-SA-aware component when the

component needs to provide a service and terminates this component when the

component must stop providing the service [9].

Based on Life Cycle Management, components can be categorized into the following:

 Pre-instantiable Component: Components that can remain in an idle state without being

assigned any service after being instantiated by the AMF. All SA-aware components are

pre-instantiable components [9].

 Non-pre-instantiable Component: Components that start providing service as soon as

they are instantiated, are called non-pre-instantiable components [9].

11

2.3.1.3. Service Unit (SU)

A service unit (SU) is a logical assembly of several components that, when given an active

assignment to provide a service, combine their individual functionalities to provide that particular

service [9].

2.3.1.4. Service Unit Type

A service unit (SU) type defines the common characteristics that the SUs of a given type

share. It specifies a list of component types that can be aggregated in the SU type. It also determines

the number of components of each component type that an SU of a type can accommodate [9].

2.3.1.5. Component Service Instance (CSI)

A component service instance (CSI) represents the workload that AMF can dynamically

assign to a component. High availability (HA) states are assigned to a component on behalf of the

CSI currently assigned to it [9]. The AMF chooses the HA state of a component for each particular

CSI [9].

 HA State of a Component per CSI: AMF assigns an HA state to each component on

behalf of its assigned CSI. The HA state of a component for a particular CSI can be one of

the following: active, standby, quiescing and quiesced [9]. For a given CSI, the HA states

of a component are described below:

o Active: A component at this state is responsible for providing the service characterized

by this CSI assignment [9].

o Standby: A component at this state acts as a standby for the service characterized by

this CSI assignment [9].

o Quiescing: The component that had previously been in an active HA state for this CSI

is in the process of quiescing its activity [9]. At this state, a component continues

12

providing the service it had been providing but rejects any new request from the service

characterized by the CSI for which it is in quiescing state [1].

o Quisced: The component that had previously the active or quiescing HA state for this

CSI has now quiesced its activity related to this CSI, and the AMF can safely assign

the active HA state for this CSI to another component [9].

2.3.1.6. Component Service Type (CST)

The component service type (CST) is the generalization of similar CSIs that are seen by the

AMF as equivalent and handled in the same manner. The configuration of a component indicates

the CST it supports [9].

2.3.1.7. Service Instance (SI)

The AMF supports assembling multiple CSIs into a logical entity called Service Instance

(SI) the same way it supports assembling multiple components into one SU. An SI aggregates all

CSIs to be assigned to the individual components of an SU in order for them to provide a particular

service [9]. It is possible for the same SI to be assigned to multiple SUs.

2.3.1.8. Service Type

The Service Type defines a list of CSTs. An SI is composed of the CSIs that are of the CSTs

defined in the service type of that SI. For each CST the service type also defines the number of

CSIs that an SI of the given type may aggregate [9].

2.3.1.9. Service Group (SG)

A Service Group (SG) is a logical entity that groups one or more SUs in order to provide

service availability for a particular set of SIs. Any SU of the SG must be able to take an assignment

for any SI of this set [9]. Each SG has a redundancy model that defines how the SUs in the SG

should protect its SIs [9].

13

2.3.1.10. Service Group Type

The service group type is a generalization of similar service groups that follow the same

redundancy model, provide similar availability, and are composed of units of the same service unit

types [9].

 Service Group Redundancy Model: Each SG has a redundancy model associated to it by

configuration. The redundancy model(s) supported by an SG is specified in its SG type.

The SUs in an SG provide service availability to the SIs according to the redundancy model

supported by the SG. The redundancy models and their characteristics are described in the

subsection 2.3.2.

2.3.1.11. Application

An application is a logical entity that contains one or more SGs and SIs protected by those

SGs [9].

2.3.1.12. Application Type

An application type defines a list of SG types that an application of its type can be composed

of. All applications of the same type share attribute values defined by their application type [9].

2.3.1.13. AMF node

AMF node is the VM or node where SUs are deployed.

 Mapping of SUs/SGs to Nodes: SGs and SUs have an optional node group configuration

attribute in their configuration. A node group contains a list of nodes. Using this attribute,

it can be specified for an SU to be instantiated on a specific node (if a node is specified in

the attribute) or on one of the nodes of the specified node group (if a node group is

specified) [9].

14

2.3.1.14. AMF cluster

A number of AMF nodes are grouped together to form an AMF cluster [9].

Figure 2-2: AMF logical entities and their relationships [9]

2.3.2. Redundancy Models

There are five different redundancy models: 2N, N+M, NWay, NWay-Active, and No-

Redundancy redundancy model [1]. Based on the redundancy model's characteristics, an SI may

15

have a number of active and standby assignments. The distribution of active and standby

assignments is also determined by the redundancy model of the SG [9] [1]. An SU may have active

or standby HA state for an SI. If an SU is in active HA state for an SI, it means that the SU is

providing the service. Similarly, an SU being in standby HA state for an SI means that the SU is

synchronizing with the active SU and stays ready to take over whenever the active SU becomes

unable to provide the service. If an SU has neither active nor standby assignment, that SU is called

a spare SU [9]. The redundancy models are described in the following sub-sections:

2.3.2.1. 2N Redundancy Model

This is the most intuitive redundancy model. In an SG with 2N redundancy model, for all

SIs, at most one SU can have an active assignment and at most one SU can have a standby

assignment. The SU with the active assignment is called the active SU and the SU with the standby

assignment is called the standby SU. In this redundancy model, the SG can have at most one active

SU and one standby SU for a given SI [9]. Fig. 2-3 shows an example of an SG with 2N redundancy

model and two SIs assignments to three SUs. In this example, there are two SIs and each of them

is composed of two CSIs. Provided that the SG protecting the SIs has at least two operational SUs,

for any SI, it is only possible to have one active and one standby SU at the same time with this

redundancy model. Hence SU3 has no SI assignment to it in the example.

16

SG

SU1

Comp1

Comp2

SU2

Comp3

Comp4

SI1

CSI1

CSI2

SI2

CSI3

CSI4

Active Assignment

Standby Assignment

SU3

Comp6

Comp7

Figure 2-3: SG with 2N redundancy model

2.3.2.2. N+M Redundancy Model

In this redundancy model, N SUs can be assigned as active and M SUs can be assigned as

standbys for the SIs being protected by the SG. Each SU of the SG can only have one of the

following HA states: active or standby. An SI can have only one active and one standby assignment

[9]. An SG comprising of 4 SUs with N+M redundancy model is illustrated in Fig. 2-4 (2+2). Two

of the SUs are assigned active assignment and the other two are assigned standby assignment for

the SIs being protected by them. As shown, with this redundancy model, an SU cannot have active

and standby assignments at the same time. Unlike 2N redundancy model, the SG can have multiple

SUs with active or standby assignments.

17

 SG

SI1

CSI1

CSI2

SI2

CSI3

CSI4

Active Assignment

Standby Assignment

SU1

Comp1

Comp2

SU2

Comp3

Comp4

SU3

Comp5

Comp6

SI3

CSI3

CSI4

SU4

Comp7

Comp8

SI4

CSI3

CSI4

Figure 2-4: SG with N+M redundancy model

2.3.2.3. NWay Redundancy Model

In this redundancy model, for an SG protecting a given set of SIs, SUs can simultaneously

have active assignments for some SIs and have standby assignment for other SIs. For each SI, at

most one of the SUs in the SG can have active assignment and at most all of the other SUs can

have standby assignments. No SU can take active and standby assignments simultaneously for the

same SI. An SG with NWay redundancy model is illustrated in Fig. 2-5. In this example, three

SUs in the SG get assignments for two SIs protected by the SG. Each SI has one active and two

standby assignments. SU1 and SU2 gets one active assignment for SI1 and SI2 respectively and

standby assignments for the other two SIs. SU3 gets only standby assignments.

18

 SG

SI1

CSI1

CSI2

SI2

CSI3

CSI4

Active Assignment

Standby Assignment

SU1

Comp1

Comp2

SU2

Comp3

Comp4

SU3

Comp5

Comp6

Figure 2-5: SG with NWay redundancy model

2.3.2.4. NWay-Active Redundancy Model

Unlike the redundancy models discussed earlier, NWay-Active redundancy model does not

allow for standby assignments for an SI. This redundancy model allows for an SI to be assigned

as active to multiple SUs, meaning each SI can have one or many active assignments [1]. An SG

with NWay-Active redundancy model is illustrated in Fig. 2-6. The SG protecting three SIs in the

illustration is comprised of three SUs. As illustrated, each SI has two active assignments to two

different SUs.

19

 SG

SI1

CSI1

CSI2

SI2

CSI3

CSI4
Active Assignment

SU1

Comp1

Comp2

SU2

Comp3

Comp4

SU3

Comp5

Comp6

SI3

CSI3

CSI4

Figure 2-6: SG with NWay-Active redundancy model

2.3.2.5. No-Redundancy Redundancy Model

In this redundancy model, each SU can have at most one active assignment for at most one

SI and no two SUs get active assignment for the same SI. No SU is assigned as a standby in this

redundancy model [1]. An SG with No-Redundancy Redundancy model comprising three SUs is

illustrated in Fig. 2-7. Each SU except SU4 in the illustration gets one active assignment. SU4 is

a spare SU as it does not have any assignment.

 SG

SI1

CSI1

CSI2

SI2

CSI3

CSI4
Active Assignment

SU1

Comp1

Comp2

SU2

Comp3

Comp4

SU3

Comp5

Comp6

SI3

CSI3

CSI4

SU4

Comp7

Comp8

Figure 2-7: SG with No-Redundancy redundancy model

20

2.3.3. AMF configuration

The AMF manages applications deployed in the cluster according to a configuration, An

AMF configuration consists of the description of logical entities such as components, SUs, SGs,

SIs, CSIs with their respective types, nodes and the relations among them. The logical entities are

described in the AMF configuration by objects and their attributes of the classes defined in the

AMF Specifications [9]. Such attributes can consist of configuration that can be either read-only

or writable [9]. AMF reacts to any change in the configuration attributes first by evaluating the

system state and then implementing the new changes while maintaining service availability.

2.4. Information Model Management (IMM)

The different entities of an SA Forum cluster such as AMF managed components,

checkpoints provided by the Checkpoint Service, or message queues provided by the Message

Service are represented by various objects of the SA Forum Information Model (IM) [15]. The SA

Forum Information Model is specified in UML and managed by the Information Model

Management (IMM) Service [15]. The IM can be considered as a cluster wide database for SA

Forum compliant systems. The IMM service manages all objects of the SA Forum IM and provides

APIs that allows its users to

o Configure SA Forum entities

o Obtain information about objects and runtime status of the system and

o Perform administrative operations [15].

The SA Forum IM also specifies the attributes and the kind of administrative operations that

can be performed on the objects managed by it. Fig. 2-8 shows the interfaces provided by the IMM

Service.

21

The users of IMM API are referred to as Object Managers (OM). An OM has the privilege

to create, access, manipulate and manage the configuration objects. The IMM notifies the

configuration changes made by the OM to the applications that are responsible for implementing

the objects to which changes have been made. The applications responsible for implementing these

objects are referred to as Object Implementers (OI) [1] [15].

IMM objects and attributes can be classified into two categories:

1. Configuration objects and configuration attributes: Configuration objects and

attributes carry configuration information. The system administrators manage the

cluster by manipulating configuration objects and their attributes [15].

2. Runtime objects and runtime attributes: The OIs reflect the current state of their

implemented entities via runtime objects and attributes [15].

Figure 2-8: IMM service interfaces [15]

22

2.4.1. Information Model organization

AMF configuration is accessed through the IMM Service [15]. The configuration

information in IM is represented as a tree where the object naming scheme is similar to the

Lightweight Directory Access Protocol (LDAP) [16]. Each object in a tree is therefore named after

the path from its position to the root of the tree. Each object has a unique Distinguished Name

(DN). An object also has a Relative Distinguished Name (RDN), which is essentially part of its

DN.

Each object in the IM has its RDN value as an attribute. For example, in Fig. 2-9, the RDN

value for AmfSU_1 is ‘safSu=AmfSU_1’. The DN of an object is the DN of the object’s parent in

the IM tree hierarchy prefixed by the RDN of the object. For example, the RDN of AmfSU1 in

Fig. 2-9 is ‘safSu=AmfSU_1,safSg=AmfSG_1, safApp=AmfApp_1’. In the IM, the tree is

constructed from the objects’ DN. Alongside the containment relationship that the child objects

have with their parents, entities also exhibit other relations. For example, AMF assigns CSIs to

components at runtime. In IM, this association relationship between a component and a CSI is

mapped by selecting the DN of the object representing the parent (component) and the DN of the

related object (CSI) as the DN of the association object itself. For example, in Fig. 2-9, the CSI

with RDN ‘safCsi=AmfCSI_1’ is assigned to the component with RDN ‘safComp=AmfComp_1’.

The IM runtime object class ‘SaAmfCSIAssignment’ represents the association relation [15]. The

runtime object of the class ‘SaAmfCSIAssignment’ between the aforementioned component and

CSI has the RDN ‘safCSIComp=AmfComp_1, safSu=AmfSU_1, safSg=AmfSG_1,

safApp=AmfApp_1’ and the DN ‘safCSIComp=AmfComp_1, safSu=AmfSU_1,

safSg=AmfSG_1, safApp=AmfApp_1,safCsi=AmfCSI_1, safSi=AmfSI_1, safApp=AmfApp_1’

in the IM.

23

<<CONFIG>>
SaAmfApplication

DN=RDN:"safApp=AmfApp_1"

<<CONFIG>>
SaAmfSG

RDN:"safSg=AmfSG_1"
DN: safSg=AmfSG_1, safApp=AmfApp_1"

<<CONFIG>>
SaAmfSI

RDN:"safSi=AmfSI_1"
DN: safSi=AmfSI_1, safApp=AmfApp_1"

<<CONFIG>>
SaAmfSU

RDN:"safSu=AmfSU_1"
DN: safSu=AmfSU_1, safSg=AmfSG_1,

safApp=AmfApp_1"

<<CONFIG>>
SaAmfCSI

RDN:"safCsi=AmfCSI_1"
DN: safCsi=AmfCSI_1, safSi=AmfSI_1,

safApp=AmfApp_1"

<<CONFIG>>
SaAmfCSI

RDN:"safCSI=AmfCSI_2"
DN: safCsi=AmfCSI_2, safSi=AmfSI_1,

safApp=AmfApp_1"

<<CONFIG>>
SaAmfCOMP

RDN:"safComp=AmfComp_2"
DN: safComp=AmfComp_2, safSu=AmfSU_1,

safSg=AmfSG_1, safApp=AmfApp_1"

<<CONFIG>>
SaAmfCOMP

RDN:"safComp=AmfComp_1"
DN: safComp=AmfComp_1, safSu=AmfSU_1,

safSg=AmfSG_1, safApp=AmfApp_1"

<<RUNTIME>>
SaAmfCSIAssignment

RDN:
"safCSIComp=AmfComp_1, safSu=AmfSU_1,

safSg=AmfSG_1, safApp=AmfApp_1"
DN:

 safCSIComp=AmfComp_1, safSu=AmfSU_1,
safSg=AmfSG_1, safApp=AmfApp_1,safCsi=AmfCSI_1,

safSi=AmfSI_1, safApp=AmfApp_1

Figure 2-9: Example of information model

24

2.5. Elasticity Engine

An Elasticity Engine [10] has been proposed recently for AMF managed applications. The

Elasticity Engine requires as input the load changes in terms of SI DNs.

When notified of a workload change, the Elasticity Engine reacts by manipulating SI or SG

attributes in the writable configuration based on a number of strategies [10]. AMF in turn applies

the changes made in the configuration by the Elasticity Engine by implementing the new changes.

As shown in Fig. 2-15, the Elasticity Engine is composed of the ‘Elasticity Controller’,

‘Redundancy Model Adjustor’ and the ‘Buffer Manager’.

