
On the Generation of Cyber Threat Intelligence: Malware

and Network Traffic Analyses

Amine Boukhtouta

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montreal, Quebec, Canada

April 2016

c© Amine Boukhtouta, 2016

CONCORDIA UNIVERSITY

Devision Of Graduate Studies

This is to certify that the thesis prepared

By: Amine Boukhtouta

Entitled: On the Generation of Cyber Threat Intelligence: Malware and Net-

work Traffic Analyses

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

ChairDr. Fariborz Haghighat

External ExaminerDr. Indrajit Ray

External to ProgramDr. Olga Ormandjieva

ExaminerDr. Ferhat Khendek

ExaminerDr. Amr Youssef

Thesis SupervisorDr. Mourad Debbabi

Approved by
Chair of Department or Graduate Program Director

Dean of Faculty

ABSTRACT

On the Generation of Cyber Threat Intelligence: Malware and

Network Traffic Analyses

Amine Boukhtouta, Ph. D.

Concordia University, 2016

In recent years, malware authors drastically changed their course on the subject of

threat design and implementation. Malware authors, namely, hackers or cyber-terrorists

perpetrate new forms of cyber-crimes involving more innovative hacking techniques. Be-

ing motivated by financial or political reasons, attackers target computer systems ranging

from personal computers to organizations’ networks to collect and steal sensitive data

as well as blackmail, scam people, or scupper IT infrastructures. Accordingly, IT secu-

rity experts face new challenges, as they need to counter cyber-threats proactively. The

challenge takes a continuous allure of a fight, where cyber-criminals are obsessed by the

idea of outsmarting security defenses. As such, security experts have to elaborate an ef-

fective strategy to counter cyber-criminals. The generation of cyber-threat intelligence

is of a paramount importance as stated in the following quote: “the field is owned by

who owns the intelligence”. In this thesis, we address the problem of generating timely

iii

and relevant cyber-threat intelligence for the purpose of detection, prevention and miti-

gation of cyber-attacks. To do so, we initiate a research effort, which falls into: First,

we analyze prominent cyber-crime toolkits to grasp the inner-secrets and workings of

advanced threats. We dissect prominent malware like Zeus and Mariposa botnets to un-

cover their underlying techniques used to build a networked army of infected machines.

Second, we investigate cyber-crime infrastructures, where we elaborate on the generation

of a cyber-threat intelligence for situational awareness. We adapt a graph-theoretic ap-

proach to study infrastructures used by malware to perpetrate malicious activities. We

build a scoring mechanism based on a page ranking algorithm to measure the badness of

infrastructures’ elements, i.e., domains, IPs, domain owners, etc. In addition, we use the

min-hashing technique to evaluate the level of sharing among cyber-threat infrastructures

during a period of one year. Third, we use machine learning techniques to fingerprint ma-

licious IP traffic. By fingerprinting, we mean detecting malicious network flows and their

attribution to malware families. This research effort relies on a ground truth collected

from the dynamic analysis of malware samples. Finally, we investigate the generation of

cyber-threat intelligence from passive DNS streams. To this end, we design and imple-

ment a system that generates anomalies from passive DNS traffic. Due to the tremendous

nature of DNS data, we build a system on top of a cluster computing framework, namely,

Apache Spark [70]. The integrated analytic system has the ability to detect anomalies

observed in DNS records, which are potentially generated by widespread cyber-threats.

iv

ACKNOWLEDGEMENTS

To a great degree, all praises to God for giving me the power to accomplish this

thesis. I could not finish this work without his blessing and guidance. I would like to

express my heartfelt gratitude to my supervisor Prof. Mourad Debbabi, who has highly

contributed in the supervision and fulfillment of this thesis.

I have to express my appreciation to the committee members, including Dr. Amr

Youssef, Dr. Olga Ormandjieva, Dr. Ferhat Khendek, and Dr. Indrajit Ray for evaluating

my thesis and providing me with valuable feedback. I thank the National Cyber-Forensics

& Training Alliance (NCFTA) Canada for providing facilities to conduct research, this

work would not be possible without their active supports. I thank Farsight Security, Inc.

and in particular, Dr. Paul Vixie, for the access to valuable data feeds.

Special thanks to lab-mates, namely, Hamad Binsalleeh, Nour-Eddine Lakhdari,

Serguei Mokhov, Djedjiga Mouheb, Farkhund Iqbal, Son Dinh, Claude Fachkha, Elias

Bou-Harb, Prosenjit Sinha, Thomas Ormerod and Victor Belarde, Taher Azab, Saed

Alrabaee, Perry Jones, Houssam Borjiba, Mouatez Karbab, Anhar Haneef, Paria Shirani,

Lina Nouh, Ray Sujoy, André Soeanu for stimulating discussions and good memories

shared in the laboratory. Last but not least, I would like to express my profound gratitude

to my beloved wife and daughter for their moral support and patience during my stud-

ies, without forgetting my parents, sister, brothers, my uncle and his family, and my best

friend H. Oualikene for their encouragement and love.

v

TABLE OF CONTENTS

LIST OF FIGURES . xiii

LIST OF TABLES . xvi

LIST OF ACRONYMS . xvii

1 Introduction 1

1.1 Motivation and Problem Description . 1

1.2 Objectives . 3

1.3 Methodology . 4

1.3.1 Malware Cyber-Threat Intelligence 4

1.3.2 Network Traffic Cyber-Threat Intelligence 5

1.4 Contributions . 5

1.4.1 Analysis of Prominent Threats 5

1.4.2 Investigation of Cyber-Threat Infrastructures 6

1.4.3 Fingerprinting Maliciousness in IP Traffic 7

1.4.4 Near-Real-Time and Scalable Detection of Anomalies in Passive

DNS Streams . 8

1.5 Thesis Organization . 9

2 Background and Related Work 11

2.1 Overview . 11

vi

2.2 Cyber-Threat Intelligence . 12

2.2.1 Definition . 12

2.2.2 Cyber-Threat Intelligence Challenges 12

2.2.3 Cyber-Threat Intelligence Model 14

Analysis of Cyber-Threats . 15

Specifying Indicators for Cyber-Threats 15

Managing Cyber-Threat Responses 15

Sharing Cyber-Threat Information 16

Cyber-Threat Intelligence Sources 16

2.3 Prominent Cyber-Threat Analysis . 25

2.4 Network Analysis: Graph Theoretic Approach 27

2.5 Traffic Fingerprinting and Malware Analysis 28

2.5.1 Network Traffic Analysis . 29

2.5.2 Malware Traffic Analysis and Classification 36

2.6 Passive DNS Analysis Systems . 39

2.7 Conclusion . 42

3 Prominent Cyber-Threats 43

3.1 Overview . 43

3.2 Analysis of Mariposa Botnet . 43

3.2.1 Mariposa Botnet Description . 44

3.2.2 Network Analysis . 46

vii

3.2.3 Static Analysis . 49

De-Obfuscation and First Decryption Layer 50

Anti-Debugging Traps . 51

Second, Third and Fourth Decryption Layers 52

Code Injection . 55

Injected Thread Activity . 57

3.2.4 Modules . 60

Spreader Module . 60

Uploader and Downloader Modules 62

Components Diagram . 64

3.3 Analysis of Zeus Botnet Crime-ware Toolkit 65

3.3.1 Zeus Botnet Description . 65

3.3.2 Network Analysis . 67

3.3.3 Static Analysis . 69

Analysis of the Zeus Builder Program 71

Zeus Bot Binary Analysis . 72

Packet Decryption . 83

3.4 Conclusion . 85

4 Cyber-Threat Infrastructures 86

4.1 Overview . 86

4.2 Approach . 87

viii

4.2.1 Data Collection . 88

4.2.2 Cyber-Threat Graph Generation 89

4.2.3 Badness Scoring . 93

4.2.4 Patterns Inference . 96

Decomposition . 98

Vector Generation . 98

Fingerprinting . 99

Graph Similarities Computation 99

Pattern Time-Based Inference 100

4.3 Experimental Results . 101

4.3.1 Dataset Description . 101

4.3.2 Descriptive Statistics . 101

Domains & Resolving IPs . 102

Connected IPs . 104

Whois Information . 106

4.3.3 Badness Ranking . 108

4.3.4 Patterns Inference . 112

4.4 Conclusion . 115

5 Malicious Traffic Fingerprinting 117

5.1 Overview . 117

5.2 Traffic Maliciousness Ground Truth . 118

ix

5.3 Packet Headers Flow-Based Fingerprinting 120

5.3.1 Malicious Traffic Detection . 121

Benign Traffic Datasets . 122

Bidirectional Flow Features Extraction 122

Traffic Classification . 124

5.3.2 Malicious Traffic Attribution . 126

Malware Family Indexation . 127

Sequencing Flows . 128

Labeling Sequences . 128

Hidden Markov Modeling . 130

Hidden Markov Models Initialization 131

5.4 Signal and NLP DPI Fingerprinting . 134

5.4.1 Core Principles . 135

5.4.2 Knowledge Base . 136

5.4.3 MARFPCAT’s DPI Methodology 137

5.4.4 NLP Pipeline . 138

5.4.5 Demand-Driven Distributed Evaluation 139

5.4.6 Wavelets . 141

5.5 Results . 142

5.5.1 Non-DPI Approach . 142

Classification . 142

x

Attribution . 145

Computational Complexity . 150

5.5.2 DPI Approach . 151

Classification and Attribution Setup 152

Classification Results . 153

Computational Complexity . 157

5.6 Discussion . 158

5.6.1 Non-DPI Fingerprinting . 158

Advantages . 158

Disadvantages . 160

5.6.2 DPI Fingerprinting . 163

Advantages . 163

Disadvantages . 164

5.6.3 Summary . 165

5.7 Conclusion . 165

6 Near-Real-Time and Scalable Detection of Anomalies in Passive DNS Streams168

6.1 Overview . 168

6.2 Passive DNS Anomalies and Abuse Detection 169

6.2.1 Approach . 169

6.2.2 System Architecture . 172

Dispatcher . 172

xi

Record Extraction . 173

Geo-location . 173

PPM Detection . 174

Aggregation . 176

Record Misuses Filter . 182

6.3 Experimental Results . 186

6.3.1 Application Performance . 186

PPM Detection and Record Misuses 187

Monitoring IPs and Domains Features 189

Monitoring Top Level Domains and IPs of Interest 191

6.4 Conclusion . 194

7 Conclusion 195

Appendix A Signal and NLP DPI Results 201

Bibliography 210

xii

LIST OF FIGURES

2.1 Attack Chain Model . 13

2.2 Cyber-Threat Intelligence Use Cases Model 14

3.1 Mariposa Botnet Protocol . 48

3.2 Overview of Mariposa Bot . 50

3.3 Pseudo Code of the Second Decryption Layer 53

3.4 Pseudo Code of the Fourth Decryption Layer 54

3.5 Pseudo Code of String Decryption Algorithm 55

3.6 Component Diagram . 64

3.7 Communications Pattern of Zeus . 70

3.8 Segments of the bot.exe Binary File 73

3.9 De-Obfuscated Code in the Virtual Memory 74

3.10 Eight-byte Key . 75

3.11 Virtual Memory Used by the Second De-Obfuscation Routine 75

3.12 Result from the Second De-Obfuscation Routine 76

3.13 A Decrypted Sample Message . 84

4.1 Approach Overview . 88

4.2 Cyber-threat Infrastructure Schema . 89

4.3 Example of a Cyber-threat Infrastructure 91

xiii

4.4 Components representing Cyber-threat Infrastructures 91

4.5 Abstraction . 92

4.6 Fingerprinting Approach . 97

4.7 Top-5 Domains Score Trend . 110

4.8 Top-5 IPs Score Trend . 110

4.9 Registrants Communities and Badness Scores 112

4.10 Domain Patterns Similarity Matrix . 113

4.11 IP Patterns Similarity Matrix . 114

5.1 Dynamic Malware Analysis Topology 120

5.2 Flow-Based Detection Approach . 121

5.3 Non-Deterministic Approach for Malware Family Attribution 127

5.4 Two-State Initialization HMM . 132

5.5 Four-State Initialization HMM . 132

5.6 MARF’s Pattern-Recognition Pipeline 138

5.7 Classification Algorithms Results . 143

5.8 J48 Classifiers Performance and Generalization 144

5.9 ISIM, ESIM vs. Clustering Solutions . 146

5.10 Uniqueness of Sequences . 148

5.11 No-Filtering Malware Algorithms Results 154

5.12 Wavelet Malware Algorithms Results 155

5.13 No-Filtering Malware Family Results 155

xiv

5.14 Wavelet Malware Family Results . 156

6.1 DNS Anomaly Detection Architecture 173

6.2 Example of Number of IPs Change . 180

6.3 TTLs Change Example . 182

6.4 Server 1 CPU Usage . 188

6.5 Server 1 Memory Consumption . 188

6.6 Server 1 Processing Delay Time . 189

6.7 Server 2 CPU Usage . 190

6.8 Server 2 Memory Consumption . 191

6.9 Server 2 Processing Delay Time . 191

6.10 Server 3 CPU Usage . 192

6.11 Server 3 Memory Consumption . 193

6.12 Server 3 Processing Delay Time . 193

xv

LIST OF TABLES

3.1 Files Created During the Bot Infection 72

3.2 List of the Zeus malware commands . 82

4.1 Statistics of the Dataset . 101

4.2 Domains vs. Number of Malware . 102

4.3 Domain vs. Number of Resolving IPs 102

4.4 Resolving IPs vs. Number of Domains 103

4.5 Network Name vs. Number of Resolving IPs 104

4.6 Connected IP vs. Number of Malware 105

4.7 Network Name vs. Number of Connected IPs 105

4.8 Registrant vs. Number of Domains . 106

4.9 Physical Address vs. Number of Registered Domains 107

4.10 Top-10 Domains Badness Scores . 108

4.11 Top-10 Connected IPs Badness Scores 109

4.12 Domain Patterns Use Case . 113

4.13 IP Patterns Use Case . 115

5.1 Benign Datasets . 122

5.2 Bidirectional Flow Features . 123

5.3 Unidirectional Flow Features . 129

xvi

5.4 Uniqueness Ratio per Combination of Clustering Solutions 147

5.5 Number of Malware Families per State and Sequence Length 148

5.6 HMMs vs. Number of Iterations . 149

A.1 No-Filtering Results by Algorithm Combination and Malware 204

A.2 Wavelet-Filtered Results by Algorithm Combination and Malware 206

A.3 Low-Pass-Filtered Results by Algorithm Combination and Malware . . . 209

xvii

LIST OF ACRONYMS

A Internet Protocol v4 Address Record

AAAA Internet Protocol v6 Address Record

AIS Artificial Immune Systems

ANY DNS name-servers reconnaissance record

API Application Programming Interface

ARIMA Auto-regressive Integrated Moving Average

ASN Autonomous System Number

C&C Commmand and Control

CDN Content Delivery Network

CNAME Canonical Name DNS Record

CPU Central Processing Unit

DCI Direct Code Injection

DGA Domain Generation Algorithm

DKIM Domain Keys Identified Mail

DMARC Domain-based Message Authentication, Reporting & Conformance

DNS Domain Name System

DoS Denial of Service

DDoS Distributed Denial of Service

xviii

DRDoS Distributed Reflection Denial of Service

DPI Deep Packet Inspection

EM Expectation Maximization

EP Entry Point

FFT Fast Fourier Transform

FTP File Transfer Protocol

HDFS HaDoop File System

HMM Hidden Markov Model

HTTP Hyper-Text Transfer Protocol

IDS Intrusion Detection System

IRC Internet Relay Chat

ISP Internet Service Provider

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

LDAP Lightweight Directory Access Protocol

LPC Linear Prediction Coefficient

MAC Modification, Access, & Creation

NAT Network Address Translation

NCFTA National Cyber-Forensics Training Alliance

xix

NetBIOS Network Basic Input/Output System

NLP Natural language Processing

NULL Experimental null DNS record

OPT Pseudo DNS record type

PCM Pulse-Code Modulation

PHP Personal Home Page script language

PPM Prediction per Partial Matching Algorithm

RAM Random Access Memory

RC4 Rivest Cipher 4

RDD Resilient Distributed Disk

SLD Second-Level Domain

SMTP Simple Mail Transfer Protocol

SPF Sender Policy Framework

SSH Secure SHell

SIP Session Initiation Protocol

SQL Structured Query Language

SRV Service Locator DNS record

SVM Support Vector Machine

TLD Top-Level Domain

TTL Time-To-Live

xx

TCP Transmission Control Protocol

TXT Text DNS record

UDP User Datagram Protocol

URL Uniform Resource Locator

VoMM Variable order Markov Model

XML eXtensible Markup Language

XOR eXclusive-OR

XSS Cross-Site Scripting Attack

xxi

Chapter 1

Introduction

1.1 Motivation and Problem Description

With the stupendous expansion of information technology, individuals, corporations and

institutions rely mainly on information systems and networks (Internet) to send, receive

and store security critical data. Fields like communication, finance, business, research

and development use such information system networks. However, these networks face

the emergence of innovative cyber-threats and attacks. They represent nests for cyber-

crime activities. Cyber-criminals have been showing a keen interest to create cyber-threats

and orchestrate featured cyber-attacks such as information theft, email-spams, malware

infections, networks of malicious malware robots (botnets), Distributed Denial of Service

(DDoS) attacks, etc. Cyber-threats and attacks have the following attributes:

1

• Originality: Cyber-criminals have created sophisticated networks of infected ma-

chines that use existing service or protocols (e.g., Domain Name Service (DNS),

Internet Relay Chat (IRC) or Peer-to-Peer (P2P)) to steal sensitive information such

as users’ credentials, credit card numbers and email addresses.

• Financial motivation: Observed threats and attacks result in severe lost. For exam-

ple, FBI reported that ten cyber-criminals managing botnets have stolen $850 mil-

lion after obtaining personal financial information from infected machines [152].

• Opportunism: Cyber-criminals tend to take advantage of existing software and sys-

tems vulnerabilities to cause harm in networks. For example, after the disclosure

of security bugs in Unix Bash shell, known as Shellshock [166] on 24th Septem-

ber 2014, hackers targeted many web server deployments to execute Bash arbitrary

commands.

• Service unavailability: Cyber-criminals tend to take down services. For example,

in 2013, a well-established IT security organism was a victim of a Distributed Re-

flection Denial of Service (DRDoS) attack [49]. Cyber-attackers took advantage of

DNS protocol to generate a stream of 300 Gbps of data. They redirect such data

traffic to spoofed IP addresses belonging to the organization.

• Sabotage of critical infrastructures: Hackers design and integrate cyber-weapons

to target critical infrastructures. In 2010, a worm known as Stuxnet [237], targeting

Programmable Logic Controllers (PLCs) infected Iranian networks. It was designed

2

to sabotage Iranian nuclear program.

In the prevailing of the illustrated cyber-threat and attack attributes, security experts

have to design appropriate techniques to extract operational cyber-threat intelligence from

malware and network traffic sources. Such intelligence is employed to detect, prevent

and mitigate different threats. In this thesis, we focus on the generation of intelligence

based on malware feeds, malicious traffic and passive DNS logs. We leverage different

classification techniques, graph theory algorithms and patterns identification to generate

an intelligence out of data provided by third parties, e.g., ThreatTrack [210]. This thesis

tackles four threads of research, which are described in the sequel.

1.2 Objectives

The primary intent of this thesis is to generate relevant and timely cyber threat intelligence

for detection, prevention and attribution purposes. We envision to accomplish this through

the analysis of malware samples and network traffic. More explicitly, the main objectives

of this thesis are to:

• Grasp the inner-workings of cyber threats through the reverse engineering of promi-

nent malware samples

• Analyze cyber threats and the underlying infrastructures together with an assess-

ment of their badness and patterns

3

• Elaborate, design and implement a technique for the automatic fingerprinting on

cyber threats in IP traffic

• Elaborate, design and implement a scalable detection system, which identifies anoma-

lies in passive DNS streams

1.3 Methodology

In order to fulfill the aforementioned objectives, we define two types of cyber-threat intel-

ligence, namely, malware based cyber-threat intelligence and network based cyber-threat

intelligence. The former aims at the extraction of intelligence based on malware analysis,

whereas the latter targets to harvest intelligence to corroborate the detection and preven-

tion of threats at the network level.

1.3.1 Malware Cyber-Threat Intelligence

To extract such intelligence, we aim at gaining a deep knowledge about innovative threats

to understand their modus-operandi as well as unveiling their cyber infrastructures, i.e.,

domains, IPs, etc. To do so, we use static and dynamic malware analyses to generate in-

telligence needed by security researchers to detect, prevent and mitigate advanced threats

as well as to draw a situational awareness of different infrastructures used to perpetrate

attacks.

4

1.3.2 Network Traffic Cyber-Threat Intelligence

In addition to the former intelligence, we target to act on the network level, where we use

network traces collected from the malware dynamic malware analysis and Domain Name

System (DNS) logs to detect the maliciousness and indicators of compromise. To do so,

we consider the use of machine learning techniques to segregate the malicious IP layer

traffic from the benign one and attribute it to threats as well as to look at DNS streams to

detect anomalies generated by threats at the application network layer. In the sequel, we

provide an overview of each contribution discussed in this dissertation.

1.4 Contributions

1.4.1 Analysis of Prominent Threats

Static and dynamic malware analyses are considered as cornerstone artifacts that boost the

learning curve about cyber-criminals underground communities. Valuable information

can be gathered by analyzing malicious binaries. The aim of this research effort is to

answer the following question: (1) How can we grasp cyber-threats inner-workings? A

reply lies in reverse-engineering harmful software, uncovering their dynamics, namely,

code obfuscation, infection methods and communication schemes. Such analysis has its

own unique value for IT security since it allows identification of malware attack vectors.

Therefore, an intelligence can be used to extract patterns or signatures that are useful for

the detection of partially or totally shared malicious behaviors.

5

We analyze two media noisy botnets by reverse engineering techniques. We present

a detailed reverse engineering analysis of Zeus and Mariposa crime-ware toolkits to unveil

techniques use by malware creators to perpetrate malicious activities. We report in these

two reverse engineering many observations that are insightful in terms of de-obfuscation

of packed malware as well as communication schemes used by advanced botnets.

1.4.2 Investigation of Cyber-Threat Infrastructures

Nowadays, cyber-criminals use network resources to conduct their malicious activities.

They set up networks of compromised machines to perpetrate attacks on both corpora-

tions and individuals. Infected machines are instructed to steal sensitive data, conduct

reconnaissance, launch DDoS attacks, etc. As such, there is a keen interest to inves-

tigate infrastructures used by cyber-criminals. Being inspired by a first effort done by

Nadji et al. [147], we conduct a research initiative to look thoroughly at cyber-threat in-

frastructures. In this research effort, we target to answer the following questions: (1)

How to characterize infrastructures used by cyber-threats? (2) What are the key players

in cyber-threats infrastructures? (3) What are the shared elements between cyber-threats

among such infrastructures? To tackle the aforesaid questions, we use a graph-theoretic

approach to characterize elements observed in cyber-threat infrastructures. We use in-

fluence concept to rank badness of elements constituting cyber-threat infrastructures. Fi-

nally, we employ a graph hashing technique to identify patterns shared between different

cyber-threat infrastructures.

6

We apply a graph-theoretic approach to characterize infrastructures used by mal-

ware. Based on one-year data collected from dynamic malware daily feeds, we charac-

terize cyber-threat infrastructures as graphs. We use Google’s PageRank algorithm [42]

to rank badness of key players, i.e., IP addresses, domains, owners, registrars. In addi-

tion, we employ min-hashing algorithm [208] to identify recurrent patterns appearing in

cyber-threat infrastructures.

1.4.3 Fingerprinting Maliciousness in IP Traffic

Network defense relies on cyber-attacks detection, prevention, analysis, mitigation and

attribution. Cyber-criminals leverage malware to perpetrate amplified, large-scale, de-

bilitating, intimidating and disrupting attacks causing severe privacy/economic conse-

quences. The infected machines send or receive suspicious network flows, which can

be different compromise indicators like worm propagation, botnet, commands, probing

events, DDoS, etc. In such cases, security analysts would like to detect and mitigate such

activities. Thus, there is a desideratum to develop maliciousness fingerprinting techniques

at the network level. By fingerprinting, we mean the ability of malicious traffic detection,

then, its malware family attribution. Thus, we define a research that attempts to identify

maliciousness in IP traffic.

In this research effort, we target to answer the following questions: (1) How to

use malware analysis downstream outcome to fingerprint maliciousness at the network

7

level? (2) What are the techniques to detect malicious traffic and attribute it to mal-

ware? (3) Among potential techniques, is there a technique that is better than others or

are they complementary? The goal of this research is to use malicious traffic collected

from dynamic malware analysis as an intelligence (ground truth) to classify malicious

traffic. To do so, we choose two techniques, packet headers and Deep Packet Inspection

(DPI) [56, 111] malicious traffic classification and malware families attribution. These

techniques lie in applying machine learning techniques, which are widely used to iden-

tify patterns, i.e., maliciousness patterns. Both techniques are compared based on their

detection and attribution accuracies as well as their level of complexity.

1.4.4 Near-Real-Time and Scalable Detection of Anomalies in Pas-

sive DNS Streams

A part of Internet evolution, DNS protocol plays the phone-book role. It is a masterpiece

that allows hosts accessible worldwide through the internet. Despite its benign utility,

DNS carries out malicious activities. Hackers abuse its flexibility to create short-lived do-

mains used as botnets control nodes. Harmful programs (e.g., Torbig [202]) employ Do-

main Generation Algorithms (DGA) [50] to register domain names resolving bot-masters.

DNS permits communication between infected machines with queries, perpetrating ac-

tivities like key-logging, spamming or spreading infections. In addition, C&Cs exploit

DNS tunneling for malign payloads distribution. Malware families like Morto [145], Ka-

tusha [154] and Feederbot [58] employ this technique to create covert channels for data

8

transport. Accordingly, we investigate passive DNS data. We monitor such real-time

stream data for cyber-threats identification.

In this research thread, we focus on answering the following questions: (1) How to

monitor DNS traffic cyber-threats misuse? (2) Which artifacts needed to handle real-time

streams of DNS data? (3) How to identify potential cyber-threat infrastructures based on

DNS protocol misuse? To deal with these research issues, we decide to use a computa-

tional clustering solution to capture near real-time data and extract DNS protocol anoma-

lies. We utilize outlier detection algorithm and scoring functions to identify DNS misuses.

We design and integrate an online near real-time system to identify DNS anomalies. These

anomalies fall into machine generated domains, DNS malware covert channels, fast-flux

malicious networks based on DNS-based features. In addition, we corroborate the system

with the ability to monitor IP spaces of organizations like universities, governmental and

financial organizations. We use a lightning-fast cluster computing framework, namely,

Apache Spark [70] to aggregate, map, and reduce DNS logs for the purpose of anomalies

identification. The work described in this thesis was published in [32, 38–41, 189].

1.5 Thesis Organization

The remainder of this thesis is structured as follows: In Chapter 2, we present the back-

ground literature and related work. In Chapter 3, we describe reverse engineering analysis

of the Zeus and Mariposa crime-ware toolkits. Chapter 4 puts forward an investigation on

cyber-threat infrastructures. In Chapter 5, we entail the different approaches in the name

9

of header flow-based features classification and, Signal and NLP DPI, to detect malicious-

ness in IP traffic. Chapter 6 sets forth our passive DNS anomalies identification system

along with performance benchmarks. Chapter 7 provides concluding remarks together

with a discussion of future works.

10

Chapter 2

Background and Related Work

2.1 Overview

In this chapter, we provide some definitions related to cyber-threat intelligence. The chap-

ter is organized as follows: Section 2.2 puts forward different concepts related to cyber-

threat intelligence, namely, its definition, challenges, model and different sources. Section

2.4 reviews related work tackling the use of graph-theoretic approach for the purpose of

characterization and analysis of networks. Section 2.3 introduces different works, where

prominent threats have been analyzed. Section 2.5 reviews the different works done on

fingerprinting network traffic. Finally, Section 2.6 entails the different works related to

DNS monitoring systems.

11

2.2 Cyber-Threat Intelligence

2.2.1 Definition

Cyber-threat intelligence is meant to be the relevant information and inductive reasoning

gathered from tracking, analysis and mitigation of security threats. This intelligence is

a mix of physical espionage and information technology [9]. The cyber-threat intelli-

gence efforts target mainly fighting against viruses, hackers and terrorists that consider

the Internet as an artifact to perpetrate malicious activities. The protection of govern-

mental institutions, commercial companies and individuals from cyber-threats is the main

actor of the cyber-threat intelligence. Cyber-threat intelligence parties combat different

forms of threats. Cyber-threat intelligence authorities tend to provide security against

threats. Cyber-threat intelligence experts should have a dual background in IT security

and espionage. The analysis of terror threats is one of the important aspects in cyber-

threat intelligence. It needs the collection of information from third parties in the name of

governments, independent companies, ISPs and universities. This data helps to ascertain

how threats were perpetrated. It can result in useful reports for future investigations and

mitigation.

2.2.2 Cyber-Threat Intelligence Challenges

Nowadays, emerging threats come up with more and targeted attack scenarios. More

advanced and prominent malicious programs and activities have been taking place in

12

comparison with threats that appeared ten years ago. Newer attack scenarios follow a

kill chain model. Figure 2.1 illustrates this model, which shows the different stages of

an attack. This Attack chain model represents the modus-operandi of today’s prominent

threats. The authors tend to conduct cyber-crimes, industrial espionage, terrorism and

hacktivism.

Figure 2.1: Attack Chain Model

New threats driven by hackers aim to persist and cause ongoing damages. This fact

motivates the need to move beyond the traditional reactive approach to a more proactive

one. In order to be proactive, IT security experts need to change the nature of the defense

strategy. The intent is to get left of the hack in order to kill the chain of attack at an early

stage. Thus, grasping hackers’ capabilities, actions and intent bring a valuable support for

security in the cyber-space. The challenges of cyber-threat intelligence are characterized

by the following questions:

• How can attacks be detected and recognized?

• How can attacks be mitigated?

• Who is behind perpetuating an attack?

13

• What are the objectives of attackers?

• What are the tactics, techniques and procedures that are leveraged by attackers?

• What are the vulnerabilities, misconfiguration and weaknesses that are likely tar-

geted by attackers?

2.2.3 Cyber-Threat Intelligence Model

Cyber-threat intelligence is meant to support a set of core use cases involved in cyber-

threat management and mitigation. Figure 2.2 illustrates cyber-threat intelligence use

cases model. In the sequel, we introduce the different use cases.

Figure 2.2: Cyber-Threat Intelligence Use Cases Model

14

Analysis of Cyber-Threats

A security analyst reviews information related to cyber-threat activity from manual or

automated sources. The analyst aims to understand the nature of relevant threats, ascertain

them and characterize them in order to grasp the inner-secrets of threats, which tend

to evolve over time. The knowledge encloses threat behaviors, intents, attribution and

capabilities. Thus, the analyst can put forward threat indicators to prevent further threats

and suggest courses of actions and mitigation.

Specifying Indicators for Cyber-Threats

An analyst produces patterns representing the observable characteristics of cyber threats.

The expert maps the indicators along with threats for the purpose of interpreting, handling

and applying patterns to detect them. For example, in the case of a phishing attack, an ana-

lyst harvests observables (email addresses, source, subject, embedded URLs, attachments,

etc.) from the analysis of the phishing email, identify the relevant tactics, techniques and

procedures that are exhibited in the phishing attack. The expert performs a kill chain

correlation of the attack by blacklisting emails and post them to sharing communities.

Managing Cyber-Threat Responses

Decision makers and operational personnel aim to prevent or detect cyber-threat activ-

ity. In addition, they want to investigate and counter any detected incidents. Preventive

courses of action are remedial in nature to mitigate vulnerabilities, which are targeted

15

by exploits. Decision makers and operational personnel work together to understand the

effect of attacks in order to assess the cost and efficiency of potential courses of and

elaborate an appropriate preventive/detective actions.

Sharing Cyber-Threat Information

Decision makers establish policies in order to share different cyber-threat information.

They decide with which other parties the data should be shared and how it should be han-

dled based on agreement frameworks of trust. The sharing policy is implemented to share

indicators and cyber-threat information. The relevant information is shared automatically

or manually by trusted partners.

Cyber-Threat Intelligence Sources

Malware Analysis A malware is a piece of small software, which completes the harm-

ful intent of cyber-criminals. Terms such as worm, bot, rootkit, spyware are used to

categorize malware samples, which mirror common malicious activities. The following

paragraph is intended to digest different malware types. In addition, these types are known

to not be mutually exclusive. A given malware may be hybrid since it can reflect char-

acteristics of multiple classes. In [191, 205], the authors discussed such malicious hybrid

activities. Malware fall into the following categories:

• Virus: Spafford defined viruses as follows: “A virus is a piece of code that adds

itself to other programs, including operating systems. It cannot run independently

16

and it requires that its host program be run to activate it”. Viruses propagate by

infecting vulnerable hosts and local files.

• Worm: This kind of malware is known in networked systems. In [196], the author

gave a worm the following definition “a program that can run independently and

can propagate a fully working version of itself to other machines”. The Morris

Worm [196] is the first worm, which came onto scene. In the last decade, the

Code Red worm [143] infected thousands of machines during the first days of its

appearance. More recently, the Storm worm was used to create botnets to send

spams and perpetrate denial of service attacks [101].

• Trojan: It is the software that seems to be legitimate but performs malicious back-

ground activities. This software may mirror useful activities, frequently, screen-

savers, games or browser plug-in objects. It can launch malicious activities once

installed in the system. It is used mainly to download other pieces of malware.

• Spyware: This malicious software steals sensitive information from a user and sends

this information to third parties. The information can be passwords, number of debit

and credit cards, emails and visited websites.

• Bot: A bot is malware, which is controlled remotely by a bot-master. It uses net-

work protocols such as P2P, HTTP or IRC to communicate with controllers. For in-

stance, we can cite Zeus [32] and Mariposa [189]. These malware appeared mainly

in 2009 and 2010, and were behind the perpetuation of malicious activities such as

17

stealing information to bot-masters, which were located in many countries.

• Rootkit: It is a malware that has the ability to hide its presence by applying some

advanced techniques. These techniques can be applied at different levels such as

the instrumentation of API calls or interfering with system structures like kernel

modules or drivers. The rootkits are common since they are installed by other

malware, specifically bots and spyware.

Before generating a signature for a given malware, security analysts tend to check

whether it is a real threat or not. Different techniques permit IT security experts to unveil

the risk and intention hidden in potential malware. Resulted insight allows the analyst to

find new trends in malware development and mitigate different threats. The main intent of

IT security experts is to overlook the behavior of a sample. Since analysis tools and tech-

niques are more elaborated, malware authors move to the integration of new innovative

evasion techniques in order to avoid their malware being examined. These techniques fall

mainly into self-modifying binary and the detection of the presence of an analysis tool.

In the sequel, we provide an overview of static and dynamic malware analysis.

• Static Malware Analysis: Static malware analysis tends to dissect malware samples

to find out the different functions that are hidden in malware binaries. Static analysis

can be applied on the source representation of a program. The static analysis tools

are used to harvest relevant information about malware. For instance, a call graph

gives an analyst an insight about malware structure and which function may be

18

invoked in the code. In the majority of situations, the source code of malware is not

readable. It is dissembled to machine language. By analyzing binaries, an analyst

can be confronted to binary self-modifying techniques. In addition, malware based

on values that cannot be found such as system date or indirect jump instructions,

may make the analysis more difficult for analysts. Moreover, some malware authors

may fingerprint static analysis methods, so they can detect instances to prevent

running of malware.

• Dynamic Malware Analysis: It consists of analyzing a program’s actions while it is

being run in the system. There are techniques that are related to such analysis and

they span over:

1. Function Call Monitoring: A function call relies on the analysis of code that

performs actions intended for different tasks. These functions tend to be re-

usable in different versions of malware. One possible way to analyze the mal-

ware behavior consists of intercepting functions. Such method is called hook-

ing. It allows to log function invocations and analyze input/output parameters.

The implementation of hooking function has many approaches. It depends on

the availability of programs source code. If the code is available, hooks can

be inserted into appropriate places. Another technique is to use binary rewrit-

ing if a malware is available in a binary form. Binary rewriting falls into two

techniques: either rewriting monitored functions to call hook functions in-

stead or modifying all call locations to invoke the hook. The hook function

19

can access the original arguments on the stack and monitor them. Moreover,

if a function is invoked through a DLL function pointer, the value of a pointer

can be changed to point to the hook function. Hunt and Brubacher [91] intro-

duced the Detours library to apply function rewriting in order to implement

hooking function. Their technique consists of creating a trampoline function

that contains overwritten instructions. This function contains an unconditional

jump to the original function after overwritten instructions. These instructions

perform the code analysis. The code may contain any pre-processing and con-

trol the execution flow. The Detours library provides two alternatives to apply

modifications to programs. It has the ability to either modify the binary before

execution or manipulate the in-memory images of loaded binaries.

2. Function Call Traces: This is another technique, which tends to monitor func-

tion calls inputs and outputs. The trace lies in the set of functions that were

invoked by the program with passed arguments. These traces are used to cre-

ate abstract representations of malware behavior. In [48], the authors rep-

resented call traces with graph representations. Such representations permit

them to compare behavior of malicious programs with legitimate software.

Thus, analysts can find out malicious instances of the same malware families

within unknown samples. In [226], authors use traces of known malware to

detect polymorphic variants of unknown samples. The authors applied se-

quence alignment technique to compute function traces similarities. Such a

20

technique can take a considerable running time in order to calculate differ-

ences and similarities between traces.

Darknet The term darknet emerged at the beginning of this millennium. First, Mi-

crosoft researchers defined it as “a collection of networks and technologies used to share

digital content” [28]. Later, darknet has been associated with other meanings. Currently,

no single definition has been globally accepted. Thus, darknet, refers to but not limited to

the following definitions:

• Darknet as Dark Address Space: Usually refers to routable public IP addresses

that are not publicized or advertised to the Internet community. These IP addresses

have neither assigned hosts nor DNS entries or search engines’ indexing. Therefore,

noticing the online existence of these elements is not simple without prior knowl-

edge. This address space can be used either for malicious activities or for benign

traffic monitoring.

• Darknet as an Anonymity Environment: An environment that provides communi-

cation anonymity. This is related to the task of achieving private communication

between users.

• Darknet as Dark Web: Also known as Invisible Web or Deep Web. It refers to digital

content, which exists in the public cyberspace. It is known to be untraceable and

inaccessible by regular search engines. Such cyberspace content remains concealed

because there are neither registration records among domain name servers nor direct

21

link pointing to it.

• Darknet as Private P2P Communication: It refers to any type of closed, private,

and concealed communication between groups of people. It represents a mixture of

cordoned-off encrypted peer-to-peer networks that overlay the existing Internet de-

sign. Such Darknets, often consisting of a tight-knit group of people, are conceived

based on trust and common interests. Moreover, joining such networks require an

invitation from trusted members.

In this dissertation, we refer to Darknets with the dark address space, since these

network addresses correspond to illegitimate hosts or devices, any observed traffic orig-

inating or targeting the dark address space, is suspicious and hence needs to be inves-

tigated. The intent of monitoring Darknet is to look for pandemic and epidemic cyber

incidents through the unused (dark) address space. Darknets known also as Network

Telescopes are assimilated to astronomical telescopes since large and sensitive telescopes

have a high probability to observe new cyber phenomena. Darknets have been initiated to

passively observe attacks that are perpetrated to target different pools of IP addresses. A

brief review of Darknets’ literature show their usefulness since they are used in:

• Analysis of back-scattered packets: This analysis aims at characterizing responses

to spoofed Denial of Service (DoS) attacks. In the darknet, we can notice that the

most common responses to a SYN flood packets are TCP packets with ACK/RST.

We can observe common spikes of SYN/ACK and SYN/ACK/RST responses dur-

ing a short duration.

22

• Investigation of unique and multiple periodic probes: We observe the time period-

icity on collected data for the purpose of intrusion detection. For instance, we can

isolate TCP flows for scanning services running through ports 139 (Server Message

Block protocol over NetBIOS) and 445 (Direct Server Message Block protocol).

• SMTP hot-spot analysis: We can identify SMTP hot-spot. For instance in [157], the

authors discovered the existence of an IP address, which attracted a large number

of SMTP (Simple Mail Transfer Protocol) scans. This IP is bound to 14.000 IPs,

which results in 4.5 million scans.

• Detection of worms: For instance, in iSink darknet deployment [229], the authors

detected worms such as Sasser, which uses lsarpc exploit. Moreover, the authors

managed through iSink to observe different Sasser variants and other malware prop-

agation, namely, Agobot and RRBOT.CC.

