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ABSTRACT 

Membrane-associated estrogen receptors and cognition in female rats. 

 

Anne Almey, Ph.D. 

Concordia University, 2015 

 

There are sex differences in dopamine-dependent diseases and behaviours, and accumulating 

evidence suggests that estrogens are partially responsible. This thesis examines the effects of 

estrogens on dopamine-dependent cognitive processes. Some of these cognitive processes are 

affected in schizophrenia, so these experiments also examined the combined effects of estrogen 

and the antipsychotic drug haloperidol on these cognitive processes.  

The first study in this thesis examined the effects of estrogens and haloperidol on 

selective attention, measured in a latent inhibition paradigm. The result of these experiments 

demonstrated that estrogens have detrimental effects on latent inhibition, but facilitate an acute 

dose of haloperidol to restore latent inhibition in female rats. The next two studies extended these 

findings to two other cognitive processes negatively affected in individuals with schizophrenia: 

perseveration and reversal learning. Estrogens alone had no effect on perseveration or reversal 

learning in amphetamine sensitized female rats, but did fascilitate haloperidol to reduce 

perseveration and improve reversal learning.  

Previous research has observed very low levels of estrogen receptors in the striatum, 

nucleus accumbens and prefrontal cortex, regions that mediate the majority of dopamine-

dependent cognitive processes. Immunoelectron microscopy was used to examine estrogen 

receptors in these regions to provide a mechanism for estrogens’ effects on dopamine dependent 

behaviour. Immunohistochemistry was used to examine the distribution of estrogen receptors, 

ERα, ERβ, and GPER1, demonstrating that these receptors are observed primarily at presynaptic 

extranuclear sites and in glia in the striatum, nucleus accumbens and prefrontal cortex. In the 

striatum a small proportion of ERα and GPER1 are localized to cholinergic interneurons and a 

larger proportion of these receptors are observed in GABAergic neurons in the striatum. In the 

accumbens a low proportion of ERα and GPER1 were localized to catecholaminergic neurons, 

and a greater proportion of these receptors were observed in GABAergic neurons. The final 

experiment in this thesis examined whether binding at membrane-associated estrogen receptors 
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could rapidly affect dopamine-dependent cognition. Increasing estrogens in the prefrontal cortex 

rapidly biases female rats towards use of place memory, indicating that binding at membrane-

associated estrogen receptors can rapidly affect dopamine-dependent cognitive processes. 
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CHAPTER 1: 

GENERAL INTRODUCTION 

 

ESTROGEN RECEPTORS IN THE CENTRAL NERVOUS SYSTEM AND THEIR 

IMPLICATION FOR DOPAMINE-DEPENDENT COGNITION IN FEMALES 

 

 Anne Almey, Teresa A Milner, and Wayne G Brake 

Citation: Hormones and Behavior (2015); 74: 125-138. 
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The effects of estrogens on cognition, and the mechanisms through which these effects 

are achieved in the brain, are more varied and complex than was initially believed. Estrogens are 

a class of steroid hormones that include estrone, estriol, and estradiol (E2), the last of which is 

the most potent estrogen in female mammals during their reproductive years. There is substantial 

research examining the role of estrogens in cognition (see Luine, 2014 for review). Interestingly, 

although estrogens have also been implicated in dopamine-dependent cognition, the brain 

regions important for this (viz. the dorsal striatum (STR), nucleus accumbens (NAc), prefrontal 

cortex (PFC) and hippocampus) have relatively sparse nuclear labelling for estrogen receptors 

(ERs; Milner et al 2001, Mitra et al 2003, Shughrue et al 1998, Weiland et al 1997). Some effects 

of estrogens on dopamine transmission in these regions occur over a relatively long time course 

(> 10h) and are mediated by nuclear ERs (Luine et al 1998, Korol and Kolo 2002, Quinlan et al 

2010) but other estrogen effects are too rapid to occur through binding at the nuclear ERs 

(Almey et al 2014, Becker and Rudick 1999, Thompson and Moss 1994). This review examines 

the evidence for membrane-associated estrogen receptors (mERs), the role of both nuclear ERs 

and mERs in dopamine-dependent cognition, and recent immunoelectron microscopy research 

localizing mERs to the STR, NAc, PFC, and hippocampus. 

Following the discovery of estrogens in 1929 (Butenandt 1929), research on this class of 

steroid hormones focused on their role in reproduction and the menstrual/estrous cycle in 

females (Doisy 1972). In 1966, an ER was characterized in breast and uterine tissue (Toft and 

Gorski 1966), and this ER was also localized to brain regions typically associated with endocrine 

or reproductive functions, such as the hypothalamus (for review see McEwen and Alves 1999). 

This receptor, now known as estrogen receptor alpha (ERα), was observed primarily in cell 

nuclei, typical for steroid hormone receptors. In the mid-1990s a second ER, estrogen receptor 

beta (ERß), was discovered, which also was localized to cell nuclei (Kuiper et al 1996). Both 

ERα and ERß are expressed in the uterus, breast tissue, testicles, prostate, cardiovascular system, 

and to a lesser extent in the bone and the lungs (Rollerova and Urbancikova 2000). More 

relevant to this review, these ERs are expressed in the pituitary and many brain regions, 

including the hypothalamus, the hippocampus, the amygdala, and the PFC, among others (Kuiper 

et al 1998, Montague et al 2008, Shughrue et al 1998, Shughrue and Merchenthaler 2001, 

Spencer et al 2008). Estrogen activation of ERs either directly or indirectly contribute to certain 

diseases and disorders (Brann et al., 2007) and have numerous behavioural effects including: 
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increasing agonistic behaviours, improving performance in spatial learning and memory tasks, 

and initiating copulatory behaviours (Luine et al 1998, Clipperton-Allen et al 2011, Clipperton 

Allen et al 2010, Gervais et al 2013, Almey et al 2014, Brann et al 2007, Cornil and Charlier 

2010). 

The original conceptualization of ERα and ERβ was as typical steroid/nuclear receptor 

located in the cytoplasm of cells when not activated. When estrogens bind to these receptors, the 

newly formed receptor-ligand complexes dimerize and translocate to the nucleus where they bind 

to estrogen response elements (EREs) on DNA (Kumar and Chambon 1988) to regulate the 

transcription of proteins (Nilsson et al 2001). It is difficult to predict the effects of binding at an 

ERE, since EREs can have different transcriptional effects, and numerous co-activators and co-

repressors alter the transcriptional effects of binding at EREs (Kuiper et al 1996, Rollerova and 

Urbancikova 2000). Nonetheless, there is evidence that estrogens alter the production of multiple 

proteins in the central nervous system, including growth factors (Varea et al 2010, Woolley 

1999), cytokines (Kovacs et al 2002), and apoptotic factors in the brain (Kiess and Gallaher 

1998, Vasconsuelo et al 2011). In addition to acting through these nuclear ERs to elicit long-term 

effects, ERs can be found at the cell membrane, where estrogen-binding induces rapid effects 

such as altering membrane permeability (Fu and Simoncini 2008, Wong and Moss 1992) and 

activating second messenger cascades (Edwards and Boonyaratanakornkit 2003, Fu and 

Simoncini 2008).  

The earliest evidence for membrane ERs (mERs) was from Pietras and Szego (1975), 

who demonstrated that application of E2 to endometrial cells causes rapid depolarization as a 

result of an increase in intracellular Ca2+ influx. The authors then used subcellular fractionation 

techniques to isolate the cell membrane from the cytoplasm, and demonstrated that ERα is 

present in membrane fractions from endothelial tissue suggesting that ERα is associated with cell 

membranes (Pietras and Szego, 1980). Shortly afterwards, it was shown that the application of 

E2 to parvocellular neurons in the medial preoptic area, arcuate nucleus, and the ventromedial 

hypothalamus resulted in fast hyperpolarization of these cells (Kelly et al 1980, Kelly et al 

1976).  These findings inspired further research on these rapid effects of estrogens, which 

revealed that application of estrogens to neurons from the arcuate and ventromedial 

hypothalamus or the amygdala resulted in hyperpolarization of these cells in the presence of 

transcription blockers (Kelly et al 1980, Minami et al 1990, Nabekura et al 1986).  Additionally, 
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the membrane-impermeable E2-bovine serum albumin (BSA) conjugate binds to receptors in the 

hypothalamus, cerebellum, and olfactory bulb (Zheng and Ramirez 1997). Since estrogens’ long-

term effects cannot occur rapidly, in the presence of transcription blockers, or via E2-BSA, these 

early studies concluded that estrogens must bind at some then-unknown membrane-associated 

ER to elicit these rapid effects. 

 

1. Membrane associated estrogen receptors 

1.1 ERα and ERβ: steroid receptors in a novel location 

There is now evidence that ERα and ERß are both found at the cell membrane, as well as 

in nuclei and in the cytoplasm, where they were originally localized. These two receptors are 

found as either homo- (ERα-ERα or ERβ-ERβ) or hetero- (ERα-ERβ) dimers at the membrane, 

and they are membrane-associated, but not actually embedded within the cell membrane 

(Boonyaratanakornkit and Edwards 2007). mERα and mERβ can induce a number of 

intracellular events typically induced by activating G protein-coupled receptors. mERs are 

thought to activate G protein-coupled receptors to regulate L-type Ca2+ channels and activate 

protein kinase A (PKA), protein kinase C (PKC), and mitogen activated protein kinase (MAPK) 

signalling cascades (Coleman and Smith 2001, Fu and Simoncini 2008, Yang et al 2008). The 

mechanisms through which ERα and ERβ become associated with the cell membrane remain 

unclear, but two are believed to be pivotal: the post translational lipid modification of these ERs, 

and their interaction with membrane/cytoplasmic scaffolding proteins (Boonyaratanakornkit 

2011). Note that research on ER membrane association has predominantly focused on ERα.  

The primary form of lipid modification associated with mERs is palmitoylation. 

Palmitoylation refers to the addition of palmitic acid to specific residues of proteins, typically 

membrane-associated proteins (Basu 2004). If palmitoylation is inhibited in hippocampal cell 

cultures, rapid estrogen-induced phosphorylation of cyclic AMP response element binding 

protein (CREB) is eliminated (Meitzen et al 2013). Furthermore, palmitoylation occurs at 

specific cysteine sites of ERα and ERβ receptors; when these palmitoylation sites are mutated, 

rapid estrogen-induced CREB phosphorylation and activation of MAPK and PI3 kinase are 

blocked (Meitzen et al 2013, Pedram et al 2002). Additionally, E2-induced decreases in 

synaptosomal membrane-associated ERα in the hippocampus occur through depalmitoylation 

(Tabatadze et al 2013).  Together, these findings indicate that palmitoylation of specific cysteine 
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residues of ERs is critical for the rapid effects of membrane-associated ERs. A truncated version 

of ERα was discovered in endothelial cells; this truncated ERα is 46-kDa as opposed to the 

typical 67-kDa ERα. This 46-kDa version of ERα is preferentially palmitoylated, and is more 

effective at rapidly activating endothelial nitric oxide synthase than the traditional ERα (Li et al 

2003), but does not mediate transcriptional responses (Figtree et al 2003). This suggests that 

there is a smaller isoform of ERα primarily associated with the cell membrane. 

Interactions between ERs and certain scaffolding proteins also are believed to play a 

critical role in the association of ERα and ERβ with the cell membrane. The scaffolding proteins 

receiving the most attention for their role in facilitating membrane-association of ERs are 

caveolins (Boonyaratanakornkit 2011). Caveolins are the primary structural components of 

caveolae, which are 50-100nm invaginations of the cell membrane. The structure of caveolae is 

thought to promote protein-protein interactions and integrate receptors and signaling molecules 

to facilitate rapid and specific signal transduction (Okamoto et al 1998). ERα is localized in 

caveolar subfractions of endothelial plasma membranes (Chambliss et al 2000), and confocal 

microscopy has observed extensive colocalization of caveolins and ERα (Pedram et al 2002). 

Caveolins are hypothesized to facilitate transport of ERα from the cytoplasm to caveolae, as 

endothelial cells expressing caveolin have a significantly higher ratio of membrane to 

cytoplasmic ERα (Pedram et al 2002), and knocking down caveolin in the arcuate nucleus of the 

hypothalamus reduces the expression of mERα (Christensen and Micevych 2012). Additionally, 

estrogens affect the production of caveolins; application of physiological levels of E2 

significantly increases levels of caveolin and increases caveolin-ERα associations (Razandi et al 

2002). These results suggest that estrogens increase levels of caveolin, which in turn facilitates 

transport of ERα to the cell membrane (Razandi et al 2002). Interestingly, when the 

palmitoylation site on ERα is mutated, the physical association between ERα and caveolin is 

reduced (Pedram et al 2007); this suggests that palmitoylation of ERα facilitates interactions 

between this receptor and caveolins. 

Palmitoylation of mERs and associations with caveolins allow these receptors to 

associate with cell membranes, but does not explain the effects of binding at these mERs on 

neuronal transmission. The rapid effects of estrogens have been shown to be sensitive to G 

protein manipulation, which suggests that mERα and mERβ may be able to alter G protein 

receptor activity (Kelly and Wagner 1999). Research suggests that binding at mERα and mERβ 
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stimulates metabotropic glutamate receptors (mGluRs; Meitzen and Mermelstein 2011). mGluRs 

are G-protein-coupled receptors categorized into three families: mGluRI (mGluR1 and 5) that are 

Gq receptors, and mGluRII (mGluR2 and 3) and III (mGluR4, 6, and 7), which are Gi/o 

receptors (Niswender and Conn 2010). In cultured hippocampal and striatal cells, application of 

E2 increases CREB phosphorylation within 30 seconds, an effect that is mediated by ERα 

(Boulware et al 2005, Grove-Strawser et al 2010). In cultured hippocampal neurons this effect of 

E2 is replicated by applying an mGluR1 agonist, and blocked by applying an mGluR1 antagonist 

to the cells (Boulware et al 2005). In contrast, in striatal neurons the E2-induced increase in 

CREB phosphorylation is mimicked by mGluR5 agonists and blocked by mGluR5 antagonists 

(Grove-Strawser et al 2010). Additionally E2 can have bidirectional effects on CREB 

phosphorylation in these brain regions. In hippocampal cultures E2 also inhibits CREB 

phosphorylation via binding at ERα and ERβ, an effect blocked by mGluR2 antagonists and 

mimicked by mGluR2 agonists (Boulware et al 2005). In striatal cultures the E2-induced 

decrease in CREB function is mediated by mGluR3 receptors (Grove-Strawser et al 2010). More 

recently it was shown that binding at ERα in the CA1 of the hippocampus activates mGluR1, 

mobilizing components of the endocannabinoid system, leading to reduced gamma-

Aminobutyric-acid (GABA) release (Tabatadze et al 2013). The authors interpreted these 

findings to suggest that some of the rapid effects of E2 in the hippocampus and STR are 

mediated by mER interactions with different members of the mGluRI and mGluRII receptor 

families (Meitzen and Mermelstein 2011).  

mGluRs are frequently associated with caveolins, and inhibiting caveolin expression or 

activity inhibits E2 effects on CREB phosphorylation, indicating that the association between E2 

and mGluRI and/or mGluRII is dependent on caveolins (Boulware et al 2007). Taken together, 

these studies suggest that the classical ERs are palmitoylated, which may promote the interaction 

between these ERs and caveolins (see Fig 1; Meitzen et al 2013). Caveolins facilitate transport of 

mERs to caveolae where these receptors form associations with mGluRs; binding at these mERs 

alters CREB activity via activation of mGluRs (Meitzen et al 2013). There are other mechanisms 

involved in ER-membrane associations; multiple proteins including the adapter protein Shc, the 

calmodulin binding protein striatin, and the modulator of non-genomic activity of ERs, have also 

been implicated in the membrane association of ERs (Boonyaratanakornkit 2011, 

Boonyaratanakornkit and Edwards 2007). However, the palmitoylation of mER, and mER  
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Figure 1. Schematic representation of how ERα or ERβ may be bound to the neuronal 

membrane via associations with caveolin following palmitoylation of the receptor. 
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associations with caveolins and mGluRs, provide the most complete explanation for how mERs 

become associated with the cell membrane, and occur in dopamine-innervated regions (Boulware 

et al 2005, Grove-Strawser et al 2010, Meitzen and Mermelstein 2011, Huang and Woolley 

2012). 

1.2 GPER1: a membrane-bound G protein-coupled estrogen receptor 

In addition to mERα and mERβ, a third membrane-associated ER was discovered. An 

orphan G protein-coupled receptor, G protein-coupled receptor 30 (GPR30; a protein migrating 

at 30 kDa) is now designated as G protein-coupled estrogen receptor 1 (GPER1).  GPER1 first 

was identified in breast tissue (Carmeci et al 1997), and has a single binding site specific to 

estrogens (Prossnitz et al 2008). Initially, GPER1 was observed at the endoplasmic reticulum in 

neurons, so it was hypothesized that binding at GPER1 modulated the effects of estrogens at 

ERα or ERß (Revankar et al 2005, Sakamoto et al 2007). GPER1 is also found on the plasma 

membrane of cells in the hippocampus and hypothalamus, indicating that binding at GPER1 

could have direct effects on neuronal transmission in these brain regions (Funakoshi et al 2006, 

Prossnitz et al 2008, Waters 2015). The effects of binding at GPER1 are not fully elucidated, but 

evidence demonstrates that application of E2 to COS (fibroblast-like cell line) or HeLa cells 

transfected with GPER1 rapidly increases Ca2+ influx (Bologa et al 2006, Funakoshi et al, 2006). 

Additionally, binding at GPER1 activates the phosphoinositide 3-kinase second messenger- 

signalling cascade (Prossnitz et al 2008), the MAPK signalling cascades (Filardo et al 2000) and 

the PKA signalling cascade (Fu and Simoncini 2008). Recently, we found that GPER1 in the 

hippocampus interacts with the PSD-95 and the spine scaffolding protein SAP97 that would 

position GPER1 for rapid signalling at the spine synapse (Akama et al 2013, Waters 2015).  

Additionally, application of E2 and the GPER1 agonist, G1, to cultured cortical neurons 

attenuated NMDA-induced excitotoxicity via activation of MAPK signalling pathways (Liu et al, 

2012).  These findings demonstrate that activation of GPER1, like mERα and mERß, increases 

intracellular Ca2+ and activates multiple second messenger cascades, suggesting that binding at 

this receptor could have widespread effects on neuronal function. 

1.3 Are there more membrane-associated estrogen receptors to be discovered? 

Other potential membrane-associated receptors have been identified. The first is referred 

to as ER-X. This receptor type is distinguished from ERα, ERß and GPER1 by its molecular 

weight, which is 63 kDa compared to 67kDa, 60kDa, and 44kDa, respectively (Filardo et al 
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2007, Toran-Allerand et al 2002). The putative ER-X can also be distinguished from other ERs 

because the two stereoisomers of E2, 17α- and 17ß- E2 have equal affinity for this receptor, 

whereas 17ß-E2 has 100 times greater affinity for ERα and ERß than 17α-E2 (Toran-Allerand et 

al 2002). Another potential membrane-associated ER is a G protein-coupled receptor called Gq-

mER that is found in the arcuate nucleus of the hypothalamus and is activated by the selective 

ER modulator, STX (Qiu et al 2003). STX has a 20-fold greater affinity for this receptor than it 

does for either ERα or ERβ, and STX has rapid effects in the hypothalamus of GPER1 knockout 

mice, suggesting that it is binding to an undiscovered ER (Qiu et al 2003). Gq-mER is thought to 

play an important role in estrogens’ effects on metabolic function (Smith et al 2013), and affect 

multiple homeostatic processes including reproduction, stress, sleep, as well as motivated 

behaviours (Qiu et al 2008). These potential ERs (i.e. ER-X and Gq-mER) may provide alternate 

mechanisms via which estrogens can rapidly affect neuronal function, and ultimately cognition. 

However, there is not sufficient research to speculate on their role in cognition, so the remainder 

of this review will focus on ERα, ERβ, and GPER1, and their role in dopamine-dependent 

cognition in females. 

 

2. Distribution of estrogen receptor containing cells in the CNS 

Light microscopic immunohistochemical and in situ hybridization studies have shown 

that cells with ERα, ERβ, and GPER1 are found throughout the brain, from the most rostral 

regions of the forebrain to the cerebellum. It would not be practical to list all regions containing 

ERs, but regions where high levels of these receptors are consistently observed are described.  

Interestingly, although these studies observe nuclear labelling for ERα and ERβ throughout the 

brain, reports of extra-hypothalamic mERα and mERβ using light microscopic methods are 

limited. 

Cells with ERα are most commonly localized to the bed nucleus of the stria terminalis, 

the medial amygdala, the preoptic area, and various hypothalamic nuclei. High levels of this 

receptor were also observed in the periaqueductal grey and parabrachial nucleus, and lower 

levels are observed in the locus coeruleus (Mitra et al 2003, Shughrue et al 1998). The reported 

distribution of ERβ differs slightly from ERα, but the regions with the most dense labelling are 

similar, as this receptor has been observed primarily in the lateral septum, the bed nucleus of the 

stria terminalis, the medial and basolateral amygdala, the preoptic region and other hypothalamic 
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nuclei, and the trigeminal nuclei (Creutz and Kritzer 2002, Milner et al 2010, Mitra et al 2003, 

Shughrue et al 1999, Shughrue and Merchenthaler 2001).  Intermediate levels of ERβ labelled 

cells are found in the hippocampus and cerebral cortex (Milner et al 2005, Milner et al 2010, 

Mitterling et al 2010, Shughrue and Merchenthaler 2001).  Some studies have observed ERβ 

labelled cells in the ventral tegmental area, the locus coeruleus and in granulosa cells of the 

cerebellum (Mitra et al 2003, Shughrue and Merchenthaler 2001).  

GPER1 also is observed throughout the brain, with high levels in the olfactory bulbs, and 

hypothalamus and various cortical regions including the motor, somatosensory piriform cortices, 

the hippocampus, and the habenular nucleus of the epithalamus (Brailoiu et al 2007, Hazell et al 

2009, Xu et al 2009, Waters et al 2015). More caudally, GPER1 is observed in the nucleus of the 

solitary tract, and the Purkinje and granule cells of the cerebellum (Hazell et al 2009, Spary et al 

2013). Light microscopy observes GPER1 at cytoplasmic sites, and associated with the plasma 

membrane (Funakoshi et al 2006).  

3. Estrogens affect dopamine-dependent diseases and cognitive processes 

Estrogens affect a wide array of cognitive processes by altering transmission in various 

neurotransmitter systems. There is growing evidence that estrogens affect dopamine-dependent 

cognitive processes.  Implications of estrogens’ involvement in dopamine dependent diseases 

comes from clinical observations of sex differences in susceptibility to Parkinson’s, 

schizophrenia, and addiction.  

Parkinson’s disease is caused by decreased dopamine transmission in the STR, and 

Parkinson’s patients show hippocampal atrophy and decreased markers of neurogenesis in the 

dentate gyrus (for review see Regensburger, Prots, & Winner 2014). There is a higher incidence 

of Parkinson’s in males (Shulman and Bhat, 2006), however, Parkinson’s symptoms in females 

increase following menopause when endogenous estrogen production decreases (Ragonese et al 

2004).  Moreover, women respond better to L-3,4-dihydroxyphenylalanine (L-DOPA), the first 

line treatment for Parkinson’s disease, when it is administered with transdermal E2 (Blanchet et 

al 1999).  

Schizophrenia is also hypothesized to result from dysregulated dopamine transmission, 

with increased dopamine activity in the NAc and STR, and decreased dopamine transmission in 

the PFC (Howes & Kapur 2009). Individuals with schizophrenia show numerous hippocampal 
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abnormalities including hippocampal atrophy, and symptom-related changes in hippocampal 

metabolic activity, among others (for review see Harrison, 2004). Women exhibit later onset and 

less severe symptomatology than men (Hafner, 2003). However, these symptoms increase when 

estrogen levels decrease, both during the postpartum period and following menopause (Kulkarni 

et al 2012, Matevosyan 2011).  Moreover, women respond better to antipsychotic drugs when 

they are administered in conjunction with E2 (Akhondzadeh et al 2003, Kulkarni et al 2014).  

Lastly, addiction is also related to dysfunctional dopamine transmission; repeated drug 

use is associated with a decrease in dopamine release in the STR and NAc (Volkow, Fowler, 

Wang, Baler, & Telang, 2009), and significant decreases in adult hippocampal neurogenesis 

leading to changes in the striatal-cortical-frontal circuitry (Chambers, 2013). There are sex 

differences in the development of addiction, as women escalate use of drugs, including opiates, 

psychostimulants, and nicotine more rapidly than men (Hernandez-Avila et al 2004, Lynch et al 

2002). Women also report a greater response to amphetamines during the luteal phase of the 

menstrual cycle, when estrogens are high (Justice and de Wit 1999). Collectively, these findings 

on Parkinson’s, schizophrenia, and addiction suggest that estrogens play a role in central 

dopamine function, as these disorders are all associated with dysfunctional dopamine 

transmission and hippocampal atrophy/decreased function. 

3.1 Estrogens alter dopamine-dependent cognitive processes in rats 

There is evidence that estrogens affect many dopamine-dependent cognitive processes, 

including selective attention object recognition memory and memory system bias. The majority 

of research has examined the long-term effects of estrogens, administering E2 ~12 hours prior to 

testing, but research examining the rapid effects of E2 on cognition will be described when 

available. Latent inhibition (LI), a measure of selective attention, is dependent on dopamine 

transmission within the mesocorticolimbic pathway.  Lesions and local infusion of a dopamine 

antagonist in the PFC enhance LI (Broersen et al 1996, George et al 2010) as do lesions 

encompassing the entire NAc (core and shell; Gal, Schiller, and Weiner, 2005), and lesions to the 

NAc core alone result in abnormally persistent LI (Weiner, Gal, Rawlins and Feldon, 1996). In 

contrast, lesions of the NAc shell or hippocampus abolish LI (Kaye and Pearce,1987, Oswald et 

al, 2002: Weiner et al., 2005).  Moreover, dopaminergic activity in the anterior STR is positively 

correlated with behaviour in a LI task (Jeanblanc et al 2003).  Interestingly, increases in plasma 

levels of estrogens, either during the proestrus phase of the estrous cycle or following E2 
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replacement in ovariectomized (OVX) rats, disrupt the expression of LI (Nofrey et al 2008, 

Quinlan et al 2010, Almey et al 2013).  

Object recognition memory is another dopamine-dependent cognitive process affected by 

estrogens. Systemic and intra-PFC administration of a D1 antagonist can impair object 

recognition memory, reflected in poor performance on a novel object preference task (Besheer et 

al 1999, Nagai et al 2007). Correspondingly, systemic administration of a D1 agonist enhances 

long-term object recognition memory when administered immediately following training (de 

Lima et al 2011) or 10 minutes before testing (Hotte et al 2005). Administration of E2 to OVX 

rats leads to improved object recognition memory (Gervais et al 2013, Jacome et al 2010), an 

effect that is mimicked by diarylpropionitrile (DPN), an ERβ agonist, suggesting the effects of 

E2 are at least partially due to binding at ERβ (Inagaki et al 2010, Luine et al 1998). 

Interestingly, this dose of DPN resulted in a 100% increase in dopamine in the PFC, suggesting 

that estrogen-induced improvements in recognition memory are due, in part, to increased 

dopamine (Inagaki et al 2010, Luine et al 1998).   

Estrogens also affect the use of place or response memory to navigate an environment. 

Rats use either spatial or egocentric cues to locate a reward.  If spatial cues are used to locate a 

reward, this is referred to as a place memory, which is mediated by the hippocampus; if 

egocentric cues are used, this is called a response memory, which is mediated by the dorsal STR 

(Packard et al 1989, Packard and White 1991, White and McDonald 2002, also see review by 

Korol and Pisani in this issue). An infusion of amphetamine, an indirect-dopamine agonist, into 

the hippocampus biases rats toward using place memory, while an infusion of amphetamine into 

the STR biases rats toward using response memory (Packard and White 1991). Interestingly, 

when estrogen levels are high, either during the proestrus phase of the estrous cycle or following 

E2 replacement in OVX females, rats are biased toward using place memory (Korol and Kolo 

2002, Quinlan et al 2008). More recently we showed that an infusion of E2 directly into the PFC 

biases female rats towards use of place memory, indicating that E2 acts rapidly (<15 minutes) to 

affect memory system bias, possibly via reciprocal projections with the STR and hippocampus 

(Almey et al 2014). These preclinical studies provide evidence that estrogens affect dopamine-

dependent cognitive processes. Some of these cognitive effects of E2 occur rapidly (<4 hours; 

Almey et al 2014, Gervais et al 2013, Inagaki et al 2010, Jacome et al 2010), suggesting that the 
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cognitive effects of estrogens result from binding at both nuclear and mERs, leading to long-term 

and rapid effects.  

3.2 Estrogens modulate central dopamine transmission  

There is accumulating evidence that estrogens alter dopamine function at various stages 

in transmission by affecting dopamine availability, dopamine receptor density, and the affinity of 

the dopamine transporter. Again, the majority of research has examined the long-term effects of 

estrogens, administering E2 ~12 hours prior to testing, but research examining the rapid effects 

of E2 on dopamine transmission will be described when available. In the STR, tonic dopamine 

availability is increased when estrogen levels are high (Xiao and Becker 1994); this increase in 

dopamine is mediated via both long-term and rapid effect of estrogens, as maximal dopamine 

increases are observed when E2 is administered ~12 hours prior to testing, and then again 30 

minutes prior to testing (Becker and Rudick 1999). When E2 is applied to tissue from the STR 

this rapidly decreases dopamine uptake by decreasing the affinity of the dopamine transporter 

(Disshon et al 1998), providing a potential mechanism for E2-induced increases in dopamine 

availability.  Additionally, OVX rats receiving estrogen replacement have higher binding at 

dopamine D1 and D2 receptors, but lower binding at D3 receptors, in the STR (Landry et al 

2002, Le Saux et al 2006, Levesque and Di Paolo 1989, Levesque et al 1989). This increase in 

dopamine D2 receptor binding occurs without any changes in dopamine D2 mRNA levels (Le 

Saux et al 2006), indicating that this change occurs through rapid mechanisms. 

The relationship between estrogens and dopamine transmission in the NAc is similar to 

that observed in the STR (Thompson and Moss 1994), as E2 replacement administered to OVX 

rats is associated with increased tonic (Madularu et al 2014) and phasic (Thompson and Moss 

1994) levels of dopamine in the NAc. Systemic administration of E2 increases NAc phasic 

dopamine release within 15 minutes, indicating this is a rapid effect mediated by mERs 

(Thompson and Moss 1994). E2 replacement administered to OVX rats was shown to attenuate 

dopamine reuptake in the NAc (Thompson 1999), providing a potential explanation for the E2-

induced dopamine availability in the NAc. Additionally E2 treatment increases dopamine D2 

receptor binding in the NAc (Le Saux et al 2006), paralleling findings in the STR. 

Estrogens also alter dopamine transmission in the PFC. Females exhibit the highest 

baseline dopamine levels during estrus, when estrogens are declining, and the lowest basal 

dopamine levels during proestrus, when estrogen levels are high (Dazzi et al 2007). However, 
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rats in proestrus have higher ethanol-induced dopamine release in the PFC, suggesting that 

estrogens decrease basal dopamine, but increase dopamine release in the PFC (Dazzi et al 2007).  

Additionally, dopamine D1 receptor density as well as dendritic spine density is increased in the 

PFC when OVX females are treated with E2 (Levesque et al 1989; Wallace et al 2006). 

The hippocampus receives a small dopaminergic afferent, and more substantial 

GABAergic afferents from the VTA (Rocchetti et al., 2015). Additionally, glutamatergic 

afferents from the hippocampus to the NAc regulate the firing of dopaminergic neurons in the 

VTA (Floresco, Todd, & Grace, 2001).  Moreover, hippocampal projections to the PFC are 

thought to play a role in amplifying neuronal activity in the PFC (Ishikawa & Nakamura, 2003). 

These findings suggest that hippocampal afferents can modulate dopamine activity throughout 

the mesocorticolimbic pathway.  

As discussed extensively in previous reviews (McEwen and Alves, 1999; McEwen and 

Milner, 2007; Spencer et al., 2008; McEwen et al., 2012), the hippocampus is also sensitive to 

the effects of estrogen.  Female rats, either in the proestrus phase of the estrous cycle or 

following E2 replacement, had significantly elevated spine synapse density in CA1 pyramidal 

neurons (Gould et al 1990; Woolley et al 1990). The effect of E2 on synaptic spine density in the 

hippocampus has been shown to occur rapidly, within 30 minutes of subcutaneous E2 

administration (MacLusky et al 2005).  In vivo studies demonstrate that female rats administered 

an infusion of E2 into the hippocampus demonstrate better recollection for the platform location 

in a watermaze task (Packard and Teather 1997), and demonstrate a bias towards use of place 

memory to navigate a maze (Zurkovsky et al 2007). 

Although estrogens have been shown to affect dopamine-dependent cognitive processes 

in the STR, PFC and hippocampus, these brain are not recognized for having high levels of ERs. 

Generally, light microscopy and in situ hybridization observe low levels of ERα 

immunoreactivity (IR) in the STR and NAc, and almost none in the PFC (Mitra et al 2003, 

Shughrue et al 1998; see also figures 2 & 4), although other light microscopy studies report 

moderate levels of ERα in the PFC (Montague et al, 2008).  Light microscopy studies observe 

ERβ–IR at low levels in the PFC, and very low levels in the STR and NAc (Mitra et al 2003, 

Milner et al 2010; see also figures 2 & 4). Similarly, in situ hybridization studies observe low 

levels of ERβ in the STR and NAc, and extremely low levels of the receptor in the PFC 

(Shughrue et al 1999). Moderate levels of ERα-IR profiles were observed in interneurons of the 
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hippocampus using light microscopy, with the highest density in the stratum radiatum and 

dentate hilus (Solum and Hanada 2001, Weiland et al 1997), and ERβ-IR is observed throughout 

the hippocampus at moderate levels (Zhang et al 2002). The immunolabelling for ERα and ERβ 

observed in these light microscopy experiments was primarily nuclear labeling (Mitra et al 2003, 

Zhang et al 2002); these nuclear receptors are likely responsible for the long-term actions of 

estrogens in these regions.  

However, there are rapid behavioural effects of estrogen in the STR, NAc, PFC and 

hippocampus (Almey et al 2014, Cornil and Charlier 2010, MacLusky et al 2005, Thompson 

1999, Thompson and Moss 1994), which could not occur through binding nuclear ERs. 

Immunolabelling for GPER1 is observed at relatively high levels in the hippocampus, moderate 

levels in the PFC, and lower levels in the STR and NAc (Hazell et al 2009), presumably at the 

cell membrane or associated with cytoplasmic organelles (Almey et al 2012, Otto et al 2008). 

Therefore, binding at GPER1 could be responsible for some of the rapid effects of E2 in these 

brain regions, but the rapid effects of E2 also suggest mERα or mERβ may be present as well. 

Some light microscopy studies observe non-neuronal mER-IR profiles (Milner et al 2005, 

Wagner, Silverman, and Morell 1998, Zhang et al 2002), but the majority do not (Almey et al 

2014, Almey et al 2013, Cruetz and Kritzer 2002, Mitra et al 2003, Shughrue et al 1998, Weiland 

et al 1997), which suggests that light microscopy does not have sufficient resolution to detect 

low levels of mERs. Immunoelectron microscopy methods have higher resolution than light 

microscopy (See Box 1), and can discriminate discreet labeling for mERs in the brain (Milner 

2011). Consequently, this technique was used to clarify the subcellular localization of mERs to 

specific neuronal profiles in the hippocampus. The effects of estrogen on cognition likely result 

from a combination of long-term and rapid actions; there is an impetus to clarify the distribution 

of mERs, to better understand this rapid component of estrogen’s effects. 

 

4. Ultrastructural localization of ERs in the hippocampus 

The earliest incidence of ultrastructural localization of ERs examined the distribution of 

ER (later called ERα) in hypothalamic tissue (Blaustein et al 1992, Langub and Watson 1992). 

Landub and Watson (1992) focussed on nuclear labeling for ERα in the medial preoptic area and 

the median eminence. While examining the ultrastructural localization of nuclear ERα in the 

hypothalamus, a second research group noticed that ERα-IR profiles were also localized to 
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extranuclear sites in both dendrites and terminals (Blaustein et al 1992). These findings implied 

that estrogens could have rapid effects on transmission in the hypothalamus, in agreement with 

the observation that increases in estrogens during proestrus reduced gonadotropin releasing 

hormone and luteinizing hormone in 30 minutes, an effect so rapid that it could not be elicited 

via cytoplasmic ERs (Condon et al 1988, Sarkar and Fink 1980). This initial electron 

microscopic research in the hypothalamus was not pursued, despite that it provided a mechanism 

for the rapid effects of estrogens in this region. However it did suggest that electron microscopy 

is a powerful tool for observing mERs in the brain. Ultrastructural analysis of the distribution of 

ERs recommenced in the hippocampus in the late 90s, based on evidence from McEwen and 

colleagues demonstrating that estrogens induce rapid structural changes in the hippocampus. 

mERα was localized to the cytoplasmic surface of the membrane in interneurons throughout the 

hippocampus, with the highest density in the stratum radiatum of the CA1 (see Fig 2B; Milner et 

al 2001). In the hippocampus, 50% of all mERα-IR profiles are presynaptic profiles, i.e. axons 

and terminals. Presynaptic terminals with mERα-IR form both asymmetric and symmetric 

synapses, suggesting that estrogens affect both excitatory and inhibitory transmission in the 

hippocampus (Milner et al 2001). Additionally 25% of the total mERα-IR profiles are post-

synaptic, i.e. dendrites and dendritic spines (Milner et al 2001), providing a potential mechanism 

for the E2-induced changes in synaptic spine density observed in the hippocampus (Gould et al 

1990). The remaining 25% of mERα-IR profiles in the hippocampus are glial, including 

astrocytes and microglia (Milner et al 2001), suggesting a mechanism for E2 involvement in 

glial-mediated neuroprotection (Arevalo et al 2010). After this initial study in rats, subsequent 

studies have shown that ERα-IR profiles in the mouse hippocampus are similarly distributed 

(Mitterling et al 2010). Some of the mERα-IR profiles observed in the hippocampus are localized 

to cholinergic axons and terminals, identified via the vesicular acetylcholine transporter 

(VAChT), which suggests that mERα is positioned to have rapid effects on cholinergic 

transmission in this region (Towart et al 2003).  Additional electron microscopic 

autoradiography studies have shown that  

125I-E2 binds to both pre- and post-synaptic profiles in the hippocampus supporting a functional 

role for nonnuclear ERs (Milner et al 2008).  