The activities of the Elasticity Engine is described below:

The Elasticity Engine may scale resources in a cluster due to two reasons:

a) The Elasticity Engine may receive triggers from the Monitoring Engine described in this

thesis due to workload change associated to an SI as shown in Fig. 2-10.

b) The Elasticity Engine may scale workload due to addition or removal of services. I.e. the

number of SIs may change in the AMF configuration. The Elasticity Engine receives

information about such changes from the IMM.

Once alerted about workload change, the Elasticity Engine Controller reads the AMF

configuration in the IM to identify the SG protecting the SI that has changed workload. Depending

on the identified SG's redundancy model, the Elasticity Engine Controller calls the Redundancy

Model Adjustor [10].

25

The Redundancy Model Adjustor responds to the call by reading the AMF configuration

attributes of the SG in the IM using IMM and calculating the configuration changes required to

adjust the SG’s configuration to scale the cluster [10].

In order to speed up future adjustments, some nodes may be reserved for the SG. To

accommodate that, the Redundancy Model Adjustor calls the Buffer Manager to reserve nodes or

free up allocated nodes via additional Configuration Change Bundles [15] [10].

If the aforementioned actions taken are not effective, the Elasticity Engine Controller will do

one or more of the following:

a) Alert the administrator or cloud manager: The Elasticity Engine Controller will inform

the administrator or the cloud manager to add or remove node to/from the cluster if the

cluster size is insufficient/nodes are not being utilized [10].

b) Alert the administrator or software management: The Elasticity Engine Controller will

inform the administrator or the software manager if new nodes are required to cope with

the workload increase in the cluster [10].

26

Figure 2-10: Elasticity Engine Architecture

2.6. Monitoring and tracing tools

There are a number of tools that can provide system usage metrics readily like top [17],

vmstat [18], uptime [19], PSUtil [20] [21], etc. Most of such tools come with the support to provide

CPU usage, Linux server status, process monitoring and such. OpenStack’s [22] Ceilometer can

be configured with its Heat engine to enable AutoScaling [23]. Ceilometer can be extended to use

it as a monitoring solution. However, since it does not operate on real-time data, the solution

offered by it has not been considered in this thesis [23].

LTTng, short for “Linux Trace Toolkit: next generation” is an open source system software

package for correlated tracing of the Linux kernel, user applications and libraries. Its User Space

Tracing (UST) feature enables tracing the interactions amongst C/C++/Java based multiple

applications [24].

27

2.6.1. LTTng (Linux Tracing Tool, next generation)

There are a number of ways LTTng can be used to trace the running kernel, application and

services. Three of LTTng features have primarily been used in this work.

2.6.1.1. LTTng Kernel Tracing

LTTng can trace the running Linux kernel processes and create a data dump for a tracing

session that can be read later using any of the LTTng Trace Viewers [24].

The data from kernel tracing includes the active tasks running on the CPU as well as their

scheduling information, memory allocation, etc. against timestamps.

2.6.1.2. LTTng User Space Tracing (LTTng UST)

LTTng User Space Tacing facilitates tracing specific applications that has pre-defined trace

points in them. A trace point acts like break points in common IDEs that provides debugging

information. It is a short C code snippet that sends data about the state of the application to the

LTTng session daemon [24].

Among other features, a trace point can provide the timestamps of the starting point and the

ending point of a specific section of an instrumented application source code’s execution.

2.6.1.3. LTTng Live

LTTng Live [24] feature is used to obtain LTTng trace data during a programs execution. In

LTTng Live, for each session, a maximum amount of trace is instructed to be cached. The cached

trace is then processed in runtime by a Trace Viewer. Each session daemon caches a specific

number of events.

28

2.6.1.4. Babeltrace

Babeltrace [25] is the open source LTTng Trace Viewer that is used to convert Common

Trace Format (CTF) data into text format. Babeltrace’s Python binding can be used to convert

LTTng live data stream in runtime into text format.

2.6.2. Python PSUtil

PSUtil (Python System and Process Utilities) [20] is a cross-platform library/module for

retrieving information on running processes and system utilization (CPU, memory, disks, network,

etc.) in Python. It is useful mainly for system monitoring, profiling and limiting process resources

and management of running processes. It currently supports Linux, Windows, OSX, FreeBSD and

Sun Solaris, both 32-bit and 64-bit architectures [20].

2.7. Cloud Computing

Cloud computing can be thought of as a computing over network approach where an

application runs on a group of remote servers owned by a service provider to serve the end users

[26] [27]. The provider rents the computational power to their customers in an on-need basis,

which introduces the pay-as-you go model [26]. In this model, the customers pay for only the

amount of resource they use. This model is one of the primary contributors to cloud computing’s

popularity. It is also possible for an individual or a company to create a cloud infrastructure on

their own data center. Such infrastructures are called private clouds. Private clouds are created,

operated and managed by a single organization. In the previous example where a cloud service

provider rents the computational power, the cloud infrastructure is called public cloud. Public

cloud is the more common infrastructure solution [26].

29

Cloud services are offered following three different service models: IaaS, PassS and SaaS;

which stand for Infrastructure as a Service, Platform as a Service and Software as a Service,

respectively. In IaaS the customers have full control over their infrastructure and are provided with

computing resources such as Virtual Machines (VMs), power supply, network connection, load

balancers, firewalls, IP addresses, storage, etc. PaaS is the intermediate service model where the

customers can deploy their own application and take care of it while the cloud service provider

manages all the underlying infrastructural aspects. In the SaaS model, complete software packages

are offered as ready to use, on-demand at a monthly or yearly fee. However, the end users cannot

customize it more than the provider allows [26] [27].

2.8. Related work

In this section, predominant trends and examples of currently available monitoring solutions

are discussed, which is followed by a subsection discussing the limitations of the existing solutions

to provide service level workload in a cluster managed by an SA Forum middleware.

2.8.1. Available Monitoring Solutions

 There are two predominant trends of monitoring in the cloud. One is monitoring at the

platform level, which provides the resource usage based on system usage metrics such as CPU

usage, memory usage, bandwidth, etc. Boundary [28], Amazon CloudWatch [6], Rackspace [29]

and Microsoft Azure [30] among others offer such solutions. The other trend is monitoring at the

application or the service level, which provides resource usage based on the aggregated

performance of different entities used by the application, i.e. a typical web application’s overall

performance depends on bandwidth usage, its host VM’s CPU usage, memory usage, disk usage,

etc. AppDynamics [31], Rackspace [29], Aternity [32] among others belong to this category.

Some of these solutions monitor applications based on the responsiveness and availability of the

30

application using an outside agent [31] [29], following the trend of application-level monitoring

solutions. This allows the monitor to evaluate the performance of the application from the

perspective of an end user, but not the workload imposed on the system and its distribution.

Monitoring solutions offered by either of the aforementioned trends cannot be used directly

in the context of SA Forum middleware to monitor workload changes at the service level as they

cannot relate to the SA Forum concept of service.

There have been some notable attempts to solve the problem of monitoring applications in

the cloud. In [5], the authors looked into the application deployment on to the mOSAIC framework

and introduced multi-layered monitoring. mOSAIC is an open source framework [33] which offers

an abstraction somewhat similar to that used by the SA Forum middleware. The concept of

‘component’ in mOSAIC is similar to the concept of the component with assigned CSI in the SA

Forum terminology, although the SA Forum specifications have a clearer distinction between

service and service provider. Components are stateless in the context of mOSAIC, unlike the

components in the SA Forum middleware. A cloud application in mOSAIC is essentially a set of

interconnected components forming a cloudlet, which is deployed redundantly in a cloudlet

container, similar to the concept the SG containing a number of SUs with NWay-Active

redundancy model in SA Forum context. mOSAIC components are developed based on cloudlet

APIs. The cloud provider can scale and manage availability of an application by managing the size

of the cloudlet container of that application. In the monitoring solution for mOSAIC, the cloud

resource usage from the different cloud providers is detected by the ‘observer’ in a similar manner

to which the PSUtil tool has been used to measure system workload in this work. Also, the resource

usage of a mOSAIC application is collected using the ‘connector’ in a similar manner to which

LTTng UST probes are used to detect AMF callbacks in this work. In the monitoring solution

31

discussed for mOSAIC, the cloud application developer needs to develop/update the connector,

observer and the warning components for each application based on the mOSAIC API, the

application’s architecture and its requirement. In contrast, in this work, depending on the

component implementation of an application can be instrumented automatically using the auto-

instrumenter tool for monitoring. If the automatic instrumentation is not possible, it needs to be

done manually for the components. Apart from that, the rest of the application deployment

procedure with respect to monitoring is the same for all applications. Since AMF is the entity that

manages the resources and assigns/reassigns services to resources for all deployed applications

based on a set of well-defined rules, it is possible to devise a general solution to map workload to

services for most applications.

In [34], the authors introduced a multi-layered monitoring service, i.e. a monitoring service

that is capable of monitoring at IaaS, PaaS and SaaS levels simultaneously. It is called CLAMS—

Cross-Layer Multi-Cloud Application Monitoring-as-a-Service Framework. The objective of this

work is to collect and present a complete view of Quality of Service (QoS) of the applications in

the cloud. It achieves it by taking a monitoring agent based approach. The agents are deployed in

various levels of the cloud provider to collect monitoring data. The framework is compatible with

a number of popular cloud service providers. While this provides a more comprehensive and

detailed monitoring data, it lacks support for service-assignment driven application monitoring.

The problem presented in this thesis requires a monitoring solution that can measure workload on

a platform and dynamically associate the measured workload to a service based on its assignments.

Therefore, the same resource may be associated with multiple services throughout its life cycle

and the service workload measurements associated with it need to be taken into account

32

accordingly. In spite of the vast QoS metrics offered by this framework, a solution to the problem

at hand is not available in this work.

In [35], the authors introduced a monitoring solution (DoLen) to detect distributed denial-of-

service (DDoS) attacks using monitoring probes in a server-client architecture where the

monitoring server bears the responsibility of aggregating usage data and detecting possible DDoS

attacks. While this monitoring architecture is similar to the one used in this thesis, the monitoring

objective is very different from ours. They correlate events to detect DDoS attacks while we

aggregate resource usage to map to the service level workload. Moreover, this work also does not

address the problem of dynamic workload association to services as previously discussed.

2.8.2. Resource usage representation: Hardware vs. AMF SI

In a cluster setup, the workload measurements are collected from each of the cluster’s node

or VMs by a Monitoring Engine. As shown in Fig. 2-11, workload measurements are collected

from each node of the cluster by the Monitoring Engine. In the context of this description, VMs

and nodes refer to the same entity. The Monitoring Engine then aggregates the workload data and

outputs a summary of the cluster’s overall workload, which may be expressed in term of the

cluster’s VMs’ resource usage metrics, e.g. CPU usage, memory usage, network bandwidth usage,

etc. The limitation of above approach is that the workload of the VMs are associated to the services

they are providing permanently. This approach does not consider the possibility that the services

can be removed/re-assigned from the VMs over time. By assuming that the VMs maintain the

same service assignments at all-time result in incorrect monitoring output.

33

VM1 VM2 VM3 VMN

Monitoring Engine

…

{CPU:10%,
RAM: 1.1GB,
…}

{CPU:44%,
RAM: 4.1GB,
…}

{CPU:22%:,
RAM: 0.7GB,
…}

{CPU:36%:,
RAM: 1GB,
…}

Cluster-1-Workload: {CPU: ...}

Figure 2-11: Monitoring in terms of hardware entities

In the case where each VM has multiple components, each of which provides one or more

service(s) and the services can be assigned/removed from the components over time, a fine-grained

monitoring and data collection is essential to estimate the workload of services.

For example, as illustrated in Fig. 2-12 where VMs from VM1 to VM3 host components that

provide Service-1; VMs from VM2 to VMN host components that provide Service-2. The services

can be assigned/re-assigned to the components dynamically. The existence of a service provider

entity capable of providing service (I.e. a component) does not necessarily imply that the resource

usage of that service provider must be associated with the service that it is providing intermittently.

There needs to be a valid assignment of a service to the service provider entity to correctly

associate the service provider's load with the service. In other words, a component can exist and

run on a VM at all-time but whether the workload of that component should be associated to a

service depends on the assignment of a service to the component. Without the assignment of a

service to a service provider, the workload of the service provider is irrelevant with respect to

34

services. For example, in Fig. 2-12, comp-1 of VM-2 does not have any valid service assignment,

hence in the solution, its workload is not taken into account while measuring the workload of

Service-1. The resource usage of a service needs to be continuously updated as services are

assigned/re-assigned to components at runtime.

Different component types are tied to the types of service they can provide. I.e. one type of

component can provide a set of defined of services and is not capable of providing a service beyond

its capability. A VM may host many components providing many different services. It is possible

for multiple services to be provided from the same VM as a VM can host many types of

components and those components can have many types of services assigned to them. In a system

where VMs are dynamically assigned to applications or services and it is possible for different

applications and services to collocate, monitoring VM level measurements would provide

incorrect output.

Note that the service collocation problem is not completely solved by the approach

introduced in this thesis. While it is possible to detect service assignment-reassignment at the

process level over time following the approach introduced in this thesis, it is not possible to

differentiate between two different services provided by the same process at the same time.

Similarly, it is not possible to measure load of two different services provided by the same

component simultaneously using the approach introduced in this thesis. For the approach to be

effective, it is important that a process and components run by that process do not have one-to-

many relationship, and a component and its services do not have one-to-many relationship.

35

VM1 VM2 VM3 VMN

Monitoring Engine

…

{comp1:{…},
…}

{comp2:{…},
…}

{comp1:{…},
comp2:{…},
…}

{comp2:{…},
…}

Service-1-Workload: {CPU:…,}
Service-2-Workload: {CPU:…,}

Service -1
Service -2

comp1 comp1 comp1

comp2 comp2comp2

Component with CSI assignment

Component with no CSI assignment

Figure 2-12: Service level system resource usage representation

In the setup illustrated in Fig. 2-12, VM-2 and VM-3 host components capable of providing

both Service-1 and Service-2. Therefore, in VM level workload data, Service-1 and Service-2 are

collocated in terms of VMs. A monitoring solution that only measures VM load will associate

some load of Service-2 with Service-1 and vice versa.

Comparing the clusters and their corresponding monitoring solutions illustrated in Fig. 2-11

and Fig. 2-12, we show that the existing monitoring solutions are not capable of adapting to the

dynamic nature of the services in a cluster managed by an SA Forum middleware. We conclude

that a new monitoring solution needs to be introduced where the solution will take into account

the states and the dynamic nature of the services managed by the SA Forum middleware.

36

3. Monitoring Approach Overview

In this chapter, a monitoring approach to interpret resource usage in terms of services is

discussed. First, a monitoring approach to measure workload in terms of services and its related

architecture are discussed. This is followed by the overall view of the integration with the Elasticity

Engine [10] in system running an SA Forum middleware. In the final sub-section, we discuss the

overall activity of the integrated system to show the interactions among the proposed Monitoring

architecture and the other entities involved in the integrated system and conclude the chapter.

3.1. Monitoring architecture

In this section, a monitoring architecture is presented to measure workload (or system usage)

in terms of SIs for AMF managed applications deployed in the cloud primarily to enable elasticity

management. The Monitoring Engine follows a client-server architecture, hence architecture is

divided in two main sections: Monitoring Client and Monitoring Server. The discussion on

architecture is concluded by a section discussing the overall activity breakdown of the Monitoring

Engine.

Monitoring architecture is illustrated in Fig 3-1. Each node in a cluster running a SAF

middleware that hosts a number of AMF managed components and also hosts a Monitoring Client.

For each cluster, a node hosts a Monitoring Server. The Monitoring Clients communicate with the

Monitoring Server over TCP. It is possible to configure a standby Monitoring Server keeping the

potential failure of a single Monitoring Server in mind. For simplicity of discussion, we will

consider only one Monitoring Server while discussing the architecture. An architecture with

multiple Monitoring Servers (active and standby) is shown in Chapter 6.

37

3.1.1. Monitoring Client

For the Monitoring Clients to function, the AMF components hosted on the nodes need to be

instrumented. The instrumentation enables the Monitoring Client to detect the AMF callbacks to

the components. The methods to detect AMF callbacks to the components and resource usage of

components are as follows.

