

Automatic Identification of Online Predators in Chat Logs by Anomaly

Detection and Deep Learning

Mohammadreza Ebrahimi

A Thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Science (Computer Science) at

Concordia University

Montreal, Quebec, Canada

April 2016

© Mohammadreza Ebrahimi, 2016

iii

Abstract

Automatic Identification of Online Predators in Chat Logs by Anomaly Detection and Deep

Learning

Mohammadreza Ebrahimi

Providing a safe environment for juveniles and children in online social networks is

considered as a major factor in improving public safety. Due to the prevalence of the online

conversations, mitigating the undesirable effects of juvenile abuse in cyberspace has

become inevitable. Using automatic ways to address this kind of crime is challenging and

demands efficient and scalable data mining techniques. The problem can be casted as a

combination of textual preprocessing in data/text mining and binary classification in

machine learning. This thesis proposes two machine learning approaches to deal with the

following two issues in the domain of online predator identification: 1) The first problem is

gathering a comprehensive set of negative training samples which is unrealistic due to the

nature of the problem. This problem is addressed by applying an existing method for semi-

supervised anomaly detection that allows the training process based on only one class label.

The method was tested on two datasets; 2) The second issue is improving the performance

of current binary classification methods in terms of classification accuracy and F1-score. In

this regard, we have customized a deep learning approach called Convolutional Neural

Network to be used in this domain. Using this approach, we show that the classification

performance (F1-score) is improved by almost 1.7% compared to the classification method

(Support Vector Machine). Two different datasets were used in the empirical experiments:

PAN-2012 and SQ (Sûreté du Québec). The former is a large public dataset that has been

used extensively in the literature and the latter is a small dataset collected from the Sûreté

du Québec.

Keywords: Data Mining; Text Classification; Online Predator Identification; Chat Logs;

Anomaly Detection; Deep Learning; Convolutional Neural Network; Vector Space Model;

Naive Bayes; Neural Network; Support Vector Machines

iv

Acknowledgments

This research has been supported by the Natural Sciences and Engineering Research

Council of Canada.

I would like to thank Dr. Ching Y. Suen and Dr. Olga Ormandjieva for their

illuminating advice and compassionate guides during my academic journey.

I would like to thank sergeants Daniel Karneyeff-Bisson and Maxime Grenier in

Sûreté du Québec for making the dataset available to this research and having

illuminating discussions on the topic.

v

To My Lovely Family,

Mohammad, Robab, and Siavash

vi

Contributions of Authors

I hereby certify that all the materials in this thesis are entirely my own work and directly

authored by me except about two pages of the “literature review” (sub sections 2.3.3 and

2.3.4) which are originally written by other authors in our co-authored in-press book chapter

titled “Automated Identification of Child Abuse in Chat Rooms by Using Data Mining” in book

“Data Mining Trends and Applications in Criminal Science and Investigations”, IGI-Global

publications, 2015.

In addition, all the artworks and tables that have not been referenced in their captions have been

created by me.

Dated: March 1, 2016

Author: Mohammadreza Ebrahimi

http://www.igi-global.com/submission/books/?title=data%20mining%20trends%20and%20applications%20in%20criminal%20science%20and%20investigations

vii

Table of Contents

List of Figures ... x

List of Tables .. xii

Terms and Abbreviations ... xiii

CHAPTER 1 ... 1

1. Introduction ... 1

1.1. Domain Concepts .. 1

1.1.1. Legal Aspects .. 1

1.1.2. Psychological Aspects .. 2

1.2. OPI Problem Definition .. 2

1.3. Objective and Contribution ... 5

1.4. Research Questions and Hypotheses.. 6

1.5. Research Methodology .. 6

1.6. Structure of this Dissertation ... 6

CHAPTER 2 ... 8

2. Background and Literature Review .. 8

2.1. Online Predator Identification ... 8

2.1.1. Criminal Network Analysis and Visualization .. 10

2.1.2. Successful Sample Tools .. 11

2.2. Preprocessing methods for chat logs .. 11

2.2.1. Chat Log’s Data Format ... 11

2.2.2. Noise Removal .. 12

2.2.3. Feature Selection and Dimensionality Reduction.. 13

2.3. Feature Extraction ... 14

2.3.1. Lexical Features ... 15

2.3.2. Behavioral Features ... 16

2.3.3. Psychological and Linguistic Features .. 17

2.3.4. Sentiment-oriented Features ... 18

2.4. Learning Predatory Patterns .. 18

2.4.1. OPI Standard Classification Methods ... 19

2.4.2. Naïve Bayes ... 19

2.4.3. K-Nearest Neighbor ... 19

2.4.4. Maximum Entropy Classification ... 20

viii

2.4.5. Support Vector Machines ... 21

2.4.6. Neural Networks .. 22

2.4.7. Performance Measures ... 22

2.5. Anomaly Detection Literature Review .. 23

2.6. Deep Learning Literature Review .. 25

2.6.1. Convolutional Neural Networks for Texts .. 30

2.6.2. Deep Learning Tools and Frameworks ... 34

CHAPTER 3 ... 37

3. Anomaly Detection for OPI ... 37

3.1. Hypotheses statement .. 37

3.2. Our Contribution Revisited ... 37

3.3. Problem Definition .. 38

3.4. One-class SVM ... 40

3.5. Experiments .. 41

3.5.1. Dataset ... 41

3.5.2. Experimental Settings .. 43

3.5.3. Preprocessing and Feature Extraction ... 44

3.5.4. Feature Selection.. 46

3.5.5. Pattern Classification Results ... 48

3.5.6. Parameter Optimization Remarks ... 51

3.6. Concluding Remarks ... 52

CHAPTER 4 ... 53

4. DEEP LEARNING FOR OPI .. 53

4.1. Hypothesis Statement .. 53

4.2. Our Contribution Revisited ... 53

4.3. Problem Definition .. 54

4.4. Solution: Applying CNNs ... 54

4.4.1. Proposed CNN Architecture ... 54

4.5. Experiments .. 56

4.5.1. Environmental Settings .. 56

4.5.2. Dataset ... 57

4.5.3. Experiments’ Settings .. 58

4.5.4. Investigating the effect of convolution ... 59

ix

4.5.5. Adding Extra Convolution Layers .. 61

4.6. Discussion and Concluding Remarks .. 62

CHAPTER 5 ... 64

5. RESOLUTE SOFTWARE ARCHITECTURE .. 64

5.1. User-level Goals ... 64

5.2. Software Design .. 64

5.2.1. Data Flow .. 64

5.2.2. General Architecture .. 65

5.2.3. Design Class Diagram .. 67

5.3. User Interface.. 68

5.4. List of Features ... 69

CHAPTER 6 ... 71

6. CONCLUSION ... 71

6.1. Summary of Research Activities ... 71

6.2. Research questions and objectives revisited... 72

6.3. Future Research Directions ... 73

6.3.1. Performing Deeper Linguistic Analysis on Chat logs 73

6.3.2. Learning Deep Architectures .. 74

6.3.3. Web-based Dynamic Social Networks ... 74

REFERENCES ... 76

APPENDIX A. .. 82

APPENDIX B. .. 90

APPENDIX C. .. 100

x

List of Figures

Figure 1. Relationship between OPI, Text mining, Pattern Classification and Criminal

Psychology .. 3

Figure 2. Major data mining techniques used in OPI and their interdependencies 3

Figure 3. Classification Granularity Levels and their corresponding classification

problem in OPI (Ebrahimi, Suen et al., 2016) .. 5

Figure 4. Overview of the framework for mining criminal networks in chat logs (Iqbal

et al., 2012) ... 10

Figure 5. A simple chat log in XML format with essential items for OPI 12

Figure 6. An example of showing the output of SVM for a binary classification as well

as the margin and three support vectors. .. 21

Figure 7. Position of Semi-supervised and SVM-based techniques in the taxonomy of

anomaly detection techniques .. 24

Figure 8. Taxonomy of deep learning architectures ... 26

Figure 9. An example of fine-grained labeling and percolation of sentiments by using

Recursive Neural Network (Socher et al., 2013) .. 28

Figure 10. Abstract architecture of a Recurrent Neural Network (Mikolov et al., 2010) 29

Figure 11. The general CNN’s architecture for sentence classification (Zhang &

Wallace, 2015) .. 31

Figure 12. The sentence approach generic architecture proposed for sentence

classification (Collobert et al., 2011) ... 32

Figure 13. CNN-based sentence classification model using Word2Vec embedding and

max-pooling (Kim, 2014) .. 33

Figure 14. The performance of CNN compared to traditional classification approaches

measured by F1-score (Dwyer, 2015) ... 34

Figure 15. Probabilistic view of anomaly detection in SPI setting (while predatory

samples are considered anomalous) ... 39

Figure 16. Proposed Modular Process for Predator Identification .. 41

Figure 17. Data Schema of Conversations in PAN-2012’s Dataset 43

Figure 18. Labeling Conversations in Training Data .. 46

Figure 19. Changes of performance criteria versus number of features in PAN Dataset 47

Figure 20. Comparison of the anomaly detection approach with Naïve Bayes and SVM 50

Figure 21. The proposed CNN Architecture used for OPI .. 56

Figure 22. A sample snippet of a conversation... 58

Figure 23. Train and Test errors for 36 iterations of CNN with one convolution layer

and real-valued bag-of-words features (experiment No.6). 61

Figure 24. Precision-Recall curves for showing the effect of extra convolution/hidden

layers on CNN and NN.. 62

Figure 25. The data flow of the implemented prototype ... 65

Figure 26. Abstract architectural design of Resolute .. 66

Figure 27. Design Class Diagram (DCD) of the Resolute prototype 67

Figure 28. The prototype’s graphical user interface for model training 68

xi

Figure 29. The prototype’s graphic user interface for applying the model on unsolved

samples ... 69

xii

List of Tables

Table 1. Mapping of applications in OPI and corresponding data mining techniques 10

Table 2. Categorization of features used in OPI problem ... 15

Table 3.Typical examples of emoticon synsets (Hogenboom et al., 2013)............................ 18

Table 4. Sentiment Features (Bogdanova et al., 2014) ... 18

Table 5. Comparison of Deep Learning Frameworks ... 35

Table 6. No. of conversations in the PAN Dataset ... 42

Table 7. Characteristics of the SQ Dataset ... 42

Table 8. Different Experiments Conducted in this setting .. 44

Table 9. Different feature sets and their corresponding top-k selected features on the

PAN dataset .. 47

Table 10. Results of training on Non-predatory samples (Experiment Train-NP-B) 48

Table 11. Results of training on predatory samples (Experiment Train-P-B) 48

Table 12. Results of testing on predatory samples (Experiment Test-P-B) 49

Table 13. Results of training on predatory samples after noise removal (Experiment

Train-P-B-NR) .. 49

Table 14. Results of testing on predatory samples after noise removal (Experiment

Test-P-B-NR) .. 50

Table 15. Results of training and evaluating through 2-fold cross validation on SQ

dataset ... 51

Table 16. PAN-2012 dataset: Performance comparison for depth-1 CNN with baselines

(Support Vector Machines (SVM) and traditional neural network (NN)) 60

Table 17. The major research activities in chronological order .. 72

xiii

Terms and Abbreviations

Age Disparity: The significant difference between the age of a predator adult and that of a

minor (i.e., victim)

Conversation: A chat session that encompasses the messages exchanged between

participants.

Clique: In the context of graph theory, a clique is a set of vertices whose corresponding

subgraph is complete (i.e., fully connected). In the context of mining criminal networks, this

definition can be simplified to be less mathematical. Specifically, in the context of chat logs,

a clique might be defined as a set of persons who participate in a minimum number of chat

sessions.

Luring Communication Theory: A communication theory that models the behavior of

predators for approaching, entrapping, and establishing a predatory relationship with a minor.

Maximum Entropy Principle: This principle states that the best probability distribution for

a statistical model is the one that has the maximum entropy.

Minor: A Person under the age of 18 who is considered as the potential victim of predatory

attack in cyber space.

Vector Space Model: The algebraic representation of documents based on their terms and

the frequency of occurrence of each term.

Anomaly: Samples that do not conform to the underlying distribution or regular pattern of

data.

OPI: Online Predator Identification

SVM: Support Vector Machine

KNN: K-Nearest Neighbor

ConvNets/CNNs: Convolutional Neural Networks

NNs/ANNs: Neural Networks/Artificial Neural Networks (original feed-forward Multi Layer

Perceptron (MLP))

DBNs: Deep Belief Networks

1

CHAPTER 1

1. INTRODUCTION

The ease of access and anonymity of Internet users facilitate child exploitation and cyber

sexual abuse. Due to the prevalence of the online conversations, mitigating the undesirable

effects of juvenile abuse in cyber space has become critical. This has been a major concern in

developed countries with a high rate of Internet access in which children are basically the

most vulnerable Internet stakeholders. Providing a safe environment for juveniles and

children in online social networks is considered one of the major factors in improving public

safety. According to Kierkegaard (2008), sexual solicitations of 89% of youth are made in

chat rooms. This highlights the vital need for mining large volumes of anonymous chat logs

in order to address this kind of social crime.

Automated Online Predator Identification (OPI) is a proactive means to counteract the

undesirable effects caused by the aforementioned crimes. Recently in the literature, this has

also been known as Sexual Predator Identification (SPI) or Sexual Predator Detection (SPD).

Although practical OPI involves dealing with textual data and images, textual data are

considerably more convenient to be used for automation purposes rather than the imagery

data. Accordingly, dealing with textual data is the main focus of this thesis, wherever the OPI

is mentioned in general.

This chapter serves as a basis of problem understanding for the rest of chapters of the thesis.

It highlights the importance of Online Predator Identification (OPI) as an effective action

toward improving public safety in society. This is also known as Sexual Predator

Identification (SPI) or Sexual Predator Detection (SPD). We will address the problem as OPI

in the rest of this writing. This section also discusses the relationship between machine

learning and OPI which is the focus of next chapters.

1.1. Domain Concepts

This section contains the essential information about legal and psychological aspects of

online predator identification.

1.1.1. Legal Aspects

Although legislative and regulatory provisions regarding online child sexual abuse aim to

combat and mitigate the impact of this threat, they may vary in different countries or even

different jurisdictions in the same country. According to Kierkegaard (2008), “while virtual

child porn using avatars is generally considered illegal in the European Union, it might not

necessarily be treated as such in the United States” (p.44). Similarly, “images that are illegal

to view in the USA may not be illegal to view in Germany” (p. 41). The same situation exists

about the concept of age disparity between adults and minors. There have been countless

writings on the legal aspects of child sexual abuse in online environments that go beyond the

scope of this chapter.

2

1.1.2. Psychological Aspects

The most effective and also simple psychological aspects of predatorhood might be those

defined by Morris in his master of science thesis (Morris, 2013). The author defined

predatorhood as having two major components: age disparity and inappropriate intimacy.

The former relates to the psychological immaturity of the victim compared to that of predator

(adult) which may differ in various countries by law. The latter corresponds to the attempt of

adult to establish an intimate conversation that usually involves implicit or explicit sexual

comments.

One of the most practical psychological theories which is widely used in online predator

identification is known as luring communication theory (Olson, Daggs, Ellevold, & Rogers,

2007). The theory comprises three main phases needed for committing a predatory act:

1. Gaining access to the victim

2. Entrapping and grooming until the victim accepts sexual advances

3. Initiating and maintaining the abusive relationship

On the Internet, the most common way for gaining access is through online conversations in

chat rooms.

The second stage can be distinguished by observation of the predator’s attempt to desensitize

the child to the inappropriate intimacy.

Finally, the third step involves explicit sexual exploitation of the minor. At this point, a

reliable OPI system can flag the conversation for the attention of law enforcement in order to

prevent the predator from approaching the victim.

1.2. OPI Problem Definition

During the past decade, automated Online Predator Identification (OPI) has become tractable

by using text mining algorithms. These algorithms are capable of identifying likely predators

for the attention of law enforcement. Using automatic ways to address this kind of crime is

challenging and demands efficient and scalable data mining techniques which are able to

handle large volumes of chat logs. There are two major OPI problems in which text mining

plays an important role:

1. Detecting predators

2. Visualizing and analyzing predator criminal networks

The solution to the first problem, which is the main focus of this thesis, can be casted as a

combination of textual preprocessing in data/text mining and pattern classification in machine

learning and also criminal psychology (Figure 1). The solution to the second OPI problem is

provided by extracting the underlying relationships and using graph mining techniques to

analyze the resultant social networks.

3

Figure 1. Relationship between OPI, Text mining, Pattern Classification and Criminal

Psychology

As illustrated in Figure 1, text mining and pattern classification techniques form the

algorithmic foundations of OPI. A comprehensive but concise survey of text mining which

incorporates the gist of text mining algorithms is provided in (Aggarwal, 2015). Pattern

classification (also known as pattern recognition) encompasses the classification algorithms

used in predator identification and goes hand in hand with machine learning techniques

(Duda, Hart, & Stork, 2012).

Figure 2 illustrates the main data mining techniques used in OPI along with their

relationships.

Figure 2. Major data mining techniques used in OPI and their interdependencies

4

The first module is responsible for performing preprocessing tasks on the input text. The

constituent of this module depends on the format of the data. Since in our domain we are

mostly dealing with XML files, using an XML parser is necessary. After parsing, some

documents may be chosen to be eliminated from further processing.

In the feature extraction module, prominent lexical features are extracted. Additionally, some

behavioral and structural features are extracted based on the statistical and linguistic

characteristics of the conversation. Afterwards, the low-quality features might be removed.

The quality of a feature is usually defined to be proportional to the amount of contribution of

the feature on the output (see Section 2-3). The pattern classification module performs the

classification task and produces the final output (see Section 2-4).

There has been a dedicated competition for Sexual Predator Identification in PAN-2012 as

part of the CLEF 2012 competition
1
 that expedited the movement of applying data mining

techniques on chat logs in order to identify the likely predators. Several competitors from all

over the world applied their data mining techniques on a relatively large volume of chat logs.

The competition encompasses the following two tasks (Inches & Crestani, 2012):

1. Distinguishing the predators and victims.

2. Specifying predatory messages in predatory conversation.

Accomplishing the first task is of greater help to law enforcement in terms of narrowing

down their search space significantly. According to Villatoro-Tello et al. (2012), this task can

be performed in two consecutive steps:

1. Identifying the predatory conversations among all conversations.

2. Distinguishing the sexual predator and the victim among participants of predatory

conversations.

This thesis proposes an abstract taxonomy that encompasses different classification

techniques that are used in the OPI field. There are three main granularity levels of analysis

in dealing with online predator identification. These levels are shown in Figure 3.

1 http://pan.webis.de/

5

Figure 3. Classification Granularity Levels and their corresponding classification problem in

OPI (Ebrahimi, Suen et al., 2016)

As seen in Figure 3, the most fine-grained level corresponds to direct analysis of messages

(also known as interventions) exchanged by participants in their conversation. This kind of

analysis corresponds to the task of distinguishing the sexual predators in PAN-2012. The next

level of granularity relates to the task of identifying predatory online conversations. Finally,

distinguishing the predators among all of the participants in the entire corpus can be

considered as the highest level of abstraction that might be the ultimate goal. All of these

analyses are accomplished by utilizing the proper machine learning classification techniques.

For a more cohesive and detailed introduction of these techniques, please refer to

(Keyvanpour, Ebrahimi, et al. 2015) or the second chapter of this thesis.

1.3. Objective and Contribution

This thesis aims to investigate and address two major problems in the domain of OPI and

adapt machine learning techniques to address these problems. The objectives can be

categorized as follows:

Objective 1: Eliminating the problem of gathering negative training instances while

keeping the performance acceptable

In practice, finding enough negative (non-predatory) instances is tedious and sometimes

unrealistic. This thesis proposes a semi-supervised anomaly detection approach that only

utilizes one of the class labels in the training process rather than both labels.

Objective 2: Improving the classification performance in terms of F1-score compared to

traditional machine learning algorithms (SVM and ANN)

Binary classification methods that have been used in the OPI domain have a relatively lower

classification performance than that of the deep learning method that is proposed in this

thesis.

6

1.4. Research Questions and Hypotheses

Aligned with the two main problems mentioned in the preceding section, the followings are

main research questions:

1) Considering the OPI domain, how efficient will an anomaly detection model that only uses

one of the class labels perform, as compared to binary classification models that use both

positive and negative class labels?

Hypothesis 1: Predatory/Non-predatory conversations can be represented as anomalous

conversations that do not conform to the underlying data distribution. The problem can be

casted to a one-class classification problem. The performance would be comparable to that of

binary classification which uses two class labels.

2) Is a deep learning architecture able to increase the classification performance and

outperform the current state-of-the-art performance obtained in this domain?

Hypothesis 2: Learning deep architectures for classification of chat logs can outperform the

state-of-the-art methods in terms of F1-score.

1.5. Research Methodology

First, a comprehensive study was conducted on the literature and the extension points and

problems are identified. Accordingly, this thesis stated two main hypotheses that are mainly

related to alleviate current problems in the domain. Then, datasets are obtained and pre-

processed. Afterwards, several empirical sets of experiments are designed to support or to

reject each hypothesis. In parallel, a software prototype is designed and implemented in Java

to support hypothesis 1. Finally, the results of the experiments are articulated and the related

challenges are discussed. Additionally, a speculation of future research direction is presented

based on the observations.

1.6. Structure of this Dissertation

To answer the research questions and evaluating the stated hypotheses this dissertation has

been organized as follows:

Chapter 2 contains a literature review covering preprocessing, feature extraction and

classification techniques used in the OPI domain. It contains the background information on

anomaly detection and deep learning required to understand the content of the remaining

chapters.

Chapter 3 is dedicated to the usage of anomaly detection in our problem at hand. It describes

the required adaptations and customizations; it also contains the description of the

corresponding experiments and the analysis of the results. The goal of this chapter is to

support hypothesis 1 stated above.

Chapter 4 covers the experiments and results of applying and customizing deep learning

techniques on the domain of OPI. The goal of this chapter is to support hypothesis 2 stated

above. Chapter 5 covers software engineering aspects of the prototype that was designed and

7

implemented as a proof of concept for supporting hypothesis 1. Chapter 6 has been devoted

to draw conclusions, revisiting the objectives, and corresponding hypotheses, and the

research schedule. Finally, Appendices A and B illustrate some samples of XML processes

used in Chapter 3 and also several samples of bash scripts used in Chapter 4.

8

CHAPTER 2

2. BACKGROUND AND LITERATURE REVIEW

This chapter covers the related work regarding the whole contribution of this thesis. It starts

with describing general usage of machine learning in OPI and then moves along to the

background review of anomaly detection techniques. Finally, a literature review of deep

learning is discussed. The chapter describes the usage of preprocessing, feature extraction,

and classification in various aspects of an OPI problem. Different methods of preprocessing

that have been found to be useful for working on chat logs are discussed. These methods

include the most popular data formats, noise removal procedure and dimensionality

reduction. Then, feature extraction and the standard ways of feature enrichment in this

application domain are described.

