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Abstract

Formalization of Normal Random Variables

Muhammad Qasim

Engineering systems often have components that exhibit random behavior. This

randomness in many cases is normally distributed. To verify such systems, proba-

bilistic analysis is used. Such engineering systems have applications in domains like

transportation, medicine and military. Despite the safety-critical nature of these ap-

plications, most of the analysis is done using informal techniques like simulation and

paper-and-pencil analysis, and thus cannot be completely relied upon. The unreliable

results produced by such methods may result in heavy financial loss or even the loss

of a human life. To overcome the limitation of traditional methods, we propose to

conduct the analysis of such systems within the trusted kernel of a higher-order-logic

theorem prover HOL4. The soundness and the deduction style of the theorem prover

guarantee the validity of the analysis and the results of this type of analysis are

generic and valid for any instance of the system. For this purpose, we provide HOL4

formalization of Lebesgue measure and normal random variables along with the proof

of their classical properties. We also ported the theory of Gauge integral and other

required foundational concepts from HOL Light and Isabelle/HOL theorem provers.

To illustrate the usefulness of our formalization, we conducted the formal analysis

of two applications, i.e., error probability of binary transmission in the presence of

Gaussian noise and probabilistic clock synchronization in wireless sensor networks.
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Chapter 1

Introduction

1.1 Motivation

Modern world engineering systems need to interact with their environments. This in-

teraction often becomes a cause of randomness and therefore the design and analysis

of such systems becomes more challenging. Other causes of randomness in engineering

systems include the aging phenomena of hardware components and the execution of

certain actions based on a probabilistic choice in randomized algorithms. While ran-

dom events are by definition unpredictable, it is often possible to predict the frequency

of di↵erent outcomes over a large number of events. Usually, probabilistic approaches

are used to analyze such systems. The main idea is to quantify randomness and

assign a measure of probability to its frequency distribution. The quantification of

randomness is done by a random variable, i.e., a function that will map randomness

to a suitable set of numbers. Using the probabilistic properties of these random vari-

ables and mathematically modelling the unpredictable component of a given system

along with its environment, we can judge the parameters of interest and provide the

likelihood of them satisfying given specifications.

In many cases the randomness in engineering systems is normally distributed.
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The noise in communication channel, length and weight of manufactured goods, mes-

sage arrival time in wireless sensor network, blood pressure reading of a general pop-

ulation, lifetime of an electric bulb and maximum speed of a particular car model are

some of the examples. It was in the beginning of the 19th century that Carl Friedrich

Gauss, a German mathematician, presented the fundamentals of normal distribution

and hence this distribution was also known as Gaussian distribution. Later Karl

Pearson, an English mathematician, popularized the term normal as a designation

for this distribution.

Many years ago I called the Laplace Gaussian curve the normal curve,

which name, while it avoids an international question of priority, has

the disadvantage of leading people to believe that all other distributions of

frequency are in one sense or another ’abnormal’.

Karl Pearson, Notes on the History of Correlation (1920)

The importance of normal distribution is much more evident with the central

limit theorem [8]. It states that, given certain conditions, the arithmetic mean of a

su�ciently large number of iterations of independent random variables, each with a

well-defined expected value and well-defined variance, will be approximately normally

distributed, regardless of the underlying distribution [44]. Therefore, if the sample

size is large enough, the sample mean of other distributions may also be treated as

normal.

Traditionally, paper-and-pencil based approaches are used for carrying out prob-

abilistic analysis. This method however being prone to human error, fails when it

comes to complex and large systems. Another widely used technique for the same

purpose is simulation, which is quite e�cient in many cases. However, it provides less

accurate results due to approximations in numerical computations and might not be

feasible for large applications due to enormous processing time requirements. Due to

the usage of engineering systems in safety-critical applications, these methods cannot

be relied upon.
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Formal methods, which provide computerized mathematical proofs, overcome

above mentioned limitation by providing accurate analysis and eliminating human

error. The main idea is to develop a mathematical model and formally verify that

it meets the required specifications. The two most widely used formal methods are

model checking and theorem proving [23]. Model checking is an automatic verification

approach for systems that can be expressed as a finite-state machine but its usage

for probabilistic analysis is somewhat limited due to restricted system expressiveness.

On the other hand, theorem proving is an interactive technique but is more powerful

in terms of expressiveness.

An error in a system that is used in safety-critical domains may result in heavy

financial loss or even the loss of human life. Therefore, it is imperative to verify such

systems formally. This thesis presents the mathematical foundations that will allow

the verification of systems that are used in safety and mission critical domains and ex-

hibit normally distributed randomness. We use the HOL4 theorem prover [48] for the

above mentioned formalization and verification tasks. The main motivation behind

this choice is to build upon existing formalizations of measure, Lebesgue integration

and probability theory in HOL4.

1.2 State of the Art

Systems exhibiting random behavior whether distributed normally or otherwise, are

traditionally analyzed using paper-and-pencil based approaches. Such analysis is

always prone to human error and so cannot guarantee the accuracy of present world

complex engineering and scientific systems. Also, it is often the case that many key

assumptions in the results obtained are in the mind of the engineer or scientist and

not documented. Such missing assumptions may also lead to erroneous system design.

Computer based analysis techniques are a good alternative to traditional approaches

and are capable of analyzing large and complex systems with better accuracy.

3



1.2.1 Simulation

Simulation is one of the most widely used computer based probabilistic analysis tech-

nique. To apply this technique, a system model with random components is created

and then analyzed by taking a large number of samples to approximate the values

of desired parameters. Using the simulation results, predictions may be made about

the behavior of the system. Many simulation softwares have been developed. MAT-

LAB [33], Minitab [38], SPSS [49], SAS [46] and mathStatica [32] are some of the

examples. All of them contain a large collection of discrete, continuous and multivari-

ate distributions which can be used to model systems with random or unpredictable

components. Simulation techniques are however, less accurate as they never exactly

imitate real world systems. This inaccuracy comes mainly from the following two

reasons:

1. Rounding-o↵ and truncation of numeric values when performing computation

in the computer due to the finite precision representation of numbers.

2. Use of heuristics and algorithms to approximate the result in order to reduce

the huge processing time required when analyzing large systems.

Due to the limitations of accuracy, simulation cannot provide a reliable measure of

confidence towards the satisfaction of design requirements of critical systems. Another

limitation of simulation based probabilistic analysis is the enormous processing time

required to attain meaningful results. Generally, there is a trade-o↵ between speed

and accuracy.

1.2.2 Computer Algebra Systems

To conduct a probabilistic analysis of engineering systems with better accuracy one

may consider computer algebra systems (CAS) as a good alternative to simulation

techniques [17]. These systems manipulate mathematical symbols in a way that is
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similar to traditional manual computations of mathematicians and scientists. Mathe-

matica [31] and Maple [30] are the most popular CAS systems available today. They

provide toolboxes with a variety of options that may be used to model and analyze

probabilistic systems with di↵erent discrete and continuous distributions including

normal distribution. Maxima [35] is another CAS system that supports probabilistic

analysis but is limited to univariate distributions.

In some cases, computer algebra systems would use numerical computations and

thus compromise on the accuracy of the result for the same reason mentioned for

simulation based techniques. Also, these systems are not strictly logical as they

neglect basic assumptions in certain cases. For example, Mathematica returns 1 as

the answer when given x/x as the input, while x/x = 1 holds only when x 6= 0.

Another serious analysis issue is caused by the use of complex symbolic manipulation

algorithms, which have not been verified [13].

1.2.3 Probabilistic Model Checking

Model checking is one of the most widely used formal analysis technique. The main

idea is to develop a precise state based mathematical model and specify system prop-

erties using temporal logic [6]. The model is then subjected to exhaustive analysis

to verify if it satisfies the given formally represented properties. It provides strictly

logical proofs and therefore overcomes the above mentioned limitations. Numerous

probabilistic model checking algorithms and methodologies have been proposed e.g.,

[12, 42], and based on these algorithms, a number of tools have been developed, e.g.,

PRISM [43] and VESTA [1].

Besides the accuracy of the results, the most promising feature of probabilistic

model checking is the ability to perform the analysis automatically. On the other

hand, it is limited to systems that can be modelled as finite state machines and

may also su↵er from state space explosion. Also, the computed expected values are

expressed in a computer based notation, such as fixed or floating point numbers,

which also introduces some degree of approximation in the results.
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1.2.4 Theorem Proving

Theorem proving is another widely used formal analysis technique. Unlike model

checking, theorem proving is not limited to the size of the state space and therefore,

can be used to analyse large systems. Also, the underlying logic of theorem provers

(first-order or higher-order logic) provides a high level of expressiveness, which allows

the analysis of a wider range of systems without any modeling limitations. The

most widely used theorem provers are HOL4 [48], HOL Light [29], Coq [11] and

Isabelle/HOL [26].

Over the past decade, many foundational mathematical theories have been for-

malized. Hurd [25] developed a probability theory and formalized the measure space

as a pair (⌃, µ) in the HOL theorem prover [20], where ⌃ is a set of measurable sets

and µ is a measure on sets belonging to ⌃. However, in this formalization the space

is implicitly the universal set of appropriate data-type. Hasan [22] built upon Hurd's

work and formalized statistical properties of both discrete and continuous random

variables and their Cumulative Distribution Function (CDF) in the HOL4 theorem

prover [48]. However, Hasan's work inherits the same limitations as of Hurd. As a

consequence, when the space is not the universal set, the definition of the arbitrary

space becomes very complex. Later, Coble [10] defined probability space and random

variables based on an enhanced formalization of measure space which is the triplet

(X,⌃, µ), where X is a sample space, ⌃ is a set of measurable subsets of X and µ is

a measure on sets belonging to ⌃. This measure space overcomes the disadvantage

of Hurd's work since it contains an arbitrary space. Coble's probability theory is

built upon finite-valued (standard real numbers) measures and function. Specifically,

the Borel Sigma spaces [50] cannot be defined on open intervals which constrains

the verification of some applications. More recently, Mhamdi [36] used the axiomatic

definition of probability proposed by Kolmogorov [27] to provide a significant for-

malization of both measure and probability theory for formally analyzing information

theory in HOL4. His work overcomes the limitations of the above mentioned work by

allowing the definition of sigma-finite and other infinite measures as well as the signed
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measures. A↵eldt [2] simplified the formalization of probability theory in Coq [11].

Holzl [24] has also formalized three chapters of measure theory in Isabelle/HOL [39]

and building on top of it, formalized some very useful notions of probability theory

like probability mass function, independent random variables and convolution [4, 14].

Most recently, the central limit theorem has been proved by Avigad et al. [5], who also

formalized the characteristic function of random variables [4] in Isabelle/HOL [26].

Table 1 provides a comparison of paper and pencil analysis, simulation, computer

algebra systems, probabilistic model checking and theorem proving based on the

following attributes.

