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ABSTRACT

Early Dependability Analysis of FPGA-Based Space Applications Using Formal

Verification

Khaza Anuarul Hoque

Concordia University, 2016

SRAM-based FPGAs are increasingly attractive in the aerospace industry for

their field programmability and low cost. Unfortunately, they suffer from cosmic

radiation induced Single Event Effects (SEEs). In safety-critical applications, the

dependability of the design is a prime concern since failures may have catastrophic

consequences. Hence, an early analysis of dependability of such safety-critical ap-

plications will enable designers to develop systems that meets high dependability

requirements, such as the DO-254 standard. In this thesis, we propose a high-level

dependability and performability analysis methodology based on probabilistic model

checking. Compared to the pen-and-pencil and discrete-event simulation approach,

our methodology is more accurate due to the use of an automated formal verification

technique. Moreover, compared to fault injection or beam testing, analysis at early de-

sign stages can guide designers to build more reliable designs reducing the overall cost

and effort. The proposed methodology can perform three different types of analysis:

evaluation of available design options, optimization of scrub intervals while satisfying

its design assurance level requirements, and optimal partitioning of Triple-Modular

Redundant (TMR) Systems. Such analysis can also guide designers to adopt proper

mitigation technique(s), such as rescheduling, TMR, TMR with less frequent scrubs,

or even can help to decide the number of TMR partitions for a given scrub intervals.
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Starting from a high-level description of a system, based on the preferred analysis, a

Markov model or Markov (reward) model is constructed from the extracted Control

Data Flow Graph (CDFG) and the failure/mitigation parameters for the targeted

FPGA. Such modeling and exhaustive analysis elaborated using a probabilistic model

checking technique can capture all the failures and repairs possible (according to some

general model) in the system within the radiation environment. To illustrate the ap-

plicability of the proposed approach, we present our quantitative analysis obtained

from DSP benchmark circuits.

iv



To My Mother, and The Rest of My Family.

v



ACKNOWLEDGEMENTS

First, I am deeply grateful to Dr. Otmane Ait Mohamed and Dr. Yvon Savaria for

their guidance, support and encouragements throughout my graduate studies. Dr. Ait

Mohamed taught me the insights of formal verification, and Dr. Savaria has shown me

how to apply my formal verification skill in real life problems. I am thankful for those

long meetings that we used to have about the correctness of the approach, correctness

of the obtained results and how to enhance the work. Working with them has given

me the experience and confidence that I can use throughout my future research.

I would like to express my gratitude to Dr. Raoul Velazco (TIMA laboratory, France)

for taking time out of his busy schedule to serve as my external examiner. I must

also thank the members of the thesis committee for their assistance at all levels of

this research project. Their valuable feedback and comments at various stages have

been extremely useful in shaping the thesis to completion. This research work is

a part of the AVIO-403 project and was financially supported by Consortium for

Research and Innovation in Aerospace in Quebec (CRIAQ), Fonds de Recherche du
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Chapter 1

Introduction

1.1 Motivation

“In less than 70 hours, three astronauts will be launched on the flight

of Apollo 8 from the Cape Kennedy Space Center on a research journey

to circle the moon. This will involve known risks of great magnitude and

probable risks which have not been foreseen. Apollo 8 has 5,600,000 parts

and 1.5 million systems, subsystems and assemblies. With 99.9 percent

reliability, we could expect 5,600 defects. Hence the striving for perfection

and the use of redundancy which characterize the Apollo program.”

— Jerome Lederer, Director of Manned Space Flight Safety, NASA, 1968.

The Avionics and space industries pose extra challenges to designers of electronic

devices due to the critical nature of embedded electronic systems and their exposure

to a radioactive environment that is significantly harsher than at sea level. It has been

reported that airplane flying altitudes can have an environment that is 300 times [68]

more radioactive than at sea level. High-energy neutrons caused by the interaction of
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cosmic rays with the earths atmosphere may cause temporary or permanent failures

in the electronic systems used in avionics and spacecrafts.

Field Programmable Gate Arrays (FPGAs) have been employed in aerospace ap-

plications for more than a decade. Reconfigurable computing with FPGAs is known to

perform well in space-based applications such as Synthetic Aperture RADAR (SAR),

software defined radio and hyperspectral imaging. With respect to power consump-

tion and speed, FPGAs can outperform general-purpose CPUs. Also, due to field pro-

grammability, the absence of non-recurring engineering costs, low manufacturing costs

and other advantages, SRAM-based FPGAs are increasingly attractive compared to

ASICs. Since in SRAM-based FPGAs the configuration bitstream is stored in volatile

SRAM, it can be corrupted by interaction with high-energy radiated particles such

as protons, neutrons, and heavy ions that are abundant in aerospace environments.

The effects of these particles on electronics are commonly known as single-event ef-

fects (SEE) [57, 5]. Several types of SEE are relevant to FPGAs. Single-event upsets

(SEUs) occur when one or more bits in memory changes state due to a radiation

event. Since the state of the FPGA configuration memory specifies the application

architecture, SEUs in the configuration memory are particularly harmful to the system

operations.

Different vendors have provided radiation-hardened FPGAs to meet the require-

ments of the avionic and space industries [88]. However, these devices are very ex-

pensive as they are manufactured in relatively low volumes and they also lag by

two or three technology nodes when compared to commercial products. For exam-

ple, if Xilinx 28-nm (non rad-hard) Virtex-7 (XC7V2000T) is compared to a Xilinx

65-nm rad-hard Virtex-5 (XQR5VFX130), the Virtex-7 offers 14.9 times more Con-

figuration Logic Block (CLB) slices, 4.3 times more Block RAM memory and 6.8

2



Table 1.1: Comparison of FPGA Technologies [20]
Feature SRAM Flash Antifuse

Reprogrammable Yes Yes No
Volatile Configuration Yes No No

Live On Startup No Yes Yes
Memory Cell Size Large Small-Medium Small

Radiation Sensitivity High Low-Medium Low-None
Capacity High Medium Low

Reprogramming Speed Fast Slow-Medium N/A
Total Dose Tolerance Medium-High Low High

times more Digital Signal Processing (DSP) slices running at twice the maximum

frequency. Therefore, there is a growing need to analyze the possible utilization of

commercial SRAM-based FPGA components in harsh radioactive environment such

as outer space. Table 1.1 gives an overview of the features of the different FPGA tech-

nologies discussed, and is meant to provide a quick comparison of the main features,

advantages and drawbacks. Here, capacity refers to the density and amount of logic

that can be synthesised onto a single FPGA.

Dependability (reliability, availability and safety) and performability (reliability

and performance combined) are major concerns in safety-critical and mission-critical

applications that are common in the aerospace industry. To deal with SEUs, design-

ers mostly rely on redundancy-based solutions, such as Triple Modular Redundancy

(TMR) [21] for high reliability and configuration memory (Configuration Bits) scrub-

bing [5] to mitigate SEUs for high availability. Scrubbing is traditionally done in the

order of milliseconds. Such fast scrubbing consumes high power [67, 59] and hence

scrubbing at a lower frequency is desired [84]. Strict power budgets of typical deep

space missions such as Voyager-1, Voyager-2 [98], or even the Mars missions set a need
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for delayed and optimized scrubs (in the order of hours or days) to save power. Scrub-

bing is often used in conjunction with other forms of mitigation techniques such as

TMR or spare components, to increase reliability. However, in cases where performa-

bility is a major concern, redundancy-based solutions might not always be the default

choice. Thus, to choose the right design options and parameters, it is very important

to evaluate the relationships between reliability, availability, safety, and performabil-

ity with the adopted fault mitigation technique, fault coverage and mission time. To

further increase dependability, TMR partitioning [75, 46] can be adopted. Although,

assessing the optimal number of partitions at early design stages has yet to be ad-

dressed. Such early analysis will allow a designer to develop more reliable and efficient

solutions, and may also reduce the overall cost associated with the design effort. Our

work aims at achieving these goals.

Broadly, there are three possible ways to analyze SEU sensitivity in FPGA-

based designs: 1) hardware testing such as particle beams and laser testing, which

allows to obtain cross-sectional area information about the design; with the knowl-

edge of flux, critical charge and charge collection efficiency, we can compute the SEU

rate [38]; 2) fault injection emulation or simulation; and 3) analytical techniques.

These three types of techniques are complementary, and they are typically applied

at different design flow steps. Hardware testing techniques are the most realistic if

the true operating conditions can be reproduced, which is not often the case. These

techniques require finished implementations, and they may cause irreversible damage

to the device under test when performed; therefore, they are very costly [58]. Some

sufficient use of hardware testing techniques may, however, be mandatory for certifi-

cation purposes in critical applications such as in aerospace electronic systems. Fault

injection is also a useful method, but test time grows with the number of possible
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test cases [14]. On the other hand, analytical methods tend to be relatively less ac-

curate in some aspects. Nonetheless, they can provide much better controllability

and observability, while enabling quick estimation of soft error susceptibility, without

the risk of damaging devices [6, 86]. Moreover, they can capture features of the true

test conditions that would be very hard to accurately reproduce when bombarding

the circuit or while performing fault injection. Analytical estimation traditionally

provides information at an earlier stage in the design cycle compared to the other two

techniques.

We propose a means by which formal verification methods can be applied at

early design stages to analyze the dependability and performability of reconfigurable

systems. In particular, the focus is on probabilistic model checking [25]. It is used to

verify systems whose behavior is stochastic in nature. Probabilistic model checking

is a well known formal verification technique, mainly based on the construction and

analysis of a probabilistic model, typically a Markov chain. The main advantage is

that the analysis is exhaustive, which results in numerically exact answers to the

temporal logic queries that contrast with discrete-event simulations [53], in which

approximate results are generated by averaging results from a large number of random

samples. Another extra advantage of this technique is its ability to express detailed

temporal constraints on the system’s executions in contrast to analytical methods.

There are numerous probabilistic model checking tools available based on nu-

merical and statistical methods such as YMER [101], VESTA [81], MRMC [48] and

PRISM [55]. In terms of memory consumption and performance, YMER is the best

option [43]. Unfortunately YMER has a limited range of supported probabilistic

operators (no unbounded until and steady-state operators). Furthermore, being a

statistical model checker, YMER may report the wrong answer, and has done so in
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a few cases [69]. YMER outperforms the other statistical model checker VESTA.

VESTA’s memory consumption is rather constant, but more in the order of PRISMs

memory usage. However, its runtime varies considerably. For certain properties, it

was found that VESTA does even terminate within 24 hours on a model with only

100 states [43]. While comparing the probabilistic model checking tools based on

numerical methods, it is known that MRMC may outperform PRISM for small and

medium-sized models in terms of speed and memory usage. PRISM is able to check

much larger models when compared with the other numerical tools [69].

PRISM is an open source probabilistic model checker, and it also includes mul-

tiple model checking engines, several of which are based on symbolic implementations

(using binary decision diagrams and their extensions, such as Multi-Terminal Binary

Decision Diagrams). These engines enable probabilistic verification of models of com-

prising up to 1010 states (on average, PRISM handles models with up to 107 − 108

states). PRISM also features a variety of advanced techniques such as abstraction

refinement and symmetry reduction. It is worth mentioning that it also supports

approximate/statistical model checking through a discrete event simulation engine.

PRISM also offers excellent support via it’s user group. In the PRISM model checker,

probabilistic finite state models are constructed using real value probabilities asso-

ciated with the transitions between various states of the model. It is known that

probabilistic model checking tools run out of memory quickly when the state space is

very large. In contrast, probabilistic theorem proving techniques [36], in theory, have

no limitations regarding the number of states. However, they are interactive, which

means that human interaction is required. Also, analyzing a system in a theorem

proving environment requires an infrastructure for reasoning about the underlying

mathematical concepts of probability and statistics.
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In our proposed methodology, we are interested in addressing three issues in

SRAM-based FPGA designs at early design stages: Design options analysis, Design

Assurance Level (DAL) verification with scrub optimization, and optimal TMR parti-

tioning for reliability improvement. Current work in the area of design options analysis

[47, 62, 51] either separates the dependability analysis from the performance/area, cov-

erage analysis or does not analyze such safety-critical applications at an early design

stage. Commercial tools for reliability analysis, such as isograph [41], cannot be used

for performability evaluation of such systems as they do not support Markov reward

models [87]. Since the probabilistic model checker PRISM allows reward modeling,

our work overcomes this limitation. Our contribution to optimize the scrub interval

for saving power contrasts with other works in this area [22, 60], where the repair

rates are estimated as exponential distributions. We model the deterministic repair

intervals using the Erlang process [30] for better accuracy. Indeed, nonexponential

holding time distributions can be approximated by inserting multiple intermediate

states between every main state pairs. Our work on optimal TMR partitioning over-

comes the limitations of the current approaches reported in [75, 46]. To be more

precise, those approaches either employ the fault injection technique or are limited by

the assumption of equal sized partitions prone to Single Bit Upsets (SEUs) only.

To analyze such a design at a high level using our methodology, we start from

its Control Data Flow Graph (CDFG) [49] representation, obtained from a high-level

description of the design expressed using a language such as C++. Depending on

the desired type of analysis, the possible implementation options of the CDFG, with

different sets of available components and their possible failures, fault recovery and

repairs in the radiation environment are then modeled with the PRISM modeling

language [76]. The failure rates of the components are obtained from a worst-case
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component characterization library. Various dependability properties are then auto-

matically verified to check if the system meets the requirements.

1.2 State-of-the-Art in SEU Analysis

The modeling and analysis of SEU relevant faults and their mitigation for depend-

ability analysis is an active research area. As mentioned earlier, the most practiced

approaches are fault injection and beam testing (radiation ground testing). Analyti-

cal methods were also proposed. Assadi et al. [7, 33] presented an analytical model

based on soft-error propagation at gate level using the concept of Error Propagation

Probability (EPP). Shazil et al. [82] used a similar concept, but used a satisfiability

(SAT) solver with EPP to calculate the exact soft-error rate. The Probabilistic theo-

rem proving technique was also employed in this area. Abbasi [4] extended the work of

Hasan [36] by formalizing statistical properties of continuous random variables as well

as the probability distribution properties of multiple random variables. Abbasi used

this formalization for the formal reliability analysis of engineering systems using the-

orem proving. On the other hand, in our work, we focus on Markov modeling of SEU

impacts and their possible mitigation techniques. Such modeling enables evaluating

the dependability of a system at the early design stages from its CDFG description

using the probabilistic model checking technique. The state-of-the-art literature that

are most relevant to the three main parts of our methodology are described as follows.

1.2.1 Modeling and Analysis of Fault Mitigation Techniques

The modeling and analysis of different fault mitigation techniques, for both ASICs

and FPGAs, has been widely reported [16, 39, 45, 91, 9]. When a resource fails (due

to a configuration bit flip), an alternative CDFG scheduling using high-level synthesis
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techniques can be derived to continue the system’s operation using the remaining

resources, most likely at a lower throughput. Such a fault tolerance approach was

introduced by Borgerson et al., Hong et al. and Karri et al. in [16, 39, 45], respectively,

for fault-secure microarchitectures and multiprocessors (a computation on a set of

processors is fault-secure if no fault in the computation generated by a faulty processor

goes undetected). For FPGA-based designs, such a fault recovery technique can be

adopted as well. However, in that case the controller for rescheduling the operations

will need to be highly reliable. This controller can be implemented in a separate chip

with proper fault-tolerance mechanisms.

In [91], Tosun et al. proposed a reliability-centric high-level synthesis approach

to address SEUs. Their framework uses reliability characterization to select the most

reliable implementation for each operation fulfilling latency and area constraints. In

addition, researchers dedicated a lot of efforts to modeling the behavior of gracefully

degradable large-scale systems using continuous-time Markov reward models [9, 40].