The chapter also covers the usage of sentiment features as a complimentary set of features

that can improve the performance of classification. In addition, a brief basic tutorial about the

classification algorithms that are used in the domain of automated predator identification is

presented. These algorithms cover a wide range of classification algorithms, such as entropy-

based classification, Naïve Bayes, Support Vector Machine, and Neural Networks. We have

tried to refer the keen reader to the related resources about the fully-detailed theories behind

these algorithms.

Finally, in the last part of the chapter we describe Social Network Analysis (SNA) as another

area related to this field of study. We provide a high-level introduction to the usage of SNA

and its relationship to the online predator identification.

2.1. Online Predator Identification

As mentioned in the previous section, OPI has its root in text mining and pattern

classification. With the rapid increase of available textual data in different domains including

news, social media, and web pages, text mining has drawn the attention of researchers during

the last decade. There has been a variety of algorithms and approaches including text

clustering and classification, text summarization, topic modeling, and opinion mining.

Opinion mining or sentiment analysis is an important discipline in Natural Language

Processing (NLP) that extracts people’s opinion, attitudes and emotions toward entities, other

people, events, and their attributes. The reader may refer to (Aggarwal, 2015; Irfan et al.,

2015; Liu & Zhang, 2012) for comprehensive explanations of these algorithms and

approaches. Here, we narrow down the focus of the chapter to the usage of these techniques

in OPI and the related background.

One of the very first successful attempts for applying data mining to OPI problem was

accomplished by Pendar (2007) who used a weighted K-NN classifier to distinguish predators

from underage victims. In addition, the first empirical system with the capability of

determining predatory messages in chat logs is ChatCoder1 (Kontostathis, 2009). Afterwards,

ChatCoder2 (see Section 2) was developed on top of the previous version to improve its

performance (Mcghee et al., 2011). The system used a rule based approach in conjunction

with decision trees and instance-based learning methods (K-NN).

9

Michalopoulos and Mavridis (2011), and Escalante et al. (2013) have utilized Luring

Communication Theory (described in Section 1-1-2), to combine psychological aspects of

predation phenomenon with computer science and machine learning.

Recently, the PAN-2012 conference has acted as a boost for applying machine learning

techniques to this area. Several machine learning algorithms have been used to address the

OPI problem in this competition. These algorithms cover a wide range of classification

algorithms such as Entropy-based Classification (Eriksson & Karlgren, 2012), K-Nearest

Neighbor (Kang et al., 2012), Support Vector Machine (Morris, 2013) and Neural Networks

(Villatoro-Tello et al., 2012). The team with the best performance in terms of F1-score

(Villatoro-Tello et al., 2012), used a two-step binary classification approach called SCI

(Suspicious Conversation Identification) and VFP (Victim From Predator Disclosure) using

SVM and Neural Networks.

Escalante et al. (2013) proposed a novel method using chained-classifiers based on adapting a

psychological hypothesis that underscores three stages employed by predators to approach

the victim. Although this method could not outperform the approach used by Villatoro-Tello

et al., it revealed that adopting psycho-linguistic hypotheses could improve the accuracy.

Due to the inadequacy of bag-of-words models in reflecting deep semantic notions hidden in

the conversations, Bogdanova et al. (2012b) tried to enrich the features by introducing

sentiments and emotions to the original feature set. In another research (Bogdanova, Rosso,

& Solorio, 2014), the authors improved their feature set by adding more high level features

such as neuroticism and psychological aspects. We will cover these studies in more detail

through the chapter.

The use of deeper linguistic features in this field were attempted by Forsyth & Martell (2007)

in their research for creating an annotated chat corpus with both lexical and semantic tags to

facilitate the application of data mining in this domain. As another linguistic analysis

example, Bogdanova et al. (2012a) have worked on identifying fixated discourse on chat

logs. Fixated discourse signifies on the strong intention of the predator to keep the focus of

the conversation on sexual topics. Finally, a holistic approach has been presented by Cano et

al. (2014) based on leveraging lexical features, sentiment features, content and psycho-

linguistic features, and discourse patterns. They have used semantic frames, which

incorporate the general aspects of a discourse, and added them as additional features to the

original bag-of-word model.

In the remainder of the chapter, we discuss the methods mentioned above in greater detail and

highlight their strengths and weaknesses. Table 1 shows a mapping between data mining

techniques and their applications in predator identification problem as well as the reference to

corresponding works that have been done in the domain.

10

Table 1. Mapping of applications in OPI and corresponding data mining techniques

Application Area in OPI Data Mining Technique(s) Previous works

Predator Detection

Binary Classification

• Approaches in PAN-2012

• (Morris, 2013)

• (Cano et al., 2014)

• (Pendar, 2007)

Latent Semantic Indexing • (Kontostathis et al, 2013)

Rule-based Approach • (Mcghee et al., 2011)

Anomaly Detection • (Ebrahimi et al., 2016)

Criminal Network Analysis

Graph Mining • (Iqbal et al., 2012) Criminal Network

Visualization

2.1.1. Criminal Network Analysis and Visualization

Another aspect of OPI deals with pedophile covert network analysis and visualization. Iqbal

et al. (2012) have used the concept of criminal clique mining on chat logs to reveal the hidden

relationship among criminals. Figure 4 depicts the main components of their framework.

Figure 4. Overview of the framework for mining criminal networks in chat logs (Iqbal et al.,

2012)

To analyze a criminal social network we need to explore the communication structure and the

patterns by which network communications evolve. Based on the work of Klerks (2003),

criminal network investigation approaches can be categorized into three types: 1) manual

approach, 2) graphic-based approach, and 3) social network analysis. Since the focus of this

chapter is on the identification aspects rather than network visualization and analysis, we

focus on the predator detection through the remaining sections.

11

2.1.2. Successful Sample Tools

In order to introduce successful examples of automated online predator identification we

briefly describe two software tools in which data mining techniques have been applied to this

domain in a practical environment.

- ChatCoder 2: This tool was implemented at the Mathematics and Computer Science

Department of Ursinus College in Pennsylvania in 2011 (Mcghee et al., 2011). The

software uses a rule-based approach to classify the messages in forums into several

categories including ‘exchange of personal information’, ‘grooming’, ‘approach’, and

‘none of the categories’. These categories have been chosen based on the different

phases defined in communication theory described in Section 1.2.2. This software

system could provide a 68% accuracy on a public dataset available by a non-profit

organization called perverted justice. One of the success factors of the software is that

the system outperformed the human labeling in some of the categories.

- Child Exploitation Tracking System (CETS): In 2003, Microsoft initiated a new

tool called Child Exploitation Tracking System (CETS) through close collaboration

with the Toronto Police Service to create an infrastructure for sharing the relevant

documents and evidences among different investigators. According to the Royal

Canadian Mounted Police (RCMP), the tool is still being extensively used in Canada

as a cross-jurisdiction information sharing system between child exploitation

investigators (Toews, 2013). CETS can be construed as a reliable tool that is being

effectively utilized for combating child exploitation.

2.2. Preprocessing methods for chat logs

Many data mining processes require a domain specific data preprocessing task which is often

a tedious and time consuming task. Preprocessing of chat logs includes different subtasks

ranging from parsing the raw textual log files to removing noise and reducing dimensionality.

2.2.1. Chat Log’s Data Format

Since analyzing textual data is less expensive and more efficient than analyzing other media

such as image and video, currently almost all of the approaches for OPI use solely textual

data. Log’s format strongly depends on the software tool that is used for logging the

conversations on the chat server. Although it can be any log format depending on the logging

tool, usually the raw chat log data is gathered in a semi-structured textual format such as

XML or JSON file. Various items can be stored in these logs among which the following

three elements are essential for OPI analysis:

- Authors: participants who are usually identified by a unique identifier

- Message text: the textual transferred message

- Time stamps: the date and time corresponding to each exchanged message

Figure 5 depicts a sample template for a chat log in XML format.

12

Figure 5. A simple chat log in XML format with essential items for OPI

2.2.2. Noise Removal

Noise removal procedure is done for the purpose of improving the performance of learning

(in terms of precision, recall, and accuracy) and also reducing the training time. In OPI

problems, noise removal procedure falls into one of the following categories (or a

combination of both):

Removing noisy conversations: This category of noise removal procedure includes

identifying and eliminating useless samples that do not affect the learning process. This

includes removing the following items:

- Non-textual samples: Real-world chat logs may contain conversations with only

non-textual data or a very tiny amount of textual information. These samples can

be safely ignored.

- Conversations which include only one participant: This kind of conversations

usually exists in a chat log corpus due to the fact that a participant may be

unsuccessful in having a conversation with another participant.

- Extremely short messages (e.g., those which only contain a short greeting between

two or more participants)

Removing noisy features: This category includes removal procedures for eliminating

noise from features obtained during the feature extraction procedure (see Section 4).

Feature extraction and its corresponding methods in OPI will be discussed in the next

section. For now, features can be considered as the set of important terms in a

conversation.

Noisy features may include the followings:

13

- Terms which are not in the proper encoding: This happens especially when there

are multiple languages involved in the training corpus or there are other encodings

than Unicode Transformation Format (UTF).

- Small images or emoticons transferred among a whole bunch of textual

conversations are construed as noisy features depending on the approach: It

should be noted that emoticons are considered as a valuable source of information

especially for extracting sentiment features. In such cases, emoticons should not

be treated as noise.

- Unintentional misspelled words throughout the conversation: It is worth

mentioning that intentional misspelled words often play an important role in this

application domain. As Villatoro-Tello et al. (2012) state: For example in the

grooming phase the perpetrator may amend the relationship by an emphasized

“soryyyyyyyyy” when the child felt threatening by any obtrusive language (p.

4).On the other hand, differentiation of intentional from unintentional spelling

errors is not an easy task. Therefore, some researchers avoid the entire spell

checking in the hope of gaining quality improvement.

2.2.3. Feature Selection and Dimensionality Reduction

Let be a dataset with set of n terms denoted by N, and also let be the function which

maps the conversations into in which P and NP represent the predatory instances

and non-predatory instances respectively. The feature selection can be defined as the process

of finding so that the performance of classifier is maximized. The performance of

the classifier is typically defined by accuracy, precision, recall and F1-score. Forman

describes a holistic introduction of feature selection techniques used in text classification

(Forman, 2003).

Two common feature selection techniques are widely used in the OPI domain. One of them

falls into the category of supervised feature selection techniques and the other one is an

unsupervised technique:

- Unsupervised feature selection:

Document Frequency Thresholding: Let d(t) be the number of documents in which term t

occurs. Subset contains t if and only if , in which is an arbitrary

threshold. As Yang and Pedersen (1997) state, document frequency thresholding is the

simplest technique which scales well to large corpora.

- Supervised feature selection:

Information Gain: Supervised feature selection techniques measure each feature based on

its contribution to the identification of the correct category (i.e., predatory or non-

predatory). Information gain is a common supervised technique used for feature selection

in text classification in the domain of OPI. The notation used by Forman (2003) for

calculating information gain in a binary classification problem suits well in OPI.

According to this notation, information gain for a specific term (feature) is defined as:

 (1)

14

where:

(2)

In addition, pos and neg represent the number of predatory and non-predatory cases,

respectively. Also tp represents the number of predatory cases containing the term, fp is

the number of non-predatory cases containing the term, fn is the number of predatory

cases not containing the term and tn represents the number of negative cases not

containing the term. P(t) is calculated as follows:

 (3)

There is a large variety of dimensionality reduction techniques used in data mining, but there

is a text-specific dimensionality reduction technique called stemming, which is widely used

in text mining. The purpose of doing this preprocessing step is to reduce, for instance, the

terms ‘work’, ‘works’, ‘worker’ and ‘working’ into one dimension as ‘work’. This process

usually has a desirable effect on the performance of text categorization, both in terms of

quality and time efficiency.

However, unfortunately this technique may not provide the same desirable effect for the OPI

problem domain due to the fact that it will distort the information pertaining to the writing

style of predators in chat logs (Villatoro-Tello et al., 2012). Accordingly, the best results have

been reported by other researchers in PAN-2012, while stemming has been avoided.

2.3. Feature Extraction

Table 2 categorizes the features that have been used in mining OPI problems along with

corresponding previous works that have utilized these features.

15

Table 2. Categorization of features used in OPI problem

Feature

Category

Description Previous works

Lexical Features Bag-of-word representations including:

• Unigrams

• Bigrams

• Trigrams

• (Villatoro-Tello et al., 2012)

• (Morris, 2013)

• (Pendar, 2007)

Behavioral

Features

• The number of times this author initiates a

conversation

• The number of times the author asks a

question

• Response Time

• Conversation Dominance

• Number of turn-takings

• (Morris, 2013)

Psychological

and Linguistic

Features

• Fixated Discourse (see below)

• Writing Style (see below)

• Emoticons (see below)

• Tendency to change conversation to sexual

discourse

• Awareness of doing an illegal and non-

moral action that may cause prosecution

• Mimicking children language

• (Bogdanova et al., 2012a)

• (Mcghee et al., 2011)

• (Hogenboom et al., 2013)

Sentiment-

oriented Features

• Fear, Anger, Anticipation, Joy, Sadness,

Disgust, Surprise, etc.

• (Bogdanova et al., 2012b)

In the rest of this section, the above feature extraction categories are described in greater

detail.

2.3.1. Lexical Features

Lexical features are word-related features that are directly extracted from the sentence. These

words are used as candidate features in classification algorithms in order to determine the

category to which chat logs belong.

One of the simplest approaches used in the OPI problem to extract features is the bag-of-

words approach that treats a chat log as a bag of words. Each word that exists in a chat log is

considered as a candidate feature and then these features are weighted in terms of their

frequency of occurrence. Typically, the initial candidate feature set is built by extracting n-

grams (unigrams, bigrams, and trigrams) from the training data. Usually words that have

weak lexical meaning are known as stop words and are filtered out during the pre-processing

in standard text categorization and Information Retrieval (IR) studies. However, because of

the fact that chat logs have an informal writing style, the general list of stop words may not

be adequate. That is why some researchers create their own list of stop words. As an

example, the stop word list used by Pendar (2007) contained specifically 79 most frequent

16

words in the corpus. After filtering out the entire stop words successfully, the n-grams and

their corresponding frequencies for each chat log (or for each chat participant) are extracted.

Standard bag-of-words model has been shown to be robust in a wide variety of text

classification problems. Term Frequency-Inverse Document Frequency (TFIDF) is the most

common weighting approach that is extensively used for weighting the candidate features

before performing any feature selection procedure. In this weighting scheme, the most

important words tend to have higher weights. This is implicitly achieved by multiplying the

frequency of term t by a magnitude that is inversely proportional to the occurrence of term t

in the whole corpus.

Generally speaking, building unigrams and bigrams (pairs of consecutive words) produce

better results than higher n-grams. Depending on the characteristics and also the size of the

training corpus, the use of bigrams may increase the performance at the expense of increasing

the size of the feature-space. However, for a training problem it may turn out that unigram

model produces a better performance.

Regardless of the classification performance, the size of the feature set for bigram

representation is typically much larger than that of unigram model. The resultant feature set

can also be enriched by adding domain-specific features. As an instance, in the work of

Morris (2013), special tokens such as \SMILEY, \MALE.name, \FEMALE.name, \NUM and

\PHONE.name were added to the lexical features in order to enrich the initial feature set.

However, it was mentioned that these enhancements seemed to add an insignificant

improvement.

Considering the inadequacy of bag-of-words models in reflecting deep semantic notions

hidden in the conversations, one can also enrich the feature set with behavioral features which

would be explained in detail below.

2.3.2. Behavioral Features

In this section, we list the high-level behavioral features and their applicability in the

detection of online predators. Behavioral features are characterized as features that capture

the typical actions of a user within a conversation. Morris (2013) has classified behavioral

features as: ‘Initiative’, ‘Attentiveness’ and ‘Conversation dominance’ for which the details

are given accordingly:

- Initiative: This can be measured by number of initiations (i.e., number of times a

specified participant starts the conversation), initiation rate (i.e., the ratio of number

of initiations to the whole number of conversations), questions and question rate in

order to understand the author’s tendency during the conversation.

- Attentiveness: This feature corresponds to the mean, median, and max response

times for each author.

- Conversation dominance: A set of features such as ‘Message Ratio’, ‘Word Count

Ratio’ that reflect the degree to which the focal author dominates the conversation.

In order to successfully distinguish predators from victims, the above mentioned features are

critical for ‘symmetry-breaking’ (Morris, 2013). That is, given the fact that two authors in a

chat conversation use very similar languages, behavioral features are one of the significant

identifiers or non-lexical aspects of the conversation which are able to differentiate predators

from victims.

17

2.3.3. Psychological and Linguistic Features

Psycho-linguistic features form another important aspect of feature extraction in OPI domain.

‘Fixated discourse’ is one of the most prominent psychological features used in OPI.

Bogdanova et al. (2012a) defined fixated discourse as the unwillingness of the predator to

change the topic. For instance, predators often ignore questions or interruptions of pseudo-

victims and have the tendency to go back to a sex-related conversation. According to

Bogdanova et al. (2012a), chat logs might include implicit and explicit sexual content as

predators gradually alter the direction of conversation to sex by starting with some ordinary

compliments. On the other hand, predators often are aware of the fact that what they do on

chat rooms is not moral and they try to transfer the responsibility to the victim and often

behave as children by copying the children’s linguistic style (Bogdanova et al., 2014).

The following analysis of chat logs identifies the important characteristics of predators’

psychological and linguistic features (Bogdanova et al., 2014)

- “Implicit/explicit content: Typically, pedophiles shift gradually to the sexual

conversation, starting with ordinary compliments and then they shift the conversation

to make it overtly related to sex. They do not hide their intentions.

- Fixated discourse: Pedophiles are reluctant to step aside from the sexual

conversation. In other words, pedophiles try to come back to the sex-related

conversation when the victim steps outside of the topic.

- Offenders often understand that what they are doing is not moral.

- They transfer responsibility to the victim.

- Offenders often behave as children, copying their linguistic style. Colloquialisms

appear often in their messages.”

Mcghee et al. (2011) have proposed the following linguistic features which were denoted as

‘Writing Style’ in Table 2: Total number of words in a line, number of first-person pronouns,

second-person pronouns or third-person pronouns, number of personal information nouns

(e.g., age, pic), number of relationship nouns (e.g., boyfriend, date), number of family nouns

(e.g., mom, sibling), number of communicative desensitization words (e.g., kiss, bra), number

of approach verbs (e.g., meet, see, hotel).

Hogenboom et al. (2013) indicate that people were influenced by nonverbal cues and

emoticons. These are widely used to express sentiments such as happiness, sadness, joy or

anger, therefore emoticons could also be used to reveal the predators’ sentiments and their

tendencies in order to be dominant in the conversation and also to copy children’s’ behavior

as explained above. The following table shows the typical examples of emoticons and their

sentimental interpretations (Hogenboom et al., 2013).

18

Table 3.Typical examples of emoticon synsets (Hogenboom et al., 2013)

Emoticon synset Emoticons

Happiness :-D, =D, xD, (^_^)

Sadness :-(, =(

Crying :’(, =’(, (;_;)

Boredom -_-, -.-, (>_<)

Love <3, (L)

Embarrassment :-$, =$, >///<

2.3.4. Sentiment-oriented Features

In addition to the emoticons explained earlier, the sentiment of chat logs can provide

significant markers in terms of predator identification and unveil other important semantic

dimensions. According to Bogdanova et al., (2012b), in general, predatory conversations

contain more positive and less negative words.

The following sentiments and emotional markers were used as features in their experiments:

Table 4. Sentiment Features (Bogdanova et al., 2014)

Feature Example

Positive words Cute, pretty

Negative words Dangerous, annoying

JOY words Happy, cheer

SADNESS words Bored, sad

ANGER words Annoying, furious

SURPRISE words Astonished, wonder

DISGUST words Yucky, nausea

FEAR words Scared, panic

2.4. Learning Predatory Patterns

First, we formally introduce the notion of binary classification which is used in the OPI

problem.

Let dataset D be defined as where is the set of m

observation vectors , so that
 is the corresponding

vector of i
th

 observation containing n feature values . Also is the

set of two class labels corresponding to predatory and non-predatory instances respectively.

The classification task is defined as finding a mapping function such that is

able to predict as accurately as possible.

As a typical approach, the data is split into training and testing sets. The classification model

learns from the training set and is then applied to the test set to evaluate the performance of

classification. A wide variety of learning algorithms for learning the function have been

19

proposed and utilized in data mining (Duda et al., 2012). In the following subsections the

most common algorithms that have been used for solving OPI problems are introduced.

2.4.1. OPI Standard Classification Methods

This section is dedicated to introducing concrete data mining classification algorithms which

have been used in OPI problems. First, we describe a standard probabilistic model called

Naïve Bayes which has been used for text classification since the last two decades. Then we

discuss an intuitive algorithm which is usually used in information retrieval called K-NN.

Then we proceed to more advanced algorithms such as Entropy-based classification, Support

Vector Machines and Artificial Neural Networks.

2.4.2. Naïve Bayes

This model is used extensively as a baseline in text classification studies. This means that

researchers accept it as an efficient algorithm and aim to improve its performance through

other novel algorithms. Although the reader can refer to Duda et al. (2012) for a thorough

explanation of the algorithm, we present a brief description here.

Let D be the dataset defined in the previous section. Assuming that all discrete-valued

features are conditionally independent given the class label (known as ‘Naive Bayes

assumption’) we can simplify that is the conditional probability of observation vector

 given y as follows:

(4)

Having calculated as above, one can predict the most likely class label () by using

the Bayes rule as follows:

(5)

Specifically in OPI problems, we deal with labels p and np and we can rewrite the above as:

(6)

2.4.3. K-Nearest Neighbor

Kang et al. (2012) have used K-Nearest Neighbor (also known as KNN) for online predator

identification. They have used a weighted modification of classic KNN model. Although their

result is not comparable with other methods, their approach is worth mentioning due to the

interesting justification behind it.

20

The simplest version of the algorithm can be outlined as follows. More sophisticated

explanation can be found in Duda et al., (2012).

Algorithm: KNN(D, , k, m)

Input:

Output:

y: predicted class label ‘p’ or ‘np’ (i.e., deciding whether the sample is predatory or not)

- Find k nearest neighbors to based on the distance measure and add them to neighbors

set N.

- Add the corresponding class labels of found neighbors in N to labels set L.

-

where the majority function simply calculates the majority of class labels among the k nearest

neighbors.

There are also weighted versions of KNN which assign different weights to the neighbors

based on their distance to the query point (i.e.,). The authors of (Kang et al., 2012) state

that choosing a good value for k that can provide good results remains a challenge.

2.4.4. Maximum Entropy Classification

The conditional independence assumption of Naive Bayes is not realistic at least when

dealing with textual documents. Therefore, other statistical models have been proposed to

consider the notion of dependent random variables.

