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ABSTRACT  

Modeling and Optimizing Route Choice for Multimodal Transportation Networks 

Behzad Rouhieh 

Concordia University, 2016 

Traffic congestion has been one of the major issues that most urban areas are facing and thus, 

many solutions have been developed and deployed in order to mitigate its negative effects. 

Advanced Traveler Information Systems (ATIS) have been used over the past two decades to 

provide travelers with pre-trip or real-time traffic information. Most of the efforts have focused 

on providing timely traffic information at locations with regularly occurring congestion. ATIS can 

be used to provide travelers with pre-trip and on-route travel information necessary to improve 

trip decision making with respect to various criteria (e.g. minimizing delay, constraining travel 

to specific modes). Many jurisdictions within Canada and the United States have implemented 

the 511 travel information system that provides traffic information, road conditions and 

closures, traffic cameras, etc.  

Several studies were conducted on vehicle routing optimization methods in ATIS. Most of them 

consider passenger vehicles as the only transportation mode in their routing algorithm. Others 

that include two transportation modes are mostly based on shortest path algorithms. However, 

a probabilistic based route optimization approach could better capture the stochastic 

characteristic of road traffic conditions. This research investigates an adaptive routing 

methodology for multi-modal transportation networks. A routing algorithm based on Markov 

decision processes is proposed to capture short-term traffic characteristics of transportation 

networks. Graph theory is used to model typical travel behavior within a multimodal network.  
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This thesis proposes to use special network modeling elements, e.g. super nodes, to allow the 

integration of public transportation schedule into the model via the publicly available 

predefined timetables. The proposed routing algorithm applies an iterative function to select 

the optimal transportation mode/route through the network junctions along a given path.   

The proposed methodology is applied to several real-world networks of motorized and non-

motorized modes located in the central business district in Toronto, Ontario, and Montreal and 

Longueuil in Quebec.  The networks include train, bus, streetcar, subway and bicycle 

transportation facilities. Microsimulation models of the networks developed in VISSIM and 

AIMSUN are used to estimate travel times along major arterials, for all transportation modes 

and for different traffic demands and congestion levels. The simulation models were calibrated 

using volume and speed data. The developed routing algorithm is applied to several scenarios 

in order to estimate optimal routes for a hypothetical traveler moving between two arbitrarily 

selected nodes in the network. The results identify the most efficient combination of 

transportation modes that the travelers have to use given specific constraints pertaining to 

traffic and transit service conditions. It is also shown that by applying the proposed algorithm to 

bus lines, transit agencies can have significant cost savings by rerouting their fleet. 

The results of the proposed research have the potential to be integrated into various Intelligent 

Transportation Systems applications by combining available traveler information services. It can 

assist travelers in making more informed decisions regarding their travel plans and provide 

transportation agencies with an overall assessment of the system and its performance. For 
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example, it can be used to minimize the impact of congested traffic conditions on the overall 

travel time and/or cost incurred by travelers as well as the operating cost of transit agencies. 
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CHAPTER 1. INTRODUCTION 

Deployment of Intelligent Transportation Systems (ITS) improves the performance of the 

transportation system by using modern electronics and communications technologies. 

Advanced Traveler Information System (ATIS) and Advanced Public Transit Systems (APTS) are 

two types of ITS user services that aim to ameliorate traffic operations on urban transportation 

networks. The benefits of ATIS and APTS implementation are more evident under congested 

traffic conditions, either recurrent (due to morning and afternoon peak travel demand periods) 

or non-recurrent (e.g. due to incidents that hinder available road capacity). 

1.1  Problem Statement 

Several studies have shown the benefits of using various ATIS and/or APTS applications to 

reduce traffic congestion, economic productivity loss and greenhouse gas emissions. Currently, 

several Canadian agencies have deployed different ITS applications available to the travelling 

public. For example, up-to-date information about highways is accessible via phone or a 

dedicated website for several provinces, e.g. 511 Traveler Information Center in Nova Scotia 

(Road Conditions 511, 2012) and Quebec (Quebec 511, 2012). Moreover, many travel operators 

provide real time schedule of their services. However, corroborating road traffic conditions with 

public transportation services and other non-motorized transportation modes information is 

expected to further enhance the traveling experience by providing more efficient and reliable 

transportation services. Within large urban agglomerations, this is expected to be beneficial for 

both the traveling public and transportation operators.  



  
 

2 

 

ATIS/APTS can be used to provide travelers with pre-trip and/or on-route information 

concerning traffic conditions, travel options as well as real-time advice on navigating through 

the transportation network, where travel conditions may change rapidly several times during 

the course of a typical day. The major benefits of this type of ITS applications, as shown in 

several studies, are the expected reduction in travel time delay, typically obtained by providing 

optimal route information.  Mostly, this is done based on the online data made available at any 

time to the travelers who want to plan or make necessary adjustments to minimize their trip 

travel times. Moreover, transit operators would benefit by managing their fleet more efficiently 

and by providing passengers with more reliable services.  For example, in case of incidents that 

cause severe traffic congestion, a transit agency would be able to minimize the disruption to 

the original timetable and reduce the impact on the operating costs by rerouting buses at 

certain nodes using real-time information about traffic conditions. This research proposes a 

novel and versatile methodology to provide adaptive routing in multimodal transportation 

networks. The proposed methodology is applied to real-world test cases to validate its 

effectiveness.  

1.2 Research Objectives 

The main objectives of the research presented in this dissertation are: 

[1] to advance a novel routing methodology based on graph theory;  

[2] to integrate different transportation modes into the methodology; 

[3] to demonstrate that the proposed methodology is able to realistically capture the 

stochastic effects of traffic conditions within a multimodal transportation network; and 
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[4] to identify the optimum route within a multi-modal transportation network. This can be 

achieved by targeting a specific optimization criterion. For example, one may use the 

proposed modeling approach in order to minimize the impact of congested traffic 

conditions on the overall travel time and/or cost for travelers and/or transit agencies.  

1.3 Research Methodology 

The proposed methodology uses a routing algorithm implemented based on a Markov Chain 

with Reward model. The optimization criterion used by the developed algorithm seeks to 

minimize the negative impact of congested traffic conditions on users’ routing. Several real-

world case studies are tested to demonstrate the feasibility of the proposed method. To 

achieve the proposed objectives, the following tasks have been conducted: 

1. Defining a generic representation of each physical transportation network 

corresponding to different transportation modes (i.e. road, transit and rail). Since public 

transportation services operate based on a predefined schedule, in order to be able to 

realistically integrate this type of networks, the developed model accounts for the fixed 

schedule of public transportation services as well as stochastic variability of the 

observed travel times. 

2. Collecting and processing transportation related data from several sources (e.g. 

provincial and municipal transportation authorities, etc.) to integrate in the 

transportation network model. In this task, several traffic data and information sources 

were considered depending on the location and the type of the transportation networks 

used.  A set of stochastic properties pertaining to the study networks were investigated 
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- including short-term fluctuation of travel demand, transit schedule and non-recurrent 

congestions along major arterials. Traffic data (e.g. speed, travel time, etc.) were 

obtained from transit authorities/agencies.  

We have acquired traffic data from the Ministry of Transportation of Quebec. The 

schedule of the transit services was collected from the Agence Métropolitaine de 

Transport (AMT), the Société de Transport de Montréal (STM) and Toronto Transit 

Commission (TTC).  Additional information about the bicycle sharing services (i.e. BIXI in 

Montreal and Bike Share in Toronto) was obtained from the transportation departments 

of Montréal and Toronto.  A database was developed in Excel to provide concurrent 

access to the collected data. 

3. Developing and calibrating microscopic simulation models in Vissim and Aimsun to 

estimate travel times for major arterials and all transportation modes under several 

traffic demand and congestion scenarios. The results were used to emulate the lack of 

available historical traffic data of the real-world transportation networks used in this 

thesis to test the route optimization algorithm. 

4. Developing an optimal route algorithm that can be used in user equilibrium and system 

optimal models. The proposed algorithm integrates the time and/or cost (of the trip) 

constraint into a single performance measure.  The algorithm was validated with 

historical and real-time information about travel conditions in a stochastic and time 

dependent modeling approach. 

5. Developing a traffic state prediction model to better capture the stochastic behavior of 

transportation networks. The applied methodology uses changes in traffic speed as the 
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traffic condition indicator to predict congestion level. The results were used to estimate 

the transition probabilities of Markov Chain model. 

6. Applying the proposed methodology to several real-world transportation networks to 

identify the benefits of developed a routing algorithm. The studied transit network was 

chosen to investigate the application of the proposed method in on-demand transit re-

routing for transportation agencies (e.g. bus line alignment changes with the network 

traffic). In addition, multimodal networks were built to study travelers’ optimized 

routing in transit networks in case of congestion or unforeseen delays. 

The main thesis contributions are as follows: 

This thesis presents a new approach in developing an ITS methodology by combining available 

services and providing an integrated public and roadway traffic application. Previous route 

optimization studies consider passenger vehicles as the only transportation mode in their 

routing algorithm. In this research, a methodology is developed to use Markov process in route 

optimization algorithm for a multi-modal transportation network. The proposed approach 

applies probabilistic based methods to better estimate the parameters related to the stochastic 

nature of traffic parameters in a transportation network. 

The proposed route optimization model can benefit various stakeholders, particularly transit 

operators and users, local transit agencies that provide feeder bus services to regional bus 

passengers to commute within the suburban communities, government agencies and industries 

related to the ITS.  This methodology can be integrated into end-user products that would be 

beneficial for both travelers and transportation service providers. 
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For example, transit users would be able to modify their plans and choose other modes of 

transportation if the current mode experiences delays due to traffic conditions. In regards to 

transit operators, the proposed method enables them to share information on several transit 

services and stops/stations and reduce passengers’ wait time and/or transit delay costs, assist 

planners in revising transit schedules periodically and provide real-time routing guidance to bus 

drivers. 

1.4 Thesis Organization 

Chapter 2 presents a literature review on the existing methods adopted by authorities and 

researched by academics for route optimization in transportation networks. The different 

approaches are discussed and investigated. Limitations and gaps in each approach are 

presented. Chapter 3 includes the development of the proposed methodology. It starts by 

developing the optimization methodology based on Markov Decision Process, followed by the 

traffic state prediction methodology. In addition, it includes a flowchart explaining the 

implementation of the proposed methodology. An example is presented to demonstrate the 

application of the proposed methodology in a small network. The chapter concludes with a 

discussion on improving the state transition probabilities used within a network. Chapter 4 

presents three case studies developed to validate and implement the proposed methodology 

and prove its application in transportation networks. It also includes the data collection stage, 

which is an integral part of the research and model development. Finally, Chapter 5 summarizes 

the research and presents the thesis contributions and identifies future work directions.  
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CHAPTER 2. LITERATURE REVIEW  

Given that traffic conditions on real-world transportation networks show stochastic and time 

dependent properties (e.g. occurrence and duration of non-recurrent congested conditions, 

fluctuations in demand for transit usage, etc.) transportation operators and passengers can 

benefit from deployment of ITS applications such as Advanced Traveler Information System 

(ATIS) and Advanced Public Transit Systems (APTS).  By providing travelers with updated travel 

time/route information, they will be able to make more informed route choice decisions, 

mainly to minimize travel delay. ITS deployments provide benefits to the public transportation 

operators. By incorporating adequate online information, transit authorities will be able to 

adjust the operations of their fleet to respond more efficiently to various conditions hindering 

normal operation and, consequently, minimize the negative effects on passengers’ travel time. 

An overview of recent studies on the vehicle routing is performed and categorized as described 

here after. 

2.1  Passenger Vehicle Routing 

In recent years, many studies investigated different network assignment and vehicle routing 

algorithms and related ATIS applications. ATIS is intended to improve traveler decision making 

by collecting, processing and disseminating information that helps travelers decide when to 

travel, the mode to choose and the route to take.  For example, Huang and Li (2007) presented 

a traffic equilibrium model to evaluate the effect of ATIS as a travel information service on 

travel behavior.  Their multi-criteria, logit-based model used a trade-off between travel time 

and travel cost to make route choices based on the value of time for different users. The 

authors assumed that all users select the routes with minimum perceived travel disutility, which 
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is a linear bi-criteria combination of travel time and monetary travel cost. Two types of users 

were studied: equipped and non-equipped with ATIS. The authors found that their model had a 

better estimation of network benefits of ATIS compared to other single-criterion models (i.e. 

travel time-based or travel cost-based single-criterion models). 

Other studies had investigated travel time prediction under ATIS. For example, Abdalla and 

Abdel-Aty (2006) studied the benefits of ATIS in route choice at microscopic level.  The authors 

used a mixed linear modeling approach to study travel time under ATIS.  They used a real world 

network with 40 links and 25 nodes, and vehicle flows in a travel simulator, where a traveler 

drives in a simulated environment, to generate dynamic route choice data.  Travelers were 

provided with one of five different levels of information and/or advice, including no 

information, pre-trip/on-route information with/without advice. The authors analyzed travel 

time of total of 630 trial trips completed by the 63 travelers. The authors’ study focused only on 

drivers using passenger cars and concluded that by increasing the level of information (i.e. 

adding on-route knowledge to pre-trip information) the average travel time decreased.   

Bingfeng et al. (2008) presented a bi-level programming model to determine the optimal 

system performance of traffic network within an ATIS environment. In their model traffic 

authority is the decision maker in the upper-level problem, and drivers - with or without ATIS, 

are the decision makers in the lower-level problem. They used a numerical example to 

demonstrate the application of model and investigated the traffic behaviors under three cases 

of the ATIS environment: (i) ATIS provides drivers with parking and route information, (ii) ATIS 

provides drivers with route information only, and (iii) ATIS provides drivers with parking 
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information only. Their findings showed that ATIS with parking information would be most 

effective when parking demand is reaching capacity, and the roads are not congested. 

Yang and Luk (2008) studied the impact of ATIS on the performance of road network. The 

authors used traffic simulation module to represent the traffic and calculate network delay as 

the main performance measure. They considered four categories of drivers, based on the level 

of access to traffic information. The route choice model proposed by the authors categorized 

drivers into four groups, drivers with i) no traffic information; ii) pre-trip information; iii) real-

time traffic information; and iv) displaying messages using variable message sign, respectively. 

The method was applied to a case study in Singapore consists of express ways and arterials. The 

authors also conducted an analysis of different percentage of market penetration (i.e. 

percentage of travelers that have access to driving information system). Their results showed 

that providing traffic information to drivers can reduce the total network delay by 7.5%. In 

addition, they found the optimal level of market penetration for each demand, which would 

result in the performance of a real-time information system to be better than or equal to that 

of the pre-trip system. Their results were mainly based on simulation and were not validated 

with real world data. 

Another category of studies are those that evaluated different route choice techniques.  The 

reviewed literature shows that most discrete choice models for route choice analysis are based 

on static and deterministic networks. Examples of such models are Path Size Logit (Ben-Akiva 

and Ramming, 1998; Ben-Akiva and Bierlaire, 1999) and C-Logit (Cascetta et al., 1996). These 

models are non-adaptive path choice models because travelers are not allowed to adjust their 
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route choices on-route in response to the revealed traffic conditions. Several studies of path 

choice models with real-time information, both pre-trip and on-route, and a recent related 

literature review can be found in Abdel-Aty and Abdalla (2006).  

Some models investigate drivers’ behavior to predict the decision to switch from a previously 

chosen or experienced route and others are route choice models with explicit choice sets of 

paths. For example, Srinivasan and Mahmassani (2003) studied the effect of observed 

heterogeneity due to age and gender effects in user decisions under real-time information. 

Abdel-Aty and Abdalla (2004) investigated drivers’ diversion from their normal routes under 

different scenarios of providing traffic information (i.e. no information, pre-trip information 

without and with advice, and on-route information without and with advice). Their study 

network was located in the area around the University of Central Florida and included 25 nodes 

and 40 links. In total 630 trial trips by 63 drivers were studied. Their results showed that the 

travel time of the normal and diverted routes are significant in encouraging drivers to divert 

from normal routes. Also it was shown that expressway users may divert from the expressway if 

they are guided to a route with a temporarily less travel time. Bogers et al. (2005) investigated 

learning, risk attitude under uncertainty, habit and the impacts of advanced travel information 

service on route choice behavior. The authors developed a conceptual framework to integrate 

these aspects and used the interactive travel simulator of Delft University of Technology (TSL) 

to investigate route choice among a given number of paths for travelers. They concluded that 

people perform best under the most elaborate information scenario and that habit with on-

route information plays a major role in route choice behaviors. 
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Ukkusuri and Patil (2007) developed a methodology for traffic assignment by accounting for 

travelers’ recourse actions (opportunity for the traveler to evaluate his or her remaining path 

when en-route information is available). They applied a methodology based on Logit model and 

Hyperpaths (i.e. subset of links connecting adjacent nodes with different probabilities). The 

authors’ methodology includes a utility function based on minimizing the total cost of traveling 

between the origin and destination nodes. In their model the link cost is a function of traffic 

flow and has to be recalculated for all the links in each iteration. An iterative stochastic user 

equilibrium approach is utilized to find the most efficient Hyperpath (minimum cost). The 

authors applied the proposed method to a test network and achieved convergence in less than 

100 iterations. They concluded that the methodology could be efficiently adopted for stochastic 

user equilibrium with recourse. 

Some studies proposed various algorithms to solve different routing policy problems. For 

example, Gao and Chabini (2006) studied the optimal routing policy (ORP) problem in stochastic 

networks. The authors reviewed different variations of optimal routing policy problem in the 

literature. They implemented an ORP algorithm that accounts for stochastic dependency among 

link travel times and they investigated the role of information in routing decision making.  Gao 

et al. (2008) presented a route choice model to capture travelers’ behavior when adapting to 

the provided traffic conditions en-route, in a stochastic network. The authors proposed a 

routing policy to represent drivers’ adaptive behavior. Their routing policy is defined as a 

decision rule that maps all possible traffic conditions to the next links at a decision node (e.g. 

Choosing the route between the two traveling points with minimum travel delay). A variable 

message sign was used to provide information about congestion status on the network links. 
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Their findings showed that between the routing policy model and the non-adaptive path model, 

where traveler cannot change their path while on-route, there is a significant difference in 

terms of expected travel time, when the network is more unpredictable (i.e. the probability of 

an incident is in the medium range). 

Nikolova and Karger (2008) presented an optimal solution approach to find an optimal policy 

that minimized the expected cost of travel for the Canadian Traveler problem.  The Canadian 

traveler problem is a stochastic shortest path problem in which travelers learn the cost of a link 

only when they arrive at its connecting junction.  The authors applied a mix of techniques from 

algorithm analysis and the theory of Markov Decision Processes to develop algorithms for 

directed acyclic graphs.  The proposed solution was not validated for other types of graphs. 

 Other studies investigated in-vehicle routing solutions by using real-time information. For 

example, Du et al. (2013) proposed a coordinated online in-vehicle routing mechanism for 

smart vehicles with real-time information exchange and portable computation capabilities. This 

study considered that at a given short time period, there was a group of smart vehicles which 

need to make route choice decisions among a number of candidate routes, according to the 

latest real-time traffic information. The authors proposed a coordinated online in-vehicle 

routing mechanism and modeled it as a mixed strategy routing game, in which the process that 

smart vehicles decided their own route choice priorities was treated as a negotiation and 

coordination process among other smart vehicles. In a routing coordination group, each smart 

vehicle was seeking to find the best online route choice priority, which leads to the probabilities 

of choosing the candidate paths with minimum expected travel time. The coordinated vehicles 
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iteratively updated and proposed their routing choice priority in responding to their evaluation 

of near future traffic condition based on shared online traffic information. The negotiation 

process repeated several iterations until all travelers accepted and would not change their 

route choice priorities (i.e. an equilibrium route choice priority decision). The transportation 

network is represented by a directed graph. At each iteration individual vehicle predicted the 

expected traffic flow based on the latest traffic flow information and other vehicles’ route 

choice proposals. When new traffic condition becomes available, each smart vehicle computes 

its new targeting route choice priority through a multinomial logit choice model. The utility 

function of the model was expected travel time on each path during current iteration. The 

process of updating traffic condition and proposing new route choice process was repeated 

until the targeted route distribution was the same as the current route choice priority for all the 

vehicles (equilibrium routing decision). Authors conducted numerical experiments to 

demonstrate the performance of their proposed routing mechanism by modeling a sample 

network of Sioux Falls City. The results showed that by increasing the percentage of smart 

vehicles, the ratio of average travel times between the proposed and traditional methods 

became smaller, which indicated shorter travel times under the coordinated routing method. In 

addition, the authors showed that their method outperformed the traditional routing method, 

in which each smart vehicle decides its route choice priority independently without 

coordination. 

In another recent study Xiao and Lo (2014) proposed an in-vehicle navigation algorithm based 

on adaptive control. The proposed algorithm incorporates historical traffic information to 

minimize the expected on-route travel time. The transportation network is divided into a finite 
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number of nodes or decision points (e.g. intersection) and links (e.g. arterials). The authors 

assumed a different traffic state at each node and formulated the travel time between two 

nodes as a function of estimated travel time on the link between two nodes and the 

uncertainty between actual and estimated travel time. The traffic states were defined as factors 

that will influence the uncertainty of travel time (e.g. traffic signal) and the travel time was 

calculated by applying the traffic state vector and the probability of occurrence of each traffic 

state to the estimated travel times. Ultimately, a cumulative expected travel time from origin to 

destination was defined and minimized to identify the optimal routing policy. The proposed 

optimization did not produce a predetermined route for the vehicle. Instead, the next direction 

to be taken was a function of the arrival state at a node. Therefore, the decision rule was 

adaptive to the most recent traffic states encountered. The author then compared their 

methodology with a deterministic algorithm that calculated an instantaneous shortest path and 

showed that the adaptive routing policy outperformed the instantaneous shortest path 

algorithm through an example network. Their results showed that, for most of the links, the 

average path travel times of the proposed routing policy were between 1% and 7% shorter than 

those of the time-dependent instantaneous shortest paths, particularly when the traffic volume 

was high. The main limitation of this study is the assumption of conditioning factors that 

influence traffic state and the variability in travel time. These factors need to be calibrated 

based on historical data or through several scenarios within simulation models. A more realistic 

approach to estimate the probability of traffic states should be used. In addition, the authors 

only considered one single mode (private cars) in their methodology.  
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The above studies reveal different vehicle routing optimization methods in ATIS. However, they 

only consider a single transportation mode (i.e. passenger vehicles) in their routing algorithm, 

while many commuters of large urban agglomerations often times used a combination of at 

least two transportation modes. This research work includes both private and transit modes in 

optimal travel route calculations. This approach would enable both travelers and transit 

agencies to benefit a multi-modal route optimization. 

2.2 Transit Routing 

There are a few studies about dynamic routing in transit networks. Jeremy and Mathew (2011) 

developed an optimization method for bus transit system design using intelligent agent 

architecture, which allows for more efficient evaluation of trade-offs between passenger cost 

and operator cost. The authors applied their method to transit networks in Switzerland and 

India, which were previously investigated. According to the authors, for both networks the 

agent optimization system improved on the best of the previous solutions, both in terms of 

operator cost and passenger utility. Wang et al. (2009) presented a simulation-based 

optimization method for campus bus routing. The objective of their study was to find the 

minimum-cost route, while minimizing each passenger’s inconvenience by satisfying their 

request (fewer complains). The authors used numerical experiments to validate their proposed 

simulation model. The method was applied to a High-Tech zone in Dalian city in China. The 

authors conducted a numerical experiment based on the real data from a university campus 

bus service to evaluate the validity of their proposed model. Their new vehicle routing 

methodology was tested to divert a bus away from its fixed route in response to a new 
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customer request and was found to be beneficial to high-tech zone campus bus managers by 

reducing their costs.  

Fu and Lam (2014) presented an activity-based network equilibrium model for scheduling daily 

activity travel patterns in transit networks under uncertainty. The authors uses supernetwork to 

simultaneously consider individuals’ activity and travel choices (i.e. time and space 

coordination, activity location, activity sequence and duration, and route/mode choices). They 

assumed the activity utilities to be time-dependent and stochastic in relation to the activity 

types and modeled activities with different durations or different start times as different 

activity links. The authors proposed a route searching algorithm based on method of successive 

average to solve for equilibrium. The objective was to maximize a daily activity utility function 

by considering value of time and link travel costs. The studied network consisted of one subway 

line and two bus lines. The results of their study showed that individuals’ travel choices were 

affected by travel dis-utilities of different transit lines. For example, when the network was not 

congested (i.e. low population), the dis-utilities of different transit lines were all quite small and 

therefore, the percentages of people choosing different lines are almost equal. As the 

population increased, they found a significant difference between the demands for two bus 

lines until the network became extremely congested where the individuals had little preference 

towards two bus lines. This network only included transit (not road network). The authors used 

a very small network to apply their proposed methodology and their results were not calibrated 

with real data. Moreover, the effect of road congestion and variations in travel times was not 

considered in the analysis. 
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Crainic et al. (2008) used a demand adaptive model to capture the behavior of transit systems 

with mandatory and optional stops (i.e stops requested by passengers and that may lead to 

changes in the default bus route).  The authors suggested that a master schedule has to be 

developed based on time windows associated with mandatory stops.  The authors employed a 

particular sampling technique to solve a master schedule problem for a single bus line.  The 

efficiency of the proposed methodology was tested using various lengths and scenarios of the 

hypothetical transit line.  

In a different study, Panou (2012) investigated the optimization of public transport (PT) 

information services that are provided on mobile devices, for travelers of PT means, through 

their personalization. The author proposed an algorithm along with the necessary parameters 

(dynamic and semi-dynamic) that supported a holistic personalization, based on each user 

specific profile and the history of their previous selections. The dynamic parameters were 

calculated automatically by the system and included: Walking distance, preferred transit mode, 

Number of changes between transport modes, distance and cost of each route. Semi-dynamic 

parameter was chosen each time the traveler used the application and included the reason for 

travelling (Tourist, Commuter, Recreational or Emergency). During the learning process of user 

preferences, the selected parameters were monitored and the corresponding values were 

stored based on the selected route, each time the user makes use of the system. The history of 

user preferences was used for future route recommendations. The author tested the proposed 

model with 10 users and evaluated its performance by providing users with a questionnaire and 

asking for their feedback. By using an average scoring value for the questions, the author 

concluded that the users had a positive opinion for the application of personalized routes 
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provided. This study showed the possibility of providing beneficial information about travelers 

routes/modes via mobile tools. However, only the scheduled travel time of transit modes are 

used for analysis. 

Lin and Bertini (2004) proposed a Markov chain model for bus arrival time prediction that 

captures the behavior of bus operators in putting delayed or ahead of schedule buses back on 

their predefined schedule.  They used a link-node representation of the bus network. The 

proposed methodology is demonstrated for a hypothetical case of equally spaced bus stops and 

a possible solution for more realistic bus lines is discussed. They suggested using three 

performance measures to evaluate the effectiveness of their prediction algorithm: overall 

performance (minimum total prediction error), robustness (minimize the occurrence of large 

deviations) and Stability (prediction of travel time does not fluctuate from time to time). The 

transition probability in the proposed model represented the conditional probability of a bus 

being delayed at downstream stop, given the delay at current stop. The authors suggested 

integrating the proposed model to a bus arrival prediction algorithm. There are several 

limitation in this study. The authors assumed that bus tops are uniformly spaced. The 

effectiveness of this algorithm was not tested with actual data from transit operators. 

Moreover, the authors did not use real data to calibrate their transition probability matrix.  

In another study, Wong (2009) developed a dynamic mathematical model to estimate regional 

bus journey time using Artificial Neural Networks (ANN). The model updates bus arrival time 

using real-time Global Positioning System (GPS) information and also real-time highway loop 

detector data of volume, speed and occupancy. The ANN model was used for predicting arrival 
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time of one bus route within Toronto and was compared to two other forecasting methods, 

historical average and linear regression, and outperformed them by an average of 35 and 26 

seconds in travel time calculations respectively. The author reports overestimation of arrival 

time in their model, which could result in passengers missing the bus.  This study only predicts 

the bus travel time travelling mainly along EB direction of Gardiner Expressway in Toronto and 

does not consider other bus lines travelling on parallel arterials. Also, due to limited available 

data, the time period used in this covers only morning period: 5:30 till noon and does not 

consider Toronto’s rush hour traffic during PM peak.  

Polyviou (2011) proposed a simulation-based model capable of modeling the details of bus and 

traffic incidents (SIBUFEM) in order to assess the impact of incidents on overall bus 

performance and suggest potential fleet management strategies for improved efficiency.  The 

author considered three key performance measures to evaluate the effect of incidents: (i) 

average bus journey time, (ii) average bus speed and (iii) average excess waiting time.  The 

author used data from the Portswood corridor bus route in Southampton, UK to calibrate and 

test the model. The results showed that the higher the severity (capacity reduction)  of a traffic 

incident, the higher is the expected impact of the event on the overall bus performance. Their 

finding showed that 25% and 40% reduction of capacity caused 0.25 and 0.54 minutes average 

increase in travel time respectively. Also, the author concluded that a longer duration of a 

traffic incident causes more severe effects on the overall bus performance: i.e. similar incidents 

lasting for 20, 40 or 60 minutes, caused 0.1%, 1.3% and 2.8% increase in the average bus travel 

time. The authors suggested that the travel time results of SIBUFEM could be used for further 

evaluation of the impact of the incidents on bus patronage (ridership) levels. This study 
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quantifies the expected delay for one bus line during limited number of scenarios however, it 

does not provide any re-routing solution via alternative route. Moreover, There are other 

limitations in the simulation model: the computer model was not calibrated for vehicular traffic 

and the traffic signals were not coded and their effect was replaced by an additional delay. In 

addition, the severity of incidents is coded as a reduction in the road capacity, while a 

microsimulation model that simulates different lane closures and interactions between vehicles 

trying to change lane, could provide better and more realistic results. 

Wang and Cheng (2012) proposed an allocation method for increasing the Public Transit (PT) 

level of service in an urban network.  Their proposed method is based on Hub-Spoke structure 

that integrates PT lines with transfer hubs. Their approach focused on planning bus rapid 

transport (BRT) and regular bus lines. The authors did not include other transit modes (e.g. 

subway) nor transfer hubs (i.e. terminals or transfer stations) in the optimization process. They 

used an objective function for BRT line to maximize the operating efficiency (ratio of passenger 

person kilometers to total kilometers traveled by all buses over a day) within the network. 

Similarly, for bus lines, their objective function was to maximize the density of nonstop 

passenger volume (the ratio of the nonstop passenger volume of the bus line divided by the 

length, i.e. distance, of the bus line). Nonstop passenger was referred to a traveler who would 

not get off the bus until the final stop. They applied the proposed method to a PT network with 

16 Traffic Analysis Zone (TAZ) in the City of Fuzhou in China. Operating efficiencies of feasible 

bus lines between two transfer hubs were calculated and the path with maximum efficiency 

was selected as the optimal BRT/bus line for that path. The authors proposed their 

methodology could be used in PT line planning. This study has some limitations. The solution 
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method and the constraints used for the analysis need validation. Any modification to the 

network size has a large effect on the solution time. 

Other studies have addressed public transit schedule reliability and system efficiency issues.  

For example, Teklu et al. (2007) evaluated the transit assignment of systems characterized by 

small capacity buses (12-20 passengers) and stochastic headways (no timetables). Particularly, 

the authors proposed a composite frequency-based and schedule-based Markov process model 

for capacity constraint transit networks. Their model included bus and passengers’ simulator 

and a random utility model for transit route choice. Their approach assumed passengers’ routes 

were defined by a sequence of transfer stops connected by alternative route-sections to 

represent the attractive lines passengers could choose to travel on. Their generalized cost 

function consisted of in-vehicle travel cost, waiting cost and transit fares. A multinomial Probit 

route choice model that considers the cost correlations between alternative routes was used to 

model passengers route choice. The authors applied their model to a small network with 4 bus 

stops and 2 bus lines.  Their results showed that passengers on relatively congested sections of 

the network experienced higher cost variability, due to the additional stochasticity associated 

with finding spare seats in the buses. The authors concluded that their model could be applied 

for network where transit vehicles are small and not operating to timetables to represent the 

variability in flows and costs and enable planners make more informed decisions.  

