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ABSTRACT

NEURAL NETWORK-BASED COST ESTIMATING

Ines Siqueira

This thesis presents a neural network-based cost estimating method, developed
for the generation of conceptual cost estimates for low-rise prefabricated
structural steel buildings. Detailed cost estimating is current practice for this type
of buildings, since cost estimators are often challenged by a wide variety of

different parameters.

The developed method employs neural networks (NNs) for modeling individual
project parameters associated with the direct cost of a project. It integrates NN
cost models with cost adjustments, allowing for evaluation of different project
alternatives, in a timely manner. The ability of NNs to capture real life
experiences encountered on actual projects (i.e. actual costs), generalize and
utilize that knowledge for estimating the cost of new projects makes it a very

powerful tool to the application at hand.

Data used in this study (75 building projects) were collected from a large
manufacturer of prefabricated structural steel buildings in Canada (Canam
Manac) over a 3-month period. The performance of developed cost models was
tested against costs incurred by projects not used in training of those models,

and costs predicted by regression. Results indicate that the proposed models,
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when used for projects with parameters within the range for which the models
were trained, outperform regression. In addition, the proposed models can
account for a number of parameters defining a project, and bearing considerable
impact on the project cost. The proposed methodology can easily be adapted to
provide decision-support for risk management and to assist in developing

productivity models in a wide range of industries.
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CHAPTER 1- INTRODUCTION

1.1  Cost Estimating Environment

Increased concern about quality assurance, project cost and duration along with
traditional site problems related to material storage such as theft, damage and
deterioration caused by exposure to rain, snow, sunlight, etc., and other factors
such as material waste, and labor related constraints are all driving the
construction industry to prefabrication. The prefabrication process, associated to
an extensive use of CAD systems, results in consistent, custom designed high
quality products, built to federal, state and local code requirements by a stable
and skilled workforce in the controlled environment of a factory. This results in

lower production costs and reduced project duration.

Prefabrication allows timely return on investment for owners and supports fast-
track delivery of constructed facilities. However, production optimization does not
ensure a company’s survival. In an increasingly competitive market, a company
will find leverage in consistently delivering projects optimized to meet well-
defined criteria, be it cost, schedule and/or expected performance. A project's
optimization can be obtained by experimenting with different design variables,
one at a time, at a predesign stage. This is the stage where decisions having the
greatest impact on project cost, schedule and performance are made. Clearly,
this stage is most crucial for meeting a project's criteria, and front-end cost

estimating is vital in the project development. Estimates prepared at this early



stage, accordingly, form the basis for analyses of return on investment and,

assist owners and their agents in making go-no-go decisions.

This thesis focuses on such cost estimates. Front-end, parametric, conceptual
and/or order of magnitude cost estimates refer to, in this thesis, estimates using
main parameters of a project to predict its cost. These estimates are used to
assist in go-no-go decisions while minimizing estimating efforts spent on non-
viable projects (Melin 1994, Paek 1994, Barrie and Paulson 1992, Carr 1989,

Karshenas 1984).

However, the generation of conceptual estimates to a reasonable degree of
accuracy, in a timely fashion, can be considerably complex. The highly
unstructured nature of these estimates, allied to individual estimating experience
and different estimating practices, may concur to the generation of inconsistent
and therefore unreliable cost estimates. This problem is heightened in the cost
estimating of low-rise buildings (see Figure 1). The individual characteristics of
these buildings do not favor conceptual estimating. In the process, cost
estimators are often challenged by a wide variety of different parameters.
Detailed cost estimating, therefore, is currentiy used in this type of buildings,

making estimating a time consuming and costly process.

While this practice is well suited to past market conditions, it has become

inadequate for current industry needs (i.e. tough competition, limited resources,

~



etc.). For instance, in case of a project defined by 4 (four) design parameters, the
consideration of three different values for each parameter, varying one parameter
at a time, would generate 81 (eighty-one) different project alternatives, and, as

such, may require the generation of 81 (eighty-one) detailed cost estimates.

The above example illustrates that optimal solutions can not be achieved, in a
timely and cost effective manner, through the generation of detailed cost
estimates for different scenarios for each received Request For Proposal (RFP).
The time and cost involved in preparing such estimates are prohibitive for
planning purposes. The result is, in most cases, that project proposals far from
optimal are prepared. The goal of defining a project of minimum cost while
meeting determined criteria may not simply be achieved. A solution for this
problem is, therefore, to automate the cost estimating process, in such a way to
allow for 1) an interactive (owner and contractor) project scope definition, 2) the
timely generation of what-if type scenarios, 3) reliable cost estimate to assist in
go-no-go decisions, and 4) an open and flexible cost estimating environment
capable of benefiting from actual costs incurred on previous projects and of

accounting for market conditions.

Optimizing the cost estimating process means determining the best tools and
system to be used for that end. Realizing that, construction companies are
looking for new concepts and advanced tools to assist the optimization of the

cost estimating process. As such, automation is looked at as a tool to bring to the



process the efficiency and accuracy so needed in delivering a number of
alternative cost estimates generated in a timely and cost effective manner. This
is expected to provide companies with a competitive edge. The integration of
conceptual cost estimating principles with neural networks (NNs) to develop a

methodology capable of responding to these needs is discussed in this thesis.

ll

Figure 1 Low-rise Prefabricated Structural Steel Building

The use of NNs in conceptual estimating increases reliability in the process while
improving the efficiency in generating the necessary cost information to the
decision making process. NNs nearly optimize the estimating process by
providing the user with on time cost estimates for a number of project
alternatives. NNs provide the cost estimating team with a systematic and efficient
approach for studying and evaluating a number of alternatives to determine near

optimum configurations of buildings that satisfy owners’ construction needs and



budgeting constraints. It draws upon the company's experience and domain
knowledge in a reasonably accurate and consistent way, rather than individual
preconceptions of estimators. As a result, estimating time and cost are

considerably reduced.

An Automated Cost Estimating system (ACE) is proposed in an effort to improve
the cost estimating process of this class of buildings. ACE is designed to provide
the user simple data input facilities for: 1) estimation of direct cost of the project,
2) cost adjustments, 3) allocation of markups to individual cost items and taxes,
and 4) the generation of reports. It supports an order of magnitude type estimate,

a parametric wall cost estimate and a parametric structure cost estimate.

An order of magnitude estimate will predict the total direct cost of a building shell
(i.e. superstructure, exterior closure and roofing). A parametric type estimate
(wall and/or structure) allows for cost prediction of building walls (exterior walls,
windows, exterior doors and openings) and/or cost prediction of the building's
steel framing (including roof coverings and openings). Adjustments for non-
standard panels, special wall painting, special structural painting, freight and
erection may be incorporated to the direct cost predicted by the neural network

models. A spreadsheet is used to calculate these adjustments.

The system'’s reporting capabilities display project’s general information, project’s

description, direct cost (lump sum and/or cost breakdown), overheads and



profits, and the total cost estimate (itemized and/or lump sum) upon request.
ACE is limited to the cost estimating of low-rise commerciall/industrial structural
steel buildings. The utilization of the proposed system is expected to free up
estimators time, which will then be put to use in estimaﬁng pre-selected projects,

found initially acceptable to owners.

1.2  Neural Networks in Cost Estimating

Artificial neural networks try to reproduce the generalization abilities of a human
neural system. They learn through training when presented to data sets
consisting of inputs associated with output(s) (Creese and Li 1995, Flood and
Kartam 1994, Kartam et al 1993, Garret 1992, Moselhi et al. 1991b). Neural
networks are, therefore, capable of drawing upon real life experience in an
accurate and consistent manner. Principal benefits of using neural network-
based cost models include non-reflection of individual preconceptions, the
identification of near optimum parameters for lower cost and higher quality
solutions, and considerable time and resource savings in the cost estimating

process (Moselhi et al 1991b).

Neural networks are of particular advantage when dealing with highly non-linear
and complex independent variables, as in the case of cost estimating low-rise
structural steel buildings. The ability of these networks to capture the impact of a
project's physical characteristics on its cost, generalize and utilize that

knowledge for estimating the cost of new projects makes it a very powerful tool to



the application at hand. Neural networks exhibit a number of advantages that
makes them especially suitable for cost estimating. These include: 1) ability to

account for complex cases requiring large number of parameters to be
considered in parallel; 2) learning by example, associating inputs to output(s); 3)
capturing and benefiting from the experience gained on actual projects, 4) speed
of computation; 5) generalization capabilities; and 6) fault tolerance (Flood and

Kartam 1994, Kartam et al 1993, Garret et al. 1992, Moselhi et al. 1991b).

Neural networks, however, present also shortcomings, they: 1) are not
transparent enough to provide explanation facility or reasoning behind the
generated solution; 2) are sensitive to the organization and preparation of the
data used in training, as well as, to a larger degree, on the configuration of the
network itself, and 3) require the availability of a sizable number of training
examples that may be difficult to assemble. Different architectures and training
rules define different types of neural network. The backpropagation paradigm is
most commonly used for the development of civil engineering, and more
specifically construction management, applications (Flood and Kartam 1994,

Kartam et al 1993, Garret et al. 1992, Garret 1992, Moselhi et al. 1991b).