A Maximum Entropy Classifier is a discriminative approach that tries to build a statistical

model of conditional probability distribution . There is an infinite number of such

models, but based on the maximum entropy principle, the best model is the one which

maximizes the entropy H(P). Berger et al. (1996) formally state this as follows:

(7)

In order to choose the best model from set C (the set of valid probability distributions),

based on the maximum entropy selection, we have to solve the following optimization

problem:

 (8)

Note that the above optimization problem is a constrained one. Nevertheless, describing the

complete theoretical background of Maximum Entropy Classifier is beyond the scope of this

chapter. The keen reader may refer to the seminal paper by Berger's et al. (1996) about

maximum entropy classifier for natural language processing.

21

Eriksson and Karlgren (2012), and Kern et al. (2012) used a Maximum Entropy Classifier in

the OPI domain on the PAN-2012 dataset. Their results are comparable with the best

performing approach in PAN-2012 and can be considered as a successful approach for

addressing OPI problems.

2.4.5. Support Vector Machines

Currently, Support Vector Machines (SVMs) have shown the best results among all different

classification algorithms which have been used for OPI problems (Villatoro-Tello et al.,

2012). SVM was originally introduced by Vapnik, (1995) in his book entitled ‘The Nature of

Statistical Learning Theory’. The goal of the SVM algorithm is to give a hyperplane that

maximizes the margins between positive and negative instances (predatory and non-predatory

samples in our case). The margin is defined as two times the distance from the decision

hyperplane. Figure 6 illustrates the idea of SVM.

Figure 6. An example of showing the output of SVM for a binary classification as well as the

margin and three support vectors.

Instances located on the margins are called ‘support vectors’. The main result of training an

SVM model is to obtain these support vectors also known as supports. These instances are

the only ones that are taken into consideration when a new instance needs to be classified by

the model. The training procedure consists of solving a constrained optimization problem,

which is usually solved by out-of-the-shelf quadratic programming tools. SVM has been used

by Morris (2013), and Villatoro-Tello et al. (2012) and as already mentioned, SVMs have

obtained the highest performance at PAN-2012. The reader may refer to Bishop (2006) for

the mathematical background of support vector machines.

Note that besides the classification algorithm, the preprocessing methods and feature

extraction methods described in Section 2.3 have a significant impact on the final

performance of the classification.

22

2.4.6. Neural Networks

Even though there are a large variety of neural network algorithms, the one that has been

successfully utilized in OPI is the Multi Layer Perceptron (MLP). Villatoro-Tello et al.,

(2012) tested MLP for identifying predatory conversations in addition to identifying the

likely predators and then compared their performance with that of Support Vector Machines.

The results showed that the performance of the MLP and the SVM are comparable to each

other. More specifically, the neural network outperformed SVM in identifying predators

versus victims; while the SVM performed better in identifying the predatory conversations.

Here, we introduce the key concepts of MLPs without a detailed description of algorithm.

Units are considered as building blocks of MLPs. Each unit resembles a neuron that has a

specific ‘activation function’ that generates the output of a neuron. At a higher level of

abstraction, the network contains several layers of units including input, output and one or

more hidden units. The units in a layer are not connected to each other, while usually all of

the units in a previous layer are connected to the units in the next layer. A real number called

‘weights’ is assigned to each connection. The final output of a neuron located in the first

hidden layer with M units is calculated as follows (Bishop, 2006):

 (9)

where i denotes the index of the features in the input vector and j denotes the index of the

neurons located in the first layer of the network. Also h is the activation function for the

neurons in the hidden layer which is usually chosen to be a sigmoidal function. D is the

number of features in the input sample. Finally, superscript (1) denotes the layer in which

neuron is located. This process of linear transformations continues in a cascading manner

from previous layers to the last hidden layer and eventually to the output layer, in which the

final output of the network is generated.

The learning algorithm of an MLP with a specified structure finds the relatively optimal

network weights via local optimization. The learning procedure encompasses a technique

called ‘backpropagation’ and also an optimization technique called ‘gradient descent’. For a

complete description of Neural Networks the reader may refer to Bishop's book (2006). There

are several out-of-the-shelf libraries and tools for building and training neural networks.

In terms of accuracy, precision, and recall rate (see Section 2.4.7), Support Vector Machines

and Neural Networks (Multi-layer Perceptron) seem to outperform other classification

methods for the task of OPI. However, it is worth to apply a simple approach such as Naïve

Bayes to obtain a performance baseline so that if there is a problem with parameter tuning of

the two mentioned algorithms, it will be revealed at the first stages of the analysis.

2.4.7. Performance Measures

Precision and recall rate in addition to their harmonic mean (F1-score) are usually used as

performance measures in classification. Let tp be the number of predatory conversations

identified correctly (i.e., true positive), tn be the number of non-predatory

conversations identified correctly (i.e., true negative), fp be the number of non-

predatory conversations identified as predatory by mistake (i.e., false positive), and

23

finally let fn denote the number of predatory conversations identified as non-predatory

by mistake (i.e., false negative). Then the precision is calculated as and the

recall would be .

2.5. Anomaly Detection Literature Review

The first successful attempt to use machine learning in OPI problem to distinguish predators

from underage victims was done by Pendar by means of a weighted K-NN classifier (Pendar,

2007). To the best of our knowledge, the first empirical system with the capability of

determining predatory messages in chat logs is ChatCoder1 (and Chatcoder2) implemented

by Kontostathis and her colleagues (Kontostathis, 2009; Mcghee et al., 2011). The system

uses a rule based approach in conjunction with decision trees and instance-based learning

(KNN). It is worth mentioning that in (Tan, 2005) the author introduced a general approach

for using a weighted version of the KNN algorithm to mitigate the problem of learning from

imbalanced datasets in text categorization.

The PAN-2012 conference has acted as a boost for applying machine learning techniques to

online sexual predator identification. The main strength of this conference is providing the

first publicly available standard dataset which was specifically developed for the sexual

predator identification task. Researchers tuned their proposed methods against the same

training data and reported their performance on the official test data. Several machine

learning algorithms have been used to address the OPI problem in this competition. These

algorithms cover a wide range of classification algorithms such as maximum entropy-based

classification (Eriksson & Karlgren, 2012), KNN (Kang et al., 2012), Support Vector

Machine (Morris, 2013) and Neural Networks (Villatoro-Tello et al., 2012). The top team

(Villatoro-Tello et al., 2012) has used a two-step binary classification approach called SCI

(Suspicious Conversation Identification) and VFP (Victim From Predator Disclosure) using

SVM and Neural Networks.

Inspired by the approach used by Villatoro-Tello (2012) we have used the SVM method to

compare the performance of our anomaly detection approach. Escalante and his colleagues

(Escalante et al., 2013) proposed a new method based on learning a chain of three local

classifiers corresponding to three segments of each conversation but the approach could not

outperform that of the top performing method in PAN-2012.

A related research has been done on cyber bullying by Kontostathis et al. (2013), which is

very close to predator identification. They utilize a different supervised learning algorithm

based on Latent Semantic Indexing (LSI) that is called Essential Dimensions for identifying

cyber bullying. They built their own dataset using ‘formspring.me’, a question-and-answer

popular website.

More recently, Cano et al., (2014) have proposed enriching the traditional bag-of-word

approach by adding other feature types including sentiment features, psycho-linguistic

features and discourse patterns. Eventually, they have used a binary classification for the

actual predator identification task.

Generally, the algorithms used in PAN-2012 can be considered as the state of the art in

sexual predator identification. However, in regard to anomaly detection, there is a wide

variety of unsupervised, supervised, and semi-supervised models. A comprehensive survey of

24

anomaly detection has been done in (Chandola et al., 2009). The authors have categorized

anomaly detection methods into six major categories: clustering based, classification based,

nearest neighbor based (which includes density based methods), statistical, information

theoretic and spectral methods.

We use a slightly different taxonomy to show where our method stands with respect to the

learning method that is used for anomaly detection. We avoid describing different methods

and foundations of anomaly detection since it is beyond the scope of this thesis. Instead, we

focus on the specific anomaly detection method (i.e., one-class SVM) that yielded the

competitive results in this application domain based on our results. Figure 7 illustrates the

taxonomy of the most common anomaly detection techniques as well as the position of semi-

supervised techniques. One-class SVM has been highlighted in the figure. For the sake of

completeness, the unsupervised SVM-based algorithms are shown as well. The corresponding

leaf nodes of the taxonomy will be introduced in the next section.

Recently, several works have addressed the problem of anomaly detection in micro-blogs or

short messages especially in Twitter (Anantharam et al., 2012), (Guzman & Poblete, 2013).

(Kumaraswamy et al., 2015) et al. have used domain-specific features encoded as first order

logic for textual anomaly detection. Anomaly detection methods have not been applied to the

SPI problem.

Figure 7. Position of Semi-supervised and SVM-based techniques in the taxonomy of

anomaly detection techniques

To our knowledge, anomaly detection has not been applied to the OPI domain. As a new area

of application, we examined this approach on the PAN-2012 data and we discuss the results

of this approach and compare it with other more commonly used two-class classification

25

methods in the following sections. Chapter 3 discusses the adaptation of the notion of

anomaly detection to sexual predator identification.

2.6. Deep Learning Literature Review

Deep learning has recently emerged as a hot trend in artificial intelligence and machine

learning. Most commonly used deep architectures can be categorized into two major types:

Discriminative and Generative models. In a probabilistic setting, assuming that x denotes the

observed input variable and y is the unobserved target variable, discriminative approaches

directly model P(y|x) and P(y) while generative models focus on P(x|y). Ng & Jordan (2002)

describe these two approaches in detail for classification problems. Figure 8 depicts the

taxonomy of deep learning architectures and also illustrates the location of Deep Neural

Networks as well as the methods used in NLP and textual analysis domain.

Generative models can be divided into three main sub categories: Deep Belief Networks

(DBNs), Energy-based models and Neural-Network-based models. DBNs are graphical

models composed of several stochastic hidden units. Hinton et al. (2006) proposed the first

efficient learning and inference algorithms for DBNs. Lecun et al. (2006) characterized

energy-based models by associating a scalar energy value based on an energy function E(y,x)-

to each combination of variables. Hence, the learning algorithm is defined as finding the

appropriate energy function and the inference is equivalent to finding the configuration of

variables that minimizes the energy.

Autoencoders are basically traditional neural networks with the same input layer as the output

layer with the goal of learning a representation of input data (usually called encoding) which

can be expressed in a lower dimension as that of the original input. Deep Autoencoders are

usually used as a pre-training phase in many of the deep learning models for feature

extraction.

26

Figure 8. Taxonomy of deep learning architectures

27

Discriminative models contain neural-network-based methods and deep conditional random

fields. These models encompass the notion of a traditional neural network, which is

characterized by defining affine transformations on a set of random variables and applying a

non-linearity afterwards (Bengio, 2009). This means that assuming the input as the first layer

 , the output of layer is defined by the following formula (Bengio, 2009):

 (10)

in which is a non-linear function, is the bias (offset) for layer k and is the weight

matrix between layers k and k-1. Very often, the non-linear function is sigmoid, tanh or

rectifier function. These functions are as follows:

 (11)

 (12)

 (13)

In this thesis, we focus on the architectures that are common in text mining and NLP. These

models are highlighted in Figure 8. These models are Recursive Neural Networks, Recurrent

Neural Networks, Long Short-Term Memory, and Convolutional Neural Networks. Here we

describe the gist of each of these algorithms and we will delve into more details of

Convolutional Neural Networks since it is the approach that is used in this work.

Recursive Neural Networks have unique characteristics that make them suitable for

structured data such as natural language processing tasks that often can be represented by

parse trees (Socher, et al., 2011). In this architecture, the computation units (i.e., neurons) are

usually arranged in a tree structure. The learning phase leverages a variant of the

backpropagation approach called “backpropagation through structure”. Socher et al. (2013)

have proposed a variant of this model for accomplishing sentiment analysis and improved the

state of the art by 5.4% in positive/negative sentiment classification. Their method is

interestingly capable of handling negations (Socher et al., 2013). Figure 9 shows the

visualized output of their method which is interestingly capable of handling negations

(Socher et al., 2013).

28

Figure 9. An example of fine-grained labeling and percolation of sentiments by using

Recursive Neural Network (Socher et al., 2013)

Recurrent Neural Networks are designed for processing variable-sized sequential input data

in which the observed input affects the probability of observing subsequent inputs. Unlike the

bag-of-words model that considers each word independently, Recurrent Neural Networks can

deal with this type of data efficiently (Mikolov, et al., 2010) . That is, the generated output at

time t depends on the output that has been generated by the network in time stamp t-1. In

practice, the output is only influenced by a limited number of previous outputs. This behavior

mimics the notion of temporal memory in these systems. This is an important property that

makes these models significantly more efficient in processing sentences as inputs.

The abstract architecture of this model has been illustrated in Figure 10.

29

Figure 10. Abstract architecture of a Recurrent Neural Network (Mikolov et al., 2010)

It is worth mentioning that, as is shown in the taxonomy of figure 9; Recurrent Neural

Networks can be used in both generative and discriminative setting. In discriminative RNNs,

the goal is sequence labeling, while in a generative setting, the goal is generating the next

likely sequence.

As a good example, sequential data analysis can be applied to opinion mining from textual

sentences. Irsoy and Cardie (2014) show that applying recurrent neural network outperforms

the state of the art method (a variant of Conditional Random Field). The interesting point in

their work is that the performance has been achieved without using a standard hand-curated

sentiment lexicon and syntactical analysis required in previous successful approaches (İrsoy

& Cardie, 2014). The learning algorithm for Recurrent Neural Network is known as

Backpropagation Through Time and is basically a variant of the traditional backpropagation

that also takes the partial derivatives into account in each of the previous time stamps.

Considering many previous time stamps require calculating the corresponding gradients in all

of them. This leads to a well-known challenge in training Deep Recurrent Neural Networks

called vanishing gradients. That is, if we want to consider relatively long time stamps (in

order to capture the dependency in the sequence) the common activation functions such as

sigmoid or tanh go to the saturated zone. Saturation happens when the partial derivative of

the activation function is almost zero. Long Short-Term Memories (Hochreiter &

Schmidhuber, 1997) is a special type of Recurrent Neural Networks to alleviate this problem.

Since the scope of this work does not contain Recurrent Neural Network, we do not delve

into more details about this particular successful type of deep models.

Another important notion in using deep learning in natural language is called word

representation or word embedding. It is different from the traditional bag-of-words document

representation in the sense that the feature vectors are not simply comprised of the frequency

30

of each word that exists in the document. Instead, each word has its own vector

representation and the final feature set of a document is obtained by the concatenation of

these vector representations (a.k.a. embeddings) to form a feature matrix. The first word

embedding was introduced by Rumelhart et al. (1986) and it was a technique that represented

features (words) based on backpropagation errors. Recently, many word embedding

techniques (sometimes called language models) have been proposed in the literature. Among

these methods, skip-gram method, proposed by Mikolov et al. (2013), turned out to be more

efficient compared to the others. The implementation of the method is called Word2Vec and

has been excessively used by researchers recently. A similar variant has been also provided

for obtaining the representation of sentences and paragraphs in (Le & Mikolov, 2014). Later,

Pennington et al. (2014) introduced Global Vectors (GloVe) that outperformed the

Word2Vec representation.

We dedicate the remaining part of this section to introduce Convolutional Neural Networks

(CNNs). We describe the usage of this model in detail in Chapter 4 when we see it in practice

applied to our domain of OPI.

2.6.1. Convolutional Neural Networks for Texts

Being inspired by visual systems, Convolutional Neural Networks (CNNs) have been

successfully used in various image processing tasks (LeCun, Kavukcuoglu, & Farabet, 2010).

CNNs have been recently applied to the text mining and natural language domains and

showed promising results that could push forward the performance of the state of the art on

several datasets. Zhang and Wallace (2015) has authored a holistic guide on designing CNNs

for sentence classification. They depict a general CNN for a binary sentence classification

task with only one convolution and one pooling layer as shown in Figure 11. Since this

architecture is common in many CNN applications for text classification, we describe it here

to help the reader gain a basic understanding. The input is the concatenation of word

representations (word embedding) of the words in the sentence in the form of a sentence

matrix. Then the whole input is divided into an arbitrary number of regions (see Figure 11).

Each region can have its own filters. One can think of filters as a linear transformation of the

features. Then each filter is applied on the input sentence matrix to form a variable-sized

vector. This is called convolution in the neural network literature because literally applying

the filter makes some of the connections in the network off, which leads to having a partially

connected network in the corresponding layer.

The inherent problem with the output of the convolution layer is that the output is variable-

sized. The standard solution to solve this is having a pooling layer right after the convolution

layer. This layer aggregates each output vector as a singular value by simply taking the

maximum or average among the elements of each feature vector. However, this is not the

only reason for having the pooling layer. Pooling also acts as a sub sampling procedure,

which enables the CNN to capture more abstract aspects and characteristics of the data. As a

result, each layer captures more abstract features compared to the previous layer.

Finally, the output layer is usually a fully-connected layer with a softmax activation function

or it can be another multi–layer network that operates on fix-sized feature vectors in order to

produce the final classification results (in this case positive/negative).

31

Figure 11. The general CNN’s architecture for sentence classification (Zhang & Wallace,

2015)

Using CNNs, Collobert et al. (2011) proposed a unified general-purpose language framework

that is capable of performing a variety of NLP tasks including part-of-speech tagging,

chunking, named entity recognition and semantic role labeling.

This common architecture utilizes a specific word embedding approach in which the first

layer encodes words by using their index in a general dictionary and then the network is

trained using backpropagation to obtain the feature vectors. Then the output of this layer is

fed to the convolution layer. The architecture has two modes of operation (called approaches

in the paper): window approach and sentence approach. In the former approach the number

of words that are being fed to the first layer are fixed to a specified number by the user, while

in the latter, the number of words are variable depending on the size of each sentence. Figure

12 shows the architecture in sentence approach mode (Collobert et al., 2011).

32

Figure 12. The sentence approach generic architecture proposed for sentence classification

(Collobert et al., 2011)

33

Another successful application of CNNs to the test classification has been introduced by Kim

(2014). He used the Word2Vec word embedding in order to obtain the feature vectors and

then applied the original architecture of the CNN in order to carry out seven NLP tasks

mainly related to sentence classification and sentiment analysis. Surprisingly, this model has

pushed the state of the art in four of the tasks just by having one convolution layer, one

pooling layer and a softmax classifier. Figure 13 shows this model (Kim, 2014).

Figure 13. CNN-based sentence classification model using Word2Vec embedding and max-

pooling (Kim, 2014)

As a practical example related to our application domain, Dwyer
2
 has applied the same

architecture for filtering malicious chat messages. The system’s goal is to filter the chat

messages identified as potentially obscene or inappropriate in real time. He obtains the pre-

trained word representation by applying Word2Vec and then run a CNN with the same

architecture as described in (Kim, 2014). In his work, the main goal was to classify each

individual message into eight categories ranging from ‘super safe’ into ‘obscene’. Since the

chat messages are relatively short, his model has only 50 units in the convolution layer. The

research shows that the model outperforms the traditional neural network with hand-curated

features. Figure 14 shows the performance of this approach.

2 https://www.mitacs.ca/en/projects/word-representation-learning-detecting-malicious-chat-messages

34

Figure 14. The performance of CNN compared to traditional classification approaches

measured by F1-score (Dwyer, 2015)

A more complex variant of CNNs called Dynamic CNNs has been introduced for sentence

classification by Kalchbrenner et al. (2014). The model enhances the pooling mechanism and

is able to form feature graphs for each sentence to capture the semantic relations.

Johnson and Zhang (2015a) proposed a novel supervised approach for using CNNs without

any pre-trained embeddings upfront. This is the method that we applied to this domain. They

have also introduced a semi-supervised setting (Johnson & Zhang, 2015b).

The specific characteristics of the data in OPI domain make it different from domains such as

sentiment analysis and topic classification which usually deal with general web or news

documents. As a result, inspired by Johnson’s approach (Johnson & Zhang, 2015a), we do

not aim to use general pre-trained word vectors that are common in these aforementioned

domains. Accordingly, we build the word embeddings internally in the CNN training process.

In this thesis, Johnson’s approach (Johnson & Zhang, 2015a) is used to create specific word

vectors directly from the input in the training process. We investigate empirically the

applicability of this approach on the PAN-2012 dataset in Chapter 4 and discuss the results.

2.6.2. Deep Learning Tools and Frameworks

It is worth knowing the characteristics of different existing deep learning tools so as to

choose them according to the corresponding application domain. Table 5 summarizes and

compares some of the characteristics of deep learning framework/tools as well as their pros

and cons. Since we aimed to specifically use convolutional neural networks on relatively

35

large documents, we chose ConText2.0 as an out of the box library to help us to investigate

the performance of different CNN architectures.

Table 5. Comparison of Deep Learning Frameworks

Framework Language Algorithm Coverage Developer Characteristics

Caffe
3
 C++/Cuda CNNs

Berkeley Vision

and Learning

Center

 Highly efficient for image processing

with ConvNets

 Specific to image and machine vision

Theano
4
/

PyLearn2
Python

 Restricted Boltzmann

Machines

 Stacked Denoising

Autoencoders

 CNNs

LISA lab at the

University of

Montreal

 General-purpose

 requires symbolic math expressions

Torch
5
 Lua Script

 Restricted Boltzmann

Machines

 Stacked Denoising

Autoencoders

 CNNs

Facebook and

Google

 Matlab-like script and Intuitive in

usage

 General-purpose

 Learning curve for Lua language

ConText
6
 C++/Cuda

 Supervised CNN

 Semi-supervised CNN

(Johnson &

Zhang, 2015a)

 High performance

 Specific to document classification

 Easy-to-use bash script support

 Runs on NVIDIA GPU

DL4J
7

Java

and Scala

 Restricted Boltzman

Machines

 CNNs

 Recursive Nets

 Recurrent Nets

 Deep-belief Nets

 Stacked Denoising

Autoencoders

 Deep Autoencoders

Sky Mind

Company

 Faster than python

 General-purpose

 Transparent parallelism

 Work with Hadoop and Spark

 Slower development speed compared

to scripting languages

CNTK
8
 C++/Cuda

 CNNs

 Recurrent Nets

 Long Short Term

Memory Networks

(LSTMs)

Microsoft

 Graphical User Interface

 Can run on multiple GPUs on multiple

machines

TensorFlow C++/python  Multi-purpose Google

 Multi-platform (CPU, GPU and

Mobile Device)

 General purpose

3 http://caffe.berkeleyvision.org/
4 http://deeplearning.net/software/theano/
5 http://torch.ch/
6 http://riejohnson.com/cnn_download.html
7 http://deeplearning4j.org/
8 https://github.com/Microsoft/CNTK

http://deeplearning4j.org/restrictedboltzmannmachine.html
http://deeplearning4j.org/restrictedboltzmannmachine.html
http://deeplearning4j.org/restrictedboltzmannmachine.html
http://deeplearning4j.org/restrictedboltzmannmachine.html

36

In this chapter, we described the common text classification algorithms background in

addition to the literature review of anomaly detection and deep learning methods. In Chapters

3 and 4, we will describe the details of applying anomaly detection and deep learning to this

problem domain respectively.

