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ABSTRACT 

Stability Assessment of Homogeneous Slopes Loaded with Mobile Tracked Cranes –  

An Artificial Neural Network Approach  

Xin Ai 

The assessment of stability of homogeneous slopes found as part of embankments, approach 

ramps, in bridge construction or flood protection levees could be a complex task. Either during 

construction or at a point in the operating life of the earth structure it can be subjected to loads 

from the equipment operating on it. Mobile tracked cranes used in heavy lifting or dredging 

operations can apply loads due to their substantial self-weight combined with the load carried by 

them. It is important to be able to determine the minimum factor of safety for such slopes. 

However due to the combination of soil parameters, slope geometry and the variable nature of 

loading imposed, a substantial number (measured perhaps in hundreds of combinations) slope 

stability analyses would be required to find the minimum factor of safety. One approach to 

reduce the number of analyses needed is to develop an Artificial Neural Network, train it using a 

representative dataset of stability analyses, and rely on its predicting capabilities to determine the 

minimum factor of safety for the slope for any combination of model parameters. Artificial 

Neural Networks can simulate the central nervous system of a human brain, by training them 

using the input data and target data one can build a neural network and use them for the factor of 

safety prediction. Since this thesis considers the case of homogeneous constructed slopes, thus 

the slope stability analysis was performed using Bishop Simplified Method, and the load 

distribution due to mobile tracked cranes was represented by an equivalent triangular distribution 

acting on the slope surface. The slope stability analysis was performed using Slide (from 

rocscience Inc.) to obtain the training dataset and MATLAB was used to develop and train the 

artificial neural network. A detailed investigation to assess and improve the network accuracy 

was carried out, and it was established that by increasing the neuron numbers and hidden layers, 

the ultimate average error in predicting the factor of safety for an independent test data set was 

0.677%. This error, considering the inherent uncertainty of soil properties, instils confidence in 

using the Artificial Neural Network for predicting the factor of safety of homogeneous slopes 

loaded by mobile cranes.  
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Chapter 1 - Introduction 

1.1 Motivation 

Geotechnical engineering has developed into an established field of civil engineering, and slope 

stability analysis within it became an important sub-field. When a concrete-faced rockfill dam is 

built across a river, a hydraulic engineer is concerned whether the slopes comprising it will fail 

or not. Or when a new highway is designed near a steep mountain, a road designer should 

consider the minimum Factor of Safety (FS) of nearby slopes, excavations and fills. Quite a few 

geotechnical engineering projects will encounter a slope stability issue. Among them, a mobile 

tracked crane operating on the top slope surface is a common phenomenon. These crawler cranes 

will carry out several construction duties; excavations or fills on the slope, or dredging 

operations on levees, to name a few examples. The crane will apply a certain magnitude of load 

on the slope, which might cause slope failure or other kinds of soil slides. Consequently, the 

prediction of minimum FS of slopes and the control and mitigation of related natural or man-

made disasters are important assignments for geotechnical engineers. 

However, current methods of using various slope stability analyses cannot meet the requirements 

that geotechnical engineers need to deal with a large number of potential combinations of 

parameters; slope geometry, soil properties, crane location, load being lifted, etc. In the field of 

computer science, artificial neural networks (ANN) were developed to predict the behaviour of a 

complex system, without the need to evaluate every possible combination of parameters. The 

essence of ANN is machine learning, which can not only be used into engineering fields, but 

also in others, such as; intelligent robotics, computer numerical control, pattern recognition, 

economy estimation, neural biology and so on. 

 

1.2 Objectives, Methodology and Approach 

The first objective of this thesis is to review fundamental knowledge and principal theory of 

different slope stability analysis methods. The second objective of this thesis is to determine the 

credible range of key parameters, such as slope geometry, soil properties, and pressure 
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distribution due to crawler crane, based on reliable references. The third objective is to 

successfully train a neural network and achieve the final goal of minimizing the prediction error 

of the ANN. In this thesis, a Monte Carlo simulation was adopted as the methodology to sample 

the key parameters of the system and to discover the dataset size. Two primary software were 

used; Slide (Rocscience, Inc., 2015) for slope stability analysis and MATLAB (Mathworks, 

2015), for neural network training. 

To clarify the basic assumptions in the research, it is necessary to define what types of 

engineering problems and slopes can be solved;  

 Artificial or constructed homogeneous slope.  that can be designed as homogenous single 

layer in the engineering projects. Slope height cannot exceed 30m. 

 No groundwater. 

 No weak layers or seams. 

 Bishop Simplified Method used for analysis (appropriate for homogeneous slopes). 

 Load applied on the slope surface due to a crawler crane. A typical crawler crane used 

was a SCX500 hydraulic crawler crane, from HITACHI..   

 The distance between the slope edge and the crawler crane should be within 30m. 

 

1.3 Outcomes 

In this thesis, as a result of analysis and ANN development, the predicting capabilities of the 

ANN were such that the final average error of FS in an independent test dataset was 0.677 

percent with the maximum error of 1.6 percent, which is quite acceptable in the geotechnical 

field due to the general data-limited nature of problems, where quantities, such as soil properties, 

are seldom known within an accuracy of 20-30 percent. Thus, the precision of the ANN is 

sufficiently high that the network can be competent in predicting FS of slopes loaded with 

mobile cranes. In this research, the advantage of ANN is more distinctive than traditional slope 

stability analysis software due to its convenience, simple operation and working efficiency. An 

ANN can deal with a large amount of slopes with different key parameters with a fast processing 

speed. 



3 
 

Chapter 2 – Literature Review 

2.1 Review of Slope Stability 

A slope must be stable enough to avoid landslides or other failures, which will be hazardous to 

the infrastructure and people living near the slope. In addition to its self-weight, the slope needs 

to support the external pressure applied to it, which can come from the structures constructed or 

equipment operated on the top surface of the slope. Thus, it is necessary to review the 

fundamental mechanisms of slope stability and in particular, the pressure distribution generated 

by the crawler cranes. In this chapter, a review of slope stability and of crawler crane stability 

will be discussed. 

 

2.1.1 History and Introduction 

The stability assessment of slopes loaded by equipment is determined by the soil properties and 

strength of the slope in addition to external loads. In practice, many construction sites already 

encountered such engineering problems when crawler cranes, operating on the top surface of the 

slope, resulted in slope failures. The most important factor to represent the stability of a slope is 

the FS in which the resisting shear strength should exceed failure-causing shear stress. Generally, 

a slope is considered as safe if the factor of safety is at least 1.0.  

A large number of studies had been conducted from 1950s to 1990s in which a few key slope 

stability methods were developed. In 1954, Janbu attempted to assess the stability of a slope with 

loads imposed on the top surface of the slope. He developed the Janbu Simplified Method to 

analyze a slope and assumed external surcharge as uniform loads (Shields et al., 1990). 

Meyerhof (1957) modified the analysis by considering the slope angle, the distance from the 

slope edge and the shearing resistance angle. Later, Shields et al. in 1990 had a similar research 

done about the bearing capacity of foundations, representing the external load, on the top surface 

of the slope (Shields et al., 1990). The main concept of their paper was to find an equivalent to 

the bearing capacity of footings or strips of load on slopes to the percentage of the bearing 
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capacity of a footing on a level ground. Recently, Abdalla et al. in 2012 have utilized an ANN to 

predict the FS of slopes (Abdalla et al., 2012). 

The use of heavy equipment or construction equipment, which can be dated back to 3000 

years ago had emerged when Chinese lifted stones to build the Great Wall. Such equipment is 

versatile and applicable in mining, building, excavation and highway construction. From the late 

18th century, the beginning of the Industrial Revolution, and the invention of steam engine, steam 

provided the power for earthmoving equipment (Haycraft, 2011). In the 20th century, Benjamin 

Holt was the first one to assemble an internal combustion engine and add it into an excavator, 

and thus created the crawler-mounted style. After that, cable-operated shovels occupied a 

dominating position during the post-World War II period, and currently hydraulic technology 

came out as the mainstream means of operation in conjunction with internal combustion engines 

(Haycraft, 2011).  

 

Figure 1 Governing parameters of a slope model loaded with a crawler crane 

 

In this thesis, the following input parameters, as illustrated in the Figure 1, represent the model 

of a homogeneous slope loaded with a crawler crane. In this model, γ, 𝑐, 𝜑  are the basic 

parameters to describe the soil properties, namely the unit weight, soil cohesion, the angle of 

shearing resistance (or internal friction); H is the slope height and α is the slope angle; A is the 

distance from the edge of the slope to the crawler crane, and B is the width of the operating 
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equipment; 𝑊𝑠  is the self-weight of the equipment and W is the weight lifted by the equipment; L 

is the arm length and β is the lift angle.  

 By definition, a slope is an inclined boundary surface between air and earth. A slope can 

be found on an embankment dam, expressway cut or a fill. The basic elements of a slope are 

shown in Figure 2. Generally, slopes can be classified into two main categories; natural slopes 

formed by geological processes and artificial slopes, generated by human activity. On the other 

hand, based on the material comprising the slope, it can either be a rock slope or a soil slope. 

Due to the gravity acting on the soil mass and the external forces applied, the slope has an 

inherent tendency to degrade and move toward a flat, horizontal state. In general, a shear failure 

will take place in the slope when the induced shear stresses exceed the shear strength of the 

material.  

The stability of slopes depends on five influencing factors: (a) type of soil particles or 

rocks which comprise the slope; (b) geometric configuration of the cross section of the slope; (c) 

load distribution including gravity, externally applied loads, pore water pressure, and other 

surcharges; (d) groundwater table variation and increase of moisture content in soil particles; (f) 

any other factors reducing the effective stress of the soil mass, such as the vibrations and 

earthquakes (Lu, 2005). 

At failure, the slopes in different soil materials form diverse failure surfaces. The slip 

circle for slopes in homogeneous cohesive soils is overall a continuous curve, which has a 

smaller radius of curvature on the top surface of the slope, and much gentler at the bottom. Based 

on empirical evidence, scholars have assumed this curve to be a circular arc in stability 

calculations (Lu, 2005). However, a plane translational slip surface often occurred in 

homogeneous cohesionless soil slopes. For heterogeneous soil slopes with several strata or 

slopes with soft soil layer at the base, the movement of the rupture surface usually occurs along 

the soft soil layer, and the compound slip surface is the combination of a curve and a straight 

line.  

Practically, the stability analysis of soil slopes is based on limit equilibrium conditions. In 

such a setting, it is postulated that failure takes place along an assumed or known sliding surface. 

Also, it is presumed that a Mohr-Coulomb failure criterion is valid and satisfied along the entire 

rupture surface at the point of limiting equilibrium. 
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Figure 2 Basic elements of a slope 

 

2.1.2 Slope Stability Assessment Based on Limit Equilibrium Analysis 

2.1.2.1 Total Stress Analysis of Slopes in Cohesive Soils  

The most common method of performing slope stability analysis in cohesive soils is the total 

stress analysis, which is based on the principle of limiting equilibrium (Lu, 2005). Due to 

cohesion existing among the soil particles, the entire soil mass moves downward when failure 

occurs. So, the stable condition of each element in the soil mass cannot represent the stability of 

the whole slope. It is usually necessary to consider the slope as rigid body, and analyze the forces 

and moments acting on this free-body under limit equilibrium condition (Lu, 2005). For 

homogeneous, cohesive soil slopes, the actual slip circle (or failure surface) approximates a 

cylindrical shape, and has always been assumed as a cross-sectional form of a circular arc in the 

calculations (Lu, 2005). Therefore, the factor of safety can be presented as the following 

equation: 

𝐹𝑆 =
𝑀𝑓

𝑀
=

𝜏𝑓∗𝐿∗𝑅

𝜏∗𝐿∗𝑅
                                                              (2-1) 

Where 𝜏𝑓 is the shear resistance (kPa), 𝜏 is the mobilized shear strength (kPa), 𝑀𝑓 is the shear 

resistance moment (N*m), 𝑀 is the disturbing moment (N*m), 𝑅 is radius of the slip circular arc 

(m) and 𝐿 is the length of the circular arc AC (in m) as shown in Figure 3. 
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Figure 3 Setup of slope for total stress analysis of homogeneous cohesive soils 

 

The above figure illustrates the cross-section of a slope together with a trial slip circle. Instability 

tends to be caused due to the moment of the self-gravity of the sliding body (Lu, 2005). When 

the sliding body is in the state of the moment equilibrium, the following equation holds 

 𝜏 ∗ 𝐿 ∗ 𝑅 = 𝑊 ∗ 𝑑                                                          (2-2) 

Thus, the factor of safety is defined as 

𝐹𝑆 =
𝜏𝑓𝐿𝑅

𝑊𝑑
                                                                           (2-3) 

The 𝐹𝑆 result obtained in the above equation is one discrete value given for a single potential 

failure surface. However, the ultimate objective is to search for the location of the critical failure 

surface and the corresponding minimum 𝐹𝑆  value. For this purpose, geotechnical engineers 

usually hypothesize several potential failure surfaces and conduct tentative calculations repeated 

many times for all potential slip surface locations (Lu, 2005). In summary, the steps are as 

follows; 

(1) Determine the range of the center 𝑂 of probable slip circles. 
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(2) Calculate a set of probable radii corresponding to each center by using above-mentioned 

formulas to repeat the procedure, and find the minimum value as the 𝐹𝑆 for this center. 

(3) Compare all the 𝐹𝑆 values, and search for the minimum value of the 𝐹𝑆 for this slope, 

then corresponding slip circle is the critical failure surface.  

 

2.1.2.2 Swedish Method of Slices 

The Swedish Method assumes the sliding surface to be a circular arc, and ignores the internal 

(interslice) forces within the soil mass (Lu, 2005). Because of the early extensive research and 

application of the method of slices made by Swedish engineers, this method is often defined as 

the Swedish method of slices. For an arbitrary soil slice, the forces acting on the 𝑖𝑡ℎ slice of unit 

length can be schematically shown as follows: soil self-weight 𝑊𝑖 = 𝛾𝑖 𝑏𝑖ℎ𝑖, the normal reaction 

force 𝑁𝑖, the shear force 𝑇𝑖 and the pore water pressure 𝑢 (Lu, 2005). 

 

Figure 4 Setup of slope and slices for the Swedish method of slices 

 

In reference to Figure 4, according to the conditions of static equilibrium on the 𝑖𝑡ℎ slice, the 

weight 𝑊𝑖  can be resolved into two components: 
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𝑁𝑖 = 𝑊𝑖 cos ∝𝑖 , 𝑇𝑖 = 𝑊𝑖 sin ∝𝑖                                                       (2-4) 

 

Designating the factor of safety as 𝐹𝑆: 

𝐹𝑆 =
𝜏𝑓𝑖

𝜏𝑖
                                                                 (2-5) 

𝜏𝑓𝑖
= 𝑐′ + (𝜎𝑖 − 𝑢𝑖) tan 𝜑′                                                  (2-6) 

𝑁𝑖 = 𝜎𝑖 ∗ 𝑙𝑖 , 𝑇𝑖 = 𝜏𝑖 ∗ 𝑙𝑖                                                             (2-7) 

 

For overall moment equilibrium about the origin 𝑂: 

 

     ∑ 𝑇𝑖𝑅 = ∑ 𝑊𝑖 𝑅 sin 𝛼𝑖                                                      (2-8) 

 

Thus, the factor of safety 𝐹𝑆 can be defined as  

 

    𝐹𝑠 =
𝑅∗∑ 𝜏𝑓𝑖

∗𝑙𝑖

𝑅∗∑ 𝑊𝑖 sin 𝛼𝑖
=

∑ 𝑐′𝑙𝑖+ ∑(𝑊𝑖 cos∝𝑖−𝑢𝑖𝑙𝑖) tan 𝜑′

∑ 𝑊𝑖 sin 𝛼𝑖
    (2-9) 

 

Where 𝛼 represents the angle between the base of a slice and a horizontal line, 𝑇𝑓𝑖
 represents the 

shear resistance; 𝑙𝑖 is the length of the slice base; and the soil properties are 𝑐, 𝛾, 𝜑, as seen on 

Figure 3. 