Node (Monitoring Client)

Python PSUtil
LTTng User-Space

Tracing

AMF Component Linux Kernel

Monitoring Engine Client Daemon

System Workload Data
UST Trace Data

(CSI Assignment...)

Decoded Trace Data

Monitoring Engine
Network Interface

Node (Monitoring Server)

Monitoring Engine Server Daemon

Monitoring Engine
Network Interface

Encoded
Per-component

Workload Objects

Aggregation Module

SI Workload

Figure 3-1: Monitoring architecture

3.1.1.1. AMF Callback Detection

The prerequisite to map system usage to SI workload at runtime is the instrumentation of the

AMF components. It is possible detect interactions between the AMF the components using

LTTng UST [24].

Once instrumented with LTTng UST, the instrumented components generate an ‘event’

every time the instrumented portion of code is executed. This enables the Monitoring Client to

38

receive a component’s life-cycle events as LTTng UST events. These UST events also carry data

related to the state of the component such as assigned/removed CSI, HA state change, component’s

process ID, etc. The methods to detect callbacks dispatched by the AMF to the components are

described below:

SA Aware components: To manage the life-cycle of an SA Aware component, AMF

interacts with the component using the AMF APIs [9]. For each new CSI assignment, CSI

assignment change or CSI assignment removal from a component, AMF dispatches a callback to

the component using this interface. The instrumentation of the AMF-component interface ensures

that the AMF callbacks are detected at runtime by the monitoring system as shown in Fig. 3-2.

Figure 3-2: AMF callback dispatch detection using LTTng UST for SA-Aware Components

Each callback from AMF to the component generates an LTTng UST event and is saved in

the LTTng UST session trace. Such an event includes the component DN, the DN of the CSI

assigned to it, the HA state assigned to the component on behalf of the CSI, and the ID of the

Component AMFInterface

LTTng session daemon

Dispatched

CSI set

Monitoring Client Daemon

{“component”: “comp1,SU1”, “CSI”: ”csi1,SI1,App1", “HA_state”: “Active”, “PID”: ... }

{“CSI”: “csi1,SI1”, “component”: “comp1…” ...”}

39

process implementing the assignment. The Monitoring Client on each node of the cluster collects

such UST events and creates a list of component to CSI map. This component to CSI map is

updated periodically. By these means, the state of all the components present in each of the node

is collected and updated by the Monitoring Client.

The instrumentation of AMF components is a critical for the Monitoring Client to function.

Manual instrumentation of AMF components is a time-consuming process. Therefore the entire

process is automated including searching for function declaration patterns, creating trace-points

by extracting function parameters and inserting them into the AMF component source code. The

instrumentation procedure and its automation are discussed in further details in Chapter 4.

Non Proxied Non-SA-Aware components: Since AMF’s interaction with Non Proxied

Non-SA-Aware components are limited to CLI-commands [9], the instantiation and termination

scripts for these components are used with a wrapper that is pre-instrumented with LTTng UST

probes to detect interactions between the AMF and components of this category. As shown in Fig.

3-3, all administrative commands issued by the AMF are first received by the instrumented

wrapper, which forwards the commands to the administrative command script. Meanwhile, the

instrumented wrapper generates traces based on the commands issued by the AMF and the target

component’s respective environment variables.

40

AMF

Instrumented
wrapper

Non-SA-Aware
Component

Admin
command

Script

Instantiate/terminate

LTTng Session Daemon

{“CSI”: “csi1,SI1”, “component”: “comp1…” ...”}

Figure 3-3: AMF callback dispatch detection using LTTng UST for Non-SA-Aware Components

3.1.1.2. Per-Component Workload Measurement

Mapping component to process: In the context of SA Forum Specifications component is

the smallest service provider entity recognized by AMF. On the other hand, in the context of

hardware entities, the smallest entity in terms of which system resource usage is measured in this

work is a process. Therefore to determine the resource usage of a component, the workload of the

process or processes associated to the component needs to be mapped to the component’s identity.

The dual identity of a component that is a process in a system is referred to as component-process

in this work.

 Mapping component-process to CSI: Each component must have a valid CSI assignment

to participate in providing a service. A program can be considered as a component when AMF can

control its lifecycle and assign/remove services to/from it. I.e. AMF can instantiate, terminate,

assign and remove CSIs from the executing program. The process created at starting the program

and any process that is spawned due to a CSI assignment dispatched call from AMF to the program

is considered as a component-process in the context of this work. Note that this is not the case for

41

all components. It is possible for some components to get different CSI assignments for different

threads of the same process or even get CSI assignment that are to be assigned to threads of a

different process altogether. Such cases have not been covered in this work.

 The workload of a component-process with a CSI assignment is essentially a part of the

workload of an SI.

Measuring component-workload: As introduced in Chapter 2, the resource usage of a

process can be measured based on its process ID using, for example, the Python PSUtil [36]. All

component-process’ process ID can be detected by analyzing the trace data obtained by component

instrumentation as discussed in sub-section 3.2.1.1.

With the considerations above, the workload of a process or a set of processes related to

component is considered to be the workload of a component. The relationship between

components, process IDs and CSIs are detected from the trace events received from the

instrumented components. The mappings described so far are summarized in table 3-1.

42

Table 3-1: Mappings among component, CSI, process ID and process workload

Source Collected data Example Mapping

AMF

component

interface,

Instrumented

component

wrapper

(Collected in

LTTng UST

session)

Event type,

component DN,

CSI DN, process

ID, HA state

{'Wed Jun 24 07:36:03

2015':{'type':'csi_assignment',

'CSI':'safCsi=CSI_1,safSi=SI_1,safApp=ap

p_1',

'component':'safComp=comp_1,safSu=SU

_1,safSg=SG_1,safApp=app_1' ,

'HAState':'Active' , 'CSIFlags':'Add One',

'PID':18671}}

component DN to

process ID,

component DN to

CSI DN

Python

PSUtil

Workload from

selected process

IDs

18671: {CPU_usg: 4.4, mem_usg: 0.03} Process ID to

workload metrics

New UST Trace Event:

{timestamp: 14110001232

 CSI : CSI_1,SI_1,App_1 ,

 Component : comp_1,SU_1 ,

 PID : 3789}

Monitoring Client

Component workload object:

{timestamp: 14110001232

 CSI : CSI_1,SI_1,app_1 ,

 Component :

 comp_1,SU_1,SG_1,app_1 ,

 PID : 3789,

 workload :{

 CPU :1.9,

 memory :0.89

}

Python PSUtil

3789 : { CPU_usage :1.9,
 memory_usage :0.89,

...}

Legends

 Data from LTTng UST

 Data from PSUtil

Figure 3-4: Collecting workload-per-component

43

As illustrated in Fig. 3-4, on each new UST event, the Monitoring Client determines whether

or not to collect the usage data for that component based on the analysis of that event. Each UST

event contains data regarding the type of an AMF callback to a component from which the event

was originated. For an event showing the CSI assignment to a component as shown in Fig. 3-4,

the Monitoring Client starts collecting workload for that component using the process ID of that

component obtained from the event trace. The workload data collected using Python PSUtil tool

and the data collected from the UST event trace are merged to create a data structure that is

transmitted to the Monitoring Server as shown in Fig. 3-1. The merged data structure containing

per-component workload is referred to as component-workload-object. The workload data of a

component is collected and transmitted to the Monitoring Server as long as the component-process

is not dead or there is no UST event showing either CSI remove or component termination callback

has been dispatched from AMF to the component. In case of CSI removal or component

termination dispatch call, the Monitoring Client stops collecting and sending workload data for

that component to the Monitoring Server.

3.1.2. Monitoring Server

The Monitoring Server receives the workload data from all Monitoring Clients periodically.

After decoding the per-component workload data from the Monitoring Clients, the Monitoring

Server Aggregation Module generates, for the first time, a tree as illustrated in Fig. 3-5. The tree

is populated from the top according to the following hierarchy: SIs, their CSIs, the components

serving the CSI assignments, and the CSI related component workload. The tree is updated

periodically with each new component-workload-object received. The SI workload is calculated

by aggregating the CSI related component workloads following its associated sub-tree. The

Monitoring Server Aggregation Module performs this aggregation periodically. The SI workload

44

is analyzed by the workload analyzer to detect any condition violation. The Monitoring Server and

its aggregation module algorithms are discussed in further details in Chapter 6.

Monitoring
Server

Aggregation
Module

Component
Workload
Object

Tree
Structure

Comp. Comp. Comp. Comp.

CSI CSI

SI

Workload
per component

(standby)

Workload
per component

(standby)

Workload
per component

(active)

Workload
per component

(active)

SI
workload

data

Figure 3-5: Workload aggregation in the Monitoring Server

3.2. Integration with the Elasticity Engine

The purpose of monitoring of the SI workload is to alert the Elasticity Engine about

significant workload changes. Fig. 3-6 shows the architecture integrating the monitoring approach

with the Elasticity Engine and AMF. In this architecture, the Monitoring Server sends a constant

stream of SI workload measurement data to the Workload Analyzer that maintains a number of

policies for triggering overprovisioning/under-provisioning alerts. For example, if the workload of

any SI exceeds a threshold set in the Workload Analyzer, it sends an alert to the Elasticity Engine,

notifying it of the DN of the SI and its workload status such as workload increase or workload

decrease. The Elasticity Engine [10] then reads the current configuration of the SG protecting the

SI through the IMM service, calculates any necessary configuration changes at the SG and possible

45

at the cluster level and commits those changes through the IMM service. IMM in turn notifies

AMF of the configuration changes. AMF applies the configuration changes by dispatching

callbacks to redistribute the CSI assignments to the components in the nodes of a cluster in such a

way that matches the best with a new configuration [9]. As a result, in the nodes of the cluster, the

Monitoring Clients detect the new CSI assignments to the instrumented components by detecting

the dispatched callbacks from AMF. The new distribution of CSI assignments is reflected in the

component workload objects, which are sent from Monitoring Clients to the Monitoring Server.

Based on these new component-CSI assignment relations the Monitoring Server adjusts the SI-

tree as discussed in sub-section 3.2.2 and in more details in Chapter 6.

Instrumented
Components

Monitoring Client

Aggregation
Module

Monitoring Server

Workload Analyzer

AMF

IMM

Elasticity Engine

Dispatched callback(s)
to assign/(re)assign

CSI(s)

Component Workload/
CSI assignments

SI Workload

SI-Workload
Change

Read IM/Configuration Change

Configuration Change

Figure 3-6: Monitoring approach/architecture integrated with the Elasticity Engine and AMF

46

3.3. Activity overview

The interactions among the elements of Monitoring Client, Monitoring Server, Workload

Analyzer and the Elasticity Engine can be summarized by Fig. 3-7.

 In each node of the cluster, an LTTng UST session is started when the Monitoring

Client is initiated.

 When any component receives a CSI-set callback from the AMF, a UST-event-trace

is created, which is detected by the UST Session Daemon. The Monitoring Client

Daemon detects all new events from the UST trace.

 The Monitoring Client Daemon maps the component’s DN, CSI DN, process ID and

HA state collected from the trace and collects the workload of the component-process

using Python-PSUtil tool on fixed intervals. The workload data collection continues

as long as the component has a valid CSI assignment and its process ID is alive.

 The component workload data is appended to the data collected from the UST trace

to form component-workload-objects which are sent to the Monitoring Server.

 The Aggregation Module of the Monitoring Server receives component-workload-

objects from all Monitoring Clients in the cluster and aggregates the data into SI

workload, which is then sent to the Workload Analyzer.

 The Workload Analyzer checks if the SI workload breaches any condition to trigger

elasticity alert(s). The alerts triggered from the Workload Analyzer consists of the SI

DN which breached the condition and the condition type. For example, if the

Workload Analyzer determines that the cluster is at under-provisioned state, the

trigger would consist of the SI DN for which the SG is in under-provisioned state and

a flag to notify that the trigger is for under-provisioned status. Similarly, if the

47

Workload Analyzer detects that the SG protecting an SI is at overprovisioned state,

the trigger will consist of the SI DN for which the SG is at overprovisioned state and

a flag to notify the overprovisioned state.

UST Session
Daemon

Monitoring
Client Daemon

CSI-set event

PSUtil

Request Workload
of component with
new CSI assignment

Workload of requested
component-process-ID

CSI-remove/
component-terminate

event

Aggregation
Module

loop

has_CSI_assignment
component_PID_exists

Workload
Analyzer

Component Workload

SI workload

Elasticity
Engine

Alert Triggered

Cluster has
minimum configuration

loop

Figure 3-7: Sequence diagram of interactions between Monitoring Engine and Elasticity Engine

3.4. Conclusion

In this chapter, we introduced an approach and an architecture for the monitoring of workload

at the service level applicable to the different services that may be provided by application

components collocated in the same VM and where the service to application component

assignments change dynamically in the system over time. In the subsequent subsections in this

48

chapter, we discussed how the state of each component in the system is detected and used to

measure service level workload in the architecture introduced. We concluded that by keeping track

of the state of all components in the system while mapping the system load to components and

then aggregating the components’ load to their corresponding service assignments allows us to

measure the load of collocated services in an environment where the service assignments are

dynamic. In the subsequent chapters we discuss the methodologies to map system load to

components and aggregating component workload to service workload.

49

4. Instrumentation of AMF Components

In the context of an SA Forum middleware, a component is the smallest unit of resource that

is capable of performing a task [9]. A component transits through a number states that are driven

by the state’s corresponding life-cycle events during its service time. These life-cycle events are

controlled by the AMF. Depending on the nature of a component’s life-cycle event, the state of a

component can also change. In order to monitor an AMF application, it is important for the

Monitoring Client to be aware of the components’ state in a system. Based on the component state

information sent from the Monitoring Client, the Monitoring Server determines if the workload of

the component should be associated with a service or not.

In order to make the Monitoring Client and subsequently the Monitoring Server aware of a

component’s state, the first step is to instrument the application components with a tracing tool

like LTTng [24], following a method.

The possibilities of tracing applications using LTTng UST at runtime is vast; therefore the

instrumentation instructions provided for LTTng UST does not include any specific instruction on

where to put the tracing probes or how the trace results should be used. Formulating a purpose-

specific LTTng User Space instrumentation method for any large application is a unique, one time

solution (I.e. the instrumentation method for one application is not likely to be portable to another

application). That said, the instrumentation method for similar applications built for same

platforms are similar. AMF compliant applications are similar in nature as they run on components

comprising of similar interfaces. Therefore, it is possible to formulate a method to instrument the

AMF component interface source code that would be effective for all components of the same

type. We have devised a method to instrument AMF components using LTTng. The method

50

devised allows the user to provide a template that specifies the information that is to be obtained

from the instrumented component.

Components are categorized into two types based on their service-availability-awareness:

SA-aware components and Non-SA-aware components. Unlike SA-Aware components, AMF

does not interact with Non-SA-Aware components directly via any interface, therefore,

components of this category cannot be instrumented. As mentioned in Chapter 3, the callbacks

from AMF to Non-SA-Aware components are detected using a pre-instrumented wrapper.

In this chapter, we discuss SA Aware components’ lifecycle events and the method to

instrument the component interfaces to detect such component lifecycle events. We also discuss a

method that automates the instrumentation procedure and conclude with discussion on advantages

and limitations of the instrumentation method.

4.1 SA Aware Components

SA-Aware components are chosen or written in a way that enables error detection, isolation

and repair [9]. Components of this category interact with AMF via an interface. This interface

implements specific workload assignment and recovery policies according to the API specified in

the SA Forum Specifications. Such components must be designed in a way that the AMF can

dispatch callbacks that dynamically assign CSIs to the target components and choose the roles in

which the components will operate for each specific CSI assignment [9].

SA-Aware components are highly integrated with AMF and are under direct control of the

framework. Each SA-aware component includes at least one process that is linked to the AMF

library. One of these processes registers the component with AMF by invoking the

saAmfComponentRegister() API function. This process, called the registered process for

51

the component provides to the AMF references to the availability control functions it implements.

These control functions are implemented as callbacks [9] [10].