In [24], Cheshmikhani et al. presented the modeling and analysis of a fault tree based

on stochastic logic. To produce models, probabilistic analysis of all different types of

gates is carried out first, and then probabilistic models are converted to equivalent

stochastic logic gates. It is worth mentioning that unlike Markov chains, a classical

fault tree is limited to modeling only non-repairable systems.

Fault coverage has a considerable impact on systems’ reliability and safety, and

many papers reported approaches for safety modeling and dependability improvement

mostly based on improving the fault detection coverage. The impact of coverage on

reliability with a quantitative assessment of different types of systems were performed

and reported by Xing et al., Delong et al. and Verlinden et al. in [100, 31, 95].

Always setting a target of 100% coverage is expensive in terms of time and cost, as
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well as unnecessary in many cases. Unfortunately, none of these works address the

relationship between fault coverage, different fault mitigation techniques and mission

time for early design analysis.

Smith et al. presented a case study in [83] to measure the performance of a mul-

tiprocessor system using a continuous-time Markov reward model (MRM). Similar to

this work, Kumar et al. [51] presented another MRM-based approach for analyzing

the performance, area and reliability metric of a design. In this work the transistor

lifetime was used to model the reliability and performance; hence, the model is com-

posed of non-repairable modules. The use of a non-formal commercial tool (such as

the isograph [41]) makes their approach quite rigid in terms of analysis. Moreover, in

their proposed approach, reward calculation is manual, which is a major bottleneck

of their work.

1.2.2 TMR and Scrub Modeling

Researchers have put a lot of efforts into hardening SRAM-based FPGA designs using

TMR and scrubbing. In [15], Bolchini et al. presented a design flow to implement

SEU hardened systems implemented with SRAM-based FPGAs. Three independent

strategies were proposed. The proposed strategies are the TMR-based techniques,

the TMR coupled with partial reconfiguration and some specific local re-design of the

critical portion of the design to overcome TMR failures. Quinn et al. [78] presented

a number of possible radiation-induced faults in SRAM-based FPGAs and their mit-

igation methods. However, they did not provide any model for the estimation of the

rate at which those errors happen and how to handle them at an early design stage.

An important class of applications with deterministic maintenance and repair times

was proposed by Trivedi et al. in [23]. Their work presented a steady-state analysis
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of the periodic preventive maintenance problem with general failure and repair time

distributions obtained by solving a semi-Markov process.

All these works mentioned above either use semi-Markov models or assume a

time interval between scrubs to follow exponential distribution, which is not accu-

rate in real world scenarios. Even though semi-Markov processes have been employed

to model deteriorating systems by allowing the holding time distributions to be non-

exponential, it is assumed that the mathematical formulations of semi-Markov models

[29] are so complicated that they are not analytically tractable. Some of the works

mentioned above are mostly focused on designing a more robust TMR solution and

none explored the effect of scrub intervals on the FPGA dependability. In our work,

we are interested in using formal verification techniques as they can guarantee exact

solutions. We model the periodic scrub using conventional Markov chains. Nonex-

ponential holding time distributions in Markov chains are approximated by inserting

multiple intermediate states based on a phase-type distribution.

1.2.3 TMR partitioning

Reliability and availability predictions of TMR have been heavily studied recently.

Tambara et al. [89] reported the effectiveness of different TMR schemes implemented

with a different level of granularity after evaluating them experimentally (using beam

testing). In contrast, Wang et al. [97] proposed an analytical model for systems with

TMR, TMR with EDAC and TMR with scrubbing. The authors discussed Markov

modeling of these techniques; however, frequent voting or partitioning was not ad-

dressed. Sterpore et al. presented an interesting scrubbing approach for TMRed

designs in [85]. They presented a design flow to scrub each domain in a TMR in-

dependently to maximize availability. In this approach, each partition is scrubbed
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on-demand when required. Since TMR is very expensive in terms of area and power,

another interesting way of implementing TMR, known as “selective TMR” was intro-

duced by Pratt et al. in [74]. In their work, they showed how TMR can be applied

only on selected portions of a design to reduce cost. Even though some level of relia-

bility is sacrificed in this approach, in terms of area constraint, their tool maximizes

the reliability.

TMR partitioning was mainly addressed in two papers. Pratt et al. [75] pro-

posed a reliability model for partitioned TMR, but only for designs with equal sized

partitions. Lima et al. [46] demonstrated the effect of Domain Crossing Events

(DCEs) and how to insert the voter cleverly in a design. In their work, they ana-

lyzed different partitioning schemes for the same design, and using the fault injection

technique, they find the optimal number of TMR partitions suitable for that design.

Our work contrasts with all of these related works mentioned above. We focus mostly

on the modeling of both Single Bit Upsets (SBUs) and Multi Bit Upsets (MBUs) for

early analysis of a design. The proposed modeling can handle both equal and not

equal sized partitions. Apart from just measuring the dependability metrics, such a

methodology can help in analyzing the relationship between the number of partitions,

the scrub interval, and the mission time at early design stages to improve confidence

in a design.

1.3 Proposed Methodology

In Figure 1.1, we present the proposed methodology. We start from the CDFG of the

application extracted from the high-level description of the design. The CDFG model

is used to represent the functionality of the selected C/C++ modeled algorithm. Such

a CDFG model is composed of structures for arithmetic or logical operations, and is
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Figure 1.1: Proposed methodology

also capable of representing all behaviors present in an algorithm. Different tools

such as GAUT [28], SUIF [32], etc. can be used to extract the CDFG from a high-

level design description expressed using a language (such as C/C++). C/C++ is

the dominant high-level language in embedded system programming. However, the

approach can be applied equally well to other languages, such as Java or an older

language like Fortran. The C/C++ model can be written by the designer or can

be generated automatically in case the design is modeled in Matlab/Simulink. The

embedded coder (formerly RTW) toolbox can be used to perform the transformation.

The idea of the CDFG extraction and characterization library is inspired by [90];
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however, we use the GAUT tool as it is a free tool for academic use that is also user-

friendly. We also developed a version of our characterization library [Bio-Cf5] using

the information in [90] to calculate their SEU rate in the higher earth orbit.

Once the CDFG is extracted, depending on the type of analysis desired (showed

as orange boxes), one of the three branches can be chosen in our methodology. Each

of the orange boxes has its own flow that will be described in detail in the relevant

chapters. The design option analysis focuses on the evaluation of available design op-

tions and the use of rescheduling [16] for optimization of reliability and performance.

The scrub optimization/DO-254 Analysis emphasizes the accurate modeling and op-

timization of scrubbing for saving power. This branch of the methodology can also

be used to verify if the design meets the Design Assurance Level (DAL) described in

DO-254 [65]. The optimal approach for partitioning a TMRed system is analyzed in

the TMR partitioning branch. For this purpose, we model the effect of single and

multiple-bit upsets on the design that enable us to quantitatively analyze the number

of TMR partitions with the adequate scrub frequency required for the design.

All of these analyses require the use of a characterization library that charac-

terizes the failure rate and area for various components such as different types of

adders, multipliers, and so on. Each node in the CDFG defining basic operations

can be directly mapped into one of these components in the library. The details of

this characterization library development will be discussed in chapter 3 of this thesis.

In our work, we use the first-order worst case scenario for the development of the

characterization library. Note that we use the characterization library to obtain the

failure rate of the components in the Markov chain model and the methodology is

generic enough to be used with a different characterization library with more precise

and accurate data, without any significant changes.
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The modeling of these three types of analysis in our methodology is based on

either Continuous Time Markov Chains or Markov Reward Models. Once described in

the PRISM modeling language [54], the PRISM model checker automatically analyzes

the dependability properties. In the case of stochastic modeling, properties are usually

expressed in some form of extended temporal logic such as the Continuous Stochastic

Logic (CSL) [37]. CSL is a stochastic variant of the well-known Computational Tree

Logic (CTL) [25]. If the system does not meet the requirements, then the mitigation

approach is modified, and the analysis is repeated again.

1.4 Thesis Contributions

The main contribution of this thesis is the methodology based on the probabilistic

model checking technique to qualitatively analyze the dependability of SRAM FPGA-

based aerospace applications. Since fault injection and beam testing requires the

finished implementation of the design and comes with an associated cost and high

risk, our methodology can be used for early dependability evaluation. This will guide

designers to adopt the proper mitigation technique or the combination of mitigation

techniques to make a more reliable, efficient and robust design. This may save on

design effort, design time and may also reduce the overall cost of the product. We

list below the main contributions of this work with references to related publications

provided in the Biography section at the end of this thesis.

1. We developed Markov Reward Models to analyze design options with respect

to reliability, availability, safety, and performability-area tradeoff for early design de-

cisions. The quantitative results from our obtained model show some important ob-

servations such as the fact that high coverage is not always helpful for gaining high

reliability, and that scrubbing delay also has a considerable impact. Regarding safety,
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using our models, we demonstrate how the scrubbing interval affects the safety of

available design options with the same fault coverage. We prove that in some cases,

redundancy-based solutions might not be always the best choice as one may expect.

Alternatively, for those cases, rescheduling in conjunction with scrubbing can be a

good option. To our knowledge, this is the first attempt to evaluate such relation-

ships at early design stages using probabilistic model checking [Bio-Jr2, Bio-Cf5].

2. We developed the Markov model for reconfigurable systems with periodic

scrub and TMR using conventional Markov chains (instead of semi-Markov chains).

This enables us to assess the system using a probabilistic model checker in order

to optimize the scrub interval. Using the same model, we also verify if a system

meets the design assurance level to comply with the DO-254 and also high-availability

requirements. Unlike the traditional approach where the repair rates are estimated as

exponential distributions, we model the deterministic repair intervals using the Erlang

process [30] for better accuracy [Bio-Cf3, Bio-Cf4].

3. To analyze the TMR partitioning at an early design stage, we developed

Markov models that can handle both the equal sized or non-equal sized partitions.

Besides, these models can quantitatively assess the effect of both SBUs and MBUs on

TMR partitions. Our analysis shows that increasing the number of TMR partitions

also increases the design reliability for the case of SBUs. In contrast, for designs

that are prone to both SBUs and MBUs an optimal number of partitions indeed

exists. We prove that with an increased number of partitions, less frequent scrub

will be required to meet a target reliability. On the other hand, a smaller number of

partitions will require more frequent scrubs. Using our methodology, it is possible to

assess the required scrub frequency and the number of TMR partitions at early design

stages for a specific mission time. [Bio-Jr3]
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1.5 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we provide a brief overview

of SEUs and configuration scrubbing. We also provide in this chapter an introduction

to probabilistic model checking, the PRISM model checker and some basic definitions

for some relevant dependability metrics.

In Chapter 3, we present the reliability, availability, safety, and performability

modeling of design options using Markov Reward Models (MRMs). We also present

modeling results to support our observations.

The modeling with Erlang process for approximating a constant time delay to

optimize the scrub interval is discussed in Chapter 3. In this chapter, we also show

with a case study how the proposed models can be used for verification of DAL

compliance.

In Chapter 4, we present the details of modeling the SBU and MBU impacts in

a partitioned TMR system. We analyze a system for both the SEUs and MBUs, and

quantitatively analyze the required number of portions with proper scrub frequency.

Finally, Chapter 5 provides concluding remarks and several future research di-

rections.
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Chapter 2

Preliminaries

In this chapter, we provide a brief overview of the concepts required to understand

this thesis. We start by introducing the Single Event Effects (SEEs) and the different

types that may occur in FPGAs. Since this thesis mostly focuses on Single Event

Upsets (SEUs), the consequences of SEUs FPGAs are also be introduced in this

chapter. In addition, we also provide the detail of fault mitigation techniques such as

Triple Modular Redundancy (TMR) and scrubbing of configuration bitstreams. We

also provide definitions of various dependability metrics that will be assessed in this

thesis. We conclude this chapter by providing a short overview of the probabilistic

model checking — the formal verification technique that we used in our methodology.

2.1 Single Event Effects

The harsh radioactive environment in space may affect the sensitive electronic systems.

As shown in Figure 2.1, when charge from radiation particles is impinging on a device,

it has the potential of altering the internal state of, or damaging, the device. Such

incidents are known as Single Event Effects (SEEs).
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Figure 2.1: SEE in FPGAs [18]

As shown in Figure 2.2, different types of SEEs that can occur in FPGAs can be

divided into soft errors and hard errors. We provide the summary of different types

of SEEs as follows, however, in this thesis, we deal with the Single Event Upsets only.

2.1.1 Soft Errors

Soft errors (recoverable) are upsets to the device operation and are self-correcting in

time or are correctable by rewriting a memory element. The three subclasses of soft

errors are Single-event transients (SETs), Single-Event Upsets (SEUs) and Single-

Event Functional Interrupts (SEFIs) that can be described as follows:

1. Single-Event Transients (SETs) result when a high-energy particle impacts a

combinatorial path of a device and can induce a voltage/current spike. If the pulse-

width of this spike is sufficient and arrives at the right time, it can propagate through

the circuit to a state flip-flop or latch.
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Figure 2.2: Types of SEEs [99]

2. Single-Event Upsets (SEUs) are the result of high-energy particles causing a

change in the state of a memory element (SRAM, flash, flop, or latch). SEUs can be

categorized as single-bit or multi-bit upsets (SBUs or MBUs). SBUs are by far the

most common SEE seen in avionics applications [99].

3. Single-Event Functional Interrupts (SEFIs) are disruptions to normal device

operation. These types of effects alter the functionality of the circuit and typically

require reconfiguration/reset or power cycling for recovery.

2.1.2 Hard Errors

Errors that cause lasting damages to devices are classified as hard errors (non-recoverable).

The three subclasses of hard errors are Single-event latch-up (SEL), Single-event

burnout (SEB) and Single-event gate rupture (SEGR) described as follows:

1. Single-Event Latch-up (SEL) is a circuit latch-up induced by radiation. This

latch-up can be either permanent or clearable with power cycling.

20



2. Single-Event Burnout (SEB) is a short-circuiting caused when a high-energy

ion impacts a transistor source, causing forward biasing. SEBs are typically a threat to

power MOSFETs but are also seen in IGBTs, high-voltage diodes, and similar circuits.

3. Single-Event Gate Rupture (SEGR) is a plasma spiked caused by a high-

energy ion impact, resulting in rupture of the gate oxide insulation.

2.2 Single Event Upsets in SRAM-based FPGAs

FPGAs are configurable logic devices that implement logic circuits with a fabric that

includes Look-up tables (LUTs), memories and routing resources that connect the

LUTs and memories. LUTs are used to implement logic equations. In contrast,

memories are used for implementing sequential logic and storage. In a reconfigurable

FPGA, the configuration memory is a collection of static memory cells storing the

bitstream. Bitstream bits set the values of the LUTs, flip-flops and memory initial-

ization values, and states of switches and connection boxes that route signals through

the FPGA. For Virtex devices from Xilinx, the configuration memory is composed

of SRAM cells. Those cells are arranged in frames of 32-bit configuration words. In

Virtex-5, there are 41 words in each frame [1].

Several interfaces are provided for accessing configuration memory for differ-

ent purposes. The Joint Test Action Group (JTAG) interface is typically used for

initial configuration. The Xilinx-specific SelectMAP interface is used for runtime

read-back and reconfiguration. It can be configured for a bus width of 8, 16, or 32

bits. Xilinx provides the Internal Configuration Access Port (ICAP) to expose the

SelectMAP interface to user logic. The ICAP eliminates the need for an external

runtime-configuration manager by allowing the FPGA to read back and reconfigure
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itself.

The FPGA configuration is stored in volatile SRAMs. Therefore, interaction

with high-energy radiated particles that are common in the aerospace environment,

such as protons, neutrons, and heavy ions, may corrupt the FPGA configuration.