The above literature shows applications of route choice models in evaluation of performance 

and schedule reliability and estimation of arrival time in public transit network. These studies 

mainly consider one transit mode models which can be further developed by including other 
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transportation modes (i.e. private and other public transit modes). By including several transit 

modes, travelers would be able to modify their plans and choose other modes of transportation 

if their current mode experiences delays due to traffic conditions. Moreover, commuters using 

their own vehicles could have a better planning for their trips if the option of switching 

between car and transit is available to them. 

2.3 Multimodal Transportation Network Models 

Multimodal transportation involves the usage of at least two modes of transportation to 

complete a single trip.  Common modes of urban transport today mainly include car, bus, rail, 

motorcycle, bicycle and walking.  Multimodal networks inherently offer redundancy and 

flexibility by offering multiple choices and routes, while mitigating the negative effects of traffic 

congestion. On the other hand, transfers between different modes carry a certain overhead in 

terms of waiting time and convenience and sometimes are a key factor in the decision of 

making a specific multimodal trip. Modeling multimodal transport requires identifying the 

availability of various transportation modes at specific locations and the ability and reliability of 

transfers between these different modes. 

A limited number of studies attempted to model multimodal transportation networks that 

include both private and public transportation vehicles.  Nagurney and Smith (2003) proposed 

to represent this type of networks as a supernetwork. Supernetwork framework allows one to 

formalize the alternatives available to decision-makers, to model their individual behavior and 

to compute the flows on the supernetwork, which may consist of travelers between origins and 

destinations as well as the associated costs. The supernetwork has the advantage that it can 



  
 

23 

 

model simultaneously multiple physical networks while accounting simultaneously for different 

trip features (e.g. route choice, transfer/waiting time, cost of transfers, etc.). The authors 

presented an overview of development and application of the supernetwork concept in 

transportation and decision-making concepts. The authors did not provide any specific case 

study or real world example of such modeling approach. 

Zhang et al. (2011) presented a generic multimodal transportation network model for ATIS 

application to be used for large-scale transportation systems.  The authors proposed using a 

supernetwork framework that integrates individual networks representing different 

transportation modes.  Their model included dynamic travel times and timetable of public 

transportation services.  The authors used the basic Dijkstra algorithm for routing purposes and 

they used the travel time as the performance measure for best route choice.  Their results 

indicated that the model could be used to find optimal routes in short computation time for 

realistic networks.  The main limitation of their model was long computation time to read and 

compile the integrated network, which depending on the size of network may take several 

hours.  

Casey et al. (2013) presented an analysis of the computational performance of two shortest 

path algorithms for a multimodal multiobjective trip planner tool. The authors used Graph 

theory to create the road and public transport networks where a set of nodes and links that 

connect neighboring nodes together. They compared the performance of two shortest path 

algorithms: simple Dijkstra and A* heuristic, which improves upon Dijkstra’s algorithm. 

Dijkstra’s algorithm only considers the cost to travel from the origin node to the candidate 
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nodes and sorts candidate nodes in the order of their cost from the origin node. However, the 

A* heuristic method estimates of the cost to travel from the candidate node to the destination 

node, plus the calculated cost from the origin node to the candidate node, and orders the 

nodes based on total origin-destination cost. They applied the proposed methodology to an 

area of suburbs (as origins) and major destinations (e.g. CBD and airport) in the South East 

Queensland region in Australia. A set of constraints were set for the analysis which included: 

maximum number of transfers and maximum walking/transfer distance. The travel time value 

was used as the performance measure. The authors concluded for road only network, A* 

outperformed Dijkstra’s algorithm while for public transport  and/or multimodal networks, 

using Dijkstra as the shortest-path algorithm produces adequate results, with the average 

search completing within 5-10 seconds compared to minimum 15 seconds in the A* method. 

This study did not include any real time information and cannot be implemented in time 

dependent networks.  

Meng et al. (2014) presented a dynamic traffic assignment model for urban multi-modal 

transportation network by constructing a mesoscopic simulation model. The authors used 

MesoTS simulation laboratory previously developed by Yang (1997). The proposed model 

updates the path travel time at the beginning of each iterative phase, finds the shortest path 

with the k-shortest path algorithm, and finally assigns the traffic flow based on a C-Logit model. 

Travel utility function was used to calculate the updated link travel times at the beginning of 

each iteration. The k-shortest path algorithm is an extension of the typical Dijkstra algorithm 

with the possibility to calculate a set of shortest travel time paths, and determine the distinct 

set of the shortest path numbers according to different criteria. The authors applied their 
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proposed model to an area in the Chaoyang district in Beijing. The network consists of 5 subway 

lines with 39 stations, 18 bus lines with 51 stations and 188 road links with 122 nodes. The 

authors conducted several experiments to study the effect of different factors (e.g. increase in 

demand, parking fees and car ownership) on the percentage of car and transit (bus/subway) 

travel trips. In one of the conducted experiments, they examined the effect of traffic 

information on the travel mode choice. The results showed that when the car transfer 

information was not provided, (drivers had no opportunity to transfer to other modes) the 

private car trip increased from 61.5% to 86.5%. Similarly, when the transit transfer information 

was not provided, the one transit line trip increased from 3.9% to 6.2% (lower number of mode 

changes due to lack of transfer information). In both cases the average travel time increased by 

1-2%. Finally, when no transfer information was provided, most of the travelers chose the 

private car trip, and the average travel time increased as the traffic congestion aggravates. 

Authors reported slow computation process for the time-dependent shortest path algorithm. In 

addition, this methodology does not account for real-time traffic information and changes in 

traffic conditions. 

Arentze and Timmermans (2004) developed a network representation of multimodal 

transportation systems that allows the modeling of multi-activity, multimode routes by means 

of a standard least-cost path finding method.  A case study was tested along the Almere–

Amsterdam corridor in the Netherlands.  The purpose of their study was to assess the 

sensitivity of activity-travel choice behavior on the travel time and cost from Almere to 

Amesterdam.  The authors implemented a two-activity program (working and shopping) under 

various specifications of cost functions (e.g. value of time, transit tickets, parking fees and 
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penalty for inconvenience of transferring to another mode).  Their results showed that key 

choices such as main mode, access station, activity location and making an intermediate trip 

home were strongly interrelated and fairly sensitive to prices, search times, activity–location 

preferences and the activity program. The authors found that a secondary activity during the 

trip might work in favor of transit use because of extra costs generated for cars related to 

parking. Their model identifies least cost path based on several assumed parameters that need 

to be calibrated with real data. The proposed methodology does not account for changes in 

travel speed/link cost during the trip. 

Abdalla and Abdel-Aty (2006) studied travelers’ mode/route choice behavior under different 

levels of Advanced Traveler Information System (ATIS). ATIS is a group of services that provide 

travelers with information that will facilitate their decisions concerning route choice, departure 

time, trip delay or elimination, and mode of transportation. The authors recruited 65 subjects 

and instructed them about the experiment, they combined a travel simulator with real network 

and traffic data in order to model five mode/route choices under ATIS: i) travelers’ mode choice 

(Car vs. bus); ii) drivers’ diversion from the normal route; iii) drivers’ compliance with pre-trip 

advised route; iv) driver’s compliance with on-route short-term traffic information choice; and 

v) drivers’ long-term route choices. The authors showed that travel time and familiarity with 

devices that provide the information are the factors that have significant effects on drivers’ 

behavior. They also found that qualitative information (e.g. showing congestion level by using 

different colors) is more beneficial than quantitative information (e.g. travel time of roads) to 

drivers in assisting their on-route short-term choices. In addition, a high number of traffic 

signals on a route increased the probability of diversion. The authors suggested that their 
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findings could be used to enhance ATIS devices and incorporated in dynamic network 

assignment models. 

Arentze (2013) proposed a Bayesian method to incorporate the learning of users’ personal 

travel preferences in a multimodal routing system. The proposed method learns the preference 

profile of a user (as parameters of link costs functions) incrementally from observations of 

preferred travel options (routes) in choice situations. The author applied multinomial-logit 

framework to model the choice behavior as a function of preference parameters/route 

attributes (e.g. travel time, walking time, travel/parking cost). The data were obtained from a 

travel choice experiment where 438 individuals were presented travel alternatives and 

indicated their choice for a trip of approximately 20km. The choice alternatives presented to 

individuals consisted of using car for the entire trip, using public transport for the entire trip 

and using a combination of public transport and car. The application of logit model for route 

choice evaluation in a multi-modal transportation network in this study is based on predefined 

link travel time/costs. 

Khani et al (2012) proposed an algorithm to find the optimal path in an intermodal urban 

transportation network with multiple modes (auto, bus, rail, walk, etc.). Their proposed method 

found the optimal path according to the generalized cost, including private-side (travelers), 

public-side (transit agencies) and transfer related travel costs. The authors applied a trip-based 

transit shortest path algorithm and a label-correcting algorithm using park-and-ride facilities to 

find the best transfer location (i.e., park-and-ride) from the origin, considering the cost for the 

transit part of the trip. Optimal path was chosen based on the time-dependent shortest path 
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algorithm for cars and transit and mode change links (access and egress links between nodes in 

the auto network/transit stops). To reduce the number of iterations/complexity of transit 

network, the authors only considered transfer stops as the eligible alighting nodes to be 

scanned during the process. The results of their study showed that applying the proposed 

shortest path algorithm to both car and transit routes could improve the computational 

performance by 75%.  Nassir et al. (2012) applied the proposed algorithm by Khani et al (2012) 

to find the intermodal optimal tour (origin to origin) in time-dependent transportation 

networks for a traveler with a sequence of destinations to visit. The authors proposed a 

methodology to identify the best combination of modes and park-and-ride (transfer) locations 

to allow traveler visiting a sequence of destinations, as well as the optimal path for each 

segment of trip. Their proposed mathematical approach minimizes objective function with the 

following decision variables: i) availability of link from the current node to adjacent node that 

serves destination, ii) waiting time before departure, and iii) time of arrival to current node. 

Authors applied the proposed method to the Rancho Cordova bimodal network in Sacramento 

with 447 nodes, 850 links in the auto network, 163 bus stops, 6 bus routes and Two park-and-

ride facilities that connect the auto network to the transit network. The optimal path found for 

selected origin and destination was 62 min long and uses auto-only mode, vs 71 and 78 minutes 

for the two alternative routes that used one of the two available park-and-ride nodes. The 

above studies improved the computational time for evaluating optimal route, with minimum 

travel time, in multimodal network, however, they did not consider the stochastic attribute of 

traffic flow (variable traffic condition/travel time). 
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The above literature review reveals a limited number of studies on route optimization in multi-

modal transportation networks. Among them, mainly a simple Dijkstra Shortest Path (DSP) 

algorithm or a routing policy based on DSP was used to identify optimal routing, while 

optimization constraints are very basic. The optimization used in these studies mainly included 

the shortest distance or travel time based on a constant speed/traffic condition. 

Due to the stochastic nature of traffic congestion and travel time/delay parameters in a 

transportation network, several authors proposed probabilistic modeling of different ATIS 

applications (e.g. estimation of expected freeway travel time, bus arrival time prediction, transit 

network assignment). The next section provides an overview of different route choice models 

used in transportation followed by a brief explanation of one of the frequently used 

probabilistic method, i.e. Markov Chain. 

2.4 Route Choice Models for Transportation Networks 

In this section an overview of the models used to generate routes for navigation within 

transportation network are presented. Traditionally traffic assignment models assumed very 

simple route choice that assumed drivers behave as if they have perfect knowledge of route 

cost/travel time. The most common route optimization method is the shortest path algorithm, 

such as the Dijkstra algorithm (Dijkstra 1959). Dijkstra's original variant found the shortest path 

between two nodes but a more common variant fixed a single node as the source node and 

finds shortest paths from the source to all other nodes in the graph, producing a shortest path 

tree. Attempts to improve the computational speed of the Dijkstra algorithm were reviewed by 

Wagner and Willhalm (2007) which can be broadly classified into two classical techniques, i.e., 
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the bidirectional search and the goal-directed search, which is more commonly known as the 

A* algorithm proposed by Hart et al. (1968). Basically, these algorithms maintain two node lists, 

i.e., an open list from which a potential successor node is selected and a closed list of nodes 

that have been already selected.  

The assumption of perfect knowledge of travel cost for drivers had been long considered 

inadequate for travel behavior. Consequently, probabilistic route choice models were 

developed in which drivers were assumed to minimize their perceived costs given a set of 

routes. An important extension of the simple shortest path approach is the generation of 

alternative paths, such as the k-shortest path approach by Eppstein (1999). The k-shortest 

paths algorithm lists the k paths connecting a given source-destination pair with minimum total 

length.  Bell (2009) modified the classical A* shortest path algorithm to generate a set of 

attractive paths, which are called hyperpaths with a min-max exposure to delay strategy, 

leading to a link use probability inversely proportional to maximum link delay for attractive links 

leaving a given node. The advantage of hyperpaths is that multi-paths can be generated to 

accommodate drivers’ preferences. 

Several route choice models in the context of Stochastic User Equilibrium (SUE) were also 

developed. The ‘stochastic’ term is related to the probabilistic route choice model, instead of 

simply assuming the shortest path as in the deterministic user equilibrium model. SUE route 

choice models are generally derived from utility theory. The utility function cannot be 

measured directly. Therefore, to take into account the effects of unobserved attributes and 

characteristics, the utility of an individual is assumed to have a deterministic (or observable) 
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component and a random component (error term). In these models, the stochasticity of 

perceived travel costs is accounted for by the random variable. Multinomial Logistics (MNL) 

followed by Multinomial Probit (MNP) regression models were among the early SUE route 

choice models.  

The MNL model structure cannot capture similarities among alternatives and hence is not 

suitable to model route choice. This is because in typical networks, there is a fairly large 

amount of overlapping links among routes, which cause the violation of the basic assumption of 

the MNL model, i.e. the independence of irrelevant alternatives. Despite the theoretical 

problems, the MNL is still used in stochastic traffic assignment procedures. Later modifications 

of the MNL model, such as C-logit, were also adapted to route choice. These models overcome 

the overlapping problem while still retaining the MNL structure. In C-logit model, the similarity 

among routes is modelled by including a commonality specification in the deterministic 

component of the utility function. The commonality factor of path in such model is a measure 

of the degree of similarity between the subject path and other paths in an OD pair. The MNP 

was proposed by Daganzo and Sheffi (1977) to model route choice and is based on the 

assumption of a normal distribution for the random component.  The calculation of the Probit 

choice probability when the number of alternatives is greater than two is not straightforward. 

While several methods were presented in the literature to evaluate the MNP choice probability 

by applying analytical methods, the analytical approximation methods cannot be applied for a 

large number of alternatives because the accuracy of the method deteriorates as the number of 

alternatives increases. Prashker and Bekhor (2004) reviewed different SUE route choice model 

and compared them with two numerical examples. They illustrated the importance of the 
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specification of the similarity measures in the route choice model. Authors concluded that 

models that performed well in the two above networks may not perform as well in other 

examples. 

Route choice models are incorporated as part of a bigger model system such as traffic 

assignment, route guidance and network design. For this reason, the choice models used in 

practice are simple, generally consisting of finding the minimum cost path. In state of the 

practice models, the MNL or modified versions like C-logit are implemented. The reviewed 

literature identifies also an alternative routing approach based on a dynamic discrete choice 

modeling. Travelers are modeled as taking on route decisions related to which link to use in 

order to better capture the short-term characteristics of transportation networks. This can be 

conducted by incorporating Markov property in the stochastic algorithm and is described in the 

following section. 

2.5 Application of Markov Analysis in Transportation  

Markov chain is a technique for statistical modeling of a random process in which the state of 

system changes through progression (i.e. system’s evolution during time). A Markov chain is 

defined with the set of state definition, initial probabilities and transition probabilities. The 

transition probabilities are associated with the manner of state progression during the system 

evolution (the probability of system transitioning from one state to another). A system which 

has the Markov property satisfies the following: the conditional probability of the system being 

at the next state, S+1, given the current state, S, depends only on the current state and not on 

the previous states of the system. 
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Markov Process is a probabilistic model useful in analyzing traffic states and estimation of travel 

times. In Markov process the transition behavior is different from that in a Markov chain. In 

each state there are a number of possible events that can cause a transition. As a result, in this 

model transitions take place at random points in time. Markov analysis evaluates a given 

sequence of events in order to estimate the tendency of one event to be followed by another. 

Using this analysis, one can generate a new sequence of random but related events, which 

appear similar to the original sequence. The Markov model assumes that the future is 

independent of the past given known present conditions.  

Markov Chain and Markov Process are two basic Markov analysis methods that have been 

widely used in transportation field, including traffic conditions analysis and transit schedule 

reliability. Most studies use the states of the Markov chain to represent different congestion 

levels along the transportation network links.  Some studies investigated various problems 

related to traffic flow and control. For example, Yeon et al. (2008) investigated the application 

of Markov Chain for estimation of expected freeway travel time.  They developed a model to 

estimate travel time on a freeway using discrete time Markov Chains where the states 

correspond to whether or not the link is congested. The transition probability matrix for 

Markov Chain was calculated by estimating link travel times for non-congested and congested 

conditions. They applied their methodology to an 8-mile freeway section along US 202, in 

Philadelphia, PA. Field measurements were used to validate the model. T-test was conducted to 

compare the expected travel time to measured travel time. The model developed was found to 

match field travel time estimates very well, with deviations of less than 3%. In this study only 
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passenger vehicle routes along a short segment of highway are considered. The methodology 

lacks the inclusion of other modes within a large-scale transportation network. 

Dong and Mahmassani (2009) proposed a methodology to predict travel time and its reliability 

in real time based on real-world measurements in light of the probabilistic nature of flow 

breakdown. They applied Markov chain approach for modeling traffic flow evolution that 

enabled prediction of flow breakdown probability, as well as the resulting flow rate. They 

defined each state of the Markov Chain by a flow–speed pair, namely a flow range and a speed 

level. They categorized flow rate range into several equal-width bins and as for speed it was 

categorized into two levels, high and low. To calibrate the transition matrix speed and flow rate, 

authors used data at 5-min intervals during a 1-year peak period collected at the Jeffrey section 

of I-405 northbound, where recurrent traffic breakdown had occurred during the morning peak 

period. The expected duration of breakdown was also derived from the probability transition 

matrix. Study suggested that to predict travel time and its variability along a path, the mean 

and variance of the constituent links could be summed up, assuming all the links are 

independent. Authors suggested that when the flow rate and speed are readily available from 

traffic sensors, their proposed methodology could be used to provide real-time traveler 

information. This study only considered traffic conditions along highways and for cars only. 

They did not provide any real case example for the proposed methodology.  

Geroliminis and Skabardonis (2005) proposed an analytical model for platoon arrival profiles 

and queue length prediction considering platoon dispersion in arterial using Markov Process 

and loop detectors data. Traffic between successive traffic signals was modeled as a two-step 
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Markov decision process. Markov decision process is referred to Markov chain system where a 

decision can be made at each step. Platoon dispersion was modeled by using the kinematic 

wave theory and a functional relationship between the traffic flow and the traffic density and 

could be used to describe the speed at which change in traffic flow propagates either 

downstream or upstream from an origin point. Authors applied their proposed model to two real-

life arterials in Washington, DC to estimate the queue length on each intersection approach. 

Their results indicated that the proposed model produced accurate estimates of queue lengths. 

In most of the cases, the difference between the model-predicted and the simulated queue 

lengths was less than four vehicles, with maximum 10% error. Although the main outcome of 

this study was analyzing queue propagation along signalized arterials, the methodology proved 

a successful implementation of MDP. 

Other Markov chain applications in transportation attempt to solve transit network loading 

problems. For example, Kurauchi et al. (2003) investigated adaptive routing under uncertainty 

for passengers in a given transit network.  They presented a capacity constrained transit 

assignment method that considered passenger strategies. Passengers could decide which 

transit lines to use based on minimizing an expected cost of travel. Expected travel cost 

included the cost of a risk of failing to board a train. To assign the traffic to the network, a 

Markovian loading process was applied. Their Markov chain used a transition matrix defining 

the probability of a traveler moving from one state to another. The states of the Markov chain 

in their model represented the origins, the intermediate vertices of the network and a 

destination. Graph model was used to represent the network with stop nodes and links 

connecting stops together. The cost of an arc path consisted of three elements: travel time, 
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expected waiting time, and the implicit cost associated with the risk of failing to board. Their 

objective function minimized total cost to find the optimal path. This model considers the risk-

aversion of passengers to overcrowded stations and combines the computation of common-

line strategies with a probabilistic approach in which the boarding probability is determined by 

the residual capacity of the transit vehicles. Authors applied their proposed model to an 

example network consists of three stations and two transit lines and travel demand between 

OD pairs of 100 passengers. For each OD pair they identified the optimal routing strategy of 

combining one or both transit lines. They results showed that by increasing the risk awareness 

of passengers and when common lines are considered, passenger flow split between lines 

which is a realistic behavior. 

Other applications of Markov processes in transport-related literature include indicatively 

pavement management and bridge maintenance management. Abaza et al. (2004) designed an 

effective decision-making tool for planning and scheduling of pavement maintenance and 

rehabilitation (M&R) work. Their system applied a Markovian model to predict pavement 

deterioration with the inclusion of pavement improvement resulting from M&R actions. 

Authors used a decision policy with two major options: i) optimizing a generalized objective 

function that is defined in terms of proportions of pavement sections in the five deployed 

condition states (i.e. excellent, good, fair, poor, bad), and ii) minimizing M&R  cost subject  to  

preset  pavement  condition  requirements  in  terms  of  state proportions at the end of a 

selected study period. A Markovian model with discrete-time transition matrix was used to 

incorporate the five condition states and to predict process by applying the estimated transition 
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probabilities. They tested the developed model to a total 20 lane-kilometers length of surveyed 

pavement sections.  

Similar study by Ortiz-Garcia et al. (2006) showed that a Markov Chain process could be used in 

the determination of pavement deterioration. They proposed the development of three 

methods for the determination of transition probabilities and subsequently tested on six 

different sets of artificial data.  In their first method, it was assumed that the original data, i.e. 

historical condition data for each of the sites, were available. The second method used 

regression equation obtained from the original data to estimate the transition probabilities. In 

this method, the raw data is used for estimation of transition probabilities after a regression 

equation has been obtained to describe the progression. Finally, in the third method the raw 

data were aggregated into bands of pavement condition and presented in the form of 

distributions. Their objective function aimed at minimizing the difference between the 

distributions of condition obtained from the raw data and the distributions obtained from the 

transition probabilities. Authors concluded that their third method yielded a distribution closer 

to the original distributions compared to the other methods.  

In a more recent study Ramezani and Geroliminis (2012) applied Markov Chain procedure to 

estimate arterial route travel time distribution. They used a 2D diagram to graphically represent 

the joint distributions of successive link travel times. A Markov chain procedure was 

incorporated into the model and its initial and transition probabilities from identified from the 

observed data. Their raw measurements were experienced individual link travel times traversed 

by a set of probe vehicles, followed by finding trajectory of moving vehicles and link travel 
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times. Afterwards, authors used travel times of all probe vehicles crossing two successive links 

during data collection period to construct a 2D diagram as a graphical representation of 

vehicles travel times joint distributions and defining the Markov chain states and determining 

the initial and transition probabilities. The data points in 2D diagrams represented travel times 

of a probe vehicle crossing two consecutive links. Authors tested their proposed model in two 

arterials, 650m and 1.1km long and each with 5 intersections. They estimated travel time 

distribution (TTD) for different demand and probe vehicle sample size. The Mean Absolute Error 

(MAE) between the observed and estimated TTD was calculated. The results showed a coherent 

performance capturing the fundamental characteristics of field measurements even under 

condition of low sample size for probe vehicles. They also compared results of 2- and 3-states 

Markov chain and noticed less good outcomes for 3-states compared to 2-states. The reason 

was that less demand made less congestion and thus introducing the third state regard to near 

capacity condition was not sensible. Authors suggested that the proposed methodology can be 

integrated in a real-time implementation and estimation of TTD. This study shows a successful 

implementation of Markov Chains in travel time estimation. However, the model does not take 

into account other transportation modes (e.g. transit) and was only tested in a short arterial 

section. 

Markov process analysis has also been used for public transit schedule reliability. Schmocker et 

al. (2008) presented an approach to dynamic frequency-based transit assignment. To 

differentiate from static frequency-based approach and to deal with the line capacity 

constraints, they used “fail-to-board” probability for the circumstances where passengers are 

not able to board the first service arriving due to overcrowding. Authors modeled the network 
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by using a series of links and nodes, representing transit lines/transfers and stations/stops. 

Their cost function minimized the travel time or generalized costs by considering transition 

probability for paths were defined to account for changes during time intervals. Authors 

applied their proposed methodology in a case study of inner London network, consists of 56 

stations and 14 transit lines.  They assumed a peaked demand distribution divided into twelve 

15 min intervals and showed that the highest congestion occurs between 8.30 and 8.45 AM. 

The assignment was done with the assumption of different levels of passenger risk averseness 

with respect to delays and was shown that higher risk averseness led to fewer passengers 

failing to board. Authors suggested the higher risk averseness might also be enforced by 

transport operators through charging extra for the use of crowded stations. They believe that 

public transport congestion charging might lead to fewer passengers failing to board and might 

also be used in order to reduce crowding on platforms, which is a major safety concern. The 

authors concluded that the Markov assignment process could be efficiently used in dynamic 

assignment problems to remove the excess demand not being able to pass a bottleneck. 

In a similar study, Bell (2002) proposed a transit assignment method based on Markov chains to 

solve the capacity constrained transit network loading problem within congested transit 

networks, where some passengers will not be able to board because of the absence of 

sufficient space. Their model also handled the common lines problem, where choice of route 

depends on frequency of arrivals. In their model passengers decided which transit lines to use 

based on minimizing an expected cost of travel. Expected travel cost included the cost of a risk 

of failing to board a transit vehicle. They tested their proposed method in a small network. The 

results showed that by increasing the risk of failing to board, passenger flow would begin to 
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spread out to reduce the risk and to avoid nodes where they may fail to board until the point at 

which the cost of the risk of failing to board dominated those associated with travel time and 

waiting time. Authors recommended that their proposed model could be used to assess the 

capacity problems of a transit network and analyzing the effect of line capacity changes or 

changes in the infrastructure. In addition, their approach could calculated the number of 

passengers staying on the platform to represent platform congestion. Their method needs to 

be tested on a larger network. Proper calibration method for the risk of failing attribute should 

also be applied. 

The literature review presented above shows that Markov process has been utilized in a variety 

of transportation problems. Based on the reviewed literature, Markov Process has not been 

applied for route optimization in a multi-modal transportation network. In this thesis a Markov-

based method for route optimization in transit networks is developed. The Markov property 

allows the Markov Process application to better capture both probabilistic nature of travel time 

and the fundamental correlated feature of successive links travel times. In other words, traffic 

spatial progression in roadways can be captured through a methodology similar to a Markov 

Chain, where the current link travel time of a vehicle depends only on the travel time of 

immediate upstream link which is well-matched with physics of traffic. Therefore, Markov chain 

could be applied to transportation routing problems to better capture the short-term 

characteristics of transportation networks. 
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2.6 Traffic Conditions Prediction Models  

Short-term traffic prediction is an important component in ATIS and APTS applications. 

Accurate prediction of traffic variables such as speed, travel time, headways, etc. is essential in 

traffic planning. There are several studies focused on development of mathematical or 

statistical models for traffic prediction. The mostly commonly used approaches for short-term 

traffic prediction are time series and Neural Network (NN) models. Time series analysis is 

usually used for data points taken over time that may have an internal structure, such as auto 

correlation, trend or seasonal variation. They became popular in short-term traffic prediction 

since the late 1990’s. Hamed et al. (1995) developed a time-series model to predict future 

traffic volume values on urban arterials. The Box-Jenkins approach was employed in the 

analysis. A 1-minute data set representing traffic volume on five major urban arterials was 

available to construct the models. The most adequate model in reproducing all original time 

series was the Box-Jenkins autoregressive integrated moving average model of order (0, 1, 1). 

The model requires only the storage of the last forecasted error and current traffic observation.  

In another study Ishak et al. (2003) performed an extensive experiment to evaluate the 

performance of the non-linear time series traffic prediction system implemented on the 40-mile 

corridor of I-4 in Orlando, Florida under various model parameters and traffic conditions. A 

generalized linear model was developed to tests the effects of the prevailing level of 

congestion, the prediction horizon, the rolling horizon, and their interaction on the model 

relative error of traffic speed prediction. The results show that the model performance 

deteriorates rapidly as congestion develops, and all the tested model parameters have 

significant influence on the relative error. The significant interactions between model 
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parameter with congestion index indicate that shorter prediction and rolling horizon are more 

favorable during congested conditions. In addition, the performance of the system was 

evaluated in terms of the relative error of predicted travel time using the predicted speed 

information. It is found that the model has a slight tendency to underestimate the travel times. 

An Artificial Neural Network (ANN) mimics the way the human brain works; it is a supervised 

learning tool, by which classification and prediction is made on the data through a learning 

process. ANN has been extensively used in short-term traffic prediction. Abdulhai (1999) 

developed a system based on Time Delay Neural Network model synthesized using Genetic 

Algorithm for short-term traffic prediction. The model predicts flow and density based on the 

contribution of temporal profiles as well the spatial contribution from neighboring sites. Both 

the simulated and real traffic data obtained from the California Test bed in Orange County were 

used to validate the model. In addition, the effects of the extent of prediction horizon, spatial 

contribution and the resolution of the data were investigated. The results indicate that the 

inclusion of three loop stations in both directions of the subject station is sufficient for practical 

purposes. Also, it is found that, for best accuracy, the resolution of available data (e.g. daily, 

weekly) should be comparable to the required resolution of predicted data. 

Alecsandru et al. (2004) proposed a hybrid model-based and memory-based methodology to 

strengthen predictions under both recurring and nonrecurring conditions. The model-based 

approach relies on a combination of static and dynamic neural network architectures to achieve 

optimal prediction performance under various input and traffic condition settings. 

Concurrently, the memory-based component was derived from the data archival system that 
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encodes the commuters' travel experience in the past. For each query case two prediction 

values are generated based on the two methods. The better of two values is identified via an 

error-based decision algorithm integrated into a prediction query manager. 

Some of the studies applied the Kalman filter for short-term traffic prediction. Kalman filter is 

used to produce values that tend to be closer to the true values of the measurements observed 

over time that contain random variations and other inaccuracies. For example, Xia et al. (2009) 

developed a dynamic short-term corridor travel time prediction model using Kalman filter. This 

method involves a multi-step-ahead prediction of traffic condition with a seasonal 

autoregressive integrated moving average model. The authors embedded an adaptive Kalman 

filter to adjust the prediction error based on traffic flow data that becomes available in real 

time. The developed traffic prediction tool was applied to an on-line corridor. The results show 

that this method was able to capture the traffic dynamics and to provide accurate travel time 

prediction.  

Most of the prediction models in the literature fall into the class of deterministic models, which 

assume some known specific properties of the traffic data and estimate values of the 

parameters of the model. Given the dynamic nature of traffic data, deterministic models are 

not appropriate for short-term traffic prediction. In long term traffic data shows a clear trend or 

seasonality however, in short-term the data is stochastic. Therefore, in order to simulate a 

specified dataset, the time series model has to include more previous data points and resort to 

more complex smoothing techniques. This could lead to poor generalization. NN models can fit 
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complex dataset by adding more hidden layers and hidden neurons. However, NN models with 

large amount of coefficient have the same problem of poor generalization. 