Ultrastructural studies have demonstrated that mERα is associated with small synaptic 

vesicles in a subset of GABAergic axons and terminals in the CA1 of the hippocampus; findings 



17 
 

from this experiment suggest that estrogens may bind at these receptors to mobilize vesicles 

towards synapses (Hart et al 2007).  Further research demonstrated that some of the mERα-IR 

vesicles contain GABA (Tabatadze et al 2013), and that E2 acts via ERα to reduce GABA 

release through interactions with the cannabinoid system (Huang and Woolley 2012). Together 

these findings demonstrate that mERα is observed in the hippocampus, where it is positioned to 

affect presynaptic transmission in GABAergic and cholinergic neurons, and affect E2-induced 

increases in spine density. 

The success of these studies on mERα distribution in the hippocampus led to studies 

examining the distribution of mERβ and GPER1 in the rodent hippocampus. mERβ-IR was also 

observed at extranuclear sites in the hippocampus, in the CA1, CA3, and dentate gyrus (see Fig 

2A; Milner et al 2005, Mitterling et al 2010). Profiles with mERβ-IR were primarily post-

synaptic: ~25% of the total mERβ-IR profiles were dendritic shafts, and ~15% of the mERβ-IR 

profiles were dendritic spines. There was a greater percentage of mERβ localized to dendritic 

spines in the CA1 region of the hippocampus (Milner et al 2005), where E2-induced changes in 

spine synaptic density are observed (Gould et al 1990). Ten percent of all mERβ-IR profiles were 

axon terminals, and 20% of the mERβ-IR profiles were axons, suggesting that binding at mERβ 

would also affect presynaptic transmission in the hippocampus. Similar to mERα, mERβ-IR was 

localized to endomembranes, including the membranes of endoplasmic reticulum and 

mitochondria, and has been observed in glial cells in the hippocampus (Milner et al 2005).  See 

earlier reviews (McEwen and Alves, 1999; McEwen and Milner, 2007; Spencer et al., 2008; 

McEwen et al., 2012) for an in-depth discussion of estrogen effects in the hippocampus.  

Following the discovery and characterization of the newest ER, GPER1, light 

microscopic studies observed GPER1-IR in several subregions of the rodent hippocampus 

(Brailoiu et al 2007, Funakoshi et al 2006). Moreover, electron microscopic studies observed 

GPER1-IR at the plasma membrane of pyramidal cells in the CA2 (Funakoshi et al 2006).  

Recently, collaborative studies with the Milner lab have furthered these findings, demonstrating 

that GPER1-IR is localized to pre- and post-synaptic sites in both the rat and mouse 

hippocampus (see Fig 2C; Akama et al 2013, Waters 2015).  Notably, GPER1 in this region is 

exclusively extranuclear, found in pyramidal cells and interneurons throughout the hippocampus 

(Waters 2015).  Within perikarya, GPER1-IR is affiliated with the plasma membrane and  
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Figure 2. Images of immunomarkers for estrogen receptors and estradiol in the hippocampus of 

female rats. A) Immunoperoxidase labeling for ERβ in a dendritic spine is contacted by an 

unlabeled terminal (uT) in CA1 stratum radiatum, B) Immunoperoxidase labeling for ERα is 

found in two dendritic spines identifiable by the presence of spine apparati (SA), which arise 

from the same dendrite (D). Both labeled spines are contacted by unlabeled terminals (uT), and 

an ERα-labeled axon (Ax) is found nearby, C) Clusters of immunoperoxidase labeling for 

GPER1 are found in small synaptic vesicles near the plasma membrane of a terminal, D) 

Autoradiographic silver grains (black squiggly lines) denoting 125I-estradiol binding in stratum 

radiatum of the CA1 region of the hippocampus in a dendrite (E-D) overlying a mitochondrion 

(m). Black arrows = peroxidase/radioactive marker, Scale Bar = 500nm. 
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endoplasmic reticulum.  Like mERα and mERβ, GPER1-IR is localized to dendritic spines, 

suggesting that estrogens could alter dendritic spine morphology by binding at GPER1. 

Moreover, GPER1 is found in axons and clusters of vesicles in axon terminals, especially in 

CA3, where it could regulate synaptic transmission (Waters et al 2015).   

Together, electron microscopic studies have demonstrated that profiles containing mERα, 

mERβ and GPER1 are abundant in the hippocampus.  Light and electron microscopic studies 

also have revealed that ERs are in hippocampal neurons that undergo adult neurogenesis which 

are known to be important in cognitive processes (for review see Leuner et al 2006). Systemic 

administration of estrogens significantly increases cell proliferation in the dentate gyrus in a 

dose-dependent manner (Gould et al 2000, Tanapat et al 2005).  Using in situ hybridization, 

Isgor and Watson (2005) demonstrated that ERα and ERβ mRNA are expressed in new cells in 

the hippocampus.  Electron microscopic studies have revealed that newly generated cells in the 

subgranular region of the dentate gyrus express mERβ-IR at the plasmalemmal membrane and 

the membrane of cellular organelles (Herrick et al 2006). These findings implicate estrogens in 

the genesis, and/or maturation of cells in the hippocampus.  

Additionally, estrogens have been shown to increase production of pre- and post- 

synaptic proteins in the dorsal region of the CA1 (Brake et al 2001), an effect that is mediated by 

both ERα and ERβ (Spencer-Segal et al 2012, Waters et al 2009). This provides further evidence 

that estrogens are involved in synaptogenesis in the hippocampus, suggesting that estrogens play 

a role in the formation of new synaptic connections. It has also been shown that systemic E2 

administration results an increase in phosphorylated Akt 6 hours following administration, and 

an increase in phosphorylated TrkB 48 hours following administration—an effect that occurs via 

binding at both ERα and ERβ in the hippocampus (Spencer-Segal et al 2012, Spencer et al 2008). 

Moreover, electron microscopic studies have shown that estrogens regulate the levels and 

trafficking of pAkt and pTrkB in hippocampal neurons (Spencer-Segal et al 2011, Yildirim et al 

2011, Znamensky et al 2003). Both of these signalling pathways are implicated in synaptic 

plasticity, so E2-induced activation of these pathways provides another mechanism through 

which estrogens may cause synaptic strengthening or remodelling. Current theories on the neural 

mechanisms responsible for memory formation postulate that synaptic plasticity, synaptogenesis, 

and neurogenesis work in concert in the hippocampus, allowing for memory formation and 

retention. Therefore, the estrogen-induced changes in these brain plasticity mechanisms could 
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impact hippocampal-dependent memory. Interestingly, post-embedding electron microscopic 

studies have revealed that aging negatively affects trafficking of mERα (Adams et al 2002) and 

mERβ (Waters et al 2011) in synapses within the hippocampus; together these findings provide a 

potential mechanism for the cognitive impairments observed in post-menopausal women. 

The success of ultrastructural analysis in the hippocampus led to experiments examining 

the distribution of mERs in other brain regions where estrogens are known to have effects, 

despite a paucity of nuclear receptor staining. Prior reviews have discussed the localization of 

ERs in autonomic circuits (McEwen et al 2012), so it is not discussed here.   Additionally, 

ultrastructural analysis revealed that there was extranuclear mERα observed in serotonergic 

neurons of the raphe nuclei (Milner 2003), providing a mechanism for rapid effects of estrogens 

on serotonergic transmission in this region.  
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Rationale and Hypotheses: 

 It is clear that estrogens affect several cognitive processes, including selective attention, 

reversal learning, multiple memory systems, and object recognition learning, among others. This 

thesis endeavored to explore the cognitive effects of estrogens in female rats, as well as 

examining the effects of estrogens in the context of schizophrenia, using rodent models of this 

disorder. The effects of estrogens on cognitive deficits observed in schizophrenia, and the 

response to the antipsychotic drug haloperidol (HAL) were assessed in female rats. To accurately 

assess the effects of estrogens on these cognitive processes naturally cycling estrogens were 

eliminated by ovariectomizing all female rats in the behavioural experiments. These rats were 

administered no estrogen replacement, a low chronic dose of 17β E2 mimicking plasma levels of 

E2 during the diestrus phase of the cycle, or a high cyclic dose of E2 that mimicking plasma 

levels of E2 during the proestrus phase of the cycle. 

Previous research in this lab has demonstrated female rats with high plasma levels of E2, 

following estrogen replacement or in the proestrus phase of the cycle, during the conditioning 

phase of LI exhibited attenuated LI. Chapter 2 extends these findings, examining the effects of 

no, low and high E2 replacement administered alone, or in conjunction with an acute dose of 

HAL, on behaviour of male and female rats in a LI task. These experiments attempted to confirm 

previous results with female rats, which showed that estrogens have detrimental effects on 

selective attention, and asked whether LI in male rats paralleled LI in females with or without 

estrogens. Additionally these experiments examined whether there was an interaction between 

the E2 replacement regimen and HAL treatment. It was hypothesized that higher E2 replacement 

would be associated with attenuated LI compared to female rats that received no E2 replacement 

and males. Additionally, it was hypothesized that E2 would facilitate the antipsychotic drug 

HAL to restore LI. To investigate these questions female and male rats were run on a 

conditioned emotional response LI procedure in operant chambers. Female rats were OVX and 

administered no, low, or high E2 replacement to determine whether plasma levels of E2 affected 

selective attention, as measured by the LI paradigm. Additionally female and male rats were 

administered saline, 0.05mg/kg or 0.1mg/kg acute doses of the antipsychotic HAL to determine 

how HAL affected selective attention and whether there was an interaction between E2 and 

HAL. 
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Following the LI experiments, Chapter 3 extended these findings to two other cognitive 

processes. These experiments examined the effects of the same E2 replacement regimens (no, 

low, and high E2), administered alone and in conjunction with HAL, on perseveration and 

reversal learning. These experiments asked whether E2 affected perseveration or reversal 

learning in female rats, and whether there was any interaction between the E2 replacement and a 

chronic HAL treatment. The methodology was modified for these experiments to increase their 

ecological validity by using an animal model of schizophrenia; prior to behavioural testing all 

rats were amphetamine sensitized, since this induces some of the cognitive symptoms of 

schizophrenia, including increased perseveration and deficits in reversal learning. It was 

hypothesized that E2 would have a detrimental effect on these cognitive processes, increasing 

perseveration and the latency to reach reversal learning criterion, but that E2 would facilitate 

HAL to reduce perseveration and improve reversal learning. To address these questions female 

rats were trained to press a lever in an operant chamber to receive sucrose reinforcement. 

Perseveration was measured as the time it took to extinguish lever pressing behaviour, and 

reversal learnin was measured as the time it took for rats to consistently switch from pressing the 

formerly active lever to the newly activated lever. All rats were OVX and administered either no, 

low or high E2 replacement; half of the rats in each hormone replacement group were 

administered a chronic dose of HAL and the other half were administered saline. The different 

hormone and drug treatment groups were compared on their perseveration and reversal learning 

behaviour. 

There is evidence that LI, perseveration, and reversal learning are all dopamine 

dependent disorders, mediated in part by the STR, NAc, and PFC (Castane, Theobald, & 

Robbins, 2010; Ersche et al., 2011; Gal et al 1997, Jeanblanc et al, 2003; Nelson, Thur, Marsden, 

& Cassaday, 2010; Oswald et al, 2002; Piantadosi & Floresco, 2014; Schiller & Weiner, 2004; 

Taghzouti, Louilot, Herman, Le Moal, and Simon, 1985). Furthermore, there is evidence that 

infusions of estrogen directly into the STR rapidly (<2hrs) disrupt response memory (Zurkovsky 

et al, 2011), systemic injections of estrogens rapidly (<30min) increase dopamine availability in 

the STR, and infusions of E2 into the NAc rapidly altered dopamine transmission in this region 

(Thompson and Moss, 1994;1997). Consequently it was posulated that estrogens elicited their 

effects on these behaviours and the response to HAL by affecting dopamine transmission, 

potentially in the STR, NAc, or PFC. The mechanism by which estrogens could affect dopamine 
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availability and response memory were unclear, since light microscopy and experiments reported 

almost no nuclear labeling for ERα and ERβ in the STR, and low levels in the NAc. Since the 

effects of E2 in these regions occurred rapidly, it was hypothesized that ERs were localized to 

extranuclear sites.  Electron microscopy was successfully used to visualized mERs in the 

hippocampus, so the next series of experiments used this technique to examine the ultrastructural 

distribution of mERs in the STR, NAc and PFC. 

The experiments in Chapter 4 examined the distribution of ERs, ERα, ERβ, and GPER1, 

in the STR. Chapter 4A was a study that asked whether ERα, ERβ, and GPER1 were localized to 

the STR, and whether these receptors were observed on dopaminergic or cholinergic neurons. 

Chapter 4B confirmed the ultrastructural distribution of ERα and GPER1 in the STR, and 

examined whether ERs were localized to GABAergic neurons in the STR. It was hypothesized 

that mERα, mERβ, and GPER1 would be observed in the STR, and that some of these mERs 

would be localized to dopaminergic neurons. Additionally, it was also hypothesized that a 

proportion of mERs were localized to cholinergic and GABAergic neurons in the STR.  

 Following the experiments in the STR, similar experiments were conducted examining 

the distribution of ERα, ERβ, and GPER1 in the Core and Shell subregions of the NAc, 

described in Chapter 5. These experiments examined whether ERα, ERβ, and GPER1 were 

observed in the NAC, and whether these mERs were localised to dopaminergic neurons, since 

estrogens in the NAc rapidly affect dopamine transmission (Thompson and Moss, 1994). 

Additionally, based on findings in the STR, an experiment also examined whether ERα and 

GPER1 were localized to GABAergic neurons in the NAc Core and Shell. It was hypothesized 

that membrane associated estrogens receptors would be localized to the NAc, potentially on 

catecholaminergic neurons, since there are rapid effects of estrogens on dopamine transmission 

in this region (Thompson and Moss, 1994; 1997), and also on GABAergic neurons. Again, 

electron microscopy and immunolabelling were used to visualize ERs in the NAc, and determine 

what type of neurons these receptors were localized to. All analyses were run separately in the 

NAc Core and Shell to determine if the distribution of ERs differed between these two 

subregions of the NAc. 

 Following the success of the electron microscopy experiments examining the distribution 

of ERs in the STR and NAc, the distribution of these receptors in the PFC was then examned. 

Additionally, research has primarily examined the long-term effects of estrogens on cognition; it 
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remained unclear whether estrogens could elicit rapid effects on cognition through binding at 

mERs. The final chapter of the thesis, Chapter 6, contains two experiments. The first experiment 

examined whether mERs were observed in the PFC, and the second experiment asked whether 

binding at mERs in the PFC could rapidly alter cognition, specifically multiple memory systems. 

Based on the results of Chapters 4 and 5, which observed abundant mERs in the STR and NAc, it 

was hypothesized that ERα, ERβ, and GPER1 would also be observed at extranuclear sites in the 

PFC. To address this questions, electron microscopy and immunolabelling techniques were used 

again to examine the distribution of ERs in the PFC. For the experiment on multiple memory 

systems, there is evidence that higher plasma levels of estrogens bias female rats towards use of 

a place strategy, so it was hypothesized that E2 in the PFC would rapidly bias rats towards use of 

place memory to navigate in their environment. To assess the effects of estrogens on memory 

system bias female rats were administered an infusion of E2 into the medial PFC, and memory 

system bias was assessed with a t-maze task. 
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Abstract: 

There are sex differences in the symptomatology of schizophrenia, and in the response to 

antipsychotic treatments. One hallmark symptom of schizophrenia is a deficit in selective 

attention. Selective attention can be measured using an LI paradigm in humans; LI can be 

measured in rodents, and is used as an animal model of the selective attention deficits observed 

in schizophrenia. In the current experiments LI was used to clarify whether selective attention 

differs between male rats and OVX female rats receiving different E2 replacement regimens. An 

additional aim was to determine whether HAL's facilitation of LI is enhanced by E2. Males and 

OVX female rats were trained in a conditioned emotional response LI paradigm. Females 

received no E2 replacement, a chronic low dose of E2 via silastic capsule, or a high phasic dose 

of E2 via silastic capsule accompanied by E2 (10 µg/kg SC) injections every fourth day. Actual 

plasma levels of E2 were determined using an enzyme linked immunosorbent assay. Rats were 

also administered a vehicle treatment, a 0.05mg/kg, or a 0.1mg/kg IP injection of HAL. Males 

and OVX females that did not receive E2 replacement both exhibited LI, but LI was not 

observed in the low and high E2 replacement groups. HAL restored LI at a lower dose in the 

females receiving high E2 replacement compared to females receiving low E2 replacement, 

indicating that E2 replacement facilitates HAL in restoring LI. 
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1. Introduction 

There are sex differences in schizophrenia, particularly in the positive symptoms of this 

disorder, with women developing schizophrenia later in life and exhibiting less severe 

symptomatology than males (Häfner, 2003; Häfner et al., 1992; Kulkarni et al., 2008). It has 

been suggested that estrogens are, in part, responsible for these sex differences, reducing the 

frequency of hospital admissions and diminishing the psychotic symptoms associated with 

schizophrenia (Kendell et al., 1987; Matevosyan, 2011). Additionally, there is some evidence 

that estrogens are linked to greater efficacy of antipsychotic treatments, as positive symptoms of 

schizophrenia are further reduced when antipsychotics are co-administered with estrogen than 

when administered alone (Akhondzadeh et al, 2003; Seeman, 2004).  These studies suggest that 

estrogens protect against the positive symptoms of schizophrenia and facilitate antipsychotic 

treatments in ameliorating these positive symptoms. However, it remains unclear whether 

estrogens also have these effects on the cognitive symptoms of schizophrenia. 

One specific cognitive deficit associated with schizophrenia is disrupted selective 

attention, which is often assessed using an LI paradigm (Escobar et al, 2002). With LI, non-

reinforced preexposures to a stimulus impair subsequent conditioning, as these preexposures 

result in reduced allocation of attention to that stimulus (Lubow, 1989). However, individuals 

with acute schizophrenia and schizoptypy have impaired performance in LI, as repeated non-

reinforced preexposures to a stimulus do not retard conditioning to that stimulus (Kaplan and 

Lubow, 2011; Lubow et al, 2000; Schmidt-Hansen et al, 2009). Individuals with chronic, 

medicated, schizophrenia do not exhibit disrupted LI, indicating that antipsychotic treatment 

ameliorates this deficit in selective attention (Gray, 1998). It has been argued that this attentional 

deficit in schizophrenics, characterized by the processing of irrelevant stimuli, is a critical 

contributor to the symptomatology of this disease (Brébion et al, 1996; Schmidt-Hansen et al, 

2009). Although deficits in selective attention are a hallmark of schizophrenia, few studies have 

examined whether there are sex differences in this cognitive symptom, and how ovarian 

hormones may contribute to such differences. Preliminary research in both schizophrenic and 

non-schizophrenic populations, indicates that males exhibit LI under conditions where females 

do not (Vol’f et al, 2001; Kaplan and Lubow, 2011). The reason for these sex differences is 

currently unknown, but it is possible that higher levels of estrogens in females may contribute to 

this deficit in selective attention. Additionally, antipsychotic treatments ameliorate the 
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deficiencies in selective attention observed in schizophrenics, but it remains unclear whether 

there are sex differences in this response to antipsychotic medication. 

LI can be assessed in both rodents and humans, and LI paradigms are used to model the 

attentional deficits associated with schizophrenia in animals (Lubow, 2005). Repeated 

psychostimulant treatment, shown to induce a psychotic state in humans (Lichlyter et al, 2011), 

abolishes LI in rats (McAllister, 1997; Moran et al, 1996; Ruob et al, 1997). Administration of 

antipsychotics, including HAL (Arad and Weiner, 2009; Dunn et al, 1993; Feldon and Weiner, 

1991; Ruob et al, 1997; Weiner et al, 1997), among others (Arad and Weiner, 2009; Moran et al, 

1996), facilitate LI in male and female rats in a dose-dependent manner. These antipsychotics 

also recover LI following a chronic psychostimulant treatment that abolishes LI (Moser et al, 

2000), demonstrating that antipsychotics have similar effects on behaviour in the LI paradigm in 

rats and humans. 

Experiments examining the effect of estrogens on behaviour of rats in an LI paradigm 

have yielded contradictory results. Research from our lab and others indicates that high 

circulating levels of estrogens on the conditioning day of an LI paradigm, either during the 

proestrus phase of the estrous cycle or in response to E2 replacement following ovariectomy, are 

associated with disrupted LI (Arad and Weiner, 2008; Nofrey et al, 2008; Quinlan et al, 2010). 

Correspondingly, low levels of circulating estrogens on the conditioning day of the same LI 

paradigm, either during the estrus phase of the estrous cycle or following ovariectomy, are 

associated with intact LI (Arad and Weiner, 2008; Nofrey et al, 2008; Quinlan et al, 2010). This 

suggests that estrogens may be detrimental to selective attention, reflected in the disruption of LI 

observed when circulating levels of estrogens are high. Recent research in humans used a 

paradigm that elicited LI in males, but not females (Vol’f et al, 2001; Kaplan and Lubow, 2011), 

which suggests that estrogens may also have detrimental effects on LI in humans. In contrast to 

these findings, it has also been shown that elimination of circulating estrogens via ovariectomy 

disrupts LI, and estrogen replacement following ovariectomy eliminates this deficit in LI (Arad 

and Weiner, 2009; 2010A; 2010B).  This would suggest that estrogens facilitate, not disrupt, 

selective attention. Research is needed to clarify the effect of estrogens on behaviour observed in 

the LI paradigm. 

The current experiments investigated the effects of E2 on selective attention, and the 

combined effects of both E2 and HAL on selective attention. In the first experiment, the 
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behaviour of males and OVX females receiving no E2 replacement, a low chronic E2 

replacement, or a high phasic E2 replacement, were compared in a conditioned emotional 

response LI paradigm. This experiment also administered two doses of the antipsychotic, HAL 

(0.05 and 0.1mg/kg), to determine, in a dose dependent manner, if the effects of HAL on LI 

varied based on sex or E2 replacement. In the first experiment, the aim was to use E2 

replacement doses that mimic levels of E2 observed during the diestrus and proestrus phases of 

the estrous cycle.  To ensure that E2 replacement doses achieved the desired levels of circulating 

E2, a second study was conducted.  That study examined plasma levels of E2 in OVX rats 

administered the same E2 regimens as study 1 to quantify the plasma concentration of E2 over 

time following the E2 replacement regimes used here. 

 

2. Methods 

2.1 Subjects and Surgeries 

 Subjects included 58 male and 179 OVX female Sprague–Dawley rats weighing 

approximately 260g or 240 g, respectively, at the beginning of the experiment (Charles River 

Laboratories, St Constant, QC). Rats were housed in shoebox cages in a colony room maintained 

on a reversed 12:12 h light/dark cycle (lights off at 08:00 h) at approximately 21 °C. Prior to 

surgery the animals were housed in pairs (but separated by sex), and following surgery animals 

were individually housed. All animals were handled daily, except during recovery from surgery. 

Food was available ad libitum throughout the experiment. Water was available ad libitum until a 

day before the start of the experiment, at which time water bottles were removed from cages and 

replaced for 30 min 2 h after the end of the daily experimental session. All animal handling and 

testing procedures were approved by the Animal Research Ethics Committee (AREC) of 

Concordia University, and were in accordance with guidelines established by the Canadian 

Council on Animal Care. 

 Approximately 4-7 days after arrival all animals underwent surgery. Females were 

ovariectomized bilaterally through a lumbar incision, and males received sham surgeries, under 

isofluorane gas anaesthetic (4% for induction, 2% for maintenance) using aseptic procedures. 

Post-surgical care included administration of the analgesic Anafen (0.1ml, SC), the antibiotic 

penicillin (0.1ml, intramuscular), and physiological saline to prevent dehydration (3ml, SC). All 

rats received a week-long recovery period prior to the start of the experiments. 
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2.2 Drug and Hormone Treatments 

 Female rats were assigned to one of three hormone treatment groups: no E2 replacement, 

low chronic E2 replacement, or high phasic E2 replacement. At the time of OVX surgery rats in 

both the low and high E2 groups were implanted subcutaneously with a silastic capsule 

containing 5% 17-β E2 (Sigma-Aldrich, St. Louis, MO) in cholesterol (Sigma). These capsules 

have been reported to produce a consistent serum concentration of E2 of ~20pg/ml (Mannino et 

al, 2005), which is within the range observed in the diestrus phase of the estrous cycle (Overpeck 

et al, 1978). Rats in the high phasic E2 treatment group received a subcutaneous injection of E2 

(10ug/kg, SC) dissolved in sesame oil every fourth day to mimic levels of E2 observed during 

the proestrus phase of the cycle.  All other rats received oil vehicle injections at this time. 

Injections of E2 or vehicle were administered after the session in the operant chambers on day 3 

and 7 of the experiment. E2 was administered on day 7 so rats would be exposed to E2 

approximately 16 hours prior to the conditioning session on day 8 of the experiment.  

HAL (diluted in 0.9% saline; Sandoz Inc, QC, Canada) was administered at 0, 0.05 or 0.1 

mg/kg, IP. Doses were selected following a dose-response pilot study. A pilot study initially used 

a range of doses up to 0.2 mg/kg IP of HAL, corresponding to typical doses administered to 

males (Moser et al, 2000) and females (Arad and Weiner, 2009). However, this higher dose 

induced sluggishness and torpor in the high E2 female rats, evidenced by a lack of voluntary 

movement and diminished reaction to the footshock. Consequently, the HAL treatments were 

restricted to 0.05mg/kg and 0.1 mg/kg. HAL injections were administered to the rats on the 

morning of day 8 of the experiment ~45min before the beginning of the conditioning session. 

2.3 Latent Inhibition 

 Modular operant test chambers (25 cm wide × 30 cm long × 30 cm high) contained 

within sound-attenuating isolation units were used for all behavioural training and testing 

(Coulbourne Instruments, Allentown, PA). Each chamber was equipped with a center house light 

(2.8 W) 27 cm above the grid floor in the center of the left hand wall of the box. A speaker was 

located just below the house light, and the grid floor was connected to a shock module. A water 

lickometer was located across from the house light approximately 8 cm above the floor. Every 

time an animal licked the water bottle positioned behind the lickometer an infrared beam was 

interrupted; the number of infrared beam interruptions was used as the measure of drinking 
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behaviour. Conditioning chambers and data acquisition were controlled by a desktop personal 

computer running Graphic State Notation software (Coulbourne Instruments, Allentown, PA). 

 Water restriction began the afternoon prior to the beginning of behavioural testing, at 

which point water bottles were removed from the home cages. The following morning rats were 

placed in the operant test chambers and allowed access to the water for 20min; this habituation 

continued for the first 6 days of the experiment to guarantee that the rats learned to drink water in 

the chamber. Rats that did not learn to drink water in the operant boxes sufficiently (100 licks per 

session) were omitted from the study. The number of licks per session was recorded as baseline 

drinking behaviour. Following habituation, on day 7 of the experiment, water bottles were 

removed from the operant chambers. Half of the animals from each group were presented with 

40, 5sec, 2.5 kHz tones at a volume of ~65 decibels (Preexposed group, PE). The 40 tone 

presentations were presented at 10-50s variable intervals over a 22.5 min session in the operant 

chambers. The other half of the animals were placed in the test chambers for an equivalent 

amount of time but were not presented with the tone (Not Preexposed group, NPE). On day 8 all 

rats underwent a conditioning session where they were subjected to two pairings of the 5sec tone 

directly followed by a 0.5 mA foot shock for a duration of 1sec. The inter-shock interval was 

five min. On the 9th day the water bottles were returned to the boxes and animals were re-

habituated to drinking in the chambers.  

Testing occurred on the 10th day when water bottles were present in the operant boxes. 

After the rats made 100 licks from the water bottle the tone turned on and remained on until the 

rat made 20 additional licks or until 5 min elapsed.  This allowed for measurement of drinking 

behaviour both with and without the tone. In this paradigm it is hypothesized that since the tone 

was previously paired with the footshock, then subsequent presentation of the tone should inhibit 

drinking. The inhibition of drinking behaviour is expected to be greater in rats in the NPE group, 

who were only presented with the tone paired with a footshock. Conversely, the PE group who 

heard the tone 40 times without any consequence should not associate the tone and footshock as 

strongly, and their drinking should be less inhibited. This paradigm is thought to indirectly 

measure freezing behaviour, since the decrease in drinking following the onset of the tone is 

typically the result of the rat freezing, a characteristic fear response (Sotty et al, 1996). LI is 

considered to have occurred when the rats in the PE group make 20 licks with the tone on faster 

than rats in the NPE group. 
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2.4 E2 Plasma Level Assessment 

A separate study was conducted to assess the plasma level accuracy of the E2 treatments 

used in the behavioural experiment. To examine the efficacy of the silastic capsule alone, E2 

plasma concentrations were examined for one month following its implantation. This experiment 

included five female Sprague Dawley rats that were OVX by a lumbar incision in the exact 

manner as described for the previous experiment (see 2.2). One week post ovariectomy, rats 

were implanted with a silastic capsule containing 5% E2 as described in the previous study. 

Blood was collected from the tail vein of these rats one week following ovariectomy, prior to E2 

implant, and again at 1, 2, 3, and 4 weeks following capsule implantation. 

In addition, to examine the plasma level effects of an acute E2 injection, seventeen 

female Sprague Dawley rats were OVX by a lumbar incision and implanted with an E2 

containing silastic capsule as described previously. Ten days following the surgery all rats were 

administered a 10µg/kg IP injection, of E2 dissolved in sesame oil (see 2.2). E2 was assayed in 

sera from rats at six time points across a 24hr period; any one rat was only used for two time 

points for ethical reasons. Blood was collected from the tail vein of five rats just prior to the 

injection (baseline), and then again 4 hrs following the injection. Blood was collected from six 

different rats at 8hrs and again at 12hrs following the injection. Finally, blood was collected from 

the final six rats at 16hrs and again at 20hrs following injection. 

Blood was collected in ice-cold vials and immediately centrifuged. Plasma was stored at -

20°C until it was assayed for E2 using a commercially available ELISA kit (Immuno-Biological 

Laboratories Inc., Minneapolis, MI). The assay antibodies have 100% cross-reactivity with E2 

and 0.2% and 0.05% cross-reactivity with estrone and estriol, respectively. The range of the 

assay is between 0 and 2000 pg/ml and the reported inter-assay variation is 7–9%. 

2.5 Statistical Analyses 

 In an LI protocol the suppression ratios in the PE and NPE groups are compared to 

determine if LI has occurred in the PE group. For each rat, a suppression ratio was calculated as 

a measure of LI.  This was measured as the time to complete licks 81–100[A – without the tone] 

divided by the sum of the time to complete licks 81–100 and licks 101–120[B – with the tone]  

(A/A + B). Here, a suppression ratio of 0.5 indicates no suppression of licking during the tone 

(i.e., no conditioned response to the tone), while a suppression ratio of 0.003 indicates full 

suppression of licking in the presence of the tone. Suppression ratios for the rats in each group 
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were averaged; LI is considered to have occurred when the rats in the PE group have 

significantly higher suppression ratio than that in those in the NPE group. 

Data from the males and females were analyzed separately, as hormone treatment level 

was a factor in the analyses for females but not for the males. Suppression ratios from the males 

were analyzed using a 2x3 between subjects ANOVA, and suppression ratios for the females 

were analyzed using a 2x3x3 between subjects ANOVA. Additionally, planned orthogonal 

contrasts were run on all of the data, comparing the PE and NPE groups in each condition to 

determine if LI occurred. T-tests were used for all orthogonal contrasts.  Data from study 2, 

examining circulating levels of E2 in OVX females with E2 replacement were not statistically 

analyzed, as these data were meant to be descriptive. 

 

3. Results 

3.1 Latent Inhibition 

Male rats exhibited LI regardless of HAL treatment (Fig 1A). A 2x3 ANOVA, with main 

factor of exposure (PE vs NPE) and HAL dose (vehicle, 0.05mg/kg, 0.1mg/kg), was used to 

analyze data from the male rats. This ANOVA revealed a significant main effect of exposure, 

F(1, 52) = 19.41, p<0.001. This main effect was due to significantly higher suppression ratios in 

the PE group, compared to the NPE group, indicating that LI occurred. Orthogonal contrasts 

demonstrated that the PE rats had significantly higher suppression ratios than the NPE rats in the 

vehicle group (t(20) = 2.42, p=0.023), the 0.05mg/kg HAL group (t(16) = 3.13, p=0.004), and 

the 0.1mg/kg HAL group (t(16) = 3.77, p=0.002). This shows that male rats developed LI 

regardless of the dose of HAL. 

A 2x3x3 ANOVA, with main factors of exposure (PE vs NPE), E2 replacement (no E2, 

low E2, and high E2), and HAL dose (vehicle, 0.05mg/kg, 0.1mg/kg), was used to analyze data 

from the female rats. There was a main effect of exposure, F(1, 173) = 27.37, p<0.001, a main 

effect of HAL treatment, F(2, 173) = 6.12, p=0.003), and an interaction between exposure and 

HAL treatment, F(4, 173) = 2.74, p=0.030. Orthogonal contrasts demonstrated that OVX 

females receiving no E2 replacement in the PE group had significantly higher suppression ratios 

than NPE group in the vehicle condition (t(25) = 2.32, p=0.029), the 0.05mg/kg HAL condition 

(t(22) = 2.45, p=0.023), and the 0.1mg/kg condition (t(16) = 2.92, p=0.010). These OVX females 

showed a similar pattern of results to the male rats, exhibiting LI regardless of the dose of HAL.  
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Figure 1. A) Suppression ratios for males; latent inhibition was observed in rats treated with 

0.05 and 0.1 mg/kg haloperidol. B) Suppression ratios for OVX females receiving no E2 

replacement; latent inhibition was observed in rats treated with vehicle, 0.05mg/kg, and 0.1 

mg/kg haloperidol. C) Suppression ratios for ovariectomized (OVX) females receiving high 

estradiol (E2) replacement; latent inhibition was observed in rats treated with 0.05mg/kg and 

0.1mg/kg haloperidol. D) Suppression ratios for OVX females receiving low E2 replacement: 

latent inhibition was observed in rats treated with the 0.1mg/kg haloperidol. * = p<0.05 
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Orthogonal contrasts demonstrated that OVX rats with either high or low E2 replacement 

did not develop LI when administered a vehicle injection. At the 0.05 mg/kg dose of HAL, rats 

in the high E2 group exhibited LI, that is, the PE rats exhibited significantly higher suppression 

ratios than the NPE rats (t(10) = 2.35 , p=0.03). In contrast, rats receiving the low E2 

replacement and the 0.05 mg/kg dose of HAL did not express LI insofar as there was no 

difference in suppression rations between PE and NPE groups. Finally, the 0.1mg/kg dose of 

HAL recovered LI in rats receiving both the high and low E2 replacement (t(11) = 2.69, p=0.02 

and t(10) =2.49, p=0.02, respectively). 

3.2 E2 Plasma Levels 

The plasma concentrations of E2 following implantation of the silastic capsule were 

determined (Fig 2A). Data are expressed as mean ± standard error of the mean. Female rats had 

relatively low levels of E2 after ovariectomy, prior to implantation of the capsule 

(6.51±1.38pg/ml). There was an increase in the plasma concentration of E2 at week 1 

(37.54±5.67pg.ml) and week 2 (38.25±11.72pg/ml) following capsule implantation. Plasma E2 

levels slowly decreased at week 3 (29.41±16.58pg/ml) and week 4 (17.09±4.01pg/ml). These 

plasma concentrations are in the range of the average plasma level of E2 during diestrus in the 

rat (Overpeck et al, 1978). 