Single-Event Upsets (SEUs) occur when one or more bits in configuration memories

change state due to a radiation event. If only one bit of a word is affected, then

it is called a Single-Bit Upset (SBU). If more than one bit are affected, then it is

an MBU. The state of the FPGA configuration memory defines the architecture of

the application. As a consequence, SEUs in the configuration memory are not only

harmful but could also result in a catastrophic failure of the design. Many bits in the

bitstream that are not employed in a given design do not affect system operation if an

upset occurs on them. A portion of the configuration memory bits that are employed

in the design directly affects the system operation if an upset occurs on them, and

these critical bits can only be identified by fault-injection techniques. However, for

estimation, Xilinx allows generation of a mask file that identifies the essential bits of

the design, of which the critical bits are a subset [56].

Altera also offers a variety of SRAM-based FPGAs, such as the Stratix and Cy-

clone devices [2]. However, Altera FPGAs mostly rely on CRC-based error detection

and correction methodology for SEU mitigation [3]. If there was a means of estimat-

ing the number of essential bits and of enabling the periodic scrubbing technique, our

proposed methodology would apply directly on Altera SRAM-based FPGAs as well.
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2.3 Scrubbing

Data scrubbing is a well known technique for error correction. It uses a background

task that periodically inspects memory for errors and corrects the error using error-

correcting code memory or redundant copy of data. Scrubbing in Xilinx FPGAs use

an approach to scrubbing for configuration memory.

For most applications, the FPGA configuration data is loaded upon power-up.

In such applications, the desired state of the configuration memory that enables the

repair of upset bits through scrubbing will be known. For the implementation of the

scrubber, there are mainly two options. The first option is to implement the scrubber

as an external device, such as a radiation-hardened microprocessor. The other option

is to implement the scrubber internal to the FPGA using the fabric and ICAP [13].

External scrubbing with radiation-hardened parts is reliable. However, as it requires

at least one additional processor, it can be expensive in terms of power, size, and cost.

Even though internal scrubbing is superior with respect to these constraints, extra

care is required for implementing internal scrubbing as the scrubber itself is vulnerable

to SEUs. A scrubbing technique is a single algorithm used in the system to mitigate

configuration-memory upsets. There are two different types of techniques, specifically

detection techniques and correction techniques. Each of these techniques has its own

properties with respect to error coding, granularity and redundant data sources. A

scrubbing strategy is composed of at least one correction technique and optionally,

a detection technique. Blind scrubbing is a very popular scrubbing strategy with

no detection technique. If at least one detection technique is used in a scrubbing

strategy, then it is called read-back scrubbing. In read-back scrubbing, the current

state of configuration memory is read back from the device to detect an upset. For

this thesis, we concentrate on blind scrub, that does not require any detection.
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As discussed above, all scrubbing strategies employ at least one technique for

correcting the configuration bit upsets. Correction techniques either use data redun-

dancy to recall or calculate the original configuration and then write this configuration

to the device. These techniques differ in their coverage of various upset types (e.g.,

SBU vs. MBU), granularity of correction (e.g., frame vs. device) and correction

data source (e.g., off-chip vs. on-chip memory). Depending on the chosen scrubbing

strategy, the correction technique may be triggered continuously by a simple timer

delay, or by a detection technique. The golden copy correction and error syndrome

correction are the two main correction techniques that are widely used for scrubbing.

Error syndrome correction is mostly used in read-back scrubbing. In golden copy

correction, a trusted golden copy of the original configuration is kept off-chip in non-

volatile storage, such as a radiation-hardened PROM, and used to reconfigure the

FPGA as needed. Blind scrubbing strategies that employ only golden copy correction

are very popular in FPGA-based space platforms because of their effectiveness (they

can fix any number of upsets) and simplicity (less implementation complexity). These

strategies continuously or periodically reconfigure the FPGA with the golden copy to

repair errors quickly after they occur. A known limitation of blind scrub is that the

radiation-hardened memories may have limited bandwidth. As a result, the configu-

ration clock often can not be run at its maximum frequency. Scrubbing can be done

at a specified rate meaning that there might be a period of time between the moment

the upset occurs and the moment when it is repaired. That is why another form

of mitigation is required, such as a redundancy-based solution known as TMR [21].

TMR is a technique for enhancing the reliability, in which each module in a circuit

or the whole system is triplicated. A majority vote (two out of three) is taken on the

TMR outputs to determine the final module output.
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A scrub rate describes how often a scrub cycle should occur. It is denoted by

either a unit of time between scrubs, or a percentage (scrub cycle time divided by the

time between scrubs). There are direct relationships between scrub rate, design size,

design reliability and design safety, hence the scrub rate should be determined by the

expected upset rate of the device for the given application.

2.4 Dependability Metrics

The term dependability has quite a broad meaning that varies in the literature. In

1988, a survey [71] on several definitions of computer-based system dependability

resulted in this concise definition: “Dependability of a computer system may be defined

as justifiable confidence that it will perform specified actions or deliver specified results

in a trustworthy and timely manner”.

Similar to the definition, the number of dependability attributes also has several

options. According to [71], the attributes are : reliability, availability, performance,

integrity, robustness, serviceability, resilience, maintainability, testability, safety and

security. Some of the selected attributes will be discussed in the following as those

attributes will be analyzed using our proposed methodology.

2.4.1 Reliability

Reliability of a system (or component) is defined as the probability that the system

performs correctly for a given period of time, from zero (t0) to t1, given that the

system or the component was functioning correctly at t0. The reliability R(t) of a

single system/component (non-redundant) can be expressed as
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R(t) = e(−λt) (2.1)

where λ represents the failure rate of the component or the system, and t represents

the time period.

2.4.2 Availability

Availability is defined as the ratio of time the system or component operates correctly

(system uptime) to its entire mission time. For a simple system, if the Mean Time

Between Failure (MTBF) and the Mean Time To Repair (MTTR) are known, then

the availability of the system or the component can be expressed as

A =
MTBF

(MTBF +MTTR)
(2.2)

More generally, Operational availability Ao [44] is expressed as

Ao =
Uptime

(Uptime+Downtime)
(2.3)

2.4.3 Safety

Safety can be defined as a probability S(t), which represents that the system either

behaves correctly or will discontinue its function in a manner that causes no harm

(operational or fail-safe). The notion of coverage is very important to model safety

using Markov chain. The coverage is the measure of the system’s ability to reach a

fail-safe state after a fault. Modeling coverage and safety in Markov chain means that

every ‘unfailed’ state has two transitions, to a fail-safe and to a fail-unsafe state.
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2.4.4 Performance

Performance can be considered as the sub-characteristics of dependability. Some of

the most common performance metrics are response time, throughput and resource

utilization. Throughput is a more popular metric than response time to compare the

performance of a system. According to ISO 9126-2, throughput describes the amount

of tasks that can be performed over a given period of time. Throughput can be mea-

sured in different ways, depending on the system and devices involved to handle the

task. For example, for a batch system, throughput is measured in job/sec. in contrast,

in interactive systems, request/sec is used.

2.4.5 Performability

Performability metric quantifies the system’s ability to perform in the presence of

faults [83]. It combines the performance and reliability of a fault tolerant system to

quantify the operational quality of the service between the failure (or an error) and

its recovery. The results of performability evaluation can be used as a supplement to

other metrics to assess the trustworthiness of a system. The concept of “performa-

bility” was first proposed in the mid-1970s, when system designers started dealing

with large and complex systems that need to maintain some degree of functionality

after a fault [64]. The field of fault-tolerant computing uses performability metrics

extensively to provide a composite measure of both performance and reliability over

the entire lifetime of a system [19]. The fault tolerant computing field frequently deals

with safety-critical and mission-critical systems for demanding environments such as

aerospace and high-performance transaction processing. Due to the high cost of devel-

oping and servicing of such systems, designers strive to model the behavior of such a
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system before they actually build it. Performability metrics provide a way to quantify

the behavior of such systems to gain more confidence in their design in early stage.

To get more familiar with the metric performability, consider a remote sensing

satellite (for weather forecasting) that is to be launched into orbit. The satellite con-

sists of a set of redundant components for its main crucial parts, such as high-definition

cameras, antennas and its power distribution system. Each of these component has

an associated failure rate over time, as well as a performance contribution. The

performance contribution of a component defines the degree to which the overall per-

formance of the satellite will be degraded upon the failure of that component. Given

these information, system designers can build an analytical model to determine the

average level of performance that the satellite can be expected to provide for part

or all of its operational lifetime. This metric, which might be a throughput mea-

surement, such as images transmitted per day (or any other number of specific tasks

completed per second/hour/day etc. ), is a performability metric because it captures

the system’s behavior given a failure (or fault) condition.

One way to measure the consequence of system’s performance degradation due

to a failure is to reward the system for every time unit it is ready to perform its task,

at a rate which is proportional to its performance during this interval. This can be

achieved by Markov Reward Model (MRM), which will be discussed in more detail

later in this thesis.

2.5 Probabilistic Model Checking and PRISM

Model checking [25] is a well established formal verification technique to verify the

correctness of finite-state systems. Given a formal model of the system to be verified

in terms of labelled state transitions and the properties to be verified in terms of
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Figure 2.3: Probabilistic Model Checking

temporal logic, the model checking algorithm exhaustively and automatically explores

all the possible states in a system to verify if the property is satisfiable or not [26]. If

not, a counterexample is generated. Probabilistic model checking deals with systems

that exhibit stochastic behaviour, such as fault-tolerant systems. Probabilistic model

checking is based on the construction and analysis of a probabilistic model of the

system, typically a Markov chain. In this thesis, we focus on the use of continuous-time

Markov chains (CTMCs) and Markov reward models [87], widely used for reliability

and performance analysis.

A CTMC comprises a set of states S and a transition rate matrix R : S × S →

R≥0. The rate R(s, s′) defines the delay before which a transition between states s

and s′ takes place. If R(s, s′) 6= 0 then the probability that a transition between

the states s and s′ might take place within time t can be defined as 1 − e−R(s,s′)×t.

No transitions will take place if R(s, s′) = 0. Exponentially distributed delays are

suitable for modelling component lifetimes and inter-arrival times.
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In the model-checking approach to performance and dependability analysis, a

model of the system under consideration is required together with a desired property

or performance/dependability measure. In case of stochastic modelling, such models

are typically CTMCs, while properties are usually expressed in some form of extended

temporal logic such as Continuous Stochastic Logic (CSL) [8], a stochastic variant of

the well-known Computational Tree Logic (CTL) [25]. PRISM [55] (as shown in Fig-

ure 2.3) is a well known tool for the formal modeling and verification of stochastic

systems, currently supports four types of probabilistic models: discrete-time Markov

chains (DTMCs), continuous-time Markov chains (CTMCs), discrete-time Markov de-

cision processes (MDPs) and probabilistic timed automata (PTA). The specification

language for properties of the probabilistic models to be analysed in PRISM is based

on temporal logic, in particular PCTL and CSL that are probabilistic extensions of

the logic CTL. The principal operators are P, S and R which refer, respectively, to the

probability of an event occurring, the long-run probability of some condition being

satisfied and the expected value of the models costs or rewards. Below are given two

illustrative examples with their natural language translation in PRISM:

1. P = ? [ F [0, 600] failA ] - “The probability that component A fails within 10

minutes”.

2. P = ? [ G[0, 3600] !(failA|failB) ] - “The probability of no failures occurring in

the first hour”.

Additional properties can be specified by adding the notion of rewards. Each

state (and/or transition) of the model is assigned a real-valued reward, allowing
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queries such as:

R {“oper”} = ? [ C < T ] - “The expected cumulative operational time of the system

in the time interval [0, T]”.

Rewards can be used to specify a wide range of measures of interest, for example, the

number of correctly delivered packets or the time that the system is operational. Of

course, conversely, the rewards can be considered as costs, such as power consumption,

expected number of failures, etc.
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Chapter 3

Design Option Analysis

In safety-critical applications, dependability and performability of a design are prime

concerns since failures may have catastrophic consequences. This sets a need to an-

alyze different design options with different mitigation technique(s) for early design

decisions. In this chapter, we will discuss details of the design option analysis part

of our proposed methodology. Configuration scrubbing is often used in conjunction

with other forms of mitigation techniques such as TMR or spare components, to in-

crease reliability. However, cases where performability (reliability and performance

combined) is a major concern, redundancy-based solutions might not always be the

default choice [Bio-Cf5]. Moreover, setting always a target of perfect coverage is

expensive and unnecessary in most cases. That is why, it is crucial to evaluate the re-

lationship between reliability, availability, safety and performability with the adopted

fault mitigation technique(s), fault coverage and mission time. Such analysis at an

early design stage will allow designers to develop more reliable and efficient solutions,

and may also reduce the overall cost associated with the design effort. This part of

our work aims at achieving these goals.

Starting from a high-level description of the design, a Markov reward model is
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Figure 3.1: A sample pseudocode and DFG representation

constructed using the Control Data Flow Graph (CDFG) of the system and a compo-

nent characterization library targeting FPGAs. The proposed model and exhaustive

analysis captures all the failure states, fault detection coverage and repairs possible

in the system within the radiation environment. In this chapter, we will also present

quantitative results based on an FIR filter circuit to illustrate the applicability of the

proposed approach.

3.1 CDFG and High-level Synthesis

In high-level synthesis, a behavioral description of a system is transformed into a

structural description comprising data path logic and control logic. High-level syn-

thesis algorithms read a high-level description and translate it into an intermediate

form. An intermediate form should represent all the necessary information and be

simple to be applicable in high-level synthesis. A Control Data Flow Graph (CDFG)

refers to such an intermediate form. At first, a behavioral description is converted into

a CDFG. The operations of the CDFG are then scheduled in clock cycles (scheduling),

a hardware module is assigned to each operation (module assignment), and registers

are assigned to input and output variables (register assignment). A Data Flow Graph
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(DFG), in which control information is omitted from a CDFG, is used frequently for

data path-intensive circuits (to which high-level synthesis applies) such as filters and

signal processing applications. They often do not require control of the data flow. In

Figure 3.1, a sample pseudocode (on the left) and its equivalent DFG representation

(on the right) are shown. There are control-intensive circuits in which control of the

data flow is required. The control data flow graph representation is used for such

circuits. Since our work mostly focuses on data path-intensive applications, we utilize

the information about the Data Flow (DFG) part of a CDFG. A formal definition of a

DFG can be given as: A DFG is a directed graph G = (V,E), where V = v1, v2, ..., vn

is a finite set whose elements are “nodes” and E = V ×V is an asymmetric “dataflow

relation”, whose elements are called “data edges”.

Scheduling is an important part of high-level synthesis. Scheduling can be de-

scribed as the process of dividing the CDFG (or DFG) into time steps that corresponds

to clock cycles at the Register-Transfer Level (RTL) level. A small example is shown

in Figure 3.1 that can be scheduled in two control steps (time steps) using two adders

and one multiplier. However, it can also be scheduled in three control steps using only

one adder and one multiplier. High-level synthesis algorithms such as forced-directed

list scheduling (FDLS) [73, 94] can generate different CDFGs depending on component

availability. FDLS is a well-established resource-constrained scheduling algorithm in

high-level synthesis of digital circuits that utilizes the strengths of the Force-Directed

Scheduling (FDS) and List Scheduling (LS). Force-Directed List Scheduling takes the

resource constraints and tries to optimize the latency of the design. FDLS is similar to

LS except for the force (measure of concurrency) used as a priority function. In brief,

FDLS maintains a priority list of operations at each time step. From this, the FDLS
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Figure 3.3: CDFGs scheduled over available resources

algorithm schedules operations until the resources become insufficient, and defers the

rest.

3.2 CDFG Rescheduling for Fault Recovery

Consider the CDFG of a synchronous dataflow DSP application shown in Figure 3.2.