On the contrary, probabilistic models could characterize the traffic data as a random process, 

and therefore, are a good candidate for short-term traffic prediction to capture the stochastic 

properties of the data. For example, Qi and Ishak (2012) introduced the One-Step Stochastic 

Model for short-term traffic prediction. The authors considered the measured traffic speeds as 

a proxy for a generic traffic conditions indicator and employed speed transition matrices to 

describe the change of traffic conditions within various time horizons. Subsequently, using 

historical data, the cumulative probabilities and conditional expected values for negative and 

positive transitions were calculated based on the observed transition probabilities. The authors 

developed statistical models to fit the cumulative transition probability and expected value 

curves. The fitted models were used for short-term traffic speed prediction. The results of this 

study showed that the root mean square errors for most of the validation dataset were around 

5 mph, implying a good performance of the models. The authors also introduced two 

probabilistic approaches, hidden Markov and one-step stochastic models for short-term traffic 

prediction.  Authors used traffic conditions, as opposed to traffic parameters, as the target for 

short-term prediction. Traffic conditions in their method were defined using first and second 

order statistic of traffic parameters to encode the range and variation of traffic variables. The 

dynamic aspect of freeway traffic was addressed using transition probabilities. The traffic state 

at the end of the optimal states sequence was the predicted traffic condition in 5 minutes. The 

model performance was evaluated using prediction errors. Their model validation results 

showed that the prediction error and the variation of prediction error decreased as the 



  
 

45 

 

transition window and prediction sequence length increased. In addition, authors concluded 

that model performance was not affected remarkably by peak period time 

(morning/afternoon), travel direction, and data gathering locations, with overall prediction 

errors less than 10%. 

The purpose of short-term prediction for traffic management centers is to enable them to apply 

traffic control to prevent congestion and incident, while for road users it is served to aid them 

to make informed decision including departure time, travel route and so on. Therefore, the 

concern for traffic prediction is not what exactly the speed or volume would be in the next 

short period time interval, rather what the traffic condition would be shortly thereafter. Based 

on the literature review and to tackle the stochastic characteristic of traffic data, a probabilistic 

method is applied in this research work to predict traffic conditions along roadways within the 

network. The proposed method includes a stochastic model that accounts for randomness in 

traffic parameters and showed good performance for short-term traffic prediction applications.  

2.7 Concluding Remarks  

This chapter presented the review of available literature related to this research work. There 

are several studies on different vehicle routing optimization methods in ATIS. Most of them 

consider passenger vehicles as the only transportation mode in their routing algorithm. 

However, many commuters of large urban areas often use a combination of at least two 

transportation modes. According to GO Transit (2010), the Greater Toronto and Hamilton 

Area’s interregional public transportation service agency, 80% of train riders and 60% of bus 

riders use GO transit park-and-ride to park their car and use transit for their trip. This research 
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work includes both private and transit modes in optimal travel route calculations. This approach 

would enable both travelers and transit agencies to benefit from a multi-modal route 

optimization. 

Among the few route optimization studies in multi-modal transportation networks, mainly the 

simple Dijkstra’s Shortest Path (DSP) algorithm or a routing policy based on DSP was used to 

identify the best route. However, due to the stochastic nature of traffic parameters in a 

transportation network, probabilistic methods are able to provide better estimation of these 

parameters. A dynamic discrete choice modeling approach where travelers are seen as taking 

sequential decisions on which link to choose could better capture the short-term characteristics 

of transportation networks. This can be conducted by incorporating Markov property in the 

stochastic algorithm. 

Markov process is a method that is widely used in transportation problems to analyze traffic 

states and estimate travel times. Literature review showed that Markov methods are widely 

used in transportation field, including traffic conditions analysis and transit schedule reliability. 

However, its application in route optimization within a multi-modal transportation network has 

not been investigated yet. Traffic spatial progression in roadways can be captured through a 

methodology similar to a Markov Chain, where the current link travel time of a vehicle depends 

only on the travel time of immediate upstream link, which is well matched with physics of 

traffic. Consequently, Markov models could be applied to transportation routing problems to 

better capture the short-term characteristics of transportation networks. In this research work, 
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a Markov-based methodology for route optimization in transit networks is developed and 

applied to real world cases studies. 
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CHAPTER 3. METHODOLOGY 

Multimodal networks can be used to model travel behavior more realistically within a complex 

urban transportation environment.  Different transportation modes are typically represented 

simultaneously via several interconnected networks (e.g. roadway network, bicycle path 

network, transit system network, etc.) and using special nodes (i.e. station node and route 

node) and links (transfer link).  Typically, these special nodes and links are used to model public 

transit stations, where travelers have the opportunity to transfer between different 

transportation modes.  Therefore, a multimodal trip (i.e. a trip involving at least two 

transportation modes) can be represented by defining a path through a multi-layered network, 

as defined above, which includes at least one station/route node and one transfer link. 

In this research, multimodal trips are modeled in two stages. The first stage encompasses 

building a generic representation of each physical network, corresponding to the different 

transportation modes used.  In the second stage, a routing algorithm is developed to estimate 

optimal paths across the defined multimodal network. To better capture the stochastic 

behavior of transportation network a traffic condition prediction methodology is proposed that 

uses changes in traffic speed as the traffic condition indicator to predict congestion level. The 

procedure is then summarized in a flowchart and is followed by an example to demonstrate the 

application of the proposed methodology. This chapter includes a detailed description of these 

the above steps. 
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3.1 Network Modeling 

Most surface transportation networks, namely road, transit and rail networks can be modeled 

using a set of nodes and links, which represent physical junctions/intersections and travel paths 

between adjacent junctions, respectively. Therefore, a graph can be used to represent these 

networks.  A graph is formed by sets of nodes (vertices) and links (edges) connecting the nodes. 

Often the graph elements are labeled with letters (e.g. a,b,..) or numbers (e.g. 1,2,…). When a 

number is assigned to each link in graph, they are called weights of links. In a transportation 

network, such weights might represent, for example costs, lengths or capacities, depending on 

the nature of the modeled network. A directed graph or digraph is a graph in which links have 

orientations between the interconnected nodes (i.e. allowing for a specific direction of travel). 

A graph can be used as a set of interconnected nodes to represent a physical transportation 

network and its connectivity (West 2001). Within a road transportation network, vehicle 

routing junctions (i.e. intersections and interchanges) are represented as nodes within the 

graph.  A physical road segment typically connects two junctions.  Any two junctions 

represented by nodes 𝑢 and 𝑣 respectively, can be used to define a link  𝑒 =  (𝑢, 𝑣) established 

between the two nodes (𝑢, 𝑣) ∈ 𝑉, where 𝑉 is the set of all the network nodes. In a road 

transportation network, every node of a graph can be defined with at least two attributes, 𝑥 

and 𝑦. These attributes represent the node’s coordinates within the network, with respect to 

an arbitrarily selected origin. Similarly, the links of a graph can be characterized by a 

combination of any of the following three attributes: the physical length of the represented 

road segment, the expected average travel time, or the expected average travel speed on the 

road segment. In addition, to represent pedestrian flows in the network, dedicated pedestrian 
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links, between any nodes, 𝑢 and 𝑣, can be added for each road segment (𝑢, 𝑣) accessible to 

pedestrians, (e.g. sidewalks, crosswalks at intersections, etc.). 

Directed graphs with weights, or weighted digraphs, are used to represent networks that, 

depending on the applications in which they are used, include junctions and links characterized 

by specific quantitative properties.  This thesis uses a weighted graph to model the impact of 

traffic conditions on travel time.  In the proposed model the link weight, 𝑤(𝑙), represents the 

expected average travel time on the associated road segment.  Link weights are used to 

calculate the optimal route in the network. The details of route optimization are described in 

section 3.2. The average vehicular travel time corresponding to a given link (i.e. road segment) 

is calculated based on the estimated average traffic speed and the physical length of the road 

segment.  Similarly, the weights of the individual pedestrian links are calculated based on the 

length of the pedestrian link and an arbitrarily selected average walking speed of pedestrians. 

The methodology proposed in this thesis integrates the transit network model introduced by 

Pajor (2009) into a multimodal transportation modeling and routing algorithm.  Modeling public 

transportation requires additional steps to account for the predefined schedules available for 

each public transit stop in the network.  A transit vehicle schedule is represented by a set of 

three elements (𝐶, 𝑆, 𝑍) where, 𝐶 is a set of connections, 𝑆 is the set of all stations and Z 

represents a set of transit vehicles.  A connection 𝑐𝑖 ∈ 𝐶 is defined by the set 

(𝑧𝑖 , 𝑠𝑖, 𝑡𝑖 , 𝑠𝑖+1, 𝑡𝑖+1) where 𝑧𝑖 is the transit vehicle, 𝑧𝑖 ∈ 𝑍, traveling between stations 𝑠𝑖 and 

𝑠𝑖+1 ∈ 𝑆, which departs from station 𝑠𝑖 at time 𝑡𝑖 and arrives at station 𝑠𝑖+1 at time 𝑡𝑖+1.   
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In the proposed multimodal network model a public transit connection represents one 

uninterrupted segment of the transit schedule, the travelled distance between two adjacent 

stops, 𝑠𝑖 and 𝑠𝑖+1, along a path between two arbitrarily selected origin and destination nodes in 

the network.  Consequently, a transit vehicle can be modeled traveling along a given path which 

consists of multiple connections. 

Using the above notation, a public transit network can be represented via a set of connections 

and a set of nodes (representing transit links and stations, respectively). Additionally, a super-

node is defined to enable modeling of different transit lines and their schedule. Consequently a 

super node is added to each station 𝑠 ∈ 𝑆, which is referred to as a station node. However, 

station nodes are not directly interconnected. In order to build a connection between the 

station nodes that correspond to two adjacent stations, another type of nodes is introduced – 

the route node, 𝑟.  Route nodes are associated with each station in the network and are 

implemented to allow tracking of transit vehicles by the routing algorithm. Route nodes 

represent the arrival and departure events at each station of the public transit network.  Route 

nodes are characterized by three attributes: event type (arrival or departure), event timestamp, 

and additional service related factors (e.g. bus or train  number).  

A routing algorithm in a multimodal transportation network has to account for the transfer 

time encountered by travelers as they transfer between transportation modes and/or vehicles. 

Therefore, at each station, a transfer link is defined between each route node (𝑟) and its 

corresponding station (𝑠).  This type of link is denoted by the pair (𝑟, 𝑠). The weight of a 

transfer link represents the transfer time, and it can be calculated in various ways depending on 
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the physical configuration of the station. For example, a traveler parking her bike in front of a 

subway station would encounter a transfer time calculated as the average expected time 

needed to reach from entrance of subway terminal to boarding platform (see Figure 1).  The 

procedure to estimate the transfer time is explained next.  

Let’s denote by 𝑇𝑅 the set of available transit options between two adjacent transit stations. A 

transit option is defined by the transit mode and its corresponding departure time when 

moving  between two adjacent stations. An element of the set 𝑇𝑅, is denoted by 𝑡𝑟, and it 

represents an arbitrary route. Each route 𝑡𝑟 ∈ 𝑇𝑅 is used by transit vehicles that travel through 

a predetermined sequence of stations: [𝑠1, 𝑠2, … , 𝑠𝑘]. The schedules of individual transit lines 

are used in the routing algorithm to identify the optimal route between a given pair of origin-

destination nodes. Figure 1 shows a representation of section of a hypothetical transit network.  

Stations 𝑠1 and 𝑠2 are connected either by trains 𝑧1 and 𝑧2 that use the same route but depart 

from station 𝑠1 at different times (𝑡1
𝑧1 , 𝑡2

𝑧2), or by train 𝑧3 that uses a different route and 

schedule (𝑡3).  The path of a traveler transferring between the trains serving different lines can 

be modeled via station node and route node.  This is done through the transfer links between 

station node (𝑠1𝑜𝑟 𝑠2) and route node (𝑟1, 𝑟2,  𝑟3 𝑜𝑟 𝑟4). The model could then account for the 

additional time incurred due to the transfer time corresponding to applicable transfer links (i.e. 

links (𝑟1, 𝑠1), (𝑟2, 𝑠1), (𝑟3, 𝑠2) and (𝑟4, 𝑠2) ). 
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Figure 1: Station nodes (𝑠1, 𝑠2) and their associated route nodes (𝑟1, 𝑟2, 𝑟3, 𝑟4) 

Using the notation introduced above, connections related to each route between two stations 

can be defined based on the available transit mode (𝑧) and its arrival and departure time 

to/from the origin station respectively. For each connection 𝑐𝑛 = (𝑧𝑛, 𝑠𝑖, 𝑠𝑖+1, 𝑡𝑖 , 𝑡𝑖+1) in the 

schedule of route 𝑟, the link weight at a given time 𝜏: 𝑤𝑟(𝜏), where 𝜏 < 𝑡𝑖, is sum of the travel 

time of the next available transit vehicle (𝑛 th train) on that route, 𝑤𝑟(𝑡𝑖), and the waiting time 

at station (𝑡𝑖 − 𝜏):  

𝑤𝑟(𝜏) = 𝑤𝑟(𝑡𝑖)+ (𝑡𝑖 − 𝜏)         (1) 

By following the above methodology, road, transit, cycling and walking networks can be 

modeled as different layers and then all individual networks can be integrated into a single 

transportation model able to represent a multimodal study network. 
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3.2 Routing Algorithm Using Markov Decision Processes (MDP) 

After developing a model to represent the multimodal transportation network, the next step 

involves selecting an adequate routing algorithm to compute optimal paths for network users.  

The algorithm proposed in this thesis integrates the travel time and travel cost constraints into 

a single common performance measure.  A stochastic and time dependent modeling approach 

can be applied to use historical and/or real-time information about travel conditions. The travel 

time (i.e. weight) of the next link in an evolving trip can then be determined during the search 

for an optimal path by keeping track of the time consumed up to the current node and 

retrieving the expected travel time depending on the arrival time to the current node. 

In statistical analysis, random variables are treated as uncertain, numerical quantities. When 

random variables are indexed by time, they are referred to as stochastic processes. Stochastic 

processes usually model the evolution of a random system over time. In this study Markov 

Decision Processes (MDP) are used to develop an optimal routing methodology for stochastic 

time-dependent networks to minimize the overall travel cost based on current traffic conditions 

(i.e. level of congestion) in the network.  

Suppose there is a physical or mathematical system that has 𝐼 possible states and, at any one 

time, the system is in one and only one of its 𝐼 states. If at a given observation period, e.g. 𝑡th 

period, the probability of the system being in a particular state depends on its status at the 

previous, (𝑡 − 1)th period, such a system is called Markov Chain. Markov processes are 

stochastic processes characterized by the Markov property (i.e. given the present state of the 

process, the past history does not affect conditional probabilities of events defined in the 
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future, Markov and Nagorny 1988). Markov chains are discrete parameter Markov processes 

whose state space is finite or countable infinite. A set is countable infinite if its elements can be 

put in one-to-one correspondence with the set of natural numbers. A brief overview of Markov 

chains is presented below; additionally a detailed description can be found in the literature 

(Sheskin 2011):  

A Markov chain is a sequence of states, {𝑋1, 𝑋1, 𝑋2, … , 𝑋𝑁} observed at consecutive time 

instants (𝑡, 𝑡1, … , 𝑡𝑁) at locations named nodes denoted by 𝑛 = (1,2, … , 𝑁).  If at node 𝑛 the 

system is at state 𝑖 = (1,2, … , 𝐼), then 𝑋𝑛 = 𝑖 and its probability of occurrence is denoted by 

P(𝑋𝑛 = 𝑖).  The conditional probability that the system will be in state 𝑗 at the next observed 

period (i.e. node 𝑛 + 1), given it is currently (i.e. node 𝑛) in state 𝑖 is called transition probability 

and is denoted by 𝑝𝑖𝑗 .  The Markov property states that a transition probability depends only on 

the present state of process (𝑋𝑛) and the history of process prior to the present node can be 

ignored.  Therefore: 

𝑝𝑖𝑗 = P(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑘, … , 𝑋1 = 𝑔) = P(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖)  (2) 

The transition probabilities for a Markov chain with 𝐼 states are recorder by an 𝐼 × 𝐼 matrix. 

This matrix is called a one-step transition probability matrix and denoted by 𝑃𝑇. The probability 

vector for the 𝑛𝑡ℎ node, denoted by 𝑃(𝑛), is probabilities of observing possible states at that 

node and can be calculated by using equation (3): 

𝑃(𝑛) = 𝑃(𝑛−1)𝑃𝑇         (3) 

Where: 𝑃(𝑛−1) is probability matrix for the (𝑛 − 1)𝑡ℎ node. 
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 When a Markov process transitions from one state to another and it has certain quantifiable 

impact on a given parameter, the modeling system is called Markov Chain with Rewards (MCR), 

because the expected impact on the value of this parameter is typically positive it is referred to 

as “reward”.  Since in this study the affected parameter is travel cost, whose increase in value is 

associated with negative effects, we refer to this parameter as a “penalty”. The reward is 

associated with the traffic condition in the transportation network and a value iteration 

approach can be used to evaluate its expected total value during a finite planning horizon.  A 

MCR generates a sequence of penalties at each node, as it evolves over certain number of 

nodes from state 𝑖 to state 𝑗, in accordance with one-step transition probability (𝑃𝑇).  The 

expected penalty observed from node 𝑛 to node 𝑛+1 is denoted by 𝑒(𝑛+1)
(𝑛)

 and is calculated 

using equation (4):  

 𝑒(𝑛+1)
(𝑛)

=  𝑃(𝑛). 𝑄𝑛+1
(𝑛)

          (4) 

Where 𝑃(𝑛) is the probability vector for node 𝑛 and 𝑄𝑛+1
(𝑛)

 is the vector of penalties from node 𝑛 

to node 𝑛+1 under different states 𝑖 = (1,2, … , 𝐼). The size of vector 𝑄𝑛+1
(𝑛)

 is the same as the 

total number of states (𝐼). 

When decisions are added to a set of MCRs, the system is called Markov Decision Process 

(MDP).  MDP generates a sequence of states and an associated sequence of penalties as it 

evolves over certain number of nodes from state to state, governed by both its transition 

probabilities and the series of decisions made (Sheskin 2011). A sample sequence of states, 

decisions, transitions and penalties for an MDP is shown in Figure 2.  In this figure (𝑠1, 𝑠2, … , 𝑖, 𝑗) 

represent states of the model at different times (𝑡1, 𝑡2, … , 𝑡𝑛, 𝑡𝑛+1) and at nodes (1, 2, … , 𝑛, 𝑛 +
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1). At each node, the state probability vectors are (𝑃(1), 𝑃(2), … , 𝑃(𝑛), 𝑃(𝑛+1)). In a 

transportation network, nodes represent available junctions and states represent different 

traffic conditions within the network. 𝑑𝑚
(𝑛)

 indicates decision 𝑚 that is made at node 𝑛. In the 

figure, possible decisions that can be made at node 𝑛 are shown as (𝑑1
(𝑛)

, 𝑑2
(𝑛)

, 𝑑3
(𝑛)

) that are 

made at respective state. To optimize an objective function (i.e. minimizing total travel 

time/cost), transportation routing algorithm decisions pertain to the selection of the next node 

in the route, as well as the transportation mode to use to move to the next node.  

Decision 𝑚 (𝑚 ∈ {1,2,3}) at node 𝑛 identifies the actual mode and node that should be 

taken/followed after node 𝑛, which in this figure is node 𝑛 + 1. The incurred penalty at each 

node depends on the decision that is made given different network states. The penalties at 

node 𝑛 are shown as 𝑞𝑖
𝑑𝑚

(𝑛)
, which represents the penalty associated with decision 𝑑𝑚

(𝑛) 

given state 𝑖. In a transportation routing algorithm the penalty could be the travel time and/or 

the cost of travel. For example, if between node 𝑛 and 𝑛 + 1 two possible routes/modes are 

available, one by car and one by bus, then 𝑞𝑖
𝑑1

(𝑛)
 could represent travel time under different 

traffic conditions when traveler drives between the two nodes. Similarly 𝑞𝑖
𝑑2

(𝑛)
 denotes travel 

time from 𝑛 to 𝑛 + 1, under different traffic conditions, if traveler takes the bus. 



  
 

58 

 

 

Figure 2: Sequence of states, decisions, transitions and penalties for an MDP. 

Using this structure, one can define an optimal route over a finite planning horizon to minimize 

the expected total penalties received at the end of the given horizon when traveling between 

the origin (𝑂) and the destination (𝐷), as shown in equation (5): 

𝑒(𝑛) = 𝑚𝑖𝑛
𝑄

[𝑃(𝑛). 𝑄𝑛+1
(𝑛)

] +  𝑒(𝑛+1) (5) 

𝑛 = 𝑂, 𝑒(𝐷) = 0 

Where: 

𝑒(𝑛): Expected total penalties (travel time/cost) between node 𝑛 and destination (𝐷) 

𝑃(𝑛): Vector of the probabilities of the system to be in each state (traffic condition). The 

elements of 𝑃(𝑛) are denoted as 𝑝𝑖
(𝑛)

, which is the probability of observing state 𝑖 at 

node 𝑛. 

𝑄𝑛+1
(𝑛)

: Matrix of penalties from node 𝑛 to 𝑛 + 1, in each possible state (travel time/cost from 𝑛 

to 𝑛 + 1, under each traffic condition). The elements of 𝑄
𝑛+1

(𝑛)
 are denoted as 𝑞𝑖

𝑑𝑚
(𝑛)

, 
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which is the travel time under traffic condition 𝑖 from n if decision 𝑚 (i.e. next node and 

mode to follow) is made.  

In the proposed methodology, similar to the Canadian Traveler problem (Nikolova and Karger 

2008), it is assumed that travelers are able to make re-routing decisions based on the 

information available when they approach any given node in the network.  The proposed 

routing algorithm identifies the next transportation mode and the associated link based on 

previously realized travel times and the availability of current traffic conditions on the links 

between the current and the destination nodes. In a transportation network, a system would 

be a (virtual) traveler and the state of the system would be the traffic condition at its location.  

At each node in the network, the total time traveled in the network from beginning of the route 

is readily available.  Therefore, at any node 𝑛 within the network, the total travel time from the 

origin node (𝑂) up to the next node, 𝑛 + 1, depends on the realized travel time up to current 

node 𝑛 and on the estimated travel time from 𝑛 to 𝑛 + 1. Using the notations presented in 

equations (2) through (5) one can represent the sequence of realized travel times through a 

Markov chain. Consequently, the nodes (i.e. junctions, stops, bike stations, etc.) in the 

transportation network can be modeled as nodes of a Markov chain and the traffic condition at 

a given node 𝑛 is represented by the Markov chain’s state 𝑋𝑡𝑛
.  Based on this notation a finite 

number of system states or traffic conditions, 𝐼, can be used to represent how travel times 

between adjacent nodes are affected by traffic conditions.  The transition probabilities denote 

the probability that traffic conditions change while travelling from one node, corresponding to 

a specific state in the associated Markov chain, to another node.  The proposed algorithm is 
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used to determine which one of the available links between the current node and the following 

node should be used to receive minimum penalty. The penalty for this Markov chain is defined 

as travel time or the equivalent cost of travel time. 

Equation (5) estimates the optimal route from origin (node 𝑂) to destination (node 𝐷), based 

on the available routing decisions. Total expected penalty (travel time) from node 𝑛 to 

destination is the sum of the travel time from the current node (𝑛) to the next node (term 

𝑃(𝑛). 𝑄𝑛+1
(𝑛)

  in equation 5), identified based on selected route/mode, and the expected penalty 

(travel time) from the adjacent node to destination (term 𝑒(𝑛+1) in equation 5). At each 

iteration, the probability of different traffic states occurrence at current node (𝑃(𝑛)) is applied 

to the corresponding travel times on the link that connects nodes 𝑛 and adjacent node (𝑛 + 1).  

When the iterative calculation is completed until the destination node, the minimum expected 

penalty (travel time) from node 𝑛 to destination among all available routes is reported as the 

optimal selection. 

This methodology requires that at each node, the travel time of all the links, and all 

transportation modes from the current node to the destination node, to be recalculated 

considering the probability of having different traffic states. Travel time on each link depends 

on its corresponding traffic condition and their probabilities. The probabilities of travel times 

occurrences on each link and under different traffic conditions give the stochastic and time-

dependent features of the network model (i.e. depending on the arrival time at the entry node 

of a link, traffic conditions may change).  Therefore, travel time incurred by a traveler on any 

link may change with the arrival time at the entry node of the link. Next section describes a 
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method that can be used to capture this change in traffic condition and travel times in the 

model.   

3.3 Evaluation of Traffic Conditions and Transition Probability Matrix in MDP 

In order to estimate the probability of observing different traffic conditions and to determine 

the associated transition probability matrix, average traffic speed can be used as a 

representative parameter to define traffic conditions at a specific location and time. To 

estimate changes in traffic condition based on average speeds, this thesis applies the method 

proposed by Qi and Ishak (2012) which is described here after. The speed data from the study 

area is divided into several intervals (bins), each indicating one traffic condition (from free-flow 

to congested traffic conditions). The transition probability for speed is calculated as the 

probability of speed change from one interval to another. It will be used as the probability of 

transitioning between related traffic conditions in the transition probability matrix of the 

proposed MDP algorithm. 

Given an arbitrarily selected location within a transportation network, one can assess the traffic 

conditions via the observed range of speed of traffic at time 𝑡, denoted by 𝑋𝑡. Hence, 𝑋𝑡 defines 

the current state of traffic at time 𝑡. Similarly, 𝑋𝑡+𝛿 is used to define the future state of traffic 

some predefined  𝛿 time units later. Values of 𝛿 are chosen based on the frequency of 

anticipated changes in traffic conditions, typically measured by the speed of traffic stream. 

Different time horizons (e.g. 1, 2, 5 minutes) can be used to better capture the traffic conditions 

during the assessment period. The value of 𝛿 should also be correlated with the available time 

period of speed observations. The transition probability from current state 𝑋𝑡 to a future state 
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𝑋𝑡+𝛿 given the current state 𝑋𝑡 is denoted by 𝑝(𝑎, 𝑏, 𝛿), where 𝑎 and 𝑏 represent the current 

and future speed intervals, respectively. Equation (6) is used to estimate 𝑝(𝑎, 𝑏, 𝛿) from the 

speed observations at a specific location and for a specific time horizon 𝛿:  

𝑝(𝑎, 𝑏, 𝛿) =
𝑁{𝑋𝑡+𝛿 = 𝑏|𝑋𝑡 = 𝑎}

𝑁{𝑋𝑡=𝑎}
         

 (6)  

Where 𝑎 and 𝑏 are speed intervals and 𝑁{𝑋𝑡+𝛿 = 𝑏|𝑋𝑡 = 𝑎} is the number of instances when it 

was observed a change in the traffic speed from range 𝑎 to range 𝑏, during period of 𝛿 time 

units. In equation (6) 𝑁{𝑋𝑡 = 𝑎} is the number of instances when the speed range 𝑎 was 

observed. Both 𝑁{𝑋𝑡+𝛿 = 𝑏|𝑋𝑡 = 𝑎}and 𝑁{𝑋𝑡 = 𝑎} are calculated directly from the available 

traffic speed data (i.e. observed real-world or simulation data). 

The accuracy of estimated probability of changes in traffic conditions depends on road type, 

resolution of the collected data and the time period for which speed data is aggregated. For 

example, 5-minute speed data on arterials could capture the changes in traffic condition more 

accurately compared to highways. On higher speed roadways (i.e. highways), traffic data 

aggregated for shorter time periods (e.g. 2-minute instead of 5-minute) could result in better 

estimation of traffic condition. 

3.4 MDP Flowchart to identify Optimal Route 

After calculating the transition probability matrix by using the methodology described in the 

previous section, the associated cost values of individual links on the completed path will be 

used to calculate the cost of using that path, referred to as penalty in the MDP. This cost has to 
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be evaluated for all the possible routes from the current node to the destination node, and, the 

route with the minimum cost will be selected as the optimal route.  This iterative method uses 

the optimization criterion defined in equation (5) to identify the next link to be used by the 

traveler.  Figure 3 presents a flowchart summarizing the procedure described above. 

In the proposed procedure, the subject transportation network is modeled based on the graph 

theory and using the transportation network associated links and nodes. The origin and 

destination nodes are set, and possible traffic conditions (i.e. system states) are identified. 

State probability matrix at each node on any route between origin and destination can be 

calculated using the initial probability matrix at origin and the transition probability matrix. 

Finally, the vector of penalties to travel from each node to all its adjacent nodes under all 

possible traffic conditions and available modes (𝑄) is then estimated. 

A route list (ℛ) is then created to register all the interconnected nodes that build a route 

between the origin and destination, in an ordered fashion. At the beginning of the procedure, 

the list is initialized with the origin node. As we progress through the network, at each node (𝑛), 

a set of directly connected (adjacent) nodes are defined (Kn). This set is used to keep track of 

visited nodes to avoid re-visiting them and eliminates the possibility of looping during the route 

computation process.  The algorithm processes all adjacent nodes, and at each node the same 

process is applied. As new nodes are added to the route list, they are checked against the 

destination. When a route between the origin and destination is identified, the expected total 

penalty (travel time) between the two nodes will be estimated based on different state 
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probabilities and by using equation (5). This computation is represented by the subroutine 

defined in the flowchart and is detailed in Figure 3. 

The procedure required to distinguish between different transportation modes is implemented 

within the subroutine and is presented next. At each step the travel time between two 

consecutive nodes that belong to route (ℛ) are calculated considering the following rules: 

1. Initial parameter initialization includes: Maximum number of mode transfers, waiting 

time for “Transit” mode, parking time for “Driving” mode; 

2. A mode change when traveling from one node to another is acceptable only if total 

number of mode changes does not exceed a maximum prescribed value; 

3. When switching from “Driving” mode to other modes, a fixed parking time is accounted 

for; 

4. When switching to “Transit” mode, the waiting time is estimated based on the starting 

time at Origin, the time it takes to get from Origin to Transit node and the next available 

departure (according to transit schedule); 

Calculated travel time for each route is compared with the previously identified optimum travel 

time. If a new route is found to have a smaller travel time it will be recorded as the updated 

optimal route.  

The process continues with the remaining nodes within the network in order to determine all 

possible routes between origin and destination. The algorithm keeps track of the minimum 

penalty (expected travel time), 𝐸𝑚𝑖𝑛, for all calculated routes and the associated route list, 



  
 

65 

 

ℛ𝑜𝑝𝑡. When all the nodes are visited, the algorithm reports the optimal route (ℛ𝑜𝑝𝑡) and its 

expected minimum penalty (𝐸𝑚𝑖𝑛). The time required to complete the iterative process 

depends on the size of network (i.e. number of nodes and links) and the computing 

performance of the machine used for the analysis.  

 The proposed algorithm is applied to an example network here after: 
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Figure 3: MDP Flowchart 
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This example calculated the optimal path between point 𝑂 (origin) and point 𝐷 (destination) in 

the network shown in Figure 4. The road network is modeled using five nodes (nodes 

“𝑂, 𝐴, 𝐵, 𝐶, 𝐷”) and seven links (𝑂𝐴, 𝑂𝐵, 𝐴𝐵, 𝐴𝐶, 𝐵𝐶, 𝐵𝐷, 𝐶𝐷), all bidirectional. These links are 

used for “Driving” mode. An alternative transportation mode, “Transit”, is available between 

nodes 𝐵 𝑎𝑛𝑑 𝐷. The transit line is presented using the route nodes previously described in 

Section 3.1 (i.e. 𝑟1, 𝑟2). Station nodes are not used in network modeling, therefore are not 

shown in this figure. It is assumed that every 5 minutes a subway travels between nodes 

𝐵 𝑎𝑛𝑑 𝐷. The time takes for traveler to get to the platform is shown on the transfer links in 

Figure 4. At the beginning the algorithm sets the route list 𝑅 = ∅ and the minimum travel time 

from 𝑂 to 𝐷: 𝐸𝑚𝑖𝑛 = ∞. 