Throughout the life of an SA-Aware component, AMF dispatches callbacks to the

component to execute the following:

o assigning CSI to the component,

o removing CSI assignment from the component,

4.2 Component life-cycle API

The components interact with the AMF via an interface that implements a number of callback

functions according to SA Forum API. The proper callback functions need to be identified and

understood in order to instrument an SA-aware component to detect callbacks to the component

from AMF.

The interactions and life-cycle events between AMF and an SA-Aware component has been

summarized in Fig. 4-1 [9] [1].

 The SA-Aware component is instantiated by the instantiation script.

 Once instantiated, the saAmfInitialize_4() function is called from the

component’s interface. Two important parameters are passed to this function (italicized

portions signify data type): SaAmfHandle *amfHandle and

SaAmfCallbacksT_4 *amfCallbacks.

1. amfHandle: AMF replies to this function call by returning a handle to the

component as a future reference. AMF uses this handle for all future

communication with the component [9].

52

2. *amfCallbacks: If not set to NULL, this parameter specifies the callbacks the

AMF may invoke. This essentially is a pointer pointing to a structure containing

the callback function types and their names [9]. In the example below, if during

a component’s initialization, amf_callbacks is passed to the

saAmfInitialize_4() AMF will be aware that it can invoke

amf_csi_set_callback, amf_csi_remove_callback and

amf_comp_terminate_callback functions on the component .

SaAmfCallbacksT amf_callbacks = {

 .saAmfCSISetCallback = amf_csi_set_callback;

 .saAmfCSIRemoveCallback = amf_csi_remove_callback;

 .saAmfComponentTerminateCallback = amf_comp_terminate_callback;

}

This function must be invoked before invocation of any other AMF API function.

 saAmfSelectionObjectGet() function returns the operating system handle

associated with the handle returned by the function saAmfInitialize_4(). The

invoking process can use the operating system handle to detect pending callbacks [9].

 saAmfComponentNameGet() function is called from the component which

returns the DN of the component to which the invoking process belongs. This function

is invoked by the process before its component has been registered with the AMF [9].

 saAmfComponentRegister() function registers the component with the AMF.

Registering a component informs the AMF that the component is successfully

instantiated and is ready to take CSI assignments.

53

4.3. Component CSI management

There are a number of functions that are used to manage the HA state of components on

behalf of the CSIs they support. As mentioned earlier, each of these function names and their

respective types are provided to the AMF during a component’s initialization using the

*amfCallbacks parameter while calling the saAmfInitialize_4() function in the

beginning of the component’s life-cycle.

Three callback functions are critical for instrumentation purposes, they are described

below:

*SaAmfCSISetCallbackT(): This callback request has three important parameters (italicized

portions signify data type).

1. SaNameT *compName: This is a pointer pointing to the name of the component to which

a new CSI is to be assigned or for which the HA state of one or all supported CSIs is to be

changed [9].

2. SaAmfHAStateT haState: This parameter signifies the new HA state to be assumed

by the component identified by the name to which compName points for the CSI identified

by csiDescriptor, or for all CSIs already supported by the component [9].

3. SaAmfCSIDescriptorT csiDescriptor: The descriptor with information about

the CSI(s) including the CSI name targeted by this callback invocation [9].

The AMF invokes this callback to request that the component identified by the name to which

compName points assume the HA state specified by haState for one or all CSIs [9].

54

*SaAmfCSIRemoveCallbackT(): This callback request has two important parameters (italicized

portions signify data type).

1. SaNameT *compName: This is a pointer pointing to the name of the component from

which all CSIs or the CSI name signified by the csiName parameter is to be removed [9].

2. SaNameT *csiName: This is a pointer pointing to the name of the CSI that must be

removed from the component identified by the name to which compName points [9].

With this callback, the AMF requests the invoked process to remove from the component

identified by the name referred to by compName, one or all CSIs from the set of CSIs being

supported [9].

SaAmfComponentTerminateCallbackT(): This callback request has one important parameter

(italicized portions signify data type).

1. SaNameT *compName: This is a pointer pointing to the name of the component which

is to be terminated [9].

With this callback, AMF requests the component identified by the name referred to by compName

to terminate.

55

SA-Aware
Component

AMF

saAmfInitialize_4()

Handle

saAmfComponentNameGet(...)

Component Name

saAmfSelectionObjectGet(...)

Selection Object

*SaAmfCSISetCallbackT(...)

*SaAmfCSIRemoveCallbackT(...)

*SaAmfComponentTerminateCallbackT()

saAmfComponentRegister(...)

Figure 4-1: The main interactions between an SA-Aware component and AMF

The function saAmfComponentRegister(...) is a synchronous. The component

expects a response from AMF that indicates successful component registration, which has not been

shown in the diagram (Fig. 4-1). Similarly, AMF expects a response for each callback function

56

call which have not been shown. If a component fails to respond to a dispatch call, it is declared

to be faulty by the AMF.

The required functions to be instrumented in a component’s life-cycle and CSI management

with their respective mappings that are to be collected from the traces are summarized in Table 4-

1.

Table 4-1: Functions to instrument and the mappings obtained from the instrumentation of each

function

Instrumented Function/Function Type Mapping from Instrumentation

saAmfComponentNameGet() Instantiated Component DN: Process ID

*SaAmfCSISetCallbackT() Component DN: Assigned CSI DN,

Component DN: HA State

*SaAmfCSIRemoveCallbackT() Component DN: Removed CSI DN

*SaAmfComponentTerminateCallbackT() Terminated Component DN: Process ID

4.4 Instrumentation Method

In this section, a method that instruments SA-Aware component interfaces using LTTng UST

probes is discussed.

The steps to instrument an SA-Aware component can be summarized in the following steps:

57

1) In the component source code, determine the mapping of targeted function names to their

respective function types.

2) Locate the mapped AMF callback function implementations in the source code.

3) For each function found

a. Map the AMF callback function parameter names with the names used in the function

implementation

b. Construct and insert the trace points based on the functions’ utility in the code.

4) Update the header files of the instrumented source code.

5) Update the library linkers with the trace libraries.

6) Recompile the updated source code.

Architecture and Functions

The instrumentation method takes as input the location of the source code to be instrumented

and the instrumentation template. The instrumentation template specifies details of the

instrumentation to-be-performed. A template can be reused to instrument all components of the

same component-type. The output of the method is the instrumented source code and updated auto-

configuration file(s).

58

Instrumentation
Tool

Source code root directory.
(e.g. /opt/amfComp/
amfInterface, etc.)

Instrumented AMF component
interface source code file(s) and
updated configuration file(s) at
code directory.

List of directories of
instrumented/updated source
code/configuration files,
mapped against instrumented
functions in them.
(e.g. /opt/amfComp/
amfInterface.c/

amfCSIsetFunc,

amfCSIremFunc,

...

/opt/amfComp/

amfInterface/config.ac

…, -llttng, etc.)

Directory lister

Temporary
storage
(For storing
targeted source
file name,
function names)

Pattern matcher
(for function
implementations
, parameter
detection)

Instrumentation
sub-module
(For creating and
inserting trace
points)

Instrumentation templates for
each callback function.
(e.g.
saAmfCSISetCallback:{trac

ef(“component”:extracedCo

mponentName,

“CSI”:extractedCSIName…,”

insertionPattern”:

RexExp1,...)},etc.)

Figure 4-2: Overall view of Instrumentation method

As shown in Fig. 4-2 the instrumentation method is divided into multiple modules according

to their functionalities which include directory lister, temporary storage, and pattern matcher and

trace point creator. Their functions are as follows:

Directory Lister: This sub-module takes a directory location as an input and returns the list

of all files within that directory and sub-directories as an output. In the flowchart (Fig. 4-3), this

sub-module is used in the steps where the pattern-matcher sub-module searches for the callback

functions and also for the linker signatures throughout all the files.

Temporary Storage: This sub-module temporarily stores the input, templates and the

resulting mappings for each callback function that are to be instrumented. It is used in each of the

steps while instrumenting the callback functions. For example, in the step in the flow-chart (Fig.

59

4-3) within which the callback function implementations are searched for, the found source code

file locations are mapped against each of the callback function names and temporarily saved using

this sub-module. Similarly, the instrumentation template from the input with the pattern to identify

the function implementation and the pattern used to identify and extract the different parameters

for each callback function are mapped against each of them and saved using this module for later

use. The module is used similarly to update the header and linker configuration files.

Pattern Matcher: This sub-module matches a pattern provided in the template with some

string in the files to be instrumented and extracts the matched sections. It is also used to add,

remove or replace parts of source code using the pattern to identify the sections to perform such

actions. In Fig. 4-3, this sub-module is used in all the steps that involve pattern matching or

adding/replacing code; namely, create trace points for each function, instrument all matched

function, update headers and search for linkers and update files with linkers.

Instrumentation sub-module: This sub-module uses the directory-lister, pattern-matcher

and temporary-storage sub-modules to create trace points according to the provided template for

each of the callback functions and instruments the source code. This sub-module also updates the

headers and linker configuration files.

The instrumentation module takes two inputs:

1) The location of the source code of the AMF component and

2) Instrumentation templates shown (Table 4-2), which include the

a. Callback function name(s) to instrument

b. Template(s) of trace-points to be created for the callback function

60

c. Pattern(s) associated with each of the trace point template to detect the location of the

source code to insert their corresponding trace-points.

As output, the instrumentation module generates the instrumented source code and the details

about the instrumentation.

Show error message with
failed step’s details

Start

Search all files to map
callback function types provided in the

template

Successfully
mapped?

No

Yes
Search all files to find

callback function
implementations

Found
functions?

No

Create trace-points for
each function in each

source file with matched
callback functions

Yes

Instrument all matched
functions in all source files
with corresponding trace

points

Update headers in
instrumented files

Found config. file
with linker?

No

Yes
Update config. file

with LTTng UST
linker

Search all files for linker
signatures

Show success message
with instrumentation

details

End

Figure 4-3: AMF component interface instrumentation method

The AMF-component-interface instrumentation (shown in the flow chart in Fig. 4-3) starts

with the instrumentation of the AMF callback functions.

61

 First, the callback function names provided in the instrumentation template are mapped to

the callback function implementation names. According to the AMF specification, the AMF

callback function names are declared in a C-struct declaration of the type SaAmfCallbacksT_4

[9]. To find out the callback function names for a given implementation of the AMF component

interface, the instrumentation method first lists all source code files using the directory-lister sub-

module and then uses the pattern-matcher sub-module to search through all files to find the

function name declarations against the callback function names. If found, the corresponding

function names mapped against the callback function names are stored temporarily for future

reference using the temporary storage sub-module. For example, a mapping of

“saAmfCSISetCallback”: “app_CSI_set_callback” suggests that the name of the

function that implements the standard saAmfCSISetCallback callback is

app_CSI_set_callback. If the mapping fails, the instrumentation module shows an error

message displaying which callback function name(s) could not be mapped.

If the callback function names are successfully mapped in the previous step, the

instrumentation sub-module continues with the step to find the implementations for each of the

callback functions. The pattern-matcher sub-module gets the list of all files from the directory-

lister sub-module and searches through them to locate each of the callback function

implementations. If the implementations are found, the instrumentation module moves onto the

step of creating trace-points for each of the callback function implementation. If the

implementations are not found, an error message is displayed that shows which callback function

implementation was not found.

62

Once the callback function implementations are found, the instrumentation method needs to

prepare the unique trace points based on the associated template for each of the functions found.

The template describes the trace point to be inserted in terms of the function parameter defined by

the standard function signatures. Hence to construct the trace points first the standard parameter

need to be mapped to the parameter used by the function implementation.

Each callback function has a specific order of its parameters, each of which has a type. E.g.

the CSI assigned to a component can be identified by accessing the fourth pointer parameter passed

to a saAmfCSISetCallback function type; the component name can be obtained by accessing

the second pointer parameter passed into the saAmfComponentTerminateCallback type

function [9], etc.

The instrumentation method detects and maps the callback function parameters based on the

order of their declaration in the callback function implementation. Each callback function has a

specific order of parameters defined in the SA Forum API and all correct implementation of such

callback functions follow this order. The mapping takes into account that some parameters are

complex structures only part of which is used in a particular trace point. For instance, in the

saAmfCSISetCallback function types, the CSI name is an external property, hence the CSI

name is extracted from saAmfCSIDescriptorT type parameter.

The pattern-matcher sub-module is used to extract the parameters associated with each of the

callback functions. Once the instrumentation sub-module extracts and maps the necessary

parameters for each callback function they are stored.

Once the parameters have been mapped the instrumentation method proceeds with the

instrumentation of the different occurrences of the implementations of the different callback

63

function. The occurrences of the callback functions are listed in the temporary storage sub-module.

The instrumentation sub-module generates trace points based on the mapped implementation

parameters and the template provided and inserts the trace points using the insertion point detection

pattern. Each trace point can have one or more insertion points, depending on where and how many

times a user wants to insert the trace point into the source code. The instrumentation process is

repeated for each file that contains any of the callback function implementation.

In the next step, the header file entries of each of the instrumented source code files are

updated with the necessary C library header file entries (e.g. stdlib.h, lttng/tracef.h,

etc.)

The instrumented AMF interface source code needs to be linked with the LTTng UST library

objects for proper compilation/recompilation. Hence, after successfully instrumenting the callback

function, the instrumentation method updates the linker files with the LTTng UST linkers in the

same manner. For example, the “-lSaAmf –lSaCkpt” pattern will be updated to “-lSaAmf

–lSaCkpt –ldl –llttng.

If all callback functions have been instrumented and configuration linkers were updated, the

instrumentation method shows a success-message alongside the details of the instrumentation

procedure. The shown details include the location of the source code files that have been

instrumented and the configuration files that have been updated. At this point the AMF component

source code has been instrumented and ready to be compiled.

64

Table 4-2: Instrumentation template sample input and its sample mapping

Input Example input Example mapping

Callback function

name

saAmfCSISetCallback app_saAmfCSISetCallback

Callback function

parameters

component_name

CSI_name

HA_state

comp_name

csi_desc.csiName

ha_state

Trace point pattern tracef("{'type':'dispatch_set',

'CSI':'%s', 'component':'%s' ,

'HAState':'%d'”,

component_name, CSI_name,

HA_state);

tracef("{'type':'dispatch_set', 'CSI':'%s',

'component':'%s' , 'HAState':'%d'”, comp_name-

>value, csi_desc.csiName.value, ha_state);

Insertion point pattern '\([^)]*\)\s*\n*\s*\{' app_saAmfCSISetCallback(

…){ …

4.5 Summary

In this chapter, we first discussed the component categories, a component’s states and the

states’ related life-cycle events. Based on the component’s life cycle, we introduced a method to

instrument SA Aware components using LTTng UST probes. As a result of this instrumentation,

it is possible to detect at runtime the dynamic assignment and removal of CSIs to the components,

which in turn enables the Monitoring Engine to associate the workload of the components to the

CSIs assigned to them.

65

Although the automatic instrumentation method greatly reduces the amount of time required

to inspect and instrument the source code of an SA Aware component interfaces, its effectiveness

is limited as it can only instrument the source code using one specific sort of trace point probe

(E.g. tracef probes). The component interfaces need to be instrumented manually if more

comprehensive instrumentation is required. Moreover, if the instrumentation fails to locate the

mapping for the callback functions’ implemented names to their types at any stage as shown in

Fig. 4-3, the instrumentation will be incomplete.

66

5. Service Instance Usage Mapping and Aggregation

In this chapter, the method of aggregating workload-per component to workload-per SI is

discussed. As mentioned in the earlier chapters, an Elasticity Engine [10] has been proposed to be

integrated with OpenSAF, a middleware compliant with the SA Forum specifications [9]. Since

AMF interprets and manages the workload in terms of SIs, the proposed elasticity engine requires

as input the load changes in terms of SIs as well.

The proposed Monitoring Engine in this thesis solves the problem of measuring the system

usage that is the workload in terms of services, i.e. SIs. The SIs of AMF managed applications are

managed dynamically and assigned according to the runtime state of the available SUs and the

applicable redundancy model. Mapping system usage measured in a system to the SIs is difficult

because of the dynamic nature of the SI distribution. The Monitoring Engine proposed in this thesis

adjusts itself according to the SI distribution of the system to measure workload in terms of SIs

correctly.