1.3  Scope and Objectives
This thesis focuses primarily on the cost estimating process of low-rise structural-
steel commercial and/or industrial buildings. It investigates the development of a

methodology for a decision-support system to assist in the cost estimating



process of this class of buildings, considering a number of essential variables.
Such methodology intends to generate cost estimates, benefiting from current
industry practice and domain knowledge through the use of commercial software
(spreadsheet and neural networks). This study follows the UNIFORMAT Il
(Bowen et al. 1992) structure. It focuses on the cost of the building shell, i.e.
superstructure (structural steel framing), exterior closure (exterior walls, windows,
exterior doors and openings) and roofing. Costs of substructure (foundation and
basement construction), interiors (interior construction and finishes), services
(conveying systems, plumbing, HVAC, fire protection and electrical), equipment
& furnishing, special construction & demolition, and building sitework are not
considered in this work. The proposed methodology, however, can be applied to
other types of projects, including heavy civil projects, productivity and risk models

(Siqueira 1999).

The primary objectives of this research are:

1) Study current cost estimating practice for low-rise structural steel buildings
and identify essential parameters involved in this process.

2) Develop a methodology and implement it to efficiently integrate direct cost
estimating, cost adjustments, markup allocation and generation of project
related reports, capturing current cost estimating practice. The developed
methodology is expected to minimize the cost and reduce the time involved in
the preparation of project bid proposals, by generating a number of

conceptual cost estimates for different project alternatives. The methodology



is intended to reduce estimating effort spent on non-selected projects, which
either fail to meet owners construction needs and/or their budgetary
constraints.

3) Evaluate the performance of developed system using cost incurred in actual

projects.

1.4 Research Methodology

The methodology adopted in this research is based on a field investigation of
current cost estimating practice carried out by a major structural steel fabricator
in Quebec. It involves a comprehensive study of the actual cost of 75 (seventy-

five) projects.

The study includes:

1) Review of project documents and current estimating practice.

2) Extensive literature review focusing on conceptual, order of magnitude type
cost estimates and the various tools utilized for these estimates. Special
attention was directed towards computer-oriented tools.

3) Based on the findings of the two steps above, development of an efficient and
practical cost estimating methodology for low-rise structural-steel buildings.

4) Implementation of the developed methodology in a prototype system utilizing
commercial available software systems.

5) Testing the developed system using actual projects in order to validate its

accuracy.



1.5 Thesis Organization

Chapter 2 presents a literature review comprising: 1) current cost estimating
practice at the company providing the data for this study, 2) cost estimating, and
3) neural networks. Different types of cost estimates are described. Neural
networks are introduced as a tool for direct cost estimating at a predesign stage.
Neural network components and characteristics, as well as different paradigms

considered in this work are described.

The proposed system is described in Chapter 3 along with the limitations of
detailed cost estimating methods at the early stages of project development
when Request for Proposals (RFP) are required. A detailed description of the
proposed conceptual cost estimating models is provided, including knowledge
acquisition, design and training. Testing and evaluation are conducted to study
the performance of developed models against actual costs. The results obtained
are then presented and analyzed. Retraining of the neural network models is

discussed.

Chapter 4 presents the developed decision support system. The chapter starts
with the overall description of the system, the system's requirements, its
components and their respective functions. The performance of the system is

discussed and its limitations highlighted.

10



In chapter 5. summary and concluding remarks are made along with

recommendations for future work.



CHAPTER 2- LITERATURE REVIEW

2.1 Current Cost Estimating Practice

An interview with potential owners initiates the cost estimating process at the
company providing the data for this study. Subsequently, a request for proposal
(RFP) is filled out and sent to the Head Office. A preliminary design is then
performed for identification of structural members and for quantity take-off
purposes. Material and labor costs are calculated individually for columns, joists
deck and wall panels. The cost of “Planning and Engineering” is also calculated.
Quotations for transportation and erection costs are requested from
subcontractors. Markup is allocated individually to each of these cost items. After
subtotals are added up for a general subtotal, an allowance for an overall markup

is made before the addition of federal and provincial taxes, as applicable.

A contract with all project specifications is then drawn based on the prepared
estimate. If considered acceptable, the contract is signed. Minor modifications, if
any, can be negotiated and included in the contract itself. Otherwise, if the scope
of the project is to be modified, the whole contracting process is repeated.
Clearly, based on this process, in cases of aborted projects, a considerable
estimating effort would be wasted. Figure 2, 3 and 4 describe current cost
estimating practice for wall panels, steel framing and total direct cost,

respectively.

12
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2.2 CostEstimating

The accuracy of any estimate depends on the amount of information available at
the time of the estimate. As stated in the Construction Industry Institute's
‘Improving Early Estimates’, (Cll 1998) “...any cost estimate is assigned a range
of accuracy (tpercentage). These ranges narrow as the quantity and quality of
information increase through the life of a project. This infers that estimate
accuracy is a function of available information (scope definition), a generally
accepted fact in engineering and construction”. Good estimating practice and
experienced personnel are also found to have considerable impact on estimate
accuracy, specially on conceptual estimates, since at this stage the level of

scope definition is low and often poorly defined (Cll, 1998).

The CllI's study highlights the following as major factors impacting estimates’
accuracy:

1) Quality and amount of information available for preparing the estimate

2) Time allocated to prepare the estimate

3) Proficiency of the estimator and the estimating team

4) Tools and techniques used in preparing the estimate

Accordingly, estimates are classified and their corresponding range of accuracy
defined. The cost estimate classifications by the Association for Advancement of
Cost Engineering (AACE) International and the Construction Industry Institute

(CHl), adapted, are shown in Table 1 and Table 2, respectively.
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Table 1 AACE International Cost Estimation Classifications (18R-97)

Estimate | Level of Project End Usage Expected
Class Definition (%) (Typical Purpose) Accuracy Range (%)
Class 5§ Oto2 Concept Screening -50 to +100
Class 4 1t05 Study or Feasibility -30 to +50
Class 3 10 to 40 Budget or Control -20to +30
Class 2 30to 70 Control or Bid/Tender -15to +20
Class 1 50 to 100 Check Estimate or Bid -10 to +15

Table 2 Construction Industry Institute Cost Estimate Definitions (Cll SD-6)

Estimate Class Percentage Description/ Methodology
Range
Order of Magnitude + 30 to 50 Feasibility Study: cost/capacity curves
Factored Estimate + 25 to 30 Major equipment: cost/factors
Control Estimate +10to 15 Quantities: mech./elec./civil drawgs.
Detailed or Definitive +<10 Based on detailed drawings

This study will focus on estimates prepared at a predesign stage, when the level
of project definition is within 10 to 40%. The expected accuracy range for these
estimates is between +20 to 30%. This is in line with AACE International (Class
5, 4, and 3 estimates) and Cll (Order of Magnitude and Factored) classifications.
The terms conceptual, parametric and order of magnitude are used

interchangeably in this thesis to refer to the type of estimates described above.

A conceptual cost estimate uses main parameters (parameters that have the
most significant cost impact on the product being estimated) of a project to
determine its cost. It focuses on cost drivers, the specified design and/or
planning characteristics that have a predominant effect on the cost of a project.

Once the cost drivers are identified, cost models for the generation of conceptual



estimates can then be developed. Reliance on conceptual cost estimates
generated by properly developed and carefully evaluated cost models can save
the user time and resources not only in the evaluation of project alternatives but
also in the checking of detailed cost estimates prior to bid submittals (CIl 1998,

U.S. Department of Defense 1995, Barrie and Pauison 1992).

Conceptual cost estimates date back to World War Il (U.S. Department of
Defense 1995), when a demand for military aircraft in numbers and models far
exceeded anything the aircraft industry had ever manufactured before. Industrial
engineers were then led to use a type of statistical estimating, suggested by T. P.
Wrright in the Journal of Aeronautical Science in 1936, to predict the unit cost of
airplanes. These equations could be used to predict the cost of airplanes over
long production runs, a theory which came to be called the learning curve (U. S.

Department of Defense 1995).

However, while the learning curve technique proved most useful for predicting
the behavior of recurring cost, there were still no techniques other than detailed
estimating for predicting what the first unit cost might be (a key input to the
learning curve equation). In the mid 1950's the Rand Corporation, in Santa
Monica, California, developed the most basic tools of the cost estimating
discipline, the Cost Estimating Relationship (CER), and merged the CER with the
learning curve to form the foundation of parametric aerospace estimating (U. S.

Department of Defense 1995).
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The use of CERs constituted a breakthrough in cost estimating, for cost analysts
saw, for the first time, the promise of being able to estimate, to a reasonable
degree of accuracy and in a timely manner, the cost of proposed new systems.
Since then, the state of art in parametric estimating has been steadily improving
by a considerable growth in the number of practitioners, important
methodological improvements, and greatly expanded databases (U.S.

Department of Defense 1995).

Parametric estimates are used to assist: 1) owners in making go-no-go
decisions, 2) owners and estimators in the definition of project scope and
characteristics, 3) owners and designers in estimating C.O.’s, 4) estimators in the
checking of detailed estimates, 5) production managers in cost control of the
work in progress, and/or 6) contractors in last minute bid preparation (Cll 1998,
U.S. Department of Defense 1995, Melin 1994, Paek 1994, Barrie and Pauison

1992, Carr 1989, Karshenas 1984).

Over the past several years industry and professional estimating associations
(e.g., International Society of Parametric Analyst (ISPA), Society of Cost
Estimating and Analysis (SCEA)) have been actively working to explore the
expanded opportunities for the use of conceptual cost estimating techniques for

business proposals. ISPA was formed in 1978 when a parametric estimating
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user's group evolved into a more generic Society (U.S. Department of Defense

1995).