It is assumed that two traffic states are available in the network: i=1 (normal) and i=2 

(congested). The penalty associated with moving between only two adjacent nodes, as defined 

in equation 5, is considered to be the expected travel time between the two nodes. The vector 

of travel time values (penalties) under each traffic state (i) from each node to its adjacent node 

(denoted by 𝑄) is shown on the corresponding link between the two nodes and is measured in 

minutes (see Figure 4). For example, the expected travel times under normal and under 

congested traffic states, between nodes “𝑂” and “𝐵”, are 2 and 4 minutes, respectively. In this 

example, it is assumed that travel times on both directions of each link are equal (e.g. 𝑄𝐵
𝑂 =

𝑄𝑂
𝐵). 
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Figure 4: Example Network  

At the beginning of process, after defining nodes and links and identifying the origin and 

destination nodes, the following steps are followed to identify the optimum path using the 

flowchart presented in Figure 3: 

𝑛 = 𝑂 (𝑂𝑟𝑖𝑔𝑖𝑛), ℛ = ∅, 𝐸𝑚𝑖𝑛 = ∞,  

Add 𝑛 to route list: ℛ= ℛ ∪  {𝑛} = {𝑂} 

Identify adjacent nodes to 𝑛: 𝒦𝑂 = {𝐴, 𝐵}, 𝑖 = |𝒦𝑂| = 2 

|𝒦𝑂| ≠ 0 

𝑘𝑖=2 = 𝐵 ˄ 𝑘𝑖  ∉  ℛ  

 𝑛 = 𝑘𝑖 = 𝐵 (𝑛 ≠ 𝐷), 𝒦𝑂 = {𝐴, 𝐵}, ℛ = (𝑂, 𝐵) 

Identify adjacent nodes to 𝑛 = 𝐵: 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷, 𝑟1}, 𝑖 = |𝒦𝐵| = 5 
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|𝒦𝐵| ≠ 0 

𝑘𝑖=5 = 𝑟1 ˄ 𝑘𝑖  ∉  ℛ  

𝑛 = 𝑘𝑖 = 𝑟1 (𝑛 ≠ 𝐷), 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷, 𝑟1}, ℛ = (𝑂, 𝐵, 𝑟1) 

Identify adjacent nodes to 𝑛 = 𝑟1: 𝒦𝑟1
= {𝐵, 𝑟2}, 𝑖 = |𝒦𝑟1

|=2 

|𝒦𝑟1
| ≠ 0 

𝑘𝑖=2 = 𝑟2 ˄ 𝑘𝑖  ∉  ℛ  

𝑛 = 𝑘𝑖 = 𝑟2 (𝑛 ≠ 𝐷), 𝒦𝑟1
= {𝐵, 𝑟2}, ℛ = (𝑂, 𝐵, 𝑟1, 𝑟2) 

Identify adjacent nodes to 𝑛 = 𝑟2: 𝒦𝑟2
= {𝑟1, 𝐷}, 𝑖 = |𝒦𝑟2

| = 2 

|𝒦𝑟2
| ≠ 0 

𝑘𝑖=2 = 𝐷 ˄ 𝑘𝑖  ∉  ℛ  

𝑛 = 𝑘𝑖 = 𝐷 (𝑛 = 𝐷), 𝒦𝑟2
= {𝑟1, 𝐷},ℛ = (𝑂, 𝐵, 𝑟1, 𝑟2, 𝐷) 

Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐵, 𝑟1, 𝑟2, 𝐷) 

To calculate the optimal route using the proposed methodology, the initial probability 

vector, 𝑃(𝑂), and the transition probability matrix, 𝑃𝑇, are defined as below: 

 𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 
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The probability vector at each node can be calculated using equation 3. For node 𝐵: 

𝑃(𝐵) = 𝑃(0). 𝑃𝑇 = [0.6   0.4]. [
0.7   0.3
0.2   0.8

] =  [0.5   0.5]  

There are no traffic conditions defined for “Transit” or “Walk” modes. Nevertheless, the steps 

within the travel-time calculation subroutine of the flow chart are as follows: 

First, the transportation modes available at each node in route ℛ are identified:  

M = {𝐷𝑟𝑖𝑣𝑒, 𝑊𝑎𝑙𝑘, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡, 𝑊𝑎𝑙𝑘} 

Other initializations: 𝑗 = 1, 𝑚0 = 𝐷𝑟𝑖𝑣𝑒, 𝑡𝑟𝑎𝑛𝑠𝑓 = 0, 𝑤 = 0, 𝑒𝑅
(𝑂)

= 0 

𝑟𝑗 = 𝑂,M𝑗 = 𝐷𝑟𝑖𝑣𝑒, 𝑟𝑗+1 = 𝐵 

M𝑗 = 𝑚0: No mode change happened from node 𝑗 to 𝑗 + 1. 

𝑒𝑅
(𝑂)

= 0 + 𝑤 +  𝑃(𝑂). 𝑄𝐵
(𝑂)

= [0.6   0.4]. [
2
4

] = 2.8 𝑚𝑖𝑛 

𝑗 = 2, 𝑟𝑗 = 𝐵,M𝑗 = 𝑊𝑎𝑙𝑘, 𝑟𝑗+1 = 𝑟1 

M𝑗 ≠ 𝑚0: mode change happened from node 𝑗 to 𝑗 + 1. 𝑡𝑟𝑎𝑛𝑠𝑓 < 4 

𝑡𝑟𝑎𝑛𝑠𝑓 = 1, 𝑤 = 𝑝𝑎𝑟𝑘 = 5 𝑚𝑖𝑛 (additional 5 minutes to park the car and get to the subway 

entrance), 𝑚0 = M𝑗 =  𝑊𝑎𝑙𝑘 

𝑒𝑅
(𝑂)

= 2.8 + 𝑤 +  𝑄𝑟1

(𝐵)
= 2.8 + 5 + 1 = 8.8 min 
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𝑗 = 3, 𝑤 = 0, 𝑟𝑗 = 𝑟1,M𝑗 = 𝑇𝑟𝑎𝑛𝑠𝑖𝑡, 𝑟𝑗+1 = 𝑟2 

M𝑗 ≠ 𝑚0: mode change happened from node 𝑗 to 𝑗 + 1. 𝑡𝑟𝑎𝑛𝑠𝑓 < 4 

Assuming traveler started at 4:00 pm and the subway runs at 5 minute intervals between 4 and 

5 pm:  

𝑡𝑟𝑎𝑛𝑠𝑓 = 2, 𝑤 = 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 04: 10: 00 −  (04: 00: 00 + 00: 08: 48) = 1.2 𝑚𝑖𝑛 

𝑚0 = M𝑗 =  𝑇𝑟𝑎𝑛𝑠𝑖𝑡 

𝑒𝑅
(𝑂)

= 8.8 + 1.2 +  𝑄𝑟2

(𝑟1)
= 8.8 + 1.2 + 2 = 12 𝑚𝑖𝑛 

𝑗 = 4, 𝑤 = 0, 𝑟𝑗 = 𝑟2,M𝑗 = 𝑊𝑎𝑙𝑘, 𝑟𝑗+1 = 𝐷 

M𝑗 ≠ 𝑚0: mode change happened from node 𝑗 to 𝑗 + 1. 𝑡𝑟𝑎𝑛𝑠𝑓 < 4 

𝑡𝑟𝑎𝑛𝑠𝑓 = 2, 

𝑒𝑅
(𝑂)

= 12 + 0 +  𝑄𝐷
(𝑟2)

= 12 + 1 = 13 𝑚𝑖𝑛 

𝐸𝑚𝑖𝑛 = ∞ > 𝑒𝑅
(𝑂)

 →  𝐸𝑚𝑖𝑛 = 𝑒𝑅
(𝑂)

= 13 ˄ ℛ𝑜𝑝𝑡 = ℛ = (𝑂, 𝐵, 𝑟1, 𝑟2, 𝐷) 

ℛ = (𝑂, 𝐵, 𝑟1, 𝑟2, 𝐷), |ℛ| = 4,  𝑛 = 𝑟|ℛ| = 𝑟2 

𝒦𝑟2
= {𝑟1}, 𝒦𝑟2

≠ ∅ → 𝑖 = | 𝒦𝑟2
| = 1 

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝑟2
= 𝑟1) 
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| 𝒦𝑟2
| ≠ 0 → 𝑘𝑖=1 = 𝐵 ˄ 𝑘𝑖  ∈ ℛ  

| 𝒦𝑟2
| = 1 → ℛ = (𝑂, 𝐵, 𝑟1, 𝑟2),ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝑟1, 𝑖 = |𝒦𝑟1

| = 1 

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝑟1
= 𝐵) 

| 𝒦𝑟1
| ≠ 0 → 𝑘𝑖=1 = 𝐵 ˄ 𝑘𝑖  ∈ ℛ  

| 𝒦𝑟1
| = 1 → ℛ = (𝑂, 𝐵, 𝑟1),ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝐵, 𝑖 = |𝒦𝐵| = 4  

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷}) 

|𝒦𝐵| ≠ 0 → 𝑘𝑖=4 = 𝐷 ˄ 𝑘𝑖 ∉ ℛ 

𝑛 = 𝑘𝑖 = 𝐷 (𝑛 = 𝐷), 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷}, ℛ = (𝑂, 𝐵, 𝐷) 

Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐵, 𝐷) 

To calculate the optimal route using the proposed methodology, the initial probability 

vector, 𝑃(𝑂), and the transition probability matrix, 𝑃𝑇, are defined as below: 

 𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 

The probability vector at each node can be calculated using equation 3. For node 𝐵: 

𝑃(𝐵) = 𝑃(0). 𝑃𝑇 = [0.6   0.4]. [
0.7   0.3
0.2   0.8

] =  [0.5   0.5]  

Now if one follows the steps in the travel time calculation subroutine of the flow chart: 
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M = {𝐷𝑟𝑖𝑣𝑒}   

𝑗 = 1, 𝑒𝑅
(𝑂)

= 0 

𝑟𝑗 = 𝑂, 𝑟𝑗+1 = 𝐵 

𝑒𝑅
(𝑂)

= 0 +  𝑃(𝑂). 𝑄𝐵
(𝑂)

= [0.6   0.4]. [
2
4

] = 2.8 𝑚𝑖𝑛 

𝑗 = 2, 𝑟𝑗 = 𝐵, 𝑟𝑗+1 = 𝐷 

𝑒𝑅
(𝑂)

= 2.8 +  𝑃(𝐵). 𝑄𝐷
(𝐵)

= 2.8 +  [0.5   0.5]. [
3
5

] = 2.8 + 4 = 6.8 𝑚𝑖𝑛 

𝐸𝑚𝑖𝑛 = ∞ > 𝑒𝑅
(𝑂)

 →  𝐸𝑚𝑖𝑛 = 𝑒𝑅
(𝑂)

= 6.8  and ℛ𝑜𝑝𝑡 = ℛ = (𝑂, 𝐵, 𝐷) 

ℛ = (𝑂, 𝐵, 𝐷), |ℛ| = 2,  𝑛 = 𝑟|𝑅| = 𝐵 

𝒦𝐵 = {𝑂, 𝐴, 𝐶}, 𝒦𝐵 ≠ ∅ → 𝑖 = |𝒦𝐵| = 3 

𝑘𝑖=3 = 𝐶 ˄ 𝑘𝑖  ∉  ℛ  

𝑛 = 𝑘𝑖 = 𝐶 (𝑛 ≠ 𝐷), 𝒦𝐵 = {𝑂, 𝐴, 𝐶}, ℛ = (𝑂, 𝐵, 𝐶) 

Identify adjacent nodes to 𝑛 = 𝐶: 𝒦𝐶 = {𝐴, 𝐵, 𝐷}, 𝑖 = |𝒦𝐶| = 3 

|𝒦𝐶| ≠ 0 

𝑘𝑖=3 = 𝐷 ˄ 𝑘𝑖  ∉  ℛ  

𝑛 = 𝑘𝑖 = 𝐷 (𝑛 = 𝐷), 𝒦𝐶 = {𝐴, 𝐵, 𝐷}, ℛ = (𝑂, 𝐵, 𝐶, 𝐷) 
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Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐵, 𝐶, 𝐷) 

𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 

𝑃(𝐵) = 𝑃(0). 𝑃𝑇 = [0.5   0.5]  

𝑃(𝐶) = 𝑃(𝐵). 𝑃𝑇 = [0.45   0.55]  

When following the steps in the travel time calculation subroutine of the flow chart, we have: 

M = {𝐷𝑟𝑖𝑣𝑒}  

𝑗 = 1, 𝑒𝑅
(𝑂)

= 0 , 𝑟𝑗 = 𝑂, 𝑟𝑗+1 = 𝐵 , 𝑒𝑅
(𝑂)

= 0 + 𝑃(𝑂). 𝑄𝐵
(𝑂)

= [0.6   0.4]. [
2
4

] = 2.8 𝑚𝑖𝑛 

𝑗 = 2, 𝑟𝑗 = 𝐵, 𝑟𝑗+1 = 𝐶, 𝑒𝑅
(𝑂)

= 2.8 +  𝑃(𝐵). 𝑄𝐶
(𝐵)

= 2.8 + [0.5   0.5]. [
5
7

] = 2.8 + 6 = 8.8 𝑚𝑖𝑛 

𝑗 = 3, 𝑟𝑗 = 𝐶, 𝑟𝑗+1 = 𝐷, 𝑒𝑅
(𝑂)

= 8.8 + 𝑃(𝐶). 𝑄𝐷
(𝐶)

= 8.8 + [0.45   0.55]. [
1
2

] = 10.35 𝑚𝑖𝑛 

𝑒𝑅
(𝑂)

= 10.35, 𝐸𝑚𝑖𝑛 = 6.8 < 𝑒𝑅
(𝑂)

, Therefore 𝐸𝑚𝑖𝑛and ℛ𝑜𝑝𝑡will NOT change. 

ℛ = (𝑂, 𝐵, 𝐶, 𝐷), |ℛ| = 3,  𝑛 = 𝑟|ℛ| = 𝐶 

𝒦𝐶 = {𝐴, 𝐵}, 𝒦𝐶 ≠ ∅, 𝑖 = |𝒦𝐶| = 2 

|𝒦𝐶| ≠ 0 → 𝑘𝑖=2 = 𝐵 ˄ 𝑘𝑖  ∈ ℛ 

|𝒦𝐶| ≠ 1 → 𝒦𝐶 = {𝐴, 𝐵}, 𝑖 = |𝒦𝐶| = 1 
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|𝒦𝐶| ≠ 0 → 𝑘𝑖=1 = 𝐴 ˄ 𝑘𝑖 ∉  ℛ 

𝑛 = 𝑘𝑖 = 𝐴 (𝑛 ≠ 𝐷), 𝒦𝐶 = {𝐴}, ℛ = (𝑂, 𝐵, 𝐶, 𝐴) 

There is no node from 𝐴 to destination, which means this loop-processed node is a dead-end 

node. The algorithm is able to identify this situation and it returns to the previous node by 

following the steps below: 

Identify adjacent nodes to 𝑛 = 𝐴: 𝒦𝐴 = {𝑂, 𝐵, 𝐶}, 𝑖 = |𝒦𝐴| = 3 

|𝒦𝐴| ≠ 0 → 𝑘𝑖=3 = 𝐶 ˄ 𝑘𝑖 ∈ ℛ  

|𝒦𝐴| ≠ 1 → 𝒦𝐴 = {𝑂, 𝐵, 𝐶}, 𝑖 = |𝒦𝐴| = 2 

|𝒦𝐴| ≠ 0 → 𝑘𝑖=2 = 𝐵 ˄ 𝑘𝑖  ∈ ℛ  

|𝒦𝐴| ≠ 1 → 𝒦𝐴 = {𝑂, 𝐵}, 𝑖 = |𝒦𝐴| = 1 

|𝒦𝐴| ≠ 0 → 𝑘𝑖=1 = 𝑂 ˄ 𝑘𝑖  ∈  ℛ  

|𝒦𝐴| = 1 → ℛ = (𝑂, 𝐵, 𝐶, 𝐴),ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝐶, 𝑖 = |𝒦𝐶| = 0  

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝐶 = ∅) 

𝐴 was a dead-end node and was successfully removed from the route list. Now the algorithm 

processes the preceding node in the list, 𝐶. 

|𝒦𝐶| = 0 → ℛ = (𝑂, 𝐵, 𝐶),ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝐵, 𝑖 = |𝒦𝐵| = 2  
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(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝐵 = {𝑂, 𝐴}) 

Since there is no unvisited nodes available adjacent to node 𝐶, this is also be removed from the 

route list and the node before that (𝐵) becomes the current node. By removing these nodes 

and identifying them as visited, the algorithm avoids looping infinitely. The process of 

identifying other routes continues from node 𝐵, where there is one more unvisited adjacent 

node available(i.e. 𝐴).  

|𝒦𝐵| ≠ 0 → 𝑘𝑖=2 = 𝐴 ˄ 𝑘𝑖  ∉  ℛ   

𝑛 = 𝑘𝑖 = 𝐴 (𝑛 ≠ 𝐷), 𝒦𝐵 = {𝑂, 𝐴},ℛ = (𝑂, 𝐵, 𝐴) 

Re-identify adjacent nodes to 𝑛 = 𝐴: 𝒦𝐴 = {𝑂, 𝐵, 𝐶}, 𝑖 = |𝒦𝐴| = 3 

|𝒦𝐴| ≠ 0 

𝑘𝑖=3 = 𝐶 ˄ 𝑘𝑖 ∉ ℛ  

 𝑛 = 𝑘𝑖 = 𝐶 (𝑛 ≠ 𝐷), 𝒦𝐴 = {𝑂, 𝐵, 𝐶}, ℛ = (𝑂, 𝐵, 𝐴, 𝐶) 

Re-identify adjacent nodes to 𝑛 = 𝐶: 𝒦𝐶 = {𝐴, 𝐵, 𝐷}, 𝑖 = |𝒦𝐶| = 3 

|𝒦𝐶| ≠ 0 

𝑘𝑖=3 = 𝐷 ˄ 𝑘𝑖  ∉ ℛ  

𝑛 = 𝑘𝑖 = 𝐷 (𝑛 = 𝐷), 𝒦𝐶 = {𝐴, 𝐵, 𝐷}, ℛ = (𝑂, 𝐵, 𝐴, 𝐶, 𝐷) 
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Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐵, 𝐴, 𝐶, 𝐷) 

𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 

𝑃(𝐵) = 𝑃(0). 𝑃𝑇 = [0.5   0.5]  

𝑃(𝐴) = 𝑃(𝐵). 𝑃𝑇 = [0.45   0.55]  

𝑃(𝐶) = 𝑃(𝐴). 𝑃𝑇 = [0.425   0.575]  

Following the steps in the travel time calculation subroutine: 

M = {𝐷𝑟𝑖𝑣𝑒}  

𝑗 = 1, 𝑒𝑅
(𝑂)

= 0 , 𝑟𝑗 = 𝑂, 𝑟𝑗+1 = 𝐵 , 𝑒𝑅
(𝑂)

= 0 + 𝑃(𝑂). 𝑄𝐵
(𝑂)

= [0.6   0.4]. [
2
4

] = 2.8 𝑚𝑖𝑛 

𝑗 = 2, 𝑟𝑗 = 𝐵, 𝑟𝑗+1 = 𝐴, 𝑒𝑅
(𝑂)

= 2.8 +  𝑃(𝐵). 𝑄𝐴
(𝐵)

= 2.8 + [0.5   0.5]. [
2
3

] = 2.8 + 2.5 = 5.3 𝑚𝑖𝑛 

𝑗 = 3, 𝑟𝑗 = 𝐴, 𝑟𝑗+1 = 𝐶, 𝑒𝑅
(𝑂)

= 5.3 + 𝑃(𝐴). 𝑄𝐶
(𝐴)

= 5.3 + [0.45   0.55]. [
2
5

] = 8.95 𝑚𝑖𝑛 

𝑗 = 4, 𝑟𝑗 = 𝐶, 𝑟𝑗+1 = 𝐷, 𝑒𝑅
(𝑂)

= 8.95 + 𝑃(𝐶). 𝑄𝐷
(𝐶)

= 8.95 + [0.425   0.575]. [
1
2

] = 10.525 𝑚𝑖𝑛 

𝑒𝑅
(𝑂)

= 10.525, 𝐸𝑚𝑖𝑛 = 6.8 < 𝑒𝑅
(𝑂)

, Therefore 𝐸𝑚𝑖𝑛and ℛ𝑜𝑝𝑡will NOT change. 

ℛ = (𝑂, 𝐵, 𝐴, 𝐶, 𝐷), |ℛ| = 4,  𝑛 = 𝑟|ℛ| = 𝐶 

𝒦𝐶 = {𝐴, 𝐵}, 𝒦𝐶 ≠ ∅, 𝑖 = |𝒦𝐶| = 2 
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|𝒦𝐶| ≠ 0 → 𝑘𝑖=2 = 𝐵 ˄ 𝑘𝑖  ∈ ℛ  

|𝒦𝐶| ≠ 1 → 𝒦𝐶 = {𝐴, 𝐵}, 𝑖 = |𝒦𝐶| = 1 

|𝒦𝐶| ≠ 0 → 𝑘𝑖=1 = 𝐴 ˄ 𝑘𝑖 ∈  ℛ  

|𝒦𝐶| = 1 → ℛ = (𝑂, 𝐵, 𝐴, 𝐶), ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝐴, 𝑖 = |𝒦𝐴| = 2   

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝐴 = {𝑂, 𝐵}) 

|𝒦𝐴| ≠ 0 → 𝑘𝑖=2 = 𝐵 ˄ 𝑘𝑖 ∈ ℛ  

|𝒦𝐴| ≠ 1 → 𝒦𝐴 = {𝑂, 𝐵}, 𝑖 = |𝒦𝐵| = 1 

|𝒦𝐶| ≠ 0 → 𝑘𝑖=1 = 𝑂 ˄ 𝑘𝑖 ∈ ℛ  

|𝒦𝐶| = 1 → ℛ = (𝑂, 𝐵, 𝐴), ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝐵, 𝑖 = |𝒦𝐵| = 1   

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝐵 = {𝑂}) 

|𝒦𝐵| ≠ 0 → 𝑘𝑖=1 = 𝑂 ˄ 𝑘𝑖 ∈ ℛ  

|𝒦𝐵| = 1 → ℛ = (𝑂, 𝐵), ℛ ≠  ∅ , 𝑛 = 𝑟|ℛ| = 𝑂, 𝑖 = |𝒦𝑂| = 1               𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝑂 = {𝐴} 

|𝒦𝑂| ≠ 0 → 𝑘𝑖=1 = 𝐴 ˄ 𝑘𝑖  ∉ ℛ 

At this point, all the possible paths from node 𝐵 are processed. The algorithm was able to avoid 

the potential routing loops and is now going to check the possible routes from node 𝐴, which is 

the second (and last) adjacent node to the origin. 
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𝑛 = 𝑘𝑖 = 𝐴 (𝑛 ≠ 𝐷), 𝒦𝑂 = {𝐴}, ℛ = (𝑂, 𝐴) 

It should be noted that now 𝒦𝑂 = ∅, which means that there is no other node to process, after 

identifying all possible paths from 𝐴 to destination.  

Re-identify adjacent nodes to 𝑛 = 𝐴: 𝒦𝐴 = {𝑂, 𝐵, 𝐶}, 𝑖 = |𝒦𝐴| = 3 

|𝒦𝐴| ≠ 0 

𝑘𝑖=3 = 𝐶 ˄ 𝑘𝑖  ∉ ℛ  

 𝑛 = 𝑘𝑖 = 𝐶 (𝑛 ≠ 𝐷), 𝒦𝐴 = {𝑂, 𝐵, 𝐶}, ℛ = (𝑂, 𝐴, 𝐶) 

Re-identify adjacent nodes to 𝑛 = 𝐶: 𝒦𝐶 = {𝐴, 𝐵, 𝐷}, 𝑖 = |𝒦𝐶| = 3 

|𝒦𝐶| ≠ 0 

𝑘𝑖=3 = 𝐷 ˄ 𝑘𝑖  ∉ ℛ  

𝑛 = 𝑘𝑖 = 𝐷 (𝑛 = 𝐷), 𝒦𝐶 = {𝐴, 𝐵, 𝐷}, ℛ = (𝑂, 𝐴, 𝐶, 𝐷) 

Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐴, 𝐶, 𝐷) 

𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 

𝑃(𝐴) = 𝑃(0). 𝑃𝑇 = [0.5   0.5]  

𝑃(𝐶) = 𝑃(𝐴). 𝑃𝑇 = [0.45   0.55]  
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The travel time calculation is performed using the subroutine of the flow chart (Figure 3): 

M = {𝐷𝑟𝑖𝑣𝑒}  

𝑗 = 1, 𝑒𝑅
(𝑂)

= 0 , 𝑟𝑗 = 𝑂, 𝑟𝑗+1 = 𝐴 , 𝑒𝑅
(𝑂)

= 0 +  𝑃(𝑂). 𝑄𝐴
(𝑂)

= [0.6   0.4]. [
1
3

] = 1.8 𝑚𝑖𝑛 

𝑗 = 2, 𝑟𝑗 = 𝐴, 𝑟𝑗+1 = 𝐶, 𝑒𝑅
(𝑂)

= 1.8 +  𝑃(𝐴). 𝑄𝐶
(𝐴)

= 1.8 + [0.5   0.5]. [
2
5

] = 1.8 + 3.5 = 5.3 𝑚𝑖𝑛 

𝑗 = 3, 𝑟𝑗 = 𝐶, 𝑟𝑗+1 = 𝐷, 𝑒𝑅
(𝑂)

= 8.8 + 𝑃(𝐶). 𝑄𝐷
(𝐶)

= 5.3 + [0.45   0.55]. [
1
2

] = 6.85 𝑚𝑖𝑛 

𝑒𝑅
(𝑂)

= 6.85, 𝐸𝑚𝑖𝑛 = 6.8 < 𝑒𝑅
(𝑂)

, Therefore 𝐸𝑚𝑖𝑛and ℛ𝑜𝑝𝑡will NOT change. 

ℛ = (𝑂, 𝐴, 𝐶, 𝐷), |ℛ| = 3,  𝑛 = 𝑟|ℛ| = 𝐶 

𝒦𝐶 = {𝐴, 𝐵}, 𝐾𝐶 ≠ ∅, 𝑖 = |𝒦𝐶| = 2 

|𝒦𝐶| ≠ 0 → 𝑘𝑖=2 = 𝐵 ˄ 𝑘𝑖  ∉ ℛ 

 𝑛 = 𝑘𝑖 = 𝐵 (𝑛 ≠ 𝐷), 𝒦𝐶 = {𝐴, 𝐵}, ℛ = (𝑂, 𝐴, 𝐶, 𝐵) 

Re-identify adjacent nodes to 𝑛 = 𝐵: 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷, 𝑟1}, 𝑖 = |𝒦𝐵| = 5 

𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷, 𝑟1}, Set the size of 𝒦𝐵: 𝑖 = 5 

|𝒦𝐵| ≠ 0 

𝑘𝑖=5 = 𝑟1 ˄ 𝑘𝑖  ∉ ℛ  
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𝑛 = 𝑘𝑖 = 𝑟1 (𝑛 ≠ 𝐷), 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷, 𝑟1}, ℛ = (𝑂, 𝐴, 𝐶, 𝐵, 𝑟1) 

Identify adjacent nodes to 𝑛 = 𝑟1: 𝒦𝑟1
= {𝐵, 𝑟2}, 𝑖 = |𝒦𝑟1

| = 2 

|𝒦𝑟1
| ≠ 0 

𝑘𝑖=2 = 𝑟2 ˄ 𝑘𝑖  ∉ ℛ  

𝑛 = 𝑘𝑖 = 𝑟2 (𝑛 ≠ 𝐷), 𝒦𝑟1
= {𝐵, 𝑟2}, ℛ = (𝑂, 𝐴, 𝐶, 𝐵, 𝑟1, 𝑟2) 

Identify adjacent nodes to 𝑛 = 𝑟2: 𝒦𝑟2
= {𝑟1, 𝐷}, 𝑖 = |𝒦𝑟2

| = 2 

|𝒦𝑟2
| ≠ 0 

𝑘𝑖=2 = 𝐷 ˄ 𝑘𝑖  ∉ ℛ  

𝑛 = 𝑘𝑖 = 𝐷 (𝑛 = 𝐷), 𝒦𝑟2
= {𝐵, 𝐷}, ℛ = (𝑂, 𝐴, 𝐶, 𝐵, 𝑟1, 𝑟2, 𝐷) 

Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐴, 𝐶, 𝐵, 𝑟1, 𝑟2, 𝐷) 

𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 

𝑃(𝐴) = 𝑃(0). 𝑃𝑇 = [0.5   0.5]  

𝑃(𝐶) = 𝑃(𝐴). 𝑃𝑇 = [0.45   0.55]  
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There is no traffic conditions defined for Transit or Walk modes. The travel time calculation is 

performed using the subroutine of the flow chart (Figure 3). First, the transportation modes 

associated with each node in route ℛ is identified:  

M = {𝐷𝑟𝑖𝑣𝑒, 𝐷𝑟𝑖𝑣𝑒, 𝐷𝑟𝑖𝑣𝑒, 𝑊𝑎𝑙𝑘, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡, 𝑊𝑎𝑙𝑘} 

Other initializations: 𝑗 = 1, 𝑚0 = 𝐷𝑟𝑖𝑣𝑒, 𝑡𝑟𝑎𝑛𝑓 = 0, 𝑤 = 0, 𝑒𝑅
(𝑂)

= 0 

𝑗 = 1, 𝑒𝑅
(𝑂)

= 0 , 𝑟𝑗 = 𝑂,M𝑗 = 𝐷𝑟𝑖𝑣𝑒, 𝑟𝑗+1 = 𝐴 , 𝑒𝑅
(𝑂)

= 0 +  𝑃(𝑂). 𝑄𝐴
(𝑂)

= [0.6   0.4]. [
1
3

] =

1.8 𝑚𝑖𝑛 

𝑗 = 2, 𝑟𝑗 = 𝐴,M𝑗 = 𝐷𝑟𝑖𝑣𝑒, 𝑟𝑗+1 = 𝐶, 𝑒𝑅
(𝑂)

= 1.8 +  𝑃(𝐴). 𝑄𝐶
(𝐴)

= 1.8 + [0.5   0.5]. [
2
5

] = 1.8 +

3.5 = 5.3 𝑚𝑖𝑛 

𝑗 = 3, 𝑟𝑗 = 𝐶,M𝑗 = 𝐷𝑟𝑖𝑣𝑒, 𝑟𝑗+1 = 𝐵, 𝑒𝑅
(𝑂)

= 5.3 + 𝑃(𝐶). 𝑄𝐵
(𝐶)

= 5.3 + [0.45   0.55]. [
5
7

] =

11.4 𝑚𝑖𝑛 

𝑗 = 4, 𝑟𝑗 = 𝐵,M𝑗 = 𝑊𝑎𝑙𝑘, 𝑟𝑗+1 = 𝑟1,  

M𝑗 ≠ 𝑚0: mode change happened from node 𝑗 to 𝑗 + 1. 𝑡𝑟𝑎𝑛𝑠𝑓 < 4 

𝑡𝑟𝑎𝑛𝑓 = 1, 𝑤 = 𝑝𝑎𝑟𝑘 = 5 𝑚𝑖𝑛 (additional 5 minutes to park the car and get to the subway 

entrance), 𝑚0 = M𝑗 =  𝑊𝑎𝑙𝑘 

𝑒𝑅
(𝑂)

= 11.4 + 𝑤 + 𝑄𝑟1

(𝐵)
= 11.4 + 5 + 1 = 17.4 min 
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𝑗 = 5, 𝑤 = 0, 𝑟𝑗 = 𝑟1,M𝑗 = 𝑇𝑟𝑎𝑛𝑠𝑖𝑡, 𝑟𝑗+1 = 𝑟2 

M𝑗 ≠ 𝑚0: mode change happened from node 𝑗 to 𝑗 + 1. 𝑡𝑟𝑎𝑛𝑠𝑓 < 4 

Assuming traveler started at 4:00 pm and the subway runs at 5 minute intervals between 4 and 

5 pm:  

𝑡𝑟𝑎𝑛𝑓 = 2, 𝑤 = 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 04: 20: 00 −  (04: 00: 00 + 0: 17: 24) = 2.6 𝑚𝑖𝑛 

𝑚0 = M𝑗 =  𝑇𝑟𝑎𝑛𝑠𝑖𝑡 

𝑒𝑅
(𝑂)

= 17.4 + 2.6 + 𝑄𝑟2

(𝑟1)
= 17.4 + 2.6 + 2 = 22 𝑚𝑖𝑛 

𝑗 = 6, 𝑤 = 0, 𝑟𝑗 = 𝑟2,M𝑗 = 𝑊𝑎𝑙𝑘, 𝑟𝑗+1 = 𝐷 

M𝑗 ≠ 𝑚0: mode change happened from node 𝑗 to 𝑗 + 1. 𝑡𝑟𝑎𝑛𝑠𝑓 < 4 

𝑡𝑟𝑎𝑛𝑠𝑓 = 2, 

𝑒𝑅
(𝑂)

= 22 + 0 +  𝑄𝐷
(𝑟2)

= 22 + 1 = 23 𝑚𝑖𝑛 

𝑒𝑅
(𝑂)

= 23, 𝐸𝑚𝑖𝑛 = 6.8 < 𝑒𝑅
(𝑂)

, Therefore 𝐸𝑚𝑖𝑛and ℛ𝑜𝑝𝑡will NOT change. 