Based on data dependencies, this application can be carried out in a minimum of three

control steps (csteps) using the CDFG-1 shown in Figure 3.3, with two adders and two

multipliers. Such implementation provides a throughput of 1/3 = 0.33 (for non-

pipelined systems, throughput is the inverse of latency [27, 11], throughput modeling

will be addressed later in this chapter). Another alternative consists of implementing

the application with only one multiplier and two adders but in four control steps, as

shown by CDFG-2 in Figure 3.3. In that case the throughput is 0.25. Based on the

priority of throughput or area metric, the appropriate CDFG can be selected.
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However, the inclusion of a reliability metric based on a fault recovery mecha-

nism can make the case more complex and difficult to evaluate. When a resource fails

(due to a configuration bit flip), an alternative schedule can be derived to continue

the system operation using the remaining resources, most likely at a lower through-

put. For example, to maximize the throughput, CDFG-1 is implemented. For a

single component failure, e.g. a multiplier, the application can be rescheduled to

implement CDFG-2 with lower throughput. For FPGA-based designs, such a fault

recovery technique can be adopted as well. We will explore the dependability and

performability-area tradeoffs for such systems. It is of interest that the controller

for rescheduling the operations is assumed to be fault-free. This controller can be

implemented in a separate chip, even in ASIC.

3.3 Methodology for design option analysis

In Figure 3.4, we present the detail of the design option analysis part of our proposed

methodology that starts from the control dataflow graph of the application. As men-

tioned in chapter 1, the CDFG is extracted using the free academic tool known as

GAUT [28]. It is worthy to mention that the boxes in the methodology represent

steps, and the edges show the relationship between them. The steps are as follows:

1. Configuration: As we already know, A CDFG can be implemented with different

component allocations (design options). To analyze each of these configurations, we

model them separately with the PRISM modeling language. From now on, we will

refer to the term design options as configurations in the rest of the chapter.

2. PRISM modeling: PRISM modeling requires the description of a system given in
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Figure 3.4: Design option analysis methodology

terms of component failure rates, adopted fault mitigation strategy, fault coverage and

performance measures. To acquire the component failure rate, we use a characteriza-

tion library (characterization library is explained in section 4.4). The modeled fault

mitigation techniques are: rescheduling, cold spare components and blind scrubbing.

For rescheduling a CDFG, if possible with available components, a high-level synthesis

algorithm, such as forced-directed list scheduling [73] can be used. Since the model is

parametric, the fault coverage value and the scrub interval can be varied for analysis.

Each state of this Markov model can be augmented with associated rewards such as

throughput (obtained using high-level synthesis techniques: CDFG scheduling with

available components in each state), area (measured in terms of the total number of

LUTs required to implement the design, obtained from component characterization

library) or any other metric of interest. The resulting MRM is then analyzed using

the PRISM model checker tool.
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3. PRISM model checker: The PRISM tool then computes the set of all states which

are reachable from the initial state and identifies any deadlock states (i.e. reachable

states with no outgoing transitions). PRISM then parses one or more temporal logic

properties (e.g. in CSL) and performs model checking, determining whether the model

satisfies each property.

3.3.1 Markov Modeling of Reliability and Availability

CTMC models are very commonly used for modeling dependability of gracefully

degradable systems. Each state in a CTMC model representing a specific config-

uration, can be classified into different types depending on the number of healthy

components. For instance, the FIR filter in Figure 3.9 (quantitative results section)

requires at a minimum an adder and a multiplier for successful operation. Hence, any

state that does not fulfill the minimum resource availability is labeled as a failed state.

At the end, the state labeled as all fail represents a state where all the components in

the system have failed one-by-one due to SEUs. Note that safe and unsafe failures are

not considered at this stage of modeling. How to include safety in the model will be

described in detail in the next subsection. The initial state of a configuration has the

maximum throughput and all the components are functional. The edges between the

states represent transition rates. The assumptions for our model are defined as follows:

Assumption 1 : The components fail independently and the time-to-failure for a com-

ponent due to a configuration bit flip is exponentially distributed. Exponential distri-

bution is commonly used to model the reliability of systems where the failure rate is

constant. The scrub interval is assumed to follow an exponential distribution as well,
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with a rate, µ = 1/τ , where τ represents the scrub interval.

Assumption 2 : Every component in the system is connected with other components

(via multiplexers). This assumption is needed for simplicity of the hardware model.

The control unit can be designed as a finite state machine implemented either as a

hardwired or microcoded controller. Since in many systems, datapath components

dominate the area of the design compared to control units, these components can

be much more vulnerable to SEU than control units. Hence, we only consider the

failures of the datapath components in this work, and modeling of control units is left

for future works.

Assumption 3 : Only one component can fail at a time due to a SEU. This assumption

is made to ensure the complexity in the Markov model is manageable. The system

is assumed to be designed in such a way that each of its components can be easily

diagnosed.

Assumption 4 : Cold spare components are used to provide redundancy and are active

only when a same type of component fails. The cold spare components are only error

prone to cosmic radiations when they are active.

Assumption 5 : The reconfiguration and rescheduling times (i.e. the time taken for

the system to reschedule when a component fails and the time taken for repair via

scrubbing) are extremely small compared to the times between failures and repairs.

The time required for rescheduling is at most few clock cycles and the time required

for scrubbing is only a few milliseconds.
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Assumption 6 : All the states in the CTMC model can be classified into three types:

operational, where all the component are functional and the system has the highest

throughput; degraded, where at least one of the components is faulty; and failed,

where the number of remaining non-faulty components is not sufficient to perform

successful operation and hence has a throughput of 0. In PRISM, a formula can be

used to classify such states as shown in Figure 3.6.

Such a model is described as a number of modules in PRISM, each of which

corresponds to a component of the system. Each module has a set of finite-ranged

variables representing different types of resources. The domain of the variables rep-

resents the number of available components of a specific resource. The whole model

is constructed as the parallel composition of these modules. The behaviour of an

individual module is specified by a set of guarded commands. Once each module is

specified in such a manner, the PRISM model checker then performs a parallel compo-

sition of all the modules to build the complete Markov chain of the system specified.

A CTMC, as is the case here, can be represented in the following form in PRISM

modeling language:

[] <guard> → <rate> : <action> ;

The guard is a predicate over the variables of all the modules in the model. The

update comprises of rate and action. A rate is an expression which evaluates to a

positive real number. The term action describes a transition of the module in terms

of how its variables should be updated. The interpretation of the command is that if

the guard is satisfied, then the module can make the corresponding transition with

that associated rate. A very simple command for a module with only one variable z
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Figure 3.5: Sample CTMC for reliability/availability analysis

might be:

[] <z = 0> → 7.5 : <z’ = z + 1> ;

which states that, if z is equal to 0, then it will be incremented by one and this

action occurs with rate 7.5. A second more significant example, is an application

that implements a function using 2 adders and 2 multipliers but that requires at least

1 adder and 1 multiplier (in case of failure due to SEU) for successful operation.

Such a configuration in the PRISM modeling language can be described as shown in

Figure 3.6.

In the PRISM code in Figure 3.6, num A and num M represent the number of adders and

multipliers available in the initial state of the configuration. The lambda A and the

lambda M variables represent the associated failure rates of the adders and multipliers

whereas miu represents the repair rate. Each repair transition (scrub) leads back to the

initial state reflecting the scenario that the configuration bit flips have been repaired.

The value of lambda A and lambda M is obtained from a component characterization

library, that will be explained later in this chapter. PRISM then constructs, from this,
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module adder

a : [0.. num_A] init num_A;

[] (a > 0) -> a*lambda_A : (a’ = a - 1);

[rep] (a < num_A) -> miu : (a’ = num_A);

endmodule

module mult

m : [0.. num_M] init num_M;

[] (m > 0) -> m*lambda_M : (m’ = m - 1);

[rep] (m < num_M) -> 1 : (m’ = num_M);

endmodule

formula fail = (a =0)|(m =0);

formula oper = (a=num_A)&(m=num_M);

formula degrade = !fail & !oper;

Figure 3.6: PRISM modeling for a system with 2-adders and 2-multipliers

the corresponding probabilistic model, in this case a CTMC. The resulting CTMC for

this configuration is shown in Figure 3.5 (lambda A, lambda M and miu are reflected

in the figure as λA, λM and µ respectively). The repair transition in the code is

synchronized with a label [rep] to demonstrate the phenomenon that when the FPGA

is scrubbed, all the components get fixed simultaneously. The formula fail, oper and

degrade classifies failed, operational and degraded states in the model.

3.3.2 Safety Modeling using Fault Coverage

Any fault detection algorithm can be assumed to detect and handle all the faults

properly. However, in reality this is not the case. A fault can escape the implemented

fault detection mechanism. As a result, the system will not be able to reschedule,

hence the system will be continuing its operation in a faulty mode. Which means,

each component in the configuration that implements the CDFG, can fail either in

a safe or in unsafe fashion. That is why we need to refine the model by taking into

account and introducing the concept of the safe failure and unsafe failure. We define
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Figure 3.7: Safety modeling of simple system with safe and unsafe failure

them as follows:

Definition 1: Safe failure could be when a component’s failure due to an SEU is prop-

erly detected, and handled by rescheduling depending on the number of remaining

components. If the rescheduling is not possible (number of available components are

less than the minimum number of components required for rescheduling), the system

will move to a fail safe state.

Definition 2: An Unsafe failure is the fail silent behavior, observed when a system

fails to detect a component’s failure.

If all the faults are safely detected, it will eventually lead to the failed safe state,

whereas even if there is a single fail unsafe occurrence, it will immediately lead to the

failed unsafe state. The error detection coverage of a component can be defined by a

conditional probability C :

C = P (fault detection|fault existence)
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Figure 3.7 shows the modeling of safety for a simple single component system with

only two adders including the repair transitions. For this case, we assume that the

system requires at least one adder for successful add operation. Initially the system is

in operational mode with two adders. When one adder fails, if the failure is detected,

the system is rescheduled and continues with only one adder. If the failure is not de-

tected, then it moves to the failed unsafe state. If another adder fails, the system will

not be able to continue its operations, hence it will fail safely. However, if this failure

is not detected, then the system will eventually fail in an unsafe fashion. Inclusion of

safety in the model requires the modification of assumption 6 as follows :

Assumption 6 : All the states in the CTMC model can be classified into four types:

1. operational - All the component are functional and the system has the highest

throughput.

2. degraded - At least one of the components is faulty.

3. failed safe - The number of remaining non-faulty components is not sufficient to

perform successful operation and hence has a throughput of 0. To reach failed safe

state, all the failures leading to this state must be fail safe.

4. failed unsafe - At least one failure is not detected by the detection algorithm. Fail

silent behavior of a component immediately leads to a failed unsafe state.

Figure 3.8 shows the modified PRISM code from Figure 3.6 after including the

coverage variable c in the model.

3.3.3 Peformability Modeling using MRM

When a system changes its state from one to another one due to a full/partial failure or

repair, the performance level can change. Such a scenario can be described by different
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module adder

a : [0.. num_A +1] init num_A;

[] (a > 0 & (a < num_A +1)) -> c*a*lambda_A :

(a’=a-1) + a*(1-c)*lambda_A : (a’= num_A +1);

[rep] (a >= 0 ) -> repair : (a’=num_A);

endmodule

module mult

m : [0.. num_M +1] init num_M;

[] (m > 0 & (m < num_M +1)) -> c*m*lambda_M :

(m’=m-1) + m*(1-c)*lambda_M : (m’= num_M +1);

[rep] (m >= 0) -> 1 : (m’=num_M);

endmodule

formula fail_unsafe =((a=num_A +1)|(m=num_M +1));

formula fail_safe =((a=0)|(m=0))& !fail_unsafe;

formula oper =(a=num_A)&(m=num_M);

formula degrade =! fail_safe &! fail_unsafe &!oper;

Figure 3.8: PRISM modeling refined after inclusion of coverage (c) for a system with
2-adders and 2-multipliers

states using a Markov model that provides a framework for combined performance-

reliability (performability) analysis. Formally, an MRM consists of a CTMC X =

X(t), t > 0 with finite states space S, and a reward function r where r : S → R [79].

For each state i ∈ S, ri denotes the reward obtained per unit time spent by X in that

state which represents the the performance level given by the system while it is in

that state.

Performability measures can be distinguished in different classes, mainly into

two: steady-state performability and transient or point performability. For i ∈ S, let

wi denote the steady-state probability of residing in state i, and pi(t) the (transient)

probability of residing in state i at time t. Steady-state performability (SP) can be

defined as:
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SP =
∑
i∈S

wi ∗ ri (3.1)

Transient or point performability (PP) can be defined as:

PP (t) =
∑
i∈S

pi(t) ∗ ri (3.2)

Markov Reward Modeling for the CDFG

For a data-flow system, the primary reward associated with each state of the MRM

is throughput. For a synchronous data-flow system, the throughput can be evaluated

directly from the CDFG of the system. As we consider only non-pipelined systems

in our work, we can define the throughput as the inverse of the number of seconds it

takes to execute the CDFG:

Throughput = (1/cstep) ∗ (cstep/cycle) ∗ (cycles/second) (3.3)

where, cstep is the control steps in the CDFG. Assuming that each cstep takes a single

clock cycle and η represents the system’s clock frequency (clock cycle/second):

Throughput = (1/cstep) ∗ η (3.4)

In our MRM, the operational and degraded states are augmented with asso-

ciated throughput reward, and all the failed states both safe and unsafe ones, are

augmented with a throughput reward of zero. The expected throughput (for long

run E[X] or for a specific mission time E[X(t)]) can be calculated using the equation

3.1 and equation 3.2 respecively. In our MRM model, the area that is required, to

implement the design on the FPGA, is assumed to be invariant between the states
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for a specific configuration. The reason is, once the system is implemented on FPGA,

the area is fixed (in terms of the total number of LUTs) and if a fault occurs, then

the system will be rescheduled or if it fails, then eventually will be scrubbed. So only

the control signals will change, not the components. For overall reward calculation

e.g. to evaluate the throughput-area-reliability trade-offs for a configuration, we use

the following equation:

Overall reward = (1/A) ∗ E[X] (3.5)

In the above equation, A represents the area of the design and E[X] represents the

expected throughput. This equation is similar to [52], however instead of calculating

the reward up to a specified time-step, we use the notion of steady-state throughput.

Such modeling can be considered as a direct optimization of throughput, area and

reliability. Rewards can be weighted based on designer’s requirements. For the case

study presented in this chapter, the rewards are set to equal weight.

3.3.4 Characterization Library

As the SEU rate λ is highly dependent on device process technology, architecture,

and orbits of interest, so this parameter is different for each device family. We use

CREME96 [92] with radiation cross sections from [77] to find per bit upset rate λbit

for Xilinx Virtex-5 in the Highly Elliptical Orbit (HEO) and Low Earth Orbit(LEO)

orbit. The failure rate for a component can be calculated using the equation as follows:

λcomponent = λbit ×Number of critical bits (3.6)

For our experiments, λbit = 7.31× 10−12 SEUs/bit/sec for the HEO orbit.
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Table 3.1: Characterization library
Component No. of No. of MTBF

LUTs essential bits (days)
Wallace Tree Multiplier 722 133503 11.85

Booth Multiplier 650 130781 12.11
Brant-Kung adder 120 29675 53.36
Kogge-Stone Adder 183 41499 38.15

In order to build a component characterization library that represents the first-

order estimation of the SEU effects on the components, we use the bitgen feature of

Xilinx ISE tool. Using the bitgen, we identified the essential bits which is also known

as potentially critical bits. Note that, it is well known that the number of critical bits

is less than the number of potentially critical bits. More accurate SEU susceptibility

analysis can be performed using the fault injection techniques [61, 50], however, for

first-order worst-case estimation, it is valid to assume that all the essential bits are

considered as critical bits. Note that we use the characterization library to obtain the

failure rate of the components for the Markov chain model and the methodology is

generic enough to be used with a different characterization library with more precise

and accurate data, without any major changes.