A second experiment examined the plasma concentration of E2 in response to a silastic 

capsule implant paired with a 10ug/kg injection of E2 (Fig 2B). Rats had similar E2 plasma 

concentrations following capsule implantation as was observed in the previous experiment 

(28.66±5.91pg/ml), confirming the efficacy of the capsules. Four hours following the E2 

injection the average plasma level of E2 increased markedly to 208.79±12.03pg/ml. The plasma 

concentration of E2 had decreased to 79.00±4.30pg/ml 8 hrs following the injection, and was 

maintained close to that level 12hrs following injection (83.26±24.08pg/ml).  Sixteen hours after 

the injection plasma concentrations of E2 dropped to 51.30±11.68pg/ml, and 20hrs following the 

injection plasma levels were down to 39.18±8.97pg/ml (Fig 2B). The average plasma 

concentration across the 20hr period following E2 injection is in the range of plasma levels 

observed during the proestrus phase of the cycle in the rat (Overpeck et al, 1978). 
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Figure 2. Estradiol (E2) plasma levels following: A) ovariectomy and implantation of a silastic 

capsule containing 5% 17-beta E2 and cholesterol. B) ovariectomy, implantation of a silastic 

capsule, and a 10ug/kg subcutaneous injection of E2, dissolved in sesame oil. 
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4. Discussion 

 These experiments demonstrate that physiologically relevant levels of E2 disrupt LI, and 

this disruption can be reversed by an acute injection of HAL administered prior to the 

conditioning session. Furthermore, the lower dose of HAL (0.05mg/kg) was sufficient to restore 

LI in the high E2 replacement rats, but not in those with low E2 replacement. This indicates that 

estrogens may facilitate the effects of HAL, as HAL is more effective in females with high levels 

of E2.  Females are more responsive to antipsychotics than males (Seeman, 2004), and these 

results suggest that estrogens contribute to the differing responses to HAL in males and females 

in an LI paradigm. These experiments also show that the dose and method of E2 capsule 

replacement used here results in sustained low levels of E2 similar to that observed during 

diestrus for up to four weeks. Furthermore, the single injection of E2 shows a peak plasma 

concentration within four hours following injection, returning to baseline levels within twenty 

hours mimicking estrogen levels during proestrus (Overpeck et al 1978). 

4.1 E2 and Latent Inhibition 

The results presented here are in accordance with previous research from this lab 

indicating that estrogens disrupt LI in females under conditions where LI is observed in males 

and in OVX female rats (Nofrey et al, 2008; Quinlan et al, 2010). When OVX rats are 

administered E2 replacement alone, there is no difference between suppression ratios in the PE 

and NPE groups, indicating that LI did not occur (Fig 1). No difference was observed between 

PE and NPE females due to low suppression ratios in the PE group, suggesting that the E2 

treated females are unable to ignore the tone that should have been rendered irrelevant through 

multiple non-reinforced presentations.  In contrast both male rats and OVX female rats given no 

E2 replacement have significantly higher suppression ratios in the PE group compared to the 

NPE group, indicating that LI did occur. Taken together these findings demonstrate that estrogen 

has detrimental effects on selective attention, impairing the ability to disregard irrelevant stimuli 

in the environment.    

In contrast to these findings there is a body of research indicating that ovariectomy 

induces deficits in LI while E2 facilitates LI (Arad and Weiner, 2009; 2010a; 2010b). The reason 

for these contradictory results is unclear, although methodological differences likely contributed. 

In the conditioned emotional response LI paradigm employed by others (Arad and Weiner, 2009; 

2010a; 2010b) they use a 10 sec, 80dB tone during pre-exposure and conditioning compared to 
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the 1 sec 65dB tone used in our experiments. Therefore their stimuli is much more salient, since 

it is louder and longer, which could impact whether the stimuli is rendered irrelevant during the 

preexposure phase, and the association formed during the conditioning phase. Additionally, the 

high E2 replacement dose used here is much lower than the E2 dose used by other researchers in 

the field. In this study, efforts were made to use an E2 replacement regime that mimicked the 

estrous cycle of the rats; study 2 demonstrates that plasma levels of E2 following capsules 

implantation and capsule implantation combined with an acute injection E2 were within the 

range observed across the estrous cycle (Fig 2; Overpeck et al, 1978), so the results of this 

experiment should mimic the effects of endogenous estrogens. This difference in the E2 

replacement doses may provide a partial explanation for the contradictory findings on the effects 

of E2 on selective attention. 

4.2 Haloperidol and LI 

It is well established that HAL can facilitate LI in male rats (Moser et al, 2000), and more 

recently research has demonstrated that this is also true for female rats (Arad and Weiner, 2009). 

The findings of the current experiments correspond to this, as the highest dose of HAL restores 

LI in females receiving both low and high E2 replacement. More interestingly these results 

indicate that E2 actually facilitates the effects of HAL on LI, as the lower dose of HAL was 

sufficient to restore LI in the high E2 replacement group, but not in the low E2 replacement 

group. In these experiments, and others (Arad and Weiner, 2008; Nofrey et al, 2008; Quinlan et 

al, 2010), elevated levels of circulating estrogens are detrimental to LI in female rats, but these 

findings indicate that E2 replacement also facilitates the effects of HAL treatment in facilitating 

LI. There is evidence that this might be the case in humans as well. Sex differences in LI are 

observed in humans, where males exhibit LI under conditions where females do not (Vol’f et al., 

2001; Kaplan and Lubow, 2011), and the peak of estrogens in the menstrual cycle is correlated 

with distractibility and an inability to disengage from irrelevant stimuli (Beaudoin and Morrocco, 

2003). Additionally, research in humans indicates that antipsychotic treatments are more 

effective in females, as schizophrenic women require significantly lower doses of antipsychotic 

drugs to alleviate their symptoms than men (Usall et al, 2003). Furthermore E2 administered in 

conjunction with antipsychotic treatment results in better treatment outcomes in schizophrenia 

(Akhondzadeh et al, 2003; Seeman, 2004).  
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This study did not examine the neurobiological underpinnings of the behaviours observed 

in the LI paradigm. However, previous research has implicated dopaminergic transmission in 

various nuclei of the mesocorticolimbic system in LI. In the PFC, lesions and local infusion of a 

dopamine antagonist enhance LI (Broersen et al, 1996; George et al, 2010). Lesions of the NAc 

shell abolish LI (Gal, Schiller and Weiner, 2005; Weiner et al., 1996), lesions to the NAc core 

result in abnormally persistent LI (Weiner et al., 1996), and lesions of both the NAc core and 

shell result in enhanced LI (Gal, Schiller and Weiner, 2005). Additionally, dopaminergic activity 

in the anterior STR is positively correlated with behaviour in an LI task (Jeanblanc et al, 2003). 

Interestingly, estrogens have been shown to alter dopamine transmission in these nuclei of the 

mesocorticolimbic system. Specifically, estrogens increase dopamine levels and D2 receptor 

density in the NAc (Le Saux et al, 2006; Thompson and Moss, 1994), increase dopamine activity 

and D2 receptor density in the STR (Becker and Rudick, 1999; Landry et al, 2002), and increase 

dendritic spine and dopamine 1 receptor density in the PFC (Lévesque and Di Paolo, 1989; 

Wallace et al, 2006). Estrogen-induced changes in dopamine transmission in the 

mesocorticolimbic system could be partially responsible for the detrimental effects of estrogens 

on behaviour in the LI paradigm. Additionally, HAL exerts its effects by antagonising D2Rs, and 

E2 replacement increases in D2R density in the STR and NAc (Landry et al, 2002; Le Saux et al, 

2006). Therefore, E2 replacement would increase binding sites for HAL, providing one possible 

explanation for estrogens’ facilitatory effects on this antipsychotic. Future research should 

investigate these hypotheses to determine whether estrogen-induced changes in dopaminergic 

transmission in the mesocorticolimbic system are responsible for the E2-induced reductions in 

selective attention, and increased response to HAL treatment, observed in this study. 

4.3 Conclusions  

E2 replacement administered to OVX females abolishes LI under conditions where it is 

observed in males, but despite these detrimental effects on LI, E2 facilitates HAL to enhance LI. 

These experiments indicate that estrogens are, in part, responsible for sex differences in LI and 

the response to HAL.  Further research is needed to extend these findings from HAL to other 

antipsychotic treatments, and to elucidate the specific neurobiological mechanisms responsible 

for estrogens effects on LI and the response to antipsychotic treatments. 
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Preface: 

The study in Chapter 3 attempts to extend the findings from the LI study to other 

cognitive processes that are affected in individuals with schizophrenia. Specifically, the 

experiments in Chapter 3 examine the effects of estrogens, alone and in conjunction with HAL, 

on perseveration and reversal learning. The methodology in these experiments was adjusted to 

increase ecological validity; HAL was administered chronically, via osmotic minipump, using a 

dose that was previously shown to achieve plasma levels that mimic those observed in humans 

administered HAL (Featherstone, Kapur, and Fletcher, 2007). Additionally, all rats in the 

perseveration and reversal learning experiments were amphetamine sensitized to mimic the 

reversal learning deficits and excessive perseveration observed in schizophrenia (Samaha, 

Seeman, Stewart, Rajabi, and Kapur, 2007).  
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Abstract: 

There are sex differences associated with schizophrenia, where women have later onset of the 

disorder, less severe symptoms, and better response to antipsychotic medications. Estrogens are 

thought to play a role in these sex differences, and there is evidence that they protect against the 

positive symptoms of schizophrenia, but it remains unclear whether estrogens also protect 

against cognitive symptoms of schizophrenia. Amphetamine (AMPH) sensitization of locomotor 

activity is used as an animal model for some of the symptoms of schizophrenia, including 

cognitive deficits such as excessive perseveration and slower reversal learning. This experiment 

used OVX amphetamine sensitized female rats to investigate the effects of E2 and the 

antipsychotic HAL, administered alone and in combination, on perseveration and reversal 

learning. Perseveration and reversal learning were measured in operant chambers where rats 

were trained to press one of two levers to receive a sucrose pellet. Perseveration was assessed as 

the number of lever presses made during a one day extinction test, when levers pressing no 

longer resulted in delivery of sucrose, and reversal learning was assessed as the time to switch 

from pressing the formerly active lever to the newly activated lever. Results of these experiments 

demonstrated that E2 alone did not affect either perseveration or reversal learning, but indicate 

that E2 facilitates the effects of HAL to reduce perseveration and improve reversal learning. 

These results suggest that the optimal dose HAL differs based on serum levels of E2.  
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1. Introduction: 

There are sex differences in the progression of schizophrenia and the response to 

antipsychotic drugs, with women exhibiting later onset of the disorder, and reduced symptom 

severity (Hafner, 2003; Seeman, 1982). Additionally, natural declines in plasma estrogen levels 

pre-menstruation (Endo, Daiguji, Asano, Yamashita, and Takahashi, 1978; Glick & Stewart, 

1980), post-partum (Kendell, Chalmers, & Platz, 1987; McNeil, 1987), and following 

menopause (McNeil, 1987), are associated with increased vulnerability to psychosis. In addition 

to protecting against psychosis, estrogens are also linked to better treatment outcomes (Chua, de 

Izquierdo, Kulkarni, and Mortimer, 2005; Kulkarni, Gavrilidis, Worsley, and Hayes, 2012; 

Seeman, 1982); women require lower doses of antipsychotics to treat both acute (Chouinard & 

Annable, 1982; Chouinard & Turnier, 1986) and chronic, schizophrenia (Seeman, 1982; Seeman 

and Lang, 1990). Recent clinical experiments demonstrate that women administered E2 in 

conjunction with antipsychotic medication exhibited less positive, negative and general 

psychopathology symptoms compared to controls that received antipsychotic treatment alone 

(Akhondzadeh et al., 2003; Kulkarni et al., 2014). These experiments demonstrate the potential 

for estrogen in the improvement of the positive and negative symptoms of schizophrenia, but it 

remains unclear whether estrogens affect the cognitive symptoms of schizophrenia. 

These experiments focused on two related cognitive symptoms of schizophrenia: 

excessive perseveration and deficits in reversal learning. Perseveration is a cognitive process 

defined by the repetition of a previously reinforced behavior, despite the fact that reinforcement 

is no longer provided (Crider, 1997; Holahan, Madularu, McConnell, Walsh, & DeRosa, 2011), 

and reversal learning is defined as the cognitive capacity to discontinue a behaviour that is no 

longer relevant in a particular context, and adopt a novel behaviour that reflects the contextual 

change (Pantelis et al., 1999). Patients with schizophrenia are capable of acquiring the initial rule 

but perform poorly once the rule changes; they perseverate (Waford & Lewine, 2010), persisting 

in the previously effective behavior, and demonstrate longer latencies to modify their behaviour 

to reflect a new rule (Pantelis et al., 1999; Reed, Harrow, Herbener, & Martin, 2002; Waltz & 

Gold, 2007). Typical antipsychotic medications, including HAL, effectively treat the positive 

symptoms of schizophrenia, but are frequently ineffective in alleviating the cognitive symptoms 

associated with this disorder (Bowie & Harvey, 2006). The cognitive symptoms of schizophrenia 
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are the best predictor of functional outcome (Bowie & Harvey, 2006), so there is an impetus to 

discover treatments that improve these symptoms. 

Animal models have been developed for some of the symptoms of schizophrenia (Jones, 

Watson, & Fone, 2011) to allow for controlled experiments examining the efficacy of 

antipsychotic drugs. AMPH sensitization of locomotor activity is an animal model that induces 

some neurobiological and behavioural changes associated with schizophrenia (Featherstone, 

Kapur, & Fletcher, 2007). The dopamine hypothesis of schizophrenia states that this disorder is 

caused, in part, by elevated dopamine in the dorsal and ventral striatum, and reduced dopamine 

transmission in prefrontal regions (Abi-Dargham et al., 1998; Howes & Kapur, 2009). In 

humans, AMPH administration increases dopamine availability in the dorsal and ventral striatum 

(Boileau et al., 2006) and repeated AMPH use can cause psychosis (Bell, 1965). In rats, repeated 

AMPH administration also results in increased dopamine transmission in the NAc and STR, even 

after extended periods of abstinence from AMPH, a phenomenon known as neurobiological 

sensitization (Fiorino & Phillips, 1999; Paulson & Robinson, 1995). Together these findings 

suggest that repeated AMPH administration induces a neurobiological state and similar to that 

observed in schizophrenia. Interestingly, repeated AMPH administration to rodents also leads to 

increased locomotor activity in response to the same dose of drug, which is referred to as 

locomotor sensitization (Featherstone et al., 2007; Paulson & Robinson, 1995). Research has 

demonstrated that locomotor sensitization develops in parallel with neurobiological sensitization 

(Pierce & Kalivas, 1995), so it can be used as a behavioural marker for neurobiological 

sensitization. 

There is behavioural evidence that AMPH sensitization of locomotor activity models 

some of the cognitive symptoms of schizophrenia. AMPH sensitization of locomotor activity 

induces deficits in LI in male rats, (Murphy, Fend, Russig, & Feldon, 2001; Russig, Murphy, & 

Feldon, 2002; Tenn, Kapur, & Fletcher, 2005) which are ameliorated by the antipsychotics HAL 

and clozapine (Russig et al., 2002). More pertinent to this study, an acute dose of AMPH 

increases perseveration in a Y-maze task in male rats (Hahn, Zacharko, & Anisman, 1986; 

Oades, Taghzouti, Simon, & Le Moal, 1985), which is ameliorated by HAL treatment (Oades et 

al., 1985). Similarly, acute AMPH administration induces deficits in reversal learning which are 

reversed by acute HAL treatment (Idris, Repeto, Neill, & Large, 2005). Repeated AMPH 

treatments also induces deficits in reversal learning in rats (Featherstone, Rizos, Kapur, & 
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Fletcher, 2008; Fletcher, Tenn, Rizos, Lovic, & Kapur, 2005) and Marmosets (Ridley, Haystead, 

& Baker, 1981), which are ameliorated by an acute administration of HAL (Ridley et al., 1981). 

These findings demonstrate that AMPH induces deficits in selective attention, reversal learning, 

and excessive perseveration, similar to those observed in schizophrenia, which are alleviated by 

administration of antipsychotic drugs. This suggests that sensitization of locomotor activity is a 

good model for some of the cognitive symptoms associated with schizophrenia. 

Despite clinical research indicating that estrogens improve the efficacy of antipsychotic 

medication, little preclinical research has examined the possible interaction between estrogens 

and antipsychotic drugs. Previous research with OVX females suggests that administration of 

combined E2-HAL treatment improves selective attention significantly more than HAL alone 

(Almey, Hafez, Hantson, & Brake, 2013; Arad & Weiner, 2009), paralleling clinical research 

findings (Akhondzadeh et al., 2003; Kulkarni et al., 2014). However there is little previous 

research examining the effects of estrogen and HAL on perseveration or reversal learning. 

Perseveration can be assessed through extinction tasks, and it was shown that E2 administered to 

OVX rats facilitates extinction of lever pressing for cocaine, suggesting that E2 decreases 

perseveration (Twining, Tuscher, Doncheck, Frick, & Mueller, 2013). However, other 

experiments indicate that estrogens do not affect extinction of lever pressing for cocaine (Larson 

& Carroll, 2007). In terms of reversal learning, a physiologically relevant dose of E2 has no 

effect on this behaviour, while a supraphysiological dose of E2 administered alone or with HAL 

has detrimental effects on reversal learning (Arad & Weiner, 2012). Results from these 

experiments are contradictory and difficult to interpret based on methodological differences.  

The experiments in this study attempt to clarify the effects of E2, administered alone and 

in conjunction with HAL, on perseveration and reversal learning in amphetamine sensitized rats. 

Both perseveration and reversal learning were assessed in operant boxes equipped with two 

levers, and rats were trained to press one of these levers to receive a sucrose pellet. To test 

perseveration neither lever delivered a pellet, and the extinction of lever pressing was used as a 

measure of perseveration. To assess reversal learning the lever that delivered sucrose pellets was 

switched, and the time it took for rats to adjust their behavior to match this new rule was used as 

a measure of reversal learning. It was predicted that E2 would have a detrimental effect on 

reversal learning and perseveration, but would facilitate the effects of HAL to decrease 

perseveration and improve reversal learning. 
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2. Methods 

2.1 Subjects 

 The subjects consisted of 121 female Sprague-Dawley rats (for group sample sizes see 

Figures; Charles River Laboratories, St. Constant, QC), weighing 220-240g upon arrival. Rats 

were pair housed in standard clear shoebox cages in a colony room maintained on 12hr reverse 

light cycle at constant temperature (21oC) and humidity (60%). One week before behavioral 

training, rats were housed individually and food restricted to 90% of their free feeding weight. 

All procedures were in accordance with the guidelines of the Canadian Council on Animal Care, 

and approved by Animal Research Ethics Committee of Concordia University. 

2.2 Surgery and Estradiol Replacement 

 Ovariectomy and capsule implantation.  All rats were ovariectomized to control for 

naturally cycling estrogens. Ovaries were removed via lumbar incision under isofluorane gas 

anesthesia (4% induction, 2% maintenance). Rats were administered 0.1 mL of the analgesic 

Anafen (10mg/mL) by subcutaneous (SC) injection, and 0.1 mL of the antibiotic penicillin 

(30,000 IU/mL) by intramuscular injection. Rats were assigned to one of three groups: no E2 

replacement, low E2 replacement, or high E2 replacement. During the ovariectomy rats in the 

low and high E2 replacement groups were implanted with a silastic capsule containing E2, 

described below. 

 Hormone Treatment.  E2 replacement was administered via silastic capsule containing 

5% 17-β E2 in cholesterol (Sigma-Aldrich, St.Louis, MO).  These capsules produce a plasma 

concentration of ~20-25 pg/ml  E2 (Almey et al., 2013), which corresponds to plasma levels of 

E2 observed during the diestrus phase of the estrous cycle (Butcher, Collins, & Fugo, 1974). In 

addition to capsules, rats in the high E2 replacement group received injections of E2 in sesame 

oil every four days (10 μg/kg, SC), starting at the beginning of the final training phase (see 

Procedures). The combination of the E2 capsule and this SC injection of E2 achieved an average 

plasma level of ~90pg/ml across 12 hours (Almey et al., 2013), similar to plasma levels of E2 

during the proestrus phase of the cycle (Butcher et al., 1974).  Rats in the no E2 and low E2 

groups received sesame oil injections.  

2.3 Drug treatments 

 Amphetamine. D-amphetamine sulphate (Sigma-Aldrich, St. Louis, MO) was repeatedly 

administered via intraperitoneal injection (IP) to induce locomotor sensitization. For the 
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induction phase of sensitization all rats were administered 1mg/kg AMPH daily for four 

consecutive days; locomotor activity was assessed for 1hr following AMPH administration. 

After induction all rats underwent a 7 day period when they received no AMPH, and then they 

were given an AMPH challenge (0.5mg/kg IP) and locomotor activity was assessed. Locomotor, 

and therefore neurobiological sensitization, was considered to have developed if rats exhibited 

comparable or higher levels of locomotor sensitization in response to the challenge dose of 

AMPH (0.5mg/kg) as they did to the initial dose of AMPH in induction (1mg/kg). This protocol 

has previously been shown to induce AMPH sensitization of locomotor activity (Madularu, 

Shams, & Brake, 2014). 

 Haloperidol treatment.  Rats in each hormone condition were randomly divided into two 

drug treatment groups, one of which was implanted with osmotic minipumps (Alzet, model 

2002; Durect, Cupertino, CA, USA) containing HAL, and a control group that were implanted 

with minipumps containing saline.  For the perseveration and a first reversal learning experiment 

minipumps infused 0.25mg of HAL per day for 14 days. A second reversal learning experiment 

implanted minipumps that released 0.13mg HAL per day. Delivery of HAL via minipump has 

been shown to produce a steady state D2 receptor occupancy in rats, closely approximating the 

pharmacokinetic profile of effective drug doses in humans (Samaha et al., 2008; Samaha, 

Seeman, Stewart, Rajabi, & Kapur, 2007). For minipump insertion rats were anesthetized with 

isoflurane, as described in the ovariectomy section, and minipumps were implanted 

subcutaneously through a small dorsal incision.   

2.4 Materials 

Operant conditioning chambers. Behavioral training and testing were conducted in 

operant chambers (25 cm x 30 cm x 30 cm; Coulborne Instruments, Allentown, PA) enclosed in 

sound-attenuating isolating units. Each chamber contained two levers located 5 cm above the 

grid floor. The levers were positioned symmetrically on each side of a food magazine, where 

sucrose pellets were delivered. Pressing the active lever resulted in the inactivation of the house 

light and the delivery of a 45 mg sucrose pellet (Bio-Serv). Pressing the inactive lever had no 

effect.  Operant chambers were controlled by Graphic State software that recorded lever presses 

and food magazine entries for analysis (Coulborne Instruments, Allentown, PA). 

Locomotor Activity Boxes.  Locomotor activity during the AMPH sensitization procedure 

was assessed using locomotor activity boxes (42 cm x 25 cm x 17 cm).  Locomotor activity was 
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assessed via two pairs of photocells at 14cm increments, located 2.5cm above the grid floor. 

Interruptions of the photobeams were recorded by a computer running custom designed software 

activity (Steve Cabilio, 1999), and were used as the measure of locomotor activity. 

2.5 Procedure 

For all three experiments rats were food restricted to 90% of their free feeding weight.  

Behavioral training took place during the dark phase of the diurnal cycle. Once rats reached 90% 

of their bodyweight shaping procedures began, which involved a daily 1hr session in operant 

chambers to train rats to press a lever for a chocolate flavoured sucrose pellet at a fixed ratio 1. 

For the perseveration experiment rats were placed in the operant chambers for 1hr shaping 

sessions, daily, where pressing either of the two levers (counterbalanced across rats) resulted in 

the delivery of reinforcement. Shaping continued until all rats were consistently pressing the 

lever (>100 presses per session) for at least 2 days; this took ~10 days of training. For the 

reversal learning experiments rats were placed in the operant chambers for 1hr training sessions, 

daily, where pressing both of the levers resulted in the delivery of a reinforcement. Once rats 

were consistently pressing the lever (>100 presses per session) the protocol was changed so that 

pressing only one of the levers resulted in delivery of reinforcement; the lever that delivered the 

reinforcement was alternated daily to ensure that rats did not develop a strong preference for 

either lever. Shaping continued until rats would press either lever >100 times per training session 

(~14 days). 

Following shaping all rats were OVX as described above; rats in the low and high E2 

groups were implanted with E2 capsules at this time. Rats were given one week to recover from 

surgery with ad libitum food. Following this the AMPH sensitization protocol began. For 

induction of locomotor sensitization all animals were treated with 1mg/kg AMPH, IP, daily for 

four consecutive days. Following a seven day withdrawal period, rats received a 0.5mg/kg 

challenge dose of AMPH and locomotor activity was assessed to determine if locomotor 

sensitization developed. 

Immediately following the AMPH challenge, all rats were implanted with an osmotic 

minipump containing either saline or HAL. Rats were given one day to recover from minipump 

implantation, and then the final training began. During training one of the two levers was active, 

resulting in delivery of a sucrose reinforcement, while the other lever was inactive. In the 

perseverance experiment the active lever was the same as during shaping. In the reversal learning 



49 
 

experiments the active lever was counterbalanced across rats. Rats were trained for 1hr daily in 

the operant chambers for 10 consecutive days during which the active lever remained the same. 

It was during this final training period that E2 injections for high E2 replacement group were 

administered. Rats received E2 injections, SC, at ~4pm on day 2, 6, and 10 of training. Injections 

were given every fourth day to mimic the rat estrous cycle; E2 injections were administered the 

afternoon of day 10, ~16hrs before testing occurred, allowing time for the long-term effects of 

E2 to occur before the behavioural test. 

On the 11th day testing for perseveration or reversal learning began. Thirty minutes 

before testing all rats were administered a 0.5mg/kg injection of AMPH (IP) before they were 

placed in the operant chambers. For the perseveration experiment both levers were inactive; 

regardless of any lever pressing no reinforcement was delivered. The measure of perseveration 

was the number of lever presses on the formerly active lever during the 1hr testing session. For 

the reversal learning experiment the formerly active lever was now inactive, and the inactive 

lever was made active. During testing, rats were expected to alter their pressing behavior in 

response to the change in reward contingency, such that they were expected to stop pressing the 

formerly active lever and switch to press on the previously inactive lever. Reversal testing lasted 

for two 1hr testing sessions on consecutive days (Day 11 and 12). 

2.6 Statistical analysis. 

In order to confirm that sensitization of locomotor activity occurred in response to 

AMPH treatment, locomotor activity in response to the 0.5 mg/kg AMPH challenge was required 

to be equal to or greater than locomotor activity in response to the initial 1 mg/kg dose of 

AMPH. A two-tailed dependent sample t-test was employed to compare differences in locomotor 

activity. Sensitization of locomtor activity was considered to have developed if rats exhibited 

similar or significantly higher locomotor activity to the 0.5mg/kg AMPH challenge than they did 

to the initial 1mg/kg dose of AMPH during induction. 

For perseveration, the dependent variable was a ratio calculated between the number of 

active lever presses during the extinction challenge (A) and the average number of active lever 

presses over the last two days of training (B; A/(A+B)); this ratio depicted the number of lever 

presses on the formerly active lever, while controlling for individual differences in lever pressing 

behaviour. For reversal learning, the dependent variable was measured using a ratio of active 

lever presses (A) to total lever presses (B; A/(A+B)). Reversal learning was measured as the 
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latency to modify pressing behavior in response to the newly implemented reward contingency. 

The criterion for having achieved successful reversal learning was defined as achieving 90% of 

the lever press ratio attained on the last day of training for three consecutive 5min time bins. This 

criterion was used to ensure rats had consistently reversed their lever pressing behaviour. 

In order to assess the effects of HAL on perseveration and reversal learning planned 

orthogonal contrasts were conducted with independent samples t-tests comparing HAL and 

saline treated rats in each hormone condition (no E2, low E2, and high E2). Cohen’s d effect 

sizes with confidence intervals were calculated for each planned comparison. Three 2 x 3 

ANOVAs were used to compare the drug and hormone treatment conditions; one ANOVA 

compared perseveration ratios between treatment conditions, and two ANOVAs compared time 

to achieve reversal criterion (min): one for the 0.25mg HAL data and one for the 0.13mg HAL. 

Tukey’s post-hoc analyses were used to explore any significant main effects or interaction 

effects. 

 

3. Results 

The AMPH treatment regime induced locomotor sensitization in all hormone conditions 

(Fig 1). In the perseveration experiment there was no significant difference in locomotor activity 

to the AMPH challenge (0.5mg/kg) and the initial induction dose of AMPH (1mg/kg) in the no 

E2 and high E2 conditions; in the low E2 condition there was significantly higher locomotor 

activity to the challenge dose of AMPH than the induction dose of AMPH, t(15) = -3.23, p < 

0.01 (Fig 1A). In the reversal learning experiment using 0.25mg HAL the no, low, and high E2 

groups exhibited greater locomotor activity to the challenge dose of AMPH than to the induction 

dose, t(12) = -3.86, p < 0.01, t(11) = -2.42, p < 0.05, and t(14) = -2.95, p < 0.05, respectively (Fig 

1B).  Finally, in the reversal learning experiments using the 0.13mg dose of HAL, the no and low 

E2 groups had no significant difference in locomotor activity between induction and challenge 

doses of AMPH, while the high E2 group exhibited significantly more locomotor activity to the 

challenge dose than the induction dose of AMPH, t(17) = -3.58, p < 0.01 (Fig 1C). These 

findings demonstrate that the AMPH sensitization regime induced locomotor sensitization in all 

groups, indicating that neurobiological sensitization also occurred. 

In the perseveration experiment the 2x3 ANOVA revealed a main effect of HAL, F(1,39) 

= 14.02, p = 0.001 , with HAL treated rats (M = 0.44) exhibiting significantly less lever pressing 
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Figure 1. Locomotor sensitization data from no E2, low E2 and high E2 rats in: A) the 

perseveration experiment, B) the reversal learning experiment with 0.25mg HAL, C) the reversal 

learning experiment with 0.13mg HAL. Error bars depict the standard error of the mean, * = p < 

0.05, numbers on bars are the n for each group. 
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than SAL treated rats (M = 0.56; Fig 2)).  There was no main effect of hormone treatment group, 

and no interaction between drug and hormone treatments. Orthogonal planned comparisons 

demonstrated that there was no significant difference between HAL and SAL treated rats in the 

no E2 condition, d = 0.43, CI ± 1.48. However, HAL treated rats in the low E2 conditions 

exhibited significantly lower lever pressing than SAL treated rats, t(12) = 3.71, p < 0.01, d = 

1.98, CI ± 1.46. In contrast, there was not a significant difference between SAL and HAL treated 

rats in the high E2 condition, although there was a trend towards HAL treated rats perseverating 

less than SAL treated rats, t(13) = 2.11, p = 0.054, d = 1.09, CI ± 1.21. Although the chronic 

0.25mg dose of HAL did not decrease perseverative responding in OVX females with no E2 or 

high E2 replacement, HAL administered in conjunction with a low chronic E2 replacement 

regime significantly reduced perseverative responding in AMPH sensitized female rats (see Fig 

2). 

In the first reversal learning experiment, using a 0.25mg dose of HAL, a 2x3 ANOVA 

revealed a significant main effect of drug F(1,32)=5.52, p<0.05, with HAL treated rats 

(M=53.06min) exhibiting significantly faster reversal learning than SAL treated rats 

(M=73.25min). There was also a significant interaction between drug and hormone treatments, 

F(2,32)=6.31, p<0.01. Post hoc analyses demonstrated that rats administered no E2 and HAL 

(M=40.83min) and low E2 and HAL (M=35.00min) had significantly faster reversal learning 

than rats administered high E2 and HAL (M=83.33min), p<0.01. Post hoc analyses indicated no 

significant differences between SAL treated rats in the different E2 replacement conditions, 

suggesting that E2 had no effect on reversal learning. Orthogonal planned comparisons were 

used to compare HAL and SAL treated rats in each hormone condition. In the no E2 and high E2 

conditions there was no significant difference in reversal learning between HAL and SAL treated 

rats, d = 0.66, CI ± 1.10 and d = 0.74, CI ± 1.27, respectively. In contrast, in the low E2 

condition rats administered HAL demonstrated significantly faster reversal learning than SAL 

treated rats t(11) = 3.72, p < 0.01, d = 2.15, CI ± 1.67. These results demonstrate that, in general, 

HAL treated rats have faster reversal learning. However, this effect is driven by rats in the low 

E2 condition, as there are no significant differences between HAL and SAL treated rats in the no 

and high E2 conditions (see Fig 3A).  
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Figure 2. Lever press ratio for haloperidol (HAL) or saline (SAL) treated ovariectomized rats 

that received no, low and high E2 replacement. Error bars depict standard error of the mean, * = 

significant difference (p < 0.05), + = trend towards difference (p < 0.1), numbers on bars are the 

n for each group. 
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Figure 3. Time to achieve reversal criterion for no, low, and high E2 replacement groups that 

received A) the 0.25mg dose of haloperidol (HAL) or saline (SAL) and B) the 0.13mg dose of 

HAL or SAL. Error bars depict standard error of the mean, * = significant difference (p < 0.05), 

+ = trend towards difference (p < 0.1). 
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In the second reversal learning experiment, which used a 0.13mg does of HAL, a 2x3 ANOVA 

no significant main effects and no significant interaction between the drug and hormone 

treatments. The orthogonal contrasts on each hormone condition demonstrated that there were no 

significant differences between HAL and SAL treated rats in the no and low E2 conditions, d = -

0.02, CI ± 1.17 and d = 0.17, CI ± 1.37, respectively. However, in the high E2 condition there 

was a trend towards HAL treated rats exhibiting significantly faster reversal learning than SAL 

treated rats, t(16) = 1.74, p = 0.10, d = 0.82, CI ± 1.04. The results of this experiment indicate 

that a chronic 0.13mg dose of HAL is not sufficient to affect reversal learning behavior in no and 

low E2 treated female rats, but may reduce the latency to reversal behaviours in rats administered 

high E2 replacement (see Fig 3B). 

 

4. Discussion 

The results of these three experiments indicate that E2 alone has no effect on 

perseveration or reversal learning, while HAL generally reduces perseveration and improves 

reversal learning, although this effect is modified by the hormone replacement regime. These 

results also suggest that E2 facilitates the effects of HAL to decrease perseveration and improve 

reversal learning in AMPH sensitized female rats. In the perseveration and reversal learning 

experiments with the 0.25mg dose of HAL, this dose was not sufficient to affect perseveration or 

reversal learning in AMPH sensitized OVX rats that were not administered E2 replacement. 

However, in AMPH sensitized rats administered low E2 replacement, the 0.25mg dose of HAL 

decreased perseveration and the latency to reverse lever pressing behavior. In sensitized rats 

administered high E2 replacement and 0.25mg HAL, results were more difficult to interpret 

since this dose did not significantly improve perseveration or reversal learning. Previous research 

indicates that there is an optimal range of D2 receptor activation for successful reversal learning, 

so it is postulated that the combined 0.25mg HAL and high E2 replacement doses decreased 

dopamine transmission excessively. This hypothesis is supported by the results of the reversal 

learning experiment using the 0.13mg dose of HAL, discussed in detail below. 

4.1 Methodological Considerations 

The method of HAL administration, via 14 day release osmotic minipumps, imposed 

some restrictions on the behavioural protocols used in these experiments. Specifically, the length 
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of training and testing was determined by the longevity of the minipumps, since the animals had 

to be tested while they were receiving a full daily dose of HAL. Although the minipumps 

released the same volume (12µ) daily for 14 days, we wanted to conclude testing 12 days 

following minipump insertion to ensure that all rats were receiving a consistent dose of HAL. 

Additionally, rats were allowed one day to recover following minipump implantation before the 

daily final training and testing sessions began. Therefore, minipumps were inserted the afternoon 

of day 0, rats recovered day one, were trained for nine days (days 2-10), and testing started day 

11. In a pilot study we observed that this 9 day period was not sufficient for all rats acquire 

consistent lever pressing behaviour. Because we could not extend this training period due to the 

time restrictions imposed by the minipumps we decided to shape lever pressing behaviour prior 

to beginning the experiment. This meant that all rats had acquired lever pressing, or had been 

excluded from the study, prior to ovariectomy surgeries and AMPH sensitization of locomotor 

activity. 

 It should be noted that in the shaping phase of the reversal learning experiment, once 

lever pressing behaviour was acquired the active lever was switched daily meaning that all rats 

had learned that either lever could provide reinforcement. This was done to ensure that no strong 

spatial bias was developed and reversal of lever pressing occurred relatively rapidly, so the 

majority of rats achieved reversal criteria during the two days of testing. Despite the fact that rats 

had obtained reinforcement for pressing the “inactive lever” during shaping, the behaviour 

observed during testing qualifies as reversal learning, since the rats had consistently performed 

one behavioural response for nine days before they were required to reverse that behavioural 

response during testing. This is supported by other studies that reverse behaviour multiple times 

during an experiment (Abdul-Monim, Reynolds, and Neill; Boulougouris, Dalley, and Robbins, 

2007; Widholm, Clarkson, Strupp, Crofton, Seegal, and Schantz, 2001). 

4.2 Locomotor Sensitization 

In all experiments the rats exhibited locomotor sensitization, which indicates that 

neurobiological sensitization occurred in all groups. The effects of AMPH sensitization of 

locomotor activity on perseveration and reversal learning were not assessed in these experiments, 

but extensive previous research suggests that both acute and repeated AMPH administration 

increases perseveration and induces deficits in reversal learning (Featherstone et al., 2008; 
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Fletcher et al., 2005; Hahn et al., 1986; Idris et al., 2005; Oades et al., 1985; Ridley et al., 1981). 

Thus, it is assumed that the AMPH sensitization regimen used in these experiments induced 

similar deficits.  

4.3 The effects of HAL and E2 on Perseveration and Reversal Learning 

In general, the 0.25mg dose of HAL reduced AMPH-induced increases in perseveration 

and deficits in reversal learning, evidenced by the main effect of the 0.25mg dose of HAL 

observed in both the perseveration and reversal learning experiments. This parallels previous 

findings, which demonstrate that acute administration of HAL recovers AMPH induced increases 

in perseveration (Oades et al., 1985) and deficits in reversal learning (Idris et al., 2005; Ridley et 

al., 1981). To our knowledge, this is the first time a chronic HAL treatment regime, which 

mimics steady state plasma levels of HAL achieved with human antipsychotic treatment 

regimens (Samaha et al., 2008; Samaha et al., 2007), has been shown to decrease perseveration 

and improve reversal learning in an animal model of schizophrenia.  