ℛ = (𝑂, 𝐴, 𝐶, 𝐵, 𝑟1, 𝑟2, 𝐷), |ℛ| = 6,  𝑛 = 𝑟|ℛ| = 𝑟2 

𝒦𝑟2
= {𝐵}, 𝒦𝑟2

≠ ∅ → 𝑖 = | 𝒦𝑟2
| = 1 

| 𝒦𝑟2
| ≠ 0 → 𝑘𝑖=1 = 𝐵 ˄ 𝑘𝑖  ∈ ℛ  
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| 𝒦𝑟2
| = 1 → ℛ = (𝑂, 𝐴, 𝐶, 𝐵, 𝑟1, 𝑟2),ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝑟1, 𝑖 = |𝒦𝑟1

| = 0  

| 𝒦𝑟1
| ≠ 0 → 𝑘𝑖=1 = 𝐵 ˄ 𝑘𝑖  ∈ ℛ  

| 𝒦𝑟1
| = 1 → ℛ = (𝑂, 𝐴, 𝐶, 𝐵, 𝑟1),ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝐵, 𝑖 = |𝒦𝐵| = 4  

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷}) 

𝑘𝑖=4 = 𝐷 ˄ 𝑘𝑖  ∉ ℛ  

𝑛 = 𝑘𝑖 = 𝐷 (𝑛 = 𝐷), 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷},ℛ = (𝑂, 𝐴, 𝐶, 𝐵, 𝐷) 

Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐴, 𝐶, 𝐵, 𝐷) 

𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 

𝑃(𝐴) = 𝑃(0). 𝑃𝑇 = [0.5   0.5]  

𝑃(𝐶) = 𝑃(𝐴). 𝑃𝑇 = [0.45   0.55]  

𝑃(𝐵) = 𝑃(𝐶). 𝑃𝑇 = [0.425   0.575]  

The travel time calculation is performed using the subroutine of the flow chart (Figure 3): 

𝑗 = 1, 𝑒𝑅
(𝑂)

= 0 , 𝑟𝑗 = 𝑂, 𝑟𝑗+1 = 𝐴 , 𝑒𝑅
(𝑂)

= 0 +  𝑃(𝑂). 𝑄𝐴
(𝑂)

= [0.6   0.4]. [
1
3

] = 1.8 𝑚𝑖𝑛 

𝑗 = 2, 𝑟𝑗 = 𝐴, 𝑟𝑗+1 = 𝐶, 𝑒𝑅
(𝑂)

= 1.8 +  𝑃(𝐴). 𝑄𝐶
(𝐴)

= 1.8 + [0.5   0.5]. [
2
5

] = 1.8 + 3.5 = 5.3 𝑚𝑖𝑛 
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𝑗 = 3, 𝑟𝑗 = 𝐶, 𝑟𝑗+1 = 𝐵, 𝑒𝑅
(𝑂)

= 5.3 + 𝑃(𝐶). 𝑄𝐵
(𝐶)

= 5.3 + [0.45   0.55]. [
5
7

] = 11.4 𝑚𝑖𝑛 

𝑗 = 4, 𝑟𝑗 = 𝐵, 𝑟𝑗+1 = 𝐷, 𝑒𝑅
(𝑂)

= 11.4 + 𝑃(𝐵). 𝑄𝐷
(𝐵)

= 11.4 + [0.425   0.575]. [
3
5

] = 15.5 𝑚𝑖𝑛 

𝑒𝑅
(𝑂)

= 15.5, 𝐸𝑚𝑖𝑛 = 6.8 < 𝑒𝑅
(𝑂)

, Therefore 𝐸𝑚𝑖𝑛and ℛ𝑜𝑝𝑡will NOT change. 

ℛ = (𝑂, 𝐴, 𝐶, 𝐵, 𝐷), |ℛ| = 4,  𝑛 = 𝑟|ℛ| = 𝐵 

𝒦𝐵 = {𝑂, 𝐴, 𝐶}, 𝒦𝐵 ≠ ∅, 𝑖 = |𝒦𝐵| = 3 

|𝒦𝐵| ≠ 0 → 𝑘𝑖=3 = 𝐶 ˄  𝑘𝑖  ∈ ℛ 

|𝒦𝐵| ≠ 1 → 𝒦𝐵 = {𝑂, 𝐴, 𝐶}, 𝑖 = |𝒦𝐵| = 2 

|𝒦𝐵| ≠ 0 → 𝑘𝑖=2 = 𝐴 ˄ 𝑘𝑖  ∈ ℛ  

|𝒦𝐵| ≠ 1 → 𝒦𝐵 = {𝑂, 𝐴}, 𝑖 = |𝒦𝐵| = 1 

|𝒦𝐵| ≠ 0 → 𝑘𝑖=1 = 𝑂 ˄ 𝑘𝑖  ∈ ℛ  

|𝒦𝐵| = 1 → ℛ = (𝑂, 𝐴, 𝐶, 𝐵), ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝐶, 𝑖 = |𝒦𝐶| = 1  

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝐶 = {𝐴}) 

|𝒦𝐶| ≠ 0 → 𝑘𝑖=1 = 𝐴 ˄ 𝑘𝑖  ∈ ℛ 

|𝒦𝐶| = 1 → ℛ = (𝑂, 𝐴, 𝐶), ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝐴, 𝑖 = |𝒦𝐴| = 2   

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒 𝒦𝐴 = {𝑂, 𝐵}) 
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|𝒦𝐴| ≠ 0 → 𝑘𝑖=2 = 𝐵 ˄ 𝑘𝑖  ∉ ℛ 

 𝑛 = 𝑘𝑖 = 𝐵 (𝑛 ≠ 𝐷), 𝒦𝐴 = {𝑂, 𝐵}, ℛ = (𝑂, 𝐴, 𝐵) 

Identify adjacent nodes to 𝑛 = 𝐵: 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷, 𝑟1}, 𝑖 = |𝒦𝐵| = 5 

|𝒦𝐵| ≠ 0 

𝑘𝑖=5 = 𝑟1 ˄ 𝑘𝑖  ∉ ℛ  

𝑛 = 𝑘𝑖 = 𝑟1 (𝑛 ≠ 𝐷), 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷, 𝑟1}, ℛ = (𝑂, 𝐴, 𝐵, 𝑟1) 

Identify adjacent nodes to 𝑛 = 𝑟1: 𝒦𝑟1
= {𝐵, 𝑟2}, 𝑖 = |𝒦𝑟1

| = 2 

|𝒦𝑟1
| ≠ 0 

𝑘𝑖=2 = 𝑟2 ˄ 𝑘𝑖  ∉ ℛ  

𝑛 = 𝑘𝑖 = 𝑟2 (𝑛 ≠ 𝐷), 𝒦𝑟1
= {𝐵, 𝑟2}, ℛ = (𝑂, 𝐴, 𝐵, 𝑟1, 𝑟2) 

Re-identify adjacent nodes to 𝑛 = 𝑟2: 𝒦𝑟2
= {𝑟1, 𝐷}, 𝑖 = |𝒦𝑟2

| = 2 

|𝒦𝑟2
| ≠ 0 

𝑘𝑖=2 = 𝐷 ˄ 𝑘𝑖  ∉ ℛ  

𝑛 = 𝑘𝑖 = 𝐷 (𝑛 = 𝐷), 𝒦𝑟2
= {𝐵, 𝐷}, ℛ = (𝑂, 𝐴, 𝐵, 𝑟1, 𝑟2, 𝐷) 

Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐴, 𝐵, 𝑟1, 𝑟2, 𝐷) 
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𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 

𝑃(𝐴) = 𝑃(0). 𝑃𝑇 = [0.5   0.5]  

There is no traffic conditions defined for Transit or Walk modes. The travel time calculation is 

performed using the subroutine of the flow chart (Figure 3). First, the transportation modes 

associated with each node in route ℛ is identified:  

M = {𝐷𝑟𝑖𝑣𝑒, 𝐷𝑟𝑖𝑣𝑒, 𝑊𝑎𝑙𝑘, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡, 𝑊𝑎𝑙𝑘} 

Other initializations: 𝑗 = 1, 𝑚0 = 𝐷𝑟𝑖𝑣𝑒, 𝑡𝑟𝑎𝑛𝑠𝑓 = 0, 𝑤 = 0, 𝑒𝑅
(𝑂)

= 0 

𝑗 = 1, 𝑒𝑅
(𝑂)

= 0 , 𝑟𝑗 = 𝑂, 𝑟𝑗+1 = 𝐴 , 𝑒𝑅
(𝑂)

= 0 +  𝑃(𝑂). 𝑄𝐴
(𝑂)

= [0.6   0.4]. [
1
3

] = 1.8 𝑚𝑖𝑛 

𝑗 = 2, 𝑟𝑗 = 𝐴, 𝑟𝑗+1 = 𝐵, 𝑒𝑅
(𝑂)

= 1.8 +  𝑃(𝐴). 𝑄𝐵
(𝐴)

= 1.8 + [0.5   0.5]. [
2
3

] = 1.8 + 2.5 = 4.3 𝑚𝑖𝑛 

𝑗 = 3, 𝑟𝑗 = 𝐵,M𝑗 = 𝑊𝑎𝑙𝑘, 𝑟𝑗+1 = 𝑟1,  

M𝑗 ≠ 𝑚0: mode change happened from node 𝑗 to 𝑗 + 1. 𝑡𝑟𝑎𝑛𝑠𝑓 < 4 

𝑡𝑟𝑎𝑛𝑓 = 1, 𝑤 = 𝑝𝑎𝑟𝑘 = 5 𝑚𝑖𝑛 (additional 5 minutes to park the car and get to the subway 

entrance), 𝑚0 = M𝑗 =  𝑊𝑎𝑙𝑘 

𝑒𝑅
(𝑂)

= 4.3 + 𝑤 + 𝑄𝑟1

(𝐵)
= 4.3 + 5 + 1 = 10.3 min 

𝑗 = 4, 𝑤 = 0, 𝑟𝑗 = 𝑟1,M𝑗 = 𝑇𝑟𝑎𝑛𝑠𝑖𝑡, 𝑟𝑗+1 = 𝑟2 
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M𝑗 ≠ 𝑚0: mode change happened from node 𝑗 to 𝑗 + 1. 𝑡𝑟𝑎𝑛𝑠𝑓 < 4 

Assuming traveler started at 4:00 pm and the subway runs at 5 minute intervals between 4 and 

5 pm:  

𝑡𝑟𝑎𝑛𝑓 = 2, 𝑤 = 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 04: 15: 00 −  (04: 00: 00 + 00: 10: 18) = 4.7 𝑚𝑖𝑛 

𝑚0 = M𝑗 =  𝑇𝑟𝑎𝑛𝑠𝑖𝑡 

𝑒𝑅
(𝑂)

= 10.3 + 4.7 + 𝑄𝑟2

(𝑟1)
= 10.3 + 4.7 + 2 = 17 𝑚𝑖𝑛 

𝑗 = 5, 𝑤 = 0, 𝑟𝑗 = 𝑟2,M𝑗 = 𝑊𝑎𝑙𝑘, 𝑟𝑗+1 = 𝐷 

M𝑗 ≠ 𝑚0: mode change happened from node 𝑗 to 𝑗 + 1. 𝑡𝑟𝑎𝑛𝑠𝑓 < 4 

𝑡𝑟𝑎𝑛𝑠𝑓 = 2, 

𝑒𝑅
(𝑂)

= 17 + 0 +  𝑄𝐷
(𝑟2)

= 17 + 1 = 18 𝑚𝑖𝑛 

𝑒𝑅
(𝑂)

= 18, 𝐸𝑚𝑖𝑛 = 6.8 < 𝑒𝑅
(𝑂)

, Therefore 𝐸𝑚𝑖𝑛and ℛ𝑜𝑝𝑡will NOT change. 

ℛ = (𝑂, 𝐴, 𝐵, 𝑟1, 𝑟2, 𝐷), |ℛ| = 5,  𝑛 = 𝑟|ℛ| = 𝑟2 

𝒦𝑟2
= {𝐵}, 𝒦𝑟2

≠ ∅ → 𝑖 = |𝒦𝑟2
| = 1 

| 𝒦𝑟2
| ≠ 0 → 𝑘𝑖=1 = 𝐵 ˄ 𝑘𝑖  ∈ ℛ 

|𝒦𝑟2
| = 1 → ℛ = (𝑂, 𝐴, 𝐵, 𝑟1, 𝑟2),ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝑟1, 𝑖 = |𝒦𝑟1

| = 0  
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|𝒦𝑟1
| ≠ 0 → 𝑘𝑖=1 = 𝐵 ˄ 𝑘𝑖  ∈ ℛ 

| 𝒦𝑟1
| = 1 → ℛ = (𝑂, 𝐴, 𝐵, 𝑟1),ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝐵, 𝑖 = |𝒦𝐵| = 4  

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷}) 

𝑘𝑖=4 = 𝐷 ˄ 𝑘𝑖  ∉ ℛ  

𝑛 = 𝑘𝑖 = 𝐷 (𝑛 = 𝐷), 𝒦𝐵 = {𝑂, 𝐴, 𝐶, 𝐷},ℛ = (𝑂, 𝐴, 𝐵, 𝐷) 

Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐴, 𝐵, 𝐷) 

𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 

𝑃(𝐴) = 𝑃(0). 𝑃𝑇 = [0.5   0.5]  

𝑃(𝐵) = 𝑃(𝐴). 𝑃𝑇 = [0.45   0.55]  

The travel time calculation is performed using the subroutine of the flow chart (Figure 3): 

M = {𝐷𝑟𝑖𝑣𝑒}  

𝑗 = 1, 𝑒𝑅
(𝑂)

= 0 , 𝑟𝑗 = 𝑂, 𝑟𝑗+1 = 𝐴 , 𝑒𝑅
(𝑂)

= 0 +  𝑃(𝑂). 𝑄𝐴
(𝑂)

= [0.6   0.4]. [
1
3

] = 1.8 𝑚𝑖𝑛 

𝑗 = 2, 𝑟𝑗 = 𝐴, 𝑟𝑗+1 = 𝐵, 𝑒𝑅
(𝑂)

= 1.8 +  𝑃(𝐴). 𝑄𝐵
(𝐴)

= 1.8 + [0.5   0.5]. [
2
3

] = 1.8 + 2.5 = 4.3 𝑚𝑖𝑛 

𝑗 = 3, 𝑟𝑗 = 𝐵, 𝑟𝑗+1 = 𝐷, 𝑒𝑅
(𝑂)

= 4.3 + 𝑃(𝐵). 𝑄𝐷
(𝐵)

= 4.3 + [0.45   0.55]. [
3
5

] = 8.4 𝑚𝑖𝑛 
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𝑒𝑅
(𝑂)

= 8.4, 𝐸𝑚𝑖𝑛 = 6.8 < 𝑒𝑅
(𝑂)

, Therefore 𝐸𝑚𝑖𝑛and ℛ𝑜𝑝𝑡will NOT change. 

ℛ = (𝑂, 𝐴, 𝐵, 𝐷), |ℛ| = 3,  𝑛 = 𝑟|ℛ| = 𝐵 

𝒦𝐵 = {𝑂, 𝐴, 𝐶}, 𝒦𝐵 ≠ ∅, 𝑖 = |𝒦𝐵| = 3 

|𝒦𝐵| ≠ 0 → 𝑘𝑖=3 = 𝐶 ˄ 𝑘𝑖  ∉ ℛ 

 𝑛 = 𝑘𝑖 = 𝐶 (𝑛 ≠ 𝐷), 𝒦𝐵 = {𝑂, 𝐴, 𝐶}, ℛ = (𝑂, 𝐴, 𝐵, 𝐶) 

Identify adjacent nodes to 𝑛 = 𝐶: 𝒦𝐶 = {𝐴, 𝐵, 𝐷}, 𝑖 = |𝒦𝐶| = 3 

|𝒦𝐶| ≠ 0 

𝑘𝑖=3 = 𝐷 ˄ 𝑘𝑖  ∉ ℛ  

𝑛 = 𝑘𝑖 = 𝐷 (𝑛 = 𝐷), 𝒦𝐶 = {𝐴, 𝐵, 𝐷}, ℛ = (𝑂, 𝐴, 𝐵, 𝐶, 𝐷) 

Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐴, 𝐵, 𝐶, 𝐷) 

𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 

𝑃(𝐴) = 𝑃(0). 𝑃𝑇 = [0.5   0.5]  

𝑃(𝐵) = 𝑃(𝐴). 𝑃𝑇 = [0.45   0.55]  

𝑃(𝐶) = 𝑃(𝐵). 𝑃𝑇 = [0.425   0.575]  

The travel time calculation is performed using the subroutine of the flow chart (Figure 3): 
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M = {𝐷𝑟𝑖𝑣𝑒}  

𝑗 = 1, 𝑒𝑅
(𝑂)

= 0 , 𝑟𝑗 = 𝑂, 𝑟𝑗+1 = 𝐴 , 𝑒𝑅
(𝑂)

= 0 +  𝑃(𝑂). 𝑄𝐴
(𝑂)

= [0.6   0.4]. [
1
3

] = 1.8 𝑚𝑖𝑛 

𝑗 = 2, 𝑟𝑗 = 𝐴, 𝑟𝑗+1 = 𝐵, 𝑒𝑅
(𝑂)

= 1.8 +  𝑃(𝐴). 𝑄𝐵
(𝐴)

= 1.8 + [0.5   0.5]. [
2
3

] = 1.8 + 2.5 = 4.3 𝑚𝑖𝑛 

𝑗 = 3, 𝑟𝑗 = 𝐵, 𝑟𝑗+1 = 𝐶, 𝑒𝑅
(𝑂)

= 4.3 + 𝑃(𝐵). 𝑄𝐶
(𝐵)

= 4.3 + [0.45   0.55]. [
5
7

] = 10.4 𝑚𝑖𝑛 

𝑗 = 4, 𝑟𝑗 = 𝐶, 𝑟𝑗+1 = 𝐷, 𝑒𝑅
(𝑂)

= 10.4 + 𝑃(𝐶). 𝑄𝐷
(𝐶)

= 10.4 + [0.425   0.575]. [
1
2

] = 11.97 𝑚𝑖𝑛 

𝑒𝑅
(𝑂)

= 11.97, 𝐸𝑚𝑖𝑛 = 6.8 < 𝑒𝑅
(𝑂)

, Therefore 𝐸𝑚𝑖𝑛and ℛ𝑜𝑝𝑡will NOT change. 

ℛ = (𝑂, 𝐴, 𝐵, 𝐶, 𝐷), |ℛ| = 4,  𝑛 = 𝑟|ℛ| = 𝐶 

𝒦𝐶 = {𝐴, 𝐵}, 𝒦𝐵 ≠ ∅, 𝑖 = |𝒦𝐵| = 2 

|𝒦𝐶| ≠ 0 → 𝑘𝑖=2 = 𝐵 ˄ 𝑘𝑖  ∈ ℛ 

|𝒦𝐶| ≠ 1 → 𝒦𝐶 = {𝐴, 𝐵}, 𝑖 = |𝒦𝐵| = 1 

|𝒦𝐶| ≠ 0 → 𝑘𝑖=1 = 𝐴 ˄ 𝑘𝑖  ∈ ℛ 

|𝒦𝐶| = 1 → ℛ = (𝑂, 𝐴, 𝐵, 𝐶), ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝐵, 𝑖 = |𝒦𝐵| = 2  

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝐵 = {𝑂, 𝐴}) 

|𝒦𝐵| ≠ 0 → 𝑘𝑖=2 = 𝐴 ˄ 𝑘𝑖  ∈ ℛ 
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|𝒦𝐵| ≠ 1 → 𝒦𝐵 = {𝑂, 𝐴}, 𝑖 = |𝒦𝐵| = 1 

|𝒦𝐵| ≠ 0 → 𝑘𝑖=1 = 𝑂 ˄ 𝑘𝑖  ∈ ℛ 

|𝒦𝐵| = 1 → ℛ = (𝑂, 𝐴, 𝐵), ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝐴, 𝑖 = |𝒦𝐴| = 1  

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝐴 = {𝑂}) 

|𝒦𝐴| ≠ 0 → 𝑘𝑖=1 = 𝑂 ˄ 𝑘𝑖  ∈ ℛ 

|𝒦𝐴| = 1 → ℛ = (𝑂, 𝐴), ℛ ≠  ∅ →  𝑛 = 𝑟|ℛ| = 𝑂, 𝑖 = |𝒦𝑂| = 0  

(𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒: 𝒦𝑂 = ∅) 

𝒦𝑂 = ∅: which means that all adjacent nodes to the origin node have been visited. 

|𝒦𝑂| = 0 → ℛ = (𝑂), ℛ =  ∅ → Found the minimum path, Report: 

𝐸𝑚𝑖𝑛 = 6.8 𝑚𝑖𝑛 ,  ℛ𝑜𝑝𝑡 = (𝑂, 𝐵, 𝐷) 

3.5 Discussion on Transition Probability in Transportation Network 

When the proposed algorithm is applied for route optimization in transportation networks, the 

states of the system represent traffic conditions in the network. Similarly, transition probability 

matrix denotes the probability of changes in traffic condition when travelling from one node to 

another. In the previous sections, it was assumed that a unique transition probability matrix is 

applicable at any location in the network. However, transportation network consists of 

different road types (i.e. highway, arterial, etc.) which do not have the same traffic 
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characteristics (e.g. average speed, traffic volume). Consequently, there will be different 

patterns of change in traffic conditions along each of these road types. Furthermore, traffic 

conditions depend on the peak period and are not necessarily the same at different locations 

within a large transportation network. Therefore, a more realistic representation of the 

network should consider distinct transition probability matrices associated with different road 

types and different peak directions within the network.  

Using this approach, the estimation of transition probability matrix (𝑃𝑇) used to calculate the 

state probability vector for the (𝑛 + 1)𝑡ℎ node, 𝑃(𝑛+1) = 𝑃(𝑛)𝑃𝑇  as shown in Figure 2, will be 

specific to the link (road type) between nodes 𝑛 and 𝑛 + 1. According to Figure 2 there are 

three different routes available between nodes 𝑛 and 𝑛 + 1, 𝑑1
(𝑛)

, 𝑑2
(𝑛)

 𝑎𝑛𝑑 𝑑3
(𝑛)

. Depending on 

the type of the links related to each route, different transition probability matrices can be 

defined and applied to each type. 

The methodology described in the previous sections, applies the one-step transition probability 

(𝑃𝑇) during each step when moving from one node to its adjacent node. For example, according 

to Figure 2, when the traveler moves from node 𝑛 at time step 𝑡𝑛 to adjacent node (𝑛 + 1), the 

time step at node 𝑛 + 1 is denoted by 𝑡𝑛+1. Expected penalty (travel time) from node 𝑛 to 𝑛 +

1 is the difference between 𝑡𝑛 and 𝑡𝑛+1, and is calculated using equation (3): 𝑒(𝑛) =

 𝑃(𝑛). 𝑄𝑛+1
(𝑛)

. Then the state probability vector for node 𝑛 + 1 is updated using equation (2) and 

the one-step transition probability matrix: 𝑃(𝑛+1) = 𝑃(𝑛)𝑃𝑇 . Therefore, the probability vector 

for each node is updated each time traveler moves to that node, without considering the 

(𝑡𝑛+1 − 𝑡𝑛) time step and estimated travel time between the two nodes (𝑒(𝑛)).  
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As proposed previously in Section 3.3 collected traffic speed data is used to estimate the 

transition probability matrix for the network. The resolution of the collected data (i.e. sampling 

frequency) and the intervals for which speed data is aggregated represents the minimum time 

period during which the changes in traffic conditions can be captured. For example, if 

aggregated speed data for 2-minute intervals were used for estimating the transition 

probability matrix, it can be assumed that if the travel time from one node to its adjacent node 

is less than 2 minutes, the probability vector of traffic conditions at the adjacent node does not 

need to be updated. Therefore, the resolution of traffic data can be used as an update 

threshold for applying the transition probability matrix and updating state probabilities at each 

node. Figure 5 presents a revised subroutine that can be used in the main flowchart to include 

the time step threshold in probability matrix calculation for each node. The new procedure 

temporarily stores the estimated travel time from node 𝑗 to node 𝑗 + 1 into 𝑡𝑗,𝑗+1, and checks it 

against the defined threshold (𝑇𝑡𝑠).  If the estimated time between the two nodes is equal or 

greater than threshold, the traffic condition probability vector at node 𝑗 + 1 will be calculated 

by applying the one-step transition probability matrix, as described in the previous sections. 

However, if the expected travel time is less than the update threshold value, the state 

probability vector at 𝑗 + 1 will not change, as compared to node 𝑗.  

This enhancement of the proposed methodology can capture more accurately the stochastic 

effects of traffic conditions along the network on travel time. The hypothetical example 

network used previously in this section is also use here to demonstrate its benefits. However, 

due to limitation of the available real-world data this enhancement has not been applied to any 

of the case studies in this thesis. 
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Figure 5: Time-Step Threshold Optimization Subroutine  
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The example provided in Section 3.4 applied the flowchart presented in Figure 3 to calculate 

the optimal path between point O (origin) and point D (destination) in a sample network (Figure 

4). To demonstrate the application of the proposed time-step threshold, the revised subroutine 

shown in Figure 5 is used in conjunction with the flowchart. An arbitrary time-step threshold: 

𝑇𝑡𝑟 = 5 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 is assumed.  

The optimal route calculation steps followed in the example to identify possible routes remain 

the same and are not repeated here. The only difference between the new time-step threshold 

subroutine and the one include in the flowchart is related to the calculation of 𝑒𝑅
(𝑂)

. Therefore 

the effect of introducing the time-step threshold in the example is shown by revising the 𝑒𝑅
(𝑂)

 

calculations for each route identified in the previous example. Since the transition probability in 

this example was only applied to “𝐷𝑟𝑖𝑣𝑖𝑛𝑔” mode, the changes are applied to the calculations 

related to this mode. These changes and the revised calculation for the optimal path 

calculations are listed in the following steps: 

Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐵, 𝑟1, 𝑟2, 𝐷) 

Mode change occurs at node B and continues until destination. 

Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐵, 𝐷) 

𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 

To re-calculate the optimal route by applying the time-step threshold subroutine, the travel 

time between each pair of nodes is compared with 𝑇𝑡𝑟 = 5: 
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𝑗 = 1, 𝑒𝑅
(𝑂)

= 0 + 𝑤 +  𝑃(𝑂). 𝑄𝐵
(𝑂)

= 2.8 𝑚𝑖𝑛, 𝑡𝑗,𝑗+1 = 𝑃(𝑂). 𝑄𝐵
(𝑂)

= 2.8 𝑚𝑖𝑛  

𝑗 = 2, 𝑡𝑗,𝑗+1 < 𝑇𝑡𝑟  → 𝑃(𝐵) = 𝑃(𝑂) = [0.6   0.4] 

Since the expected travel time from 𝑂 to 𝐵 is less than threshold, the transition probability 

matrix is not considered for calculating the probability vector at node 𝐵. 

𝑗 = 2, 𝑒𝑅
(𝑂)

= 2.8 +  𝑃(𝐵). 𝑄𝐷
(𝐵)

= 2.8 +  [0.6   0.4]. [
3
5

] = 2.8 + 3.8 = 6.6 𝑚𝑖𝑛 

𝐸𝑚𝑖𝑛 = 𝑒𝑅
(𝑂)

= 6.6  and ℛ𝑜𝑝𝑡 = ℛ = (𝑂, 𝐵, 𝐷) 

The expected travel time calculated for route (𝑂, 𝐵, 𝐷) by using the proposed time-step 

threshold is now less than the time estimated for the same in the previous example (i.e. 

6.8 𝑚𝑖𝑛).  

 Calculate 𝑒𝑅
(𝑂)

 for ℛ = (𝑂, 𝐵, 𝐶, 𝐷) 

Based on the previous route: 

𝑃(𝑂) = [0.6   0.4], 𝑃𝑇 = [
0.7   0.3
0.2   0.8

] 

𝑗 = 1, 𝑒𝑅
(𝑂)

= 2.8 𝑚𝑖𝑛, 𝑡𝑡 = 2.8 𝑚𝑖𝑛  

𝑗 = 2, 𝑡𝑗,𝑗+1 < 𝑇𝑡𝑟  → 𝑃(𝐵) = 𝑃(𝑂) = [0.6   0.4] 

𝑗 = 2, 𝑒𝑅
(𝑂)

= 2.8 +  𝑃(𝐵). 𝑄𝐶
(𝐵)

= 2.8 + [0.6   0.4]. [
5
7

] = 2.8 + 5.8 = 8.6 𝑚𝑖𝑛,𝑡𝑗,𝑗+1 = 5.8 𝑚𝑖𝑛 
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𝑗 = 3, 𝑡𝑗,𝑗+1 > 𝑇𝑡𝑟  → 𝑃(𝐶) = 𝑃(𝐵). 𝑃𝑇 = [0.5   0.5] 

𝑒𝑅
(𝑂)

= 8.6 + 𝑃(𝐶). 𝑄𝐷
(𝐶)

= 8.6 + [0.5   0.5]. [
1
2

] = 10.1 𝑚𝑖𝑛  

𝑒𝑅
(𝑂)

= 10.1, 𝐸𝑚𝑖𝑛 = 6.6 < 𝑒𝑅
(𝑂)

, Therefore 𝐸𝑚𝑖𝑛and ℛ𝑜𝑝𝑡will NOT change. 

The calculations are conducted for all possible routes. The optimum route is ℛ𝑜𝑝𝑡 = (𝑂, 𝐵, 𝐷), 

similar to the previous example, and estimated travel time on that route is 6.6 𝑚𝑖𝑛, which is 

different from the estimated travel time without considering the update time-step threshold.  
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CHAPTER 4. ANALYSIS AND RESULTS 

The proposed methodology is applied to three different case studies. The first and second case 

studies investigate application of the proposed methodology to find the shortest route for 

travelers. Initially a small real-world network located in the central business district area of 

Montreal, Quebec is used to evaluate the potential benefits of proposed methodology to 

travelers using public transportation. In the second case study, a large area of Toronto CBD with 

several transportation modes (i.e. car, train, subway, bus, street car, bike and walk) is used to 

evaluate the benefits of proposed routing algorithm. In the third case study a bus line in 

Longueuil, Quebec is used to investigate benefits of alleviating the impact of traffic congestion 

on transit users and transit system’s operating costs. Detailed description of each case study 

and achieved results are presented here below. 

4.1 Montreal case study  

The study area includes a small size road network in the city’s central business district (CBD),  

delimited by three 1.5-km long arterials (i.e. a segment of a two-way road - Sherbrooke street, 

and two one-way road segments along de Maisonneuve Blvd. and Sainte-Catherine street.  As it 

can be seen from Figure 6, the arterial roads are intersected by several smaller roads, between 

Guy street on the west side and University street on the east side.  This study area is serviced by 

three subway stations and it includes pedestrian sidewalks along all the streets. Additional 

public transit services are provided by two bus lines, 24 and 15, both running eastbound, and 

are operated along Sherbrooke and Sainte-Catherine, respectively.  In addition, a two-way 

bicycle lane has been integrated in recent years along de Maisonneuve, with a bicycle sharing 
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service available nearly six months a year during the warm season.  Figure 7 shows a sketch of 

all transportation modes available within the study area. 