 

2.1.2.3 Bishop’s Simplified Method 

Bishop has proposed Bishop’s Simplified method in 1955 (Eberhardt, 2003). He postulated that 

the FS in each slice is equal to the FS of the overall failure surface. In this case, the slip surface 

is also regarded as a circular arc, and the stability analysis considers the horizontal inter-slice 

forces. For the 𝑖𝑡ℎ slice, the force diagram, as seen in Figure 5, is presented as follows: 



10 
 

 
Figure 5 Setup of slope and slices for Bishop’s Simplified method 

 

For equilibrium along the vertical direction of the slice 

 

𝑊𝑖 + ∆𝑋𝑖 − 𝑇𝑖 sin 𝛼𝑖 − 𝑁𝑖 cos 𝛼𝑖 = 0, ∆𝑋𝑖 = 0                                (2-10) 

𝑁𝑖 = 𝜎𝑖 ∗ 𝑙𝑖                                                             (2-11) 

Hence: 

𝑁𝑖 =
𝑊𝑖−𝑐′𝑙𝑖 sin 𝛼𝑖∕𝐹𝑠−𝑢𝑖𝑏𝑖

𝑚𝑖
                                                  (2-12) 

𝑚𝑖 =
tan 𝜑′

𝐹𝑠
sin 𝛼𝑖 + cos 𝛼𝑖                                                 (2-13) 

According to the definition of 𝐹𝑆: 

𝐹𝑆 =
𝜏𝑓𝑖

𝜏𝑖
                                                               (2-14) 

𝜏𝑓𝑖
= 𝑐′ + (𝜎𝑖 − 𝑢𝑖) tan 𝜑′                                                   (2-15) 

 𝑇𝑖 = 𝜏𝑖 ∗ 𝑙𝑖 =
1

𝐹𝑠
[𝑐′𝑙𝑖 + (𝜎𝑖𝑙𝑖 − 𝑢𝑖𝑙𝑖) tan 𝜑′]                                  (2-16) 

 

For the overall moment equilibrium about the center 𝑂: 
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∑ 𝑊𝑖𝑅 sin 𝛼𝑖 = ∑ 𝑇𝑖𝑅                                                         (2-17) 

Hence 

𝐹𝑆 =
∑[𝑐′𝑙𝑖+(𝑁𝑖−𝑢𝑖𝑙𝑖) tan 𝜑′]

∑ 𝑊𝑖 sin 𝛼𝑖
                                                    (2-18) 

Substituting equation (2-12) into equation (2-18): 

𝐹𝑠 =
∑

1

𝑚𝑖
[𝑐 ,𝑏𝑖+(𝑊𝑖−𝑢𝑖𝑏𝑖) tan 𝜑,]

∑ 𝑊𝑖 sin 𝛼𝑖
                                            (2-19) 

Since 𝑁𝑖 is the function of 𝐹𝑆, the method demands an iterative calculation. The procedure is 

commenced by assuming a trial value for 𝐹𝑆  and then repeating the iterative process to 

eventually converge to the true value of 𝐹𝑆 for a given trial 𝐹𝑆 (Lu, 2005). 

 

2.1.2.4 Bishop’s Simplified Method Hand Calculation Example 

Bishop simplified method is the analysis method used in this research to establish Slide models. 

So, it is necessary to describe the whole hand calculation process of Bishop’s Simplified method. 

One practical engineering example (Lu, 2005) from China was used, as shown the below in 

Figure 6.  

Example: A slope of an embankment with a height of 15m is inclined at 1:2. The properties of a 

clayey soil are 𝑐 ,  = 10kPa, 𝜑, =  36 °  and unit weight 𝛾  = 19.5kN/m3. Pore water Pressure 

coefficient B was 0.6.  

 

Figure 6 Bishop simplified method hand calculation example  
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For calculation, pore water pressure coefficient B is designated to replace pore water pressure, 

namely 𝐵 =
𝑢𝑖𝑏𝑖

𝑊𝑖
. 

Hence equation (2-19): 

𝐹𝑠 =
∑

1

𝑚𝑖
[𝑐 ,𝑏𝑖+(1−𝐵)𝑊𝑖 tan 𝜑,]

∑ 𝑊𝑖 sin 𝛼𝑖
=

∑ 𝐴𝑖

∑ 𝑊𝑖 sin 𝛼𝑖
                                  (2-20) 

Where: 𝑚𝑖 =
tan 𝜑′

𝐹𝑠
sin 𝛼𝑖 + cos 𝛼𝑖 ,  𝐵 =

𝑢𝑖𝑏𝑖

𝑊𝑖
, 𝐴𝑖 =

1

𝑚𝑖
[𝑐 ,𝑏𝑖 + (1 − 𝐵)𝑊𝑖 tan 𝜑,]. 

Solution (Lu, 2005): 

Step 1: Select a center of slip circle 𝑂1 (20m,-10.08m). Draw the radius and assume it as 27m. 

Then draw the slip surface and take this circle as the first trial slip circle. 

Step 2: Divide the sliding body into 10 slices and number them. The number of each slice is 

labeled in Figure 6.  

Step 3: Find the height of each slice (through the slice center) ℎ𝑖 , the width of each slice 

(through the slice center) 𝑏𝑖 and the slice circular arc length 𝑙𝑖. Calculate items of sin 𝛼𝑖, cos 𝛼𝑖 

and 𝑊𝑖  in the Table 1. And calculate corresponding Factor of Safety. 

 

Table 1 Bishop simplified method hand calculation  
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Table 2 Bishop simplified method hand calculation, (continued) 

 

Take 1st slice in the first trial (first trial FS=1.0) as an example: 

sin 𝛼1 =
𝑏7+𝑏6+𝑏5+𝑏4+𝑏3+𝑏2+0.5𝑏1

𝑅
=

23.775

27
= 0.8806                         (2-21) 

cos 𝛼1 = √1 − sin 𝛼1 ∗ sin 𝛼1 = 0.4739                                           (2-22) 

𝑊1 = 𝛾𝑏1ℎ1 = 19.5 ∗ 2.55 ∗ 2.42 = 120.33𝑘𝑁/𝑚                          (2-23) 

𝑚1 =
tan 𝜑′

𝐹𝑠
sin 𝛼1 + cos 𝛼1 =

tan 36°

1.0
∗ 0.8806 + 0.4739 = 1.1137 (2-24) 

𝐴1 =
1

𝑚1
[𝑐,𝑏1 + (1 − 𝐵)𝑊1 tan 𝜑,]                                                    (2-25) 

                                        =
1

1.1137
[10 ∗ 2.55 + (1 − 0.6) ∗ 120.33 ∗ tan 36°] = 67.34 

𝐹𝑆 =
∑ 𝐴1+𝐴2+⋯𝐴10

∑ 𝑊1∗sin 𝛼1+𝑊2∗sin 𝛼2+⋯+𝑊10∗sin 𝛼10
=1.206                                   (2-26) 

Step 4: Reselect a different radius for circle center 𝑂1. Obtain the minimum Factor of Safety 

for 𝑂1. 

Step 5: Reselect other circle center 𝑂2, 𝑂3 and so on. Repeat above steps in order to obtain the 

minimum Factor of Safety for the slope (Lu, 2005). 

Therefore, the idea of this calculation can be summarized below: 

 Obtain the Factor of Safety for a specific circle center and slip surface (or radius). 

 Obtain the minimum Factor of Safety for a specific circle center and different radii. 
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 Obtain the minimum Factor of Safety for the slope and different circle centers. 

 

2.1.2.4 Janbu’s Rigorous Method 

The failure surfaces of cohesionless soil slopes are usually planar, while for homogeneous 

cohesive soil slopes the failure surfaces of are circular arcs, thus applying Swedish Method or 

Bishop’s Simplified method leads to the solution (Lu, 2005). For a practical engineering project, 

designers adopt the circular arc analysis for calculating the stability of the compacted earth dams 

and rockfill dams. However, when the slope contains obvious soft soil layers, such as the sliding 

along the core surface inside the core wall dam, or soft soil layer lain on the foundation of the 

embankment slope, or the excavation problem on a rock mass with joints or old landslides, the 

circular arc analysis is invalid (Lu, 2005). The sliding, which will occur along the soft layers is 

considerably different from a cylindrical shape. Therefore, these cases will non-circular methods 

to solve for slope stability. Note that, in general, non-circular methods could converge to circular 

arcs if the critical failure surface is such (Zsaki, 2014). 

For Janbu’s rigorous method, the failure surface profile can be of arbitrary shape, as 

shown schematically in Figure 7. Janbu hypothesized the position of a line, which consists of the 

points of application of all inter-slice forces. Based on the empirical evidence, most scholars 

assume the line is located 1 ∕ 3 height of the slice above the base (Lu, 2005). Additionally, the 

method must satisfy both the overall moment equilibrium and the overall force equilibrium in the 

calculations. 

 
Figure 7 Setup of slope and slices for Janbu’s rigorous method 
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Figure 8 Forces acting on a slice – Janbu’s rigorous method 

 

In reference to Figure 8, the Mohr-Coulomb Failure Criterion at the base of a slice can be written 

 

𝜏𝑓𝑖
= 𝑐′ + (𝜎𝑖 − 𝑢𝑖) tan 𝜑′ , 𝐹𝑆 =

𝜏𝑓𝑖

𝜏𝑖
                                           (2-27) 

      𝑁𝑖 = 𝜎𝑖 ∗ 𝑙𝑖 , 𝑇𝑖 = 𝜏𝑖 ∗ 𝑙𝑖                                                        (2-28) 

           𝑇𝑖 =
1

𝐹𝑠
[𝑐′𝑙𝑖 + (𝜎𝑖𝑙𝑖 − 𝑢𝑖𝑙𝑖) tan 𝜑′]       (2-29) 

Resolving vertically: 

        𝑊𝑖 − (𝑋𝑅 − 𝑋𝐿) = 𝑇𝑖 sin 𝛼𝑖 + 𝑁𝑖 cos 𝛼𝑖        (2-30) 

So that 

      𝑁𝑖 =
𝑊𝑖−(𝑋𝑅−𝑋𝐿)−(𝑐′𝑙𝑖 sin 𝛼𝑖−𝑢𝑖𝑙𝑖 sin 𝛼𝑖 tan 𝜑′)∕𝐹𝑆

𝑚𝑖
     (2-31) 

        𝑚𝑖 =
tan 𝜑′

𝐹𝑆
sin 𝛼𝑖 + cos 𝛼𝑖    (2-32) 

Resolving parallel to the base of the 𝑖𝑡ℎ slice: 

 𝑇𝑖 + (𝐸𝑅 − 𝐸𝐿) cos 𝛼𝑖 = [𝑊𝑖 − (𝑋𝑅 − 𝑋𝐿)] sin 𝛼   (2-33) 

So 

 𝐸𝑅 − 𝐸𝐿 = [𝑊𝑖 − (𝑋𝑅 − 𝑋𝐿)] tan 𝛼𝑖 − 𝑇𝑖 sec 𝛼𝑖   (2-34) 

Substituting in  𝑇𝑖 

           𝐸𝑅 − 𝐸𝐿 = [𝑊𝑖 − (𝑋𝑅 − 𝑋𝐿)] tan 𝛼𝑖 −
1

𝐹𝑆
[𝑐′𝑙𝑖 + (𝑁𝑖 − 𝑢𝑖𝑙𝑖) tan 𝜑′] sec 𝛼𝑖       (2-35) 

Taking moments about the center 𝑂 of the slice at the base 

     𝐸𝑅𝑏𝑖 tan 𝛼𝑡𝑖 − 𝑋𝑅𝑏𝑖 − (𝐸𝑅 − 𝐸𝐿)ℎ𝑡𝑖 = 0             (2-36) 
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Hence 

        𝑋𝑅 = 𝐸𝑅 tan 𝛼𝑡𝑖 − (𝐸𝑅 − 𝐸𝐿)ℎ𝑡𝑖 ∕ 𝑏𝑖                                         (2-37) 

 

Overall Force equilibrium (in the absence of surface loading) 

            ∑(𝐸𝑅 − 𝐸𝐿) = 0         (2-38) 

            ∑(𝑋𝑅 − 𝑋𝐿) = 0     (2-39) 

 

Solving Equation (2-35) and Equation (2-38) simultaneously leads to 

          ∑[𝑊𝑖 − (𝑋𝑅 − 𝑋𝐿)] tan 𝛼𝑖 =
1

𝐹𝑆(𝑓)
∑ [𝑐′𝑙𝑖 + (𝑁𝑖 − 𝑢𝑖𝑙𝑖) tan 𝜑′] sec 𝛼𝑖                 (2-40) 

Hence 

𝐹𝑆(𝑓) =
∑ [𝑐′𝑙𝑖+(𝑁𝑖−𝑢𝑖𝑙𝑖) tan 𝜑′]sec 𝛼𝑖

∑[𝑊𝑖−(𝑋𝑅−𝑋𝐿)] tan 𝛼𝑖
                                                 (2-41) 

 

2.1.3 Other Slope Stability Analysis Methods 

All the methods summarized above are based on the concept of limit equilibrium. On the basis of 

mechanical principle of a sliding body, the methods can analyze diverse slope failure models, 

stress states, and the relationship between shear resistance and mobilized shear strength to 

estimate the slope stability. All the above-introduced methods, plus methods like the 

Morgenstern-Price method, Spencer’s method and Sarma’s method are two-dimensional. 

Additionally, Hovland’s method and Leshchinsky’s method can be adopted to solve the three-

dimensional limit equilibrium analysis problems (Lei, 2014). 

In addition to methods based on limit equilibrium, there are other methods for slope stability 

analysis. Most of these are numerical methods of analysis, and some of the will be summarized 

briefly  

 The finite element method (FEM) dates back to 1967 when it is applied the first time. It is 

one of the most popular numerical analyses applied in the engineering field. However, it 

cannot solve the discontinuous deformation problems and large strain (or called large 

deformation, or finite strain) problems. Furthermore, its solutions for stress concentration 

and infinite domain are not ideal (Lei, 2014). 
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 The Boundary element method (BEM) is somewhat similar to the FEM. But it only 

discretizes the boundaries of the problem, so the amount of input data is relatively less. 

This method specializes in solving infinite domain problems and semi-infinite domain 

problems. However FEM is more suitable, than the BEM, dealing with non-linear and 

heterogeneous materials behaviour, and simulating excavation process. Finally, both 

BEM and FEM can have difficulties solve the large strain problems (Lei, 2014). 

 Discontinuous Deformation Analysis (DDA) is a novel numerical methodology 

established by Shi in 1988 (Lei, 2014). The element grid in DDA is accordance with the 

physical joint network in the rock mass. It can model the continuous and discontinuous 

parts in the rock body. The consideration of discontinuous deformation and time factor 

and introducing the inertia force, the advantages that make DDA applicable into 

calculating static force problems or dynamic force problems, small displacement before 

failure or large displacement after failure.  

 The Numerical Manifold Method (NMM), which is one of the most appropriate methods 

to simulate deformations and stabilities of rock masses. The NMM is based on the 

topological manifold and differentiable manifold concepts. It is a combination of FEM 

and DDA created by Shi (1991). The overlapping and intersecting mathematical covers 

are established with the physical covers in the domain. Then this method creates the 

independent displacement functions on each physical cover. Finally, it forms a general 

displacement function by weighting and summing independent displacement functions on 

all the covers, and can obtain the solutions of other geotechnical problems (Lei H. , 2011).     

 The Fast Lagrangian Analysis of Continua (FLAC) overcomes the disadvantages of FEM 

that it cannot solve large strain problem for problems in geotechnical engineering. 

Scholars proposed the FLAC based on the theory of the explicit finite difference method. 

FLAC considers the discontinuous characteristics and large strain of soil mass and rock 

mass more comprehensively than FEM, and the processing speed of FLAC running in the 

computer is also faster. But the same disadvantage with FEM is the difficulties in 

boundary discretization and mesh generation (Lei, 2014). 

 The Discrete Element Method (DEM) is first proposed and applied by Cundall in 1971 to 

the stability analysis of soil and rock (Farhang and Frédéric, 2011). It is a dynamic 

method capable of simulating heterogeneous and discontinuous properties and large 
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strains of rock masses in a slope. Based on the Newton’s Second Law, this method is 

innovative in such that it divides the rock slope into several rigid bodies, and use various 

constitutive relations to analyze the motion and the stress state of the blocks, and the 

variation of block motion as changing with time. 

 Block Theory (BT) has been put forward by Goodman in 1985 (Lei, 2014). It utilizes 

stereographic projection and analytic methods to analyze the slope stability of three-

dimensional discontinuous rock masses, based on the rules of topology and group theory. 