In contrast, there were no effects of E2 replacement on perseveration or reversal learning 

in AMPH sensitized female rats. There was no main effect of E2 replacement in the analyses on 

the perseveration or reversal learning data. In the reversal learning experiment with 0.25mg 

HAL, post-hoc analyses found no significant differences between SAL rats in the no, low, and 

high E2 replacement conditions. This corresponds to some previous research that showed no 

effect of E2 on perseveration, as measured by lever pressing for cocaine (Larson & Carroll, 

2007). Our findings differ from other experiments which found that E2 administration decreased 

perseveration of lever pressing for cocaine (Twining et al., 2013) and impaired reversal learning 

(Arad & Weiner, 2012). There are numerous methodological differences between these 

experiments which could explain these discrepancies. For example, differences in the 

reinforcement provided in the task (cocaine vs. sucrose), differences in the behavior required 

(place preference vs. self-administration), and/or differences in E2 replacement doses (150µg/kg 

vs. 10µg/kg), or the fact that all rats in this study were amphetamine sensitized, could explain the 

incongruities between previous findings and the findings of the current study. These results 

indicate that physiological E2 replacement regimens have no effect on perseveration or reversal 

learning in AMPH sensitized female rats. 

In the perseveration experiment and the reversal learning experiment that used the 

0.25mg dose of HAL the low E2 replacement facilitated the effects of HAL in AMPH sensitized 
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female rats. In OVX female rats receiving no E2 replacement 0.25mg HAL did not affect 

perseveration or reversal learning, as HAL and SAL treated rats had comparable behavioural 

results. However, in the low E2 replacement group HAL treated rats exhibited significantly less 

perseverative responding and more rapid reversal learning than SAL controls, indicating that the 

low E2 replacement regime facilitated HAL. In contrast, there was no effect of this dose of HAL 

in rats administered high E2 replacement on perseveration or reversal learning. Interestingly, in 

the perseveration experiment there was a trend towards rats receiving the high E2 and 0.25mg 

dose of HAL perseverating less than SAL controls. In contrast, in the reversal learning 

experiment, rats administered this dose of HAL with the high E2 replacement actually had 

slower reversal learning than SAL controls, although this did not reach significance. It is unclear 

why the combined high E2 replacement and 0.25mg HAL treatment is more detrimental to 

reversal learning than perseveration; one possibility is that perseveration is a more simplistic 

cognitive process, so is less sensitive to E2-induced fluctuations in dopamine transmission than 

reversal learning, but further research is needed to address this. Initially, the results obtained 

when rats were administered the 0.25mg dose of HAL and high E2 replacement appear difficult 

to reconcile, but may be explained by evidence suggesting an inverted U-shaped curve of D2 

receptor activation on perseveration and reversal learning.  

4.4 An optimal level of D2 receptor activation for cognition 

HAL ameliorates deficits in reversal learning induced by AMPH (Idris et al., 2005; 

Ridley et al., 1981), but chronic administration of HAL to rats that are not AMPH sensitized, and 

thus do not have excessive dopamine transmission, induces deficits in reversal learning (De 

Steno & Schmauss, 2009). Conversely, the administration of a D2 agonist to rats can also result 

in impairments in reversal learning (Boulougouris, Castane, & Robbins, 2009). Additionally, 

both D2 agonist and antagonist drugs infused into the forebrain of pigeons cause increases in 

perseverative errors in a reversal learning task (Herold, 2010). Together these findings suggest 

that there is an optimal level of D2 activation for cognition, since both reducing and increasing 

D2 receptor activation can induce deficits in perseveration and reversal learning. In these 

experiments, the 0.25mg dose of HAL was not sufficient to improve reversal learning when 

OVX rats received no E2 replacement. The low E2 replacement regimen facilitated the 0.25mg 

dose of HAL, reducing transmission at the D2 receptor to an optimal level causing a decrease in 

perseveration and an improvement in reversal learning. In the high E2 replacement group, the 
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combination of a 0.25mg dose of HAL and high E2 reduced transmission at the D2 receptor 

excessively, resulting in no improvement in perseveration or reversal learning. This hypothesis is 

supported by our experiment with 0.13mg HAL; this dose of HAL was not sufficient to affect 

reversal learning in rats administered no and low E2 replacement, but there was a trend towards 

more rapid reversal learning in rats administered high E2 replacement. Although this difference 

did not reach significance, the effect size indicated that this was a large effect (Cohen’s d = 

0.82), and the pattern of behavior in high E2 replacement rats receiving 0.13mg HAL is opposite 

to that observed in high E2 rats receiving 0.25mg HAL (see Fig 3). This suggests that the 0.25mg 

dose of HAL was optimal for AMPH sensitized rats administered low E2 replacement, but was 

excessive when administered in conjunction with the high E2 replacement regime, while the 

0.13mg dose only had an effect when rats were also administered high E2 replacement. Clinical 

data corroborate this finding, as antipsychotic medications are shown to be more effective when 

administered in conjunction with E2 (Akhondzadeh et al., 2003; Kulkarni et al., 2014; Kulkarni, 

Gavrilidis, et al., 2012).   

4.5 Mechanism for the interaction between E2 and HAL 

Although the mechanisms through which E2 facilitates HAL are not fully elucidated, 

there is evidence indicating that E2 affects dopamine and D2 receptor availability and function in 

the STR, which could provide an explanation for the interaction between E2 and HAL. 

Ovariectomy results in significant decreases in D2 receptor binding in the STR and NAc, which 

is prevented by E2 replacement, suggesting that estrogens maintain D2 receptor density in these 

regions (Landry, Levesque, & Di Paolo, 2002; Le Saux, Morissette, & Di Paolo, 2006). E2 also 

promotes changes in the D2 receptor that convert the receptor to a low affinity state (Levesque & 

Di Paolo, 1988); in this low affinity state the D2 receptor is not activated by dopamine binding, 

making it functionally inert (Seeman, 2006). These findings indicate that E2 replacement 

administered to rats in this experiment would increase the density of D2 receptors, increasing 

binding sites for HAL, and decrease the effects of dopamine binding at D2 receptors by 

converting receptors to their low affinity state. Alternatively, there is evidence that combined E2 

and HAL treatment reduces dopamine levels in the NAc more than HAL alone (Madularu et al., 

2014). This suggests that E2 may facilitate the effects of HAL by reducing dopamine 

availability, therefore reducing binding at dopamine receptors, including the D2 receptor.  

4.6 Conclusions 
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The findings of these three experiments in this study suggest that E2 alone has no effect 

on reversal learning or perseveration, but that E2 facilitates the effects of HAL to reduce 

perseveration and improve reversal learning, in AMPH sensitized rats. However, the high E2 

replacement combined with the 0.25mg dose of HAL did not improve perseveration or reversal 

learning, possibly because the combination of high E2 and 0.25mg HAL reduced transmission at 

the D2 receptor excessively, reducing activation of the D2 receptor to sub-optimal levels. These 

findings indicate that administration of E2 in conjunction with antipsychotic drugs improves the 

efficacy of these drugs, so that they ameliorate some cognitive deficits associated with 

schizophrenia. This suggests that the optimal dose of HAL, when administered chronically as it 

is to individuals with schizophrenia, may differ across the menstrual cycle in females. Since 

cognitive deficits of this disorder are difficult to treat, and are the best predictor of functional 

outcome, the findings of these experiments have implications for the treatment of schizophrenia.   
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CHAPTER 4: 

MEMBRANE-ASSOCIATED ESTROGEN RECPETORS IN THE DORSAL STRIATUM 
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ESTROGEN RECEPTORS ARE FOUND IN GLIA AND AT 

EXTRANUCLEAR NEURONAL SITES IN THE DORSAL STRIATUM OF FEMALE 

RATS: EVIDENCE FOR CHOLINERGIC BUT NOT DOPAMINERGIC CO-

LOCALIZATION. 
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Preface: 

The previous two chapters describe a series of experiments which demonstrate that 

estrogens affect some dopamine-dependent cognitive processes and the response to a dopamine 

antagonist, HAL. The mechanism through which these effects might occur remained unclear, 

since previous research reported relatively low levels of ERs in the terminal regions of the 

mesocorticolimbic and nigrostriatal pathways. Research in the hippocampus suggested that 

electron microscopy had sufficient resolution to detect ERs that were not observed using light 

microscopy, including mERs. Consequently, a series of experiments, described in Chapters 4, 5, 

and 6, used single and dual immunolabelling techniques and electron microscopy to determine 

the ultrastructural localization of ERs in the STR, NAc, and PFC. The initial experiments, 

described in the following Chapter, 4A, examined the distribution of ERs, ERα, ERβ, and 

GPER1, in the STR, and determined the proportion of ERα and GPER1 localized to 

dopaminergic and cholinergic neurons. 
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Abstract: 

Estrogens rapidly affect dopamine (DA) neurotransmission in the dorsal striatum (STR) and DA-

related diseases such as Parkinson’s disease and schizophrenia. How estrogens influence DA 

function remains unclear, in part, because the ultrastructural localization of ERs in the STR is not 

known. Light microscopic studies of the STR have suggested the presence of ERs. This 

experiment used electron microscopy to determine if these ERs are at extranuclear sites in the 

STR, providing evidence for a mechanism through which estrogen could rapidly affect dopamine 

transmission.  The STR was labelled with antibodies for ERα, ERβ, and GPER1 to confirm 

whether these ERs were present in this brain area. Following this, the STR was dual labelled 

with antibodies for ERα or GPER1 and tyrosine hydroxylase (TH) or VAChT to determine 

whether ERs are localized to dopaminergic and/or cholinergic processes, respectively. 

Ultrastructural analysis revealed immunoreactivity for ERα, ERβ, and GPER1 exclusively at 

extranuclear sites throughout the STR. ERα-, ERβ- and GPER1 immunoreactive (IR) profiles are 

mostly frequently observed in axons and glial profiles, but are also localized to other neuronal 

profiles. Dual labeling revealed that ERα and GPER1 –IR profiles are not dopaminergic but are 

sometimes cholinergic. As these receptors are exclusively extranuclear in the STR, binding at 

these receptors likely has rapid effects on neurotransmission in this region. 
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1. Introduction 

Estrogens affect dopamine-dependent behaviours such as response memory (Quinlan, 

Hussain, and Brake, 2008; Zurkovsky et al., 2007) and selective attention (Nofrey, Ben-Shahar, 

and Brake, 2008; Quinlan et al., 2010). They are also implicated in dopamine-related diseases such 

as Parkinson’s disease (for review see Bourque, Dluzen, and Di Paolo, 2009) and schizophrenia 

(Seeman, 2004). Estrogens increase dopamine (DA) neurotransmission in the dorsal striatum 

(STR; a.k.a. caudate/putamen; Becker and Rudick, 1999), which may contribute to these effects. 

Yet, how estrogens influence DA neurotransmission remains unclear. Because it is believed that 

estrogens act through binding at ERs to influence DA function, it is important to examine the 

ultrastructural localization of these receptors in the STR.  

 The localization of ERs in the STR is of particular interest because estrogens modulate 

dopaminergic activity at various steps in neurotransmission in this brain area. Both natural 

increases in estrogens across the estrous cycle, and E2 replacement in OVX rats, attenuate DA 

reuptake in the STR (Becker and Rudick, 1999; Thompson, 1999), possibly by reducing the 

availability of the dopamine transporter (Watson, Alyea, Hawkins, Thomas, Cunningham, and 

Jakubas, 2006). Furthermore, chronic E2 treatment results in significant increases in DA D2 

receptor binding in the STR (Landry, Levesque and Di Paolo, 2002; Le Saux, Morissette and Di 

Paolo, 2006), with no corresponding increase in D2 mRNA in the STR.  These authors suggested 

that this indicates that E2-induced increases in D2 receptors occur through binding at membrane-

associated receptors (Lammers, D’Souza, Qin, Lee, Yajima and Mourdain, 1999). Finally, 

systemic injections of E2 are associated with higher levels of amphetamine-induced DA release 

in the STR (Becker, 1990; Becker and Rudick, 1999). These E2-induced increases in DA release 

occur rapidly, which further supports the idea that estrogens act through binding at mERs in this 

region (Becker and Rudick, 1999).  

 Estrogens may affect DA transmission in the STR via binding at the classical ERs, ERα 

and ERβ, or the more recently discovered G-protein-coupled estrogen receptor 1 (GPER1), 

formerly known by its orphan receptor name, GPR30. Using in situ hybridization, Shughrue et 

al. (1997) examined the distribution of ERα and ERβ throughout the central nervous system of 

the female rat and found no evidence of mRNA for these receptors in the STR. However, mRNA 

for ERα and ERβ was found in the STR of female mice using real time – polymerase chain 

reaction (Küppers and Beyer, 1999), and limited nuclear immunolabelling for ERα and ERβ was 
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observed in the in the STR of adult female mice using light microscopy (Mitra et al., 2003). 

Immunohistochemical studies using light microscopy also have assessed GPER1 distribution in 

the brain, and have shown this receptor to be abundant in the STR (Brailoiu et al., 2007). Thus, 

light microscopy data indicate that GPER1 receptors are present in the STR, and ERα and ERβ 

also may be found there at very low levels.  Establishing if and where these ERs are located on 

striatal neurons would contribute to our understanding of how estrogens affect dopaminergic 

activity in this region. 

 Three experiments were conducted using immunolabelling techniques and electron 

microscopy (EM) to examine the distribution of ERs in the STR. Experiment 1 was conducted to 

determine whether ERs are found in this brain area, and, if so, whether they are located on 

neurons or glia. Since these experiments revealed that ERα and GPER1 are in numerous axon 

terminals, experiment 2 used dual immunolabelling EM to determine if these ERs are co-

localized with tyrosine hydroxylase (TH), a marker of dopaminergic terminals (Gerfen and 

Wilson, 1996). Moreover, acetylcholine (ACh) has modulatory effects on dopaminergic 

transmission in the STR (Threlfell and Cragg, 2011), and ERα has been localized to cholinergic 

terminals in the hippocampus (Towart et al., 2003) while GPER1 has been localized to 

cholinergic neurons in medial septum, nucleus basalis magnocellularis, and STR (Hammond, 

Nelson and Gibbs, 2010). Therefore, experiment 3 used dual labeling EM to determine whether 

ERα or GPER1 are localized to profiles containing VAChT, a marker of cholinergic neurons.  

 

2. Materials and Methods 

2.1 Animals 

Adult female (225 - 250 g; approximately 60 days old; N = 6) Sprague Dawley rats from 

Charles River Laboratories (Wilmington, MA) were pair-housed with ad libitum access to food 

and water and with 12:12 light/dark cycles (lights on 0600 - 1800).  All procedures were in 

accordance with the National Institutes of Health guidelines and approved by the Weill Cornell 

Medical College Institutional Animal Care and Use Committee.  The rats used in these 

experiments are the same as those used by Williams and colleagues (Williams, Torres-Reveron, 

Chapleau and Milner, 2011).  After arrival, rats acclimated 1 week to the vivarium after which 

estrous cycle phase was determined using vaginal smear cytology (Marcondes, Bianchi and 

Tanno, 2002; Turner and Bagnara, 1971). Tissue from rats in the diestrus 2 phase of the estrous 
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cycle was analyzed for these experiments. Estrous phase was verified by measuring uterine 

weights and plasma E2 levels from blood samples (see Williams et al., 2011).  

2.2 Antisera 

ERα:  A rabbit polyclonal antiserum (AS409) produced against almost the full peptide for the 

native rat ERα (aa 61 through the carboxyl terminus) was supplied by S. Hayashi. This antibody 

was previously tested for specificity, and shown to recognize both ligand bound and unbound 

receptors (Alves, Weiland, Hayashi and McEwen, 1998; Okamura, Yamamoto, Hayashi, 

Kuroiwa and Muramatsu, 1992).  On immunoblots of uterine lysates, this antiserum recognizes 

one major band migrating at ~67kD (the molecular weight of ERα; Milner et al., 2001). 

Preadsorption of the antibody with purified ERα resulted in no detectable bands in any of these 

locations (Milner et al., 2001).  

ERß: A rabbit polyclonal antiserum produced against a peptide sequence in the C-terminus (aa 

468-485) of the mouse ERß protein was used (Z8P; Zymed Laboratories, San Francisco, CA; 

Shughrue and Merchenthaler, 2001). This antibody has been shown to be specific for ERß 

(~60kDa) using Western Blot analyses, double label with ERß-mRNA using in situ 

hybridization, preadsorption control and absence of labeling in fixed brain sections prepared 

from ERß knock-out mice (Cruetz and Kritzer, 2002; Shughrue and Merchenthaler, 2001). 

GPER1:  (Two antisera were used)   

Experiment 1: An affinity purified rabbit polyclonal antiserum produced against the N-terminus 

extracellular domain of the human GPER1 receptor (LifeSpan BioSciences, Inc., Seattle, WA) 

was used in experiment 1. This antibody recognized GPER1-green fluorescent protein 

transfected COS7 cells, and showed identical patterns of labeling to an antibody generated 

against the C-terminus of the GPER1 protein (Revankar, Cimino, Sklar, Arteburn and Prossnitz, 

2005).   

Experiments 2 & 3: These experiments used a rabbit polyclonal antiserum generated against a 

synthetic peptide, CAVIPDSTEQSDVRFSSAV (Multiple Peptide Systems, San Diego, CA), 

derived from the C-terminus of the human GPER1 receptor (Filardo, Quinn, Bland and 

Frackelton, 2000). In Western blots, this affinity purified antibody specifically recognizes a 38-

kD band that corresponds to the mature 351-amino acid GPER1 polypeptide and does not 

recognize ER or ER (Filardo et al., 2000).  In brains fixed with 4% paraformaldehyde, 
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immunoreactivity was greatly reduced when the antibody was preadsorbed with 10mg/ml of 

purified C-terminal peptide (Hammond and Gibbs, 2011). 

Vesicular acetylcholine transporter (VAChT):  A goat polyclonal antiserum against the C-

terminal synthetic peptide sequence corresponding to amino-acids 511-530 of the rat VAChT 

(Arvidsson, Riedl, Elde and Meister, 1997; Gilmor et al., 1996).  This antibody was obtained 

commercially from Incstar (Stillwater, MN; now Millipore) and has been used in previous 

studies using identical labeling conditions (Threlfell and Cragg, 2011).  

Tyrosine hydroxylase (TH): A mouse monoclonal antiserum against the full length of the 

peptide TH in the rat (Immunostar, Inc., Hudson, WI) was used.  This antibody has been 

characterized extensively in fixed rat brain (Wang et al., 2006). 

2.3 Tissue preparation 

 Rats were deeply anesthetised with sodium pentobarbital (150mg/kg, i.p.) and were 

perfused through the ascending aorta sequentially with: 10ml heparin (1000 U/ml) in saline; 

50ml of 3.75% acrolein (Polysciences, Washington, PA) in 2% paraformaldehyde and 0.1 M 

phosphate buffer (PB; pH 7.4), and 200ml of 2% paraformaldehyde in PB. Brains were removed, 

cut into four 5mm blocks, and postfixed in 2% paraformaldehyde in PB for 30 minutes. The 

brains were sectioned coronally at 40µm thickness on a vibrating microtome (Vibratome; Leica) 

and stored in 30% sucrose and 30% ethylene glycol in PB (Milner, Waters, Robinson and Pierce, 

2011) at -80°C.  

 Tissue sections containing the STR (Fig 1F) were rinsed in PB and coded with hole 

punches so that they could be pooled in single containers.  Additionally, in single-labeling 

experiments for ERα, a section containing the ventromedial and arcuate nuclei of the 

hypothalamus was included in analyses; at the light microscopic level there is abundant ERα 

labeling in this region (Yaghmaie et al., 2010), so the success of immunolabelling could be 

confirmed at the light microscopic level prior to processing the tissue for electron microscopy.  

Similarly, in the experiment examining ERβ, a section containing the supraoptic nucleus was 

included, since previous light microscopy experiments have observed abundant imunolabelling 

for ERβ in this region (Shughrue et al., 1997). Sections were incubated in 1% sodium 

borohydride in PB for 30 minutes to remove any active aldehydes. Tissue then was rinsed in PB 

followed by 0.1M Tris-buffered saline (TBS; pH 7.6), and was incubated for 30 minutes in 1% 

bovine serum albumin (BSA) in TBS to reduce non-specific labeling. 
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Figure 1. Light microscopic localization of ERs in the STR. A) Neither nuclear nor extranuclear 

ERα-IR is detected. B) Dense nuclear ERα-IR in the ventromedial and arcuate nuclei of the 

hypothalamus. C) No extranuclear ERβ-IR is detected; however, rarely a nucleus with ERβ-IR 

(arrow) is detected. D) Dense nuclear ERβ-IR in the supraoptic nucleus. E) Dense extranuclear 

GPER1-IR is detected in the neuropil; moreover, several cells with GPER1-IR (arrows) are seen.  

F) A coronal schematic of the striatum (atlas level 14; AP +1.00mm from bregma [Paxinos and 

Watson, 1998]) showing the region analysed by EM (grey trapezoid). 

  



70 
 

2.4 Immunohistochemical Labeling 

Experiment 1. Free floating tissue sections containing the STR from 3 rats were processed for 

immunohistochemical localization of ERα, ERβ or GPER1. Tissue sections from each rat were 

incubated in anti-rabbit ERα (1:10,000 dilution), ERβ (1:2000 dilution) or GPER1 (Biosciences, 

1:1000 dilution) for 24 hours at room temperature, and 4 days at 4°C in 0.1% BSA in TBS. ERs 

were visualized using the avidin-biotin complex (ABC) method (Milner et al., 2011). Briefly, the 

tissue was incubated in a 1:400 dilution of biotinylated donkey anti-rabbit immunoglobulin (IgG)  

 (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) in 0.5% BSA in TBS for 30 

minutes. Tissue was then incubated in peroxidase-avidin complex (Vector, Burlingame, CA) for 

a further 30 minutes, and 3,3-diaminobenzidine (DAB, Aldrich, Milwaukee, WI) and H2O2 in 

TBS for 6 minutes. 

Experiments 2 and 3. Tissue from three rats was processed for immunohistochemical localization 

of ERα or GPER1 and TH or VAChT. Immunohistochemical procedures for ERs were identical 

to experiment 1 above. One day prior to processing either TH antisera (1:2000 dilution) or 

VAChT antisera (1:3000 dilution) was added to the diluent. 

 For immunohistochemical localization this experiment used pre-embedding dual labeling 

methods (Milner et al., 2011). The same ABC method described above for experiment 1 was 

used to visualize the ERs. TH and VAChT were detected using silver enhanced immunogold. 

Briefly, tissue sections were incubated for 2 hours in a 1:50 dilution donkey anti-mouse or 

donkey anti-goat IgG conjugated to 1-nm colloidal gold particles (Electron Microscopy Sciences 

[EMS], Fort Washington, PA) in 0.001% gelatin and 0.08% BSA in 0.01M phosphate buffered 

saline (PBS). Tissue sections then were rinsed in PBS, incubated in 1.25% glutaraldehyde in 

PBS for 10 minutes, rinsed again in PBS, followed by a brief wash in 0.2M sodium citrate (pH 

7.4). A 7 minute Incubation in a silver solution (IntenSE; GE Healthcare) was used to enhance 

the conjugated gold particles. 

2.4 Tissue fixation and embedding for ultrastructural analysis 

 Following immunolabelling, tissue sections from all three experiments were fixed for 

60min in 2% osmium tetroxide in PB, dehydrated through a graded series of ethanols and 

propylene oxide, and embedded in EMbed 812 (EMS) between two sheets of Aclar (Milner et 

al., 2011). Ultrathin sections (~70nm thick) were taken through the dorsal region of the STR 

(Figure 1) using a Leica UCT ultratome. The tissue was collected on copper grids (EMS) and 
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then was counterstained using Reynolds’ lead citrate and uranyl acetate. These grids were 

examined under a Philips CM10 electron microscope with an AMT digital camera. Final 

photomicrographs were generated from digital images, where brightness and contrast were 

adjusted using Windows Live Photo Gallery 2011. Adjusted images were assembled in 

Microsoft PowerPoint 2010. 

2.5 Data Analysis 

 The subcellular distribution of ERα, ERβ, and GPER1 alone, and ERα and GPER1 co-

localized with either TH or VAChT, were examined in the STR. A profile was considered 

positive for immunogold labeling if it contained two or more gold particles. Two STR sections of 

54µm2, from either the right or left hemispheres, were analyzed for each rat. For quantification 

analyses ER labeled profiles in each section were counted and categorized as: dendrites, 

dendritic spines, axons, axon terminals, or glia. The total number of labelled profiles was 

averaged for all six tissue sections (2 sections x 3 rats).The number of each type of single or dual 

labelled profile was divided by the total number of ER-IR profiles to determine the relative 

proportion of each type of labelled profile. Tissue selected for counting was taken from a depth 

of 0.2-1.5µm from the plastic–tissue interface, and only samples that were thin sectioned evenly 

across the plastic tissue interface were included in these analyses. 

 The type of neuronal profile was determined using the description of ultrastructural 

morphology from Peters et al. (Peters, Palay and Webster, 1991). Dendrites were large profiles 

(usually between 1.0 and 2.0 µm) that contained regular microtubule arrays and were sometimes 

contacted by terminals.  Dendritic spines were small (usually between 0.3 and 0.4 µm), 

sometimes contained a spine apparatus or budded from dendritic shafts and formed synaptic 

contacts with axon terminals. Axon profiles were less than 0.2µm in diameter, contained a few 

small vesicles, and did not form synapses within the plane of section. Axon terminals had a 

cross-sectional diameter greater than 0.3µm and contained numerous synaptic vesicles, and 

sometimes formed synapses with other neuronal profiles. Glial profiles were recognized by their 

conformation to the boundaries of other profiles, and their lack of microtubules. Finally, soma 

were identified by their extremely large size, a lack of microtubules and high numbers of cellular 

organelles. All sections were assessed for nuclear labeling, however, soma were not included in 

the single label or TH quantification analyses because they frequently occupy more than half of 

the area counted for analysis, reducing the overall number of ER-IR profiles. Soma were 
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included in the analyses with VAChT, as high levels of colocalization were observed in these 

profiles, and we did not want to underestimate the colocalization between the ERs and VAChT. 

Contact between neuronal profiles refers to synapses identified by synaptic density, and 

appositions were defined as adjacent profiles that did not form a synapse in the plain of section. 

 

3. Results 

3.1 Experiment 1:  Single labeling for ERs 

By light microscopy, dense GPER1 but almost no ERα or ERß, is seen in the STR. By light 

microscopy, no nuclear or extranuclear labeling for ERα was observed in the STR (Fig. 1A). 

However, in the sections containing the ventromedial and arcuate regions of the hypothalamus, 

abundant ERα immunoreactive (IR) nuclei containing were seen indicating that immunolabelling 

for this receptor was successful (Fig. 1B).  Similarly, no extranuclear ERß-IR profiles were 

observed although a rare ERß-IR nucleus was seen (Fig. 1C).  However, many ERß-IR nuclei 

were seen in the supraoptic nucleus, confirming that labeling for this antibody was successful 

(Fig. 1D).   In contrast to ERα or ERß, immunoreactivity for GPER1 was observed throughout 

the neuropil in the STR (Fig. 1E).  GPER1 immunoreactivity was in the cytoplasm, but not the 

nuclei, of perikarya. 

By EM, extranuclear ERα is observed in the STR. ERα immunoreactivity was present in all types 

of neuronal processes and glia in the STR (Table 1).  Semiquantitative analysis demonstrated 

that 35% of ERα-IR profiles were axons, and 20% of ERα-IR profiles were axon terminals.  In 

axons (<0.15 um in diameter), immunoreactivity was typically discrete and was affiliated with 

the plasma membrane or clusters of small vesicles (Fig. 2D). Axon terminals in the STR had 

cross sectional diameters that ranged from ~0.4-1.5µm, and contained numerous small synaptic 

vesicles (SSVs) and occasionally mitochondria, but no dense-core vesicles (Fig. 2A and C). ERα 

immunoreactivity was commonly found in clusters of reaction product around SSV (Fig. 2A and 

C) and was occasionally associated with the plasma membrane.  

Peroxidase labeling for ERα was observed in neuronal perikarya, exclusively in the 

cytoplasm. This immunoreactivity was discrete and was usually associated with the plasma 

membrane or with mitochondria. Dendritic shafts accounted for ~9.4% of ERα-IR profiles and 

dendritic spines accounted for 8.3% of ERα-IR profiles. In the dendritic shafts, peroxidase 

reaction product was often affiliated with the mitochondrial and plasma membranes (Fig. 2B and  
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Table 1 

 ERα, ERβ, and GPER1 distribution in neuronal profiles and glia 

 

The percentage of total IR profiles and number of IR profiles, and the corresponding standard 

error, observed in ~3000µm area of the dorsal striatum, averaged across rats.   

  

Receptor ERα ERß GPER1 

Dendrites 
% 

#         SEM 

9.4 13.2 18.7 

10.6        ±1.7 2.3          ±0.6 17.3         ±3.8 

Spines 
% 

#           SEM 

8.3 1.9 9.3 

8.3        ±0.9 0.3             ±0.6 10.1         ±1.7 

Axons 
% 

#           SEM 

35 49 36.4 

32.3       ±3.4 8.7           ±1.1 33.6         ±4.7 

Terminals 
% 

#           SEM 

20.1 13.2 11.2 

20.7        ±1.9 2.3               ±0.9 10.3       ±1.9 

Glia 
% 

#           SEM 

27.8 22.6 23.1 

27.7        ±0.9 4                ±1.2 21.3         ±2.0 

Total 
% 

#           SEM 

100 100 100 

99.7       ±4.9 17.7            ±2.7 92.3         ±12.3 
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Figure 2. Electron micrographs show examples of ERα containing profiles. ERα-IR is observed 

in: A) a dendritic spine (SP) that is contacted by an unlabeled axon terminal (uTER), and an axon 

terminal (TER) that forms an asymmetric synapses with an unlabeled  dendritic spine (uSP); B) a 

dendritic shaft (DEN) where it is affiliated with the plasma membrane and  a mitochondria (mit), 

and in a glial process (GL); C) an axon terminal (TER) forming an asymmetric synapse with an 

unlabeled dendritic spine (uSP), a glial profile (GL), and on a mitochondria in a dendritic shaft 

(DEN); D) two unmyelinated axons (AX). In this and subsequent figures, labels are placed 

approximately in the center of the profile, while arrows point directly to 

immunoperoxidase/immunogold labeling.  Black arrow = immunoperoxidase for ERα, bar = 

500nm.  
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C), and microtubules. In dendritic spines, immunolabelling for ERα accumulated in the spine 

head, and was observed on the plasma membrane particularly near the post-synaptic density (Fig. 

2A).  ERα immunoreactivity was found at asymmetric synapses, where it was seen both pre- and 

post-synaptically. Occasionally, ERα-IR axon terminals synapsed onto ERα-IR spines. Finally, 

one quarter (27.8%) of ERα-IR was observed in glial cells of the STR. Labeling was primarily at 

the plasma membranes of glia (Fig. 2B). 

By EM, extranuclear ERβ is observed in the STR. At the ultrastructural level ERß 

immunoreactivity was observed at extranuclear sites in some neuronal profiles and in glial cells 

in the STR. Although ERß-IR profiles are observed in the STR, the number of profiles labeled 

for ERβ was fivefold less than profiles for ERα or GPER1 (Table 1). ERß immunoreactivity was 

most commonly observed in axons, where it constituted 49% of the total ERß-IR profiles. In 

axons (<0.15 um in diameter), immunolabelling was discrete and was localized primarily to the 

plasma membrane, but was also affiliated with clusters of small vesicles (Fig.  3B and C). 

Immunoreactivity for ERß also was found in axon terminals, which accounted for ~13% of the 

total immunolabelling. ERß-IR axon terminals ranged from 0.3-0.6µm, and contained numerous 

SSVs and occasional mitochondria, but did not contain dense core vesicles.  ERß 

immunoreactivity was found in clusters of reaction product associated with SSV and was 

sometimes affiliated with mitochondria (Fig. 3B).  

               ERß immunoreactivity was not observed in the perikarya of the STR. However, ERß-

IR dendrites accounted for 13% of immunolabelling. ERß immunoreactivity was rarely observed 

in dendritic spines, accounting for 2% of ERß immunolabeling. In dendrites, immunoreactivity 

was typically associated with the plasma membrane or with mitochondria (Fig. 3A). Finally, 

ERß-IR glial cells also was frequently observed, making up 23% of the total immunolabeling. In 

glial cells, labeling was discrete and was localized primarily at the plasma membrane. 

By EM, extrasynaptic GPER1 is observed in the STR. Immunoperoxidase labeling for GPER1 

also was observed throughout the STR (Table 1). This labeling was associated with both neurons 

and glia, and was found exclusively at extranuclear sites.  Like ERα and ERß, most GPER1-IR 

profiles were presynaptic; axons and axon terminals accounted for 36.4% and 11.2% of the 

GPER1 labelled profiles, respectively. GPER1-IR axons were small (<0.15µm) and almost  
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Figure 3. Electron micrographs show examples of profiles containing ERβ. Rarely, ERβ 

immunoreactivity was detected in: A) a dendritic shaft (DEN) and B) an axon terminal (TER).  

Within both profiles, ERβ immunoreactivity associated with mitochondria (mit).  C) ERβ-IR was 

observed in an unmyelinated axons (AX). Black arrow = immunoperoxidase for ERβ, bar = 

500nm. 
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always unmyelinated. The labeling in axonal profiles was usually discrete, and often associated 

with small clusters of vesicles (Fig. 4C). GPER1-IR axon terminals ranged from 0.3-0.6µm, and 

contained numerous SSVs, occasional mitochondria, but did not contain dense core vesicles. 

GPER1 labeling in terminals was most commonly clustered on groups of SSVs or the plasma 

membrane (Fig 4C).  

 GPER1 immunoreactivity was observed in neuronal perikarya exclusively in the 

cytoplasm; it was discrete, and was affiliated with Golgi apparati, mitochondria, and the plasma 

membrane (Fig. 4A). GPER1 immunoreactivity was also observed in dendritic shafts, where it 

constituted 18.7% of total GPER1 labelled profiles, and in dendritic spines, where it constituted 

9.3% of the total profiles. In the dendritic shafts, GPER1 was typically associated with the 

plasma membrane, but also was affiliated with microtubules, mitochondrial membranes, and 

Golgi apparati (Fig. 4B).  In dendritic spines, GPER1 peroxidase reaction product accumulated 

in the spine head, and was associated with the plasma membrane, particularly near the post-

synaptic density (Fig. 4B-D). Although GPER1-IR was observed both pre and post-synaptically, 

it was rare for GPER1-IR terminals to synapse onto GPER1-IR spines.  Finally, 23.1% of 

GPER1-IR was observed in glia in the STR; the labeling in glial cells was discrete, and was 

observed at the plasma membrane (Fig. 4D).  

The total proportion of ERα-IR and GPER1-IR profiles were very similar in the STR. 

However a higher proportion of GPER1-IR profiles were dendrites, and a greater proportion of 

ERα-IR profiles were axon terminal (see Table 1).  

3.2 Experiment 2: Dual labeling for ERs and TH 

 In dual labelled sections, immunoreactivity for both ERα and GPER1 had a similar 

distribution to that seen in experiment 1. In agreement with previous studies (Pickel and Chan, 

1990), TH-IR profiles were also observed throughout the STR, exclusively in axons and axon 

terminals. These TH-IR terminals were 0.4-1.5µm diameter and contained numerous closely 

packed round SSVs; these terminals typically formed symmetric synapses with dendrites and 

occasionally perikarya. TH immunoreactivity was also infrequently observed in unmyelinated 

axons (0.1-0.15µm diameter). Although immunoreactivity for TH, ERα, and GPER1 were 

observed individually throughout the STR, immunolabelling ERα or GPER1 were rarely, if ever, 

observed in TH-IR profiles (see Table 2). TH-IR axons and terminals were often found in close 
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Figure 4. Electron micrographs showing examples of GPER1 containing profiles. GPER1-IR is 

localized to: A) Golgi bodies (Golgi) in a soma (SOM), B) a dendritic shaft (DEN) at the plasma 

membrane, and in a dendritic spine (SP) forming an asymmetric synapse with an unlabeled axon 

terminal (uTER) C) an unmyelinated axon (AX) and  an axon terminal (TER) forming an 

asymmetric synapse with a dendritic spine (SP); D) a glial process (GL) and dendritic spine (SP) 

contacted by an unlabeled terminal (uTER). Black arrow = immunoperoxidase for GPER1, bar = 

500nm.    
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3.3 Experiment 3: Dual labeling for ERs and VAChT 

  VAChT labeling was observed in multiple types of profiles, including axon terminals, 

dendrites, and perikarya, which is in agreement with previous studies examining cholinergic 

neurons in the STR (Pickel and Chan, 1990; Threlfell and Cragg, 2011). In axon terminals, 

VAChT-IR was associated with the membranes of SSVs (Fig. 5D, 6A). VAChT-IR was scattered  

throughout dendrites and soma, sometimes affiliated with microtubules and the endoplasmic 

reticulum (Fig. 5A- C, 6 A-C).  A low proportion of ERα-IR was observed in VAChT-containing 

profiles, with the greatest proportion of co-localization in dendrites and axon terminals (see 

Table 3, Fig. 5A and D). Low levels of co-localization were observed between GPER1 and 

VAChT-IR, primarily in dendrites and perikarya (see Table 3, Fig 6 B-D). GPER1-VAChT-IR 

profiles were observed twice as frequently as ERα-VAChT-IR profiles. In rare instances 

VAChT-IR profiles were observed in apposition to either ERα-IR or GPER1-IR profiles (Fig. 