In the previous chapters we discussed the methods of retrieving system resource usage in

terms of components and relating the retrieved resource usage of the components to their respective

CSI assignments. In this chapter, we address the issue of aggregating the system resource usage of

components and expressing it in terms of AMF services (i.e. SIs). The Monitoring Server carries

out the task of aggregating workload of the components sent from the Monitoring Clients into SI-

workload.

5.1. Aggregation approach overview

The actions taken by the aggregation method that has been described so far can be

summarized by the flowchart shown in Fig. 5-1.

67

The complete steps to get SI workload from component-workload are as follows:

1. De-serialize a newly arrived component-workload-object to get the following: CSI DN,

component DN, HA State, node-name, usage hash values from component-workload

object.

2. Obtain SI DN from CSI DN

3. If an SI-tree for newly de-serialized component workload object exists, update the SI tree

with the usage values. If an SI tree with newly extracted SI DN root node does not exist,

create a new SI-tree and populate it with the new node-names and usage values.

4. Check for obsolete components in the SI-tree; if found, delete the obsolete component

node.

5. Duplicate SI-tree to aggregate the usage values to workload values. The duplicated tree

with aggregated workload value is called workload-tree.

6. Keep adding and normalizing the usage values of the nodes at the last level of the

workload tree until the last level is SI. At the end of this step, the workload-trees should

have only the SI level with aggregated workload values attached to the root node of the

workload-tree.

7. Repeat steps 1 through 5 to generate a workload-tree for each SI-tree generated.

8. Return the workload-trees’ root node-names and usage values as key-value pairs to show

SI DNs and their respective workload values.

68

Start

Create empty SI-tree with levels:
SIs > SI > Node > HA State > CSI >

Component > Usages

De-serialize/ Read next
component workload

object

Get CSI DN, component DN, HA State,
node-name, usage hash values from

component-workload object

Populate/update SI-tree with new SI,
CSI, component, HA state, node-name,

usage values

Is there any HA State change?

No

Delete outdated/duplicate component
entries of SI-tree

Yes

Copy SI-tree as
workload-tree

Is the current level ‘SI’?

Add and normalize last two levels of the
usage-tree nodes’ values

No

SI – usage/ SI –
workload tree

Yes

Are usage values null?

No

Figure 5-1: Overall view of the aggregation approach

69

5.2. Algorithms and data structures for aggregation

In this section, the main algorithms and the actions of the aggregation method are discussed

in further details.

To aggregate component-workload into SI-workload, we create two types of tree data

structures.

a) SI-tree and b) Workload tree. SI-trees keep track of all SIs, CSIs and components in the

cluster and are updated according to any assignment change. Workload trees are generated by

aggregating along SI trees-paths to calculate workload for each SI in the cluster. Both kind of data

structures are discussed in details in the following sections.

5.2.1. SI-tree

The SI-tree is structured from the top according to the hierarchy summarized in table 5-1 and

is populated dynamically with the data received from the component-workload-objects sent from

the Monitoring Clients.

As component-workload-objects arrive from the Monitoring Clients on fixed intervals, the

SI-tree is populated by putting the data extracted from component-workload-objects in appropriate

paths of the SI-trees.

The data structure used to create SI-trees has four main parts/features: a) node b) level c)

value and d) path.

Each tree has one or more node(s) in it (not to be confused with a VM node). The topmost

node is called the root node. Each node belongs to a level, each level has a unique name. Each

node has a name which must be unique within that node’s level. There must be a valid path from

70

each node to the root node. A path is the chain of node-names from a given node to the root node.

For example, in Fig. 5-2 (a), the path from the node with name ‘C_1,SU_1,SG_1,app_1’ to the

root node would be as follows: [‘C_1,SU_1,SG_1,app_1’, ‘CSI_1,SI_1, app_1’, ‘Active’,

‘Host_1’, ‘SI_1,app_1’]. A node may or may not have value(s) attached to it. The value of a node

is not the same entity as the name of the node. Setting value to a path means assigning value to the

node at the end of the path. For example, in Fig. 5-2 (a), only the node at path

[‘C_1,SU_1,SG_1,app_1’, ‘CSI_1,SI_1, app_1’, ‘Active’, ‘Host_1’, ‘SI_1,app_1’] has values

attached to it. In this work, two kinds of values have been used to quantify resource usage:

a) Relative values: This is the percentage of any resource a component-process uses with

respect to a VM node’s total resource. This kind of workload values are normalized while

aggregating across VMs. Example: memory usage of a process in percentage.

b) Absolute values: This is the real value of the resource usage by a component-process.

The sum of this kind of values are taken while aggregating across VMs. Example:

memory usage of a process in Mega Bytes (MB).

The value types have been discussed in further details in Chapter 6 of this thesis.

71

Table 5-1: Names and short descriptions of the levels in an SI-tree

Level Description

SI DN of the SI of the current SI-tree.

Node Component-workload-object source host-name. If a workload object is sent

from a Monitoring Client hosted on a node with a hostname ‘node-1’, this level

will be populated with ‘node-1’.

HA state HA state assigned to the component by the AMF on behalf of the component’s

CSI [9]. E.g. active, standby, quiescing and quiesced.

CSI DN(s) of the CSI(s) assigned to the component(s)

Component DN(s) of the components

Process ID Process ID(s) of the component-processes

In Fig. 5-2, both the trees have six levels. Each level’s name is shown on the left side. Each

connection from one node to the node(s) below its level signifies a parent-child relationship. A

dotted line signifies node-value relationship. In the trees shown in Fig. 5-2, only the nodes at the

component-PID have values attached to them.

72

SI_1,app_1

Host_1

Active

CSI_1,SI_1,app_1

C_1,SU_1,SG_1,ap
p_1

1128

CPU_rel: 3.7
CPU_abs: 248
 mem_rel: 0.5

mem_abs: 10.24

Host_2

Standby

CSI_1,SI_1,app_1

C_1,SU_2,SG_1,ap
p_1

2144

CPU_rel: 1.0
CPU_abs: 67
mem_rel: 0.3

mem_abs: 6.14

Updated branch

SI_1,app_1

Host_1

Active

CSI_1,SI_1,app_1

C_1,SU_1,SG_1,ap
p_1

1128

CPU_rel: 3.7
CPU_abs: 248
 mem_rel: 0.5

mem_abs: 10.24

(a) (b)

Figure 5-2: Populating an SI-tree

In this sub-section, we also discuss the algorithm used to create and populate an SI tree based

on the component workload objects received from the Monitoring Clients.

73

The aggregation method consists of algorithm 5-1 which populates/updates SI-trees:

According to the aggregation method, the component DN, CSI DN, component HA state, the

source host name, the component PID(s) and their usages are fetched from a new component-

workload-object to update existing SI trees or create a new SI tree. Note, that the SI DN is retrieved

based on the CSI DN of the component by splitting the CSI DN by a delimiter (I.e. to get the SI

Algorithm 5-1: Creating and populating SI-trees

CreateSITree: SI-tree creation/population

Input:

 CWL: component workload object

 SIs: tree comprising of SI-trees

Output:

 SIs: updated SI-trees

if CWL ≠ Ø then

#retrieving data from the component workload object to populate/create

for each component C ∈ CWL do

CDN ← getValueFromObject(CWL, component)

CSIDN ← getValueFromObject(CWL, CSI)

HAstate ← getValueFromObject(CWL, HA)

H ← getValueFromObject(CWL, hostname)

CPID ← getValueFromObject(CWL, PID)

CPID, usg ← getValueFromObject(CWL, usages)

SIDN ← splitDNwithDelimeter(CSIDN, ‘safSI=’)

#Updating the appropriate SI node of the ‘SIs’ tree

if CPID, usg ≠ Ø then

setValueAtPath(SIs , CPID, usg , [SIDN , H, HAstate, CSIDN , CDN, CPID])

 else

#Deleting failed component entries since workload value is null

 deletePath([SIs, SIDN, H, HAS, CSIDN , CDN])

 end if

#Checking and deleting duplicate components under same CSI entries in different HA levels

for each HAstate HAS ∈ getFromPath(SIs, [SI,node]) do

if HAS ≠ HAState and CSIDN ∈ getNodesFromLevel(CSI, [SIs, SIDN]) and CDN ∈

getNodesFromLevel(Component, [SIs, SIDN]) then

 deletePath([SIs, SIDN, H, HAS, CSIDN , CDN])

end if

end for

end for

end if

74

DN from a CSI DN, the CSI DN is split based on the delimiter ‘,safSi=’). Once all necessary values

are fetched, the ‘SIs’ tree is updated according to the values fetched from the workload object. The

‘path’ to update any value depends on the data fetched from the component workload object. The

aggregation method creates an SI-tree for each SI configured in the cluster at any given time and

populates a larger tree named ‘SIs’ with the SI-trees created.

Fig. 5-2 illustrates the process of populating an SI-tree. On the left side (a), the entries of an

existing SI-tree is shown which is being updated based on the values extracted from a new

component-workload-object. The tree on the right side (b) shows the values in the same tree after

the update is completed. In the new branch of the tree, the node name at the ‘node’ level differed

from any previously existing value at that level, which prompted the creation of a new branch in

the tree at that level. If the data fetched from a component-workload-object refers to an existing

path, the values of that path are over-written. For example, in Fig. 5-2, to create the initial tree, the

aggregation method first constructs a single path based on component DN, CSI DN, component

HA state, VM hostname and SI DN that are extracted from a component-workload-object

originated from Host_1. This results in the initial tree as shown on side (a). Similarly, with the

arrival of component-workload-objects from Host-2, a path is constructed that differs from the

existing path for the same SI at the ‘Node’ level (Host_1 vs. Host_2). Therefore a branch is added

to the existing SI tree on that level to append the standby component workload at the end of the

path. This results in the updated tree as shown in Fig. 5-2 (b).

The aggregation method first checks for duplicated CSI entries in a newly updated SI-tree

after each time it updates the SI-tree using algorithm 5-1 and then it corrects the SI-tree by deleting

the detected duplicate entries. In the example illustrated in Fig. 5-2, if the component

‘C_1,SU_1,SG_1,app_1’ fails and the system is configured to fail-over the SI - ‘SI_1,app_1’ for

75

a component failure, the process ID mapped against the failed component will be dead in the VM

hosting it and a standby component will be assigned ‘Active’ HA state. Reacting to the

component’s failure, Monitoring Client will be sending a ‘null’ object as the usage of the failed

component to the Monitoring Server until the failed component gets repaired. The ‘null’ value sent

as the resource usage of a component notifies the Monitoring Server that the component-process

no longer exists. Once the aggregation method detects a null object as usage of a component, it

removes that component and its associated entries from the SI-tree. For example, in Fig. 5-2 (b),

if the component with the ‘Active’ assignment (component-PID 1128) fails, the aggregation

method will receive a ‘null’ value to attach at the end of the path [‘C_1,SU_1,SG_1,app_1’,

‘CSI_1,SI_1, app_1’, ‘Active’, ‘Host_1’, ‘SI_1,app_1’] from the newly arrived component-

workload-objects originated from ‘Host_1’ instead of component workload values. This prompts

the aggregation method to delete the branch defined by this path.When the standby component

gets the ‘Active’ assignment, the aggregation method receives new component-workload-objects

with the recent changes, and creates a new path in the SI tree as shown in Fig. 5-3. The SI-tree on

the left hand side of Fig. 5-3 has an obsolete branch that shows the component

‘C_1,SU_1,SG_1,app_1’ was in ‘Standby’ HA state previously. This obsolete branch is eventually

deleted from the SI tree by checking for duplicate component entries under different HA levels of

any SI tree as shown in algorithm 5-1. In the right side of Fig 5-2, the corrected SI tree is shown.

Without this check, the aggregation method would be unaware of the duplicate component

branches under two different HA states of the same SI tree, which would result in incorrect

workload measurement for the affected SI.

76

Updated branch

SI_1,app_1

Host_1

Standby

CSI_1,SI_1,app_1

C_1,SU_1,SG_1,ap
p_1

3124

CPU_rel: 1.0
CPU_abs: 67
mem_rel: 0.3

mem_abs: 6.14

Host_2

Active

CSI_1,SI_1,app_1

C_2,SU_2,SG_1,ap
p_1

1128

CPU_rel: 3.7
CPU_abs: 248
 mem_rel: 0.5

mem_abs: 10.24

Standby

CSI_1,SI_1,app_1

C_2,SU_2,SG_1,ap
p_1

2144

CPU_rel: 1.0
CPU_abs: 67
mem_rel: 0.3

mem_abs: 6.14

SI_1,app_1

Host_1

Standby

CSI_1,SI_1,app_1

C_1,SU_1,SG_1,ap
p_1

3124

CPU_rel: 1.0
CPU_abs: 67
mem_rel: 0.3

mem_abs: 6.14

Host_2

Active

CSI_1,SI_1,app_1

C_2,SU_2,SG_1,ap
p_1

1128

CPU_rel: 3.7
CPU_abs: 248
 mem_rel: 0.5

mem_abs: 10.24

Obsolete branch

(a) (b)

Figure 5-3: Obsolete branch deletion in SI-tree after a fail-over

5.2.2. Workload-tree

In order to aggregate component-workload to SI workload, the workload at the leaves of the

existing SI-trees need to be aggregated along the tree-paths so that the nodes at the SI level have

aggregated usage values attached to them. The aggregation method uses algorithm 5-2 and

algorithm 5-3 to aggregate each SI-tree to a workload-tree. In the workload tree, the aggregated

workload values are stored at the SI level as shown in Fig. 5-4.

In algorithm 5-2, the aggregation method first duplicates a given SI tree to aggregate resource

usage/workload values of the components to the tree’s root SI. The duplicated tree is called a

workload-tree.

77

In the workload tree, except for the ‘Node’ level, the summed workload value of all nodes at

each level is assigned to the parent nodes. In case of the ‘Node’ level, for ‘Relative’ workload

values, the mean workload value of all nodes at that level is assigned to the nodes at their parent

level (SI nodes). For ‘Absolute’ workload values, the sum of the workload values for all nodes at

the ‘Node’ level is assigned to the nodes at their parent level.

This way, we get one workload tree for each HA state. In order to obtain the final workload

tree, all the workload trees for each HA state of an SI is aggregated again using algorithm 5-3.

In algorithm 5-3, the workload for each SI under different HA states is summed to provide

the total workload of that SI as shown in Fig. 5-4. Algorithm 5-2 provides the workload of each SI

for each of their HA states (The transition shown in Fig. 5-4-a to Fig. 5-4-b). Algorithm 5-3

provides the total workload of each SI based on the output from algorithm 5-2 (The transition

shown in Fig. 5-4-b to Fig. 5-4-c).

Once the SI-level is the only level in the final workload tree, the workload tree manipulation

is complete. Each workload tree has only one node with an SI DN as its name and that SI’s

aggregated workload as its value.