4.1.1 Analysis and Results 

The proposed method is used to model the study area and find the optimal route for traveling 

between two arbitrarily selected nodes in the study area using any of the available modes, 

motorized or non-motorized. The intersections marked with A and B in Figure 6 correspond to 

the origin and the destination nodes, as shown in the associated public transportation network 

graph sketched in Figure 7.  A traveler using the network shown in Figure 7, in order to reach 

point B from point A may choose among several alternative routes, four of which are identified 

as follows.  First, the traveler starting at A could use the subway from the Guy-Concordia 

station to the McGill station and walk the last segment of the trip towards destination B. The 

second alternative could be to walk from origin A to one of the bus stops either at the 

intersection with Sherbrook St. or with Sainte-Catherine St. and travel by bus towards the 

destination B, where an additional distance to the destination B might have to be walked, 

depending which the bus line was used.  Third, a traveler could decide to use the bicycle sharing 

system, which may include walking a certain distance to and/or from the closest bicycle station.  

Finally, travelers could use private passenger cars and drive from A to B via Sherbrooke St. or 

Sainte-Catherine St. To evaluate the model’s ability to select the optimal route using the MDP 

algorithm described in Section 3.4, first traffic state conditions for each transportation mode 

within the network are identified. In this case study, two hypothetical conditions regarding the 

road traffic conditions and also the reliability of the transit network are considered. 
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Figure 6: Plan of study area (Source: Google Maps©) 
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Figure 7: Public transportation network within the study area (drawing not to scale) 
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In order to estimate the probability of observing different traffic conditions and the related 

transition probability matrix, real-world traffic speed was used to identify different traffic 

conditions related to the study network. The following tasks have been performed to build the 

transition probability matrix for the MDP methodology: 

1. Driving from point A to B, drivers would use either of two major arterials within the 

study area, Sherbrooke and Sainte-Catherine, respectively. Since traffic data for the 

subject streets was not available at the time of study, traffic speed data collected along 

a major arterial in Toronto (Yonge St, within downtown area) was collected and used in 

this example. This arterial was use due to its similarity with the study area (i.e. high 

pedestrian volumes and presence of bicycles mixed within vehicular traffic). The average 

speed data from GPS equipped vehicles was aggregated over 15-minute period 

intervals.  

2. Speed graphs for 15-minute time intervals where produced and analyzed to better 

understand the range of changes in the average speed data along each direction. The 

analysis was done for the period between 14:00 and 19:00 and for all weekdays (during 

a calendar week in September 2012), the weekend data were excluded.  

3. The processed speed values were divided into two arbitrary ranges to represent two 

types of traffic conditions: A) off-peak: speed > 40km/h; B) peak: speed <= 40 km/h.  

4. A visual basic program was developed to calculate the elements of transition probability 

matrix by applying the methodology described in Chapter 3. The probability of observing 

a change in traffic conditions was estimated based on the number of changes in the 
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average traffic speed from one traffic condition range to another during each 15-minute 

interval. Final transition probability matrix is shown in Table 1. 

Table 1: Road Network Transition Probability Matrix (Montreal Case Study) 

Future Traffic State 

Current Traffic State 

A B 

A (off-peak) 0.86 0.14 

B (peak) 0.08 0.92 

5. Each row in Table 1 represents the probability of change in traffic conditions from initial 

state (Rows A and B) to another state (Columns A and B). Based on this table, the 

probability of the traffic conditions to improve from level B to level A is 0.08. There is 

also 14% chance that traffic condition would deteriorate from level A to level B. 

Moreover, the probabilities of traffic condition levels A and B to remain at the same 

level are 0.86 and 0.92, respectively.  

It should be noted that in Table 1, the sum of probabilities for traffic change (each row) is equal 

to one. However, the values within a column of the table do not represent the same probability 

relationship between two states. In order to use the transition probability values, the initial 

traffic state should be chosen from the rows of matrix and the future traffic state should be 

selected from one of the columns. 

Initially, it was assumed that there is no disruption in service provided by the subway.  In order 

to estimate the probability of bicycle being available at BIXI® stations, their availability at five 

BIXI® stations within the study area were randomly checked during the afternoon peak hour. 

The bicycle readiness probability was estimated from the ratios between the number of times 



  
 

107 

 

bicycles were available and the total number of observations. For the study period (between 

16:00 and 17:00) the probability of bicycles not being available within the study area was 0.3. 

Based on the above assumptions, the transition probability matrices for the metro and BIXI® 

network were calculated and are shown in Table 2 and Table 3, respectively. 

Table 2: Transition Probability Matrix for Metro Network 

Future Metro State 

Current Metro State 

A B 

A (normal service) 1 0 

B (interruption) 1 0 

 

Table 3: Transition Probability Matrix for Bixi Network 

Future Bixi State 

Current Bixi State 

A B 

A (bicycle available) 0.7 0.3 

B (bicycle not available) 0.7 0.3 

The network is modeled based on the methodology described in the previous section and is 

illustrated in Figure 8. In total the network includes 9 nodes and 14 links. The following 

constraints have been considered in this example: 

1. Traveler is moving from point A (node 1) to point B (node 9); 

2. It is assumed that a traveler starts the trip at 4:00 pm and has access to their 

automobile at point A; 

3. The model accounts for the directional graph associated with the network. For example, 

Maisonneuve Blvd (connects nodes 1, 4 and 7) is a one way westbound arterial for 

vehicles. Therefore, the private car mode is not available on links 4 and 7 (See Figure 8); 
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4. The direction of traffic was considered when creating the links and separate links are 

created for each direction of traffic along arterials related to the study area. However, 

not all the bidirectional links are represented; 

5. Since the scenarios are evaluated at the beginning of the afternoon peak period, the 

initial probability of traffic states was considered to be [0.4, 0.6], corresponding to 

higher chances of observing peak traffic conditions (60%). 

6. Bus stops are located at nodes 2, 5 and 9 for line 24. Similarly, bus route 15 has stops at 

nodes 3,6 and 8; 

7. Metro stations are located at nodes 1, 4 and 7; 

8. A BIXI® station is available at all the nodes within the network; 

9. A transfer/access time of 2 minutes between metro entrance and platform is 

considered; 

10. Two-minute operating time for BIXI® bicycles at docking stations is assumed. 
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Figure 8: Modeled network (nodes/node), Montreal case study 

 

The study used the regular weekday schedule of the city’s subway system available through the 

local public transit agency, Société de transport de Montréal (STM). The transit schedule data 

was integrated into the route nodes parameters of transit stations, as was previously explained 

in Section 3.1 of the Methodology (Figure 1). Table 4 presents an example of data processing 

for the metro station Guy-Concordia and the line 24 bus stop at intersection of Peel and 

Sherbrooke. 
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Table 4: Sample route/station node parameters for metro and bus modes 

 
Metro Station 

Guy-Concordia 

Bus Stop 

Sherbrooke/Peel 

Route Node 1 2 

Station Node 1 4 

Mode Metro Bus 

Transit Line 1 24 

Transfer Time [min] 2 - 

Route Event Type 

(Departure/Arrival) 
Departure Departure 

Next Route Node 4 5 

Departure Times 
16:02, 16:06, 

16:10, … 

16:03, 16:11, 16:19, 

… 

In order to estimate the driving time on the links, Google Maps® data is used. Travel time on 

each link was estimated by defining the beginning and end nodes of each link, as the starting 

and end point of an arbitrary trip in Google Maps® and the average estimated driving time 

during peak and off-peak hours during weekdays reported by Google Maps® was used for the 

calculations. For example, the westbound driving time on Sherbrooke St., between nodes 2 and 

4 was estimated to be 3 and 5 minutes during off-peak and peak periods, respectively. Also, the 

departure time of bus/metro (Table 4) at each station is integrated into the transit model. It is 

assumed that a traveler’s cost to use the public transportation or the bicycle sharing system is 

the same. Therefore, the performance measure used to determine the optimal route choice is 

given by the expected travel time between the origin and the destination. An average 

pedestrian walking and cycling speed of 3 and 15 km/h are used for calculating travel time on 

the links by each of these modes. The lengths of the E-W and N-S links are approximately 550 m 

and 175 m respectively.  The expected travel time is evaluated using the flowchart previously 

shown in Figure 4 and summarized below in Table 5.    
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Table 5: Estimated travel times for select modes from A to B – No Service interruption at metro 
is expected (Departure at 4:00 pm) 

Route 
No. 

Travel Modes 
Sequence of Nodes 

(See Figure 20) 
Travel/Transfer 

Time [min] 

1 Automobile 1(A), 2, 5, 9(B) 11.2+10* 

2 Metro +walk 1(A), 4, 7, 9(B) 9** 

3 Cycling 1(A), 2, 5, 9(B) 10.8 

4 Walk + Bus (24) 1(A), 2, 5, 9(B) 17.4** 

*10 minutes is allocated for parking the car and walking to destination 

**Travel time includes the walking/access time to bus stop/metro platform, actual ride time on the bus/metro and 
walking time from bus stop/metro station to destination 

It can be seen in Table 5 that, as expected, if a traveler begins the trip at 4:00 pm, the fastest 

route is provided by the subway and it amounts to about 9 minutes. Alternatively, a traveler 

can use BIXI® between A and B with a travel time of about 11 minutes. If traveler uses the bus 

line 24 on Sherbrooke St, total trip duration is 17 minutes.  Driving an automobile between the 

A and B leads to the longest travel time, about 21 minutes including, an estimated 10 minutes 

time for parking the vehicle in the proximity of the destination and walking to point B. This 

additional parking/walking time is expected due to reduced availability of parking in the 

Montreal CBD, especially during the afternoon peak traffic. 

The above estimations are valid assuming that the subway service with normal operations and 

no disruptions. However, if a 20% chance of an interruption in the Metro service is assumed (an 

arbitrarily selected value) and it continues during the whole peak hour, the expected travel 

time or route 2 increases to 21 minutes. Under this assumption, the metro mode does not 

provide the minimum travel time between A and B, and the route 3 is the optimal alternative 

(i.e. using the bicycle, as shown in Table 6). 
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Table 6: Estimated travel times for select modes from A to B – 20% chance of metro service 
interruption (Departure at 4:00 pm) 

Route 
No. 

Travel Modes Sequence of Nodes 
Travel/Transfer 

Time [min] 

1 Automobile 1(A), 2, 5, 9(B) 11.2+10* 

2 Metro +walk 1(A), 4, 7, 9(B) 20.8† 

3 Cycling 1(A), 2, 5, 9(B) 10.8 

4 Walk + Bus (24) 1(A), 2, 5, 9(B) 17.4** 

*10 minutes is allocated for parking the car and towards destination 

† Travel time includes the walking/access time to the platform, the trip time with the metro, the effect of service 

interruption and walking/egress time to the destination 

**Travel time includes the walking time to the bus stop, the trip time with the bus, and the walking/egress time 
from bus stop to the  destination 

The above analysis was conducted based on a fixed departure time (at 4:00 pm). The time of 

trip in conjunction with transit schedule determines the waiting time for passengers. In addition 

to the departure time, several probabilistic parameters are used in the MDP algorithm which 

could affect the results and the optimal route the traveler should follow. The following section 

conducts a sensitivity analysis on these parameters. 

4.1.2 Sensitivity Analysis 

One of the parameters that could affect the traveler’s route choice in a stochastic 

transportation network is their departure time. The first sensitivity analysis is conducted to 

evaluate the final route optimization results of the proposed algorithm based on different 

departure times. Three alternative departure times are considered: 4:15, 4:30 and 4:45 pm. For 

each departure time, two scenarios are considered for metro services: i) normal operations and 

ii) 20% chance of service disruption. The results are shown in Table 7 below. 
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Table 7: Estimated travel times (A to B) for different departure times 

Metro 
Service 

Travel Modes 
Sequence of 

Nodes 

Travel/Transfer Time [min] 

Departure 

at 4:15 pm 

Departure 

at 4:30 pm 

Departure 

at 4:45 pm 

Normal 

service 

Driving 1(A), 2, 5, 9(B) 11.2+10 21.2 21.2 

Metro + Walk 1(A), 4, 7, 9(B) 9 10 7 

Cycling 1(A), 2, 5, 9(B) 10.8 10.8 10.8 

Walk + Bus (24) 1(A), 2, 5, 9(B) 17.4 18.4 21.4 

Service 

interruption 

(0.2 

probability) 

Driving 1(A), 2, 5, 9(B) 21.2 21.2 21.2 

Metro + Walk 1(A), 4, 7, 9(B) 20.8 22 19 

Cycling 1(A), 2, 5, 9(B) 10.8 10.8 10.8 

Walk + Bus (24) 1(A), 2, 5, 9(B) 17.4 18.4 21.4 

As it can be seen in Table 7, the departure time affects the estimated travel times of the trips 

made via the alternative routes with metro or the bus. As expected, when metro is operating 

normally, the optimal route from A to B is by using metro. However, when there is service 

interruption, using a BIXI® bicycle represents the fastest route to get to destination. If cycling is 

not an option for the traveler, depending on the departure time, the metro or bus routes 

become the alternative solution. For example, if the traveler starts from A at 4:15 or 4:30pm, 

the optimal route is given by the bus line on Sherbrooke. But, if the traveler departs after 

4:45pm, the metro would provide the fastest route (assuming that cycling is not an option for 

the traveler). 

Table 7 also provides the impact of metro service interruption in this hypothetical travel 

scenario. It can be seen that the metro service interruption could increase the travel time of 

this mode by 120%. Additional sensitivity analysis is conducted on testing different values of 

metro service interruption probability, when this mode would become the second alternative 
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route. Figure 9 presents the changes in estimated travel time using metro under different 

probabilities of having a service interruption. It can be seen that, for departures at 4:00 pm and 

when the probability of metro service disruption is higher than 13%, the Bus alternative 

becomes the optimal route to move from A to B.   

 
Figure 9:  Travel time impact due to different probability values of service interruption at Metro 

(Departure 4:00 pm) 

Similar sensitivity analysis can be conducted on different probabilities of bicycle availability at 

BIXI® stations and its effect on the optimal route.  Figure 10 presents the estimated travel times 

for using the bicycle mode using different availability probability values. It can be seen that if 

there is a 50% chance of no bicycles available at the station, the expected travel time increases 

to nearly 15 minutes, which is comparable the expected travel time by bus. Depending on the 

convenience level of travelers and their value of time, using the bicycle may not be an option 

for them. Figure 10 also shows the expected travel time from A to B, under different 

probabilities of observing peak-period traffic congestion. Similarly, as explained above, these 

travel times include a flat 10-minute time for parking and walking to destination. On the other 
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hand, assuming off-peak traffic conditions, the expected travel time from A to B, using the 

automobile, is comparable to the expected travel time using the bycicle, given that bicycles are 

available at all time, and this makes the bicycle mode less attractive compared to the 

convenience of driving, especially if the weather conditions deteriorate. 

 
Figure 10: Travel time impact due to different probability values of bicycle unavailability and 

different probability values of traffic congestion occurrence  

4.1.3 Discussion 

In this case study the proposed Markov decision process-based routing algorithm was applied 

to model travelers’ routing in multimodal transportation networks. The algorithm’s objective 

function minimizes the travel time. The multi-modal network included four transportation 

modes: automobile, bus, metro and bicycle. In order to see the effect of changes of the traffic 

conditions, the transition probability matrix was estimated based on real-world speed data 

obtain from an arterial with similar traffic conditions. The concept of the super-node in a 

Markov chain was associated with transit station nodes to facilitate the integration of public 

transportation network into the multimodal network. The proposed methodology incorporated 
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transit schedule into calculations and was applied to a real-world network located in Montreal, 

Quebec. The public transportation fixed schedule was used to compile the route node 

parameters for the modeled network. The case study demonstrated the calculation procedure 

of optimal routes for a traveler moving between two arbitrarily selected nodes in the network.   

Several cases were tested by considering different operations conditions with a given 

probability of congested traffic and/or service disruption for two of the available transportation 

modes (Metro and Cycling). The results demonstrated the applicability of the proposed 

algorithm to identify the fastest route to destination. It was shown that automobile travelers 

can save up to 14 minutes of travel time by switching to another transportation mode (e.g. 

metro, bus, or bicycle). 

The case study clearly shows the applicability of the proposed algorithm in evaluating the 

optimal route in a stochastic network and potential benefits as compared to shortest path 

algorithm. The results showed that by accounting for some stochastic parameters of different 

transportation networks, travelers could optimize their travel times when travel time delays 

occur for specific transportation modes. In this case study, the availability of traffic data for the 

study arterials was limited. Using wider range of speed data, for several days within the peak 

period, could improve the traffic condition predictability. In addition, the probability of the 

Bixi© bicycles being available could be more accurately estimated by using historical data 

related to availability of bicycles at bike stations during rush hour throughout the study area. 
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4.2 Toronto case study 

The first case study investigated one application of the proposed methodology in a small 

network located within the downtown area of Montreal. In this section the MDP algorithm is 

applied to model general travelers’ routing in a larger and more complex network of motorized 

and non-motorized modes. The 45 km2 study area is located within the Greater Toronto Area 

(GTA). The network includes more than 80 km of major roadways, including QEW and Gardiner 

Expressway Highways (West of the CBD) and several major arterials within the Toronto CBD 

area and is shown in Figure 11. 

 

Figure 11: Layout of the study area, roadway network and select transportation modes (Source: 
Google Earth) 
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The boundaries of the study area are limited to Islington Avenue on the west, Bay St on the 

east, Lakeshore Blvd on the south and Bloor St on the north. The selected area with multiple 

transportation facilities (i.e. commuter trains, street cars, buses, subway and bicycle paths) 

enabled us to better model the stochastic behavior of a transportation networks and to 

evaluate the performance of proposed methodology in more realistic network.  

The proposed method is used to find the optimal route for traveling between two arbitrarily 

selected node (marked as A and B in Figure 11) by using private and public transportation. This 

is a typical route for commuters living outside the City of Toronto. Travelers might combine 

carpooling parking lots and the commuter trains. The analysis includes the peak period and 

captures the heavy congestion along major highways (QEW and Gardiner Express) connecting 

the GTA suburbs to downtown Toronto. During the rush hour periods, heavy traffic on the EB 

highway/arterials towards downtown Toronto could be expected. The case study considers the 

stochastic traffic conditions along the roadways within the study network. Travel time along 

these roadways would change according to different traffic conditions. 

4.2.1 Network Model 

The network is modeled based on the methodology presented in Chapter 3. In total, 34 Nodes 

and 58 links, to represent intersections and arterials, are identified in the study network. Figure 

12 and Figure 13 present schematic of the model with the created node and link numbers 

respectively. Nodes for the arterials represent the intersection of two streets. For Gardiner Exp. 

nodes represent intersection of the exit ramp with the crossing street. If there is no exit 

available (e.g. Gardiner Exp. at Bathurst St), no node is created (See Figure 12).  
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Figure 12: Schematic model of the nodes/node numbers within the network 

The direction of traffic was considered when creating the links and separate links are created 

for each direction of traffic along arterials related to the study area. However, not all the 

bidirectional links are represented (See Figure 13).  
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Figure 13: Schematic model of the links/link numbers within the network  

In addition eight bus/tram lines, two subway lines and one commuter train route were coded in 

the model. The time-tables of the commuter train, tram/bus and subway at each station are 

integrated into the transit model. Travel time information for transit modes is evaluated using 

their regular daily schedule. The waiting time for next transit service is estimated based on 

original departure time and estimated arrival time of individual traveler at each station/top. 

Details regarding modeling the public transit lines are provided later in this section. Bicycle 

sharing facilities near different nodes are also integrated into the network. Travel time for 

bicycles/pedestrians on each link each are calculated based on typical average speeds used in 

similar studies conducted by FHWA 2006. 

In order to estimate the travel time along the network links under different traffic conditions, a 

microscopic computer model of the study network was implemented using AIMSUN (Advanced 
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Interactive Microscopic Simulator for Urban and Non-Urban Networks). This software package 

is a proprietary microscopic simulator that can model traffic conditions of real-world traffic 

networks on a computer. The behavior of every single vehicle is continuously modeled 

throughout the simulation using several driver behavior models (e.g. car-following, lane-

changing, gap-acceptance, etc.). AIMSUN is capable of performing microscopic and mesoscopic 

simulation as well as hybrid simulation, allowing modeling of large areas while focusing on the 

areas that require detailed traffic analysis. The reason for using AIMSUN in this case study is the 

ability to easily import and edit GIS files as the first step in developing the model, as explained 

here after.  

In order to model the study area in AIMSUN, the following tasks were conducted: 

1. The base geometry skeleton was developed by importing a GIS map of the study area in 

AIMSUN. The GIS maps from Land Information Ontario (LIO) (See Figure 14) was used 

which included key geometry attributes, i.e. number of lanes, road types, street names 

and speed limits in multiple datasets. These datasets were appropriately merged into 

one dataset based on a common identifier and joined with the road network map using 

ESRI ArcGIS software; 

 

Study Area 
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Figure 14: GIS network acquired from LIO and the study area in this project 

2. The study area network with key attributes was imported in AIMSUN for development 

of the base geometry. The model was then refined by using Google Maps and Google 

Street View to make necessary changes regarding the geometry/number of lanes for all 

roadways within the model. Figure 15 shows the network model in AIMSUN; 

 

Figure 15: Study area modeled in AIMSUN 

3. The actual traffic demand as well as traffic signal timings was coded in the model. 

Separate traffic demand was available for a 4-hour period between 15:00 and 19:00. In 

order to create free-flow and congested scenarios, the simulation was conducted for a 

4-hour period (15:00 – 19:00) with available hourly demands. A half hour warm-up 

period was used for the simulation. The microscopic model was calibrated using real 

data collected during PM peak period for major arterials and QEW highway (traffic 

counts, speed and travel time data). In order to account for the stochastic nature of 
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vehicle arrivals, five simulation runs with distinct random seeds were conducted. The 

average of five replications was used as the final result. 

4. The simulation results were stored in a SQLITE database file by AIMSUN. The output was 

in the form of a table and included Section IDs, time intervals, and simulated travel 

time/speeds.  Each section ID in AIMSUN corresponds to one link in the modeled 

network. SQL code was used to extract travel time and speed data for the required links 

within the network from the SQLITE database. The data were imported into Excel from 

SQLITE. A Visual Basic code was developed to import the results into a template created 

in an Excel worksheet. Link travel times were assigned to corresponding arterials and 

highway sections of the study area. (See Appendix A) 

The simulation results were used to estimate the link travel times on Gardiner Expressway and 

major arterials in the network under different traffic congestion levels. Travel times for all the 

links were aggregated for 30 minute intervals within the 4-hour simulation period (3:00 – 7:00 

pm). It was expected that during the first hour of simulation no congestion forms within the 

network and therefore the estimated travel time during the first hour was considered as the 

off-peak travel time. The simulation results for later hours within the simulation period were 

also analyzed to estimate the travel times corresponding to the peak and congested traffic 

conditions along each link. 

4.2.2 Model Calibration 

The control data used to calibrate the model was comprised of volume and speed data.  The 

volume data was compiled from a mix of counts from different detectors. Speed data was 
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collected for Gardiner Expressway, Lake Shore Boulevard and major arterials. For this study 

area GPS based speed information from proprietary data accessible via  private data collection 

source was used. Signal timing plans were another important part of the model’s calibration 

and was available from the municipalities with jurisdiction in the study area.  

Driving behaviour 

Driver behaviour is calibrated in four different categories within AIMSUN. The first category is 

the model’s experiment properties. This is where the simulation step and reaction times are 

calibrated. These two parameters are tied together in that the reaction time must be a multiple 

of the simulation step. The simulation step and reaction time were adjusted to calibrate the 

overall speeds and level of congestion on the highway and major arterials.  

The second category is the section properties. The section properties are used to calibrate the 

operation at on-ramps by adjusting how cooperative vehicles are with merging vehicles, the 

distance over which that they will cooperate, and the distance over which vehicles will merge 

into traffic. The section properties are also used to set speed limits. 

The third category is the node properties. The node properties are used to calibrate how 

vehicles will react to upcoming turns in their path. Each turn has two variables that define the 

limits of three zones upstream. In the first zone, vehicles are unaware of the upcoming turn. In 

the second zone, vehicles recognize the upcoming turn but will still make lane choice decisions 

based on speed advantages. In the third zone, the vehicles will make whatever lane changes 

necessary; even if they must slow down to do so. These parameters are key to calibrating traffic 
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operation at off-ramps and were adjusted in the model to reflect levels of congestion observed 

in the speed data collected. 

The fourth category is the vehicle properties. This is where characteristics such as speed 

acceptance, maximum desired speed, and acceleration/deceleration curves are defined for 

each vehicle type (e.g. cars, light trucks, heavy trucks, etc.). 

The visual observation of the model was completed under different simulation scenarios to 

ensure that the model overall is operating as expected and that driving behavior (merging, lane 

changing, speed reduction, queue formation, etc.) is reasonable. 

Volume 

Traffic volume calibration involves comparing average traffic volumes generated from the 

simulation model against the observed traffic volumes. The Geoffrey E. Havers (GEH)  statistic 

formula is used for this comparison. The GEH statistic is an empirical formula similar to chi-

square test that is used in traffic modelling to compare two sets of traffic volumes. GEH 

statistics can be used as an acceptance criterion for travel demand forecasting and model 

calibration as shown in Equation (7):  

𝐺𝐸𝐻 =  √
2(𝑀−𝐶)2

𝑀+𝐶
          (7) 

Where, M is the hourly traffic volume from the model and C is the hourly volume from the 

traffic count.  
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For calibrating traffic models in the "base case" scenario, according to the FHWA (2004) 

guidelines for microsimulation modelling, a GEH of less than 5.0 for 85% of the links is 

considered an acceptable match between the modelled and observed hourly volumes. In this 

model, volumes of all major arterials and Expressway within the network were considered for 

calibration. The calculated GEH for 90% of the volumes were less than 5.0 which shows that the 

model is well calibrated in terms of traffic volumes. Figure 18 shows the calculated GEH 

statistics for the model. 

 

Figure 16: GEH Statistics Calculations for the modeled study area 

Speed 

Speed calibration was done for highway and major arterials. Speed profiles were constructed 

from the GPS data and compared with outputs from the model. The GPS data is aggregated 

based on changes in road cross-sections, resulting in a step-graph. The modeled speeds are 
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plotted in two forms: (1) as a step-graph based on AIMSUN’s section divisions and (2) a smooth 

line-graph based on detectors spaced every 100m. Figure 17 shows a sample speed profile for 

Gardiner Expressway. 

 

Figure 17: Speed profile used for calibration – Gardiner Expressway 

4.2.3 Traffic Conditions and Transition Probabilities 

The proposed MDP methodology incorporates transition probabilities which denote the 

probability that traffic conditions change from one node to another node within the network. In 

order to estimate the probability of observing different traffic conditions and the related 

transition probability matrix, real-world traffic speed was used to identify different traffic 

conditions related to the study network. The following tasks have been performed to build the 

transition probability matrix for the MDP methodology: 

_______   GPS Speed 

_______    Section Speed 

______   Detector Speed 

_______   GPS Speed 
_______    Section Speed 
______   Detector Speed 
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1. Traffic speed data collected for two different directions along four major arterials in 

Toronto during the 4th week of September 2012 was available. The average speed data 

from GPS equipped vehicles was aggregated over 15-minute period intervals. Speed 

data was available for about 50 kilometer length of major arterials was analyzed. 

2. Speed graphs for 15-minute time intervals where created and analyzed to better 

understand the range of changes in the average speed data along each 

corridor/direction. The analysis was done for the period between 14:00 and 19:00 and 

for all weekdays, the weekend data were excluded. Figure 18 shows a sample of such 

graph for the northbound direction of one section along Dufferin St.  

 

Figure 18: Sample of 15-minute interval average speed profile along Dufferin St. (NB) 

3. Based on the observations from the speed graphs, outlier days/locations were removed 

from the analysis. For example, in case Dufferin St. speed graph shown in Figure 18, the 

average speed data related to “day 1” was identified as an outlier (with a different 

trend compared to the other days)  and therefore was not considered for the 
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calculation. Day 1 was considered to be an outlier because more than 70% of the data 

points were outside the 95% confidence interval of the other four days. 

4. The collected speed values were divided into three arbitrary ranges to represent three 

types of traffic conditions: A) off-peak: speed > 40km/h; B) peak: 20< speed <= 40 

km/h; and C) congested: speed <= 20km/h.  

5. A visual basic program was developed to calculate the elements of transition 

probability matrix by applying the methodology described in Chapter 3. The probability 

of observing a change in traffic conditions was estimated based on number of changes 

in the average traffic speed from one traffic condition range (defined above) to another 

during each 15-minute interval. This calculation was done based on weekday data 

(excluding weekend and outlier) and for each direction of travel along each arterial.  

6. The calculated probability matrices of arterials were compared for the directions of 

traffic movement related to this study (northbound and eastbound). Final transition 

probability matrix was calculated by averaging the corresponding elements of each 

probability matrix of arterials and is shown in Table 8. 

Table 8: Transition Probability Matrix (Arterials) 

Future Traffic State 

Current Traffic State 
A B C 

A (off-peak) 0.86 0.14 0.00 

B (peak) 0.11 0.86 0.03 

C (congested) 0.03 0.22 0.75 

7. Each row in Table 8 represents the probability of the change in traffic condition from 

initial state (Rows: A, B and C) to another state (Columns: A, B and C). Based on this 
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table, the probability of the traffic conditions to improve from level C to level A and B is 

0.03 and 0.22 respectively. Similarly, the probability of traffic condition level B to be 

improved to level A is 0.11. There is also 3% chance that traffic condition would 

deteriorate from level B to level C. Moreover, the probabilities of traffic condition levels 

A, B and C to remain at the same level are 0.86, 0.86 and 0.75 respectively.  

As it can be seen in Table 8, the sum of probabilities for traffic change (each row) is 

equal to one. However, this relationship does not apply to the columns of this table. On 

the other hand, the numbers along columns of the table does not represent the same 

probability relationship between two states. The transition probability numbers are only 

applicable if the initial traffic state is chosen form rows and the future traffic state is 

selected from one of the columns. 

8. The study area in this study includes one major east-west Highway (QEW) that connects 

Toronto to the west of the province. It should be noted that the changes in traffic flow 

parameters on highways (e.g. speed, density, shockwave speed) is different than those 

on arterials, therefore the probability of changes in traffic state is also different and 

should be considered in the analysis. For the purpose of this study, since the 

aggregated speed data was not available for QEW highway, a parallel highway (401) 

was used as reference for evaluating the transition probability matrix along highway 

section.  

Spot speed data on two different sections of Highway 401 was available for one day 

(May 13 2011). Speed values were aggregated for 1-min periods between 15:00 and 

19:00 on the count day. The same process as for the arterials was used to estimate the 
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probability of change in the speed on vehicles on the EB direction of the highway, as per 

the study area. The collected speed values were divided into three arbitrary ranges to 

represent three types of highway traffic conditions: A) off-peak: speed > 70 km/h; B) 

peak: 50< speed <= 70 km/h; and C) congested: speed <= 50 km/h.  