6B).  

 

4. Discussion 

 These experiments demonstrated that at the ultrastructural level, ERα, ERβ, and GPER1-

IR is localized exclusively to extranuclear sites in both neuronal and glial profiles in the STR of 

female rats. Labeling for ERα and GPER1 is not detected in dopaminergic terminals, but is found 

in a small proportion of cholinergic interneurons.  

4.1 Methodological Considerations 

To determine whether ERα, ERβ, and GPER1 are found in the STR, and to localize ERα 

or GPER1 to TH or VAChT containing neurons, the present study used both immunoperoxidase 

and immunogold labels and preembedding methods.  The ERα antibody and the two GPER1  

antibodies had similar cellular and subcellular localizations when observed with EM, increasing 

confidence in the accuracy of these findings. Additionally, in accordance with previous research 

(Pickel and Chan, 1990), TH labeling is restricted to axons and terminals of the STR, while 

VAChT is seen in all neuronal profiles.  

The preembedding EM immunohistochemical methods used in these experiments have 

been shown to result in excellent cellular morphology and allows for discrete subcellular 

localization of antigens (Leranth and Pickel, 1989).  To ensure that any differences in number of 

labelled profiles were not due to differences in antibody penetration or sample size, all tissue 
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Table 2 

ERα and GPER1 distribution in profiles containing TH or VAChT 

 

The percentage of total IR profiles and number of IR profiles, and the corresponding standard 

error, observed in ~3000µm area of the dorsal STR, averaged across rats.   
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Figure 5. Electron micrographs show examples of profiles containing ERα and VAChT 

immunoreactivity.  A) ERα localized to a VAChT-IR dendrite (DEN), and a VAChT positive 

terminal (TER).  B) A soma (SOM) containing immunogold labeling for VAChT and 

immunoperoxidase labeling for ERα; C) a dendritic spine (SP) containing ERα and VAChT 

immunoreactivity that forms a synapse with an unlabeled axon terminal (uTER); D) an axon 

terminal (TER) containing both ERα and VAChT immunoreactivity. Black arrow = 

immunoperoxidase for ERα, White arrow = immunogold for VAChT, bar = 500nm.    
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Figure 6. Electron micrographs show examples of GPER1 and VAChT containing profiles. A) 

GPER1 localized to a VAChT-IR terminal (TER), and a GPER1-IR dendrite (DEN).  B) A soma 

(SOM) containing immunogold labeling for VAChT and immunoperoxidase labeling for 

GPER1. A GPER1-IR terminal (TER) is in apposition to the soma. C) A GPER1-IR and 

VAChT-IR dendrite (DEN); D) a large dendrite (DEN) containing immunoreactivity for both 

GPER1 and VAChT.  Black arrow = immunoperoxidase for GPER1, White arrow = 

immunogold for VAChT, bar = 500nm. 
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samples analysed for quantification were identical in size and taken from near to the 

plastic/tissue interface. This methodology tends to underestimate the absolute number of 

peroxidase labelled profiles, and underestimates immunogold labeling to a greater extent, as 

immunogold is more limited in penetration (Leranth and Pickel, 1989). Immunoreactivity for 

ERα, ERβ and GPER1 are discrete, so the absence of ER labeling within cellular profiles does 

not demonstrate that these profiles lack ERs. This does not negatively impact the findings of 

these experiments, as the goal was to investigate whether these receptors were found in this 

region and the type of neurons where they were localized. However, the quantification analyses 

presented here are likely conservative values, underestimating the actual numbers of profiles 

containing these ERs, and the frequency with which ERα and GPER1 are localized to cholinergic 

profiles.  

4.2 ERα is detected at extranuclear sites  

At the ultrastructural level, the location and types of ERα-IR profiles containing in the 

STR were consistent in both single and dual-labelled tissue. Extranuclear ERα is observed in all 

types of neuronal profiles and glial cells. This finding contrasts previous light microscopic and in 

situ hybridization studies, which observed almost no ERα in the STR (Mitra et al., 2003; 

Shughrue et al., 1997). The discrepant findings in the present study and previous studies are 

likely because of the greater resolution of electron microscopy. In fact, in this experiment this 

discrepancy was also found, as light microscopy was not sufficient to observe ERα 

immunoreactivity, but EM allowed for the detection of discrete ERα-IR profiles in the STR.  

The majority of ERα-IR profiles are axons, axon terminals and glia. The presence of ERα 

in axons may simply reflect the transportation of these receptors from the perikarya to the 

terminal, but binding at these receptors may also alter protein transport or the transduction of 

electrochemical signals (Cheung, 1990; Verdier, Lund, and Kolta, 2003). Additionally, these 

presynaptic receptors may be important in the local control of transmitter release, as estrogens 

have been shown to decrease GABA transmission in the STR (Hu, Watson, Kennedy and 

Becker, 2006). ERα immunoreactivity is observed exclusively at extranuclear sites in the STR, 

which is in congruence with previous findings that have localized this receptor to extranuclear 

sites in other brain regions, such as the hippocampus of rodents (Milner et al., 2001) and the PFC 

of rhesus monkeys (Wang, Hara, Janssen, Rapp and Morrison, 2010). Binding at these receptors 

on the plasma membrane could rapidly alter dopaminergic transmission in the STR, which 
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provides a possible mechanism for estrogens’ rapid effects on transmission in this brain area 

(Becker and Rudick, 1999).  

4.3 ERβ is detected at extranuclear sites 

 ERβ immunoreactivity was observed exclusively at extranuclear sites neuronal and glia 

in the STR when examined via EM. Similar to findings with ERα, ERβ was rarely observed at 

the light level, which parallels light microscopy experiments that did not observe this receptor in 

the STR (Mitra et al., 2003; Shughrue et al., 1997). Additionally, the number of profiles labeled 

for ERβ was five-fold less than that seen for ERα or GPER1.  This likely contributes to the lack 

of detection of ERβ-IR by light microscopy in the STR (Mitra et al., 2003; Shughrue et al., 

1997).   

 The highest proportion of ERβ immunoreactivity was observed in axons and glial cells. 

Like ERα, the presence of ERβ-IR axons could reflect receptors in transport or could suggest that 

ERβ has a role in conduction of electrochemical signals (Cheung, 1990; Verdier et al., 2003). 

However, the scarcity of ERβ-IR axon terminals suggests ERβ has a limited role in directly 

modulating synaptic transmission. The localization of ERβ exclusively to extranuclear sites in 

the STR agrees with previous studies in the hippocampus and rostral ventrolateral medulla 

(Milner et al., 2005; Wang et al., 2006). Binding at these membrane-associated ERβ receptors 

could contribute to estrogens rapid effects on dopaminergic transmission in the STR.  

4.4 GPER1 is detected at extranuclear sites 

 GPER1-IR is seen throughout the STR, which agrees with previous light microscopic 

findings (Brailoiu et al., 2007). At the ultrastructural level, GPER1 is observed at the plasma 

membrane and in the cytoplasm of various neuronal profiles, corresponding to previous research 

examining the distribution of GPER1 (Filardo et al., 2006; Filardo and Thomas, 2012; Matsuda 

et al., 2008). GPER1 is also observed at the plasma membrane of glial cells.  

The highest proportion of GPER1 immunoreactivity is observed in dendrites and on glial 

cells. This suggests that binding at GPER1 in the STR is more likely to affect neurotransmission 

through post-synaptic mechanisms. Additionally, GPER1 is associated with Golgi apparati in the 

STR, similar to findings in hippocampus (Matsuda et al. 2006).   However, in contrast to findings 

in COS7, HEC50, and CHO cell cultures (Otto et al., 2008), and the hippocampal formation 

(Funakoshi, Yanai, Shinoda, Kawano, and Mizukami, 2006; Matsuda et al., 2008), GPER1-IR 

was not associated with the endoplasmic reticulum in the STR. It was hypothesized that 
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regulatory steps in the biosynthesis of this protein occur at the endoplasmic reticulum (Filardo 

and Thomas, 2012), which would imply that GPER1 should be present at this site in the STR. It 

is unclear why GPER1 was not observed at this organelle in these experiments. 

4.5 Extranuclear ERs are associated with mitochondria 

 ERα, ERβ, and GPER1 are all localized to mitochondrial membranes and to the plasma 

membrane of glial cells in the STR. Estrogens have been implicated in mitochondrial functioning 

and cellular metabolism (Araujo, Beyer, and Arnold, 2008; Razmara et al., 2008) and to our 

knowledge, this is the first time GPER1 have been observed on mitochondria. This provides a 

mechanism through which estrogens could affect mitochondrial functioning. Additionally, E2 is 

known to mediate glial-induced neuroprotection (Arevalo, Santos-Galindo, Bellini, Azcoitia, and 

Garcia-Segura, 2010; Liu et al., 2011) in part through binding at GPER1 (Liu et al., 2011). Thus, 

the localization of ERs to the plasma membrane of glia could contribute to the explanation of 

how estrogens are involved in glial-mediated neuroprotection. 

4.6 Both ERα-IR and GPER1-IR are found in cholinergic, but not dopaminergic, profiles 

 Dopamine terminals in the STR predominantly have cell bodies originating in the 

substantia nigra pars compacta, although some axon collaterals originate from the ventral 

tegmental area. These DA terminals form synapses primarily with GABAergic medium spiny 

projection and interneurons (Gerfen and Wilson, 1996), but also interact with cholinergic 

interneurons (Threlfell and Cragg, 2011). Increases in systemic E2 have been consistently shown 

to increase DA availability in the STR (Becker, 1990; Becker, 1999; Becker and Rudick, 1999), 

and it was hypothesized that estrogens might have these effects through binding at receptors 

found on dopaminergic terminals in the STR. However, neither ERα nor GPER1-IR terminals 

were dopaminergic, insofar as they are not co-localized with TH.  Consequently, this suggests 

that estrogens are acting at receptors on other neurons in the STR (e.g. cholinergic neurons), or at 

receptors in other brain regions, to elicit these effects.  One potential alternate region where 

estrogens could be acting to affect STR DA transmission is the SN, as ERα and GPER1 have 

been localized in the SN (Brailoiu et al., 2007; Kuppers, Ivanova, Karolczak and Beyer, 2000). 

Moreover, estrogens can directly target dopaminergic neurons in the SN, which could alter DA 

release and reuptake in the STR (Becker and Beer, 1986; Kuppers et al. 2000). Previous studies 

that have found estrogen-induced effects on DA release and dopamine transporter functioning in 

the STR used systemic injections of E2 (Becker, 1990; Becker and Rudick, 1999; Watson et al., 
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2006) and consequently estrogens could have been acting on receptors in the SN to have these 

effects on DA transmission in the STR. Further research is needed to determine whether 

estrogens effects on DA transmission in the STR result from estrogens binding in the SN. 

 Both ERα- and GPER1-IRs are localized to cholinergic profiles in the STR. The 

localization of ERα to cholinergic neurons agrees with findings in the hippocampus (Towart et 

al., 2003), and the localization of GPER1-IR to cholinergic neurons agrees with findings in the 

medial septum, nucleus basalis magnocellularis, and STR (Hammond et al, 2010). This finding 

suggests that estrogens could have rapid effects on cholinergic transmission by binding at 

extranuclear ERs on these neurons. Almost all profiles containing either ERα or GPER1 and 

VAChT are dendrites, indicating that estrogens binding at these receptors would affect post-

synaptic cholinergic transmission. ACh has modulatory effects on dopaminergic activity in the 

STR (Threlfell and Cragg, 2011), so estrogen-induced changes in striatal cholinergic 

transmission could, theoretically, alter dopaminergic transmission in this brain region, providing 

an alternate mechanism for the rapid effects of estrogens on DA in the STR. 

 Less than 10% of ER labelled profiles are cholinergic. This could partially be due to our 

immunolabelling yielding conservative estimates of both the ERs and VAChT, but does imply 

that a large proportion of ER-IR in the STR is localized to an unknown neuron type. Over 95% 

of neurons in the STR are GABAergic interneurons and projection neurons (Gerfen and Wilson, 

1996). Systemic injections of E2 rapidly reduce GABA concentrations in the STR (Hu et al., 

2006) and antagonizing GABAergic neurons in the STR increases DA levels in this brain area 

(Adermark, Clarke, Erison and Soderpalm, 2011). These results indicate that estrogens alter 

GABAergic transmission in the STR which could indirectly alter DA transmission. Only GABA 

neurons and cholinergic interneurons have their soma and dendrites in the STR; ER-IR dendrites 

and soma that do not contain VAChT-IR are observed, so it is reasonable to hypothesize that 

these remaining ER labelled profiles are associated with GABA neurons or interneurons. Future 

research from our group will address whether ERα, ERβ and GPER1 are localized to GABA 

neurons in the STR. 

4.7 Conclusions 

These experiments demonstrate the presence of ERs in the STR with ERα and GPER1 

predominating. All three receptors are localized exclusively to extranuclear sites, in various 

neuronal profiles and on glial cells, providing a mechanism through which estrogens could 
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rapidly alter transmission in the STR. ERα and GPER1 are not localized to DA processes in this 

brain area, but are found in a small proportion of ACh neurons. ACh has strong modulatory 

effects on DA transmission in the STR, so estrogens could indirectly affect DA transmission 

through altering cholinergic transmission.  
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ERα AND GPER1 ARE LOCALIZED TO GABAERGIC NEURONS IN THE DORSAL 
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Preface: 

The experiments described in Chapter 4A demonstrate that ERα, ERβ, and GPER1 are in 

the STR, located exclusively to extranuclear sites. These experiments also demonstrate that ERα 

and GPER1 are not localized to dopaminergic neurons in the striatum, but a low proportion of 

these receptors are localized to cholinergic neurons. Following these experiments the majority of 

ERs in the STR were localized to an unknown neuron type. GABAergic neurons are the most 

common type of neuron in the STR (Gerfen and Wilson, 1996) and research has demonstrated 

that estrogens rapidly decrease GABA availability in this region (Schultz et. al., 2009). 

Consequently, the experiment presented in Chapter 4B examines whether ERα and GPER1 are 

localized to GABAergic neurons in the STR, extending the finings presented in Chapter 4A. 

  



90 
 

Abstract: 

Estrogens affect dopamine transmission in the STR, increasing dopamine availability, 

maintaining D2 receptor density, and reducing the availability of the dopamine transporter. Some 

of these effects of estrogens are rapid, suggesting that they are mediated by membrane associated 

receptors. Recently our group demonstrated that there is extra-nuclear labeling for ERα, ERβ, 

and GPER1 in the STR, but that ERα and GPER1 are not localized to dopaminergic neurons in 

this region. GABAergic neurons are the most common type of neuron in the striatum, and 

changes in GABA transmission affect dopamine transmission, so this experiment used electron 

microscopy to determine whether ERα or GPER1 were localized to GABAergic neurons. Tissue 

from the STR was labelled with antibodies for either ERα or GPER1 and an antibody for GABA 

to determine whether these receptors are localized to GABAergic neurons. Ultrastructural 

analysis revealed that ERα and GPER1 are observed in GABA neurons in the STR, exclusively 

at extra-nuclear sites. Colocalization of immunoreactivity for ERα/GPER1 and GABA was most 

commonly observed in GABAergic dendrites and axon terminals. These findings indicate that 

estrogens can rapidly affect GABA transmission in the STR, so estrogens could indirectly affect 

dopamine transmission via changes in GABA transmission. 
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1. Introduction 

There is evidence that estrogens increase dopamine transmission in the dorsal STR.  

Increases in estrogens across the estrous cycle, and E2 replacement in OVX rats, attenuates 

dopamine reuptake in the STR (Becker, 1990b; Becker & Rudick, 1999; Thompson, 1999), 

possibly by reducing the availability of the dopamine transporter (Watson et al., 2006). 

Furthermore, chronic E2 treatment results in significant increases in dopamine D2 receptor 

binding in the STR (Landry et al., 2002; Le Saux et al., 2006), and systemic injections of E2 are 

associated with higher levels of amphetamine-induced dopamine release in the STR (Becker, 

1990a; Becker & Rudick, 1999). These E2-induced increases in dopamine release occur rapidly, 

which suggests that estrogens act through binding at membrane-associated receptors in this 

region (Becker, 1990b; Becker & Rudick, 1999).  

Until recently it was unclear how estrogens have these effects, since previous light 

microscopy and in situ hybridization studies observed very low levels of nuclear labeling for 

ERα and ERβ in the STR (Kuppers & Beyer, 1999; Shughrue, Lane, & Merchenthaler, 1999; 

Shughrue, Scrimo, & Merchenthaler, 1998). The newly discovered ER, GPER1, was observed in 

the perikarya of neurons in the STR (Brailoiu et al., 2007), but it remained unclear what types of 

neurons GPER1 was localized to. We used electron microscopy to examine the distribution of 

ERs in the STR (Almey, Filardo, Milner, & Brake, 2012). These experiments demonstrated that 

membrane-associated ERα and GPER1 are prevalent in the STR, and membrane associated ERβ 

is also present at lower levels. ERα, ERβ, and GPER1 were observed exclusively at extranuclear 

sites, and were localized predominantly to presynaptic profiles, either axons or axon terminals, 

suggesting that estrogens alter striatal transmission via presynaptic mechanisms (Almey et al., 

2012). These mERs provide a mechanism for the rapid effects of estrogens in the STR. Because 

of the known effects of estrogens on dopamine transmission in the STR a dual labeling study 

examined whether ERs were localized to neuronal profiles containing TH, a marker for 

catecholaminergic neurons. This study observed no colocalization of immunoreactivity for ERα 

or GPER1 and TH, demonstrating that ERs are not localized to dopamine neurons in the STR 

(Almey et al., 2012). A second experiment was conducted examining cholinergic interneurons, 

identified using an immunolabel for VAChT, which demonstrated that ~10% of ERα and GPER1 

-labelled profiles in the STR are cholinergic (Almey et al., 2012). Therefor a low proportion of 
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ERs are localized to cholinergic interneurons in the STR, but a large proportion of ER 

immunoreactivity in the STR is localized to an unknown neuron type.  

The majority of neurons in the STR are GABAergic interneurons and projection neurons 

(Gerfen and Wilson, 1996). Systemic injections of E2 rapidly reduces GABA concentration in 

the STR (Hu, Watson, Kennedy, & Becker, 2006; Schultz et al., 2009), and antagonizing 

GABAergic neurons in the STR increases DA availability (Adermark, Clarke, Ericson, & 

Soderpalm, 2011). These results indicate that estrogens may alter GABAergic transmission in the 

STR which could indirectly alter DA transmission. It is reasonable to hypothesize that the 

remaining ER-labelled profiles are associated with GABA neurons. This experiment used 

electron microscopy and dual labeling for ERs and GABA to determine if ERs are localized to 

GABAergic neurons. 

 

2. Method 

2.1 Animals 

Three adult female Sprague Dawley rats from Charles River Laboratories (Wilmington, 

MA), approximately 225-250g on arrival, were pair-housed with ad libitum access to food and 

water and with 12:12 light/dark cycles, with lights on at 6:00am. Tissue from rats in the diestrus 

phase of the estrous cycle was analyzed for experiments 1 and 2, and tissue from rats in the 

estrus phase of the cycle was used in experiment 3. All procedures were in accordance with the 

National Institutes of Health guidelines and approved by the Weill Cornell Medical College 

Institutional Animal Care and Use Committee. The rats used in these experiments are the same as 

those used in previous experiments (Almey et al., 2012; Williams, Torres-Reveron, Chapleau, & 

Milner, 2011). 

2.2 Antisera 

For ERα identification, a rabbit polyclonal antiserum (AS409) produced against the full 

peptide for the native rat ERα was supplied by S. Hayashi. To visualize GPER1 this experiment 

used a rabbit polyclonal antiserum generated against a synthetic peptide, 

CAVIPDSTEQSDVRFSSAV (Multiple Peptide Systems, San Diego, CA) derived from the C-

terminus of the human GPER1 receptor, which was supplied by E Filardo (Revankar, Cimino, 

Sklar, Arterburn, & Prossnitz, 2005).  Details on specificity testing for these antibodies has been 

reported elsewhere (Almey et al., 2012). A third antibody, provided by A .Towle, was used for 
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identification of GABA. A rat polyclonal antiserum was produced against GABA-

glutaraldehyde-hemocyanin conjugates, and was specificity tested using preabsorbtion with 

GABA-BSA, which eliminated immunoreactivity (Lauder, Han, Henderson, Verdoorn, & Towle, 

1986). Additionally immunoreactivity of this antiserum has been reported to be consistent with 

the specificity of other GABA-antisera (Lauder et al., 1986). 

2.3 Tissue preparation 

 Rats were perfused, and brains were prepared for immunolabelling of STR tissue as 

described previously (Almey et al., 2012; Milner, Waters, Robinson, and Pierce, 2011). 

Additionally, a tissue section containing the ventromedial and arcuate nuclei of the hypothalamus 

was included in the immunohistochemical procedure as a positive control.  Abundant ERα 

labeling is present in this region (Kritzer, 2002), so the success of immunolabelling could be 

confirmed prior to processing the STR for EM.   

2.4 Immunohistochemical labeling and tissue fixation and embedding.  

Free floating tissue sections containing the STR (Fig 1A) from three rats were processed 

for immunohistochemical localization of ERα or GPER1. Briefly, sections were incubated in 

anti-rabbit ERα (1:10,000 dilution) or GPER1 (1:1000) for 24 hours at room temperature, and 4 

days at 4°C in 0.1% BSA in TBS.  One day prior to processing GABA antisera (1:2000 dilution) 

was added to the diluent.  For immunoperoxidase labeling, sections were incubated in 1) 

biotinylated donkey anti-rabbit immunoglobulin (IgG; diluted 1:400; Jackson ImmunoResearch 

Laboratories, Inc., West Grove, PA) in 0.5% BSA in TBS, 30 minutes; 2) avidin-biotin complex 

(Vector, Burlingame, CA), 30 minutes; and 3) 3,3-diaminobenzidine (DAB, Aldrich, Milwaukee, 

WI) and H2O2 in TBS,  6-7 minutes.  For immunogold labeling sections were incubated in a 1:50 

dilution donkey anti-rat conjugated to 1-nm colloidal gold particles (Electron Microscopy 

Sciences [EMS], Fort Washington, PA) and a 0.001% gelatin and 0.08% BSA in 0.01M  
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Figure 1. Electron micrographs demonstrating colocalization of ERα or GPER1 and GABA in 

the dorsal striatum. A) The area of the dorsal striatum examined in this experiment.  B) A 

dendrite (DEN) containing immunogold labeling for GABA and immunoperoxidase labeling for 

ERα associated with the membrane and a mitochondrion forms a synapse with a GABA and ERα 

-IR terminal (TER). C) An ERα-IR and GABA-IR dendrite (DEN) that forms a synapse with an 

unlabeled terminal, and a terminal (TER) containing ERα-IR; D) A dendrite (DEN) containing 

GABA and GPER1 immunoreactivity associated with microtubules and the plasma membrane.  

E) A terminal (TER) containing GABA-IR and GPER1-IR associated with small synaptic 

vesicles, which forms a synapse with a GPER1-IR dendrite (DEN). F) A GABA-IR soma (SOM) 

containing GPER1 immunoreactivity that is associated with a Golgi body. Black arrow = 

immunoperoxidase for GPER1, White arrow = immunogold for VAChT, bar = 500nm. 
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phosphate buffered saline (PBS; in 1.25% glutaraldehyde in PBS) for 10 minutes. Sections were 

then rinsed in PBS, washed in 0.2M sodium citrate (pH 7.4), and incubated in a silver solution 

for ~7min (IntenSE; GE Healthcare) to enhance the conjugated gold particles. Following 

immunolabelling tissue sections were fixed in osmium, embedded in plastic, and sectioned and 

collected on grids, as described previously (Almey et al., 2012).  

2.5 Analyses 

Sections from the STR were examined under a Philips CM10 electron microscope with 

an AMT digital camera. The subcellular distribution of each ER was examined in two sections 

per rat; a 54µm2 area of each section was counted in each section and categorized as: dendrites, 

dendritic spines, axons, axon terminals, or glia, using established criteria (Almey et al., 2012; 

Peters, 1991).  The total number of labelled profiles were summed for the two sections, and 

averaged across the three rats. Tissue selected for analysis was taken from a depth of 0.2-1.5µm 

from the plastic–tissue interface, and only samples thin sectioned evenly across the plastic tissue 

interface were included in analyses. Soma were not included in the quantification analyses, as 

they frequently occupy more than half of the area analyzed, reducing the overall number of ER-

IR profiles observed. Final photomicrographs were generated from digital images, where 

brightness and contrast were adjusted using GIMP 2.8. Figures were assembled in Microsoft 

PowerPoint 2013. 

 

3. Results 

The proportions of both ERα and GPER1 –IR profiles observed in the STR were 

comparable to those observed in the previous study (Almey et al., 2012). The majority of ERα 

and GPER1 immunoreactivity was observed at presynaptic sites, associated with axons 

(<0.15µm) or axon terminals (0.4-1.5µm; see Table 1); semi-quantitative analysis demonstrated 

that 36 % of ERα immunoreactivity was observed in axons and 32% was localized to axon 

terminals, while 40% of GPER1 immunoreactivity was localized to axons and 32% was localized 

to axon terminals. In ERα and GPER1 -IR axons were often observed at the membrane, and were 

also frequently observed in close proximity to SSVs. Immunolabelling for ERα and GPER1 was 

also observed at postsynaptic sites, in dendrites and dendritic spines. Labeling in dendrites 

accounted for 10% of ERα and 13% of GPER1 immunoreactivity, while labeling in spines 

accounted for 7% and 3 % of ERα and GPER1 immunoreactivity, respectively. Additionally, 
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Table 1 

Distribution of ERα or GPER1 and GABA in the dorsal striatum. 

 

Percentage of total IR profiles and number of IR profiles, and the corresponding standard error, 

observed in ~6000µm area of the dorsal STR, averaged across rats.   

  

Receptor ERα GPER1 Erα + GABA GPER1 +  GABA 

Dendrites 
% 

#        SEM 

10.8 13.0 35.3 44.1 

28.3     ±0.3 34.0    ±1.7 10.0   ± 0.1 15.0    ±1.0 

Spines 
% 

#        SEM 

7.01 3.44 7.27 7.41 

18.33    ±1.2    9.0      ±0.4 1.3     ±0.3 0.7     ±0.7 

Axons 
% 

#         SEM 

36.1 40.0 7.1 3.8 

 94.3    ±2.9   104.7    ±3.7 6.7    ±1.2 4.0    ±0.6 

Terminals 
% 

#        SEM 

32.5 32.1 27.1 30.2 

85.0    ±0.6 84.0    ±9.9 23.0     ±3.1 25.3      ±3.3 

Glia 
% 

#        SEM 

13.2 11.3 4.8 14.6 

34.7    ±5.5 29.7    ±5.7 1.7   ±0.7 4.3    ±1.9 

Total 
% 

#        SEM 

100 100 16.9 20.2 

261.3   ±7.8 262.0     ±9.8 44.3   ±2.0 53.0    ±5.6 
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13% of ERα immunoreactivity and 11% of GPER1 immunoreactivity was observed in glia. Both 

ERα and GPER1 were observed at mitochondrial membranes, again paralleling findings from the 

previous study in the STR (Almey et al., 2012). Immunogold labeling for GABA also paralleled 

previous findings, with GABA-IR commonly observed in terminals, dendrites, and perikarya of 

neurons in the STR (Delle Donne, Sesack, & Pickel, 1997; Gundersen, Ottersen, & Storm-

Mathisen, 1996). GABA-IR axons and dendritic spines were also occasionally observed, but this 

was infrequent.  

There are moderate levels of colocalization between ERα and GABA in the STR. 

Colocalization of ERα-IR and GABA-IR profiles were most commonly observed in dendritic 

shafts (Fig. 1 B and C), with 35.3% of ERα-IR dendrites containing GABA immunoreactivity 

(see Table 1). Colocalization between ERα was also frequently observed in axon terminals (Fig 

1B); 27.1% of ERα-IR terminals also contained GABA immunoreactivity. Much lower levels of 

colocalization between ERα and GABA immunoreactivity were observed in axons and dendritic 

spines, with ~7% of ERα-IR axons and dendritic spines also containing GABA 

immunoreactivity. Glial profiles containing ERα and GABA immunoreactivity were also 

observed infrequently, with 4.8% of glia containing immunolabelling for ERα also containing 

GABA. Additionally, ERα immunoreactivity was observed in GABA-IR soma containing, 

although these profiles were not included in quantification analyses. 

There were also moderate levels of colocalization between GPER1 and GABA in the 

STR. GPER1 immunoreactivity was most frequently colocalized with GABA immunoreactivity 

in dendritic shafts (Fig 1D); 40.1% of GPER1-IR dendritic shafts also contained GABA 

immunoreactivity (see Table 1). Colocalization was also observed in axon terminals (Fig 1E), 

with 30.2% of GPER1-IR axon terminals also contained GABA immunoreactivity. Similar to the 

findings with ERα, low levels of colocalization were observed between GABA and GPER1 in 

dendritic spines and axons. Specifically, 7.4% of GPER1-IR dendritic spines were GABAergic, 

and 3.8% of axons containing GPER1-IR were GABAergic. Colocalization was also observed in 

glia in the STR; 14.6% of GPER1-IR glia also contained GABA immunoreactivity. Finally, 

GPER1 immunoreactivity was observed in soma that were identified as GABAergic (Fig 1F), 

although these were not included in quantification analyses.  
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4. Discussion 

Moderate proportion of both ERα and GPER1 were localized to GABAergic neurons in 

the STR, providing a mechanism for previous research demonstrating that estrogens rapidly 

decreased GABA availability in the STR (Hu et al., 2006; Schultz et al., 2009). The results of 

this study are similar to the results of our previous experiments examining ERs in the STR 

(Almey et al., 2012), increasing confidence in these findings. The greatest proportion of ERα and 

GPER1 colocalization with GABA was observed in dendritic shafts, and a substantial proportion 

of ERα and GPER1 –IR terminals were GABAergic. Additionally, GPER1 was localized to glial 

cells that also contained GABA immunoreactivity. There were low levels of colocalization 

between the ERs and GABA in axons and dendritic spines, likely due to the low levels of GABA 

immunoreactivity observed in these profiles. The findings of this experiment clearly demonstrate 

that ERα and GPER1 in the STR are localized to GABAergic neurons, where they are observed 

exclusively at extranuclear sites. 

4.1 Methodological Considerations 

Methodological considerations are discussed in detail in our previous publication (Almey 

et al., 2012). Briefly, the immunolabelling methods used here lead to excellent preservation of 

cellular morphology allowing for discrete localization of antigens (Leranth C., 1989). All tissue 

sections were identical in size and were taken near the plastic tissue interface to ensure that 

differences in antigen penetration did not affect the results of these experiments. 

Immunoreactivity for ERα and GPER1 is discrete, and a very thin plane of section is observed 

using EM, so a lack of immunoreactivity for ERs does not demonstrate that these profiles lack 

ERs. Additionally, for the dual-labeling analyses, the probability of detecting both 

immunomarkers in the same plane of section is decreased, particularly for small profiles. 

Consequently, the quantification analyses presented here are conservative, underestimating the 

number of ERs, and the frequency with which these receptors are localized to GABAergic 

profiles.  

4.2 ERα and GPER1 are localized to GABAergic neurons in the NAc 

Approximately one third of axon terminals that were IR for ERα and GPER1 were 

GABAergic. These ERs are positioned to directly affect transmitter release from these terminals, 

which corresponds to previous research that demonstrates that systemic injections of E2 rapidly 

(<30min) attenuate K+ -evoked GABA release in the STR (Hu et al., 2006; Schultz et al., 2009). 
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There is evidence that dopamine release in the STR is inhibited by GABA (Smolders, De 

Klippel, Sarre, Ebinger, & Michotte, 1995; Whitehead, Rose, & Jenner, 2001), thus E2-induced 

decreases in GABA could increase dopamine availability in the STR. More recently it was 

shown that E2-induced decreases in GABA affects dopamine dependent behaviour, providing 

evidence that E2 induced changes in GABA can affect dopamine-dependent behaviours (Shultz 

et al., 2009). The localization of ERα and GPER1 to GABAergic terminals provides a 

mechanism for estrogens effects on GABA transmission, and a means by which estrogens could 

indirectly affect dopaminergic transmission in the STR. 

Additionally, approximately one third of the ERα and GPER1 –IR dendritic shafts were 

GABAergic. This suggests that estrogens can also affect postsynaptic transmission in 

GABAergic neurons of the STR. The localization of ERs to dendrites of GABAergic neurons is 

of particular interest because previous research has demonstrated that the majority of 

dopaminergic synapses in the STR are onto GABAergic medium spiny neurons (Pickel & Chan, 

1990; Pickel, Towle, Joh, & Chan, 1988).  Additionally, 70% of the dopamine synapses in the 

STR are onto dendritic shafts, likely dendrites of GABA neurons (Pickel et al., 1988). ERs 

localized to dendritic shafts of GABAergic neurons are in close proximity to dopamine-GABA 

synapses, ideally positioned to modify the dopamine-GABA interactions in the STR. This is a 

second potential mechanism by which binding at ERs could affect GABA transmission in the 

STR to indirectly alter dopaminergic transmission. 

4.3 Conclusion 

This experiment demonstrated that ERα and GPER1 are localized to GABA neurons in 

the STR. ERs were observed in GABAergic terminals and dendrites, suggesting that these ERs 

are positioned to modulate transmission at GABA synapses. These ERs on GABAergic profiles 

provide a mechanism for the rapid E2-induced decreases in GABA in the STR, and suggest that 

estrogens may indirectly alter dopaminergic transmission in this region by altering GABA 

transmission. 
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CHAPTER 5: 

ESTROGEN RECEPTORS ARE OBSERVED AT EXTRANUCLEAR NEURONAL 

SITES AND IN GLIA IN THE NUCLEUS ACCUMBENS CORE AND SHELL: 

EVIDENCE FOR LOCALIZATION TO GABAERGIC AND CATECHOLAMINERGIC 

NEURONS 
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Preface: 

Following the success of the electron microscopy studies examining the distribution of ERs in 

the STR, a second series of experiments were conducted examining the distribution of ERs in the 

NAc. These experiments, presented in Chapter 5, also determined what proportion of ERα and 

GPER1 are localized to catecholaminergic and GABAergic neurons. The NAc is subdivided into 

two regions, the core and the shell, which have anatomical and functional differences. Therefore, 

these experiments examined the distribution of ERs in the Core and Shell separately to determine 

whether ERs differed across these subregions of the NAc.  
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Abstract: 

Estrogens affect dopamine dependent diseases/behaviour, and there is evidence that estrogens 

have rapid effects on dopamine release and dopamine D2 receptor availability in the NAc. 

Previous studies observe relatively low levels of nuclear labeling for ERα, ERβ, and GPER1 in 

the NAc, but these nuclear receptors cannot account for the rapid effects of estrogens in this 

region. Electron microscopy studies have demonstrated that there are membrane associated ERs 

in the STR, and these experiments extend these findings to the NAc Core and Shell. 

Immunolabelling techniques were used to determine whether ERα, ERβ, and GPER1 are 

localized to extranuclear sites in the NAc Core and Shell. These initial experiments were 

followed by dual labeling experiments that examined whether ERα and GPER1 were localized to 

catecholaminergic or GABAergic neurons in the NAc. Results of these experiments 

demonstrated that all three ERs were observed, almost exclusively, at extranuclear sites in the 

NAc, and that the distribution of these receptors was very similar in the Core and Shell 

subdivision. ERα, ERβ, and GPER1 were all observed primarily at presynaptic sites, in axons 

and axon terminals, suggesting that estrogens affect transmission in the NAc via presynaptic 

mechanisms. A small proportion of ERα and GPER1 are localized to catecholaminergic 

terminals, suggesting that binding at these ERs could alter release of catecholamines, including 

dopamine.  A larger proportion of ERα and GPER1 are localized to GABAergic dendrites and 

terminals, suggesting that estrogens could alter GABAergic transmission to indirectly affect 

dopamine transmission in the NAc. 
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1. Introduction 

There is evidence that estrogens affect the progression of dopamine-dependent diseases, 

protecting against some symptoms of schizophrenia (Kulkarni, Hayes, & Gavrilidis, 2012) and 

Parkinson’s (Ragonese et al., 2004), and exacerbating the development of addiction to most 

drugs of abuse (Carroll, Lynch, Roth, Morgan, & Cosgrove, 2004). Additionally, estrogens also 

have effects on dopamine-dependent cognitive processes, including selective attention (Almey et 

al., 2013; Quinlan, Duncan, Loiselle, Graffe, & Brake, 2010), reversal learning (Arad & Weiner, 

2012), and memory system bias (Almey et al. 2014; Quinlan et al., 2013; Quinlan, Hussain, & 

Brake, 2008; Zurkovsky, Brown, Boyd, Fell, & Korol, 2007), among other dopamine-dependent 

cognitive processes (for review see Luine, 2014). Maladaptive transmission in the STR and NAc 

is implicated in these diseases/disorders and cognitive processes (Gray et al., 1997; Howes & 

Kapur, 2009; Taghzouti, Louilot, Herman, Le Moal, & Simon, 1985), and it is hypothesized that 

estrogens alter dopamine transmission in these regions to elicit some of the effects on dopamine-

dependent diseases and cognitive processes (Becker, 1999; Seeman and Lang, 1990; Thompson 

& Moss, 1997). To understand how estrogens affect transmission in the STR and NAc, a 

complete understanding of ER distribution in these regions is required.  