37

CHAPTER 3

3. ANOMALY DETECTION FOR OPI

As discussed in Chapter 1, machine learning techniques used in OPI usually require a large

volume of high-quality training instances of both predatory and non-predatory conversations.

However, collecting non-predatory conversations is not practical in real-world applications,

since this category contains a large variety of conversations with many topics including

politics, sports, science, technology and etc. Usually law enforcement agencies have a

considerable amount of predatory or suspicious conversations that have been gathered during

several years. While this can be leveraged in building a training set, they do not have the non-

predatory data samples at hand.

We utilized a new semi-supervised approach to mitigate this problem by leveraging an

anomaly detection technique called one-class SVM, which does not require non-predatory

samples for training. We compared the performance of this approach against other state of the

art methods that use both positive and negative instances.

We observed that, although anomaly detection approach utilizes only one class label for

training (which is a very desirable property in practice), its performance is comparable to that

of binary SVM classification. In addition, this approach outperforms the classic two-class

Naïve Bayes algorithm which we used as our baseline in terms of both classification accuracy

and precision.

We conducted the experiments on two datasets: 1) The large publicly available dataset in

PAN-2012 (Inches & Crestani, 2012) and 2) a small practical dataset collected from an

archive of real conversations gathered by the Sûreté du Québec, the police department

responsible for combating online predator identification in the province of Québec.

3.1. Hypotheses statement

Hypothesis 1 (revisited): Predatory/Non-predatory conversations can be represented as

anomalous conversations that do not conform with the underlying data distribution. The

problem can be casted to a one-class classification problem. The performance would be

comparable to that of binary classification which uses two class labels.

Hypothesis 1-2 (subsidiary): Anomaly detection algorithms are sensitive to noise and

outliers. Therefore, they need to incorporate a noise removal process.

3.2. Our Contribution Revisited

According to some of the researchers who participated in PAN-2012, there has been an

important weakness in the dataset of this competition: The non-predatory and non-sexual

samples were exclusively gathered from publicly available Internet Relay Chat (IRC) logs,

which mainly contain chats about computer and web technologies; therefore cannot represent

“general conversations” (Morris, 2013). The samples in general conversation category (which

are non-predatory) should however include a variety of topics such as sport, music, games,

computer, etc. In practice, it is not an easy task to assemble such a training dataset. As a

38

result, the current top-ranked algorithms at PAN-2012 may have learned how to distinguish

computer-related chats vs. sexual-related chats instead of identifying actual predatory chats in

online cyber space. Accordingly, one can expect that their performance would decrease in

real-world applications. In other words, we believe that although the top-ranked algorithms at

PAN-2012 had a significant F1-score on the test dataset (87% for the top team), since they

rely on general samples that are not able to represent the non-predatory data properly, their

performance is expected to decrease significantly in practical environments such as law

enforcement. Therefore, in this work we propose a novel way to handle this problem by

eliminating the need for having both class labels in the train dataset. Due to the absence of

one of the class labels in the training process, our method will be more practical at the

expense of having a lower, but still acceptable, F1-score. Furthermore, in order to guarantee

the efficiency of our approach we aim to beat the baseline (Naïve Bayes algorithm) in terms

of F1-score. Note that each chat conversation represents a document in our recognition

process; hence, in the following sections of this thesis we use the terms “document” and

“conversations” interchangeably.

3.3. Problem Definition

Let dataset D be defined as where is the set of n

conversations , so that is the corresponding m-

dimensional feature vector for the i
th

conversation containing m feature values

 . Also, let represent the set of two class labels corresponding to

predatory and non-predatory instances, respectively. In a probabilistic setting, it is assumed

that each conversation is roughly drawn from probability distribution P(). The anomaly

detection task is defined as finding a probability distribution such that is near one for

the majority of samples considered as normal and contrarily close to zero for the majority of

anomalous samples. One can choose as the threshold for recognizing a conversation as

a predatory one when <l. The notion of anomaly is a domain-specific concept that is

defined based on the properties of the problem domain. This means that an anomalous sample

in a specific domain might be considered as normal in another area of application.

Figure 15 shows the probabilistic view of anomaly detection in the OPI problem for only two

features.

39

Figure 15. Probabilistic view of anomaly detection in SPI setting (while predatory samples

are considered anomalous)

Anomaly detection, also known as novelty or outlier detection, is often referred to as finding

instances which do not conform to the underlying pattern of normal data (Chandola et al.,

2009). The following two research questions arise in regard to the application of semi-

supervised methods to sexual predator identification:

1) Why not use unsupervised anomaly detection?

This can be shown that supervised and semi-supervised anomaly detection methods

outperform unsupervised methods in terms of performance (Görnitz et al., 2013). We focused

on semi-supervised techniques due to their superior predictive power compared to that of

unsupervised methods. Although according to (Görnitz et al., 2013), the predictive power of

semi-supervised methods comes at the expense of a weak identification of actual novel

samples; in the domain of sexual predator identification, this weakness does not have a

drastic impact due to the lack of such novelties that we may deal with in another domain,

such as network intrusion detection.

2) Why not use supervised anomaly detection?

As already mentioned in Section 3.2, in our application domain, providing non-predatory

samples is not practical. So we utilize a semi-supervised anomaly detection method that is

capable of learning from only one class label in contrast to the binary (i.e., two-class)

classification methods.

Moreover, one of the circumstances that justifies using an anomaly detection approach is

when the data is naturally imbalanced. Because predatory samples are rare compared to non-

predatory ones, we usually deal with datasets containing several hundred predatory

conversations among several hundred thousands of non-predatory conversations.

40

It is worth mentioning that one can apply a reverse notion of anomaly in a manner that

considers predatory conversations as normal ones and non-predatory conversations as

anomalous.

3.4. One-class SVM

One-class SVM has been introduced by Scholkopf as a novelty detection technique and has

been widely used in the area of anomaly detection (Scholkopf et al., 2000). The algorithm is a

variation of ν-SVM (Schölkopf et al., 2000) which uses parameter to control the

fraction of support vectors as well as fraction of outliers (anomalies). It is worth mentioning

that in the standard SVM choosing the best regularization parameter is a real

challenge. ν-SVM tries to address this problem by introducing the parameter that indirectly

affects the regularization. The main idea of One-class SVM is to provide an algorithm that

returns a function f with output +1 in a small region capturing most of the data points, and -1

elsewhere. The constrained optimization problem is defined as indicated in Equation 14

(Schölkopf et al., 2001).

(14)

In Equation 14, n is the number of conversations in the dataset, parameterizes a hyperplane

in the feature space, w is the weight vector, is the slack variable which penalizes the

objective function and is the internal mapping function used in the kernel. Note that (.) in

this notation represents the inner product.

The optimization problem can be solved by using the following Lagrangian in which

 :

 (15)

Finally, the decision function will be obtained as follows:

 (16)

Besides the original method described above, there is another variant of semi-supervised

SVM-based technique for anomaly detection called cS
3
VM (Chapelle et al., 2006). This

method is based on the cluster assumption (i.e., there is a one-to-one mapping between

clusters and classes.) Since the optimization problem in this setting is non-convex, the

authors leverage a method to convert the non-convex optimization problem to a convex one

by using a method called smoothing in an iterative manner.

41

Based on the given taxonomy, there are also several unsupervised methods for anomaly

detection. One-class SVM can naturally be used in an unsupervised setting as well (Amer et

al., 2013). Moreover, there are two unsupervised variations of SVM which have been

recently introduced by Amer et al. (2013) called robust-svm and eta-svm. Since these

versions are completely unsupervised, they sacrifice the performance (i.e., accuracy,

precision, and recall) too much, so we chose to use the original method in this study. Using

one-class SVM has led to acceptable results in the area of anomaly detection, but it has not

been utilized in such a problem yet. In the following section, we describe the dataset as well

as the results of applying this method on the OPI problem.

3.5. Experiments

This section describes the process that we have conducted to address the OPI problem

including the dataset, preprocessing, feature extraction, and pattern classification. The

proposed process that we have conducted on the dataset is illustrated in Figure 16.

Figure 16. Proposed Modular Process for Predator Identification

3.5.1. Dataset

We used the training and testing dataset of PAN-2012
9
, which today is the largest publicly

available dataset according to our knowledge. This dataset is highly imbalanced. It contains

66,927 conversations in the training set and 155,128 conversations in the test set. There are

2,016 and 3,737 predatory conversations in training and testing set, respectively. These

predatory conversations are related to 142 (out of 97,695 unique users) and 254 (out of

218,716 unique users) predators respectively. The total number of exchanged messages in the

training corpus is 903,607. Table 6 summarizes the characteristics of the PAN dataset.

9 http://pan.webis.de/

42

Table 6. No. of conversations in the PAN Dataset

 Training set Testing set Total

Predatory 2,016 (≈3%) 3,737 (≈2%) 5,753

Non-Predatory 64,911 (≈97%) 151,391 (≈98%) 216,302

Total 66,927 (≈100%) 155,128 (≈100%) 222,055

The SQ dataset is a small dataset which has been gathered from real chat logs of the Sûreté

du Québec. Since this dataset has been obtained from a practical environment, unlike the

PAN dataset, it contains many positive instances while the number of negative instances is

low. All of the conversations are in French and we applied a French lexicon provided in

RapidMiner library
10

 for doing stop-word removal on this dataset. The following table

summarizes the statistics of the SQ dataset.

Table 7. Characteristics of the SQ Dataset

SQ Dataset

No. of conversations 82

No. of predatory conversations 76 (≈93%)

No. of non-predatory conversations 6 (≈7%)

In the PAN dataset, both the training set and test set are in XML format. The data schema has

been shown in the Figure 17.

10 https://rapidminer.com/

43

Figure 17. Data Schema of Conversations in PAN-2012’s Dataset

In the SQ dataset the logs are stored in individual Microsoft word files. We extracted the

corresponding text out of these files using the Apache Tika
11

 software in our prototype

software.

3.5.2. Experimental Settings

In our experimental setting we chose Naïve Bayes as a common binary text classifier as our

baseline. Also, we tried to simulate the results of the top team at PAN-2012 for identifying

predatory conversations based on Support Vector Machines. In addition, we performed two

main categories of experiments: 1) training the model with non-predatory samples, and 2)

training the model with predatory samples.

Table 8 shows the experiments we have conducted. We will refer to each experiment by its

shortened name and describe the corresponding results Section 3.5.5.

11 https://tika.apache.org/

44

Table 8. Different Experiments Conducted in this setting

Experiment No. Experiment Short

Name

Experiment Description

1 Train-NP-B Train one-class SVM on non-predatory

conversations and bigram features

2 Train-P-B Train one-class SVM on predatory

conversations and bigram features

3 Test-P-B Test one-class SVM on predatory conversations

and bigram features

4 Train-P-B-NR Train one-class SVM on predatory

conversations with bigram features after noise

removal

5 Test-P-B-NR Test one-class SVM on predatory conversations

with bigram features after noise removal

The training model have been evaluated via k-fold cross validation with k=10 and micro-

averaging the results for each fold.

In order to evaluate the performance of the algorithms four common performance criteria

have been used: accuracy, precision, recall and F-measure. Normally, the last measure is

calculated as the harmonic mean of precision and recall and called F1-score, unless one wants

to weigh either precision or recall more than the other one. The general formula for the F-

score is as follows (Chinchor, 1992):

 (17)

At the PAN-2012 international competition, both β=1 and β=0.5 were used as the main

performance measures. The latter was used to put more emphasis on precision and raised

controversies. Accordingly, in order to consider precision as important as recall, we use β=1

and calculated the widely-acceptable F1-score as our main performance measure. We used

RapidMiner
™

(Mierswa, Wurst, et al., 2006) as an open-source powerful tool for our

preprocessing and also LibSVM (Chang & Lin, 2011) for C-SVM and One-class SVM. The

designed pre-processing steps are available on Github at the following address as an XML

file that can be imported in Rapidminer:

https://github.com/mohammadrezaebrahimi/pre-process-PAN.git.

The process includes XML parsing, feature extraction, noise removal and feature selection

tasks which are described in the remaining of this section.

3.5.3. Preprocessing and Feature Extraction

We parse the XML data and extract the raw textual document for each conversation. As most

of the approaches in this domain, we leverage the bag-of-words model for feature extraction

in our experiments and generated both unigram and bigram representation of the data to

examine the performance of training on these two different features. Typically, there are three

45

options for data representation in text classification: 1) binary representation in which the

occurrence of the specified term is encoded as 1 or 0 otherwise, 2) Term Frequency (number

of occurrences), and 3) A normalized TFIDF weighting scheme such as the one that has been

used in RapidMiner’s
12

 text processing plug-in (see Appendix C for the source code). We

used the same waiting scheme using RapidMiner framework. This weighting scheme is

described as follows:

Let t and c denote the term and the conversation in which the term has appeared respectively.

Also let N be the total number of conversations and df(t) be the number of documents in

which the term t has occurred. Finally, tf(t,c) is the term frequency of term t in conversation

c. We used the normalized TFIDF weighting scheme in RapidMiner (see Appendix C for the

source code). The weighted word vector W= [w1, w2, …, wn] consists of elements wi;

 and n is the number of the documents. The inverse document frequency of term t

is indicated by IDF(t) and is calculated by Equations 18.

 (18)

Denoting the number of terms in the document by n(t), we obtain the non-normalized TFIDF-

weighted value of feature t for i
th
 document (Equation 19).

 (19)

Finally, the values are normalized by the L2-norm and the normalized word

vector, , is given by Equation 20.

 (20)

The unigram or bigram features were obtained by regular tokenization and stop-word removal

in RapidMiner™. The resultant unigram and bigram vector space models for training dataset

contain 45,450 and 280,378 features, respectively before doing feature selection. This is also

important to note that the number of features in a text classification problem depends on the

different factors, such as the number of documents, the average length of the documents, and

the language characteristics. Having too many features in the bag-of-words model can lead to

a problem known as curse of dimensionality in which the feature space is so sparse that the

classification model is not able to learn any useful pattern. As an example, in our work, we

observed this happened with trigram features and as a result, the performance dropped

significantly for the huge set of trigram features. As a practical example, Villatoro-Tello

(2012) used 117,015 features in one of their successful models.

As a side note, unigram and bigram features are the most common representation techniques

among bag-of-words approaches used in this domain. While Pendar (2007) has used trigram

features some other researchers such as (Popescu & Grozea, 2012) have used Kernel-based

12 https://rapidminer.com/

46

features at the character level, instead of the word level. However, their method’s

performance is not as successful as the bag-of-words method.

In addition, it is wise not to use stemming while we are dealing with informal conversational

documents, which usually have informal writing styles. Because performing noise removal

(at the term level) as well as stemming will distort the stylistic patterns the authors use in

their conversations. According to (Villatoro-Tello et al., 2012), the predator may try to

maintain the connection by writing “soryyyyyyyyy” in case the child feels bad about the

inappropriate intimacy. As a result, we did not use any stemming for dimensionality

reduction in our pre-processings.

Figure 18 depicts an illustrative example showing the preprocessing procedure for labeling

conversations as predatory or non-predatory
13

:

Figure 18. Labeling Conversations in Training Data

3.5.4. Feature Selection

In order to choose the most salient features we fed the primary features obtained from the

previous phase into a supervised feature selection based on Information Gain. That is the

amount of reduction in the entropy that might be obtained by leveraging feature t. The

information gain on a dataset D for a candidate feature t is calculated based on the Equation

21.

 (21)

13 Note that although we have labeled both predatory and non-predatory conversations in the training dataset, we

use only one of these two classes in model training unlike binary classifiers that leverage both of the class

labels.

47

In which H() represents information entropy. We conducted several feature selection

experiments to identify the best bigram and unigram feature set. However, it turned out that

the bigram feature set leads to a better result for this dataset. The feasibility of each feature

set was based on the performance of the classification on the training set using that feature

set. We calculated the information gain for each of the features in the dataset and then sorted

them in increasing order of their corresponding information gain. Then the top k-percent of

the ordered set was selected each time to make five feature sets. Table 9 shows the feature

sets in this experiment.

Table 9. Different feature sets and their corresponding top-k selected features on the PAN

dataset

No. Top K-Percentage Number of features

1 60% 168,227

2 70% 196,265

3 80% 224,302

4 90% 252,340

5 100% 280,378

Then we performed one-class SVM classification algorithm on each of the above five feature

sets and measured the performance by four criteria: Accuracy, Precision, Recall, and F1-

measure. Figure 19 shows the performance for the feature sets. As it can be seen, the feature

set containing 224,302 features has the best performance. We used this feature set for

building the classification model.

Figure 19. Changes of performance criteria versus number of features in PAN Dataset

48

3.5.5. Pattern Classification Results

We conducted two sets of experiments divided by the PAN and SQ datasets and evaluated the

results separately.

PAN Dataset

In this part, we describe the achieved results and compare them with the baseline and SVM as

highly standard binary classification method, which was used by the top team of PAN-2012.

The training has been done via 10-fold cross validation and then the resultant model has been

applied on the standard test set described in Section 4-1. First, we assess whether the one-

class SVM should be trained on non-predatory or predatory conversations. In the first case,

we trained the model on negative samples by filtering out the predatory samples. In this case,

one-class SVM learns the distribution of non-predatory conversations. Tables 10 and 11 show

the results for training the model on non-predatory and predatory conversations respectively.

For a discussion on parameter optimization, please refer to the Section 3.5.6.

Table 10. Results of training on Non-predatory samples (Experiment Train-NP-B)

Learning Algorithm
Precision

(%)

Recall

(%)

F1-measure

(%)

Naïve Bayes

16.63 100 28.52

SVM

(regularization parameter C =10)
99.24 84.82 91.46

One-Class SVM

(lower bound parameter nu =0.13)
4.35 32.09 7.66

Table 11. Results of training on predatory samples (Experiment Train-P-B)

Learning Algorithm
Precision

(%)

Recall

(%)

F1-measure

(%)

Naïve Bayes

16.63 100 28.52

SVM

(regularization parameter C =10)
99.24 84.82 91.46

One-Class SVM

(lower bound parameter nu =0.2)
65.14 70.73 67.82

From comparing Tables 10 and 11, it can be inferred that training the model on predatory

conversations yields better results. But when we apply the model on the test set, the results

are not so promising (Table 12). Particularly the precision rate is low.

49

Table 12. Results of testing on predatory samples (Experiment Test-P-B)

Learning Algorithm
Precision

(%)

Recall

(%)

F1-measure

(%)

Naïve Bayes

10.75 91.83 19.26

SVM

(regularization parameter C =10)
75.46 50.43 60.45

One-Class SVM

(lower bound parameter nu =0.2)
5.83 79.03 11.25

We believe that this behavior is due to the fact that the anomaly detection algorithms are

more sensitive to noise than binary classification algorithms. As a result, we conducted a new

series of experiments after doing a naïve noise removal procedure to examine the effect of

noise removal on performance improvement. For our noise removal procedure, we simply

omitted the conversation with just one participant. Tables 13 and 14 show the results after

performing noise removal on the train and test data respectively. As we expected, even

though the performance of all of the algorithms has increased after removing useless data, the

noise removal procedure affects the performance of one-class SVM more significantly

compared to that of other methods. Accordingly, the F1-measure rises from 11% to 75%. This

confirms our hypothesis about the sensitivity of one-class SVM to the noise.

Table 13. Results of training on predatory samples after noise removal (Experiment Train-P-

B-NR)

Learning Algorithm
Precision

(%)

Recall

(%)

F1-measure

(%)

Naïve Bayes

13.13 100 23.21

SVM

(regularization parameter C =10)
99.92 95.68 97.75

One-Class SVM

(lower bound parameter nu =0.2)
80.23 75.51 77.80

50

Table 14. Results of testing on predatory samples after noise removal (Experiment Test-P-B-

NR)

Learning Algorithm
Precision

(%)

Recall

(%)

F1-measure

(%)

Naïve Bayes

10.72 91.92 19.20

SVM

(regularization parameter C =10)
78.13 50.06 61.02

One-Class SVM

(lower bound parameter nu =0.2)
70.73 44.47 54.61

As it can be observed, one-class SVM outperforms the baseline and its performance is

comparable to binary SVM. This behavior can indicate that Naïve Bayes is not suitable for

handling this imbalanced dataset while SVM and One-class SVM are able to handle this

characteristic of the dataset in a more decent way. Figure 20 summarizes the above results on

the PAN dataset at a glance.

Figure 20. Comparison of the anomaly detection approach with Naïve Bayes and SVM

To summarize, we observed that when we added a noise removal module into the process,

One-Class SVM out-performs the baseline (Naïve Bayes) and its performance is comparable

with two-class SVM in this application domain.

We can also draw the following two subsidiary conclusions: Firstly, Naïve Bayes is superior

with a high percentage of recall (100% on train set and 91% on test set), which implies that in

terms of lower leakage rate (i.e., false negative), the baseline defeats other approaches.

Secondly, SVM outperforms other methods with the highest percentage of precision

(78.13%). In other words SVM has the lowest false alarm rate (i.e., false positive) among the

applied methods.

51

SQ Dataset

We faced some limitations in having access to the French conversations due to the concern of

preserving people’s privacy. As a result, we could only access a small number of samples.

We admit that since SQ dataset is too small, the results of experiments on this dataset cannot

be valid for drawing any meaningful conclusion. However, these results can be used as a

proof of concept or a simple test scenario for checking the validity of our hypothesis (see

Chapter 1).

We trained and evaluated the system through 2-fold cross validation. It is important to note

that in this set of experiments, unlike the previous setting, we considered the predatory

instances as anomalies and the non-predatory instances as normal.

Table 15. Results of training and evaluating through 2-fold cross validation on SQ dataset

Learning Algorithm
Precision

(%)

Recall

(%)

F1-measure

(%)

Naïve Bayes

92.59 98.68 95.54

SVM

(regularization parameter C =1)
92.68 100 96.20

One-Class SVM

(lower bound parameter nu =0.1)
95.00 100 97.44

As we can see, the semi-supervised approach performs better than the other algorithms on SQ

dataset. This can be attributed to the fact that in small datasets one-class SVM is able to

capture the minimum enclosing hyperplane around the smaller set of either positive or

negative instances.