As part of the efforts devoted to the improvement of conceptual estimates, Cll

Research Team 131, identified in the report entitled “Improving Early Estimates”

the following primary factors in preparing estimates:

1) Alignment of objectives between customer and cost estimating team.

2) Standardization of the cost estimate preparation process.

3) Selection of estimate methodology commensurate with the desired level of
accuracy.

4) Documentation and communication of estimate basis and accuracy.

5) Review and checking of estimate.

6) Feedback from project implementation.

Alignment ensures mutual understanding between user and client regarding the
level of scope definition, and as such the estimate expected range of accuracy.
Effective communication is essential during the estimating process and
standardization of the process becomes a must for consistency and reliability of
the estimates prepared. A standardized process defines the basis of the estimate
and facilitates its review and future. It, further, supports effective communication
with owners. To improve conceptual estimates, the estimating process must be a

continuous cycle. Actual cost information from completed projects must be



captured in a feedback system that can be integrated into the cost database for

use in preparing future estimates (Cli 1998).

2.3 Neural Networks

Neural networks (NNs) are not new, they were introduced half a century ago,
creating together with knowledge based expert systems (KBESs) the field of
Artificial Intelligence, Al, (Moselhi 1998a). NNs and KBESs did not receive equal
attention. The interest in these two Al techniques varied over the years, with a
notable sharp decline in NNs' research in the early 1970s. NNs, however, have
received considerable attention in recent years, with the rapidly increasing
computational power and concurrently declining cost of computers (Moselhi
1998a). NNs try to reproduce the generalization abilities of a human neural
system (Moselhi 1998, Flood and Kartam 1994, Moselhi 1993, Garret 1992,

Garret et al. 1992, Moseihi 1991b, Rumeihart 1986).

It is estimated that the human brain contains approximately 100 billion neurones
linked by 10'® interconnections, and when functioning actively the brain would be
firing at a maximum rate of 1,000 pluses/second, approximately. NNs, on the other
hand, consist essentially of a number of simple processing elements or artificial
neurones linked with a set of interconnections representing, respectively, neural
cells or neurones and their axons or semi connectors in the human brain. The
processing elements are arranged and organised in different forms, depending on

the type of network and its paradigm (Moselhi 1998a, Moselhi et al 1993, Moselhi et
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al. 1991b). Figure 5 depicts the most commonly used type of NNs, known as the
feed-forward or back-propagation (Rumelhart 1986). This type and similar
architecture such as general regression neural networks (GRNN) are most suited

for pattern recognition and forecasting class of problems.

Area inputs Hidden Output
Height Struct $
Joist Span
V. Loads

Ni=4 Np=7? No =1

Figure 5 Feed-forward Network (Moselhi 1998a)

Feed-forward networks gain their knowledge, and hence their problem-solving
capabilities by learning from cases encountered, in a manner similar to a human
gaining work experience. Those cases are called training examples, where for each
case the input parameters form an input pattern and the desired output parameters
form an associated output pattern. As such, each training example represents an
added experience to the network. In training, the network generalizes the
knowledge implicit in the training examples, by associating the input to the desired
output, and becomes capable of providing solutions to new problems, even with

noisy and incomplete input data. It follows that a prerequisite for developing any

(35
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practical application is to identify the input and output parameters and to map them
into a suitable pattern (i.e. defining the number of processing elements in the input
buffer and output layer, see Figure 5). Clearly this requires a complete and
comprehensive understanding of the domain of application. The optimum number
of nodes in the hidden layer, however, is determined after a series of trials and a
default number to start with is required. NeuroShell 2 (NeuroShell 2 1996), a
commercial neural network software, suggests, in its manual, an equation for the

calculation of the number of the nodes in the hidden layer.

N +N
N, =) N ™

Where: Nnh = Number of nodes in the hidden layer
Ni = Number of nodes in the input layer
No = Number of nodes in the output layer

Niwn= Number of training examples

The input data is presented to the input layer, normalized, and muitiplied by its
connection weight. Calculated the weighed inputs, they are summed at each
node to produce an activation value, which is then modified by a selected
transfer function. The transfer function can take many forms: logistic, linear,
tangent, etc. (NeuroShell 2 1996). The output of the neurons in the hidden
layers(s) will then be muitiplied by the respective weights, this product summed

up, and a new activation value generated. This new value will then be modified



by a transfer function, and an output for that processing element is calculated

(NeuroShell 2 1996, Garret et al. 1992, Moselhi et al 1991b, Rumelhart 1986).

The error (difference) between desired output (D) and that generated by the
network (N) is termed 3. The average squared error over all the training examples

is (Moselhi 1998a):

in which E = Average of squared errors,
Nin = Number of training examples

No = Number of nodes in the output layer

The weights (W's) are adjusted by an incremental variation proportional to the error

(3), formulated in a manner that reduces the error E in Eq. 2, as shown in Eq. 3:

Wnew = Wold + AW (3)

in which AW = ndX
n = Learning rate coefficient
(0<d<1), and
X = Input value
Other forms for Equation 3 have been proposed in the literature. The fundamentals

of NNs can be found in a number of textbooks (Moselhi 1998a).



Different architectures and training rules define different types of neural networks
(Moselhi 1998a, Kartam et al. 1993, Moselhi et al. 1991b) however,
backpropagation (Rumelhart et al. 1986) is the training algorithm most commonly
used for the development of civil engineering, and more specifically construction
management, applications (Moselhi 1998a, Flood and Kartam 1994, Kartam et
al. 1993, Garret Jr. 1992, Garret et al. 1992, Moselhi et al. 1991b).

Backpropagation has been briefly described in this thesis for continuity.

General regression neural network (GRNN), like backpropagation, is essentially
a feedforward network that consists of 4 (four) layers as shown in Figure 6.
Unlike backpropagation type networks, GRNN has 2 (two) hidden layers, the first
is called the pattern units, and has the same number of nodes as the number of
project cases or training examples. The second hidden layer consists essentially
of 2 (two) nodes. Further, this type of network does not propagate the error as in
backpropagation, it is rather known to be a one-pass network (Specht 1991).

GRNN is described by Equation 4:

in which

D} =(X-X")(X-X") (5)



=  Conditional mean of the probability function

1%
X = Random variable
Y' = Sample value

D? = Scalar function

o = Width of the probability function

Input Units

. a Pattern Units

Y (X)

Figure 6 GRNN (Specht 1991)



Although application of neural network in civil engineering only go back to the
late 1980’s (Flood and Kartam 1994), by 1994 neural networks already covered a
range of topics as diverse as process optimization, seismic hazard prediction,
classification of nondestructive evaluation signals, selection of formwork systems

and cost estimating (Flood and Kartam 1994).

Backpropagation neural networks have been used in the development of
applications such as: modeling reinforced concrete (Mukherjee and Deshpande
1995), concrete strength (Williams et al. 1992), modeling soil correlation (Goh
1995), simulating structural analysis (Rogers 1994), predicting estuarine
instabilities (Grubert 1995), predicting pile capacity (The et al. 1997), damage of
prestressed concrete piles (Yeh et al. 1993), average and peak traffic volumes
(Lingras and Adamo 1996), estimating construction productivity (Sonmez and
Rowings 1998, AbouRizk and Portas 1997, Chao and Skibniewski 1994,
Karshenas and Feng 1992), identification of structural damage (Barai and
Pandey 1995, Elkordy et al. 1993), environmental engineering (Basheer and
Najjar 1996), cost forecasting (Boussabaine and Kaka 1998), vertical formwork
selection (Kamarthi et al 1992), selection of flooring systems (Issa and Fletcher

1993), and estimating resource requirements (Elazouni et al. 1997).

In the area of cost estimating, applications have been developed for parametric
cost estimating of: low-rise structural steel buildings (Siqueira 1999, Moselhi and
Siqueira 1998, Siqueira and Moselhi 1998a, Siqueira and Moseihi 1998b),

change orders (Moselhi 1998b), highway projects (Hegazy and Ayed 1998),



manufacturing industry (Bode, 1998), timber bridges (Creese and Li 1995),

carbon steel pipes (de la Garza and Rouhana 1995), and pumps (McKim 1993).

Neural networks exhibit a number of advantages that makes it especially suitable

for cost estimating. These include (Flood and Kartam 1994, Kartam et al. 1993,

Garret et al. 1992, Moselhi et al. 1991b):

1) ability to account for complex cases requiring large number of parameters to
be considered in parallel;

2) learning by example, associating inputs to output(s);

3) speed of computation;

4) generalization capabilities; and

5) fault tolerance.

Neural networks, however, exhibit also shortcomings (Flood and Kartam 1994;

Kartam et al. 1993, Moselhi et al. 1991b):

1) they are not transparent enough to provide explanation facility or reasoning
behind the generated solution;

2) they are sensitive to the organization and preparation of the data used in
training, as well as, to a larger degree, on the configuration of the network
itself;

3) they require the availability of a sizable number of training examples that may

be difficult to assemble.