According to the dip angle and orientation of realistic discontinuous faces in the rock 

body, and the intersections among the blocks, users can find out the amount and position 

of critical blocks, which have a tendency to move. So, it is also called Key Block theory 

(KB). This method usually considers the shear strength on the discontinuous faces, but 

neglects their deformations and the moment effect. Whereas, all these prerequisites 

cannot conform to the practical construction situation.  

 

2.1.4 Shear Strength Reduction Finite Element Method 

Rapid developments in computer technology and civil engineering have pushed the finite 

element method (FEM) and other numerical methods forward, since it was first applied to 

geotechnical engineering in 1966. Finite element Shear Strength Reduction (SSR) method in 

Figure 9 has been widely applied in engineering projects and academic research in last years, 

which proved it is feasible and superior mainly in tunnel engineering. The application in slope 

stability analysis can be one of the most significant applications of finite element Shear Strength 

Reduction method. This method is particularly useful when several different modes of failure are 

possible, because it automatically finds the critical mechanism. The outstanding advantage of 

finite element strength reduction method is that it can be used in some finite element software 

like ANSYS and ABQUS to obtain solutions. Without assuming the failure mode and location of 

the slip surface, the safe Factor of Safety and the failure of the slopes can be obtained. It is 

important to select the appropriate yield criterion to solve different problems. In the future, the 

application scope of finite element SSR method will continue to be expand and the selection of 

yield criterion will be more accurate (Hammah, 2007). 
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Figure 9 Slip surface computed with finite element shear strength reduction method (Zheng and 

Zhao, 2004) 

 

For the limit equilibrium slope stability analysis, the basic assumption is that failure surface (a 

soil mass or a rock block) will slide along the assumed slip surface. The popularity of limit 

equilibrium method is mainly due to its simplicity in assessing slope stability and involving 

different key parameters (Zheng and Zhao, 2004). The Factor of Safety value obtained by limit 

equilibrium method can help engineers to prevent against the uncertainties. So, the recommended 

Factor of Safety values for slopes can usually ensure that failures are controlled within 

acceptable range. In spite of all the advantages, limit equilibrium method has some obvious 

defects. Firstly, it ignores stress-strain behavior of soils and rocks. Then, various assumptions 

have been postulated to meet static determinacy. Finally, it has some limitation for slope stability 

analysis, such as the failure of cantilever and retaining walls, where slip surface involves 

deformed wedges (Zheng and Zhao, 2004).  

In finite element SSR method, shear strength reduced by a FS for Mohr-Coulomb material can be 

determined from the equation (Zsaki, 2014): 

𝜏

𝐹𝑆
=

𝑐′

𝐹𝑆
+

𝜎 tan 𝜑′

𝐹𝑆
                                                             (2-42) 

This equation can be rewritten as: 
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𝜏

𝐹𝑆
= 𝑐∗ + 𝜎 tan 𝜑∗                                                           (2-43) 

Where: 𝑐∗ =
𝑐′

𝐹𝑆
, 𝜑∗ = 𝑎𝑟𝑐 tan

tan 𝜑′

𝐹𝑆
. 

The advantages of FEM-SSR for analyzing the slope stability can be listed below, comparing 

traditional limit equilibrium method (Zheng and Zhao, 2004): 

 FEM-SSR can analyze the slopes located within complicated geological structures and 

topography. 

 FEM-SSR can consider nonlinear elasto-plastic relationship and stress-strain behaviors of 

soils and rocks. 

 FEM-SSR can model the failure process (displacement) and three-dimensional shape of 

slip surface as shown in Figure 10. 

 FEM-SSR can model the interactive effect of soils and supports. 

 FEM-SSR does not need to assume the shape of the slip surface and slice the sliding body 

when calculating Factor of Safety. That is the most distinctive criterion to distinguish 

FEM-SSR in comparison to limit equilibrium methods. 

 

Figure 10 Deformed mesh (Hammah, 2007) 
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2.2 Review of Crawler Crane Stability 

2.2.1 Definition and Introduction 

A crawler crane is a crane mounted on an undercarriage with a set of caterpillar tracks (also 

called crawlers) that have the ability to move (Haycraft, 2011). It takes a dominant position in 

the construction industry because of its mobility and simple operation. Crawler cranes are one of 

four main mobile cranes, and extensively used in the hoisting, excavation and fill jobs. The 

crawler crane consist of five components; an engine device, operating mechanism, hoist, 

turntable and an underpan. Its typical dimension on lateral view and front view are shown in 

Figure 11. Crawler cranes have both advantages and disadvantages. The main advantage is that 

they can move around on the jobsite and perform the lift quite conveniently, since the crane is 

stably operated on the crawlers without outriggers. In spite of that, its disadvantage is still 

evident that the contractors incur a large amount of expense for moving the crawler crane from 

one construction site to another, because of its heavy weight. Finally, the lifting capacity of the 

crawler crane is from about 40 to 3,500 short tons (Hao, 2015). 

 

Figure 11 Dimensions of a typical crawler crane (QUY150A, Xuzhou Construction Machinery 

Group Co., Ltd., 2012) 
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2.2.2 Track Pressure and Equipment Stability Calculations for Crawler Cranes 

2.2.2.1 Background 

For crane stability, all the moments acting on the base of the crane must be in the state of 

equilibrium in order that the crane does not overturn, which means the sum of moments should 

be approximately zero. According to the American Society of Mechanical Engineers in the 

volume ASME B30.5-2014 Mobile and Locomotive Cranes (Hao, 2015), the magnitude of 

allowable weight (termed as the “rated load” in the US standards) lifted by the hook of the crane 

should be less than the value, which induces the crane to tip. For crawler cranes, the stability-

limit rated load is 75 percent of the tipping load. But for mobile cranes supported on outriggers, 

it is 85 percent of the tipping load. Furthermore, the regulations for cranes mounted on vessels or 

offshore platforms are much stricter due to the dynamic load acting on the crane (Teng, 2005). 

 

2.2.2.2 Stability Calculations for Crawler Cranes 

To guarantee avoiding the overturning accident in the hoisting and the stable state of the crawler 

crane, it requires that the stability calculations be done for the overall equipment. If the 

equipment cannot satisfy the requirement after checks, the staff will take several measurements 

to increase the bob-weight and reinforce the equipment. 

On such condition, presented in Figure 12, when the driving direction is perpendicular to the 

operation direction, the stability of crawler crane is the lowest. To check the stability, the method 

considers point 𝐴 in the figure, or the center of the track, as the critical overturning center.  
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Figure 12 Force diagram for crawler crane stability calculations 

 

When considering both hoisting load (𝑄 + 𝑞) and additional load (Teng, 2005): 

            𝐾1 =
𝑀𝑠𝑡𝑎𝑏𝑙𝑒

𝑀𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛
≥ 1.15                                                    (2-44) 

𝐾1 =
𝐺1𝑙1+𝐺2𝑙2+𝐺0𝑙0−(𝐺1ℎ1+𝐺2ℎ2+𝐺0ℎ0+𝐺3ℎ3) sin 𝛽−𝐺3𝑙3−𝑀𝐹−𝑀𝐺−𝑀𝐿

(𝑄+𝑞)(𝑅−𝑙2)
          (2-45) 

When only considering hoisting load and ignoring the additional load: 

            𝐾2 =
𝑀𝑠𝑡𝑎𝑏𝑙𝑒

𝑀𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛
≥ 1.4                                                      (2-46) 

 𝐾2 =
𝐺1𝑙1+𝐺2𝑙2+𝐺0𝑙0−𝐺3𝑙3

(𝑄+𝑞)(𝑅−𝑙2)
                                                    (2-47) 

Where 𝐺0  represents the bob-weight, 𝐺1 represents the weight of the rotatable crane,  𝐺2 

represents the weight of the unrotatable crawler, 𝐺3 represents the boom weight, 𝑄 represents the 

lifting capacity, 𝑞 represents the weight of pulley and hook, 𝑙1 represents the distance between 

𝐺1 and point  𝐴 , 𝑙2  represents the distance between 𝐺2 and point 𝐴  (ignoring the ground 

inclination effect), 𝑙3 represents the distance between 𝐺3 and point 𝐴, 𝑙0 represents the distance 
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between 𝐺0  and point 𝐴, ℎ1 represents the distance between 𝐺1 and the ground, ℎ2 represents the 

distance between 𝐺2 and the ground, ℎ3 represents the distance between 𝐺3 and the ground, ℎ0 

represents the distance between 𝐺0 and the ground, 𝛽 represents the dip angle of the inclined 

ground surface, and 𝑅 represents the lifting radius. 𝐾1 and 𝐾2 are the factors of safety in these 

two formulas. To simplify the calculation, the overturning moment is only generated by the 

hoisting load, and the stable moment is the difference between the sum of all the stable moments 

and other overturning moments except the hoisting load. On a construction site during operation, 

it always ensured to use 𝐾2 to check the calculation. 

𝑀𝐹  is the overturning moment induced by the wind load. Usually the crawler crane cannot 

perform the work on an at least intensity 6 wind. Additionally, the 𝑀𝐹 can be neglected on a 

maximum intensity 6 wind when the length of the boom is shorter than 25 meters. 𝑀𝐹 can be 

calculated as : 

𝑀𝐹 = 𝑊1ℎ1 + 𝑊2ℎ2 + 𝑊3ℎ3                                      (2-48) 

Where: 𝑊1, 𝑊2 , 𝑊3 are the wind loads acting on the corresponding position shown in Figure 13. 
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Figure 13 Force diagram of wind loads acting on a crawler crane 

 

𝑀𝐺 is the overturning moment induced by the braking force when the weight 𝑄 is falling down.  

𝑀𝐺 = 𝑃𝐺(𝑅 − 𝐿2) =
(𝑄+𝑞)∗𝑣∗(𝑅−𝐿2)

𝑔∗𝑡
                                      (2-49) 

Where: 𝑃𝐺 is the braking force; 𝑣 is the falling speed of the hook, taken as 1.5 times as the lifting 

speed of the hook (𝑚/𝑠); 𝑔 is gravity acceleration taken as 9.8 𝑚/𝑠2; 𝑡 is the braking time when 

changing with the speed of the hook from 𝑣 to 0. 

 𝑀𝐿 is the overturning moment due to the centrifugal force by the turntable rotation. 

    𝑀𝐿 = 𝑃𝐿ℎ3 =
(𝑄+𝑞)𝑅𝑛2ℎ3

900−𝑛2ℎ
                                        (2-50) 

Where 𝑃𝐿 is the centrifugal force; 𝑛 represents the rotation speed of the crane taken as 1 𝑟/𝑚𝑖𝑛; 

ℎ represents the distance from the center of the pulley to the gravity center of the weight 𝑄 when 

the hook has reached the lowest position; ℎ3 represents the distance from the pulley center to the 

ground. 
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The special calculation about the extended boom on the crawler crane. Sometimes, the staff will 

extend the boom length of the crawler crane due to a surcharged hoisting or meeting the 

construction requirements. When the lifting height and working radius cannot meet building 

requirements, and the boom strength can be guaranteed, the construction staff can take some 

actions to lengthen the boom as shown on Figure 14. According to the theorem that the moment 

is the same as before, during and after the extension, it can be concluded that  ∑ 𝑀𝐴 = 0. 

𝑄′ (𝑅′ −
𝑀

2
) + 𝐺′ (

𝑅′+𝑅

2
−

𝑀

2
) = 𝑄(𝑅 −

𝑀

2
)                         (2-51) 

Simplified 

𝑄′ =
1

2𝑅′−𝑀
[𝑄(2𝑅 − 𝑀) − 𝐺′(𝑅 + 𝑅′ − 𝑀)]                      (2-52) 

Where 𝑅  and 𝑅′  are the original working radius and the after-extension working radius 

separately, 𝑄  and 𝑄′  are the original lifting capacity and the after-extension lifting capacity 

separately, 𝐺′ is the weight of the extended part on the boom, 𝑀 is the spacing between the 

edges of two tracks as shown in the figure. 

 

Figure 14 Force diagram of crane extension 
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2.3 Artificial Neural Networks (ANN) 

2.3.1 ANN History and Development  

In computer science, artificial neural networks are a class of statistical models analogically 

educated by the model of a central nervous system in human brain, which is designated as a 

biological neural network (Gurney, 1997). An ANN uses a large amount of input data to 

approximate functions, and its internal structure is comprised of interconnected nodes, like the 

neurons in the brain, where they can transmit the information and communicate interactively. For 

instance, one neural network is attempted to recognize handwriting sourced from paper 

documents, photographs, touch-screens or other devices (Abdalla et al., 2012). It is defined as a 

set of input nodes, which can be activated by the pixels of an input image. Following, by being 

processed and translated in the function, which is pre-defined by the network’s designer, the 

activated nodes are passed on to stimulate other nodes repeatedly until an output node is 

activated.   

 

Figure 15 Structure of a typical ANN 

 

2.3.2 Artificial Neural Networks – Basics, Structure and Training 

A complicated system can be divided into a number of simple elements to aid its comprehension. 

The main framework of an ANN is comprised of by a set of nodes and connections between 

nodes, as shown in Figure 15. These nodes can be regarded as “artificial neurons”. Some nodes 

whose function is to receive inputs from the network are called “input neurons”. Similarly, other 
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nodes, which process inputs to obtain the outputs are named “output neurons”. The whole data 

process is similar to the transmission of signals to the natural neurons in the brain. Firstly, the 

sum of the inputs multiplied by their respective weights should be computed in a mathematical 

Activation Function as following Figure 16, which determines the activation of the neurons 

(Abdalla et al., 2012). Then, in another function, which might be the identity function, calculates 

the result as the outputs. It is obvious that the output depends on the activation, and the activation 

depends on the input and weights. We can obtain the desired output through adjusting the 

weights of this artificial neural network for the given inputs. However, generally, hundreds and 

thousands of neurons can exist in one network and it is a difficult and complex way to adjust the 

weights by hand. So, researchers found algorithms to obtain the output they wanted. This process 

of adjusting the weights is called “learning or training”. In recent studies, the implementation of 

the algorithm is performed by two methods. One is to utilize software engineering to develop a 

software program, and the other one is to use mathematical assistant applications, such as 

MATLAB or Mathematica. The ANN has been widely used in various fields including modeling 

real neural networks or studying biochemistry characteristics and behaviors of humans and 

animals in biological sciences. In addition, ANN is also applied in engineering fields, like pattern 

recognition, predicting the behavior of complex and dynamic system and stability analysis 

(Abdalla et al., 2012). 

 

Figure 16 A schematic of a simple artificial neural network 

 

2.3.3 The Backpropagation Algorithm 

There have been a number of implementations of an ANN developed since the first model was 

created by McCulloch and Pitts (1943). The important differences between these ANN 
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implementations are their functions, the input data, topological structure and the learning 

algorithms. But, in this thesis, we will adopt the backpropagation algorithm established by 

Rumelhart and McClelland in 1986, and it is the most commonly and widely used algorithm. The 

status of the backpropagation algorithm in training for the ANN model is analogical to the status 

of Ordinary Method of Slices in the slope stability methodology. It is the basis and any other 

training algorithm is derived from the backpropagation algorithm. And another reason why 

adopting the backpropagation algorithm is that it’s easily understandable to learn for the 

beginners. Only researchers have already mastered the basic backpropagation algorithm, and 

they can study more advanced algorithm, which includes Evolutionary Methods, Gene 

Expression Programming, Simulated Annealing, Expectation-Maximization, Non-parametric 

Methods and Particle Swarm Optimization (Abdalla et al., 2012).   

The backpropagation algorithm is a classical multilayered feed-forward type algorithm. 