3.5.6. Parameter Optimization Remarks

As we discussed earlier, one-class SVM needs the parameter to be tuned. Although

the parameter is bounded, it turns out that this parameter optimization is a challenging task

for which there is no exact formal solution. In order to estimate a good value for this

parameter, we used the exhaustive grid search which simply tries the entire set of

combinations of parameters in a classification problem and chooses the best parameter setting

based on the performance criterion (i.e., F1-score). In this case, we considered as the main

parameters for tuning. Using a linear discretization, we chose 15 discrete points out of the

interval of parameter in a linear manner into 15 points: [0.66, 0.13,0.2, 0.26, …, 1]. Based

on the performance evaluation, in experiment setting Train-NP-B and in

experiment setting Train-P-B-NR revealed the best performance results. We used the same

approach for estimating the value of regularization parameter in SVM binary classification.

Although this approach does not necessarily lead us to the global optimum, it is a typical

parameter setting approach that is quite common in practical pattern recognition tasks.

52

3.6. Concluding Remarks

We carried out a novel successful application of anomaly detection for online predator

identification, which is of more use in practice compared with the current binary

classification approaches that require non-predatory samples to be learned. Although as a

semi-supervised technique we only used the predatory samples to train our model, as the

results show, not only our approach outperformed the baseline learning algorithm (Naïve

Bayes), also it is even comparable to the common binary classification algorithms on PAN

dataset and outperforms the binary classification on a small dataset such as SQ.

In order to increase the performance of our model, we plan to combine the Naïve Bayes

algorithm with the current model through designing an ensemble of heterogeneous classifiers.

This way, we aim to also obtain the benefit of high recall rate of Naïve Bayes algorithm.

Also, we plan to apply other mentioned semi-supervised anomaly detection approaches on

the dataset in order to compare the performance of the method with them.

53

CHAPTER 4

4. DEEP LEARNING FOR OPI

Recently, deep learning has revived as a hot trend among researchers in the field of artificial

intelligence and machine learning. It includes a new paradigm of learning which can mimic

the behavior of human brain or visual system in an efficient way (Bengio, 2009;

Schmidhuber, 2015). This new paradigm is called deep learning because there is a hierarchy

of numerous layers in the main model and each layer encodes a level of abstraction in the

training data. Using these models has been proven to be more efficient than the simple data

mining and machine learning models. Accordingly, we apply a special architecture of

Convolutional Neural Networks (a type of deep learning methods) on this application

domain.

We propose an architecture based on Convolutional Neural Networks (CNNs) and apply it on

PAN-2012 dataset. Based on the conducted experiments, this method provides better

performance (almost 1.7% in F1-measure) than the current traditional machine learning

algorithms that have been applied to this domain. Furthermore, since the learning algorithm

runs on general-purpose graphic cards, this approach is quite scalable. As a result, the time

required for training and testing the model is comparable to that of other machine learning

approaches. This chapter can be useful as a practitioners’ guide in the area of applying CNN

on OPI domain.

4.1. Hypothesis Statement

By using the appropriate deep architecture, the classifier would outperform the current

algorithms based on the F1-measure performance criterion. In other words, applying the

proper Convolutional Neural Network (CNN) will achieve a higher performance than the

standard SVM and classic Neural Network approaches.

4.2. Our Contribution Revisited

We propose a CNN architecture in order to improve the performance of the classification

based on a widely accepted indicator for supervised learning algorithms, F1-measure. Our

CNN architecture convincingly outperforms Support Vector Machines and also beats the

traditional neural networks). Our work is different from Dwyer’s work (Dwyer, 2015) in two

aspects: 1) the goal of our model is not just to identify whether a chat message is obscene or

safe. Instead, we consider the whole conversation as a sample. 2) We do not use any pre-

trained language model such as Word2Vec. Inspired by Johnson’s approach (Johnson &

Zhang, 2015a), we do not aim to use general pre-trained word vectors that are common in

domains such as sentiment analysis and text categorization. In other words, because

Word2Vec model has been trained on general web documents by Google, the model may be

too general to be used in a specific domain such as OPI. Accordingly, we build the word

embeddings internally in the CNN training process. To our best knowledge, this is the first

time that this approach is used in OPI at the level of chat conversations.

54

4.3. Problem Definition

Let be the dataset that contains the conversations, where is

the set of conversations so that is an m-dimension feature vector for i
th

conversation. Also, let be the set of class labels in binary classification problem

in which non-predatory and predatory conversations are denoted by np and p respectively.

The goal is to assign the right label from Y to each conversation.

4.4. Solution: Applying CNNs

Convolutional Neural Networks can be used as a binary classifier in order to accomplish the

above-mentioned task. In general, the input vector x is segmented into m region vectors r0(x),

r1(x),…,rm(x). There is at least one convolution layer followed by a pooling layer in a CNN.

The computation units in the convolution layer are not fully connected to the input elements

(unlike in original Neural Networks). This happens because the convolution layer operates on

different regions of the input. The pooling layer is a sub-sampling layer that provides a

higher-level abstraction of feature in each convolution layer. The most common pooling

methods are max-pooling and average pooling. According to (Zhang & Wallace, 2015) max-

pooling usually outperforms average-pooling for text classification.

The learning algorithm uses backpropagation in order to calculate the gradients and tries to

minimize the loss function, which is usually square, logistic, or cross entropy loss. The square

loss is one of the most commonly used losses and is defined as:

 (22)

in which x is the input vector, y denotes the actual class label assigned to the input vector, and

f(x)is the classifier output, and C is a constant normally set to 0.5 or 1. Holding the same

notation, the logistic loss is defined as:

 (23)

Finally, the Cross entropy loss is defined as:

 (24)

We discuss a suitable architecture of CNN which can be used in the OPI domain successfully.

4.4.1. Proposed CNN Architecture

In choosing the appropriate architecture for identifying the predatory conversations, the

designer deals with three major decisions that we address here:

Recurrent Neural Networks vs. CNNs

As already mentioned in Section 2, Recurrent Neural Networks can be trained efficiently on a

short window of words or on short sentences. However, when the input sequence consists of

multiple sentences or even multiple paragraphs (as in OPI domain), the training of Recurrent

55

Neural Networks becomes intractable. Both RNNs and CNNs can be utilized for the

identification of online predators depending on the ultimate goal of the analysis. However, in

our use case (identification of predatory conversations), we deal with relatively long

documents as our input sequence (tens of sentences in average). As a result, Recurrent Neural

Networks cannot be used due to aforementioned problem, while CNNs do not suffer from

this issue.

Pre-trained word embeddings vs. internal word embeddings

Word embeddings such as Word2Vec are pre-trained language models trained on general

web documents. That can explain why using Word2Vec leads to good results in general

domains, such as sentiment analysis and topic classification. However, they may not be

efficient enough in domain specific usages such as OPI. That can be the reason for building

the embedding internally in CNN training process and decided to not use the pre-trained word

vectors. As a result, we feed the feature vectors directly to the convolution layer to learn them

internally. This approach has been proposed in (Johnson & Zhang, 2015a). However, it is

worth mentioning that recently, a novel embedding approach has been proposed in (Le &

Mikolov, 2014) called Paragraph2Vec which results in high-quality embedding for larger

chunks of text such as paragraph or even a document.

Bag-of-words feature encoding vs. one-hot feature encoding

If the designer decides not to use word embeddings, as in our case, s/he should consider

another way of feature representation to feed the input text into the convolution layer.

Basically, there are two main approaches:

1) Bag-of-words variants: Assuming that the number of features (words) in the corpus is

denoted by n, a simple way is the binary representation of each region in which the presence

or absence of a feature is represented by 1 and 0 respectively. As an example, let D be a short

document containing the sequence “r u there?”. Then we can define 3 overlapping regions of

size 2 in a way that R1= [10…0100]
T
 represents ‘r u’, R2= [00…0110]

T
 represents ‘u there’,

and finally R3= [0…0011]
T
 represents ‘there ?’. As observed, in each region vector there are

two 1s and all the remaining n-2 features are 0. Of course, one can also use the normalized

frequency of words instead of only 0 and 1. One of the main drawbacks of this approach is

the fact that it does not count the order of words at all.

2) Sequential concatenation of one-hot vectors: This encoding method was introduced by

Johnson and Zhang (2015a) and (2015b) in order to take the words order into account: In this

approach, the region sequences are concatenated to form the feature vector representing a

document. Considering the document D again, the three overlapping regions ‘r u’,

‘u there’ and ‘there ?’ would be represented by R1=[10…0|010…0]
T
,

R2=[010…0|0…10]

T
,

and R3=[0…10|0…01]
T
 respectively. As can be seen, each vector has two parts separated by

a pipe (for the sake of visualization). Each part corresponds to one token in the region and

contains only a single 1 for that token in the whole vocabulary. For example, the first part of

R1 represents token ‘r’. The drawback of this approach is that it makes the feature space

extremely sparse, but according to (Johnson & Zhang, 2015a) if the implementation

leverages the sparse matrix vector calculations as in (Johnson, 2016), it can lead to better

classification results in some cases.

However, after trying both approaches, we observed that in our case the best results were

obtained by utilizing the bag-of-words approach (c.f. Section 4.5.4).

56

Figure 21. The proposed CNN Architecture used for OPI

After deciding about the topology of the CNN we can proceed to setting the hyper

parameters. We describe the hyper parameters’ settings and the resultant outcome in Section

4.5.

4.5. Experiments

This section covers the conducted experiments as well as their corresponding settings and the

characteristics of the dataset.

4.5.1. Environmental Settings

Due to the parallel nature of the neural-network-based learning models, they are mostly

efficient when the parallelism is implemented at the hardware level by using graphical

processing units. Hence, we run the processes on Calcul Québec, a high-performance

computing cluster in Canada (Calcul Québec, 2016) which has several NVIDIA Tesla K80

57

GPUs. We ran all the processes on one K80 GPU with 24 GB of memory and 2496 processor

cores. In fact, the architectures discussed in the next section cannot be run on a CPU.

4.5.2. Dataset

We conducted the experiments on the PAN-2012 dataset (Inches & Crestani, 2012), which

was described in chapter 3. The predatory instances in this dataset have been gathered by a

non-profit organization called Perverted Justice (http://www.perverted-justice.com). These

conversations occurred between experts who posed as juveniles and convicted prolific online

predators. The dataset has been used extensively in the literature (Kontostathiset al. 2010;

Mcghee et al., 2011; Pendar, 2007). The extended dataset has been used in PAN-2012

international competition as a reference dataset for the task of recognizing the predatoriness

of either messages or users. See Table 6 for the characteristics of this dataset.

The dataset is formatted in two XML files, one for a training set and another one for a testing

set. Since we are doing the analysis at the conversation level, the XML files need to be parsed

in order to extract the conversations. Each conversation contains the messages of each

participant as shown in Figure 22.

58

<conversation id="8ff4c51529c81dabb0978206cb6bf06a">

 …

<message line="4">

<author>f4113d73c0b80c35c5e085e01f736ab4</author>
<time>12:34</time>

<text>u didn't talk 2 me yesterday</text>

</message>

<message line="5">
<author>47243a4a2c68f2f00899670d455a21fa</author>

<time>12:34</time>

<text>I wasn't on</text>
</message>

<message line="6">

<author>47243a4a2c68f2f00899670d455a21fa</author>
<time>12:34</time>

<text>Sorwy</text>

</message>

<message line="7">
<author>47243a4a2c68f2f00899670d455a21fa</author>

<time>12:35</time>

<text>I got urmsgthoe..</text>
</message>

<message line="8">

<author>f4113d73c0b80c35c5e085e01f736ab4</author>
<time>12:36</time>

<text>what r u doing?</text>

</message>

<message line="9">
<author>47243a4a2c68f2f00899670d455a21fa</author>

<time>12:37</time>

<text>Workn..</text>
</message>

…

</conversation>

Figure 22. A sample snippet of a conversation

The dataset has been originally labeled with predators or non-predators. Hence, in order to

identify the predatory conversations, we had to re-label the data in a way that if at least one

predator participates in a conversation, the conversation will be labeled as predatory. Since

almost all of the predatory conversations have taken place between only two participants this

is a reasonable way of labeling the data.

We used the open source code sparse implementation of CNN provided by Rie Johnson

available at “riejohnson.com/cnn_download.html” for our experiments.

4.5.3. Experiments’ Settings

Setting the optimal hyper parameters of a CNN is a challenging task that requires more

research. Most researchers find sub-optimal choices of these parameters by trying different

combinations in their corresponding domain. We classify these parameters separately and

describe our choice for each as follows:

59

 Regularization parameter and dropout rate: These two important parameters are

mainly used to prevent overfitting. L2 regularization (Ng, 2004) is the most common

type of regularization used in neural networks. It is worth mentioning that the

regularizations in a CNN are usually done at the top layer. Another important

mechanism to prevent overfitting is the dropout that randomly deactivates a certain

number of output units in the top-layer in the training process. We set the dropout rate

and the coefficient of L2 regularization to be 0.5 and 10
-4

, respectively that are the

default settings in ConText2.0 and we found it efficient.

 Loss function: We used the square loss function since it outperformed other loss

functions, including logistic loss.

 Activation function: The Rectifier function was used as the activation function of

convolution layer since it led to better results compared to tanh or sigmoid function.

As a side note, we did not do any preprocessing other than converting the upper case letters

into lower case. The reason is the informal and colloquial nature of the chat conversations. In

fact, performing the simplest preprocessing step such as stop-word removal may damage the

meaning of the message. To make it more concrete, this can be seen in the message “i

thought u wanted 2 come c me”. While a blind noise removal procedure may omit tokens

such as c in this sentence, we know that it bears important meaning.

We conducted two series of experiments on each of the above-mentioned datasets and we

describe them in the following sub-sections:

4.5.4. Investigating the effect of convolution

In order to investigate the effect of convolution in this domain, we conducted a set of

experiments in which we compare the performance of a traditional neural network with one

hidden layer, to that of a CNN with one convolution layer. In order to study the effect of the

convolution per se, we used a fixed number of computation units (2000) with rectifier

activation functions in the hidden layer and convolution layer of NN and CNN respectively.

We compare the performance of the convolution in a CNN with depth 1 (i.e., one convolution

layer) with that of the traditional neural network (NN) and baseline (SVM with linear kernel).

60

Table 16. PAN-2012 dataset: Performance comparison for depth-1 CNN with baselines

(Support Vector Machines (SVM) and traditional neural network (NN))

Learning

Scheme

Exp.

No.
Settings

Precision

(%)

Recall

(%)

F1-score

(%)

SVM 1 linear kernel 78.13 50.06 61.02

NN

2
depth: 1, nodes: 2000, encoding: binary-

encoded unigram, vocab. size=5000
91.49 69.97 79.30

3
depth: 1, nodes: 2000, encoding: frequency of

unigram, vocab. size=5000
91.58 70.40 79.61

4
depth: 1, nodes:2000, encoding: frequency of

bigram, vocab. size=7000
90.34 71.72 79.96

CNN

5

depth: 1, nodes:2000, region size:(1,2 and 3),

encoding: concatenation of one-hot vectors,

vocab. size=5000, pooling type: max

91.44 71.56 80.29

6

depth: 1, nodes:2000, region size:15, encoding:

binary-encoded unigram, vocab. size=5000,

pooling type: max

91.57 73.65 81.64

‘Vocab. size’ is the maximum size of the vocabulary extracted from the corpus, ‘binary-

encoded uni/bigram’ and ‘frequency of uni/bigram’ were explained as bag-of-words feature

encoding in section 3-2-1. Similarly, concatenation of one-hot vectors refers to one-hot

feature encoding described in Section 3-2-1.

As can be seen in the Table 16, unlike Johnson and Zhang’s work (2015a), the methods with

bag-of-words features outperform the sequential concatenation of region vectors. Also the

frequency representation of words (tokens) wins over the binary vector representation in our

case. Figure 23 shows the changes of training and testing errors for the outperforming

approach (experiments No. 6).

61

Figure 23. Train and Test errors for 36 iterations of CNN with one convolution layer and

real-valued bag-of-words features (experiment No.6). As seen in the figure, after iteration 18,

the test error begins to fluctuate and does not continue to reduce.

4.5.5. Adding Extra Convolution Layers

To investigate the effect of adding extra convolution layers to a CNN architecture and

comparing the same effect on a traditional NN, we conducted comparative experiments in

which the performance of two CNN architectures, one with a single convolution layer and the

other one with two convolution layer, is compared with the performance of two original NNs

with one and two hidden layers each. The results are shown in the next paragraphs.

Next, we investigate the effect of depth of the architecture. Figure 24 compares the precision

recall curves for traditional NN and CNN with one and 2 hidden/convolution layers.

62

Figure 24. Precision-Recall curves for showing the effect of extra convolution/hidden layers

on CNN and NN. The performance of the CNN with two convolution layers has decreased,

while that of the NN has increased.

As seen in Figure24, the performance of the CNN with two convolution layers is lower than

that of a CNN with a single convolution layer. On the contrary, the performance of the

traditional NN increases with adding an extra hidden layer.

This raises the question that whether having a deep CNN would perform better than a CNN

with only one single convolution layer in text classification. In our opinion, although our

experiments favor upon having only one convolution layer, this might happen due to the

efficiency of backpropagation method when used in a CNN with more than one convolution

layer.

4.6. Discussion and Concluding Remarks

We showed that using one layer of convolution has a positive effect on classification

accuracy. Even though one might benefit from having several convolution layers (i.e., a

deeper structure) in image processing usages, according to our experiments, in natural

language processing use cases, it might not be the case as the number of layers in the

hierarchy increases the training algorithm (more specifically the backpropagation algorithm

used in CNN) becomes inefficient. As a result, in spite of the fact that we tested countless

combinations of architectures with two or more convolution layers and even ran more

63

iterations of the algorithm, the best performance was obtained by having only one single

convolution layer in the architecture. Another important point to consider is the fact that the

massive parallelism of the GPU allowed us to utilize relatively large number of neurons

(several thousands) in both NN and CNN experiments. Whereas the traditional neural

classifiers that run on the CPU can technically utilize a much lower number of neurons and

have poorer performance (close to that of SVM) than what we obtained for NN experiments

in this research. Therefore, one of the benefits of this research is the application of GPU to

this domain of application.

We think it is also worth mentioning some of the best practices that we learned throughout

our experiments. Although they are not claimed as being always true, they might be of help

for the other researchers in this specific field.

- Unlike traditional approaches, we did not perform any preprocessing procedure

other than changing the uppercase letters to lower case. We experienced that

doing procedures such as stop-word removal, and removing certain numbers or

symbols (e.g., “?” and “!”), decreases the classification performance.

- Rectifier activation function outperformed other activation functions including

(tanh and sigmoid)

- Having only one convolution layer led to better results compared to deeper

structures with more than one convolution layer (Figure 24).

- Using normalized frequencies instead of One-hot vector led to better results.

- Another interesting observation was that decreasing the step size after a certain

number of iterations is usually helpful.

64

CHAPTER 5

5. RESOLUTE SOFTWARE ARCHITECTURE

This chapter briefly covers the software engineering aspects of the designed and implemented

software prototype for being used by Sûreté du Québec as part of the Resolute project. In

fact, this software tool served as a proof of concept for Chapter 3. The Resolute prototype is

an standalone application written in Java. It uses Java swing for the user interface.

5.1. User-level Goals

The prototype has been mainly designed and implemented as a proof of concept with the goal

of saving the investigator’s time and reducing the burden of automatic identification of

predators in chat logs. The ultimate goal of the software is finding the most likely predatory

conversations in order to reduce the size of the search space in which an investigator needs to

search. For sure, the final decision should be made but the human investigator and the

decision produced by the tool is not meant to be a basis for judgment.

5.2. Software Design

5.2.1. Data Flow

First, we will describe the data flow of the Resolute tool to obtain a primary insight about the

sequence of operations done in the prototype. The process starts by scanning a document

repository (in this case a folder on local disk) and traversing each .docx or .txt file and extract

the texts. Then normalization is done (converting upper case to lower case and removing

noises at the character level), then noisy documents are removed and the resultant subset

would be tokenized. Then the bigram language model is built which is a special type of

vector space model and the classification or sentiment analysis can be done afterwards.

65

Figure 25. The data flow of the implemented prototype

5.2.2. General Architecture

Figure 25 shows the general architecture of the software. As a prototype (and also a proof of

concept), the predator identification part was implemented using Rapidminer classification

libraries. The implemented prototype works on the offline data stored on the local storage,

but as seen in the diagram it is extendable to import data from social media as well.

66

Figure 26. Abstract architectural design of Resolute

67

5.2.3. Design Class Diagram

Figure 27 depicts the design class diagram for the software.

Figure 27. Design Class Diagram (DCD) of the Resolute prototype

68

5.3. User Interface

Figures 28 and 29 illustrate the snapshots of the user interface of the Resolute Prototype

powered by Java Swing. The first snapshot shows the home page of the tool in which the user

can train the classifier in two modes: 1) Regular (i.e., binary classification) and 2) Anomaly

detection mode. The regular mode uses the classic SVM. The anomaly detection mode

applies One-class SVM. All of the preprocessing steps mentioned in the above data flow

diagram are automatically done when the user clicks on “start training button”.

Figure 28. The prototype’s graphical user interface for model training

Figure 29 depicts the user interface in which the user is able to see the results of classification

for some unresolved chat documents.

69

Figure 29. The prototype’s graphic user interface for applying the model on unsolved

samples

5.4. List of Features

The feature list of the prototype is provided as well as their corresponding requirement and

use case scenarios:

- Feature 1: Predicting predatory and non-predatory conversations

- User level Requirement: System shall provide the user with a prediction about an

input conversation

- Use case scenario 1-1: User chooses to train the system. Then S/he Identifies the

paths to positive samples as well as negative samples and chooses one of the

training algorithms (binary classification or anomaly detection). Afterwards, s/he

triggers the training process. System notifies the user when the training process is

finished.

- Use case scenario 1-2: User specifies the path to the folder that contains the

unknown conversations and triggers the prediction process. System notifies the

result of prediction for each given sample.

- Feature 2: Providing the confidence value for predictions

- User level Requirement: System shall provide the user with a real-valued

confidence level assigned to each given unknown sample

70

Use case scenario 2: Once the system finishes the prediction process, it shall

notify the user with corresponding confidence value. This value shall be provided

as a number between 0 and 1 which translates as the probability of being

predatory.

- Feature 3: Anonymizing the input text

- User level Requirement: System shall remove the specific user identifiers from

the input conversations with predetermined formats

- Use case scenario 3: User specifies the path to the folder that needs to be

anonymized. The folder should be in one of the predetermined formats that

discussed with Sûreté du Québec and known as Facebook and Skype format.

Then user triggers the anonymizing process. System notifies the user when the

anonymization is finished.

71

CHAPTER 6

6. CONCLUSION

Rapidly growing prevalence of online communications in juveniles’ daily lives makes it vital

to leverage data mining techniques for automatic identification of online predators.

Automated investigation of chat logs is one of the most proactive and effective approaches

that can be used to avoid the consequences of this sort of crime. The most popular

preprocessing techniques including noise removal, feature selection, and dimensionality

reduction were introduced. Also, different aspects of suitable feature extraction procedure for

this problem domain were discussed and finally the most common data mining classification

algorithms which are frequently used in OPI were introduced.