CHAPTER 3 - PROPOSED NEURAL NETWORK MODELS

3.1 General

The proposed automated cost estimating system represents a cost-effective
response to the cost estimating process of low-rise structural-steel buildings,
building on industry knowledge. Detailed cost estimates are traditionally
performed for this class of buildings, since a number of variables are to be
considered in parallel. This process, however, does not support timely response
to industry needs. In many cases, RFPs are refused simply because of lack of
estimating resources.
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Figure 7 Level of Influence on Project Costs (Barrie and Pauison 1992)



More, as shown in Figure 7, the cost of a building is essentially determined in the
early stages of a project. Therefore, the generation of conceptual cost estimates
for different scenarios at a predesign stage is crucial for effective cost

management of the delivered projects (Barrie and Paulson 1992).

This system proposes the generation of conceptual cost estimates at the
planning stage of a project, when detailed design has not been performed yet, to
respond to market needs in a timely fashion. This type of estimates provides for
reasonable accuracy in the estimating of direct cost of buildings (i.e. material,
labor and subcontractors’ costs), assisting in the decision making process, in the
definition of project scope and characteristics and in the checking of detailed
estimates prior to bid submittals. Compared to detailed estimates prepared at the
planning stage, the reduction of estimating time and cost attributed to the use of

conceptual estimates outweighs the estimating accuracy at this stage.

For the definition of project scope and characteristics, a number of conceptual
cost estimates for different project alternatives can be generated in a timely
fashion. When, and if, meeting the client's budget and needs, the chosen project
alternative is sent to the Head Office for detailed estimating. In cases where no
alternative is chosen, the project is aborted before any design effort is committed
(Figure 8). This process differs from current practice in allowing for the
generation of a number of reliable conceptual cost estimates to help in

determining which projects are to go for detailed estimating.
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At the moment, the project acceptance rate at the company providing the data for
this study is approximately 15%, while a number of RFPs are turned down for
lack of estimating capacity. The utilization of the present model is expected to
free up estimators’ time, which will be dedicated to the estimating of pre-selected
projects, found initially acceptable to owners. Thus, capitalizing on considerably

more business opportunities.

The proposed automated cost estimating system (ACE) includes three
parametric cost estimating modeis based on neural networks. Neural networks
are known for their learning and generalization capabilities (Moselhi et al.
1991b), which make them ideal for the development of decision-support tools for
analogy-based problems and forecasting models, such as the problem at hand.
Neural networks, as tools, are capable of identifying a relationship between the

direct cost of a building and the various parameters defining this building.

ACE utilizes three neural network models developed for the generation of:
1) an order of magnitude cost estimate,
2) a parametric cost estimate of the wall, and

3) a parametric cost estimate of the structural steel framing.

The data used in the development of the system was mainly collected over a
three-month period (March to May 1997). Another ten completed projects were

collected later in the Fall of that year. The data was all collected at the same



manufacturing plant, in order to ensure consistency in 1) estimating and design
practices, 2) productivity levels, and 3) material, labor and equipment rates.
Canam Manac, a large manufacturer of low-rise structural steel buildings in
Canada provided the researcher open access to: 1) visits to its main fabrication
plant, 2) interviews with estimating, design and management teams, and 3)
documents pertaining to collected building projects, fabricated and constructed

between 1994 and 1997.

The documents collected for each project, in a joint effort of research,
management, design and estimating teams, consist of. 1) detailed estimate, 2)
contract (with project specifications) and change orders, 3) blueprints, and 4)

final cost report.

The final cost report includes the actual costs of a project without and with
markup. Markups, allocated to individual cost items, may vary considerably to
account for market conditions, the contractor’'s need of work, number of bidders,
etc (Hegazy and Moselhi 1994). It was then decided that only the direct cost of
fabricated buildings (i.e. material, labor and subcontractors’ costs) would be used

in the developed system.

The allocation of markups, as it is presently the case, will continue to be

determined by the management team. This feature does not only help in

reducing the variability and eliminating the subjectivity in the data used for
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estimating, but also provides flexibility in accounting for market conditions and

the risk associated with each individual project.

The developed system is limited to conceptual cost estimating of prefabricated
low-rise structural-steel commercial and industrial buildings. Low-rise buildings
are defined by the National Building Code of Canada as buildings with height to
width ratio less than 1, and mean roof height less than 20m (NBCC, 1995). A
numerical example is worked out in order to illustrate the use of the system and

demonstrate its level of accuracy.

Figure 9 is a graphical representation of the development of an automated cost
estimating system. The figure indicates the development from data collection and
analysis through design and training of the neural networks, testing and
evaluation of the models, and design of windows for data entry and output
display. The cost report allows for the conversion of system'’s output into a bid

proposal.

3.2 Proposed Cost Estimating Models

Current industry practice indicates the generation of 3 types of cost estimates:
1) total cost; 2) cost of wall panels; and 3) cost of steel frame. Accordingly, three
neural network models were developed: order of magnitude (OM), for the

generation of an order of magnitude type estimate, a parametric cost estimate for



the building walls (PW) and a parametric cost estimate for the structural steel

framing (PS) of the building.

These models aim at estimating planning, engineering and fabricating costs, by
using a project's main parameters. This makes the models a good tool to use at
the predesign stage, when there is insufficient definition of scope and
characteristics to quantify required labor and material for a detailed cost

estimate.
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3.3 Data Collection and Analysis

Seventy-five low-rise structure-steel building projects, fabricated and built
between 1994 and 1997, were mostly collected over a three-month period. Four
types of project documents containing cost and non-cost data describing the
individual characteristics of each building were verified for data extraction:
1) contract (with project specifications) and change orders, 2) blueprints, 3)
detailed estimate, and 4) final cost report. Figure 10 exhibits a sample the

collected documents
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Figure 10 Collected Project Documents

These documents were presented in different formats, reflecting the company's
estimating and accounting standards overtime. Special care was dedicated to the
data extraction to ensure that the variation in type of reporting, over the years,

would not impact the costs actually incurred. Differences in definitions and



inconsistencies found in the projects’ documents were carefully identified and
clarified with design and estimating teams. A consistent method for capturing and

recording information from completed projects was implemented.

Cost elements were grouped, as per the detailed cost estimate and final cost
report, and associated to the main cost parameters (columns, joists, deck and
wall panels). Cost parameters include all planning and engineering, labor,
material and subcontractors’ costs. Overhead and profit were not included. As
well, costs related to site improvements and/or foundation work were excluded. A
list of estimate parameters was then compiled based on the collected documents

and feedback from design and estimating teams.

A data entry sheet (see Appendix |I) was designed for standardization of data
collection, organization, indexing, recording, and analysis. The emphasis
throughout was to describe completed projects, recording and describing
parameters in ways that avoid misinterpretation. For consistency, adjustments
were made for projects with different scope. To account for the effects of inflation
on the historical data, and have comparable data, the data were indexed to
January 1997, using R.S Means (RS Means 1997). Care was taken in ensuring
consistency of data: 1) costs of labor/hour and material/pound were checked to
verify if they had increased at the same rate; 2) units used were converted when
necessary to assure compatibility; and 3) historical costs checked to reflect the

actual costs incurred.
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Data were analyzed for consistency and parameter (CISC 1998) values checked
for reasonableness in order to ensure same definition, in terms of content.
Individual calculations of: 1) cost per pound of columns, joists and deck; 2) cost
per square foot of building area for columns, joists and deck; and 3) % of cost of
columns, joists, and deck with respect to total structural cost were performed.
Data outliers were identified, studied, and verified with the estimating and design
teams of the company. Non-representative projects (2 projects) and projects with
non-explainable anomalies (1 project) were excluded, and errors encountered

during data preparation were corrected.

In an effort to increase the accuracy of the proposed cost estimating model, the
collected data was broken down into four project categories: 1) standard, or
typical buildings, 2) buildings with mezzanine, 3) buildings with overhead cranes
and 4) buildings with mezzanine and overhead cranes. The standard case, being
the most common, was used in the development of the neural network models.
Accordingly, the data of 36 standard projects were used in the development of

the proposed neural network models.

The area of the buildings included in the data sample ranged from 2,040ft* to
73,185ft* while height and span of the joists ranged from 12.5ft to 33ft and 20.6ft
to 75ft respectively. The perimeter of the buildings ranged from 129ft to 1307ft.

Dead and live loads were added up for simplification. The vertical load parameter
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presented values ranging from 41.9lbs/ft? to 85.2Ibs/ft2. The values of the lateral

load ranged from 6.05lbs/ft? to 23Ibs/ft*.

A data analysis revealed the main input parameters to be used in the design and
training of each network model to be developed. These are the predominant cost
drivers of these projects. These parameters define the building size, envelope,
characteristics and amount of material and labor required to the fabrication of a
building. Some parameters were combined for simplification, such as dead and
live loads combined into vertical loads, and width and height of canopies

combined into canopy area. The span of joists was calculated.

Area, perimeter, building height and vertical loads were the parameters deemed
essential to the development of an order of magnitude type estimate. For a
parametric estimating model for the cost of the building walls the parameters
selected are: perimeter, panel height, lateral load, type of wall finishing, canopy
area, canopy length, number of doors, number of windows, and percentage of
openings as a function of the area of the wall. Perimeter and height clearly define
quantities involved. Area, height, joist span and vertical loads (dead and live
loads) were identified as the main structural parameters, directly correlated to the
fabrication cost of the structural steel framing of the building. While area
considerably impacts structural cost, the span is an important factor influencing
directly the weight of structural steel joists, which impacts columns’' costs.