A previous publication from our group examined the distribution of  ERα, ERβ, and 

GPER1, in the STR, demonstrating that all three ERs observed at non-nuclear sites in this region 

(Almey et al., 2012); striatal ERs are not localized to dopaminergic neurons, but are localized to 

GABAergic interneurons (Almey, Milner & Brake, Chapter 4B) and to a lesser extent, 

cholinergic interneurons (Almey et al., 2012). This manuscript extends these findings by 

assessing the distribution of ERs in the NAc Shell and Core. 

Estrogens modify dopamine activity at multiple stages of dopamine transmission in the 

NAc. First, systemic injections of E2 administered 48hours prior to testing resulted in 

significantly lower phasic dopamine release in the NAc (Thompson & Moss, 1994), but an 

infusion of E2 into the NAc increased phasic dopamine release within 15 minutes (Thompson & 

Moss, 1994). This suggests that there are opposing long-term and rapid effects of E2 on 

dopamine release in the NAc. E2 also rapidly increases the metabolism of dopamine, indicated 

by increased levels of DOPAC and HVA in the NAc within 30 minutes of E2 administration (Di 

Paolo, Rouillard, & Bedard, 1985). E2 replacement administered to OVX rats attenuates 

dopamine reuptake in the NAc (Thompson, 1999), providing a potential explanation for the E2-
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induced increase in dopamine availability in the NAc. Additionally, ovariectomy results in 

decreases in D2 agonist and antagonist binding which is recovered by E2 replacement, 

suggesting that estrogens maintain levels of D2 receptors in the NAc (Landry et al., 2002; Le 

Saux et al., 2006). Some of these effects of E2 in the NAc occur over a long time scale 

(+24hours) suggesting that they are mediated by long-term effects of E2, while other effects of 

E2 occur rapidly (-30min). 

Previous experiments using both light microscopy and in situ hybridization have 

examined the distribution of ERs in the NAc. Light microscopy and in situ hybridization studies 

observe low levels of immunolabelling for ERα and ERβ in the NAc, exclusively at nuclear sites 

(Mitra et al., 2003; Shughrue et al., 1998). GPER1 is also observed in soma in the NAc at low 

levels (Hazell et al., 2009), presumably localized to cellular organelles and the plasma 

membrane, as has previously been observed (Funakoshi, Yanai, Shinoda, Kawano, & Mizukami, 

2006; Otto et al., 2008). Estrogens binding at nuclear ERα and ERβ, and GPER1 could be 

responsible for the long-term effects of estrogens in the NAc, and GPER1 could account for 

some of the rapid effects of estrogens in this region. However, the rapid effects of estrogens in 

the NAc could also be mediated by mERα or mERβ. There is evidence that light microscopy 

may not be sufficient to observe mERα and mERβ (Almey et al., 2012); ultrastructural analysis 

would determine whether mERα and mERβ, and GPER1, are localized to the NAc, and if so, 

what type of neuronal profiles these ERs are localized to. 

These experiments used immunoelectron microscopy to examine the distribution of ERα, 

ERβ, and GPER1 in the NAc. There is evidence suggesting functional differences between two 

subregions of the NAc, the Core and the Shell (Ito & Hayen, 2011), so these experiments 

quantified ERs in these regions separately to determine if ER distribution differs in these 

subregions of the NAc. Initial experiments demonstrated that ERα and GPER1 are frequently 

observed at non-nuclear sites in the NAc, and ERβ is also observed at non-nuclear sites at lower 

levels. Following this experiment, dual labeling experiments were conducted to determine 

whether ERα and GPER1 were localized to catecholaminergic or GABAergic neurons in the 

NAc Core and Shell. 
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2. Method 

2.1 Animals 

Adult female (225 - 250 g; approximately 60 days old; N = 6) Sprague Dawley rats from 

Charles River Laboratories (Wilmington, MA) were pair-housed with ad libitum access to food 

and water and with 12:12 light/dark cycles (lights on 0600 - 1800).  All procedures were 

approved by the Weill Cornell Medical College Institutional Animal Care and Use Committee 

and were in accordance with the National Institutes of Health guidelines and.  The rats used in 

these experiments are the same as those used in our previous publication on mERs in the STR 

and by Williams and colleagues (Almey et al., 2012; Williams et al., 2011).  After arrival, rats 

acclimatised to the animal colony for a week, and then estrous cycle phase was determined using 

vaginal smear cytology (Turner, 1971; Williams et al., 2011).  Only female rats with two 

consecutive, regular, 4-5 day estrous cycles were included in the study.  Tissue from rats in the 

diestrus 2 phase of the estrous cycle was analyzed for these experiments. Results of vaginal 

smear cytology, used to determine estrous cycle phase, were verified by measuring uterine 

weights and plasma E2 levels from blood samples collected during the perfusion procedure 

(Marcondes, Bianchi, & Tanno, 2002).  

2.2 Antisera 

ERα:  A rabbit polyclonal antiserum (AS409) produced against almost the full peptide 

for the native rat ERα (aa 61 through the carboxyl terminus), was supplied by S. Hayashi. This 

antibody was previously tested for specificity, and recognizes both ligand bound and unbound 

receptors (Alves, Weiland, Hayashi, & McEwen, 1998; Okamura, Yamamoto, Hayashi, 

Kuroiwa, & Muramatsu, 1992).  This antiserum recognizes one major band migrating at ~67kD 

(the molecular weight of ERα) on immunoblots of uterine lysates (Milner et al., 2001).  When 

tested on immunoblots of ERα fusion protein, the AS409 antibody recognized minor bands 

migrating at ~110 kDa (likely the ERα/fusion protein complex), one major band migrating at ~67 

kDa, and minor bands migrating at ~41-45 kDa (the degradation products of ERα, following the 

purification of ERα from the fusion protein).  Preadsorption of the antibody with purified ERα 

resulted in no detectable bands in any of these locations (Milner et al., 2001).   

GPER1:  These experiment used a rabbit polyclonal antiserum generated against a synthetic 

peptide, CAVIPDSTEQSDVRFSSAV (Multiple Peptide Systems, San Diego, CA), derived from 

the C-terminus of the human GPER1 receptor (Revankar et al., 2005). In Western blots, this 
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affinity purified antibody specifically recognizes a 38-kD band that corresponds to the mature 

351-amino acid GPER1 polypeptide and does not recognize either ER or ER (Revankar et al., 

2005).  In brains fixed with 4% paraformaldehyde perfusion, immunoreactivity was greatly 

reduced when the antibody was preadsorbed with 10mg/ml of purified C-terminal peptide 

(Filardo, Quinn, Bland, & Frackelton, 2000). 

ERß: a rabbit polyclonal antiserum produced against a peptide sequence in the C-terminus (aa 

468-485) of the mouse ERß protein was used (Z8P; Zymed Laboratories, San Francisco, CA; 

(Shughrue & Merchenthaler, 2001). This antibody was specificity tested using Western Blot 

analyses, which demonstrated a single band migrating at ~60 kDa. Preadsorption of the antibody 

with purified ERß resulted in no detectable band at this location. Additionally, this antibody 

exclusively labelled profiles containing ERß-mRNA according to in situ hybridization (Creutz & 

Kritzer, 2002; Shughrue & Merchenthaler, 2001). 

γ-Aminobutyric acid (GABA):  A rat polyclonal antiserum was produced against GABA-

glutaraldehyde-hemocyanin conjugates, and was specificity tested using preabsorbtion with 

GABA-BSA, eliminating GABA immunoreactivity (Lauder et al., 1986). Additionally, 

immunoreactivity of this antiserum is consistent with the specificity of other GABA-antisera 

(Lauder et al., 1986). 

Tyrosine hydroxylase (TH): A mouse monoclonal antiserum against the full length of the 

peptide TH in the rat (Immunostar, Inc., Hudson, WI).  This antibody has been characterized 

extensively in fixed rat brain (Pickel & Chan, 1990). The NAc has both dopaminergic and 

noradrenergic neurons (Kerfoot & Williams, 2011), so catecholaminergic profiles containing TH 

could be either dopamine or norepinephrine neurons. 

2.3 Tissue preparation  

 Sodium pentobarbital was used to anesthetize rats (150mg/kg, i.p.). All rats were 

perfused through the ascending aorta with: 10ml heparin (1000 U/ml) in saline, followed by 

50ml of 3.75% acrolein (Polysciences, Washington, PA) in 2% paraformaldehyde and 0.1 M 

phosphate buffer (PB; pH 7.4),  and finally 200ml of 2% paraformaldehyde in PB. Rats’ brains 

were removed, sectioned into four 5mm blocks, and postfixed in 2% paraformaldehyde in PB for 

30 minutes. The brains were sectioned coronally at 40µm on a vibrating microtome (Vibratome; 

Leica) and stored in 30% sucrose and 30% ethylene glycol in PB  at -80°C until 

immunohistochemical processing (Milner, Waters, Robinson, and Pierce, 2011).  
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 Tissue sections containing the NAc Shell and Core (Fig 1A) were rinsed in PB and coded 

with hole punches so that they could be pooled in single containers.  Additionally, a section 

containing the ventromedial and arcuate nuclei of the hypothalamus or the supraoptic nucleus 

was included in analyses for ERα and ERβ, respectively. Abundant ERα/ERβ labeling is 

observed in these regions using light microscopy (Shughrue et al., 1998; Yaghmaie et al., 2010), 

so the success of immunolabelling could be confirmed at the light microscopic level in 

hypothalamic tissue if no labeling was observed in the NAc.  Sections were incubated in 1% 

sodium borohydride in PB for 30 minutes to remove any active aldehydes. Tissue then was 

rinsed in PB, followed by 0.1M Tris-buffered saline (TBS; pH 7.6), and was incubated for 30 

minutes in 1% bovine serum albumin (BSA) in TBS to reduce non-specific labeling. 

2.4 Immunohistochemical Labeling 

Experiment 1. Free floating tissue sections containing the NAc Core and Shell from 3 rats were 

processed for immunohistochemical localization of ERα and GPER1. Tissue sections from each 

rat were incubated in anti-rabbit ERα (1:10,000 dilution) or GPER1 (Biosciences, 1:1000 

dilution) for 24 hours at room temperature, and 4 days at 4°C in 0.1% BSA in TBS. Both ERs 

were visualized using the avidin-biotin complex (ABC) method (Milner, Waters, Robinson, and 

Pierce, J.P, 2011). Briefly, the tissue was incubated in a 1:400 dilution of biotinylated donkey 

anti-rabbit immunoglobulin (IgG) (Jackson ImmunoResearch Laboratories, Inc., West Grove, 

PA) in 0.5% BSA in TBS for 30 minutes. Tissue was then incubated in peroxidase-avidin 

complex (Vector, Burlingame, CA) for a further 30 minutes, and 3,3-diaminobenzidine (DAB, 

Aldrich, Milwaukee, WI) and H2O2 in TBS for 6 minutes. 

Experiment 2. Immunohistochemical localization of ERα or GPER1 and TH or GABA was run 

on tissue from three rats. Tissue sections were incubated in either ERα antisera (1:10,000 

dilution) or GPER1 antisera (Filardo; 1:1000 dilution) for 24 hours at room temperature, and 4 

days at 4°C in 0.1% BSA in TBS. One day prior to processing either TH antisera (1:2000 

dilution) or GABA antisera (1:2000 dilution) was added to the diluent. 

For immunohistochemical localization this experiment used pre-embedding dual labeling 

methods (Milner, Waters, Robinson, and Pierce, 2011). The same ABC method described above 

for experiment 1 was used to visualize the ERs. TH and GABA were detected using silver 

enhanced immunogold. Briefly, tissue sections were incubated for 2 hours in a 1:50 dilution 
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Figure 1. Light microscopic examination of ERs in the NAc. A) Depiction of the region 

analysed in electron microscopy experiments; the blue region was considered the NAc Core 

while the yellow was the NAc Shell. B) Moderate levels of nuclear, but no extranuclear, labeling 

were observed for ERα. C) Very sparse nuclear labeling for ERβ was observed. D) Dense 

extranuclear labeling, but no nuclear labeling for GPER1 was observed in the NAc. Black arrows 

= immunoreactive cells/nuclei. 
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donkey anti-rat or IgG conjugated to 1-nm colloidal gold particles (Electron Microscopy 

Sciences [EMS], Fort Washington, PA) in 0.001% gelatin and 0.08% BSA in 0.01M phosphate 

buffered saline (PBS). Tissue sections then were rinsed in PBS, incubated in 1.25% 

glutaraldehyde in PBS for 10 minutes, rinsed again in PBS, followed by a brief wash in 0.2M 

sodium citrate (pH 7.4). A ~7 minute Incubation in a silver solution (IntenSE; GE Healthcare) 

was used to enhance the conjugated gold particles. 

Experiment 3. After the completion of experiments 1 and 2, a third pilot experiment was 

conducted to examine ERβ distribution in the NAc Core and Shell. Experiment 3 followed the 

procedures described for experiment 1, except that tissue was obtained from rats in the estrus 

phase of their cycle. Briefly, sections containing the NAc were incubated in anti-rabbit ERβ 

(1:2000 dilution) for 24 hours at room temperature, and 4 days at 4°C in 0.1% BSA in TBS. 

Following procedures from the previous experiments, ERβ was visualized using the avidin-biotin 

complex (ABC).  

2.5 Tissue fixation and embedding for ultrastructural analysis 

 Following immunolabelling, tissue sections from all experiments were fixed for 60min in 

2% osmium tetroxide in PB, dehydrated through a graded series of ethanols and propylene oxide, 

and embedded in EMbed 812 (EMS) between two sheets of Aclar (Milner, Waters, Robinson, 

and Pierce, 2011). Ultrathin sections (~70nm thick) including the NAc Shell and Core were 

taken (Fig 1A) using a Leica UCT ultratome. The tissue was collected on copper grids (EMS) 

and was counterstained using Reynolds’ lead citrate and uranyl acetate. These grids were 

examined under a Philips CM10 electron microscope with an AMT digital camera. Final 

photomicrographs were generated from digital images, where brightness and contrast were 

adjusted using GIMP 2.8. Adjusted images were assembled in Microsoft PowerPoint 2010. 

2.6 Data Analysis 

 The subcellular distribution of ERα, ERβ, and GPER1 alone, and ERα and GPER1 co-

localized with either TH or GABA, were examined in the NAc Shell and Core. A profile was 

considered IR for immunogold labeling if it contained two or more gold particles. Two sections 

of 54µm2 were analysed for the NAc Shell and the NAc Core, from either the right or left 

hemispheres, for each rat in all experiments. For quantification analyses ER labeled profiles in 

each section were counted and categorized as: dendrites, dendritic spines, axons, axon terminals, 

or glia. The total number of labelled profiles in the two 54µm2 areas was calculated, and an 
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average was taken across the 3 rats. The number of each type of single or dual labelled profile 

was divided by the total number of profiles containing ER-IR to determine the relative 

proportion of each type of profile. Tissue selected for counting was taken from a depth of 0.2-

1.5µm from the plastic–tissue interface, and only samples that were thin sectioned evenly across 

the plastic tissue interface were included in these analyses. 

 The type of neuronal profile was determined using the description of ultrastructural 

morphology from Peters et al. (Peters, Palay and Webster, 1991). Dendrites were large profiles 

(usually between 1.0 and 2.0 µm) that contained regular microtubule arrays and were sometimes 

contacted by terminals.  Dendritic spines were small (usually between 0.3 and 0.4 µm), 

sometimes contained a spine apparatus or budded from dendritic shafts and formed synaptic 

contacts with axon terminals. Axon profiles were less than 0.2µm in diameter, contained a few 

small vesicles, and did not form synapses within the plane of section. Axon terminals had a 

cross-sectional diameter greater than 0.3µm and contained numerous synaptic vesicles, and 

sometimes formed synapses with other neuronal profiles. Glial profiles were recognized by their 

conformation to the boundaries of other profiles, and their lack of microtubules. Finally, soma 

were identified by their extremely large size, a lack of microtubules and high numbers of cellular 

organelles. All sections were assessed for nuclear labeling, but soma were not included in the 

quantification analyses, since they typically occupy approximately half of the area counted for 

analysis, reducing the overall number of ER IR profiles. Contact between neuronal profiles refers 

to symmetric and asymmetric synapses, and appositions. Asymmetric synapses were identified 

by their thicker postsynaptic density, while symmetric synapses had thin, equal pre- and post-

synaptic densities. Appositions were any contact between profiles that was not a synapse, as 

indicated by the absence of synaptic density in the plane of section. 

 

3. Results 

3.3 Single labeling for ERs  

By light microscopy, dense GPER1 and low levels of nuclear ERα or ERß, are localized to the 

NAc Core and Shell. Light microscopy observed moderate nuclear labeling for ERα (Fig 1B) and 

very low nuclear labeling for ERβ (Fig 1C) in the in the NAc. In contrast to ERα or ERß, 

GPER1-IR was observed throughout the neuropil of the NAc, but there was no nuclear labeling 

for GPER1 (Fig 1D). 
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By EM, extranuclear ERα is observed in the NAc Core and Shell. ERα immunoreactivity was 

observed in all types of neuronal processes and glia in the NAc Core and Shell (see Tables 1 and 

2). Semiquantitative analyses showed that 35% of ERα-IR profiles in the NAc Core were axons, 

and 38% of ERα-IR profiles in the NAc Shell were axons (Figure 2D).  ERα immunoreactivity 

was discrete and was affiliated with the plasma membrane and/or clusters of small vesicles in 

axons (<0.2 um in diameter). Analyses also demonstrated that 40% of ERα-IR profiles the NAc 

Core and 44% of ERα-IR profiles in the NAc Shell were in axon terminals (Figure 2A). Axon 

terminals in the NAc had cross sectional diameters that were ~0.3-1.5µm, and contained 

numerous small synaptic vesicles (SSV) and occasionally mitochondria. ERα immunoreactivity 

was commonly found in clusters of reaction product around SSV and was occasionally 

associated with the plasma membrane, sometimes in close proximity to synapses.  

Peroxidase labeling for ERα was also observed at postsynaptic sites in the NAc. 

Dendritic shafts accounted for 7.8% of ERα-IR profiles in the NAc Core, and 5.7% of ERα-IR 

profiles in the NAc Shell (Figure 2C). Additionally, ERα immunoreactivity was also infrequently 

observed in dendritic spines; 5.5% of ERα-IR  in the NAc Core, and 3.3% of ERα-IR in the NAc 

Shell was localized to dendritic spines (Figure 2D). In the dendritic shafts, peroxidase reaction 

product was often affiliated with the mitochondrial and plasma membranes, and microtubules. In 

dendritic spines, immunolabelling for ERα sometimes accumulated in the spine head, and was 

also observed on the plasma membrane, particularly near the post-synaptic density.  ERα was 

frequently observed near asymmetric synapses, where it was seen both pre- and post-

synaptically. Occasionally, ERα-IR axon terminals synapsed onto ERα-IR dendrites. 

Immunolabelling for ERα was sometimes observed in neuronal perikarya, associated with 

mitochondria or other cellular organelles, and sometimes associated with the plasma membrane. 

Lastly, 10.8% of ERα-IR in the NAc Core and 9.0% of ERα-IR in the NAc Shell were observed 

in glial cells (Figure 2B), primarily at the plasma membranes.  

By EM, extranuclear ERβ is observed in the NAc Core and Shell. At the ultrastructural level ERß 

immunoreactivity was observed at extranuclear sites in all neuronal profiles and in glial cells in 

the NAc Core and Shell (see Tables 1 and 2). ERß immunoreactivity was most common in 

axons, where it constituted 49% of the total ERß-IR profiles in the NAc Core, and 45% of total 

ERβ- IR profiles in the NAc Shell (Figure 3C). In axons, immunolabeling was discrete and was 
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Table 1  

ERα, ERβ, and GPER1 distribution in neuronal profiles and glia in the NAc Core 

 The percentage of total IR profiles and number of IR profiles, and the corresponding standard 

error, observed in ~6000µm area of the Nucleus Accumbens Core, averaged across rats. 

  

Receptor ERα ERß  GPER1 

Dendrites 
% 

#         SEM 

7.8 4.4 9.2 

17.0        ±4.9 4.7          ±1.8 13.7         ±3.9 

Spines 
% 

#           SEM 

5.5 0.9 2.0 

12.0        ±5.0 1.0            ±0.6 3.0         ±1.5 

Axons 
% 

#           SEM 

35.1 49.1 40.2 

76.0       ±10.1 52.0          ±11.8 60.0         ±7.0 

Terminals 
% 

#           SEM 

40.5 39.0 33.0 

87.7        ±12.4 41.3            ±4.1 49.3         ±1.3 

Glia 
% 

#           SEM 

10.9 6.6 15.6 

23.7        ±3.2  7.0            ±1.0 23.3         ±2.9 

Total 
% 

#           SEM 

100 100 100 

216.3       ±18.2 106.0           ±9.1 149.3         ±9.9 
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Table 2  

 ERα, ERβ, and GPER1 distribution in neuronal profiles and glia in the NAc Shell 

The percentage of total IR profiles and number of IR profiles, and the corresponding standard 

error, observed in ~6000µm area of the Nucleus Accumbens Shell, averaged across rats. 

  

Receptor ERα ERß  GPER1 

Dendrites 
% 

#         SEM 

5.8 8.1 6.7 

12.3        ±2.4 8.0          ±3.1 10.3         ±0.9 

Spines 
% 

#           SEM 

3.3 1.7 3.9 

7.0        ±4.0 1.7            ±0.3 6.0         ±2.5 

Axons 
% 

#           SEM 

37.9 45.6 41.7 

81.0       ±4.0 45.0          ±7.6 63.7         ±9.6 

Terminals 
% 

#           SEM 

44.1 36.5 34.1 

94.3       ±3.5 36.0           ±2.9 53         ±6.4 

Glia 
% 

#           SEM 

9.0 8.1 13.5 

19.3        ±2.2  8.0            ±1.7 20.7         ±1.5 

Total 
% 

#           SEM 

100 100 100 

214.0        ±2.3 98.7       ±9.5 152.7        ±1.3 
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Figure 2. Electron micrographs show examples of ERα-containing profiles in the NAc Core and 

Shell. ERα-IR is observed in: A) a two axon terminals (TER), one that forms a synapse with an 

unlabeled dendritic spine (uSP), in the NAc Core; B) at the membrane of a glial process (GL) in 

the NAc Core; C) a dendrite (DEN), where it is associated with the membrane of a 

mitochondrion (mit), the cell membrane, and microtubules in the NAc Shell; D) a dendritic spine 

(SP) that forms a synapse with an unlabeled terminal (uTER), and an axon (AX) in the NAc 

Shell. Black arrow, Immunoperoxidase for ERα. Scale bar = 500 nm. 
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localized to the plasma membrane or clusters of small vesicles. ERß immunoreactivity also was 

found in axon terminals, which accounted for 39% of the total ERβ-IR profiles in the NAc Core 

and 36% of the total ERβ-IR profiles in the NAc Shell (Figure 3A). Axon terminals containing 

ERß immunoreactivity contained numerous SSVs and occasional mitochondria, but did not 

contain dense core vesicles.  ERß immunoreactivity was found in clusters of reaction product 

associated with small synaptic vesicles and was sometimes affiliated with mitochondria and the 

plasma membrane.  

               ERß immunoreactivity was also observed infrequently at postsynaptic sites. Four 

percent of the total ERβ-IR profiles were dendrites in the NAc Core, and 9% of ERβ-IR profiles 

were dendrites in the NAc Shell (Figure 3B). ERβ immunoreactivity was almost never observed 

in dendritic spines, accounting for 0.9% of immunolabeling in the NAc Core and 1.7% of 

immunolabeling in the NAc Shell. In dendrites, immunoreactivity was typically associated with 

the plasma membrane or with mitochondria. ERß-IR perikarya were rarely observed in the NAc 

Core or Shell. Finally, ERß-IR glial cells were infrequently observed; 7% of the ERβ-IR profiles 

in the NAc Core and 8% of the ERβ-IR profiles in the NAc Shell were glia (Figure 3A). In glial 

cells, labeling was discrete and was localized primarily at the plasma membrane. 

By EM, GPER1 is observed in the NAc Core and Shell. Immunoperoxidase labeling for GPER1 

was also observed throughout both the NAc Core and Shell (see Tables 1 and 2). This labeling 

was associated with neurons and glia, and was found exclusively at extranuclear sites.  Like ERα 

and ERß, most GPER1-IR profiles were presynaptic; GPER1-IR axons accounted for 40% of 

immunolabelling in the NAc Core and 42% of immunolabelling in the NAc Shell (Figure 4A and 

D). Axons containing GPER1-IR were small (<0.2µm) and almost always unmyelinated. The 

labeling in axonal profiles was usually discrete, and often associated with the membrane and 

small clusters of vesicles. GPER1-IR axon terminals accounted for 33% of the total GPER1 in 

the NAc Core and 34% of GPER1 in the NAc Shell (Figure 4C).  Axon terminals containing 

GPER1 immunoreactivity ranged from 0.3-1.5µm, and contained numerous small synaptic 

vesicles and occasionally mitochondria, where labeling was frequently observed. GPER1 

immunoreactivity was also occasionally observed in close proximity to synapses.  

Low levels of GPER1 immunoreactivity were also observed in post synaptic profiles. 

GPER1-IR dendritic shafts constituted 9% of total GPER1-IR profiles in the NAc Core, and 7% 

of total GPER1-IR profiles in the NAc Shell (Figure 4C). There were low levels of GPER1 
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Figure 3. Electron micrographs show examples of ERβ-containing profiles in the NAc Core and 

Shell. A) ERβ-IR is observed in a terminal (TER), where it is localized to a mitochondrion (mit), 

small synaptic vesicles, and the plasma membrane. ERβ-IR is also associated with the membrane 

of a glial cell (GL) in the NAc Shell; B) the membrane and microtubules of a dendrite (DEN) in 

the NAc Core; C) an axon (AX). Black arrow, Immunoperoxidase for ER. Scale bar, 500 nm. 
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immunoreactivity in dendritic spines: 2% of GPER1-IR profiles in the NAc Core and 4% of 

GPER1-IR profiles in the NAc Shell (Figure 4C). In the dendritic shafts, GPER1 was typically 

associated with the plasma membrane, but also was affiliated with microtubules and 

mitochondrial membranes.  In dendritic spines, GPER1 peroxidase reaction product accumulated 

in the spine head, and was associated with the plasma membrane, particularly near the post-

synaptic density. Although GPER1 immunoreactivity was observed both pre and post-

synaptically, it was rare for GPR1-IR terminals to synapse onto GPER1-IR spines. 

Immunoperoxidase for GPER1 was observed in neuronal perikarya, where it was commonly 

associated with organelles, including mitochondria and Golgi bodies (Figure 4B). Finally, 16% 

and 14% of GPER1-IR profiles were observed in glia in the NAc Core and NAc Shell, 

respectively; the labeling in glial cells was discrete, and was localized primarily to the plasma 

membrane (Figure 4A and B).  

3.2 Experiment 2: Dual labeling for ERs and TH 

 In dual labelled sections, immunoreactivity for both ERα and GPER1 were observed in 

similar proportions to that seen in experiment 1. However, there was higher total labeling for 

GPER1 in this dual labeling study compared to the single labeling experiment (see Tables 1-3). 

In agreement with previous studies (Sesack & Pickel, 1990), immunogold labeling for TH was 

observed throughout the NAc Core and Shell in axons and axon terminals. TH immunoreactivity 

was most commonly observed in terminals that were 0.3-1.5µm diameter and contained 

numerous closely packed round small synaptic vesicles. TH-IR terminals sometimes formed 

symmetric synapses with dendrites and dendritic spines. TH immunolabelling was also 

infrequently observed in unmyelinated axons (0.1-0.2µm diameter).  

There were low levels of co-localization between TH and both ERα and GPER1 in the 

NAc (See Tables 3). In the NAc Core, 1% of ERα-IR axons were also TH-IR, and 6% of ERα-IR 

axon terminals contained TH immunoreactivity. In the NAc Shell there were slightly higher 

levels of co-localization between ERα and TH: 7% of ERα-IR axons also contained TH 

immunoreactivity, and 11% of ERα containing axon terminals were TH-IR (Figure 5A and C). 

Co-localization of GPER1 and TH was also observed in the NAc Core and Shell. In the NAc 

Core, 7% of GPER1-IR axons also contained TH immunoreactivity and 12% of GPER1-IR axon 

terminals also contained TH immunoreactivity. In the NAc Shell 2.8% of axons labelled for 
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Figure 4. Electron micrographs show examples of GPER1-containing profiles in the NAc Core 

and Shell. GPER1immunoreactivity is observed in: A) an axon (AX) and associated with the 

membrane of a glial process (GL) in the NAc Shell; B) a soma where it is associated with Golgi 

bodies. GPER1immunoreactivity is also associated with the membrane of a glial cell (GL) in the 

NAc Core; C) a dendrite (DEN), where it is associated with the membrane of a mitochondrion 

(mit), a dendritic spine (SP) and vesicles in an axon terminal (TER), in the NAc Shell; D) in two 

axons in the NAc Core. Black arrow, Immunoperoxidase for ER. Scale bar, 500 nm. 
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GPER1 were also TH-IR, and 14.2% of all GPER1-IR axon terminals were TH-IR (Figure 5B 

and D). These findings demonstrate that a small proportion of ERα and GPER1 –IR profiles in 

the NAc are catecholaminergic neurons. 

3.3 Experiment 3: Dual labeling for ERs and GABA 

The proportions of both ERα and GPER1 observed in the NAc Core and Shell were 

comparable to those observed in the single label experiments, increasing confidence in these 

findings. Again, the total number of GPER1-IR profiles were higher in this experiment than in 

the single label experiment (see Table 1, 2 and 4), but were comparable to the total number of 

GPER1-IR profiles observed in the dual labeling experiment with TH (see Table 3 and 4). 

Immunogold labeling for GABA paralleled previous findings, with GABA immunoreactivity 

most commonly observed in terminals, dendrites, and perikarya of neurons in the NAc (Delle 

Donne et al., 1997; Van Bockstaele & Pickel, 1995). GABA immunoreactivity was also 

occasionally observed in axons and dendritic spines, but this was infrequent.  

There are moderate levels of colocalization between ERα and GABA immunoreactivity 

in the NAc. Colocalization between ERα and GABA-IR was most commonly observed in 

dendritic shafts in both the NAc Core and Shell. In the NAc Core 53% of ERα-IR dendritic 

shafts were GABAergic, and in the NAc Shell 50% of ERα-IR dendrites also contained GABA 

immunoreactivity (see Table 4; Figure 6A). Colocalization between ERα and GABA was also 

frequently observed in axon terminals; 47% of ERα-IR terminals in the NAc Core and 37% of 

ERα-IR terminals in the NAc Shell also contained GABA-IR (Figure 6B). Lower levels of 

colocalization between ERα and GABA immunoreactivity were observed in axons and dendritic  

spines. Three percent of ERα-IR axons in the NAc Core, and 2% of ERα-IR axons in the NAc 

Shell were GABAergic. Furthermore, 5% of ERα-IR dendritic spines in the NAc Core and 8% of 

ERα-IR dendritic spines in the NAc Shell also contained GABA immunoreactivity. Glial profiles 

containing immunolabelling for ERα and GABA were also observed infrequently, with 3% and  

5% of ERα-IR glia also containing GABA immunoreactivity in the NAc Core and Shell, 

respectively. Additionally, ERα was occasionally observed in soma containing GABA 

immunoreactivity, although these profiles were not included in quantification analyses. 

Levels of colocalization between GPER1 and GABA in the NAc Core and Shell was also 

observed. GPER1 immunoreactivity was most frequently colocalized with GABA 

immunoreactivity in dendritic shafts; 52% of GPER1-IR dendrites in the NAc Core and 36% of 
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Table 3 

ERα and GPER1 distribution in profiles containing TH in the Nucleus Accumbens 

The percentage of total IR profiles the number of IR profiles, and the corresponding standard 

error, observed in ~6000µm area of the NAc Core and Shell, averaged across rats. 
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Figure 5. Electron micrographs show examples of profiles containing of ERα or GPER1-

immunoreactivity and Tyrosine Hydroxylase (TH) immunoreactivity in the NAc Core and Shell.  

A) Immunoreactivity for ERα is associated with small synaptic vesicles and a mitochondrion in a 

catacholeminergic terminal (TER) that is adjacent to an unlabeled dendrite (uDEN). B) GPER1 

immunoreactivity associated with synaptic vesicles close to the synapse in two 

catecholeminergic terminals (TER), and one non-catecholaminergic terminal (uTER). C) ERα-IR 

catecholaminergic terminal (TER) in close proximity to a synapse with an unlabeled dendrite 

(uDEN). D) GPER1 immunoreactivity associated with synaptic vesicles in a catecholaminergic 

terminal (TER), and an axon (AX). Black arrow, Immunoperoxidase for ER; white arrow, 

immunogold for TH. Scale bar, 500 nm.  
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Table 4 

ERα and GPER1 distribution in profiles containing GABA in the Nucleus Accumbens. 

The percentage of total IR profiles, the number of IR profiles, and the corresponding standard 

error observed in ~6000µm area of the NAc Core and Shell, averaged across rats. 
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Figure 6. Electron micrographs show examples of profiles containing of ERα or GPER1-IR and 

GABA-IR in the NAc Core and Shell. A) ERα-IR is associated with microtubules and the plasma 

membrane of a GABAergic dendrite (DEN). B) ERα-IR associated with synaptic vesicles and 

the membrane near a synapse in a GABAergic terminal (TER). C) GPER1-IR associated with 

synaptic vesicles in a GABAergic terminal (TER); D) a GABAergic dendrite (DEN) with a spine 

(SP).  Black arrow, Immunoperoxidase for ER; white arrow, immunogold for GABA. Scale bar, 

500 nm.    
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GPER1-IR dendrites in the NAc Shell were GABAergic (see Table 4; Figure 6D). Colocalization 

was also observed in axon terminals, as 41% of GPER1-IR axon terminals in the NAc Core, and 

34% of GPER1-IR terminals in the NAc Shell also contained GABA immunoreactivity (Figure 

6C). Lower levels of colocalization were observed in spines with 13% of GPER1-IR dendritic 

spines in the NAc Core and 9% of the spines in the NAc Shell also containing GABA 

immunoreactivity. Low levels of colocalization were observed between GABA and GPER1 in 

axons, with 3% of GPER1-IR axons in the NAc Core and only 1% of GPER1-IR axons in the 

NAc Shell, also containing GABA immunoreactivity. Finally, low levels of colocalization of 

GPER1 and GABA were also observed in glia in the NAc; 5% of GPER1-IR glia in the NAc 

Core and 3% of GPER1-IR glia in the NAc Shell also contained GABA immunoreactivity. 

GPER1 immunoreactivity was observed in GABAergic soma, but again these were not included 

in quantification analyses.  

 

4. Discussion 

Ultrastructural analysis demonstrates that ERα, ERβ, and GPER1 are localized to 

extranuclear sites in the NAc Core and Shell of female rats. Although these receptors are 

observed at all types of neuronal profiles and in glia, the majority are observed at presynaptic 

sites. The distribution of the ERs in the NAc Core and Shell is very similar, indicating that ERs 

do not differ between these subregions of the NAc. Additionally, these experiments indicate that 

a very low proportion of ERα and GPER1 are localized to catecholaminergic neurons, and a 

moderate proportion of ERα and GPER1 are localized to GABAergic neurons in the NAc.  

4.1 Methodological Considerations 

Methodological considerations are discussed in detail in previous publications (Almey et 

al., 2012; Milner et al., 2001). Briefly, the immunolabelling methods used here lead to excellent 

preservation of cellular morphology allowing for discrete localization of antigens (Leranth C., 

1989). All tissue sections were identical in size and were taken near the plastic tissue interface to 

prevent differences in antigen penetration from affecting the results of these experiments (Milner 

et al., 2011). Immunoreactivity for ERα, ERβ, and GPER1 is discrete, and a very thin plane of 

section is examined, so a lack of ER immunoreactivity does not demonstrate that these profiles 

lack ERs. For the same reason, the probability of detecting both peroxidase and gold 

immunomarkers in the same plane of section, particularly for small profiles, is decreased. As a 
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result, the semiquantitative analyses presented here are likely conservative, underestimating the 

number of ERs and the frequency with which these receptors are localized to profiles containing 

TH or GABA.  

4.2 ERα is observed at extranuclear sites  

 ERα was the most frequently observed ER in the NAc, and results of the single and dual 

labeling experiments were similar, observing comparable levels of ERα-IR. Post-synaptic 

labeling was slightly lower in the NAc Shell than Core, but in general, these analyses indicate 

that ERα distribution does not differ between subregions of the NAc. ERα was observed in all 

types of neuronal profiles and in glial cells in both the NAc Core and Shell, differing from 

previous light microscopy experiments that observe relatively low levels of nuclear labeling for 

ERα in the NAc (Mitra et al., 2003; Shughrue et al., 1998). This discrepancy is likely due to the 

increased resolution of electron microscopy, allowing for detection of the mERα-IR profiles 

observed in this experiment.  

 Although ERα-IR was observed in all types of neuronal profiles, ERα was most 

commonly localized to presynaptic profiles, axons and axon terminals. The presence of ERα in 

axons may simply reflect the transportation of this receptor to terminals, but these binding at 

receptors on axons can affect the transmission of action potentials and protein transport (Carr, 

Sittl, Fleckenstein, & Grafe, 2010; Verdier, Lund, & Kolta, 2003). ERα in axon terminals is 

positioned to affect the transportation of vesicles to the synapse, which has been observed in 

hippocampal neurons (Hart, Snyder, Smejkalova, & Woolley, 2007). ERα in terminals is also 

positioned to affect the release of transmitter from terminal, providing a mechanism for the 

finding that E2 increases phasic dopamine release in the NAc (Thompson & Moss, 1994,1997). 