78

Algorithm 5-2: Aggregating SI-tree to workload tree for one HA state

updateHAstateWorkloadTree: Workload-tree creation/aggregation for a given HA state

Input:

 Ti: tree to be aggregated/reduced

 HAS: HA State based on which tree is to be aggregated

Output:

 Wt_HA : workload tree

Wt_HA ← duplicateTree(Ti)

L ← getLastLevel(Wt_HA)

while L ≠ SI do

 P ← Ø

 totalValue ← 0

VMCount ← 0

#set mean usage values at all children nodes of level L to the nodes at level L

for each node N ∈ getNodesFromLevel(L, [Ti]) do

#trimming the nodes not belonging to the HA state provided by the variable ‘HAS’

if L = ’HA_State’ and getNameOfNode(N) ≠HAS then

 deleteNode(N)

 continue

 end if

 P ← getPathToRootFromNode(getParentNode(N))

 totalValue ← totalValue + getValueOfNode(N)

#usages are averaged only at the node level, otherwise the sum of usage values are taken

if L = ’Node’ then

 VMCount ← VMCount + 1

 end if

end for

if P ≠ Ø then

 if VMCount > 0 and type(totalValue) = ‘’Relative’ then

setValueAtPath(Wt_HA, totalValue/VMCount , P)

 else

 setValueAtPath(Wt_HA, totalValue, P)

 end if

deleteLevel(Wt_HA , L)

L ← getLastLevel(Wt_HA)

end do

79

SI_1,app_1

Host_1

Active

CSI_1,SI_1,app_1

C_1,SU_1,SG_1,ap
p_1

1128

CPU_rel: 3.7
CPU_abs: 248
 mem_rel: 0.5

mem_abs: 10.24

Host_2

Standby

CSI_1,SI_1,app_1

C_1,SU_2,SG_1,ap
p_1

2144

CPU_rel: 1.0
CPU_abs: 67
mem_rel: 0.3

mem_abs: 6.14

SI_1,app_1

CPU_rel: 3.7
CPU_abs: 248
 mem_rel: 0.5

mem_abs: 10.24

SI-tree Workload-tree
(Active)

SI_1,app_1

CPU_rel: 1.0
CPU_abs: 67
mem_rel: 0.3

mem_abs: 6.14

Workload-tree
(Standby)

SI_1,app_1

CPU_rel: 4.7
CPU_abs: 315
 mem_rel: 0.8

mem_abs: 16.38

Workload-tree

(a) (b) (c)

Figure 5-4: Aggregated workload-tree from an SI-tree

Algorithm 5-3: Aggregating SI-tree to workload tree

updateWorkloadTree: Workload-tree creation/aggregation

Input:

 Ti: SI-tree to be aggregated/reduced

Output:

 Wt : workload tree

#Final workload tree

Wt ← createEmptyTree()

#list of values from HA-state trees for each SI

VL ← []

#list of possible HA-states with workload values

HASL ← [‘Active’, ‘Standby’, ‘Quiescing’]

for each state in HASL do

 Wt_HA ← updateHAstateWorkloadTree(Ti , state)

for each node in Wt_HA do

 appendValueToList(VL , getValueFromNode(node))

end for

end for

#Assigning sum of workload values from of HA state to root node of the workload tree.

setValueAtPath(Wt , sumOfList(VL), getRootNode(Wt))

80

5.3. Summary

In this chapter, we first described the overall process of calculating SI workload from the

component-workload-objects sent from the Monitoring Clients. Then we discussed in details how

the Monitoring Server performs the aggregation of workload by using two sets of tree data

structures. In the detailed discussion, we first described the algorithm to construct/update an SI-

tree based on the data retrieved from each workload object. Then we discussed the method of

constructing/updating a workload-tree from by aggregating each SI-tree along its existing path.

The node-value mapping of the workload-trees is the desired output from the aggregation

approach.

81

6. Monitoring Prototype and Overhead Evaluation

A Monitoring Engine has been implemented as a proof of concepts. In this chapter, first, the

architecture of the Monitoring Engine prototype and the test beds for testing the Monitoring Engine

are discussed. In the test bed discussion, the two different services configured in the system are

then discussed followed by a discussion on the integration of the Monitoring Engine prototype

with the Elasticity Engine prototype. The subsequent section includes different test cases

discussing the Monitoring Engine’s ability to trigger under-provisioning/overprovisioning

elasticity alerts, its adaptation to service state changes such as SI fail-over and SI switch over. The

Monitoring Engine’s overhead is discussed before concluding this chapter.

6.1. Prototype architecture

The Monitoring Engine prototype has been developed using the python programming

language [37]. During implementation, different functionalities of the Monitoring Engine have

been implemented as different modules. In Fig. 6-1, the important modules of the Monitoring

Engine and their interactions with other entities in the system are shown. The prototype consists

of seven main modules.

82

Elasticity Engine

Monitoring Server

4. network_module 5.daemon_controller_server

Component-workload-object
(Python dictionary)

6. aggregation_module

start/stop

7. workload_analyzer

SI : workload

Console
(monitoring server)

start/stop
SI : workload

SI_name : underprovisioned
/SI_name : overprovisioned

minimum_configuration
/need_more_nodes

Legends

Output

Input/request

Network data

Monitoring Client

1. daemon_controller_client

2. tracing_manager

3. system_usage_collector

workload of PID
PID: workload

LTTng session create/start/stop
Decoded LTTng UST event

UST events

4. network_module

Component-workload-object
(Python dictionary)

Console
(monitoring client)

Component-workload-object
(Python dictionary)

Monitoring Client
start/stop

Component-workload-object
(JSON)

LTTng_UST_session

Component-workload-object
(Python dictionary)

Monitoring Server
start/stop

SI : workload

Figure 6-1: Monitoring prototype architecture

83

1. daemon_controller_client

This module controls all other modules of the Monitoring Client. A cloud administrator

initializes the Monitoring Client Daemon controller specifying the IP address of the Monitoring

Server passed as a parameter. Once started, this module runs as a daemon, starts to send

component-workload-objects to the Monitoring Server and does not stop running unless it is

specifically instructed to stop or encounters an error. In case of an error at the Monitoring Client

Daemon, it stops sending component-workload-objects to the Monitoring Server. It is detected at

the Monitoring Server by noting the absence of new component-workload-objects from the VM

where the Monitoring Client Daemon has encountered the error or the connectivity from the node

hosting Monitoring Client Daemon and Monitoring Server Daemon has been lost.

2. tracing_manager

This module is used by the Monitoring Client daemon module (daemon_controller_client)

to initialize an LTTng UST [24] session if there isn’t one already running. Once a tracing session

is initialized, daemon_controller_client uses the tracing_manager module in runtime to check for

new UST events. If there is a new LTTng UST event, this module decodes the event from LTTng

Common Trace Format (CTF) [24] [38] to a python dictionary data structure [39] and returns it to

daemon_controller_client. In essence, tracing_manager is responsible for detecting dispatched

callbacks from AMF to all the components in a system.

3. system_usage_collector

The daemon_controller_client module uses this module to collect the resource usage of all

the processes related to the components present in a system. This module takes a nested python

dictionary consisting of all detected components and the process IDs associated with them as input

and returns the dictionary updated with the resource usages mapped against each process. The

84

daemon_controller_client module uses this module periodically to gather resource usages of the

components. This module uses python PSUtil tool [36] to measure resource usage of the processes.

E.g.: a sample component-workload-object sent from Monitoring Client to Monitoring Server:

{

 'nstime': 1413934753293198449,

 'msg': '',

 'time': 'Tue Oct 21: 19: 39: 102014 to Tue Oct 21: 19: 39: 132014',

 'cpu_core_usages': [

 28.82,

 13.15

],

 'component_info': {

 'safComp=AmfDemo_44,safSu=SC-1,safSg=AmfDemo,safApp=AmfDemo1': {

 'PID': 26750,

 'cpu_usage': 4.4,

‘mem_usage’:1.3,

'cpu_cycles_abs: 71.03,

‘mem_usage_abs’:26.6,

'CSI': 'safCsi=AmfDemo_44,safSi=AmfDemo,safApp=AmfDemo1',

 'HAState': 'Active',

 'CSIFlags': 'AddOne',

 'type': 'csi_assignment'

 },

 },

 'from': 'node1'

}

The components and their associated data are mapped as nested key-value maps within the

‘component_info’ key in the component-workload-object as shown. The usage metrics collected

are discussed in further details in section 6.2.

85

4. network_module

This module is used by both Monitoring Client daemon and Monitoring Server daemon to

communicate over the network. This takes python dictionaries and a destination IP-port pair as

input when it acts under the Monitoring Client daemon. If it is successful to establish a connection

to the provided IP-port pair, it serializes the provided python dictionaries into a JSON objects and

sends them to their destination over TCP.

This module takes JSON objects and an IP-port pair as inputs when it acts as a part of a

Monitoring Server daemon. At the receiving end, it listens to a given IP-port pair; if it receives any

data, it de-serializes the data received into python dictionaries. In ‘debug’ mode, this module also

displays the data transmitted/received in the console.

The component-workload-objects discussed in the previous sections are essentially nested

JSON objects with components and their associated process IDs’ workload mapped to them.

5. daemon_controller_server

This module controls all other modules of the Monitoring Server. Like the Monitoring Client

Daemon, a cloud administrator initializes the Monitoring Server Daemon controller

(daemon_controller_server) specifying the IP address to listen for component-workload-objects,

passed as a parameter. Once started, this module runs as a daemon, and initializes the

aggregation_module and workload_analyzer modules.

6. aggregation_module

The Aggregation Module (aggregation_module) receives component-workload-objects from

the network_module in the Monitoring Server and aggregates them into simple python dictionaries

86

consisting of SI DNs and their respective workloads mapped as key-value pairs. E.g. a sample SI-

workload object:

{

 'safSi=AmfDemo,safApp=AmfDemo1': {

'cpu_usage': 4.4,

'cpu_cycles_abs: 71.03,

‘mem_usage’:1.3,

‘mem_usage_abs’:26.6

},

'safSi=AmfDemo_1,safApp=AmfDemo1': {

'cpu_usage': 3.1,

‘cpu_cycles_abs’:59.23,

‘mem_usage’:0.8,

‘mem_usage_abs’:16.4

},

}

7. workload_analyzer

Note that this is a simple module developed for the purpose of showing the effectiveness of

the prototype developed in this work as a proof of concept and is not the main contribution of this

work.

The workload_analyzer module receives SI-workload-objects from aggregation_module and

determines if any elasticity action is necessary. It detects the required elasticity action by

comparing the moving-average of the workload of each of the SIs against a set of simple rules set

by the administrator.

87

E.g. A sample rule in workload analyzer:

if

a) the average workload of SI_1 (SI name) in last 10 seconds (rolling average data point

length) exceeds 70% (upper threshold) usage and

b) no alert has been triggered in the last 60 (cool-down period) seconds and

c) elasticity_engine output from last ‘underprovisioned alert’ did not show ‘add more

nodes’

or

 nodes have been added to the cluster since the elasticity_engine returned ‘add more

nodes’

then

dispatch trigger underprovisioned alert for SI_1(trigger for scaling operation)

The italicized portions in the rule above are set/updated by the administrator for each rule. A

number of such rules are set in the workload analyzer to ensure elasticity in the cluster.

6.2. Workload metrics

In this prototype, the following four workload metrics are collected from the nodes through

the Monitoring Client.

6.2.1. Normalized CPU usage

The CPU usage of each component is measured in percentage using the

‘system_usage_collector’ module of the Monitoring Client. The relative CPU usage of each

component is measured in percentage in each VM. This measured usage is then sent to the

88

Monitoring Server, which aggregates and normalizes to express the relative CPU usage of the

components in terms of SIs. The normalized CPU usage shows the relative CPU usage of each SI

with respect to the capacity of the cluster in percentage. The normalized relative CPU usage for

SIs is measured by expressing the ratio of the aggregated CPU cycles being used by the SI to total

CPU cycles available for the SI in percentage. This way, the measurement does not discriminate

between homogeneous and heterogeneous systems.

6.2.2. Total CPU cycle usage

The normalized CPU load of SIs expresses a relative load, which changes every time SI

assignments are changed. The value of normalized CPU load can show a change in workload even

if the total workload on an SI remains the same. Hence, another measure of CPU workload is

required in order to understand the true workload of the SIs in terms of CPU usage.

In a heterogeneous system, different VMs have different CPU capabilities. The CPU usage

of a component in one VM is not necessarily equivalent to the CPU usage of a similar component

in another VM. Therefore, simple summation of the CPU usages of the components in a cluster

would reflect an incorrect total CPU usage. Getting a precise measure of CPU usage of any

application for a given processor is specific to the application and the VM [40]. The performance

of a processor mainly depends on three characteristics of it: a) workload execution speed. I.e. CPU

cycles per second b) pipeline effects. I.e. Threads per CPU core and c) memory hierarchy. I.e. CPU

cache memory size and speed [40]. Keeping up with the performance of different components on

these varying processors in runtime is a complicated and time consuming task. In order to get a

quick and simple estimate of CPU performance for a given component, the CPU cycles used to

execute the instructions of a given component is measured using Python PSUtil [36] tool in fixed

intervals. The sum of CPU cycle usage of all components in the SUs of an SI is considered as the

89

total CPU usage of that SI. It also allows the workload_analyzer module to measure the potential

number of instances required to meet a certain amount of workload. In this prototype, the CPU

cycles are measured in MHz units.

I.e.: CPU-cycle-usage =
number of CPU cycles used per second

10^6
 MHz

6.2.3. Normalized memory usage

This is a similar measurement to normalized CPU usage. The relative memory usage of each

component is measured in each VM, which is normalized and aggregated to express memory usage

of each SI in percentage. The normalized memory usage of an SI shows the memory usage of it

with respect to the cluster’s capacity.

6.2.4. Total memory usage

The real value of memory usage for each component is measured in the VMs where they are

hosted. For each SI, the sum of the memory usage of all components under that SI is considered

to be the total memory usage of the SI. The memory usage is measured in mega-bytes (MB) in this

prototype.

6.3. Test-beds and test cases

The prototype has been tested with two HA applications deployed on the OpenSAF

middleware [11]. OpenSAF is an open source implementation of several SA Forum specifications.

It has been installed and configured on each node of the clusters prepared for each of the test cases

discussed in the subsequent sections.

VMware Workstation [41] has been used as a hypervisor in a system summarized in table 6-

1. The clusters used in each of the test beds discussed in the subsequent sections has a

90

homogeneous setup. I.e. The VMs in the clusters managed by VMWare Workstation have identical

specification. The system specification of the VMs in the clusters is also summarized in table 6-1.

Table 6-1: Hardware specifications of the system running the hypervisor and the VMs

Node-type Hardware Specifications

Hypervisor CPU: Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz

Memory: 16GB

OS: Ubuntu 14.04.2 LTS

VM CPU: Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz (Virtual, 2 cores)

OS: Ubuntu 14.04.2 LTS

Memory: 2GB

6.3.1. HTTP service

In this setup, the effectiveness of the Monitoring Engine is tested by dispatching Elasticity

Engine [10] Triggers based on an HTTP SI-workload measured by the Monitoring Engine.

6.3.1.1. Test bed

The cluster to test Monitoring Engine integrated with the Elasticity Engine is illustrated in

Fig. 6-2. The cluster has two controller VM nodes and two payload VM nodes. Each node of the

cluster has a Monitoring Client daemon running in it. The controller nodes run the Monitoring

Server daemon as a service with 2N redundancy model and AMF manages the availability of it.

The controller nodes also have the Workload Analyzer and Elasticity Engine deployed in them as

the triggers for the Elasticity Engine is dispatched from the Workload Analyzer to the Elasticity

Engine at the same node.

91

Figure 6-2: Monitoring Engine integrated with Elasticity Engine in a cluster

An HTTP application is configured in an OpenSAF managed cluster comprising of four

nodes as shown in Fig. 6-2. The HTTP application is configured with N-way active redundancy

model. Each of the SUs in the cluster has one HTTP component configured in it. The HTTP

component is created using Python BaseHTTPserver module [42]. The cluster used in this test bed

has four SUs in its SG, each SU is configured in a separate node. OpenSAF starts the HTTP

application initially with minimum configuration where the two SUs, SU-1 and SU-2 in the SG

have active SI assignment and the other two SUs, SU-4 and SU-5 are configured as buffer SUs as

shown in Fig. 6-3.

92

Figure 6-3: HTTP service with N-Way-Active redundancy model in minimum configuration

Figure 6-4: Monitoring Output of HTTP server application at minimum configuration

The incoming HTTP requests to the active servers are interpreted as load on the servers and

this load is associated with their respective SIs. The Monitoring Engine Server starts to display the

details of SI-load once the service is started as shown in the screenshot of the console in Fig. 6-4.

The top portion shows the system’s current SI-trees maintaining the hierarchy: SI-name, node-

93

name, HA-state, component-name, CSI-name, workload-metrics. Each level of the tree maintains

a fixed indentation in the output. The bottom portion, highlighted in shades of cyan shows the

system’s current Workload-trees. The SI names are at the top and its aggregated load metrics are

at the bottom.