Its essentials are illustrated in Figure 17. The essence of this method is the process that, the 

artificial neurons are arranged in different layers and send signals forward, after that the “errors” 

(the differences between actual results and expected outputs) are send and fed back. In the 

structure of the backpropagation algorithm, the network has been divided into three main parts, 

comprised of the input layer, output layer and one or more intermediate hidden layers between 

the input layer and output layer. The operation of the backpropagation algorithm is called 

supervised learning (Mehryar et al., 2012). The user supplies examples with sample input and 

output data that the users wants a network to compute using the algorithm, and then the error is 

calculated and fed back to the user. Therefore, users only need to adjust the weights assigned in 

the network in order that the error becomes zero (or suitably small) and the final outputs are in 

accordance with the expectation. When the error achieves the minimal value, it is manifested that 

the ANN has learned the training data.  
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Figure 17 Basic structure of the back-propagation algorithm 

 

2.3.4 Basic Equations and Theory of the Backpropagation Algorithm 

The activation function of ANN is executed by the sum of the inputs 𝑥𝑖  multiplied by their 

respective weights 𝑤𝑖 (Saxe, 2012): 

𝐴𝑗(𝑥, 𝑤) = ∑ 𝑥𝑖
𝑛
𝑖=0 𝑤𝑗𝑖                                                  (2-53) 

When the output function is the same as the activation function, it would be called linear, which 

nevertheless has several restrictions. The most prevailing output function is the sigmoidal 

function as following formula and Figure 18: 

𝑂𝑗(𝑥, 𝑤) =
1

1+𝑒
𝐴𝑗(𝑥,𝑤)                                                  (2-54) 
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Figure 18 Sigmoidal function (http://www.saedsayad.com) 

 

Since the objective of the training process is to obtain a desired output calculated by a given 

input, it is necessary to adjust the weights to reduce the error. So, the error function can be 

defined as follows: 

𝐸𝑗(𝑥, 𝑤, 𝑑) = [𝑂𝑗(𝑥, 𝑤) − 𝑑𝑗]2                                          (2-55) 

The above formula is for the error of each neuron, and thus error of the overall network must 

sum the errors of all the neurons in the output layers. 

𝐸(𝑥, 𝑤, 𝑑) = ∑ [𝑂𝑗(𝑥, 𝑤) − 𝑑𝑗]2
𝑗                                       (2-56) 

Adopting the square of the difference has two primary reasons; one is because the error can be 

always positive, while the other is that the error will be greater when the difference is large, and 

less when the difference is small.  

The backpropagation method utilizes the gradient descendent method to adjust the weights as 

follows: 

∆𝑊𝑗𝑖 = −𝜂
𝜕𝐸

𝜕𝑊𝑗𝑖
                                                   (2-57) 
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In which, 𝜂 is a constant; 
𝜕𝐸

𝜕𝑊𝑗𝑖
 is the derivative of 𝐸 in respect to 𝑊𝑗𝑖 ; ∆𝑊𝑗𝑖  is the adjustment for a 

specific weight 𝑊𝑗𝑖 . 

Formula (2-57) is used until an appropriate weight is found, in which the error should be 

the minimum value. There are two ways to use this formula; using derivatives directly and by 

replacing them with algebraic expressions. For the sake of clarity, it can be demonstrated how to 

replace and solve by the basic algebraic equation in formal mathematical method as follows: 

At first, the derivative of 𝐸 with respect to 𝑂𝑗 should be calculated, according to equation (2-55): 

 
𝜕𝐸

𝜕𝑂𝑗
= 2(𝑂𝑗 − 𝑑𝑗)                                                   (2-58) 

And then, another derivative can be obtained from equations (2-54) and (2-55): 

𝜕𝑂𝑗

𝜕𝑊𝑗𝑖
=

𝜕𝑂𝑗

𝜕𝐴𝑗

𝜕𝐴𝑗

𝜕𝑊𝑗𝑖
= 𝑂𝑗(1 − 𝑂𝑗)𝑥𝑖                                     (2-59) 

Also it can be concluded from by substituting equation (2-58) and equation (2-59): 

𝜕𝐸

𝜕𝑊𝑗𝑖
=

𝜕𝐸

𝜕𝑂𝑗

𝜕𝑂𝑗

𝜕𝑊𝑗𝑖
= 2(𝑂𝑗 − 𝑑𝑗)𝑂𝑗(1 − 𝑂𝑗)𝑥𝑖                           (2-60) 

Finally, the adjustment to each weight can be converted into algebraic expression based on 

equation (2-57) and (2-60): 

∆𝑊𝑗𝑖 = −𝜂
𝜕𝐸

𝜕𝑊𝑗𝑖
= −2𝜂(𝑂𝑗 − 𝑑𝑗)𝑂𝑗(1 − 𝑂𝑗)𝑥𝑖                       (2-61) 

Then equations (2-57) and (2-61) can be used for training an ANN which only have two layers. 

Several changes and modification should be considered if training for the network with at least 

three layers. Practically speaking, less layers the network has, simpler the backpropagation 

algorithm will be, and faster the processing speed will become.   
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Chapter 3 – Slope Stability Analysis 

3.1 Research Process Brief Summary 

The entire research process used two key software implementations; MATLAB and Slide by 

rocscience Inc. At first, Slide software was used to develop a model of a slope, and establish key 

parameters in dataset format. Then, the slope stability analyses generated the FS, which depends 

on the slope stability analysis model. After that, the dataset of parameters and FS was entered as 

the input data in MATLAB. Finally, MATLAB can learn the algorithm and train the whole 

neural network and generate the desired FS for a given set of new parameters. Therefore, there 

are two main parts in this thesis research; slope stability analysis and neural network 

development and training. The first part, the slope stability analysis will be addressed in this 

chapter. 

 

3.2 Slope Stability Analysis Using Slide - Introduction 

Slide is a product created by the Rocscience Inc. (Rocscience, Inc., 2015), a company 

specializing in geomechanics research and development. Slide is a 2D limit equilibrium slope 

stability analysis application. In this thesis the slope stability analysis will be applied to establish 

a generic geometric model of a slope, use Monte Carlo Sampling to sample the key input 

parameters from their credible ranges, and apply the additional loading (generated by the crawler 

crane) and obtain the output FS, as shown for example in Figure 19. Thus, this chapter is 

comprised of four main parts; determination of surface loading, establishing the credible range of 

key input parameters, Monte Carlo sampling of data and Slide model development. 
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Figure 19 Slope stability analysis using Slide 

 

3.3 Determination of Surface Loading Due to a Crawler Crane  

3.3.1 Contact Pressure between the Equipment and the Crest of the Slope  

Contact pressure is the intensity of loading transmitted from the superstructure loads and the self-

weight of a foundation to the ground soil, acting on the underside of the foundation. In this thesis, 

the contact pressure is the total force of crawler crane self-weight and hoisting loads divided by 

the contact area between the caterpillar tracks and the ground. The magnitude and the 

distribution pattern of the contact pressure have an important impact on the stress increase 

induced. The magnitude and the distribution pattern of the contact pressure depend on many 

factors such as the crawler crane type and its manufacturer, the hoisting load, the boom length, 

and the boom angle, etc.  

 

3.3.1.1 Contact Pressure Due to a Vertical Eccentric Load 

The relevant problem can be classified into two main categories; contact pressure due to central 

load and contact pressure due to an eccentric load. Since the hoisting load is not collinear, the 

offset between the hoisting load and the crane’s center of gravity cannot be ignored in the model 

simulation, and the research method should consider this eccentricity.  
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When an eccentric load is applied to a rectangular area, as shown in Figure 20, the contact 

pressure at any arbitrary point can be calculated using the formula of eccentric compression from 

mechanics of materials, as given by: 

𝑃(𝑥, 𝑦) =
𝑃

𝐴
+

𝑀𝑥

𝐼𝑥
𝑦 +

𝑀𝑦

𝐼𝑦
𝑥                                                 (3-1) 

𝑀𝑥 = 𝑃𝑒𝑦                                                             (3-2) 

𝑀𝑦 = 𝑃𝑒𝑥                                                             (3-3) 

𝐼𝑥 = 𝑏𝑙3/12                                                            (3-4) 

𝐼𝑦 = 𝑙𝑏3/12                                                            (3-5) 

 

Figure 20 Contact pressure due to a vertical eccentric load - forces 

 

Where 𝑃(𝑥, 𝑦) represents the contact pressure at arbitrary point (coordinate x, y); 𝑀𝑥 represents 

the moment of the eccentric load about the X-X axis; 𝑒𝑦 is the offset of the eccentric load line to 

the Y-Y axis; 𝐼𝑥 represents the moment of inertia of the rectangular area about the X-X axis; 𝑀𝑦 

represents the moment of the eccentric load about the Y-Y axis; 𝑒𝑥 is the offset of the eccentric 

load line to the X-X axis; 𝐼𝑦 represents the moment of inertia of the rectangular area about the Y-

Y axis, as summarized in Figure 21. 
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Figure 21 Contact pressure due to a vertical eccentric load – moments and force  

 

3.3.2.2 Contact Pressure for a Two-Dimensional Plane Problem and Model Simulation 

The contact pressure problem about the eccentricity on both x and y direction is for three-

dimensional spatial problem. But in our model simulation, it is two-dimensional plane problem 

that the load is applied on one major axis, such as X-X axis (Figure 22). Then 𝑒𝑦 equals zero, 

and hence 𝑀𝑥 equals zero, and let the resultant offset equal 𝑒. Substituting 𝐼𝑦 = 𝑙𝑏3/12 and 𝑥 =

±𝑏/2 into Eq. (3-1), it will give the formula of the maximum and minimum contact pressures on 

both sides of the rectangular area under a vertical eccentric loading (Figure 23), as given by: 

 

Figure 22 Load applied on X-X axis 
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𝑃𝑚𝑖𝑛
𝑚𝑎𝑥 =

𝑃

𝐴
±

𝑀𝑦

𝐼𝑦
𝑥                                                     (3-6) 

𝑃𝑚𝑖𝑛
𝑚𝑎𝑥 =

𝑃

𝑙∗𝑏
±

𝑀

𝑆
,      𝑆 =

𝑏𝑙2

6
,    𝑒 =

𝑀

𝑃
                                    (3-7) 

𝑃𝑚𝑖𝑛
𝑚𝑎𝑥 =

𝑃

𝑙∗𝑏
(1 ±

6𝑒

𝑙
)                                                 (3-8) 

Where: 𝑆 means section modulus of the rectangular area. 

As 𝑒 < 𝑙/6 in sketch (a), the pressure distribution shape is trapezoidal; 𝑒 = 𝑙/6 in sketch (b), the 

distribution is triangular; 𝑒 > 𝑙/6 in sketch (c), tensile force occurs. 

 

Figure 23 Load distribution – with tensile forces 

 

 

Figure 24 Load distribution – without tensile forces 
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Generally speaking, for soils the tensile force on a rectangular area is not allowed in the 

engineering practice, because soils are inherently incapable of reacting to tensile forces (Figure 

24). Therefore, in Slide, a triangular load will be chosen to be applied on the top surface of the 

slope as shown in the following sketch (Figure 25). 

 
Figure 25 Slope stability analysis model setup 

 

3.3.2.3 Maximum Pressure (Pmax) Formula Derivation in the Model Simulation 

First of all, based on the Force Translation Theorem in the theoretical mechanics, the hoisting 

load 𝑊 lifted by the crawler crane should be translated from point C to point B, flush with the 

center of gravity on point A in the following sketch. Simultaneously, one additional moment 𝑀1 

should be added on the whole rectangular area. Then, another addition moment 𝑀2 should be 

added by translating the hoisting load from point B to point A. Therefore, the entire concept of 

this calculation is collinear of the crawler crane’s center of gravity and hoisting load. In this 

calculation, 𝑀1 and 𝑀2 are in the same rotation direction, since the situation in the model is 

assumed as the 2D plane problem that has only one eccentricity (Figure 26). 



39 
 

 
Figure 26 Maximum pressure (Pmax) formula derivation - sketch 1 

 

𝑃𝑚𝑖𝑛
𝑚𝑎𝑥 =

𝑊+𝐺

𝑙∗𝑏
±

𝑀1+𝑀2

𝑆
                                                  (3-9) 

𝑀1 = 𝑊 ∗ 𝐿(𝑏𝑜𝑜𝑚)𝑐𝑜𝑠 ∝                                           (3-10) 

𝑀2 = 𝑊 ∗ 𝑒                                                       (3-11) 

𝑆 =
𝑏𝑙2

6
                                                           (3-12) 

𝑃𝑚𝑖𝑛
𝑚𝑎𝑥 =

𝑊+𝐺

𝑙∗𝑏
±

𝑊∗𝐿(𝑏𝑜𝑜𝑚)𝑐𝑜𝑠∝+𝑊∗𝑒

𝑏𝑙2

6

                                   (3-13) 

𝑃𝑚𝑖𝑛
𝑚𝑎𝑥 = (𝑊 + 𝐺)

1

𝑙∗𝑏
± [

6𝑊

𝑏𝑙
(

𝐿(𝑏𝑜𝑜𝑚)𝑐𝑜𝑠∝

𝑙
+

𝑒

𝑙
)                           (3-14) 

𝑃𝑚𝑖𝑛
𝑚𝑎𝑥 =

1

𝑙∗𝑏
[(𝑊 + 𝐺) ± 6𝑊 ∗ (

𝐿(𝑏𝑜𝑜𝑚)𝑐𝑜𝑠∝+𝑒

𝑙
)]                         (3-15) 
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Figure 27 Maximum pressure (Pmax) formula derivation - sketch 2 

 

Computation in Slide is 2D, so 𝑏 = 1. As the tension force cannot be transmitted to soils in 

engineering practice, the contact pressure distribution only consider the Pmax, as given by: 

𝑃𝑀𝑎𝑥 =
1

𝑙
[(𝑊 + 𝐺) + 6𝑊 ∗ (

𝐿(𝑏𝑜𝑜𝑚)𝑐𝑜𝑠∝+𝑒

𝑙
)]                          (3-16) 

By using the above equation, an Excel sheet (Figure 28) was developed to collect a credible 

range of boom length data, boom angle data and hoisting load data, which will be used to 

calculate the final 𝑃𝑀𝑎𝑥. 

 

Figure 28 Calculation of Pmax for various loading scenarios 
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3.4 Credible Ranges of Key Model Parameters  

 

3.4.1 Credible Range Relative Documents Collection 

In this thesis, five key parameters were identified that describe a homogeneous soil slope; the 

unit weight of the soil, the cohesion, the angle of internal friction, the slope height, and the slope 

angle. In addition, parameters for the crawler crane are listed as well. The following sections 

present each parameter separately. The credible ranges of parameters were collected from books, 

engineering handbooks, journal articles, and national design codes. The compiled references can 

be found in the Appendix. 

 

3.4.2 Unit weight 

For many soils this parameter is typically about 15 kN/m3 but can vary between 11kN/m3 for a 

loose dry soil to 22 kN/m3 for dense wet soils. The following Table 3 summarizes a range of 

typically recorded values. 

Soil Type 
SPT Penetration 

 N-Value (blows/ foot) 

Unit weight 

(kN/m3) 

Very loose sand 0 - 4 11.53 - 16.48 

Loose sand 4 to 10 14.83 - 18.95 

Medium sand 10 to 30 18.12 - 21.42 

Dense sand 30 to 50 18.12 - 23.07 

Very dense sand >50 21.42 - 24.72 

Very Soft clay 0 - 2 15.00 – 16.00 

Soft clay 2 to 4 16.00 – 17.00 

Medium clay 4 to 8 17.00 – 18.00 

Stiff clay 8 to 16 18.00 – 19.00 

Very Stiff clay 16 - 32 19.00 – 20.00 

Hard clay >32 20.00 – 22.00 

Table 3 Unit weight of soils (collected from references – see Appendix) 
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Note: The original unit of the sand unit weight was lb/ft3. In this thesis, the conversion formula 

used was 1lb/ft3=0.16475kN/m3. 

 

3.4.3 Cohesion 

This is almost zero for dry loose sandy soils and can rise to maximum 100kN/m2 for hard dry 

clayey soils. Friable (moist) loam type soils are typically in the range of 5 to 15 kN/m2 and moist 

plastic clayey soils are from 10 to 40kN/m2. 