The semi-supervised anomaly detection method used in Chapter 3 led to obtaining acceptable

performance in the absence of one of the class labels in training process both for PAN and

SQ datasets. Finally, the Convolutional Neural Network that was used in supervised setting,

pushed the performance by almost 1.7% compared to the best commonly-used classification

algorithm in this domain. Finally, Chapter 3 was implemented as a java tool that can identify

predatory conversations using both anomaly detection and simple SVM binary classification.

6.1. Summary of Research Activities

Table 17 shows the major activities carried on during this thesis in chronological order of

execution.

72

Table 17. The major research activities in chronological order

No. Activity Description

1. Identifying the prominent researchers and private companies across Canada and

US who had hands-on experience in the area of online predator identification and

mining chat-logs.

2. Authoring and publishing a book chapter titled “Automated Identification of Child

Abuse in Chat Rooms by Using Data Mining” in book “Data Mining Trends and

Applications in Criminal Science and Investigations”

3. Applying anomaly detection via implementing a semi-supervised approach based

on One-class SVM and applying it on a publicly available dataset (chapter 3).

4. Implementing a software prototype in Java called Resolute as a demo to Sûreté du

Quebec.

5. Authoring and publishing a conference paper titled “Recognizing Predatory Chat

Documents using Semi-supervised Anomaly Detection” in 23
rd

 Document

Recognition and Retrieval conference in San Francisco, US.

6. Applying Deep Learning architectures to this problem domain via Convolutional

Neural Networks

7. Authoring the paper titled “Using Deep Learning for Online Predator

Identification: A practical approach” to be submitted to Elsevier’s Journal of

Digital Investigations

8. Writing up and revising the thesis document

6.2. Research questions and objectives revisited

As described in Chapters 3, 4 and 5, the following objectives were accomplished:

- In Chapter 3, a semi-supervised anomaly detection approach, which can be trained

by only one class label, was applied to the application domain and it was shown

that the model’s performance is comparable with that of binary classification that

use both positive and negative samples for training. This result supports the

hypothesis 1 stated in chapter 1.

- In Chapter 4, a deep learning approach, which can deal with relatively large

documents, were applied to the application domain. Leveraging the proposed

architecture of Convolutional Neural Network, it revealed almost 1.7%

improvement in classification performance that supports the hypothesis 2

mentioned in Chapter 1.

- In Chapter 5, the model described in Chapter 3 as well as the SVM binary

classification method was implemented as an independent utility software

prototype.

http://www.igi-global.com/submission/books/?title=data%20mining%20trends%20and%20applications%20in%20criminal%20science%20and%20investigations
http://www.igi-global.com/submission/books/?title=data%20mining%20trends%20and%20applications%20in%20criminal%20science%20and%20investigations

73

6.3. Future Research Directions

In spite of the achievements mentioned in this chapter, there are still important challenges

that researchers need to tackle in the field of OPI. We predict that the future of this research

line in the next decade will spin around Social Network Analysis featured by deeper

linguistic analysis to understand the semantics of messages. Accordingly, we describe the

potential future research lines based on our anticipation of the problem domain. In the

following, we demonstrate the necessity for deeper linguistic analysis. The related challenges

are discussed and then the field of Web-based Dynamic Social Networks and Recurrent

Neural Networks are introduced.

6.3.1. Performing Deeper Linguistic Analysis on Chat logs

Mining chat logs is strongly correlated to challenging problems in the domain of NLP

including Word Sense Disambiguation (identifying the sense for a polysemic part of speech),

Discourse Analysis (Discovering the conversation concepts and psychological characteristics

of the writer), and also Named Entity Recognition (Extraction of role-playing entities such as

locations, people and organizations).

On top of these linguistic challenges, there is another important issue related to the nature of

chat logs: Conversational (i.e., non-official) writing style of participants. Consider the

following predatory conversation:

<text>i'm bored</text>

<text>Awww babe</text>

<text>I'm sorwy</text>

<text>where u at</text>

<text>Vegas</text>

<text>5-6 hours away</text>

<text>dude y cant u come then!?</text>

<text>I'm n vegas lol</text>

<text>I'm n another state</text>

<text>I'm not ncalifornia</text>

<text>i thought u wanted 2 come c me</text>

<text>I do</text>

<text>But how can I went I'm n another state</text>

<text>when do u leave?</text>

<text>Dis mornin</text>

<text>well i guess u aint really my bf then cuz u lied</text>

This writing style requires some additional considerations that make it different from normal

text mining. A common issue that arises in such a context is the existence of non-grammatical

sentences that makes the typical parsing algorithms inefficient. For instance, ‘But how can I

went I'm n another state’. Another issue is regarding the use of drastically misspelled words

such as in ‘Dis mornin’. Even using the sophisticated spell checkers or stemmers on such a

data as a preprocessing phase would not be so efficient. Having too many different forms of

writing for a single word causes the problem that is known as ‘curse of dimensionality’. This

makes the learning algorithms significantly inefficient.

74

Another important issue that might not be so related to the linguistic aspects of OPI is the

imbalanced nature of chat logs data. This means usually there are too many non-predatory

instances compared to predatory ones. This problem makes the learning process more

challenging since it requires specific algorithms to deal with this type of imbalanced data.

6.3.2. Learning Deep Architectures

As discussed in chapter 2, Recurrent Neural Networks have been shown to be efficient in text

analysis and other NLP tasks, such as speech recognition (please refer to chapter 2 for an

introduction of Recurrent Neural Networks).The only challenge with them is the difficulty of

the training process that makes them not so efficient in dealing with large documents. We

anticipate that new approaches will emerge to tackle this challenge. Accordingly, we

anticipate that these models will be utilized extensively in the field of OPI in the near future.

As another interesting area, we plan to test the embedding method called Paragraph2Vec

proposed in (Le & Mikolov, 2014) to verify classification results using this new embedding

technique.

6.3.3. Web-based Dynamic Social Networks

Criminal social network analysis and visualization was briefly mentioned previously. Unlike

the traditional criminal networks that have strictly hierarchical structures, online pedophile

networks naturally have cellular and distributed structures and usually do not have obvious

leaders. These special types of networks demand the usage of approaches specifically

designed for tackling with the cellular distributed crime networks. These approaches should

be able to analyze smaller crime networks that do not necessarily have a specific powerful

leader. A new tool for analyzing this sort of networks has been developed by Carley (2015) at

Carnegie Mellon University, which might be useful for analyzing pedophile covert networks.

In addition to the approaches identified by Klerks in section 1, a new branch of social

network analysis called Web-based Dynamic Social Network has been revealed recently to

address the mentioned requirement. In this point of view, WDSN differs from traditional

social networks in the sense that they are cellular, distributed, web-based, dynamic, and may

contain varying levels of uncertainty. According to Berger-Wolf and Saia (2006), dynamic

network analysis enables probabilistic reasoning about changes in dynamic networked web-

based communities and how such networks evolve, adapt to changes, and how they can be

destabilized. Leveraging WDSN to identify pedophile covert networks and analyze their

evolving network communication structure can be considered as one of the most significant

directions in the field.

According to the above-mentioned challenges, we anticipate the future of this field spin

around the following issues:

- Achieving a deeper understanding of text, or more generally natural language, to

uncover the semantics behind the chat logs and improve the accuracy of classification

models.

- Leveraging deep learning as a new trend in artificial intelligence for building more

sophisticated language models from chat logs.

75

- Using the concepts of WDSN introduced above to identify pedophile covert networks

and analyze their evolving network communication structure.

76

REFERENCES

1. Aggarwal, C. C. (2015). Mining Text Data. In Data Mining (pp. 429–455). Springer

International Publishing. Retrieved from http://dx.doi.org/10.1007/978-3-319-14142-8_13

2. Amer, M., Goldstein, M., Slim, A., & Abdennadher, S. (2013). Enhancing One-class

Support Vector Machines for Unsupervised Anomaly Detection, Proceedings of the ACM

SIGKDD Workshop on Outlier Detection and Description (pp. 8–15). Chicago, IL, USA,:

ACM.

3. Anantharam, P., Thirunarayan, K., & Sheth, A. (2012). Topical anomaly detection from

Twitter stream. In 4th Annual ACM Web Science Conference (WebSci ’12) (pp. 11–14).

New York, NY, USA: ACM.

4. Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and Trends in

Machine Learning, 2(1), 1–127. http://doi.org/10.1561/2200000006

5. Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996). A Maximum Entropy Approach

to Natural Language Processing. Computational Linguistics, 22(1), 39–71.

6. Berger-Wolf, T. Y., & Saia, J. (2006). A Framework for Analysis of Dynamic Social

Networks. In Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (pp. 523–528). New York, NY, USA: ACM.

7. Bishop, C. (2006). Pattern Recognition and Machine Learning. New York: Springer-

Verlag.

8. Bogdanova, D., Rosso, P., & Solorio, T. (2012a). Modelling Fixated Discourse in Chats

with Cyberpedophiles. In Proceedings of the Workshop on Computational Approaches to

Deception Detection (pp. 86–90). Association for Computational Linguistics.

9. Bogdanova, D., Rosso, P., & Solorio, T. (2012b). On the Impact of Sentiment and

Emotion Based Features in Detecting Online Sexual Predators. In Proceedings of the 3rd

Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (pp.

110–118). Association for Computational Linguistics.

10. Bogdanova, D., Rosso, P., & Solorio, T. (2014). Exploring high-level features for

detecting cyberpedophilia. Computer Speech & Language, 28(1), 108 – 120.

http://doi.org/http://dx.doi.org/10.1016/j.csl.2013.04.007

11. Calcul Quebec. (2016). Retrieved January 20, 2016, from http://www.calculquebec.ca/en/

12. Cano, A., Fernandez, M., & Alani, H. (2014). Detecting Child Grooming Behaviour

Patterns on Social Media. In L. Aiello & D. McFarland (Eds.), Social Informatics (Vol.

8851, pp. 412–427). Springer International Publishing.

13. Carley, K. M. (2015, May 8). DyNet. Retrieved from

http://www.casos.cs.cmu.edu/projects/DyNet/dynet_info.html

14. Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM

Computing Surveys, 41(3), Article No. 15.

15. Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2(3), 27:1–27:27.

16. Chapelle, O., Chi, M., & Zien, A. (2006). A Continuation Method for Semi-supervised

SVMs. In Proceedings of the 23rd International Conference on Machine Learning (pp.

185–192). New York, NY, USA: ACM.

77

17. Chinchor, N. (1992). MUC-4 Evaluation Metrics. In Proceedings of the 4th Conference

on Message Understanding (pp. 22–29). Stroudsburg, PA, USA: Association for

Computational Linguistics.

18. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. P.

(2011). Natural Language Processing (almost) from Scratch. JMLR, 12, 2493–2537.

19. Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern Classification (second ed.).

Wiley-Interscience.

20. Dwyer, K. (2015). Word Representation Learning for Detecting Malicious Chat

Messages. University of Alberta. Retrieved from https://www.mitacs.ca/en/projects/word-

representation-learning-detecting-malicious-chat-messages

21. Ebrahimi, M., Suen, C. Y., Ormandjieva, O., & Krzyzak, A. (2016). Recognizing

Predatory Chat Documents using Semi-supervised Anomaly Detection. In Proceedings of

Document Recognition and Retrieval XXIII (pp. 1-9), San Francisco, CA, USA:

Electronics and Imaging 2016.

22. Eriksson, G., & Karlgren, J. (2012). Features for modelling characteristics of

conversations. Notebook for PAN at CLEF 2012, Rome, Italy: CLEF 2012.

23. Escalante, H. J., Villatoro-Tello, E., Juárez, A., Montes-y-Gómez, M., & Villaseñor, L.

(2013). Sexual predator detection in chats with chained classifiers. In Proceedings of the

4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media

Analysis (pp. 46–54). Atlanta, Georgia: Association for Computational Linguistics.

24. Forman, G. (2003). An Extensive Empirical Study of Feature Selection Metrics for Text

Classification. Journal of Machine Learning Research, 3, 1289–1305.

25. Forsyth, E. N., & Martell, C. H. (2007). Lexical and Discourse Analysis of Online Chat

Dialog. In International Conference on Semantic Computing, 2007. ICSC 2007. (pp. 19–

26). http://doi.org/10.1109/ICSC.2007.55

26. Görnitz, N., Kloft, M., Rieck, K., & Brefeld, U. (2013). Toward Supervised Anomaly

Detection. Journal of Artificial Intelligence Research, 46(1), 235–262.

27. Guzman, J., & Poblete, B. (2013). On-line relevant anomaly detection in the Twitter

stream: an efficient bursty keyword detection model. In ACM SIGKDD Workshop on

Outlier Detection and Description (ODD ’13) (pp. 31–39). New York, NY, USA: ACM.

28. Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A Fast Learning Algorithm for Deep

Belief Nets. Neural Computation, 18(7), 1527–1554.

29. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), 1735–1780.

30. Hogenboom, A., Bal, D., Frasincar, F., Bal, M., de Jong, F., & Kaymak, U. (2013).

Exploiting Emoticons in Sentiment Analysis. In Proceedings of the 28th Annual ACM

Symposium on Applied Computing (pp. 703–710). New York, NY, USA: ACM.

31. Inches, G., & Crestani, F. (2012). Overview of the International Sexual Predator

Identification Competition at PAN-2012. CLEF (working notes), Rome, Italy.

32. Iqbal, F., Fung, B. C. M., & Debbabi, M. (2012). Mining Criminal Networks from Chat

Log. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2012

IEEE/WIC/ACM International Conferences on (Vol. 1, pp. 332–337).

78

33. Irfan, R., King, C. K., Grages, D., Ewen, S., Khan, S. U., Madani, S. A., … Li, H. (2015).

A survey on text mining in social networks. The Knowledge Engineering Review, 30

(Special Issue 02), 157–170.

34. İrsoy, O., & Cardie, C. (2014). Opinion Mining with Deep Recurrent Neural Networks. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing

(pp. 720–728). Doha, Qatar.

35. Johnson, R. (2016). ConText2.0 Source Code. Retrieved January 23, 2016, from

http://riejohnson.com/cnn_download.html

36. Johnson, R., & Zhang, T. (2015a). Effective Use of Word Order for Text Categorization

with Convolutional Neural Networks. In 15th Annual Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies.

37. Johnson, R., & Zhang, T. (2015b). Semi-supervised Convolutional Neural Networks for

Text Categorization via Region Embedding. Proceedings of Neural Information

Processing Systems, Montreal.

38. Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A Convolutional Neural

Network for Modelling Sentences. In Association for Computational Linguistics 2014.

39. Kang, I.-S., Kim, C.-K., Kang, S.-J., & Na, S.-H. (2012). IR-based k-Nearest Neighbor

Approach for Identifying Abnormal Chat Users. Notebook for PAN at CLEF 2012,

Rome, Italy.

40. Kern, R., Klampfl, S., & Zechner, M. (2012). Vote/Veto Classification, Ensemble

Clustering and Sequence Classification for Author Identification. Presented at the

Notebook for PAN at CLEF 2012, Rome, Italy: CLEF 2012.

41. Keyvanpour, M., Ebrahimi, M., Genc Nayebi, N., Ormandjieva, O., & Suen, C. Y.

(2016). Automated Identification of Child Abuse in Chat Rooms by Using Data Mining.

In Data Mining Trends and Applications in Criminal Science and Investigations. IGI

Global.

42. Kierkegaard, S. (2008). Cybering, online grooming and ageplay. Computer Law &

Security Review, 24(1), 41–55.

43. Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing.

Doha, Qatar.

44. Klerks, P. (2003). The network paradigm applied to criminal organizations: Theoretical

nitpicking or a relevant doctrine for investigators? Recent developments in the

Netherlands. In Transnational Organized Crime Perspectives on Global Security.

London: Routledge.

45. Kontostathis, A. (2009). Toward the tracking and categorization of internet predators. In

Proceedings of Text Mining Workshop 2009 held in conjunction with Ninth Siam

International Conference Data Mining, Sparks, NV, USA.

46. Kontostathis, A., Edwards, L., & Leatherman, A. (2010). Text Mining and Cybercrime. In

Text Mining (pp. 149–164). John Wiley & Sons, Ltd.

47. Kontostathis, A., Reynolds, K., Garron, A., & Edwards, L. (2013). Detecting

Cyberbullying: Query Terms and Techniques. In Proceedings of the 5th Annual ACM

Web Science Conference (pp. 195–204). New York, NY, USA: ACM.

79

48. Kumaraswamy, R., Wazalwar, A., Khot, T., Shavlik, J., & Natarajan, S. (2015). Anomaly

Detection in Text: The Value of Domain Knowledge. In Florida Artificial Intelligence

Research Society Conference. AAAI.

49. Lecun, Y., Chopra, S., Hadsell, R., marc’ aurelio, R., & Huang, fu-J. (2006). A Tutorial

on Energy-Based Learning. In G. Bakir, T. Hofman, B. schölkopf, A. Smola, & B. Taskar

(Eds.), Predicting Structured Data. MIT Press.

50. LeCun, Y., Kavukcuoglu, K., & Farabet, C. (2010). Convolutional networks and

applications in vision. In International Symposium on Circuits and Systems (ISCAS),

Proceedings of 2010 IEEE (pp. 253–256).

51. Le, Q. V., & Mikolov, T. (2014a). Distributed Representations of Sentences and

Documents. In Proceedings of the 31th International Conference on Machine Learning,

ICML 2014, Beijing, China, 21-26 June 2014 (pp. 1188–1196).

52. Le, Q. V., & Mikolov, T. (2014b). Distributed Representations of Sentences and

Documents. CoRR, abs/1405.4053. Retrieved from http://arxiv.org/abs/1405.4053

53. Liu, B., & Zhang, L. (2012). A Survey of Opinion Mining and Sentiment Analysis. In C.

C. Aggarwal & C. Zhai (Eds.), Mining Text Data (pp. 415–463). Springer US.

54. Mcghee, I., Bayzick, J., Kontostathis, A., Edwards, L., Mcbride, A., & Jakubowski, E.

(2011). Learning to Identify Internet Sexual Predation. International Journal of

Electronic Commerce, 15(3), 103–122.

55. Michalopoulos, D., & Mavridis, I. (2011). Utilizing document classification for grooming

attack recognition. In IEEE Symposium on Computers and Communications (ISCC), 2011

(pp. 864–869).

56. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., & Euler, T. (2006). YALE: Rapid

Prototyping for Complex Data Mining Tasks. In Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (pp. 935–940). New

York, NY, USA: ACM.

57. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., & Khudanpur, S. (2010). Recurrent

neural network based language model. In INTERSPEECH 2010, 11th Annual Conference

of the International Speech Communication Association, Makuhari, Chiba, Japan,

September 26-30, 2010 (pp. 1045–1048).

58. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

Representations of Words and Phrases and their Compositionality (pp. 3111–3119).

Presented at the Advances in Neural Information Processing Systems 26: 27th Annual

Conference on Neural Information Processing Systems 2013.

59. Morris, C. (2013, January 30). Identifying Online Sexual Predators by SVM Classification

with Lexical and Behavioral Features (Master of Science Thesis). University of Toronto,

Canada. Retrieved from ftp.cs.toronto.edu/pub/gh/Morris,Colin-MSc-thesis-2013.pdf

60. Ng, A. Y. (2004). Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance.

In Proceedings of the Twenty-first International Conference on Machine Learning (p.

78). New York, NY, USA: ACM.

61. Ng, A. Y., & Jordan, M. I. (2002). On Discriminative vs. Generative Classifiers: A

comparison of logistic regression and Naive Bayes. In T. G. Dietterich, S. Becker, & Z.

Ghahramani (Eds.), Advances in Neural Information Processing Systems 14 (pp. 841–

848). MIT Press.

80

62. Olson, L. N., Daggs, J. L., Ellevold, B. L., & Rogers, T. K. K. (2007). Entrapping the

Innocent: Toward a Theory of Child Sexual Predators’ Luring Communication.

Communication Theory, 17(3), 231–251.

63. Pendar, N. (2007). Toward spotting the pedophile telling victim from predator in text

chats (pp. 235–241). Washington, USA,: IEEE.

64. Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word

Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP 2014) (pp. 1532–1543).

65. Popescu, M., & Grozea, C. (2012). Kernel Methods and String Kernels for Authorship

Analysis. Presented at the Notebook for PAN at CLEF 2012, Rome, Italy.

66. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Representations by

Back-propagating Errors. Nature, 323(6088), 533–536.

67. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

Networks, 61, 85 – 117. http://doi.org/http://dx.doi.org/10.1016/j.neunet.2014.09.003

68. Schölkopf, B., Platt, J. C., Shawe-Taylor, J. C., Smola, A. J., & Williamson, R. C. (2001).

Estimating the support of a high-dimensional distribution, 13(7).

69. Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New Support

Vector Algorithms. Neural Computation, 12(5), 1207–1245.

70. Scholkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., & Platt, J. (2000). Support

Vector Method for Novelty Detection. Advances in Neural Information Processing

Systems, 12, 582–588.

71. Socher, R., Lin, C. C.-Y., Ng, A. Y., & Manning, C. D. (2011). Parsing Natural Scenes

and Natural Language with Recursive Neural Networks. In L. Getoor & T. Scheffer

(Eds.), International Conference on Machine Learning (pp. 129–136). Omnipress.

72. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., & Potts, C. (2013).

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In

Proceedings of the 2013 Conference on Empirical Methods in Natural Language

Processing (pp. 1631–1642). Seattle, Washington, USA: Association for Computational

Linguistics.

73. Tan, S. (2005). Neighbor-weighted K-nearest Neighbor for Unbalanced Text Corpus.

Expert Systems Applications, 28(4), 667–671. http://doi.org/10.1016/j.eswa.2004.12.023

74. Toews, V. (2013). Royal Canadian Mounted Police Report on Plans and Priorities 2013-

2014. Canada: RCMP. Retrieved from http://www.rcmp-grc.gc.ca/rpp/2013-2014/rpp-

eng.htm

75. Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York, NY, USA:

Springer-Verlag New York, Inc.

76. Villatoro-Tello, E., Juárez-González, A., Escalante, H. J., Montes-y-Gómez, M., &

Villaseñor-Pineda, L. (2012). A Two-step Approach for Effective Detection of

Misbehaving Users in Chats. Notebook for PAN at CLEF’12, Rome, Italy,: CLEF’12.

77. Yang, Y., & Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text

Categorization. In Proceedings of the Fourteenth International Conference on Machine

Learning (pp. 412–420). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Retrieved from http://dl.acm.org/citation.cfm?id=645526.657137

81

78. Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of (and Practitioners’ Guide to)

Convolutional Neural Networks for Sentence Classification. Cornell University Library

(CoRR, abs/1510.03820), Retrieved from http://arxiv.org/abs/1510.03820

82

APPENDIX A.