Table 3.1 presents a first-order worst-case estimate of component failures due

to SEUs. We characterize different adder and multiplier components, namely 64-

bit Brent-kung adder, 64-bit Kogge-stone adder, 32-bit Wallace-tree multiplier and

32-bit Booth multiplier. The Xilinx Synthesis Technology (XST) tool is used to

synthesize the components for Virtex-5 XC5VLX50T device from their HDL codes

and the number of required LUTs to implement them (area) is also obtained. We

observe that a 32-bit Wallace-tree multiplier has about 0.134 million bits that are

sensitive to SEUs. So this multiplier has a worst-case Mean Time Between Failures

(MTBF) of 11.85 days for space applications in the HEO orbit. MTBF and λ are
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Figure 3.9: CDFG of an FIR filter

related to each other using the following equation [93]:

λ =
1

MTBF
(3.7)

3.4 Quantitative Analysis using PRISM

Filters are commonly used in digital communication systems for different purposes,

such as for equalization, signal separation, noise reduction and so on. Communication

is a fundamental issue for any space-borne applications ranging from satellites to

unmanned missions. That is why digital filters have an important role to play for

such systems [72]. FIR filters are one of two primary types of digital filters (the other

one is Infinite Impulse Response) used in Digital Signal Processing (DSP) applications.
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Table 3.2: Available design options to evaluate
Configuration Spare components Scrubbing Rescheduling

2A 2M None X X
2A 3M 1 Mul X X
3A 2M 1 Add X X
3A 3M 1 Add, 1 Mul X X

FIR filters are commonly used in spacecrafts for noise filtering from images, videos

and sensor outputs and spacecraft antennas [96, 34, 17]. To illustrate the applicability

of the proposed methodology for early design decision, this section presents a Finite

Impulse Response (FIR) filter case study [51] from the high-level synthesis benchmark

[12].

Figure 3.9 shows the CDFG for a 16-point FIR Filter [45] obtained from [66]. To

achieve a schedule with minimum number of control steps, the minimum allocation is

two adders and two multipliers for the FIR filter application. At a minimum a pair of

one adder and one multiplier is required for successful operation. For our experiments,

we consider the 32-bit Kogge-stone adders and 32-bit Wallace tree multipliers as avail-

able components from the characterization library, as they require less area (number

of LUTs) to implement. We must mention that any other adder or multiplier from

component the characterization library can be used for the similar analysis. The first

part of the case study presents the dependability analysis on different configurations.

The latter part of the case study focuses on the performability (throughput with re-

liability) analysis and overall reward calculation. Overall reward (equation 3.5) gives

the expected reward with both area and throughput taken into consideration.

Table 3.2 shows the different configurations to evaluate for FIR filter design and

the their respective fault mitigation strategy. The first configuration consists of two

adders and two multipliers with no redundancy. The second and third configuration

consist of one spare multiplier and one spare adder respectively used as redundant
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Table 3.3: Configurations vs classes of states
Config. I Operational Degraded Failure

(days) (days) (days) (days)
C1 1 2989.00 609.04 51.94

4 1937.53 1287.04 425.42
9 1222.40 1378.28 1049.31

C2 1 2989.00 642.82 18.14
4 1937.53 1492.61 219.86
9 1222.40 1711.59 716.00

C3 1 2989.00 613.08 47.91
4 1937.53 1319.58 392.88
9 1222.40 1441.09 986.50

C4 1 2989.00 647.06 13.93
4 1937.53 1531.90 180.55
9 1222.40 1795.97 631.61

components (coldspare). Configuration 4 is equipped with full component-level re-

dundancy, with a spare of each type of components. All the four configurations employ

scrubbing and rescheduling. In rest of the chapter, configuration 1, 2, 3 and 4 will be

referred as C1, C2, C3 and C4 respectively. Also for brevity when reporting exper-

imental results, the scrub interval and fault coverage will be denoted by I (in days)

and C respectively, and their units, when applicable, will be omitted.

In table 3.3, using reward-based properties, we analyze the number of days the

design spends in different classes of states for a mission time of 10 years and fault

coverage C = 0.99, with a value of I = 1, 4 and 9. Different states in the Markov

model can be classified into various classes using formulas in PRISM language. To

calculate the number of days spent in different classes of states, we define a reward

structure for each of them. For example, a reward structure degraded assigns a state

reward of 1 to all states of the model in which the system is in degraded mode. A

property that can reason about the amount of rewards accumulated over a period of

time, is represented using CSL logic in PRISM as follows:
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Property 1: R{“degraded”} =?[C <= t] - “the expected cumulative time spent in the

degraded mode of the system in the time interval [0, t]”.

The first column of the table shows the different configurations for evaluation

and the second column shows the associated scrub intervals (I). The third, fourth,

and fifth column presents the number of days the design spends in different classes of

states. It is worth mentioning that the fifth column shows the days spent in either

failed safe or failed unsafe states. All the configurations spend approximately similar

number of days in operational state (rounded to 2 decimal points) for the same scrub

intervals. For I = 9, configuration C1 that has no redundant components shows

the worst result. Interestingly, we observe that adding an extra adder as spare does

not help much whereas adding an extra multiplier as spare significantly reduces the

number of days spent in failed states. In configuration C4, the added spares for both

adder and multiplier provide the best result in terms of availability. This is obvious

but will cost more area on the FPGA. Configuration C1 spends the least number of

days and configuration C4 spends the highest number of days in degraded states. For

many safety-critical applications, low performance for a period of time is acceptable.

For such systems the number of days spent in failed states is a major concern and

hence, configuration C4 and configuration C2 are the two best candidates.

Steady state analysis of a design is useful to evaluate its dependability in the

long-run. In Figure 3.10, we calculate the steady-state failure probability (safe or

unsafe) and compare the results of the four available configurations, with respect to

different scrub intervals (I is varied from 1 to 7) and same coverage (C = 0.99). The

steady-sate failure probability for a given configuration can be analyzed in PRISM
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Figure 3.10: Failure probability vs I (scrub interval)

using the following property:

Property 2: [S] = ? [ failedsafe + failedunsafe ] - “the long-run non-availability of

the system”.

The experimental results show that for configuration C1, the failure probability varies

from 0.014 to 0.288 depending on the value of I. Configuration C2 has a lower failure

probability than configuration C3 for all the scrub intervals. The failure probability

of configuration C4 for all different scrub rates shows the best result with associated

extra area overhead. From the results, we observe that configuration C2 is really an

attractive alternative to configuration C4 (even for I = 7, the probability varies by

only 0.023). On the other hand, configuration C1 and configuration C3 offer similar

results over the long-run. Another conclusion that can be added is, for a value of

I > 2 , the failure probability increases sharply for all the configurations. For a

value of I ≤ 2, configuration C1 and configuration C3, and, configuration C2 and

configuration C4 has almost same failure probability.

Figure 3.11 and Figure 3.12 show the effect of coverage C on reliability and
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Figure 3.11: Reliability vs I (scrub interval)

safety respectively, for different values of I, for a mission time of maximum 3 months

(T is varied from 1 to 90 days). For this part of the experiment (reliability and safety

analysis), we consider configuration C1 with two adders and two multipliers, however

any other configuration can also be analyzed in the similar fashion. The properties

used to analyze reliability and safety in PRISM are as follows:

Property 3 (Safety) : P = ? [ G [0, T ] operational | degraded |

failedsafe ] - “The probability that the system will be either in operational, degraded

or in failed safe state in first T days”.

Property 4 (Reliability) : P = ? [ G [0, T ] operational |

degraded ] - “The probability that the system will be either in operational or in de-

graded state in first T days”.

Figure 3.11 shows some interesting results for reliability evaluation. Configuration C1

has the highest reliability for I = 1 and C = 0.99. We observe that, with the same

coverage, for a delayed scrub of I = 4, configuration C1 has lower reliability than the
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Figure 3.12: Safety vs scrub I (scrub interval)

same configuration with I = 1 and C = 0.95. So, a high coverage does not by itself

guarantee a high reliability, particularly if the scrub interval is long. In contrast, if the

scrub interval is fixed, then increasing the coverage will always increase the reliability.

For example, the design with I = 4 and C = 0.99 has a higher reliability compared

with the design with I = 4 and C = 0.95. In Figure 3.12, we observe that, for C=0.99,

the safety of the system never goes below 0.83 in the first 3 months, even for the most

delayed scrub interval (I = 9). When we analyze the system for C = 0.95, it shows

how drastically the safety of the system falls. For C = 0.95, the safety of the system

drops up to 0.39 for a mission time of 3 months. It is also noticeable that if the value

of I increases, then the distance between the safety values also get wider even for the

same coverage.

Figure 3.13 reveals an important observation to compare the available design options.

We compare configuration C1 with no redundancy and configuration C4 with full

redundancy for three different values of coverage C and I = 1 (since the model is

parametric, any other parameter combinations can also be easily evaluated). We ob-

serve that, for perfect coverage (C = 1), indeed the configuration with redundancy
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Figure 3.13: Impact of C (coverage) on the design with/without redundancy for I =
1)

gives better reliability. However, for lower coverage values, such as C = 0.95, con-

figuration C4 with redundancy gives almost the same reliability compared to the

configuration C1 with no redundancy with perfect coverage. For even lower coverage

value, redundancy fails to improve the reliability compared to the configuration C1

for the cases where it has better coverage. This experiment shows that a design option

with redundancy is not always the best choice with lower coverage. For instance, all

C4 curves for which C < 0.95 produce a reliability less than C1 with C = 1. We redo

this experiment for a delayed scrub, I = 9 and plot the results in Figure 3.14. This

experiment shows that if a design option has coverage more that 0.85, then the design

option with redundancy provides a better reliability. From this, we can conclude that,

if a system employs longer scrub interval, then a design option with redundancy can

provide better reliability even with lower coverage, compared with the design option

with no redundancy, with same coverage. However, if the coverage goes lower beyond

a certain point, indeed redundancy will not help improving the reliability. Compari-

son of Figure 3.13 and Figure 3.14 also indicates that redundancy is more useful for

improving reliability in the cases where scrub interval is longer. For systems with

fast scrubbing capability, rescheduling can be a good alternative to redundancy-based
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Figure 3.14: Impact of C (coverage) on the design with/without redundancy for I =
9)

Figure 3.15: Impact of C (coverage) on for performability-area trade-off evaluation
for I = 1

solutions.

For performability and throughput-area analysis, Table 3.4 shows the expected

throughput and long-run overall reward calculation for various scrub intervals with C

= 0.99. The rewards are setup so that the area and expected throughput have equal

weights. Both the area and throughput were normalized between 0 and 1 in order

to not skew the reward numbers. For every configuration, the maximum throughput

(throughput in the initial state) is used to normalize the throughput for other states

in the Markov reward model. Similarly, the maximum area is used to normalize the

other area values among different configurations. In our model, a reward structure
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Table 3.4: Overall reward calculation
I Config. Normalized Area Norm. Overall

(days) Expected (No. of Area Reward
Throughput LUTs)

1 C1 0.955 1810 0.667 1.432
C2 0.974 2532 0.932 1.045
C3 0.973 1934 0.734 1.326
C4 0.993 2765 1.000 0.993

4 C1 0.811 1810 0.667 1.216
C2 0.876 2532 0.932 0.940
C3 0.856 1934 0.734 1.166
C4 0.931 2765 1.000 0.931

9 C1 0.628 1810 0.667 0.942
C2 0.717 2532 0.932 0.769
C3 0.684 1934 0.734 0.932
C4 0.790 2765 1.000 0.790

throughput assigns a normalized throughput reward to all the operational or degraded

states. All the failed safe and failed unsafe states are augmented with a throughput

reward of zero. Steady-state expected throughput (normalized) for a configuration

can be analyzed in PRISM using the property as follows and shown in column 3:

Property 5: R {“Expected throughput”} = ? [ S ] - “The expected throughput of

the system”.

Column 4 shows the area of each configuration and their normalized value is shown

in column 5. Column 6 shows the overall area-throughput reward (overall reward)

for each configuration. The reward for each configuration is calculated by multiplying

the value of column 2 with the reciprocal of the normalized area. Based on the equal

reward weighting, configuration C1 which has no redundancy (spare components),

shows the best throughput-area reward for all the values of I. This indicates that the

extra reliability provided by the redundancy is not always useful to suppress the extra
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Figure 3.16: Impact of C (coverage) on for performability-area trade-off evaluation
for I = 9

area overhead. However, rescheduling with scrubbing is good enough to serve as a fault

recovery and repair mechanism in such cases. Another important observation is that

adding a spare adder significantly improves the throughput-area reward, much more

than adding a spare multiplier. If performance is the main concern of the design, then

the expected throughput results from column 3 suggests configuration C4 as the best

choice to implement. It clearly shows, how the inclusion of throughput-area metrics

can influence design decisions toward solutions that differs from those resulting from

an analysis based on either dependability (as in Table 3.3) or performability metric

alone. Such an analysis, using the proposed methodology, can be very useful at early

design stages for designers of safety-critical applications concerned with dependability,

performance and area constraints.

To analyze the impact of coverage on performability-area trade-off, we evaluate

property 5 for scrub interval I = 1 and show the result in Figure 3.15. We find

that, from lower to higher coverage, the trend is the same, configuration C1 with no

redundancy keep dominating the overall reward graph. This supports the conclusion

derived from Table 3.4 that redundancy is not always useful to suppress the extra

area overhead for all coverage points. In contrast, when we redo this experiment for
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a comparatively delayed scrub I = 9, we clearly notice the relationship between I

and C reflected on the overall reward as shown in Figure 3.16. The configuration C1

with no redundancy is still dominating, but the rewards accumulated by configuration

C3 approaches closer to configuration C1 with increasing values of C. In contrast,

for lower coverage values, configuration C2 and configuration C4 accumulate almost

similar reward, however the gap between them expands with increasing values of C.

Such phenomena was not observed in Figure 3.15, but in Figure 3.16 it is visible for

delayed scrub interval.

3.5 Summary

In this chapter, we illustrated how available design options can be modeled using a

Markov (reward) model that captures the possible failures, fault detection coverage

and repairs possible in radiation environment. Afterwards, a wide range of properties

are exhaustively and automatically verified to evaluate the design options, in terms

of throughput, area and dependability. Such analysis is useful to reduce the overall

design cost and effort. The quantitative results from our obtained model shows some

important observations such as the fact that high coverage is not always helpful for

gaining high reliability, and that scrubbing delay has also a considerable impact.

In terms of safety, we also showed how scrubbing interval affects safety of available

design options with the same fault coverage. Our analysis also shows that redundancy

may fail to improve reliability if it has lower coverage compared to a design with

no redundancy but high coverage for some cases. For performability-area trade-off

analysis, we showed that redundancy-based solutions might not be always the best

choice as one may expect. Alternatively, for those cases, rescheduling in conjunction

with scrubbing can be a good option. To our knowledge, this is the first attempt to
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evaluate such relationships at early design stages using probabilistic model checking.

In the next chapter, we will explore how to model discrete time delays using

Erlang processes for modeling scrub intervals with better accuracy. At the same time,

we will also show in that chapter how the Design Assurance Level (DAL) compliance

can be checked at system level using our methodology.
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Chapter 4

Scrub Optimization and DAL

Analysis

The number and the complexity of electric components in commercial aircrafts have

grown dramatically. As a result, it became essential for the Federal Aviation Admin-

istration (FAA) to establish a baseline of required design flow steps for an airborne

component. In 2005, DO-254 [65] was formally recognized as a standard to ensure

the highest level of safety in airborne electronic systems. It includes five levels of

compliance, commonly known as Design Assurance Levels (DALs). DALs range in

severity from A (means that a hardware failure would cause a catastrophic failure

of an aircraft) to E (means that a failure would not affect the safety). As expected

from the description, meeting a DAL-A level of compliance requires significantly more

effort and also greater attention to verification than would DAL-E. Figure 4.1 shows

the DALs as mentioned in DO-254.