Passive DNS Passive DNS or passive DNS replication is a technique invented by Flo-

rian Weimer in 2004 to store a partial view of the data available in the global Domain

Name System into a centralized database where it can be queried and updated. Passive

DNS databases are extremely useful for a variety of purposes. Malware and cyber-crime

rely massively on DNS, and the so-called “fast flux botnets” abuse the DNS with frequent

updates and low Time To Live (TTL). Passive DNS provides relevant insights and analyt-

ics upon DNS queries that users and/or malware may be performing. It has the ability to

provide the following information:

23

• Pool of IP addresses associated with host-names.

• Tertiary name bound to specific domains.

• When a specific domain was resolved on the network.

• How many times a domain name has been resolved.

• Domains with short time to live (TTL’s) may infer malicious activities.

• Non-approved DNS servers.

• Detection of fast flux and double flux of domains.

Spam Traps Spam-traps are a bench of e-mail addresses that are created not for com-

munication, but rather to harvest spamming and fishing emails. In order to prevent legit-

imate email from being invited, the e-mail address will typically only be published in a

location hidden from view such that an automated e-mail address harvester can find the

email address, but no sender would be encouraged to send messages to the email address

for any legitimate purpose. Since no e-mail is solicited by the owner of this spam-trap

e-mail address, any e-mail messages sent to this address are immediately considered un-

solicited. The term is a compound of the words “spam” and “trap”, because a spam ana-

lyst will lay out spam-traps to catch spam in the same way that a fur trapper lays out traps

to catch wild animals. The provenance of this term is unknown, but several competing

anti-spam organizations claim trademark over it.

24

2.3 Prominent Cyber-Threat Analysis

The analysis of prominent threats is of a rewarding importance. It is considered as one

of the cornerstones that IT community uses to gain knowledge about the inner-workings

of different cyber-threats. Thus, beneficial information can be obtained by the analysis

of malware binaries, their network traces, and the change in infected systems behavior.

The analysis of prominent cyber-threats is an intelligence that helps security researchers

to detect, prevent and eradicate such threats. As such, some security research efforts put

an emphasis on the analysis of famous variants of cyber-threats. In the sequel, we discuss

the different works done to unveil secrets of different cyber-threats.

In [149], the authors presented the analysis of an HTTP botnet, namely, BlackEn-

ergy. The analysis provided a detailed information about the botnet architecture, com-

mands and communication patterns. BlackEnergy is a web-based tool that allows to build

bot binaries. The main threat of this botnet is Distributed Denial of Service (DDoS).

Chiang and Lloyd studied the Rustock rootkit in [46]. This rootkit contains a spam bot

module. The authors studied the network traces and noticed that the traffic is encrypted

by RC4 algorithm. The Rustock rootkit has multiple levels of obfuscation, which makes

it hard to be detected. The main usage of this tool resides in mail spamming. In addi-

tion to the network analysis, the authors were able to extract the encryption key of the

communication. Daswani et al. [52] put forward a detailed case study of Clickbot.A. This

bot is responsible of click fraud attacks. Their analysis covered the main components of

this botnet as well as the commands and configuration. Porras et al. reverse-engineered

25

the Storm botnet in [167]. They detailed the techniques used to hide the binary and how

it has been obfuscated. Storm botnet uses the Overnet protocol for the communication.

This botnet is used to send email spams and DDoS attacks. In [89], the authors investi-

gated the Storm botnet by studying the encryption key generation algorithm that is used

for communication between different peers. In [60], the authors reported their analysis

of the Nugache instance. They analyzed the communication pattern between different

principals. The communication is based on a key exchange protocol. In Nugache bot-

nets, the bot herder instructs bots to listen to a specific IRC channel in order to initiate a

DDoS attack. The authors addressed extra aspects of their initial analysis and estimated

the size of the Nugache botnet by using a bot client crawler. In [200], Stock et al. inves-

tigated the successor of Storm botnet, namely, Waledac botnet. Instead of using common

reverse engineering to grasp the modus-operandi of Waledac botnet, they created a clone

bot named Walowdac, which implements the same communication features of Waledac

without causing any harm. The authors managed to observe that there have been 390, 000

infected machines throughout the world. They succeed to gather information about the

success rates of corresponding spam campaigns and the credentials theft from infected

machines.

26

2.4 Network Analysis: Graph Theoretic Approach

Various research efforts use graph theory for the purpose of studying social media net-

works. Java et al. [96] investigate micro-blogging phenomena through studying topo-

logical and geographical properties of Twitter’s social network. They analyze people’s

intentions associated with different communities and show that users with similar inten-

tions tend to connect with one another. Ugander et al. [99] study the structure of the

Facebook social graph using different network features such as degree distribution, path

length, clustering, and mixing patterns. The study concludes three key observations: (1)

Facebook social network is nearly fully connected. (2) The graph neighborhoods of users

have a dense structure. (3) The graph shows assortativity patterns related to users’ friend-

ships as well as age and nationality. Other researchers focus on the use of complex net-

work analysis for the purpose of studying phenomena related to the Internet. In [158], the

authors aim to derive a network model that is capable of explaining common structural

characteristics of Internet Autonomous Systems (AS). They propose a framework, Hy-

perMap, which replicates the geometric growth of complex networks on AS topology and

identifies communities of AS belonging to the same geographic region. The authors show

that their framework also has the ability to predict, with high precision, any missing links

in the topology. Deri et al. [124] represent collected DNS with ”.it” suffix data through

complex graphs. They found that the Italian DNS ecosystem, represented through domain

and resolver degree frequencies, follows power law distributions, and acknowledged the

nature of DNS large scale evolution. In another work [55], the authors aim to rank Internet

27

domains based on their popularity across resolvers. The authors validate their approach

on Italian Internet domains. The ranking is based on node degree and Eigen-vector cen-

trality metrics. Regarding threat network analysis, Nadji et al. [147] conduct an outstand-

ing effort to unveil the structure of criminal networks. They use DNS history of known

C&Cs, IP addresses found in blacklists, and spam URLs to build graphs. They develop a

method based on the Eigen-vector metric to identify general structural trends and deter-

mine which strategy should be adopted for an effective remediation through take-down.

The authors show that in many cases, by de-registering five domain names, many criminal

networks can be taken down. Moreover, in one highlighted case, disabling 20% of crim-

inal network hosts reduces the volume of successful DNS look-ups by 70%. Despite the

interesting results shown by Nadji et al, we aim to provide more insightful information

related to cyber-threat infrastructures by including new actors such as malware families,

second-level domains, organizations, owners, etc. We also focus on the study of the evo-

lution of cyber-threat infrastructures to understand their scale and forecast their potential

evolution in the near future.

2.5 Traffic Fingerprinting and Malware Analysis

Regarding fingerprinting malicious traffic at the network level based on machine learning,

we have done a literature review that encompasses two research threads, namely, (1) Net-

work Traffic Analysis and (2) Malware Analysis and Classification. The former helps to

28

look at the different techniques used to analyze traffic for the purpose of applications pro-

tocols fingerprinting, intrusion detection and identification of zero-day attacks, whereas

the latter exposes the different works that dealt with malware classification and traffic

analysis.

2.5.1 Network Traffic Analysis

Data mining techniques have been used in the analysis of network traffic for many pur-

poses, i.e., application protocols fingerprinting, anomaly detection for intrusion and zero-

day attacks identification. In protocols fingerprinting, many research efforts have been

proposed. For instance, Density Based Spatial Clustering of Application with Noise [225]

was proposed in 2008 to use clustering algorithms to identify various FTP clients, VLC

media player, and UltraVNC traffic over encrypted channels. Li et al. [116] used wavelet

transforms and k-means classification to identify communicating applications on a net-

work. Alshammari et al. [18,20] put forward research efforts to identify ssh and Skype

encrypted traffic (without looking at payload, port numbers, and IP addresses). Addi-

tionally, comparison of algorithms and approaches for network traffic classification were

proposed separately by Alshammari et al. [19] in 2008 and Okada et al. [153] in 2011,

surveying and comparing various machine learning algorithms for encrypted traffic anal-

ysis.

In addition to application protocols fingerprinting, many research efforts have been

introduced to identify anomalies in traffic for the purpose of intrusion and malicious traffic

29

detection. In 2000, Lee et al. [115] introduced a data mining approach for the purpose

of intrusion detection. They described a data mining framework, which leverages system

audit data as well as relevant system features to build classifiers that recognize anomalies

and known intrusions. Bloedorn et al. [33] in 2001 described data mining techniques

needed to detect intrusions along with needed expertise and infrastructure. Fan et al. [67]

proposed an algorithm to generate artificial anomalies to force the inductive learner to

segregate between known classes (normal traffic and intrusions) and anomalies. In [201],

the authors provided an overview of Columbia IDS Project, where they presented the

different techniques used to build intrusion detection systems. In [114], Lee reported

on mining patterns from system and network audit data, and constructing features for

the purpose of intrusion events identification. This work provided an open discussion

about research problems that can be tackled with data mining techniques. Locasto et

al. [122, 123] brought the use of collaborative security at the level of intrusion detection

systems. They proposed a system that distributes alerts to collaborative peers. They

integrated a component that extracts information from alerts and encodes it in Bloom

filters. Another component is used to schedule correlation relationships between peers.

In [217], Wang et al. integrated a tool, namely, PAYL, which models the normal

application payload of network traffic. The authors used a profile byte distribution and

standard deviation for hosts and ports to train the detection model. They took advantage

of Mahalanobis distance to compute the similarity of testing data against pre-computed

profiles. If the distance exceeds a certain threshold, the alert is generated. Zanero et

30

al. [235] presented a hybrid approach, which lies in: (1) an unsupervised clustering algo-

rithm to reduce network packets payload to a tractable size, and (2) an anomaly detection

algorithm, to identify malformed and suspicious payloads in packets and flow of pack-

ets. similarly, Zanero showed explicitly in [234] how Self Organizing Map algorithm

(SOM) is used to identify outliers on the payload of TCP network packets. In [236],

Zanero et al. extended their work by introducing approximate techniques to speed up the

SOM algorithm at runtime. They provided more elaborated results and compared their

work with existing systems. In [209], the authors introduced Payload Content-based Net-

work Anomaly Detection (PCNAD), which is a corroboration to PAYL system. They used

Content-based Payload Partitioning (CPP) to divide the payload into different partitions.

The subsequent anomaly analysis is performed on partitions of packet payloads. They

showed that PCNAD has a high accuracy in terms of anomaly detection on port 80 by

using only 62.64% of packet payload length. Perdisci et al. [163] presented the multiple

classifier payload-based anomaly detector (McPAD). Like PAYL system, the authors use

n-grams but with features reduction to avoid the curse of the dimensionality problem [62].

They applied a feature clustering algorithm proposed in [57] for text classification to re-

duce features. McPAD detects network attacks having shell-code in the malicious payload

as well as some advanced polymorphic attacks.

Song et al. [193] introduced Spectrogram to detect attacks against web-layer code-

injection (e.g., PHP file inclusion, SQL-injection, XSS attacks, and memory-layer ex-

ploits). They built a sensor that builds dynamically packets to construct content flows

31

and learns to recognize legitimate inputs in web-layer scripts. They used the Mixture-of-

Markov-Chains to train a model that detect anomalies in web-content traffic. Golovko et

al. [78] discussed the use of neural networks and Artificial Immune Systems (AIS) to de-

tect malicious behavior. The authors studied the integration and the combination of neural

networks in modular neural systems to detect malware and intrusions. They proposed a

multi-neural network approaches to detect probing, DoS, user-to-root attacks, and remote-

to-user attacks. In [35], Boggs et al. elaborated on a system that detects zero-day attacks.

The authors correlated web requests containing user submitted data considered abnormal

by Content Anomaly Detection (CAD) sensors. Boggs et al. filtered the requests with

high entropy to reduce data processing overhead and time. They evaluated their corre-

lation working prototype with data collected during eleven weeks from production web

servers. Whalen et al. [219] adapted outlier detection to cloud computing. The authors

proposed an aggregation method where they used random forest, logistic regression, and

bloom filter-based classifiers. They showed the scalability of their proposed aggregation

content anomaly detection with indistinguishable detection performance in comparison

with content anomaly detection classical methods. In [187], Shirani et al. proposed an

intrusion detection in web-services based on the auto-regressive integrated moving aver-

age (ARIMA) model [127]. The model detects malicious behaviors within web-services

using the predictive model, any behavior that falls out of the model confidence level is

considered as an outlier (malicious).

As being the first step of an attack’s vector, network scanning (reconnaissance)

32

has been the target of many research efforts. For instance, Simon et al. [188] formal-

ized the scanning detection as a data-mining problem. They converted collected datasets

as a set of features to run off-the-shelf classifiers, like Ripper classifier. They showed

that the data-mining models encapsulate expert knowledge that outperform in terms of

coverage and precision in scanning identification. The emergence of botnets and mali-

cious content delivery networks has pushed researchers to investigate the identification

and detection of such networks. For example, in [31, 121], the authors put forward meth-

ods to detect IRC botnets. In [31], Binkley et al. presented an anomaly-based algorithm

to detect IRC-based botnet meshes. The algorithm uses a TCP scan detection heuristic

(TCP work weight) and other collected statistics gathered on individual IRC hosts. The

algorithm sorts the channels by the number of scanners producing a list of potential bot-

nets. The authors deployed a prototype in a DMZ and managed to reduce the number

of botnet clients. In [121], Livadas et al. presented machine learning-based classifica-

tion techniques to identify the command-and-control (C&C) traffic of IRC-based botnets.

They proposed two-stages detection system. The first stage consists of distinguishing be-

tween IRC and non-IRC traffic, whereas the second lies in segregating botnet and real

IRC traffic. In [103], Karasaridis et al. put forward an approach to identify botnet C&Cs

by combining heuristics characterizing IRC flows, scanning activities, and botnet com-

munications. They used non-intrusive algorithms that analyze transport layer data and do

not rely on application layer information.

33

In [81], Gu et al. introduced BotHunter, which models all bot attacks as a vec-

tor enclosing scanning activities, infection exploits, binary download and execution, and

C&Cs communication. The tool was coupled with Snort [195] IDS with malware exten-

sions to raise alerts when different bot activities are detected. Based on statistical payload

anomaly detection, statistical scan anomaly detection engines and rule-based detection,

BotHunter correlates payload anomalies, inbound malware scans, outbound scans, ex-

ploits, downloads and C&C traffic and produces bot infection profiles. In [82], Gu et

al. used aggregation technique to detect botnets. They explained how bot infected hosts

have spatial-temporal similarity. They introduced BotSniffer, which is a system that pin-

points suspicious hosts that have malicious activities such as sending emails, scanning,

and shared communication payloads in IRC and HTTP botnets by using shared bi-grams

technique. In [80], Gu et al. exposed BotMiner, which aims to identify and cluster hosts

that share common characteristics. It consists of two traffic monitors (C-plane and A-

plane monitors) deployed at the edge of network. The C-plane monitor logs network

flows in a format suitable for storage and analysis. The A-plane monitor detects scan-

ning, spamming, and exploit attempts. The clustering components (C-plane clustering

and A-plane clustering components) process the logs generated by the monitors to group

machines that show very similar communication patterns and activity. The cross-plane

correlator combines the results and produces a final decision on machines that belong to

botnets.

Another noticeable research using aggregation technique was introduced in [230],

34

where Yen et al. presented TAMD, an enterprise network monitoring prototype that identi-

fies groups of infected machines by finding new communication flows that share common

characteristics (communication “aggregates”) involving multiple network internal hosts.

Their characteristics span over flows that communicate with the same external network,

flows that share similar payload, and flows that involve internal hosts with similar soft-

ware platforms. TAMD has an aggregation function, which takes as input a collection of

flow records and outputs groups of internal hosts having a similarity value based on the

input flow record collections. To reduce the dimensionality of vectors representing hosts,

the authors used Principal Component Analysis (PCA). To cluster different hosts, authors

used k-means algorithm on reduced vectors. In [44], Chang et al. proposed a technique

that detects P2P botnets C&C channels. They considered a clustering approach (agglom-

erative clustering with Jaccard Similarity criterion function) to capture nodes’ behavior

on the network, then, they used statistical tests to detect C&C behavior by comparing

it with normal behavior clusters. In [151], Noh et al. also defined a method to detect

P2P botnets. They focused on the fact that a peer bot generates multiple traffic traces to

communicate with a large number of remote peers. They considered that botnet flows

have similar patterns, which take place at irregular intervals. They used a flows grouping

technique, where a probability-based matrix is used to construct a transition model. The

features representing a flow state are protocol, port, and traffic. A likelihood ratio is used

to detect potential misbehavior-based transition information in state values. In [207], the

authors introduced a novel system, BotFinder, which detects infected hosts in a network

35

by considering high-level properties of the botnet network traffic. It uses machine learn-

ing to identify key features of C&C communication based on bots traffic produced in a

controlled environment. Our approach has the same flavor of BotFinder; however, we cre-

ate a detection model based on machine learning techniques by considering not only bots,

but any malware type. In [59], Dietrich et al. introduced CoCoSpot, which recognizes

botnet C&Cs channels based on carrier protocol distinction, message length sequences

and encoding differences. The authors used average-linkage hierarchical clustering to

build clusters of C&C flows. These clusters are then used as knowledge base to recognize

potentially unknown C&C flows.

2.5.2 Malware Traffic Analysis and Classification

In addition to network analysis for the purpose of malicious and intrusion traffic detection

described earlier, many research efforts have emerged to tackle malware classification.

Part of our methodology shares some similarities with the related work on automatic

classification of new, unknown malware and malware in general, such as viruses, web

malware, worms, spyware, and others where pattern recognition and expert system tech-

niques are successfully used for automatic classification [138]. Malware classification

falls into system-based classification and network-based classification. Regarding the

first strand, Schultz et al. [180] proposed a data-mining framework that automatically de-

tects malicious executables based on patterns observed on some malware samples. The

authors considered a set of system-based features to train classifiers, such as inductive

36

rule-based learner (Ripper), which generates Boolean rules, and a probabilistic method

that computes class probabilities based on a set of features. A multi-classifier system

combines the outputs from several classifiers to generate a prediction score. In [25], Bai-

ley et al. proposed a behavioral classification of malware binaries based on system state

changes. They devised a method to automatically categorize malware profiles into groups

that have similar behaviors. They demonstrated how their clustering technique helps to

classify and analyze Internet malware in an effective way. Rieck et al. [174] aimed to

exploit shared behavioral patterns to classify malware families. The authors monitored

malware samples in a sandbox environment to build a corpus of malware labeled by an

anti-virus. The corpus is used to train a malware behavior classifier. The authors ranked

discriminative features to segregate between malware families. In [212], Trinius et al. in-

troduced Malware Instruction Set (MIST), which is a representation of malware behavior.

This representation is optimized to ease and scale the use of machine learning techniques

to classify malware families based on their behavior. Bayer et al. [26] put forward a

scalable clustering approach to group malware exhibiting similar system behavior. They

performed dynamic malware analysis to collect malware execution traces. These traces

are transformed to profiles (features set). The authors used Locality Sensitive Hashing

(LSH) to hash feature values and improved scalability of profiles hierarchical clustering.

Wicherski [221] introduced a scalable hashing non-cryptographic method to repre-

sent binaries using a portable executable format. The hashing function has the ability to

37

group malware having multiple instances of the same polymorphic specimen into clus-

ters. Hu et al. [90] implemented and evaluated a scalable framework, namely, MutantX-S,

that clusters malware samples into malware families based on programs’ static features.

The program is represented as set of opcode sequences easing the extraction of n-gram

features. The dimensionality of vectors representing the features is reduced through a

hashing function. Regarding malware network-based profiling and classification, Rossow

et al. [176] provided a comprehensive overview about malware network behavior ob-

tained through the use of Sandnet tool. The authors conducted an in-depth analysis of

the most popular protocols that are used by malware, such as DNS and HTTP. Nari and

Ghorbani [148] classified malware samples based on network behavior of malware. Their

approach transforms pcap files representing malware families into a protocol based be-

havioral graph. The features (graph size, root out-degree, average out-degree, maximum

out-degree, number of specific nodes) are extracted from these graphs and a J48 classifier

was used to classify malware families. In [105], Kheir et al. presented WebVisor, a tool

that derives patterns from Hypertext Transfer Protocol (HTTP) C&C channels. The tool

builds clusters based on statistical features extracted from URLs obtained from malware

analysis. The approach is a fine-grained, noise-agnostic clustering process, which groups

URLs for the purpose of malware families’ attribution.

38

2.6 Passive DNS Analysis Systems

Many techniques have been proposed for detecting malicious activities and distinguish

them from legitimate domains using passive DNS traffic. Some techniques are used to

detect malicious domains that linked to specific types such as fast flux and spam. In [164],

Perdisci et al. introduced an approach to detect malicious fast flux services through pas-

sive analysis of recursive DNS traces, unlike the other works that are limited to extract

the malicious fast flux domain names from spam emails [88,109,150,160]. Perdisci’s ap-

proach has the ability to distinguish malicious fast flux domain names from legitimate do-

mains by characterizing features that pinpoint fast fluxing IP addresses. In [165], Perdisci

et al, extended the previous work, where they detect passively flux networks from above

local recursive DNS servers in contrast with the first work, where they used from below

recursive DNS servers. In [22], Antonakakis et al. introduced Notos, which is a DNS

dynamic reputation system. It differentiates the malicious activities from benign ones

using many features. It assigns reputation scores for the new domains based on models

of known benign and malicious domains. The score shows if the domain is malicious or

benign. It has been deployed in a large ISP’s network and has been able to find domains

before the public blacklist. In another work [29], Bilge et al. introduced a system to detect

malicious domains, namely, EXPOSURE. They characterize passive DNS logs to segre-

gate between malicious and benign domains. The segregation is based on 15 features.

They conducted experiments on 100 billion DNS requests and deployed their solution

during two weeks in an ISP. They managed to identify malicious domains used in botnet

39

command and control, spamming, and phishing. In another work [30], same authors ex-

tended their initial work by deploying EXPOSURE for 17 months. In [197], the authors

put forward a technique to identify botnet using DNS queries. The system uses Naïve

Bayesian classifier to segregate between malicious and benign domain names. The classi-

fier achieves a detection rate of 82% and false positive rate of 8.30%. In [227], the authors

introduced a technique, which correlates successful and failed DNS queries for the pur-

pose of detecting DGA-based botnets based on the entropy of domain names. In [228],

Yadav et al. presented a technique to detect DGA-based botnets by using distribution

of uni-grams and bi-grams for all domains associated with the same IP address, TLD or

SLD. In [47], the authors presented a system, namely, BotGAD (Botnet Group Activi-

ties Detection). They used an unsupervised approach (X-means clustering algorithm) to

group domain names into clusters. Each cluster has a binary matrix, where rows are hosts

sending DNS queries and columns represent time periods. This matrix is used to compute

a cosine similarity score to decide if the cluster represents a botnet group or not. In [23],

Antonakakis et al. proposed another system called Kopis, which is a detection system

for malicious domains using upper DNS hierarchy. Kopis distinguishes between legiti-

mate and malware domains using the global DNS query resolution patterns. In addition,

it has the ability to detect malware domains in the absence of IP reputation information.

The eight months experiment shows that Kopis identified new malware domains before

the blacklist. Antonakakis et al. [24], presented a system that detects DGA-generated

domains by analyzing Non-Existent Domain (NXDomain) responses without the need

40

to reverse engineering. It uses two algorithms, which are clustering and classification

algorithms. It clusters similar domain names in terms of structure. The classification

algorithm refers the clusters to known DGAs models. If there is no model to assign, it

generates a new DGA model. The system has been deployed on real time data. It was

able to find new DGA families. In [185], Sharifnya et al. proposed a reputation system

to detect DGA-based botnets based on the symmetric Kullback-Leibler divergence score

to compute reputation of hosts mapping to a large number of suspicious domain names.

Their approach marked domain names as dynamically generated if their distribution of

uni-grams or bi-grams do not fit the normal distribution. In [186], the same authors pro-

posed a negative reputation system that detects domain flux botnets. Unlike previously

cited works, it relies on the history of the large number of malicious activities to a specific

IP address beside the suspicious failures. It assigns a high negative score to the suspicious

domains. In [102], Kara et al. proposed a detection mechanism for malicious payload

distribution channels in DNS. The authors used a significant amount of DNS traffic to

identify covert channels that abuse DNS protocol. They proposed a technique that counts

the usage of resource records to detect payload distribution channels despite the fact that

they have been rarely exploited.

41

2.7 Conclusion

In this chapter, we expose the different related works for the purpose of studying cyber-

threat analysis. To this quest, we initially entail different definitions related to cyber-

threat analysis such as the use case model, definition of different malware and sources of

cyber-threat intelligence. Then, we introduce some works that describe some prominent

threats found in the wild like Blackenergy, Rustock, Nugache, etc. These works helped

us to gain a learning curve about malware analysis. In addition, we describe some works,

where graph theory was used to characterize and study different networks. These works

allow us to grasp how graph theory can be used to investigate cyber-threat infrastructures.

Moreover, we put an emphasis on works using machine learning techniques to analyze

the network traffic. These works shed the light on different techniques used to fingerprint

applications on traffic or to detect intrusions and anomalies. Finally, we study different

works that use DNS traffic as a source of cyber-threat intelligence. These works have

been used to design and integrate a system to identify anomalies in DNS ecosystem.

42

Chapter 3

Prominent Cyber-Threats

3.1 Overview

In this chapter, we present two case studies on the analysis of prominent threats. We

report details about Mariposa botnet and Zeus crime-ware toolkit respectively in Sections

3.2 and 3.3. The analysis of these threats is done with reverse-engineering analysis tools.

We introduce a brief description of each threat as well as the different reverse engineering

steps done to unveil their inner-workings. A discussion about these research efforts is

entailed in Section 3.4.

3.2 Analysis of Mariposa Botnet

In this section, we analyze one of the most popular and prominent botnets, namely Mari-

posa [189], which infected more than 13 million computers located in more than 190

43

countries. We describe the botnet architecture, components, commands and communica-

tion. We detail the obfuscation and anti-debugging techniques it uses. Moreover, we de-

tail the infection and code-injection techniques into legitimate processes. In addition, we

explain the spreading mechanisms that are employed in Mariposa as well as the commu-

nication protocols. Furthermore, we analyze the injected bot code. This is accomplished

by a reverse-engineering exercise that uses both network analysis together with reverse-

engineering analysis. The insights from this work are meant to illustrate the know-how

used in current botnet technologies and enable the elaboration of analysis, detection and

prevention techniques.

3.2.1 Mariposa Botnet Description

In this section, we provide an overview of the Mariposa Botnet. We describe how the

botnet works as well as the various features of the bot. Different variants that constitute

Mariposa botnet mainly evolved from the so-called butterfly bot. The authors of Mari-

posa variants enhance the capabilities of the butterfly bot to make it more robust, resilient,

stealthy and threatening. The botnet architecture consists of a set of clients, a server and

a master. The architecture is connectionless because it is based on the UDP protocol (no

guarantee to the upper layer protocols of message delivery). The server plays the role of

the relay between the master and the clients. The UDP protocol is used due to its covert-

ness: The UDP connections are not generally logged in firewalls and gateways, which

is not the case with TCP connections. In order to check the presence of bot clients, the

44

server pings clients periodically in a predefined time gap. If it does not receive any reply

from the bot, the server marks it as a time-out bot. Further details about the communica-

tion protocol are described in the next section that reports on the network analysis of the

botnet. We summarize Mariposa’s features as follows:

• Bot client: The bot has innovative capabilities comparing to the majority of bots

that exist in the wild. It has the ability to make direct code injection into remote

processes. This injected code corresponds to the entry point of all activities that are

done by the bot. Mariposa is capable of downloading any extra modules like the

Zeus botnet and execute them on the fly. Besides, it is capable of performing UDP

and TCP flooding, and can tune the flood strength by acting on the data and packet

size, and send random data to the victim host. In addition, the bot has mechanisms

to spread through the infection of USB keys or using MSN messenger and P2P ap-

plications. Moreover, the Mariposa bot contains a module that tracks the visited

websites and a grabber that catches all the posted data that are sent from Internet

Explorer 6, 7, and 8. On the other hand, the bot is endowed with two download-

ers: The first one can download via HTTP, HTTPS and FTP protocols whereas the

second downloads files via the ButterFly Network Protocol. Additionally, it has

a built-in cookie stuffer for IE and Mozilla Firefox. Recently, Mariposa authors

added new features like a flooder and a reverse proxy module, which can turn all

bots into proxy servers.

• Server: The server is a mediator between the master and the bot clients. As such,

45

it allows to control the traffic between them by setting the number of frames per

second to diminish the CPU usage and the communication latency ratio. We can

also set up the maximum upload on the server. The latter localizes the bots using

IP geo-localization.

• Master: The master represents the core of all operations. It can get multiple server

connections and has the ability to enable and disable servers and clients. The master

sends commands to bot clients through servers. These commands are various and

can be used to customize the operations that are done by clients. The next section

reports on the results of our network analysis.

3.2.2 Network Analysis

Before digging into the inner details of the static analysis of the bot code, we analyze the

network behaviors of Mariposa in a controlled environment to grasp the botnet behav-

iors. First, let us explain the experimental setup for the network analysis. The controlled

environment is based on VMware Server 2.0.3 [216] running on a Windows XP

system. This software allows running multiple virtual machines in an isolated environ-

ment and gives a certain flexibility to create different types of network architectures. The

network consists of a default virtual network, which behaves as a stub network. In our

analysis, we use four hosts to build a virtual network. These hosts are used to set up the

botnet. We installed a master, a C&C server and a host, which is infected by a Mari-

posa bot. The fourth host is used as sniffing box. It runs a live-CD for network security

46

analysts [182]. The utility of this live-CD resides in logging all communications promis-

cuously in order to correlate events and monitor the network activities of the botnet. It

also allows to verify whether backdoors are set or not. In addition, it can bind to any DNS

server. As a result, network records can be created to simulate an Internet-connected

network. For this intent, we used c : \windows\system32\drivers\etc\hosts file as a

source of a domain name resolution. The communications within the botnet breaks into

three phases: initialization phase, bot aliveness phase and action phase. All the phases

involve the participation of the master, server and the bot client.

The initialization phase takes place after an infection. Once a bot infects a machine,

it sends a join server command. This command allows a bot to register the IP address

of the bot within the server. The latter acknowledges the registration by sending a join

acknowledgment packet. By receiving this command, the bot sends an acknowledgment to

the server and command-response packet. The latest message contains the bot information

like system information and the country code. The server sends an acknowledgment to the

bot and forwards the command-response to the master, which acknowledges the reception

of this message to the server.

The second phase aims at checking the aliveness of bot clients. The server keeps

sending command-response packets to the bot client in a frequency of four minutes. If a

given bot is alive, it replies with an acknowledgment packet.

The action phase aims to instruct the bots to make actions at the infected hosts. The

master sends command-response packet to the server. The server forwards this packet

47

4
 M

in
u

te
s

Join Server Message

Join Acknowledgement

Acknowledgement

Command/Response

Acknowledgement

Command/Response

Acknowledgement

In
it

ia
liz

at
io

n
 P

ro
to

co
l

B
o

t
A

liv
en

es
s

A
ct

io
n

 P
ro

to
co

l

Command/Response

Acknowledgement

Command/Response

Acknowledgement

...

Command/Response

Acknowledgement

Acknowledgement

Command/Response

Bot Server Master

Figure 3.1: Mariposa Botnet Protocol

to the bot. By receiving the packet, the bot performs the action that is mentioned in the

packet. It acknowledges its action by sending an acknowledgment packet. The server

sends an acknowledgment packet to the master. Figure 3.1 depicts three phases of the

Mariposa botnet communication. The next section is devoted to the results of the static

analysis.

48

3.2.3 Static Analysis

The static analysis constitutes a must when it comes to reverse-engineer malware. Actu-

ally, it allows digging into the inner-secrets of the malware code. In our analysis, we used

IDA pro [53] disassembler and de-compiler to analyze the Mariposa bot client. The

MD5 hash of the malware variant is 3E3F7D8873985DE888CE320092ED99C5. Before

digging into the details of the static analysis, we used SysAnalyzer [94] to get an

initial insight about the client. After running this tool, we noticed that Mariposa infects

explorer.exe process. This process opens the UDP port 1055. Moreover, SysAnalyzer

reveals the registry keys and external references that are accessed by the Mariposa bot.

The static analysis consists of getting over the obfuscation and anti-debugging tech-

niques that are employed by Mariposa as well as reaching the susceptible parts of the

code that execute Mariposa bot features that we previously described in Section 3.2.1.

The Mariposa binary has a metamorphic code [204], comprised of various obfuscation

and anti-debugging techniques. Figure 3.2 depicts the different phases of Mariposa bot

metamorphose. The execution of the bot client has three phases: the obfuscation phase,

the decryption phase and the injection phase.

In the sequel, we introduce the different phases that are related to the de-obfuscation,

anti-debugging traps and different decryption layers.

49

Figure 3.2: Overview of Mariposa Bot

De-Obfuscation and First Decryption Layer

Code obfuscation is nowadays a standard practice within Malware. It constitutes the

concealment of the intended meaning of an integrated malicious code. It makes the code

confusing and intentionally ambiguous and more difficult to interpret. In the Mariposa

bot, the obfuscation starts with useless computations. These computations are done within

a loop that iterates 889,976,605 times. At the end of this loop, a jump to an address is

loaded into EAX register. As a consequence, a jump is initiated to start a routine that

XORs the range of data that is located between the addresses0x41D000 and 0x41D4C0

with the constant 0x0CA1A51E5. Afterwards, the address 0x41D047 is pushed into the

stack. As a result, the control flow is transferred to this address. The latter corresponds to

an entry point of the anti-debugging traps.

50

Anti-Debugging Traps

Anti-Debugging techniques detect if a program runs within a controlled environment or

a debugger. They are used by commercial executable protectors, packers and malicious

software to prevent or slow-down the process of reverse-engineering [181]. The Mariposa

bot client uses several anti-debugging techniques. These techniques make the reverse-

engineering tasks as strenuous and difficult as possible. They increase the time that is

required for a full analysis of the bot binary. The address 0x41D047 constitutes the entry

point of the code that employs anti-debugging traps. The most important anti-debugging

techniques that have been encountered in the analyzed variant of the Mariposa bot are:

• ICE Breakpoint (In Circuit Emulator): It is one of Intel’s undocumented instruc-

tions with opcode 0xF1. The execution of this instruction generates a single step

exception. This instruction pushes a debugger to think that a normal exception is

generated by the program. It sets the single step bit in the flag register. Thus, the

associated exception handler is not executed.

• QueryPerformanceCounter Function: It is used to compute the hardware perfor-

mance. It reads the values of performance counters that are stored in some proces-

sor registers1. Mariposa uses this function to compare hardware activities with a

threshold value and checks if a process is running under debugging mode or not.

1Contemporary processors use registers that act like performance counters. They count performance of
hardware activities within the processor.

51

• GetTickCount Function: It is located in kernel32.dll. It returns the number of mil-

liseconds that the system has elapsed since its last reboot. The highest return value

is 49.7 days. Malware calls the GetTickCount function consecutively to calculate

the difference between two function calls. It allows the malware to detect the pres-

ence of a debugger.

• OutputDebugString Function: It is generally used by encryption programs. The

function receives a string as a parameter. If a program runs under a debugger,

then, the returned value of this function (value of EAX register) corresponds to the

address of the string that is passed as parameter. Otherwise, it returns the value 1.

• Stack Segment Register: This technique consists of pushing and popping the content

of the stack segment in order to mislead the debugger. It forces the debugger to not

break on a PUSH instruction and stop on NOP instruction.

Second, Third and Fourth Decryption Layers

After unveiling and removing the obfuscation and the anti-debugging routines, we reach

the part of code that contains the decryption routines. The second layer of the decryption

corresponds to an iteration of a XOR operation with a 32 bytes key. Each byte within

the data is XORed with a byte from the key. This byte corresponds to a modulo result

of data byte position with the size of the key (32 bytes). This algorithm is iterated three

times for three different chunks of data. The first location of data corresponds to the

range [0x401000, 0x415FB3], the second location of data resides in the range [0x416000,

52

0x417A52] and the third location of data is within the range [0x418000, 0x41D21E]. There

exist three 32 bytes keys; each one is used in the algorithm for each chunk of data. These

keys are located at the following addresses: 0x41D015, 0x41D155 and 0x41D1B4. Figure

3.3 illustrates the pseudo code of the second decryption layer. The value x corresponds to

the key location, whereas r1 and r2 are the start and the end addresses of data respectively.

Second_Decryption_Layer()
{

Key_size=32 byte;
Key_location = x;
Key[]=getKey(x);//For first decryption layer.
Start_address=r1;
End_address=r2;
Enc_data[]=getData(Start_address, End_address);
for(i=0;i<Enc_data.size();i++){

Dec_data=Enc_data[i] XOR Key[i % 32];
}

}

Figure 3.3: Pseudo Code of the Second Decryption Layer

After executing the second layer decryption, the control flow reaches the part that is

responsible of loading the imported functions. The next step consists of running another

decryption routine (third layer decryption). This decryption takes place after the first

layer decryption. It XORs each byte of data in the range [0x41D000, 0x41D21E] with a

constant key 0x39.

After executing the third layer decryption, the program loads its process and thread

identifiers by calling GetCurrentProcessID and GetCurrentThreadID functions. It uses

some anti-debugging traps using the QueryPerformaceCounter and GetTickCount func-

tions. The intent behind this is to check again whether the current process runs under a

53

debugger or not. In order to check whether it runs in a sandbox technology, it verifies

the presence of sbiedll.dll in the system. By getting over these traps, we notice that the

program allocates 60, 925 bytes of space from the stack. It decrypts the data in the range

[0x40FE5C, 0x41EC59] by utilizing the algorithm that is illustrated in Figure 3.4, and

loads into the allocated space of the stack. Afterwards, Mariposa transfers its control to

the stack.

Fourth_Decryption_Layer()
{

Key1=getByte(0x418CA2);
Key2=getByte(0x418CA3);
Key1=((! Key1) + Key2) / 2;
Source_address= 40FE5C;
Enc_data[0xEDFD] = getData(Source_address, Source_address +0xEDFD);
Dec_data[0xEDFD]=null;
Dest_address = 0xXXXX;//in the stack.
for(i=o; i<Enc_data.length ; i++){

Dec_data[i]= (Enc_data[i] + Key1) XOR Key2;
If(Key1==0xFF){

Key2= (Key2+1) % 0xFF;
}
Key1= (Key1+1) %0xFF;

}
}

Figure 3.4: Pseudo Code of the Fourth Decryption Layer

At this point, Mariposa code passes several phases of decryption. However, all the

strings are encrypted. These strings represent API functions and magic words that will be

used by the injected process. Once the fourth layer decryption is executed, the program

runs a decryption routine three times. This routine decrypts all the strings that are located

in .data section. Figure 3.5 illustrates the pseudo code of the string decryption.

54

Decrypt_Strings()
{

Start_add=0x4197E0;
Size=0xD65;
Enc_data[]=Get_data(Start_add,Start_add+Size);
Key1=Get_byte(0x418CA2);
Key2=Get_byte(0x418CA3);
Key=(Key2+ ~Key1) >> 1;
for(i=Size; i >= 0; --i){

Dec_data[i]=(Enc_data[i]+Key) XOR Key2;
Key=(Key++)%255;

}
}

Figure 3.5: Pseudo Code of String Decryption Algorithm

Code Injection

Despite substantial improvement in host-based security, the code injection technique sus-

tains as the favorite method to compromise operating systems. The method of code in-

jection is used to conceal evil processes inside legitimate processes. The execution of a

process inside another address space can be achieved in several ways. We can enumer-

ate windows hooks [93], dll injection and direct code injection [223]. The Mariposa bot

uses the Direct Code Injection (DCI) technique to inject malicious code inside the ad-

dress space of explorer.exe. Instead of writing a separate DLL, the DCI technique copies

the malicious code to the remote process directly via WriteProcessMemory function and

starts its execution with an invocation of the createRemoteThread function. The direct

code injection (DCI) technique can be summarized into the following steps:

• Retrieval of the handle of the remote process by calling the OpenProcess function

• Allocation of memory in the remote process address space in order to inject code.

55

This is achieved by calling the VirtualAllocEx function.

• Writing a copy of the initialized INJDATA structure to the allocated memory by

invoking the WriteProcessMemory function

• Execution of the injected code via the CreateRemoteThread function

Before code injection, Mariposa creates some directories and files. The created

directories and files are:

• Directory Path: C : \Recycler\s− 1− 5− 21.

• Directory Path: C : \Recycler\S − 1 − 5 − 21 − 7524899924 − 6962119414 −

608760223− 8454. The directory access control is set to read, write and execution

permissions.

• File Name: C : \Recycler\S − 1 − 5 − 21 − 7524899924 − 6962119414 −

608760223− 8454\Desktop.ini.

• File Name: C : \Recycler\S − 1 − 5 − 21 − 7524899924 − 6962119414 −

608760223− 8454\windll.exe.