 

Soil Type 
SPT Penetration  

(blows/ foot) 

c 

(kPa) 

Very Soft clay 0 - 2 0 - 0.25 

Soft clay 2 to 4 0.25 - 0.5 

Medium clay 4 to 8 0.5-1.0 

Stiff clay 8 to 16 1.0-2.0 

Very Stiff clay 16 - 32 2.0-4.0 

Hard clay >32 >4 

Sand   0 

Table 4 Cohesion of soils (collected from references – see Appendix) 

 

3.4.4 Angle of Internal Friction 

Theoretically, pure clay would have a value of zero degrees and from there the internal friction 

angle would rise with increasing sand content and density to approximately 40 degrees for a 

compact sandy loam soil. Loose sands range between 25 degrees to 30 degrees. As pure clays are 

rarely found in top soils, the typical value for a ‘clay’ soil would be in the range 5 to 10 degrees. 
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Soil Type 
SPT Penetration,  

N-value( blows/foot) 

φ 

 (degrees)  

Very loose sand <4 <29 

Loose sand 4 to 10 29-30 

Medium sand 10 to 30 30-36 

Dense sand 30 to 50 36-41 

Very dense sand >50 >41 

Very Soft clay 0 – 2 <3 

Soft clay  2 to 4 3 to 5 

Medium clay 4 to 8 4 to 9 

Stiff clay 8 to 16 8 to 16 

Very Stiff clay 16 – 32 15 to 25 

Hard clay >32 >25 

Table 5 Angle of internal friction for soils (collected from references – see Appendix) 

 

3.4.5 Slope Angle and Slope Height 

According to the Geological Engineering Manual (2006), a slope can be classified into extra high 

slope, high slope, medium slope and low slope, four categories based on the slope height. Slopes 

can be also categorized into steep slope, medium slope and gentle slope based on the slope angle 

as illustrated in the following table. 
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1. Slope height  

Slope type 
Slope height  

(m) 

Extra High slope >100 

High slope 30 to 100 

Medium slope 10 to 30 

Low slope <10 

 

2. Slope angle 
 

Slope type 
Slope angle  

(degrees) 

Steep slope 60-90 

Medium slope 30-60 

Gentle slope 0-30 

Table 6 Slope angle and slope height (collected from references – see Appendix) 

 

One resource, Rock Slope Engineering 4th Ed. (Wyllie and Mah, 2005), shows that numerous 

slope angles converge into the range from 10 to 80 degree, and natural or man-made slopes 

almost distribute between 50m and 300m as shown in the Figure 29 below.  
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Figure 29 Natural and engineered slopes in China, data from Chen (1995a, b) (Wyllie and Mah, 

2005), 

 

3.4.6 Crawler Crane Parameters 

In this thesis, a crawler crane is represented by a typical example, a HITACHI product, SCX500. 

The detailed specifications for this crawler crane model are summarized as follows: 

 

Figure 30 Crawler crane specifications (SCX500 Specification, HITACHI, 2015) 
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Crawler Crane 

Parameters 

Credible 

range 

L (boom) 6-12 m 

Α (angle) 35-75 degrees 

W (weight) 350-490 kN 

Table 7 credible ranges of crawler crane parameters (SCX500 Specification, HITACHI, 2015) 

 

Thus, the range of parameters is summarized in Table 7 based on: 

1. For the boom length, the actual range is 6-52m. The basic unextended boom length is 10m. 

The maximum boom length is 52m, and the minimum boom insert is 6m. However, the 

overturning rate increases largely when the crawler crane operates with the maximum boom 

length of 52m. Therefore, conservatively, a reasonable boom length range was assumed to be 6-

12m. 

2. Theoretically for the hoisting load W, the minimum value can be zero, but it makes no sense. 

And even thought the hoisting load is too small, the cost of the crawler crane is quite expensive 

in the project budget. 

 

3.4.7 Credible Ranges Summarization 

By filtering the maximum number and the minimum number in each table, the credible ranges 

for each key parameter can be concluded as: 

 

Soil Properties Credible Range 

Unit weight (kN/m3) φ (degree) c (kPa) x (m) 

Min Max Min Max Min Max Min Max 

11.53 24.72 0 41 0 60 0 30 

Table 8 Credible ranges – soil properties 
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Slope Properties and Crawler Crane Parameters 

Item 
Credible Range 

Min Max 

Slope 

Properties 

Slope Height (m) 3 30 

Slope Angle (°) 10 70 

Crawler Crane 

Parameters 

L(boom) (m) 6 12 

α(angle) (°) 35 75 

W (kN) 350 490 

Table 9 Credible range – slope geometry and crawler crane parameters 

 

3.5 Monte Carlo Data Sampling and Slide Model Building 

 

3.5.1 Monte Carlo Data Sampling 

After the determination of credible ranges of key parameters, these ranges need to be sampled. A 

simple Monte Carlo technique was adopted using a random function in Excel. It was used to 

generate the sampled data within the range of credible range. Using the random function can 

ensure randomness and applicability in the research and practical engineering field. The 

following figures show an Excel table and how key parameters were sampled. 

Figure 31 shows the use of a random function to generate a random sample between the 

maximum values and minimum values for the key parameters for two typical models. While the 

second figure (Figure 32) shows input data summary for the Slide model using the sampled 

parameters. 
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Figure 31 Parameter sampling using random numbers 

 

 
Figure 32 Slide model input data summary 
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3.5.2 Building of Slide Models for Slope Stability Analysis  

Model building is an important part for slope stability analysis using Slide. The three main 

common features of more than 150 models generated will be; homogeneous slope material, no 

ground water table and circular slip surface analysis (with grid search). Since the slope is 

homogeneous, Bishop simplified method is adopted as the slope stability analysis method. The 

general slope settings in Slide, in the ‘Project Settings’ tab, are illustrated in Figure 33. The 

slopes were defined from right to left. 

 

Figure 33 Project Setting 

 

Once the project settings are defined, the external boundary should be created to delineate the 

extent of slope and material encompassed by the model. In essence, the external boundary is a 

closed polyline, and it encloses the soil area, which will be analyzed. Moreover, the upper 

portion of the external boundary displays the slope crest surface where the loading will be 
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applied. The left, right and lower limits of the external boundary were defined such that a 

sizeable search area is possible for the critical failure surface search, where no external boundary 

will limit the search zone. Guidelines in Slide documentation were used to establish this zone. 

 

Figure 34 Defining external boundary for the slope 

 

Lastly, the slope material data from the Montel Carlo sampling should be entered, as shown in 

Figure 35. In Slide, external loads can be categorized as either concentrated loads or distributed 

loads. For this thesis research, the distribution of loading on the crest of a slope applied by the 

crawler crane is of triangular type (Figure 36), as discussed in the previous chapter. The 

magnitude of the loading is determined by the equation (3-16), as mentioned previously. After 

adding an external load, slip center grids should be set up, as seen in Figure 37. Each slip surface 

in the model will be analyzed individually by the Slide engine, and a critical surface search will 

be used to find the global minimum FS and the corresponding failure surface. 
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Figure 35 Defining material properties in Slide  

 

 

Figure 36 External loading and material properties display in Slide 
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Figure 37 Automatic search grid for the minimum FS – in Slide 

 

Finally, the ultimate step is to run the analysis and view the results. By computing and 

interpreting, the lowest FS of the global minimum slip surface in the Slide model can be 

observed directly. The slip center radius and x, y coordinates can be also checked and recorded. 

Additionally, the contours of each slip surface in the slip center grid can be examined. The color 

legend of the FS can be used to estimate if the slip surface is dangerous or safe. Darker the color 

will be, higher the value of FS will be and safer the slip surface will be.  
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Figure 38 Typical analysis results from Slide 

 

3.6 Stability Analysis Results - Discussion 

First of all, the most important assumption of Bishop simplified method is the circular stability 

analysis for slip surface. This method considers the horizontal interslice forces, and assumes the 

local FS for each slice is equal to the global FS for the whole slope. For slope condition setting, 

it is homogenous, no ground water and no weak layer.  

Secondly, the reason of causing the slope failure was also explored. The slope failure is 

controlled by multiple interacting factors. For example, even though the strengths of unit weight 

and cohesion in the slope material are sufficient strong, the low-value internal friction angle can 

also cause the slope failure. An experiment was conducted to prove this perspective. As seen in 

Figure 39, no any other key parameter changes except cohesion. 

 

Figure 39 Comparison of FS as a function of cohesion 
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The FS increases after increasing the cohesion value, but Models 2, 4, 6, 8, 9 still fail. Models 

4,6,8,9 fail because of their low angle of internal friction. Model 2 fails because of its low unit 

weight and relative small cohesion. Therefore, an individual key parameter can change the value 

of final FS, but it cannot determine whether the failure of the whole slope will occur or not. 

Thirdly, there is a regular relationship between FS and the seven key parameters chosen (slope 

height, slope angle, angle of internal friction, unit weight, cohesion, loading applied on the slope 

surface and the distance between the slope edge and the crawler crane). Flatter, gentler the slope, 

higher strength of soil, smaller loading by the mobile crawler crane and longer distance away 

from the slope edge result a larger FS. 

Finally, a statistical analysis should be carried out for discussion based on the results of Slide 

models created and analyzed. The following two tables shows key parameters, FS and x, y, R for 

global minimum slip surface for the 150 Slide models done. 

Slope 

height 

slope 

angle 
φ γ c Pmax x 

18.27 37.43 35.52 16.17 54.55 850.01 0.33 

20.61 40.81 18.33 12.82 15.19 977.03 1.42 

29.07 25.38 25.41 20.98 30.44 1186.08 1.12 

23.33 41.91 3.47 19.43 45.45 693.78 2.82 

13.96 59.73 38.13 21.87 44.77 580.25 1 

12.19 39.11 14.51 13.93 18.52 622.57 0.5 

16.25 16.68 20.45 22.92 31.52 673.20 5 

28.84 33.03 13.52 15.8 21.57 570.33 8.3 

10.77 42.55 0.2 18.18 31.58 862.34 16.5 

17.71 31.85 30.85 14.96 37.7 637.37 1 

14.58 15.26 25.76 22.72 37.6 961.06 16.37 

7.81 61.28 21.57 17.38 35.1 1030.93 12.39 

28 58.99 39.9 14.7 15.05 892.61 3.24 

28.07 18.22 2.64 21.51 47.85 882.19 5.65 

16.14 26.14 16.18 12.74 4.19 856.62 18.95 

13.36 33.9 39.63 17.01 31.2 799.34 2.6 

9.1 50.21 6.87 20.47 59.38 831.55 3.66 

16.18 53.77 28.6 16.65 13.85 778.44 28.38 

Table 10 Key parameters for 150 slide models 
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21.28 40.23 20.51 17.04 53.21 927.97 8.98 

4.69 11.06 18.4 22.85 34.5 803.02 15.54 

20.72 50.84 17.8 23.83 17.36 1113.90 23.18 

27.23 12.54 7.4 22.08 28.36 1199.65 3.01 

19.68 61.66 33.64 16.08 28.48 1187.34 19.95 

9.39 64.79 17.58 21.19 15.2 1263.75 25.82 

18.66 28.47 38.33 18.5 46.62 1095.78 14.69 

10.38 31.04 20.57 11.81 11.93 1051.14 0.51 

10.75 62.64 7.45 12.05 46.44 845.45 21.23 

18.19 40.01 27.82 23.37 46.28 703.86 13.56 

22.15 10.03 19.25 12.77 21.44 952.21 29.22 

16.65 69.4 14.49 17.01 54.55 894.13 21.05 

16.82 33.43 32.85 14.59 54.67 730.79 14.6 

29.81 30.03 37.26 14.2 56.29 715.19 9.35 

13.03 67 5.59 23.49 40.75 1253.89 25.87 

23.74 49.65 11.19 22.87 52.41 561.09 19.68 

19.62 30.77 9.42 14.96 51.59 684.67 7.36 

19.51 41.34 35.91 12.17 53.3 711.89 26.32 

20.38 36.3 14.38 17.3 14.14 709.69 12.24 

19.35 47.17 32.64 12.61 50.35 602.16 15.38 

14.18 52.96 15.89 20.86 42.53 822.51 16.98 

11.42 38.68 27.97 14.39 23.87 1051.17 27.02 

29.04 28.9 13.21 15.36 3.59 1266.37 20.61 

27.65 68.96 3.66 11.77 45.9 648.26 22.86 

24.52 65.26 14.59 16.51 45.08 1080.55 12.06 

25.78 23.26 28.36 17.01 41.07 1009.42 15.73 

22.92 34.09 37.92 21.67 48.9 903.70 20.01 

9.93 49.68 40.7 15.3 16.65 948.13 22.75 

19.18 14.2 27.12 13.33 24.62 690.93 24.98 

25.97 43.2 19.69 15.33 17.72 874.69 22.53 

23.27 30.73 27.67 12.01 22.53 976.38 16.73 

6.85 18.16 21.52 12.3 17.07 1026.55 17.49 

16.51 50.58 31.63 19.02 57.53 468.65 21.03 

21.12 16.92 8.32 15.47 23.45 834.46 24.54 

19.42 54.73 33.82 17.86 3.15 930.93 19.58 

28.36 44.85 15.79 21.46 45.94 568.29 24.67 

28.57 42.87 30.13 21.12 32.97 922.27 12.94 

11.24 36.62 38.15 19.32 49.92 600.84 5.14 

23.58 42.66 21.99 24.45 53.47 915.41 21.26 

Table 11 Key parameters for 150 slide models, (continued) 
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21.35 29.89 11.33 19.03 20.67 940.14 14.75 

27.71 18.7 27.66 16.82 32.51 744.40 14.9 

12.25 33.9 23.68 22.8 11.23 875.62 26.13 

20.59 24.67 9.9 12.92 59.82 1239.97 26.65 

22.14 36.76 21.2 19.43 19.62 481.27 3.58 

27.7 11.61 25.28 21.46 27.34 638.73 26.72 

18.14 14.75 38.08 23.96 8.44 833.69 9.24 

4.1 30.99 19.26 13.53 0.43 1035.00 6.61 

7.54 60.63 31.86 20.48 12.78 1385.13 6.71 

19.46 40.81 5.6 14.52 41.87 1121.68 28.48 

29.11 37.4 30.33 23.98 20.32 696.75 25.34 

19.16 12.75 11.03 21.88 37.19 586.38 12 

4.99 15.94 10.61 13.2 10.03 1286.38 19.52 

27.79 41 23.03 24.5 50.3 723.32 22.95 

21.17 40.18 18.35 23.21 44.21 590.82 4.61 

6.77 66.73 25.15 16.11 43.39 1128.92 20.84 

19.29 16.91 15.91 18.33 27.73 1144.12 11.73 

15.8 62.85 13.96 23.38 51.68 1130.32 6.67 

24.21 11.13 8.91 12.58 7.71 1193.62 24.82 

7.96 52.65 7.99 18.99 59.46 1143.93 12.45 

18.01 14.21 27.74 13.47 19.22 710.57 10.12 

28.36 64.63 19.82 15.25 38.17 832.05 0.41 

20.17 55.11 20.38 17.07 49.62 1029.78 3.91 

11.42 57.17 25.05 23.64 11.25 616.69 28.77 

28.02 61.09 22.07 11.99 48.63 899.82 17.16 

10 27.4 33.19 20.62 13.03 677.86 18.17 

11.59 30.11 13.39 24.11 51.82 690.56 28.39 

15.3 32.98 16.66 12.08 37.69 772.16 3.47 

13.9 68.38 30.39 13.13 24.91 836.50 7.11 

29.38 55.06 31.19 12.05 18.4 693.36 21.52 

3.22 17.11 22.36 20.04 52.52 849.72 0.65 

27.07 23.21 16.54 13.69 6.21 620.15 15.31 

12 69.49 22.51 18.25 18.55 1167.88 6.88 

17.33 48.7 29.74 22.34 26.88 590.00 1.28 

11.56 49.42 8.96 12.3 25.46 1068.55 28.23 

9.09 69.37 33.51 15.62 32.38 775.58 14.02 

5.21 62.43 3.2 23.31 28.9 686.45 8.64 

23.62 14.17 13.44 14.58 17.82 1020.30 17.45 

26.46 65.63 22.97 12.92 44.46 532.05 8.95 

7.09 12.07 6.7 19.19 8.11 721.46 20.69 

Table 12 Key parameters for 150 slide models, (continued) 
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21.31 25.81 9.97 20.32 42.7 627.50 26.38 