Further, the height clearly impacts the cost of columns.
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It is interesting to notice that most order of magnitude cost estimates, such as
cost estimates based on R.S. Means cost books, are based on $/ft, and do not
consider different project parameters. These estimates require essentially project
area, while in some cases allowing for cost adjustments to account for perimeter
and height. These estimates provide a lump sum estimate including erection
costs, which can vary considerably, depending on market conditions. In this
thesis, after the training of networks considering both selected parameters and a
larger set of parameters, it became clear, through comparison of parameter
weights, that the main paraineters selected by data analysis were the parameters
considerably impacting project cost. Table 3 depicts the neural network models

to be developed with their respective input and output parameters,

Table 3 Developed Neural Network Models
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OM TOTAL | WALL | STRUCTURE

INPUTS
Arga °
Height e

'Y

Joist Span
Vertical Loads
Perimeter e
Panel Height
Lateral Load
Wall Type
Canopy Area
Canopy Length
# Door

# Windows

% Openings
OUTPUT

$ OM TOTAL .
$ WALL _ °
$ STRUCTURE Py

ppeS

obbpobbb$

41



3.4 Design and Training of the Networks

The parameters used in the development of the neural network models are ail
quantitative. Data were normalized for confidentiality and for effective training of
the models being developed. The normalization of training data is recognized to
improve the performance of trained networks (Flood and Kartam 1994, and

Hegazy et al. 1994).

The data sample (thirty-six projects) was divided into three subsets: training, test,
and production. These sets contained, respectively, 60%, 20%, and 20% of the
project cases considered in the data sample. The data extraction was performed
randomly by NeuroShell 2. The training set was used for training of each
network. The test set was used to check the performance of the learning
process, during the network’s training. The production set contained the project
cases used to evaluate the performance of each network once training was over.
The network had not seen those cases during its training. Performance was
primarily measured against the accuracy observed in the production set. Once
the networks were performing with an acceptable percentage of error, they were

considered trained and ready to assist the user in generating cost estimates.

For a new project to be estimated the user first extracts the values associated

with the parameters previously described. The input parameters are keyed into

the model and the network recalled. The network will automatically predict the
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direct cost of the project. The predicted cost may then be adjusted for buildings
other than the standard type used for network training. The cost estimate is
finally reviewed and adjusted, by the allocation of different markups to individual
cost items, as well as the allocation of a general markup and the application of

taxes.

3.4.1 Wall Estimate

The developed model provides the user with parametric cost estimates of
prefabricated walls (Siqueira and Moselhi 1998b). In an effort to increase the
model's accuracy, the collected data was broken down into standard (width =
10ft) and non-standard (width < 10ft) wall panels. The neural network model is
trained for standard panels, and the generated estimates assume all panels to be
standard. An algorithm has been developed to estimate the additional cost of
non-standard wall panels. The algorithm will caiculate adjustments to be made to
the estimated direct cost, based on the width and number of non-standard

panels, and/or special painting.

The data used in the training of the network is shown in Table 4. Nine
parameters (inputs) are used in the design and training of this neural network
model. These parameters are considered significant in estimating the direct cost
of the prefabricated wall panels, and they include: perimeter (Perim), panel

height (PHt), lateral load (Lload), type of wall (Wall), area of canopy (CA), canopy
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length (CL), number of doors (Door), number of windows (Win), and percentage

of openings as a function of the surface area of the wall (Opn).

Table 4 Data Characteristics: Wall Panels

Perim | PHt | Lload | Wall | CA | CL | Door | Win | Opn | Wall$
(ft) (ft) | (bsit) | (S | () | () | (un) | (un) | (%) ($)

Min 129 | 125 6.1 4.25 0 0 0 0 0 19,140
Max 1,307 | 31.0 23.0 5.40 31| 323 13 15 27 | 189,600
Mean 398 | 199 10.2 520| 3.5 26 2.8 2 7 65,620
S.D. 272 44 35 40| 7.7 62 253! 4.0 6 46,780

Table 5 Networks’ Configurations: Wall Panels Cost NNs

N-7 | N-8 | N-9 [ N-10 | N-11 | N-12 [ N-13 | N-14 | N-15
Input nodes 9 9 9 9 9 9 9 9 9
Hidden nodes 7 8 9 10 1 12 13 14 15
Output nodes 1 1 1 1 1 1 1 1 1

A single layer backpropagation architecture was used in the design of the model.
The number of nodes in the hidden layer, calculated by default, according to
equation (1), is 11 (eleven). Nine network models were developed, with the
number of the nodes in the hidden layer varying from 7 (seven) to 15 (fifteen) for
the identification of the network with best performance. The input and output
parameters were kept constant in all the nets. The configuration (i.e. structure) of

the 9 (nine) networks is described in Table 5.

Performance was primarily measured against the accuracy observed in the
production set. The training of all the networks was interrupted after 50,000
learning events had occurred with no improvements in the minimum average

error of the network associated with the test data set. An event is the
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presentation of a single training example to the neural network (NeuroShell 2,
1996). The training examples were presented to the network in a sequential

order.

The network with 13 nodes presented better performance. The network’s training
time was 4 minutes and 39 seconds, and the minimum average error associated
with the test set was 0.0039. The interruption of the network’s training occurred
after 25,565 learning epochs. An epoch is a complete pass through the network
of the entire set of training examples (NeuroShell 2). The training of the network
was carried out for 50,000 and 100,000 epochs successively and no

improvement was observed.

A network using GRNN (general regression neural network) paradigm was
trained for the same data for comparison. The GRNN network outperformed the
network trained with backpropagation and was, accordingly, adopted for the

proposed cost model.

3.4.2 Structure Estimate

This model is designed to generate cost estimates for the structural framing of
structural steel low-rise buildings (Moselhi and Siqueira 1998). A single-layer
backpropagation architecture with 4 (four) nodes in the input layer (area, height,
joist span and vertical loads) and 1 (one) node in the output layer (cost of the
steel framing) was used for the neural network design. The number of nodes

calculated by default, according to equation 1, is 8 (eight). Nine network models
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were developed, with the number of nodes in the hidden layer varying from 4 to
12, for the identification of the network structure with best performance. The input
parameters were kept constant in all the nets. Table 6 shows the characteristics
of the data used in the model development. The configuration of the 9 (nine)
networks is described in Table 7. The network with 10 (ten) hidden nodes was

selected as the one presenting better performance.

Table 6 Data Characteristics: Structural Steel Framing Cost NN

Area Height Joist Vertical | Structure
(f%) (ft) Span Loads $
(ft) (Ibs/ft’) ($)
Minimum 2,040 12.50 20.60 41.90 6,258
Maximum. 73,186 33.00 75.00 85.20 217,746
Mean 14,400 20,50 38.70 67.40 39,885
Std Dev. 16,330 4.60 10.20 8.20 44 416

Table 7 Networks’ Configurations: Structural Steel Framing

N-4 | N-5 | N-6 | N-7 | N-8 | N-9 | N-10 | N-11 | N-12
Input nodes 4 4 4 4 4 4 4 4 4
Hidden nodes 4 5 6 7 8 9 10 11 12
Output nodes 1 1 1 1 1 1 1 1 1

A network using GRNN paradigm was trained for the same data, for comparison.
The GRNN network outperformed the network trained with backpropagation and

was, accordingly, adopted for the proposed model.
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3.4.3 Order of Magnitude Estimate

This neural network model provides the user a conceptual estimate of the direct
cost of a building. The characteristics of the training data are shown in Table 8. A
single layer backpropagation architecture with 4 (four) nodes in the input layer
and 1 (one) node in the output layer was used in the design of the model. The
number of nodes in the hidden layer, calculated by default according to the
equation 1, is 8 (eight). Nine network models were developed, with the number of
nodes in the hidden layer varying from 4 to 12 for the identification of the
network’s structure with the best performance. The input and output parameters
were kept constant in all the nets. The configuration (i.e. structure) of the 9 (nine)
networks is described in Table 9. The selected network contained 12 (twelve)

nodes in the hidden layer.

Table 8 Data Characteristics: OM Total Cost NN

Area Perim Height Joist Total $
(ft?) (ft) (ft) S(r&a)n (%)
Min 2040.00 129 12.50 20.60 27,424
Max. 73,185.67 1,307 33.00 75.00 395,764
Mean 14,393.31 398 20,39 39,10 105,816
Std Dev. 16,329.09 272 4.58 9.90 87,738

Table 9 Networks’ Configurations: OM Total Cost

N-4 [ N-5 | N-6 | N-7 | N-8 | N-9 | N-10 [ N-11 | N-12
Input nodes 4 4 4 4 4 4 4 4 4
Hidden nodes 4 5 6 7 8 9 10 11 12
Output nodes 1 1 1 1 1 1 1 1 1
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A network using GRNN paradigm was trained for the same data, for comparison.
The GRNN network outperformed the network trained with backpropagation.

Accordingly, the GRNN network was selected.

Networks using outputs from wall and structure models and the total number of
input parameters used to describe a building were also developed using
backpropagation and GRNN paradigms for comparison of accuracy (Siqueira
and Moselhi 1998a). NNSUB used cost predicted by best wall and structure
neural network models as input parameters for estimating the total direct cost of
a building. NNGAL used a total of 13 (thirteen) parameters as input for estimating
the total direct cost of a building. The models are described in Table 10.