The final probability matrix was built by using the average probabilities for each change in 

traffic state on highway 401. Table 9 presents the results: 

Table 9: Transition Probability Matrix (Highway) 

Future Traffic State 

Current Traffic State 
A B C 

A (off-peak) 0.71 0.29 0.00 

B (peak) 0.12 0.59 0.29 

C (congested) 0.00 0.17 0.83 

9. In order to have similar transition probabilities for the whole network, the average 

probabilities between the two matrices are used as the final transition probability 

matrix in the MDP algorithm (see Table 10) 

Table 10: Transition Probability Matrix (Study Network) 

Future Traffic State 

Current Traffic State 
A B C 

A (off-peak) 0.78 0.21 0.00 

B (peak) 0.12 0.72 0.16 

C (congested) 0.02 0.19 0.79 

The initial transitions probability matrix can be created by using arbitrary probability 

values and based on the available departure time. Depending on the departure time and 
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its observed traffic conditions, a higher probability should be assigned to related traffic 

state. For example, for the beginning of peak period, it is assumed that traffic state B 

(peak) has a higher probability compared to the other two states. Therefore, the 

arbitrary probability matrix presented in Table 11 can be used: 

Table 11: Initial probability matrix when  
departure time is at the beginning of peak period 

A B C 

25% 50% 25% 

4.2.4 Public Transit Network 

The study area included the following transit modes/lines (as shown in Figure 19):  

1. Go Transit Lakeshore east train, with 3 station within the study network (i.e. Mimico, 

Exhibition and Union); 

2. Subway yellow line 1 (Yonge-University-Spadina), where 5 stations were included in the 

study area (i.e. Union, St Andrew, Osgoode, St Patrick and Queen’s Park); 

3. Subway green line 2 (Bloor-Danforth), where 15 stations starting from Islington on west 

to St George St were included in the study network; 

4. Bus line 6, with 5 stops on Bay St (i.e. at Front, Queen, Dundas, College and Wellesley 

Streets); 

5. Bus line 142 (express), with 4 stops on University St (i.e. at Queen, Dundas, College and 

Wellesley Streets); 

6. Streetcar line 501/Bus line 301, with 3 stops along Queen St (at Bathurst, Spadina and 

University Streets); 
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7. Streetcar line 505, with 3 stops along Dundas St (at Bathurst, Spadina and University 

Streets); 

8. Streetcar line 506/Bus line 306, with 3 stops along College St (at Bathurst, Spadina and 

University Streets);  and 

9. Streetcar line 511, with 3 stops along Bathurst St (at Queen, Dundas and College 

Streets). 

The transit schedule for each line at each station/stop was derived from Toronto Transit 

Commission (TTC) website and is provided in Appendix B. Travel time on each link between 

each two steps within the network was then calculated based on the scheduled times at 

each station. In addition, any applicable waiting time was also calculated based on the 

difference between estimated traveler’s arriving time at station and scheduled transit time 

and was added to travel time of related link. 
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Figure 19: Transit network within the study area 

The study area also includes 20 bike sharing stations of BikeShare Toronto. It was assumed that 

during the analysis, the bicycle docking stations have at least one available bike to rent or one 

available spot to return the bicycle. The travel time for the links by using bicycle mode was 

estimated based on the length of the link and by applying an average speed of 12 km/h for 

bicycles. An additional one minute was allocated for docking and undocking the bicycles at each 

station. The average walking speed of 5 km/h was used to calculate the walking time on each 

link.  
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4.2.5 Routing Constraints 

In order to improve the efficiency of the routing algorithm and to better represent the actual 

behavior of passengers, the following constraints/assumptions were considered in developing 

the algorithm:  

1. The maximum number of mode transfers (e.g. car to bus, bus to walking, etc.) is limited 

to two, to represent more realistically the expected behavior of commuters.  

2. In regards to private mode (cars), mode change is only allowed from car to other 

transportation modes (and not vice versa). In this case, a transfer time of 5 to 15 

minutes (variable based on the location) is considered for parking the vehicle and 

arriving at the station/stop. For example, in case of commuter train parking lots, which 

are outside the CBD, this transfer time is smaller than the expected transfer times for 

parking within the CBD area (i.e. roadside parking). 

3. The expected average transfer time for accessing bicycle-sharing docks is two minutes. 

4. All prohibited turn movements at various intersections are considered in the algorithm. 

5.  For transfers between the commuter train and other transit modes at the downtown 

central station (Union station) an average five-minute transfer time is assumed. 

4.2.6 Analysis Results 

The proposed algorithm was applied to find the optimal path between the arbitrarily selected 

points A and B. A starting time of 17:00 was used as reference time for travel time calculations. 

A Visual Basic (VB) program was developed to implement the routing model described in the 
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previous chapter and to estimate the optimal route. The VB code used recursive function 

technique to process the MDP algorithm (See Appendix C).  

Table 12 shows the results of estimating the optimal and select alternative routes of the 

hypothetical trip made by a commuter between A and B. It is assumed that traveler uses his 

own private vehicle to depart from A. Since the algorithm only identifies the optimal path, its 

implementation in the VB code was adjusted to obtain, for comparison purposes, two 

alternative paths presented in the following tables (Route No. 2 and 3).  

Table 12: Estimated travel times for select routes from A to B  

Route 
No. 

Transit Modes 
Sequence of Nodes (See 

Figure 20-Figure 22) 

Travel 
Time 
[min] 

1 Car, Subway, Bike/Walk A,2,3,4,5,11,18,25,B 30 

2 Car, Walk A,1,13,20,21,22,23,24,B 61 

3 Car, Go Train, Subway, Walk A,1,6,28,21,22,23,24,B 34 

 

 

According to Table 12 the following observations can be made regarding the results: 

1. The optimal route for traveler (minimum travel time) is to drive north and then east 

along Bloor St, up to Bathurst St. and then take the subway to University St. Then, they 

can use bicycle or they can walk towards destination (See Figure 20). The total travel 

time of this path is 31 minutes, compared to 61 minute estimated time for using car 

only (driving from A to B). 
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Figure 20: Traveler’s optimal route 

2. The second best option is to take the commuter train up to Union Station, and then 

switch to subway NB up to College St. Then, they can walk to destination (See Figure 

21). Total estimated travel time is this scenario is 34 minutes. 

Driving Car 
Subway 
Bicycle Route 
/Walk 
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Figure 21: Second alternative route 

 

3. Estimated travel time for driving along Gardiner highway EB and then University St NB 

(as shown in Figure 22) is about an hour, which is almost twice the time along the 

optimal route by using public transit. This is true during the congested traffic state. 

However, in case of normal traffic conditions (peak period) the estimated travel time for 

this route is 30 minutes. 

Driving Car 
Go Train 
Subway 
Bicycle Route 
/Walk 
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Figure 22: Preferred route under normal traffic condition 

4.2.7 Sensitivity Analysis 

In order to evaluate the effect of the stochastic parameters on the MDP algorithm results, a 

sensitivity analysis is conducted. The effect of arbitrary selected ranges of travelling speed, to 

represent different traffic conditions is evaluated. Initially, the following ranges of speed values 

are used to represent the following conditions: A) off-peak: speed > 45km/h; B) peak: 30< 

speed <= 45 km/h; and C) congested: speed <= 30km/h. The estimated travel times for previous 

routes are calculated using the proposed algorithm and results are shown in Table 13. 

Table 13: Estimated travel times for select routes from A to B (revised transition probabilities) 

Route 
No. 

Transit Modes 
Sequence of Nodes (See 

Figure 20-Figure 22) 

Travel 
Time 
[min] 

1 Car, Subway, Bike/Walk A,2,3,4,5,11,18,25,B 31 

2 Car, Walk A,1,13,20,21,22,23,24,B 53 

3 Car, Go Train, Subway, Walk A,1,6,28,21,22,23,24,B 34 

Driving Car 
Walk 
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It can be seen that the expected travel time using the automobile mode could change by about 

10% for different routes. However, the optimum route and the second preferred route do not 

change. 

Additionally, the limits of speed ranges representing different traffic conditions are decreased 

to the following values: A) off-peak: speed > 30km/h; B) peak: 15< speed <= 30 km/h; and C) 

congested: speed <= 15km/h. Updated travel times for preferred routes are shown in Table 14. 

Table 14: Estimated travel times for select routes from A to B (revised transition probabilities) 

Route 
No. 

Transit Modes 
Sequence of Nodes (See 

Figure 20-Figure 22) 

Travel 
Time 
[min] 

1 Car, Subway, Bike/Walk A,2,3,4,5,11,18,25,B 31 

2 Car, Walk A,1,13,20,21,22,23,24,B 54 

3 Car, Go Train, Subway, Walk A,1,6,28,21,22,23,24,B 34 

The results show that there is minimal increase in travel time for route no. 2, by 1 minute. 

Nevertheless, the optimal and the second preferred route do not change.  While under the 

tested case study the sensitivity analysis does not show significant impact on the optimal route, 

it can be seen that this model is able to capture such variations, and depending on the 

complexity of the network one can use the model to identify optimal routes under different 

traffic conditions.  

The above analysis was conducted by applying similar transition probability matrices for 

arterials and highways. This was done using the average of two transition probability matrices 

(Table 10). As discussed in Section 3.5, the traffic pattern and changes in traffic speed may be 

different on arterials and highways and separate transition probability matrices may be used 
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for different roadways within the network. To study the effect of this change, additional 

analysis was conducted to identify the optimum route by using the transition probability 

matrices for corresponding link types (i.e. Table 8 for arterials and Table 9 for highway) and the 

results are summarized in Table 15.  

Table 15: Estimated travel times for select routes from A to B (Different transition probability 
Matrices for arterials and highway) 

Route 
No. 

Transit Modes 
Sequence of Nodes (See 

Figure 20-Figure 22) 

Travel 
Time 
[min] 

1 Car, Subway, Bike/Walk A,2,3,4,5,11,18,25,B 28 

2 Car, Walk A,1,13,20,21,22,23,24,B 55 

3 Car, Go Train, Subway, Walk A,1,6,28,21,22,23,24,B 34 

The results show minor improvements in estimated travel time for the optimum (28 min vs. 31 

min). This is due to the smaller chances of transitioning to congested traffic condition in the 

transition probability matrix for arterials as compared to the average transition probability 

matrix for the whole network.  

4.2.8 Discussion 

The proposed MDP algorithm was applied to a real world transportation network located within 

the Greater Toronto Area to find the optimal path for a traveler between to arbitrary points. 

The studied multi-modal network included Commuter train, Bus, Street car, Subway, Bicycle 

and Automobile modes. The transit network schedule was modeled using the Super node 

approach presented in the previous sections. In order to account for changes in traffic 

conditions, transition probability matrices were evaluated using real world speed data along 

several roadways in the Toronto City. The proposed routing algorithm successfully identified 
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the optimal (shortest) route for a traveler moving between two arbitrarily selected locations in 

the network, using different travel modes. A sensitivity analysis was conducted to demonstrate 

the ability of the model to capture the effect of probabilistic parameters used for the route 

estimation. It was also shown that the proposed methodology can realistically account for the 

stochastic properties of traffic conditions along different types of transportation facilities. While 

there were some limitations of the data source (only one highway segment was used to collect 

highways-specific transition probability matrix) there was sufficient data to demonstrate how 

using different transition probability matrices for different type of links (i.e. arterials vs. 

highways) can lead to different outcome (i.e. optimal path). It is expected that if a more 

heterogeneous network is tested (i.e. different types of facilities and associated probability 

matrices) using specific matrices by road type would lead to more realistic modeling results 

when an aggregated transition probability matrix is used.  

In this case study first a network wide transition probability was applied for route optimization. 

A sensitivity analysis was conducted to see the effect of applying separate transition probability 

matrices for arterial and highway corridors. Given that in a large transportation network there 

is a high degree of heterogeneity in terms of traffic conditions along different roadway types at 

any given time, the reliability of the methodology could be further improved by utilizing 

different transition probabilities for different sections of a large network. 
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4.3 Longueuil case study 

The 2-km long study area is located on a corridor between the Champlain and Victoria bridges, 

in Longueuil, Quebec. The two-way, three lanes each direction arterial, Boulevard Taschereau, 

(henceforth referred to as the major street) crosses five local streets (minor approaches), see 

Figure 23. The major street is used on both directions by several bus lines from RTL (Reseau de 

transport de Longueuil).  All bus stops are placed at the stop line of each intersection with the 

minor streets (i.e. near-side bus stops). In this study the west bound approach of the major 

street, starting from Churchill Blvd, is considered as the regular path for RTL bus line number 4.  

This bus line originates from the Longueuil terminal, heading west towards Cornwall and 

Maricourt and has five stops within the study area and cannot be skipped.  

The reason for selecting this particular segment is that it is a straight section of a major 

roadway (134) that further downstream merges into highway 15. In addition, there are several 

arterials and minor streets (e.g. Rue Victoria, Rue de Mont Royal) available for rerouting the 

busses in case of congestion along the major road. The average spacing between bus stops is 

about 400 m. The extra distance that bus would travel in case of rerouting ranges between 200 

and 700 meters. 

In this case study all buses travel between nodes 1 and 5 (as shown in Figure 24), which 

represent the beginning and the destination nodes, respectively. If rerouting via minor roads is 

necessary, the stops can be relocated downstream of the intersection either on the major 

street or on the minor street, depending whether, in order to reach the next stop, the bus will 

get back on the predetermined route or will continue on an alternative route , respectively.  For 

example, a bus may detour via Mont Royal Street in order to advance from node 2 to node 3.  If 
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the bus resumes its predetermined route on the major road then, in order to service the stop at 

node 3, it will stop on the major road downstream of the Charles Street intersection. 

 

Figure 23: Layout of Study Area (Source: Google Maps) 
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Figure 24: Alternative scenarios: lane closures in the network 

 

 

Figure 25: Bus routes: nodes and links 
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To evaluate the effectiveness of the proposed approach in the real world, traffic demand data 

and phasing times for signal controllers of intersections were collected from Quebec Transport 

Ministry and bus schedule and passenger count data was available through the local public 

transit agency, Reseau de Transport du Longueil (RTL). The bus schedule is used to generate bus 

fleet for microscopic simulations and also in model calibration to ensure buses arrive at 

consecutive bus stops according to their schedule. The passenger count data were used in the 

model as number of boarding/alighting for buses at each stop and to calculate their dwell time. 

Based on field observations, the afternoon peak hour demand on the major street varies 

between 800 and 2000 veh/h on each direction during the three peak hours between 15 and 

18. Also, the volume of cars on minor approaches is estimated at 200 veh/h.  

The network, i.e. arterials and minor streets presented in Figure 24, was modeled and calibrated 

in a microscopic simulator, VISSIM (PTV America 2011). VISSIM is a microscopic, time-step and 

behavior-based simulation model capable to simulate mixed vehicular traffic including public 

transportation operations.  It is being used for more than two decades by researchers and 

practitioners in various transportation applications.  In this study the latest available version 

was used, VISSIM 5.2.  The reason for using VISSIM in this case study is the ability to easily 

define and work with transit lines/routes and bus stops within the model. 

4.3.1 Model Calibration 

The model was calibrated based on the available traffic demand from MTQ at several 

intersections along Taschereau Blvd. The simulated traffic volumes were compared with vehicle 

counts to make sure the FHWA (2004) guidelines for micro-simulation modelling (Equation 7), a 
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GEH value less than 5.0 for 85% of the links is met. A summary of calculated GEH statistics for 

different locations along the major road is presented in Figure 26. Speed data at the study 

corridor were not available to be used for the calibration. 

.  

Figure 26: GEH Statistics Data 

4.3.2 Experimental Analysis 

For illustrative purposes, in this study we assume that major street is characterized by one of 

the five different traffic conditions. Each traffic condition corresponds to a different state in the 

associated Markov system.  One of the states represents free-flow operating traffic conditions 

under which bus operations on the pre-determined bus routes are not affected. The other five 

states correspond to five different traffic congestion levels based on possible lane closures 

scenarios as shown in Figure 24 and defined below:  
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 Scenario 1: One EB traffic lane is closed on Taschereau Boulevard, west bound at the 

end of the study corridor between Regent and Lawrence Streets (nodes 4 and 5 in Figure 

25). 

 Scenario 2: Two EB traffic lanes are closed to traffic on Taschereau Boulevard, west 

bound between Regent and Lawrence Streets. 

 Scenario 3: One EB traffic lane on Taschereau Boulevard, between Margaret and Regent 

Streets is closed to vehicles (nodes 3 and 4 in Figure 25). 

 Scenario 4: Two EB traffic lanes are closed to traffic on Taschereau Boulevard, west 

bound between Margaret and Regent Streets. 

 Scenario 5: Two EB traffic lanes on Taschereau Boulevard, between Charles and 

Lawrence Streets are closed to traffic. 

Each scenario was simulated in VISSIM for three hours using the same traffic demand input (See 

Table 16). Each scenario was run with the same ten distinct random seeds, to account for 

stochastic variations in the model and to allow for consistent comparison. Standard deviation 

and standard error of ten travel times based on ten different random seeds were calculated at 

different time stamps for each scenario. It was observed that the confidence interval for most 

of the travel times of buses were below 10% except for a few cases. This can be explained by 

the fact that due to inherent randomness of each simulation run, in certain instances buses may 

be affected by additional delay due to random vehicle arrival at the traffic signal.  Since the 

simulated corridor is short, 2-km long, the impact of waiting an additional cycle length at one of 

the intersections along the corridor may have a substantial effect on the accumulated travel 

time on the links. 
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Table 16: Vehicle input volumes 

 
Total Vehicle Flow 

(Veh/h) 
Movement 

Ratio 
(% of total 

Flow) Approach/Simulation 

Time 

First 

hour 

Second 

hour 

Third 

Hour 

Taschereau West 

bound 
800 1600 2000 

Through 80% 

Right/Left Turn 20% 

Taschereau West 

bound 
800 1600 2000 

Through 60% 

Right/Left Turn 40% 

Churchill 

Boul./Grande 

Allée/Victoria St. 
200 200 200 

Through 60% 

Right/Left Turn 40% 

A total of 50 simulation runs were conducted.  Average bus travel times were calculated from 

each simulated scenario. A 𝑡-test analysis was conducted to determine if the difference 

between average travel times estimated in alternative scenarios are statistically significant for 

similar links.  Table 17 shows the results of the tests that compare average travel time, in 

seconds, of the base scenario – the scenario representing free-flow traffic conditions, μ0 and 

the average travel time of buses in each of five traffic congestion alternative cases (𝜇𝑖 , where 

𝑖 =  1 … 5). The null hypothesis tested is that the two average values are not significantly 

different (𝐻0: 𝜇0 − 𝜇𝑖 = 0) at 95% confidence.  

It can be seen in Table 17 that under certain traffic conditions, some links shows statistically 

significant different average travel times at 95% confidence. For example, it was found that 

there is a statistically significant difference between average travel times on link 7 when the 

base scenario and scenario 4 are compared. Moreover, link no. 4 shows a statistically significant 
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difference for all simulated traffic conditions. This means that if buses are rerouted to travel 

through links 4 and 7, there will be a significant saving in travel times under certain traffic 

conditions. Furthermore, for other links, the t-test results show that statistically there is no 

difference between average travel times estimated for alternative scenarios. This indicates that 

these links may not have significant effect on the savings in travel time/costs, if the buses are 

rerouted to travel through them to get to the destination. The optimal routing calculations 

provided in the next section yield to the same conclusion. 

It can be seen in Table 17 that link number 4 has the most significant results compared to the 

base scenario. This can be explained that by creating traffic congestion on the links downstream 

of link 4, the queuing condition occurs at upstream since the vehicles are not able to clear the 

intersection and travel via the available downstream lanes. Therefore, the travel time on link 4 

increases compared to alternative routes. Due to the relatively low congestion level created in 

the network in scenarios 1-4 the other links did not show a statistically significant travel time 

difference. By modeling more severe congestion conditions, scenario 5, much longer queuing 

occurred upstream on link 4 and additional optimized paths were identified which are 

presented in the following section. 
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Table 17: Results of the t-test analysis for the travel time difference 

 t-values for t-test (𝐻0: 𝜇0 − 𝜇𝑖 = 0; 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1. .5) 

Link no. Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5 

2 0.72 0.12 0.2 -1.5 -27* 

4 -2.9* -2.8* -3.0* -6.6* -7.3* 

5 -0.33 -0.83 -0.71 -4.3* -130* 

7 -1.1 -0.78 -1 -8.1* -8.2* 

* denotes statistically different means at 95% confidence (t-critical = 2.03) 

4.3.3 Computation Results 

The impact of the hypothetical traffic congestion scenarios defined above was evaluated 

through the proposed adaptive routing methodology. In the proposed methodology, a penalty 

(cost) is assigned in each step while moving from one node to another. Equation (5) is used to 

estimate total penalties earned at the end node and decision is made based on minimized 

penalties. In this study, the objective is to find the optimal route for which the total cost is 

minimized. The reward for traveling from one stop to the adjacent one is calculated considering 

both travel time and operating costs for buses. Based on a report released by Transport Canada 

(2006), the value of time for passengers is estimated as $29.7 per hour (2003 $).  Using the 

latest annual report of American Public Transportation Association (2010), operating cost for 

buses is calculated as $5 per kilometer (2008 $) which includes Vehicle Operations, 

Maintenance, General Administration (Salaries and Wages, Materials and Supplies, Services) 

and Purchased Transportation.  
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Using the study area depicted in Figure 23 to Figure 25, buses travelling westbound between 

nodes 0, 1 or 2 and the next node may use one of the following three routes: i) the regular path 

along Taschereau, ii) north detour, via Mont Royal and minor roads back towards Taschereau, 

iii) or south detour, via Vercheres/Campbell St and back on Taschereau. Travel times between 

every two adjacent nodes were generated from VISSIM simulations of all possible routes. A 

sample of estimated travel times of links for different network conditions is shown in Table 18. 

The first row presents travel time on link no. 2 for all the scenarios. Rows 2 to 4 compares travel 

time on three available links between nodes 2 and 3 under different traffic conditions (i.e. Base 

alternative and scenarios).  

Table 18: Average travel time simulation results for select links (see Figure 25) 

Row No. 

Link 
Avg. Travel Time [sec] under different traffic 

conditions (Scenarios, Figure 7) 

Link 

No. 

From 

Node 

To 

Node 

Base 

Scenario 

Scen. 

1 

Scen. 

2 

Scen. 

3 

Scen. 

4 

Scen. 

5 

1 2 1 2 92 92 92 92 92 108 

2 4 2 3 37 38 38 38 219 513 

3 5 2 3 147 147 147 147 149 237 

4 6 2 3 106 106 104 101 105 87 

 

The simulation results were used as realized travel time data for the links within the network. 

The average link travel times of the ten simulation results was calculated for each scenario. 

Thus, when the bus approaches a given node, the travel time on the adjacent links depends on 

the current simulation time (depending on the probability of observing specific traffic 
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conditions on those links). Transition probability matrix is formed based on the assumption that 

the five different traffic conditions (i.e. free-flow, congestion scenario 1, 2, 3, 4 or 5) may occur 

with the same probability through the network (𝑝𝑖𝑗=0.2). A Visual Basic code was written to 

manipulate data and estimate the optimal route based on the proposed methodology (Figure 

3). A recursive function is used in the code that accepts the beginning and destination nodes 

and arriving time at beginning node as parameters, calculates the links travel times based on 

the arrival time at nodes and calculates total cost by using Equation (5) for each chain of links 

between beginning and destination nodes. The total cost is evaluated by summing up the 

estimated travel time converted to cost and operating cost for the total distance traveled by 

bus. The combinations of links that yield the minimum total cost are selected as optimal route 

to be taken by the bus.  

Table 19 shows select analysis results for the studied area. For example, under congested traffic 

conditions caused by closure of two traffic lanes between nodes 3 and 4 (Scenario 4), if buses 

arrives at 𝑛𝑜𝑑𝑒 1 at 𝑡 = 25𝑚𝑖𝑛, the regular path (links 1,4,7 and 10) remains the optimal route. 

However, if the bus arrives at 𝑛𝑜𝑑𝑒 1 at a later time (i.e. 𝑡 = 80 𝑚𝑖𝑛) then the optimal route is 

determined by links 1,6,7 and 10. The estimated cost savings are per passenger on the bus.  
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Table 19: Sample optimal routing results for the study network 

Departure 
Time [min] 

Traffic 
condition 

Beginning 
node 

Routed links 
to reach 
𝑛𝑜𝑑𝑒 5 

(Figure 25) 

Estimated 
cost for 
regular 
path [$] 

Estimated 
cost by re-
routing [$] 

Travel time 
saved by 

re-routing 
[sec] 

20 Scen. 4 0 1,4,7,10 8.9 - - 

80 Scen. 4 0 1,6*,7,10 11.2 10.9 52 

110 Scen. 4 0 1,6*,7,10 11.9 11.7 114 

125 Scen. 4 0 3*,6*,7,10 12.8 12.3 282 

155 Scen. 4 0 3*,6*,7,10 13 12.5 292 

95 Scen. 3 0 1,4,7,10 9.3 - - 

155 Scen. 3 0 1,4,7,10 10 - - 

155 Scen. 2 0 1,4,7,10 10 - - 

80 Scen. 5 0 1*,6*,1,1 10.3 7.5 325 

85 Scen. 5 0 1*,6*,1,1 11.5 8.1 300 

145 Scen. 5 0 3*,6*,1,1 13.8 8.8 740 

* denotes re-routes from regular path along the main corridor (links 1,4,7 and 10) 

 

Table 19 shows that in some cases buses will run along links number 3 and 6 along Mont Royal 

St. without using Taschereau Boulevard, which is the main bus corridor, to pick up the 

passengers. In these cases, the regular bus stops should be temporary relocated to new 

location.  
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Although moving bus stops can be confusing for the riders, however, temporary relocation of 

bus stops is being practiced in the city of Montreal by local transportation agencies. For 

example, during special events, STM regularly cancels or relocates bus stops in the network. 

This happens for example in cases of accidents along the urban routes, or due to heavy snow 

falls during winter season. The STM mobile vehicles are responsible for posting necessary signs 

and guidelines. These changes will also be reflected in the online schedule and all the drivers 

will be informed by radio. The passengers will have to wait at new location to board the bus 

and buses will not wait for potential passengers to arrive so there will be no significant changes 

in their dwell time. 

It can be seen in Table 19  that for some traffic conditions re-routing based on minimum cost 

method is not necessary.  Nevertheless, the proposed methodology can help transportation 

operators to use flexible cost policies to manage their fleet and provide passengers with better 

service when specific traffic congestion conditions occur in the network. Since the case study is 

based on a small network with short distances, the savings in travel times are not considerable. 

If a larger area of transit network is considered and modeled accordingly by applying the 

proposed method to all bus lines, it is expected that total savings in the network would provide 

considerably higher benefits to both, the travelers and the transit authority.  

4.3.4 Sensitivity Analysis 

The bus optimal path identified by the proposed algorithm given the study network depends on 

several parameters. Due to changes in traffic conditions during the study period, one parameter 

is the departure time of the bus and the initial traffic conditions. The results presented Table 19 
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show effects of assuming different departure times on the trip optimal cost, under different 

traffic conditions. Since the results shown in Table 19 were based on total cost saving per 

individual passenger, additional analysis is conducted to estimate the cost savings based on the 

passenger occupancy of the bus. The estimations are done by assuming the average number of 

passenger in the bus to be 10 and 20 persons, respectively and the results are summarized in 

Table 20. It can be seen that when the average number of passengers in the subject bus 

increases, total cost savings by rerouting the bus during congested traffic conditions would also 

increase. This applies to only one bus line. The same estimation can be done for the whole fleet 

and total estimated cost savings can be used for justifying the rerouting exercise. 

 Table 20: The effects of re-routing on trip cost-savings under different scenarios 

Departure 
Time 
[min] 

Traffic 
condition 

Beginning 
node 

Routed links 
to reach 
𝑛𝑜𝑑𝑒 5 

(Figure 25) 

Cost saving by 
rerouting [$]          

(10 passengers 
onboard) 

Cost saving by 
rerouting [$]   

(20 passengers 
onboard) 

20 Scen. 4 0 1,4,7,10 - - 

80 Scen. 4 0 1,6*,7,10 3 6 

110 Scen. 4 0 1,6*,7,10 2 4 

125 Scen. 4 0 3*,6*,7,10 5 10 

155 Scen. 4 0 3*,6*,7,10 5 10 

80 Scen. 5 0 1*,6*,1,1 28 56 

85 Scen. 5 0 1*,6*,1,1 34 68 

145 Scen. 5 0 3*,6*,1,1 50 100 

* denotes re-routes from regular path along the main corridor (links 1,4,7 and 10) 
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4.3.5 Discussion 

The Longueuil bus line case study investigated one application of the proposed methodology by 

providing transportation operators with an overall situation of the system and its performance 

and by assisting decision makers in their assessment to improve the efficiency of transportation 

system. This case study applied the proposed MDP algorithm  to estimate the optimal path a 

bus should follow while maintaining the scheduled bus stops.  An objective function was 

defined to minimize the bus travel time by considering value of time and operating costs of the 

fleet. The proposed methodology was applied to a 2-km long section of a bus line operating 

along a 3-lane arterial, for which five different traffic congestion scenarios were tested.  The 

assumed scenarios represent one or two lanes closed to all traffic at two different locations 

along the regular bus line. The simulation results for congestion conditions of scenario 4 

showed that the travel time saved in several time intervals was in the range of 50 to 740 

seconds. The sensitivity analysis showed that, depending on traffic conditions, the total cost 

savings per bus (i.e. value of passenger lost time due congested conditions) can be as high as 

$100, when an average of bus occupancy of 20 passengers is assumed. 

This case study only considered one bus line and for a short section of their regular path. The 

potential benefits of cost savings for transit agencies could be better evaluated by considering 

several transit lines within their fleets and for a larger transit network. In addition, the traffic 

conditions prediction could be significantly improved by using real-world traffic data collected 

for the study arterials. 
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CHAPTER 5. CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The research beforehand developed a novel routing procedure for multi-modal networks based 

on graph theory and Markov Decision Process.  The most important benefit of this routing 

methodology stems from its application in a system optimization context. This is due to the 

flexibility of the objective defined by the proposed procedure. Mainly, the methodology seeks 

to minimize the impact of congested traffic conditions on the overall travel time and/or cost 

incurred by travelers as well as the operating cost of transit agencies.  It was shown in this 

thesis that these different objectives are achieved by means of modeling the stochastic effects 

of traffic conditions as well as the ability of travelers to use different transportation modes. To 

demonstrate the benefits of the proposed system optimization methodology, three case 

studies involving real world networks were tested. 

In the first and second case studies, the proposed routing algorithm was applied to model 

travelers’ routing in a multi-modal transportation network. The algorithm’s objective function 

minimizes the travel time for travelers. The proposed methodology has the capability of 

incorporating public transit schedules into the algorithm and was applied to two real-world 

multi-modal networks located in Montreal, QC and Toronto, ON. These multi-modal networks 

include passenger cars, public transit (i.e. commuter trains, bus, streetcar, subway) and bicycle 

facilities. The concept of super-node in a Markov chain was associated with transit station 

nodes to facilitate the integration of public transportation into the multimodal network. The 
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public transportation fixed schedule was used to compile the route node parameters for the 

modeled network.  

The Montreal case study demonstrated the calculation procedure of optimal routes for a 

traveler moving between two arbitrarily selected nodes in a multi modal network. In this case 

study, two scenarios were tested in a transit network. The first scenario assumed normal 

operation conditions, with a given probability of service disruption for two of the available 

transportation modes.  The second scenario assumed the occurrence of an interruption in the 

metro service during the execution of a trip. A sensitivity analysis was conducted on several 

parameters used for estimating the optimal route. The effect of different probabilities of 

service interruption and departure times on the results were studied.  The results 

demonstrated the applicability of the proposed algorithm to identify the fastest route to 

destination. It was shown that automobile travelers can save up to 14 minutes of travel time by 

switching to another transportation mode (e.g. metro, bus, or bicycle). It was also shown that in 

a stochastic network potential benefits could be achieved by using the proposed methodology 

compared to the shortest path algorithm. 

In the Toronto case study, the proposed methodology was applied to a transportation network 

that consists of more than 80 km of major roadways, including the Gardiner Expressway and 

several major arterials within the Toronto CBD. The developed algorithm was used to find the 

optimal route for a typical commuter travelling from the suburb to downtown Toronto. 

Travelers had the option to travel with their car and/or one of the available transit modes (i.e. 

commuter train, two subway lines and 8 bus/street car lines). The study network was 
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developed by using the proposed graph model. In addition, a microscopic simulation was 

modeled in AIMSUN to estimate travel times within the network under different traffic 

conditions. Real-world travel time and speed data was used to calibrate the model. Three 

different traffic conditions were evaluated: A) Off-peak; B) Peak and C) Congested.  