23.97 11.72 18.41 12.09 37.7 1008.12 23.65 

11.1 27.91 19.05 16.34 36.57 685.58 6.67 

26.19 18.69 24.26 17.89 48.79 1056.79 10.01 

17.98 34.8 22.33 19.87 35.08 859.46 17.76 

22.65 44.28 17.99 13.99 20.41 865.24 20.06 

11.63 50.76 21.79 15.84 32.43 1063.84 21.26 

24.19 58.1 12.09 15.44 34.68 685.24 8.49 

17.52 40.53 34.19 13.98 29.41 666.44 8.57 

14.04 38.65 13 16.7 49.02 759.73 19.95 

25.37 44.19 24.99 21.56 44.51 858.33 8.76 

19.52 34.83 10.08 16.32 25.67 774.98 9.89 

20.24 24.36 38.93 22.95 45.97 1000.55 8.78 

7.81 61.28 21.47 15.38 45.1 630.93 12.39 

10.38 31.04 30.57 15.81 31.93 951.14 0.51 

10.75 62.64 17.45 16.05 26.44 945.45 21.23 

18.19 40.01 10.82 13.37 16.28 803.86 13.56 

19.51 41.34 15.91 12.17 23.3 811.89 26.32 

20.38 36.3 24.38 15.3 34.14 809.69 12.24 

22.92 34.09 17.92 15.67 38.9 906.70 20.01 

23.27 30.73 17.67 18.01 12.53 966.38 16.73 

16.51 50.58 11.63 15.02 27.53 968.65 21.03 

21.12 16.92 28.32 16.47 33.45 934.46 24.54 

19.42 54.73 23.82 15.86 23.15 940.93 19.58 

11.24 36.62 28.15 17.32 39.92 700.84 5.14 

23.58 42.66 11.99 14.45 33.47 815.41 21.26 

21.35 29.89 31.33 15.03 18.67 941.14 14.75 

20.59 24.67 19.9 13.92 29.82 1200.97 26.65 

22.14 36.76 20.2 17.43 18.62 581.27 3.58 

18.14 14.75 8.08 13.96 10.44 1033.69 9.24 

19.46 40.81 15.6 12.52 11.87 1021.68 28.48 

18.01 14.21 7.74 12.47 29.22 910.57 10.12 

21.17 40.18 38.35 21.21 54.21 570.82 4.61 

20.81 28.2 2.6 19.6 55.13 622.98 14.08 

28.83 23.5 25.59 24.36 59.84 679.93 13.86 

11.53 44 11.69 16.68 13.71 566.81 29.47 

9.3 27.47 39.38 15.03 26.34 706.69 12.69 

11.44 34.68 19.69 17.51 29.76 552.33 29.03 

18.91 30.34 40.71 15.49 24.98 676.82 12.09 

28.99 32.75 19.75 20.25 46.74 1127.23 28.23 

Table 13 Key parameters for 150 slide models, (continued) 
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14.24 48.7 32.08 16.6 49.55 754.88 19.21 

8.14 34.14 38.83 16.44 11.23 526.81 15.78 

10.18 47.04 20.05 11.63 6.82 644.59 8.96 

10.6 42.24 37.62 19.78 21.44 853.26 11.16 

25.87 60.42 13.9 18.58 30.36 642.85 12.94 

9.39 41.55 18.8 13.63 18.11 896.33 25.53 

11.31 49.24 30.11 15.9 14.46 956.23 26.31 

11.45 20.74 6.19 14.5 25.33 1152.69 23.36 

13.09 49.11 37.48 22.86 37.04 999.47 15.57 

23.77 47.17 32.37 21.23 29.1 856.48 14.75 

20.86 50.53 30.11 14.52 43.74 779.83 8.32 

17.71 40.02 16.21 12.52 27.23 996.98 24.24 

10.75 13.52 7.97 15.79 7.16 1078.99 18.47 

Table 14 Key parameters for 150 slide models, (continued) 

 

FS x y R 

1.611 28.007 38.892 21.622 

0.577 28.911 41.648 22.218 

1.294 52.447 71.896 46.303 

0.582 22.338 40.022 30.144 

1.233 11.052 33.441 22.949 

0.619 25.048 29.977 15.185 

1.9 51.248 52.928 40.705 

0.781 25.524 67.836 57.727 

0.54 23.197 36.358 31.822 

1.606 32.863 39.663 22.882 

2.794 44.955 71.913 67.368 

1.574 18.954 27.432 22.328 

0.873 2.424 53.608 43.245 

0.714 52.668 72.932 72.513 

0.905 18.607 54.911 44.9 

1.728 26.927 35.364 21.87 

0.77 20.173 25.003 15.033 

1 11.954 30.495 21.285 

1.262 21.098 51.344 41.249 

3.074 33.471 37.21 36.345 

0.663 12.437 36.679 27.026 

1.01 67.126 113.382 111.231 

Table 15 FS, x, y, R for global minimum slip surface 
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1.268 11.612 30.246 20.734 

0.764 15.245 19.558 9.923 

2.618 29.613 62.053 53.921 

0.611 27.084 29.438 16.159 

2.062 15.748 27.722 17.809 

1.685 22.157 54.344 44.116 

2.838 94.601 135.414 132.222 

1.248 14.332 27.67 17.981 

2.519 28.066 53.894 44.009 

2.468 28.98 74.795 65.11 

0.794 11.579 30.141 21.139 

0.9 20.519 59.507 49.256 

1.188 28.249 48.653 39.978 

2.87 20.348 39.83 29.802 

0.731 23.038 59.726 49.53 

2.07 18.089 58.299 48.029 

1.239 21.657 41.769 33.91 

2.066 19.161 29.719 19.769 

0.581 10.911 93.23 83.155 

0.622 13.642 57.085 46.886 

0.686 10.696 48.293 38.088 

2.135 36.275 93.979 85.36 

2.359 19.231 55.414 45.375 

1.918 14.779 25.01 15.324 

3.186 56.615 96.749 95.287 

0.889 12.071 53.14 43.469 

1.571 28.067 77.111 66.982 

2.41 29.798 36.123 35.936 

2.072 15.968 32.463 22.374 

1.091 52.257 89.875 87.14 

0.723 6.588 37.108 27.118 

0.978 17.196 54.355 44.279 

1.26 11.637 77.504 67.228 

2.25 20.676 38.271 28.013 

1.337 18.328 45.677 35.587 

0.578 13.639 88.317 78.15 

2.372 47.747 103.627 97.778 

1.196 17.657 33.257 23.233 

1.575 43.393 66.933 62.771 

0.925 13.929 61.902 51.607 

Table 16 FS, x, y, R for global minimum slip surface, (continued) 
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3.138 62.323 158.777 154.513 

3.188 55.585 92.178 78.581 

0.726 21.6 22.158 16.18 

0.98 18.991 26.908 17.398 

0.903 28.304 61.522 55.834 

1.23 12.238 63.289 53.518 

1.69 55.217 88.361 87.772 

2.113 25.346 23.62 16.918 

1.274 12.747 61.415 51.659 

1.024 17.72 49.831 39.48 

2.593 17.099 17.252 7.301 

1.464 46.808 77.981 70.63 

0.66 11.706 37.978 28.512 

1.034 87.687 144.894 138.296 

1.211 20.095 27.874 23.384 

2.605 62.601 88.614 73.381 

0.571 14.917 47.534 23.55 

0.856 11.537 43.548 32.109 

0.787 12.573 24.213 15.212 

1.096 10.842 60.194 49.71 

2.157 20.879 31.595 21.767 

1.955 25.441 29.823 21.309 

1.153 30.115 36.652 22.66 

0.924 11.827 35.385 26.055 

1.071 10.588 42.99 33.208 

1.548 24.387 22.481 13.236 

1.01 36.109 99.977 92.857 

0.619 11.875 35.224 25.952 

0.964 10.088 42.644 32.921 

1.338 20.104 25.01 15.09 

1.852 14.42 20.174 10.748 

0.698 18.549 21.204 16.685 

1.406 58.33 109.674 107.367 

0.997 6.83 49.637 39.083 

1.182 39.197 48.126 47.51 

2.409 15.1 76.248 66.294 

2.748 73.996 142.219 139.518 

1.465 28.394 34.855 25.964 

2.193 43.066 98.512 91.934 

1.483 26.336 60.798 51.287 

Table 17 FS, x, y, R for global minimum slip surface, (continued) 
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0.947 21.052 66.288 56.072 

1.695 18.186 24.983 14.984 

0.634 11.051 47.881 37.901 

1.647 17.636 53.72 42.966 

1.529 26.319 48.003 41.498 

1.141 11.789 65.358 55.309 

0.728 21.997 58.42 48.392 

2.645 28.9 76.635 66.358 

2.111 18.954 27.432 22.328 

1.191 27.084 29.438 16.159 

1.217 15.078 21.691 12.036 

0.636 23.621 51.415 41.762 

1.187 28.046 61.385 53.565 

1.409 23.038 59.726 49.53 

1.342 27.19 71.331 62.781 

0.929 28.067 77.111 66.982 

0.871 22.998 50.037 41.617 

2.925 49.519 95.352 93.337 

1.043 13.175 35.79 26.178 

1.561 21.618 35.445 25.747 

0.918 23.822 65.821 56.238 

1.312 13.639 88.317 78.15 

1.667 41.298 75.31 69.326 

0.867 13.929 61.902 51.607 

0.724 60.998 70.525 58.27 

0.841 15.938 44.52 34.445 

1.252 62.601 57.907 51.17 

1.912 17.72 49.831 39.48 

0.856 37.16 42.528 40.278 

2.057 31.981 106.475 97.993 

0.838 17.857 28.149 17.995 

2.911 27.827 39.033 32.362 

1.868 21.378 31.533 21.728 

2.425 24.738 66.571 56.841 

1.406 25.83 60.629 51.273 

2.318 17.691 29.603 19.507 

2.273 18.423 24.705 14.705 

0.758 21.827 33.935 23.705 

1.969 23.2 35.19 26.644 

0.62 8.276 58.2 47.624 

Table 18 FS, x, y, R for global minimum slip surface, (continued) 
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1.591 18.343 25.07 15.048 

1.356 15.21 25.517 15.693 

0.981 35.832 50.619 50.609 

1.919 13.848 29.86 20.237 

1.301 11.098 44.8 35.176 

1.33 12.488 50.241 40.562 

1.217 27.77 57.26 49.925 

0.776 46.213 60.678 56.412 

Table 19 FS, x, y, R for global minimum slip surface, (continued) 

 

In summary, in these 150 Slide models the following observation can be made: 

 The highest values for each key parameter are 29.81m (slope height), 69.49° (slope 

angle), 40.71° (angle of internal friction), 24.50kN/m3 (unit weight), 59.84kPa (cohesion), 

1385.13kPa (Pmax) and 29.47m (x).  

 The lowest values for each key parameter are 3.22m (slope height), 10.03° (slope angle), 

0.20° (angle of internal friction), 11.63kN/m3 (unit weight), 0.43kPa (cohesion), 

468.65kPa (Pmax) and 0.33m (x). 

  The highest value for FS was 3.188, located at (x, y, R) of (94.601m, 158.777m, and 

154.513m).  

 The lowest value for FS was 0.540, located at (x, y, R) of (2.424m, 17.252m, and 

7.301m). 

 The average values for each key parameter are 18.00m (slope height), 38.53° (slope 

angle), 21.40° (angle of internal friction), 17.24kN/m3 (unit weight), 31.67kPa (cohesion), 

855.83kPa (Pmax) and 15.19m (x). 

 The average values for FS, x, y, R were 1.438, 25.910m, 53.764m and 44.762m, 

respectively. 

Out of the 150 Slide models 35% have failed, and 65% were safe. In civil engineering, these 

statistic data are reasonable and applicable. Therefore, they can be used to simulate practical 

engineering situation and considered to be representative. 

 



63 
 

3.7 The Effect of Having No Crane on the Slope 

To investigate the effect of no crane on the slope, 26 independent Slide slope stability models 

were built (16 safe and 10 failing) following Figure 40 and Figure 41. First, the FS with the load 

applied will be obtained by the Slide software. Then, the FS of removing the load due to the 

crawler crane will be obtained as well.  

 

Figure 40 26 independent slide models 

 

 

Figure 41 26 independent slide models, (continued) 

 

To compare the difference, the following chart Figure 42 was created. The horizontal axis is 26 

samples, and the vertical axis is the FS values. The difference can be clearly displayed by the 

markers. 
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Figure 42 Table Difference between FS (with the load) and FS (without the load) 

 

The chart shows that after removing the crawler crane load, the FS will increase or at least equal 

to the value with the load applied. The percent about how much the FS increases is also studied 

by using the following equation (3-17): 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (%) =
|𝐹𝑆_𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑−𝐹𝑆_𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑|

𝐹𝑆_𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑙𝑜𝑎𝑑
∗ 100%                (3-17) 

The results are summarized in Table 20. For mathematical statistics, the average difference is 

25.8%, while the maximum difference is 168.4% and the minimum difference is 0.  

 

 

 

 

 

 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

F
S

 v
al

u
e

26 samples

Difference

FS (with the load) FS (without the load)



65 
 

FS (with the load) FS (without the load) Difference 

1.294 1.706 0.318392581 

0.582 0.755 0.297250859 

1.574 1.928 0.224904701 

0.873 1.101 0.261168385 

2.618 3.068 0.171886937 

0.611 1.64 1.684124386 

0.9 0.908 0.008888889 

1.188 1.664 0.400673401 

0.889 0.889 0 

1.571 1.851 0.178230426 

0.978 0.978 0 

1.26 1.31 0.03968254 

1.575 2.179 0.383492063 

0.925 1.079 0.166486486 

1.464 1.894 0.293715847 

0.66 1.058 0.603030303 

0.787 0.787 0 

1.096 1.319 0.203467153 

0.964 1.272 0.319502075 

1.338 1.338 0 

1 1 0 

1.262 1.723 0.365293185 

3.074 4.915 0.598893949 

2.113 2.113 0 

1.274 1.274 0 

1.024 1.24 0.2109375 

Table 20 Difference statistics 
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Chapter 4 – Development, Training and 

Verification of the Artificial Neural Network 

4.1 Training a Neural Network 

After the credible ranges of key parameters were established, the Monte Carlo sampling was 

used to generate a set of Slide models. With all models built and analyzed, the resulting training 

dataset was ready to be used to develop the ANN in MATLAB.  

 

4.2 Brief Introduction to ANN using MATLAB 

MATLAB can be used in conjunction with a toolbox to develop an ANN using the results 

derived from the slope stability analyses. In MATLAB, the Neural Network Toolbox was used as 

a tool to create and aid the neural network to train the dataset. The Toolbox (Figure 43) has four 

primary applications, including input-output and curve fitting, pattern recognition and 

classification, clustering and dynamic time series. However, the only used applications were its 

input-output and curve fitting capabilities. 
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Figure 43 MATLAB - neural network toolbox 

 

This toolbox can plot the error histogram and regression curves in order that users can estimate 

if the network has been trained with a good performance. If the performance is not adequate, the 

user can take action to improve it until the error (the difference between the target data and the 

output data) is minimum or the training performance satisfies the requirements.  

The complete structure of the neural network is illustrated in Figure 44. In the setting of 

this example, the number 7 indicates how many items are contained in the input function. These 

items represents key parameters inputted in the Slide software, including the slope height, the 

slope angle, soil unit weight, angle of friction, cohesion, load distribution and so on. The number 

10 indicates the number of the neurons in the hidden layer. The default of the hidden neurons is 

10. If the performance of the network is poor, MATLAB recommends that user take measures to 

increase the neuron number. Ultimately, number 4 in the output indicates the number of the 

output results, which is FS in slope stability analysis. 
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Figure 44 Neural network structure in MATLAB 

 

MATLAB has provided users with three algorithms (Figure 39), which are Levenberg-

Marquardt algorithm, Bayesian Regularization algorithm, and the Scaled Conjugate Gradient 

algorithm. Levenberg-Marquardt algorithm is recommended for most problems. However for 

some small dataset, Bayesian Regularization algorithm can take longer but obtains a better 

solution. For large problems, the Scaled Conjugate Gradient algorithm is recommend since it 

uses gradient calculations which take less memory and more efficient than the Jacobian 

calculation the other two algorithms use. 

 

Figure 45 Selection on the training algorithm in MATLAB 
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The regression (Figure 46) and error histogram are the criteria to estimate whether the curve 

fitting is good and neural network has been trained successfully. All the data samples have been 

divided randomly into 70% for training, 15% for validation, and 15% for testing. In regression 

diagram, the R-values measure the correlation between outputs and targets. An R-value of 1 

means a close relationship, and 0 means a random relationship. More points should fall down 

along the 45-degree inclined line, where the network output is equal to the targets. For this 

example, it shows that the fit is reasonably good, since the R-values in each case are 0.90 or 

above. 

 

Figure 46 Regression 

 

Similarly, the error histogram (Figure 47) shows the distribution of the errors caused by all the 

data samples. Three different colors are used to distinguish the training data samples, the 
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validation data samples and the test data samples. The tendency of the data sample converges 

toward the Zero Error line, and it demonstrates that the output results approximate the target data. 