ERα was also localized to dendrites and dendritic spines, but was not frequently observed in 

these post-synaptic profiles. In addition to being localized to neurons, 10% of ERα is also 

observed at the membrane of glial cells. Estrogen is involved in glial mediated neuroprotection 

(Arevalo, Santos-Galindo, Bellini, Azcoitia, & Garcia-Segura, 2010;Spence & Voskuhl, 2012), 

and these membrane associated ERs provide a mechanism for this effect. These experiments 

observed ERα primarily at extranuclear sites, which corresponds to previous findings in the STR 

(Almey et al., 2012). 
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4.3 ERβ is observed at extranuclear sites 

 These analyses observed ERβ in all types of neuronal profiles and in glial cells in both 

the NAc Core and Shell. ERβ was observed approximately half as frequently as ERα in the NAc, 

suggesting that binding at ERβ would have less effect on transmission in the NAc, although 

experiments with ERα and ERβ agonists are needed to confirm this. Post-synaptic labeling for 

ERβ was slightly lower in the NAc Core than Shell, but generally these analyses indicate that 

ERβ distribution does not differ between subregions of the NAc. These experiments observe 

moderate levels of extranuclear ERβ-IR in the NAc, which differs from previous light 

microscopy findings showing only low levels of nuclear labeling for ERβ in this region (Mitra et 

al., 2003; Shughrue et al., 1998). Again, this discrepancy is likely due to the increased resolution 

of electron microscopy.  

ERβ was also primarily observed presynaptically, in axons and axon terminals. Similar to 

ERα, ERβ in axons could affect the transmission of action potentials and protein transport (Carr 

et al., 2010; Verdier et al., 2003), and ERβ in axon terminals is positioned to affect the release of 

transmitter from terminal in the NAc. ERβ is also observed at postsynaptic profiles, including 

dendrites and dendritic spines, albeit at much lower levels. There were also glia in the NAc 

containing ERβ-IR, indicating that binding at these receptors could also contribute to estrogens’ 

effects on glial-mediated neurotransmission (Arevalo et al., 2010). These experiments observed 

ERβ almost exclusively at extranuclear sites in the NAc, which corresponds to previous findings 

that estrogens rapidly alter transmission in the NAc (Le Saux et al., 2006; Thompson & Moss, 

1994). 

4.4 GPER1 is observed at extranuclear sites 

 GPER1 was also observed at all types of neuronal profiles in the NAc Core and Shell. To 

the best of our knowledge, this is the first paper to report that GPER1 is prevalent in the NAc, as 

previous light microscopy experiments observe relatively low levels of GPER1 in this region 

(Hazell et al., 2009). These receptors were observed at extranuclear sites using light microscopy, 

which was confirmed by ultrastructural analysis. The semiquantitative analyses of the single and 

dual labeling studies indicate that the distribution of GPER1 does not differ between subregions 

of the NAc. However, there was a discrepancy between single and dual labeling studies; these 

studies observe similar proportions of GPER1 immunoreactivity in the various types of neuronal 

processes, but the single labeling experiment observed ~25% less GPER1-IR profiles than the 
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two dual labeling studies. There are a number of potential causes for this discrepancy. It could 

result from the fact that sections in the single labeling study may have been from slightly deeper 

in the tissue section reducing antibody permeability. Alternately, a difference in counterstaining 

of tissue could be responsible for the difference, resulting in darker background in the single 

labeling study and greater difficulty observing peroxidase reaction product. Since the total 

number of profiles observed is very similar between the two dual labeling studies, it is 

hypothesized that these studies are the most accurate representation of total GPER1 in the NAc, 

suggesting the GPER1 and ERα have similar prevalence in this region. 

 Like ERα and ERβ, GPER1 is observed primarily in presynaptic profiles in both the NAc 

Core and Shell. GPER1 in axons and axon terminals is positioned to affect the propagation of 

action potentials, protein transportation and the release of neurotransmitters from terminals (Carr 

et al., 2010; Thompson & Moss, 1994; Verdier et al., 2003). GPER1-IR was also observed in 

post-synaptic profiles in the NAc, including dendritic shafts and spines, but this occurred much 

less frequently. Glia in the NAc Core and Shell were IR for GPER1, suggesting that estrogens 

effects on glial-mediated neuroprotection could also occur through binding at this receptor 

(Arevalo et al., 2010; Spence & Voskuhl, 2012).  

These single labeling experiments clearly demonstrate that ERα, ERβ, and GPER1 are 

localized to extranuclear neuronal sites in the NAc, and that levels of these receptors do not 

differ between the Core and Shell subregions of the NAc.  It is postulated that there are similar 

levels of ERα and GPER1 in the NAc, while ERβ is less prevalent, occurring half as frequently 

as the other ERs. As discussed above, all three ERs were observed in glia, which could explain 

how estrogens contribute to glial-mediated neuroprotection. Additionally, similar to findings in 

the STR and hippocampus, ERα, ERβ, and GPER1 are commonly associated with the 

membranes of mitochondria in dendrites, terminals, and soma. Binding at ERs associated with 

mitochondria could contribute to estrogens effects on cellular metabolism observed in neurons 

and glia (Araujo, Beyer, & Arnold, 2008; Razmara et al., 2008). E2 infused into the NAc rapidly 

increases phasic dopamine release  (Thompson & Moss, 1994) and increases D2 receptor binding 

without affecting D2 mRNA, suggesting that these changes in D2 receptor density occur via 

binding at membrane-associated receptors (Le Saux et al., 2006). Binding at the membrane 

associated ERα, ERβ, or GPER1 observed in these experiments could cause these rapid E2-

induced changes in transmission in the NAc. 
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4.5 Low levels of ERα and GPER1 are localized to catecholaminergic neurons in the NAc 

The dual labeling analyses used in these experiments demonstrated that a low proportion 

of ERα-IR and GPER1-IR were localized to profiles containing TH. ERα was colocalized with 

TH more frequently in the NAc Shell (~7% of all ER-IR profiles) than in the NAc Core (~3% of 

profiles), but there was no difference in GPER1 colocalization with TH in the Core and Shell 

(~7% of profiles). The highest level of colocalization between both ERα and GPER1 and TH was 

observed in catecholaminergic terminals; if these neurons are in fact dopaminergic, binding here 

could account for the rapid effects of estrogen on presynaptic dopamine transmission in the NAc  

(Thompson & Moss, 1994, 1997). 

4.6 Moderate levels of ERα and GPER1 are localized to GABAergic neurons in the NAc 

These analyses demonstrated that a relatively large proportion of ERα and GPER1 were 

localized to GABAergic neurons in the NAc Core and Shell. There were similar levels of ERα-

GABA colocalization and GPER1-GABA colocalization in the NAc Core and Shell, although 

colocalization of ERα-IR and GABA-IR was slightly lower in the NAc Shell than in the NAc 

Core. The greatest proportion of ERα and GPER1 colocalization with GABA was observed in 

dendritic shafts, as ~50% of ERα and GPER1 –IR dendrites were GABAergic.  A substantial 

proportion colocalization was observed in axon terminals, as ~40% of ERα and GPER1 –IR 

terminals were GABAergic. Low levels of colocalization between ERα/GPER1 and GABA were 

observed in axons and dendritic spines, likely due, in part, to the low levels of GABA 

immunoreactivity observed in these profiles (Pickel, Towle, Joh, and Chan, 1988). Finally, ERα 

and GPER1 were infrequently localized to GABA-IR glial cells. These findings of clearly 

demonstrate that some of the ERα and GPER1 in the NAc are localized to GABAergic neurons 

and glia. This parallels findings in the STR, which observed ERα and GPER1 in GABAergic 

dendrites and terminals (Almey, Milner and Brake, Chapter 4B). Taken together, this previous 

study and the current experiments suggests similarities in the distribution of mERs in the STR 

and the NAc (aka the ventral striatum). 

 Little research has examined the effect of estrogens on GABA in the NAc, but the 

presence of ERα and GPER1 in GABAergic terminals suggests that estrogens could alter GABA 

availability. Changes in GABA transmission in the NAc affect dopamine availability; decreasing 

GABA transmission by antagonizing GABAA receptors increases phasic dopamine release (Xi 

and Stein, 1998), and modafinil and neurotensin –induced changes in dopamine release in the 



129 
 

NAc are mediated by GABA (Ferraro, Tanganelli, O’Connor, Antonelli, Rambert and Fuxe, 

1996; Tanganelli, O’Connor, Ferraro, Bianchi, Beani, Understedt and Fuxe, 1994). In the STR 

estrogens rapidly (<1hour) decreases extracellular GABA (Hu et al., 2006; Schultz et al., 2009); 

the distribution of ERα and GPER1 are similar in the STR and NAc, so research should examine 

whether estrogens also rapidly decrease GABA availability in the NAc. Together, these findings 

suggest that E2 may indirectly increase dopamine availability in the NAc by reducing GABA 

transmission. Additionally, TH terminals often synapse onto dendrites of spiny interneurons in 

the NAc, which are presumed to be GABAergic (Sesack & Pickel, 1990). The ERα and GPER1 

observed in GABAergic dendrites in these experiments are ideally positioned to alter 

transmission at these synapses. This provides a second mechanism through which estrogens 

could alter catecholaminergic transmission in the NAc. 
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Preface: 

Following the success of the electron microscopy experiments in the STR and NAc it was 

important to extend the findings to the PFC, examining the distribution of ERs in that region. In 

addition, it was important to determine whether binding at membrane associated receptors 

rapidly altered behaviour, yet little research has addressed this. To provide an unequivocal 

demonstration that estrogens have rapid effects on neurotransmission to induce rapid behavioural 

changes, 17β-estradiol (E2) was infused directly into the PFC, instead of using systemic 

administration. Additionally, a behavioural test that could be completed within 20 minutes of the 

E2 infusion was chosen; E2 could not alter production of protein this rapidy since the most rapid 

changes in protein production (expression of immediate early genes) take at least 30 minutes to 

occur (Sokolova, Shtark, Lisachev, Pustyl’nyak, and Pan, 2009). Based on this, we decided to 

assess the effects of E2 infusions in the PFC on multiple memory system bias.  

Multiple memory system bias was chosen over other cognitive processes examined in this 

thesis for two reasons. First, tests for perseveration and reversal learning take at least 1 hour, 

often longer in the case of reversal learning, which is tested across two days. Thus, there could 

be some ambiguity as to whether any effects of E2 infusion observed in the test results were 

caused by long-term or rapid effects. The LI test (Chapter 2) takes under 30 minutes, but for E2 

to affect the expression of LI it must be administered prior to the conditioning session, not the 

test session (Nofrey, Ben Shahar and Brake, 2007). Additionally, contradictory results 

surrounding the effects of E2 on LI indicate that this behaviour might be particularly sensitive to 

the timing/dose of E2 administered (Arad and Winer, 2010a and 2010b; Nofrey, Ben Shahar and 

Brake, 2007; Quinlan et al., 2010). Multiple memory systems are consistently altered by E2 

administration, with elevated plasma levels of E2 associated with a bias towards place memory 

(Korol, 2004; Korol et al. 2004; Korol and Kolo, 2002; Quinlan et al., 2008; 2013; 2014). Also, 

the structure of this task is such that the ability to perform to criterion can be assessed prior to the 

probe trial to ensure that the infusion of E2 to the PFC did not affect the ability to navigate the 

maze, just navigation strategy.  

 Similar to other cognitive processes examined in this thesis, multiple memory system 

bias is also affected in schizophrenic individuals. Specifically, individuals with schizophrenia 

exhibit deficits in spatial navigation, but intact egocentric navigation (Spieker, Astur, West, 
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Griego and Rowland, 2012; Weniger and Irle, 2008), which correspond to abnormal 

hippocampal and prefrontal cortical activation (Baare, van Oel, Hulshoff, Schnack, Durston, 

Sitskoorn and Kahn, 2001; Ledoux, Phillips, Labelle, Smith, Bohbot and Boyer, 2013). 

However, for this experiment we did not examined multiple memory systems in the context of an 

animal model of schizophrenia, nor did we administer any HAL to assess the effects of HAL 

administered alone and in conjunction with E2 on navigational strategies. Although these 

experiments would also be very interesting, an initial experiment to determine whether E2 in the 

PFC had any effect on multiple memory system bias was required before introducing additional 

pharmacological manipulations. 
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Abstract 

High plasma levels of estradiol are associated with use of a place memory system over a 

response memory system. We examined whether infusing E2 into the medial prefrontal cortex 

(mPFC) or anterior cingulate cortex (AC) could affect memory system bias in female rats. We 

also examined the ultrastructural distribution of ERs ERα, ERβ, and GPER1 in the mPFC of 

female rats as a mechanism for the behavioural effects of E2 in the mPFC. Each rat was infused 

bilaterally with either E2 (0.13µg) or vehicle into the mPFC or AC.  The majority of E2 mPFC 

rats used place memory.  In contrast, the majority of mPFC vehicle rats and AC E2 or vehicle 

rats used response memory. These data show that mPFC E2 rapidly biases females to use place 

memory. Electron microscopic analysis demonstrated that ERα, ERβ, and GPER1 are localized 

in the mPFC, almost exclusively at extranuclear sites. This is the first time that GPER1 has been 

localized to the mPFC of rats, and the first time that ERα and ERβ have been described at 

extranuclear sites in the rat mPFC. The majority of receptors were observed on axons and axon 

terminals, suggesting that estrogens alter presynaptic transmission in the mPFC. This provides a 

mechanism via which ERs could rapidly alter transmission in the mPFC to alter PFC dependent 

behaviours, such as memory system bias. The discrete nature of immunolabelling for these 

membrane-associated ERs may explain the discrepancy in previous light microscopy studies. 
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1. Introduction: 

Several strategies can be used when solving a maze to obtain a reward. One is response 

memory, which involves specific motor responses required to obtain a reward (Tolman, Ritchie, 

& Kalish, 1946), meaning a rat will learn to always turn left or right in a maze. Alternately, place 

memory refers to the use of distal cues around the maze to orient to a location; these cues are 

compiled into a cognitive map that is used to navigate in the maze (Tolman et al., 1946). White 

and McDonald (White & McDonald, 2002)  proposed that that response and place memory 

strategies are supported by two independently functioning parallel memory systems. The 

hippocampal system is thought to process information about environmental cues, as is done 

when using place memory. The second memory system is the dorsal striatal system, which is 

believed to support stimulus-response learning; in this form of learning an animal performs a 

habitual response when presented with a stimulus, as is done when using response memory. In 

some cases the effectiveness of one system can be increased by disabling the other (Packard, 

Hirsh, and White, 1989).  

In females these memory systems are sensitive to fluctuations in levels of estrogens (for 

review see (Hussain, Hoehne, Woodside, & Brake, 2013; Korol, 2004)). When estrogen levels 

are high, female rats are biased towards use of place memory (Korol & Kolo, 2002; Korol, 

Malin, Borden, Busby, & Couper-Leo, 2004;  Quinlan et al., 2013; Quinlan et al., 2008). In 

contrast, when estrogen levels are low female rats are biased towards use of response memory 

(Korol & Kolo, 2002; Korol et al., 2004; Quinlan et al., 2013;  Quinlan et al., 2008). Injection of 

E2 into the dorsal hippocampus has been found to improve place learning, while injections of E2 

into the STR impair response learning (Zurkovsky, Serio, & Korol, 2011). These results suggest 

increases in systemic estrogens bias females towards use of place memory, due to estrogens 

acting in the hippocampus. Lower levels of estrogens are associated with a bias towards use of 

response memory.  

The hippocampus and the STR have reciprocal projections to the mPFC, so it is possible 

that this area may influence the outputs of these two systems (White & McDonald, 2002). 

Neurons in the prelimbic and infralimbic regions of the mPFC are activated in response to a 

switch from place to response memory, but not in response to changes in behavioural or task 

contingencies (Rich & Shapiro, 2009). These findings suggest that the mPFC plays a role in 

determining whether place or response memory will be used. Additionally, estrogens may 
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contribute to mPFC control of memory system bias; OVX female rats with low E2 replacement 

switch from a response to place memory when dopamine D1 or D2 receptor antagonists are 

infused into the mPFC, while females administered high doses of E2 used a place memory 

regardless of dopamine antagonist administration (Quinlan, Radiotis, Lachapelle, Caisse, & 

Brake, 2014). Such results support a role for the mPFC in the E2-induced bias towards use of 

place memory. 

The mechanisms by which estrogens could alter neurotransmission in the mPFC to elicit 

these effects on multiple memory systems remain unclear. Estrogens act by binding at both 

nuclear and membrane-associated ERs to elicit rapid changes in cell firing and slower alterations 

in protein production. In terms of the classical ERs, previous research has yielded contradictory 

results on the distribution of these receptors in the mPFC. Most studies demonstrate little ERα 

immunoreactivity (IR) in the mPFC of rats (Cardona-Gomez, DonCarlos, & Garcia-Segura, 

2000; Kritzer, 2002), and low levels of ERβ immunoreactivity (Kritzer, 2002) and mRNA 

(Shughrue & Merchenthaler, 2001) in the mPFC of female rats. However, other studies 

demonstrate moderate levels of ERα-IR in the mPFC of rats (Montague et al., 2008; Wang, Hara, 

Janssen, Rapp, & Morrison, 2010), and moderate levels of ERβ mRNA in the mPFC of mice 

(Mitra et al., 2003). These studies observe these ERs exclusively at nuclear sites in the mPFC.  

One possible reason for the discrepancy in previous findings is that light microscopy, unlike 

electron microscopy (EM), is not sensitive enough to detect ERs at cell membranes in the mPFC. 

This assertion is supported by the finding that ultrastructural analysis detects abundant ERα 

immunoreactivity at the cell membrane in the primate PFC (Wang et al., 2010), which is not 

observed with light microscopy in rodents (Cardona-Gomez et al., 2000; Kritzer, 2002; 

Montague et al., 2008; Shughrue & Merchenthaler, 2001; Wang et al., 2010). However, further 

research is needed to clarify whether ERα and ERβ are localized to the extranuclear sites in the 

mPFC of female rats, and to investigate if the most recently-discovered ER, GPER1, is also 

present in the rat mPFC.  

This experiment was conducted to determine whether estrogens act in the mPFC to bias 

female rats towards use of place memory when solving an appetitive task. Here OVX female rats 

administered chronic low E2 replacement were implanted with bilateral cannulae in the mPFC or 

the anterior cingulate cortex (AC). The AC was selected as a control brain region because it is 

immediately dorsal to the mPFC, so any effect of E2 could be attributed to the mPFC, and not E2 
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diffusion to dorsal regions along the cannula tract. All rats received microinfusions of E2 and 

vehicle, in counterbalanced order, immediately prior to navigating a maze task that could be 

completed using either place or response memory. Additionally, tissue from the mPFC of female 

rats in the diestrus phase of the cycle was immunolabelled for ERα, ERβ, and GPER1, and was 

examined using EM. 

 

2. Method 

2.2 Experiment 1 – mPFC and memory systems bias 

Animals. This experiment used 32 female Sprague-Dawley rats (Charles River, St. 

Constant, QC. Canada) that weighed 240-260g on arrival. Rats were pair-housed until surgery, 

after which they were individually housed. The colony room was maintained on a reverse 12hour 

light cycle, with lights off at 9:00 am. Standard lab chow and water were available ad libitum 

until the start of the experiment when food restriction began. The procedures used in the 

experiment were approved by the Concordia University Animal Care Committee in accordance 

with the guidelines of the Canadian Council on Animal Care.  

Surgery and hormone administration. Surgeries were conducted as described 

previously (Quinlan et al., 2013; Quinlan, Radiotis, Lachapelle, Caisse, & Brake, 2014). 

Cannulae were implanted (Plastics One, Roanoke, VA, USA) for microinfusion of E2 or 

cyclodextrin vehicle. For the mPFC group, coordinates from bregma were: AP = +3.1mm, ML = 

± 1.5mm at 15o, and DV= –3.0mm from skull surface (Paxinos & Watson, 1998). For the AC 

group, the stereotaxic coordinates were:  AP = +3.1, ML = ±1.35 at 15º, and DV = -1.5. During 

the same procedure, rats were OVX via a single lumbar incision, and implanted subcutaneously 

at the nape of the neck with a silastic capsule containing 5% E2 (Sigma Chemical Co., St. Louis, 

MO, USA) in cholesterol (Sigma). These implants have been shown to produce low E2 plasma 

levels, similar to levels observed during the diestrus phase of the estrous cycle (Almey et al., 

2012). This low plasma level of E2 has previously been associated with a response memory bias 

(M. G. Quinlan et al., 2013; M. G. Quinlan et al., 2008). Following the procedure, rats were 

allowed one week to recover before training began. 

E2 encapsulated in cyclodextrin and the cyclodextrin vehicle were dissolved in artificial 

cerebrospinal fluid immediately before the testing session began. Drugs were infused bilaterally 

using injectors that extended 1 mm beyond the end of the cannulae. Infusions were one minute, 
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at a rate of 0.5 μL/min, after which the injectors were left in place for another minute while the 

drug diffused. This dose of E2 has been shown to have behavioral effects when infused into the 

brain (Zurkovsky et al., 2007). 

Apparatus, modified plus maze. Training was conducted using a modified plus maze, as 

previously described (Hussain et al., 2013; Quinlan et al., 2013; Quinlan et al., 2008; Quinlan, 

Radiotis, G., Lachapelle, I., Caisse, M., & Brake, W.G., 2014). During training trials, access to 

the probe start arm was blocked off, resulting in a T-shaped maze (Fig 1A), and prior to testing 

the experimenter unblocked the probe arm and blocked the start arm, creating a T-maze 180o in 

orientation relative to the training T-maze (Fig 1B). At the end of each goal arm there was a bowl 

for the food reward (Kellogg’s Froot Loops®), and Froot Loops crumbs were placed under the 

arms to mask any odor cues. There were extra-maze cues around the room to facilitate navigation 

the maze, and testing took place under illumination from 20W lights above each goal arm.  

Procedure. The training and testing phases of the experiment have been described 

extensively elsewhere (Quinlan et al., 2013; Quinlan et al., 2008). Briefly, rats were food 

restricted and maintained at 90% of their free-feeding weight, and trained to find a Fruit Loops 

that was consistently located in one of two goal arms. Each rat received 10 training trials daily; 

during each trial the rat was placed in the start arm and permitted to enter either of the goal arms. 

The inter-trial interval was 10-60sec. Rats were trained daily until reaching criterion, which was 

eight out of ten correct trials for three consecutive days. 

The day after the rats attained criterion, either E2 encapsulated in cyclodextrin (5.44 

μg/mL: 5% 17β-E2, 95% cyclodextrin) or cyclodextrin vehicle (5.16 μg/mL) was infused 

bilaterally into the mPFC or AC. All rats were tested under both treatment conditions (E2 and 

vehicle), and order effects were controlled by counterbalancing. Immediately following the 

infusion, each rat underwent 10 trials; rats only underwent testing if they remained at criterion 

for these trials. After the 10th trial, the maze was inverted for testing. There were10-20 minutes 

between the infusion and the probe trial. During the probe trial, if the rat entered the goal arm 

that had been baited during the training phase they were considered to be using place memory. In 

contrast, if the rat entered the opposite goal arm, thereby making the same directional turn as 

during training, the rat was considered to be using response memory. Following the first probe 
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Figure 1. A) Maze orientation during training trials B) Maze orientation during probe trial used 

to determine what memory system is being used to navigate the maze. 
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trial, rats were retrained until they reached criterion, which took a minimum of 3 days of 

training. Then they were infused again with either E2 or vehicle, whichever one was not 

administered prior to the first probe trial, and underwent a second probe trial. 

Histology. Following behavioral testing, rats were infused with methylene blue to mark 

cannula placements, and then they were decapitated. Their brains were removed, flash frozen in 

isopentane, and stored at -80oC. Brains were sliced coronally on a cryostat at 40μm, and mounted 

on slides for confirmation of placements. 

  Statistical Analysis. This experiment is a within subjects experimental design with 

treatment (E2 or vehicle) as the within factor. Since the dependent variable is categorical, non-

parametric statistical techniques were used to determine if there was a significant difference in 

memory system use under E2 and vehicle treatments. A McNemar test was used to compare the 

proportion of rats using each strategy following infusions of the two compounds in the mPFC 

and AC groups. An odds ratio and a logit d were computed to provide an estimate of effect size 

for each McNemar analysis (Klein, 2004). 

2.2 Experiment 2 – Ultrastructural analysis of ERs in the mPFC 

Animals. Six adult female Sprague Dawley rats from Charles River Laboratories 

(Wilmington, MA), approximately 225-250g on arrival, were pair-housed with ad libitum access 

to food and water and with 12:12 light/dark cycles, with lights on at 6:00am. Tissue from rats in 

the diestrus phase of the estrous cycle was analyzed for these experiments. Rats in the diestrus 

phase were used because this phase of the cycle corresponds to the low E2 replacement 

administered in the behavioural experiment. All procedures were in accordance with the National 

Institutes of Health guidelines and approved by the Weill Cornell Medical College Institutional 

Animal Care and Use Committee. The rats used in these experiments are the same as those used 

by Williams et al. (Williams et al., 2011) and Almey et al. (Almey et al., 2012). 

Antisera. For ERα identification, a rabbit polyclonal antiserum (AS409) produced 

against the full peptide for the native rat ERα was supplied by S. Hayashi. The specificity of this 

antibody has previously been demonstrated by binding to 3H-E2, immunoblots, and 

preadsorption controls (Alves et al., 1998; T. A. Milner et al., 2001; Okamura et al., 1992).  For 

localization of ERβ, a rabbit polyclonal antiserum produced against a peptide sequence in the C-

terminus of ERβ the mouse was used (Z8P; Zymed Laboratories, San Francisco, CA; (Shughrue 

& Merchenthaler, 2001). This antibody has been shown to be specific for ERβ by Western blot 
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analysis (~60 kDa), double label with mRNA using in situ hybridization, preadsorption control 

and absence of labeling in fixed brain sections from ERβ knockout mice (Creutz & Kritzer, 

2002; Shughrue & Merchenthaler, 2001). Moreover, ERβ immunoreactivity colabels with green 

fluorescent protein in Esr2 transgenic mice (T. A. Milner et al., 2010). Finally, to visualize 

GPER1 this experiment used a rabbit polyclonal antiserum generated against a synthetic peptide, 

CAVIPDSTEQSDVRFSSAV (Multiple Peptide Systems, San Diego, CA) derived from the C-

terminus of the human GPER1 receptor, which was supplied by E Filardo (Revankar et al., 

2005).  The specificity of this antibody has been shown on Western blots and in preadsorption 

controls (Filardo et al., 2000; Hammond & Gibbs, 2011). 

Tissue preparation. Rats were perfused, and brains were prepared for immunolabelling 

of mPFC tissue (Fig 2F) as described previously (Almey et al., 2012; T. A. Milner, Waters, B., 

Robinson, D., & Pierce, J.P, 2011). Additionally, in all experiments that involved 

immunolabelling for ERα or ERβ, a tissue section containing the ventromedial and arcuate nuclei 

of the hypothalamus was included in the immunohistochemical procedure as a positive control.  

Abundant ERα and ERβ labeling are present in these regions (Kritzer, 2002), so the success of 

immunolabelling could be confirmed prior to processing the mPFC for EM.   

Immunohistochemical labeling and tissue fixation and embedding. Free floating tissue sections 

containing the mPFC from three of the six rats were each processed for immunohistochemical 

localization of ERα, ERβ, or GPER1. Briefly,  sections were incubated in anti-rabbit ERα 

(1:10,000 dilution), ERβ (1:2000) or GPER1 (1:1000) for 24 hours at room temperature, and 4 

days at 4°C in 0.1% BSA in TBS.  Sections were then incubated in 1) biotinylated donkey anti-

rabbit immunoglobulin (IgG; diluted 1:400; Jackson ImmunoResearch Laboratories, Inc., West 

Grove, PA) in 0.5% BSA in TBS, 30 minutes; 2) avidin-biotin complex (Vector, Burlingame, 

CA), 30 minutes; and 3) 3,3-diaminobenzidine (DAB, Aldrich, Milwaukee, WI) and H2O2 in 

TBS, 6-7 minutes.  Following immunolabelling, tissue sections were fixed in osmium, embedded 

in plastic and sectioned and collected on grids as described previously (Almey et al., 2012).  

Sections through the mPFC were examined under a Philips CM10 electron microscope 

with an AMT digital camera. The subcellular distribution of each ER was examined in two 

sections per rat; a 5,832µm2 area of each section were counted in each section and categorized 
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Figure 2. Light microscopic examination of ER localization in the mPFC. A) No nuclear or 

extranuclear immunoreactivity (IR) for ERα was observed. B) Dense ERα-IR in the 

ventromedial hypothalamus. C) No ERβ-IR was observed in the mPFC. D) Dense nuclear ERβ-

IR in the hypothalamus. E) Dense extranuclear GPER1-IR is detected in the neuropil. F) A 

coronal schematic depicting the area of the mPFC (grey trapezoid) analyzed by electron 

microscopy. Black arrows depict nuclear labelling. 
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as: dendrites, dendritic spines, axons, axon terminals, or glia, using established criteria(Peters, 

1991), see Almey et al. (Almey et al., 2012) for a specific description of profiles identification.  

The total number of labelled profiles was averaged across the three rats. Tissue selected for 

analysis was taken from a depth of 0.2-1.5µm from the plastic–tissue interface, and only samples 

thin sectioned evenly across the plastic tissue interface were included in analyses. Soma were not 

included in the quantification analyses, as they frequently occupy more than half of the area 

analyzed, reducing the overall number of ER-IR profiles observed. Final photomicrographs were 

generated from digital images, where brightness and contrast were adjusted using GIMP 2.8. 

Figures were assembled in Microsoft PowerPoint 2013. 

 

3. Results 

3.1 Experiment 1 – mPFC and memory systems bias 

Histology. The study began with 32 rats, but 3 rats were eliminated because they never 

reached criterion, so 29 rats were included in the final analysis (n =14 for mPFC, n =15 for AC). 

Cannula placements in the mPFC and the AC of these remaining rats were within the target brain 

regions (Fig 3A, B).  

Behaviour.  After a microinfusion of E2 into the mPFC, 86% of rats used place memory 

and 14% used response memory; following microinfusions of vehicle to the mPFC 29% of rats 

used place memory while 71% used response memory (Fig 3A). This difference in memory use 

following E2 and cyclodextrin infusions was statistically significant (McNemar test, p = 0.008), 

demonstrating that E2 administered directly to the mPFC of female rats induced a bias towards 

use of a place memory. The odds ratio indicates that use of place memory was 15 times higher 

following an infusion of E2 than it was following an infusion of vehicle. The logit d effect size 

was 1.56, which demonstrates that this is a large effect (Klein, 2004). 

In contrast to the findings following microinfusions into the mPFC, E2 or vehicle 

infusions into the AC elicited comparable behavioural effects. When E2 was infused to the AC 

13% of the rats used a place memory and 87% of the rats used response memory; similarly, when 

vehicle was infused into the AC 20% of rats used place memory while 80% of rats used response 

memory (Fig 3B). Analysis with a McNemar test revealed no significant difference in memory 

use following infusions of E2 or cyclodextrin to the AC. The odds ratio was 0.62 indicating that  
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Figure 3. Percentage of rats that used a place or response strategy following microinfusions of 

E2 or vehicle in: A) the medial prefrontal cortex and B) the anterior cingulate cortex. The 

number of rats per group is shown on the bar, and cannula placements are shown in the image 

beside the graph.   
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there was close to an equal chance of rats using a place and response strategy in the E2 and 

vehicle groups. The logit d effect size, was 0.28, which is a small effect (Klein, 2004). 

3.2 Experiment 2 – Ultrastructural analysis of ERs in the mPFC 

Light microscopy.  By light microscopy, no nuclear or extranuclear ERα- or ERβ-

labeling was observed in the mPFC (Fig. 2A and C). However, abundant nuclei containing ERα-

IR and ERβ-IR were seen in the ventromedial and arcuate regions of the hypothalamus, 

indicating that immunohistochemistry was successful (Fig 2B and D). In contrast, GPER1-IR 

was observed in the cytoplasm, but not nuclei, of perikarya throughout the mPFC (Fig 2E). 

ERα, ERβ, and GPER1 are observed primarily at presynaptic sites in the mPFC. 

ERα. At the ultrastructural level, ERα-IR was present in all types of neuronal processes 

and glia in the mPFC (Fig. 4).  Semi-quantitative analysis (Table 1) demonstrated that most ERα-

IR was in axons (41.7%) and axon terminals (28.8%).  In axons (<0.15 μm in diameter), ERα-IR 

was typically discrete and was affiliated with the plasma membrane or clusters of small vesicles 

(Fig 4A and C). Axon terminals had cross sectional diameters that ranged from ~0.3-0.8µm, and 

contained numerous small synaptic vesicles (SSVs) and occasionally mitochondria, but no 

dense-core vesicles. In terminals, ERα-IR was found in clusters around SSVs (Fig 4A), at the 

plasma membrane, and occasionally associated with mitochondrial membranes. In addition to 

presynaptic sites, some ERα-IR labeling was observed in dendritic shafts (~8.3%) and dendritic 

spines (6.7%). In the dendritic shafts, peroxidase reaction product was often affiliated with the 

plasma membranes and microtubules (Fig. 4D), and was occasionally observed at mitochondrial 

membranes. In dendritic spines, ERα-IR accumulated in the spine head, and was observed on the 

plasma membrane particularly near the post-synaptic density.  ERα-IR was found at both pre- 

and post-synaptic profiles forming asymmetric synapses. Occasionally, ERα-IR axon terminals 

synapsed onto ERα-IR spines. Finally, ERα-IR was observed in glial profiles (14.4%; Fig. 4B).  

             ERβ. At the ultrastructural level ERß-IR was observed almost exclusively at 

extranuclear sites in neuronal and glia profiles (Fig. 5; Table 1). ERß-IR was most commonly 

localized in axons (28.8%) and axon terminals (29.9%). In axons, ERß-IR was typically found 

throughout the profiles (Fig 5B). In axon terminals, ERß-IR was observed in clusters of reaction 

product associated with SSV and was sometimes affiliated with the plasma membrane (Fig. 5C). 

ERß-IR was also in dendrites (9.6%) and dendritic spines (10.7%). ERß reaction product filled 

dendritic profiles but often was densest near the plasma membrane. In dendritic spines ERß-IR 
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Table 1 

Distribution of mERs in the mPFC  

 

Percentage of total immunoreactive profiles, and number of IR profiles and the corresponding 

standard error, observed in a ~6000 µm area of the medial prefrontal cortex, averaged across rats. 

 

 

  

Receptor ERα ERß  GPER1 

Dendrites 
% 

#         SEM 

8.3 8.4 12.9 

10.7        ±0.3 5.7          ±1.2 36.3         ±2.3 

Spines 
% 

#           SEM 

6.7 9.4 6.0 

8.7        ±0.9 6.3            ±0.9 17.0         ±2.3 

Axons 
% 

#           SEM 

41.7 25.3 36.7 

53.7       ±4.1 17.0         ±1.5 103.7         ±6.2 

Terminals 
% 

#           SEM 

28.8 33.2 29.3 

37.0        ±2.5 22.3            ±2.3 82.7         ±4.8 

Glia 
% 

#           SEM 

14.5 18.3 14.4 

18.7        ±3.2  12.3           ±2.0 40.7         ±2.0 

Total 
% 

#           SEM 

100 100 100 

128.7       ±4.3 67.3           ±2.3 282.3         ±9.2 
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Figure 4. Electron micrographs showing examples of profiles containing ERα 

immunoreactivity (IR) in the mPFC. These photomicrographs show IR for: A) ERα in an axon 

(AX) and in a terminal (TER), where IR is observed at small synaptic vesicles and on the 

membrane of a mitochondrion (mit) B) ERα-IR associated with the membrane of a glial cell 

(GL) C) ERα-IR filling an axon (AX) D) IR for ERα in a dendrite, observed at the plasma 

membrane and associated with microtubules. Bar, 500nm.  
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Figure 5. Electron micrographs showing examples of profiles containing immunoreactivity 

(IR) for ERβ in the mPFC. These photomicrographs show: A) ERβ in an axon (AX) and in a 

dendritic spine (SP) that forms an asymmetrical synapse with an unlabeled terminal (uTER) B) 

ERβ immunoreactivity filling an axon profile (AX) C) ERβ immunoreactivity associated with 

vesicles and the plasma membrane of an axon terminal (TER) D) GPER1 in a glial cell that is in 

apposition to an unlabeled dendritic spine (uSP). Bar, 500nm. 
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typically accumulated in the spine head, and was frequently observed at the cell membrane near 

the synapse (Fig. 5A). ERß-IR was occasionally observed in the perikarya where, it was 

observed at the plasma membrane and associated with organelles (not shown).  ERβ-IR was 

observed in terminals and dendritic spines that formed asymmetric synapses, but ERβ-IR 

terminals were not observed forming synapses with ERβ-IR spines. ERß-IR also was frequently 

observed in glia profile (20.9%; Fig. 5D). 