Then, the program calls the GetVersion function to get the version of the operating

system. The reason behind this call resides in checking whether the operating system is a

Windows NT or not. If so, it uses the CreateRomoteThread function 2. At the beginning

of the injection process, the program calls the CreateToolhelp32Snapshot function to take
2CreateRemoteThread function works only in Windows NT versions.

56

a snapshot of the running processes in the system. It enumerates the existing processes by

calling Process32First and Process32Next functions. Once explorer.exe process is found,

it retrieves its process identifier (process ID).

After getting the process ID, the program calls OpenProcess function to open ex-

plorer.exe process. Then, it calls VirtualAllocEX function to allocate memory within the

targeted process and NtWriteVirtualMemory function to write into explorer.exe process.

Once the code is written in a virtual memory location, the program calls the CreateRe-

moteThread function in order to run the injected code.

Injected Thread Activity

The code that is injected into explorer.exe is the pivotal part of Mariposa bot. In the follow-

ing, we discuss the behaviors of the injected code. To this end, we attached the process ex-

plorer.exe to IDA pro debugger and set a breakpoint at the entry point of the newly cre-

ated thread to get full control of the execution. The thread creates a mutex object namely

c__kdjcpeoij. The mutex object is used to ensure singular execution of the bot. The intent

is to avoid a possible running of multiple bot instances, which can crash the system, or at

best slow down the machine. It uses the WaitForSingleObject function with a predefined

waiting time to ensure singular execution. Once the single instance checking is ensured, it

creates two files: C : \Recycler\S−1−5−21−7344526690−8558129233−739613093−

1787\windll.exe and C : \Recycler\S − 1 − 5 − 21 − 7524899924 − 6962119414 −

608760223 − 8454\Desktop.ini. After the file creation, the thread copies the whole bot

57

code to C : \Recycler\S − 1 − 5 − 21 − 7524899924 − 6962119414 − 608760223 −

8454\windll.exe. At this point of execution, Mariposa uses the WsaStartup function to

initiate the use of Winsock DLL, which is responsible for the socket communication. It

also opens the registry key software\Microsoft\WindowsNT\CurrentV ersion\

Winlogon, and creates a new entry, namely, Taskman. It sets the value of this entry to C :

\Recycler\S−1−5−21−7524899924−6962119414−608760223−8454\windll.exe

in order to make a direct injection of code when the machine reboots. It also creates an-

other entry named shell with the value C : \Recycler\S − 1− 5− 21− 7344526690−

8558129233− 739613093− 1787\windll.exe.

At this stage, the bot creates two pipes. The first one is \\.\pipe\cdcpr55 whereas

the second is an anonymous pipe. The first pipe is created in pipe_access_inbound mode,

which supports client to server transfer only. Once the pipes are set, the program calls the

InternetOpen function in order to use the WinInet library functions. Mariposa bot uses

three hard-coded domain names to resolve the IP address of the C&C server. It picks the

first domain name and sends the encrypted magic word to the resolved IP address, and

waits for the reply from the server. If the server does not respond, it picks the second or

third domain name and tries to connect to the server using the resolved IP address. The

domain names that are used for this Mariposa variant are:

• Shv4.no-ip.biz

• Shv4b.getmyip.com

58

• Booster.estr.es

The sequence of actions that are taken by the Mariposa bot to reach the server and

receive commands are:

• The function Inet_addr is called to convert the domain names into a proper address.

• The bot retrieves the host information from the corresponding host name using the

gethostbyname function.

• The bot calls the htons function, which converts an unsigned short number from a

host to a TCP/IP network byte order 3.

• The bot encrypts the magic word (bpr1 is the magic word in this variant of Mari-

posa). The encryption/decryption algorithm is detailed in [95].

• The bot sends the magic word using the sendto function.

• The bot receives a reply from the server using the recvfrom function.

• The bot decrypts and decodes the received command. The bot can then trigger

appropriate actions that are instructed by the master.

3Network byte order defines the bit-order of network addresses as they pass through the network. The
TCP/IP standard network byte order is big-endian. In order to participate in a TCP/IP network, little-endian
systems usually bear the burden of conversion to network byte order [92].

59

3.2.4 Modules

Spreader Module

The Mariposa bot comes with a spreader module. This module breaks into three different

components, namely, USB spreader, MSN spreader, P2P spreader. In the Mariposa botnet,

the master can send commands to enable and disable the spreaders. In the sequel, we

introduce these different components:

• USB spreader: At the beginning, the program creates a new top-level window by

executing CreateWindowEx function. The returned handle is used by the Register-

DeviceNotification function in order to receive notification from the system when a

flash drive is inserted. Once a user inserts a USB key, it locks the autorun.inf file

and modifies the file accordingly. As a result, no software or malware can launch

an auto-run. The file stays locked until a user decides to remove the USB key.

Mariposa makes a copy of itself into the USB key.

• MSN spreader: The Mariposa bot infects MSN messenger by hooking sending and

receiving functions. The MSN spreader is activated if a bot receives an enabling

command. This command contains a custom link, which is used to download a bot

in the user’s machine.

After receiving the MSN spreader activation command, the bot looks for the msn-

msgr.exe process. This operation is done periodically if the process is not running

in the system. Once the msnmsgr.exe process is found, the Mariposa bot retrieves

60

its process identifier. Then, it calls the OpenProcess function to get the handle

of this process. Afterwards, it creates a duplicate handle of the current process

by calling GetCurrentProcess and DuplicateHandle functions. At this point, the

Mariposa bot starts a new routine, which is responsible for injecting code inside

the virtual address space of msnmsgr.exe process. This routine is called twice. In

the first call, it allocates 256 bytes of space by calling VirtualAllocEX function and

injects code using NtWriteVirtualMemory function. In the second call, it injects

string utility functions and the custom link that is sent by the master. It creates a

thread by calling CreateRemoteThread function. After the injection process, the

bot hooks ws2_32_send function in order to make the injected code executed for

each message that is sent from a user to a recipient. This is done by calling the

VirtualProtectEx function to allows writing in the virtual memory. At the end, it

calls the NtWritevirtualMemory function to overwrite with the address of injected

code.

• P2P spreader: When the bot receives a command that enables the P2P spreader, the

program calls the GetEnvironmentVariable function in order to get the registry entry

for the current user. The intent behind this resides in checking if P2P applications

are installed or not. The Mariposa bot looks for the following P2P applications

in the system: Ares, BearShare, iMesh, Shareaza, Kazaa, DC++, eMule

and LimeWire. Once, it detects the presence of a P2P application, it copies itself

into the shared folder with a fake name that is issued by the master.

61

Uploader and Downloader Modules

During the analysis of the main thread, we noticed that when the bot receives update/-

download commands, it triggers two new threads. To debug these threads in IDA pro,

we set a breakpoint at the beginning of each thread. When Mariposa bot transfer its con-

trol to one of these threads, we suspended the original thread in IDA pro and continued

debugging with the new thread.

Thread 1 Mariposa starts this thread when the bot receives a download command. Af-

ter receiving this command, the bot checks the command. If the latter corresponds to

descargar4, the thread launches the following activities:

• It targets the temporary location in the system to download a new executable.

• It calls the InternetOpenUrl function with the supplied url.

• If the InternetOpenUrl function succeeds, the bot creates a file in the temporary

location by calling the CreateFile function.

• It downloads the file using the InternetReadFile function.

• It writes the file onto the disk by invoking the WriteFile function.

• It uses the CreateFile function again to create the file.

4Descargar is a Spanish word, which means download

62

After downloading the file, the bot checks the first two bytes to ensure whether the

downloaded file is an executable or not. If so, it runs the file by calling the CreateProcess

function and exits the thread by calling the ExitThread function.

Thread 2 This thread starts when the bot receives an upload command. After receiving

the command, the bot checks the command and compares it with subir5. If the comparison

is successful, the thread executes the following activities:

• It calls the InternetCrackUrl function to read different url components.

• By getting the url components, it calls the InterConnect function to set a connection

with the url.

• It uses the HttpOpenRequest function to create an HTTP request.

• It invokes the InternetReadFile function to read data to be sent.

• It sends the data using the HttpSendRequest function.

• Finally, it closes the connection handle using the InternetCloseHandle function.

After uploading the file, the thread calls the exitthread function to close the thread.

5Subir is a Spanish word, which means upload

63

Components Diagram

By conducting a thorough reverse-engineering task, we noticed that Mariposa bot has

complex interactions between its functional components. Figure 3.6 illustrates the differ-

ent interactions between the different functional components.

Core

 Main Loop

Registry Operator

 RegCreateKeyEx
 RegSetValueEx
 RegCloseKey
 RegSetValueEx
 RegDeleteValue
 RegQueryValueEx

Command
Parser

 Parse

Encryption/Decryption

 Encrypt
 Decrypt

Process Finder

 CreateToolhelp32Snapshot
 Process32First
 Process32Next

Injection

 VirtualProtocolEx
 NtWriteVirtualMemory

Threading

 CreateRemoteThread
 CreateThread

Spreader

 P2P
 USB
 MSN

Flooder

 TCP_Flood
 UDP_Flood

Net Manager

 getHostbyname
 Inet_addr
 Inet_ntoa
 htons
 ioctlsocket
 connect

Send/Receive

 SendTo
 RecvFrom

Downloader/ Uploader

 InternetOpenurl
 InternetReadFile
 InternetCrackurl
 HttpOpenRequest
 HttpSendRequest

Hooking

 VirtualProtectEx

Figure 3.6: Component Diagram

64

3.3 Analysis of Zeus Botnet Crime-ware Toolkit

In this section, we present a reverse engineering effort done on the Zeus crime-ware

toolkit [32]. The latter is one of the powerful crime-ware tools that emerged in the Internet

underground community to control botnets. Zeus has infected over 3.6 million computers

in the United States. Our analysis aims to uncover the obfuscation levels from packed

Zeus code. In the prevailing of this thought, we describe the bot building and infection

processes. In addition, we put forward a method to extract the encryption key from the

malware binary and use it to decrypt the communications of the botnet and its configu-

ration information. We combine reverse engineering and network analysis to understand

behaviors of this new generation crime-ware toolkit. After performing the reverse engi-

neering exercise, we found out that C&C communications indicates that the authors used

RC4 algorithm. We uncovered the format of messages that are sent through a network.

3.3.1 Zeus Botnet Description

The Zeus crime-ware toolkit is a set of programs which have been designed to setup a bot-

net over a high-scaled networked infrastructure. Generally, the Zeus botnet aims to make

machines behave as spying agents with the intent of getting financial benefits. The Zeus

malware has the ability to log inputs that are entered by the user as well as to capture and

alter data that is displayed into web-pages [87]. Stolen data can contain email addresses,

passwords, online banking accounts, credit card numbers, and transaction authentication

numbers. In our analysis, we examine the Zeus crime-ware toolkit v.1.2.4.2, which is

65

considered as the latest stable publicly available version in the underground community.

The overall structure of the Zeus crime-ware toolkit consists of five components:

• A control panel, which contains a set of PHP scripts that are used to monitor the

botnet and collect the stolen information into MySQL database and then display it to

the bot-master. It also allows the bot-master to monitor, control, and manage bots

that are registered within the botnet.

• Configuration files that are used to customize the botnet parameters. It involves

two files: the configuration file config.txt that lists the basic information, and

the web injects file webinjects.txt that identifies the targeted websites and

defines the content injection rules.

• A generated encrypted configuration file config.bin, which holds an encrypted

version of the configuration parameters of the botnet.

• A generated malware binary file bot.exe, which is considered as the bot binary

file that infects the victims’ machines.

• A builder program that generate two files: the encrypted configuration file con-

fig.bin and the malware (actual bot) binary file bot.exe.

On the C&C side, the crime-ware toolkit has an easy way to setup the C&C server

through an installation script that configures the database and the control panel. The

database is used to store related information about the botnet and any updated reports

66

from the bots. These updates contain stolen information that are gathered by the bots from

the infected machines. The control panel provides a user friendly interface to display the

content of the database as well as to communicate with the rest of the botnet using PHP

scripts. The botnet configuration information is composed of two parts: a static part and

a dynamic part. In addition, each Zeus instance keeps a set of targeted URLs that are fed

by the web injects file webinject.txt. Instantly, Zeus targets these URLs to steal

information and to modify the content of specific web pages before they get displayed on

the user screen. The attacker can define rules that are used to harvest a web form data.

When a victim visits a targeted site, the bot steals the credentials that are entered by the

victim. Then, it posts the encrypted information to a drop location that is meant to store

the bot update reports. This server decrypts the stolen information and stores it into a

database.

3.3.2 Network Analysis

In this section, we explain the network communication that occurs between the C&C

server (the server containing the control panel) and an infected machine. Such analy-

sis can be used to write IDS rules and anti-virus detection routines. In order to perform

the network analysis, we built a sandbox environment to collect and analyze the network

traces that are generated from the communication between the C&C server and one of the

bot instances. We configured a web server, which acts as the C&C server and the drop

67

location. This server hosts all resources that are required to operate the botnet (con-

fig.bin file, PHP scripts and the MySQL database). To customize the malware, we

used the builder program to generate the malware binary file, which is configured to com-

municate with a C&C server. Within our environment, fake websites are generated to

reflect real scenarios of botnet attacks. All necessary entries of the configuration file as

well as the web injects scripts are modified to target the fake website. After infecting a

machine with the bot binary file, we collected network traces for one day. During this

session, the user of the infected machine visited the targeted website and then used login

credentials, personal information, and credit card information for testing purposes.

By analyzing the bot network communications, we can learn the overall behavior

of the Zeus botnet. The network behavior of the Zeus botnet constitutes a starting point,

where we can dig into the crime-ware toolkit functions. Since the Zeus botnet is based on

HTTP protocol, it uses a pull-method to synchronize the botnet communications. From

the collected network traces between a bot and a C&C server, we observe that the bot

periodically checks specific servers for an up-to-date configuration and bot binary files.

Moreover, HTTP communication messages between the two entities are encrypted. By

observing the network trace, we managed to determine the following communication pat-

tern between the C&C server and the infected machine:

• The infected client starts the communication by sending a request message GET

/config.bin to the C&C server. This message is a request to fetch the configu-

ration file for the botnet.

68

• The C&C server replies with the encrypted configuration file config.bin.

• The client receives the encrypted configuration file and decrypts its content by using

an encryption key, which is embedded inside the bot binary file.

• In situation where the bot-master wants to involve the infected machine to manage

the botnet, the infected machine has to provide its external IP address and report any

use of Network Address Translation (NAT). In order to know the external IP address

that is seen by the botnet servers, the infected machine makes a request to a specific

server. Afterwards, this server informs the infected machine about their externally

facing IP address. The server’s URL is provided in the static configuration file.

• The bot posts the stolen information and its update status reports to the C&C server

POST/gate.php.

Figure 3.7 illustrates the communication pattern between the C&C server and the

infected machine. The communication pattern is repeated frequently depending on a tim-

ing variable, which is defined in the botnet configuration file.

3.3.3 Static Analysis

The increasing usage of malicious software has pushed security experts to try finding the

secrets related to the development of malware design. A common technique to detect the

existence of a given malware is by tracking system modifications. The changes include

what an operating system runs at start-up, changes of default web pages, generated traffic,

69

GET /config.bin

<encrypted> config.bin

Zeus Bot Client Zeus C&CInfrastructure

GET /ip.php (sent to any server)

OK (HTTP 200)

IP address

OK (HTTP 200)

OK (HTTP 200)

POST /gate.php

Figure 3.7: Communications Pattern of Zeus

infection of processes, packing/unpacking of binaries, and changes to the registry keys.

One way to look for these changes is to reverse engineer the malware and try to reveal

what is hidden behind the assembled code. In our case, this kind of analysis provides an

invaluable insight into the inner-working of the crime-ware toolkit in general and about

the malware binary in particular. In the stream of this thinking, we investigate the builder

program and malware binary file. To this end, we mainly employ IDA Pro to disassem-

ble the binaries and debug them to understand their business logic. The analysis is two

folds: First, the analysis that is related to the builder program. Second, the analysis that

is linked to the malware binary file.

70

Analysis of the Zeus Builder Program

The builder is one of the components of the Zeus crime-ware toolkit. It uses the configu-

ration files as an input to generate the bot binary file and the encrypted configuration file.

We analyze the builder program first because it uses a known obfuscation technique that

can be easily removed. In addition, the GUI allows us to categorize different subroutines,

which make up the builder program functionalities. Using the PaiMei reverse engi-

neering framework [5] (which provides many reverse engineering tasks such as fuzzer

assistance, code coverage tracking, and data flow tracking), we were able to see exactly

what functions of the builder program are invoked by a specific action. This immensely

aids in simplifying the reverse engineering efforts as it allows us to focus on a few key

subroutines. In the following, we summarize the reverse engineering analysis of the func-

tions of the builder program.

• Building the Configuration File Functionality: This function is responsible for en-

coding the clear text of the configuration files of the botnet into a specific structure.

Afterwards, it encrypts the whole structure with the RC4 encryption algorithm us-

ing the configured encryption key.

• Building the Malware Binary File Functionality: The main function of the builder

program resides within this functionality, which is responsible for building the cus-

tomized malware binary files. In general, it builds the malware executable file into

71

a portable executable (PE) standard format. Moreover, it sets some parameters ac-

cording to the current configuration file and then produces the malware binary file.

• Malware Infection Removal Functionality: The builder has a functionality that as-

certains the presence of Zeus bot and removes it. When this functionality runs, it

performs a detection routine by checking the existence of special registry keys that

are inserted during the bot infection process. Also, it detects the presence of some

files in the system. If these files are detected, the builder program cleans some reg-

istry keys and instructs the bot to shutdown itself and then deletes the stored Zeus

binary file from the system. The expected behavior of the bot when it receives the

shutdown command is to disinfect itself from the currently running processes. The

analysis reveals the file names that the builder checks their presence in the system.

Table 3.1 represents these file names with their description.

File Description
C:/WINDOWS/system32/sdra64.exe A copy of a bot which has infected “system32” folder.
C:/WINDOWS/system32/lowsec/local.ds A data storage file which is used to store the configuration

file that is used by a given bot locally in the system.
C:/WINDOWS/system32/lowsec/user.ds A data storage file which is used to log the users’ activities

that have been recorded by the bot.

Table 3.1: Files Created During the Bot Infection

Zeus Bot Binary Analysis

As depicted in Figure 3.8, the bot binary file contains four segments: A “text/code” seg-

ment, an “imports” segment, a “resources” segment, and a “data” segment. Therefore, we

begin our analysis at the malware Entry Point (EP) that resides in the “text/code” segment.

72

The initial analysis of the disassembly reveals that only a small part of the “text/code”

block is valid computer instructions. The rest of the binary is highly obfuscated, which

means that the computer cannot use these segments directly unless it is de-obfuscated at

some stage.

EP

Resources

Imports

Code

Text

Text

Data

401000

409A11

409AD7

410000

4100E4

411000

4160CA

bot.exe

Figure 3.8: Segments of the bot.exe Binary File

• De-obfuscation Process: By using the IDA Pro debugger, we were able to debug

the malware and step through the instructions to analyze and understand the logic

of the de-obfuscation routines. Each routine reveals some information which is

used by the other routines until all obfuscation layers are removed. The first de-

obfuscation routine contains a 4-byte long decryption key and a one-byte long seed

value. These two values are used to decrypt a block of data from the “text/code”

73

segment and then write the decrypted data in the virtual memory. The result of

the first de-obfuscation routine revealed some new code segments. These segments

contain three de-obfuscation routine, as shown in Figure 3.9. During our analysis,

the initial memory offset address for the code segments was 0x390000. After

the address space of the second de-obfuscation routine, there was an 8-byte key

that IDA Pro incorrectly identified as code instructions. Figure 3.10 illustrates

the location of the 8-byte key. In the following, we explain the main logic of the

second de-obfuscation routine.

De-obfuscation 2

De-obfuscation 3 & 4

8-byte key

Other functions

390000

39007A

39013C

3901F5

Virtual Memory

390082

Figure 3.9: De-Obfuscated Code in the Virtual Memory

1. First, the routine copies two binary blocks from the “text/code” segment, con-

catenates them together, and then writes them into the virtual memory. The

first text block contains data with many zero value bytes that will be filled by

the next text block, as shown in Figure 3.11.

2. The routine scans every byte on the first text block and when it encounters a

“hole” (zero byte), it overwrites the zero byte with the next available byte in

74

Figure 3.10: Eight-byte Key

Text with missing data

Filler text

3901F5

39C276

39E9C3

Virtual Memory

Figure 3.11: Virtual Memory Used by the Second De-Obfuscation Routine

75

the “filler” text block. This is repeated until all “holes” are filled (see Figure

3.12).

Figure 3.12: Result from the Second De-Obfuscation Routine

The filled text segment turns to be the main outcome of the second de-obfuscation

routine. However, this text segment is still not readable and not considered as

computer instructions. By utilizing the 8-byte key, the third de-obfuscation rou-

tine starts by decrypting the output of the second de-obfuscation. Similar to the

first de-obfuscation routine, this routine utilizes the 8-byte key and performs an

exclusive-OR (XOR) operation instead of an addition operation. Finally, the fourth

de-obfuscation layer contains heavy computations to initialize and prepare some

parameters for the rest of the malware operations. It uses the decrypted bytes re-

vealed by the previous routines to modify the rest of the “text/code” segment. After

this routine completes, we can observe the real starting point of the Zeus malware.

76

Even though the “text/code” segment is now valid, the Zeus bot binary employs

two additional layers of obfuscation. These two layers are de-obfuscated during the

installation procedure. They consist of logical loops that transform arbitrarily long

strings into a readable text. The first layer is performed on a set of strings that the

malware uses to load the DLL libraries, retrieve function names, and for other pur-

poses during the installation process. Similarly, the second layer is used to decrypt

URLs in the static configuration of the configuration file. The main logic of these

two routines are described in Algorithm 1 and Algorithm 2.

Algorithm 1 First Routine
Input: seed = 0xBA,enc_string
Output: new_string
new_string = String(enc_string.length())
for inti ∈ Range(0, enc_string.length()) do

new_string[i] = (enc_string[i] + seed)%256
seed = (seed+ 2)

end for
return new_string

Algorithm 2 Second Routine
Input: enc_url
Output: new_url
new_url = String(enc_url.length())
for inti ∈ Range(0, enc_url.length()) do

if i%2 == 0 then
new_url[i] = (enc_url[i] + 0xF6− i ∗ 2)%256

else
new_url[i] = (enc_url[i] + 0x7 + i ∗ 2)%256

end if
end for
return new_url

• Bot Installation Process: After the first four de-obfuscation routines are executed,

77

the malware begins the installation process. The installation process aims at prepar-

ing and then launching the malicious activities of the malware. In the following, we

explain the main procedure of the installation process.

1. The Zeus malware dynamically loads the LoadLibrary and the GetPro-

cAddress methods from Kernel32.dll library.

2. It decrypts the set of strings, which become DLL methods names, into the

virtual memory according to Algorithm 1.

3. The LoadLibrary and the GetProcAddress methods are then used to

load the further methods, as decrypted in step 2, from the Windows DLLs.

4. The Zeus malware enumerates the current process table looking for targeted

processes such as the main process name for the Outpost personal firewall ap-

plication from Agnitum Security outpost.exe and the main process name

for the personal firewall of the ZoneLabs Internet security zlclient.exe.

If any of these processes is found, then the Zeus malware aborts the installa-

tion process.

5. The Zeus malware appends the path C:/Windows/System32/sdra64.-

exe to HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows-

NT/CurrentVersion/Winlogon/Userinit registry key. This entry

enables the Zeus malware to initiate its installation process again during Win-

dows start-up.

78

6. Finally, it injects its entire Zeus binary file from the memory address 0x4000-

00 to 0x417000 into the virtual memory of winlogon.exe process. Af-

ter that, Zeus passes the control to this process by creating a new user thread,

which is immediately executed.

Similarly, the bot uses these steps when the infected machine is restarted. However,

there are few steps that are performed only during the initial Zeus installation pro-

cess. These steps are related to the creation of a local copy of the malware in the

infected system for further activities. In the following, we list the main process of

creating a local copy of the malware.

(a) The Zeus malware searches for any existing copies of previous Zeus infection

files sdra64.exe, and then erases them from the infected machine. This

behavior would occur when the Zeus binary file is being updated with a newer

version of the malware.

(b) It makes an exact copy of itself and then saves it to C:/Windows/System-

32/sdra64.exe. To evade signature-based detection systems, it appends

some randomly generated bytes to the end of the file.

(c) In order to hide itself, the bot duplicates the Modification, Access, and Cre-

ation times (MAC times) information from Ntdll.dll library, and applies

79

them to the sdra64.exe. The intent of this is to make sdra64.exe ap-

pears to be a system file that has been around since Windows was first in-

stalled.

(d) In another level of hiding the created file, it sets the sdra64.exe file at-

tributes to system and hidden, so that the user cannot see the file using the

standard file explorer.

At this stage, the malware is already injected within the winlogon.exe running

process. On the other hand, the currently running bot exits and leaves the control

to the injected process. However, the installation procedure is continued by the

user thread that was started in the winlogon.exe process, as described in step

6. From the injection process, we infer that the entire Zeus binary file is copied

into the winlogon.exe process. Therefore, the injected Zeus instance starts by

removing the remaining two layers of the obfuscation by applying Algorithm 1 and

Algorithm 2. When the injected malware decrypts all the strings, the Zeus instance

employs the piggyback thread technique (to control the infected system through le-

gitimate process) within the winlogon.exe process. However, Zeus instances

only perform few tasks before they create another thread and exit themselves. This

is another attempt by the designers of the Zeus malware to evade detection. Af-

terwards, the Zeus instance starts injecting itself into another process, namely the

svchost.exe process. This injected process initiates a communication channel

with the C&C server to download the latest updates on the configuration file and

80

the malware itself. Later, the targeted processes get injected with the latest malware

payload and then activate the process of stealing information through API hooking

techniques. During the malware update process, the following changes were ob-

served on the file system:

1. A new folder is created at the path C:/Windows/System32/lowsec.

Hiding techniques similar to those that are applied to the file sdra64.exe

are also applied to the created folder.

2. Two new files, local.ds and user.ds, are created and placed in the new

created folder. The file user.ds stores the dynamic configuration file, and

the file local.ds logs the stolen information until the Zeus malware is ready

to send it to the drop location.

The malware that resides on the winlogon.exe process acts as the brain for the

Zeus malware activities. It communicates and coordinates all the infected processes

using the named pipe _AVIRA_2109. Table 3.2 shows the list of the commands

that are supported by the Zeus malware.

• Key Extraction: Zeus botnet uses a configuration file that contains a static informa-

tion. Specifically, this part of the configuration is stored inside the malware binary

file in a specific structure. During the de-obfuscation processes, this structure is re-

covered and placed in the virtual memory (In our analysis, starting at 0x416000).

All information in the structure is completely de-obfuscated except for two URLs:

81

Command Purpose Return Value
1 Retrieve Zeus version number 4 bytes in a buffer
2 Retrieve name of the botnet Ascii string in buffer
3 Uninstall Bot n/a
4 Open the local.ds file or create it if it does not exist n/a
5 Close the local.ds file n/a
6 Open the user.ds or create it if it does not exist n/a
7 Close the user.ds n/a
8 Close the sdra64.exe n/a
9 Open the sdra64.ex n/a
10 Retrieve loader file path Wide character string
11 Retrieve configuration file path Wide character string
12 Retrieve log file path Wide character string
13 Crash the winlogon process intentionally n/a

Table 3.2: List of the Zeus malware commands

url_compip and url_config. These URLs can be de-obfuscated using Algo-

rithm 2. The URL url_compip is the web location to determine the IP address of

the infected host, and the url_config is the web location to download the con-

figuration file for the botnet. The static configuration structure also contains an RC4

substitution table that is generated by the encryption key specified in the configura-

tion file. Throughout our analysis, we noticed that the substitution table was gener-

ated by the RC4s key-scheduling algorithm and then we verified that the encryption

employed by Zeus is done by the RC4 algorithm. The recovered static configuration

can be used in different ways to gain some control over the botnet. The most valu-

able piece of information is the substitution table, which can be used to decrypt all

the communications of the Zeus botnet. Moreover, it can be used to decrypt the con-

figuration file as well as the stolen information. In order to recover the static con-

figuration structure described above, we have to go through all the de-obfuscation

phases. This requires executing the malware until it finishes all the de-obfuscation

82

layers. Emulation techniques are considered as a safe and fast procedures to achieve

our goals. Using Python scripting language along with the IDAPython plugin [6],

we were able to emulate all the de-obfuscation routines and extract the substitution

table from the static configuration structure. These extracted keys allows decrypt-

ing the botnet communication traffic and all the encrypted files. Similarly, it allows

us to extract any information from the static configuration structure, such as the

URLs for any future updates, which point to the C&C servers. Our experimental

results show that any sub-version of Zeus (v.1.2.x.x) can be fully analyzed using

our methodology because it holds the same logical blocks.

Packet Decryption

After extracting the RC4 encryption key, we used it to decrypt the botnet communications.

By decrypting the transmitted HTTP payload, we are able to uncover the structure of the

messages between the bot and the C&C server. We analyzed the structure of the HTTP

POST messages (POST /gate.php) which carries all the updates and reports from the

bots to the C&C server. Each bot posts a variable number of encrypted bytes based on

the sent data to the C&C server in a specific structure. The payload is encrypted using an

RC4 encryption algorithm only. As depicted in Figure 3.13, we restore the structure of

the messages as follows:

1. Each message starts with a header that consists of 28-bytes. This header contains

an MD5 hash value for the rest of the message.

83

8E020000 0000000000000000 0C0000005B626D42FC682051D56D72A4

20270000 00000000 0D010000 0D010000

Message length Unknown Md5 hash value

Data type Unknown Data length Data length

http://192.168.252.132/catalog/checkout_process.php
Referer:
http://192.168.252.132/catalog/checkout_confirmation.php
Keys: user@email.com123456 4408041234567893 Data:
cc_owner=Name cc_number_nh-dns=4408041234567893
cc_expires_month=01
cc_expires_year=10x=47y=3

Message Header

Message Entry

Entry Header

Data

4-bytes 4-bytes 4-bytes 4-bytes

4-bytes 8-bytes 16-bytes

Figure 3.13: A Decrypted Sample Message

2. As shown in Figure 3.13, the rest of the message follows in the form of repeated

data blocks where each block consists of:

(a) An entry header with 16-bytes that contains information about the current data

entry. The first 4-bytes serve as the type of the reported information, which can

be recognized by the bot and the control panel. The third 4-bytes determine

the length of the carried information.

(b) A variable number of bytes that is specified in the entry header. These bytes

represent one piece of the information that is transmitted within this packet.

84

It should be noted that the encrypted communication of the Zeus botnet is vulner-

able to the RC4 key-stream re-use attack because there is no Initialization Vector (IV)

setup in every session, i.e., the same RC4 key-stream is reused to encrypt all messages.

3.4 Conclusion

The aforementioned case studies have been highly considered by malware researchers

at the National Cyber-Forensics and Training Alliance (NCFTA) Canada as well as aca-

demic and industry researchers worldwide. The analysis done in both case studies set a

knowledge to a malware research initiative leading to other case studies done by Rahimian

et al. [171] and Andriesse et al. [21]. The former has shown that Citadel botnet is an

advanced version of Zeus botnet, the latter addressed a P2P variant of Zeus, namely,

GameOver Zeus. In addition, other works have been conducted at Concordia University,

e.g., works done on malware authorship attribution [16], fingerprinting re-usability of

malware functions [17] and the identification of malware binaries creation process [170].

Based on the different findings illustrated in this chapter, showing how threats like Mari-

posa and Zeus can be innovative, it is of paramount importance to investigate who poten-

tially pulls the strings behind elaborated threats. As such, we decide in the next chapter,

to look at the cyber-threat infrastructures used to orchestrate botnets and advanced threats

activities. We discuss an investigation done on one year malware dynamic analysis re-

ports. We will also describe the different findings related to cyber-threat infrastructures.

85

Chapter 4

Cyber-Threat Infrastructures

4.1 Overview

In this chapter, we present a study to investigate cyber-threats and the underlying in-

frastructures. More precisely, we detect and analyze cyber-threat infrastructures for the

purpose of unveiling key players (owners, domains, IP addresses, organizations, mal-

ware families, etc.) and the relationships between these players. To this end, we propose

metrics to measure the badness of different infrastructure elements using graph theoretic

concepts such as centrality concepts and Google PageRank. In addition, we quantify

the sharing of infrastructure elements among different malware samples and families to

unveil potential groups that are behind specific attacks. Moreover, we study the evolu-

tion of cyber-threat infrastructures over time to infer patterns of cyber-criminal activi-

ties. The proposed study provides the capability to derive insights and intelligence about

86

cyber-threat infrastructures. Using one year dataset, we generate important results regard-

ing emerging threats and campaigns, important players behind threats, linkages between

cyber-threat infrastructure elements, patterns of cyber-crimes, etc. The remainder of this

chapter is organized as follows. In Section 4.2, we describe our approach to investigate

cyber-threat infrastructures. In Section 4.3, we provide statistics and insights generated

from the analysis of cyber-threat infrastructures. Finally, we conclude with a discussion

and future works in Section 4.4.

4.2 Approach

In this section, we present a framework to collect insights and intelligence out of dynamic

malware analysis. Malware samples tend to exhibit a cooperative strategy with remote

malicious domains and IPs to perpetrate malicious activities, e.g., stealing credentials,

spams propagation, advanced DDoS attacks, etc. In the light of these facts, we aim to

design and integrate an approach to generate cyber-threat intelligence for the purpose of

identifying the infrastructures used by malware to threaten the cyber-space. Our approach

to generate cyber-threat intelligence is depicted in Figure 4.1. The approach falls into: (1)

data collection, (2) cyber-threat graph generation, (3) descriptive statistics, (4) badness

scoring and (5) patterns inference.

87

Domains

Behavioral
Reports

Report
Parser

Malware
Analysis

1

Malware
Samples

2 3

Resolved
IPs

Connected
IPs

44 4

Whois

4

VirusTotal
Malware
Naming
Schema

Malware
Families

5

Records

555

6

Graph
Builder

7

Graphs

Statistics
Calculator

Badness
Calculator

7

7

8
9

Patterns
Inference

9

Scores &
Statistics

Patterns

10

10

10

Figure 4.1: Approach Overview

4.2.1 Data Collection

We collect malware samples on a daily basis from a trusted third party. These malware

samples are analyzed through a sandbox technology to monitor malware behavior on

either physical or virtual machines. The malware behavior is stored in XML reports. We

usually manage to get an average of 45, 000 malware reports per day. For each report,

we extract the domains visited by malware samples, IPs resolving to these domains and

IPs directly connected by malware through FTP, SMTP, IRC servers as well as plain UDP

and TCP connections. Meanwhile, we use VirusTotal [211] malware naming schema to

get malware family information out of 54 anti-virus engines. In addition, we use Whois

database [220] to get domains and IP records. The intent is to gather domains’ owners,

administrative and technical support people, organizations, registrars, physical addresses,

network names and name-servers.

88

4.2.2 Cyber-Threat Graph Generation

Malware

Domain

visits
IP

resolved

belongs

connects

Second Level Domain

has

FTP SMTP IRC

connects

hosted

sponsored

Organization Registrar

registered

Person

owned
Timestamp

fist/last seen
registered in

expires in

belongs

Figure 4.2: Cyber-threat Infrastructure Schema

Based on the data collected from dynamic malware analysis and Whois database,

we define a cyber-threat infrastructure as the set of entities involved in malware activities

(Figure 4.2). The different components that constitute a cyber-threat infrastructure are:

malware, domains, IP addresses, FTP servers, SMTP servers, IRC channels, timestamps,

organizations, registrars, technical people, administrative people and domain owners. The

interaction between the infrastructure components is as follows: A malware tends to visit

domains, which can be command and control servers (C&Cs) or re-directions of legiti-

mate domains to malicious proxies or C&Cs. These domains are resolved to IP addresses.

They also usually have second-level domains. On another hand, malware can connect to

FTP servers to upload stolen information or download other malware binaries. Malware

can also connect to SMTP servers to conduct spamming activities or IRC channels to in-

teract with IRC botnets. They can also connect directly through non-conventional TCP

89

and UDP protocols for the purpose of cooperating with infected machines or C&Cs. FT-

P/SMTP servers and IRC channels can be hosted within a second-level domain server.

The latter is registered within a registrar and sponsored by an organization. It can have

an administrative contact, a technical support contact and an owner. Each domain or a

second-level domain has a creation timestamp, expiration timestamp and passive DNS

first/last seen timestamps. An organization can have more than one IP block and be lo-

cated in different countries.

We represent cyber-threat infrastructures as a complex network of directed graphs.

The vertices of the graph represent components of cyber-threat infrastructures, i.e., mal-

ware, domains, IPs, FTP/SMTP servers, IRC channels, organizations, registrars, techni-

cal/administrative people, domain owners and physical addresses. Collection timestamps

are properties of malware nodes, whereas first/last seen timestamps, creation and expira-

tion timestamps are properties of second-level domains.

Figure 4.3 illustrates a directed graph representing a cyber-threat infrastructure. The

red vertices represent malware samples connecting to domains (blue vertices). Both of

these domains resolve to the same IP address (yellow vertex). Owners, organizations and

registrars are represented by green vertices.

The increasing number of vertices appearing in cyber-threat infrastructures make

their analysis a complex task. Figure 4.4 depicts the evolution of five days cyber-threat

90

1xx.7x.x6.3x

822a0d19053d9c03679cce3580c0c6d4

90fe6c729d45528beebf9430d9bf8405

find-*.org

find-*.biz

Organization 1

Alex A.

Registrar 1

Registrar 2

Figure 4.3: Example of a Cyber-threat Infrastructure

Figure 4.4: Components representing Cyber-threat Infrastructures

91

CTI Graphs

Graphs of People

Sharing Malware
Graphs of Domains

Visited by Malware

p1 p2

p3

p4 p5 d1 d2

d3

d4

Graphs of IPs

Visited

by Malware

Graphs of Physical

Addresses Sharing

Malware

d5

p6

a1 a2

a3

a4

a5

ip1 ip2

ip3

ip4

ip5

Abstraction

Figure 4.5: Abstraction

infrastructures. To overcome the complexity of cyber-threat graphs, we use a graph ab-

straction technique, where we decompose heterogeneous directed graphs (vertices rep-

resenting many types) into homogenous weighted graphs. To illustrate the abstraction,

we consider the case of malware samples sharing two domains. Initially, each vertex vi,

representing a malware sample, is linked to two vertices, vd1 and vd2, representing visited

domains. This sub-graph is abstracted to two linked vertices vd1 and vd2, representing

domains. The edge between vd1 and vd2 is labeled with the number of malware shared by

these domains. Figure 4.5 depicts the abstraction of cyber-threat infrastructure graphs. By

performing abstraction, we create the following sub-graphs: (1) Domain-Malware graph:

Domains are linked if they are visited by shared malware samples. (2) Domain-IP graph:

Domains are linked if they resolve to shared IPs. (3) IP-Malware graph: IPs are linked

if shared malware samples connect to. (4) Owner-Malware graph: Owners are linked if

92

they own domains that are visited by shared malware samples. (5) Owner-Physical ad-

dress graph: Owners are linked if they register different domains with the same physical

addresses. (6) Organization-Malware graph: Organizations are linked if they have IPs

connected by shared malware samples.

4.2.3 Badness Scoring

In this research effort, we put an emphasis on finding what are the key players in cyber-

threat infrastructures. The importance of vertices in a network graph is known as vertex’s

centrality. The latter represents a real-valued function produced to provide a ranking,

which identifies the most important nodes [37]. Despite the fact that different centralities,

namely, degree centrality [177], closeness centrality [51, 199], betweenness centrality

[75], and Eigen-vector centrality [36], are widely used in the analysis of different social

networks, we are mostly interested in evaluating the importance or influence of different

characters in cyber-threat infrastructures. For this purpose, some algorithms have been

defined, such as, Hypertext Induced Topic Search (HITS) algorithm [106] and Google’s

PageRank algorithm [42]. In our approach, we adopt Google’s PageRank algorithm due

to its efficiency, feasibility, less query time cost, and less susceptibility to localized links

[79]. In the sequel, we briefly introduce the PageRank algorithm and the random-surfer

model.