1. Expressiveness: ability to describe complex mathematical models.

2. Scalability: can be used for larger systems.

3. Accuracy: provides precise results.

4. E↵orts: ease of use.

5. Coverage: results are valid for every possible input.

Table 1: Theorem Proving Compared to Other Approaches

Paper and Computer Probabilistic
Criteria Pencil Simulation Algebra Model Theorem

Proofs Systems Checking Proving
Expressive ++ + - - - ++
Scalable - ++ + - +
Accuracy ++ - - + ++ ++
E↵orts - - ++ ++ ++ - -

Coverage ++ - - ++ ++ ++

Paper and Pencil Proofs are not scalable because they are prone to human error

and a lot of e↵orts are required to analyze large systems. Simulation compromises on

accuracy and does not provide 100% coverage. Computer Algebra Systems are limited

to expressions that can be solved automatically and use approximations in certain
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cases. Probabilistic Model Checking is limited to systems that can be expressed as

finite state machines and is not scalable because of state space explosion problem.

While Theorem Proving is accurate and scalable, it requires a considerable amount of

manual e↵orts. Also, Theorem Proving uses mainly higher-order logic, which is more

expressive compared to the propositional temporal logic used in Model Checking and

o↵ers more capability than first-order logic that is used in automated provers. For

example, propositional logic and first-order logic cannot be used for the analysis of

systems that involve multivariate or complex calculus.

1.3 Thesis Contribution

In this thesis we present the formalization of normal random variable along with the

required foundational theories. This will allow us to conduct the formal probabilis-

tic analysis of real world systems that exhibit normally distributed randomness and

also facilitate the formalization of some other kinds of random variables. As normal

distribution is continuous, we first need to develop the means to reason about the

properties of a continuous distribution. Usually such analysis would involve Lebesgue

integration and the concepts of probability theory. Fortunately, they have been for-

malized in HOL4 by Mhamdi [36].

Figure 1.1: Overview of the Proposed Framework
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A general overview of our formalization is illustrated in Figure 1.1. In order to for-

malize the distribution of normal random variables, we first provide the formalization

of Lebesgue-Borel measure [7] based on the Gauge integral formalization of Harri-

son [21] in HOL Light. The Lebesgue-Borel measure allows us to evaluate the integral

of a measurable function using the Lebesgue integral formalization of Mhamdi [36].

Then, we formalize the probability density function as Radon Nikodym derivative [7]

of probability measure with respect to Lebesgue-Borel measure. Finally, we define the

normal random variable based on the probability density function and prove some

classical properties related to its distribution. These proofs will be of great assis-

tance in the analysis of real-world systems. To demonstrate the usefulness of our

formalization, we used it to model and verify the error probability of binary signals

transmission in the presence of Gaussian noise [47]. We also used it to analyze the

probabilistic bounds on the accuracy of clock synchronization technique in wireless

sensor network [41].

1.4 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we provide a brief intro-

duction to the HOL theorem prover and an overview of the formalization of measure,

Lebesgue integral and probability theory to equip the reader with some notation and

concepts that are going to be used in the rest of this thesis. Chapter 3 describes the

formalization of Lebesgue-Borel measure based on Gauge integral, it also presents the

formalization of Gauge integral that is ported from HOL Light theorem prover. In

Chapter 4, we present the formalization of normal random variables and discuss the

proofs of some useful properties. Chapter 5 illustrates the usefulness of our formal-

ization by presenting two example applications. We verify the probability of error in

binary transmission systems having Gaussian noise. We also use it for a formal prob-

abilistic analysis of clock synchronization error in wireless sensor network. Finally,

Chapter 6 concludes the thesis and outlines some future research directions.

9



Chapter 2

Preliminaries

In this chapter, we provide a brief introduction to the HOL theorem prover and

present an overview of Mhamdi's formalization of measure, Lebesgue integration and

probability theory. The intent is to introduce the basic theories along with some

notations that are going to be used in the rest of this thesis.

2.1 Theorem Proving

Theorem proving is a technique that is used to verify a system along with its desired

properties. To do so, a system model is developed using mathematical logic. One

may use propositional logic, first-order logic or higher-order logic depending on the

expressibility requirements [3]. To prove that a system model satisfies the desired

properties, theorems are developed and proved using inference rules. First-order logic

(FOL) [16] can be significantly automated and as a consequence, theorems that are

comprised of only FOL, are proved with comparative ease. On the other hand, the-

orems that require higher-order logic (HOL) [9] entail more e↵orts to prove as it is

di�cult to automate HOL proofs due to its undecidable nature. For probabilistic

analysis, random variables are formalized as functions that map randomness to an

appropriate set of real numbers. Also, the characteristics of random variables, such

as PDF and expectation, etc., are formalized by quantifying over random variable

10



functions. Because first-order logic does not allow quantification over predicates and

functional variables, we need to use higher-order logic to conduct probabilistic anal-

ysis.

Many theorem-proving systems have been implemented and used for all kinds

of verification problems. The most popular theorem provers include HOL4 [48], Is-

abelle/HOL [26], HOL Light [29] and Coq [11]. These systems are distinguished by,

among other aspects, the underlying mathematical logic, the way automatic deci-

sion procedures are integrated into the system and the user interface. We use the

HOL4 theorem prover for our work, mainly because we build on measure, Lebesgue

integration and probability theory of Mhamdi [36].

2.2 HOL Theorem Prover

HOL is an interactive theorem prover developed by Mike Gordon at Cambridge Uni-

versity [19]. It is used to carry out mathematical proofs in higher-order logic. HOL4

is based on standard meta language (SML) [37], which is a functional programming

language. There are two popular implementations of SML i.e. Moscow ML [45] and

Poly ML [34]. Either one can be used for HOL. In the last three decades, there

have been several versions of HOL. The first version was called HOL88 followed by

HOL90 and HOL98. A successor to them is HOL4, it is mainly based on HOL98

and incorporates ideas and tools from HOL Light. The core of HOL4 consists of only

four basic axioms and eight primitive inference rules [40], which are implemented as

ML functions. HOL4 has been widely used for the formal verification of software and

hardware systems along with the formalization of pure mathematical theories.

There are four types of terms in HOL4, i.e., variables, constants, function applica-

tions, and lambda-abstractions. Variables are sequences of digits or letters beginning

with a letter. The syntax of the constants is similar to that of variables, but they

cannot be bounded by quantifiers. Function applications in HOL represent the evalu-

ation of a function for a certain argument and lambda abstractions are used to denote

11



a function f that takes x as argument and returns f(x). Every variable or constant

in HOL should be given a type. In our work, we are mostly using boolean, (natural)

number, real and extended real types denoted by bool, num, real and extreal.

A mathematical proof is in the form of a theorem, that is a combination of terms.

A type checking algorithm is implemented in HOL to infer the type of terms when a

theorem is created. In certain cases, when a term may have overloaded types, it is

required to mention the type explicitly. Normally a theorem consists of a premise and

a conclusion. To prove the theorem within the HOL environment, inference rules are

applied until one reaches the conclusion. The eight primitive inference rules in HOL

are Assumption introduction, Reflexivity, Beta-conversion, Substitution, Abstraction,

Type instantiation, Discharging an assumption and Modus Ponens [40]. All other

rules are derived from these inference rules and axioms.

A collection of axioms, definitions and proven theorems is called a theory. To prove

a theorem, it can be subdivided into a list of smaller theorems and a subset of that list

may be solved by reusing already proven theorems present in HOL4 theories. HOL

theories are organized in a hierarchical fashion, i.e., a theory can have other theories

as parents. In fact, one of the primary motivations of selecting the HOL theorem

prover for our work was to benefit from the theories already present. The starting

theory of HOL is the min thoery. In this theory, the type constant for booleans,

the binary type operator for functions, and the type constant for individuals are

declared. Building on these types, three primitive constants are declared: equality,

implication, and a choice operator [40]. There is no theorem or axiom in this theory.

The most basic thoery of HOL is the bool theory. It is a parent for all other theories

and contains the four axioms of HOL. These axioms together with the eight inference

rules are su�cient for developing all of standard mathematics.

The following table provides the mathematical interpretations of some frequent

HOL symbols and functions used in this thesis.
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Table 2: HOL Symbols and Functions

HOL Symbol Meaning
^ Logical and
_ Logical or
¬ Logical negation
) Logical implication
= Logical equality

8x.f for all x : f
9x.f for some x : f

@x.t(x) Some x such that t(x) is true
(&n : num) type casting (&n:extended real)
x pow n x

n

�x.f Function that maps x to f(x)
{x|P(x)} Set of all x such that P (x)
UNIV Universal Set

DISJOINT A B Sets A and B are disjoint
IMAGE f A Set with elements f(x) for all x 2 A

PREIMAGE f B Set with elements x 2 B for all f(x) 2 B

{} Empty Set
FINITE S S is a finite set
sup S Supremum of the set S
SUC n Successor of natural number
exp x Exponential function
max a b if a  b then b else a
abs x |x|

dist (a, b) |a - b|
BIGUNION P Union of all sets in the set P
BIGINTER P Intersection of all sets in the set P

suminf(�n.f(n)) lim
k!1

P
k

n=0 f(n)

SIGMA(�n.f(n))s
P

n2s f(n)
integral i f

R
x2i fx dx
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2.3 Measure Theory

A measure is used to assign a number to a set, that will represent its size. It is a

generalized concept of length, area, volume, etc. Two important examples are the

Lebesgue measure, i.e., a standard way of assigning a measure to the measurable

subsets of Euclidean space and the probability measure, i.e., a measure defined on a

set of events for assigning it a value to indicate its probability of occurrence. Formally,

a function defined on a set X is called a measure if it satisfies the following properties:

1. Positive: Measure of every set belonging to sigma algebra over X is positive

and the measure of an empty set is zero. A sigma algebra over X is a collection

of subsets of X that includes the empty set, is closed under compliment and is

closed under union or intersection of countably many subsets.

2. Countably additive: Measure of the union of a collection of disjoint sets is equal

to the sum of their measures.

In HOL, a measure is represented by a triplet (X,A, µ) where X is a sample space,

A is a sigma algebra over X and µ is a measure on sets belonging to A. The triplet is

called a measure space if it satisfies above mentioned properties. The notion of sigma

algebra is required in order to define a predicate for measure space.

Definition 2.1. (Sigma Algebra)

Let A be a collection of subsets (or subset class) of a space X. A defines a sigma

algebra on X i↵ A contains the empty set {}, and is closed under countable unions

and complementation within the space X.