 

 

Figure 47 Error histogram in MATLAB 

 

4.2 Data filtering 

A quite necessary step before training a neural network is to remove inferior or non-physical data 

samples from the dataset. After establishing 150 models, the dataset must include as few as 

possible exceptional FS, which are too large or too small, because they were generated by the 

Monte Carlo sampling of the key input parameters. For the ANN training, data sample selection 

is the key factor to affect training performance. In these 150 models, 4 data samples were 

deemed to be too large, with FS of 5.323, 5.053, 6.297, and 5.638. For example the 31st data 

sample, as an example and its Slide model is illustrated in Figure 48. As evident from the figure, 

the computed critical failure surface is almost coincident with the slope face. It was deemed to be 

an outlier in the dataset. 
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Figure 48 An example data sample that resulted in an inappropriate failure surface 

 

This Slide model was generated with slope height of 5.13 m, slope horizontal length of 5.09 m, 

soil unit weight of 17.88 kN/m3, cohesion of 44.66 kPa, and friction angle 30.22 degrees, 

respectively. The slope height approximates minimum value of the credible range, and the soil 

properties reach the maximum. It is almost non-realistic for practical engineering situations, 

since it is quite stable that civil engineers will not be concerned by the failure of this slope setup. 

Similarly, another example is 83th data sample, as shown in Figure 49. 

Figure 49 An example data sample that resulted in an inappropriate failure surface 
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The problem in this slope is slope angle 10.34 degrees (the valid slope angle credible range 

minimum value was 10 degrees). The slope is too gentle and flat that will never have a slide 

failure, and therefore it will not be considered in the practical dataset. 

Similarly, two data samples resulted in a FS that are too small (0.227 and 0.125). For 

example, 55th data sample as an instance; its soil properties (unit weight 12.88 kN/m3, cohesion 

10.23 kPa, and friction angle 9.76 degrees) demonstrate that it is the worst friable soil. 

Comprehensively, civil engineers will take measures to replace the worse soil with more high-

strength soil without a doubt. It is explicit and simple for civil engineers’ assignment, but it will 

obstruct MATLAB to obtain good training performance for the ANN.  

Thus, these six outlier samples were replaced by six newly-generated samples. The 

quality of these new samples was checked. The following pictures show how the training 

performance improves after replacement. 

 

Figure 50 ANN predicting capabilities before replacement of outlier sample datasets 
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Figure 51 ANN predicting capabilities after replacement of outlier sample datasets 

 

In Figures 50 and 51, the top diagram illustrates horizontal axis representing the 100 samples, 

and vertical axis represents the FS value. Blue color represents Slide calculation (output data), 

and red color represents MATLAB ANN prediction (output data from ANN). The bottom 

diagram illustrates horizontal axis represents 150 samples and vertical axis represents the 

difference or error between the Slide calculated output data and the ANN predicted output data. 

From the comparison, the MATLAB prediction does not fit the Slide calculation 

polygonal line before replacement. The error (minimum and maximum) can be in the range of [-

1.5, 1.5] before replacement, but the error was improved to be in the range of [-0.6, 0.5] after 

replacement. A considerable improvement.  

 

4.3 MATLAB Script for the ANN 

The whole process of ANN development and training can be divided into two main parts. Firstly, 

a simple y=x2 case was studied to learn how the neural network works and master the MATLAB 

command usage. Then, by importing the input data and output data from the Slide analyses, a 
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FeedForwardnet network (newff) can be build. The results show that the error of training data is 

very small (maximum error 0.2), but new sample used in testing has a large difference with 

expectation (ANN value 0.3526, expectation 0.856). Therefore, one effective measure can be 

carried out to resolve with the problem. The improvement was to check if data entry mistakes 

existed, since training performance extremely depends on accuracy and selection of data samples. 

It was found that the originally entered data had two evident entry mistakes. After correcting, the 

training error was reduced after correction (ANN value 1.2434, expectation 0.856).  

The details of the MATLAB script used in building the neural network and its corresponding 

interpretation are stated as follows: 

inputdata=inputdata';%convert a 150*7 matrix (7 samples of 150 elements) to a 

7*150 matrix (150 samples of 7 elements)  

outputdata=outputdata';%convert a 150*1 matrix (1 sample of 150 elements) to 

a 1*150 matrix (150 samples of 1 element) 

figure(1); 

subplot(2,1,1) 

plot(outputdata,'b');%draw the top diagram, blue color 

hold on; 

net=newff(inputdata,outputdata,[20,20],{'tansig','purelin'},'trainlm');%build 

ANN 

net.trainparam.epochs=50; 

net.trainparam.goal=0.001; 

net=train(net,inputdata,outputdata);%train (R=0.86347) 

net=train(net,inputdata,outputdata);%regression is not good, so retrain 

(R=0.96256) 

net=train(net,inputdata,outputdata);%regression is good, so stop training 

(R=0.97193, R value=1 is best) 

outputdata_net=sim(net,inputdata);%outputdata_net: ANN FS calculation 

error=outputdata-outputdata_net;%calculate the differences between Slide 

output FS and ANN output FS (150 samples) 
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plot(outputdata_net,'r');%draw the top diagram, red color 

subplot(2,1,2) 

plot(error,'o-');%draw the bottom diagram 

X = [20.81,28.2,2.6,19.6,55.13,622.98,14.08]';%new test sample 

Y = sim(net,X) 

 

Firstly, xlsread function was used to import inputdata (model key parameters) and outputdata 

(Slide analysis results, FS, x, y, and R) in Excel format into the workspace and create inputdata 

and outputdata variables. Then through analyzing the y=x2 example case, it was discovered that 

each row represents one element in the training neural network. So these two variables need to 

be transposed by converting a 150*7 matrix (7 samples of 150 elements) to a 7*150 matrix (150 

samples of 7 elements), and similarly by converting a 150*1 matrix (1 sample of 150 elements) 

to a 1*150 matrix (150 samples of 1 element). In this script, the newff network was adopted. One 

validation method is to compare outputdata with outputdata_net and observe how much two 

polygonal lines fit as seen in Figure 52. Another validation method is to draw the error diagram 

and observe the error range. 

 

Figure 52 ANN training and error (difference in outputdata and outputdata_net) 
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4.4 FeedForwardnet Network Introduction 

FeedForwardnet network is one prevalent type of BP (backpropagation) neural network, as 

mentioned above. A summary of its properties and limitations, as a general BP neural network, 

are as follows (Li, 2013): 

 BP neural network can be applied to classification, clustering, prediction and so on. It 

needs a certain amount of historic data. Through training history data, a neural network 

can learn the systematic methodology and information. 

 BP neural network is actually based on the practice, instead of Bionics. Therefore, the 

meaning of practicability is more significant than the biological neural network similarity. 

 For certain algorithms, no definitive theory can be applied to determine the neuron 

number in the hidden layers, specific activation function, initial training data selection 

and so on. The only way is to retrain the neural network again and again. 

 Even though BP neural network is effective, it is also well-known for its complicated 

calculation, low-speed calculation, and local optimization. So, programmers provide a 

large amount of solutions to reform the BP network, and various new-style neural 

networks also emerge at the same time.   

In the MATLAB script, the FeedForwardnet network command used was: 

 net=newff(inputdata,outputdata,[20,20],{'tansig','purelin'},'trainlm');  

 

Where: [20,20] represents two hidden layers, and each layer contained 20 neurons; tansig 

represents input layer function; purelin represents output layer function; trainlm represents 

training algorithm. For trainlm algorithm, it was a choice of non-linear optimization method 

between Newton’s algorithm and the Gradient Descent algorithm. It owns much higher training 

velocity than traingd algorithm (generally in 6 epochs it can finish the training). And it can avoid 

the possibility for falling into a local optimum and missing the global one. For tansig input layer 

function, it is actually the Hyperbolic Tangent method from mathematics. In 18th century, the 

definition was given by tanh(x)=sinh(x)/cosh(x), which can be derived by Euler's formula. Using 
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tansig as the activation function, convergence capability of neural network is much better than 

using a Logistic function. 

 

4.5 Training and Testing 

As previously stated, the neural network used in this thesis to train was the FeedForwardnet 

network (newff). The following Figure 53 illustrates ANN structure used: 

 

Figure 53 ANN structure 

  

Generally for an ANN there are three ways that can be used to improve training and predictive 

performance: 

 One way is to increase the amount of data samples used. If the number of imported data 

samples is not sufficient, no good neural network can be obtained. Initially, the number 

of imported data samples was 100. For improving the training performance, another 50 

newly generated data samples were added into training neural network. It was found that 

the quality and selection of 150 imported data samples was one of the most important 

ingredients in improving the predicting capability of the ANN. Data samples should be 

uniformly distributed and reflect the systematic characteristic of neural network. 

Furthermore, the entry mistakes of imported data samples must be checked to ensure the 

network precision. 

 Another way is to re-train your network until the R-value approximates 1. Observing R-

value can be used to evaluate neural network performance at preliminary stage. 

Regression or R-value measures the correlation between outputdata and outputdata_net. 
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  Alternative way is to increase neurons and add hidden layers to the ANN. At first, newff 

function was using 10 hidden layers contains 10 neurons. It performs inadequately and its 

best performance was R=0.89. Then, the newff function was changed to 20 hidden layers 

containing 20 neurons. After several repetition and attempts, the [20,20] case was 

determined as prime selection that two hidden layers are included, and each layer 

contains 20 neurons. However the networks with more than 40 neurons and 2 hidden 

layers are also tested, and they performed worse than the [20, 20] case. 

In the training process, the MATLAB system distributed the 150 samples into 15% for validation, 

15% for testing, and 70% for training as shown in Figure 54. Training samples were presented to 

the network during training, and the network was adjusted according to its error. Validation 

samples were used to measure network generalization, and to halt training when generalization 

stops improving. Test samples have no effect on training and so provide an independent measure 

of network performance during and after training. 

A FeedForwardnet network with sigmoid hidden neurons and linear output neurons, can 

fit multi-dimensional mapping problems arbitrarily well, given consistent data and enough 

neurons in its hidden layer. The network was trained with Levenberg-Marquardt 

backpropagation algorithm (trainlm), unless there was not enough memory, in which case scaled 

Conjugate Gradient backpropagation (trainscg) would have been be used. In our case the 

memory was never exhausted. 
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Figure 54 MATLAB ANN regression results 

 

4.6 Interpretation of ANN Predictions Using an Average Error Value 

To further qualitatively assess the predicting capabilities of the developed ANN, the following 

equation was used to estimate error: 

𝑒𝑟𝑟𝑜𝑟 (%) =
|𝑆𝑙𝑖𝑑𝑒_𝐹𝑆 −𝐴𝑁𝑁_𝐹𝑆|

𝑆𝑙𝑖𝑑𝑒_𝐹𝑆
∗ 100%                                      (4-1) 

After retraining and improving the neural network several times, the ultimate average error with 

20 newly-generated independent test samples (not part of the 150 samples used in ANN 

development) was 0.67 percent as recorded in Figure 55, where the maximum error is 1.7% and 

the minimum error is 0.06%. 



80 
 

 

Figure 55 Errors between Slide results and ANN prediction for the 20 independent test cases 

 

The average error indicates that neural network can be competent to accomplish Slide software’s 

task with a relatively high precision. It also demonstrate this research project was conducted 

successfully, since it is convenient and beneficial for other users to import key parameters and 

obtain the FS directly without using a slope stability analysis software.    
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Chapter 5 – Summary and Conclusions 

5.1 General Remarks 

The purpose of this thesis research was to assess the stability of homogeneous slopes subjected 

to loads from crawler cranes and to develop an ANN to be able to predict the critical FS and the 

location of the associated failure surface. Based on the review of fundamental knowledge of 

soil mechanics and slope stability, all slope stability analysis models in this thesis were based 

on Bishop simplified method, with no underground water, without weak or stratified layers.  

Artificial neural networks, due to their large amount of neurons interconnected into a vast 

network, can be used to estimate or approximate functions that can depend on a large number of 

inputs and are generally unknown. In this thesis, the backpropagation neural network was 

adopted and the training algorithm selected was the Levenberg-Marquardt algorithm. This 

algorithm typically requires more memory but less time. The use of this method in the ANN 

training automatically stopped when the generalization stopped improving. Generally speaking, 

it was effective and suitable for solving the problem formulated in this thesis. 

Using the developed and trained ANN, the average error in the predicting capabilities of the 

ANN with 20 independent test dataset samples was found to be 0.677 percent. It was 

sufficiently precise and capable of estimating the FS of slopes in the context of the data-limited 

nature of geomechanics problems. For practical engineering, the maximum error, which was 1.6 

percent, in the test sample set can also be accepted and applied as well. 

It was found that for training the ANN, the key factor and the basic requirement of the whole 

process is the quality and amount of dataset used for training. After meeting the basic 

requirements, the methods to improve the training performance, such as changing neural 

network function or type, or changing the training algorithm, and re-training the neural network 

several times (until R value is close to or equal to 1), can be very effective, as demonstrated. 
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5.2 Limitation 

5.2.1 Limitation of Thesis 

 The main limitation of the thesis is slope condition limitation as mentioned in Chapter 1. 

The type of slopes which can be solved by thesis method should be constructed 

homogenous slopes without the presence of groundwater or weak layers, the method of 

analysis was Bishop simplified method. 

 The secondary limitation of the thesis is crawler crane load calculation simplification. In 

this thesis, only two primary loads, hoisting load and crawler crane self-weight, are 

considered to calculate the magnitude of the load applied on the slope surface. However, 

in the practical engineering, the stability of the crawler crane will consider more than two 

loads when the driver is operating. For example, the braking force and wind load will 

apply horizontal forces on the crawler crane. On the other hand, this research only 

considers the basic boom length’s credible range. It does not take account extended boom 

and retracted boom situations. Therefore, the simulation for crawler crane operation in 

the research is a simplification of practical engineering considrations. 

5.2.2 Limitation of Applicability of ANN 

 One defect of neural networks, particularly in their automated learning mechanisms, is 

that they need sufficient representative training data originating from real-world 

operation or analysis. It is typical, because any learning machine requires a large 

amount of input data to learn the underlying structure of the system, which permits it to 

generalize its knowledge to new cases. Consequently in this research, prior to creating a 

neural network, at least 150 slope stability analysis models were generated. It cost one 

whole month of preparation and analysis work to create this dataset.  

 Another evident defect is the ANN’s invariance property. For example, the neural 

network created in this research can only be applied to slopes on the limited condition of 

homogeneous slopes, Bishop simplified method, no groundwater, no weak layer and no 

stratified layers. If any new key parameter (such as groundwater) needs to be added, the 

neural network in this research cannot be competent. It needs to be re-created, re-trained 

and ultimately re-verified. Considered in practical engineering, the slope condition 

varies with different location and cannot be as theoretical as thesis assumption without 
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underground water and weak layer. Conclusively, in applied engineering field, the 

function of neural network cannot totally replace the traditional slope stability analysis 

methods or software at the current time 

 Ultimate defect of an ANN is entry mistakes from its creator and their effect. Without 

any doubt, the quality and amount of dataset is the critical factor for training a neural 

network. A large amount of data of 150 slope stability analysis models needed to be 

generated and analyzed. Practically, the possibility of making tiny data entry mistakes is 

so high for researchers that they require extra time to check the correctness of imported 

data. If the number of imported slide models is greater than 150 models, it may need at 

least one week to check before training to ensure quality. 
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Appendix 

Credible Range Relative Documents Collection 

N63.5 

(blows) 

1 2 3 4 5 6 7 8 9 10 

Unit 

weight 

(clay) 

1.60-

1.75 

1.70-

1.80 

1.75-

1.85 

1.80-

1.87 

1.84-

1.89 

1.86-

1.90 

1.88-

1.93 

1.90-

1.95 

1.90-

2.00 

1.95-

2.04 

Table 1 Unit weights as a function of blows (Geology Manual for Hydraulic Projects, 1982) 

 

N63.5 Blows 

Angle of internal friction 

(degrees) 

Silty sand Sand 

4 16 20 

5 18 22 

6 20 24 

7 22 26 

8 24 28 

Table 2 the relationship between the angle of internal friction φ and the SPT Penetration N63.5 

Blows (Geology Manual for Hydraulic Projects, 1982) 

 

Unit weight, Angle of internal friction for cohesionless soil 

SPT Penetration  

(blows/foot) 
φ (sands) 

Density of 

Sand 

Unit weight 

(T/m3) 

<4 <29 very loose 1.1-1.8 

4 to 10 29-30 loose 1.4-2.0 

10 to 30 30-36 medium 1.7-2.2 

30 to 50 36-41 dense 1.7-2.3 

>50 >41 very dense 2.0-2.3 

Cohesion for cohesive soils 

SPT value (N) soil compactness 
c 

(kPa)  