Process Definitions in RapidMiner

Using the process definitions in this part, the similar results as obtained in chapter 3 can be

reproduced.

Anomaly Detection Train Process
<?xmlversion="1.0"encoding="UTF-8"standalone="no"?>

<processversion="5.3.012">

<context>

<input/>

<output/>

<macros/>

</context>

<operatoractivated="true"class="process"compatibility="5.3.012"expanded="tr

ue"name="Process">

<processexpanded="true">

<operatoractivated="true"class="text:process_document_from_file"compatibili

ty="5.3.002"expanded="true"height="76"name="Process Documents from

Files"width="90"x="45"y="75">

<listkey="text_directories">

<parameterkey="p"value="E:\University\RA\p"/>

<parameterkey="np"value="E:\University\RA\p"/>

</list>

<processexpanded="true">

<operatoractivated="true"class="text:transform_cases"compatibility="5.3.002

"expanded="true"name="Transform Cases (2)"/>

<operatoractivated="true"class="text:replace_tokens"compatibility="5.3.002"

expanded="true"name="Replace Tokens (2)">

<listkey="replace_dictionary">

<parameterkey="***.****"value=" "/>

</list>

</operator>

<operatoractivated="true"class="text:remove_document_parts"compatibility="5

.3.002"expanded="true"name="RemoveDocumentForSkype">

<parameterkey="deletion_regex"value="\[[^a-z]*\]"/>

</operator>

<operatoractivated="true"class="text:remove_document_parts"compatibility="5

.3.002"expanded="true"name="Remove DocumentForFB">

<parameterkey="deletion_regex"value="[0-9|/|\s]*:[0-9][0-9]"/>

</operator>

<operatoractivated="true"class="text:tokenize"compatibility="5.3.002"expand

ed="true"name="Tokenize">

<parameterkey="mode"value="regular expression"/>

<parameterkey="characters"value=".:, !#%&()|\/`'\n'\t'"/>

<parameterkey="expression"value="[^(\p{L}0-9)]|\(|\)"/>

</operator>

<operatoractivated="true"class="text:filter_stopwords_french"compatibility=

"5.3.002"expanded="true"name="Filter Stopwords (French)"/>

<operatoractivated="true"class="text:filter_by_length"compatibility="5.3.00

2"expanded="true"name="Filter Tokens (by Length)">

<parameterkey="min_chars"value="2"/>

<parameterkey="max_chars"value="20"/>

</operator>

<connectfrom_port="document"to_op="Transform Cases (2)"to_port="document"/>

<connectfrom_op="Transform Cases (2)"from_port="document"to_op="Replace

Tokens (2)"to_port="document"/>

83

<connectfrom_op="Replace Tokens

(2)"from_port="document"to_op="RemoveDocumentForSkype"to_port="document"/>

<connectfrom_op="RemoveDocumentForSkype"from_port="document"to_op="Remove

DocumentForFB"to_port="document"/>

<connectfrom_op="Remove

DocumentForFB"from_port="document"to_op="Tokenize"to_port="document"/>

<connectfrom_op="Tokenize"from_port="document"to_op="Filter Stopwords

(French)"to_port="document"/>

<connectfrom_op="Filter Stopwords

(French)"from_port="document"to_op="Filter Tokens (by

Length)"to_port="document"/>

<connectfrom_op="Filter Tokens (by

Length)"from_port="document"to_port="document 1"/>

<portSpacingport="source_document"spacing="0"/>

<portSpacingport="sink_document 1"spacing="0"/>

<portSpacingport="sink_document 2"spacing="0"/>

</process>

</operator>

<operatoractivated="true"class="filter_examples"compatibility="5.3.012"expa

nded="true"height="76"name="OnlyPositiveExamples

(2)"width="90"x="179"y="75">

<parameterkey="condition_class"value="attribute_value_filter"/>

<parameterkey="parameter_string"value="label=p"/>

</operator>

<operatoractivated="true"class="select_attributes"compatibility="5.3.012"ex

panded="true"height="76"name="Select Attributes

(2)"width="90"x="313"y="75">

<parameterkey="attribute_filter_type"value="single"/>

<parameterkey="attribute"value="label"/>

<parameterkey="invert_selection"value="true"/>

<parameterkey="include_special_attributes"value="true"/>

</operator>

<operatoractivated="true"class="generate_attributes"compatibility="5.3.012"

expanded="true"height="76"name="Generate Attributes

(2)"width="90"x="179"y="165">

<listkey="function_descriptions">

<parameterkey="label"value=""p""/>

</list>

</operator>

<operatoractivated="true"class="set_role"compatibility="5.3.012"expanded="t

rue"height="76"name="Set Role (2)"width="90"x="313"y="165">

<parameterkey="attribute_name"value="label"/>

<parameterkey="target_role"value="label"/>

<listkey="set_additional_roles"/>

</operator>

<operatoractivated="true"class="support_vector_machine_libsvm"compatibility

="5.3.012"expanded="true"height="76"name="One-Class SVM

(2)"width="90"x="447"y="165">

<parameterkey="svm_type"value="one-class"/>

<parameterkey="kernel_type"value="linear"/>

<parameterkey="nu"value="0.1"/>

<parameterkey="epsilon"value="0.0010"/>

<listkey="class_weights"/>

</operator>

<operatoractivated="true"class="write_model"compatibility="5.3.012"expanded

="true"height="60"name="Write Model"width="90"x="581"y="75">

<parameterkey="model_file"value="C:\resolute\model_Anomaly"/>

</operator>

<connectfrom_op="Process Documents from Files"from_port="example

set"to_op="OnlyPositiveExamples (2)"to_port="example set input"/>

84

<connectfrom_op="OnlyPositiveExamples (2)"from_port="example set

output"to_op="Select Attributes (2)"to_port="example set input"/>

<connectfrom_op="Select Attributes (2)"from_port="example set

output"to_op="Generate Attributes (2)"to_port="example set input"/>

<connectfrom_op="Generate Attributes (2)"from_port="example set

output"to_op="Set Role (2)"to_port="example set input"/>

<connectfrom_op="Set Role (2)"from_port="example set output"to_op="One-

Class SVM (2)"to_port="training set"/>

<connectfrom_op="One-Class SVM (2)"from_port="model"to_op="Write

Model"to_port="input"/>

<connectfrom_op="Write Model"from_port="through"to_port="result 1"/>

<portSpacingport="source_input 1"spacing="0"/>

<portSpacingport="sink_result 1"spacing="0"/>

<portSpacingport="sink_result 2"spacing="0"/>

</process>

</operator>

</process>

85

Anomaly Detection Test Process
<?xmlversion="1.0"encoding="UTF-8"standalone="no"?>

<processversion="5.3.012">

<context>

<input/>

<output/>

<macros/>

</context>

<operatoractivated="true"class="process"compatibility="5.3.012"expanded="tr

ue"name="Process">

<processexpanded="true">

<operatoractivated="true"class="text:process_document_from_file"compatibili

ty="5.3.002"expanded="true"height="76"name="Process Documents from

Files"width="90"x="112"y="165">

<listkey="text_directories">

<parameterkey="dummy"value="E:\University\RA\p"/>

</list>

<processexpanded="true">

<operatoractivated="true"class="text:transform_cases"compatibility="5.3.002

"expanded="true"name="Transform Cases"/>

<operatoractivated="true"class="text:replace_tokens"compatibility="5.3.002"

expanded="true"name="Replace Tokens">

<listkey="replace_dictionary">

<parameterkey="***.****"value=" "/>

</list>

</operator>

<operatoractivated="true"class="text:remove_document_parts"compatibility="5

.3.002"expanded="true"name="RemoveDocumentForSkype">

<parameterkey="deletion_regex"value="\[[^a-z]*\]"/>

</operator>

<operatoractivated="true"class="text:remove_document_parts"compatibility="5

.3.002"expanded="true"name="Remove DocumentForFB">

<parameterkey="deletion_regex"value="[0-9|/|\s]*:[0-9][0-9]"/>

</operator>

<operatoractivated="true"class="text:tokenize"compatibility="5.3.002"expand

ed="true"name="Tokenize">

<parameterkey="mode"value="regular expression"/>

<parameterkey="characters"value=".:, !#%&()|\/`'\n'\t'"/>

<parameterkey="expression"value="[^(\p{L}0-9)]|\(|\)"/>

</operator>

<operatoractivated="true"class="text:filter_stopwords_french"compatibility=

"5.3.002"expanded="true"name="Filter Stopwords (French)"/>

<operatoractivated="true"class="text:filter_by_length"compatibility="5.3.00

2"expanded="true"name="Filter Tokens (by Length)">

<parameterkey="min_chars"value="2"/>

<parameterkey="max_chars"value="20"/>

</operator>

<connectfrom_port="document"to_op="Transform Cases"to_port="document"/>

<connectfrom_op="Transform Cases"from_port="document"to_op="Replace

Tokens"to_port="document"/>

<connectfrom_op="Replace

Tokens"from_port="document"to_op="RemoveDocumentForSkype"to_port="document"

/>

<connectfrom_op="RemoveDocumentForSkype"from_port="document"to_op="Remove

DocumentForFB"to_port="document"/>

<connectfrom_op="Remove

DocumentForFB"from_port="document"to_op="Tokenize"to_port="document"/>

<connectfrom_op="Tokenize"from_port="document"to_op="Filter Stopwords

(French)"to_port="document"/>

86

<connectfrom_op="Filter Stopwords

(French)"from_port="document"to_op="Filter Tokens (by

Length)"to_port="document"/>

<connectfrom_op="Filter Tokens (by

Length)"from_port="document"to_port="document 1"/>

<portSpacingport="source_document"spacing="0"/>

<portSpacingport="sink_document 1"spacing="0"/>

<portSpacingport="sink_document 2"spacing="0"/>

</process>

</operator>

<operatoractivated="true"class="read_model"compatibility="5.3.012"expanded=

"true"height="60"name="Read Model"width="90"x="112"y="75">

<parameterkey="model_file"value="C:\resolute\model_Anomaly"/>

</operator>

<operatoractivated="true"class="apply_model"compatibility="5.3.012"expanded

="true"height="76"name="Apply Model"width="90"x="380"y="75">

<listkey="application_parameters"/>

</operator>

<connectfrom_op="Process Documents from Files"from_port="example

set"to_op="Apply Model"to_port="unlabelled data"/>

<connectfrom_op="Read Model"from_port="output"to_op="Apply

Model"to_port="model"/>

<connectfrom_op="Apply Model"from_port="labelled data"to_port="result 2"/>

<connectfrom_op="Apply Model"from_port="model"to_port="result 1"/>

<portSpacingport="source_input 1"spacing="0"/>

<portSpacingport="sink_result 1"spacing="0"/>

<portSpacingport="sink_result 2"spacing="0"/>

<portSpacingport="sink_result 3"spacing="0"/>

</process>

</operator>

</process>

87

SVM Train Process
<?xmlversion="1.0"encoding="UTF-8"standalone="no"?>

<processversion="5.3.012">

<context>

<input/>

<output/>

<macros/>

</context>

<operatoractivated="true"class="process"compatibility="5.3.012"expanded="tr

ue"name="Process">

<processexpanded="true">

<operatoractivated="true"class="text:process_document_from_file"compatibili

ty="5.3.002"expanded="true"height="76"name="Process Documents from

Files"width="90"x="112"y="75">

<listkey="text_directories">

<parameterkey="p"value="E:\University\RA\p"/>

<parameterkey="np"value="E:\University\RA\p"/>

</list>

<processexpanded="true">

<operatoractivated="true"class="text:transform_cases"compatibility="5.3.002

"expanded="true"height="60"name="Transform Cases"width="90"x="45"y="30"/>

<operatoractivated="true"class="text:replace_tokens"compatibility="5.3.002"

expanded="true"height="60"name="Replace Tokens"width="90"x="179"y="30">

<listkey="replace_dictionary">

<parameterkey="***.****"value=" "/>

</list>

</operator>

<operatoractivated="true"class="text:remove_document_parts"compatibility="5

.3.002"expanded="true"height="60"name="RemoveDocumentForSkype"width="90"x="

179"y="120">

<parameterkey="deletion_regex"value="\[[^a-z]*\]"/>

</operator>

<operatoractivated="true"class="text:remove_document_parts"compatibility="5

.3.002"expanded="true"height="60"name="Remove

DocumentForFB"width="90"x="179"y="210">

<parameterkey="deletion_regex"value="[0-9|/|\s]*:[0-9][0-9]"/>

</operator>

<operatoractivated="true"class="text:tokenize"compatibility="5.3.002"expand

ed="true"height="60"name="Tokenize"width="90"x="313"y="30">

<parameterkey="mode"value="regular expression"/>

<parameterkey="characters"value=".:, !#%&()|\/`'\n'\t'"/>

<parameterkey="expression"value="[^(\p{L}0-9)]|\(|\)"/>

</operator>

<operatoractivated="true"class="text:filter_stopwords_french"compatibility=

"5.3.002"expanded="true"height="60"name="Filter Stopwords

(French)"width="90"x="447"y="30"/>

<operatoractivated="true"class="text:filter_by_length"compatibility="5.3.00

2"expanded="true"height="60"name="Filter Tokens (by

Length)"width="90"x="514"y="120">

<parameterkey="min_chars"value="2"/>

<parameterkey="max_chars"value="20"/>

</operator>

<connectfrom_port="document"to_op="Transform Cases"to_port="document"/>

<connectfrom_op="Transform Cases"from_port="document"to_op="Replace

Tokens"to_port="document"/>

<connectfrom_op="Replace

Tokens"from_port="document"to_op="RemoveDocumentForSkype"to_port="document"

/>

<connectfrom_op="RemoveDocumentForSkype"from_port="document"to_op="Remove

DocumentForFB"to_port="document"/>

88

<connectfrom_op="Remove

DocumentForFB"from_port="document"to_op="Tokenize"to_port="document"/>

<connectfrom_op="Tokenize"from_port="document"to_op="Filter Stopwords

(French)"to_port="document"/>

<connectfrom_op="Filter Stopwords

(French)"from_port="document"to_op="Filter Tokens (by

Length)"to_port="document"/>

<connectfrom_op="Filter Tokens (by

Length)"from_port="document"to_port="document 1"/>

<portSpacingport="source_document"spacing="0"/>

<portSpacingport="sink_document 1"spacing="0"/>

<portSpacingport="sink_document 2"spacing="0"/>

</process>

</operator>

<operatoractivated="true"class="x_validation"compatibility="5.3.012"expande

d="true"height="112"name="Validation"width="90"x="313"y="75">

<processexpanded="true">

<operatoractivated="true"class="support_vector_machine_libsvm"compatibility

="5.3.012"expanded="true"height="76"name="SVM"width="90"x="112"y="30">

<parameterkey="kernel_type"value="linear"/>

<parameterkey="C"value="100.0"/>

<listkey="class_weights"/>

</operator>

<connectfrom_port="training"to_op="SVM"to_port="training set"/>

<connectfrom_op="SVM"from_port="model"to_port="model"/>

<portSpacingport="source_training"spacing="0"/>

<portSpacingport="sink_model"spacing="0"/>

<portSpacingport="sink_through 1"spacing="0"/>

</process>

<processexpanded="true">

<operatoractivated="true"class="apply_model"compatibility="5.3.012"expanded

="true"height="76"name="Apply Model"width="90"x="45"y="30">

<listkey="application_parameters"/>

</operator>

<operatoractivated="true"class="performance_binominal_classification"compat

ibility="5.3.012"expanded="true"height="76"name="Performance"width="90"x="1

79"y="30">

<parameterkey="AUC (optimistic)"value="true"/>

<parameterkey="AUC"value="true"/>

<parameterkey="AUC (pessimistic)"value="true"/>

<parameterkey="precision"value="true"/>

<parameterkey="recall"value="true"/>

<parameterkey="f_measure"value="true"/>

<parameterkey="false_positive"value="true"/>

<parameterkey="false_negative"value="true"/>

<parameterkey="true_positive"value="true"/>

<parameterkey="true_negative"value="true"/>

</operator>

<connectfrom_port="model"to_op="Apply Model"to_port="model"/>

<connectfrom_port="test set"to_op="Apply Model"to_port="unlabelled data"/>

<connectfrom_op="Apply Model"from_port="labelled

data"to_op="Performance"to_port="labelled data"/>

<connectfrom_op="Performance"from_port="performance"to_port="averagable

1"/>

<portSpacingport="source_model"spacing="0"/>

<portSpacingport="source_test set"spacing="0"/>

<portSpacingport="source_through 1"spacing="0"/>

<portSpacingport="sink_averagable 1"spacing="0"/>

<portSpacingport="sink_averagable 2"spacing="0"/>

</process>

</operator>

89

<operatoractivated="true"class="write_model"compatibility="5.3.012"expanded

="true"height="60"name="Write Model"width="90"x="447"y="30">

<parameterkey="model_file"value="C:\resolute\model"/>

</operator>

<operatoractivated="true"class="write_performance"compatibility="5.3.012"ex

panded="true"height="60"name="Write Performance"width="90"x="447"y="120">

<parameterkey="performance_file"value="C:\resolute\performance"/>

</operator>

<connectfrom_op="Process Documents from Files"from_port="example

set"to_op="Validation"to_port="training"/>

<connectfrom_op="Validation"from_port="model"to_op="Write

Model"to_port="input"/>

<connectfrom_op="Validation"from_port="training"to_port="result 2"/>

<connectfrom_op="Validation"from_port="averagable 1"to_op="Write

Performance"to_port="input"/>

<connectfrom_op="Write Model"from_port="through"to_port="result 1"/>

<connectfrom_op="Write Performance"from_port="through"to_port="result 3"/>

<portSpacingport="source_input 1"spacing="0"/>

<portSpacingport="sink_result 1"spacing="0"/>

<portSpacingport="sink_result 2"spacing="0"/>

<portSpacingport="sink_result 3"spacing="0"/>

<portSpacingport="sink_result 4"spacing="0"/>

</process>

</operator>

</process>

90

APPENDIX B.

Bash Scripts samples to run ConText2 on GPU
Using the Linux bash script samples in this part, the similar results in chapter 4 can be

obtained. It is necessary to make sure that the appropriate environment is set up before

running these scripts (refer to chapter4).

Training and Testing CNN with 1 Hidden Layer and 3 region

sizes
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/software-gpu/cuda/7.5.18/lib64

gpu=-1 # <= change this to, e.g., "gpu=0" to use a specific GPU.

mem=23 # pre-allocate 2GB device memory

gpumem=${gpu}:${mem}

prep_exe=../bin/prepText

cnn_exe=../bin/conText

options="LowerCase UTF8"

 #Generate vocabulary

echoGeneraing vocabulary from training data ...

max_num=5000

vocab_fn=data/NEWPAN_63_trn-${max_num}.vocab

 #stopword_fn=data/stopwords

 $prep_exegen_vocabinput_fn=data/PAN-

train.tokvocab_fn=$vocab_fnmax_vocab_size=$max_num \

 $options WriteCount

 #Generate region files (data/*.xsmatvar) and target files (data/*.y) for

training and testing CNN.

echo Generating region files with region size 2 and 3 ...

forpch_sz in 1 2 3; do

for set in train test; do

rnm=data/NEWPAN_63_${set}-patch${pch_sz}

 $prep_exegen_regions \

region_fn_stem=$rnminput_fn=data/PAN-${set} vocab_fn=$vocab_fn \

 $options text_fn_ext=.tok label_fn_ext=.cat \

label_dic_fn=data/PAN_cat.dic \

patch_size=$pch_szpatch_stride=1 padding=$((pch_sz-1))

done

done

 #Training and testing

log_fn=log_output/NEWPAN_63-seq.log

perf_fn=perf/NEWPAN_63-seq-perf.csv

echo

91

echo Training CNN and testing ...

echo This takes a while. See $log_fn and $perf_fn for progress and see

param/seq-bow.param for the rest of the parameters.

nodes=2000 # number of neurons (weight vectors) in the convolution layer.