` sigma_algebra (X,A) =

subset_class X A ^ {} 2 A ^

(8s. s 2 A ) X DIFF s 2 A) ^

8c. countable c ^ c ✓ A ) BIGUNION c 2 A

14



The predicate subset_class is used to test whether A is a collection of subsets

(or subset class) of X and countable will test if there exists a surjective function

f : N ! s such that every element of the set s can be associated with a natural

number. The HOL formalization of subset_class and countable are as follows:

` subset_class X A = 8s. s 2 A ) s ✓ X

` countable s = 9f. 8x. x 2 s ) 9(n:num). f n = x

For any collection G of subsets of X, there is at least one sigma algebra on X

containing G, namely the powerset of X. The smallest sigma algebra on X containing

G is an intersection of all those sigma algebras, and is called the sigma algebra on X

generated by G. This notion is defined in HOL as:

` sigma X G = (X, BIGINTER{s | G ✓ s ^ sigma_algebra (X,s)})

The sigma function will be used in the next chapter to define a sigma algebra on

Borel space (or Borel sigma algebra). Now the predicate for measure space can be

defined using the definition of sigma algebra.

Definition 2.2. (Measure Space)

A triplet (X,A, µ) is a measure space i↵ (X,A) is a measurable space and µ : A !

R (i.e., extended real numbers) is a non-negative and countably additive measure

function.

` measure_space (X,A,µ) =

sigma_algebra (X,A) ^ positive (X,A,µ) ^

countably_additive (X,A,µ)

where the positive and countably additive properties are defined as:

` countably_additive (X,A,µ) =

8f. f 2 (UNIV ! A) ^

(8m n. m 6= n ) DISJOINT (f m) (f n)) ^

BIGUNION (IMAGE f UNIV) 2 A )

µ o f sums µ(BIGUNION(IMAGE f UNIV))

15



` positive (X,A,µ) =

µ {} = 0 ^ 8s. s 2 A ) 0  µ s

The pair (X,A) is called a �-field or a measurable space and A is called a sigma

algebra over X or a set of measurable sets. Mhamdi defined some auxiliary functions

that will take a �-field or a measure space and return individual components.

` space (X,A) = X

` subsets (X,A) = A

` m_space (X,A,µ) = X

` measurable_sets (X,A,µ) = A

` measure (X,A,µ) = µ

There is a special class of functions called measurable functions. For these func-

tions the inverse image of each measurable set is also measurable. Measurable func-

tions are used in probability theory to define random variables.

Definition 2.3. (Measurable Functions)

Let (X1,A1) and (X2,A2) be two measurable spaces. A function f : X1 ! X2 is

called measurable with respect to (A1,A2) (or (A1,A2) measurable) i↵ f

�1(A) 2 A1

for all A 2 A2.

` f 2 measurable a b =

sigma_algebra a ^ sigma_algebra b ^ f 2 (space a ! space b) ^

8s. s 2 subsets b ) PREIMAGE f s \ space a 2 subsets a

2.4 Lebesgue Integration Theory

Integration is the reverse of di↵erentiation operation and is a fundamental concept in

mathematics. There are many ways of formally defining an integral, distinguished by

the ability to handle di↵ering special cases which may not be integrable under other

definitions. The two most used integrals that have also been formalized in HOL4
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are Riemann Integral and Lebesgue Integral. In this thesis we use the Lebesgue

integral because of the following reasons:

1. The Riemann integral is limited to intervals of real line.

2. The Lebesgue integration can handle a broader class of functions.

3. The Probability theory in HOL4 is based on Lebesgue integration.

Lebesgue integral was formalized by Mhamdi [36]. He proved many useful theo-

rems including monotone convergence and Radon Nikodym Theorem but to apply his

formalization to evaluate an integral, a suitable Lebesgue measure is required. We

describe one such measure in the next chapter. Below we present the basic definitions

of the Lebesgue integration theory that we have used in our formalization of normal

random variables.

Similar to the way in which step functions are used in the development of the

Riemann integral, the Lebesgue integral makes use of a special class of functions called

positive simple functions. In HOL a positive simple function g is represented by the

triplet (s, a,↵) as a finite linear combination of indicator functions of measurable sets

(a
i

) that form a partition of the space X.

8x 2 X, g(x) =
X

i2s

↵

i

I

a

i

(x) c

i

� 0 (1)

where s is a set of partition tags, a
i

is a sequence of measurable sets, ↵
i

is a sequence

of real numbers and I

a

i

is an indicator function on a

i

. The indicator function is

defined in HOL as:

` indicator_fn A = (�x. if x 2 A then 1 else 0)

The Lebesgue integral is first defined for positive simple functions and then ex-

tended to non-negative functions.
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Definition 2.4. (Lebesgue Integral of Positive Simple Functions)

Let (X,A, µ) be a measure space. The integral of the positive simple function g with

respect to the measure µ is defined as
Z

X

g dµ =
X

i2s

↵

i

µ(a
i

) (2)

This is formalized in HOL as:

` pos_simple_fn_integral m s a ↵ =

SIGMA (�i. ↵ i * measure m (a i)) s

Definition 2.5. (Lebesgue Integral of Non-Negative Measurable Functions)

The definition of the Lebesgue integral of positive simple functions is used to define the

integral of non-negative measurable functions using the supremum operator as follows:
Z

X

f dµ = sup{
Z

X

g dµ | g  f and g positive simple function} (3)

Its formalization in HOL is the following:

` pos_fn_integral m f =

sup {r | 9g. r 2 psfis m g ^ 8x. g x  f x}

where psfis m g represents the Lebesgue integral of the positive simple function g.

2.5 Probability Theory

The classical definition for probability that is prevailing for many centuries is given as

the ratio of the number of favorable outcomes to the number of all possible outcomes.

This definition is based on the assumption that all outcomes are equiprobable and

that the number of possible outcomes is finite. These limitations were overcome by

the axiomatic definition of probability by Kalmogorov. It provides a mathematically

consistent way for assigning and deducing probabilities of events. Inspired from the

work of Kalmogorov [27], Mhamdi has formalized probability in HOL4 [36]. He

defined the probability space as a measure space, i.e., (⌦, F, p), where ⌦ is a set

18



of all possible outcomes, called the sample space, F is a set of events and p is the

probability measure. A probability theory is developed based on the following three

axioms:

1. 8A. 0  Pr(A)

2. Pr(⌦) = 1

3. For any countable collection A0, A1,... of mutually exclusive events,

Pr(
T

i2⌦ A

i

) =
P

i2⌦ Pr(A
i

)

Below we present the basic definitions of probability thoery.

Definition 2.6. (Probability Space)

(⌦, F, p) is a probability space if it is a measure space and p(⌦) = 1.

` 8p. prob_space p ,

measure_space p ^ (measure p (p_space p) = 1)

A probability measure is a measure function and an event is a measurable set.

` prob = measure

` events = measurable_sets

` p_space = m_space

Definition 2.7. (Random Variable)

X : ⌦ ! R is a random variable i↵ X is (F,B(R)) measurable

where F denotes the set of events. Here we focus on real-valued random variables but

the definition can be adapted for random variables having values on any topological

space thanks to the general definition of the Borel sigma algebra.

` random_variable X p s ,

prob_space p ^ X 2 measurable (p_space p,events p) s
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Definition 2.8. (Probability Distribution)

The probability distribution of a random variable X is defined as the function assigning

to A the probability of the event {X 2 A}.

8A 2 B(R), p({X 2 A}) = p(X�1(A))

` distribution p X = (�A. prob p (PREIMAGE X A \ p_space p))

Because PREIMAGE X A does not exclude values that do not belong to the probability

space p. Therefore, it is intersected with p_space p.

Joint distribution and conditional probability are two very useful notions in prob-

ability thoery. The joint distribution of two random variables X and Y assigns a

probability to the event {(X, Y ) 2 a} and conditional probability gives the distri-

bution of the random variable X given the distribution of the random variable Y .

These notions are required in the analysis of many engineering systems as in one of

the applications presented in this thesis. Mhamdi formalized these notions in HOL

as [36]:

` joint_distribution p X Y =

(�a. prob p (PREIMAGE (�x. (X x,Y x)) a \ p_space p))

` conditional_distribution p X Y =

(�a b. joint_distribution p X Y (a b) / distribution p Y b)
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Chapter 3

Lebesgue-Borel Measure

This chapter presents the formalization of Lebesgue-Borel measure. First, we present

the formalization of Gauge integral that we ported from the HOL Light theorem

prover and then use it to define a Lebesgue measure. Then, we restrict this measure

to Borel measurable sets and call it a Lebesgue-Borel measure. This is because the

extended real valued Borel measurable sets are not compatible with the real valued

gauge integral. Therefore, we also formalize the real valued borel measurable sets and

prove some useful properties required for our work.

3.1 Gauge Integral

Gauge integral, also known as the Henstock Kurzweil (HK) integral [51], is a gen-

eralization of Riemann integral and is suitable for a wider class of functions. The

Riemann integral formalized in HOL4 is defined on intervals. In contrast, the Gauge

integral is defined on a set that may or may not be an interval. Also, it allows the real

line to be represented by a universal set. In this section, we discuss the formalization

of Gauge integral that we ported from the HOL Light theorem prover and is originally

formalized by Harrison [21]. Below, we present the definitions of Gauge integral along

with all of its required components.
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Definition 3.1. (Open Set)

A set s is called open if, given any point x 2 s, there exists a real number ✏ > 0 such

that, given any point y 2 R whose distance from x is smaller than ✏, y 2 s.

` open s = 8x. x 2 s ) 9✏. ✏ > 0 ^ 8y. dist (y,x) < ✏ ) y 2 s

Definition 3.2. (Tagged Partial Division)

Tagged partial division of a set X is a set of nonempty subsets of X such that every

element x 2 X is in exactly one of these subsets.

` s tagged_partial_division_of X =

FINITE s ^

8x k. (x,k) 2 s ) x 2 k ^ k ✓ X ^ 9a b. k = interval [a,b] ^

8x1 k1 x2 k2. (x1,k1) 2 s ^ (x2,k2) 2 s ^ (x1,k1) 6= (x2,k2)

) interior k1 \ interior k2 = {}

where interior is used to exclude the intersection points and is defined in HOL as:

` interior s = {x | 9t. open t ^ x 2 t ^ t SUBSET s}

Definition 3.3. (Tagged Division)

Tagged partial division of X is a tagged division when X is the union of all partitions.

` s tagged_division_of X =

s tagged_partial_division_of X ^

(BIGUNION {k | 9x. (x,k) 2 s} = X)

Definition 3.4. (Gauge)

A function is called a gauge if for every tag argument, it returns an open interval.

` gauge d = 8x. x 2 d x ) open (d x)
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Definition 3.5. (Fineness Property)

A tagged division s is called �-fine with respect to a Gauge function d if every partition

of the division is a subset of (d x)

` d fine s = 8x k. (x,k) 2 s ) k ✓ d x

Definition 3.6. (Riemann Sum)

Riemann sum is an approximate sum of areas of all partitions in a tagged division p.

` sum p (�(x,k). content k * f x)

where x denotes a tag, k denotes a partition and the content of partition k is defined

in HOL as the di↵erence of its supremum and infimum:

` content k = if k = {} then 0 else (sup k - inf k)

All notions defined above are required to formalize the Gauge integral. While

Harrison defined it for many dimensions, we could only define it for a single dimension

(R) due to the unavailability of multivariate theory in HOL4. However, for our work,

it will su�ce.