Definition 4.2.1 (PageRank). Let I(vi) be the set of vertices that link to a vertex vi and

let degout(vi) be the out-degree centrality of a vertex vi. The PageRank of a vertex vi,

93

denoted by PR(vi), is provided in Equation 5.1:

PR(vi) = d

 ∑
vj∈I(vi)

PR(vj)

degout(vi)

+ (1− d) 1

|D|
(4.1)

In the aforementioned formula, the constant d is called damping factor. Its value is

generally assumed to be set to 0.85 [42]. From Equation 5.1, we can have one equation per

vertex vi with an equal number of unknown PR(vi) values. Assuming that the PageRank

values PR(vi) sum up to 1 (sumn
i=1PR(vi) = 1), then the PageRank algorithm tries

to find out iteratively different PageRank values. This algorithm has been developed

intuitively considering a user surfing the Web, starting from a web page and randomly

visiting another web page through a link. If the user is on page vj with a probability

d (damping factor), then the probability for this user to visit another page vi is equal to

1
degout(vj)

. With a probability of 1− d, the user will stop following links and pick another

random page in V . Since the web-surfing process shows randomness, the authors of the

PageRank algorithm claim that the PageRank values can be computed through a stochastic

process. Thus, a stochastic transition matrix W is defined. The vertices ranking values

are computed as expressed in Equation 5.2:

~PR = d
[
W. ~PR

]
+ (1− d) 1

|D|
~1 (4.2)

The stochastic matrix W is defined as follows:

94

wij =
1

degout(vj)
if a vertex vj is linked to vi

wij = 0 otherwise

The notation ~R stands for a vector where its ith element is PR(vi) (PageRank of

vi). The notation ~1 stands for a vector having all elements equal to 1. The computa-

tion of PageRank values is done iteratively by defining a convergence stopping criterion

ε. At each computation step t, a new vector (~PR, t) is generated based on previous

vector values (~PR, t − 1). The algorithm stops computing values when the condition

|(~PR, t) − (~PR, t − 1)| < ε is satisfied. In our case, since graphs are abstracted to

weighted undirected graphs, the out-degree centrality of a vertex vi is similar to the de-

gree centrality. However, the weights of edges for each vertex are normalized with values

between 0 and 1. The definition of the stochastic matrix W is slightly changed to:

wij = eij × 1
degout(vj)

if a vertex vj is linked to vi

wij = 0 otherwise

eij: edge (vi,vj) (normalized weight value)

The reason behind using PageRank algorithm to compute badness of vertices, lies

in: (1) Scores are computed through a stochastic approach, which reflects randomness

in the evolution of a model. With respect to cyber-threat infrastructures, we assume that

there exists a random evolution, on a daily basis, in the appearance of malware sam-

ples, domains, IPs, servers, organizations, owners and registrars. Such appearance of new

95

vertices impacts the evolution of badness scores. (2) The random web-surfer model il-

lustrates how web pages can be accessed with a probability value (damping factor). In

analogy with cyber-threat infrastructures, the probabilistic approach is interesting since

it reflects potential actions done through infected machines: A malicious domain can be

visited through an infected machine, an IP address can be connected by infected machines

or resolved to a malicious domain or a server, an FTP server can be used to upload stolen

information, an SMTP server can be used to launch spam or phishing campaigns, an IRC

channel can be used to instruct bots to launch DDoS attacks, malware propagation or

other malicious activities.

4.2.4 Patterns Inference

Here, we aim to closely study how cyber-threat infrastructures evolve over time. To

this end, we target the identification of discernible regularities and irregularities in such

infrastructures by isolating observable patterns in the generated graphs. In cyber-threat

infrastructures, a pattern is associated with possible relationships between domains, IPs,

owners and organizations. To infer patterns, we compute similarities between graphs

collected on a daily basis.

Computation of similarity between graphs is a challenging task especially when

dealing with large-scale evolving graphs. To overcome this challenge, we resort to the

so-called graph kernels [77, 172, 215]. A graph kernel is a function that computes the

similarity between graphs using linear methods. However, for large-scale graphs, graph

96

Decomposition

a b

c

a

b

c

a b

c d

a

b

a

c

b

c

a

b

a

c

b

d

. . .

a

b

a

c

Computing

Similarities

Graph Similarity Matrix

1 0.3

1

1

0.3

0.5

0

0.5 0

. . .

. . .

. . .

v11

v12

v13

v21

v22

v23

vn1

vn2

h21, h22, ..., h2m

. . .

. . .

Generating

Vectors
Fingerprinting

a b

c
a b

c

a b

c d

a b

c d

a

b

c

a

b

c

hn1, hn2, ..., hnm

h11, h12, ..., h1m

Figure 4.6: Fingerprinting Approach

kernel methods generate vectors with high dimensions that are not easy to handle. To ad-

dress this issue, graph kernel methods require an important process known as fingerprint-

ing [172]. The latter consists of producing compact representations, known as signatures

(or fingerprints), for graph structures based on the generated vectors. Graph similarities

are then computed using these fingerprints. To generate graph fingerprints, we use the

min-hashing technique. Our approach of computing graph similarities is inspired by the

work done by Teixeira et al. [208] who introduced a fingerprinting technique for graph

kernels based on min-hashing. In the sequel, we introduce our methodology used to ob-

serve the presence of patterns and how they are inferred. First, we present the different

steps to compute similarities between graphs, as illustrated in Figure 4.6. These steps fall

97

into: (1) decomposition, (2) vector generation, and (3) fingerprinting.

Decomposition

During this step, we decompose each graph, obtained from the abstraction process, into

a set of substructures. These substructures may be obtained based on paths, cycles, trees,

etc. In our approach, we decompose graphs based on paths between graph vertices. In

other words, two vertices v1 and v2 form a substructure if there is an edge between v1 and

v2.

Vector Generation

This step consists of mapping graph substructures into vectors. Algorithm 3 implements

the vectors’ generation process. It takes, as input, a set of substructures S(G), obtained

from decomposing a graph G. For each substructure, we convert it into an integer value

using the formula in line 3, where α is a random number, P is a big prime number such

that 0 < α < P , and L is the labeling function that returns the number of shared malware

between vi and vj .

Algorithm 3 Vector Generation
Input: Graph G,Set of substructures S(G)
Output: V ector V
i := 1
for Substructure(vi, vj) ∈ S(G) do

x := (α L(vi, vj))(mod P)
V [i] := x
i++

end for
return V

98

Fingerprinting

The vectors generated from the graph substructures might have high dimensionality espe-

cially for large-scale graphs. To reduce the dimensionality of a vector, we use a technique,

known as fingerprinting, to produce a compact representation that is easy to handle. To

this end, we adopt the ideas presented in [208] to fingerprint graphs based on min-hashing.

The fingerprinting method is presented in Algorithm 4. It takes, as input, a vector gen-

erated from the substructures of a graph G and a set of m hash functions h1, h2, ..., hm.

It produces, as output, a fingerprint of graph G, which is a compact representation of the

input vector. The fingerprint consists of a vector of m min-hash values, where m is the

number of hash functions.

Algorithm 4 Fingerprinting
Input: Vector V of a graph G
Input: Set of hash functions H: h1, h2, ..., hm
Output: Graph fingerprint F

for i := 1; i <= |H|; i++ do
F [i] := min(hi(V))

end for
return F

Graph Similarities Computation

Graph similarities are represented through a matrix, where each value is proportional

to the number of values, in the min-hash vectors, that are shared between graph pairs

(Figure 4.6). This matrix is important to group graphs with proportional similarities into

groups that can be good candidates to detect patterns between corresponding min-hash

99

values. The graph similarity matrix provides a big picture of the evolution of cyber-threat

infrastructures over time. However, it needs to be leveraged to extract patterns effectively.

To this end, we propose an algorithm to infer patterns as explained hereafter.

Pattern Time-Based Inference

To extract patterns, we elaborate a time-based inference algorithm (Algorithm 5). This

algorithm takes, as inputs, a similarity matrix, an analysis period (in terms of days), a

time window (usually one day), and a density threshold to filter days where we have low

similarities in the matrix. The algorithm collects common patterns, by sliding the time

window through the analysis period, and checks if the similarity value is higher or equal to

the density threshold. If so, we compute the intersection between patterns found on days

representing the row and column index in the similarity matrix. The collected patterns

are stored in a list structure that we sort at the end to collect the most or less occurring

patterns.

Algorithm 5 Pattern Inference
Input: Simlarity Matrix M ,Analysis Period t,Time Window w,Threshold th
Output: List of patterns P

for i := 1; i <= t; i++ do
for j := i+ 1; j <= i+ w; j ++ do

if M [i][j] >= th then
I := Patterns[i] ∩ Patterns[j]
P .append(I)
clear(I)

end if
end for
sort(P)

end for
return P

100

4.3 Experimental Results

In the sequel, we present the results of our analysis of cyber-threat infrastructures. The re-

sults include descriptive statistics, badness ranking and patterns inference. It is important

to mention that due to the sensitivity of the collected data, we have anonymized domains,

IPs, organizations and owners.

4.3.1 Dataset Description

Our dataset consists of one year malware data collected from 25th August 2013 to 25th

August 2014. Table 4.1 presents some statistics regarding the collected data. It is impor-

tant to mention that the domains are filtered and do not contain legitimate domains that

are listed in the top one million Alexa white-list domains [1].

Collected Data Statistics
Malware samples 4, 717, 628
Domains 9, 303, 378
Second-level domains 151, 757
IPs that domains resolve to 240, 174
IPs that malware connect to 118, 270
Domain Whois records 110, 414
IP Whois records 287, 005

Table 4.1: Statistics of the Dataset

4.3.2 Descriptive Statistics

In this section, we present some descriptive statistics that we generated from our analysis

of cyber-threat infrastructures.

101

Domains & Resolving IPs

2nd Level Domain # Malware
*il.ru 252, 358
*entre.ru 194, 749
*soft.com 190, 327
*update.com 166, 995
*admr.com 160, 123
cloud*.net 137, 883
*lytics.com 119, 233
*box.net 113, 619
*host2.com 110, 373
*tal.com 106, 817

Table 4.2: Domains vs. Number of Malware

Table 4.2 lists the top-10 most visited second-level domains by malware. We notice

that five out of ten of these domains are legitimate. This can be explained by the fact

that malware samples tend to test connectivity by visiting legitimate domains or redirect-

ing access to legitimate domains to fake web-pages. Malware also connect to legitimate

domains to download vulnerable patches of operating systems or software to exploit vul-

nerabilities and perpetrate malicious activities.

Domain # IPs
j.nb*.com 23, 021
ip*.33*.org 10, 779
f.nb*.com 10, 313
i.nb*.com 7, 130
g.nb*.com 5, 825
*sopuli.*to.org 4, 300
h.nb*.com 4, 232
e.nb*.com 3, 963
router.bi*.com 3, 573
*lytics.com 3, 342

Table 4.3: Domain vs. Number of Resolving IPs

102

Table 4.3 lists the top-10 most fast-fluxing domains (domains that resolve to many

IPs). We observe the presence of domains that have the same second-level domain,

nb*.com, and resolve to many IP addresses. One main observation from the aforemen-

tioned table is that fast flux and dynamic generated domain names are still widely used

by malware.

IP # Domains
184.1xx.xxx.x6 171, 388
199.xxx.xx.xx0 125, 454
184.x7x.xxx.xx5 90, 766
184.x7x.xxx.xx0 84, 296
184.x7x.xxx.xx8 82, 104
216.2xx.xxx.x5 21, 402
216.2xx.xxx.x1 20, 521
46.xx.xxx.x0 13, 606
162.xxx.x.xx4 7, 410
204.xx.xxx.x7 7, 178

Table 4.4: Resolving IPs vs. Number of Domains

Table 4.4 illustrates the most shared resolving IPs between domains. We observe

the presence of resolving IPs belonging to the same IP space. There are two IP spaces

containing many resolving IP addresses. These IPs are listed in blue color. The pres-

ence of common IP spaces implicitly infers that cyber-criminals are prone to use an IP

infrastructure to perpetrate malicious activities, or infect vulnerable IP spaces to let them

be part of their botnets. The IP address listed in red color represents the most resolved

IP. By tracking back associated domains, we observe that it resolves to domains dynam-

ically generated and belonging to the same second-level domain. The domain generator

103

associated with this IP generates a set of letters and digits. The length of the chars se-

quence is 30. The second-level domain is *eker.com. Malware families associated with

the top listed IP are: antiav, barys, graftor, injector, ramnit, sality, slugin, swisyn, symmi,

vbinject, virut and zusy.

Network # IPs
ORG1(CHINA)-GD 12, 880
ORG1(CHINA)-JS 7, 245
ORG2(CHINA)-SD 5, 113
ORG2(CHINA)-HA 3, 745
ORG2(CHINA)-HE 3, 597
ORG1(USA)-2011L 3, 255
ORG1(CHINA)-SC 3, 232
ORG1(CHINA)-FJ 3, 001
ORG1(CHINA)-HB 2, 844
ORG2(CHINA)-LN 2, 815

Table 4.5: Network Name vs. Number of Resolving IPs

Table 4.5 lists the number of resolving IPs per network name belonging to organi-

zations. We observe that China has the highest number of resolving IPs since 9 out of 10

network names spread throughout different Chinese regions. There is only one American

network name that is present in the top-10 of network names containing resolving IPs.

Connected IPs

Table 4.6 lists the number of malware that connect to IPs. Connected IPs are directly

accessed by malware through conventional protocols (e.g., FTP, IRC, and SMTP) and un-

conventional TCP and UDP ports. In contrast to resolving IPs, connected IPs are spread

through many IP spaces. We observe that all the listed IPs are from different IP spaces.

104

Domain # Malware
93.xxx.xx.xx0 11, 553
65.xx.xx.xx7 4, 497
219.xxx.x.xx7 4, 097
113.xx.xxx.xx6 3, 223
95.xxx.xx.xx3 2, 719
124.xxx.xxx.6 2, 609
147.xxx.xxx.x7 2, 498
69.xxx.xx.x0 2, 429
89.xxx.xx.xx4 2, 253
125.xx.xxx.x4 2, 139

Table 4.6: Connected IP vs. Number of Malware

This can be explained by the absence of fast-fluxing. IPs are dedicated to be a depot of

stolen information, a spamming server, IRC channel, or a nest of other malware samples

ready to be downloaded. The top listed connected IP has been associated with a VPN

anonymity service. We observe a high interaction with this IP and the following mal-

ware families:antiav, barys, esfury, hype, injector, navipromo, pirminay, ramnit, slugin,

swisyn, symmi, vbinject, virut, vundo, and zbot.

Network # IPs
ORG1(MALAYSIA)-HSDPA 10, 093
ORG1(INDIA)-SouthZone 2, 176
ORG1(CHINA)-GD 1, 089
ORG1(KOREA) 837
ORG1(USA)-2011L 739
ORG3(CHINA) 681
ORG1(CHINA)-JS 604
ORG2(KOREA) 472
ORG4(CHINA) 358
ORG2(USA) 309

Table 4.7: Network Name vs. Number of Connected IPs

Table 4.7 illustrates the number of connected IPs within top-10 network names. We

105

observe that 8 out of 10 network names are located in Asian countries. The number of

organizations is 9, among which 3 are Chinese organizations, 2 are Korean and American

organizations. However, top ranking network names belong to a Malaysian and an Indian

organization respectively. The Malaysian network name is associated with 3 malware

samples, namely, a variant of zlob, a variant of zbot, and a variant of proxyTroj. The latter

is a proxy Trojan, which infects computers to play the role of a Command & Control and

bot at the same time. Usually, such malware variants tend to communicate and cooperate

through infected machines.

Whois Information

Registrant # Domains
Registration private 2, 983
Whoisguard protected 744
Domain administrator 632
Domain admin 451
Whois Agent 378
Perfect Privacy LLC 274
E*l Y. 187
Whois Privacy Protection Service 184
Private Registrant 163
Oneandone Private Registration 123
Spy Eye 120
This domain for sale toll free: *-822-* 104
DNS Admin 92
Reactivation Period 92
Domain Manager 75

Table 4.8: Registrant vs. Number of Domains

Table 4.8 lists the different registrants and the corresponding number of domains.

We notice that people behind suspicious domains use privacy services to protect their

106

identities. Thus, there exists a big number of domains that share the same private reg-

istrants. In the aforementioned table, 12 out of 15 registrants are protected by privacy

services and one registrant has a regular name (E*l Y.). We observe also the presence

of a registrant with the name of a well-known malware family, namely, Spy Eye [194].

The domains registered with Spy Eye have been visited by 830 malware samples, mainly

belonging to the following malware families: conjar, fareit, nebuler, zbot and zusy (zbot

variant). All these families are Trojan bots involved in password stealing, downloading

other malware samples, modifying system files and registry, adding startup items to sys-

tems, etc. We also notice that there are 104 domains registered with a message (This do-

main for sale toll free: *-822-*). This phenomenon is known as domains parking, where

blackhat Search Engine Optimization (SEO) people are used to infect machines with mal-

ware samples to contact these domains and make them visible for different search engines.

The more a domain is visible, it is easier to sell it.

Address # Domains
P.O. Box ∗ ∗ ∗ ∗ − ∗ ∗ ∗ ∗∗ Panama 708
∗ ∗ ∗ ∗ ∗ Northsight blvd PMB**9 USA 379
∗ ∗ ∗ ∗ ∗ Gran bay parkway w. USA 272
∗ ∗ ∗ ∗ ∗ P.O. Box ∗∗ Beach Australia 228
∗ ∗ ∗ ∗ ∗Memorial Dr. #935 USA 186
Ilyinka Street ∗∗ Russia 120
∗ ∗ ∗ ∗ ∗ 24th Street USA 115
∗ ∗ ∗ Lee Road Suite ∗ ∗ 0 USA 108
∗ ∗ ∗Main street #∗ ∗ 9 USA 108
∗ ∗ − ∗ ∗ Boulevard Massena France 87

Table 4.9: Physical Address vs. Number of Registered Domains

107

Table 4.9 lists the different physical addresses associated with registered second-

level domains. We notice that 708 second-level domains are registered with an address

located in Panama. This address corresponds to a privacy service that hides relevant regis-

trants’ information. This service is prone to suspicious activities since it serves spamming

domains, websites of companies involved in robot-calls and scam abuses.

4.3.3 Badness Ranking

One of the goals of this research effort is to quantify the badness of cyber-threat infras-

tructures’ elements. We use the badness metric on a daily basis to monitor the aliveness

of badness for different IPs, domains, owners or organizations. In the sequel, we provide

a description of different observations found on the computation of badness scores.

Domain Avg Score ×103
*entre.ru 5.1194617836
*box.net 3.50800756525
*spectr.ru 2.89366998268
*file.ru 2.33333105403
*sung.ru 2.17069956058
*express.ru 2.0137619806
*ldr.ru 1.6519902951
*.elb.*aws.com 1.43752913358
d1sx0cjuasqkw9.*ront.net 1.41139045489
*pro.ru 1.40483436327

Table 4.10: Top-10 Domains Badness Scores

Table 4.10 illustrates the top-10 average badness scores for domains observed on

one year. We notice that 7 out of 10 domains have “.ru” extension. One of the obtained

domains is dynamically generated. An interesting fact is that 5 out of 7 “.ru” domains

108

are registered with the same information (registrant is known as “Private Person” and the

same name servers). The number of associated malware is 830. In addition, these domains

share a lot of malware families, spanning over bot Trojans and bitcoiners, mainly badur,

bitcoinminer, graftor, kryptik (cryptolocker), loadmoney, minggy, strictor, symmi, and

zusy (zbot variant). We suspect that people belonging to the same criminal group use the

same registrant information and are behind bitcoining campaigns and botnet activities.

IP Avg Score ×103
93.xxx.xx.xx0 6.90947359832
46.xxx.xxx.xx9 5.76183602875
113.xx.xxx.xx6 5.1836928519
220.xxx.xxx.7 4.53174275775
125.xx.xxx.x4 4.52513888983
124.xxx.xxx.x1 4.51910871828
221.xxx.xxx.x8 4.31768525507
91.xxx.xx.x0 3.06311160603
239.255.255.250 2.88498391036
89.xxx.xx.xx4 2.5103999827

Table 4.11: Top-10 Connected IPs Badness Scores

Table 4.11 illustrates the top-10 average badness scores for connected IPs. The top

ranked badness IP is the same leading IP “93.xxx.xx.xx0”, observed in Table 4.6. The

same observation can be done on IPs “113.xx.xxx.xx6” and “125.xx.xxx.x4”, which are

present in both Tables. The reason is that these IPs have maintained a badness score

throughout the whole year, whereas other IPs, listed in Table 4.6, have not maintained

their badness score as much as IPs listed in Table 4.11. It is important to notice the

presence of the IP “239.255.255.250”, which is SSDP multicast reserved IP. This IP is

mainly used by what are called Universal Plug and Play (UP&P) malware families, e.g.,

109

conficker, downadup and their variants. These malware infect other machines through

vulnerabilities found in Windows server services (e.g., RPC Handling Remote Code Ex-

ecution Vulnerability). In [14, 133], the authors illustrate how UP&P devices can be used

as an infection vector through SSDP protocol. Such vector of infection is still active since

we observe a lot of new variants connecting to “239.255.255.250” IP address.

0

5

10

15

20

25

30

35

40

0 30 60 90 120 150 180 210 240 270 300 330 360

Sc
o

re
 ×

1
0

3

Days Index

*entre.ru *box.net *spectr.ru *file.ru *sung.ru

Figure 4.7: Top-5 Domains Score Trend

0

0.5

1

1.5

2

2.5

3

0 30 60 90 120 150 180 210 240 270 300 330 360

Lo
g(

Sc
o

re
+

1
)

Days Index

93.xxx.xx.xx0 46.xxx.xxx.xx9 113.xx.xxx.xx6 220.xxx.xxx7 125.xx.xxx.x4

Figure 4.8: Top-5 IPs Score Trend

110

In Figures 4.7 and 4.8, we present the evolution of the badness scores for the top-

5 domains and connected IPs. We observe that the badness of domains has a periodic

badness persistence. For instance, the domain “*entre.ru” had high badness scores during

the first 60 days and the domain “*box.net” had high badness scores during the last 70

days. Similarly, the domain “*spectr.ru” had high badness scores during a period of 40

days, the domain “*file.ru” had high badness scores during a period of 75 days, and the

domain “*sung.ru” had high badness scores during 30 days. However, we can observe

some sporadic changes in scores for all the domains (spikes after observing low badness

ranking). For instance, the domain “*entre.ru” had some changes of scores at days 95,

149, 334 and 345. Similarly, the domain “*spectr.ru” had some changes of scores between

day 195 and day 210 and the domain *sung.ru” had changes of scores at days 96, 150,

335 and 346. In contrast to domains, connected IPs show more sporadic patterns (abrupt

changes of scores). All the observed IPs had idle time period, where their badness scores

were equal to 0. For instance, the IP “93.xxx.xx.xx0” had an abrupt change in day 147

and the IP “113.xx.xxx.xx6” had an abrupt change in day 200.

Figure 4.9 illustrates different owners sharing malware samples in July 2014. The

colored graph network contains different communities, obtained by applying a fast un-

folding community detection algorithm [34], where each color represents a community.

We managed to obtain 23 communities. The graph nodes have been anonymized. Notice

also that the bigger is a node, the higher is its badness score. For instance, the per-

son “A.Di.M” has the highest badness score (0.029), followed by the person “D.VAN.A”

111

(score of 0.028). The third place is shared between three persons, namely, “M.K.S.M”,

“A.K”, and “A.D.de.M.S”, with a score of 0.026.

Customer 0...

Third*.NET

A. Z

G. F. T

R. de. A. L

A. K

Domain Ops...

P. Y

H. H. S

UziC*

WhoisProte...

c* fma

University1

SWITCH

A. D. de M...

M. K. S. M

G. C. O.

A. V.

Registrati...
Private Re...

D. T

M. H.

Authorized...

E* Jr

WhoisGuard.

J* L*

A. C. S

M. P.

T. S

Privacy Gr...

*Net snc d...

W. P.

G. de. M

V. B. K

M-L. A

C. Computer

R. V. H

R. S

A. S

E. M

O. S Jr

J. L

S. J. N

PERFECT *,...

L. A. Jr.

C. E. G. C

C. J. T.

University2

No* Tec*

Bit*

D*dot Priv...

A. R
T. R

D. Van. A

J. R J. E
*SOLUTIONS

Admin

J. K

C. M. C

J. Del B. Jr

P. H.Jin

A. Di.M

M. N

O* a.s.

DI BI* G. ...

Web L*

Y. C

Domain Admin

P. L

small*

B. A

S. N

M. P

R. K F. L

M* Privacy...

L. C

WhoisProte...

P. S

PERFECT *
*IP Net. O...

S. P. A

Mr.S.D
F. S

M. A. de A...

University3Mr.S.D

B. B

L. P

Y. W

Private Re... Sister M. C

L* Represe...

S. F. de O

C. S

A. M

.* Interne...

G. P. da. S

and Priv...

I. P

E. F

T. K

I. K

W. H. de. C

V. K

B. Turk

R. Nos

A. A

M. H

V. V. Di S...

Hotel D* srl

A. O. S

Amiyo

Figure 4.9: Registrants Communities and Badness Scores

4.3.4 Patterns Inference

Figures 4.10 and 4.11 illustrate the similarity matrix obtained during one year period. A

major observation is that domains have more patterns than connected IPs. Similarly, to

badness ranking, patterns in domains are more persistent and periodic. We observe high

density in the first and last semesters in domain patterns similarity matrix. Connected IPs

112

1 100 200 300 361

1

100

200

300

361

1 100 200 300 361

1

100

200

300

361

Figure 4.10: Domain Patterns Similarity Matrix

show less periodicity than domains. The presence of patterns tend to be ephemeral and

the maximum period is commonly in the order of 1 to 60 days. However, there exists

some IPs that have some persistence. Such case is illustrated hereafter in the pattern use

cases.

Patterns Days Mal. Owners
f*[dd]75.com;a*[dd]75.com 332 6,045 Registration Private
f*[dd]75.com;w*[dd]88 329 6,046 Registration Private
w*[dd]88.com;a*[dd]75.com 317 5,966 Registration Private

Table 4.12: Domain Patterns Use Case

Table 4.12 shows patterns involving dynamic domains generated in the same way.

113

1 100 200 300 356

1

100

200

300

356

1 100 200 300 356

1

100

200

300

356

Figure 4.11: IP Patterns Similarity Matrix

114

In this case, we have three domain names with two letters followed by two digits. All these

domains share a big number of malware samples (in order of 6, 000 malware samples).

In addition, they have the same owner protected by the same privacy service. Such use

case acknowledges the observation found in Table 4.8, i.e., the hosting companies with a

privacy service are nests for suspicious domains.

Patterns Days Mal. Network Names
220.xxx.xxx.7;125.xx.xxx.x4 317 2123 ORG1-BJ;ORG5
220.xxx.xxx.7;124.xxx.xxx.x1 311 2068 ORG1-BJ;ORG1-HE
221.xxx.xxx.x8;125.xx.xxx.x4 289 1938 ORG6;ORG5
220.xxx.xxx.7;221.xxx.xxx.x8 289 1948 ORG1-BJ;ORG6
124.xxx.xxx.x1;125.xx.xxx.x4 278 1925 ORG1-HE;ORG5
124.xxx.xxx.x1;221.xxx.xxx.x8 123 1836 ORG1-HE;ORG6

Table 4.13: IP Patterns Use Case

Table 4.13 shows IP patterns connected by thousands of malware samples. All these

IPs are located in China, where we observe 4 organizations with 5 network names. All

the patterns have appeared during long time periods: more than 300 days for the two

first patterns, 289 days for the third and fourth patterns and 123 days for the last pattern.

This use case indicates that there is a cluster of IP patterns that represents a collaborative

malware activity in China.

4.4 Conclusion

In this chapter, we have presented an approach to investigate cyber-threats and the un-

derlying infrastructures. To this end, we have used graph-theory concepts to rank the

badness of different infrastructure elements. This allowed us to identify key players and

115

quantify the sharing among these players. This is of paramount importance as it helps to

unveil potential criminal groups. Moreover, we have presented a methodology to track

the evolution of cyber-threat infrastructures over time and infer patterns of cyber-criminal

activities. Using one year dataset collected from dynamic malware analysis, we have de-

rived important insights about cyber-threats. In the next chapter, we rely on another data

extracted from dynamic malware analysis to generate network cyber-threat intelligence.

We use network traces to design and integrate techniques to fingerprint maliciousness in

IP traffic. The fingerprinting is two-fold: a packet header flow-based approach and deep

packet inspection using signal and NLP techniques.

116

Chapter 5

Malicious Traffic Fingerprinting

5.1 Overview

In this chapter, we address the problem of fingerprinting maliciousness of traffic for the

purpose of detection and classification. We aim first at fingerprinting maliciousness by

using two approaches: Deep Packet Inspection (DPI) and IP packet headers classifica-

tion. To this end, we consider malicious traffic generated from dynamic malware analysis

as traffic maliciousness ground truth. In light of this assumption, we present how these

two approaches are used to detect and attribute maliciousness to different threats. In this

chapter, we elaborate a comparative study between two traffic maliciousness fingerprint-

ing techniques, Deep Packet Inspection (DPI) and IP packet headers classification. We

evaluate each approach based on its detection and attribution accuracy as well as its level

of complexity. The outcomes of both approaches have shown promising results in terms

117

of detection; they are good candidates to constitute a synergy to elaborate or corroborate

detection systems in terms of run-time speed and classification precision. In Section 5.2,

we describe how we collect malicious traffic. In Section 5.3, we expose how we finger-

print maliciousness based on packet headers flows. Section 5.4 entails how we fingerprint

maliciousness of packets based on DPI. We entail different results of both approaches in

Section 5.5. We discuss the advantages and drawbacks of proposed fingerprinting ap-

proaches in Section 5.6. Finally, we conclude the chapter with few remarks in Section

5.7.

5.2 Traffic Maliciousness Ground Truth

We execute collected malware samples in a controlled environment (sandbox) to generate

representative malicious traffic. This is used as a ground truth for maliciousness finger-

printing. The sandbox is based on a client-server architecture, where the server sends

malware to clients. It is important to mention that the dynamic analysis setup allows mal-

ware to connect to the Internet to generate inbound/outbound malicious traffic. Figure 5.1

illustrates the dynamic malware analysis topology. We receive an average of 4, 560 mal-

ware samples on a daily basis from a third party. We execute the malware samples in

the sandbox for three minutes. We chose this running period to make sure that we can

handle up to 14, 400 malware runs per day. The period gives the ability to run all mal-

ware samples with a re-submission. The latter is important in case where malware does

not generate network traffic during the initial runs. For each run, a client monitors the

118

behavior of each malware and records it into report files. These files contain malware

activities such as file activities, hooking activities, network activities, process activities,

and registry activities. The setup of dynamic malware analysis lies in a network, which is

composed of a server and 30 client machines. The server runs with an Intel(R) CoreTM

i7 920@2.67 GHz, Ubuntu 11 64 bit operating system and 12.00 GB of physical memory

(RAM). Each client runs with an Intel(R) CoreTM 2 6600@2.40 GHz, Microsoft Win-

dows XP Professional 32-bit operating system and 1.00 GB of physical memory. Such

physical machines are used for the reason that some malware samples cannot run in vir-

tual machines. As a downstream outcome of the aforementioned dynamic analysis, we

gathered the underlying traffic pcap files that were generated. The dynamic malware anal-

ysis has generated approximately 100, 000 pcap files labeled with the hashes of malware,

which corresponds to a size of 3.6 GB. In our work, we considered inbound and out-

bound traffic generated by malware labeled by Kaspersky malware naming schema [3].

The reasons behind using this naming schema are as follows: (1) We noticed that it

manages to cover the naming of the majority of malware samples considered in exper-

iments. (2) The malware naming provided by Kaspersky follows the malware convention

name (Type.Platform.Family.Variant). The number of bidirectional flows is 96, 235 and

the number of unidirectional flows is 115, 000.

119

Malware
Binaries
Storage

Gateway

Clients

Server

Clients

Internet

1- The Server sends malware sample to clients.
2- The Server collects malware behavior reports and pcaps.

1- Clients run malware samples and report their activities in reports and pcaps.
2- Clients send reports and pcaps to the server.

Figure 5.1: Dynamic Malware Analysis Topology

5.3 Packet Headers Flow-Based Fingerprinting

In this section, we describe how packet headers flow fingerprinting is done. By finger-

printing, we mean (1) malicious traffic detection and (2) malware family attribution. First,

for detection, we extract bidirectional flow features from malicious traces generated from

dynamic malware analysis, together with benign traces collected from trusted third par-

ties. These features are used by classification algorithms to create models that segregate

malicious from benign traffic (see Section 5.3.1). Regarding attribution, we elaborate non-

deterministic malware family attribution based on Hidden Markov Models (HMMs) [65].

The attribution is done through probabilistic scores for different sequences of malicious

labeled unidirectional flows. The obtained models act as probabilistic signatures charac-

terizing malware families.

120

5.3.1 Malicious Traffic Detection

Malicious traffic detection’s goal is to isolate malicious communication sessions. These

sessions include flows used to perform various malicious activities (e.g., malware pay-

load delivery, DDoS, credentials theft). These flows are usually intermingled with a large

portion of IP traffic that corresponds to benign activities over computer networks. As

such, maliciousness detection amounts to the segregation of malicious from benign flows.

To this end, we represent flows through a set of attributes (features) that capture their

network behaviors. By leveraging these features, we create classifiers that automatically

generate models to detect malicious traffic. With this in mind, we define four phases to

infer maliciousness at the network level: selecting and extracting the bidirectional flow

features, labeling of the traffic (malicious and benign), training machine learning algo-

rithms, and evaluating the classifiers produced by these algorithms. Figure 5.2 illustrates

how detection of maliciousness is performed.

Malicious
Traffic

Flow Features
Extraction

Training Set

Dynamic Malware
Analysis

Validation

Clean Traffic

2

13

34

5

0

Classifier Testing Set

Figure 5.2: Flow-Based Detection Approach

121

Benign Traffic Datasets

For the purpose of building a classification model that distinguishes between malicious

and benign traffic, we collected benign traffic from WISNET [8] and private companies.

These datasets have been built to evaluate Intrusion Detection Systems in terms of false

alerts and to detect anomalies in network traffic. In our work, we use such datasets to

build baseline knowledge for benign traffic. These datasets have been used together with

the malicious traffic dataset to assess classification algorithms in terms of accuracy, false

positives and negatives. Table 5.1 shows the number of benign flows in each dataset.

The different datasets used in this work illustrate four different location datasets, namely,

residential setting, research laboratory, ISP edge router and private company networks.

Source Bidirectional Flows Traffic Source
WisNet (Home) 10, 513 (85MB) Residential setting
WisNet (ISP) 65, 000 (1.1GB) Research laboratory
WisNet (SOHO) 16, 504 (1.3GB) Edge router of an ISP
Private 64, 004 (5.6GB) Private company

Table 5.1: Benign Datasets

Bidirectional Flow Features Extraction

We capture malicious network traces from the execution of malware binaries in Threat-

Track’s sandbox [210]. We label these traces accordingly as malicious, while the clean

traffic traces obtained from trusted third parties [8] are labeled as benign. Flow features

are extracted from these labeled network traces to capture the characteristics of malicious

122

and benign traffic. It is important to mention that these features can be extracted even

when the traffic is encrypted, as they are derived from flow packets headers. The flow

features exploited are mainly based on flow duration, direction, inter-arrival time, number

of exchanged packets, and packets size.

Features
1 Flow Duration
2 Number of forward packets
3 Number of backward packets
4 Protocol
5 Minimum inter-arrival time for forward packets
6 Maximum inter-arrival time for forward packets
7 Mean inter-arrival time for forward packets
8 Std deviation inter-arrival time for forward packets
9 Total forward packets size
10 Minimum forward packets size
11 Maximum forward packets size
12 Mean forward packets size
13 Std deviation forward packets size
14 Minimum inter-arrival time for backward packets
15 Maximum inter-arrival time for backward packets
16 Mean inter-arrival time for backward packets
17 Std deviation inter-arrival time for backw. packets
18 Total backward packets size
19 Minimum backward packets size
20 Maximum backward packets size
21 Mean backward packets size
22 Std deviation backward packets size

Table 5.2: Bidirectional Flow Features

A bidirectional flow is a sequence of IP packets that share the 5-TCP-tuple (source

IP, destination IP, source port number, destination port number, protocol). The outbound

traffic is represented by the forward direction, while the backward direction represents the

inbound traffic. In terms of design and implementation, the module in charge of network

traces parsing, labeling, and feature extraction reads traffic using jNetPcap API [2], which

123

decodes captured network flows in real-time or offline. This module produces values for

different features from network flows. The resulted values are stored in features files that

are provided to Weka [7]. The network traces parser represents each flow by a vector of

22 flow features. Table 5.2 illustrates the description of the bidirectional flow features.

Traffic Classification

The feature files resulting from the previous phase are provided as input to classification

algorithms. The intent is to build models that have the ability to distinguish between

malicious and benign flows. To this end, we use machine learning algorithms, namely,

Boosted J48, J48, Naïve Bayesian, Boosted Naïve Bayesian, and SVMs. The classifica-

tion module is based on a Java wrapper that runs these machine learning algorithms. The

module has two execution phases: learning and testing. In the learning phase, we build

the classifier using 70% of malicious and benign traces. In the testing phase, we evaluate

the classifier with the rest of the data (30%). It is important to mention that training and

testing datasets do not overlap with each other. In the sequel, we give a brief overview of

the classification algorithms.

J48 Algorithm: It is a Java implementation of C4.5 classification algorithm [169].

J48 [73] builds the tree by dividing the training data space into local regions in recursive

splits. The split is pure if all observations in a decision branch belong to the same class.

To split the training dataset, J48 computes the goodness of each attribute (feature) to be

the root of a decision branch. It begins by computing the information need factor. The J48

124

algorithm splits recursively datasets to sub-datasets and computes the information need

per feature. If the split is not pure (presence of many classes), the same process will be

used to split the sub-dataset into pure classes. The split stops if each sub-dataset belongs

to one class (pure split). The decision tree result is composed of nodes (the attributes) and

terminal leaves (classes). That will be used to identify the unseen data when the model is

deployed [84].

Naïve Bayesian Algorithm: It is based on Bayes’ theorem [84]. It is a statistical

classifier, which outputs a set of probabilities that show how likely a tuple (observation)

may belong to a specific class [84]. Naïve Bayesian assumes that the attributes are mutu-

ally independent. Naïve Bayesian starts by computing the probability of an observation.

Once the probabilities are computed, Naïve Bayesian associates each observation with the

class that has the higher probability with it. Naïve Bayesian is an incremental classifier,

which means that each training sample will increase or decrease the probability that a

hypothesis is correct.

Boosting Algorithm: It is a method used to construct a strong classifier from a

weak learning algorithm. Given a training dataset, the boosting algorithm incremen-

tally builds the strong classifier from multi-instances of a weak learning machine algo-

rithm [76]. Boosting algorithm takes, as input, the training dataset and the weak learn-

ing algorithm. It divides the training dataset into many sub-datasets (x1, y1), ..., (xi, yj),

where xi belongs to X (a set of observations) and yj belongs to Y (set of class attribute

values), and calls the weak learning algorithm to build the model for each sub-dataset.

125

The resulted models are called decision stumps. The latter examine the features and re-

turn the decision tree with two leaves either +1 if the observation is in a class, or −1

if it is not the case. The leaves are used for binary classification (in case the problem is

multi-classes, the leaves are classes). Boosting algorithm uses the majority voting schema

between decision stumps to build a stronger model.

SVM Algorithm: The Support Vector Machines (SVM) [74, 85] algorithm is de-

signed for discrimination, which is meant for prediction and classification of qualitative

variables (features) [156]. The basic idea is to represent the data in a landmark, where

the different axes are represented by the features. The SVM algorithm constructs a hyper-

plane or set of hyper-planes in a high-dimensional data. Then, it searches for the hyper-

plane that has the largest distance to the nearest training data points of any class. The

larger is the distance, the lower is the error of the classification.

5.3.2 Malicious Traffic Attribution

The attribution of malicious traffic to malware families corroborates detection since it (1)

shifts the anti-malware industry from the system level to the network level, and (2) eases

the mitigation of infected machines. It gives the ability to networking staff to undertake

actions against botnets, depots of stolen information, spammers, etc. For instance, if

an administrator notices the presence of malicious traffic in the network, and this traffic

can be attributed to a bot family. He/She responds to the threat by blocking malicious

connections and quarantine infected machines for a removal of malware. Thus, to enhance

126

maliciousness fingerprinting at the network level, we decide to integrate the malware

family attribution. To do so, we use network traces obtained from dynamic malware

analysis and index them with malware families. For each set of traces belonging to a

malware family, we extract sequences of unidirectional flows. These flows are labeled

through a clustering method. The labeled sequences obtained are used to train HMMs

for different malware families. Figure 5.3 illustrates how malware families’ attribution is

performed.

Dynamic Malware AnalysisMalware Feeds

…………………….