Table 10 NNSUB & NNGAL.: Developed NNs

NEURAL NETWORK MODELS
NNSUB (GRNN) [ NNGAL (BPNN)

INPUTS

Area“

Height

Joist Span
Vertical Loads
Perimeter
Panel Height
Lateral Load
Wall Type
Canopy Area
| Canopy Length
# Door
# Windows

% Openings
$ Wall

$ Structure
OUTPUT

$ OM Total a |

.lL??LPLLPDb.

'Y
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The NNSUB trained with GRNN paradigm was selected amongst its category
while the NNGAL trained with backpropagation (BPNN), 12 nodes in the hidden
layer, outperformed in its category. The OM (Order of Magnitude) model
outperformed the NNSUB and NNGAL models in the estimating of the total cost
of the building. Eighty nine percent of the cases predicted by the OM model were
within 20% error, while the NNSUB and the NNGAL models presented

respectively 86% and 67% considering the entire data set.

For the projects unseen during training (contained in the production set) the
percentage of the data within 20% error was of 71%, 43% and 71% respectively
for the OM, NNSUB, and NNGAL models. Accordingly, the OM model was
selected for total cost estimating of the buildings. Tables 11 and 12 describe
performance of trained networks for pattern and production sets, respectively.
Table 13 presents the resuits of the trained networks for the projects found in the

production set.

Table 11 OM vs SUB vs GAL.: Pattern Set

PATTERN SET OM TOTAL NNSUB NNGAL
R squared 0.99 0.99 0.96
Mean absolute error 6.56 7.89 17.22
% within 5% 55.55 52.77 22.22
% within 5% to 10% 25.00 16.66 19.44
% within 10% to 20% 8.33 16.66 25.00
% within 20% to 30% 11.11 8.33 13.88
% over 30% 0.00 5.55 19.44
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Table 12 OM vs SUB vs GAL: Production Set

PRODUCTION SET OM TOTAL NNMSUB NNGAL

Mean absolute error 13.15 18.41 13.15

% within 5% 28.57 28.57 28.57

% within 5% to 10% 28.57 14.28 28.57

% within 10% to 20% 14.28 0.00 14.28

% within 20% to 30% 28.57 42 .85 14.28

% over 30% 0.00 14.28 14.28

Table 13 Networks’ % Error vs Actual Cost
Project Cost ($) % Error
(f®) | Actual OM SUB GAL OM | SUB | GAL

15,000 | 94,455 | 112,434 | 114639 | 98411 19.03 | 21.37| 4.19
9,880 75,920 | 72,223 55690 | 83940 486 | -26.65| 10.56
9,770 | 124,298 | 114,427 | 127880 | 123185 | 7.94 2.88 | -0.90
9,600 77,727 | 75,666 71006 | 85069 2.65 -8.65| 9.45
7,585 90,458 | 65,770 114741 | 96966 |-2729 | 26.84| 7.19
2,759 | 40,075 | 49,323 52350 | 70279 | 23.08 | 30.63]| 75.37
2,040 33,000 | 30,623 32934 [ 39991 7.20 -0.20 | 21.19

Tables 14, 15, 16 and 17 illustrate, respectively, the performance of selected

network models used in the developed system. The order of magnitude model

shows excellent resuits for the entire data set. The model performs similarly well

for the cases unseen during the training of the network. The mean absolute

percentage error calculated for the production set is 13%. The network model for

the cost estimating of wall panels presents similar results, with a mean absolute

percentage error of 17%. The parametric model for structural steel framing

supports literature findings, showing poor performance for project cases with

parameters outside the range for which the network has been trained.
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The mean absolute percentage error calculated for this model, for the unseen
project cases, is of 42%. An analysis of the project cases pertaining to the
production set revealed that three out of the seven cases unseen during the
training of the network presented parameters considerably out of the range of
those used in the training set. The randomly selection of the data sets may
account for such performance. As such, the model for the cost estimating of the
structural steel framing needs further training with the inclusion of project cases

with a wider range of values for the parameters considered.

Performance of developed neural network models against actual costs is

illustrated in figures 11, 12 and 13.
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Table 14 Performance of Developed Networks: Pattern Set

PATTERN SET OM TOTAL STRUCTURE WALL
R squared 0.99 0.99 0.94
Mean absolute error 6.56 13.19 12.40
% within 5% 55.55 44 44 41.67
% within 5% to 10% 25.00 13.88 19.44
% within 10% to 20% 8.33 25.00 16.66
% within 20% to 30% 11.11 8.33 13.88
% over 30% 0 8.33 8.33

Table 15 Performance of the Developed Networks: Training Set

TRAINING SET OM TOTAL STRUCTURE WALL
Mean absolute error 3.74 6.28 8.71
% within 5% 68.18 54.54 59.09
% within 5% to 10% 27.27 13.63 13.64
% within 10% to 20% 0.00 27.27 13.64
% within 20% to 30% 4.55 454 9.09
% over 30% 0.00 0.00 4.54

Table 16 Performance of the Developed Networks: Test Set

| TEST SET oM STRUCT WALL
Mean absolute error 8.82 3.19 18.65
% within 5% 42.85 57.14 14.28
% within 5% to 10% 14.28 14.28 28.57
% within 10% to 20% 28.57 28.57 0.00
% within 20% to 30% 14.286 0.00 42.85
% over 30% 0.00 0.00 14.28

Table 17 Performance of the Developed Networks: Production Set

PRODUCTION SET OM STRUCT WALL
Mean absolute error 13.15 15.42 17.72
% within 5% 28.57 0.00 14.28
% within 5% to 10% 28.57 14.28 28.57
% within 10% to 20% 14.28 14.28 42.85
% within 20% to 30% 28.57 28.57 0.00

% over 30% 0.00 42.85 14.28
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3.5 Testing and Evaluation

3.5.1 Neural Network Models

The testing and evaluation procedures of the neural network models consist of
running the cost estimating models for projects for which the actual costs are
known, but had not been presented to the models during training. These projects
must have been previously analyzed for data appropriateness, since they will
verify the problems the models can address. Projects with a wide range of
parameter values are used in testing the models in order to ensure that the
models are trained for the various possible expected estimating situations. The
predicted costs are then compared to actual costs and the percentage error,

accordingly, calculated.

As new buildings were completed, data were extracted and analyzed. If input
parameters were found within the ranges for which the models were trained, the
projects were selected. The corresponding data of selected projects were then
input into the cost models and trained networks recalled. Predicted costs were

compared to actual costs and differences analyzed, for evaluation of the models.

3.5.2 Regression

A regression analysis was performed for the project cases used in the training of
the network models. This was performed using MS Excel environment. For
comparison purposes, it was used to predict the cost of the project cases

contained in the production set (unseen by the network during training). The
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results of the three developed models, for the seven project cases contained in
the production set, are summarized in Tables 18, 19 and 20. Reg, represents the
regression with least error, while Reg, was developed accounting for the same
parameters as the developed networks. it should be noted that regression
considering same parameters as trained networks presented considerably poor

results, as in the case of wall panels cost estimating.

For the cost estimating of structural steel framing, regression performed better
than the network model for the data contained in the production set: the mean
absolute percentage error was equal to 20% and 42% respectively. A
comparison considering the entire data set, on the other hand, showed that the
neural network model outperformed regression. The mean absolute error
calculated for the neural network model and the regression equation were 11%
and 15%, respectively. This could be attributed to the randomly selection of the
data sets, particularly those in the production set having parameters considerably

out of the range used in training.

For the two other models, total direct cost and cost of wall panels, neural network
models clearly outperformed regression developed for the same parameters as
the networks, with mean absolute percentage error for the respective production

sets equal to 13% vs 21% and 18% vs 57%.

57



Table 18 Performance of OMNN vs Regression

Project Cost ($) % Error
(f) [ Actual NN Reg; Reg; NN | Reg; | Reg:
15,000 | 94,455 | 112,434 | 100,579 | 112,991 | 19.03 | 6.48 | 19.62
9,880 75,920 | 72,223 | 83,562 | 92,235 | 486 | 10.06 | 21.49
9,770 | 124,298 | 114,427 | 107,789 | 106,945 | 7.94 | -13.28 | -13.96
9,600 77,727 | 75,666 | 82,359 | 90,655 | 2.65 595 | 16.63
7,585 90,458 | 65,770 | 106,908 | 103,475 | -27.29 | 18.18 | 14.39
2,759 40,075 | 49,323 | 48,656 | 58,244 | 23.08 | 21.41 | 4534
2,040 33,000 | 30,623 | 20,826 | 39,169 | 7.20 | -36.89 | 18.69
R, - best regression (least error)
R, - using same parameters as neural network
Table 19 Performance of WallNN vs Regression
Project Cost ($) % Error
(f) [ Actual NN Regs Regz | NN | Reg: | Reg;
15,000 | 59,484 | 69,756 | 73,508 | 37,481 | 17.27 | 23.57 | -36.99
9,880 40,012 | 44,024 | 66,575 | 64,267 | 2.35 | 54.78 | 49.42
9,770 91,125 | 77,336 | 85406 | 100,276 | -15.13| -6.28 | 10.04
9,600 51,521 | 48,268 | 52,862 | 65,828 | -6.31 | 2.60 27.77
7,585 56,909 | 89,936 | 70,561 | 91,263 | 58.04 | 23.99 | 60.37
2,759 33,700 | 39,675 | 42,243 | 62,882 | 17.73 | 25.35 | 86.59
2,040 26,741 28,677 | 12,506 | -8,016 | 7.24 |-53.23 | -129.98
R, - best regression (least error)
R, - using same parameters as neural network
Table 20 Performance of StructNN vs Regression
Project Cost ($) % Error
() Actual NN Reg, Reg: NN | Reg: [ Reg; |
15,000 | 34,971 | 43,737 | 41,063 | 40,531 | -25.06 { 17.42 | 15,90
9,880 32908 | 28,666 | 27,270 | 26,725 | -12.10} -17.13 | -18.79
9,770 33,173 | 24,846 | 26,974 | 27,124 | -25.10 | -18.68 | -18.23
9,600 26,206 | 24,882 | 26,516 | 26,638 | -5.05 1.18 1.65
7,585 33,550 | 14,738 | 21,087 | 23,427 | -56.07 | -37.14 | -30.17
2,759 6,427 13,909 8,087 6,179 |[116.42 | 25.82 | -3.85
2,040 6,258 9,733 6,150 3,076 | 55,63 | -1.72 | -50.86