6.3.1.2. Test Case: Triggering Elasticity

As seen in Fig. 6-3, SU-1 (node-name: ‘PL-5’ in Fig. 6-4) and SU-2 (node-name: ‘PL-4’ in

Fig. 6-4) are the only in-service SUs in the SG ‘AmfDemo’. Apache JMeter [43] was used to

generate traffic towards HTTP servers with the active SI assignments. In this test case, simulated

HTTP traffic was used to trigger two underprovisioned alerts which brought the cluster to its

maximum capacity and then the simulated traffic was stopped to cause two overprovisioned alerts

to be triggered which returned the cluster back to its minimum configuration.

 Rule to trigger an ‘underprovisioned alert’ for HTTP service -

‘safSi=AmfDemo,safApp=AmfDemo1’ :

if

a) the average workload of ‘safSi=AmfDemo,safApp=AmfDemo1’ in last 10 seconds

exceeds 70% usage and

b) no alert has been triggered in the last 60 (cool-down period) seconds and

c) elasticity_engine output from last ‘underprovisioned alert’ did not show ‘add more

nodes’ or

nodes have been added to the cluster since the elasticity_engine returned ‘add more

nodes’

then,

dispatch trigger underprovisioned_alert for ‘safSi=AmfDemo,safApp=AmfDemo1’.

94

 Rule to trigger an ‘overprovisioned alert’ for HTTP service -

‘safSi=AmfDemo,safApp=AmfDemo1’:

if

a) the average workload of ‘safSi=AmfDemo,safApp=AmfDemo1’ in last 10 seconds is

below 20% usage and

b) no alert has been triggered in the last 60 seconds and

c) elasticity_engine output in response to last ‘overprovisioned alert’ did not show

‘minimum configuration’

then,

dispatch trigger overprovisioned_alert for ‘safSi=AmfDemo,safApp=AmfDemo1’

Initially, the cluster was at its minimum configuration with two in-service SUs protecting the

HTTP SI: ‘safSi=AmfDemo,safApp=AmfDemo1’. Once JMeter sent traffic to the active HTTP

servers and the workload_analyzer module of the Monitoring Engine detected that the normalized

CPU usage of SI ‘safSi=AmfDemo,safApp=AmfDemo1’ was over 70% for longer than 10

seconds, the scaling action for ‘underprovisioned’ state was triggered by the Elasticity Engine and

SU-5 (node-name: ‘flap-vnode-6’) was brought into service as illustrated in Fig. 6-5 and shown in

the console output in Fig. 6-6 and Fig. 6-7.

95

Figure 6-5: HTTP service after triggering underprovisioned alert

Figure 6-6: Monitoring Output of HTTP components in SU-1 and SU-2 receiving heavy traffic

As seen in Fig. 6-6, The HTTP component in both SU-1 and SU-2 were receiving significant

traffic, which was reflected in their normalized CPU usages, jumping up to 100%. The absolute

96

CPU usage by the service on each VM jumped up to the maximum capacity of the VMs’ CPU:

6.784 GHz.

The HTTP component in the newly provisioned VM node where SU-5 is configured, was

yet to receive traffic. In Fig. 6-7, the scaling operation causes the total normalized CPU usage of

the SI ‘safSi=AmfDemo,safApp=AmfDemo1’ to drop to 66.67%, even though the total CPU usage

of the SI remains the same at 13.56 GHz.

Figure 6-7: Monitoring Output of HTTP server after triggering underprovisioned alert

After being brought into service, the HTTP component in SU-5 also starts receiving traffic

which caused the normalized CPU usage of the SI ‘safSi=AmfDemo,safApp=AmfDemo1’ to rise

above the upper threshold of 70% CPU usage again. Since a scaling operation had just been

97

performed by the Elasticity Engine, the workload_analyzer module did not trigger another alert

during the cool-down period. If the cluster was still in underprovisioned state after the cool-down

period had elapsed, another underprovisioned alert would be dispatched to the Elasticity Engine

by the workload_analyzer module. The Elasticity Engine changed the configuration to bring SU-

4 in service from the buffers, which caused the cluster reach its maximum capacity. Fig. 6-8 shows

the console output of the Monitoring Server at this state.

Figure 6-8: Monitoring Output of HTTP server reaching maximum capacity of the cluster

98

Once the cluster reached its maximum capacity, the Elasticity Engine notified the

workload_analyzer module of the Monitoring Engine that more node needed to be added to the

cluster in order to respond to any further underprovisioned alert, hence no underprovisioned alert

was dispatched to the Elasticity Engine once the cluster reached its maximum capacity until more

nodes were added to the cluster.

At this stage, the simulated web traffic from JMeter was turned off. As the relative CPU load

on the SI ‘safSi=AmfDemo,safApp=AmfDemo1’ remained below 20%, the workload_analyzer

module kept dispatching overprovisioned alerts to the Elasticity Engine after every cool-down

period until the cluster reached its minimum configuration again. When the workload_analyzer

module detected that the cluster had reached its minimum configuration from the output of the

Elasticity Engine’s scaling action, it stopped dispatching overprovisioned alerts.

The memory and CPU load of the SI ‘safSi=AmfDemo,safApp=AmfDemo1’ while scaling

the cluster has been plotted in Fig. 6-9 and 6-10 respectively. In both figures, the relative workload

metric is plotted at the top and the absolute workload metric is plotted at the bottom. From the

pattern seen in the total memory usage of the SI in Fig. 6-9, it is evident that the Elasticity Engine

provisioned VMs to the service at 103rd second and 215th second, and it deprovisioned VMs at

312th second and 420th second. The times of scaling the cluster for the service is less evident in the

CPU usage plots in Fig. 6-10.

In the plot for relative memory usage, we observe that the usage usually remained near or

below the 1% of the cluster’s total memory. It had the least percentage of memory usage when the

service was using the most amount of memory in total, at about 23 MBs from 215th second to 312th

second. The relative usage of memory dropped with provisioning of VMs as absolute memory

99

usage rose. Conversely, we also observe that the relative memory usage rose with deprovisioning

of VMs as absolute memory usage dropped.

The CPU usage pattern in Fig. 6-10 suggests that the cluster started to receive heavy traffic

from time 87th seconds till 245th second. The provisioning events can be spotted by observing the

sudden drop in relative CPU usage at 103rd second and 215th second. Comparing the plots in Fig.

6-10, we observe that the provisioning or de-provisioning VMs do not necessarily affect the total

CPU usage.

Figure 6-9: Memory usage metrics during provisioning/deprovisioning of VMs

100

Figure 6-10: CPU usage metrics during provisioning/deprovisioning of VMs

By observing the plots, we can conclude that relative workload metrics indicated how well

the workload is distributed over the cluster while absolute workload metrics indicate the actual

workload of the service. The two kind of workload metrics can be analyzed further to reach more

effective scaling decisions like the number of required VMs to meet workload at a certain time

while provisioning or deprovisioning VMs, decisions on SIs’ assignment distribution, etc.

6.3.2. Video streaming service

The VideoLAN [44] software has been configured as a component with 2N redundancy

model in OpenSAF in order to test the Monitoring Engine’s adaptability with the dynamic nature

of the HA services.

101

6.3.2.1.Test bed

The cluster to test Monitoring Engine’s adaptability to HA state change had two VMs as

illustrated in Fig. 6-11, each VM node in the cluster had a Monitoring Client running on it. Since

no scaling operation was performed in this test case, no Elasticity Engine was included in this test

bed setup. Each VM of this cluster has similar system specification as shown in table 6-1.

In this test-bed, the SG ‘SG-1’ was configured with 2N redundancy model and comprises of

two SUs: ‘SU-1’ and ‘SU-2’. Each SU was configured on a separate node. Each SU in this setup

comprised of two components.

Figure 6-11: Video streaming HA service with a 2N redundancy model

 VLC Component: A VideoLAN application module has been developed according to SA

Forum APIs to manage the application’s lifecycle and streaming services, which enables us to

use this application as a pre-instantiable, SA-Aware component. All VLC components used in

this test bed were instrumented using LTTng UST [24] for monitoring purposes using the

procedure discussed in Chapter 4. The video streaming service was configured in the SUs to

102

stream a particular video according to the SI assignment using this component. Video

streaming starts at the time when an SU hosting this component received an ‘active’

assignment for the SI it was protecting.

 IP Component: This is a simple component which sets the target IP address to stream the

video service. Each VLC component is dependent on an IP component to provide video

streaming service.

On service start, each vlcComp component ran the modified media player code, while the

IPComp component specified the IP address where the vlcComp component with active

assignment provided the video streaming service for a given video stream. IPComp component

ran briefly when the service was assigned to the vlcComp component, but it did not create any

continuous workload.

Conforming to the redundancy model, at startup for the video streaming service, one of the

SUs got the active assignment and the other received the standby assignment. For example, the

SU-1 in ‘Node-1’ got the active assignment for the service ‘SI_HA_vidStream_1’. This means that

the vlcComp component in SU-1 received the callback from AMF with the active CSI assignment

for the SI: ‘SI_HA_vidStream_1’, while the vlcComp component in SU-2 received the callback

with standby CSI assignment for the same SI. These callbacks were detected by the monitoring

clients in the respective nodes and communicated as resource usage to the monitoring server. The

status and load of the video streaming service observed from the Monitoring Server output at this

103

stage is shown in the console output in Fig. 6-12.

Figure 6-12: Monitoring Server console output for video streaming service

6.3.2.2. Test-case: Adaptability to failover

In order to test the Monitoring Engine’s adaptability with HA state change, the video

streaming service the active component-process was killed in SU-1 was killed using a SIGKILL

[45] command to invoke a failover. As a result, AMF failed over the SI ‘SI_HA_vidStream_1’ to

the standby SU-2. Subsequently, it recovered the failed SU-1 and assigned its components as

standbys. The status and load of the video streaming service observed from the Monitoring Server

output at this stage is shown in the console output in Fig. 6-13, which shows that the HA state of

the nodes had changed due to the failover and the Monitoring Engine correctly detected that

change.

104

Figure 6-13: Console output at the Monitoring Server after failover

Figure 6-14: Relative CPU and memory workload of the video streaming service during failover

105

 The workload measurements during this failover are shown in Fig. 6-14. The plot at the top

shows the relative CPU usage of the SI during this test case and the bottom portion shows the

relative memory usage of it. The short dip at the 170th second in the measurements indicates the

moment of the failover.

6.4. Monitoring overhead

The monitoring overhead on the Monitoring Server and Monitoring Client nodes have been

measured to evaluate the monitoring architecture for both of the test beds discussed in this chapter.

The processes responsible for creating overhead and a short description of it is summarized in table

6-1.

Table 6-2: Processes responsible for monitoring overhead and their descriptions

Process Origin VM node Description

Monitoring

Server Daemon

Monitoring Server Process that controls /manages all modules including the

workload analyzer in Monitoring Server.

Monitoring

Client Daemon

Monitoring Client Process that controls /manages all modules in Monitoring

Client.

LTTng Session

Daemon

Monitoring Client LTTng process started as a part of LTTng service. This process

manages all LTTng sessions [24].

LTTng

Consumer

Daemon

Monitoring Client LTTng process that translates trace events in a buffer and then

converts and saves them as trace data in runtime [24].

LTTng Relay

Daemon

Monitoring Client LTTng process that converts trace data received over network

into local trace data. For the LTTng Live feature, all trace data

are relayed as network data at first. I.e. LTTng Live trace data

are sent to ‘localhost’ if the trace session is to run locally [24].

106

In order to ensure that no other LTTng session impacts the overhead values, only one LTTng

session was started on each of the Monitoring Clients for each test bed.

 The measurements were taken in one second interval using python PSUtil tool. For CPU

usage, the tool provides the usage in percentage for any given process. However, the percentage is

provided considering the usage of all CPU cores by the process. Therefore, in a system with 2

cores, it is possible for a process to consume up-to 200% CPU. To get an average CPU usage in

the range of 0 to 100, the sum of the CPU the usage of considered processes has been divided by

the number of CPU cores present in the system. Since the system is homogeneous, i.e. all the

monitoring client nodes in the cluster have identical system specification as shown in Table 6-1,

the mean overhead-per-node has been measured by dividing the sum of monitoring overhead on

all nodes by the number of nodes in the cluster. With the considerations above, the following

equations have been used to measure overhead.

CPUMC= (∑
∑ 𝐶𝑃𝑈𝑢𝑠𝑎𝑔𝑒𝑂𝑓𝑃𝑟𝑜𝑐𝑠({𝐿𝑇𝑇𝑛𝑔𝑆𝐷,𝐿𝑇𝑇𝑛𝑔𝐶𝐷,𝐿𝑇𝑇𝑛𝑔𝑅𝐷,𝑀𝐶𝐷},𝑡)𝑇

𝑡=0

𝑇 × 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑃𝑈𝑐𝑜𝑟𝑒𝑠
𝑁
𝑛=0)/N (6-1)

In Eq. 6-1, CPUMC refers to the mean CPU monitoring overhead of the monitoring clients

per second, T refers to the total number of seconds the overhead has been measured,

CPUusageOfProcs function provides the sum of CPU usage of a set of process IDs at time t.

LTTngSD, LTTngCD, LTTngRD and MCD refer to the process IDs of the LTTng session daemon,

the LTTng consumer daemon, LTTng relay daemon and the monitoring client daemon,

respectively. numberOfCPUcores refers to the number of CPU cores of a system used for the

measurements. N refers to the number of nodes in the cluster.

Similarly, for the monitoring server the overhead is calculated as

107

CPUMS =
∑ 𝐶𝑃𝑈𝑢𝑠𝑎𝑔𝑒𝑂𝑓𝑃𝑟𝑜𝑐𝑠({𝑀𝑆𝐷},𝑡)𝑇

𝑡=0

𝑇× 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑃𝑈𝑐𝑜𝑟𝑒𝑠
 (6-2)

In Eq.2, CPUMS refers to the mean CPU monitoring overhead of the monitoring server per

second and MSD refers to the process ID of the monitoring server daemon.

PSUtil can also provide the memory usage of any set of processes in the range of 0 to 100%.

In a similar manner to Eq.1 and Eq.2, memory overhead can be calculated by the following

equations:

MMC= (∑
∑ 𝑀𝑒𝑚𝑈𝑠𝑎𝑔𝑒𝑂𝑓𝑃𝑟𝑜𝑐𝑠({𝐿𝑇𝑇𝑛𝑔𝑆𝐷,𝐿𝑇𝑇𝑛𝑔𝐶𝐷,𝐿𝑇𝑇𝑛𝑔𝑅𝐷,𝑀𝐶𝐷},𝑡)𝑇

𝑡=0

𝑇
𝑁
𝑛=0)/N (6-3)

MMS =
∑ 𝑀𝑒𝑚𝑈𝑠𝑎𝑔𝑒𝑂𝑓𝑃𝑟𝑜𝑐𝑠({𝑀𝑆𝐷},𝑡)𝑇

𝑡=0

𝑇
 (6-4)

In Eq. 6-3 and Eq. 6-4, MMC and MMS refers to the mean memory overhead – per second –

for the monitoring client and for the monitoring server, respectively. MemUsageOfProcs provides

the memory usage of a set of processes at time t.

To measure the overhead, we ran both the video streaming service and HTTP service

separately and simultaneously for close to 12 hours for each cases. The monitoring overhead has

been calculated using Eq. 6-1 through Eq. 6-4. The resulting overhead measurement is summarized

in Table 6-3. The CPU and memory usage of the monitoring client processes and monitoring server

process in their respective nodes are shown to remain within 5%. We also show that monitoring

multiple applications at the same time increases the total monitoring overhead slightly.

Any notable resource usage in the cloud equates to a monetary value. A large monitoring

overhead would require a bigger investment in monitoring. We tried to ensure that the overhead

108

and the subsequent required investment in monitoring remains minimal to encourage the adoption

in practice of the approach/architecture described in this work.