Definition 3.7. (Gauge Integral)

Let f:[a,b]!R be some function, and let y be some number. We say that y is the

Gauge integral of f over i written y =
R
i

f(x) d x, if for each number e > 0 there exists

a Gauge d such that |
P

p

f - y | < e, where, p is a tagged division of i and p is �-fine

with respect to p.

` (f has_integral_compact_interval y) i =

8e. 0 < e ) 9d. gauge d ^

8p. p tagged division of i ^ d fine p )

abs (sum p (�(x,k). content (k) * f(x)) - y) < e
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An alternate definition of Gauge integral that simplifies the proof steps for integration

over intervals is given as:

` (f has_integral y) i =

if 9a b. i = interval [a,b] then (f has_integral_compact_interval y) i

else 8e. 0 < e ) 9B. 0 < B ^

8a b. ball (0,B) SUBSET interval [a,b] )

9z. ((�x. if x 2 i then f x else 0)

has_integral_compact_interval z) (interval [a,b]) ^

abs (z - y) < e

Also, a simplified definition using the Hilbert choice operator (@), where @x.t(x) =

some x such that t(x) is true, is as follows:

` integral i f = @y. (f has_integral y) i

The Gauge integral theory in HOL Light contains a lot of useful properties for the

Gauge integral. We only used a few of them for our formalization of Lebesgue-Borel

measure. These are given below.

Theorem 3.1. Integral Addition of Two Functions.

` 8f g s. f integrable_on s ^ g integrable_on s )

integral s (�x. f x + g x) = integral s f + integral s g

Theorem 3.2. If s ⇢ t ^ 8x. 0  f x then, integral over s  integral over t.

` 8f s t. s SUBSET t ^ f integrable_on s ^ f integrable_on t ^

(8x. x 2 t ) 0  f x) )

integral s f  integral t f

Theorem 3.3. If 8x. g x  f x then, integral of g  integral of f.

` 8f g s. f integrable_on s ^ g integrable_on s ^

(8x. x 2 s ) f x  g x) )

integral s f  integral s g
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Theorem 3.4. Integral of a Function is Unique

` 8f i k1 k2. f has_integral k1 ^ f has_integral k2 ) (k1 = k2)

Theorem 3.5. Bounds on Integral over an Interval.

` 8f a b. f integrable_on interval [a,b] ^

(8x. x 2 interval [a,b] ) f x  B) )

integral (interval [a,b]) f  B * content (interval [a,b])

Theorem 3.6. Integral of a Positive Function is Non-Negative.

` 8f s. f integrable_on s ^

(8x. x 2 interval [a,b] ) 0  f x) )

0  integral (interval [a,b]) f

Theorem 3.7. Integral over a Singleton is 0.

` 8f a. integral (interval [a,a]) f = 0

Theorem 3.8. Integral of a Zero Function is 0.

` 8s. integral s (�x. 0) = 0

Another very useful property for the Gauge integral is the Fundamental Theorem

of Calculus [51].

Theorem 3.9. If f is a real valued continuous function on an interval [a,b] and f’ is

an antiderivative of f in [a,b], then
Z

b

a

f(t), dt = f

0(b)� f

0(a)

` 8f f’ a b. a  b ^ f continuous_on interval [a,b] ^

(8x. x 2 interval [a,b] )

(f has_derivative f’(x)) (at x within interval [a,b])) )

(f’ has_integral (f(b) - f(a))) (interval [a,b])
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where continuous_on and has_derivative are defined in HOL as:

` f continuous_on s =

(8x. x 2 s ) 8e. 0 < e )

9d. 0 < d ^ !x. x’ 2 s ^ dist (x’,x) < d )

dist (f(x’),f(x)) < e

` (f has_derivative x’) net =

linear (�x. x * x’) ^

((�y. inv (abs (y = netlimit net)) * (f(y) -

(f(netlimit net) + (�x. x * x’) (y - netlimit net)))) �! 0) net

Here, dist(x’,x) = abs(x’ - x) and the notions linear, netlimit and tends to

(�!) are given as:

` linear f =

(8x y. f(x + y) = f(x) + f(y)) ^

(8c x. f(c * x) = c * f(x))

` netlimit net = @a. 8x. ¬(netord net x a)

` (f �! l) net =

8e. 0 < e ) eventually (�x. dist(f(x), l) < e) net

where netord net denotes a net (i.e., a generalization of a sequence) and eventually

(�x. dist(f(x), l) < e) net, when net = (at x within interval [a,b]), is

equivalent to:

` eventually (�x. dist(f(x), l) < e) (at x within interval [a,b]) =

9d. 0 < d ^ 8x. x 2 interval [a,b] ^

0 < dist(x,a) ^ dist(x,a) < d ) dist(f(x), l) < e
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3.2 Borel Measurable Sets

A collection of all borel measurable sets on R forms a sigma algebra, called the Borel

sigma algebra. It allows us to prove various properties of measurable functions which

in our case are the random variables. The borel sigma algebra on R is defined as the

smallest sigma algebra generated by the open sets of R. To formalize this in HOL, we

use the sigma function defined in Chapter 2 and the definition of open sets presented

in previous section.

` borel = sigma UNIV {s | open s}

where UNIV is the universal set of real numbers R. Using above definition, we proved

that all open and closed sets are in Borel sigma algebra.

Theorem 3.10. All open sets of R are in B(R).

` 8s. {open s} 2 subsets borel

Theorem 3.11. All closed sets of R are in B(R).

` 8s. {closed s} 2 subsets borel

where a set is closed if its complement is an open set. It is defined in HOL as:

` closed s = open (UNIV DIFF s)

Another useful property is that all singleton sets are also Borel measurable.

Theorem 3.12. 8c 2 R, {c} 2 B(R)

` 8c:real. {c} 2 subsets borel

Mhamdi [36] formalized Borel sigma algebra in the Measure theory as a sigma

algebra generated by open intervals of extended real numbers R. In order to reuse

his proof steps for proving various properties of our Borel sigma algebra generated by

open sets of real numbers R, it is required that we prove that our Borel sigma algebra

can also be generated by open intervals of real numbers R.
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Theorem 3.13. B(R) is also generated by open intervals of real numbers.

` borel = sigma UNIV (IMAGE (�(a,b). interval (a,b)) UNIV)

Proof. We start by proving that an open set is equivalent to the union of open intervals

denoted by interval (a,b), where a 2 Q ^ b 2 Q. Then we prove above theorem

using the countable union property of sigma algebras and antisymmetric property of

sets.

3.2.1 Real-Valued Borel Measurable Functions

For a function to be integrable over a Borel measurable set, it has to be Borel measur-

able, i.e., the inverse image of the function belongs to Borel sigma algebra. Theorem

3.13 allowed us to prove some useful properties of Borel sigma algebra following the

proof steps of Mhamdi [36].

Theorem 3.14. If f and g are (A,B(R)) measurable and c 2 R then cf , |f |, fn,

f + g, f · g and max(f, g) are (A,B(R) measurable.

` 8a f g h c.

sigma_algebra a ^

f 2 measurable a Borel ^

g 2 measurable a Borel )

((�x. c * f x) 2 measurable a Borel) ^

((�x. abs(f x)) 2 measurable a Borel) ^

((�x. f x pow n) 2 measurable a Borel) ^

((�x. f x + g x) 2 measurable a Borel) ^

((�x. f x * g x) 2 measurable a Borel) ^

((�x. max (f x) (g x)) 2 measurable a borel)

Another useful theorem we proved is that all continuous functions are (B(R),B(R))

measurable.
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Theorem 3.15. Every continuous functions is (B(R),B(R)) measurable.

` 8g. g continuous UNIV(:real) ) g 2 measurable borel Borel

Notice that borel is our Borel sigma algebra generated by open sets of real num-

bers R and Borel is the Borel sigma algebra of Mhamdi [36] generated by open

intervals of extended real numbers R. This is done for compatibility reasons and

will be explained in the next chapter. Using Theorem 3.15 we can prove that if

f is measurable then exp(f) is also measurable. This is derived using the equality

(g � f)�1(A) = f

�1(g�1(A)) and the MEASURABLE_COMP theorem from measure theory

of Mhamdi [36], i.e.,

` 8f g a b c. f 2 measurable a b ^ g 2 measurable b c )

g � f 2 measurable a c

Theorem 3.16. If f is a real-valued Borel measurable function, then Normal (f x) is

an extended-real-valued Borel measurable function.

` 8f m. f 2 measurable (m_space m, measurable_sets m) borel )

(�x. Normal (f x)) 2 measurable (m_space m, measurable_sets m) Borel

where Normal is used to map real numbers to extended real numbers. Thoerem 3.16

allows us to exploit the properties of both sigma algebras for functions that do not

return infinite values.

3.3 Formalization of Lebesgue Measure

Lebesgue measure is a way of assigning a number to subsets of n-dimensional Eu-

clidean space. Sets that can be assigned a Lebesgue measure are called Lebesgue

measurable. It is a generalization of the size of a set or length of an interval. Since,

we are not working in multi-dimensions, it will assign a number to intervals for rep-

resenting their length. For an interval [a,b] of a real line, it is simply “b - a”. But
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Lebesgue measure may also be assigned to more abstract and irregular sets. Lebesgue

measure on a Lebesgue measurable set A is denoted by �(A). Formally, it is defined

in two steps. First the Lebesgue outer measure is defined as

�

⇤
E = inf (

X
length(i

k

)) (4)

where i

k

is a sequence of open intervals with E ⇢ R. The Lebesgue measure of E

is then given by its outer measure if for every A ⇢ R,

�E = �

⇤(A [ E) + �

⇤(A [ E

c) (5)

Our formalization of Lebesgue measure is inspired from Isabelle/HOL [24], it is

defined as the supremum of Gauge integrals of Xa for all interval [-n,n] (or line n),

where Xa is the indicator function of set A. To keep it compatible with the Measure

theory of HOL4, we define it as a triplet by pairing it with the Lebesgue Space (R) and

Lebesgue measurable sets, i.e., all sets for which its indicator function is integrable

with respect to the inertval [-n,n].

Definition 3.8. (Lebesgue Measure)

` lebesgue = (univ(:real), {A | 8n. indicator A integrable_on line n},

(�A. sup {Normal (integral (line n) (indicator A)) | n IN univ(:real)}))

To work with the Measure theory of HOL4, it is required that all measures satisfy

the properties of measure space.

Theorem 3.17. Lebesgue measure is positive and countably additive.

` measure_space lebesgue

Most sets that we shall be dealing with are Borel measurable. Therefore, we prove

that Borel measurable sets are a subset of Lebesgue measurable sets.

Theorem 3.18. All Borel measurable sets are also Lebesgue measurable.