Indexation per Malware
Family

Network Traces

Sequencing Flows Labeling Sequences

Hidden Markov Modeling
Malware Family

Attribution Models

1

2

3

4

5

6

7

Figure 5.3: Non-Deterministic Approach for Malware Family Attribution

Malware Family Indexation

As a downstream outcome of dynamic malware analysis, we collect approximately 100, 0-

00 network traces (pcap files). Each trace is labeled by the corresponding malware sample

127

hash. We use Kaspersky malware name schema to recognize the malware family of each

hash. Subsequently, we index network traces based on their malware family. In this work,

we obtain 294 malware families.

Sequencing Flows

For each malware family, we browse collected network traces to extract unidirectional

flows. These flows fall into inbound and outbound flows, which are used to build se-

quences of flows. For each sequence, a flow precedes another flow if its timestamp occur-

rence precedes the timestamp of the following flow. Obtained sequences are indexed by

their corresponding malware family.

Labeling Sequences

In order to label different flows belonging to a sequence, we adopt a clustering approach.

The reason behind doing so is to characterize outbound and inbound malicious flows into

clusters representing their network behaviors. To do so, we represent flows by vectors of

45 features. Table 5.3 illustrates unidirectional flow features. To perform clustering of in-

bound/outbound traffic, we generate feature files that are readable by CLUTO clustering

toolkit [112]. This was used in diverse research topics such as information retrieval [241]

and fraud detection [162]. To label flows, we use the k-means Repeated Bi-Section al-

gorithm [198] implemented in CLUTO. This algorithm belongs to partitional clustering

algorithms. The latter are known to perform in clustering large datasets since they have

128

Features

Generic

1 Total number of packets.
2 Flow duration
3 Minimum inter-arrival time
4 First quartile of inter-arrival times
5 Median of inter-arrival times
6 Mean of inter-arrival times
7 Third quartile of inter-arrival times
8 Maximum inter-arrival time
9 Variance of inter-arrival times
10 Minimum of control data size
11 First quartile of control data size
12 Median of control data size
13 Mean of control data size
14 Third quartile of control data size
15 Maximum of control data size
16 Variance of control data size
17 Total not empty packets
18 Total packets size

Ethernet

19 Minimum size in Ethernet packets
20 First quartile size in Ethernet packets
21 Median size in Ethernet packets
22 Mean size in Ethernet packets
23 Third quartile size in Ethernet packets
24 Maximum size in Ethernet packets
25 variance size in Ethernet packets

Network

26 Minimum size in IP packets
27 First quartile size in IP packets
28 Median size in IP packets
29 Mean size in IP packets
30 Third quartile size in IP packets
31 Maximum size in IP packets
32 Variance size in IP packets

Transport

33 Total ACK packets
34 Total PUSH packets
35 Total SYN packets
36 Total FINE packets
37 Total Urgent packets
38 Total Urgent bytes
39 Minimum TCP segment size
40 Maximum TCP segment size
41 Mean TCP segment size
42 Minimum TCP window size
43 Maximum TCP window size
44 Mean TCP window size
45 Total empty TCP window packet

Table 5.3: Unidirectional Flow Features

129

a low computational cost [15, 113]. The k-means RBS algorithm derives clustering solu-

tions based on a global criterion function [239]. This algorithm initially creates 2 groups,

each group is then bisected until the criterion function is optimized. The k-means RBS

algorithm uses the vector space model [178] to represent each unidirectional flow. Each

flow is represented by a dimension vector fv = (f1, f2, . . . , fi), where fi is the ith uni-

directional flow feature. To compute similarity between vectors, we use the cosine func-

tion [178]. In order to cluster different unidirectional flows, we use a hybrid criterion

function that is based on internal and external functions. The internal function tries to

maximize the average pairwise similarities between flows that are assigned to each clus-

ter. Unlike the internal criterion function, the external function derives the solution based

on how the various clusters are different from each other. The hybrid function combines

external and internal functions to simultaneously optimize both of them. Based on the

k-means RBS algorithm, we create a set of experiments: inbound flow clustering solu-

tions and outbound flow clustering solutions. We choose a solution where the internal

similarity metric (ISIM) is high and the external similarity metric (ESIM) is moderate.

Hidden Markov Modeling

The Hidden Markov Model (HMM) is a popular statistical tool that models timeseries or

sequential data. In this work, we use HMMs to create non-deterministic models that pro-

file malware families. We want to establish a systematic approach to estimate attribution

of unidirectional flow sequences to different malware families. We choose HMMs due to

130

their readability since they allow sequences to be significantly interpreted, represented,

and scored. We observe that collected flows have different lengths, and therefore decide

to train HMMs based on sub-sequences with fixed length m. In order to fix the number

of states in HMMs, we set a sliding window n to represent different combinations of in-

bound and outbound flows. For instance, if we want HMM states to represent a singular

flow, there exist two possibilities: IN and OUT . If we want HMM states to represent a

sequence of two flows, there are four possibilities: IN/IN , IN/OUT , OUT/OUT and

OUT/IN . Similarly, if we want HMM states to represent a sequence of n flows, we ob-

tain 2n states. To train HMMs for each malware family with corresponding sequences, we

use the Expectation Maximization (EM) algorithm [132] integrated in the HMMall tool-

box for MATLAB [146] to learn hidden parameters of each 2n state HMM representing a

malware family.

Hidden Markov Models Initialization

To create models for different malware families, we initiate baseline HMMs. The states

are computed based on a sliding window that we apply on observed sequences. The

sliding window allows us to extract sub-sequences from sequences. For instance, for

a sequence (a, b, c) and a sliding window of length 2, we obtain sub-sequences (a, b),

(b, c). If we consider a HMM based on a sliding window of 1 flow, we result in 2 states

HMM since we can have an inbound flow or an outbound flow. If a HMM is based

on 2 flows, we obtain 4 states HMM since we can have an inbound/inbound pair, an

131

IN
0.5

OUT
0.5

0.5

0.5

0.50.5

Pr(OUT1),…,Pr(OUTx),Pr(IN1),…Pr(INy) Pr(OUT1),…,Pr(OUTx),Pr(IN1),…Pr(INy)

Figure 5.4: Two-State Initialization HMM

IN/IN
0.25

IN/OUT
0.25

0.5

0.5

Pr(OUT1),…,Pr(OUTx),Pr(IN1),…Pr(INy)

Pr(OUT1),…,Pr(OUTx),Pr(IN1),…Pr(INy)

OUT/OUT
0.25

0.5 OUT/IN
0.25

0.5

0.5

0.5

0.5

0.5

Pr(OUT1),…,Pr(OUTx),Pr(IN1),…Pr(INy)

Pr(OUT1),…,Pr(OUTx),Pr(IN1),…Pr(INy)

Figure 5.5: Four-State Initialization HMM

132

inbound/outbound pair, an outbound/outbound pair and an outbound/inbound pair. In

initialized HMMs, prior probabilities are uniformly distributed over different states. For

instance, if we consider a sliding window of length 2, we obtain 4 states HMM with a prior

probability of 0.25 for each state. The transition probabilities matrix is initialized such

that for each transition between a state si and other states, the probabilities are uniformly

distributed. If a state has 2 transitions, each transition has a probability of 0.5. The

emission probabilities matrix associates a state with an observation vector. Each element

of the vector is a probability of observing an inbound or outbound clustering label. For

the sake of simplicity, we illustrate, in Figures 5.4 and 5.5 initialization HMMs for a

sliding window length of 1 and 2 respectively. The observation probabilities are uniformly

distributed. Let us consider x as the number of input labels and y as the number of output

labels. For a 2-state HMM, we associate with the state IN an observation vector, where:

∀i ∈ [1, x]: b(ini) = 1/x

∀j ∈ [1, y]: b(outj) = 0

Similarly, we associate with the state OUT an observation vector, where:

∀i ∈ [1, x]: b(ini) = 0

∀j ∈ [1, y]: b(outj) = 1/y

For a 4-state HMM, we associate with the state IN/IN an observation vector,

where:

133

∀i ∈ [1, x]: b(ini) = 1/x

∀j ∈ [1, y]: b(outj) = 0

Similarly, we associate with the state OUT/OUT an observation vector, where:

∀i ∈ [1, x]: b(ini) = 0

∀j ∈ [1, y]: b(outj) = 1/y

Regarding states OUT/IN and IN/OUT , the observation vector is as follows:

∀i ∈ [1, x]: b(ini) = 1/(x+ y)

∀j ∈ [1, y]: b(outj) = 1/(x+ y)

Recursively, for a 2n-state HMM, the observation vectors are the same as a 4-state

HMM. If the states contain IN and OUT , the probabilities are equal to 1/(x+ y). If the

states contain just IN , the probabilities are equal to 1/x for all inbound labels and 0 for

all outbound labels. Similarly, if the states contain just OUT , the probabilities are equal

to 1/y for all outbound labels and 0 for all inbound labels.

5.4 Signal and NLP DPI Fingerprinting

In the sequel, we describe the DPI approach to detect maliciousness in network traffic.

The methodology used to analyze malicious packets is described in Section 5.4.1, whereas

the different knowledge base machine learning techniques are introduced in Section 5.4.2.

134

Section 5.4.3 describes the different steps to classify packets. In this approach, we look

at the packets, including both headers and payloads. Packets are considered as signals

inputs for fast spectral-based classification.

5.4.1 Core Principles

The essence of the whole packet analysis lies in the core principles, which fall into ma-

chine learning and Natural Language Processing (NLP) techniques. A set of malicious

packets (a network trace) is treated as a data stream signal, where n-grams are used to

build a sample amplitude value in the signal. In our case, we use bi-grams (n = 2) (two

consecutive characters or bytes) to construct the signal. The reasons behind using bi-

grams lay in: (1) It has shown its effectiveness in detecting C&Cs channels [82]; (2) it

is well established artifact integrated in the MARF framework and used to analyze signal

and Natural Language Processing (NLP).

Similarly to the aforementioned approach, the whole packet methodology has two

phases: (1) The training phase, where MARFPCAT learns from different samples of net-

work traces and generates spectral signatures using signal processing techniques; and (2)

the testing phase, where MARFPCAT computes how similar or distant training network

traces are from testing network traces. This approach is meant to behave like a signature-

based anti-virus or IDS, but using fuzzy signatures. However, we use as much as possible

combinations of machine learning and signal processing algorithms to assess their preci-

sion and runtime in order to select the best trade-off combination.

135

At present, we look at complete pcap files, which can affect negatively the MARF-

PCAT’s malware family attribution accuracy in the presence of encrypted payload. How-

ever, MARFPCAT processes network traces quickly since there is no pre-processing of

pcap traces (flows identification and extraction). MARFPCAT has the ability to control

thresholds of different algorithms, which gives flexibility in selecting the appropriate clas-

sification technique.

5.4.2 Knowledge Base

Collected malware database’s behavioral reports and network traces are considered as a

knowledge base, from which we machine-learn the malicious pcap samples. As such,

conducting the experiments fall into three broad steps: (1) Teach the system from the

known cases of malware from their pcap data. (2) Test on the known cases. (3) Test

on the unseen cases. In order to prepare data for training and testing, we used a Perl

script to index pcap traces with malware classes, and we used the same malware naming

conventions mentioned earlier. The index is in the form of a meta MARFCAT-IN XML

file, which is used by MARFPCAT for training or testing.

In contrast to the packet headers approach, where the benign traffic is collected

from third parties; the benign traffic is considered as a noise sample found in pcap traces.

To segregate such traffic from the malicious one, we use the low-pass filters and silence

compression. In addition, the signal of the benign traffic can be learnt and subtracted from

malicious traffic (malicious signal) to increase fingerprinting accuracy.

136

5.4.3 MARFPCAT’s DPI Methodology

In this part, we describe the different steps that are performed to fingerprint maliciousness

by using DPI approach. We compile manually annotated meta-XML index files with a

Perl script. The index file annotates malware network traces (pcaps) indexed by their

families. Once the annotation is done, MARF is automatically trained on each pcap file

by using a signal pipeline or a NLP pipeline (see Figure 5.6). The algorithms used in

the training phase are detailed in [134]. The MARFPCAT tool loads training data as a

set of bytes forming amplitude values in a signal (e.g, 8kHz, 16kHz, 24kHz, 44.1kHz

frequency). Uni-gram, bi-gram or tri-gram approaches can be used to form such a signal.

A language model works in a similar way, with the exception of not interpreting the n-

grams as amplitudes in the signal. After the signal is formed, it can be pre-processed

through filters or kept in its original form. The filters fall into normalization, traditional

frequency domain filters, wavelet-based filters, etc. Feature extraction involves reducing

an arbitrary length signal to a fixed length feature vector, which is thought to be the most

relevant features in the signal (e.g., spectral features in Fast Fourier Transform (FFT)

and Linear Prediction Coefficient (LPC)), min-max amplitudes, etc. The classification

stage is then separated to either train by learning the incoming feature vectors (usually

k-means clusters, median clusters, or plain feature vector collection combined with, for

example, neural network training), or testing them against previously learned models.

The testing stage is done on the training and testing data, originally two separated sets

with and without annotations. In our methodology, we systematically test and select the

137

Figure 5.6: MARF’s Pattern-Recognition Pipeline

best (a tradeoff between speed and precision) combination(s) of the different algorithms

available in the MARF framework for subsequent testing.

5.4.4 NLP Pipeline

In this section, we present the inner-workings of MARF framework’s. The latter uses

algorithms that come from the classical literature (e.g., [128]) and detailed in [141]. NLP

pipeline loading refers to the interpretation of the files being scanned in terms of n-grams

138

and the associated statistical smoothing algorithms resulting in a vector, 2D or 3D ma-

trix. In the case of static code vulnerability analysis, NLP pipeline has shown high pre-

cision [141]. However, its runtime was ≈ 10 times longer for an equivalent signal pro-

cessing run. A such, for the time being we stopped using NLP pipeline for maliciousness

fingerprinting in traffic. We plan to revive it with a more optimized implementation since

MARF framework is an open-source software.

Initially, we compile meta-XML files to index malware traffic instances. For each

indexed network trace, we use default uni-gram language models specification, described

in [134]. Then, we train the system based on the index to build the knowledge base (ma-

chine learning). This is done by loading n-grams and use statistical smoothing estimators.

We test again the training data against built models to deduce the best algorithms combi-

nations for the learning phase. Once the learning phase is done, we test obtained models

against testing data (network traces indexed by malware families). To improve the test-

ing of different learning models, we use a demand-driven distributed evaluation, which is

described in the sequel.

5.4.5 Demand-Driven Distributed Evaluation

To enhance the scalability of DPI evaluation approach [238], we converted the MARFP-

CAT stand-alone application to a distributed application using an educative model of com-

putation (demand-driven) implemented in the General Intensional Programming System

139

(GIPSY)’s multi-tier run-time system [83, 97, 159, 214], which can be executed distribu-

tively using Jini (Apache River) [69]. To adapt MARFPCAT to the GIPSY’s multi-tier

architecture, we create Problem-Specific Distributers Generator and Worker tiers (PS-

DGT and PS-DWT respectively). The generator produces demands of what needs to be

computed in the form of a file (binary) to be evaluated, and deposits such demands as

pending into a store managed by the demand store tier (DST). Workers pick up pending

demands from the store and then process them (all tiers run on multiple nodes) using a

traditional MARFPCAT instance. Once the result is computed, the PS-DWT deposits it

back into the store with the status set to computed. The generator “harvests” all computed

results and produces the final report for a test cases. Multiple test cases can be evalu-

ated simultaneously, or a single case can be evaluated distributively. This approach helps

coping with large amounts of data and avoiding recomputing tests that have already been

computed and cached in the DST.

The initial basic experiment assumes the PS-DWTs have the training sets data and

the test cases available from the beginning (either by a copy or via mounted volumes);

thus, the distributed evaluation concerns only the classification task as of this version.

The follow up work will remove this limitation. In this setup, a demand represents a file

to scan, which is deposited into the DST. The PS-DWT picks up the file and checks it

per training set that is already there, and returns a ResultSet object back into the DST

under the same demand signature that was used to deposit the path to scan. The result

set is sorted from the most to the least likely with a value corresponding to the distance

140

or similarity. The PS-DGT picks up the result sets, performs the final output aggregation,

and saves the report.

One of the output formats that MARFPCAT supports is FORENSIC LUCID [137],

a language used to specify and evaluate digital forensic cases. Following the methodol-

ogy of FORENSIC LUCID data export described in [139, 140], we use it as a format for

evidential processing of the results produced by MARFPCAT. The work [139] provides

details of the language; it suffices to mention that the report generated by MARFPCAT

in FORENSIC LUCID is a collection of warnings, which form an evidential statement in

FORENSIC LUCID.

5.4.6 Wavelets

As part of a collaboration project, wavelet-based signal processing for the purposes of

noise filtering is used in this work to compare it to no-filtering, or FFT-based classical

filtering. It has been also shown in [116] that wavelet-aided filtering could be used as

a fast pre-processing method for network application identification and traffic analysis

[119]. We rely on the algorithm and methodology described in [13, 107, 108, 183]. At

this point, only a separating Discrete Wavelet Transform (DWT) [86] has been tested.

Since the original wavelet implementation [183] is in MATLAB [129, 179], we use the

codegen tool [131] from the MATLAB Coder toolbox [130] to generate C/C++ code.

Then, we implement it in MARF and MARFPCAT language, namely JAVA. In addition,

the function for up/down sampling used by the wavelets function described in [144], is

141

also integrated in MARF framework.

5.5 Results

5.5.1 Non-DPI Approach

In the sequel, we present results obtained for Non-DPI fingerprinting approach. The

results fall into 3 parts: (1) classification results, (2) attribution results, and (3) computa-

tional complexity of the approach.

Classification

The purpose of this classification exercise is to determine whether we can segregate ma-

licious from benign traffic. In addition, we make a comparison between different classi-

fication algorithms in terms of accuracy and recall. Our intent is to identify a classifier

with high accuracy, low false positives, and low false negatives.

The results illustrated in Figures 5.7a, 5.7b, 5.7c, 5.7d, 5.7e and 5.7f demonstrate

that the Boosted J48 and J48 algorithms have shown better results than other machine

learning algorithms. They achieved 99% accuracy and less than 1% false positives and

negatives, respectively. The SVM algorithm has achieved good results with an accuracy

ranging between 89% and 95%. In contrast, Naïve Bayesian and Boosted Naïve Bayesian

algorithms have not achieved good results. As such, we can claim that the Boosted J48

algorithm is a good mean to differentiate between malicious and benign traffic.

142

0%

25%

50%

75%

100%

99.70% 99.55%

64.86% 64.86%

93.56%

A
c

c
u

ra
c

y

(a) Malicious vs. Benign (home)

0%

25%

50%

75%

100%

99.28% 99.25%

63.45% 63.45%

89.32%

A
c

c
u

ra
c

y

(b) Malicious vs. Benign (SOHO)

0%

25%

50%

75%

100%

99.02% 98.77%

70.29%

83.62%
89.06%

A
c

c
u

ra
c

y

(c) Malicious vs. Benign (ISP)

0%

25%

50%

75%

100%

99.84% 99.81%

60.00% 60.00%

95.64%
A

c
c

u
ra

c
y

(d) Malicious vs. Benign (Private)

0%

1%

2%

3%

4%

5%

BoostedJ48 J48 SVM

0.16% 0.21%

4.50%

0.33% 0.39%

4.77%

0.54% 0.48%

1.07%

0.00% 0.01%

0.89%

Home ISP SOHO Private Partner

(e) False Positive Rate

0%

2%

4%

6%

8%

10%

BoostedJ48 J48 SVM

0.13% 0.23%

1.94%

0.63% 0.83%

6.15%

0.16% 0.25%

9.59%

0.15% 0.17%

3.46%

Home ISP SOHO Private Partner

(f) False Negative Rate

Figure 5.7: Classification Algorithms Results

143

After finding that J48 is the most suitable algorithm, we used the 10-fold cross-

validation method to select the training and testing data. This is done to ensure that the

J48 algorithm maintains high accuracy and low false positive and negative rates, even if

the training and testing data change. Figures 5.8a, 5.8b, 5.8c and 5.8d summarize the

performance of the J48 algorithm in each data set by providing the accuracy and the rates

of false positives and negatives.

0.975

0.980

0.985

0.990

0.995

1.000

0.000 0.002 0.003 0.005 0.006 0.008 0.009 0.011

A
cc

u
ra

cy

AVG(FRP & FNR)

(a) Malicious and Benign Home Datasets

0.975

0.980

0.985

0.990

0.995

1.000

0.000 0.004 0.008 0.012 0.016 0.020 0.024

A
cc

u
ra

cy

AVG(FRP & FNR)

(b) Malicious and Benign ISP Datasets

0.950

0.960

0.970

0.980

0.990

1.000

0.000 0.004 0.008 0.012 0.016 0.020 0.024

A
cc

u
ra

cy

AVG(FRP & FNR)

(c) Malicious and Benign SOHO Datasets

0.950

0.960

0.970

0.980

0.990

1.000

0.000 0.005 0.010 0.015 0.020 0.025 0.030

A
cc

u
ra

cy

AVG(FRR & FNR)

(d) Malicious and Benign Private Datasets

60%

70%

80%

90%

100%

HOME ISP SOHO PRIVATE

A
C

C
U

R
A

C
Y

BENING DATASETS

BoostedJ48 &J48 BoostedNB NB SVM

(e) Change in Accuracy per Dataset

0.00

0.06

0.12

0.18

0.24

HOME ISP SOHO PRIVATE

A
V

G
(F

P
R

,
F

N
R

)

BENING DATASETS

BoostedJ48 & J48 NB BoostedNB SVM

(f) Change in Average of FPR and FNR per
Dataset

Figure 5.8: J48 Classifiers Performance and Generalization

The boosted J48 and J48 algorithms have achieved high accuracy detection and low

rates of false positives and negatives in multiple datasets. The fact that we use different

144

datasets has shown that the J48 classification approach is robust since it maintains greater

than 98% accuracy with less than 0.006 average false alerts for each dataset, as illus-

trated in Figure 5.8e and Figure 5.8f respectively. Thus, these two algorithms provide the

means necessary to make malicious traffic differentiable from benign traffic. Moreover,

the results conclude that our approach, based on classifying the flow features, can achieve

maliciousness detection in different benign traffic with a very high detection rate and low

false alerts. The J48 algorithm does not rely on features dependency and tends to perform

better with a limited number of classes, which is the case of our work since we have two

classes. On the other hand, Naïve Bayesian shows bad results since it relies on the inde-

pendence of features, which is not the case in maliciousness classification. For example,

packet length depends on frame length. Regarding SVM, we use it with the default option

where linear classification is performed. This raises a problem with probabilities of class

membership.

Attribution

In order to attribute malicious flows to malware families, we apply a clustering technique

to label different inbound and outbound unidirectional flows. We consider k-means RBS

clustering solutions for inbound and outbound traffic. The solutions are generated heuris-

tically by incrementing by two the number of clusters for inbound and outbound flows.

To evaluate the solutions, we take into account: (1) the high Internal Similarity Metric

(ISIM) average in all clusters, and (2) the moderate External Similarity Metric (ESIM)

145

average in all clusters. The ISIM average mirrors the cohesion between items (unidirec-

tional flows) within different clusters. The ESIM average defines the isolation between

different clusters. In our labeling process, we consider solutions that vary from 2 to 18

clusters. We consider up to 18 clusters to preserve the potential to have a sufficient num-

ber of labels for both inbound and outbound flows. Figures 5.9a and 5.9b illustrate the

ISIM and ESIM averages for different inbound and outbound clustering solutions. The

selection of labeling solutions is based on two criteria: (1) a high ISIM average ratio

(greater than or equal to 0.95), and (2) a moderate ESIM average ratio between clusters

(less than or equal to 0.5). As such, we consider only those solutions which vary from 12

to 18 clusters for both inbound and outbound flows.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18

Number Clusters

ISIM

ESIM

(a) Inbound Flows Clustering

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18

Number Clusters

ISIM

ESIM

(b) Outbound Flows Clustering

Figure 5.9: ISIM, ESIM vs. Clustering Solutions

By coupling inbound and outbound clustering solutions, we obtain 16 possible la-

beling combinations. For each combination, we compute the uniqueness of the collected

sequences. We observe the ratio of labeled sequences that are not shared by malware fam-

ilies. The higher the uniqueness of the sequences ratio, the higher the ability to segregate

malware families. We can thus limit the attribution of malicious flows to a limited number

146

of malware families. Table 5.4 shows the uniqueness ratio for each labeling combination.

Based on the obtained ratios, we choose a solution with 16 inbound flows and 18 out-

bound flows, since it has the highest uniqueness ratio. This labeling combination is used

to initialize HMMs and train them for each malware family.

Table 5.4: Uniqueness Ratio per Combination of Clustering Solutions

OUT Flows Clustering
12 14 16 18

IN Flows Clustering

12 0.7230 0.7097 0.7227 0.7315
14 0.7225 0.7242 0.7261 0.7337
16 0.7325 0.7358 0.7350 0.7361
18 0.7289 0.7319 0.7311 0.7282

We train HMMs by tuning the sliding window (number of states) to set up the num-

ber of states and the length of the training sequences. The training is based on an EM

algorithm, which iterates the computation of hidden parameters until the log-likelihood

reaches the maximum value. Before digging into the evaluation of HMMs, we need to

determine which length of training sequences we should consider to build models. To do

so, we vary the length of sequences and take note of how it impacts the prediction ability

of HMMs representing malware families. Table 5.5 illustrates the number of profiled mal-

ware families per HMM state and sequence length. By increasing the length of training

sequences, we obtain fewer numbers of HMMs for malware families. This is due to the

fact that some malware families do not have sequences of length greater than 2. It is thus

impossible to create training data to model them. Intuitively, if we increase the length of

training sequences (≥ 6), the number of HMMs will reduce. If we want to create HMMs

147

for all malware families, we have to consider training sequences of length 2. With re-

gards to detection, the cost of detecting 2 malicious flows is less expensive than detecting

between 3 to 6 malicious flows. If we consider training sequences of length 2, we need

to investigate two aspects: (1) the tradeoff between HMM expressiveness and learning

effort, and (2) the uniqueness ratio of sequences per malware family. These issues are

explained in what follows.

Table 5.5: Number of Malware Families per State and Sequence Length

Sequence Length
2 3 4 5 6

HMM States
2 294 294 274 256 242
4 294 277 274 254 245

171

111

68
50

36
28

37

37

19

16

20
14

14

11

13

8

8 5 8
11

10

10

7

3 3 2

12

7 4 5 3

4

1

4

1 3 3 2 3 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
0

20

40

60

80

100

120

140

160

180

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
9

4
3

4
6

4
8

5
0

5
3

6
3

7
1

1
0

8

1
3

2

1
9

5

N
u

m
b

e
r

o
f

Se
q

u
e

n
ce

s

Number of Malware Families

Total Number of Sequences = 794

Figure 5.10: Uniqueness of Sequences

• HMM expressiveness vs. HMM learning effort: The former is meant to provide a

high number of states to HMMs in order to generate more probabilistic HMM pa-

rameters with a greater ability to estimate potential sequences of malicious flows.

However, increasing the sliding window to generate more states for HMMs results

in generating more learning effort for HMMs. By varying the number of states from

148

2 to 4, the number of iterations increased for the majority of malware families. Ta-

ble 5.6 shows the number of iterations per HMM configuration (2 states to 4 states,

sequence length of 2 to 4). For 2 states HMMs obtained from training sequences

of length 2 to 3, the number of iterations does not exceed 2. For 2 states HMMs

obtained from training sequences of length 4, the number of iterations varies from

3 to 40. Similar results are shown for 4 states HMMs obtained from training se-

quences of length 2 to 4. Since the training sequence of length 2 allows profiling all

malware families, it is recommended to use 2 states HMMs with training sequences

of length 2 if we do not consider expressiveness of HMMs, or to use 4 states HMMs

with training sequences of length 2 if we require more expressive HMMs.

Table 5.6: HMMs vs. Number of Iterations

1 2 [3,20] [21,40] [41,60] [61,200]
HMM 2-2 16 278 0 0 0 0
HMM 2-3 0 294 0 0 0 0
HMM 2-4 0 0 183 78 9 3
HMM 4-2 0 0 145 125 19 5
HMM 4-3 0 1 178 86 8 4
HMM 4-4 0 0 191 71 8 4

• Length of training sequences: Does limiting the length of training sequences to 2

impact the uniqueness of sequences per malware family? To answer this question,

we test different sequences of length 2 on all malware family HMMs. Figure 5.10

illustrates the distribution of training sequences with the number of malware fami-

lies (i.e., HMMs). We observe that approximately 21.5% of sequences are predicted

by 1 malware family, and approximately 89% of sequences are predicted by at most

149

22 malware families. As such, we can conclude that the tradeoff between prediction

and uniqueness is maintained since a big proportion of sequences are predicted by

22 HMMs over 294 HMMs.

Computational Complexity

In this section, we investigate computational complexity for different techniques used to

non-DPI fingerprint malicious traffic. Computational complexity falls into:

• Features Extraction: In [117], the authors studied the computational complexity

and memory requirements associated with flow features extraction in the context

of classification. The authors claimed that extracting each feature from traffic is

associated with a computational cost less than or equal to O(n × log2 n), and a

memory footprint less than or equal to O(n), where n is the number of packets in

a flow used for extracting the feature. The total cost of extracting K features is

bounded to O(K × n× log2 n).

• J48 Decision Tree: J48 (its C4.5 Java implementation) has a training time complex-

ity of O(m × n2), where m is the size of the training data and n is the number of

attributes [203]. Regarding the classification, the complexity is O(n× h), where h

is the height of the tree and n is the number of instances [104].

• Labeling: To label unidirectional inbound and outbound flows, we use a K-means

150

RBS algorithm (a clustering partitional algorithm). The advantage of these algo-

rithms is that they have a relatively low computational cost [240]. A 2-way cluster-

ing solution can be computed in time linear to the number of flows. In our case, the

number of iterations used by the greedy refinement algorithm is less than 20. By

assuming that the clusters are reasonably balanced during each bisection step, the

time required to compute n− 1 bisections is O(n× log2 n).

• HMMs Convergence: In our approach, we use the EM algorithm (also known as

the Baum-Welch algorithm) [54]. It is based on the computation of forward and

backward probabilities for each state and transition. The computing complexity is

of orderO(n2×t), where n is the number of states and t is the number of transitions

[175]. However, in our experiments, we consider training HMMs with labeled

sequences by varying the length of sequences. In addition, the EM algorithm has a

computation which iterates until the maximization of the log-likelihood is satisfied.

As such, the computing complexity is of order O(n2 × t × l × i), where l is the

length of sequences and i is the number of iterations.

5.5.2 DPI Approach

In the sequel, we present results obtained for DPI fingerprinting approach. We introduce:

(1) classification and attribution setup, (2) classification results, and (3) computational

complexity of this approach.

151

Classification and Attribution Setup

The MARFPCAT’s algorithm parameters are based on the empirically-determined default

setup detailed in [134, 136]. To perform classification, we load each pcap as a wave form

signal. The latter encloses flows having both the header and payload sections. It is impor-

tant to mention that all classification experiments are done through modules tuned with

default parameters (if desired, they can be varied, but due to the overall large number of

combinations, no parameters tuning has been considered). The default settings are picked

up throughout MARF’s lifetime, empirically and/or based on the related literature [134].

Hereafter, we provide a brief summary of the default parameters used for each module:

• The default quality of the recorded WAV files used in the experiment is 8000 Hz,

mono, 2 bytes per sample, Pulse-Code Modulation (PCM) encoded.

• LPC – has 20 poles (and therefore 20 features), thus produces a vector of 20 features

and a 128-element window.

• FFT – does 512× 2-based FFT analysis (512 features).

• MinMaxAmplitudes – 50 smallest and 50 largest amplitudes (100 features).

• MinkowskiDistance – has a default of Minkowski factor r = 4.

• FeatureExtractionAggregator – concatenates the default processing of

FFT and LPC (532 features).

• DiffDistance – has a default allowed error 0.0001 and a distance factor of 1.0.

152

• HammingDistance – has a default allowed error of 0.01 and a lenient double

comparison mode.

• CosineDistance – has a default allowed error of 0.01 and a lenient double

comparison mode.

• NeuralNetwork – has 32 output layer neurons (interpreted as a 32-bit integer

n), a training constant of 1.0, an epoch number of 64, and a minimum error of

0.1. The number of input layer neurons is always equal to the number of incoming

features f (the length of the feature vector), and the size h of the middle hidden

layer is h = |f − n|; if f = n, then h = f/2. By default, the network is fully

interconnected.

Classification Results

In this section, we summarize the results obtained per test case using NLP-processing of

malicious network traces classification. We present various selected statistical measure-

ments of the precision in recognizing different malware classes under different algorithm

configurations. In addition, we use the “second guess” measure to test the hypothesis

that if our first estimate of the class is incorrect, the next in-line one is probably cor-

rect. In Appendix A, we list the classification results sorted by fingerprinting accuracy.

In Figure 5.11 and Figure 5.13, we set forth no-filtering classification results. In this

case, no noise filtering is applied, which impacts positively in fingerprinting runtime.

Figure 5.11 illustrates the corresponding summary per various algorithm combinations.

153

Figure 5.13 shows some malware families’ classification results. It is noteworthy to men-

tion that while the latter has overall low precision, many individual malware families are

correctly identified. The low precision at the combination level is explained primarily

by the “generic” malware class (the largest) that skewed the results and was not filtered

in this experiment. The same experiments are replicated using wavelet transform-based

filters in Figure 5.12 and Figure 5.14. Overall, we notice the same decline in precision as

in the earlier filter-less solution, raising the question of whether pre-processing is really

needed to quickly pre-classify a packet stream while lowering precision and hindering ac-

curacy. It is also interesting to note that some malware classes (e.g., VBKrypt) are poorly

identified in the first guess, but correctly in the second guess (illustrated by red spikes to

the right of the graphs).

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

1 2 3 4 5 6

30.32%

24.89% 24.89%

22.62%

16.74%
15.38%

41.63%

34.84% 34.84%
33.03%

20.81% 21.27% First Run

Second Run

Figure 5.11: No-Filtering Malware Algorithms Results

The initial global scan results are listed in Table A.1, Table A.2, and Table A.3 (see

Appendix A). Many of the malware families are nearly identified with an accuracy of

100%, often even using a single packet. We discover that the data feed had some malware

154

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

1 2 3 4 5 6

27.36%

18.55% 18.55% 18.55% 18.55%

13.57%

37.31%

25.34%

30.32%

24.89%
26.24%

19.91% First Run

Second Run

Figure 5.12: Wavelet Malware Algorithms Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

V
ir
To

o
l.
W
in
3
2
.V
B
In
je
ct
.g
e
n
.b
p

Tr
o
ja
n
.W

in
3
2
.A
ge
n
t.
ro
e
i

B
e
h
av
e
sL
ik
e
.W

in
3
2
.M

al
w
ar
e
.d
ls

W
o
rm

.W
in
3
2
.A
u
to
R
u
n
.d
kc
h

Tr
o
ja
n
-F
ak
e
A
V
.W

in
3
2
.A
ge
n
t.
d
e
t

Fr
au

d
To

o
l.
W
in
3
2
.F
ak
e
R
e
an

V
ir
To

o
l:
W
in
3
2
/O

b
fu
sc
at
o
r.
W
J

Tr
o
ja
n
.W

in
3
2
.V
ils
el
.a
yy
w

W
o
rm

:W
in
3
2
/Y
e
lt
m
in
ky
.A
!d
ll

Tr
o
ja
n
.W

in
3
2
.M

e
re
d
ro
p

Tr
o
ja
n
D
o
w
n
lo
ad

e
r:
W
in
3
2
/A

lls
u
m

V
ir
tu
m
o
n
d
e

B
ac
kd

o
o
r.
W
in
3
2
.H
u
p
ig
o
n
.n
n
d
u

V
ir
To

o
l:
W
in
N
T/
P
ro
tm

in
.g
e
n
!C

P
W
S:
W
in
3
2
/F
ar
e
it
.g
en

!C

Tr
o
ja
n
-…

Tr
o
ja
n
.W

in
3
2
.M

en
ti
.m

lg
p

Tr
o
ja
n
.W

in
3
2
.B
u
zu
s

Tr
o
ja
n
.W

in
3
2
.F
ak
e
A
V
.l
cp
t

Tr
o
ja
n
.W

in
3
2
.A
ge
n
t.
rl
o
t

Tr
o
ja
n
-S
p
y.
W
in
3
2
.S
p
yE
ye
s.
ae
cv

Tr
o
ja
n
:W

in
3
2
/S
w
ro
rt
.A

Tr
o
ja
n
D
o
w
n
lo
ad

e
r:
W
in
3
2
/C
ar
b
e
r…

P
W
S:
W
in
3
2
/L
o
ly
d
a.
B
F

Tr
o
ja
n
.W

in
3
2
.Y
ak
e
s.
q
jn

Tr
o
ja
n
.W

in
3
2
.A
ge
n
t.
rl
n
z

Tr
o
ja
n
.W

in
3
2
.V
B
K
ry
p
t.
fk
vx

V
ir
To

o
l:
W
in
3
2
/V

B
In
je
ct
.O
T

H
o
m
e
M
al
w
ar
e
C
le
an

e
r.
Fa
ke
V
im

e
s

Tr
o
ja
n
.W

in
3
2
.G
e
n
e
ri
c!
B
T

Tr
o
ja
n
.F
ak
e
A
le
rt

Tr
o
ja
n
.W

in
3
2
.G
e
n
e
ri
c.
p
ak
!c
o
b
ra

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100% 91.67%

91.67%

83.33%

66.67%

41.67%

33.33%

33.33%

12% 8.56%

5.26%

0%

88.89%

75%

100%

22%
17.89%

13.16%

Figure 5.13: No-Filtering Malware Family Results

155

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

V
ir
To

o
l.
W
in
3
2
.V
B
In
je
ct
.g
e
n
.b
p

Tr
o
ja
n
.W

in
3
2
.A
ge
n
t.
ro
ei

B
e
h
av
e
sL
ik
e
.W

in
3
2
.M

al
w
ar
e
.d
ls

W
o
rm

.W
in
3
2
.A
u
to
R
u
n
.d
kc
h

Tr
o
ja
n
-F
ak
e
A
V
.W

in
3
2
.A
ge
n
t.
d
e
t

Fr
au

d
To

o
l.
W
in
3
2
.F
ak
e
R
e
an

V
ir
To

o
l:
W
in
3
2
/O

b
fu
sc
at
o
r.
W
J

Tr
o
ja
n
.W

in
3
2
.V
ils
e
l.
ay
yw

W
o
rm

:W
in
3
2
/Y
e
lt
m
in
ky
.A
!d
ll

Tr
o
ja
n
.W

in
3
2
.M

er
e
d
ro
p

V
ir
tu
m
o
n
d
e

B
ac
kd

o
o
r.
W
in
3
2
.H
u
p
ig
o
n
.n
n
d
u

V
ir
To

o
l:
W
in
N
T/
P
ro
tm

in
.g
e
n
!C

P
W
S:
W
in
3
2
/F
ar
e
it
.g
e
n
!C

Tr
o
ja
n
-D
ro
p
p
e
r.
W
in
3
2
.I
n
je
ct
o
r.
cx
q
b

Tr
o
ja
n
.W

in
3
2
.M

en
ti
.m

lg
p

Tr
o
ja
n
.W

in
3
2
.B
u
zu
s

Tr
o
ja
n
.W

in
3
2
.A
ge
n
t.
rl
o
t

Tr
o
ja
n
-S
p
y.
W
in
3
2
.S
p
yE
ye
s.
ae
cv

Tr
o
ja
n
.W

in
3
2
.F
ak
e
A
V
.l
cp
t

Tr
o
ja
n
D
o
w
n
lo
ad

e
r:
W
in
3
2
/A

lls
u
m

Tr
o
ja
n
.W

in
3
2
.Y
ak
e
s.
q
jn

Tr
o
ja
n
.W

in
3
2
.A
ge
n
t.
rl
n
z

Tr
o
ja
n
:W

in
3
2
/S
w
ro
rt
.A

Tr
o
ja
n
D
o
w
n
lo
ad

e
r:
W
in
3
2
/C
ar
b
e
rp
.C

Tr
o
ja
n
.W

in
3
2
.V
B
K
ry
p
t.
fk
vx

V
ir
To

o
l:
W
in
3
2
/V

B
In
je
ct
.O
T

H
o
m
e
M
al
w
ar
e
C
le
an

e
r.
Fa
ke
V
im

e
s

Tr
o
ja
n
.F
ak
e
A
le
rt

Tr
o
ja
n
.W

in
3
2
.G
en

e
ri
c.
p
ak
!c
o
b
ra

Tr
o
ja
n
.W

in
3
2
.G
e
n
e
ri
c!
B
T

P
W
S:
W
in
3
2
/L
o
ly
d
a.
B
F

100%

100%

100%

100%

100%

100%

100%

100%
100%

100%
100%

100%
100%

100%
100%

100%

100%

100%

100%

91.67%

83.33%

83.33%

75%

50%

50%

31.25%

31.25%

15.54%

7.14%

5.56%

2.80% 0%

100% 91.67%
91.67%

83.33%

83.33%

93.75%

25.68%

16.96%

11.11%

9.63%

11.11%

Figure 5.14: Wavelet Malware Family Results

classes labeled as “generic”. A lot of distinct malware families belong to such classes. The

presence of such malware families results in noise and overfitting when training, which

impacts negatively on the overall per-configuration (combination) precision. However,

despite the presence of noise, many classes (771 of 1, 063) are classified with an accuracy

of 100%. The rest of malware classes have less than 75%, dropping quickly to low classi-

fication accuracies, (e.g., Virus:Win32/Viking.gen!B [generic], PWS:Win32/Fareit.gen!C

[generic], and VirTool:Win32/Fcrypter.gen!A [generic], etc).