For applications implemented in SRAM-based FPGAs, the most traditional way

of handing SEUs is to use TMR with scrubbing. We already know that implementing

a TMR in a design increases the power consumption by 300%. Also, we know that
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Figure 4.1: Design Assurance Levels

scrubbing a design less frequently increases the chances of accumulating SEUs in the

design that will eventually break the TMR. On the other hand, frequent scrubbing

consumes high power [67]. This indicates that a design should be scrubbed according

to its dependability requirements, not too frequently, specifically if the design has

strong power constraints like deep space missions.

In this chapter, we will explain the scrub optimization/DO-254 Analysis part

of our methodology. This part of the methodology focuses on the use of probabilistic

model checking technique for two purposes: (1) to analyze a reconfigurable system to

validate if the design meets the assurance level (DAL) and also the high-availability

requirements. (2) to explore the effects of the scrub interval on the design (modeled

using Erlang process) to suggest the lowest possible scrub frequency to meet the avail-

ability requirements and also to assess reliability enhancements that can be obtained

with TMR.
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4.1 Erlang Distribution

A system exposed to a harsh radiation environment will eventually fail, requiring re-

pair or replacement. Hence, it is important to have a model that can represent main-

tenance effects on a system’s condition as well as the deterioration process. However,

many systems subject to maintenance and degradation may involve state transitions,

which depend explicitly on time, or occur discretely. For these reasons, maintenance

actions cannot generally be modeled by a simple exponential distribution within the

Markov process. For example, a significant repair or periodic inspection time, which

may reflect realistic maintenance activities, does not generally follow the exponen-

tial distribution. Therefore, we have to develop an approximation methodology to

allow the Markov processes to model significant holding times. In our modeling,

the deterministic repair intervals are modeled using the Erlang process [30] for bet-

ter accuracy. Using Erlang process a nonexponential holding time distributions can

be approximated by inserting multiple intermediate states between every main state

pairs.

Erlang distribution is (a special case of a phase-type distribution [70]) the most

suitable phase approximation for the deterministic distributions since this is the least

variable phase type distribution for any given number of phases [30]. A random

variable X has an Erlang-k (k is the number of phases, k = 1, 2, ...) distribution

with mean k/µ if X is the sum of k independent random variables X1, ..., Xk having

a common exponential distribution with mean 1/µ (µ is the scale parameter, also can

be written as the inverse of rate parameter 1/λ). The probability density function

f(t) of Erlang is given by:

f(t) = µ
(µtk−1)

(k − 1)!
e−µt (4.1)
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Figure 4.2: Scrub optimization/DAL analysis methodology

PRISM model checker is based on the use of classical Markov chain. Hence, the

transition delay between a pair of states is exponentially distributed. Since configura-

tion scrubbing is executed periodically after a fixed interval, to model this phenomenon

approximation of discrete time delay is required. In this chapter while discussing the

modeling, we will demonstrate how we use Erlang distribution in our modeling to

achieve this goal.
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4.2 Scrub optimization/DAL Analysis Methodol-

ogy

In Figure 4.2, we present the methodology for scrub optimization and DAL analysis.

We start from the dataflow graph of the application. Once the CDFG is extracted,

a resource estimation process is used to estimate the resource required for the ap-

plication. Resources estimation is based on the extracted CDFG. For this step, we

analyze each of the nodes in the graph to compute resources required to implement

an application on a specific FPGA target platform. A PRISM model is then built to

analyze the design and this model is configured using environmental, target system

and mitigation parameters. Different reliability and availability properties are then

verified to check if the design meets the reliability and availability requirements. The

different steps of the methodology are explained as follows.

4.2.1 Resource Estimation

The resource estimation procedure is inspired from [90], and based upon the concept

of primitives, which represent elementary functions (e.g. addition, multiplication)

used in target applications. The primitives can be divided in two types: 1) the func-

tional primitives, which are the basic operations as they appear in the C/C++ code

and the CDFG, and 2) the structural primitives, which are the hardware counterparts

of the functional primitives appearing in the target FPGA. Based on these, the esti-

mation procedure simply becomes identifying functional primitives in the CDFG and

matching them with structural primitives, which appear in the target characterization

library.

Estimated resources also depend on the style of application of the design. For
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S0 S1 S2λ1 λ2

Figure 4.3: A simple Markov chain to illustrate failure occurrence

example, a full parallel application of a CDFG will require maximum number of

resources with maximum speedup. However, depending on area, performance and

power requirement, the CDFG might require scheduling to deal with the constraints.

Depending on the required resources, using a characterization library (explained in

the previous chapter), the number of essential bits is estimated for the design. The

number of essential (potentially critical) bits is important for calculating the Markov

model parameters.

4.2.2 Markov Modeling of Failure and Deterministic Delay

It is known that the probability of a state transition for a classic Markov model is

assumed to depend only on the current state. This is equivalent to assuming that

failure rates are constant and that failure occurrence is a Poisson process. Since SEU

rates are usually modeled using a Poisson process [18], that implies that the time

between two consecutive events is exponentially distributed.

module adder

s : [0..2] init 0;

[] (s = 0) -> lambda_1 : (s’ = s + 1);

[] (s = 1) -> lambda_2 : (s’ = s + 1);

endmodule

Sample PRISM code
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Figure 4.4: State probabilities vs time

Lets assume that we have a system with error detection capability. The Markov

model of such a system as shown in Figure 4.3, can be built with three discrete states

(S0: fully operational, S1: faulty but with fault undetected, and S2: fault detected,

failed) representing the system’s status. However, the number of states can be easily

changed, depending on the degree of model specificity. The failure rates λ1 and λ2

are constant between states. This system can be described using PRISM modeling

language as shown in the sample PRISM code.

For the sample Markov chain in Figure 4.3, if λ1 = 0.010 and λ2 = 0.005, then the

corresponding state probabilities, and reliability function of that Markov degradation

model can be generated using PRISM as displayed in Figure 4.4 and Figure 4.5. The

reliability function is calculated by summing up all the state probabilities except that

of the failed state, S2. In this example, the system is considered tolerant to only

one fault. Conversely, a Markov process can also be derived to approximate a given

reliability function.

As mentioned earlier, we use the concept of a phase-type distribution to approx-

imate a time delay until absorption to one of the states in the Markov chain. It is also

known that the Erlang process (i.e., summation of identical exponential distributions
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Figure 4.5: Reliability vs time

S0 S1 S2 Sm-1 Smm/τ m/τ m/τ

Figure 4.6: Markov chain for Erlang process

as displayed in Figure 4.6) minimizes the variance among any phase-type distributions

[30]. In other words, non-exponential holding time distributions can be approximated

by inserting multiple intermediate states between the two conventional degradation

states. For illustration, in Figure 4.6, τ is the total transition interval between S0 and

Sm, and m− 1 is the number of intermediate stages used to approximate it. The rate

at which transitions happen is proportional to m to provide a same total transition

time. This Erlang process approximation of a constant time delay in a Markov pro-

cess enables the incorporation of various maintenance activities into the equipment

deterioration model.

Figure 4.7 illustrates the results of implementing the Markov chain of Figure 4.6

to approximate a constant delay of 10 hours. The figure shows the probability distri-

bution of delay times for different values of m. This is how we implement constant time

delay for modeling of periodic repair while preserving the Markov property. There is

a clear and obvious trade-off here between the accuracy (how close it is to modelling
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Figure 4.7: Deterministic delay modeling with Erlang process

a deterministic time delay) and the resulting expansion in the size of the model.

4.2.3 Modeling Scrub and TMR

A system that utilizes the periodic blind scrub mitigation technique can be modeled

as a Markov model as illustrated in Figure 4.8. Here the states represent:

S0i : The system is fully operational (1 < i < m);

S1i : The system is faulty with one or more faults (1 < i < m);

In this model, λdesign represents the failure rate of the design and µ represent

the repair rate, where µ = m/τ , τ = scrub interval. The Markov process is created

by stacking the Erlang processes (shown in Figure 4.6) on top of the failure model

(with 2 main states) shown in Figure 4.3. The conceptual block diagram of TMR

using device-level redundancy is shown in Figure 4.9. Three implementations of the

design (known as Functional units or FUs) are used in parallel, and their output goes

to a majority voter circuit (the majority voter circuit is assumed to be fault free).

The output with the majority vote goes to the final output. If more than two FUs
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Figure 4.8: Markov model of periodic blind scrub using Erlang process

encounter errors, then the TMR strategy may fail, since the erroneous output can

propagate. The Markov model of a system implementing both TMR and scrub is

shown in Figure 4.10. This is an extension of the previous scrub only model. The

states represent:

S0i : The system is fully operational, e.g. All 3 FUs are fault free. (1 < i < m);

S1i : One of the FUs has encountered at least one SEU and thus the system is under

fault, but the output is not erroneous. The system is in a degraded mode (1 < i < m);

S2i : Two of the FUs are faulty, caused by one or more SEUs in each FU, and hence

the output may be erroneous. The system has entered a possibly failed mode and will
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Figure 4.9: Conceptual TMR model

stay there until the next scrub arrives (1 < i < m);

4.2.4 Markov Model Parameters

Once the Markov model is built, we need to populate the model for further analy-

sis. Three different types of parameters are required [62], namely (1) Environmental

parameters, (2) Target system parameters and (3) Mitigation parameters. Some of

these parameters, such as mitigation parameters, can be varied freely to achieve op-

timal availability. On the other hand, target system parameters and environmental

parameters are fixed for a given target system and environment.

Environmental parameters

The key environmental parameter is the upset rate λ experienced in various orbits

of interest. As the observed upset rates are dependent on device process technology

and architecture, so this parameter may be different for each device family. We use

CREME96 [92] with radiation cross sections from [77] to find per-bit upset rate λbit
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Figure 4.10: Markov model of TMR with periodic blind scrub using the Erlang process

for Xilinx Vitex-5 in ISS LEO orbit, which is 2.63× 10−12 SEUs/bit/sec. The failure

rate for this system can be calculated as follows:

λdesign = λbit ×Number of critical bits (4.2)

The number of critical bits is the summation of the critical bits from the required

resources estimated by the resource estimation process.

Target system parameters

The target system can be defined with three main parameters, namely SelectMAP

bus width (B) and the configuration clock frequency (fclk). Usually, these param-

eters are set by the system designer and also limited by the system architecture.

They directly impact system availability. We assume a conservative system using a
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Table 4.1: Model construction time and statistics

m
No. of states No. of transitions Time (s)

Scrub Scrub & Scrub Scrub & Scrub Scrub &
only TMR only TMR only TMR

50 100 150 150 300 0.006 0.006
100 200 300 300 600 0.008 0.009
200 400 600 600 1200 0.015 0.018

radiation-hardened memory with an 8-bit bus at 33MHz.

Mitigation parameters

For a system using periodic scrub, mitigation parameters µdesign describes the scrub

rate of the system and it can be calculated using the target system parameters. Scrub

rate can be determined experimentally, however this rate also can be estimated ana-

lytically by using the following equation:

µdesign =
B × fclk

Total configuration bits
(4.3)

We use this equation to calculate the repair rate parameter µ in our model, where

µ = m× µdesign.

For the purpose of parameter calculation in our case study, we consider the

Xilinx Virtex-5 XC5VLX330 device as the target which has 79,704,832 configuration

bits and ISS LEO orbit as the target orbit. Similarly, any other target device or any

other orbit can be evaluated using the same methodology.

4.3 Case Study

For the case study, we consider a 512-tap parallel FIR filter for space application.

Using the methodology described in [90], from high-level design description, the data
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Figure 4.11: 512-tap parallel FIR filter

flow graph representation is obtained and the number of essential bits for FPGA

implementation is estimated. In our experiments, we consider a worst-case scenario,

where all the essential bits are considered critical bits. Figure 4.11 shows the block

diagram of a 512-tap parallel FIR filter using 32 blocks, each of which embedding

a 16-tap FIR filter. The number of essential bits required to implement this design

is approximately 5863557 bits. Table 4.1 shows the model generation statistics and

timings for different values of m (number of Erlang steps). For our experiments, we

choose the value: m = 200.

The experimental results can be divided into two different sections: Analysis and

Verification. In the analysis section, we show the use of probabilistic model checking

to analyze the system and to evaluate its reliability and availability properties. In the

verification section, we show how such analysis can be used to verify that the system

meets its DAL and availability requirements.
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4.3.1 Analysis

The scrub parameter µ is the reciprocal to the time needed to repair an upset once

the scrub technique is triggered. From mitigation parameter calculation, we find that

µdesign = 3.19/sec, which implies that it requires approximately 300ms to repair an

upset. One may intuitively conclude that scrubbing continuously is the best solution

to ensure the best availability. However, one of the main drawbacks of this technique

is its high power consumption, due to the repeated accesses to the large configura-

tion memory of the FPGA [67]. Thus, it is desirable to perform scrubbing with the

minimum required frequency.

In Figure 4.12, we show the availability for different scrub intervals (τ) for a

mission time of T = 300 seconds. In PRISM, this property can be formalized as

R{"up time"} = ? [C <= T]/T, T = 1 to 300. Regarding the scrub parameter

µ, there are two main things to consider in scrubbing: time when the scrub is trig-

gered and time to repair the bitstreams. For the following experiments, whenever

we mention scrub interval, it includes both the time to trigger the scrub and time to

repair the bits. We observe that, for τ = 0.5 seconds, the availability is decreasing

but stays in the range of five 9s (99.999%) for the whole mission time. On the other

hand, for τ = 1 second, the availability drops below five 9s before reaching T = 50 and

continues in the range of four 9s. For τ = 1.5 second and 2 seconds, the availability

is in the range of four 9s and decreases with time.

In Table 4.2, we show the availability of the system for a mission time of one

month for different scrub intervals, τ . We observe that the availability is five 9s for τ

= 0.5 second and four 9s for τ = 5 seconds, and for τ = 1000 seconds the availability

is only two 9s. The probability that the system will always be operational (with

zero failure events) within the first 2 hours of operation can be formalized in PRISM
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Table 4.2: Scrub intervals vs reliability and availability
Scrub Interval (s) Availability Reliability with Reliability with scrub

(1 month) scrub, T = 2 hr & TMR, T = 2 hr
0.5 0.99999 0.8658 0.9999
5.0 0.99995 0.8658 0.9999
10.0 0.99989 0.8658 0.9999
100.0 0.99899 0.8658 0.9991
1000.0 0.99001 0.8658 0.9918

Figure 4.12: Availability for T = 300s

as : P = ? [G[0, T] ("operational")], T = 7200, and the results are shown

in Table 4.2. Reliability results show that periodic scrubbing has no effect on the

reliability. This might seem counter intuitive as one might think that the scrub will

drastically increase the reliability. In fact, this result reflects the memoryless property

of exponential distributions. When an SEU occurs, it might corrupt the system, but

if the impact has not arrived yet, the observed time can be reset at any time, that

means the coming time of the impact will not be delayed by periodic scrubbing. That

is the main reason why the periodic scrubbing will not increase reliability. Availability

is defined as the ratio of uptime and total runtime (mission time). That is why, for
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repairable systems, system engineers are more interested in availability analysis. The

results also show that even though the reliability is not increased, the availability

is significantly improved by the scrubbing. To increase the reliability, the designers

need to adopt redundancy-based solutions, such as device-level TMR at a cost of at

least 3 times area and power overhead, and the results are shown in column 4. The

results show how significant reliability improvements are obtained by adopting the

TMR-based solution with scrub. We must mention that in such cases, periodic scrub

will have an effect on reliability. The reason is, to reach a failure state, it needs at

least 2 FU failures (assuming the voter is error free). So after one FU fails, if the scrub

interval is short, the system gets back to “all good” state before the second failure

occurs. Otherwise, if the wait time is longer for the second scrub, then it might reach

the failure state before the scrub is triggered. For example, for a scrub interval of

1000 seconds, we observe that the reliability drops to 0.99.