` 8s. s 2 subsets borel ) s 2 measurable_sets lebesgue

30



3.4 Formalization of Lebesgue-Borel Measure

A Lebesgue measure assigned to Borel measurable sets is called a Lebesgue-Borel

measure. It will be used in later chapters to evaluate integrals of Borel measurable

(or Lebesgue measurable) functions. We work with Lebesgue-Borel measure to exploit

the available proven properties of Borel sigma algebra and Borel measurable functions.

In HOL, we define the triplet of Lebesgue-Borel measure by pairing Lebesgue measure

with Borel space and Borel sigma algebra.

Definition 3.9. (Lebesgue-Borel Measure)

` lborel = (space borel, subsets borel, measure lebesgue)

We prove that Lebesgue-Borel satisfies all properties of a measure space and that

it is a sigma finite measure.

Theorem 3.19. Lebesgue-Borel measure is positive and countably additive.

` measure_space lborel

Theorem 3.20. Lebesgue-Borel measure is �-finite.

` sigma_finite_measure lborel

where sigma_finite_measure is defined in HOL as:

Definition 3.10. (Sigma Finite Measure)

A measure (X,A, µ) is called sigma finite if X is the countable union of measurable

sets and for every x 2 X, µ(x) is a finite number (i.e., µ(x) 6= 1).

` sigma_finite_measure m =

9A. countable A ^ A SUBSET measurable_sets m ^

(BIGUNION A = m_space m) ^ (8a. a 2 A ) (measure m a 6= PosInf))

We also prove that the Lebesgue integral with Lebesgue-Borel measure is a�ne.
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Theorem 3.21. If f is a measurable function and c 6= 0, then

Z 1

�1
f dµ = |c| ⇤

Z 1

�1
(�x.f(t+ c ⇤ x)) dµ

` 8f c t. c 6= 0 ^ f 2 measurable borel Borel )

pos_fn_integral lborel (�x. max 0 (f x)) =

Normal (abs c) * pos_fn_integral lborel (�x. max 0 (f (t + c * x)))

Theorem 3.21 is a very useful property of Lebesgue-Borel measure and will be used

in the next chapter to prove some important properties of normal random variables.

3.5 Summary

In this chapter we discussed the formalization of Gauge Integral also known as the

Henstock Kurzweil integral. Then we defined the Borel sigma algebra and discussed

some of its useful properties. We also discussed the limitation of Borel sigma algebra

generated from open intervals of extended real numbers and added an axiom to prove

some essential properties. Then we presented the formalization of Lebesgue measure

and paired it with Borel space and Borel sigma algebra to define Lebesgue-Borel

measure. Finally, we presented some theorems for Lebesgue-Borel measure along

with the a�ne transformation property.
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Chapter 4

Normal Random Variables

The most common probability distribution in science and engineering is the Gaussian

(normal) distribution. In many situations, it is assumed that continuous random

variables follow this distribution; in fact, it is so common that it is simply referred to as

the normal distribution. Like any other continuous distribution, normal distribution

is defined by its probability density function (PDF), given as:

N(µ, �) =
1p
2⇡�2

exp(� (x�µ)2

2�2 )

where N represents a normal random variable, µ is the mean and �

2 is the variance

of normal distribution. Figure 4.1 gives the probability density functions of normal

random variable x with di↵erent means and variances.

Figure 4.1: Probability Density Function of Normal Random Variable [52]
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In this chapter, we provide the formalization of normal random variables. We start

by formally defining the PDF as Radon-Nikodym derivative as well as generalizing the

Radon-Nikodym theorem for sigma finite measures. Then, we define normal random

variables based on their distributions defined by their PDFs. Finally, we present the

formal proofs of some useful properties. This formalization will be used to analyze

two real world applications in the next chapter.

4.1 Radon Nikodym Theorem

The Radon-Nikodym derivative of a measure ⌫ with respect to the measure µ is

defined as a non-negative measurable function f , satisfying the following formula, for

any measurable set A [18]: Z

A

f dµ = ⌫(A) (6)

It has been formalized in HOL by Mhamdi [36] as:

` RN_deriv m v =

@f. f IN measurable (X,S) Borel ^

8x 2 X, 0  f x ^

8a 2 S, integral m (�x. f x ⇥ I

a

x) = v a

where I
a

denotes the indicator function of set a. The existence of the Radon-Nikodym

derivative is guaranteed for absolutely continuous measures by the Radon-Nikodym

theorem stating that if ⌫ is absolutely continuous with respect to µ, then there exists

a non-negative measurable function f satisfying Equation (6) for any measurable set

A.

Mhamdi [36] proved Radon Nikodym theorem for finite measure. In the next

section we will define the probability density function as a Radon Nikodym derivative

of probability measure with respect to Lebesgue-Borel measure. Since the Lebesgue-

Borel measure is not finite, it is required to generalize the Radon-Nikodym theorem

for sigma finite measures.
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Theorem 4.1. Given a measurable space (X,S), if a measure ⌫ on (X,S) is abso-

lutely continuous with respect to a sigma-finite measure µ on (X,S), then there is a

measurable function f, such that for any measurable subset A ⇢ X:

Z

A

f dµ = ⌫(A)

` 8u v X S.

sigma_finite_measure (X,S,u) ^

measure_space (X,S,u) ^

measure_space (X,S,v) ^

measure_absolutely_continuous (X,S,u) (X,S,v) )

9f. f 2 measurable (X,S) Borel ^

8x 2 X, 0  f x ^

8a 2 S, pos_fn_integral u (�x. f x ⇥ I

a

x) = v a

where measure_absolutely_continuous is define in HOL by Mhamdi [36] as:

Definition 4.1. (Absolutely Continuous Measures)

If u and v are two measures on a measure space (X,S), then v is absolutely continuous

with respect to u if v(A) = 0 for any A 2 S such that u(A) = 0.

` 8u v. measure_absolutely_continuous u v =

8A. A 2 measurable_sets u ^ (measure v A = 0) )

(measure u A = 0)

Proof. We start by proving the existence of a finite integrable function h for sigma

finite measures. We split the space into finite sets and rest (i.e., UNIV - finite spaces),

then prove the existence of a function f such that it satisfies Equation (6) for finite

µ and infinite ⌫. Finally, we prove that a function g = (h · f) exists even when µ is

sigma-finite. Since g may also take infinite values, the axiom (singleton of infinity)

was required to prove that g is Borel measurable.
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4.2 Probability Density Function

One way to define the distribution of a continuous random variable is the probability

density function (PDF). It is analogous to the probability mass function of discrete

random variables, which gives the probability of a discrete random variable acquiring

a certain value. Since a continuous variable can have infinitely many values, its

probability to have a certain value is zero. Instead, we determine the probability of

acquiring values in a certain range. In order to find the probability that a continuous

random variable x will be between x1 and x2, we integrate its probability density

function p(x).

P (x1 < x < x2) =

Z
x2

x1

p(x) dx

Formally, the PDF is defined as a Radon-Nikodym derivative and should satisfy the

following properties.

1. 8x. 0  p(x)

2.
R1
�1 p(x) dx = 1

We define the probability density function in HOL using the definition of Radon-

Nikodym derivative of Mhamdi [36]. The distribution of random variables paired

with Borel space and Borel sigma algebra gives the probability measure. The PDF

of a random variable X is the derivative of the probability measure with respect to

the Lebesgue-Borel measure. It is defined in HOL as:

Definition 4.2. (Probability Density Function)

` PDF X p = RN_deriv lborel (space borel, subsets borel, measurable_distr p X)

where measurable_distr is the same as the distribution in the Probability theory

but limited to sets measurable with respect to Lebesgue-Borel measure,
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Definition 4.3. (Measurable Distribution)

` measurable_distr p X =

(�A. if A 2 measurable_sets lborel then distribution p X A else 0)

With the help of Radon-Nikodym Theorem mentioned above, following properties of

PDF were proved in HOL.

Theorem 4.2. PDF of a random variable is always positive.

` 8p X v. (v = (space borel, subsets borel, measurable_distr p X)) ^

measure_space v ^ measure_absolutely_continuous v lborel )

8x. 0  PDF p X x

Proof. Using Theorem 3.20, we prove that Lebesgue-Borel measure is sigma-finite.

We rewrite the goal using the Radon-Nikodym theorem, then used the Hibert choice

elimination tactic and prove the existence and uniqueness of a non-negative measur-

able function, i.e., PDF p X

Theorem 4.3. Integral of PDF over whole space is equal to 1.

` 8p X v. (v = (space borel, subsets borel, measurable_distr p X)) ^

prob_space v ^ measure_absolutely_continuous v lborel )

integral m (PDF p X) = 1

Proof. Using the definition of probability space, we prove that the probability of an

entire space is equal to 1. Then prove above theorem with the help of the Hilbert

choice elimination tactic and the Radon-Nikodym Theorem.

Both properties were easily proven because the probability measure is not defined

for a certain random variable and therefore, absolutely continuous and probability

space properties are taken as assumption. In the next section, we define the probabil-

ity measure for a normal random variable and prove the validity of our assumptions.
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4.3 Normal Random Variables

A random variable is a function that maps randomness to an appropriate set of

numbers. It is called a normal random variable when its density is given as:

p(x) =
1p
2⇡�2

exp(� (x�µ)2

2�2 ) (7)

where p(x) denotes the probability density function. From Equation (7), it is clear

that the probability density of a normal random variable, called normal density, is

completely defined by its mean µ and variance �

2. We define the normal density in

HOL as follows.

Definition 4.4. (Normal Density)

` normal_density µ � x =

1 / sqrt (2 * ⇡ * � pow 2) * exp (- (x - µ) pow 2 / 2 * � pow 2)

In the limit when � tends to zero, the normal density eventually tends to zero for

any x 6= µ, but grows without limit if x = µ. Therefore, the normal density cannot be

defined as an ordinary function when � = 0. For this reason, most theorems involving

normal density would require to add a premise, i.e., 0 < �. Using Definition 4.4, we

prove some useful properties of normal density.

Theorem 4.4. Normal density is always positive.

` 8µ � x. 0  normal_density µ � x

Proof. Above theorem is easily proven, since multiplication, division and square root

returns a positive number when given positive arguments and exponential function is

always positive.

Theorem 4.5. If 0 < �, then normal density is also greater than 0.

` 8µ � x. 0 < � ) 0 < normal_density µ � x

Proof. We use Theorem 4.4 and prove that normal density is not equal to 0 when

variance is not equal to zero.
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Theorem 4.6. Normal density is a Borel measurable function.

` 8µ �. (�x. Normal (normal_density µ � x)) 2

measurable (m_space lborel, measurable_sets lborel) Borel

where Normal is used to maps real numbers to extended real numbers. To prove

various properties of normal random variables, it is required to perform Lebesgue

integration on normal density and since the Lebesgue Integral is defined for extended

real valued functions, we add Normal to normal density.

Proof. We use Theorem 3.14 and prove that constant functions are Borel measurable

using a property from the Lebesgue integration theory of HOL4. The exponential

function is also proved Borel measurable by proving that it is continuous and using

Theorem 3.16.