R, - best regression (least error)
R - using same parameters as neural network
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3.7 Summary

In this chapter neural network was discussed as a tool that can be used for
reducing cost and time in the cost estimating process. The criticality of preparing
high quality data for the development of neural network models has been
established. Three neural network models have been designed and trained for
direct cost estimating: order of magnitude, parametric wall and parametric
structure. The trained models were tested and their accuracy evaiuated when
presented to new project cases. The validity of the models is supported by the
performance observed on a number of completed projects. Regression was also
performed for comparison purposes and was found to corroborate literature
findings. It has been demonstrated that the developed system can predict costs
with a reasonable degree of accuracy when the project being estimated has its

parameters’ values within the ranges for which the system has been trained.

Overall resuits suggest that neural network is a powerful tool for producing
credible conceptual cost estimates, at a predesign stage, based on the
company's knowledge and experience. Neural network moves cost
considerations to the predesign stage, where the greatest benefits can be
derived. Principal benefits include determining the near optimum configuration of
design parameters for cost, while saving considerable time and resources in the
estimating process. As such, this system helps not only in the go/no-go decisions

but also in the checking of detailed cost estimates prior to bid submittals.
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CHAPTER 4 - DEVELOPED AUTOMATED COST ESTIMATING SYSTEM

41 General

Parametric cost estimating is used to assist in decision-making, particularly
during planning and bid preparation stages. Assumptions over future cost and
how they relate to the scope and characteristics of the project must be made in a
timely manner, while considering a number of variables. This type of estimating is
most useful for cost and value evaluations early in the project life cycle when not

much is known about the project scope.

For a building rather “similar” to a previously fabricated one, a mere analogy may
seem enough. However, in current competitive and fast moving environment,
such situation does not occur very often. Primarily in case of low-rise structural
steel buildings, cost models based upon previously fabricated buildings should
account for a number of variables. Such models shall allow for cost and time
effective evaluation of ‘'what if scenarios, where a number of project alternatives
can be assessed, throughout planning and bidding stages, translating a project’s

quantitative and/or qualitative data (parameters) into cost.

Neural networks are being increasingly used as a tool for modeling cost, (Hegazy
and Ayed 1998, Bode 1998, Adeli and Wu 1998, Creese and Li 1995, de la
Garza and Rouhana 1995, McKim 1993) although performance of neural network
models is usually limited to certain ranges of parameter input values. This thesis

proposes a neural network based cost estimating system (ACE). The proposed
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system utilizes three neural network models, one for the prediction of the total
direct cost of the building, one for the prediction of the cost of the structural steel
framing of the building and a third one for the prediction of the cost of building’s
wall panels. These models were designed based on the industry needs and
foilow the major element classification of UNIFORMAT 1l (Bowen et al. 1992),

commonly used for parametric building cost evaluations.

ACE aims at re-designing current cost estimating process in order to make it
more efficient. ACE generates conceptual cost estimates using the values for
specific parameters, which describe the project. The user can start a new
estimate by simply selecting a type of estimate and then inputting requested
values of the project parameters. The system automatically estimates the direct
cost of new project. Subsequent windows allow for cost adjustments and

allocation of markups and taxes.

The use of the proposed system reduces the cost estimating process to easily
retrievable information found in the system-generated reports: project
description, estimated direct cost, cost adjustments, allocation of markups and
taxes and total project cost. The design of specific windows for cost prediction,
cost adjustments, and allocation of markups and taxes simplifies data entry. As
such, the trained models help not only to preserve the company’'s estimating
knowledge, but also to apply this same knowledge in the generation of new cost

estimates.
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4.2 System Requirements

The system is required to:

1) Benefit from experience gained on past projects. This includes actual cost
incurred on material, labor and subcontractors,

2) Meet required accuracy, while being practical and user-friendly,

3) Integrate different estimating phases, reflecting current estimating practices
and industry's domain knowledge, and

4) Promote cost and resource savings, supporting the user on the capitalization

of more business opportunities.

4.3 System Description

The system is designed and coded in Borland C++ 5.0 to integrate diverse
phases of the cost estimating process: direct cost estimating, cost adjustments,
allocation of markups and taxes and cost related reporting phases (Siqueira
1999). It integrates artificial intelligence technologies and traditional spreadsheet

applications (see Figure 14).

The system runs on a 166MHz Windows™ compatible computer with 64 MB of
RAM. We suggest a 100MHz or faster computer with a minimum of 32 MB of
RAM; 150 MB of available hard disk storage; Windows 95 (or later); and a

mouse.
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ACE

Borland C++ 5.0

SPREADSHEET NEURAL NETWORKS
MS-Excel 7.0

NeuroShell 2

REPORTS

®Proj. General Information
®Project Description
®Basic Estimate

®OH and Profits

®Total Cost Estimate

Figure 14 ACE Automated Cost Estimating System

ACE incorporates three neural-network cost models, as described in Section 3.3:
1) Order of magnitude, 2) Parametric cost estimating of walls and 3) Parametric

cost estimating of structurai steel framing.
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Screens for data input parameters were designed for each one of the models
(See Figure 15). Each screen identifies the main parameters impacting cost for
the selected type of estimate, activating this way the corresponding neural-

network cost model.
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Figure 15 Automated Cost Estimating System
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Figure 16 Order of Magnitude Estimate

The input screen for the Order of magnitude type estimate allows the user to
specify the: building floor area, perimeter, building height, and joist span. ACE
then estimates the total direct cost of the building. Once the data is keyed in,

ACE estimates the total cost of the building.
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Figure 17 Parametric Wall Estimate

The Parametric Wall screen (see Figure 17) incorporates data input for:
perimeter, panel height, lateral loads, canopy height, width and length, number of
doors, windows and openings. After the user keys the data in, ACE estimates the

cost of wall panels.
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The Parametric Structure screen (Figure 18) incorporates data input facilities for:
building floor area, building height, joist span, and vertical loads. ACE estimates

the cost of steel framing after the requested data is keyed in.

67



_Eile Estimating Methods: [JNERIRCTINIR IO : M arkups/Tases Display - Hetraining - Edit - Search Window Heip

1 eR|%| |64l S Sl

) Cost Adstments
Nurnber of Non-Standard Pangls | Resale

o

Width of Non-Standard Panels | Special Stuct: Painting

!
i
i
i
i

Special Wal Paining - Freight -

| Erection

- 0K Cancel ..

Input data for.cost adjustments .

Figure 19 Cost Adjustments

A screen for cost adjustments was designed for data input facilities. Once the

information is provided, ACE will make the requested adjustments.
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The markups and taxes input screen is designed to facilitate the allocation of
different markups to individual cost items, such as: columns, joists, steel deck,
wall panels, special painting for the steel framing, special painting for the wall
panels, resale, freight and erection; as well as the allocation of an overall
markup, to cover risk and overall market conditions. The screen also facilitates
the allocation of federal and provincial sales taxes (GST and PST), and customs

in case of exporting is also included.




The cost report is presented in two major sections. A section displaying project
information, such as project name, number and address, client’'s name, address
and person for contact, date and place of project delivery, project's physical
characteristics and so on. As the other major section are the cost-related reports,
describing the value of the basic estimates, estimated OH and profits along with
percentage markup allocated, and the total cost of the project. including
provincial and federal taxes. The provided cost breakdown feature facilitates

project cost analysis as a function of assigned values to project parameters.

ACE is designed to, upon request, automatically produce cost-related reports for
the building being estimated. All relevant data is transferred into the quotation
forms (also known as bid proposals). The Project General Information screen
provides fields to record estimate information pertinent to user's practice. Once
the estimate is generated, users can then verify project specifications and
predicted cost, analyzing then different project alternatives. Cost improvements

can then be determined.

44 Example Application

In order to demonstrate the capabilities of ACE and its performance, a real
project example is selected and its input parameters extracted (Siqueira 1999).
The selected building was constructed in Ville D’Anjou, Quebec, Canada, with a
total floor area of 9,880ft2. The examination of blueprints and documents

pertaining to this project provided the following parameters: total perimeter length
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of 407ft, height of 19ft, joist span of 44.2ft, vertical loads of 70Ibs/ft?, and lateral
load of 7.7 Ibs/ft?. The actual direct cost of this job, indexed to January 1997, was
$75,920. All of these values are within the range used in the training of the
networks. The estimating process is initiated by the selection of a type of
estimate. ACE's menu provides two options for the type of estimate: order of
magnitude and parametric. The first option is selected for the example
application. This option requires the entry of four input parameters: area, height,
joist span, and perimeter (see Figure 12). Following that, the respective neural
network model is recalled, and the direct cost based on these four parameters is

predicted.