156

Computational Complexity

The computational complexity of the MARFPCAT data depends on the algorithms chosen

at each stage of the pipeline. Most of them are one-dimensional processing modules with

an average complexity of O(n) where n is the number of the elements at each stage. Here

is the breakdown for some of the tasks:

• Sample loading has to do with interpreting the pcap data in a wave form, which is a

straightforward interpretation of every two bytes per an amplitude. Thus, it depends

on the size of the pcap file in bytes b – O(b/2).

• The pre-processing stage’s complexity depends on the algorithm chosen. Raw has

no processing, just passes data further, so the complexity is of O(1). Normal-

ization complexity is O(n). FFT-based low-pass filters have the complexity of

O(2×O(FFT)) to convert to time domain and back.

• Feature extraction depends on the chosen algorithms. Most common algorithms are

FFT and LPC. LPC has a complexity of O(n× (log2 n)
2) in general. MinMax has

a complexity of O(2n× log n) (to sort and copy).

• Classification has the complexity of the chosen classifier, such as distance or sim-

ilarity measures. Cosine similarity has a complexity of O(n2), but for normalized

data, the complexity is O(n). Euclidean, Chebyshev, and Diff distances have a

complexity of O(n), Minkowski distance has a complexity of O(n6); and Ham-

ming distance has a complexity of O(n+ log(n+ 1)) at the worst.

157

5.6 Discussion

In this section, we review the current results of this experimental work, including its ad-

vantages, disadvantages and practical implications. First, we discuss the positive and

negative aspects of the non-DPI (Section 5.6.1) followed by the DPI (Section 5.6.2) ap-

proaches. The discussion encloses some observations noticed when performing experi-

ments.

5.6.1 Non-DPI Fingerprinting

Advantages

In the sequel, we present the key advantages of the flow packet headers approach:

• Classification accuracy: Using packet header bidirectional flow attributes to clas-

sify malicious and benign traffic has shown excellent accuracy with low rates of

false positives and negatives. J48 classifier has the ability to segregate malicious

from benign traffic based on packet header attributes.

• Independence from packet payloads: All detection and attribution features are ex-

tracted from packet headers. The detection and attribution, therefore, avoid noisy

data generated by encrypted traffic.

• Generalization: To segregate malicious from benign data, we use different benign

158

datasets collected from different sources, namely, home networks, laboratory net-

works, corporation networks, and ISP networks. Different models achieve high ac-

curacy in terms of differentiation between malicious and benign traffic. A 10-fold

cross validation has been used to check whether the detection accuracy is main-

tained.

• Detection attributes: Decision trees in general are considered as a set of conditions

involving the values of attributes. The classifier behaves as a white-box, where the

attributes play roles in the decidability of flows maliciousness. The J48 decision

tree models generate decision rules where the roots are usually features that highly

overlap malicious and benign datasets. The distinctive features are mainly used

as leaves to make final decisions on benign and malicious traffic. We notice, for

instance, that forward and backward inter-arrival time values, duration of flow, and

number of forward packets and bytes are good indicators that distinguish between

malicious and benign traffic.

• Labeling attributes: Using inbound/outbound flow attributes for the purpose of traf-

fic characterization is a good mean to create (sequences) patterns for malicious

flows. These patterns are subjected to mining tools (HMMs) to attribute malicious-

ness to malware families.

159

• Possibility to fingerprint zero day attack: Characterizing the detection and attribu-

tion through flow features may provide opportunities to fingerprint unknown mal-

ware families that share identical network behavior with known malware families.

For example, it has been shown in [171] that Citadel malware (appeared in 2013) is

a variant of Zeus malware (appeared in 2009).

• Decoupling between detection and attribution: In general, this is considered a pos-

itive aspect in the sense that attribution is implicit to detection. The attribution

does not impact the detection accuracy. However, there is a negative aspect of this

decoupling that we discuss in the sequel.

Disadvantages

Hereafter, we present a list of issues identified in packet flows headers approach.

• Datasets overfitting: Decision trees that fit training and testing data too well may

not be as good as it has been shown in our experiments. Overfitting trees can have

a low re-substitution error but a high generalization error. As such, it is a must to

consider more benign datasets to check whether the obtained models are subjected

to generalization errors. J48 decision trees are static classifiers and are not resilient

to additional noisy benign data (traffic). It is thus imperative to investigate the noise

resiliency of obtained classifiers and to determine how we can build a committee

modeling approach based on multi-decision trees.

• Complexity: Fingerprinting of maliciousness based on packet header flow features

160

generates a computational complexity related to the extraction of features, the clas-

sification and clustering of feature’ vectors, as well as the construction and se-

quencing of flows. For instance, we observed the following runtime for features

extraction, models detection and labeling:

1. Bidirectional flow features extraction takes on average 0.94 seconds (0.042

seconds per feature).

2. Unidirectional flow features extraction takes on average 1.19 seconds (0.026

seconds per feature).

3. Detection:

– Malicious vs. Home Model: 15 milliseconds per feature vector.

– Malicious vs. SOHO Model: 16 milliseconds per feature vector.

– Malicious vs. ISP Model: 21 milliseconds per feature vector.

– Malicious vs. Private Model: 18 milliseconds per feature vector.

4. Labeling:

– Inbound flows: The 16-k clustering solution takes about 7.298 seconds

(0.1300 milliseconds per feature vector).

– Outbound flows: The 18-k clustering solution takes about 9.556 seconds

(0.1671 milliseconds per feature vector).

A deployment of such approach in a real-time traffic needs a traffic sampling tech-

nique since the computation of flow features on the fly is expensive. Moreover,

161

detection and attribution models must response quickly to vectors of flow features

created on sampled data. This means that we need to synchronize flow features

extraction with detection and attribution.

• Corroborating attribution: The HMMs-based attribution is not mature. We need to

establish an algorithm to limit the non-determinism of HMMs. This can be done

by considering longer sequences when we have non-determinism between malware

families. For example, with a malicious flows sequence of length 2 that is classi-

fied by ten 2 sequences trained HMMs, we can consider a potential third detected

flow to create a new sequence of length 3 and classify it with 3 sequences trained

HMMs. As such, ten 2 sequences trained HMMs play the role of filters, whereas

the 3 sequences trained HMMs limit the number of malware family attribution pos-

sibilities.

• Decoupling between detection and attribution: In a way, this is a double-edged

sword. The negative aspect lies in the fact that it generates deployment challenges,

which break into flows sampling, flows construction, and strong detection to implic-

itly obtain a good attribution. Thus, it is necessary to conduct a thorough analysis

to deploy this Non-DPI fingerprinting solution. The analysis should cope with the

following issue: how to sample data from network to be tested against detection

and attribution models.

162

5.6.2 DPI Fingerprinting

Advantages

In the sequel, we present the key advantages of the DPI approach:

• Performance: The DPI approach has shown an ability to learn and classify relatively

quickly than flow packet headers approach. For instance, results shown in Table A.2

took from 58 milliseconds to 598 milliseconds per pcap file. The complete run

considering all algorithms’ combinations, including training and testing phases took

27 minutes and 74 seconds. Some results go as low as below 10 milliseconds per

pcap file (including loading, pre-processing, feature extraction, and classification).

A complete training on an algorithm combination was 1 to 3 seconds depending

on the algorithm. Detailed performance statistics from the log files can be released

depending on the need and appropriateness at an external resource, such as arXiv

[118].

• Learning scalability: Given the ability shown in training runtime, DPI approach

has the flexibility to learn on a large knowledge base to test on known and unknown

cases as well as label them. The results shown in terms of runtime allow to design

and integrate easily an online learning system, where the detection and attribution

can be improved by time. This approach can be used to quickly pre-scan projects for

further analysis by humans or other tools that do in-depth maliciousness analysis.

163

• Flexibility: Tuning algorithms’ combinations allows the selection of the best learn-

ing process for malware classes. Accordingly, we can identify appropriate algo-

rithm combinations that maintain the tradeoff between accuracy and runtime. This

approach can be used on any target malware without modifications to the method-

ology.

• Pluggability: The developed tool, namely, MARFPCAT, can learn from binary sig-

natures obtained from other intrusion detection systems (e.g, Snort [195], Bro [161],

etc.). In addition, since it is an open-source, it can be easily plugged to existing fire-

walls or intrusion detection systems.

Disadvantages

Hereafter, we list of the most prominent issues related to the DPI approach. Some are

more “permanent”, while others are solvable and intended to be addressed in a future

work.

• Dependency: The detection accuracy depends on the quality of the collected knowl-

edge base (see Section 5.4.2). The annotation of pcap indexes are done manually,

hence, it is prone to errors.

• Accuracy: Despite the fact that some malware families are identified with a high

accuracy, MARFPCAT has shown limited accuracy for some malware families, es-

pecially the ones clustered as being “generic”.

164

• Fuzziness: DPI fingerprinting has many algorithms’ combinations (currently ≈

1800 permutations), which try to get the best top N. This can lead to incoherence in

some classification cases when there is a shift from a combination to another.

5.6.3 Summary

Our core finding is that the two approaches are not necessarily in competition with each

other, but are rather complementary with DPI being much faster (no parsing and picking

out select headers; in addition, signal processing techniques and related classifiers were

simpler and more efficient in comparison with the flow packet headers approach). The

DPI approach can work with either one or two packets already and does not depend on

benign traffic learning (which, if it did, would be like a noise signal), whereas the header-

based flow approach strictly requires a flow before it can classify. Thus, the DPI approach

can prioritize classification targets, specifically for the headers-based approach (and go

deeper as necessary). While listening first on the network interface, MARFPCAT can

predict or hint to maliciousness, whereas flow packet headers can increase subsequently

the confidence in maliciousness fingerprinting.

5.7 Conclusion

In this work, we presented a research effort dedicated to fingerprinting maliciousness at

the traffic level. The maliciousness fingerprinting falls into: NLP/wavelets Deep Packet

Inspection (DPI) and flow packet headers. Moreover, we produced a comparison between

165

these two approaches.

Regarding the DPI approach, considering results shown by MARFCAT in the clas-

sification of vulnerable code, we used NLP and wavelets classification of signals tech-

niques to fingerprint maliciousness. Despite showing some problems in classifying the

generic malware families, it managed to show a large scalability and accuracy for less

noisy malicious traffic. As a result, we released a MARFPCAT alpha version, the MAR-

FCAT’s predecessor, as open-source [135]. The distributed demand-driven version of

MARFPCAT is available in GIPSY open source repository.

Regarding flow packet headers approach, we employed several supervised machine

learning algorithms, namely, J48, Boosted J48, Naïve Bayesian, Boosted Naïve Bayesian,

and SVM in order to classify malicious and non-malicious traffic. The aforementioned

learning algorithms were used to build classification models. Thus far, the results show

that the J48 and Boosted J48 algorithms performed better than other algorithms. They

reached over 99% precision with a rate of false positives less than 1%. In summary,

we illustrated that it is possible to detect malicious traffic and differentiate it from non-

malicious traffic by using attributes extracted from packets. This is a preliminary result

toward the classification of malicious traffic at the network level. Therefore, we aim to

investigate the degree to which our classification results are generalizable to a wide class

of representative networks. Despite the fact that fingerprinting maliciousness at the IP

level is important, a focus must be shown to another network layer, namely, the application

layer. Among numerous application layer protocols, DNS acts as a platform that binds

166

internally host-names and IPs, and externally web-surfers to existing domains. As it has

been demonstrated in Chapter 4, IPs and domains are cornerstones of different cyber-

threat infrastructures. As such, there is a need to investigate DNS protocol streams for the

purpose of identifying its misuses and indicators of compromise. In the next chapter, we

will describe the big data system used to cope with the nature of passive DNS streams for

the purpose of anomaly detection.

167

Chapter 6

Near-Real-Time and Scalable Detection

of Anomalies in Passive DNS Streams

6.1 Overview

In this chapter, we present a near-real time anomalies identification system in passive

DNS streams. By anomalies, we mean suspicious domain names, DNS records misuses,

fast-fluxing malicious networks, where the change of IP addresses, geo-locations (coun-

tries and cities), and short Time To Live (TTL) requests are observed. The system is

integrated on top of a high computational clustering solution namely, Apache Spark, to

handle streams of passive DNS logs on near real-time. In addition, we corroborate the

system with the ability to monitor specific DNS profiles for organizations. The remainder

of this chapter is as follows: Passive DNS anomaly detection approach is discussed in

168

Section 6.2. The experimental results are reported in Section 6.3. Finally, some conclud-

ing remarks on this work, together with a discussion of future research, are provided in

Section 6.4.

6.2 Passive DNS Anomalies and Abuse Detection

6.2.1 Approach

DNS protocol has been turned to a platform to perpetrate malicious activities. Thus, there

has been a desideratum in the generation of cyber-threat intelligence based on DNS traffic

replica, known as passive DNS. The latter is a technique, defined by Weimer [218], which

captures inter-server DNS messages through sensors. These messages are forwarded to a

collection service for further analysis. Some research efforts [22, 23, 29, 30, 164] put an

emphasis on using Passive DNS to detect DNS abuses and malicious activities. In spite

of interesting results obtained by proposed systems in the aforesaid works, they have not

integrated all-in-one solution to gather threat-intelligence. They use mainly classification

techniques to segregate malicious domains from benign domains or to detect fast-flux ma-

licious services. In essence, we aim to address the generation of cyber-threat intelligence

from passive DNS by trying to answer the following questions: (1) How to transform

intensive real-time passive DNS feeds into cyber-threat intelligence? (2) What are the

techniques that ensure scalability and allow the identification of anomalies in passive

DNS?

169

We target to design and integrate a system that monitors all domains and their DNS

records, observed in passive DNS stream of data. The main intent is to deploy a system

that detects in a near real-time, potential anomalies and abuses of DNS protocol observed

on captured logs. However, the design and deployment of our system has to overcome

some challenges related mainly to the high volume of data. Thus, we need to consider

scalable techniques to monitor DNS ecosystem for the purpose of anomalies and abuses

identification, as well as a reliable storage system to archive results. The system aims to:

(1) Aggregate real-time data for the purpose of online analysis. (2) Segregate different

types of DNS record messages observed on data streams. (3) Identify suspicious domain

names and alias. (4) Extract features representing time series analytic. (5) Detect anoma-

lies based on collected features. (6) Pinpoint abuses of DNS records. (7) Correlate with

other sources of cyber-threat intelligence. (8) Monitor and archive historical DNS activi-

ties observed in some organizations. In the sequel, we describe the system architecture.

The emergence of big data processing frameworks offers encouraging approaches

to collect, retrieve, and analyze intelligence out of different sources like malware feeds,

spam-traps, Darknet and passive DNS. Accordingly, it is possible to discover threats

in near-real time. Motivated by contributions reported in [120, 184, 222, 231] that used

Apache Spark for big data analysis, we decide to employ it to monitor the huge load of

passive DNS data to extract anomalies. Such framework is a promising, multi-purpose

data processing designed for intensive in-memory and distributed clustering computa-

tions. It emphasizes on improving performance of applications that cannot be expressed

170

efficiently as acyclic data flows, where a working set of data across multiple parallel oper-

ations [233]. It includes two use-cases, namely, iterative jobs and interactive computing,

where Hadoop [71] is deficient. A key asset of Spark lies in introducing the Resilient Dis-

tributed Dataset (RDD) [232]. RDDs are known to ensure the abstraction of data such that

large data sets can be cached effectively in memory or disk. They represent immutable

collection of objects grouped into partitions. Spark uses RDDs to allow re-usability of

memory cached objects, which improves significantly performance in work-flow execu-

tion.

In addition to in-memory and disk caching, Spark supports many data abstractions,

namely, graphs, streaming logs (e.g., Twitter feeds), databases (e.g., MySQL, Cassandra)

and hadoop data formats. Moreover, Spark has a mature programming model, which has

been initially integrated by SCALA programming language [64], then wrapped to other

languages, i.e., object-oriented programming Java [155], script programming Python [72],

and statistical computing language R [68]. Spark provides programmers with the ability

to: (1) Construct RDDs from files in a shared file system, (2) divide collections into

slices that can be sent to multiple nodes, resulting in computation parallelism, (3) smooth

transformation of data from one type to another (e.g, a log to a mapping object) and, (4)

alter persistence of objects through two actions, namely, the cache action, which leaves

the dataset lazy but kept in memory for re-usability, and, save action, which dumps data

into a distributed file-system like Hadoop File System (HDFS).

Spark supports also several parallel operations, namely, Filter, Collect, Reduce,

171

Map-Reduce and Foreach. The Filter operation allows eliminating items into collections,

that do not satisfy a Boolean predicate function. The Collect operation sends all elements

of a dataset to a driver for a parallel gathering of items into a collection (e.g., arrays, lists,

etc.). The Reduce operation combines dataset elements through an associative function.

The Map-Reduce, known also as grouped reduce function, which allows to map datasets

to common mapping objects like tuples and reduce them by a key entry and an associative

function. The Foreach operation allows a streaming loop through collection to execute

functions like exporting results to databases or copying them into shared variables in a

program. In the sequel, we detail the system architecture described in Figure 6.1.

6.2.2 System Architecture

The passive DNS anomaly detection system is meant to monitor DNS replica logs sent

on a minute-by-minute basis. These logs contain passive DNS entries enclosing infor-

mation about different record types (e.g., “A”, “AAAA”, “CNAME”, “TXT”, etc). DNS

anomaly detection system falls into the following components: (1) Dispatcher, (2) Record

Extraction, (3) Geo-location, (4) Prediction per Partial Matching (PPM) detection and, (5)

Record misuses filter.

Dispatcher

The dispatcher component plays the role of transforming passive DNS logs into streams of

RDDs. These RDDs are dispatched into four categories: (1) RDDs containing A records,

172

PPM

Geo-IP

Misuses

…

Dispatcher

A Records

AAAA Records

CNAME Records

NULL, OPT, SRV,
TXT Records

A
records

AAAA
records

CNAME
records

TXT,OPT,
SRV, NULL

records

Aggr.

PPM
Domains

PPM
Aliases

Domains
IPs

Counts
& TTLs

Covert
Payloads

Correlator

Malicious
Networks

Malware

Statistics

Log
Record

Extraction

Log

…RDD RDD

…RDD RDD

…RDD RDD

…RDD RDD

Figure 6.1: DNS Anomaly Detection Architecture

(2) RDDs containing AAAA records, (3) RDDs containing CNAME records and, (5)

RDDs containing records (e.g., “TXT”, “OPT”, “SRV”, “NULL”) that are candidates for

DNS abuses like covert channels and tunneling. The dispatcher uses Spark filter action to

check the type of the record and push it to RDDs.

Record Extraction

This component plays the role of the bridge that takes RDD streams as inputs and generate

tuples labeled by record type. Record extraction use the map operation to get different

tuples needed for components that identify different anomalies.

Geo-location

DNS protocol allows a domain to be mapped to different IPs. Usually, DNS server an-

swer consists of DNS “A” records, when the host maps to IPv4 addresses or DNS “AAAA”

173

records, when the host maps to IPv6 addresses. Malicious domains resolve to infected ma-

chines located in different Autonomous Systems (ASNs), countries, and regions. There-

fore, the attackers build botnets that spread worldwide; and each node with these botnets

may play the role of a C&C server. With insight, we use a geo-location database, namely,

MaxMind [4] to geo-locate different IPs collected from “A” records (IPv4 addresses). We

plan for a near future to use it also for “AAAA” records (IPv6 addresses). Despite the

fact that benign domain names (e.g., google.com, yahoo.com, etc.) use IP addresses lo-

cated in many countries and cities, our system uses, on the fly, a white-list to filter such

domains. We focus only on domains that do not appear in the white-list. The system has

a conservative approach, since it quarantines all domains changing frequently cities and

countries. Collected information is cross-validated with other features, namely, other IP-

based features and TTL-based features described in the rest of the components. To detect

changes of countries and cities, we collect them into immutable sets labeled by domains.

We use Spark filter action to check if these collections have a cardinality higher than one.

PPM Detection

Malicious programs use a technique called domain fluxing, where malware samples change

the fully qualified domain names. They employ such domain names as C&Cs, depot of

stolen information, spam campaigns, bitcoining and infection vectors (drive by down-

load malware). The easiest way to achieve domain fluxing is to use a domain generation

174

algorithm (DGA) that dynamically generates random domain strings for botnet commu-

nication, spamming, etc. In addition to domain fluxing, malware misuse canonical name

(“CNAME”) records to manage botnets. Usually, they use suspicious domains to point to

alias domains, which look like benign.

In order to detect domain fluxing activities and misuse of “CNAME” records, we

use a technique proposed by Begleiter et al. [27] to segregate between benign and mali-

cious domains. As such, we use Prediction per Partial Matching (PPM) algorithm, which

belongs to Variable order Markov Model (VoMM) algorithms [27]. It is an algorithm that

predicts a symbol based on previous symbols. PPM algorithm has two phases, which are:

training phase and prediction phase. At the training phase, it builds a structure, namely,

digital tree (Trie), which stores the sub-sequences of the training sequences and the counts

of the symbols that appear after them. At the prediction phase, it calculates the probabil-

ity estimation of sub-sequences of a new sequence and compares it with the estimation

of the training set. Our abnormal domains detector computes the probability of a domain

name to verify whether it is benign or not. In our case, the training dataset is composed

of different domain white-lists (e.g., Alexa top one million domains [1], Quantcast US

domains ranking [168]). PPM algorithm has two steps to build the training sequences.

First, it reverses each domain name. Second, it adds 2 delimiters at the beginning of each

reversed domain name. For example, google.com is reversed to ##moc.elgoog. The de-

limiters are used to separate domains and not let them being concatenated, which avoids

appearance of noisy context in the training sequence. The domains are reversed to let the

175

training be based on domain TLDs. Once the sequences are ready, the PPM classifier is

built by storing the count of symbols that occurs after sub-sequences of a specific length

(distance) in the training sequences.

Then, the classifier is used to calculate the average per symbol probability of the

50% of the training sequences, which are uniformly sampled. The computed average is

considered as a pivot score. The reason behind choosing half of the training sequences

lies in the fact that the pivot score should represent the average benign domain name.

To determine if a new domain is abnormal or not, we first reverse the domain name and

add the delimiters. After that, we use the PPM classifier to compute the average per

symbol probability. Then, we calculate the ratio of the average per symbol probability

and the pivot score. If the ratio is less than a threshold (0.8), the domains is considered as

abnormal. Otherwise, it is considered as benign.

Aggregation

This component has the ability to monitor attributes of passive DNS records for the pur-

pose of anomaly detection. The gathering of streams is done every minute since records

are received once a minute. However, we use Spark streaming capability to aggregate

statistics of attributes during a predefined time window (2 hours for specific IPs and top

level domains, 1 hour for the rest of passive DNS records) to collect sufficient samples of

attributes, where we can apply anomaly detection techniques to segregate between benign

176

and malicious behaviors. Thanks to the map-reduce Spark action, we reduce tuples gen-

erated by the record extraction component (see Section 6.2.2 and Figure 6.1) and group

them by domain names. The aggregation is done on the following attributes:

Number of Queries The number of queries that target a specific domain name is ap-

proximately in the same range over a specific period of time. This feature is a good in-

dicator to detect the following anomalies: (1) If there is an IP address that maps to many

suspicious domains (fluxing domains), it is more likely that these domains have abrupt

changes in their “A” or “AAAA” queries number. Domains fluxing is a phenomenon where

a domain is usually less active for a certain period of time and suddenly exhibits abrupt

increase in the number of queries then followed by an abrupt decrease. In [29, 30], Bilge

et al stipulates that such behavior is an indicator of domain fluxing, a technique used by

cyber-criminals to use many machine generated domains to change C&Cs and proxies.

This technique makes cyber-threat infrastructures more robust and flexible against take-

downs. To detect abrupt changes, we use Chauvenet test [45]; the latter detects outliers by

rejecting time series points that do not fit the normal distribution probability. The test has

two inputs, the time series data and a significance level α (set to 0.5 in Chauvenet Crite-

rion Test). Initially, the mean of time series data (M) is computed as well as the standard

deviation (S). Then, we create a normal distribution using the mean and standard devia-

tion. For each value in time series data, we compute its cumulative probability from the

normal distribution (P). Thus, the criterion value (P ′) is computed by multiplying the in-

verse probability of P by 2. If the product of the criterion value (P ′) and the length of the

177

time series data is less than the significance level, then the time series value is considered

as an outlier. Algorithm 6 summarizes the different computations’ steps done to identify

outliers for queries number.

Algorithm 6 Chauvenet Test
Input: Data
Input: α = 0.5
Output: Outliers
M =Mean(Data)
S = StDev(Data)
D = NormalDist(M,S)
for V ∈ Data do

P=CumulativeProb(D,V)
P ′ = 2× (1− P)
if P ′ × Length(Data) < α then

Outliers.Append(V)
end if

end for
return Outliers

Number of IP changes per domain Each DNS response from “A” or “AAAA” resource

records contain IP addresses that map to a domain name. Usually, malicious domains

map to different IP addresses. We use Spark map action to collect immutable sets of

IPs on 2 minutes slide window time. Then, we use another Spark map-reduce action to

index different immutable sets with domains and transform them to time series. This is

done every hour. To generate the time series, we compute the cardinality of items (IPs)

observed in a set that appears at time t+ 1 and not appearing a time t. Although unusual,

some benign domains use many IPs to load balance queries sent by Internet users. To

overcome this issue, we use a white-list to filter false positives. In addition, we create a

scoring function based on a time series observed per domain. Domains having high scores

178

are considered to be investigated. Domains having low scores are discarded. We score

the time series as follows: if the time series contain only zero values, they are omitted.

For each time series, we compute: (1) the number of positive shifts (shifts) between

values observed at times t and t + 1, (2) the number of values that are greater or equal

to the average of time series’ values (avgs), and (3) the number of values that are greater

than 0 (vals). Let T be a time series, the IP changes scoring function is computed by

Algorithm 7. Figure 6.2 illustrates how a score is computed for a domain representing a

bitcoin network. We observe from the example that the score is high (0.75), which means

that it is worth being investigated.

Algorithm 7 IP Changes Score Function
Input: T
Output: Score
M =Mean(T)
S = Size(T)
for i := 0; i < S; i++ do

if i 6= S − 1 & T [i] < T [i+ 1] then
shifts++

end if
if T [i] > M then

avgs++
end if
if T [i] > 0 then

vals++
end if

end for
Score := 1

3 × [(shifts/S − 1) + ((avgs+ vals)/S)]
return Score

TTL values Each DNS response has a TLL (Time to live) field. It indicates how long

the DNS record will be cached. Most of the benign domains specify the TTL with high

179

0

27 26

52 51

73 76

98 101

119 121

0

20

40

60

80

100

120

140

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

IP
s

C
h

an
ge

Time

Shifts = 8 Average=67.63
Values>0= 10 Values>=Average= 6
Size=11 Score=0.33*[(8/10)+(6+10)/11]≈0.75

Figure 6.2: Example of Number of IPs Change

values as one day or more to get the benefit of DNS caching [11]. However, Content

Delivery Networks (CDNs) systems specify the TTL to low values. They combine a low

TTL with Round Robin technique [10] in order to make the systems scalable and avail-

able all the time. Round Robin is a technique that provides many IP addresses rather than

a single IP address. In case one of the IP addresses is not available, another IP address

will be available since the TLL value is low. Many malicious systems such as fast-flux

systems use the round-robin technique with the low TTL to prevent DNS Blacklists [61]

detection. Low TTL values observation has been used by many techniques to detect Fast-

Flux systems besides other observations such as number of distinct IP addresses. In [29],

Bilge et al. explained that some malicious networks change TTL values frequently. In

these networks, some infected machines are selected to be proxies and C&Cs, and TTL

values are assigned with different levels of priorities. There is a high probability that a

180

proxy running on an ADSL IP is less reliable than a proxy running on a university or an

organization server. Therefore, low TTL values are assigned to dynamic IPs (home In-

ternet connections) and high TTL values are assigned to static IPs (Servers). The authors

corroborate this assumptions with TTL values observed in Conficker botnet domains. In

order to detect malicious networks, we use a TTL scoring function, which relies on the

following parameters: (1) Unchanged low TTL values, (2) the usage ratio of specific TTL

ranges, (3) the number of TTL changes. The TTL scoring function is computed by Al-

gorithm 8. This algorithm has two parts. The first part checks if TTL values with time

series are the same. If so, we pick time series that have TTLs less or equal to one hour

(3600 seconds). We assign the score based on TTL values that belong to different ranges

illustrated in Algorithm 8. The second part deals with time series that contain different

TTL values. In this case, we compute the ratio of TLL values per range as well as the

number of TTL value changes. Regarding the ratio of TTL values per range, we multiply

it with a priority number. The lower are TTL values in a range, the higher is the priority

number. For instance, the range [0, 1] has a high priority number (6) since this range is

an indicator of an intensive fast-flux activity. The range]3600,∞[has the lower prior-

ity number, since the TTL values are more than one hour. The first part of the score is

computed by summing different ratios multiplied by their priority number. The result is

divided by six to normalize it to a values between 0 and 1. The second part consists of

computing the number of TTL value changes observed in a time series. The final score

is the sum of both parts divided by two. Figure 6.3 illustrates a TTL score computation

181

done on a suspicious domain.

598

64

384

16

430

118
65

420 426

150 189

0

100

200

300

400

500

600

700

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

T
TL

Time

Size=11
TTL changes = 10/11 ≈ 0.91
TTL ranges = (6*0)+(5*1)+(4*5)+(3*5)+(2*0)+(1*0)/(6*11) ≈ 0.61
Score=(0.91+0.61)/2≈0.76

Figure 6.3: TTLs Change Example

Record Misuses Filter

The democratization of DNS protocol has pushed cyber-criminals to abuse it and use it as

a carrier for communication between malware infecting machines and remote bot-masters

or proxies. Being inspired by the emergence of DNS tunneling tools (e.g., iodine [110],

NSTX [206], OzymanDNS [100], Heyoka [173], etc.), cyber-criminals have been mis-

using DNS records, namely, “TXT”,“SRV”,“OPT”, “NULL” and “ANY”, to perpetrate

malicious activities. In the sequel, we present examples how these DNS records can be

abused.

182

Algorithm 8 TTL Score Function
Input: T ,cpt
Output: Score
Freq := Frequency(T, T [0])
S := Size(T)
if S = Freq then

if T [0] ∈ [0, 1] then
Score := 1.0

else if T [0] ∈]1, 60] then
Score := 0.9

else if T [0] ∈]60, 300] then
Score := 0.8

else if T [0] ∈]300, 900] then
Score := 0.7

else if T [0] ∈]300, 3600] then
Score := 0.6

else
Score := 0.0

end if
else

for i := 0; i < S; i++ do
if T [i] ∈ [0, 1] then

cpt[6] + +
else if T [i] ∈]1, 60] then

cpt[5] + +
else if T [i] ∈]60, 300] then

cpt[4] + +
else if T [i] ∈]300, 900] then

cpt[3] + +
else if T [i] ∈]300, 3600] then

cpt[2] + +
else

cpt[1] + +
end if
if i+ 1 6= S&T [i] 6= T [i+ 1] then

changes++
end if

end for
RatioChanges := changes/(S − 1)

RatioRanges := 1
6×S ×

∑6
j=1 j × cpt[j]

Score := 1
2 × (RatioChanges+RatioRanges)

end if
return Score

183

DNS tunneling Although being considered as a benign service provided online or by

customized tools, this technique is a good artifact to exfiltrate data from networks that

permit traffic to be sent only through a trusted server or proxy. By having a moderated

bandwidth (110 Kilobytes per second) and latency (150 Milliseconds) [213], attackers

considered DNS tunneling as a good medium to send blocked IP traffic through and con-

duct stealthy communications between bot masters. In [190], Ed Skoudis claimed that

DNS tunneling malware is among the most dangerous attacks.

Malware covert channels In [58], the authors dissected the modus-operandi of Feeder-

bot botnet. Malware belonging to Feederbot family exfiltrates data within DNS query

sub-domain labels and infiltrates attack payloads in DNS response packets. To detect

DNS traffic generated by Feederbot botnet, the authors defined empirically a set of fea-

tures that span over: record data features and behavioral communication features. Based

on these features, they adapted an hybrid approach (clustering & classification techniques)

to detect malicious DNS traffic. In [145], Mullaney introduced another malware family,

namely, Morto, which uses a more resilient method to exchange communication through

covert DNS channels. Morto botnet sends a limited amount of payloads, which makes its

distribution stealthier in comparison with Feederbot botnet.

DNS malicious responses Attackers have put forward tools to send malicious responses

in reply to DNS queries in order to test if DNS look-up servers are vulnerable. For

instance, dnsxss [192] is a tool that returns a string containing JavaScript to “MX”,

184

“CNAME”, “NS”, and “TXT” requests. By looking at Passive DNS stream, we have

found a lot of domains having “TXT” records containing script and frame tags. If a vul-

nerable server does not sanitize “TXT” record data returned by such domains, XSS attack

is performed leading to some abnormal behavior in the server side.

Indicators of DNS DDoS attacks In [43], the authors stipulated that “ANY” record is

usually used in amplification DDoS attacks since it has an amplification factor of 52 since

it replies with a response packet with 3, 336 bytes to a request packet of 64 bytes. In [66],

the authors monitored Darknet for the purpose of inferring DDoS attacks. They observed

that “ANY” records are in order of 52.23% of observed records involved in DDoS attacks

during a period of three months. In the prevailing of these facts, we decide to monitor

“ANY” records observed in passive DNS stream of data.

To detect record misuses, we used Spark filter functions on tuples. For instance,

“TXT” record is used to publish email sender policies associated with domains (e.g.,

Sender Policy Framework (SPF) [126], Domain Keys Identified Mail (DKIM) [63], Domain-

based Message Authentication, Reporting and Conformance (DMARC) [125]), or the ver-

ification identifier of different search engines like Google and Yandex. In order to detect

misuse of “TXT” records, we create patterns that identify benign usage of “TXT” record

data. The “SRV” record [12] is used to publish services (service protocols, e.g, LDAP,

Minecraft, SIP, Skype for corporations, etc.) for domains. Based on observations done on

“SRV” record data, we create patterns that identify if the record data is suspicious or not.

In addition, we capture all passive DNS entries that have “OPT”, “NULL” or “ANY” as a

185

record type. The reason behind doing so lies in the fact that such records are rare and can

be indicators of compromise.

6.3 Experimental Results

6.3.1 Application Performance

Our passive DNS anomalies identification system has been deployed on a cluster of three

servers. The first server is dedicated to detect PPM domains, “TXT”,“SRV”,“OPT”,

“NULL” and “ANY” record misuses. The second one is committed to monitor countries,

cities and IP changes, as well as TTL values per domains. The third server is employed

to observe PPM domains, countries, cities and IP changes, as well as TTL values associ-

ated with specific top level domains and IPs. All the servers run Debian Operation System

version 7.8. In each server, we use instances of a document-based database, namely, Mon-

goDB [142] to store collections of data. The servers have the following characteristics:

• Server 1: Dell Poweredge T410, 24 CPU cores, 64Gb memory and 3.8Tb space.

• Server 2: HP Proliant DL580 G7, 48 CPU cores, 125Gb memory and 4.5Tb space.

• Server 3: SuperMicro, 48 CPU cores, 125Gb memory and 4.0Tb space.

Hereafter, we provide performance results, which falls into: CPU usage, memory

consumption and time delay. The latter means the sum of scheduling time and processing

times for batches. We use JavaVisual VM [98] to monitor the CPU usage and the memory

186

consumption and Spark user interface to observe the processing time delay [70]. We

sampled approximately 18 hours logs of the CPU usage, the memory consumption and

the processing delay time for all servers. We show through these benchmarks that Spark

tool has the ability to cope with passive DNS streams since it uses memory resource to

complete different computations. In the sequel, we provide few observations done on

collected benchmarks.

PPM Detection and Record Misuses

We dedicate the first server to detect PPM domains, record misuses of all passive DNS

records. In the sequel, we describe the application performance in terms of CPU usage,

memory consumption and processing delay time.

CPU Usage We observe for the PPM detection and record misuses application a mod-

erate usage of CPU (see Figure 6.4). This is due to the fact that the batches are done

every minutes and no aggregation is done. In this case, Spark uses a filtering capability to

segregate between benign and suspicious tuples collected from RDD streams. However,

we observe occasionally spikes in CPU usage. This is due to heavy loads of data, which

can reach 2 Gb of passive DNS entries on a minute-by-minute basis.

Memory Regarding memory consumption, we notice that the memory is extensively

used. This is due to the high number of tuples that are loaded for processing. The garbage

collection is triggered periodically to avoid memory usage problems. This is illustrated in

187

10 %

0 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

10:00 AM, Tue 1:00 PM, Tue 4:00 PM, Tue 10:00 PM, Tue 1:00 AM, Wed 4:00 AM, Wed7:00 PM, Tue

Figure 6.4: Server 1 CPU Usage

Figure 6.5, where the garbage collection is done twice to three times every 3 hours.

10:00 AM, Tue 1:00 PM, Tue 4:00 PM, Tue 10:00 PM, Tue 1:00 AM, Wed 4:00 AM, Wed

10 GB

20 GB

30 GB

40 GB

50 GB

60 GB

0 GB
7:00 PM, Tue

Figure 6.5: Server 1 Memory Consumption

Delay Time On sampled data, we observe that delay time may differ from a batch to

another. This is due to the volatility of passive DNS records’ number, which depends

on how much data is received once a minute. The delay varies from 1 minute to 22

188

minutes (see Figure 6.5). However, the delay average is 2 minutes and 23 seconds, which

is acceptable knowing that the passive DNS data is loaded on the fly.

20.00

15.00

10.00

5.00

0.00

Minutes

22:04:00 15:03:00

Total Delay Average
2 minutes 23 seconds

Figure 6.6: Server 1 Processing Delay Time

Monitoring IPs and Domains Features

The second server is used to observe different DNS features. To do so, we deploy Spark

streaming capability, which reads data in slide batches of 2 minutes and aggregates it in

a window batch of 1 hour. Hereafter, we report the different performance benchmarks

(CPU usage, memory consumption and processing delay time).

CPU Usage We observe from Figure 6.7 that the CPU is intensively used every 2 min-

utes (the period of a slide batch). These batches are created to save different statistical

features, namely, cities changes, countries changes, IP changes and TTL values. The

map-reduce operation is done every hour for TTL values, cities, countries and IP num-

ber changes. Then, scoring functions are applied at the time of insertion into database

collections.

189

10:00 PM, Sat 1:00 AM, Sun 7:00 AM, Sun 10:00 AM, Sun 1:00 PM, Sun4:00 AM, Sun

10 %

0 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Figure 6.7: Server 2 CPU Usage

Memory Due to the tremendous computation of statistics, the application employs a lot

of memory (see Figure 6.8). We notice some spikes, where the system uses sometimes

more than 100Gb of memory. The massive use of memory is done usually at the times

when the window batches is considered to be processed. The garbage collection is done

more frequently than previous case since we need to maintain free memory as much as

possible.

Delay Time Unlike the previous application (Server 1 application), this application has

a consequent delay time (see Figure 6.9). This is due to the huge collection of statistics.

However, the average delay time for the sampled data is 40 minutes 48 seconds, which is

less than the batch window period (1 hour). Consequently, we claim that despite the huge

number of collected statistics and performance overhead, Spark maintains a respectable

near-real time processing.

190

125 GB

100 GB

75 GB

50 GB

25 GB

0 GB
10:00 PM, Sat 1:00 AM, Sun 7:00 AM, Sun 10:00 AM, Sun 1:00 PM, Sun4:00 AM, Sun

Figure 6.8: Server 2 Memory Consumption

1.00

0.80

0.60

0.40

0.20

Hours

Total Delay Average
40 minutes 48 seconds

0.00

12:56:00 07:52:00

Figure 6.9: Server 2 Processing Delay Time

Monitoring Top Level Domains and IPs of Interest

In addition to the identification of PPM domains, DNS record misuses and features statis-

tics, we have a keen interest to monitor top level domains and IP spaces of interest. In this

case, we use filter Spark to detect IPs geo-located in specific countries and their top level

domains. We consider all the capabilities integrated in previous servers (Server 1 and

Server 2). As such, we monitor PPM domains, record misuses, DNS features statistics.