Such analysis at an early design stage can help a designer to adopt a proper

mitigation strategy considering reliability, availability requirement, power and area

constraints. For high availability applications, scrubbing alone might fulfill the re-

quirements. Using our methodology, the designer can choose a proper scrub interval

to minimize the power requirements for such applications. On the other hand, for

reliability oriented applications, a redundancy-based solution is a must. However, it

comes with an extra power and area overhead. The area and power overhead can be

reduced by applying the other types of TMRs, such as selective TMR [80], however

device-level TMR ensures the best reliability [35].
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Table 4.3: Verification of availability requirements
Design Scrub interval (s) Availability requirement met ?

FIR

0.5 True
1.0 False
1.5 False
2.0 False
2.5 False
3.0 False

EWF

0.5 True
1.0 True
1.5 False
2.0 False
2.5 False
3.0 False

4.3.2 Verification

Depending on the mission goal, a spacecraft can have different levels of reliability and

availability requirements. For example, a GPS or communication satellite will need a

better availability compared to an earth observation satellite. A Mars rover’s landing

module will require better reliability than the module responsible for taking photos

periodically to send back to earth. Finite Impulse Response (FIR) and Elliptic Wave

Filter (EWF) filters are widely used in image processing applications and also for sen-

sor’s noise reduction. Autonomous landing systems [63] widely use image processing

algorithms to find a suitable landing place, hence it is obvious that such a system

will require high reliability as the choice of wrong landing place may cause mission

failure. We consider a 512-FIR filter for two different applications: in GPS satellites

and in a lunar landing module. For the first part of the analysis, we will also analyze

a parallel EWF filter structure that has 32 blocks running in parallel, each of which

has a separate 16-point Elliptic wave filter [66]. Communication satellites require

high availability, usually in the range of five 9s. To be independent of mission time,

we calculate the steady state availability to ensure that the availability will maintain
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Figure 4.13: Fault tree of the system

that level of service in a long run. So we need to find, “for a given scrub rate, does

the system meet the requirement for five 9s ?”. Such property can be formalized in

PRISM as S >= 0.99999[“operational”]. To find the appropriate scrub rate, we vary

the scrub interval from 0.5 to 3 seconds and verify if the requirement is met. The

results are shown in Table 4.3. As we can see from the results, the only scrub interval

that meets the requirement for the FIR filter is τ = 0.5 second or less. In contrast,

for EWF filter application, the scrub interval can be further delayed up to 1 second.

To verify the DAL requirement, we consider a hypothetical system that uses the

FIR filter as a subcomponent in the image processing component of a lunar landing

module. As such image analysis needs to be done in real time and a fault during the

landing operation will cause a catastrophic failure, so the overall failure probability

of such a system must be less than 10−9 (DAL-A design) according to Item Design

Assurance Level (IDAL) standard. From the fault tree [10] in Figure 4.13, we observe

that if any of the subcomponents, namely A, B and the FIR filter fails, the module

fails. If subcomponent A and subcomponent B both have a failure probability of

0.0001, then to avoid a catastrophic failure the failure probability of the FIR filter
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Table 4.4: Verification of reliability requirements
Scrub interval DAL-A met DAL-A met DAL-A met

(seconds) (scrub only) (scrub only) (scrub & TMR)
(B = 0.0001) (B = 0.001) (B = 0.001)

0.5 True False True
1.0 True False True
1.5 True False True
2.0 True False True
2.5 True False True
3.0 True False True

must be less than 0.1. It takes around 4 days to reach lunar orbit and touchdown to the

moon requires around 11 minutes starting from the descending time. So to be safe, we

consider 20 minutes, hence we find out “For a given scrub interval, what is probability

that the FIR filter will fail in last 20 minutes of the flight ? ”. Such property can

be formalized in PRISM as P < 0.1 [F [344400,345600] ("failure")]. We also

evaluate another case, where the failure probability of subcomponent B is 0.001. For

this experiment, a system with only scrub and a system with both TMR and scrub,

are evaluated while varying the scrub rates (as scrub rate affects the system using

TMR with scrub). From the result shown in Table 4.4, we observe that, all the scrub

intervals from 1 to 3 seconds meet the DAL-A requirement, whereas in the latter

case, if B = 0.001, then it fails to satisfy the DAL-A requirement. However, if TMR is

adopted with scrub, even with B = 0.001, the system meets the DAL-A requirement

for all the scrub intervals. Such results can help a designer obtain the maximum scrub

interval (in this case 3 seconds) to save power.

4.4 Summary

In this chapter we presented a part of our proposed methodology that focuses on the

optimization of scrub frequency and verification of DAL compliance. We presented
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the reliability and availability models for systems with periodic scrub and TMR de-

veloped using conventional Markov chains (instead of semi-Markov). Our analysis

using PRISM model checker showed how an appropriate scrub interval (slowest scrub

rate) can be found to save power while meeting the dependability requirements. In

addition, it was also showed that probabilistic model checking based techniques can

be used to verify the high-availability, and the DAL compliance requirements at a

high-level. In the next chapter we will explain the last part of our methodology that

enables the early analysis of TMR partitioning strategy for optimal partitioning.
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Chapter 5

Optimal Partitioning of TMR

Reliability analysis of TMR and related improvements have been studied for a long

time and widely reported in many literatures. Compared to that, partitioning of TMR

for reliability improvement got less attention from the research community. In this

chapter, we illustrate the third part of our methodology that can be utilized to assess

the TMR partitioning scheme at early design stages. This part of our work aims

to analyze the relationship between the number of TMR partitions, scrub interval

and mission time. The proposed formal models of TMR partitioning can handle both

equal sized or non-equal sized partitions. In addition, our proposed model can analyze

designs capturing both the phenomena, SBUs and MBUs (we assess up to Double Bit

Upsets (DBUs)). Note that, multiple bit upsets in different components from a single

strike can be classified as Multi-Cell Upsets (MCUs). MCU refers to the flipping

of two or more number of bits in the memory array due to one or more radiation

particles. However, to be more generic in the rest of this chapter, we will address

MCUs as MBUs. The proposed modeling technique is useful to find: (1) the trade-off

between the number of partitions and required scrub rate (and vice versa) to meet

the target reliability and availability, (2) the optimal number of partitions for designs
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Figure 5.1: Sample unmitigated circuit

prone to both SBUs and DBUs.
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Figure 5.2: TMRed version of the sample circuit
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Figure 5.3: The sample circuit with TMR divided into two partitions

5.1 TMR Partitioning

Traditional TMRed design can deal with a single fault at a time. Thus, faults in

multiple redundant modules will break the TMR. For illustration, Figure 5.1 shows
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a sample circuit (each box represents a module) and Figure 5.2 shows the TMR

implementation of the sample circuit in the traditional way. While designing a system

with traditional TMR, the components are triplicated and a majority voter is placed

at the output of the circuit. The voter can provide correct outputs even if one of

the branches (or domains) of the TMR is faulty. Figure 5.3 shows the same system

implemented with partitioned TMR (as suggested in [75]). In terms of dependability,

each partition can be considered as a separate entity. This circuit will only fail if two

or more domains in the same partition are affected by one or more faults. For example,

upsets in module m2 in domain two (second row) and m3 in domain one (first row)

will break a traditional TMR system, whereas it will get successfully masked in a

system with partitioned TMR.

5.2 Methodology for TMR partitioning analysis

Figure 5.4 presents the proposed methodology. Once the CDFG is extracted, depend-

ing on the resource, performance or area constraint for hardware implementation, it

can be scheduled using the appropriate scheduling algorithm. Since, scheduling is out

of the scope of this work, we assume a fully parallel implementation of the CDFG for

high performance. However, it is worth mentioning that, the methodology will work

irrespective of the scheduling approach. Depending on the number and size of par-

titions defined by the user, each domain in each partition can be represented as one

or a collection of nodes (nodes in the graph represent a basic operation such as add,

multiply, etc.). Each node can be implemented as a component in the FPGA. We use

the component characterization library to estimate the failure rate of each component

as mentioned in the earlier chapters. With this approach, the failure rate calculation

of each domain becomes straightforward. Indeed, the failure rate of a TMR domain in
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Figure 5.4: Methodology for optimal TMR partitioning

a specific partition is equal to the total failure rate of the components in that domain.

Based on the calculated failure rate of each domain, the number of partitions and the

user defined scrub rate, a PRISM model is then built. The PRISM model checker

then automatically converts the PRISM model to an equivalent CTMC representation.

Different reliability and availability properties are then verified to check if the design

meets the requirements. The PRISM model checker provides quantitative results. If

the requirements are not met, the number of partitions or the scrub frequency is then

modified, and the analysis is performed again.

For illustration, in Figure 5.5 the partitioning of a CDFG representing an 8-tap

FIR filter is shown. All the domains in partition-1 have four multipliers and three
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adders. On the other hand, each of the domains that are part of partition-2 contains

four multipliers and four adders. Note that we use the same characterization library

that was introduced in chapter 3 to calculate the failure rate of the TMR domains. The

proposed methodology is generic enough to be used with a different characterization

library with more precise and accurate data, without any major changes. The failure

rate for a component can be calculated using the following equation :

λcomponent = λbit ×Number of critical bits

For our experiments, λbit = 7.31 × 10−12 SEUs/bit/sec for Higher Earth Orbit. So,

the failure rate of a single domain in partition-1 is the summation of total failure

rate from 4 multipliers and 3 adders. The failure rate of partition-1 is then just the

failure rate of a domain in partition-1 multiplied by 3. It is important to mention

that an SEE can cause either an SBU or MBU. Hence, λdomain need to be adjusted

accordingly. The simplest way is to multiply the λdomain with the SBU and MBU

coefficient, αSBU and αMBU respectively.

5.2.1 Markov Modeling of Single Bit Upsets (SBUs)

Before modeling the TMR partitions, we describe the traditional CTMC model of a

TMR system with scrubbing (no partition) that is shown in Figure 5.6. Each node in

the model denotes the current state of the system: state 3 represents the state in which

all domains are operating correctly (all the modules are fault-free), state 2 represents

a state where one out of three domains is operating incorrectly (in one of the domains

at least one of the modules is faulty), but the output is still not erroneous, and state 1

represent a failure state in which two or more domains are operating incorrectly (more

than one module is faulty in two or more domains). The failure rate λ represents the

failure rate of each domain in the TMR and µ represents the scrub rate. Since all the
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Figure 5.5: TMR implementation of the CDFG of an 8-tap FIR filter with two par-
titions

domains in TMR have an equal failure rate, the transition rate from state 3 to state

2 can be depicted by 3λ (the sum of failure rates of each of the individual domains).

As a first step in our modeling, we modify the TMR Markov model presented

in [75] by adding some extra (self) transitions to represent some possible scenarios.

Since we consider periodic blind scrub, so from state 3 the system can either go to

state 2, or get scrubbed with a defined scrub rate. The scrub transition in state 3

is represented by a self-transition with a rate µ. From state 2, the system has three

options: (1) the system can get scrubbed and go back to state 3; (2) another module

in a fault-free domain of the TMR can fail — which will lead the system to state

1 with a transition rate 2λ or (3) SEUs (causing an SBU) can hit the same module

or another module in the same domain that failed earlier, in which case, the system

will stay in the same state with a transition rate λ. Once the system enters the state

3, which is a failed state, it will remain in that state until the system gets scrubbed

eventually and comes back to state 3 with the scrub rate µ. The assumptions for the
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Figure 5.6: Markov model of TMR with repair

model can be defined as follows:

Assumption 1 : Each module(components) in the TMR may fail independently. Since

the modules in a domain are non-redundant, so a module failure represents the failure

of the respective domain. The time-to-failure due to a configuration bit flip (either

SBU or DBU) is exponentially distributed. The exponential distribution is commonly

used to model the reliability of systems where the failure rate is constant. The scrub

interval is assumed to follow an exponential distribution as well, with a rate, µ = 1/τ ,

where τ represents the scrub interval.

Assumption 2 : The design employs the blind scrubbing technique.

Assumption 3 : Only one module can fail at a time due to an SBU.

Assumption 4 : The majority voters in TMR are assumed to be error free.

Assumption 5 : All the states in the CTMC model can be classified into two types:

operational, where at most one or no domain in any of the partitions are faulty; and

failed, which means there is at least one partition, where more than one domain is

faulty. In PRISM, a formula can be used to classify such states.
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Before we go to the second step of modeling, we formalize the Markov model

of the TMR in Figure 5.6. As mentioned earlier, we consider a CTMC as a finite

transition system (S,R, L). The set of states can be denoted by S = {3, 2, 1}. In

state i ∈ S, i represents the number of domains that are healthy. The rate matrix

R is depicted on the edges, for example, R(3, 2) = 3λ, R(2, 1) = 2λ, R(2, 2) = λ,

R(2, 3) = µ, R(3, 3) = µ and R(1, 3) = µ. Let the atomic propositions up and down

denote that the system works correctly or not respectively. Since it is a TMR system,

2 out of 3 domains need to be working at a time. Then, L(3) = L(2) = up, i.e., the

states 3 and 2 satisfy the atomic proposition up. Similarly, L(1) = down, i.e., the

states 1 satisfy the atomic proposition down.

In our modeling, each TMR partition is modeled as a separate CTMC. This

means that each of the partitions has a separate CTMC that is equivalent to the

model shown in Figure 5.6. Hence, a system with N partitions can be defined by a

set:

P = {P0, P1, ...., PN}

Here each Pi ∈ P represents a CTMC. If the system is divided into N partitions, then

its final model is defined by the parallel composition (‖) of all the CTMCs from the

partitions:

M = {P0 ‖ P1 ‖ .... ‖ PN}

The total state space of the model M will be the cross product of states in all the

partitions. The PRISM code for two partitions is shown in Figure 5.7. Each module

in the PRISM code represents a partition in the TMR. num P1 M and num P2 M define

the number of domains in each partition. In TMR the number of domains is 3,

so both of these parameters need to be initialized with a value of 3. Lambda P1
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1 module Partition -1

2 P1 : [1.. num_P1_M] init num_P1_M;

3 // num_P1_M = 3 means all modules working fine , num_P1_M =

2 means one of the module is faulty , num_P1_M means TMR

failed

4 [] (P1 > 1) -> P1*lambda_P1 : (P1 ’=P1 -1);

5 // failure of a modules due to SBU

6 [] (P1 = 2) -> lambda_P1 : (P1 ’= 2);

7 // the same module that already failed can fail again

8 [dbu] (P1 > 1) -> (P1*lambda_P1D+P2*lambda_P2D) : (P1 ’=P1

-1);

9 // failure of a modules in either partitions due to a DBU

10 [rep] (P1 <= num_P1_M) -> repair : (P1 ’= num_P1_M);

11 // scrubbing can fix all the modules

12 endmodule

13
14 module Partition -2

15
16 P2 : [1.. num_P2_M] init num_P2_M;

17 // num_P2_M = 3 means all modules working fine , num_P2_M =

2 means one of the module is faulty , num_P2_M = 1 means

TMR failed

18 [] (P2 > 1) -> P2*lambda_P2 : (P2 ’=P2 -1);

19 // failure of a modules

20 [] (P2 = 2) -> lambda_P2 : (P1 ’= 2);

21 // the same module that already failed can fail again

22 [dbu] (P2 > 1) -> 1 : (P2 ’=P2 -1);

23 // synchronization with partition -1 to represent a DBU

24 [rep] (P2 <= num_P2_M) -> 1 : (P2 ’= num_P2_M);

25 // scrubbing can fix all the modules

26 endmodule

27
28
29 formula fail = (P1 = 1) | (P2 = 1) ;

30 formula operational = !fail;

Figure 5.7: PRISM Code of a TMR with two partitions (SBU and DBU)
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Figure 5.8: SBU Markov model of TMR with two partitions

and Lambda P2 defines the failure rate of a domain in partition-1 and partition-2

respectively. The repair parameter in the model denotes the user defined scrub rate.