Furthermore, aggregated speed data for 15-minute intervals along several major arterials in the 

city of Toronto was used to calculate the required transition probability matrix of the MDP 

algorithm. Transit schedules were publicly available and processed from the Go Transit and 

Toronto Transit Commission web sites. A database was created to store the travel time data 

along all the links of the network and for all possible modes. The developed algorithm was 

implemented in a VB program and was used to find the optimal travel path. Results showed 

that while a typical driving route between two arbitrary points could take about 30 minutes; 

during congestion, the same route could take twice the time (61 minutes). However, during the 

congested period, the traveler could save about half an hour by taking an alternative path and 

switching to transit mode. The proposed algorithm was able to identify the optimal path for 

travelers considering the stochastic properties of traffic conditions and the benefits when 

compared to a shortest path methodology. A sensitivity analysis was performed to evaluate the 

effect of using different speed values to identify congestion conditions on expected travel times 

along the available routes.  

The third case study used an arterial in Longueuil, QC to apply the Markovian optimal routing 

methodology to a fixed route public transit system.  A Markov chain process with penalty was 

used to estimate the optimal path that a bus should follow while maintaining the exiting bus 

stops.  An objective function was defined to minimize the bus travel time by considering the 
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value of time and operating costs of the fleet. The proposed methodology was applied to a 2-

km long section of a bus line operating along a 3-lane arterial. To evaluate the effectiveness of 

the routing algorithm, five different traffic congestion scenarios were tested.  The assumed 

scenarios represent one or two lanes closed to all traffic at two different locations along the 

regular bus line. The simulation results showed that the average travel time savings per vehicle 

was in the range of 50 to 740 seconds. The case study presented an application of the proposed 

algorithm for transit agencies and its potential benefits by reducing total travel cost for bus line 

operator. A sensitivity analysis was conducted to show the magnitude of the total cost savings 

when the number of passengers increases. 

5.2 Major Contributions 

This research presents a novel integrated public and roadway traffic application in ITS which 

incorporates the stochastic behaviour of traffic flow into a route optimization methodology. 

Previous route optimization studies consider passenger vehicles as the only transportation 

mode in their routing algorithm. Available studies in multi-modal transportation networks 

mainly use the simple Dijkstra’s Shortest Path algorithm or a routing policy based on DSP to 

identify the best route. This research developed a methodology to use Markov process in a 

route optimization algorithm for a multi-modal transportation network. The proposed approach 

applies probabilistic based methods to better estimate the parameters related to the stochastic 

nature of traffic parameters in a transportation network. 

The proposed methodology can be integrated within an ATIS/APTS application to help alleviate 

the impact of traffic congestion on transit users and on the operating costs of the transit 
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system.  By providing an optimal route based on the online information available at any time, 

the bus operators can re-route their fleet so that passengers minimize their journey delay, 

while at the same time reducing the overall operating cost. Additionally, the transit agencies 

would benefit from having a more efficient fleet management and providing passengers with a 

more reliable service.  These benefits are expected to have a positive effect on increasing the 

ridership. For example, in case of incidents that cause severe traffic congestion, a transit agency 

would be able to minimize the disruption to the original timetable and reduce the impact on 

the operating costs by rerouting buses at certain nodes based on real-time information about 

traffic conditions.  

In order to calculate the optimal routes, traffic information should be available for all the links 

in the network. This type of information, compiled from various sources, is more and more 

readily available on major arterials of large urban agglomerations. Many agencies use transit 

vehicles equipped with on-board GPS units which can provide real-time location information 

that can be used to estimate real-time travel time and traffic conditions.  The proposed 

methodology can be used in conjunction with this type of data to identify optimal re-routing 

scenarios under special circumstances (e.g. incident in the transit network or during especial 

events). The on-route information could be provided to travelers by using various transit 

information dissemination tools (i.e. many modern transit stations and subway cars are 

equipped with real-time display panels, or via specialized mobile applications). 

Finally, in contrast to existing proprietary routing optimization tools – available online to the 

general public, this work can be made available to practitioners and researchers for 
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deployment and future improvements as an open source multi-modal trip planner 

methodology. While individual users of a transportation network can benefit from different 

implementations, in general, transportation agencies are mostly interested in the overall 

system optimization criterion – feature not available through the existing online tools. 

However, while this thesis demonstrated the applicability of both optimization features, more 

work is envisioned toward enhancing the developed methodology and its applications. 

5.3 Research Limitations 

The main limitations of the proposed methodology are as follows: 

 Currently the algorithm uses a system wide transition probability for each mode of 

transport in order to estimate the optimal path. This limitation would consider the same 

probabilities of change from one traffic state to another for different sections of a large 

network. The effect of this limitation on the results is much less when the system is in 

congestion mode given that there is less variability in the changes of traffic condition 

during congestion.  

 The threshold introduced for applying transition probability matrix and updating state 

probabilities at each node is not incorporated in the analysis conducted through the 

real-world case studies. Nevertheless, it was shown that the proposed methodology is 

able to capture this enhancement of the routing algorithm using a hypothetical 

network. 

 The methodology requires the subject network to be modeled using the graph theory 

and the Supernode concept for public transit. This process can be a considerable 
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amount of work. However, once the network is thoroughly modeled, it may be used for 

different applications that were tested in this research work (i.e. optimal path for 

traveling public or cost effective routes for transit agencies). 

 The algorithm required initial travel time information for all the links in the model. If 

historical travel time data is not available, microscopic simulation can be used, with an 

additional computational and resource cost. Nevertheless, the travel times can be 

subsequently updated, when more recent traffic data becomes available (e.g. travel 

time studies or GPS data). It is expected that in the near future, travel times of the 

transit fleet would be easily estimated in an automated and real-time fashion by using 

on-board GPS units of transit vehicles, equipment that is more and more frequently 

adopted by various transit agencies. 

5.4 Recommendation and Future Work 

Although this thesis provides important contributions to the optimal route evaluation in a 

stochastic network, there is still considerable room for further research, mainly by addressing 

the limitations identified above. Several recommendations and potential future work is 

presented in the following section to better enhance the model and increase its reliability. This 

is presented in two parts: current study enhancement area and current study extension area.  

5.4.1 Current study enhancement area 

 The thesis work can be expanded to use different transition probability matrices within 

large networks by breaking them down into several sub networks. This can be done by 

considering several factors related to traffic and/or geometric conditions within the 
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network, including but not limited to the peak period and peak direction of traffic and 

corridor types (i.e. Freeway, highway or arterial corridors). 

 The case studies presented in this thesis apply the transition probability matrix at each 

step to evaluate probability vectors of traffic conditions at each node. A methodology is 

developed and suggested to use a minimum time as a threshold for applying transition 

probabilities at each step which can be used in future works. By using the resolution of 

the collected traffic speed data as the threshold, a more realistic change in traffic 

condition may be estimated. 

 The resolution of traffic speed data being used as a representative parameter to define 

traffic conditions may not be available for all major corridors and highways within the 

network. In such cases, to increase the accuracy of capturing the changes in traffic 

conditions along different corridors, script based queries may be developed to use 

Google traffic information as an additional source. 

5.4.2 Current study extension area 

 The algorithm can be improved to learn from the history of unsuccessful routes used for 

identifying the optimal path in the previous steps. This could potentially improve the 

performance of the process by eliminating unnecessary calculations. A database 

platform could be implemented for the tool, enabling it to access the most recent travel 

time data on roadways as well as the most recent transit schedule.  
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 The algorithm could certainly be improved by integrating online (open source) transit 

schedule, real time arrival data regarding transit lines and bike sharing availability 

information from corresponding agencies. 

 A user interface can be designed to use the proposed route optimization algorithm in 

providing the general traveling public with the necessary information to help them 

make informed decisions about the mode/route of their trips.  

 Eventually, the proposed methodology can be extended for the whole metropolitan 

area of a city and be used as a model for other cities in Canada. The proposed approach 

can be applied to create a complete transportation package to provide transportation 

operators with an overall status of the system and its service performance and to assist 

decision makers in their assessment to improve the efficiency of the transportation 

system.   
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APPENDIX A: AIMSUN Simulation Results 

VBA Code for extracting data from Aimsun SQLite output file (CSV): 
 
Sub ExtractAimsunResults() 
 
    'Template sheet conainting secions 
    inputSheet = "TrafficVolumes" 
    'AIMSUN Result file (Excel) 
    resultFile="C:\Users\behzad.rouhieh\Desktop\Behzad\Concordia\PhDProposal\PhD 
Thesis\outputAVG.xlsx" 
    ' Number of intervals for results (ent) 
    interval = 8 
     
    'Opens AIMSUN result file (Excel) 
    Workbooks.Open resultFile 
     
    'Number of rows 
    N1 = Workbooks(1).Sheets(inputSheet).UsedRange.Rows.Count 
    N2 = Workbooks(2).Sheets(1).UsedRange.Rows.Count 
       
    j = 2 
    For i = 4 To N1 
     
        ID = Workbooks(1).Sheets(inputSheet).Cells(i, 5).Value 
        pLane = Workbooks(1).Sheets(inputSheet).Cells(i, 14).Value 
        auxL = Workbooks(1).Sheets(inputSheet).Cells(i, 16).Value 
        lakeShore = Workbooks(1).Sheets(inputSheet).Cells(i, 17).Value 
        nLanes = Workbooks(1).Sheets(inputSheet).Cells(i, 10).Value + auxL 
        totLanes = Workbooks(1).Sheets(inputSheet).Cells(i, 9).Value 
         
        ttLanes = nLanes 
        If (nLanes >= 3 And lakeShore <> 1) Then 
            ttLanes = ttLanes - 1 
        End If 
         
        Do While (j <= N2) 
                         
            If (Workbooks(2).Sheets(1).Cells(j, 2).Value = ID) Then 
             
                'starting column for data input 
                col = 18 
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                For k = j To (j + (interval - 1) * totLanes) Step totLanes 
                     
                    ' Initiate All Lanes parametrs: Volume, Travel Time, Speed 
                    volAll = 0 
                    ttAll = 0 
                    spAll = 0 
                    zsp = 0 
                    ztt = 0 
                 
                    ' Calculate Travel Time and Speed 
                    For l = 1 + auxL To ttLanes 
                        'v = Workbooks(2).Sheets(1).Cells(k + l - 1, 7).Value 
                        sp = Workbooks(2).Sheets(1).Cells(k + l - 1, 25).Value 
                        tt = Workbooks(2).Sheets(1).Cells(k + l - 1, 29).Value 
                     
                        ' Sum of parameters for all lanes 
                        'volAll = volAll + v 
                         
                        If (sp <= 0) Then 
                            Workbooks(1).Sheets(inputSheet).Cells(i, 5).Interior.ColorIndex = 7 
                            zsp = zsp + 1 ' Number of zero/negative results 
                        Else 
                            If l <= (ttLanes) Then 
                                spAll = spAll + sp 
                            End If 
                        End If 
                         
                        If tt <= 0 Then 
                            Workbooks(1).Sheets(inputSheet).Cells(i, 5).Interior.ColorIndex = 7 
                            ztt = ztt + 1 ' Number of zero/negative results 
                        Else 
                            If l <= (ttLanes) Then 
                                ttAll = ttAll + tt 
                            End If 
                        End If 
                    Next l 
                     
                    'Calculate Volumes 
                    For l = 1 To totLanes 
                        v = Workbooks(2).Sheets(1).Cells(k + l - 1, 7).Value 
                        'sp = Workbooks(2).Sheets(1).Cells(k + l - 1, 25).Value 
                        'tt = Workbooks(2).Sheets(1).Cells(k + l - 1, 29).Value 
                        'zsp = 0 
                        'ztt = 0 



  
 

180 

 

                     
                        ' Sum of parameters for all lanes 
                        volAll = volAll + v 
                    Next l 
                     
                    ' If priority lane exists, GP Lanes and Priority Lane parameters will be calculated 
                    If pLane = 1 Then 
                        'If highway (note Lake Shore)-> PL on the left 
                        If lakeShore <> 1 Then 
                            volPl = Workbooks(2).Sheets(1).Cells(k + auxL, 7).Value 
                             
                            spPl = Workbooks(2).Sheets(1).Cells(k + auxL, 25).Value 
                            If spPl < 0 Then 
                                spPl = 0 
                            End If 
                             
                            ttPl = Workbooks(2).Sheets(1).Cells(k + auxL, 29).Value 
                            If ttPl < 0 Then 
                                ttPl = 0 
                            End If 
                                                         
                            volGpl = volAll - volPl 
                            If volGpl < 0 Then 
                                volGpl = 0 
                            End If 
                            spGpl = spAll - spPl 
                            If spGpl < 0 Then 
                                spGpl = 0 
                            End If 
                            ttGpl = ttAll - ttPl 
                            If ttGpl < 0 Then 
                                ttGpl = 0 
                            End If 
                             
                            'Average for ttime and speed for GP lanes 
                            If (ttLanes - zsp - 1 - auxL = 0) Then 
                                spGpl = 0 
                            Else 
                                spGpl = spGpl / (ttLanes - zsp - 1 - auxL) 
                            End If 
                             
                            If (ttLanes - ztt - 1 - auxL = 0) Then 
                                ttGpl = 0 
                            Else 
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                                ttGpl = ttGpl / (ttLanes - ztt - 1 - auxL) 
                            End If 
                             
                        Else 
                            'If on Lake Shore -> Pl on the right 
                            volPl = Workbooks(2).Sheets(1).Cells(k + nLanes - 1, 7).Value 
                             
                            spPl = Workbooks(2).Sheets(1).Cells(k + nLanes - 1, 25).Value 
                            If spPl < 0 Then 
                                spPl = 0 
                            End If 
                             
                            ttPl = Workbooks(2).Sheets(1).Cells(k + nLanes - 1, 29).Value 
                            If ttPl < 0 Then 
                                ttPl = 0 
                            End If 
                                                        
                            volGpl = volAll - volPl 
                            If volGpl < 0 Then 
                                volGpl = 0 
                            End If 
                            spGpl = spAll - spPl 
                            If spGpl < 0 Then 
                                spGpl = 0 
                            End If 
                            ttGpl = ttAll - ttPl 
                            If ttGpl < 0 Then 
                                ttGpl = 0 
                            End If 
                             
                            'Average for ttime and speed for GP lanes 
                            If (ttLanes - zsp - 1 - auxL = 0) Then 
                                spGpl = 0 
                            Else 
                                spGpl = spGpl / (ttLanes - zsp - 1 - auxL) 
                            End If 
                             
                             
                            If (ttLanes - ztt - 1 - auxL = 0) Then 
                                ttGpl = 0 
                            Else 
                                ttGpl = ttGpl / (ttLanes - ztt - 1 - auxL) 
                            End If 
                        End If 
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                    Else 
                        volPl = 0 
                        spPl = 0 
                        ttPl = 0 
                     
                        volGpl = volAll 
                        If (ttLanes - zsp - auxL = 0) Then 
                            spGpl = 0 
                        Else 
                            spGpl = spAll / (ttLanes - zsp - auxL) 
                        End If 
                         
                        If (ttLanes - ztt - auxL = 0) Then 
                            ttGpl = 0 
                        Else 
                            ttGpl = ttAll / (ttLanes - ztt - auxL) 
                        End If 
                    End If 
                     
                    'Average for ttime and speed for ALL lanes 
                    If (ttLanes - zsp - auxL = 0) Then 
                        spAll = 0 
                    Else 
                        spAll = spAll / (ttLanes - zsp - auxL) 
                    End If 
                    If (ttLanes - ztt - auxL = 0) Then 
                        ttAll = 0 
                    Else 
                        ttAll = ttAll / (ttLanes - ztt - auxL) 
                    End If 
                     
                    ' Write data into the tamplate sheet 
                    Workbooks(1).Sheets(inputSheet).Cells(i, col).Value = ttAll 
                    Workbooks(1).Sheets(inputSheet).Cells(i, col + interval).Value = ttGpl 
                    Workbooks(1).Sheets(inputSheet).Cells(i, col + (2 * interval)).Value = ttPl 
                     
                    Workbooks(1).Sheets(inputSheet).Cells(i, col + (3 * interval)).Value = spAll 
                    Workbooks(1).Sheets(inputSheet).Cells(i, col + (4 * interval)).Value = spGpl 
                    Workbooks(1).Sheets(inputSheet).Cells(i, col + (5 * interval)).Value = spPl 
                     
                    Workbooks(1).Sheets(inputSheet).Cells(i, col + (6 * interval)).Value = volAll 
                    Workbooks(1).Sheets(inputSheet).Cells(i, col + (7 * interval)).Value = volGpl 
                    Workbooks(1).Sheets(inputSheet).Cells(i, col + (8 * interval)).Value = volPl 
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                    col = col + 1 
                     
                Next k 
             
                j = k 
                If Workbooks(1).Sheets(inputSheet).Cells(i + 1, 5).Value = ID Then 
                    j = j - (interval * totLanes) 
                End If 
                 
                Exit Do 
            Else 
                j = j + 1 
            End If 
                    
        Loop 
  
    Next i 
End Sub 
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Sample of Aimsun output results (SQLite file): 
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APPENDIX B: Public Transit Schedule 
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APPENDIX C: Visual Basic Code for the MDP Algorithm 

'Nodes array includes "to nodes" from each node (0-33) and related links. Maximum 3 nodes 
possbible from each node 
Public Nodes(33, 6) As Integer 
 
'Transit schedule 
Public transit(60, 60) As Date 
 
'Traveltime (tt) array includes travel time on that link for each mode. 1-3. Cars: three travel 
times for each traffic state (congestion)- 4. transit: will be extracted based on the schedule- 5. 
Bike - 6. Walk 
Public tt(60, 6) As Double 
 
'Keep record of nodes/modes in each travel path 
Public tPath(1000, 3) As Integer 
'Keep record of "min travel time" and "best mode" 
Public optPath(1000, 2) As Integer 
 
'Transition Probabiity Matrix for cars: probability of change in traffic conditions: A, B and C: 
'       A       B       C 
'A    (1,1)   (1,2)    (1,3) 
'B    (2,1)   (2,2)    (2,3) 
'C    (3,1)   (3,2)    (3,3) 
Public prob(3, 3) As Double 
 
'Current traffic state. The current traffic state is the state with highiest probability at each time 
Public trafficState(1, 3) As Double 
 
'number of steps (links) to take and record in tPath 
Global step As Integer 
 
'Number of mode changes in each step: Maximum TWO is allowed. Transit-> Car is not allowed. 
Walking can be the third mode (transfer times is not considered in walking. they are included in 
the access time) 
Global mChange(1000) As Integer 
 
'Starting/End Nodes and Time -> to be set in main() 
Global startTime As Date 
Global startNode As Integer 
Global destNode As Integer 
Global lastNode As Integer 
Global flag As Integer 'Check if next node is more than destination node: do not consider it 
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Global minTT As Double 'Keeps minimum travel time of all routes 
Global atDestination As Boolean 
Global parkTime As Double 
Global Row As Integer 
 
'DEBUG ONLY: MUST USE ONLY THIS MODE 
Global mustMODE As Integer 
 
Sub Initialization() 
 
    'Populate Nodes Array based on "Network" sheet 
    inpSheet = "Network" 
    n = Worksheets(inpSheet).UsedRange.Rows.count 
         
    For i = 0 To 33 
        For j = 1 To 6 
            Nodes(i, j) = -1 
        Next j 
    Next i 
        
    For i = 2 To n 
     
        Node = Worksheets(inpSheet).Cells(i, 1).Value 
        toNode = Worksheets(inpSheet).Cells(i, 2).Value 
        link = Worksheets(inpSheet).Cells(i, 3).Value 
         
        If Nodes(Node, 1) = -1 Then 
            Nodes(Node, 1) = toNode 
            Nodes(Node, 4) = link 
        Else 
            If Nodes(Node, 2) = -1 Then 
                Nodes(Node, 2) = toNode 
                Nodes(Node, 5) = link 
            Else 
                Nodes(Node, 3) = toNode 
                Nodes(Node, 6) = link 
            End If 
        End If 
    Next i 
     
     
    'Populate travel time (tt) array based on "Network" sheet. travel time will include 
access+wait times 
    'Transit tt will be added later based on schedule/arriving time 



  
 

194 

 

    inpSheet = "Network" 
    n = Worksheets(inpSheet).UsedRange.Rows.count 
    col = 4 'First column that includes travel times - Now is Column D 
     
    For i = 2 To n 
         
        link = Worksheets(inpSheet).Cells(i, 3).Value 
         
        'Cars: three travel times 
        'State A 
        tt(link, 1) = Worksheets(inpSheet).Cells(i, col).Value + Worksheets(inpSheet).Cells(i, col + 
3).Value + Worksheets(inpSheet).Cells(i, col + 4).Value 
        'State B 
        tt(link, 2) = Worksheets(inpSheet).Cells(i, col + 1).Value + Worksheets(inpSheet).Cells(i, col 
+ 3).Value + Worksheets(inpSheet).Cells(i, col + 4).Value 
        'State C 
        tt(link, 3) = Worksheets(inpSheet).Cells(i, col + 2).Value + Worksheets(inpSheet).Cells(i, col 
+ 3).Value + Worksheets(inpSheet).Cells(i, col + 4).Value 
         
        'Transit travel times, without considering schedule/arriving time 
        tt(link, 4) = Worksheets(inpSheet).Cells(i, col + 5).Value + Worksheets(inpSheet).Cells(i, col 
+ 6).Value + Worksheets(inpSheet).Cells(i, col + 7).Value 
                 
        'Bike 
        tt(link, 5) = Worksheets(inpSheet).Cells(i, col + 9).Value + Worksheets(inpSheet).Cells(i, col 
+ 10).Value + Worksheets(inpSheet).Cells(i, col + 11).Value 
         
        'Walk 
        tt(link, 6) = Worksheets(inpSheet).Cells(i, col + 13).Value + Worksheets(inpSheet).Cells(i, col 
+ 14).Value + Worksheets(inpSheet).Cells(i, col + 15).Value 
         
    Next i 
     
    'Populate transit schedule based on "Bus-Train Schedule" sheet 
    inpSheet = "Bus-Train Schedule" 
    n = Worksheets(inpSheet).UsedRange.Rows.count 
    col = 4 'First column that includes travel times - Now is Column D 
    freq = 0 'Each schedule delarture 
        
    For i = 0 To 60 
        For j = 1 To 60 
            transit(i, j) = -1 
        Next j 
    Next i 
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    link = Worksheets(inpSheet).Cells(2, 1).Value 
    For i = 2 To n 
     
        If Worksheets(inpSheet).Cells(i, 1).Value <> link Then 
            link = Worksheets(inpSheet).Cells(i, 1).Value 
            freq = 0 
        End If 
         
        freq = freq + 1 
        transit(link, freq) = Worksheets(inpSheet).Cells(i, 2).Value 
         
    Next i 
     
    'Initialized mode change and travel path record 
    For i = 1 To 1000 
        mChange(i) = 0 
        tPath(i, 1) = -1 
        tPath(i, 2) = -1 
        tPath(i, 3) = -1 
        optPath(i, 1) = -1 
        optPath(i, 2) = -1 
    Next i 
     
    tPath(0, 1) = startNode 
    tPath(0, 2) = 1 
         
    'Initialize transition probability matrix 
    inpSheet = "Probability" 
     
    For i = 1 To 3 
        For j = 1 To 3 
            prob(i, j) = Worksheets(inpSheet).Cells(i + 17, j + 8).Value 
        Next j 
    Next i 
     
End Sub 
Function getTraveltime(link As Integer, mode As Integer, traveltime As Double, pMode As 
Integer) As Double 
 
' Return travel time on link for mode, to consider arriving time at startTime+traveltime 
     
    'Temporaru stores next traffic state 
    Dim nextState(1, 3) As Double 
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    'Temporary variable for returned travel time 
    '-1 is to check if mode is available for that arrival time/link 
    temptt = -1 
    waitTime = -1 
         
     
    'If bike or walk mode, then get travel times from the previously populated tt array 
    If mode = 3 Or mode = 4 Then 
        temptt = tt(link, mode + 2) 
    Else 
     
        'For Car mode, travel time should be calcualted considering probability of changes in traffic 
state 
        If mode = 1 Then 
         
            'Based on current traffic state 
            temptt = trafficState(1, 1) * tt(link, 1) + trafficState(1, 1) * tt(link, 2) + trafficState(1, 1) * 
tt(link, 3) 
             
            'Calculating next traffic state 
            For i = 1 To 3 
                nextState(1, i) = trafficState(1, i) * prob(i, 1) + trafficState(1, i) * prob(i, 2) + 
trafficState(1, i) * prob(i, 3) 
            Next i 
             
            'Set current traffic state equals to next traffic state 
            For i = 1 To 3 
                trafficState(1, i) = nextState(1, i) 
            Next i 
         
        Else 
            'For Transit, travel time is calculated considering arrival time/schedule 
            If mode = 2 Then 
                 
                'Calculates arrival time based on start/traveltime so far 
                arrivalTime = DateAdd("n", traveltime, startTime) 
                 
                'Waiting time for arriving time. if arrives with transit, skip this 
                If pMode = 2 Then 
                    waitTime = 0 
                Else 
                    For j = 1 To 60 
                        If transit(link, j) >= arrivalTime Then 
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                            waitTime = Minute(transit(link, j) - arrivalTime) 
                            Exit For 
                        End If 
                    Next j 
                 End If 
                     
                'If one scheduled departure is available 
                If waitTime > -1 Then 
                    temptt = tt(link, mode + 2) + waitTime 
                End If 
                 
            End If 
         
        End If 
     
     
    End If 
 
    'Returns estimated travel time for requested link/mode 
    getTraveltime = temptt 
     
End Function 
Function modeChangeIsValid(link As Integer, pMode As Integer, mode As Integer) As Boolean 
     
    Dim validity As Boolean 
     
    validity = False 
     
    If mustMODE > -1 Then 
        If mode = mustMODE Then 
            validity = True 
        End If 
    Else 
        If (mode = 1 And tt(link, mode) > 0) Or (mode > 1 And tt(link, mode + 2) > 0) Then 
             
            'Checking for mode change criteria. Maximum 2 is allowed. Walking(mode 4) is exception 
at the end. NO mode change from others to car! 
            If mode = 1 And pMode <> 1 Then 
                validity = False 
            Else 
                If pMode <> mode Then 
                    mChange(step) = mChange(step - 1) + 1 
                End If 
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                If mChange(step) <= 2 Then 
                    validity = True 
                 
                    If pMode = 1 And mode > 1 Then 
                        Select Case link 
                            Case 1, 2, 3, 4, 5, 6, 27, 28, 29, 57, 58 
                            parkTime = 5 
                        Case Else 
                            parkTime = 15 
                        End Select 
                    End If 
                Else 
                    mChange(step) = mChange(step) - 1 
                End If 
                 
            End If 
         
        End If 
    End If 
     
    modeChangeIsValid = validity 
     
End Function 
 
Function shortestPath(n As Integer, caltt As Double) As Double 
    ' Finds the optimal route. gets "n" as the beginning node and "caltt" as the calculated travel 
time so far 
     
    Dim nextNode, nextMode As Integer 
    Dim i, j As Integer 
    Dim traveltime As Double 
    Dim returnTT As Double 
    Dim modeChangeAllowed As Boolean 
     
     
    'Initial large number for optimal traveltime 
    ' No. of steps from origin to destination. Increases each time function is called (one route to 
be calculated) 
    step = step + 1 
    'Carry forward previous number of mode changes 
    mChange(step) = mChange(step - 1) 
     
     
    If n = destNode Then 
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        atDestination = True 
        returnTT = caltt           ' reached destination node 
 
    Else 
        If (n = lastNode) Then 
            flag = -1 
            returnTT = 10000000           ' reached destination node 
             
        Else 
            ' Two inner loops: 
            ' One for available links(nodes), maximum 3, from current node and the other for 
available modes, maximum 4, for each link 
            For i = 1 To 3 
                 
                'Checking to see if next node (maximum 3) is actually available. in most cases there is 
only 2 available nodes from the current node! 
                If Nodes(n, i) <> -1 Then 
                     
                    flag = 1 
                    For j = 1 To 4 
                        parkTime = 0 
                        If (flag <> -1) Then 
                         
                            modeChangeAllowed = modeChangeIsValid(Nodes(n, i + 3), tPath(step - 1, 0), j) 
                            If ((step = 1) Or (modeChangeAllowed)) Then 
                                 
                                'Get travel time of link n->Nodes(n,i)=Nodes(n,i+3) when using mode j, pass 
current traveltime (caltt) for transit schedule check 
                                'CHECK for -1 returned!!! No Link/Mode avaialble 
                                temptt = getTraveltime(Nodes(n, i + 3), j, caltt, tPath(step - 1, 0)) 
                                'To temporary show what will be the next mode! 
                                tPath(step, 0) = j 
                                tPath(step, 3) = n 
                                 
                                If (temptt > 0) Then 
                                     
                                    tPath(step, 1) = Nodes(n, i) 
                                    tPath(step, 2) = j 
                                    
                                    traveltime = caltt + temptt + parkTime 
                                    If traveltime <= minTT Then 
                                        traveltime = shortestPath(Nodes(n, i), traveltime) 
                                         
                                        If (atDestination) Then 
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                                            'If reached destination, add time for park to car 
                                            If j = 1 Then 
                                                traveltime = traveltime + 15 
                                            End If 
                                             
                                            If (flag <> -1 And traveltime <= minTT) Then 
                                                    minTT = traveltime 
                                                    returnTT = traveltime 
                                                    nextMode = j 
                                                    ' Store travel path record: nodes and modes from destination to 
origin! 
                                                    m = 0 
                                                    Do 
                                                        m = m + 1 
                                                        optPath(m, 0) = minTT 
                                                        optPath(m, 1) = tPath(m, 1) 
                                                        optPath(m, 2) = tPath(m, 2) 
                                                         
                                                        'Excel 
                                                        Sheets("Result").Cells(1 + Row, m) = optPath(m, 1) 
                                                        Sheets("Result").Cells(2 + Row, m) = optPath(m, 2) 
                                                         
                                                         
                                                    Loop While tPath(m, 1) <> destNode 
                                                    Sheets("Result").Cells(2 + Row, m + 1) = minTT 
                                                    Row = Row + 2 
                                                    atDestination = False 
                                            End If 
                                             
                                        End If 
                                    Else 
                                        traveltime = 10000 
                                    End If 'for <=minTT 
                         
                                    returnTT = traveltime 
                                End If 'for temptt>0 
                             
                                'If mode change occurred, deduct the number of lane changes by 1, for next 
mode to be checked! 
                                If tPath(step - 1, 0) <> j Then 
                                    mChange(step) = mChange(step) - 1 
                                End If 
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                            End If ' For mode change allowed 
                         
                        End If 'for flag<>-1 
                         
                    Next j 
                     
                End If 
                 
            Next i 
             
            'step = step - 1 
     
        End If 
    End If 
         
    'Returns the estimated minimum travel time so far 
    mChange(step) = 0 
    step = step - 1 
    
    shortestPath = returnTT 
     
End Function 
 
Sub main() 
     
    Dim myTravelTime As Double 
     
    'Get start time from origin 
    startTime = "17:00:00" 'TimeValue(InputBox("Enter start time (hh:mm):", "Start time at 
Origin (A)", "17:00:00")) 
    startNode = 0 'InputBox("Enter the beginning node:", "Origin", 0) 
    destNode = 33 '33 'Destination Node = 33(B) 
    atDestination = False 
    lastNode = 33 
    minTT = 1000000 
    Row = 0 'PRINT IN EXCEL 
 
    'Starting traffic state: 1:A, 2:B, 3:C 
    trafficState(1, 1) = 0.25 
    trafficState(1, 2) = 0.5 
    trafficState(1, 3) = 0.25 
     
    step = 0 
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    Sheets("Result").Cells.ClearContents 
     
    'Populate Nodes and TravelTimes arrays 
    Initialization 
     
    'Initiates shortest path calculation from startNode to destNode 
    myTravelTime = shortestPath(startNode, 0) 
     
End Sub 