The only difference is the fact that we use a batch window of 2 hours instead of 1 hour.

The intent is to collect as much data as we can for feature statistics computations since

191

specific top level domains and IP spaces are a small subset of records collected in passive

DNS.

CPU Usage The CPU usage for Server 3 is depicted in Figure 6.10. We notice that the

CPU is not overwhelmed like in Server 2 application. However, we observe spikes every

two hours, which represents the aggregation period.

4:00 PM, Fri 7:00 PM, Fri 1:00 AM, Sat 4:00 AM, Sat 7:00 AM, Sat10:00 PM, Fri

10 %

0 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Figure 6.10: Server 3 CPU Usage

Memory The memory consumption has a linear trend. We note that the garbage col-

lection is dissimilar than the previous cases. It takes longer periods to be performed (see

Figure 6.11).

Delay Time The delay time has the same trend of CPU usage (see Figures 6.10 and

6.12). The processing time before the aggregation period (2 hours) is less than 1 minute.

192

4:00 PM, Fri 7:00 PM, Fri 1:00 AM, Sat 4:00 AM, Sat 7:00 AM, Sat10:00 PM, Fri

125 GB

100 GB

75 GB

50 GB

25 GB

0 GB

Figure 6.11: Server 3 Memory Consumption

However, at the end of the window batch, we discern some overhead in terms of process-

ing time. This is due to Spark map-reduce operations done every two hours to compute

features’ time series. The average delay time is 23 seconds and 658 milliseconds, which

is the most effective in comparison with previous applications.

4.00

3.00

2.00

1.00

0.00

Minutes

20:23:00 13:04:00

Total Delay Average
23 seconds 658 ms

Figure 6.12: Server 3 Processing Delay Time

193

6.4 Conclusion

In this chapter, we presented a prototype designed and implemented for the purpose of

pinpointing anomalies in passive DNS streams. We use Spark framework to integrate a

near real-time distributed detection system. We use different operations (e.g., filter, map,

reduce) to detect uncommon patterns observed in some DNS records, namely, “TXT”,

“CNAME”, “NULL” and “SRV”. We use the outlier detection algorithm to detect abrupt

changes in DNS “A” and “AAAA” records. This insight is good to detect fluxing domains.

We collect real-time timeseries of TTL values and IP changes to detect fast fluxing of IPs.

We corroborate the system with country and city geo-location of IPv4 addresses as well

as scoring functions to rank potential fluxing activities. We provide different benchmarks

for memory and CPU usages as well as the delay time processing of the deployed system.

Initially, we incorporated some use cases where we illustrated some anomalies detected

by our system. However, due to third party restrictions, they have not been introduced in

this thesis.

194

Chapter 7

Conclusion

The rise of cyber-threats reported by companies and anti-virus vendors has pushed secu-

rity researchers to propose new methodologies to extract intelligence about these threats

to counter them. In this context, we have attempted in this thesis to define a new guideline

to observe and understand the behavior of such threats. We have elaborated four threads of

research, where we provide interesting insights about cyber-threat intelligence. We have

shown how static and dynamic analyses of malware along with passive DNS monitoring

help the security community to identify threats as well as their cyber infrastructures.

We began our research with reverse engineering exercises of two prominent crime-

ware tool-kits, namely, Mariposa and Zeus. We have unveiled their underlying networking

infrastructure. Moreover, we provided detailed description of their components and tech-

niques used to perpetrate malicious activities. The results of these reverse-engineering ex-

ercises are entailed in Chapter 5. This step is important since it allowed NCFTA-Canada

195

team to gain an expertise in malware analysis and define new perspectives related to mal-

ware research. Despite the importance of reverse-engineering prominent malware threats.

This process turns to be tedious due to the huge number of observed malware collected

in the wild. To keep track with the huge number of collected malware, we use a dynamic

malware analysis framework to collect malware behavior reports and network traces. We

used the latter as a ground-truth to create models that detects malicious traffic, whereas

malware behavior reports were used to create a situational awareness study about cyber-

threat infrastructures.

In Chapter 6, we proposed a graph-theoretic approach to study cyber-threat infras-

tructures. We used a one-year malware analysis dataset to generate important insights

about cyber-threat infrastructures. Moreover, we characterized cyber-threat infrastruc-

tures through networking graphs. In this setting, we used Google PageRank algorithm to

rank badness of IPs, domains, owners, etc. Thus, we identified key players of cyber-

treat infrastructures. We also utilized Min-hashing technique to monitor the sharing

between cyber-threat infrastructures on a daily basis. As such, we inferred patterns of

cyber-criminal activities. We illustrated a situational awareness of the cyber-threat in-

frastructures. We introduced results related to malware, IPs, domains and organizations,

where we rank their badness. Through patterns inference, we found out that domains are

persistent and periodic, whereas patterns of IP addresses tend to be more ephemeral.

As such, in Chapter 4, we initiated a research effort to fingerprint maliciousness in

196

IP traffic. We put forward a comparative study between two traffic maliciousness finger-

printing techniques, Deep Packet Inspection (DPI) and IP packet headers classification.

We evaluated each approach based on its detection and attribution accuracy as well as

its level of complexity. Both approaches showed promising results in terms of detection;

they are good candidates to strengthen network detection systems since they are based on

ground truth collected from dynamic malware analysis. We used data mining algorithms

to fingerprint maliciousness based on packet header flow features and Deep Packet Inspec-

tion signal processing analysis. Regarding the DPI approach, we used MARFCAT NLP

and wavelets classification to fingerprint maliciousness. This approach has shown some

troubles to classify the generic malware families. However, it exhibited large scalability

and accuracy for less noisy malicious traffic. Regarding flow packet headers approach, we

utilized J48, Boosted J48, Naïve Bayesian, Boosted Naïve Bayesian, and SVM to classify

malicious and non-malicious traffic. The J48 and Boosted J48 algorithms performed bet-

ter than other algorithms. We concluded that these two approaches are not in competition

but they can create a synergy to identify maliciousness in IP traffic. The DPI approach

can classify targets on the fly since it does not need parsing, whereas flow packet headers

can increase subsequently the confidence in maliciousness fingerprinting since it shows

the ability to segregate malicious and benign traffic.

Finally, in Chapter 7, we entailed the design and implementation of a big data mon-

itoring system, which put under the zoom massive passive DNS data to identify potential

attacks. We implemented a prototype on top of Spark cluster computational framework.

197

We used its stream monitoring capability to identify suspicious domains, DNS record

misuses, fluxing IPs and domains. We built a capability to generate real-time timeseries

of TTL values and IP addresses changes to detect fast fluxing networks. We integrated a

country and city geo-location of IPv4 addresses as well as scoring functions to rank po-

tential fluxing activities. We have shown the scalability in terms of memory, CPU usages

as well as the delay time processing.

In order to validate the different research efforts illustrated in this dissertation, we

consider the validation classes described in [224], namely, construct validity, internal va-

lidity and external validity. Regarding internal validity, we have to know what is the de-

gree of causality between malware and network cyber-threat intelligence. The answer lies

in the fact that malware samples have the ability to communicate with third parties through

existing network media and protocols, whereas, the analysis of the network traffic may

pinpoint some anomalies and misuses that can be malware indicators of compromises. As

such, we can conclude that both types of cyber-threat intelligence evolves together, and

are causal to each other. Regarding external validity, the different problems tackled within

this thesis are of high importance for the security research community, where we try to

cover the analysis of prominent threats and their underlying infrastructures as well as indi-

cators of maliciousness potentially observed in the network traffic. These research efforts

are published in international peer reviewed journals and conference papers. Regarding

construct validity, in each work, we consider adequate measures to illustrate the different

theoretic concepts; for instance, in Chapter 4, we use PageRank algorithm to rank badness

198

of entities based on influence concept, the observed results are highly linked to different

malware families. In addition, we use min-hashing algorithm to abstract complex graphs

and infer patterns, some of them were highly occurring during the analysis period. In

Chapter 5, we use machine learning techniques to fingerprint maliciousness. We inves-

tigated two approaches with many algorithms to cover as much potential candidates that

are good to detect maliciousness. Moreover, we use standard classification metrics like

accuracy, false positives, 10-times cross validation, etc. In Chapter 6, we measured the

memory and CPU consumption of our big data passive DNS anomaly detection system to

gain insight about its performance.

Despite the insights generated from the research efforts discussed in this thesis,

some issues need to be addressed. Concerning the investigation of cyber-threat infras-

tructures, we plan to integrate a near real-time cyber-threat situational awareness dash-

board. In addition, based on the observations found in the evolution of badness scores

for domains and connected IPs, we aim to look for the empirical periods to consider

for domains badness persistence and connected IPs badness sporadicalness. Regarding

malicious traffic fingerprinting, our future works fall into improving classification of the

malicious traffic according to malware types and families, and deploying the model on a

network in order to test its performance on real-time traffic. In addition, malicious traffic

covers a wide range of types: DDoS, C&C channels, and intrusion payloads. It is in our

plan to further refine the classification of malicious traffic into these types. At present,

we only focus on the captured pcaps from known malware to determine maliciousness.

199

DDoS can also be aided through other existing means (e.g., built into iptables). In ad-

dition, we have not studied possible evasion from malware trying to avoid detection at the

network level. While we believe the headers-only are robust to detect some share of eva-

sive malware, the extent to which our algorithms are robust, stills a challenging research

question. It is also worth investigating why SVM and its parameters performed worse

in fingerprinting maliciousness in flows. A passive DNS platform has been integrated,

however, we target to identify zero-day attacks on the fly by automating the correlation

with other sources like malware database, Virus-Total. In addition, we need to incorpo-

rate an extendible white-list to eliminate false positives that pollute our database. Thus,

easing the analysis and identification of zero-day attacks, including phishing, spamming

campaigns, identification of C&Cs and correlation with malware database. Moreover, we

look thoroughly into rare records like “TXT”, “ANY”, “SRV” and “NULL”. The exis-

tence of “ANY” records can be an indicator for Reflective Distributed Denial of Service

(DRDoS) attacks, whereas “NULL” and “TXT” records are good candidates to detect

malicious payload communications. A study on malicious payloads is a must to identify

encrypted and encoded messages.

200

Appendix A

Signal and NLP DPI Results

Hereafter, we list results of the DPI detection approach. They are based on the whole

packet examination (i.e., headers and payload) that illustrate the precision per algorithm

combinations as well as attribution for the top precise malware types. The methodology

behind them is described in Section 5.4 and the results are discussed in Section 5.5.2. The

algorithms’ options, in addition to those described in [134], are:

• -dynaclass – treat learned classes as labels automatically from the reports (no

predefined classes are set at the beginning),

• -binary – treat data as pure binary non-formatted data,

• -nopreprep – to skip extra pre-pre-processing,

• -sdwt – use separating discrete wavelet transform, and

201

• -flucid – generate FORENSIC LUCID expressions for subsequent forensic inves-

tigations and reasoning in an external system [137].

guess run algorithms good bad %

1st 1 -dynaclass -binary -nopreprep -raw -fft -cos -flucid 67 154 30.32

1st 2 -dynaclass -binary -nopreprep -raw -fft -diff -flucid 55 166 24.89

1st 3 -dynaclass -binary -nopreprep -raw -fft -cheb -flucid 55 166 24.89

1st 4 -dynaclass -binary -nopreprep -raw -fft -eucl -flucid 50 171 22.62

1st 5 -dynaclass -binary -nopreprep -raw -fft -hamming -flucid 37 184 16.74

1st 6 -dynaclass -binary -nopreprep -raw -fft -mink -flucid 34 187 15.38

2nd 1 -dynaclass -binary -nopreprep -raw -fft -cos -flucid 92 129 41.63

2nd 2 -dynaclass -binary -nopreprep -raw -fft -diff -flucid 77 144 34.84

2nd 3 -dynaclass -binary -nopreprep -raw -fft -cheb -flucid 77 144 34.84

2nd 4 -dynaclass -binary -nopreprep -raw -fft -eucl -flucid 73 148 33.03

2nd 5 -dynaclass -binary -nopreprep -raw -fft -hamming -flucid 46 175 20.81

2nd 6 -dynaclass -binary -nopreprep -raw -fft -mink -flucid 47 174 21.27

guess run class good bad %

1st 1 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00

1st 2 Trojan.Win32.Agent.roei 6 0 100.00

1st 3 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00

1st 4 Worm.Win32.AutoRun.dkch 6 0 100.00

1st 5 Trojan-FakeAV.Win32.Agent.det 6 0 100.00

1st 6 FraudTool.Win32.FakeRean 6 0 100.00

1st 7 VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00

1st 8 Trojan.Win32.Vilsel.ayyw 6 0 100.00

1st 9 Worm:Win32/Yeltminky.A!dll 6 0 100.00

1st 10 Trojan.Win32.Meredrop 6 0 100.00

1st 11 TrojanDownloader:Win32/Allsum 12 0 100.00

1st 12 Virtumonde 6 0 100.00

1st 13 Backdoor.Win32.Hupigon.nndu 6 0 100.00

1st 14 VirTool:WinNT/Protmin.gen!C [generic] 6 0 100.00

202

1st 21 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00

1st 22 Trojan:Win32/Swrort.A 11 1 91.67

1st 23 TrojanDownloader:Win32/Carberp.C 11 1 91.67

1st 24 PWS:Win32/Lolyda.BF 15 3 83.33

1st 25 Trojan.Win32.Yakes.qjn 8 4 66.67

1st 26 Trojan.Win32.Agent.rlnz 5 7 41.67

1st 27 Trojan.Win32.VBKrypt.fkvx 6 12 33.33

1st 28 VirTool:Win32/VBInject.OT 6 12 33.33

1st 29 HomeMalwareCleaner.FakeVimes 36 264 12.00

1st 30 Trojan.Win32.Generic!BT 56 598 8.56

1st 31 Trojan.FakeAlert 6 108 5.26

1st 32 Trojan.Win32.Generic.pak!cobra 0 18 0.00

2nd 1 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00

2nd 2 Trojan.Win32.Agent.roei 6 0 100.00

2nd 3 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00

2nd 4 Worm.Win32.AutoRun.dkch 6 0 100.00

2nd 5 Trojan-FakeAV.Win32.Agent.det 6 0 100.00

2nd 6 FraudTool.Win32.FakeRean 6 0 100.00

2nd 7 VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00

2nd 8 Trojan.Win32.Vilsel.ayyw 6 0 100.00

2nd 9 Worm:Win32/Yeltminky.A!dll 6 0 100.00

2nd 10 Trojan.Win32.Meredrop 6 0 100.00

2nd 11 TrojanDownloader:Win32/Allsum 12 0 100.00

2nd 12 Virtumonde 6 0 100.00

2nd 13 Backdoor.Win32.Hupigon.nndu 6 0 100.00

2nd 14 VirTool:WinNT/Protmin.gen!C [generic] 6 0 100.00

2nd 21 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00

2nd 22 Trojan:Win32/Swrort.A 11 1 91.67

2nd 23 TrojanDownloader:Win32/Carberp.C 11 1 91.67

2nd 24 PWS:Win32/Lolyda.BF 16 2 88.89

203

2nd 25 Trojan.Win32.Yakes.qjn 9 3 75.00

2nd 26 Trojan.Win32.Agent.rlnz 5 7 41.67

2nd 27 Trojan.Win32.VBKrypt.fkvx 18 0 100.00

2nd 28 VirTool:Win32/VBInject.OT 6 12 33.33

2nd 29 HomeMalwareCleaner.FakeVimes 66 234 22.00

2nd 30 Trojan.Win32.Generic!BT 117 537 17.89

2nd 31 Trojan.FakeAlert 15 99 13.16

2nd 32 Trojan.Win32.Generic.pak!cobra 0 18 0.00

Table A.1: No-Filtering Results by Algorithm Combination and Malware

guess run algorithms good bad %

1st 1 -dynaclass -binary -nopreprep -sdwt -fft -cos -flucid 55 146 27.36

1st 2 -dynaclass -binary -nopreprep -sdwt -fft -diff -flucid 41 180 18.55

1st 3 -dynaclass -binary -nopreprep -sdwt -fft -mink -flucid 41 180 18.55

1st 4 -dynaclass -binary -nopreprep -sdwt -fft -cheb -flucid 41 180 18.55

1st 5 -dynaclass -binary -nopreprep -sdwt -fft -eucl -flucid 41 180 18.55

1st 6 -dynaclass -binary -nopreprep -sdwt -fft -hamming -flucid 30 191 13.57

2nd 1 -dynaclass -binary -nopreprep -sdwt -fft -cos -flucid 75 126 37.31

2nd 2 -dynaclass -binary -nopreprep -sdwt -fft -diff -flucid 56 165 25.34

2nd 3 -dynaclass -binary -nopreprep -sdwt -fft -mink -flucid 67 154 30.32

2nd 4 -dynaclass -binary -nopreprep -sdwt -fft -cheb -flucid 55 166 24.89

2nd 5 -dynaclass -binary -nopreprep -sdwt -fft -eucl -flucid 58 163 26.24

2nd 6 -dynaclass -binary -nopreprep -sdwt -fft -hamming -flucid 44 177 19.91

guess run class good bad %

1st 1 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00

1st 2 Trojan.Win32.Agent.roei 6 0 100.00

1st 3 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00

1st 4 Worm.Win32.AutoRun.dkch 6 0 100.00

1st 5 Trojan-FakeAV.Win32.Agent.det 6 0 100.00

1st 6 FraudTool.Win32.FakeRean 6 0 100.00

204

1st 7 VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00

1st 8 Trojan.Win32.Vilsel.ayyw 6 0 100.00

1st 9 Worm:Win32/Yeltminky.A!dll 6 0 100.00

1st 10 Trojan.Win32.Meredrop 6 0 100.00

1st 11 Virtumonde 6 0 100.00

1st 12 Backdoor.Win32.Hupigon.nndu 6 0 100.00

1st 13 VirTool:WinNT/Protmin.gen!C [generic] 6 0 100.00

1st 14 PWS:Win32/Fareit.gen!C [generic] 6 0 100.00

1st 15 Trojan-Dropper.Win32.Injector.cxqb 6 0 100.00

1st 16 Trojan.Win32.Menti.mlgp 6 0 100.00

1st 17 Trojan.Win32.Buzus (v) 6 0 100.00

1st 18 Trojan.Win32.Agent.rlot 6 0 100.00

1st 19 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00

1st 20 Trojan.Win32.FakeAV.lcpt 11 1 91.67

1st 21 TrojanDownloader:Win32/Allsum 10 2 83.33

1st 22 Trojan.Win32.Yakes.qjn 10 2 83.33

1st 23 Trojan.Win32.Agent.rlnz 9 3 75.00

1st 24 Trojan:Win32/Swrort.A 6 6 50.00

1st 25 TrojanDownloader:Win32/Carberp.C 6 6 50.00

1st 26 Trojan.Win32.VBKrypt.fkvx 5 11 31.25

1st 27 VirTool:Win32/VBInject.OT 5 11 31.25

1st 28 HomeMalwareCleaner.FakeVimes 46 250 15.54

1st 29 Trojan.FakeAlert 8 104 7.14

1st 30 Trojan.Win32.Generic.pak!cobra 1 17 5.56

1st 31 Trojan.Win32.Generic!BT 18 626 2.80

1st 32 PWS:Win32/Lolyda.BF 0 18 0.00

2nd 1 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00

2nd 2 Trojan.Win32.Agent.roei 6 0 100.00

2nd 3 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00

2nd 4 Worm.Win32.AutoRun.dkch 6 0 100.00

205

2nd 5 Trojan-FakeAV.Win32.Agent.det 6 0 100.00

2nd 6 FraudTool.Win32.FakeRean 6 0 100.00

2nd 7 VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00

2nd 8 Trojan.Win32.Vilsel.ayyw 6 0 100.00

2nd 9 Worm:Win32/Yeltminky.A!dll 6 0 100.00

2nd 10 Trojan.Win32.Meredrop 6 0 100.00

2nd 11 Virtumonde 6 0 100.00

2nd 12 Backdoor.Win32.Hupigon.nndu 6 0 100.00

2nd 13 VirTool:WinNT/Protmin.gen!C [generic] 6 0 100.00

2nd 14 PWS:Win32/Fareit.gen!C [generic] 6 0 100.00

2nd 15 Trojan-Dropper.Win32.Injector.cxqb 6 0 100.00

2nd 16 Trojan.Win32.Menti.mlgp 6 0 100.00

2nd 17 Trojan.Win32.Buzus (v) 6 0 100.00

2nd 18 Trojan.Win32.Agent.rlot 6 0 100.00

2nd 19 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00

2nd 20 Trojan.Win32.FakeAV.lcpt 12 0 100.00

2nd 21 TrojanDownloader:Win32/Allsum 11 1 91.67

2nd 22 Trojan.Win32.Yakes.qjn 11 1 91.67

2nd 23 Trojan.Win32.Agent.rlnz 10 2 83.33

2nd 24 Trojan:Win32/Swrort.A 6 6 50.00

2nd 25 TrojanDownloader:Win32/Carberp.C 10 2 83.33

2nd 26 Trojan.Win32.VBKrypt.fkvx 15 1 93.75

2nd 27 VirTool:Win32/VBInject.OT 5 11 31.25

2nd 28 HomeMalwareCleaner.FakeVimes 76 220 25.68

2nd 29 Trojan.FakeAlert 19 93 16.96

2nd 30 Trojan.Win32.Generic.pak!cobra 2 16 11.11

2nd 31 Trojan.Win32.Generic!BT 62 582 9.63

2nd 32 PWS:Win32/Lolyda.BF 2 16 11.11

Table A.2: Wavelet-Filtered Results by Algorithm Combination and Malware

206

guess run algorithms good bad %

1st 1 -dynaclass -binary -nopreprep -low -fft -cos -flucid 60 161 27.15

1st 2 -dynaclass -binary -nopreprep -low -fft -cheb -flucid 54 167 24.43

1st 3 -dynaclass -binary -nopreprep -low -fft -diff -flucid 54 167 24.43

1st 4 -dynaclass -binary -nopreprep -low -fft -eucl -flucid 46 175 20.81

1st 5 -dynaclass -binary -nopreprep -low -fft -hamming -flucid 35 186 15.84

1st 6 -dynaclass -binary -nopreprep -low -fft -mink -flucid 33 188 14.93

2nd 1 -dynaclass -binary -nopreprep -low -fft -cos -flucid 88 133 39.82

2nd 2 -dynaclass -binary -nopreprep -low -fft -cheb -flucid 74 147 33.48

2nd 3 -dynaclass -binary -nopreprep -low -fft -diff -flucid 74 147 33.48

2nd 4 -dynaclass -binary -nopreprep -low -fft -eucl -flucid 69 152 31.22

2nd 5 -dynaclass -binary -nopreprep -low -fft -hamming -flucid 49 172 22.17

2nd 6 -dynaclass -binary -nopreprep -low -fft -mink -flucid 48 173 21.72

guess run class good bad %

1st 1 Trojan:Win32/Swrort.A 12 0 100.00

1st 2 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00

1st 3 Trojan.Win32.Agent.roei 6 0 100.00

1st 4 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00

1st 5 Worm.Win32.AutoRun.dkch 6 0 100.00

1st 6 Trojan-FakeAV.Win32.Agent.det 6 0 100.00

1st 7 FraudTool.Win32.FakeRean 6 0 100.00

1st 8 VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00

1st 9 Trojan.Win32.Vilsel.ayyw 6 0 100.00

1st 10 Worm:Win32/Yeltminky.A!dll 6 0 100.00

1st 11 Trojan.Win32.Meredrop 6 0 100.00

1st 12 Virtumonde 6 0 100.00

1st 13 Backdoor.Win32.Hupigon.nndu 6 0 100.00

1st 14 VirTool:WinNT/Protmin.gen!C [generic] 6 0 100.00

1st 21 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00

1st 22 TrojanDownloader:Win32/Allsum 11 1 91.67

207

1st 23 TrojanDownloader:Win32/Carberp.C 10 2 83.33

1st 24 PWS:Win32/Lolyda.BF 15 3 83.33

1st 25 Trojan.Win32.Yakes.qjn 8 4 66.67

1st 26 Trojan.Win32.Agent.rlnz 6 6 50.00

1st 27 Trojan.Win32.VBKrypt.fkvx 6 12 33.33

1st 28 VirTool:Win32/VBInject.OT 6 12 33.33

1st 29 HomeMalwareCleaner.FakeVimes 37 263 12.33

1st 30 Trojan.Win32.Generic.pak!cobra 2 16 11.11

1st 31 Trojan.FakeAlert 8 106 7.02

1st 32 Trojan.Win32.Generic!BT 35 619 5.35

2nd 1 Trojan:Win32/Swrort.A 12 0 100.00

2nd 2 VirTool.Win32.VBInject.gen.bp (v) 6 0 100.00

2nd 3 Trojan.Win32.Agent.roei 6 0 100.00

2nd 4 BehavesLike.Win32.Malware.dls (mx-v) 6 0 100.00

2nd 5 Worm.Win32.AutoRun.dkch 6 0 100.00

2nd 6 Trojan-FakeAV.Win32.Agent.det 6 0 100.00

2nd 7 FraudTool.Win32.FakeRean 6 0 100.00

2nd 8 VirTool:Win32/Obfuscator.WJ (suspicious) 6 0 100.00

2nd 9 Trojan.Win32.Vilsel.ayyw 6 0 100.00

2nd 10 Worm:Win32/Yeltminky.A!dll 6 0 100.00

2nd 11 Trojan.Win32.Meredrop 6 0 100.00

2nd 12 Virtumonde 6 0 100.00

2nd 13 Backdoor.Win32.Hupigon.nndu 6 0 100.00

2nd 14 VirTool:WinNT/Protmin.gen!C [generic] 6 0 100.00

2nd 21 Trojan-Spy.Win32.SpyEyes.aecv 6 0 100.00

2nd 22 TrojanDownloader:Win32/Allsum 11 1 91.67

2nd 23 TrojanDownloader:Win32/Carberp.C 10 2 83.33

2nd 24 PWS:Win32/Lolyda.BF 15 3 83.33

2nd 25 Trojan.Win32.Yakes.qjn 9 3 75.00

2nd 26 Trojan.Win32.Agent.rlnz 8 4 66.67

208

2nd 27 Trojan.Win32.VBKrypt.fkvx 18 0 100.00

2nd 28 VirTool:Win32/VBInject.OT 6 12 33.33

2nd 29 HomeMalwareCleaner.FakeVimes 66 234 22.00

2nd 30 Trojan.Win32.Generic.pak!cobra 2 16 11.11

2nd 31 Trojan.FakeAlert 14 100 12.28

2nd 32 Trojan.Win32.Generic!BT 105 549 16.06

Table A.3: Low-Pass-Filtered Results by Algorithm Combination and Malware

209

Bibliography

[1] Alexa, actionable analytics for the web. https://www.alexa.com, visited on

December 18, 2015.

[2] jNetPcap OpenSource. http://www.jnetpcap.com/, visited on December

18, 2015.

[3] Malware Classification. http://tinyurl.com/p539nnd, visited on De-

cember 18, 2015.

[4] MaxMind: IP Geolocation and Online Fraud Prevention. https://www.

maxmind.com, visited on December 18, 2015.

[5] PaiMei - a reverse engineering framework. http://code.google.com/p/

paimei/, visited on December 18, 2015.

[6] Python plugin for interactive disassembler pro. https://code.google.

com/p/idapython/, visited on December 18, 2015.

210

https://www.alexa.com
http://www.jnetpcap.com/
http://tinyurl.com/p539nnd
https://www.maxmind.com
https://www.maxmind.com
http://code.google.com/p/paimei/
http://code.google.com/p/paimei/
https://code.google.com/p/idapython/
https://code.google.com/p/idapython/

[7] Weka 3 Data Mining with Open Source Machine Learning Software in Java.

http://www.cs.waikato.ac.nz/ml/weka/, visited on December 18,

2015.

[8] WISNET: Downloads. http://wisnet.seecs.nust.edu.pk/

downloads.php, visited on December 18, 2015.

[9] wisegeek clear answers for common questions, 2012. http://www.

wisegeek.com/what-is-cyber-intelligence.htm, visited on De-

cember 18, 2015.

[10] IETF RFC 1794. DNS support for load balancing. http://tools.ietf.

org/html/rfc1794, visited on December 18, 2015.

[11] IETF RFC 1912. Common DNS operational and configuration errors. http:

//tools.ietf.org/html/rfc1912, visited on December 18, 2015.

[12] A. Gulbrandsen, P. Vixie, L. Esibov. A DNS rr for specifying the location of

services (DNS srv). https://www.ietf.org/rfc/rfc2782.txt, visited

on December 18, 2015.

[13] A. F. Abdelnour and I. W. Selesnick. Nearly symmetric orthogonal wavelet bases.

In proceedings of IEEE International Conference in Acoustics, Speech, Signal Pro-

cessing (ICASSP), volume 6, 2001.

211

http://www.cs.waikato.ac.nz/ml/weka/
http://wisnet.seecs.nust.edu.pk/downloads.php
http://wisnet.seecs.nust.edu.pk/downloads.php
http://www.wisegeek.com/what-is-cyber-intelligence.htm
http://www.wisegeek.com/what-is-cyber-intelligence.htm
http://tools.ietf.org/html/rfc1794
http://tools.ietf.org/html/rfc1794
http://tools.ietf.org/html/rfc1912
http://tools.ietf.org/html/rfc1912
https://www.ietf.org/rfc/rfc2782.txt

[14] Emile Aben. Conficker/conflicker/downadup as seen from the ucsd net-

work telescope, 2008. http://www.caida.org/research/security/

ms08-067/conficker.xml, visited on December 18,2015.

[15] Charu C. Aggarwal, Stephen C. Gates, and Philip S. Yu. On the merits of building

categorization systems by supervised clustering. In KDD, KDD’99, pages 352–

356, New York, NY, USA, 1999.

[16] Saed Alrabaee, Noman Saleem, Stere Preda, Lingyu Wang, and Mourad Debbabi.

Oba2: an onion approach to binary code authorship attribution. Digital Investiga-

tion, 11:S94–S103, 2014.

[17] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad Debbabi. Sigma: A

semantic integrated graph matching approach for identifying reused functions in

binary code. Digital Investigation, 12:S61–S71, 2015.

[18] Riyad Akla Alshammari. Automatically Generating Robust Signatures Using a

Machine Learning Approach To Unveil Encrypted VOIP Traffic Without Using Port

Numbers, IP Addresses and Payload Inspection. PhD thesis, Dalhousie University,

Halifax, Nova Scotia, Canada, May 2012.

[19] Riyad Akla Alshammari and A. N. Zincir-Heywood. Investigating two different

approaches for encrypted traffic classification. In proceedings of the Sixth An-

nual Conference on Privacy, Security and Trust (PST’08), pages 156–166, October

2008.

212

http://www.caida.org/research/security/ms08-067/conficker.xml
http://www.caida.org/research/security/ms08-067/conficker.xml

[20] Riyad Akla Alshammari and A. N. Zincir-Heywood. Machine learning based en-

crypted traffic classification: Identifying SSH and Skype. In proceedings of the

IEEE Symposium on Computational Intelligence for Security and Defense Appli-

cations (CISDA 2009), pages 1–8, July 2009.

[21] Dennis Andriesse, Christian Rossow, Brett Stone-Gross, Daniel Plohmann,

and Herbert Bos. Highly resilient peer-to-peer botnets are here: An anal-

ysis of gameover zeus. In Malicious and Unwanted Software:" The Ameri-

cas"(MALWARE), 2013 8th International Conference on, pages 116–123. IEEE,

2013.

[22] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feam-

ster. Building a dynamic reputation system for DNS. In proceedings of USENIX

security symposium, pages 273–290, 2010.

[23] Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou II, and

David Dagon. Detecting malware domains at the upper DNS hierarchy. In USENIX

Security Symposium, page 16, 2011.

[24] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou II, Saeed

Abu-Nimeh, Wenke Lee, and David Dagon. From throw-away traffic to bots: De-

tecting the rise of dga-based malware. In USENIX security symposium, pages 491–

506, 2012.

213

[25] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario. Auto-

mated classification and analysis of Internet malware. Technical report, University

of Michigan, April 2007. http://www.eecs.umich.edu/techreports/

cse/2007/CSE-TR-530-07.pdf, visited on December 18, 2015.

[26] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel,

and Engin Kirda. Scalable, behavior-based malware clustering. In proceedings of

the Network and Distributed System Security Symposium (NDSS), volume 9, 2009.

[27] Ron Begleiter, Yuval Elovici, Yona Hollander, Ori Mendelson, Lior Rokach, and

Roi Saltzman. A fast and scalable method for threat detection in large-scale DNS

logs. In proceedings of IEEE International Conference on Big Data, pages 738–

741. IEEE, 2013.

[28] Biddle, P. and England, P. and Peinado, M. and Willman, B. The Darknet and the

Future of Content Protection. In proceedings of the 2003 Digital Rights Manage-

ment, pages 344–365. Springer, 2003.

[29] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. Exposure:

Finding malicious domains using passive DNS analysis. In proceedings of the

Network and Distributed System Security Symposium (NDSS), 2011.

[30] Leyla Bilge, Sevil Sen, Davide Balzarotti, Engin Kirda, and Christopher Kruegel.

Exposure: a passive DNS analysis service to detect and report malicious domains.

ACM Transactions on Information and System Security (TISSEC), 16(4):14, 2014.

214

http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf
http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf

[31] James R. Binkley and Suresh Singh. An algorithm for anomaly-based botnet de-

tection. In proceedings of the 2nd conference on Steps to Reducing Unwanted Traf-

fic on the Internet - Volume 2, SRUTI’06, pages 1–7, Berkeley, CA, USA, 2006.

USENIX Association.

[32] Hamad Binsalleeh, Thomas Ormerod, Amine Boukhtouta, Prosenjit Sinha, Amr

Youssef, Mourad Debbabi, and Lingyu Wang. On the analysis of the zeus botnet

crimeware toolkit. In proceedings of Privacy Security and Trust (PST), 2010 Eighth

Annual International Conference on, pages 31–38. IEEE, 2010.

[33] Eric Bloedorn, Alan D. Christiansen, William Hill, Clement Skorupka, Lisa M.

Talbot, and Jonathan Tivel. Data mining for network intrusion detection: How to

get started. Technical report, The MITRE Corporation, 2001.

[34] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of Statistical Me-

chanics: Theory and Experiment, (10), 2008.

[35] Nathaniel Boggs, Sharath Hiremagalore, Angelos Stavrou, and Salvatore J. Stolfo.

Cross-domain collaborative anomaly detection: so far yet so close. In proceedings

of Recent Advances in Intrusion Detection, pages 142–160. Springer, 2011.

[36] Phillip Bonacich. Some unique properties of eigenvector centrality. Social Net-

works, 29(4):555–564, October 2007.

215

[37] Stephen P. Borgatti. Centrality and network flow. Social Networks, 27(1):55–71,

January 2005.

[38] Amine Boukhtouta, Nour-Eddine Lakhdari, and Mourad Debbabi. Inferring mal-

ware family through application protocol sequences signature. In proceedings

of the 6th International Conference on New Technologies, Mobility and Security

(NTMS), pages 1–5. IEEE, 2014.

[39] Amine Boukhtouta, Nour-Eddine Lakhdari, Serguei Andrei Mokhov, and Mourad

Debbabi. Towards fingerprinting malicious traffic. In proceedings of the 4th In-

ternational Conference on Ambient Systems, Networks and Technologies, ANT’13.

Elsevier, 2013.

[40] Amine Boukhtouta, Serguei A Mokhov, Nour-Eddine Lakhdari, Mourad Debbabi,

and Joey Paquet. Network malware classification comparison using DPI and flow

packet headers. Journal of Computer Virology and Hacking Techniques, pages

1–32, 2015.

[41] Amine Boukhtouta, Djedjiga Mouheb, Mourad Debbabi, Omar Alfandi, Farkhund

Iqbal, and May El Barachi. Graph-theoretic characterization of cyber-threat infras-

tructures. Digital Investigation, 14:S3–S15, 2015.

[42] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. In Proceedings of the Seventh International Conference on World

Wide Web, WWW7, pages 107–117. Elsevier Science Publishers B. V., 1998.

216

[43] Tao Cai, Jian Yang, and Xinxin Jin. Inferring DNS flooding attack through passive

data analysis.

[44] Su Chang and Thomas E. Daniels. P2P botnet detection using behavior clustering

& statistical tests. In proceedings of the second ACM workshop on Security and

artificial intelligence, AISec’09, pages 23–30, New York, NY, USA, 2009. ACM.

[45] William Chavuenet. A manual of spherical and practical astronomy. Philadelphia,

J. B. Lippincott & co. London, Trübner & co., 1871.

[46] Ken Chiang and Levi Lloyd. A case study of the rustock rootkit and spam bot. In

proceedings of the First Workshop in Understanding Botnets, volume 20, 2007.

[47] Hyunsang Choi and Heejo Lee. Identifying botnets by capturing group activities

in DNS traffic. Computer Networks, 56(1):20–33, 2012.

[48] Miha Christodorescu, Somesh Jha, and Christopher Kruegel. Mining specifica-

tions of malicious behavior. In proceedings of the 6th joint meeting of the Euro-

pean software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, ESEC-FSE ’07, pages 5–14. ACM, 2007.

[49] Lucian Constantin. DDoS attack against spamhaus was reportedly the largest in

history, March 2013. http://tinyurl.com/mx22qvr, visited on December

18, 2015.

217

http://tinyurl.com/mx22qvr

[50] Heather Crawford and John Aycock. Kwyjibo: automatic domain name generation.

Software: Practice and Experience, 38(14):1561–1567, 2008.

[51] Chavdar Dangalchev. Residual closeness in networks. Physica A: Statistical Me-

chanics and its Applications, 365(2):556–564, 2006.

[52] Neil Daswani and Michael Stoppelman. The anatomy of Clickbot.A. In proceed-

ings of the First Workshop on Hot Topics in Understanding Botnets, pages 1–11.

USENIX Association, 2007.

[53] DataRescue. IDAPro - multi-processor disassembler and debugger, 2009. http:

//www.hex-rays.com/idapro/, visited on December 18, 2015.

[54] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the royal statistical society. Series

B (methodological), pages 1–38, 1977.

[55] Luca Deri, Simone Mainardi, Maurizio Martinelli, and Enrico Gregori. Exploit-

ing DNS traffic to rank internet domains. In proceedings of IEEE International

Conference on Communications, ICC’13, pages 1325–1329, 2013.

[56] Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and John Lock-

wood. Deep packet inspection using parallel bloom filters. In proceedings of

the Eleventh symposium on High performance interconnects, pages 44–51. IEEE,

2003.

218

http://www.hex-rays.com/idapro/
http://www.hex-rays.com/idapro/

[57] Inderjit S. Dhillon, Subramanyam Mallela, and Rahul Kumar. A divisive informa-

tion theoretic feature clustering algorithm for text classification. The Journal of

Machine Learning Research, 3:1265–1287, 2003.

[58] Christian J Dietrich, Christian Rossow, Felix C Freiling, Herbert Bos, Maarten

van Steen, and Norbert Pohlmann. On botnets that use DNS for command and

control. In proceedings of the Seventh European Conference on Computer Network

Defense, pages 9–16. IEEE, 2011.

[59] Christian J. Dietrich, Christian Rossow, and Norbert Pohlmann. CoCoSpot: Clus-

tering and recognizing botnet command and control channels using traffic analysis.

Computer Networks, 57(2):475–486, 2013.

[60] David Dittrich and Sven Dietrich. P2p as botnet command and control: a deeper

insight. In proceedings of the Third International Conference on Malicious and

Unwanted Software, MALWARE 2008, pages 41–48. IEEE, 2008.

[61] DNSBL. Spam database lookup. http://www.dnsbl.info, visited on De-

cember 18, 2015.

[62] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John

Wiley & Sons, 2012.

[63] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton, M. Thomas. Domainkeys

identified mail (dkim) signatures draft-ietf-dkim-base-10. https://tools.

219

http://www.dnsbl.info
https://tools.ietf.org/html/draft-ietf-dkim-base-10
https://tools.ietf.org/html/draft-ietf-dkim-base-10

ietf.org/html/draft-ietf-dkim-base-10, visited on December 18,

2015.

[64] École Polytechnique Fédérale de Lausanne. The SCALA programming language.

http://www.scala-lang.org, visited on December 18, 2015.

[65] Sean R Eddy. Hidden markov models. Current Opinion in Structural Biology,

6(3):361–365, 1996.

[66] Claude Fachkha, Elias Bou-Harb, and Mourad Debbabi. Fingerprinting internet

DNS amplification DDoS activities. In proceedings of the Sixth International Con-

ference on New Technologies, Mobility and Security (NTMS), pages 1–5. IEEE,

2014.