When the FPGA is scrubbed, SEUs in all the modules of each partition are repaired,

the synchronization label [rep] is used to model this phenomenon. Formula fail

and formula operational define that the system will fail if any of the partitions have

more than one faulty domains; otherwise the system is operational. Line 8 and Line

22 are related to MBU modeling, hence can be ignored for this part of the modeling.

Once the final model is built by the parallel composition of PRISM modules

using the PRISM model checker tool, quantitative analysis can be performed auto-

matically to analyze different design options. Note that, PRISM has a feature known
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Figure 5.9: DBU Markov model of TMR with two partitions

as Module renaming, which can be used to extend this model to N number of parti-

tions with minimal effort. The equivalent CTMC representation of this PRISM code

is shown in Figure 5.8 where λPi and λPj represent Lambda P1 and Lambda P2 in the

code.

5.2.2 Markov Modeling of Multiple Bit Upsets (MBUs)

An SEU can flip two or more number of bits simultaneously in the FPGA configura-

tion bitstream. Since upsets of more than two simultaneous bits are not very common

(still occurs though with a very low probability), hence in this thesis, we limit our

modeling to Dobule-bit Upsets (DBUs). An SEU that causes a DBU may invoke fail-

ures in multiple TMR domains simultaneously. This situation is more common in a

harsh radioactive environment such as in outer space. Modeling of a combined model

93



that include both SBU and DBU in a single Markov model requires an additional

assumption:

Assumption 1 : DBUs can occur at a specified rate and could effect two TMR domains

simultaneously in two separate partitions. In other words, this assumption means that

our modeling restricts failure of two simultaneous domains in the same partition.

Figure 5.9 shows the Markov model that considers the effect of both: SBUs and

DBUs. In the model, βPi and βPj represent the DBU rate of a domain in the first and

second partition respectively. For example, in state 8 both the partitions are working

fine. However, if one of the domains in the partitions encounters an SBU, then the

system can move to either state 5 or state 7, depending on the location of the domain.

Also, if the system is in state 8, and a DBU occurs in any domain of either partition,

it will trigger another domain failure in the other partition simultaneously. This leads

a path from state 8 to state 4 with the rate 3 ∗ βPj + 3 ∗ βPi.

Modeling DBU in PRISM is quite a challenge since it needs the use of syn-

chronization of associated commands in different modules to represent a simultaneous

failure due to a DBU. Line 8 and Line 22 in Figure 5.7 shows the PRISM codes

(Lambda P1D and Lambda P2D depict the DBU rate of domains in the corresponding

partition) that need to be added to model both SBU and DBU for two partitions.

For increased number of partitions, a number of extra synchronization commands are

added to each module. For instance, in the case of 4 partitions, each module in the

PRISM code will have three extra commands for synchronization of DBU failures.
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5.3 Quantitative Analysis of an FIR Filter using

PRISM

To illustrate the applicability of our approach, we analyze an 8-bit 64-tap FIR filter

(the target platform is Xilinx Virtex-5 SRAM-based FPGA) using both, the SBU

model and the combined model (that considers both SBUs and DBUs) for a different

number of partitions. An N-tap discrete finite impulse response (FIR) filtering can

be expressed as following:

y[n] =
N−1∑
i=0

x[n− i] · h[i]

x[ ], y[ ] and h[ ] are the input samples, output samples and the filter coefficients

respectively. All the experiments are conducted for a mission time of 1 month. Since

SEUs can cause both, either SBUs or DBUs, for the combined model, it was assumed

that 90% (αSBU = 0.9) of the SEUs will cause SBUs and 10% (αMBU = 0.1) of them

will cause DBUs. On the other hand, for the SBU model, it was assumed that all

the SEUs will only cause SBUs. Since the model is parametric, any other values for

scaling the SBU and DBU rates can be used. Table 5.1 shows the model generation

statistics for both models. For the analysis, four design options are analyzed using

our methodology, starting from no partition up to eight partitions. According to the

assumption 1 in MBU modeling, for DBU analysis we need at least two partitions.

So no partition option is ignored for the combined model. We use the PRISM model

checker version 4.1 to analyze the reliability and availability properties for each of

them.

Figure 5.10 shows the relationship between the reliability and number of parti-

tions in the design for different scrub intervals using the SBU model. Reliability of a
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Table 5.1: Model construction statistics
No. of No. of No. of Transitions No. of Transitions

partitions states SBU only model Combined model
0 3 6 N/A
2 9 26 30
4 81 362 578
8 6561 478858 129506

system (or component) is defined as the probability that the system performs correctly

for a given period of time, from zero (t0) to t1, given that the system or the component

was functioning correctly at t0. In PRISM, this property can be formalized in CSL

as P = ? [G[0,T] operational], T = 1 month, and we evaluate this property for

different scrub intervals starting from 15 minutes up to 4 hours. For all the design

options with different scrub intervals, the reliability decrease when the scrub interval

increases. However, designs with more partitions show significant improvements in

reliability even with the same scrub interval. For example, if the scrubbing interval

is 15 minutes, the design with no partition has a reliability of 0.71 only. In contrast,

the design with two, four and eight partitions has a reliability of 0.81, 0.90 and 0.94

respectively. TMR increases the area and power consumption by a factor of 300% as

a result of replications. More frequent scrub in such cases will consume more power

that might not be appropriate for most space applications. For such circumstances,

increasing the number of partitions can offer a good solution instead of a more frequent

scrub strategy. For example, if the designer is targeting the reliability more than 0.80,

and if the design has no partitions (or less number of partitions), then the designer

may think to adopt a more frequent scrubbing strategy (less than an hour, in order

of seconds or milliseconds) to meet the requirement. Instead of adding such power

burden on the system, the designer may adopt TMR with 2, 4 or 8 partitions, which

will require scrubbing once per 15 minutes (comparatively less power consumption)
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Figure 5.10: SBU Reliability

Figure 5.11: SBU Availability

and will also meet the requirement. Note that the design option with eight partitions

provides a reliability of 0.8 even for a delayed scrub of 1 hour. Using this approach a

designer can qualitatively assess the number of partitions required to meet the design

requirements for a given scrub rate or vice versa.

Availability is defined as the ratio of time the system or component operates

correctly (system uptime) to its entire mission time. Using the SBU model, Figure 5.11

shows the availability of the design for different scrub intervals and a different number

of partitions. In PRISM, this property can be formalized in CSL as R{"up time"} = ?

[ C<=T ]/T, T = 1 month. The design with only no partition offers the availability

of 5 nines (0.99999) for the scrub interval of 15 minutes which drops up to 1 nine (0.97)
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with increased scrub interval of 4 hours. Compared to this, all the other options with

TMR partitioning offers improved availability. For instance, for the scrub interval of

three hours, the design with no partition offers only 98% availability, whereas the rest

of the design options with partitioning offers the availability of more than 99%. Most

of the communication satellites targets more than 99% availability. In such cases, if

the power constraint restricts the designer not to increase the scrub interval, then the

increasing the number of partitions may offer a solution.

A major observation from these analyses is, when the scrub interval is smaller

(frequent scrub), the number of partitions plays a major role increasing the reliability

of a system. However, even for a delayed scrub, the improvement is noticeable enough.

In other words, the graphs show a trend that, the more the number of partitions

(which means smaller domains), the less frequent scrub will be required to meet a

target reliability. Less number of partitions (larger domain size) will require more

frequent scrub to meet a target reliability requirement. For availability, the number

of partitions plays a significant role for longer scrub intervals. For frequent scrub

intervals, the number of partitions increases the availability to a minimal level, but

for longer scrub intervals the improvement of availability with the number of partitions

is quite significant. Such early analysis on the high-level design description will allow

a designer to perform the analysis before the actual implementation of the system

considering the design constraints such as power. Using such methodology a designer

can find the trade-off between the number of partitions and the required scrub interval

that will meet the design requirements, and also reduce the design effort, time and

cost.

For the second part of our analysis, we evaluated the same reliability and avail-

ability properties using the combined model. The results are shown in Figure 5.12
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Figure 5.12: Combined Reliability

Figure 5.13: Combined Availability

and Figure 5.13. We observe that for both the properties, all the design options with

two, four and eight partitions increases the reliability and availability compared to the

design with no partition. The reliability and availability are improved to a minimal

level when the number of partition increases from two to four. However, it clearly

shows that the TMR with eight partitions is less reliable and available compared with

the TMR with two and four partitions, which contrast the SBU only model. From

this, we can conclude that the optimal number of partitions for this model is four

if the design is prone to both SBUs and DBUs. This is due to the fact that, after

partitioning the design into a certain number of partitions, any extra partition added

to the design also increases the probability of DBUs causing a system-wide failure.

99



Similar findings for Domain Crossing Event (DCE) to suggest an optimal number

of partitions was reported in [46] using fault injection. In our case, we are able to

perform such analysis at the early design stage.

5.4 Summary

In this chapter, we presented the last part of our proposed methodology, that is the

formal modeling and analysis of SBUs and MBUs using probabilistic model checking.

Our analysis shows that increasing the number of TMR partitions can reduce the fre-

quency of scrubbing, which will eventually result in less power consumption. However,

if the design is prone to both SBUs and DBUs, then there exists an optimal number

for partitioning. Using the proposed methodology, designers can assess the number

of partitions, or the scrub frequency required to meet the design requirement at early

design stages. To validate these claims, we have shown the results of our analysis

for a 64-tap FIR filter case study. The results showed how the increased number of

partitions can cope with the less frequent scrubs and vice-versa.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

This thesis proposed a methodology for high-level dependability and performability

analysis of SEU prone SRAM-based FPGA designs. We illustrated how the proba-

bilistic model checking technique can be used to analyze designs at early stages for

space applications. The proposed methodology allows designers to perform three dif-

ferent types of analysis: design options analysis for performability optimization, scrub

interval optimization with design assurance level analysis, and optimal partitioning of

TMR. From the high-level design description, the CDFG is extracted first. Depend-

ing on the required analysis, a branch of the methodology is chosen. To follow this

process, the CDFG is then modeled in the PRISM model checker with the help of

other necessary information for further analysis. To demonstrate the applicability of

the proposed methodology, we presented case studies on benchmark DSP circuits. To

our knowledge, this is the first work in this area that shows the use of probabilistic

model checking for the high-level dependability analysis of SEU prone FPGA-based

systems.
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For the first part of the methodology, various design options were analyzed,

each of which was modeled using a Markov reward model. Such modeling captures

the possible failures, fault detection coverage and repairs (scrubbing, rescheduling,

cold-spare) possible in a high-altitude radiation environment. Afterwards, a wide

range of properties were exhaustively and automatically verified to evaluate the de-

sign options, regarding throughput, area, and dependability. The obtained results

showed how coverage can impact the dependability and performability based on mis-

sion time, scrub interval and adopted mitigation strategy. Interestingly, we found that

coverage alone can not guarantee high reliability. Also, it was observed that in some

cases, rescheduling can serve as a better mitigation technique when compared to the

redundancy-based solutions.

As the second part of the methodology, we showed how our method can be used

to verify the high-availability requirements and the design assurance level compliance

at high-level. Since in classical Markov chains the delay is exponentially distributed,

we utilized the Erlang distribution to accurately model the scrub intervals. The

obtained modeling results showed how an appropriate scrub interval (slowest scrub

rate) can be found to save power while meeting the dependability requirements.

Finally, in the last part of our methodology, we analyzed the scrubbed parti-

tioned TMR systems for optimal partitioning. Our modeling is novel compared to

others since the proposed model can evaluate both equal and non-equal sized par-

titions. Also, instead of concentrating only on single-bit upsets, the modeling of

double-bit upsets was also introduced. Based on the obtained results, we concluded

that for designs that are prone to both single and double bit upsets, an optimal num-

ber of TMR partitions can be found. Using our method, we were able to find the

optimal partitioning at early design stages instead of adopting the fault injection or
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beam testing approaches.

From system biology to gate-level circuit analysis, from robotics to chemical

reaction — probabilistic model checking has already been used in many different

domains. During this research work, we realized that probabilistic model checking

has great applicability in the area of SEE analysis. The randomness of the radioactive

environment, with different fault mitigation techniques and their associated trade-offs,

makes it an ideal problem statement that be analyzed automatically using state-of-

the-art probabilistic model checker tools. We analyzed designs at a high-level, hence

the state explosion problem was not encountered during our research. The PRISM

model checker can handle up to 1010 states. Due to this fact, it is possible to handle

even larger designs if the CDFG to PRISM modeling part is fully automated.

6.2 Future Work

Dependability analysis is one of the most important phases in the design flow for

complex systems. For the case of space applications, an early analysis may help to

verify the design requirements in early design phases. In addition to increasing the

designer’s confidence in the design, such analysis may also reduce the associated cost,

time and design effort. This thesis lays the ground for a promising approach for the

early dependability analysis of SEU prone FPGA-based applications. Building on

the proposed methodology and verification results presented in this thesis, several

extensions can be explored to further strengthen the proposed method. Some future

research directions are outlined as follows.

• TMR techniques are traditionally used to mitigate SEUs, but with an over-

whelming amount of extra area and power. In [42], the authors proposed a

103



framework for reconfigurable fault tolerance that enables designers to dynami-

cally change the amount of redundancy for fault mitigation. Such a technique

can be modeled using the concept of the Phased-mission Markov model to es-

timate the achieved performability gains. The inclusion of such dynamic mit-

igation models in our proposed methodology can be an interesting extension.

This will also help to find how effective the rescheduling-based fault mitigation

techniques are if adopted as an option in the dynamic fault mitigation strategy.

• In this thesis, we explored the effect of SEUs at a high-level. However, it is

possible to include other fault models using our method, such as analyzing design

failures due to aging, electromigration, hot electron effects, and Negative-Bias

Temperature Instability (NBTI) and Single-Event Functional Interrupts (SEFI).

• For the design options analysis, we considered the area and throughput metric

while modeling performability. In an FPGA design, even if a component fails,

it will still consume power (providing the wrong results until the scrub fixes the

SEUs). Using our method, it is possible to model such a phenomenon by adding

the component’s power consumption as a reward in the Markov Reward model

to further optimize the power consumption.

• In this thesis, we used Erlang distribution to model the blind scrub. An inter-

esting extension of this work can be the use of Erlang distribution for modeling

the partial reconfiguration (read-back scrubbing). In that case, the modeling of

two discrete time intervals are required: time to detect the fault and time to

fix the fault. In addition, the TMR voter’s fault coverage can also be added to

the model for better accuracy. It is worth mentioning that we have already ap-

plied a similar approach for accurate reliability, availability and maintainability
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analysis of a single satellite system [Bio-Cf3].

• In the part of the methodology where the TMR partitions were analyzed, only

the single and double bit upsets were considered. It is worth mentioning that

due to the rapid decrease of the transistor size, three or more bit upsets are also

not uncommon these days. Using a similar approach to the one we introduced in

optimal TMR partitioning, it is possible to extend our model to handle upsets in

a larger number of bits. Another interesting future work could be to include the

partial reconfiguration (read-back scrubbing) in the model in order to explore

the effect of unreliable voters in the TMR partitions.
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