Now we formalize the probability measure for normal random variables. It gives

the probability that an event A (i.e., P (X 2 A)) will occur for a normal random

variable X.

Definition 4.5. (Normal Probability Measure)

` normal_pmeasure µ � A =

if A 2 measurable_sets lborel

then pos_fn_integral lborel

(�x. Normal (normal_density µ � x) * indicator_fn A x)

else 0

where indicator_fn is defined as:

` indicator_fn A = (�x. if x 2 A then 1 else 0)

Our definition is limited to measurable functions since, it is not possible to evaluate

the integral of a function over non-measurable sets. Now we can define the normal

random variable.
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Definition 4.6. (Normal Random Variable)

` normal_rv X p µ � =

random_variable X p borel ^

measurable_distr p X = normal_pmeasure µ �

The first conjunct indicates that X is a real random variable, i.e., it is measurable

from probability space to Borel space and the second conjunct ensures that it is a

normal random variable as its distribution is given by normal probability measure.

In the next section, we present some useful properties of normal random variables.

4.4 Properties of Normal Random Variable

In this section, we discuss some interesting properties of normal random variables.

These properties would be useful while conducting formal verification of real world

applications. The theorems related to a�ne transformation and independent random

variables were ported from the Isabelle/HOL theorem prover [14].

4.4.1 PDF Properties

To prove the two properties of probability density functions for normal random vari-

able, we first need to a validate the assumptions, i.e., the premises in Theorems 4.2

and 4.3.

Theorem 4.7. Normal probability measure is absolutely continuous with respect to

Lebesgue-Borel measure.

` 8µ �. measure_absolutely_continuous

(space borel, subsets borel, normal_pmeasure µ �

(lborel)

Proof. We start by proving that integral of a non-negative Borel measurable function

over a null set is equivalent to 9N . �N = 0 and A ⇢ N and use it to rewrite our goal
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after unfolding the definition of normal_pmeasure. The goal is then proved using

Definition 4.1.

Using Theorem 4.7 and the properties of PDF, following theorems are proved.

Theorem 4.8. PDF of a normal random variable is non-negative.

` 8X p µ �. normal_rv X p µ � )

8x. 0  PDF p X x

Theorem 4.9. PDF integral over the whole space is equal to 1

` 8X p µ �. normal_rv X p µ � )

integral lborel (PDF p X) = 1

4.4.2 Symmetric Around Mean

Theorem 4.10. For a normal random variable X with p(x) = N(µ, �),

Z
µ

�1
p(x) dx =

Z 1

µ

p(x) dx

` 8X p µ �. normal_rv X p µ � )

pos_fn_integral lborel (�x. PDF p X x * indicator_fn {x | x  µ} x) =

pos_fn_integral lborel (�x. PDF p X x * indicator_fn {x | µ  x} x)

Theorem 4.11. For a normal random variable X with p(x) = N(µ, �),

Z
µ

µ�a

p(x) dx =

Z
µ+a

µ

p(x) dx

` 8X p µ � a. normal_rv X p µ � )

pos_fn_integral lborel

(�x. PDF p X x * indicator_fn {x | µ-a  x ^ x  µ} x) =

pos_fn_integral lborel

(�x. PDF p X x * indicator_fn {x | µ  x ^ x  µ+a } x)
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Proof. For both properties, we use Theorem 3.21 to a�ne transform the right hand

side value and prove that the normal density gives same values for x equi-distance

from the mean µ on either side.

4.4.3 Half Distribution

Using the symmetric property of normal distribution, we prove that for the normal

probability density function, the integral of the first half is equal to the integral of the

second half and since the full integral is equal to 1, the integral of the half distribution

is 1
2 .

Theorem 4.12. For a normal random variable X with p(x) = N(µ, �),

Z 1

�1
p(x) dx =

Z
µ

�1
p(x) dx+

Z 1

µ

p(x) dx.

` 8X p µ �. normal_rv X p µ � )

pos_fn_integral lborel (�x. PDF p X x) =

pos_fn_integral lborel (�x. PDF p X x * indicator_fn {x | x  µ} x) +

pos_fn_integral lborel (�x. PDF p X x * indicator_fn {x | µ  x} x)

Theorem 4.13. For a normal random variable X with p(x) = N(µ, �),

Z
µ

�1
p(x) dx =

1

2
.

` 8X p µ �. normal_rv X p µ � ^ A = {x | x  µ} )

pos_fn_integral lborel (�x. PDF p X x * indicator_fn A x) = 1 / 2

Theorem 4.14. For a normal random variable X with p(x) = N(µ, �),

Z 1

µ

p(x) dx =
1

2
.

` 8X p µ �. normal_rv X p µ � ^ A = {x | µ  x} )

pos_fn_integral lborel (�x. PDF p X x * indicator_fn A x) = 1 / 2
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4.4.4 A�ne Transformation

Theorem 4.15. If X is a normal random variable with mean µ and standard devi-

ation � then Y = b + a ⇤ X is also a normal random variable with mean b + a * µ

and standard deviation | a | * �.

` 8X p µ Y a b. a 6= 0 ^ 0 < � ^ normal_rv X p µ � ^

(8x. Y x = b + a * X x) )

normal_rv Y p (b + a * µ) (abs a * �)

Proof. We unfold the definition of normal random variable and prove that Y is also a

random variable using Definition 2.3. We prove �x. b + a * x is a continuous function

and therefore, Borel measurable. Then we prove the equivalence of the probability

distributions using Theorem 3.21.

4.4.5 Convolution

Theorem 4.16. Convolution of p1(x) = N(0, �1) and p2(x) = N(0, �2) is equal to

p(x) = N(0,
p

�

2
1 + �

2
2),

Z 1

�1
p1(z � x) · p2(x) dx = p(z)

` 8�1 �2 p X Y x. 0 < �1 ^ 0 < �2 ^ normal_rv X p 0 �1 )

pos_fn_integral lborel

(�y. Normal (normal_density 0 �1 (x - y) *

Normal (normal_density 0 �2 y))) =

Normal (normal_density 0 (sqrt (�1 pow 2 + �2 pow 2)) x)

Proof. We start by unfolding the definition of normal density and exploiting the

properties of exponential function to separate a constant value equivalent to the right

hand side. Then we use a property of the Lebesgue integration to bring the constant

value out of the integral. The goal is then proved equal to 1 using real analysis and

Theorem 4.9.
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4.4.6 Sum of Independent Random Variables

If X and Y are two normally distributed independent normal random variables. Then

their sum is also a normally distributed random variable, i.e.,

X ⇠ N(µ1, �
2
1), Y ⇠ N(µ2, �

2
2), Z = X + Y then, Z ⇠ N(µ1 + µ2, �

2
1 + �

2
2)

To prove this property, we start by formalizing independent variables in HOL4:

Definition 4.7. (Independent Events)

A finite set of events F
i

is pairwise independent if and only if every pair of events is

independent.

P (F
m

\ F

n

) = P (F
m

) · P (F
n

)

` indep_sets p F I = prob_space p ^

(8i. i 2 I ) F i SUBSET events p) ^

(8J. J SUBSET I ^ J 6= {} ^ FINITE J ))

8A. A 2 (Pi J F) ) (prob p (BIGINTER A j| j 2 J) =

Normal (product J (�j. real (prob p (A j)))))

where Pi is defined as:

` Pi A B = {f | 8x. x 2 A ) f x 2 B x}

Having defined the independent events, we can now define independent random vari-

ables,

Definition 4.8. (Independent Random Variables)

A set of random variables is pairwise independent if and only if every pair of random

variables is independent, i.e., a pair of random variables X and Y are independent if

for every measurable set A and B, the events {X 2 A} and {Y 2 B} are independent.
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` indep_vars p M X I =

(8i. i 2 I )

random_variable (X i) p (m_space (M i), measurable_sets (M i))) ^

indep_sets p

(�i. PREIMAGE X A INTER p_space p | A 2 measurable_sets (M i)) I

Using above definitions, we can define two independent events and two independent

random variables as:

` indep_set p A B = prob_space p ^

indep_sets p (�i. if i = 0 then A else B) UNIV

` indep_var p M_a A M_b B =

indep_vars p (�i. if i = 0 then M_a else M_b)

(�i. if i = 0 then A else B) UNIV

To prove that the sum of independent normal random variables X and Y is also

a normal random variable, we start by proving that the density f

z

of Z = X + Y

is the convolution of f
x

and f

y

.

f

z

(z) =

Z 1

�1
f

y

(z � x) · f
x

(x) dx (8)

For this purpose, we first formalize the notion of convolution for measures as:

Definition 4.9. (Convolution of Measures)

The convolution M ⇤ N is the probability density of the sum X + Y of two independent

random variables X and Y whose respective PDFs are M and N.

` convolution M N = (space borel, subsets borel,

(�A. measure (pair_measure M N)

(PREIMAGE (�(x,y). x + y) A \ m_space (pair_measure M N))))

where pair_measure is defined as:
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Definition 4.10. (Product Measure)

A product measure µ1 ⇥ µ2 is defined to be a measure on the measurable space

(X1 ⇥ X2, ⌃1 ⌦ ⌃2) satisfying the property, (µ1 ⇥ µ2)(B1 ⇥ B2) = µ1(B1) µ2(B2)

for all B1 2 ⌃1, B2 2 ⌃2 .

` pair_measure A B = ((m_space A CROSS m_space B),

{A CROSS B | a 2 measurable_sets A ^ B 2 measurable_sets B},

(�X. pos_fn_integral A (�x. pos_fn_integral B (�y. indicator_fn X (x,y))))

Now we formalize Equation (8):

Theorem 4.17. For two random variables X and Y, the PDF f

z

of Z = X + Y is

the convolution of f
x

and f

y

.

` 8p X Y. prob_space p ^

indep_var p borel_triplet X borel_triplet Y )

(8a. a 2 measurable_sets (space borel, subsets borel, (�x. 0))) )

(distribution p (�x. X x + Y x)) a =

measure (convolution (distr’ p borel_triplet X)

(distr’ p borel_triplet Y) a)

where borel_triplet = (borel space, subsets borel, (�x. 0)) and distr’ is

defined as:

` distr’ M N X = (m_space N, measurable_sets N,

(�s. if s 2 measurable_sets N then distribution M X s else 0))

With the help of above theorem, we prove that the sum of two independent normal

random variables is also normal. Theorems 4.9 and 3.21 were required in the proof

steps.

Theorem 4.18. If X ⇠ N(µ1,�12) and Y ⇠ N(µ2, �22) are two independent random

variables, then Z = X + Y is also normal with mean (µ1 + µ2) and variance (�12 +

�22).
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` 8p X Y µ1 µ2 �1 �2.

prob_space p ^ 0 < �1 ^ 0 < �2 ^

indep_var p borel_triplet X borel_triplet Y ^

normal_rv X p µ1 �1 ^ normal_rv Y p µ2 �2 )

normal_rv (�x. X x + Y x) p (µ1 + µ2) (sqrt (�1 pow 2 + �2 pow 2))

Another useful theorem required in the proof of above property is the Fubini

theorem for Lebesgue integration [7].