GPER1. Immunoperoxidase labeling for GPER1 was observed throughout the mPFC (Fig. 6; 

Table 1).  Like ERα and ERβ, the majority of GPER1-IR was presynaptic: axons and axon 

terminals accounted for 36.7% and 29.3% of the GPER1 labelled profiles, respectively. In axons, 

GPER1-IR was usually discrete, and often associated with the plasma membrane or small 

clusters of vesicles (Fig. 6C and D). In axon terminals GPER1-IR was most commonly clustered 

on groups of SSVs or at the plasma membrane (Fig 6A). GPER1-IR also was observed at post-

synaptic sites: dendritic shafts constituted 12.8% of total GPER1 labelled profiles, and dendritic 

spines constituted 6.2% of the total IR profiles. In dendritic shafts, GPER1-IR was typically 

associated with the plasma membrane, but also was affiliated with microtubules (Fig. 6D), and 

mitochondrial membranes.  In dendritic spines, GPER1-IR peroxidase reaction product 

accumulated in the spine head, and was associated with the plasma membrane, sometimes in the 

perisynaptic zones (Fig 6B). Neuronal perikarya with GPER1-IR were also observed.  Labeling 

was exclusively in the cytoplasm where it was discretely affiliated with endoplasmic reticulum, 

mitochondria, and the plasma membrane (Fig 6C). Although GPER1-IR was observed both pre 

and post-synaptically, and was often observed close to the synapse in terminals and spines, it was 

rare for GPER1-IR terminals to synapse onto GPER1-IR spines.  Finally, GPER1-IR was 

observed in glia profiles (14.4%); the labeling in glial cells was discrete, and was observed at the 

plasma membrane. 

 

4. Discussion 

An infusion of E2 to the mPFC, but not the AC, of female rats rapidly induces a bias 

towards the use of place memory to solve an appetitive task. Ultrastructural analyses demonstrate 

that ERα, ERβ, and GPER1 are all present, almost exclusively at extranuclear sites in the mPFC, 

providing a mechanism via which E2 in the mPFC could rapidly alter memory system use.  
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Figure 6. Electron micrographs showing examples of profiles containing immunoreactivity 

(IR) for GPER1 in the mPFC. These photomicrographs show IR for: A) GPER1-IR associated 

with small synaptic vesicles in a terminal (TER) that is adjacent to an unlabeled terminal(uTER) 

and spine (uSP) that form an asymmetric synapse B) GPER1-IR associated with the plasma 

membrane of a dendritic spine that is forming a synapse with an unlabeled terminal (uTER) C) 

F) GPER1 in a soma (SOM) where it is localized to the endoplasmic reticulum and the 

membrane of mitochondria (mit), and IR for GPER1 in two axons (AX) G) GPER1 in an axon 

(AX) and in a dendrite (DEN),where it is associated with microtubules and the cell membrane. 

Bar, 500nm. 

  



150 
 

4.1 Experiment 1 – mPFC and memory systems bias  

Without additional intracortical E2 administration, rats in both the mPFC and AC groups 

had chronic low E2 serum levels, via subcutaneous implants, that are typically associated with a 

bias towards use of response memory (Korol & Kolo, 2002; Korol et al., 2004; M. G. Quinlan et 

al., 2008). Following injection of the vehicle, cyclodextrin, into either the mPFC or the AC, rats 

still predominantly used a response strategy (71% and 80%, respectively). This finding agrees 

with previous studies, which show that response memory was used by 73% of OVX female rats 

with silastic capsules maintaining a low level of E2 (M. G. Quinlan et al., 2008) and 71% of 

female rats in the estrus phase of the cycle, when E2 is low (Korol et al., 2004).  

Estrogens in the mPFC bias female rats towards use of place memory. Interestingly, 

E2 administered directly to the mPFC biases female rats towards use of place memory, which 

offers new insight into how systemic E2 influences multiple memory systems. In this experiment 

86% of rats that received an infusion of E2 to the mPFC used a place strategy, which provides 

strong evidence that systemic E2 is acting, at least in part, in the mPFC to elicit this bias towards 

place strategy use.  This finding parallels previous research demonstrating that high serum levels 

of E2 are associated with a bias towards use of place memory (Korol et al., 2004; M. G. Quinlan 

et al., 2008). The infusion of E2 to the AC did not alter memory system use, with 87% rats using 

response memory following an infusion of E2. Since E2 administration to the AC has no effect 

on multiple memory system use, this suggests that E2-induced changes in place memory use are 

specific to the mPFC, and do not generalize to other regions of the frontal cortex. However, it is 

recognized here that estrogens also act in the hippocampus and STR to influence memory system 

bias (Zurkovsky et al., 2007; Zurkovsky et al., 2011). Since there are reciprocal connections 

between the regions there may be interactions between the E2 effects in the mPFC, STR, and 

hippocampus, but this remains unclear.  Additionally, the time between the microinfusion of E2 

and testing was ~10 minutes, so the effects of E2 in the mPFC on memory system bias are likely 

be rapid, resulting from binding at membrane-associated E2 receptors. 

When the results of the present study are considered in the context of previous research, it 

seems possible that E2 in the mPFC influences strategy use by altering dopamine transmission in 

this region. Dopamine projections to the mPFC originate from the ventral tegmental area and to a 

lesser extent, from the substantia nigra (Heidbreder & Groenewegen, 2003). Dopamine 

transmission in the mPFC is influenced by E2, such that higher serum levels of E2 are associated 
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with lower basal levels of dopamine in the mPFC (Dazzi et al., 2007) and lower levels of 

dopamine in mPFC homogenate (Dupont et al., 1981; Luine, Richards, Wu, & Beck, 1998). 

Additionally, findings from this lab indicate that female rats with low levels of E2 switch from a 

response memory to a place memory when administered either a D1 or D2 receptor antagonist, 

either systemically (Quinlan et al., 2008) or directly into the mPFC (Quinlan, Radiotis, 

Lachapelle, Caisse & Brake, 2014). This experiment parallels such findings, since infusions of 

E2 to the mPFC also induce a switch from response to place strategy in female rats with low 

systemic levels of E2. Together, these findings are consistent with a model of strategy use in 

which changes of dopamine transmission in the mPFC, either via presynaptic E2-induced 

inhibition of dopamine availability or via dopamine receptor antagonist, bias rats toward the use 

of place strategy.  

 4.2 Experiment 2 – Ultrastructural analysis of ERs in the mPFC 

These experiments demonstrated that, at the ultrastructural level, ERα, ERβ, and GPER1 

are localized to extranuclear sites in neuronal and glial profiles in the mPFC of female rats. 

Although ERs are observed at all neuronal profiles, the majority of ERs are observed on axons 

and terminals, suggesting that estrogens alter transmission in the mPFC via presynaptic 

mechanisms. Additionally, when results for the three ERs are considered together it is clear that 

GPER1 is the most common ER in the mPFC of female rats, since GPER1 is twice as abundant 

as ERα, and 4 times more abundant than ERβ (see Table 1). This implies that the effects of E2 in 

the mPFC occur predominantly through binding at GPER1, although binding at ERα and ERβ 

would also affect transmission in the mPFC. These microscopy results contribute to an 

explanation of how E2 rapidly alters transmission in the mPFC to affect memory system bias. 

Methodological Considerations. To determine whether ERα, ERβ, and GPER1 are 

found in the mPFC, the present study used an immunoperoxidase label and preembedding 

methods, which result in excellent cellular morphology that allows for discrete subcellular 

localization of antigens (Leranth C., 1989).  To ensure that any differences in number of labelled 

profiles were not due to differences in antibody penetration or sample size, all tissue samples 

analysed for quantification were identical in size and taken from near to the plastic/tissue 

interface. This methodology tends to underestimate the absolute number of peroxidase labelled 

profiles (Leranth C., 1989). IR for ERα, ERβ and GPER1 are discrete, so the absence of ER 

labeling within cellular profiles does not demonstrate that these profiles lack ERs. Thus, the 
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quantification analyses presented here are conservative, and likely underestimate the actual 

numbers of profiles containing these ERs.  

ERα, ERβ and GPER1 are observed exclusively at extranuclear sites in the mPFC. 

ERα, ERβ, and GPER1 in the mPFC are exclusively localized to extranuclear sites, and are 

observed at the plasma membrane in all types of neuronal profiles and glial cells. This finding 

contrasts some previous light microscopy and in situ hybridization studies that observe little ERα 

and ERβ, or observe ERα and ERβ exclusively at nuclear sites (Cardona-Gomez et al., 2000; 

Kritzer, 2002; Shughrue & Merchenthaler, 2001). However, this study is in agreement with other 

research that demonstrates immunolabelling for ERα in the mPFC of monkeys and rats 

(Montague et al., 2008; Wang et al., 2010), and moderate levels of ERβ mRNA in the mPFC of 

mice (Mitra et al., 2003). The difference between the present study and previous studies is likely 

because of the greater sensitivity and resolution of EM; in this experiment, light microscopy was 

not sufficient to observe any extranuclear ERα or ERβ, but EM allowed for the detection of 

discrete membrane-associated ERα and ERβ-IR in the mPFC. To our knowledge this is the first 

time GPER1 has been localized to the mPFC of the rat. At the ultrastructural level, GPER1 is 

observed at the plasma membrane and in the cytoplasm of various neuronal profiles, 

corresponding to previous research examining the distribution of GPER1 (Filardo et al., 2006; 

Filardo & Thomas, 2012; Matsuda et al., 2008). 

All ERs are predominantly localized to presynaptic sites in the mPFC. At the 

ultrastructural level, the highest proportions of ERα, ERβ, and GPER1-IR profiles are in axons 

and terminals, which parallels previous findings in primates (Wang et al., 2010). This indicates 

that estrogens in the mPFC likely alter neurotransmission via pre-synaptic mechanisms, such as 

vesicle formation, immobilization, and/or release of neurotransmitter from the terminal. ERs 

observed in axons might reflect transportation of these receptors from the soma to the terminal, 

but these receptors may also have effects on protein transport or the transduction of 

electrochemical signals (Cheung, 1990; Verdier et al., 2003). Additionally, the presynaptic 

receptors observed in terminals may be important in the local control of transmitter release, as 

estrogens have been shown to decrease dopamine availability in the mPFC (Dazzi et al., 2007). 

ER-IR is observed exclusively at extranuclear sites in the mPFC, which is in congruence with 

previous findings that have localized this receptor to extranuclear sites in other brain regions, 

such as the hippocampus and STR of rodents (Almey et al., 2012; T. A. Milner et al., 2001) and 
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the PFC of primates (Wang et al., 2010). Binding at these receptors on the plasma membrane 

could rapidly alter transmission in the mPFC, which provides a possible mechanism for 

estrogens’ rapid effects on multiple memory system bias.  

In addition to ERs being localized to presynaptic sites, they were also observed at post-

synaptic sites, on dendrites and dendritic spines, indicating that estrogens in the mPFC also have 

some post synaptic effects on transmission in the mPFC. Although ERβ was most prevalent in 

presynaptic profiles, it is interesting that 11% of ERβ was localized to dendritic spines, and this 

labeling in spines was often dense (Fig 3D), while ERα and GPER1 labeling in spines was only 

half of that observed with ERβ (~6%). This suggests that binding at ERβ may also have post-

synaptic effects in the mPFC, such as altering the cells permeability to ions or affecting the 

activity of second messenger cascades. 

ERs are localized to glia and to mitochondrial membranes. GPER1, ERα, and ERβ 

are all localized to the plasma membrane of glial cells and mitochondrial membranes in the 

mPFC. This parallels observations from our previous study examining ER distribution in the 

STR (Almey et al., 2012). Estrogens are known to mediate glial-induced neuroprotection 

(Arevalo et al., 2010; Liu et al., 2011), in part through binding at GPER1 (Liu et al., 2011). Thus, 

the localization of all three ERs to glia contributes to an explanation of how estrogens affect 

glial-mediated neuroprotection. Estrogens have also been implicated in mitochondrial 

functioning and cellular metabolism (Araujo et al., 2008; Razmara et al., 2008). The observation 

of ERs on mitochondrial membranes provides a mechanism for estrogen-induced alterations in 

cellular metabolism. Additionally, GPER1 is observed at the endoplasmic reticulum in the 

mPFC, paralleling findings in COS7, HEC50, and CHO cell cultures (Otto et al., 2008), and the 

hippocampal formation (Funakoshi et al., 2006; Matsuda et al., 2008). GPER1 is likely localized 

to this organelle because regulatory steps in the biosynthesis of GPER1 occur at the endoplasmic 

reticulum (Filardo & Thomas, 2012).  

These ultrastructural findings contribute to an explanation of the mechanisms via which 

E2 in the mPFC biases female rats towards use of place memory. ERs in the mPFC were 

observed almost exclusively at extranuclear sites, indicating that estrogens would have rapid 

effects on neurotransmission in the mPFC. This corresponds to the behavioural findings 

presented here, that E2 acts rapidly in the mPFC to induce a bias towards use of place memory to 

navigate an environment. The majority of ERα, ERβ, and GPER1 are observed on axons and 
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terminals in the mPFC, and it is possible these axons and terminals are dopaminergic. It is 

hypothesized that the E2-induced shift towards used of place memory is caused by E2 altering 

dopaminergic transmission in the mPFC. This would provide a mechanism via which systemic 

estrogens could alter dopamine availability to affect many behaviours, including multiple 

memory system bias. Dual labeling studies should be conducted to determine whether these ERs 

are in fact localized to dopaminergic neurons in the mPFC.  

  



155 
 

 

 

 

 

 

 

 

 

CHAPTER 6: 

GENERAL DISCUSSION 
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 The behavioural experiments in this thesis demonstrate that estrogens affect some 

dopamine-dependent cognitive processes and facilitate the behavioural effects of the 

antipsychotic drug HAL. The experiments in Chapter 2 of the thesis examined the effects of no, 

low and high E2 replacement, alone and in combination with HAL, on LI. Results confirmed the 

hypotheses that E2 replacement abolishes LI in female rats, and that male rats perform similarly 

to females receiving no E2 replacement. Additionally these experiments also confirmed the 

hypothesis that estrogens facilitate the effects of HAL to restore LI.  In Chapter 3 these findings 

were extended to two other cognitive processes, perseveration and reversal learning. The results 

of Chapter 3 partially supported the hypotheses; unexpectedly E2 replacement alone has no 

effect on perseveration or reversal learning in AMPH sensitized female rats, but E2 replacement 

facilitates HAL to reduce perseveration and the latency to achieve the reversal learning criterion. 

Finally, the behavioural experiment in Chapter 6 confirmed the hypothesis that an infusion of E2 

into the PFC biases female rats towards use of place memory to navigate in their environment. 

This finding is one of the first to demonstrate that binding at mERs rapidly alters behaviour. The 

behavioural experiments in this thesis provide evidence for both long-term and rapid effects of 

estrogens on some dopamine-dependent cognitive processes. Additionally, these experiments 

demonstrate that estrogen facilitate the effects of HAL, which has implications for the treatment 

of schizophrenia in females. 

The electron microscopy experiments in this thesis provide visual confirmation that ERs, 

ERα, ERβ, and GPER1, are observed at extranuclear sites and on glia in the terminal regions of 

the mesocorticolimbic and nigrostriatal pathways. In Chapter 4, it was hypothesized that 

ultrastructural analysis would observe mERs in the STR; the results of these experiments 

validated this hypothesis, demonstrating that all three ERs are observed exclusively at 

extranuclear sites in the STR. The results of the dual labelling experiments in Chapter 4A did not 

fully support the hypotheses, as mERs are not localized to dopaminergic neurons in the STR. 

However, these dual labelling studies support the hypothesis that a proportion of ERs are 

localized to cholinergic neurons in the STR, and the experiment in Chapter 4B confirmed the 

hypothesis that mERs are localized to GABAergic neurons in the STR. Chapter 5 examined the 

distribution of ERs in the NAc Core and Shell, validating the hypothesis that there are mERs in 

the NAc. These experiments provide limited support for the hypothesis that mERs in the NAc are 

localized to dopaminergic neurons, since a low proportion of mERs are observed in 
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catecholaminergic neurons, and confirmed the hypothesis that mERs are localized to GABAergic 

neurons in the NAc Core and Shell. Finally, the electron microscopy experiment in Chapter 6 

used the same immunolabelling techniques at Chapters 4 and 5 to examine the ultrastructural 

distribution of mERs in the PFC; this experiment validated the hypothesis that there are mERs in 

the PFC, providing a mechanism for the rapid effect of on multiple memory system use in this 

region. The electron microscopy experiments in this thesis provide the first evidence for mERs in 

the terminal regions of the mesocorticolimbic and nigrostriatal pathways, providing a potential 

mechanism for some of the effects of estrogens on dopamine transmission and dopamine-

dependent behaviours.  These experiments correspond to previous light microscopy findings that 

observed moderate levels of nuclear ERs in the substantia nigra and ventral tegmental area, and 

low levels of nuclear labeling in the STR, NAc, and PFC (Brailoiu et al., 2007; Hazell et al., 

2009; Mitra et al., 2003; Shughrue & Merchenthaler, 2001). The cognitive effects of estrogens 

likely result from a combination of the long-term effects resulting in changes in protein 

expression, via nuclear ERs and mERs, and the rapid effects resulting in changes in membrane 

permeability and vesicular trafficking, via mERs.  

1. The effects of estradiol on cognition 

 The experiments in this thesis examined the effects of E2 on cognition in OVX female 

rats. More specifically, four cognitive processes were examined in this thesis: selective attention, 

multiple memory system bias, reversal learning, and perseveration. The effects of E2 on these 

four measures of cognition varied, as higher levels of estrogens reduced selective attention and 

biased female rats towards use of place memory to navigate their environment, but had no effect 

on perseveration or reversal learning. There are two possible reasons for these varied effects of 

E2 on cognition. 

 The most likely explanation for the differing effects of E2 on different cognitive 

processes observed in this thesis is AMPH sensitization; all rats in the reversal learning and 

perseveration studies were repeatedly administered amphetamine prior to testing, while rats in 

the LI and memory system bias experiments were not. This change in experimental protocol was 

made following the LI study to increase the ecological validity of the reversal learning and 

perseveration experiments, since AMPH sensitization of locomotor activity induces some of the 

cognitive symptoms associated with schizophrenia (Featherstone et al., 2007). AMPH 
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sensitization of locomotor activity results in lasting changes in dopamine transmission, which are 

hypothesized to be responsible for the behavioural changes in rodents that parallel the cognitive 

symptoms of schizophrenia. Briefly, sensitization to psychostimulant drugs increases stimulated, 

but not basal, extracellular dopamine levels (Becker, 1990a; Becker & Rudick, 1999; Thompson 

& Moss, 1994). Similarly, repeated administrations of AMPH result in increased stimulated 

glutamate in the NAc and STR (McFarland, Lapish, & Kalivas, 2003). There is some evidence 

suggesting that repeated administrations of AMPH are associated with stimulated extracellular 

dopamine in the PFC, which could contribute to the increase in glutamate in the NAc (for review 

see Pierce & Kalivas, 1997). Since AMPH has robust and long-lasting effects on dopamine 

transmission in the NA, STR, and PFC, this may mask more subtle changes in dopamine caused 

by E2 replacement. In sum, in the experiments presented here, E2 affected selective attention and 

multiple memory systems, but not perseveration or reversal learning, potentially because all rats 

in the perseveration and reversal learning experiments were amphetamine sensitized.  

 A second reason why high E2 replacement only affected some of the cognitive measures 

examined in this thesis is that estrogens’ neurobiological effects differ between brain regions. 

Previous research, including the results of this thesis, suggests that estrogens may have greater 

effects in the PFC than they do in the NAc or STR. Findings from multiple studies indicate that 

there are higher levels of both nuclear and membrane associated receptors in the PFC than in the 

NAc or STR (Almey et al., 2014; Almey et al., 2012; Hazell et al., 2009; Mitra et al., 2003; 

Montague et al., 2008; Shughrue et al., 1998), suggesting that estrogens would elicit greater 

effects on transmission in the PFC. This is of interest because evidence suggests that the PFC 

plays a critical role in multiple memory system bias, switching between the different memory 

systems (Almey et al., 2014; Dahmani & Bohbot, 2015; Rich & Shapiro, 2009). Additionally, the 

PFC is also important for LI, as lesions of the orbitofrontal cortex (Schiller & Weiner, 2004), 

depletion of catecholamines in the PFC (Nelson, Thur, Marsden, & Cassaday, 2010), and 

reduced transmission at the GABAA receptor in the PFC (Piantadosi & Floresco, 2014) all 

disrupt this behaviour. In contrast, deficits in reversal learning caused by excessive perseveration 

are mediated more by the STR and NAc (Ersche et al., 2011), and the PFC to a lesser extent 

(Mala et al., 2015). Thus, the E2 replacement used in this experiment could have affected LI and 

multiple memory system bias because these behaviours are more susceptible to disruptions in 
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prefrontal cortical transmission, and E2 theoretically has greater effects on transmission in the 

PFC.  

Despite differing effects of E2 on the cognitive processes assessed in this thesis, E2 

consistently facilitates the effects of HAL, increasing HAL’s efficacy to reduce deficits in LI, 

reversal learning, and perseveration. Currently there is no known mechanism for the interaction 

between E2 and HAL, but the effects of E2 on the distribution and affinity state of D2 receptors 

likely contribute. HAL is an antagonist for the D2 receptor, meaning it binds to this receptor, 

preventing dopamine from binding to activate the receptor. Ovariectomy results in significant 

decreases in D2 receptor binding in the NAc and STR, which are prevented/recovered by E2 

replacement (Landry, Levesque and Di Paolo, 2002; Le Saux, Morissette and Di Paolo, 2006). 

Therefore, E2 could be facilitating the effects of HAL by maintaining D2 receptors, providing 

binding sites for HAL, allowing this drug to elicit its effects on dopamine transmission. A second 

potential mechanism for the interaction between E2 and HAL are E2-induced effects on the 

affinity state of the D2 receptor. D2 receptors are reported to have a high affinity and low affinity 

state; the low affinity state is functionally inactive, meaning that binding at the receptor has no 

effect (Samaha, Seeman, Stewart, Rajabi and Kapur, 2007). Previous research indicates that E2 

replacement significantly increases the proportion of D2 receptors in the low affinity state 

(Levesque and Di Paolo, 1988); experiments are currently underway to confirm that estrogens do 

indeed alter the affinity state of these receptors. E2 replacement may decrease the number of D2 

receptors in the high affinity state, essentially having the same effect as HAL, reducing the 

number of D2high receptors available to bind dopamine and alter dopamine transmission. 

Furthermore, it is possible that E2-HAL interactions occur via a combination of these two 

mechanisms, with E2 maintaining levels of D2 providing binding sites for HAL, but decreasing 

the affinity state of the D2 receptor to decrease the effects of dopamine binding at these 

receptors.  

2. Clinical implications  

The experiments in this thesis were run exclusively with rodents, however, they do allow 

for some speculation surrounding the treatment of schizophrenia in women. The results of the LI, 

perseveration, and reversal learning experiments suggest that estrogens increase the efficacy of 

HAL to improve some of the cognitive deficits associated with schizophrenia. In fact, the 
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optimal dose of HAL differed across estrogen replacement groups, suggesting that plasma 

estrogen levels should be considered when determining doses of antipsychotic drugs. Clinical 

studies demonstrate that HAL and other antipsychotic medications reduce positive symptoms of 

schizophrenia in women more when administered in conjunction with oral or transdermal E2 

(Akhondzadeh et al., 2003; Kulkarni et al., 2014; Kulkarni, et al., 2012). The experiments in this 

thesis suggest that adjunctive estrogen treatments may also facilitate antipsychotic medication to 

ameliorate cognitive symptoms of schizophrenia. Antipsychotic treatments are not particularly 

effective at treating the cognitive symptoms of schizophrenia (Keefe, Silva, Perkins, & 

Lieberman, 1999), and these cognitive symptoms are the best predictor of functional outcomes 

(Bowie & Harvey, 2006), so any adjunct treatment that improves treatment of the cognitive 

symptoms of schizophrenia should be implemented in clinical treatment regimes. Adjunctive 

administration of E2 is effective in both female and male patients (Kulkarni et al., 2011; 

Kulkarni, Hayes, et al., 2012), and improves symptoms in treatment resistant individuals  

(Kulkarni et al., 2014), suggesting that E2 could improve the response to antipsychotic 

medication for the majority of individuals with this disorder.   However, the results presented in 

this thesis demonstrate that the optimal dose of HAL differed across estrogen replacement 

groups, and suggest that the combination of HAL and E2 dose must be carefully titrated, since 

excessive doses can have detrimental cognitive effects.      

Since preclinical and clinical studies suggest that estrogens facilitate the effects of 

antipsychotic drugs, this should be implemented in treatment practices. The addition of estrogen 

administration to schizophrenic women would be particularly beneficial, since antipsychotic 

treatments cause anovulation, infertility, and significant reductions in plasma levels of estrogens 

(for review, see Bargiota, Bonotis, Messinis, & Angelopoulos, 2013). Briefly, the common 

feature of antipsychotic drugs is antagonism of D2 receptors throughout the body, including D2 

receptors on lactotroph cells in the pituitary. Dopamine binding at these pituitary D2 receptors 

provides tonic suppression of prolactin release; when antipsychotic drugs block these D2 

receptors this leads to an increase in prolactin levels, which disrupt reproductive endocrine 

systems (Dickson & Glazer, 1999). Consequently, it is relatively common for females prescribed 

antipsychotics to have low plasma levels of estrogens, meaning that their medication is less 

effective than it could be if these women had normal reproductive cyclicity. There is an impetus 
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to translate the preclinical findings presented here into clinical practice, since adjunctive 

treatment with estrogens could significantly improve the efficacy of antipsychotic medications. 

3. mERs in the STR, NAc, and PFC 

The experiments in this thesis demonstrate that there are mERs localized to the STR, 

NAc, and PFC. The mERs in the hippocampus, STR, NAc, and PFC are almost never observed 

using light microscopy, indicating that electron microscopy is a better technique for visualizing 

mERs in neuronal tissue. These ultrastructural analyses complement previous light microscopy 

and in situ hybridization experiments; together they map the distribution of nuclear ERs and 

mERs, providing a more complete picture of how estrogens affect neurotransmission through 

long-term and rapid mechanisms. 

The results of the electron microscopy experiments in Chapters 4-6 provide the first 

descriptions of the ultrastructural distribution of mERα, mERβ, and GPER1 in these dopamine-

innervated regions. These results indicate that these receptors have very similar distributions in 

the NAc Core and Shell, suggesting a homogeneous distribution of receptors throughout the 

NAc. Furthermore, the distribution of mERα and GPER1 were very similar in the STR and NAc, 

suggesting that these receptors are distributed fairly homogeneously across these two regions. 

Technically the STR and NAc are both part of the striatum, which is subdivided into the dorsal 

striatum (STR aka. caudate putamen) and the ventral striatum (NAc; for review see Voorn, 

Vanderschuren, Groenewegen, Robbins, & Pennartz, 2004). There are notable differences 

between these regions of the striatum, including the fact that dopamine innervation to the STR 

and NAC come from separate populations of dopamine neurons, the substantia nigra and ventral 

tegmental area, respectively (Voorn et al., 2004). However, the results presented in this thesis 

indicate that the distribution of mERs is relatively consistent throughout the striatum. The one 

exception to this homogeneity is the distribution of mERβ, which is higher in the NAc than in 

the STR. In contrast the distribution of mERs differs between the striatum and the PFC; in the 

PFC GPER1 is observed more frequently and mERα is observed less frequently than in the STR 

and NAc. Additionally there are differences in mER distribution between striatum and 

hippocampus, as electron microscopy research in the hippocampus indicates a greater proportion 

of mERs are observed at postsynaptic sites. Thus, the distribution of mERs is not consistent in all 

regions receiving dopamine afferents, although distribution in the STR and NAc are similar.  
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mERα, mERβ, and GPER1 are relatively ubiquitous in all brain regions examined in this 

thesis, in that they are observed at all types of neuronal profiles (dendrites, dendritic spines, 

axons and axon terminals) and glial cells in the STR, NAc Core and Shell, and PFC. However, in 

all three of these brain regions the majority of mERs are at presynaptic sites, either axons or axon 

terminals, indicating that estrogens primarily affect presynaptic transmission in these regions. An 

example of this can be seen in Figure 1, which depicts the distribution of mERα, mERβ, and 

GPER1 in the PFC; the majority of all three of these receptors are localized to presynaptic 

profiles, either axons or axon terminals. Little is known about the specific effects of binding at 

mERs in presynaptic neuronal profiles. However, binding at mERα associated with small 

synaptic vesicles in terminals of the hippocampus was shown to mobilize transportation of 

vesicles to the synapse (Hart et al., 2007). Binding at mERα, mERβ, and GPER1 in the STR, 

NAc, and PFC could have the same effect as in the hippocampus, promoting the trafficking of 

vesicles to the synapse in terminals. Additionally, these receptors are positioned to affect 

propagation of axon potential and the release of transmitter into the synaptic cleft; future studies 

should examine how binding at mERs alters presynaptic transmission. 

Contrary to our initial hypothesis, mERs in the STR and NAc are likely not localized to 

dopaminergic neurons. In the STR almost no colocalization is observed between mERα or 

GPER1 –IR profiles and TH immunoreactivity, and in the NAc Core and Shell a small 

proportion of ERα and GPER1 –IR profiles also contain TH. The TH containing neurons in the 

NAc could be dopaminergic, so it is possible that a small proportion of mERs are localized to 

dopamine neurons in this region, but TH containing neurons in the NAc could also be 

noradrenergic. Since the distribution of mERs in the STR and NAc is relatively homogeneous, 

and mERs are not localized to dopaminergic neurons in the STR, it is hypothesized here that the  
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Figure 1. Representation of estrogen receptor localization to pre- and post-synaptic profiles in 

the prefrontal cortex. Estrogen receptors were most commonly localized to axons and terminals 

in the prefrontal cortex, depicted alongside the pyramidal neuron, and were also observed in 

dendrites and dendritic spines at lower levels, depicted on the apical dendrite of the pyramidal 

neuron. Low levels of nuclear labeling for ERα and ERβ were observed via light microscopy.  
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TH neurons in the NAc that contain mERs are noradrenergic. Further research is needed to 

confirm this using specific immunomarkers for dopamine and noradrenaline neurons, such as 

dopamine-beta-hydroxylase or phenylethanolamine-N-methyltransferase, respectively (Lorang, 

Amara, & Simerly, 1994). Regardless, the proportion of mERs in TH-IR neurons in the NAc is 

very low, suggesting that mERs in the NAc and STR have minimal effects on dopamine through 

binding at receptors on catecholaminergic neurons. 

The results of the experiments presented in this thesis suggest that the majority of mERα 

and GPER1 are localized to GABAergic neurons in the STR and NAc (Fig 2 and Fig 3). This 

distribution of mERs suggests that estrogens in the STR and NAc indirectly affect dopamine 

transmission by altering GABAergic transmission in these regions. There are a select few studies 

that support this hypothesis. As discussed above, estrogens rapidly affect the transportation of 

vesicles to the synapse in the hippocampus; this is observed in GABAergic neurons, 

demonstrating that binding at mERs affects presynaptic GABAergic transmission in the 

hippocampus (Hart et al, 2007). Additionally, a systemic injection of E2 rapidly decreases 

GABA availability in the STR (Hu et al., 2006; Schultz et al., 2009), which indicates that 

binding at mERs in the STR could decrease GABA availability. Multiple studies have shown 

that antagonizing GABA in the STR and NAc increases tonic DA availability (Adermark et al., 

2011; Smolders et al., 1995; Whitehead et al., 2001), which suggests that E2-induced decreases 

in GABA could cause the E2-induced increase in dopamine availability observed in these 

regions (Becker 1990; Becker, 1999; Becker and Rudick, 1999). It is not clear how changes in 

GABA availability in the STR and NAc affect dopamine availability; one theory is that GABA 

binds to presynaptic receptors on dopaminergic terminals in the STR/NAc, increasing dopamine 

release (Adermark et al., 2011). Alternatively, changes in GABAergic transmission in the 

STR/NAc could alter activity in glutamatergic projections from the STR/NAc to the substantia 

nigra/ventral tegmental area, causing increased activity in the substantia nigra leading to an 

increase in dopamine release. These E2-induced changes in GABA affect rotational behavior 

(Schultz et al., 2009), which is known to be dopamine-dependent, providing the first evidence 

that estrogens affect dopamine-dependent behaviours by decreasing GABA transmission.   
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Figure 2. Representation of estrogen receptor localization within pre- and post-synaptic profiles 

in the dorsal striatum. Although estrogens are known to increase dopamine release in this area, 

almost no estrogen receptors were observed on dopamine terminals. Thus, estrogens are likely to 

affect dopamine release via changes in presynaptic transmission of GABA or cholinergic 

neurons. 
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Figure 3. Representation of estrogen receptor localization in pre- and post-synaptic regions in 

the nucleus accumbens. There are low levels of estrogen receptors associated with dopaminergic 

terminals, so estrogens could affect dopamine transmission directly by binding at these receptors. 

Additionally, a moderate proportion of ERα and GPER1 are observed in GABAergic terminals 

and dendrites; estrogens could indirectly affect dopamine release through pre- or post-synaptic 

changes in GABAergic transmission. 
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4. The role of mERs in E2-induced changes in cognition 

 There is an abundance of research indicating that ERs are associated with the membrane, 

as these receptors have been localized to the membrane using fractionation (Pietras and Szego, 

1980), can be activated by E2-BSA that does not cross the cell membrane (Zheng and Ramirez 

1997), and occur in the presence of transcription blockers (Kelly et al 1980, Minami et al 1990, 

Nabekura et al 1986). Additionally, there is strong evidence that estrogens can have rapid effects 

on cellular transmission, initiating second messenger cascades, increasing intracellular CA2+ 

(Coleman and Smith 2001, Fu and Simoncini 2008, Yang et al 2008), and activating mGluR 

receptors (Meitzen et al 2013). However there is still relatively little evidence for rapid 

behavioural effects of estrogen.  

The vast majority of studies examining the cognitive effects of estrogen administer 

hormone replacement 12-24 hours prior to behavioural testing, and in experiments with naturally 

cycling rats phase of the cycle is typically determined ~12hours prior to testing. This has been 

the common practice, since estrogens were thought to have long-term effects, requiring long 

periods of time to occur (i.e. hours, not minutes). The ELISA analyses in Chapter 2 suggest that 

plasma levels of E2 in the high E2 group decreased to levels observed in the low E2 group by the 

time behavioural testing occured. Thus, any differences between high and low E2 rats in the LI, 

reversal learning, and perseveration experiments presented here can be primarily attributed to the 

long-term effects of E2. The methodological choice of administering E2 ~16 hours prior to 

testing makes these studies comparable to previous research in this lab and the field, but does not 

allow for an examination of the rapid effects of estrogens on these behaviours. Future studies 

should administer E2 30 min prior to testing to determine whether estrogens also have rapid 

effects on LI reversal learning and perseveration. In contrast, since the Low and High E2 

replacement groups have low plasma levels of E2 from the subcutaneous capsules, differences 

observed between the E2 replacement groups and the No E2 replacement group are likely 

mediated by both the long-term and rapid effects of E2. With this experimental design it is not 

possible to determine whether E2-induced behavioural changes are the result of binding at 

nuclear ERs or mERs. 

There are a limited number of studies that have specifically investigated the rapid 

cognitive effects of estrogens in females. Chapter 6 of this thesis describes an experiment 
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conducted to specifically assess the rapid effects of E2 on multiple memory systems. This study 

showed that microinfusions of E2 in the PFC bias female rats towards use of place memory in 

under 15min (Almey et al., 2014). This demonstrates mERs in to the PFC are functional, since 

binding at them rapidly alters navigational strategies. There are a select few other publications 

which also demonstrate the rapid behavioural effects of E2. Becker and colleagues have 

conducted numerous experiments demonstrating that E2, administered >30min prior to testing 

alters rotational behaviour (Becker, 1990; Schultz et al., 2009), demonstrating that rapid E2-

induced changes in dopamine have behavioural consequences. Additionally, E2 administered 

immediately following training in an object recognition task improves memory performance 

when tested 4 hours later; this effect is not observed if E2 is administered 45min following 

training, suggesting that E2 rapidly affects memory consolidation (Inagaki et al., 2010). 

Additionally, systemic injections of E2 rapidly improve both social and object recognition 

memory, and effect that is mediated by binding at GPER1 (Ervin, Phan, Gabor, and Choleris, 

2013; Gabor, Lymer, Phan, and Choleris, 2015). There is additional evidence for rapid effects of 

estrogens on behaviour in males, as systemic administration of E2 rapidly (15min) increases 

sexual behaviours (Cross and Roselli, 1999; Kaufman, Kelly, and Roselli, 2014) and aggression 

in males (Trainor, Finy, and Nelson, 2008). To the best of our knowledge, this represents the 

extent of research examining the rapid effects of estrogens on cognition. 

It is clear that administration of E2 can have rapid effects on behaviour, but the vast 

majority of experiments examining the effects of E2 on cognition exclusively examine the long-

term effects of estrogens. These long-term effects of estrogen occur through binding at nuclear 

ER and mERs, since binding at both types of receptors can result in changes in protein 

production in cells. However, there is a paucity of research examining the rapid effects of 

estrogens on cognition. As outlined in Chapter 1, there is a large body of research demonstrating 

that estrogens rapidly affect transmission in numerous regions via binding at mERs. However 

little research has furthered these findings by showing that these rapid estrogen-induced changes 

in transmission translate into changes in behaviour/cognition. Future research is needed 

examining the rapid behavioural effects of estrogens. Investigation into potential interactions 

between long-term and rapid effects of estrogens are required, since there is some evidence to 

suggest that there may be opposing consequences of the long-term and rapid effects of E2 

(Thompson and Moss, 1994). 
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