[67] Wei Fan, M. Miller, S.J. Stolfo, Wenke Lee, and P.K. Chan. Using artificial anoma-

lies to detect unknown and known network intrusions. In proceedings of the IEEE

International Conference on Data Mining (ICDM 2001), pages 123–130, 2001.

[68] R Foundation. The R project for statistical computing. https://www.

r-project.org, visited on December 18, 2015.

[69] The Apache Software Foundation. Apache river news. http://river.

apache.org/, visited on December 18, 2015.

220

https://tools.ietf.org/html/draft-ietf-dkim-base-10
https://tools.ietf.org/html/draft-ietf-dkim-base-10
http://www.scala-lang.org
https://www.r-project.org
https://www.r-project.org
http://river.apache.org/
http://river.apache.org/

[70] The Apache Software Foundation. Apache spark is a fast and general engine for

large-scale data processing. http://spark.apache.org/, visited on De-

cember 18, 2015.

[71] The Apache Software Foundation. Welcome to apache hadoop. https://

hadoop.apache.org/, visited on December 18, 2015.

[72] The Python Software Foundation. Welcome to Python.org. https://www.

python.org, visited on December 18, 2015.

[73] Eibe Frank. J48, 2012. http://weka.sourceforge.net/doc.dev/

weka/classifiers/trees/J48.html, visited on December 18, 2015.

[74] Eibe Frank, Shane Legg, and Stuart Inglis. Class SMO, 2012.

http://weka.sourceforge.net/doc.dev/weka/classifiers/

functions/SMO.html, visited on December 18, 2015.

[75] Linton C. Freeman. A set of measures of centrality based on betweenness. Sociom-

etry Journal, 40(1):35–41, March 1977.

[76] Yoav Freund. Boosting a weak learning algorithm by majority. Information and

Computation, 121(2):256–285, September 1995.

[77] Thomas Gärtner. A survey of kernels for structured data. SIGKDD Explorations

Newsletter, 5(1):49–58, July 2003.

221

http://spark.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://www.python.org
https://www.python.org
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SMO.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SMO.html

[78] Vladimir Golovko, Sergei Bezobrazov, Pavel Kachurka, and Leonid Vaitsekhovich.

Neural network and artificial immune systems for malware and network intrusion

detection. In Advances in Machine Learning II, pages 485–513. Springer, 2010.

[79] Nidhi Grover and Ritika Wason. Comparative analysis of pagerank and hits al-

gorithms. In International Journal of Engineering Research and Technology, vol-

ume 1, pages 1–15. ESRSA Publications, Oct 2012.

[80] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. Botminer: clustering

analysis of network traffic for protocol- and structure-independent botnet detection.

In proceedings of the 17th conference on Security symposium, SS’08, pages 139–

154, Berkeley, CA, USA, 2008. USENIX Association.

[81] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee.

Bothunter: detecting malware infection through ids-driven dialog correlation. In

proceedings of 16th USENIX Security Symposium on USENIX Security Sympo-

sium, SS’07, pages 1–16, Berkeley, CA, USA, 2007. USENIX Association.

[82] Guofei Gu, Junjie Zhang, and Wenke Lee. Botsniffer: Detecting botnet command

and control channels in network traffic. In proceedings of the Network and Dis-

tributed System Security Symposium (NDSS), 2008.

[83] Bin Han. Towards a multi-tier runtime system for GIPSY. Master’s thesis, 2010.

[84] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA, 2005.

222

[85] M. A. Hearst, S.T. Dumais, E. Osman, J. Platt, and B. Scholkopf. Support vector

machines. Intelligent Systems and their Applications, IEEE, 13(4):18–28, July

1998.

[86] Christopher E Heil and David F Walnut. Continuous and discrete wavelet trans-

forms. SIAM review, 31(4):628–666, 1989.

[87] Thorsten Holz, Markus Engelberth, and Felix Freiling. Learning more about the

underground economy: A case-study of keyloggers and dropzones. Computer Se-

curity ESORICS 2009, pages 1–18, 2009.

[88] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C Freiling. Measur-

ing and detecting fast-flux service networks. In proceedings of the Network and

Distributed System Security Symposium (NDSS), 2008.

[89] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix C Freiling.

Measurements and mitigation of peer-to-peer-based botnets: A case study on storm

worm. In proceedings of the First Usenix Workshop on Large-Scale Exploits and

Emergent Threats, volume 8, pages 1–9, 2008.

[90] Xin Hu, Kang G. Shin, Sandeep Bhatkar, and Kent Griffin. MutantX-S: Scalable

malware clustering based on static features. In proceedings of the USENIX Annual

Technical Conference, pages 187–198, 2013.

223

[91] Galen Hunt and Doug Brubacher. Detours: binary interception of win32 functions.

In proceedings of the Third Conference on USENIX Windows NT Symposium, vol-

ume 3 of WINSYM’99, 1999.

[92] IBM. Addressing TCP/IP hosts, 2009. http://tinyurl.com/hft8nfq,

visited on December 18, 2015.

[93] Iczelion. Tutorial 24: Windows hooks, 2009. http://win32assembly.

programminghorizon.com/tut24.html, visited on December 18, 2015.

[94] IDEFENCE. Sysanalyzer overview. https://github.com/dzzie/

SysAnalyzer, visited December 18, 2015.

[95] Defence Intelligence. Mariposa botnet analysis. Technical report, October 2009.

[96] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter: Un-

derstanding microblogging usage and communities. In proceedings of Workshop

on Web Mining and Social Network Analysis, pages 56–65, New York, NY, USA,

2007. ACM.

[97] Yi Ji. Scalability evaluation of the GIPSY runtime system. Master’s thesis, March

2011. http://spectrum.library.concordia.ca/7152/, visited on

December 18, 2015.

[98] Jiri Sedlacek, Tomas Hurka. Visualvm. https://visualvm.java.net, vis-

ited on December 18, 2015.

224

http://tinyurl.com/hft8nfq
http://win32assembly.programminghorizon.com/tut24.html
http://win32assembly.programminghorizon.com/tut24.html
https://github.com/dzzie/SysAnalyzer
https://github.com/dzzie/SysAnalyzer
http://spectrum.library.concordia.ca/7152/
https://visualvm.java.net

[99] Lars Backstrom Cameron Marlow Johan Ugander, Brian Karrer. The anatomy

of the facebook social graph. Computing Research Repository (CoRR),

abs/1111.4503, 2011.

[100] Kaminsky, Dan. Dan kaminsky’s Blog. http://dankaminsky.com/2004/

07/29/51/, visited on December 18, 2015.

[101] Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright, Geoffrey M.

Voelker, Vern Paxson, and Stefan Savage. Spamalytics: an empirical analysis of

spam marketing conversion. In proceedings of the 15th ACM conference on Com-

puter and communications security, CCS ’08, pages 3–14, New York, NY, USA,

2008. ACM.

[102] A Mert Kara, Hamad Binsalleeh, Mohammad Mannan, Amr Youssef, and Mourad

Debbabi. Detection of malicious payload distribution channels in DNS. In proceed-

ings of IEEE International Conference on Communications (ICC), pages 853–858.

IEEE, 2014.

[103] Anestis Karasaridis, Brian Rexroad, and David Hoeflin. Wide-scale botnet de-

tection and characterization. In proceedings of Hot Bots, HotBots’07, pages 1–7,

Berkeley, CA, USA, 2007. USENIX Association.

[104] G. Katz, A. Shabtai, L. Rokach, and N. Ofek. ConfDTree: Improving decision

trees using confidence intervals. In proceedings of the 12th IEEE International

Conference on Data Mining (ICDM), pages 339–348, December 2012.

225

http://dankaminsky.com/2004/07/29/51/
http://dankaminsky.com/2004/07/29/51/

[105] Nizar Kheir, Gregory Blanc, Hervé Debar, Joaquin Garcia-Alfaro, and Dingqi

Yang. Automated classification of C&C connections through malware URL clus-

tering. In proceedings of ICT Systems Security and Privacy Protection, pages 252–

266. Springer, 2015.

[106] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of

the ACM, 46(5):604–632, September 1999.

[107] Manesh Kokare, P. K. Biswas, and B. N. Chatterji. Texture image retrieval us-

ing new rotated complex wavelet filters. IEEE Transaction on Systems, Man, and

Cybernetics-Part B: Cybernetics, 6(35):1168–1178, 2005.

[108] Manesh Kokare, P. K. Biswas, and B. N. Chatterji. Rotation-invariant texture image

retrieval using rotated complex wavelet filters. IEEE Transaction on Systems, Man,

and Cybernetics-Part B: Cybernetics, 6(36):1273–1282, 2006.

[109] Maria Konte, Nick Feamster, and Jaeyeon Jung. Dynamics of online scam hosting

infrastructure. In proceedings of Passive and Active Network Measurement, pages

219–228. Springer, 2009.

[110] Kryo. iodine. http://code.kryo.se/iodine/, visited on December 18,

2015.

[111] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan

Turner. Algorithms to accelerate multiple regular expressions matching for

226

http://code.kryo.se/iodine/

deep packet inspection. ACM SIGCOMM Computer Communication Review,

36(4):339–350, 2006.

[112] Karypis Lab. Data clustering software. http://glaros.dtc.umn.edu/

gkhome/views/cluto, visited on December 18, 2015.

[113] Bjornar Larsen and Chinatsu Aone. Fast and effective text mining using linear-time

document clustering. In Knowledge Discovery and Data Mining, KDD’99, pages

16–22, New York, NY, USA, 1999. ACM.

[114] Wenke Lee. Applying data mining to intrusion detection: the quest for automation,

efficiency, and credibility. ACM SIGKDD Explorations Newsletter, 4(2):35–42,

2001.

[115] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok. Adaptive intrusion detection: A

data mining approach. Artificial Intelligence Review, 14:533–567, 2000.

[116] Ru Li, Ou-Jie Xi, Bin Pang, Jiao Shen, and Chun-Lei Ren. Network application

identification based on wavelet transform and k-means algorithm. In proceedings

of the IEEE International Conference on Intelligent Computing and Intelligent Sys-

tems (ICIS2009), volume 1, pages 38–41, November 2009.

[117] Wei Li, Marco Canini, Andrew W. Moore, and Raffaele Bolla. Efficient applica-

tion identification and the temporal and spatial stability of classification schema.

Elsevier Computer Network, pages 790–809, 2009.

227

http://glaros.dtc.umn.edu/gkhome/views/cluto
http://glaros.dtc.umn.edu/gkhome/views/cluto

[118] Cornell University Library. e-Print Archive. http://arxiv.org/, visited on

December 18, 2015.

[119] Kriangkrai Limthong, Fukuda Kensuke, and Pirawat Watanapongse. Wavelet-

based unwanted traffic time series analysis. In proceedings of the International

Conference on Computer and Electrical Engineering, pages 445–449, 2008.

[120] Chieh-Yen Lin, Cheng-Hao Tsai, Ching-Pei Lee, and Chih-Jen Lin. Large-scale

logistic regression and linear support vector machines using spark. In proceedings

of the IEEE International Conference on Big Data, pages 519–528. IEEE, 2014.

[121] Carl Livadas, Robert Walsh, David E. Lapsley, and W. Timothy Strayer. Using

machine learning techniques to identify botnet traffic. In proceedings of the 31st

IEEE Conference on Local Computer Networks, pages 967–974, Washington, DC,

USA, 2006. IEEE Computer Society.

[122] Michael E. Locasto, Janak J. Parekh, Angelos D. Keromytis, and Salvatore J.

Stolfo. Towards collaborative security and P2P intrusion detection. In proceed-

ings of the Information Assurance Workshop (IAW’05), from the Sixth Annual IEEE

SMC, pages 333–339, 2005.

[123] Michael E. Locasto, Janak J. Parekh, Sal Stolfo, and Vishal Misra. Collaborative

distributed intrusion detection. Technical Report CUCS-012-04, 2004. http://

academiccommons.columbia.edu/item/ac:109765, visited on De-

cember 18, 2015.

228

http://arxiv.org/
http://academiccommons.columbia.edu/item/ac:109765
http://academiccommons.columbia.edu/item/ac:109765

[124] Maurizio Martinelli Enrico Gregori Luca Deri, Simone Mainardi. Graph theo-

retical models of DNS traffic. In proceedings of the 9th International Wireless

Communications and Mobile Computing Conference, IWCMC, pages 1162–1167,

Jul 2013.

[125] M. Kucherawy, E. Zwicky. Domain-based message authentication, re-

porting and conformance (dmarc). http://tools.ietf.org/html/

draft-kucherawy-dmarc-base-01, visited on December 18, 2015.

[126] M. Wong, W. Schlitt. Sender Policy Framework (SPF) for authorizing use of do-

mains in e-mail, version 1. https://www.ietf.org/rfc/rfc4408.txt,

visited on December 18, 2015.

[127] Spyros Makridakis and Michele Hibon. Arma models and the box–jenkins method-

ology. Journal of Forecasting, 16(3):147–163, 1997.

[128] Christopher D. Manning and Hinrich Schutze. Foundations of Statistical Natural

Language Processing. MIT Press, 2002.

[129] MathWorks. MATLAB, 2000-2015. http://www.mathworks.com/

products/matlab/, visited on December 18, 2015.

[130] MathWorks. MATLAB Coder, 2012. http://www.mathworks.com/

products/matlab-coder/, visited on December 18, 2015.

229

http://tools.ietf.org/html/draft-kucherawy-dmarc-base-01
http://tools.ietf.org/html/draft-kucherawy-dmarc-base-01
https://www.ietf.org/rfc/rfc4408.txt
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/

[131] MathWorks. MATLAB Coder: codegen – generate C/C++ code from MAT-

LAB code, 2012. http://tinyurl.com/je6jem7, visited on December 18,

2015.

[132] Geoffrey McLachlan and Thriyambakam Krishnan. The EM algorithm and exten-

sions, volume 382. John Wiley & Sons, 2007.

[133] E Messmer. Downadup/conflicker worm: When will the next shoe fall, 2009.

http://tinyurl.com/nlnv633.

[134] Serguei A. Mokhov. Study of best algorithm combinations for speech processing

tasks in machine learning using median vs. mean clusters in MARF. In Bipin C.

Desai, editor, proceedings of C3S2E’08, pages 29–43, Montreal, Quebec, Canada,

May 2008.

[135] Serguei A. Mokhov. MARFCAT – MARF-based Code Analysis Tool. Published

electronically within the MARF project, 2010–2015. http://sourceforge.

net/projects/marf/files/Applications/MARFCAT/, visited on

December 18, 2015.

[136] Serguei A. Mokhov. The use of machine learning with signal and NLP process-

ing of source code to fingerprint, detect, and classify vulnerabilities and weak-

nesses with MARFCAT. Technical Report NIST SP 500-283, NIST, October

2011. http://www.nist.gov/manuscript-publication-search.

230

http://tinyurl.com/je6jem7
http://sourceforge.net/projects/marf/files/Applications/MARFCAT/
http://sourceforge.net/projects/marf/files/Applications/MARFCAT/
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909407
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909407

cfm?pub_id=909407, online e-print at http://arxiv.org/abs/1010.

2511, visited on December 18, 2015.

[137] Serguei A. Mokhov. Intensional Cyberforensics. PhD thesis, September 2013.

http://arxiv.org/abs/1312.0466, visited on December 18, 2015.

[138] Serguei A. Mokhov and Mourad Debbabi. File type analysis using signal process-

ing techniques and machine learning vs. file unix utility for forensic analysis.

In Oliver Goebel, Sandra Frings, Detlef Guenther, Jens Nedon, and Dirk Schadt,

editors, proceedings of the IT Incident Management and IT Forensics (IMF’08),

LNI140, pages 73–85. GI, September 2008.

[139] Serguei A. Mokhov, Joey Paquet, and Mourad Debbabi. Formally specifying op-

erational semantics and language constructs of Forensic Lucid. In Oliver Göbel,

Sandra Frings, Detlef Günther, Jens Nedon, and Dirk Schadt, editors, proceed-

ings of the IT Incident Management and IT Forensics (IMF’08), volume 140 of

LNI, pages 197–216. GI, September 2008. http://subs.emis.de/LNI/

proceedings/proceedings140/gi-proc-140-014.pdf, visited on

December 18, 2015.

[140] Serguei A. Mokhov, Joey Paquet, and Mourad Debbabi. Towards automatic de-

duction and event reconstruction using Forensic Lucid and probabilities to encode

the IDS evidence. In Somesh Jha, Robin Sommer, and Christian Kreibich, editors,

proceedings of Recent Advances in Intrusion Detection RAID’10, volume 6307 of

231

http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909407
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909407
http://arxiv.org/abs/1010.2511
http://arxiv.org/abs/1010.2511
http://arxiv.org/abs/1312.0466
http://subs.emis.de/LNI/proceedings/proceedings140/gi-proc-140-014.pdf
http://subs.emis.de/LNI/proceedings/proceedings140/gi-proc-140-014.pdf

Lecture Notes in Computer Science (LNCS), pages 508–509. Springer Berlin Hei-

delberg, September 2010.

[141] Serguei A. Mokhov, Joey Paquet, and Mourad Debbabi. The use of NLP tech-

niques in static code analysis to detect weaknesses and vulnerabilities. In Maria

Sokolova and Peter van Beek, editors, proceedings of Canadian Conference on

AI’14, volume 8436 of LNAI, pages 326–332. Springer, May 2014. Short paper.

[142] MongoDB, Inc. Mongodb. https://www.mongodb.org/, visited on De-

cember 18, 2015.

[143] David Moore, Colleen Shannon, and k claffy. Code-red: a case study on the spread

and victims of an internet worm. In proceedings of the 2nd ACM SIGCOMM Work-

shop on Internet measurment, IMW ’02, pages 273–284, New York, NY, USA,

2002. ACM.

[144] Motorola. Efficient polyphase FIR resampler for numpy: Native C/C++ imple-

mentation of the function upfirdn(), 2009. http://code.google.com/p/

upfirdn/source/browse/upfirdn, visited on December 18, 2015.

[145] Cathal Mullaney. Morto worm sets a (DNS) record. http://www.symantec.

com/connect/blogs/morto-worm-sets-dns-record, visited on De-

cember 18, 2015.

[146] Kevin P. Murphy. HMM toolbox, 2002–2014. http://www.cs.ubc.ca/

~murphyk/Software/HMM/hmm_download.html,.

232

https://www.mongodb.org/
http://code.google.com/p/upfirdn/source/browse/upfirdn
http://code.google.com/p/upfirdn/source/browse/upfirdn
http://www.symantec.com/connect/blogs/morto-worm-sets-dns-record
http://www.symantec.com/connect/blogs/morto-worm-sets-dns-record
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm_download.html
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm_download.html

[147] Yacin Nadji, Manos Antonakakis, Roberto Perdisci, and Wenke Lee. Connected

colors: Unveiling the structure of criminal networks. In SalvatoreJ. Stolfo, Ange-

los Stavrou, and CharlesV. Wright, editors, Research in Attacks, Intrusions, and

Defenses, volume 8145 of Lecture Notes in Computer Science, pages 390–410.

Springer, 2013.

[148] Saeed Nari and Ali A. Ghorbani. Automated malware classification based on net-

work behavior. In proceedings of the 2013 International Conference on Computing,

Networking and Communications (ICNC), pages 642–647, 2013.

[149] Jose Nazario. Blackenergy DDoS bot analysis. 2007.

[150] Jose Nazario and Thorsten Holz. As the net churns: Fast-flux botnet observations.

In proceedings of the Third International Conference on Malicious and Unwanted

Software, MALWARE’08, pages 24–31. IEEE, 2008.

[151] Sang-Kyun Noh, Joo-Hyung Oh, Jae-Seo Lee, Bong-Nam Noh, and Hyun-Cheol

Jeong. Detecting P2P botnets using a multi-phased flow model. In Third Interna-

tional Conference on Digital Society, ICDS’09, pages 247–253, Washington, DC,

USA, 2009. IEEE Computer Society.

[152] The Federal Bureau of Investigation. Botnets 101 what they are and how to avoid

them, June 2013. http://tinyurl.com/nmy7add, visited on December 18,

2015.

233

http://tinyurl.com/nmy7add

[153] Y. Okada, S. Ata, N. Nakamura, Y. Nakahira, and I. Oka. Comparisons of machine

learning algorithms for application identification of encrypted traffic. In proceed-

ings of the 10th International Conference on Machine Learning and Applications

and Workshops (ICMLA), volume 2, pages 358–361, December 2011.

[154] opendns.com. The role of DNS in botnet command & control. http://

tinyurl.com/hxyp7or, visited on December 18, 2015.

[155] Oracle. Download Java for Windows. https://www.java.com/en/

download/, visited on December 18, 2015.

[156] Samir Ouchani, Otmane Ait’Mohamed, and Mourad Debbabi. A non-convex clas-

sifier support for abstraction-refinement framework. In 24th International Confer-

ence on Microelectronics (ICM), pages 1–4, 2012.

[157] Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and Larry Peter-

son. Characteristics of Internet background radiation. In proceedings of IMC’04,

pages 1–14. ACM, 2004.

[158] Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov. Replay-

ing the geometric growth of complex networks and application to the AS internet.

SIGMETRICS Perform. Eval. Rev., 40(3):104–106, January 2012.

[159] Joey Paquet. Distributed eductive execution of hybrid intensional programs. In

proceedings of the 33rd Annual IEEE International Computer Software and Appli-

cations Conference (COMPSAC’09), pages 218–224, July 2009.

234

http://tinyurl.com/hxyp7or
http://tinyurl.com/hxyp7or
https://www.java.com/en/download/
https://www.java.com/en/download/

[160] Emanuele Passerini, Roberto Paleari, Lorenzo Martignoni, and Danilo Bruschi.

Fluxor: Detecting and monitoring fast-flux service networks. In proceedings of

Detection of intrusions and malware, and vulnerability assessment, pages 186–

206. Springer, 2008.

[161] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer

Networks, 31(23-24):2435–2463, 1999.

[162] Yi Peng, Gang Kou, A. Sabatka, Zhengxin Chen, D. Khazanchi, and Yong Shi. Ap-

plication of clustering methods to health insurance fraud detection. In proceedings

of the 2006 International Conference on Service Systems and Service Management,

volume 1, pages 116–120, 2006.

[163] Roberto Perdisci, Davide Ariu, Prahlad Fogla, Giorgio Giacinto, and Wenke Lee.

McPAD: A multiple classifier system for accurate payload-based anomaly detec-

tion. Computer Networks, 53(6):864–881, 2009.

[164] Roberto Perdisci, Igino Corona, David Dagon, and Wenke Lee. Detecting ma-

licious flux service networks through passive analysis of recursive DNS traces.

In Computer Security Applications Conference, 2009. ACSAC’09. Annual, pages

311–320. IEEE, 2009.

[165] Roberto Perdisci, Igino Corona, and Giorgio Giacinto. Early detection of malicious

flux networks via large-scale passive DNS traffic analysis. Dependable and Secure

Computing, IEEE Transactions on, 9(5):714–726, 2012.

235

[166] Nicole Perlroth. Security experts expect shellshock software bug in bash to be

significant, September 2014. http://tinyurl.com/n9joxuh, visited on

December 18, 2015.

[167] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. A multi-perspective analy-

sis of the storm (peacomm) worm. Technical report, Technical report, Computer

Science Laboratory, SRI International, 2007.

[168] Quantcast. Rankings. https://www.quantcast.com/top-sites, visited

on December 18, 2015.

[169] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1993.

[170] Ashkan Rahimian, Paria Shirani, Saed Alrbaee, Lingyu Wang, and Mourad Deb-

babi. Bincomp: A stratified approach to compiler provenance attribution. Digital

Investigation, 14:S146–S155, 2015.

[171] Ashkan Rahimian, Raha Ziarati, Stere Preda, and Mourad Debbabi. On the reverse

engineering of the citadel botnet. In Foundations and Practice of Security, pages

408–425. Springer, 2014.

[172] Liva Ralaivola, Sanjay Joshua Swamidass, Hiroto Saigo, and Pierre Baldi. Graph

kernels for chemical informatics. Neural Networks, 18(8):1093–1110, 2005.

236

http://tinyurl.com/n9joxuh
https://www.quantcast.com/top-sites

[173] Revelli, Alberto and Leidecker, Nico. Heyoka: your fast&spoofed DNS tunnel.

http://heyoka.sourceforge.net/, visited on December 18, 2015.

[174] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov.

Learning and classification of malware behavior. In Detection of Intrusions and

Malware, and Vulnerability Assessment, pages 108–125. Springer, 2008.

[175] Luis Javier Rodríguez and Inés Torres. Comparative study of the baum-welch and

viterbi training algorithms applied to read and spontaneous speech recognition. In

Pattern Recognition and Image Analysis, volume 2652 of Lecture Notes in Com-

puter Science, pages 847–857. Springer Berlin Heidelberg, 2003.

[176] Christian Rossow, Christian J. Dietrich, Herbert Bos, Lorenzo Cavallaro, Maarten

Van Steen, Felix C. Freiling, and Norbert Pohlmann. Sandnet: Network traffic

analysis of malicious software. In proceedings of the First Workshop on Building

Analysis Datasets and Gathering Experience Returns for Security, pages 78–88,

2011.

[177] Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603,

1966.

[178] Gerard Salton. Automatic text processing: the transformation, analysis, and re-

trieval of information by computer. Boston, MA, USA, 1989.

[179] Rob Schreiber. MATLAB. Scholarpedia, 2(6):2929, 2007. http://www.

scholarpedia.org/article/MATLAB, visited on December 18, 2015.

237

http://heyoka.sourceforge.net/
http://www.scholarpedia.org/article/MATLAB
http://www.scholarpedia.org/article/MATLAB

[180] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining methods for

detection of new malicious executables. In proceedings of IEEE Symposium on

Security and Privacy, pages 38–49, Oakland, 2001.

[181] SecurityFocus. Windows anti-debug reference, 2009. http://www.

securityfocus.com/infocus/1893, visited on December 18, 2015.

[182] securixLive. Securix-nsm project page, 2005-2009. http://www.

securixlive.com/knoppix-nsm/ , visited on December 18, 2015.

[183] Ivan Selesnick, Shihua Cai, Keyong Li, Levent Sendur, and A. Farras Abdelnour.

MATLAB implementation of wavelet transforms. Technical report, Electrical En-

gineering, Polytechnic University, Brooklyn, NY, 2003. http://taco.poly.

edu/WaveletSoftware/, visited on December 18, 2015.

[184] James G Shanahan and Laing Dai. Large scale distributed data science using

apache spark. In proceedings of the 21th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 2323–2324. ACM, 2015.

[185] Reza Sharifnya and Mahdi Abadi. A novel reputation system to detect dga-based

botnets. In Computer and Knowledge Engineering (ICCKE), 2013 3th Interna-

tional eConference on, pages 417–423. IEEE, 2013.

[186] Reza Sharifnya and Mahdi Abadi. Dfbotkiller: Domain-flux botnet detection based

on the history of group activities and failures in DNS traffic. Digital Investigation,

12:15–26, 2015.

238

http://www.securityfocus.com/infocus/1893
http://www.securityfocus.com/infocus/1893
http://www.securixlive.com/knoppix-nsm/
http://www.securixlive.com/knoppix-nsm/
http://taco.poly.edu/WaveletSoftware/
http://taco.poly.edu/WaveletSoftware/

[187] Paria Shirani, Mohammad Abdollahi Azgomi, and Saed Alrabaee. A method for

intrusion detection in web services based on time series. In proceedings of the 28th

Canadian Conference on Electrical and Computer Engineering (CCECE), pages

836–841. IEEE, 2015.

[188] György J. Simon, Hui Xiong, Eric Eilertson, and Vipin Kumar. Scan detection: A

data mining approach. In proceedings of SDM 2006, pages 118–129, Philadelphia,

PA, USA, 2006. Society for Industrial and Applied Mathematics. http://www.

siam.org/meetings/sdm06/proceedings/011simong.pdf, visited

on December 18, 2015.

[189] Prosenjit Sinha, Amine Boukhtouta, Victor Heber Belarde, and Mourad Debbabi.

Insights from the analysis of the mariposa botnet. In proceedings of the Fifth Inter-

national Conference on Risks and Security of Internet and Systems (CRiSIS), pages

1–9. IEEE, 2010.

[190] Ed Skoudis. The six most dangerous new attack techniques and what’s coming

next. In RSA Conference (RSA’12), 2012.

[191] Ed Skoudis and Lenny Zeltser. Malware: Fighting Malicious Code. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2003.

[192] SkullSecurity. Dnsxss, 2015. https://wiki.skullsecurity.org/

Dnsxss, visited on December 18, 2015.

239

http://www.siam.org/meetings/sdm06/proceedings/011simong.pdf
http://www.siam.org/meetings/sdm06/proceedings/011simong.pdf
https://wiki.skullsecurity.org/Dnsxss
https://wiki.skullsecurity.org/Dnsxss

[193] Yingbo Song, Angelos D. Keromytis, and Salvatore Stolfo. Spectrogram: A

Mixture-of-Markov-Chains model for anomaly detection in web traffic. In pro-

ceedings of the Network and Distributed System Security Symposium, pages 121–

135. Internet Society, February 2009.

[194] Aditya K Sood, Richard J Enbody, and Rohit Bansal. Dissecting spyeye–

understanding the design of third generation botnets. Computer Networks,

57(2):436–450, 2013.

[195] Sourcefire. Snort: Open-source network intrusion prevention and detection system

(IDS/IPS), 1999–2015. http://www.snort.org/, visited on 18 December,

2015.

[196] Eugene H. Spafford. The internet worm program: An analysis. COMPUTER

COMMUNICATION REVIEW, 19, 1989.

[197] Etienne Stalmans and Barry Irwin. A framework for DNS based detection and

mitigation of malware infections on a network. In proceedings of Information

Security South Africa (ISSA), 2011, pages 1–8. IEEE, 2011.

[198] Michael Steinbach, George Karypis, Vipin Kumar, et al. A comparison of docu-

ment clustering techniques. In Knowledge Discovery and Data Mining Workshop

on Text Mining, volume 400, pages 525–526. ACM, 2000.

[199] Karen Stephenson and Marvin Zelen. Rethinking centrality: Methods and exam-

ples. Social Networks, 11(1):1–37, March 1989.

240

http://www.snort.org/

[200] Ben Stock, Jan Gobel, Markus Engelberth, Felix C Freiling, and Thorsten Holz.

Walowdac-analysis of a peer-to-peer botnet. In proceedings of the European Con-

ference on Computer Network Defense (EC2ND), pages 13–20. IEEE, 2009.

[201] Salvatore J. Stolfo, Wenke Lee, Philip K. Chan, Wei Fan, and Eleazar Eskin. Data

mining-based intrusion detectors: an overview of the Columbia IDS Project. ACM

SIGMOD Record, 30(4):5–14, 2001.

[202] Brett Stone-Gross, Marco Cova, Bob Gilbert, Richard Kemmerer, Christopher

Kruegel, and Giovanni Vigna. Analysis of a botnet takeover. Security & Privacy,

IEEE, 9(1):64–72, 2011.

[203] Jiang Su and Harry Zhang. A fast decision tree learning algorithm. In proceedings

of the 21st National Conference on Artificial Intelligence, volume 1 of AAAI’06,

pages 500–505. AAAI Press, 2006.

[204] P. Ször and P. Ferrie. Hunting for metamorphic. In Virus Bulletin Conference,

pages 123–144. Virus Bulletin, 2001.

[205] Peter Ször. The Art of Computer Virus Research and Defense. Addison-Wesley

Professional, 2005.

[206] Tamas Szerb. NSTX tunneling network-packets over DNS. http://

savannah.nongnu.org/projects/nstx/, visited on December 18, 2015.

241

http://savannah.nongnu.org/projects/nstx/
http://savannah.nongnu.org/projects/nstx/

[207] Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and Christopher Kruegel.

Botfinder: finding bots in network traffic without deep packet inspection. In

CoNEXT, CoNEXT ’12, pages 349–360, New York, NY, USA, 2012. ACM.

[208] Carlos H. C. Teixeira, Arlei Silva, and Wagner Meira Jr. Min-hash fingerprints for

graph kernels: A trade-off among accuracy, efficiency, and compression. JOUR-

NAL OF INFORMATION AND DATA MANAGEMENT, 3(3):227–242, 2012.

[209] Sandeep A. Thorat, Amit K. Khandelwal, Bezawada Bruhadeshwar, and

K. Kishore. Payload content based network anomaly detection. In proceedings

of the First International Conference on the Applications of Digital Information

and Web Technologies (ICADIWT 2008), pages 127–132, 2008.

[210] ThreatTrack Security. ThreadAnalyzer: Dynamic sandboxing and malware analy-

sis (formerly GFI SandBox). http://www.threattracksecurity.com/

enterprise-security/sandbox-software.aspx, visited on Decem-

ber 18, 2015.

[211] Virus Total. Free online virus, malware and url scanner. https://www.

virustotal.com, visited on December 18, 2015.

[212] Philipp Trinius, Carsten Willems, Thorsten Holz, and Konrad Rieck. A malware

instruction set for behavior-based analysis. Technical report, 2011. www.mlsec.

org/malheur/docs/mist-tr.pdf, visited on December 18, 2015.

242

http://www.threattracksecurity.com/enterprise-security/sandbox-software.aspx
http://www.threattracksecurity.com/enterprise-security/sandbox-software.aspx
https://www.virustotal.com
https://www.virustotal.com
www.mlsec.org/malheur/docs/mist-tr.pdf
www.mlsec.org/malheur/docs/mist-tr.pdf

[213] Tom van Leijenhorst, Kwan-Wu Chin, and Darryn Lowe. On the viability and

performance of DNS tunneling. www.uow.edu.au/~kwanwu/DNSTunnel.

pdf, visited on December 18, 2015.

[214] Emil Iordanov Vassev. General architecture for demand migration in the

GIPSY demand-driven execution engine. Master’s thesis, June 2005. http:

//spectrum.library.concordia.ca/8681/, visited on December 18,

2015.

[215] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borg-

wardt. Graph kernels. Journal of Machine Learning Research, 11:1201–1242,

August 2010.

[216] VMware. Vmware server, 2010. http://www.vmware.com/products,

visited December 18, 2015.

[217] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network intrusion

detection. In proceedings of Recent Advances in Intrusion Detection, pages 203–

222. Springer, 2004.

[218] Florian Weimer. Passive DNS replication. In proceedings of the FIRST Conference

on Computer Security Incident, page 98, 2005.

[219] Sean Whalen, Nathaniel Boggs, and Salvatore J. Stolfo. Model aggregation for

distributed content anomaly detection. In proceedings of the 2014 Workshop on

Artificial Intelligent and Security, pages 61–71. ACM, 2014.

243

www.uow.edu.au/~kwanwu/DNSTunnel.pdf
www.uow.edu.au/~kwanwu/DNSTunnel.pdf
http://spectrum.library.concordia.ca/8681/
http://spectrum.library.concordia.ca/8681/
http://www.vmware.com/products

[220] Whois. Domain names & identity for everyone. http://www.whois.com/,

visited on December 18, 2015.

[221] Georg Wicherski. pehash: A novel approach to fast malware clustering. In

2nd USENIX Workshop on Large-Scale Exploits and Emergent Threats, LEET’09,

2009.

[222] Marek S Wiewiórka, Antonio Messina, Alicja Pacholewska, Sergio Maffioletti, Pi-

otr Gawrysiak, and Michał J Okoniewski. Sparkseq: fast, scalable, cloud-ready

tool for the interactive genomic data analysis with nucleotide precision. Bioinfor-

matics, page btu343, 2014.

[223] Wikipedia. Dll injection, 2009. http://en.wikipedia.org/wiki/DLL_

injection#cite_note-Waddington-9, visited on December 18, 2015.

[224] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and

Anders Wesslén. Experimentation in software engineering. Springer Science &

Business Media, 2012.

[225] Meng-Da Wu and Stephen D. Wolfthusen. Network forensics of partial SSL/TLS

encrypted traffic classification using clustering algorithms. In Oliver Göbel, San-

dra Frings, Detlef Günther, Jens Nedon, and Dirk Schadt, editors, proceedings of

the IT Incident Management and IT Forensics (IMF’08), LNI140, pages 157–172,

September 2008.

244

http://www.whois.com/
http://en.wikipedia.org/wiki/DLL_injection#cite_note-Waddington-9
http://en.wikipedia.org/wiki/DLL_injection#cite_note-Waddington-9

[226] JianYun Xu, Andrew H. Sung, Patrick Chavez, and Srinivas Mukkamala. Poly-

morphic malicious executable scanner by api sequence analysis. In proceedings of

the Fourth International Conference on Hybrid Intelligent Systems, HIS ’04, pages

378–383. IEEE Computer Society, 2004.

[227] Sandeep Yadav and AL Narasimha Reddy. Winning with DNS failures: Strategies

for faster botnet detection. In Security and privacy in communication networks,

pages 446–459. Springer, 2012.

[228] Sandeep Yadav, Ashwath Kumar Krishna Reddy, AL Narasimha Reddy, and

Supranamaya Ranjan. Detecting algorithmically generated domain-flux attacks

with DNS traffic analysis. Networking, IEEE/ACM Transactions on, 20(5):1663–

1677, 2012.

[229] Vinod Yegneswaran, Paul Barford, and Dave Plonka. On the design and use of

internet sinks for network abuse monitoring. In proceedings of the 7th International

Symposium on Recent Advances in Intrusion Detection (RAID), pages 146–165,

2004.

[230] Ting-Fang Yen and Michael K. Reiter. Traffic aggregation for malware detection.

In proceedings of the 5th international conference on Detection of Intrusions and

Malware, and Vulnerability Assessment (DIMVA), pages 207–227, Berlin, Heidel-

berg, 2008. Springer-Verlag.

245

[231] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-

phy Mccauley, M Franklin, Scott Shenker, and Ion Stoica. Fast and interactive

analytics over hadoop data with spark. USENIX, 37(4):45–51, 2012.

[232] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-

phy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient dis-

tributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

In proceedings of the 9th USENIX conference on Networked Systems Design and

Implementation, pages 2–2. USENIX Association, 2012.

[233] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. Spark: cluster computing with working sets. In proceedings of the 2nd

USENIX conference on Hot topics in cloud computing, volume 10, page 10, 2010.

[234] Stefano Zanero. Analyzing TCP traffic patterns using self organizing maps. In

Image Analysis and Processing (ICIAP 2005), pages 83–90. Springer, 2005.

[235] Stefano Zanero and Sergio M. Savaresi. Unsupervised learning techniques for an

intrusion detection system. In proceedings of the 2004 ACM symposium on Applied

computing, pages 412–419, 2004.

[236] Stefano Zanero and Giuseppe Serazzi. Unsupervised learning algorithms for in-

trusion detection. In Network Operations and Management Symposium (NOMS

2008), pages 1043–1048, 2008.

246

[237] Kim Zetter. How Digital Detectives Deciphered Stuxnet, the Most Menacing Mal-

ware in History, July 2011. http://tinyurl.com/oa7v6bx, visited on De-

cember 18, 2015.

[238] Dazhi Zhang, Donggang Liu, Christoph Csallner, David Kung, and Yu Lei. A

distributed framework for demand-driven software vulnerability detection. J. Syst.

Softw., 87:60–73, January 2014.

[239] Ying Zhao and George Karypis. Criterion functions for document clustering: Ex-

periments and analysis. Technical report, University of Minnesota, 2002.

[240] Ying Zhao, George Karypis, and Usama Fayyad. Hierarchical clustering algo-

rithms for document datasets. Data Mining and Knowledge Discovery, 10(2):141–

168, 2005.

[241] Shi Zhong and Joydeep Ghosh. Generative model-based document clustering: a

comparative study. Knowledge and Information Systems, 8(3):374–384, 2005.

247

http://tinyurl.com/oa7v6bx

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS
	Introduction
	Motivation and Problem Description
	Objectives
	Methodology
	Contributions
	Thesis Organization

	Background and Related Work
	Overview
	Cyber-Threat Intelligence
	Prominent Cyber-Threat Analysis
	Network Analysis: Graph Theoretic Approach
	Traffic Fingerprinting and Malware Analysis
	Passive DNS Analysis Systems
	Conclusion

	Prominent Cyber-Threats
	Overview
	Analysis of Mariposa Botnet
	Analysis of Zeus Botnet Crime-ware Toolkit
	Conclusion

	Cyber-Threat Infrastructures
	Overview
	Approach
	Experimental Results
	Conclusion

	Malicious Traffic Fingerprinting
	Overview
	Traffic Maliciousness Ground Truth
	Packet Headers Flow-Based Fingerprinting
	Signal and NLP DPI Fingerprinting
	Results
	Discussion
	Conclusion

	Near-Real-Time and Scalable Detection of Anomalies in Passive DNS Streams
	Overview
	Passive DNS Anomalies and Abuse Detection
	Experimental Results
	Conclusion

	Conclusion
	Appendix Signal and NLP DPI Results
	Bibliography