Theorem 4.19. Suppose M1 and M2 are �-finite measure spaces. If f(x, y) is M1

⇥ M2 measurable, then
Z

M1

✓Z

M2

f(x, y), dy

◆
dx =

Z

M2

✓Z

M1

f(x, y), dx

◆
dy

` 8f M1 M2. measure_space M1 ^ measure_space M2 ^

sigma_finite_measure M1 ^ sigma_finite_measure M2 ^

(8x. 0  f x) ^ f 2 measurable (m_space (pair_measure M1 M2),

measurable_sets (pair_measure M1 M2)) Borel )

(pos_fn_integral M1 (�x. pos_fn_integral M2 (�y. f (x,y))) =

pos_fn_integral M2 (�y. pos_fn_integral M1 (�x. f (x,y))))

With Theorem 4.18 and using induction, we also prove that the sum of a finite

number of independent normal random variables is also a normal random variable.

Theorem 4.20. If X

i

⇠ N(µ
i

,�2
i

) is a finite set of independent normal random

variables, and Z =
P

i

X

i

then, Z ⇠ N(
P

i

µ

i

,
P

i

�

2
i

).

` 8p X µ � I.

prob_space p ^ FINITE I ^ ^ I 6= {} ^

indep_vars p (�i. borel_triplet X I) ^

(8i, i 2 I ) 0 < � i) ^

(8i, i 2 I ) normal_rv (X i) p (µ i) (� i)) )

normal_rv (�x. sum I (�x. X i x)) p (sum I µ)

(sqrt (sum I (�i. (� i) pow 2)))
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4.5 Summary

In this chapter, we discussed how the Random-Nikodym theorem was generalized

for sigma finite measures. We defined the probability density function and used

Radon-Nikodym theorem to proved its basic properties. Then we defined normal

random variables along with their probability measures. Finally, we discuss some

useful properties of normal distribution that will help in applying our formalization

to real world applications. Two applications are discussed in the next chapter.
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Chapter 5

Applications

In previous chapters, we have provided the formalization of normal random variables

along with the formal proof of some useful properties. These results can be used in

the formal probabilistic analysis of a wide range of engineering systems. We illustrate

the usefulness of conducting this analysis using theorem proving by tackling two real

world applications, i.e., the error probability of binary signals transmission in the

presence of Gaussian noise and the probabilistic clock synchronization in wireless

sensor networks.

5.1 Binary Signals Transmission in the Presence

of Gaussian Noise

Throughout history, communication has been a very useful tool to mankind. The

need for fast and long distance communication keeps increasing and the technology

is getting more advanced to satisfy those needs. Today, communication systems

are being used almost everywhere including safety critical domains such as medical

instruments and tra�c. Hence, there is a dire need to verify such systems formally.

Generally, communication systems involve transmitting data or information from a

sender to a receiver. This is done mainly in two ways, i.e., analog transmission
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and digital (binary) transmission. Over time, binary transmission has become more

popular, as analog is more prone to noise and attenuation. Also, analog transmission

is more expensive as the required hardware transmitters and receivers are designed

to fit a particular transmission. A simple binary transmission system consists of a

transmitting device sending a stream of binary signals via a channel (e.g. copper

wire) and a receiver. Figure 5.1 shows a simplified block diagram of such a system

[47].

Figure 5.1: A Simple Binary Transmission System

In a binary transmission system, noise could cause 0 to be interpreted as 1 and vice

versa, which makes data at the receiver di↵erent from the sender. A very common

type of noise is Gaussian noise. It comes from many natural sources such as thermal

vibration of atoms in conductors (e.g., copper wire), black body radiation from the

earth and other warm objects, and from celestial sources such as the sun. It is called

Gaussian because the values it can take are Gaussian (or normally) distributed. In a

channel with Gaussian noise, the signal at the receiver would look as given in Figure

5.2.

Figure 5.2: Binary Signals with Gaussian Noise [53]

If f(t) is the transmitted signal and N(t) is the added noise, then the signal at
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the receiver is

Y (t) = f(t) +N(t)

where f(t) is a noise free signal and is given as

f(t) =

8
><

>:

0 signal absent

A signal present

Therefore, when the signal is absent only noise is received. Since the noise is

random, the receiver cannot decide with certainty whether a signal was present or

absent at a certain time. However, a reasonable rule for the decision is as follows,

Y (t)  µ sigmal absent

Y (t) > µ signal present

When the noise is Gaussian or normal distributed with a mean of zero and variance

of �2. The probability density function of Y (t) when the signal is absent is given as

P0(y) =
1

�

p
2⇡

exp(� y

2

2�2 )

where y denotes Y (t). Similarly when the signal is present,

P1(y) =
1

�

p
2⇡

exp(� (y�A)2

2�2 )

This is shown in Figure 5.3.

Figure 5.3: Distribution of Recieved Signals

where 0 denotes that a signal is absent and A denotes that a signal is present. µ is

the threshold for taking decision at the receiver.
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Using the decision rule mentioned above, it is clear that sometimes the receiver

will decide a signal is present when it is absent and vice versa. The probability of

error in both cases, is given as:

P

✏0 =

Z 1

µ

1

�

p
2⇡

exp(� (y)2

2�2 ) dy

P

✏1 =

Z
µ

�1

1

�

p
2⇡

exp(� (y�A)2

2�2 ) dy

We define this is HOL as the distribution of Y in the error region

` prob_error_zero_sent p X Y u =

conditional_distribution p Y X {x | u < x} {0} =

distribution p Y {x | x  u}

` prob_error_zero_sent p X Y u =

conditional_distribution p Y X {x | x  u} {1} =

distribution p Y {x | u < x}

where X is a random variable used to denote the transmitted signal which is either 0

or 1 with equal probability and random variable Y denotes the received signal. The

definition of signal and decision made on the received signal are as follows

` signal a b = (�x. if x = 0 then a else b)

` decision u a b = (�x. if x  u then a else b)

We define the total probability of error as the joint distribution of X and Y for which

the decision is made is di↵erent from the original signal.

` prob_error p X Y u a b =

joint_distribution p X Y {(x,y) | signal a b x <> decision u a b y}

We prove that the total probability of error is minimum when the decision threshold

is at the exact middle of binary level 0 and binary level 1, i.e., µ = A

2 .
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` 8 X Y N p µ � u a b.

noise N p 0 � ^ bern_rv X p (1/2) ^ a  b ^

(8x y. Y y = N y + signal a b x) ^ (0 < �) ^

(8u. prob_error_zero_sent p X Y u) ^

(8u. prob_error_one_sent p X Y u) )

prob_error p X Y ((a + b) / 2) a b  prob_error p X Y u a b

where noise is a normal random variable with a mean of zero and bern_rv X p (1/2)

denotes that X is a bernoulli random variable with equal probability of failure and

success. Finally, we prove that the probability of error is equal to the Q(x) function

when x = a

2� .

` 8 X Y N p µ � u a.

noise N p 0 � ^ bern_rv X p (1/2) ^

(8x y. Y y = N y + signal 0 a x) ^

(a 6= 0) ^ (0 < �) ^ (u = a / 2) ^

(8u. prob_error_zero_sent p X Y u) ^

(8u. prob_error_one_sent p X Y u) )

prob_error p X Y u 0 a = Q_func (a / 2 * �)

where the Q function is given as:

` Q_func z = pos_fn_integral lborel

(�x. Normal (1 / sqrt (2 * ⇡) * exp (-(x pow 2) / 2)) *

indicator_fn {x | z  x} x)

5.2 Probabilistic Clock Synchronization in Wire-

less Sensor Network

A network of autonomous wireless sensors deployed to monitor a physical phenomena

is called a wireless sensor network [54]. Wireless sensor networks have applications
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in many critical domains such as, health care monitoring, forest wire detection and

natural disaster prevention. Recent advances in technology have made low-cost, low-

power wireless sensors a reality. It is required that the network be energy e�cient

as the sensors have a limited power source. An important service in sensor networks

is clock synchronization which is used for time division multiple access (TDMA)

scheduling and power mode energy saving.

Wireless sensor networks have some unique characteristics due to which it is di�-

cult to apply traditional approaches for clock synchronization. Highly accurate clock

synchronization protocols require more processing and hence more energy consump-

tion. Elson et al. [15] presented an analytical way to convert service specifications to

protocol parameters, called reference broadcast sychronization (RBS). PalChaudhuri

et al. [41] extended this work and provided probabilistic bounds on clock synchro-

nization error for single and multi-hop networks. We conduct a formal analysis of

both cases.

5.2.1 Sources of Clock Synchronization Error

The non-determinism in message delivery latency is the main cause of error. Kopetz et

al. [28] have characterized the message delivery latency into four distinct components:

1. Send Time: time required to build the message at the sender node.

2. Access Time: waiting time required to get access to the transmission channel.

3. Propagation Time: time required for the message to reach the receiver.

4. Receive Time: processing time required at the receiver.

The RBS protocol entails synchronizing a set of receivers with each other, in

contrast to synchronizing with the sender. For this reason, the send time and access

time are not of consequence as they are identical for all receivers. The only variable

times are the Propagation Time and Receive Time.
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5.2.2 Single-Hop Network

PalChaudhuri et al. [41] presented the clock synchronization protocol as an extension

to RBS. The following happens for every sender sensor in a single-hop broadcast

region.

1. A sender broadcasts n reference packets to its neighbors. The interval between

each packet is fixed and greater than some minimum, such that they are inde-

pendent of each other.

2. Each receiver records the time according to its own local clock, when each of

these reference packets are received. Using these time-stamps, the receiver uses

linear regression to fit a line on these data. The slope of the line will approximate

the relative clock skew between the receiver and the sender.

3. Each receiver sends back to the sender, a packet containing the slope of the line

and one point on that line. The sending back of these packets are jittered over

an interval so that the packets sent back by di↵erent receivers have less chance

of colliding with each other.

4. The sender composes all these slopes together, and broadcasts a packet con-

taining its relative clock skew slope to all receivers who have replied back.

5. Each receiver after receiving this packet, can now calculate its own slope relative

to all receivers in the broadcast region of a particular sender. So, for every pair

of receivers, within the broadcast region of the sender, the clock skew and clock

o↵set are now known with some synchronization error. The Send Time and

Access Time errors are factored out when calculating this relative slope, as that

error is the same for any two receivers. The only error present will be that due

to Propagation Time and Receive Time.

Elson et al. [15] found the distribution of the synchronization error among re-

ceivers. Multiple pulses are sent from the sender to the set of receivers. The di↵erence
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in actual reception time at the receivers is plotted. As each of these pulses are in-

dependently distributed, the di↵erence in reception times gives a normal distribution

with zero mean. If the maximum error that is allowed between two sensors is ✏
max

,

then the probability of synchronization with an error ✏  ✏

max

is given as

P (|✏|  ✏

max

) =

R
✏

max

�✏

max

exp�x

2

2

p
2⇡

For n reference packets from the sender, the receivers exchange their observations.