ACE estimates the direct cost for this project to be $72,233.00, while the actual
direct cost of the project was $75,920.00. The absolute error calculated for this
case is of 5%. It should be noted that only the direct cost is calculated for this
project example. The system is capable of predicting the total cost of the project
upon keying in the markup corresponding to market conditions. As well, various
reports concerning the project itself and the cost estimating process may be
provided upon request. Based on such reports, a new cost estimate may be
generated for different project scenarios or alternatives in order to meet the
user's needs. It can be achieved by just changing the values for the input

parameters.
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4.5 System’s Limitations and Potential Applications
The system can best be used to predict the cost of projects which have input

parameters within the range for which the neural network models were trained.

Database must be updated and neural network models retrained to account for
new cases. This is not only important to continue building on the experience
gained on projects completed but also to account for improved technology and/or

change in material cost.

The model is applicable to low-rise structural steel commercial/industrial
buildings. This includes offices, warehouses, industrial buildings, and labs. It
does not apply to residential or wood construction. It provides the cost of the
building shell, i.e. superstructure (structurai steel framing) and exterior closure

(exterior walls, windows, exterior doors and openings).

The neural network methodology described for cost estimating in this thesis can
readily be applied in other domains in construction management where traditional
algorithmic tools may prove inadequate (Siqueira 1999). It is suitable for
modeling problems involving quantitative and qualitative factors, with a domain
rich in historical examples. It can be applied in risk management and productivity
models. A thorough analysis of the above mentioned potential applications can
reveal the main parameters to be used in the generation of each neural network

model.
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By identifying the parameters giving rise to risk in a project, and correlating them
to the risk encountered, one can develop a model for assessing and quantifying
the risk involved. In a way, the values assigned to these parameters, whether
quantitative or qualitative, describe a pattern that could easily be associated with
the risk encountered from available project records. These project patterns and
their associated level of risk can be used to train a neural network in a similar
way to that described earlier in this thesis. For example, in the delivery of EPC
(Engineering, Procurement and Construction) projects the following factors couid
be used to describe the patterns depicting the risk environment associated with
these projects: 1) project location, 2) project complexity, 3) delivery system (fast-
track or traditional), 4) state of technology utilized, 5) procurement plans and

policies, etc. (Moselhi 1997, PMBOK 1996, Moselhi et al 1993).

With respect to productivity models, similarly, one can generate a pattern (i.e. a
set of governing factors) that depicts the project’'s environment and associate it
with actual productivity levels attained on those projects. And accordingly
develop a suitable neural network model. Again, for EPC projects, the
parameters impacting productivity may include: 1) frequency of change orders, 2)
intensity of design errors and omissions, 3) design changes, 4) complexity of
work, 5) % of unbalanced crews, 6) unbalancing of successive operations, 7)
management effectiveness, etc. (AbouRizk and Portas 1997, Moselhi et al.

1991a, Neil and Knack 1984).
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These models can be used for project planning, procurement and control,
creating standards throughout the company. As well, these models can capture
and build on the company's experience and, as such, grow with the company
adapting to its dynamically changing business strategy. In general, the type of
neural networks described in this thesis can be used to develop a number of

decision support systems to assist in various management functions.
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CHAPTER 5 - SUMMARY AND CONCLUDING REMARKS

51 Summary

The problem of project cost estimating, at a predesign stage, for low-rise
structural-steel buildings has been studied and the limitations of current practice
have been identified. The nature and the complexity of this problem have
rendered themselves to be best dealt with detailed estimates. Detailed estimates,
however, have been proven inadequate in responding in a timely manner to
market needs. Conceptual cost estimates, although seen as a solution, are
difficult to generate for this type of buildings. The major limitation associated with
that technique can be attributed to a number of variables to be considered in
parallel and, as consequence, the estimator's inability to apply industry specific

knowledge.

To overcome the above shortcomings, a structured methodology for cost
estimating of low-rise structural-steel commercial and industrial buildings is
developed to enable estimating, design and management teams prepare
practical and timely cost estimates. The methodology uses conceptual cost
estimates, at a predesign stage, to determine the main design parameters of a
building prior to detailed cost estimating. This enables efficient estimating of
direct costs, incorporating the impact of significant project parameters. Input
parameters are therefore determined by selecting the optimized set having

impact on the overall project direct cost.
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The methodology further integrates efficient direct cost estimating neural network
models, algorithms for cost adjustments and allocation of markups and taxes,
and the generation of cost related reports. Neural networks are used to develop
direct cost estimating models based on the company's experience. Cost
adjustments and markup allocation and taxes are used to respond to market
conditions. As such, cost estimates for different project alternatives can be used
for assessing the impact of different input parameters on the cost of each of the

generated alternatives.

The performance of the neural network models is tested against projects not
seen during the training and also regression techniques. The results indicate that
the proposed models statistically outperform the traditional regression
techniques. In addition, the proposed models tends to generate more
conservative cost estimates, which is desirable at this estimating level. Cost
estimates performed using trained neural network models are very simple to
generate. They do not, however, present reasoning as to how these estimates

are generated.

A PC-based software system (ACE) is then developed to automate the
conceptual cost estimating process, using the neural network modeis for direct
cost estimating. The system is highly interactive, providing a user-friendly

interface. It combines the advantages of automation and human input throughout
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the cost estimating process. This flexibility proves advantageous, yielding a

number of solutions in a timely fashion.

Features of ACE allow for cost adjustment, markup allocations and the
generation of cost related reports, illustrating the benefits of the system. It has
been shown that the system can be used as a decision support tool for improving
and facilitating the preparation of proposals for low-rise structural-steel
commercial and industrial buildings. The fact that the system allows much
flexibility in decision-making pertaining to cost adjustments, markup and tax
allocation, and provides users with cost related reports for their own decision-
making, may prove useful in generating optimal cost estimates, that satisfies

owners' construction needs.

Cost estimates generated using ACE can be used in timely estimation of direct
cost, in addition to the checking of detailed estimates prior to bid submittals. An
example application is presented in an effort to illustrate the essential features of

the system and demonstrate its effectiveness and practicality.

The apparent advantages of the proposed system over current cost estimating
practice lie in the addition of a conceptual cost estimating stage at a predesign
level to the estimating process. The generation of conceptual cost estimates at
that level promotes adequate assessment of main design parameters prior to

detailed estimating and successful generation of cost proposals. The procedures
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used within the system's four phases exhibit practical and fairly simple
characteristics, capturing current cost estimating practice and providing a useful

support for the development of reliable bid proposals.

This study, like others reported in the literature, supports the fact that neural
networks are ideal for forecasting problems, such as the problem at hand. NNs
learn by example, generalizing the knowledge used in their training in order to
solve similar problems. Despite the difficulties generally associated with
designing and training a neural network model for a particular problem, results
show that those difficulties are outweighed by the performance of the models for
the class of problems described. Guidelines provided in this study for data
analysis, design, training and evaluation of the neural network models may be
utilized in the development of new models for different applications, particularly

those suited for the backpropagation and GRNN paradigms.

The developments made in this study with respect to conceptual cost estimating

demonstrate the powerful generalization capabilities of neural networks. As

opposed to regression techniques, the decision support system, developed in

this study, has several interesting features and advantages:

1) It captures the experience gained on completed projects and utilize it to build
the domain knowledge.

2) It provides a decision aid for cost estimating linking design parameters to

project cost.
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3) It has a user-friendly interface that facilitates the capturing of input parameters,
cost adjustments and allocation of markups and taxes.

4) It facilitates integration of the project cost elements, stated in 3) above,
providing a comprehensive proposal/bid document

5) It derives solutions instantaneously utilizing generalized knowledge acquired

from actual projects.

The contributions of this study are:

1) Extensive analysis of the cost estimating environment of low-rise structural
steel buiidings

2) Development of a methodology to improve current cost estimating practice.

3) The development of neural network models for direct cost estimating at a
predesign stage, overcoming the major limitations experienced in the cost
estimation of low-rise structural-steel buildings.

4) The development of an automated cost estimating system for low-rise
structural steel buildings, capturing current practice in a user-friendly
environment. It provides a practical mean for estimating, design and
management teams to respond to market needs in a timely manner. The
development of ACE is expected to significantly improve the quality of the

cost estimating process for this class of projects.
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5.2 Future Work

This study has successfully demonstrated the feasibility of applying neural
network techniques to conceptual cost estimating of low-rise structural-steel
commercial and industrial buildings. However, the neural network methodology
described in this thesis could readily be applied in other domains in construction
management where traditional algorithmic tools may prove inadequate. It is
suitable for modeling problems involving quantitative and qualitative factors, with
a domain rich in historical examples. It can be applied in risk management and
productivity models. A thorough analysis of the abcve mentioned potential
applications can reveal the main parameters to be used in the generation of each

neural network model.

These models can be used for project planning, procurement and control,
creating standards throughout the company. As well, these models can capture
and build on the company’s experience and, as such, grow with the company
and allow it to adapt its dynamically changing business strategy. In general, the
type of neural networks described in this thesis can be used to develop a number

of decision support systems to assist in various management functions.
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