Table 6-3: Results over monitoring overhead measurement

Node-type Hardware Specifications Mean

Overhead/sec

(Test bed -1,

HTTP Service)

Mean

Overhead/sec

(Test bed -2,

Video

streaming

Service)

Mean Overhead/sec

(collocated services:

HTTP and Video

streaming)

Monitoring

Server

CPU: Intel(R) Core(TM) i7-2600

CPU @ 3.40GHz

CPUMS = 2.02 % CPUMS = 1.94 % CPUMS = 2.16 %

Memory: 16GB MMS = 1.14 % MMS = 1.08 % MMS = 1.18 %

Monitoring

Clients

CPU: Intel(R) Core(TM) i7-2600

CPU @ 3.40GHz (Virtual, 2

cores)

CPUMC = 1.8 % CPUMC = 1.67 % CPUMC = 1.85 %

Memory: 2GB MMC : 2.14 % MMC : 2.5 % MMC : 2.72 %

Total

runtime (T)

44227 seconds (12 hours, 17

minutes, 7 seconds)

44082 seconds (12 hours, 14 minutes,

42 seconds)

42391 seconds (12

hours, 6 minutes, 31

seconds)

Number of

nodes (N)

2 4 4

The yellow shade in table 6-3 indicates the overhead measurements from Test bed -1, the

green shade indicates the measurements from Test bed -2, the blue shade indicates the

109

measurements taken from a test bed where the setup of both Test bed -1 and Test bed -2 were

present and the services were run simultaneously.

6.5. Summary

In this chapter, we discussed the architecture of the Monitoring Engine prototype developed

as proof of concepts discussed in the earlier chapters. In order to evaluate the effectiveness and

performance of the prototype, we prepared two separate test beds with different applications and

analyzed the result of a unique test case on each of the test beds. We showed that the monitoring

engine prototype is able to trigger alerts to the Elasticity Engine while keeping up with the dynamic

nature of service assignments. We also measured the overhead of the monitoring engine prototype

for both of the test cases where we observed that the monitoring engine's overall overhead remains

within 5% of the total resources for all metrics. Since the prototype is developed using python, it

can be made to be very portable across VMs by sandboxing [46] the repository, which eliminates

most of the dependency issues during deployment.

As the limitation of most applications following the client-server architecture goes, failure

of the Monitoring Server ensues the failure of monitoring altogether and the Monitoring Server

and Monitoring Clients on each of the nodes must be restarted to start monitoring again.

110

7. Conclusion and Future Work

7.1. Conclusion

In this thesis, we introduced an approach and an architecture for the monitoring of workload

at the service level applicable to the services provided by application components, which may be

collocated in the same VM and where the service to application component assignments change

dynamically over time. Thus, the approach is applicable to SA Forum compliant systems where

the high availability of services is ensured by AMF dynamically by assigning the application

services to application components based of their current operational status.

We proposed and implemented a method to automatically instrument SA-aware components.

The automatic instrumentation method speeds up the otherwise tedious instrumentation procedure.

As a result of this instrumentation, the dynamic assignment and reassignment of services to the

processes of application components is detected and tracked at runtime.

We devised algorithms to map and aggregate the resource usage of processes used by

application components to the SIs using the trace-data obtained from the instrumented

components. Therefore, workload changes at the service level can be detected and the Elasticity

Engine [8] [10] can be triggered for resource provisioning and de-provisioning at the application

level.

In order to prove the proposed concepts, the approach and architecture have been

implemented and integrated with OpenSAF [11], an open source implementations of the SA Forum

middleware for HA management. Accordingly, the implemented Monitoring Engine prototype

adapts to the situations where different components can be in different HA states, active or standby,

on behalf of a service and this HA state assignment changes dynamically due to for example

111

component failures or configuration changes. We also integrated the Monitoring Engine prototype

with an existing Elasticity Engine prototype [8] in one of the test beds to show that the Monitoring

Engine can trigger alerts to the Elasticity Engine when the workload on any service exceeds a

threshold. We measured the Monitoring Engine’s overhead on the VMs running it as a part of its

preliminary evaluation, which shows that the overhead for relative CPU and memory usage remain

within 5% on average for the nodes in the cluster. The overhead is fairly low compared to most

available solutions especially considering the fact that the overhead has been measured with

respect to nodes that had configurations on par with ‘micro-instances’ [47] or ‘mini-instances’ [48]

(I.e. the most basic VMs provided in IAAS services) [49]. The low overhead makes the solution

more desirable to the current and prospective stakeholders.

7.2. Limitations and Future Work

The Monitoring Engine has a number of limitations that may need to be worked on in the

future.

The Monitoring Engine maps the workload of a single process to a CSI assignment of one

component. If there are multiple CSI assignments leading to a single process, there is no way yet

to distinguish between the workload of the multiple assignments. Improving this will make the

measurements of the Monitoring Engine more precise.

The current integration of the Monitoring Engine and the Elasticity Engine is only a proof of

concept, there has been no significant research done on the integration yet. The rules based on

which the Elasticity Engine is triggered need to take into account the nature of workload change,

the reaction time of the Elasticity Engine, the probable strategy to react to the workload change

etc.

112

Bibliography

[1] M. Toeroe, F. Tam, D. Penkler, R. Hyerle, J. Jensen, M. Angelic, U. Kleber, A. Mishra,

A. Kanso, M. Angelic and F. Khendek, Service Availability: Principles and Practice, M.

Toeroe and F. Tam, Eds., Montreal, Quebec: John Wiley & Sons. Ltd., 2012.

[2] Amazon Inorporated, "What is Cloud Computing? - Benefits of the Cloud," Amazon

Inorporated, 2015. [Online]. Available: http://aws.amazon.com/what-is-cloud-

computing/. [Accessed July 2015].

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica and M. Zaharia, "A View of Cloud Computing,"

Communications of the ACM (CACM), vol. 53, no. 4, pp. 50-58, April 2010.

[4] N. R. Herbst, S. Kounev and R. Reussner, "Elasticity in Cloud Computing: What It Is,

and What It Is Not," in International Conference on Autonomic Computing (ICAC), San

Jose, CA, June 26-28, 2013.

[5] M. Rak, S. Venticinque and T. Ma´hr, "Cloud Application Monitoring: the mOSAIC

Approach," in 2011 Third IEEE International Conference on Cloud Computing

Technology and Science (IEEE CloudCom), Athens, Greece, August 28, 2011.

[6] Amazon CloudWatch, "Amazon CloudWatch Developer Guide: Publish Custom

Metrics," Amazon, 1 August 2010. [Online]. Available:

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/publishingMet

rics.html. [Accessed August 2015].

113

[7] Service Availability Forum, "Service Availability Forum - Home," Service Availability

Forum, 2015. [Online]. Available: http://www.saforum.org/. [Accessed July 2015].

[8] N. Pawar, ""Managing High-Availability and Elasticity in a Cluster Environment"

Masters Thesis," Concordia University, Montreal, 2014.

[9] Service Availability Forum, "Service Availability Forum Availability Management

Framework SAI-AIS-AMF-B.04.01," September 2011. [Online]. Available:

http://www.saforum.org/hoa/assn16627/images/SAI-AIS-AMF-B.04.01.AL.pdf.

[Accessed July 2015].

[10] M. Toeroe, N. Pawar and F. Khendek, "Managing Application Level Elasticity and

Availability," in 10th Conference on Network and Service Management and Workshop

(CNSM), Rio de Janeiro, 17-21 November, 2014.

[11] OpenSAF Foundation, "OpenSAF Foundation - About Us," OpenSAF, 2015. [Online].

Available: http://www.opensaf.org/page/14944~155299/About-Us. [Accessed July

2015].

[12] Service Availability Forum, "Service Availability Forum: Service Availability Forum -

Open Specifications for Service Availability," Service Availability Forum, 2015.

[Online]. Available: http://www.saforum.org/page/16627~214723/Service-Availability-

Forum-Open-Specifications-for-Service-Availability. [Accessed 4 August 2015].

[13] Service Availability Forum, "Service Availability Forum Specification : Hardware

Platform Interface," Service Availability Forum, 2015. [Online]. Available:

114

http://www.saforum.org/Page/16627~217308/Service-Availability-Forum-Specification-

Hardware-Platform-Interface-28HPI29. [Accessed 4 August 2015].

[14] Service Availability Forum, "Service Availability Forum - Tutorial Downloads," 2015.

[Online]. Available: http://www.saforum.org/HOA/assn16627/images/SAIOverview.ppt.

[Accessed 4 August 2015].

[15] Service Availability Forum, "Information Model Management Service SAI-AIS-IMM-

A.03.01," September 2011. [Online]. Available:

http://www.saforum.org/HOA/assn16627/images/SAI-AIS-IMM-A.03.01.AL.pdf.

[Accessed July 2015].

[16] T. L. D. Project, "LDAP Linux HOWTO," August 2015. [Online]. Available:

http://tldp.org/HOWTO/LDAP-HOWTO/whatisldap.html. [Accessed August 2015].

[17] A. C. C. S. James Warner, "top(1) - Linux man page," [Online]. Available:

http://linux.die.net/man/1/top. [Accessed September 2015].

[18] F. F. Henry Ware, "vmstat," [Online]. Available:

http://linuxcommand.org/man_pages/vmstat8.html. [Accessed September 2015].

[19] M. K. J. Larry Greenfield, "uptime(1) - Linux man page," [Online]. Available:

http://linux.die.net/man/1/uptime. [Accessed September 2015].

[20] Python Software Foundation, "psutil 3.1.1 - Python Package Index," Python Software

Foundation, 2014. [Online]. Available: https://pypi.python.org/pypi/psutil. [Accessed

August 2015].

115

[21] Nixcraft, "Nixcraft," 27 June 2009. [Online]. Available:

http://www.cyberciti.biz/tips/top-linux-monitoring-tools.html. [Accessed August 2015].

[22] OpenStack, "Home: OpenStack Open Source Cloud Computing Software," [Online].

Available: https://www.openstack.org/. [Accessed 22 November 2015].

[23] Red Hat, "Ceilometer Quick Start - RDO," 2015. [Online]. Available:

https://www.rdoproject.org/install/ceilometerquickstart/. [Accessed 22 November

2015`].

[24] The LTTng Project, "The LTTng Documentation," 2015. [Online]. Available:

http://lttng.org/docs/. [Accessed July 2015].

[25] Efficios Inc., "Babeltrace," Efficios Inc., 2015. [Online]. Available:

http://www.efficios.com/babeltrace. [Accessed August 2015].

[26] A. Colangelo, "What is Cloud Computing? - Introduction to Cloud Computing,"

[Online]. Available: https://cloudacademy.com/cloud-computing/introduction-to-cloud-

computing-course/. [Accessed November 2015].

[27] National Institute of Standard and Technology (NIST), "NIST Cloud Computing

Program," 15 November 2010. [Online]. Available: http://www.nist.gov/itl/cloud/.

[Accessed November 2015].

[28] Boundary, "Product- Boundary," 2014. [Online]. Available:

http://www.boundary.com/product/. [Accessed July 2015].

116

[29] Rackspace, "Cloud Monitoring - Server, App & Website Monitoring by Rackspace,"

Rackspace, 2015. [Online]. Available:

http://www.rackspace.com/cloud/monitoring/features/. [Accessed July 2015].

[30] Microsoft Corporation, "Enabling Diagnostics in Azure Cloud Services and Virtual

Machines," Microsoft, [Online]. Available: http://azure.microsoft.com/en-

gb/documentation/articles/cloud-services-dotnet-diagnostics/. [Accessed July 2015].

[31] AppDynamics, "Application Performance Management," AppDynamics, 2015. [Online].

Available: http://www.appdynamics.com/product/application-performance-

management/. [Accessed July 2015].

[32] Aternity, "Aternity Workforce APM," Aternity, [Online]. Available:

http://www.aternity.com/products/workforce-apm/. [Accessed July 2015].

[33] mOSAIC, "Towards a Cross Platform Cloud API Components for Cloud Federation,"

mOSAIC, [Online]. Available: http://mosaic-

cloud.eu/dissemination/poster/1305227346_posterCLOSER11-1.pdf. [Accessed July

2015].

[34] K. Alhamazani, R. Ranjan, K. Mitra, P. P. Jayaraman, Z. (. Huang, L. Wang and F.

Rabhi, "CLAMS: Cross-Layer Multi-Cloud Application Monitoring-as-a-Service

Framework," in IEEE International Conference on Services Computing (IEEE SCC),

Anchorage, Alaska, USA, June 27- July 2, 2014.

117

[35] D. L. Quoc, L. Yazdanov and C. Fetzer, "DoLen: User-side multi-cloud application

monitoring," in International Conference on Future Internet of Things and Cloud

(FiCloud), Barcelona, Spain, 27-29 August, 2014.

[36] Python Software Foundation, "psutil 2.2.1," Python Software Foundation, January 2015.

[Online]. Available: https://pypi.python.org/pypi/psutil. [Accessed July 2015].

[37] Python Software Foundation, "About Python," Python Software Foundation, 2001-2015.

[Online]. Available: https://www.python.org/about/. [Accessed August 2015].

[38] EfficiOS Inc., "Common Trace Format (CTF)," EfficiOS Inc., 2015. [Online]. Available:

http://www.efficios.com/ctf. [Accessed July 2015].

[39] Python Software Foundation, "Data Structures," Python Software Foundation, 8

February 2015. [Online]. Available:

https://docs.python.org/3/tutorial/datastructures.html. [Accessed July 2015].

[40] P. G. Emma, "Understanding some simple processor-performance limits," IBM Journal

of Research and Development - Special issue: performance analysis and its impact on

design, vol. 41, no. 3, pp. 215-232, May 1997.

[41] VMware Incorporated, "VMware Workstation," VMware Incorporated, 2015. [Online].

Available: https://www.vmware.com/products/workstation. [Accessed July 2015].

[42] Python Software Foundation, "BaseHTTPServer — Basic HTTP server," 23 May 2015.

[Online]. Available: https://docs.python.org/2/library/basehttpserver.html. [Accessed

July 2015].

118

[43] Apache Software Foundation, "Apache JMeter™," Apache Software Foundation, 2015.

[Online]. Available: http://jmeter.apache.org/. [Accessed July 2015].

[44] VideoLAN non-profit organization, "VideoLAN," VideoLAN non-profit organization,

[Online]. Available: http://www.videolan.org/. [Accessed July 2015].

[45] D. C. Johnson, "Kill Commands and Signals," Linux.org, 12 July 2015. [Online].

Available: http://www.linux.org/threads/kill-commands-and-signals.4423/. [Accessed

July 2015].

[46] I. Bicking, "Virtualenv," The Open Planning Project, PyPA, 2014. [Online]. Available:

https://virtualenv.pypa.io/en/latest/. [Accessed September 2015].

[47] Amazon Incorporated, "Amazon EC2 Instances," Amazon Incorporated, 2015. [Online].

Available: https://aws.amazon.com/ec2/instance-types/. [Accessed September 2015].

[48] OpenStack Foundation, "Flavors," OpenStack Foundation, 2015. [Online]. Available:

http://docs.openstack.org/openstack-ops/content/flavors.html. [Accessed September

2015].

[49] Google Incorporated, "Google Cloud Platform: Linux Getting Started Guide," Google

Incorporated, 2015. [Online]. Available: https://cloud.google.com/compute/docs/linux-

quickstart. [Accessed September 2015].

[50] M. Desnoyers and M. R. Dagenais, "LTTng, Filling the Gap Between Kernel

Instrumentation," [Online]. Available:

119

http://events.linuxfoundation.org/slides/lfcs09_desnoyers_paper.pdf. [Accessed 21

Nivember 2013].

[51] "LTTng Project," [Online]. Available: http://lttng.org/viewers. [Accessed 21 November

2013].

[52] T. Willhalm, R. Dementiev and P. Fay, "Intel® Performance Counter Monitor - A better

way to measure CPU utilization," 16 August 2012. [Online]. Available:

https://software.intel.com/en-us/articles/intel-performance-counter-monitor. [Accessed

July 2015].

[53] M. Desnoyers, J. Desfossez and D. Goulet, "LTTNG," 18 July 2013. [Online].

Available: http://lttng.org/files/doc/man-pages/man1/lttng.1.html. [Accessed July 2015].