As explained earlier, the slope of the skew between the receivers is found by a least

square linear estimation using the n data points. The calculated slope of the skew has

an associated error in it. This error is the di↵erence in phase between the calculated

slope and the actual slope. As the points have a normal distribution, this error can

be calculated as

P (|✏|  ✏

max

) = 2 erf

✓p
n✏

max

�

◆

where ✏ is the synchronization error, i.e., di↵erence in packet reception time between

two sensor, ✏
max

is the maximum allowable error, n is the minimum number of syn-

chronization messages to guarantee the specified error, �

2 is the variation of the

distribution and erf is the error function given as,

erf(z) =

R
z

0 exp�x

2

2 dx
p
2⇡

We formalize this in HOL as follows,

Definition 5.1. (Error Function)

` err_func z = pos_fn_integral lborel

(�x. Normal (1 / sqrt (2 * ⇡) * exp (-(x pow 2) / 2)) *

indicator_fn {x | 0  x / x  z} x)

We then define probability of synchronization within the maximum allowable error

✏

max

as the distribution of random variable Z.

` prob_sync_error p Z = measurable_distr p Z

Now we calculate the probability of synchronization error for n reference packets.
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Theorem 5.1. For n reference packets, the probability of synchronization error is

calculated as

P (| ✏ | ✏

max

) = 2 erf

✓p
n✏

max

�

◆

` 8p X µ � n Emax.

prob_space p ^ (I = (1 .. n)) ^ (0 < �) ^

(0 < n) ^ (8i. i 2 I ) sync_error (X i) p µ �) ^

(Z = (�x. sum I (�i. X i x) / n)) ^ (µ = 0) ^ 0  Emax )

(prob_sync_error p Z {x | -Emax  x ^ x  Emax} =

2 * err_func (Emax * sqrt n / �))

where sync error is equivalent to a normal random variable, Z is the average error

for n reference packets and Emax is the maximum allowable synchronization error.

Proof. First we find the probability density function of Z using Theorems 4.15 and

4.19. Then we use the symmetry property, i.e., Theorem 4.11 to eliminate 2 from the

right hand side. The goal is achieved with the help of Theorem 3.21.

5.2.3 Multi-Hop Network

A multi-hop wireless network has several benefits over networks with single wireless

link. It can extend the coverage of the network and improve connectivity. Also, trans-

mission over multiple short links might consume less energy. They enable higher data

rates resulting in higher throughput and more e�cient use of the wireless medium.

In case of dense multi-hop networks, several paths might become available that can

be used to increase the reliability of the network. A multi-hop network also intro-

duces some challenges, for instance, clock synchronization error would increase with

every hop. PalChaudhuri et al. [41] extended the single-hop protocol to also provide

probabilistic bounds on clock synchronization error for this type of network. For

this protocol, senders are considered at various levels. A sender which does not need

any synchronization is called a sender at level 0. A sensor node which is within the
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broadcast region of a sender at level 0 can behave as a sender in order to synchronize

sensor nodes which are two hops away from the sender at level 0. Such a sender is

called a sender at level 1. Receivers within the broadcast region of the sender at

level 0 are synchronized using the same method discussed in previous section. Once

these receivers get synchronized, each receiver starts behaving as a sender at level

1. Consider the scenario presented in Figure 5.4. Nodes R1, R2, R3 and R4 are

within the broadcast region of the sender S. Using the single hop synchronization

protocol nodes R1, R2, R3 and R4 are synchronized among themselves. Suppose R2

gets to be the first node to end the reference broadcast, that is R2 starts behaving

as a sender at level 1. By a similar synchronization procedure, R1, R3, R5, R6 and

R7 get synchronized among themselves. Now suppose R6 needs to send a message to

R4. The message would have to be routed through a node which is synchronized with

R6, say R3. The assumption here is that due to the relative high density of sensor

nodes, a node, such as R3 as shown in Figure 5.4, will exist in the broadcast region of

two senders; the two senders might be at the same level or they might be separated

by a single level. Now since R3 is synchronized with R4, R3 can transform the time

reported by R6. Finally, since R3 is synchronized with R4, R4 can transform the

time reported by R3. Hence, all along the routing path of the message suitable time

transformations can be performed.

Figure 5.4: Multihop Network [41]

We define transformation in HOL as the sum of synchronization error and find
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the maximum synchronization possible along with the probability that error will stay

within bounds for k hops,

Definition 5.2. (Transformation)

` transformation X k = (�x. sum (1 .. k) (�i. X i x))

Theorem 5.2. If Emax is the max allowable error for a single hop, then maximum

error possible between two sensor nodes which are k hops apart is k * Emax.

` 8X Emax k. 0  Emax )

(8x. (8i. (X i) x 2 {x:real | -Emax  x ^ x  Emax}) )

transformation X k x 2 {x:real | -Emax * &k  x ^ x  Emax * &k}

Proof. The theorem is easily proved by unfolding the definition of transformation

and using properties of summation and real analysis.

Theorem 5.3. If we consider the error over a single hop to Emax then error over k

hops will be
p
k * Emax.

` 8p X µ � k Emax.

prob_space p ^ (I = (1 .. n)) ^ (0 < �) ^

indep_vars p (�i. (space borel, subsets borel, (�x. 0))) �

(0 < k) ^ (8i. i 2 I ) sync_error (X i) p µ �) ^

(Z = (�x. sum I (�i. X i x))) ^ (µ = 0) ^ (0  Emax) )

(prob_sync_error p Z {x | -Emax * sqrt(k)  x ^ x  Emax * sqrt(k)} =

prob_sync_error p (X k) {x | -Emax  x ^ x  Emax})

Proof. First we find the probability density function of Z using Theorem 4.19. Then

we apply a�ne transformation on the left hand side using Theorem 3.21. Finally, we

prove the goal using real analysis.
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5.3 Summary

In this chapter, we presented two example applications. In the first example, we

formalized a binary transmission system and verified the probability of error in the

presence of Gaussian noise. In the second example, we analysed the probabilistic

clock synchronization in wireless sensor networks presented in a prominent paper [41].

These applications illustrate how our formalization of Lebesgue measure and normal

random variables can be used to reason about engineering applications. Conducting

the analysis within the sound core of a theorem prover helped to add more trust to

the proved results. The soundness and the deduction style of the theorem prover

guarantee the validity of the analysis when deriving these proofs. Besides, the results

of this type of analysis are generic and valid for any instance of the system. We

argue that these benefits are even more significant when dealing with larger and more

complex systems as is the case for now-a-days parallel and distributed systems.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The analysis of engineering systems used in safety critical domains such as trans-

portation and medicine, is usually done using informal techniques. The unreliable

results produced using such techniques may lead to heavy financial loss, or even the

loss of a human life. Therefore, in this thesis we propose to conduct the probabilis-

tic analysis of engineering systems exhibiting normally distributed randomness using

higher-order logic theorem proving. To do so, we have provided the formalization of

the mathematical notions required to formalized normal random variables. Compared

to the standard techniques of computer simulation and paper-and-pencil analysis, our

approach provides more accurate and trusted results by exploiting the soundness of

theorem proving. It also allows to provide generic results instead of proving the

properties for specific instances of the system.

The main purpose of this thesis is to develop a formalization of normal ran-

dom variables along with other mathematical notions that are required to reach this

goal. Normal random variables as any other continuous random variables are defined

by their probability density functions (PDF). We formalized the PDF based on the

Radon-Nikodym derivative, i.e., the derivative of probability measure with respect to
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a reference measure. To serve as a reference measure, we formalized the Lebesgue-

Borel measure based on Gauge integral (or Henstock Kurzweil integral). We require

the Radon-Nikodym theorem for the proof of some basic properties of PDF. This

theorem has been proved by Mhamdi [36] but is limited to finite measures. Because

the Lebesgue-Borel is not a finite measure, we generalized the Radon-Nikodym theo-

rem for sigma-finite measures. The borel sigma algebra is another important notion

required for proving many useful theorems. Due to the unavailability of some topo-

logical notions for extended real numbers, Mhamdi [36] defined it as open intervals

instead of open sets. For this reasom some essential theorems could not be proved.

We added an axiom to overcome this limitation. Also, for the purpose of compatibility

with real valued Gauge integral, we formalized Borel measurable sets or Borel sigma

algebra for real numbers as open sets and ported all required topological notions from

HOL Light.

This work was conducted using the HOL4 kananaskis 10 version of the theorem

prover and the main reason behind this choice was to be able to utilize available

higher-order-logic formalizations of measure, Lebesgue integration and probability

theories. Unfortunately, the theory of Gauge integral was not available, therefore, it

was ported from the HOL Light theorem prover to HOL4. Some other notions were

also ported from the Isabelle/HOL theorem prover, that helped us prove many useful

properties of the Lebesgue-Borel measure and normal random variables. We also

introduced a measurable distribution that is the same as the distribution definition in

the probability thoery of Mhamdi [36], but is limited to Borel measurable sets. Other

than the theories ported from the HOL Light theorem prover, the proof script of the

formalization and verification of the notions presented in this thesis require around

18000 lines of HOL4 code available at http://hvg.ece.concordia.ca/projects/

prob-it/pr7.html.

To prove the usefulness of our formalization, we conducted the formal analysis

of two example applications. First, we modeled and verified a binary transmission

system in the presence of Gaussian noise where Gaussian noise was modeled as normal
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random variable. Next we analyzed the probabilistic clock synchronization in wireless

sensor networks. In this application, the main challenge was to verify the mean and

variance of sum of random variables as well as the a�nity property. These applications

highlight the feasibility and benefits of conducting the probabilistic analysis using a

higher-order-logic theorem prover. In fact, the added trust provided by the deduction

style of theorem proving, is a crucial requirement when dealing with safety-critical

applications.

6.2 Future Work

Some of the worth mentioning extensions of our formalization are outlined as follows:

1. The formalization of multivariate random variables will strengthen the proba-

bilistic analysis framework of HOL4 and allow the analysis of many large and

complex engineering systems. Also, porting the multivariate theories of the

HOL Light theorem prover to HOL4 will facilitate the formalization of mul-

tivariate random variables. They will also be useful while conducting formal

analyses involving multivariate real or complex numbers.

2. The formalization of a generalized notion of open and closed sets will allow a

generalized definition of extended real Borel sigma algebra. With this we can

prove that all closed sets of R belong to Borel sets and since all singletons are

closed sets, the singletons of positive and negative infinity also belong to Borel

sets. Hence, nullifying the need to take the axiom of infinity.

3. Di↵erent types of integrals are distinguished by their ability to handle di↵ering

special cases. However, a large set of functions can be handled by all of them.

Proving the equivalence of deferent integrals for a certain class of functions will

allow us to better exploit the proven properties of these integrals.
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