0 to 4 Very soft to soft 12.5 
 

4 to 8 Soft to medium 25 
 

8 to 16 Medium to stiff 50 
 

16 to 32 Stiff to very stiff 100 
 

>32 Vert stiff to hard 200 
 

Table 3 unit weight, angle of internal friction for cohesionless soil, and cohesion for cohesive 

soils (Foundation Engineering Handbook, Peck 1974) 
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Soil Type 
Density  

(g/cm3) 

c  

(kPa) 

φ 

(degrees) 

Sand 

Coarse sand 

2.05 2 42 

1.95 1 40 

1.9 0 38 

Medium sand 

2.05 3 40 

1.95 2 38 

1.9 1 35 

Fine sand 

2.05 6 38 

1.95 4 36 

1.9 2 32 

Silty sand 

2.05 8 36 

1.95 6 34 

1.9 4 28 

Silt 
 

2.1 10 30 

 
2 7 28 

 
1.95 5 27 

Clay 

Silty clay 

2 50 22 

1.95 25 21 

1.9 19 20 

1.85 11 19 

1.8 8 18 

Clay 

1.9 82 18 

1.85 41 17 

1.75 36 16 

Table 4 unit weight, cohesion, and angle of internal friction (Geological Engineering Manual, 

4th Edition, Published in 2006) 

 

SPT Penetration, N-value 

(blows/foot) 

φ sands 

(degrees) 

<4 <30 

4 to 10 30-35 

10 to 30 35-40 

30 to 50 40-45 

>50 >45 

Table 5 angle of internal friction (Meyerhof 1956, Foundation Engineering Handbook) 
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Soil Type 
γ  

(lb/ft3) 

Sand, loose and uniform 90 

Sand, dense and uniform 109 

Sand, loose and well graded 99 

Sand, dense and well graded 116 

Glacial clay, soft 76 

Glacial clay, stiff 106 

USCS Soil Group 
c, as compacted  

(lb/ft2) 

GW 0 

GP 0 

GM - 

GC - 

SW - 

SP - 

SM 1050 

SM-SC 1050 

SC 1550 

ML 1400 

ML-CL 1350 

CL 1800 

OL - 

MH 1500 

CH 2150 

Table 6 unit weight and cohesion (Civil engineering reference manual for the PE exam, 14 

Edition, Michael R. Linderburg) 

 

N, SPT blows 15 17 19 21 25 29 31 

c(kPa) 78 82 87 92 98 103 110 

Angle of internal friction(degree) 24.3 24.8 25.3 26.4 27 27.3  

Table 7 cohesion and angle of internal friction for clay (Code for investigation of geotechnical 

engineering GB50021-2003) 

 

Physical Parameters Sandy loam Loam Clay loam 

Bulk unit weight(kN/m3) 15 15 14 

Cohesion(kPa) 10 20 30 

Angle of internal friction(degree) 35 20 10 

Table 8 unit weight, cohesion and angle of internal friction (Canadian Geotechnical Manual, 

Published by the Canadian Geotechnical Society) 
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Unit weight 

SPT Penetration  

(blows/ foot) 

γ  

(lb/ft3)  

(granular soils) 
 

0 - 4 70 - 100 
 

4 to 10 90 - 115 
 

10 to 30 110 - 130 
 

30 to 50 110 - 140 
 

>50 130 - 150 
 

Angle of internal friction 

SPT Penetration  

(blows/foot) 

φ  

(degrees) 

(granular soils) 

Density of 

Sand 

0 25-30 very loose 

4 27-32 loose 

10 30-35 medium 

30 35-40 dense 

50 38-43 very dense 

Cohesion 

SPT Penetration  

(blows/ foot) 

Estimated Consistency 

(cohesive soil) 

c 

(kPa) 

0 - 2 Very Soft 0 - 0.25 

2 to 4 Soft 0.25 - 0.5 

4 to 8 Medium 0.5-1.0 

8 to 16 Stiff 1.0-2.0 

16 - 32 Very Stiff 2.0-4.0 

>32 Hard >4 

Table 9 unit weight, cohesion, and angle of internal friction (Foundation Analysis, Bowels) 

 

Proposed common SBT description 
Approximate unit weight 

(kN/m3) 

Sensitive fine-grained 17.5 

Clay - organic soil 12.5 

Clays: clay to silty clay 17.5 

Silt mixtures: clayey silt& silty clay 18 

Sand mixtures: silty sand to sandy silt 18-18.5 

Sands: clean sands to silty sands 19 

Dense sand to gravelly sand 19.5-20 

Stiff sand to clayey sand 19 

Stiff fine-grained 20.5 

Table 10 unit weight (Soil behaviour type from the CPT: an update, P.K. Robertson, Gregg 

Drilling & Testing Inc., Signal Hill, California, USA) 
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Unit weight 

Soil Type 
γ  

(lb/ft3)  

Sand; clean, uniform, fine or medium 84 - 136 
 

Silt; uniform, inorganic 81 - 136 
 

Silty Sand 88 - 142 
 

Sand; Well-graded 86 - 148 
 

Silty Sand and Gravel 90 - 155 
 

Sandy or Silty Clay 100 - 147 
 

Silty Clay with Gravel; uniform 115 - 151 
 

Well-graded Gravel, Sand, Silt and Clay 125 - 156 
 

Clay 94 - 133 
 

Colloidal Clay 71 - 128 
 

Organic Silt 87 - 131 
 

Organic Clay 81 - 125 
 

Cohesion 

SPT Penetration 

(blows/ foot) 

Estimated Consistency 

(fine-grained soil) 

c 

(kPa) 

<2 Very Soft <0.125 

2 to 4 Soft 0.125 - 0.25 

4 to 8 Medium 0.25 - 0.5 

8 to 15 Stiff 0.5-1.0 

15 - 30 Very Stiff 1.0 - 4.0 

>30 Hard >2 

Table 11 unit weight and cohesion (NAVFAC 7.02) 

 

When N<5 φ=8.5*lnN+5.0 

When 5≤N≤15 φ=6.5*lnN+9.5 

When N>15 φ=7.1*lnN+9.6 

 

N (SPT penetration blow 

counts) 
1 2 3 4 5 6 7 8 9 10 

Angle of internal friction 

(degree) 
5 11 14.5 17 20 21 22 23 23.5 24 

N (SPT penetration blow 

counts) 
11 12 13 14 15 16 17 18 19 20 

Angle of internal friction 

(degree) 
25 25.5 26 26.5 27 29 29.5 30 30.5 31 

Table 12 the relationship between SPT penetration N blow counts and angle of internal friction 

for fine-grained soils (Correlation Analysis of Internal Friction Angle and Standard Penetration 

Blow Number for Fine-grained Soil, Hai Zhu) 
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Description USCS 
Soil friction angle [°] 

min max Specific value 

Well graded gravel, sandy 

gravel, with little or no fines 
GW 33 40 

 

Poorly graded gravel, sandy 

gravel, with little or no fines 
GP 32 44 

 

Sandy gravels - Loose (GW, GP) 
  

35 

Sandy gravels - Dense (GW, GP) 
  

50 

Silty gravels, silty sandy 

gravels 
GM 30 40 

 

Clayey gravels, clayey 

sandy gravels 
GC 28 35 

 

Well graded sands, gravelly 

sands, with little or no fines 
SW 33 43 

 

Well-graded clean sand, 

gravelly sands - Compacted 
SW - - 38 

Well-graded sand, angular 

grains - Loose 
(SW) 

  
33 

Well-graded sand, angular 

grains - Dense 
(SW) 

  
45 

Poorly graded sands, 

gravelly sands, with little or 

no fines 

SP 30 39 
 

Poorly-garded clean sand - 

Compacted 
SP - - 37 

Uniform sand, round grains 

- Loose 
(SP) 

  
27 

Uniform sand, round grains 

- Dense 
(SP) 

  
34 

Sand SW, SP 37 38 
 

Loose sand (SW, SP) 29 30 
 

Medium sand (SW, SP) 30 36 
 

Dense sand (SW, SP) 36 41 
 

Silty sands SM 32 35 
 

Silty clays, sand-silt mix - 

Compacted 
SM - - 34 

Silty sand - Loose SM 27 33 
 

Silty sand - Dense SM 30 34 
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Clayey sands SC 30 40 
 

Calyey sands, sandy-clay 

mix - compacted 
SC 

  
31 

Loamy sand, sandy clay 

Loam 
SM, SC 31 34 

 

Inorganic silts, silty or 

clayey fine sands, with 

slight plasticity 

ML 27 41 
 

Inorganic silt - Loose ML 27 30 
 

Inorganic silt - Dense ML 30 35 
 

Inorganic clays, silty clays, 

sandy clays of low plasticity 
CL 27 35 

 

Clays of low plasticity - 

compacted 
CL 

  
28 

Organic silts and organic 

silty clays of low plasticity 
OL 22 32 

 

Inorganic silts of high 

plasticity 
MH 23 33 

 

Clayey silts - compacted MH 
  

25 

Silts and clayey silts - 

compacted 
ML 

  
32 

Inorganic clays of high 

plasticity 
CH 17 31 

 

Clays of high plasticity - 

compacted 
CH 

  
19 

Organic clays of high 

plasticity 
OH 17 35 

 

Loam 
ML, OL, 

MH, OH 
28 32 

 

Silt Loam 
ML, OL, 

MH, OH 
25 32 

 

Clay Loam, Silty Clay 

Loam 

ML, OL, 

CL, MH, 

OH, CH 

18 32 
 

Silty clay 
OL, CL, OH, 

CH 
18 32 

 

Clay 
CL, CH, 

OH, OL 
18 28 

 

Peat and other highly 

organic soils 
Pt 0 10 

 

Table 13 angle of internal friction (Geotechdata.info - Updated 31.10.2014, Website: 

http://www.geotechdata.info/parameter) 
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Description USCS 

Cohesion  

(kPa) 

min max 
Specific 

value 

Well graded gravel, 

sandy gravel, with little 

or no fines 

GW - - 0 

Poorly graded gravel, 

sandy gravel, with little 

or no fines 

GP - - 0 

Silty gravels, silty 

sandy gravels 
GM - - 0 

Clayey gravels, clayey 

sandy gravels 
GC - - 20 

Well graded sands, 

gravelly sands, with 

little or no fines 

SW - - 0 

Poorly graded sands, 

gravelly sands, with 

little or no fines 

SP - - 0 

Silty sands SM - - 22 

Silty sands - Saturated 

compacted 
SM - - 50 

Silty sands - Compacted SM - - 20 

Clayey sands SC - - 5 

Clayey sands - 

Compacted 
SC - - 74 

Clayey sands -Saturated 

compacted 
SC - - 11 

Loamy sand, sandy clay 

Loam - compacted 
SM, SC 50 75 

 

Loamy sand, sandy clay 

Loam - saturated 
SM, SC 10 20 

 

Sand silt clay with 

slightly plastic fines - 

compacted 

SM, SC - - 50 

Sand silt clay with 

slightly plastic fines - 

saturated compacted 

SM, SC - - 14 

Inorganic silts, silty or 

clayey fine sands, with 

slight plasticity 

ML - - 7 

Inorganic silts and 

clayey silts - compacted 
ML - - 67 
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Inorganic silts and 

clayey silts - saturated 

compacted 

ML - - 9 

Inorganic clays, silty 

clays, sandy clays of 

low plasticity 

CL - - 4 

Inorganic clays, silty 

clays, sandy clays of 

low plasticity - 

compacted 

CL - - 86 

Inorganic clays, silty 

clays, sandy clays of 

low plasticity - 

saturated compacted 

CL - - 13 

Mixture if inorganic silt 

and clay - compacted 
ML-CL - - 65 

Mixture if inorganic silt 

and clay - saturated 

compacted 

ML-CL - - 22 

Organic silts and 

organic silty clays of 

low plasticity 

OL - - 5 

Inorganic silts of high 

plasticity  - compacted 
MH - - 10 

Inorganic silts of high 

plasticity - saturated 

compacted 

MH - - 72 

Inorganic silts of high 

plasticity 
MH - - 20 

Inorganic clays of high 

plasticity 
CH - - 25 

Inorganic clays of high 

plasticity - compacted 
CH - - 103 

Inorganic clays of high 

plasticity - saturated 

compacted 

CH - - 11 

Organic clays of high 

plasticity 
OH - - 10 

Loam - Compacted 
ML, OL, MH, 

OH 
60 90 

 

Loam - Saturated 
ML, OL, MH, 

OH 
10 20 

 

Silt Loam - Compacted 
ML, OL, MH, 

OH 
60 90 

 

Silt Loam - Saturated 
ML, OL, MH, 

OH 
10 20 
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Clay Loam, Silty Clay 

Loam - Compacted 

ML, OL, CL, 

MH, OH, CH 
60 105 

 

Clay Loam, Silty Clay 

Loam - Saturated 

ML, OL, CL, 

MH, OH, CH 
10 20 

 

Silty clay, clay - 

compacted 
OL, CL, OH, CH 90 105 

 

Silty clay, clay - 

saturated 
OL, CL, OH, CH 10 20 

 

Peat and other highly 

organic soils 
Pt - - 

 

Table 14 cohesion (Geotechdata.info - Updated 31.10.2014, Website: 

http://www.geotechdata.info/parameter) 

 

Unit weight, Angle of internal friction for cohesionless soil 

SPT Penetration  

(blows/foot) 

φ  

(degrees) 

(sands) 

Density of 

Sand 

unit weight 

(t/m3) 

<4 <29 very loose 1.1-1.8 

4 to 10 29-30 loose 1.4-2.0 

10 to 30 30-36 medium 1.7-2.2 

30 to 50 36-41 dense 1.7-2.3 

>50 >41 very dense 2.0-2.3 

Cohesion for cohesive soils 

SPT value  

(N) 
Soil compactness 

c 

(kPa)  

0 to 4 Very soft to soft 12.5 
 

4 to 8 Soft to medium 25 
 

8 to 16 Medium to stiff 50 
 

16 to 32 Stiff to very stiff 100 
 

>32 Vert stiff to hard 200 
 

Table 15 unit weight, angle of internal friction for cohesionless soil, and cohesion for cohesive 

soils (Foundation Engineering Handbook, Peck 1974) 
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N SPT blow counts 
Cohesion  

(kPa) 

Angle of internal friction  

(degrees) 

3.8 23.3 2.8 

4.5 23.1 5.8 

13.7 95.1 12.1 

5.8 31 4.1 

5.1 43 6.8 

4.6 29.2 4.2 

11.5 75.7 11.1 

14.2 84.7 15.7 

10.5 54.5 11.1 

14.9 84.1 15.6 

11.8 57.6 13.1 

3.7 24.8 3.9 

6.1 45 6.2 

15 99 14.6 

13.1 65.2 11.7 

9.5 56.3 8.7 

14.4 66.3 12.5 

15.7 73 14.2 

5.6 22.7 7.4 

6.7 29.3 7.1 

9.6 44.1 9 

13.2 66.1 12.5 

5.6 26 5.4 

6.5 33 8.5 

10.6 58 12.8 

3.8 19 5 

5 23 5.8 

6.2 31 7.3 

8.5 49 10.3 

9.7 42 8 

13 75 12.2 

5 27.1 7.7 

4.9 30 6.6 

5.7 30 8 

11.3 75 12.9 

Table 16 angle of internal friction for clay (Discussion on the Relationship between Standard 

Penetration Blow Counts and Physical Mechanical Parameters of Foundation Soil, Liu Hui, 

Xuzhou Institute of Architectural Technology, Xuzhou, Jiangsu, China) 
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N SPT blow counts 
Cohesion  

(kPa) 

Angle of internal friction  

(degrees) 

10.4 53.9 13.5 

11.4 58.9 13.4 

5.8 19 6.5 

9.3 51 13.1 

13.7 71.2 12.8 

12.5 84 15.3 

8.8 49 10.5 

1.9 16 4.7 

12.5 56.5 16 

6.8 42.6 9.8 

13.7 67 13.4 

5 30.3 5.4 

5.9 24 9.2 

5.2 20 7.3 

15.9 64.9 14.4 

8 39.5 10.2 

4.3 18 7.1 

Table 17 cohesion for silty clay (Discussion on the Relationship between Standard Penetration 

Blow Counts and Physical Mechanical Parameters of Foundation Soil, Liu Hui, Xuzhou Institute 

of Architectural Technology, Xuzhou, Jiangsu, China) 

 

 

Figure 1 correlation of SPT N160 with unit weight (Soil correlation, Caltrans Geotechnical 

Manual, Caltrans: California Department of Transportation) 