 $cnn_exe $gpumemcnn extension=multi conn0=0-top conn1=1-top conn2=2-top \

data_dir=data trnname=NEWPAN_63_train- tstname=NEWPAN_63_test- \

 reg_L2=0 top_reg_L2=1e-4 step_size=0.05 top_dropout=0.5 \

nodes=$nodes resnorm_width=$nodes \

LessVerbosetest_interval=1

evaluation_fn=$perf_fnsave_fn=output/NEWPAN_63_model \

loss=Square num_iterations=100 step_size_scheduler=Few \

step_size_decay=0.1 step_size_decay_at=80_90 mini_batch_size=100 \

 0dataset_no=0 1dataset_no=1 2dataset_no=2 data_ext0=patch1

data_ext1=patch2 data_ext2=patch3 \

layers=3 pooling_type=Max num_pooling=1 activ_type=Rect \

random_seed=1 datatype=sparse_multix_ext=.xsmatvary_ext=.y \

momentum=0.9 init_weight=0.01 init_intercept=0 \

resnorm_type=Cross resnorm_alpha=1 resnorm_beta=0.5 > ${log_fn}

../bin/conText -1 cnn_predictmodel_fn=output/NEWPAN_63_model.ite100

prediction_fn=output/NEWPAN_63_prediction.txt WriteText extension=multi

datatype=sparse_multitstname=NEWPAN_63_test- data_ext0=patch1

data_ext1=patch2 data_ext2=patch3 data_dir=data x_ext=.xsmatvar> output-

test

92

Output of Training and Testing CNN with 1 Hidden Layer
MaxThreadsPerBlock=1024
MaxBlockDimX=1024
MaxGridDimX=2147483647
MaxSharedMemoryPerBlock=49152
Allocating device memory: 2.46961e+10
Pre-allocation of device memory failed with "out of memory". Disabling device memory handler ...
Using GPU#0

extension=multi conn0=0-top conn1=1-top conn2=2-top data_dir=data trnname=NEWPAN_63_train-
tstname=NEWPAN_63_test- reg_L2=0 top_reg_L2=1e-4 step_size=0.05 top_dropout=0.5 nodes=2000
resnorm_width=2000 LessVerbosetest_interval=1 evaluation_fn=perf/NEWPAN_63-seq-perf.csv
save_fn=output/NEWPAN_63_model loss=Square num_iterations=100 step_size_scheduler=Few
step_size_decay=0.1 step_size_decay_at=80_90 mini_batch_size=100 0dataset_no=0 1dataset_no=1
2dataset_no=2 data_ext0=patch1 data_ext1=patch2 data_ext2=patch3 layers=3 pooling_type=Max
num_pooling=1 activ_type=Rectrandom_seed=1 datatype=sparse_multix_ext=.xsmatvary_ext=.y
momentum=0.9 init_weight=0.01 init_intercept=0 resnorm_type=Cross resnorm_alpha=1 resnorm_beta=0.5

"cnn":
datatype=sparse_multi
trnname=NEWPAN_63_train-
tstname=NEWPAN_63_test-
 data_ext0=patch1
 data_ext1=patch2
 data_ext2=patch3

data_dir=data
x_ext=.xsmatvar
y_ext=.y
num_batches=1

extension=multi
evaluation_fn=perf/NEWPAN_63-seq-perf.csv
Log:ON
CusparseIndex:ON
CusparseFprop:ON
gpu_max_threads=1024
gpu_max_blocks=2147483647
Mon Jan 18 11:05:46 2016: NEWPAN_63_train-patch1 sparsec batch#1
Mon Jan 18 11:05:47 2016: #row=5000 #col=7221662 nz per col=1
Mon Jan 18 11:05:47 2016: #data = 59599
Mon Jan 18 11:05:47 2016: target-min,max=0,1
Mon Jan 18 11:05:47 2016: NEWPAN_63_train-patch2 sparsec batch#1
Mon Jan 18 11:05:48 2016: #row=10000 #col=7779398 nz per col=1.85661
Mon Jan 18 11:05:48 2016: #data = 59599
Mon Jan 18 11:05:48 2016: NEWPAN_63_train-patch3 sparsec batch#1
Mon Jan 18 11:05:49 2016: #row=15000 #col=7877590 nz per col=2.7502
Mon Jan 18 11:05:49 2016: #data = 59599
Mon Jan 18 11:05:49 2016: NEWPAN_63_test-patch1 sparsec batch#1
Mon Jan 18 11:05:52 2016: #row=5000 #col=17008012 nz per col=1
Mon Jan 18 11:05:52 2016: #data = 138338
Mon Jan 18 11:05:52 2016: target-min,max=0,1
Mon Jan 18 11:05:52 2016: NEWPAN_63_test-patch2 sparsec batch#1
Mon Jan 18 11:05:54 2016: #row=10000 #col=18443054 nz per col=1.84438
Mon Jan 18 11:05:54 2016: #data = 138338
Mon Jan 18 11:05:54 2016: NEWPAN_63_test-patch3 sparsec batch#1

93

Mon Jan 18 11:05:57 2016: #row=15000 #col=18706255 nz per col=2.72765
Mon Jan 18 11:05:57 2016: #data = 138338
Mon Jan 18 11:05:57 2016: Start ... #train=59599, #test=138338

Mon Jan 18 11:05:57 2016: Data signature: [0]dim:1;channel:5000;size0:-1;[1]dim:1;channel:10000;size0:-
1;[2]dim:1;channel:15000;size0:-1;
Mon Jan 18 11:05:57 2016: #class=2

layers=3
save_fn=output/NEWPAN_63_model
initial_iteration=0
test_interval=1
num_iterations=100
random_seed=1
mini_batch_size=100
LessVerbose:ON
loss=Square

step_size_scheduler=Few
step_size_decay=0.1
step_size_decay_at=80_90

test_mini_batch_size=100

 conn0=0-top
 conn1=1-top
 conn2=2-top

 0dataset_no=0
Cold-starting (variable-size input) layer#0

 0init_weight=0.01
 0init_intercept=0
 0reg_L2=0

 0step_size=0.05
 0step_sizeb_coeff=1
 0momentum=0.9
 0FastFlush:ON

 0nodes=2000

 0activ_type=Rect

 0pooling_type=Max
 0num_pooling=1

 0resnorm_type=Cross
 0resnorm_alpha=1
 0resnorm_beta=0.5
 0resnorm_one=1
 0resnorm_width=2000
-------- weights --------
input dim: 5000
output dim: 2000
 #weights: 10000000

94

 1dataset_no=1
Cold-starting (variable-size input) layer#1

 1init_weight=0.01
 1init_intercept=0
 1reg_L2=0

 1step_size=0.05
 1step_sizeb_coeff=1
 1momentum=0.9
 1FastFlush:ON

 1nodes=2000

 1activ_type=Rect

 1pooling_type=Max
 1num_pooling=1

 1resnorm_type=Cross
 1resnorm_alpha=1
 1resnorm_beta=0.5
 1resnorm_one=1
 1resnorm_width=2000
-------- weights --------
input dim: 10000
output dim: 2000
 #weights: 20000000

 2dataset_no=2
Cold-starting (variable-size input) layer#2

 2init_weight=0.01
 2init_intercept=0
 2reg_L2=0

 2step_size=0.05
 2step_sizeb_coeff=1
 2momentum=0.9
 2FastFlush:ON

 2nodes=2000

 2activ_type=Rect

 2pooling_type=Max
 2num_pooling=1

 2resnorm_type=Cross
 2resnorm_alpha=1
 2resnorm_beta=0.5
 2resnorm_one=1
 2resnorm_width=2000
-------- weights --------
input dim: 15000

95

output dim: 2000
 #weights: 30000000

Cold-starting connector#4 (0,1,2) -> (3)
Cold-starting the top layer

top_init_weight=0.01
top_init_intercept=0
 top_reg_L2=0.0001

top_step_size=0.05
top_step_sizeb_coeff=1
top_momentum=0.9
top_FastFlush:ON

top_dropout=0.5
------ top layer ------
input: 1
-------- weights --------
input dim: 6000
output dim: 2
 #weights: 12000

Mon Jan 18 11:06:04 2016: Checking word-mapping ...
Mon Jan 18 11:06:04 2016: supervised training: #hidden=3
Mon Jan 18 11:06:04 2016: Resetting step-sizes to s0 (initial value) ...
Mon Jan 18 11:09:12 2016: ite,1,0.026724, test-loss,0.0172853, perf:err,0.0186572
Mon Jan 18 11:12:21 2016: ite,2,0.0208258, test-loss,0.0158059, perf:err,0.0186572
Mon Jan 18 11:15:28 2016: ite,3,0.0185253, test-loss,0.0139906, perf:err,0.0186572
Mon Jan 18 11:18:35 2016: ite,4,0.0160518, test-loss,0.012231, perf:err,0.0186427
Mon Jan 18 11:21:43 2016: ite,5,0.0139379, test-loss,0.0108161, perf:err,0.0148188
Mon Jan 18 11:24:51 2016: ite,6,0.012372, test-loss,0.00978405, perf:err,0.0115153
Mon Jan 18 11:27:57 2016: ite,7,0.0112392, test-loss,0.00924679, perf:err,0.00954908
Mon Jan 18 11:31:04 2016: ite,8,0.0103501, test-loss,0.00841079, perf:err,0.00903584
Mon Jan 18 11:34:11 2016: ite,9,0.00968023, test-loss,0.00795974, perf:err,0.00865995
Mon Jan 18 11:37:19 2016: ite,10,0.00921873, test-loss,0.00777427, perf:err,0.00821177
Mon Jan 18 11:40:25 2016: ite,11,0.00877768, test-loss,0.00748177, perf:err,0.0081684
Mon Jan 18 11:43:32 2016: ite,12,0.00847411, test-loss,0.00720118, perf:err,0.00795154
Mon Jan 18 11:46:39 2016: ite,13,0.0081221, test-loss,0.00706029, perf:err,0.00772022
Mon Jan 18 11:49:47 2016: ite,14,0.00791285, test-loss,0.00709969, perf:err,0.00740216
Mon Jan 18 11:52:54 2016: ite,15,0.00771824, test-loss,0.00690093, perf:err,0.00765516
Mon Jan 18 11:56:01 2016: ite,16,0.00753093, test-loss,0.00673981, perf:err,0.00756119
Mon Jan 18 11:59:08 2016: ite,17,0.00734683, test-loss,0.00670893, perf:err,0.00745999
Mon Jan 18 12:02:16 2016: ite,18,0.00716445, test-loss,0.00663079, perf:err,0.00731542
Mon Jan 18 12:05:23 2016: ite,19,0.00708644, test-loss,0.00652256, perf:err,0.00740939
Mon Jan 18 12:08:31 2016: ite,20,0.00692339, test-loss,0.00647773, perf:err,0.00721421
Mon Jan 18 12:11:38 2016: ite,21,0.0067227, test-loss,0.00640317, perf:err,0.00722867
Mon Jan 18 12:14:45 2016: ite,22,0.00663982, test-loss,0.00636471, perf:err,0.00712747
Mon Jan 18 12:17:53 2016: ite,23,0.00647401, test-loss,0.00632413, perf:err,0.00711301
Mon Jan 18 12:21:00 2016: ite,24,0.0063725, test-loss,0.00629216, perf:err,0.00707687
Mon Jan 18 12:24:07 2016: ite,25,0.00626494, test-loss,0.00626715, perf:err,0.00704796
Mon Jan 18 12:27:14 2016: ite,26,0.00614435, test-loss,0.00627004, perf:err,0.00695398
Mon Jan 18 12:30:21 2016: ite,27,0.00605459, test-loss,0.00620749, perf:err,0.00691061
Mon Jan 18 12:33:28 2016: ite,28,0.00597598, test-loss,0.00617772, perf:err,0.00689615
Mon Jan 18 12:36:34 2016: ite,29,0.00583246, test-loss,0.006159, perf:err,0.00691061
Mon Jan 18 12:39:42 2016: ite,30,0.00576746, test-loss,0.00614621, perf:err,0.00691061
Mon Jan 18 12:42:49 2016: ite,31,0.00562373, test-loss,0.0061467, perf:err,0.00685278

96

Mon Jan 18 12:45:56 2016: ite,32,0.00556077, test-loss,0.00610209, perf:err,0.00686001
Mon Jan 18 12:49:03 2016: ite,33,0.00547382, test-loss,0.00609899, perf:err,0.00680941
Mon Jan 18 12:52:10 2016: ite,34,0.00537371, test-loss,0.00606347, perf:err,0.00685278
Mon Jan 18 12:55:18 2016: ite,35,0.00528744, test-loss,0.00605293, perf:err,0.00683109
Mon Jan 18 12:58:24 2016: ite,36,0.0052427, test-loss,0.00609292, perf:err,0.00673712
Mon Jan 18 13:01:33 2016: ite,37,0.00513019, test-loss,0.00603802, perf:err,0.00683109
Mon Jan 18 13:04:40 2016: ite,38,0.00510573, test-loss,0.00604124, perf:err,0.00676604
Mon Jan 18 13:07:48 2016: ite,39,0.00495817, test-loss,0.00601465, perf:err,0.00667206
Mon Jan 18 13:10:55 2016: ite,40,0.00490143, test-loss,0.00598208, perf:err,0.00674435
Mon Jan 18 13:14:01 2016: ite,41,0.00484445, test-loss,0.00599459, perf:err,0.00676604
Mon Jan 18 13:17:08 2016: ite,42,0.00477985, test-loss,0.00597816, perf:err,0.00673712
Mon Jan 18 13:20:16 2016: ite,43,0.00470749, test-loss,0.00599564, perf:err,0.00659978
Mon Jan 18 13:23:23 2016: ite,44,0.00463818, test-loss,0.00595287, perf:err,0.00669375
Mon Jan 18 13:26:30 2016: ite,45,0.00457485, test-loss,0.00593857, perf:err,0.00667929
Mon Jan 18 13:29:38 2016: ite,46,0.00448207, test-loss,0.00598888, perf:err,0.00657809
Mon Jan 18 13:32:45 2016: ite,47,0.00445995, test-loss,0.00591223, perf:err,0.00660701
Mon Jan 18 13:35:51 2016: ite,48,0.00438375, test-loss,0.00591687, perf:err,0.00658532
Mon Jan 18 13:38:58 2016: ite,49,0.00437371, test-loss,0.00591442, perf:err,0.00653472
Mon Jan 18 13:42:06 2016: ite,50,0.00429192, test-loss,0.00618477, perf:err,0.00675158
Mon Jan 18 13:45:14 2016: ite,51,0.00423354, test-loss,0.00594921, perf:err,0.00654918
Mon Jan 18 13:48:21 2016: ite,52,0.00419088, test-loss,0.00590846, perf:err,0.00647689
Mon Jan 18 13:51:28 2016: ite,53,0.00413698, test-loss,0.00596121, perf:err,0.00663592
Mon Jan 18 13:54:35 2016: ite,54,0.004087, test-loss,0.00587985, perf:err,0.0065058
Mon Jan 18 13:57:42 2016: ite,55,0.00401574, test-loss,0.00587879, perf:err,0.00662146
Mon Jan 18 14:00:49 2016: ite,56,0.00397106, test-loss,0.00586431, perf:err,0.00646966
Mon Jan 18 14:03:57 2016: ite,57,0.00390843, test-loss,0.00585044, perf:err,0.00648412
Mon Jan 18 14:07:05 2016: ite,58,0.00386737, test-loss,0.00595497, perf:err,0.00654918
Mon Jan 18 14:10:12 2016: ite,59,0.00384201, test-loss,0.00584586, perf:err,0.0064552
Mon Jan 18 14:13:19 2016: ite,60,0.00381128, test-loss,0.00584796, perf:err,0.00653472
Mon Jan 18 14:16:27 2016: ite,61,0.00375044, test-loss,0.00584148, perf:err,0.0064046
Mon Jan 18 14:19:34 2016: ite,62,0.00368803, test-loss,0.00584561, perf:err,0.00638292
Mon Jan 18 14:22:41 2016: ite,63,0.00368615, test-loss,0.00583726, perf:err,0.00641906
Mon Jan 18 14:25:48 2016: ite,64,0.00363295, test-loss,0.00582152, perf:err,0.00641906
Mon Jan 18 14:28:55 2016: ite,65,0.00358791, test-loss,0.0058231, perf:err,0.0064552
Mon Jan 18 14:32:02 2016: ite,66,0.00357559, test-loss,0.00583398, perf:err,0.00644798
Mon Jan 18 14:35:10 2016: ite,67,0.00349453, test-loss,0.00596487, perf:err,0.00659978
Mon Jan 18 14:38:17 2016: ite,68,0.003471, test-loss,0.00581963, perf:err,0.0064552
Mon Jan 18 14:41:23 2016: ite,69,0.00345658, test-loss,0.00581807, perf:err,0.00641906
Mon Jan 18 14:44:31 2016: ite,70,0.00341461, test-loss,0.0058233, perf:err,0.0064046
Mon Jan 18 14:47:40 2016: ite,71,0.00339703, test-loss,0.00581688, perf:err,0.00642629
Mon Jan 18 14:50:48 2016: ite,72,0.00334747, test-loss,0.00582024, perf:err,0.00636123
Mon Jan 18 14:53:54 2016: ite,73,0.0033365, test-loss,0.00580703, perf:err,0.00639015
Mon Jan 18 14:57:03 2016: ite,74,0.00328377, test-loss,0.00584041, perf:err,0.00639737
Mon Jan 18 15:00:12 2016: ite,75,0.00324534, test-loss,0.0058078, perf:err,0.0064046
Mon Jan 18 15:03:20 2016: ite,76,0.00322428, test-loss,0.00580896, perf:err,0.00636846
Mon Jan 18 15:06:28 2016: ite,77,0.00321345, test-loss,0.00583242, perf:err,0.00638292
Mon Jan 18 15:09:35 2016: ite,78,0.00320331, test-loss,0.0058002, perf:err,0.00636846
Mon Jan 18 15:12:41 2016: ite,79,0.00315703, test-loss,0.00579791, perf:err,0.00646243
Mon Jan 18 15:15:48 2016: ite,80,0.00313677, test-loss,0.00578705, perf:err,0.00643352
Mon Jan 18 15:15:48 2016: Setting step-sizes to s0 times 0.1
Mon Jan 18 15:18:56 2016: ite,81,0.00304006, test-loss,0.00578541, perf:err,0.00641906
Mon Jan 18 15:22:02 2016: ite,82,0.00300443, test-loss,0.00578387, perf:err,0.00642629
Mon Jan 18 15:25:10 2016: ite,83,0.00299182, test-loss,0.00578651, perf:err,0.00637569
Mon Jan 18 15:28:18 2016: ite,84,0.00300224, test-loss,0.0057842, perf:err,0.00641183
Mon Jan 18 15:31:25 2016: ite,85,0.00300212, test-loss,0.00578414, perf:err,0.00641906
Mon Jan 18 15:34:32 2016: ite,86,0.00297744, test-loss,0.00578662, perf:err,0.00636846
Mon Jan 18 15:37:42 2016: ite,87,0.00300568, test-loss,0.00578585, perf:err,0.00641183

97

Mon Jan 18 15:40:49 2016: ite,88,0.00294359, test-loss,0.00578694, perf:err,0.00642629
Mon Jan 18 15:43:57 2016: ite,89,0.00300074, test-loss,0.00579143, perf:err,0.00637569
Mon Jan 18 15:47:04 2016: ite,90,0.00298773, test-loss,0.00578399, perf:err,0.00639015
Mon Jan 18 15:47:04 2016: Setting step-sizes to s0 times 0.01
Mon Jan 18 15:50:11 2016: ite,91,0.00295923, test-loss,0.00578439, perf:err,0.00639737
Mon Jan 18 15:53:19 2016: ite,92,0.00295836, test-loss,0.00578379, perf:err,0.00639015
Mon Jan 18 15:56:26 2016: ite,93,0.00298553, test-loss,0.0057854, perf:err,0.00636123
Mon Jan 18 15:59:33 2016: ite,94,0.00295286, test-loss,0.00578473, perf:err,0.00637569
Mon Jan 18 16:02:41 2016: ite,95,0.00296693, test-loss,0.00578416, perf:err,0.00638292
Mon Jan 18 16:05:48 2016: ite,96,0.00296608, test-loss,0.00578433, perf:err,0.00639015
Mon Jan 18 16:08:55 2016: ite,97,0.00297198, test-loss,0.00578418, perf:err,0.00638292
Mon Jan 18 16:12:04 2016: ite,98,0.00297666, test-loss,0.00578406, perf:err,0.00638292
Mon Jan 18 16:15:15 2016: ite,99,0.00297813, test-loss,0.00578418, perf:err,0.00637569
Mon Jan 18 16:18:24 2016: ite,100,0.00298606, test-loss,0.00578387, perf:err,0.00638292
Mon Jan 18 16:18:24 2016: Saving the model to output/NEWPAN_63_model.ite100
Mon Jan 18 16:18:27 2016: Done ...
elapsed: 18237.4

98

Training and Testing CNN with 2 Hidden Layers
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/software-gpu/cuda/7.5.18/lib64

gpu=-1 # <= change this to, e.g., "gpu=0" to use a specific GPU.

mem=22 # pre-allocate 2GB device memory

gpumem=${gpu}:${mem}

prep_exe=../bin/prepText

cnn_exe=../bin/conText

options="LowerCase UTF8"

#--- Generate vocabulary

echoGeneraing vocabulary from training data ...

max_num=5000

vocab_fn=data/NEWPAN_54_trn-${max_num}.vocab

 $prep_exegen_vocabinput_fn=data/PAN-

train.tokvocab_fn=$vocab_fnmax_vocab_size=$max_num $options WriteCount

#--- Generate region files (data/*.xsmatvar) and target files (data/*.y)

for training and testing CNN.

echo Generating region files ...

pch_sz=3

for set in train test; do

rnm=data/NEWPAN_54_${set}-patch${pch_sz}

 $prep_exegen_regions \

region_fn_stem=$rnminput_fn=data/PAN-${set} vocab_fn=$vocab_fn \

 $options text_fn_ext=.tok label_fn_ext=.cat \

label_dic_fn=data/PAN_cat.dic \

patch_size=$pch_szpatch_stride=1 padding=$((pch_sz-1))

done

#--- Training and testing

log_fn=log_output/NEWPAN_54-seq.log

perf_fn=perf/NEWPAN_54-seq-perf.csv

echo

echo Training CNN and testing ...

 $cnn_exe $gpumemcnnrandom_seed=1 test_interval=100\

x_ext=.xsmatvary_ext=.y datatype=sparse data_dir=data

trnname=NEWPAN_54_train-patch${pch_sz} tstname=NEWPAN_54_test-

patch${pch_sz}\

layers=2 activ_type=Rect 0nodes=500 0resnorm_width=500

0pooling_type=Max 0pooling_size=2 0pooling_stride=1 1nodes=400

1patch_size=3 1patch_stride=1 1padding=2 1pooling_type=Max

1num_pooling=1 loss=Square mini_batch_size=100 momentum=0.9

step_size=0.05 top_dropout=0.5 reg_L2=1e-4 num_iterations=100

step_size_scheduler=Few step_size_decay=0.1 step_size_decay_at=80_90

\

99

save_fn=output/NEWPAN_54_model evaluation_fn=$perf_fn> ${log_fn}

 ../bin/conText -1 cnn_predictmodel_fn=output/NEWPAN_54_model.ite100

prediction_fn=output/NEWPAN_54_prediction.txt WriteText datatype=sparse

tstname=NEWPAN_54_test-patch3 data_dir=data x_ext=.xsmatvar> output-test

100

APPENDIX C.

RapidMiner’s Source Code Formula for TFIDF

Calculation
The following java class belongs to the “vectorcreation” package in Text processing plug-in

of Rapidminer 5.03. The class is responsible for generating the TFIDF-weighted word vector.

/*

 * RapidMiner Text Processing Extension

 *

 * Copyright (C) 2001-2013 by Rapid-I and the contributors

 *

 * Complete list of developers available at our web site:

 *

 * http://rapid-i.com

 *

 * This program is free software: you can redistribute it and/or modify

 * it under the terms of the GNU Affero General Public License as published by

 * the Free Software Foundation, either version 3 of the License, or

 * (at your option) any later version.

 *

 * This program is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU Affero General Public License for more details.

 *

 * You should have received a copy of the GNU Affero General Public License

 * along with this program. If not, see http://www.gnu.org/licenses/.

 */

package com.rapidminer.operator.text.io.vectorcreation;

import com.rapidminer.operator.text.WordList;

/**

 * This class represents a mechanism to create TFIDF word vectors. The resulting

vectors are normalized.

 *

 * @author Michael Wurst

 */

public class TFIDF implements VectorCreator {

 public double[] createVector(float[] frequencies, WordList wordList) {

 // Obtain the total number of documents and the document frequencies

 int numDocuments = wordList.getNumberOfDocuments();

 int[] docFrequencies = wordList.getDocumentFrequencies();

 double totalTermNumber = 0;

 for (float value: frequencies)

 totalTermNumber += value;

 // Create the result structure

 double[] wv = new double[docFrequencies.length];

 // Create the vector

 // If the document contains at least one term

 if (totalTermNumber > 0) {

 double length = 0.0;

 for (int i = 0; i < wv.length; i++) {

 // Note: docFrequencies[i] is always > 0 as otherwise the word

 // would not be in the word list, it is also always smaller as

 // the total number of documents

101

 double idf = Math.log(((double) numDocuments) / ((double)

docFrequencies[i]));

 wv[i] = (frequencies[i] / totalTermNumber) * idf;

 length += wv[i] * wv[i];

 }

 length = Math.sqrt(length);

 // Normalize the vector

 if (length > 0.0)

 for (int i = 0; i < wv.length; i++)

 wv[i] = wv[i] / length;

 }

 return wv;

 }

}

